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Preface 
This report contains the 2001 Annual Progress Reports of the postdoctoral fellows and 

visiting scholars of the Center for Turbulence Research. In 2001 CTR sponsored 15 resi- 
dent Postdoctoral Fellows, 7 Research Associates and 3 Senior Research Fellows, hosted 
7 visiting scholars and many shorter-term visitors, and supported 6 doctoral students. 
Most of the doctoral students engaged in turbulence research at CTR are supported by 
the U.S Office of Naval Research or the Air Force Office of Scientific Research. 

CTR is closely associated with the Stanford multidepartmental Center for Integrated 
Turbulence Simulations (CITS), funded by the Department of Energy's Accelerated 
Strategic Computing Initiative (ASCI). The aim of the CITS program is to compute 
the complete flow through an aircraft gas turbine engine. The combustion chamber is 
the most critical region: it is typically of very complicated geometrical shape, and the 
fuel is introduced as a spray of droplets which must disperse and vaporize before burn- 
ing. The first paper in this volume describes large-eddy simulation of the air flow in a 
real aircraft gas turbine combustor, and there are several papers relevant to the crucial 
problem of spray combustion. 

The two most noticeable features of this year's reports are the application of large-eddy 
simulation (LES) to a wide range of practical problems, and the continued broadening of 
the Center's interests, especially in natural phenomena: the Center's alphabet could start 
with Astrophysics, Buckyballs and Cacti. The diversification of interests has brought with 
it an increasing number of contacts with industry and with other branches of the natural 
sciences and life sciences. 

The papers fall into seven groups: in order, these are: large-eddy simulation; combustion 
and hypersonics; sprays and particles; control and optimization; molecular dynamics; 
instability, acoustics and turbulence structure; and Reynolds-averaged turbulence models 
(RANS models). Many papers could be included in more than one group, so the groups 
are not explicitly labeled in the Contents. The common theme, of course, is that these 
are computer-intensive problems. 

As is recognized in the aircraft-engine industry, large-eddy simulation is becoming 
a powerful engineering tool for predicting internal flows and mixing in real propulsion 
systems, where Reynolds numbers are low (compared to those in external aerodynamics) 
and the flow can be separated and highly unsteady. These flow conditions are difficult 
to capture with RANS models, but can be accurately predicted by LES because they 
are dominated by large-scale motions. The problem of economically computing high- 
Reynolds-number attached or separating flows remains. Here all eddies are small, and 
if the LES is carried right down to the surface then either the mesh has to be so fine 
that the calculation reduces to DNS, or the sub-grid-scale model has to carry most of 
the Reynolds stresses and the calculation effectively reduces to RANS. The first one is 
impossibly expensive and the other is likely to compromise accuracy. Since the day of 
widespread industrial use of LES has not yet arrived, CTR continues to support work on 
Reynolds- averaged models. 

Combustion is a long-standing interest at CTR, and the work has received a boost 
from the appointment of Prof. Norbert Peters to the Department of Mechanical Engi- 
neering. Much of our work is supported by NASA's Ultra Efficient Engine Technology 
(UEET) Program. Hypersonic flow with real-gas effects shares many of the problems of 
combustion, and is also an ongoing interest of NASA. 



The importance of spray dynamics in combustion of liquid fuels has been mentioned 
above: the behavior of particle- laden flows in general is of very wide engineering interest. 
A special case of particle-laden flow is the long-standing mystery of liquid flow with a 
suspension of long-chain polymer molecules: spectacular reductions in flow resistance can 
be achieved but the mechanism is still controversial. 

Control and optimization, of turbulent flow or of other systems, is another long- 
standing interest at CTR, and again is relevant to many branches of engineering. 

Molecular dynamics, far though it is from CTR's original interests, is a fast-developing 
field involving very intensive computing. 

Instability problems are closely related to control problems, notably in the case of 
combustion. Instability of laminar flows is yet another problem that is yielding to inten- 
sive computing in the form of DNS. The phenomenological relation between the earlier 
stages hydrodynamic instability and final, fully-developed turbulence may not be very 
close, but the computational problems are virtually identical. Aeroacoustics and turbu- 
lence structure are the original interests of CTR, and basic research on these topics is 
still the foundation of improved models, whether the sub-grid-scale models of LES or the 
traditional RANS models used in industry. 

We are grateful to Professor Peter Bradshaw for his thorough technical editing of the 
reports in this volume. We welcome Peter's participation in CTR in this capacity and 
his increased interactions with the CTR research staff. 

Parviz Moin 
William C. Reynolds 

Nagi N. Mansour 

This volume, like other CTR progress-report volumes, is available as a .pdf file on the 
Web at http://ctr.stanford.edu 
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Large-eddy simulation of gas turbine combustors 

By Krishnan Mahesh f, George Constantinescu, Sourabh Apte, Gianluca 
Iaccarino AND Par viz Moin 

1. Motivation and objectives 
This report discusses our progress towards developing a numerical algorithm, and solver 

capable of performing large-eddy simulation in geometries as complex as the combustor of 
a gas-turbine engine. LES is considered a particularly attractive approach for combustor 
simulation because of its demonstrated superiority over RANS in predicting mixing. A 
working combustor - the PW6000 - is chosen to develop and demonstrate LES capability. 

As discussed in previous reports (Mahesh et al. 1999, 2000), an algorithm and LES 
solver for unstructured grids are under development. 

2. Accomplishments 
Our progress in the last year is as follows: 
• A new formulation was derived that is discretely energy-conserving for arbitrary 

grids. This was found essential to perform simulations at high Reynolds numbers, and on 
'bad' grids encountered in complex geometries such as the Pratt & Whitney combustor. 

• Turbulent validations were performed for the swirling flow in a coaxial combustor 
geometry, flow over a cylinder and turbulent channel flow. 

• Turbulent simulations were initiated in the complex Pratt & Whitney combustor. 
Also simulations were performed in a test rig geometry used by Pratt &: Whitney for 
which experimental data is available. 

• A spray module was integrated with the gas-phase solver. Validation simulations in 
a swiring coaxial combustor geometry Sommerfeld & Qiu (1991) were performed. Spray 
simulations in the Pratt & Whitney combustor were initiated. 

3. Algorithm improvements 
3.1. Base algorithm 

Recall that the algorithm described at the end of last year's report stored pressure at the 
centroids of the elements, and velocity at their faces. As shown in figure 1, only the normal 
component of velocity was stored and advanced in time; the other two components were 
reconstructed. The velocity component vn satisfied, 

dvn     ._    „.   _     d  fu-u\ 1 dp        /_,<>_*   _ ,„.> 
-dT-^X^-n+^{—)=--pTn + U^-n- (3-1} 

The convection term was written in terms of velocity and vorticity, and the pressure- 
projection approach was used to ensure that the velocity field was discretely divergence- 
free. As shown in last year's report, good results were obtained for laminar unsteady 
flows, and low Reynolds number turbulent flows in complex geometries. 

t Aerospace Engineering and Mechanics, University of Minnesota 
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FIGURE 1. Positioning of variables in staggered algorithm. 
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FIGURE 2. Illustration of the importance of discretely conserving kinetic energy. The kinetic 
energy is plotted against time for the Taylor problem at (a): Re = 109, and (b): Re = 1. At 
the lower Reynolds number, both schemes are stable. At higher Reynolds number, only the 
energy-conserving scheme is stable. The solid circles in (b) denote the analytical solution; the 
energy-conserving formulation passes through them. 

However, problems with robustness were experienced this year when the simulations 
were extended to high Reynolds number, and to 'bad' grid elements that are inevitable 
in complex geometries such as the combustor geometry provided by Pratt & Whitney. It 
was established that the robustness problems were caused by the fact that the algorithm 
only conserved momentum, and not kinetic energy, on arbitrary grids with highly skewed 
elements. 

An alternative formulation was derived, in which the convection term discretely con- 
serves kinetic energy for arbitrary grids. Recall that discrete energy conservation refers to 
the fact that for incompressible flow, the convection term in the kinetic energy equation 
is expressible in divergence form, i.e. d/dxj (ujUiUi/2). Conservation of momentum and 
the continuity equation ensure kinetic energy conservation for the continuous equations; 
however the same is not true for the discrete equations, where momentum conservation 
does not imply energy conservation. It is readily seen that kinetic energy conservation is 
a desirable feature for the algorithm since it implies that the Li norm is bounded. 

The basic idea behind the new formulation is as follows. The traditional fractional- 
step algorithm on structured grids stores the face-normal velocity component on all faces. 
Control volumes are then identified around the faces, and the momentum equation for 
the velocity component is advanced in time. The primary reason for staggering is that 
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FIGURE 3. Kinetic energy of isotropic turbulence is plotted against time at varying Reynolds 
numbers. The Reynolds number is increased from 102,103,10 ,106 and 109 respectively. Note 
that the scheme is robust even at the highest Reynolds numbers. 

the pressure equation does not suffer from odd-even decoupling. However, solution of 
the momentum equation requires that the velocity components tangential to the face 
be known. These are obtained through interpolation. The interpolant has to be care- 
fully constructed such that the resulting momentum equation implies conservation of 
kinetic energy. There are two problems with extending this approach to arbitrary un- 
structured grids: (i) denning control volumes around the faces in three-dimensions is 
complicated; furthermore, skewed elements yield highly skewed control volumes, (ii) the 
resulting interpolation for the tangential velocities is unacceptably inaccurate if discrete 
energy conservation is required. We base these statements on actual computations per- 
formed using an energy-conserving formulation that we derived from a fully staggered 
formulation. The resulting formulation yielded acceptable results for Cartesian grids but 
was unacceptably inaccurate for the complex Pratt & Whitney combustor geometry. 

An alternative formulation was therefore derived. Velocity and pressure are now stored 
at the centroids of the volumes. The cell-centered velocities are advanced in the predic- 
tor step such that kinetic energy conservation is ensured for the predictor step. These 
predicted velocities are then interpolated to the faces and then projected. Both interpo- 
lation and projection are robust procedures since they do not add energy to the solution 
(when the computational stencil uses local neighbors). Projection yields the pressure 
potential at the cell-centers, and the pressure gradient is used to correct the cell veloci- 
ties. A straightforward use of the gradient theorem yields very good results on smooth 
grids, but is found unacceptable for highly skewed or very rapidly varying grids. This 
lack of robustness can be explained from an energy-conservation point of view. A novel 
discretization for the pressure gradient was derived. This formulation of the algorithm 
has been found to yield very good results for both 'simple' problems (Taylor problem, 
isotropic turbulence, channel, cylinder, coaxial combustor) as well as the exceedingly 
complex geometry of the Pratt & Whitney combustor. 

The importance of discrete energy conservation is illustrated in Fig. 2, which shows the 
evolution of kinetic energy in the Taylor problem - an analytical solution, which describes 
counter-rotating vortices that decay in time. Our energy-conserving formulation is com- 
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Gas Phase (Air) Particle Phase (Glass) 

Flow rate in primary jet, g/s 

Flow rate in secondary jet, g/s 

Inlet Reynolds number 

Swirl number 

9.9 

38.3 

26200 

0.47 

Loading Ratio in Primary Jet 

Flow rate, g/s 

Density ratio, pP/pf 

0.034 

0.34 

2152 

TABLE 1. Flow conditions and particle properties used in the Sommerfeld & Qiu (1991) 
experiments. 

pared to a non-dissipative formulation that only conserves momentum. Both formulations 
have the same computational stencil. At low Reynolds numbers, where the dissipative 
scales are resolved, both formulations are stable, although the energy-conserving formula- 
tion shows better agreement with the analytical result. However, at very high Reynolds 
numbers where the dissipative scales are not resolved, the formulation that does not 
conserve kinetic energy becomes unstable after some time, while the energy conserving 
formulation is seen to maintain its initial kinetic energy as required by the analytical 
solution. Figure 3 shows the decay of turbulent kinetic energy of isotropic turbulence 
when computed on a coarse grid (323). The Reynolds number is increased from 100 to 
109. No subgrid model is used. Even the lowest Reynolds number is not completely re- 
solved at this resolution. Note however that the solution does not become numerically 
unstable; instead it exhibits the proper Reynolds number sensitivity (reduced decay rate 
with increasing Reynolds number). It is this robustness that makes accurate LES of high 
Reynolds number flows possible. 

3.2. Integration with spray modules 

The gas-phase solver was extended to include the effect of liquid droplets. The droplets 
are modeled as point particles which satisfy Lagrangian equations. They influence the gas 
phase through source terms in the gas-phase equations. As the particles move, their posi- 
tion is located and each particle is assigned to a control volume of the gas-phase grid. The 
gas-phase properties are interpolated to the particle location and the particle equations 
are solved. The particles are then relocated, particles that cross interprocessor boundaries 
in our parallel computaton are duly transferred, source terms in the gas-phase equation 
are computed, and the computation is further advanced. Spray integration involves the 
following key issues: (i) Efficient search and location of droplets on an unstructured grid 
(ii) Interpolation of gas-phase properties to the droplet location for arbitrarily shaped 
control volumes (iii) inter-processor droplet transfer. 

3.2.1. Locating particles in elements of arbitrary shape 

Locating particles in a generalized-coordinate structured code is straightforward, since 
the physical coordinates can be transformed into a uniform computational space. How- 
ever, this is not the case for unstructured grids. Westermann (1992) describes several 
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FIGURE 4. (o) Schematic of the known-vicinity algorithm to track particle positions on 
unstructured grids. (6) Comparison of the brute force and known vicinity search algorithms. 

approaches to locate particles in particle-in-cell codes. Two such techniques are imple- 
mented in the unstructured code, and are described below. 

One approach to determining whether a particle lies inside a control volume is based 
on the calculation of partial volumes. The nodes of the control volume are joined to the 
particle location, and the volumes of the resulting sub-cells are compared to that of the 
control volume. If the particle lies inside the control volume, the sum of the sub-cell 
volumes will be equal to the total volume. The advantage of this method is that it can be 
applied to all control volumes simultaneously and a separate search algorithm for particle 
location is not required. However, the method is slow since it involves computations of 
partial volumes for each cell. Also, it was found to fail drastically for highly skewed 
meshes due to inaccuracies in the computation of partial volumes. 

The second approach projects the particle location onto the faces of the control volume 
and compares these vectors with outward face-normals for all faces. If the particle lies 
within the cell, the projected vectors point the same way as the outward face-normals. 
This technique, although more accurate, requires a search algorithm to select the control 
volume to which the criterion is applied. 

3.2.2. Search algorithms for particles on unstructured grids 

Three approaches were examined and are termed the brute-force, modified-brute-force 
and known-vicinity approaches respectively. The brute-force approach simply loops over 
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unstruct. code 
struct, code 

FIGURE 5. Comparison of the unstructured solver to a structured solver using the same grid. 
Results correspond to turbulent Reynolds stresses in a turbulent channel at ReT = 180 on a 
coarse (32 x 64 x 32) grid. The structured grid results were kindly provided by Dr. Bill Cabot, 
Lawrence Livermore National Laboratory. 

all the elements of the grid and applies the localization criterion described above. As 
expected, it is extremely slow when particles number about a million, as is the case even 
for coarse LES. The modified-brute-force approach evaluates the closest point of the 
mesh to the particle location and only considers the elements surrounding that point. 
Should this attempt (which in general is very successful) fail, the elements surrounding 
all the close points are considered. If this also fails for some pathological cases Lohner 
(1995), the search region is enlarged or the brute-force method is applied. This modified 
approach is found effective to initialize particles, and as a fall-back position for more 
refined algorithms. 

Given a good initial guess for a particle location, the known-vicinity algorithm out- 
performs all others Lohner (1995). Particle location at earlier time-steps provide a very 
good initial guess in LES. Knowing the initial and final location of the particle, this al- 
gorithm searches in the direction of the particle motion until it is relocated (Fig. 4). The 
neighbor-to-neighbor search is extremely efficient if the particle is located within 10-15 
attempts, which is usually the case for 90% of the particles in present simulations. If this 
algorithm fails, we fall back to the 'modified-brute-force' method to locate the particle. 
A combination of these two algorithms is found highly efficient and robust for complex 
geometries and hybrid meshes encountered in realistic combustor geometries. 

The known-vicinity algorithm is compared to the modified-brute-force method in Fig. 
4. Two cases are considered: (i) domain size is fixed, and the particles are displaced for 2-3 
cell-sizes in all three coordinate directions, (ii) the number of particles is kept fixed (1000 
particles) and the element size per processor is increased. The known-vicinity approach 
is seen to be noticeably better than the modified-brute-force approach. Note that these 
comparisons were performed on a single processor of an Origin 2000. 

Least-squares interpolation is used to interpolate gas-phase properties linearly each to 
particle location. Also particles that cross interprocessor boundaries are assigned to the 
ghost control volumes of the gas-phase solver, and then passed across processors. 

4. Validation 

The gas-phase solver was validated for a variety of benchmark flows: Taylor problem, 
isotropic turbulence, turbulent channel flow, flow over a cylinder, and the turbulent flow 
in a coaxial combustor. The simulations in the coaxial combustor geometry also included 
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x/R = 2.66 

FIGURE 6. Cross-section of the grid and particles superposed on contours of instantaneous 
axial velocity in LES of the flow in a coaxial combustor geometry. Conditions correspond to an 
experiment by Sommerfeld &: Qiu (1991). Only part of the computational domain is shown for 
clarity. 

particles. The purpose of these validation studies was to establish that the algorithm can 
accurately simulate turbulence, is robust at high Reynolds numbers and on 'bad' grids, 
and has accuracy is comparable to that of structured grid solvers that use the same grid 
and computational stencil. Some of these validation cases are reported below. 

Figure 5 shows results from computations of turbulent channel flow at ReT = 180 on a 
very coarse grid (32 x 64 x 32). No subgrid model was used. Despite its simplicity, channel 
flow is known to be very sensitive to errors arising from the non-linear terms. On very 
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FIGURE 7. Comparison between LES ( ) and experiment (o ), Sommerfeld & Qiu (1991) 
for the gas-phase of particle-laden swirling flow in a coaxial combustor. (a): mean axial velocity, 
(b): mean swirl velocity, (c): mean radial velocity, (d) turbulent kinetic energy. 
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FIGURE 8. Comparison between LES ( ) and experiment (o ), Sommerfeld k. Qiu (1991) 
for the particle-phase of swirling flow in a coaxial combustor. (a): mean particle axial velocity, 
(6): mean particle swirl velocity, (c): mean particle radial velocity, (d) mean particle diameter, 
(e) rms of particle axial velocity. 

(e) 
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coarse grids, the turbulence in the channel can either decay or the entire solution can 
blow-up depending upon the numerical algorithm used. We compare our results to those 
provided by Dr. Bill Cabot (Lawrence Livermore National Laboratory) from a structured 
solver using the second-order staggered grid and fractional step approach on the same 
grid. The comparison shows that the accuracy of the unstructured algorithm is nearly 
the same as a structured solver for structured grids. 

The flow in a swirl-stabilized coaxial combustor represents an important validation 
case. Sommerfeld & Qiu (1991) provide detailed measurements of this flow, which tests 
both the gas-phase solver and the spray module. A cross-section of the geometry and the 
unstructured mesh used for simulating this particle-laden flow is shown in Fig. 6. The 
flow is from left to right, and consists of a primary jet issuing out of the core, and a 
swirling jet issuing out of the annulus. The primary jet is laden with glass beads whose 
diameter varies from 20 microns to 80 microns. Detailed flow conditions and particle 
properties are summarized in Table 1. As a result of the swirl, the streamlines diverge 
as they exit into the dump region, and a recirculation region is set up (Fig. 6). The 
computations used an unstructured grid composed of approximately 2 million hexahedral 
elements. Turbulent fluctuations from a separate calculation are specified at the inflow 
and convective boundary conditions are imposed at the exit. The dynamic subgrid model 
was used. At the time of writing, flow statistics for the gas- and particle-phases have 
been computed. Figure 7 compares computed profiles of mean and turbulent gas-phase 
velocities with experiment, while Fig. 8 compares the corresponding particle statistics. 
In addition, variation of mean particle diameter is also compared. Good agreement is 
observed. 

5. Simulations in Pratt & Whitney combustor 
Validation calculations are being performed in the combustor of the PW6000 engine. 

These calculations are seen as a prerequisite to integrating the unstructured solver with 
the turbomachinery code. As shown in Fig. 9, the geometry of the PW6000 combustor is 
exceedingly complex, and poses serious challenges to both grid-generation and the solver. 
These simulations are being performed in two steps: (i) mixing of a passive scalar by cold 
flow (ii) introduction of heat release. The cold flow calculation is in progress, and results 
are reported below. Validation data is available for bulk quantities such as mass-splits 
and pressure drops for this case. Cold flow simulations are also being performed in a 
simpler configuration, termed the front-end validation model. This geometry has exactly 
the same fuel injector and combustion chamber as the PW6000 combustor, but is fed 
by a cylindrical plenum and does not have dilution holes (Fig. 13). It is being simulated 
because detailed LDV measurements are available from Pratt & Whitney. Note that the 
injector is the most geometrically complex component of the entire combustor. Quanti- 
tative validation for the front-end model will therefore establish considerable confidence 
in the results obtained for the PW6000 combustor. 

5.1. Grid generation 
A commercial grid generator (GAMBIT, Fluent Corporation) was used for grid gener- 
ation. Both geometries (the PW6000 combustor and front-end validation model) were 
received from Pratt & Whitney as IGES files. The PW6000 geometry contained more 
than 9000 entities (surfaces, edges, vertices) which were cleaned up and reduced to 1200 
entities. As shown in Fig. 9, the combustor chamber is fed by three coaxial swirlers 
and several dilution holes. The inlet air passes through the pre-diffuser and follows two 
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paths; the main stream flows through the swirlers and enters the chamber, while the 
secondary stream is diverted to the outer diffusers and enters the combustor through the 
dilution holes. Diversion of the outer diffuser air to secondary systems, and transpiration 
air through the liners of the main combustor, were not considered in the computations 
reported here; they are currently being included. The computational domain was divided 
into about 100 volumes for grid-generation; hexahedral meshes were generated over about 
85% of the volumes. Tetrahedral meshes were generated for the swirlers, and pyramids 
were used to connect tetrahedral and hexahedral elements. An initial coarse grid has 
been generated; it contains about 1.3M elements (0.6M tetrahedra, 0.65M hexahedra). 
Figure 9 shows the grid. The level of geometrical complexity is obvious. Also note that 
the coarse grid consists of highly-skewed elements with rapid variations in element size 
and type. Figure 13 shows a schematic of the grid generated for the front-end valida- 
tion model. The procedure described above was used to generate two grids: coarse (2.2M 
elements) and fine (4.5M elements). 

5.2. Results 
The flow conditions for the PW6000 combustor simulations are as follows. The flow into 
the pre-diffuser of the PW6000 is at a bulk Reynolds number of 500,000, which corre- 
sponds to a Reynolds number of approximately 150,000 in the main swirler, based on the 
diameter and flow rate through the swirler. Turbulent fluctuations from a separate com- 
putation in a pipe sector are specified at the inflow, and convective boundary conditions 
are specified at the exit. The flow in the domain was initialized to be at rest. Statistics 
were gathered after initial transients exited the domain. 

The first computation performed in this geometry was at a very low Reynolds number 
of 1000, and did not include a subgrid model. Its objective was to assess the ability of the 
algorithm to handle a geometry with this level of complexity, and a mesh with extreme 
variations in size and element skewness. It was found that while geometrical complexity 
was adequately handled, 'bad' regions of the mesh posed severe problems. These prob- 
lems were explained from energy-conservation principles, and the above-mentioned novel 
discretization was derived for the pressure gradient. This fundamental change in the al- 
gorithm has proven to be extremely successful in terms of its ability to handle complex 
geometries, high Reynolds numbers, and bad grids. 

Figure 10 shows contour plots of both instantaneous and mean flow-fields in the 
PW6000 combustor. The flow in the diffuser is seen to be attached, it then passes 
smoothly through regions where the mesh rapidly changes, swirl is generated by the 
swirlers, and the flow in the dump region is determined by the interaction between the 
swirling primary jets and the dilution jets. Also shown in Fig. 11 are velocity contours 
from a computation on the same grid at the significantly lower inlet Reynolds number 
of 1000. No subgrid model was used in the low Reynolds number computations, while 
the high Reynolds number computations used the Smagorinsky model. The results at 
low Reynolds number are seen to be strikingly different, in that no recirculation region is 
seen downstream of the injector; instead the primary flow is jet-like. This behavior can 
be explained on physical grounds; the swirl that is generated by the swirler decays in the 
channel downstream of the swirler before the flow exits into the dump region. The decay 
rate of swirl is determined by the viscosity. At low Reynolds number, the decay of swirl 
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FIGURE 9. Illustration of the geometry and surface mesh in the PW6000 combustor geometry. 

is significant enough that the exiting jet has negligible levels of swirl, and as a result no 
recirculation region is formed. On the other hand, at high Reynolds number the swirl 
velocity does not decay very much in the channel and, as a result, the exiting swirling 
jets diverge and a recirculation region is formed. This Reynolds-number sensitivity ob- 
served on a coarse grid is very encouraging, and reinforces the importance of having an 
algorithm that is robust without being dissipative. 

The computations in the PW6000 geometry did not include the effect of outer-diffuser 
air being diverted to secondary systems, and transpiration air through the liner of the 
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FIGURE 10. Contours of instantaneous velocity magnitude in LES of flow in the PW6000 
combustor geometry. 
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FIGURE 11. Contours of instantaneous velocity magnitude in the PW6000 combustor at a low 
inlet Reynolds number of 1000. Notice that flow downstream of the injector is jet-like instead 
of showing recirculation as in the high Reynolds number results shown above. 

combustor. These effects have now been included, and a computation on the same grid is 
in progress. These results will be compared to bulk data like mass flow splits and mean 
pressure drops that will be made available by Pratt & Whitney. Also, computations are 
underway with particles; an instantaneous snapshot is shown in Fig. 12. 

The front-end validation model is an important validation case because it uses the same 
injector as the PW6000 simulation. LDV data is available at three stations downstream 
of the injector. The Reynolds number in the main injector is approximately 100,000 
in these computations. Figure 13 shows a schematic of the grid and contours of the 
velocity field. Two grids were generated: coarse (2.2M elements) and fine (4.5M elements). 
Simulations on the coarse grid have been performed, and used to initialize the fine grid 
computation which is underway. Statistics are being gathered on the fine grid at the time 
of writing. The mean pressure drop across the injector has converged, and shows very 
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FIGURE 12. Instantaneous snapshot of particles superposed on velocity contours in PW6000 
combustor geometry. 

good agreement with experiment (4588 Pa as compared to 4500 Pa). In contrast, a RANS 
computation was performed on the same grid and found to yield a much higher drop of 
5660 Pa. More detailed comparison will be performed once all quantities are converged. 

6. Summary and future plans 
Our progress in the last year is as follows: 
• A new formulation was derived that is discretely energy-conserving for arbitrary 

grids. This was found essential for performing simulations at high Reynolds number 
simulations, and on the 'bad' grids found in complex geometries such as the Pratt & 
Whitney combustor. 

• Turbulent validations were performed for the swirling flow in a coaxial combustor 
geometry, flow over a cylinder and turbulent channel flow. 

• Turbulent simulations were initiated in the complex Pratt & Whitney combustor. 
Also, simulations were performed in a test rig geometry used by Pratt & Whitney for 
which experimental data is available. 

• A spray module was integrated with the gas-phase solver. Validation simulations in 
a swiring coaxial combustor geometry Sommerfeld k Qiu (1991) were performed. Spray 
simulations in the Pratt & Whitney combustor were initiated. 

Our plans for the next year are as follows: 
• Complete validation in the front-end model. 
• Complete validated simulations, including transpiration and secondary flows, in the 

PW6000 geometry. 
• Perform reacting flow simulations in the PW6000 geometry. 
• Extend the spray models to include droplet evaporation and spray-sheet break-up. 
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FIGURE 13. Illustration of the front-end validation model geometry, the grid, and 
instantaneous contours of streamwise velocity. 
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Consistent boundary conditions for integrated 
LES/RANS simulations: LES outflow conditions 

By J. U. Schlüter and H. Pitsch 

1. Motivation 
Numerical simulations of complex large-scale flow systems must capture a variety of 

physical phenomena in order to predict the flow accurately. Currently, many flow solvers 
are specialized to simulate one part of a flow system effectively, but are either inadequate 
or too expensive to be applied to a generic problem. 

As an example, the flow through a gas turbine can be considered. In the compressor 
and the turbine section, the flow solver has to be able to handle the moving blades, 
model the wall turbulence, and predict the pressure and density distribution properly. 
This can be done by a flow solver based on the Reynolds-Averaged Navier-Stokes (RANS) 
approach. On the other hand, the flow in the combustion chamber is governed by large 
scale turbulence, chemical reactions, and the presence of fuel spray. Experience shows 
that these phenomena require an unsteady approach (Veynante & Poinsot, 1996). Hence, 
the use of a Large-Eddy Simulation (LES) flow solver is desirable. 

While many design problems of a single flow passage can be addressed by separate 
computations, only the simultaneous computation of all parts can guarantee the proper 
prediction of multi-component phenomena, such as compressor/combustor instability and 
combustor/turbine hot-streak migration. Therefore, a promising strategy to perform full 
aero-thermal simulations of gas-turbine engines is the use of a RANS flow solver for the 
compressor sections, an LES flow solver for the combustor, and again a RANS flow solver 
for the turbine section (Fig. 1). 

2. Interface Treatment 
The simultaneous computation of the flow in all parts of a gas turbine with different 

flow solvers requires an exchange of information at the interfaces of the computational 
domains of each part. The necessity for information exchange in the flow direction from 
the upstream to the downstream flow solver is self-explanatory: the flow in a passage 
is strongly dependent on mass flux, velocity vectors, and temperature at the inlet of 
the domain. However, since the Navier-Stokes equations are elliptic in subsonic flow, the 
downstream flow conditions can have a substantial influence on the upstream flow devel- 
opment. This can easily be imagined by considering that, for instance, a flow blockage 
in the turbine section of the gas turbine can affect and even stop the flow through the 
entire engine. This means that the information exchange at each interface has to go in 
both, downstream and upstream, directions. 

Considering an LES flow solver computing the flow in the combustor, information on 
the flow field has to be provided to the RANS flow solver computing the turbine as 
well as to the RANS flow solver computing the compressor, while at the same time, the 
LES solver has to obtain flow information from both RANS flow solvers (Fig. 2). The 
coupling can be done using overlapping computational domains for the LES and RANS 



20 J. U. Schlüter and H. Pitsch 

Compressor 
(RANS) 

Combustor 
(LES) 

Turbine 
(RANS) 

RANS/LES 
Interface 

LES/RANS 
interlace 

FIGURE 1. Gas turbine engine 

simulations. For the example of the combustor/turbine interface this would imply that 
inflow conditions for RANS will be determined from the LES solution at the beginning 
of the overlap region, and correspondingly the outflow conditions for LES are determined 
from the RANS solution inside the overlap region. 

However, the different mathematical approaches of the different flow solvers make 
the coupling of the flow solvers challenging. Since LES resolves large-scale turbulence 
in space and time, the time step between two iterations is relatively small. RANS flow 
solvers average all turbulent motions over time and predict ensemble averages of the 
flow. Even when a so-called unsteady RANS approach is used, the time step used by the 
RANS flow solver is still much larger than that for an LES flow solver. 

The specification of boundary conditions for RANS from LES data is relatively straight- 
forward. The LES data can be averaged over time and used as boundary condition for 
the RANS solver. The problem of specifying inflow conditions for LES from upstream 
RANS data is similar to specifying LES inflow conditions from experimental data, which 
is usually given in time averaged form, and has therefore been investigated in some detail. 
A method that has been successfully applied in the past, is, for instance, to generate a 
time-dependent database for inflow velocity profiles by performing a separate LES sim- 
ulation, in which virtual body forces are applied to achieve the required time-averaged 
solution (Pierce & Moin, 1998b). 

In the present study the remaining flux of information from a downstream RANS 
computation to an upstream LES computation is investigated. LES computations have 
already shown that the flow can be sensitive to the outflow conditions (Moin, 1997, 
Pierce & Moin, 1998a). The outflow conditions for LES have to be specified such that 
the time-averaged mean values of all computed quantities match the RANS solution at 
a given plane, but the instantaneous solution at the outflow still preserves the turbulent 
fluctuations. 



RANS to LES 

Create turbulent 
fluctuations 

LES outflow conditions 21 

LES to RANS 

Provide lime 
averaged data 

LES to RANS 

Provide time 
averaged data 

RANS to LES 

Upstream influence 
of pressure very 

important 

FIGURE 2. Gas turbine combustor with interfaces 

3. Formulation of the outflow boundary treatment 

Modern LES flow solvers are often based on a low-Mach-number formulation. With 
this approximation, acoustic pressure fluctuations are neglected and the hydrodynamic 
pressure variations are determined by a Poisson equation. This formulation makes it 
impossible to prescribe the pressure at the outlet of the LES domain directly. Instead, 
only the velocities or their derivatives can be specified as boundary conditions in the LES 
flow solver, and the pressure adjusts accordingly. The mean velocity profiles are enforced 
by adding a virtual body force to the right-hand side of the momentum equations inside 
the overlap region of the computational domains of the LES and the RANS flow solver. 
For a constant-density flow which is stationary in the mean, the body force is given by 

Fiix) = — (üi,, ;(X) - Ui,LBS(x)) , (3.1) 

where üi,RANs is the vector of target velocities obtained from the RANS computation and 
oi,LBs is the vector of time-averaged velocities from the LES computation. The forcing 
time scale TF can, to first order, be determined from the bulk velocity UB and the length 
of the forcing region fc as TF = IF/UB- Experience shows that the forcing time is usually 
much lower than this estimate, so that this can serve as an upper limit. For numerical 
purposes a convective boundary condition is applied at the outlet plane of the LES 
domain. 

The forcing term in Eq. (3.1) involves only mean velocities, while the corresponding 
momentum equation is solved for the instantaneous velocities. Thus the mean velocities 
from the LES simulation are corrected without attenuating the resolved turbulent fluc- 
tuations. It will be shown later that, to achieve this goal, the averaging time for üj)LEs 
needs to be longer than the characteristic times of the turbulence. Equation (3.1) also 
shows that the forcing term tends to zero if the actual mean velocity from the LES 
approaches the target velocity, which is a consistency requirement. Note also that the 
RANS velocities are prescribed not only in one plane, but in the entire overlap region. 
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FIGURE 4. Laminar pipe flow: radial profiles of axial velocity component üx 

4. LES Flow Solver 
For the current investigation, the LES flow solver developed at the Center for Turbu- 

lence Research (Pierce & Moin, 1998a) has been used. The flow solver solves the filtered 
momentum equations with a low-Mach-number assumption on an axisymmetric struc- 
tured mesh. A second-order finite-volume scheme on a staggered grid is used (Akselvoll 
& Moin, 1996). 

The subgrid stresses are approximated with an eddy-viscosity approach. The eddy 
viscosity is determined by a dynamic procedure (Germano et dl, 1991; Moin et al, 1991). 

5. Numerical experiment: pipe-flow geometry 
In order to prove the feasibility and the well-posedness of this approach a pipe flow 

has been computed (Fig. 3). The pipe has a length of five times the diameter D and the 
virtual body force is applied in a volume of length 2.5 D at the end of the pipe flow. The 
mesh consists of 128x32x64 cells. 

As a first step, a laminar pipe flow at a Reynolds number Re=1000 is considered. Fig. 
4 shows the resulting velocity profiles. The solid line shows the parabolic inlet profile 
corresponding to the solution of a fully-developed pipe flow. Without forcing, this would 
be the solution at any downstream location in the pipe. The circles denote an arbitrarily- 
chosen velocity profile, with the same mass flow rate as the inlet profile, which is to be 
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matched at the outlet. The dash-dotted line is a profile just upstream of the forcing 
region. The profile is different from the inflow solution, indicating that forcing influences 
the flow field even upstream of the forcing region. After applying the virtual body force, 
the computed velocity profile quickly converges towards the imposed velocity profile. 

An important test for consistency and well-posedness is the enforcement of a velocity 
profile which does not conserve mass. The exchange of the velocity profiles between RANS 
and LES flow solver may introduce numerical errors, especially due to the interpolation 
between two different meshes, which could accumulate over time. In order to investigate 
the behavior of the proposed LES outflow conditions when encountering this problem, 
an additional computation was made, where a "non-conservative" velocity profile, with 
a different mass flow rate, was enforced. Fig. 5 shows the resulting velocity profiles. The 
squares denote the imposed velocity profile, which clearly underestimates the mass flux. 
However, the computed velocity profile at the end of the forcing region has the same 
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mass flux as the inlet profile. This shows that the method is robust against inaccuracies 
resulting from the exchange of velocity profiles. 

The next test case considered here is a turbulent pipe flow at a Reynolds number Re 
= 15000. Applying the proposed correction of the LES outflow by virtual body forces 
to this problem leads to the question of how to define the mean value üLES of the LES 
computation. Several approaches have been tested: 

(a) Using the actual velocity üLES = u(t). This results in a strong damping of turbulent 
fluctuations, since fluctuations of the velocity obviously lead to a counteracting virtual 
body force. 

(6) Using the overall mean value öLES = ^ / « dt. This ensures the least interference 
to 

with turbulent fluctuations, but does not allow for unsteadiness in the mean profiles. 
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(c) Averaging over a trailing time window üLES = s*   /  öc^- ^ere ** ^ t0 ^e 

t-At 
ensured that At is long enough to average the turbulent fluctuations, but short enough 
to allow for unsteadiness of the mean profiles. 

All approaches result in the same mean velocity field (Fig. 6). Since the turbulent 
velocity profile is already closer to the imposed profile than in the laminar case, the flow 
field converges faster towards the imposed profile. However, there are some remarkable 
differences in the turbulent fluctuations. 

Fig. 7 shows the profiles of the axial velocity fluctuations for different averaging time- 
spans. Using approach (a) results in complete attenuation of the turbulence. Assuming 
that an overall mean value (approach (&)) preserves the turbulence, it can be seen that 
the averaging time has to be sufficiently long to prevent attenuation of the turbulence. 
Here, averaging over one non-dimensional time unit, given by the ratio of pipe diameter to 
bulk velocity, was found to be sufficient. This seems reasonable, since the abovementioned 
criteria require the averaging time to be of the order of the Eulerian integral time scale 
of the turbulence, which for a turbulent pipe flow is proportional to the ratio of pipe 
diameter to bulk velocity. 

For a swirling flow the same procedure can also applied to the azimuthal velocity 
component. Fig. 8 shows the profiles of the azimuthal velocity component. Again, the 
inflow conditions correspond to a fully-developed turbulent pipe without swirl and the 
virtual body force is applied as shown in Fig. 3. At the end of the forcing region the 
target profile is matched perfectly. 

The results of the pipe-flow investigation demonstrate that the proposed treatment of 
the LES outflow conditions with virtual body forces can be used to enforce a mean flow 
solution at the LES outflow, and that the enforced outflow conditions can indeed alter 
the upstream flow field. 

6. Validation: swirl combustor geometry 
In order to validate the proposed method for treating LES outflow conditions for an 

LES/RANS interface, the method will be applied to a more complex configuration. The 
test case chosen is that of a swirling flow inside a combustor geometry with a swirl 
number, S = 0.38, with S defined as: 

c_ 1 J*r2üxÜ4,dr ^ (61) 

■R   /0
ß rüx dr 

where ux is the axial velocity component, u^ the azimuthal velocity component, and R 
the radius of the nozzle. This swirl number has been chosen because it is slightly above 
the critical limit at which a central recirculation zone develops, where the flow is believed 
to be most sensitive to outer influences such as the outflow boundary conditions (Gupta 
et al, 1984; Dellenback et al, 1988). Swirl flows are dominated by large-scale turbulence 
making these flows a field of application of LES par excellence. LES usually achieves high 
levels of accuracy in predicting swirl flows (Pierce & Moin, 1998a; Schlüter et al., 2001). 

In order to demonstrate the importance of LES outflow conditions and to prove the 
ability of the proposed LES outflow treatment with virtual body forces to prescribe 
outflow conditions correctly, three different outflow geometries have been considered: 

(o) a swirl flow with a contraction near the outlet at x/D = 3.0 (Fig. 9); 
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(6) a swirl flow where the computational domain is cut off just upstream of the con- 
traction of case (a) at x/D = 2.75 (Fig. 10); 

(c) the same geometry as in case (6), but with the proposed boundary condition applied 
in order to simulate the effect of the contraction (Fig. 11). 

The mesh size of geometry (a) consists of 384x64x64 cells while the mesh of cases (b) 
and c) consists of 256x64x64 cells. The point distribution of both meshes is the same, 
except for the contraction itself. 

Case (a) will be considered as the reference case. Since the computational domain 
includes the contraction, its influence on the upstream flow will be correctly reflected in 
the LES solution. Assuming that the contraction is to be computed with a RANS code, 
in case (6) the computational domain has been reduced and the contraction is outside of 
the LES domain. Hence, its influence on the LES flow field is neglected in case (6). 

Fig. 12 shows the mean velocity profiles in cases (a) and (b). It can be seen, that 
the velocity profiles of the computation with the reduced geometry (6) (dashed line) 
differ from the profiles of the computation of the full geometry (a) (solid line). Hence, 
it is apparent that the downstream geometry variation has a substantial influence on 
the entire domain, and that geometry (6) cannot be used to approximate the flow in 
geometry (a) without special boundary treatment. 

In order to take the contraction outside of the computational domain into account, 
the proposed outflow boundary treatment is employed. The Reynolds-averaged velocity 
profiles from x/D = 2.0 - 2.5 from the LES computation of case (a) are imposed, with 
virtual body forces, on the reduced geometry. Fig. 12 shows the mean velocity profiles 
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FIGURE 12. Velocity profiles for different axial locations; solid lines: contraction (case (a)); 
dashed lines: reduced geometry without virtual body force(case (6)); symbols: reduced geometry 
with virtual body force (case (c)) 

of case (c) (black dots). It can be seen that not only do the velocity profiles inside the 
virtual-body-force volume adjust, but so also do the velocity profiles upstream. The LES 
computation of the reduced geometry with the virtual body force delivers essentially the 
same prediction as the computation of the entire geometry. 

The influence of the LES outflow condition on the velocity fluctuations is shown in Fig. 
13. The different mean-velocity distribution due to the presence of a contraction results 
in a different turbulence distribution (compare solid line and dashed line in Fig. 13). 
The employment of the virtual body forces corrects not only the mean velocity field, but 
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FIGURE 13. Profiles of velocity fluctuations for different axial locations; solid lines: contrac- 
tion (case (a)); dashed lines: reduced geometry without virtual body force (case (b))\ symbols: 
reduced geometry with virtual body force (case (c)) 

also the turbulent quantities (compare solid line and filled circles in Fig. 13). The virtual 
body force results in an adjustment of the turbulent quantities so that the flow upstream 
of the body force volume is nearly indistinguishable from the complete computation with 
the contraction. 

In Fig. 14, the axial pressure distribution on the axis is shown. Due to the variances 
in the flow fields of the cases (a) and (b), especially in the extend and strength of 
the recirculation zone, the pressure distributions differ. Although the proposed outflow 
boundary adjustment by virtual body forces acts only on the velocity components and not 
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FIGURE 14. Axial pressure distribution on the axis; solid lines: contraction (case (a)); dashed 
lines: reduced geometry without virtual body force (case (6)); symbols: reduced geometry with 
virtual body force (case (c)) 

on the pressure itself, the pressure distribution adjusts to the modified outflow conditions. 
The pressure distributions in cases (a) and (c) are in agreement upstream of the body- 

force volume. 

7. Conclusions 
The results of this study show that the outflow conditions may have a major impact on 

the accuracy of LES computations. Hence, a proper description of the outflow conditions 

is mandatory. 
To avoid the computation of the downstream geometry with LES a method has been 

proposed to correct the outflow conditions. This method ensures the adjustment of the 
LES flow field to the statistical data computed by a downstream RANS flow solver. 

The adjustment of the LES outflow has an effect throughout the entire flow-field. The 
resulting prediction of the flow-field is nearly indistinguishable from an LES computation 
of the entire domain. This allows a drastic decrease in computational costs. 

Future efforts will combine the LES flow solver with an actual RANS flow solver in a 
two-way-coupled LES/RANS simulations. 
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Explicit filtering and subgrid-scale models in 
turbulent channel flow 

By Jessica Gullbrand 

1. Motivation and objectives 
In large eddy simulation (LES), the large energy carrying length scales of turbulence 

are resolved and the small structures are modeled. The separation of large and small 
scales is done by applying a low-pass filter to the Navier-Stokes equations. The effect of 
the small-scale turbulence on the resolved scales is modeled using a subgrid-scale (SGS) 
model. 

It is of great importance that the resolved length scales are captured accurately by the 
numerical scheme. Information from the smallest resolved length scales are commonly 
used to model the stresses of the unresolved scales in the SGS model. This requires that 
the numerical error of the scheme is sufficiently small. Therefore, high order numerical 
schemes are necessary in LES. 

One approach is to use high-order finite-difference schemes. However, all finite-difference 
schemes have a truncation error that increases with the wavenumber (Lund & Kaltenbach 
1995). To reduce the influence of this error, an explicit filtering can be applied that re- 
duces or removes the small scales that otherwise would be largely affected by this error. 

In using explicit filtering, it is a requirement that the filtering operation and the dif- 
ferentiation do commute. This is generally not the case in inhomogeneous flow fields 
where the required smallest resolved length scales vary throughout the flow fields. The 
varying filter width introduces a commutation error of 0(A2) where A represents the 
filter width (Ghosal 1996; Ghosal k Moin 1995). Therefore, most of the explicit filtering 
procedures that have been applied so far have been used in homogeneous flow fields or 
in homogeneous directions of more general flows. Explicit filtering in two dimensions has 
been studied by Lund & Kaltenbach (1995) and numerous filter functions by Piomelli 
et al.  (1988) and Najjar k Tafti  (1996). 

The problem of lacking robust and straightforward filtering procedures that do com- 
mute was addressed by Vasilyev et al. (1998). They developed a general theory of discrete 
filtering for LES in complex geometries. A set of rules for constructing discrete filters, so 
that the filters commute to the desired order, was also proposed. 

The ultimate goal of the explicit filtering procedure is to perform a "true" LES. In a 
true LES, the filtering procedure is decoupled from the computational grid. As the grid is 
refined while the explicit filter width is held fixed, the solution converges to a true LES. 
In the commonly-used approach to LES, the computational grid together with the low 
pass characteristics of the discrete differencing operators act as a filter and, as the grid 
is refined, the solution converges towards a direct numerical simulation (DNS) not an 
LES. However, before a true LES can be performed, the influence of the explicit filtering 
procedure on the SGS models need to be determined. 

In this paper, explicit filtering is applied in three dimensions in a turbulent channel 
flow using the dynamic Smagorinsky model (DSM) (Germano et al. 1991) and the mixed 
model (MM) (Bardina et al. 1980; Zang et al. 1993) as SGS models. The turbulent 
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channel flow of Reynolds number ReT = 395 is simulated using a conservative fourth- 
order finite-difference scheme (Vasilyev 2000). The influence of the three-dimensional 
filtering procedure on the DSM and the MM is investigated, as well as the influence of 
resolving the Leonard stress tensor. The results are compared to the DNS data by Moser 
et al.  (1999). 

2. Numerical method 

2.1. Governing equations 

In LES, the governing equations are filtered in space. The filter function G is applied to 
the flow variable / 

/oo 
G(x,x',A)f(x',t)dx' (2.1) 

-oo 

where A is the filter width. 
The governing equations for incompressible flows are the filtered continuity and Navier- 

Stokes equations 

g=° <2-2) 

düj     düjüj _    dp        1   d2üj     ÖTjj .    . 
dt       dxj dxi     ReT dx?      dxj 

where Ui denotes velocity vector and x, the space coordinates. ReT is the Reynolds 
number, t is time, and p is pressure. The SGS stress tensor is defined as r„ = üjüj -üiüj. 
The equations are normalized with the friction velocity uT and the channel half width h. 

The product üiüj generates wavenumbers that cause aliasing errors and therefore an 
alternative to the above filtered Navier-Stokes equations is 

düj     düTäj dp        1   d2üj     dfjij 

dt       dxj dxi     ReT dx)      dxj K ' ' 

where 77^ is the SGS stress tensor defined as r}^ = üjüj -üjüj. By explicitly filtering the 
non-linear terms, the wavenumber content of these terms is controlled (Lund 1997). In 
Eq. (2.4), all the terms of the Navier-Stokes equations contain the same wavenumbers. 

The stress tensors ry and raj describe the interaction between the large resolved Grid 
Scale (GS) and the small unresolved SGS. The stress tensors do not contain the same 
terms. If decomposition is applied to the velocity correlation ü{üj, r^ can be written as 
the sum of the Leonard stresses, Ly, the cross stresses, Cij, and the Reynolds stresses, 
Rij, as nj = Lij + dj + Rij (Clark et al. 1979). The expressions for the stresses are 

Lij = üiüj — üiüj 

dj = üTü/j + u'iüj 

Rij=^j 
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where u\ is the velocity fluctuation. The expliclit filtering of the convective terms in 
Eq. (2.4) results in a different expression of the SGS stress r}^. The interaction between 
the resolved scales, the Leonard stresses, is implicitly included in the convective terms. 
The stress tensor is described as the sum of the cross stresses and Reynolds stresses, 
jjj. = dj + Rij. The SGS stress tensors cannot be expressed in the resolved flow field 
variables and therefore, they have to be modeled. 

2.2. Subgrid-scale models 
Two widely-used SGS models are the scale similarity model (SSM) proposed by Bardina 
et al. (1980) and the DSM by Germano et al. (1991). It has been shown that the SSM 
does not dissipate enough energy and it is therefore most commonly used in a linear 
combination with a more-dissipative model such as the Smagorinsky model (Smagorinsky 
1963) to form the MM. The model parameter in the Smagorinsky model can be either 
constant or calculated dynamically during the entire simulation. This is also the case 
when the Smagorinsky model is used in the MM. Bardina et al. (1980) used a constant 
model parameter while Zang et al. (1993) applied the dynamic approach. Both the SSM 
and the dynamic procedure of the DSM use the assumption that the behavior of the 
resolved and unresolved stresses is similar. 

In the present investigation, T^ is modeled using the DSM while r^ is modeled using 
either the DSM or the MM. The DSM models the Reynolds stresses in the SGS stress 
tensors. The influence of the Leonard stresses in nj is investigated. For TJIJ, the cross 
stresses are modeled by the SSM (dj = üiüj - SjSj) in the MM. By using the SSM, 
the possible drawback of Eq. (2.4) not being Galilean invariant is solved (Speziale 1985). 
An explicit filtering of %• is performed to ensure that the SGS terms contain only the 
desired wavenumbers. The model parameter in the DSM is calculated dynamically in all 
the simulations. The parameter is averaged in the homogeneous directions and calculated 
by the least square approximation by Lilly  (1992). 

3. Explicit filter 
A general class of commutative discrete filters applied to nonuniform filter widths was 

proposed by Vasilyev et al. (1998). The procedure applies mapping of the nonuniform 
grid in physical space onto a uniform grid in computational space where the filtering is 
performed. The filters are constructed by applying a number of constraints to the filter 
weights to achieve both commutation and an acceptable filter shape. The filter weights 
are calculated by forcing the zeroth moment to be one and a number of higher moments 
to be zero. This determines the order of the commutation error. Other constraints can 
be added to adjust the filter shape. 

In the simulations, two fourth-order commutative filters have been applied: one explicit 
filter and one test filter. The explicit filter is used when the convective terms and the SGS 
terms are explicitly filtered in Eq. (2.4). The test filter is used as the second filter in the 
dynamic procedure when calculating the model parameter in the DSM (Germano et al. 
1991). The ratio between the test and the explicit filter widths is Atest/&exP = 2. Between 
the explicit filter width and the computational cell size, the ratio is Aexp/Agrid = 2. 

3.1. Solution algorithm 
The space derivatives in the governing equations are discretized using a fourth-order 
finite-difference scheme on a staggered grid. The convective terms are discretized in a 
skew-symmetric form to ensure conservation of turbulent kinetic energy (Morinishi et al. 
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1998; Vasilyev 2000). The equations are solved with the third-order Runge-Kutta scheme 
described by Spalart et dl. (1991). The diffusion term in the wall normal direction is 
treated implicitly with the Crank-Nicolson scheme to ease the constraint on the time step 
of the scheme. The splitting method of Dukowicz k. Dvinsky (1992) is used to enforce 
the solenoidal condition. The resulting discrete Poisson equation for pressure is solved 
using a pentadiagonal direct matrix solver in the wall-normal direction and a discrete 
Fourier transform in the homogeneous/periodic directions. Periodic boundary conditions 
are applied in the streamwise and spanwise directions, while no-slip conditions are applied 
at the walls. A fixed mean pressure gradient is used in the streamwise direction. An 
evaluation of the fourth-order conservative scheme is reported in Gullbrand  (2000). 

4. Turbulent channel flow simulations 
The Reynolds number is ReT = 395 and the computational domain is (2ith, 2h, nh) 

in (x,y,z), where x is the streamwise direction, y the wall normal direction, and z 
the spanwise direction. Two grid resolutions are used: a standard grid (36,37,36) and 
a fine grid (72,73,72). The computational grid is stretched in the wall normal direction 
by a hyperbolic tangent function (Vasilyev 2000). For the standard grid resolution, the 
streamwise grid size is Ax+ = 69, the spanwise grid size Az+ = 34, and in the wall normal 
direction the grid size varies between 0.5 < Ay+ < 56. For the fine grid resolution, the 
values are Ax+ = 34, Az+ = 17, and 0.25 < Ay+ < 30. A statistically stationary solution 
is obtained after 60 dimensionless time units and thereafter statistics are sampled during 
30 time units. The time is normalized with the friction velocity and the channel half 
width. 

5. Results 
The results from using commutative explicit filtering in LES using the DSM and the 

MM are compared to the DNS data by Moser et al. (1999) for mean velocity, velocity 
fluctuations and energy spectra. The explicit filtering enters only into the equations 
through the calculation of the model parameter in the DSM, the second filtering of the 
velocity field used in the MM, and through the explicit filtering of the convective terms 
and SGS tensor in Eq. (2.4). 

5.1. Mean velocities 
The mean velocity profile predicted by using the explicit filtering and the DSM is overes- 
timated in the log-law region when compared to the DNS data. The results are somewhat 
surprising, because the DSM is known to perform better (Gullbrand 2000). However, the 
model has not previously been applied in turbulent channel flow where three dimensional 
filtering is employed. The overestimation is not a result of the three dimensionality of the 
filter. This is shown in Fig. 1. When filtering only in the homogeneous directions is used, 
the overestimation in the log-law region increases. The overestimation is not an artifact 
of the relatively coarse resolution either. The fine grid resolution improves the results 
slightly, but the improvement is not good enough to explained the model behavior. 

The explicit filtering of the convective terms and the SGS stress tensor in Eq. (2.4) 
show only a small influence on the results (Fig. 2). However, the slope in the log-law 
region is incorrect when explicit filtering are not performed of the previously mentioned 
terms. Eq. (2.4) produces the correct slope when using the DSM while Eq. (2.3) does 
not. 
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U 

FIGURE 1. Mean velocity profile U as a function of the distance to the wall y+. o: DNS, : 
Eq. (2.4) with Tjy = DSM, : Eq. (2.4) with % = DSM fine grid, and : Eq. (2.4) with 
7]ij = DSM xz-filter. 

U 

FIGURE 2. Mean velocity profile U as a function of the distance to the wall y+. o: DNS, 
 : Eq. (2.4) with jjy = DSM, and : Eq. (2.3) with n, = DSM. 
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U 

FIGURE 3. Mean velocity profile U as a function of the distance to the wall y+. o: DNS, 
 : Eq. (2.4) with »jy = DSM, and : Eq. (2.4) with Tfa- = MM. 

The mean velocity profile improves when the MM is used instead of only the DSM in 
Eq. (2.4). However, the MM also overestimates the log-law region compared to the DNS 
data. The overestimation using the MM is about 7 % at the center of the channel while 
it is 13 % for the DSM. This is shown in Fig. 3. 

5.2.  Velocity fluctuations 
The streamwise velocity fluctuation is overpredicted, while the wall normal and span- 
wise fluctuations are underpredicted when using explicit commutative filters on both the 
standard and fine computational grids. The difference between the LES and the DNS 
results is even larger when two dimensional filtering is applied. The predicted peak value 
in the streamwise direction is reduced on the finer grid (Fig. 4). Usually, the same trend 
with overprediction of the streamwise fluctuation and underprediction of the other two 
fluctuations is observed in the commonly used LES approach (Gullbrand 2000). 

The velocity fluctuations using Eq. (2.4) are better predicted when compared to Eq. 
(2.3). The both equations predict equally high peak of the streamwise velocity fluctuation, 
but the wall normal and spanwise fluctuations are better captured by Eq. (2.4). This is 
shown in Fig. 5. 

A lower peak value of the streamwise velocity fluctuation is predicted when the MM 
is compared to the DSM. Both results are calculated using Eq. 2.4. The MM results in 
an overprediction of the peak value of 16 % while it is 40 % for DSM. The wall normal 
and the spanwise fluctuations are better predicted with the DSM than the MM (Fig. 6). 

5.3. Energy spectra 

The resolved wavenumbers for the standard grid resolution and the fine grid can be 
seen in Fig. 7, where the energy spectra for each velocity correlation are shown as a 
function of the streamwise wavenumber. The increased resolution results in resolving 
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FIGURE 4. Velocity fluctuations in streamwise |w'|, wall normal \v'\ and spanwise |iu'| direction 
as a function of the distance to the wall y+. o: DNS, : Eq. (2.4) with rjij = DSM, : 
Eq. (2.4) with rjij = DSM fine grid, and : Eq. (2.4) with %■ = DSM xz-filter. 

FIGURE 5. Velocity fluctuations in streamwise |u'|, wall normal \v'\ and spanwise \w'\ direction 
as a function of the distance to the wall y+. °: DNS, : Eq. (2.4) with »jy = DSM, and 
 : Eq. (2.3) with Ty = DSM. 
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FIGURE 6. Velocity fluctuations in streamwise |u'|, wall normal \v'\ and spanwise \w'\ direction 
as a function of the distance to the wall y+. o: DNS, : Eq. (2.4) with r\ij = DSM, and 
 : Eq. (2.4) with 7?y = MM. 

higher wavenumbers. The filtering procedure in only the homogeneous directions does 
not include as broad spectra of resolved wavenumbers compared to filtering in all three 
dimensions. The fine grid resolution shows better resolution of the small wavenumbers 
when compared to the DNS results than the standard grid simulations do. 

The energy spectra are different for using the DSM in Eq. (2.4) or in Eq. (2.3). Eq. 
(2.4) results in a higher energy content of the small wavenumbers, while the energy decays 
also in the small wavenumbers when Eq. (2.3) is employed (Fig. 8). 

The MM captures the small wavenumbers better than the DSM. The MM also results 
in a small increase of the resolved wavenumbers. This is shown in Fig. 9. 

The influence of the finite difference scheme on the wavenumbers is clearly seen in 
the figures. The steep slope at high wavenumbers is due to the modified wavenumber 
argument (Lund & Kaltenbach 1995). 

6. Discussion and conclusions 
Three dimensional explicit filtering in LES has been used for the DSM and the MM in 

turbulent channel flow. The simulations were performed using fourth order conservative 
finite difference schemes. The three dimensional explicit filter functions commute up to 
fourth order. The result of performing LES using the commutative filters is that the 
mean velocity profile is overestimated in the log-law region. The overestimation is not a 
result of the introduction of filtering in the wall normal direction. According to Fig. 1, 
the overestimation becomes even larger when filtering is applied only in the homogeneous 
directions. 

The two formulations of the Navier-Stokes equations, Eq. (2.3) and Eq. (2.4), predict 
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FIGURE 7. Energy spectrum of the streamwise Euu, wall normal Evv and spanwise £u,m velocity 
correlation as a function of the streamwise wavenumber kx at y+ «395. o: DNS, : Eq. 
(2.4) with Tfij = DSM, : Eq. (2.4) with %• = DSM fine grid, and : Eq. (2.4) with 
r\ij = DSM xz-filter. 

FIGURE 8. Energy spectrum of the streamwise Euv, wall normal Evv and spanwise EWw velocity 
correlation as a function of the streamwise wavenumber kx at y+ «395. o: DNS, : Eq. 
(2.4) with riij = DSM, and : Eq. (2.3) with m = DSM. 
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FIGURE 9. Energy spectrum of the streamwise Euu, wall normal E™ and spanwise Eww velocity 
correlation as a function of the streamwise wavenumber kx at y+ «395. o: DNS, : Eq. 
(2.4) with j]ij = DSM, and : Eq. (2.4) with T]ij = MM. 

slightly different results. Eq. (2.4) has the best behavior and also the most consistent 
approach, with all the terms in the equation containing the same wavenumbers. This 
is achieved by explicitly filtering the convective terms and the SGS stress tensor. By 
filtering the convective terms, the Leonard stress term is accounted for in the equation. 
The difference in the calculated results between Eq. (2.3) and Eq. (2.4) is due to the 
influence of the Leonard stress tensor. 

The MM captures the large scale behavior better that the DSM. This result depends 
upon the shape of the filter function. Most simulations with the DSM have been per- 
formed using the sharp cut-off filter in the homogeneous directions as the test filter. 
The developed commutative filters are Gaussian like filters. A study by Piomelli et al. 
(1988) showed that for two dimensional filtering, the best results are obtained by using 
the Gaussian filter with the MM and the cut-off filter with the Smagorinsky model. The 
Gaussian filter used in the Smagorinsky model resulted in an overprediction of the mean 
velocity profile in the log-law region. The over-prediction was about 17 % at the center 
of the channel for ReT = 180. The findings by Piomelli et al. (1988) are confirmed in 
this study in Fig. 10. The commonly used LES approach without explicit filtering has 
been performed and two different test filters have been used: the commutative filter and 
the sharp cut-off filter. The standard grid resolution was used in the simulations. The 
filters are only employed in the homogeneous directions and the filter widths are twice 
the computational grid size. The test filters enter into the equations only through the 
calculation of the model parameter in the DSM. The mean velocity profiles are shown in 
Fig. 10. The velocity profile is highly overpredicted in the log-law region when using the 
commutative filter when compared to the results from using the sharp cut-off filter. 

The contribution from the SGS model is increased in the explicitly filtered LES com- 
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U 

FIGURE 10. Mean velocity profile U as a function of the distance to the wall y+. o: DNS, 
 : DSM 2-D commutative filter, and : DSM 2-D sharp cut-off filter. 

paxed to the commonly used LES approach. The increase is expected, due to a reduction 
or an elimination of the high wavenumbers by the filtering procedure, causing the SGS 
model to model a larger range of wavenumbers. Therefore, the SGS model has a larger 
influence in the explicitly filtered LES. 

7. Current work 
In the current work, the true LES approach is investigated. The true LES is obtained 

by keeping the explicit filter width constant while the computational grid is refined. The 
solution converges to a true LES. 

Different SGS models will also be investigated as well as the numerical error in the 
simulation. Two promising SGS models that have proven to perform well are the multi- 
scale model by Hughes et al. (2001) and the approximate deconvolution model by Stolz 
et al. (2001). The LES of turbulent channel flow in both papers have been performed 
using spectral methods. The models will be applied in the previously discussed fourth 
order finite difference code. 
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Prediction of high Reynolds number flow over a 
circular cylinder using LES with wall modeling 

By Meng Wang, Pietro Catalano f, AND Gianluca Iaccarino 

1. Motivation and objectives 
The objective of this work is to assess the viability and accuracy of large-eddy simula- 

tion (LES) with wall modeling for high Reynolds number complex wall-bounded flows. It 
is well known that the conventional LES is extremely expensive at high Reynolds numbers 
due to the need to resolve the small but dynamically-important near-wall flow structures. 
As a practical alternative, LES can be coupled with a wall model which models these 
near-wall effects and provides the LES with a set of approximate boundary conditions, 
often in the form of wall shear stress (Cabot & Moin 2000). 

In recent years, wall models based on turbulent boundary layer (TBL) equations and 
their simplified forms (Balaras, Benocci & Piomelli 1996; Cabot & Moin 2000) have 
received much attention. These models, used with a Reynolds-averaged Navier-Stokes 
(RANS) type of eddy viscosity, have shown promise for complex-flow predictions. For 
instance, Wang & Moin (2001) employed this approach to simulate the flow past the 
asymmetric trailing edge of an airfoil at chord Reynolds number of 2.15 x 106, and 
obtained very good agreement with solutions from the full LES (Wang & Moin 2000) at 
a small fraction of the computational cost. 

The flow around a circular cylinder represents a canonical problem for validating new 
approaches in computational fluid dynamics. It is therefore reasonable or even necessary 
to subject the hybrid LES/wall-modeling methodology to the same "grand challenge". 
To take the best advantage of wall modeling, we concentrate on the super-critical flow 
regime in which the boundary layer on the cylinder becomes turbulent prior to separation. 
This is, to our knowledge, the first such attempt using LES, although a related method 
known as detached-eddy simulation (DES), in which the entire attached boundary layer is 
modeled, has been tested in this type of flow (Travin et dl. 1999). Breuer (2000) recently 
conducted an LES study at a high sub-critical Reynolds number of Reu = 1-4 x 105, 
and showed fairly good comparison with experimental data in the near wake. In the 
present work, three simulations, at ReD = 5 x 105, 1 x 106, and 2 x 106, have been 
performed. Preliminary results and comparisons with experimental data are summarized 
in this article. 

2. Numerical method and procedure 
The same LES code and wall model implementation as used by Wang & Moin (2001) 

are used for the present calculations. The energy-conservative numerical scheme is of 
hybrid finite-difference/spectral type, written for a C-mesh (Mittal & Moin 1997). The 
time advancement is achieved by the fractional-step method, in combination with the 
Crank-Nicolson method for viscous terms and third-order Runge-Kutta scheme for con- 
vective terms. A multi-grid iterative procedure is used to solve the Poisson equation for 

t Centro Italiano Ricerche Aerospaziali (CIRA), Italy 
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pressure. The subgrid-scale stress (SGS) tensor is modeled using the dynamic SGS model 
(Germano et al. 1991; Lilly 1992). 

The computational domain has a spanwise size of 2D (D = cylinder diameter), over 
which the flow is assumed periodic and 48 grid points are distributed uniformly. In the 
planes perpendicular to the span, 401 x 120 grid points are used in the C-mesh, extending 
approximately 22D upstream of the cylinder, 17D downstream of the cylinder, and 24D 
into the far-field. Potential-flow solutions are imposed as boundary conditions in the far- 
field, and convective boundary conditions are used at the outflow boundary. Running at 
a maximum CFL number of 1.5, the non-dimensional time step AtUoo/D typically varies 
between 0.0030 and 0.0045. To obtain the results presented here, the simulations have 
advanced at least 150 dimensionless time units. The statistics are collected over the last 
75 or so time units. 

Approximate boundary conditions on the cylinder surface are imposed in terms of wall 
shear stress estimated from a wall model of the form 

JL(V + V)®?± = IÜE. z = 13 (21) 
dx2 dx2     p dxi' 

This is a simpler variant of the TBL equation model (Cabot &: Moin 2000) which allows 
for easier implementation and lower computational cost. Although Wang & Moin (2001) 
have shown that the full TBL equations (with dynamically adjusted vt) give better results 
in their trailing-edge flow, the discrepancy may be partly related to a surface curvature 
discontinuity which is absent from the cylinder surface. Since the pressure is taken from 
the LES at the edge of the wall layer, Eq. (2.1) can be integrated to the wall to obtain 
an algebraic model for the wall shear stress components (Wang 1999) 

T"wi — sr"*!^!' (2-2) 

where u« denotes the tangential velocity components from LES at the first off-wall 
velocity nodes, at distance 8 from the wall. In attached flows these nodes are generally 
placed within the lower edge of the logarithmic layer. In the present flow, however, 5+ 

(in wall units) is found to vary from 0 to 100 depending on the local skin friction. The 

eddy viscosity is modeled by a damped mixing-length model: vt/v = KJ/+ (1 - e~y™/A) , 

where 2/+ = ywuT/v is the distance to the wall in wall units, K = 0.4, and A = 19. 

3. Results and discussion 
In Fig. 1, the contours of the vorticity magnitude at a given time instant and span- 

wise plane are plotted for Ren = 106. Large coherent structures are visible in the wake, 
but they are not as well organized and periodic as in typical Karman streets at lower 
(sub-critical) and higher (post-critical) Reynolds numbers. Compared to flows at lower 
Reynolds number (e.g. Kravchenko & Moin 2000; Breuer 2000), the boundary-layer sep- 
aration is much delayed and the wake is narrower, resulting in a much smaller drag coef- 
ficient. Note that the rather thick layer seen along the cylinder surface consists mostly of 
vorticity contours of small magnitude. These levels are necessary for visualizing the wake 
structure, but are not representative of the boundary-layer thickness. The true boundary 
layer, with strong vorticity, is extremely thin in the attached region. 

A comparison with two sets of experimental data of the mean pressure distribution 
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FIGURE 1. Instantaneous vorticity magnitude at a given spanwise cut for flow over a circular 
cylinder at ReD = 106. 25 contour levels from uD/Uoo = 1 to uD/U*, = 575 (exponential 
distribution) are plotted. 

FIGURE 2. Mean pressure distribution on the circular cylinder. -Present LES at ReD = 10"; 
o Experiment of Warschauer & Leene (1971) at ReD = 1-26 x 106 (spanwise averaged); A Ex- 
periment of Flachsbart (in Zdravkovich 1997) at ReD = 6.7 x 105. 

on the cylinder surface is depicted in Fig. 2. Very good agreement is observed between 
the LES at Reo = 106 and the experiment of Warschauer & Leene (1971) which was 
performed at Rev = 1.26x 106. The original Cp data of Warschauer & Leene exhibit some 
spanwise variations; for the purpose of comparison the average value is plotted. Relative 
to the measurements of Flachsbart (see Zdravkovich 1997) at ReD = 6.7 x 105, the LES 
Cp shows smaller values in the base region. Note that Flachsbart's data contain a kink 
near 9 = 110°, indicating the presence of a separation bubble. This type of separation 
bubble is characteristic of the critical regime, and is difficult to reproduce experimentally 
or numerically due to sensitivity to disturbances. 

In Table 1, we compare the mean drag coefficient, the base pressure coefficient, and 
the Strouhal number from the LES at Ren = 106 with the experimental values. The 
agreement with the measurements of Shih et al. (1993) is reasonably good. The LES 
somewhat overpredicts the drag coefficient compared with Shih et al. (1993), but under- 
predicts it relative to Achenbach (1968) (cf. Fig. 3). The Strouhal number of 0.22 from 
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C/D —^p,basc St 

LES 0.31 0.32 0.28 
Exp. (Shih et al. 1993) 0.24 0.33 0.22 
Exp. (Others, see Zdravkovich 1997)      0.17-0.40        -        0.18-0.50 

TABLE 1. Drag, base pressure coefficient and Strouhal number for the flow around a circular 
cylinder at a Reynolds number of 106. 

Shih et al. is for a rough-surface cylinder; no coherent vortex shedding was observed 
for smooth cylinders at Ren larger than 4 x 105. Indeed, it is generally accepted that 
periodic vortex shedding does not exist in the super-critical regime of flow over a smooth 
cylinder (Zdravkovich 1997). Prom our simulation, a broad spectral peak of the unsteady 
lift centered at St « 0.28 is found. It can be argued that although the LES is performed 
for a smooth cylinder, the discretization of the cylinder surface and the numerical er- 
rors due to under-resolution may act as equivalent surface roughness, causing the flow 
field to acquire some rough-cylinder characteristics. The flow at high Reynolds number 
is very sensitive to surface roughness and to the level of free-stream turbulence, which 
contribute to the wide scatter of CD and St among various experiments in the literature 
(Zdravkovich 1997), listed at the bottom of Table 1. Other factors causing the data scat- 
ter include wind-tunnel blockage and end-plate effects. Our simulation results fall easily 
within the experimental range. Generally speaking, there is a lack of detailed experimen- 
tal data at super-critical Reynolds numbers. In particular, velocity and Reynolds-stress 
profile measurements are non-existent, making a more detailed comparison impossible. 

To assess the robustness of the computational method, we have performed simulations 
at Ren = 5 x 105 and 2 x 106, in addition to the initial attempt at Reo = 1 x 106. 
The predicted mean drag coefficients are plotted in Fig. 3 along with the drag curve 
of Achenbach (1968). While the simulations predict CD rather well at the two lower 
Reynolds numbers, the discrepancy becomes large at Reo = 2 x 106. More significantly, 
the LES solutions show relative insensitivity to the Reynolds number, in contrast to the 
experimental data which exhibit an increase in CD with Reynolds number after the drag 
crisis. Similar Reynolds-number insensitivity has been observed for the other quantities 
shown previously. Poor grid resolution, which becomes increasingly severe as the Reynolds 
number increases, is the primary suspect. 

Finally, the skin-friction coefficients predicted by the wall model in the LES calculations 
are plotted in Fig. 4 against the experimental data of Achenbach (1968) at Reo = 3.6 x 
106. The levels are very different on the front half of the cylinder, but are in reasonable 
agreement on the back half. The boundary-layer separation and the recirculation region 
are captured rather well by the LES, indicating that they are not strongly affected by 
the upstream errors. The different Reynolds numbers in the LES and the experiment can 
account for only a small fraction of the discrepancy. Note that our computed C/ values are 
comparable to those reported by Travin et al. (2000) using DES. Travin et al. attribute 
the overprediction of C/ before separation to the largely-laminar boundary layer in the 
experiment, which has not been modeled adequately in either simulation. Grid resolution 
is another potential culprit in the present work. In addition, an overprediction of the skin 
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FIGURE 3. Drag coefficient as a function of Reynolds number. 
• Present LES. 
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FIGURE 4. Skin friction distribution on the cylinder from LES: • R&D = 5 x 105; 
 R&D = 1 x 106; R&D = 2 x 106. o Experiment of Achenbach (1968) at 

R&D = 3.6 x 106. 

friction by the present wall model has also been observed by Wang & Moin (2001) in 
the acceleration region of the trailing-edge flow, suggesting that this simplified model 
may have difficulty with strong favorable pressure gradients. If this proves to be a major 
factor, the more general TBL equation model should provide a better alternative. 

4. Concluding remarks 
A bold numerical experiment has been carried out to compute the flow around a cir- 

cular cylinder at supercritical Reynolds numbers using LES. The simulation is made 
possible by the use of a wall-layer model which alleviates the near-wall grid resolution 
requirements. Preliminary results are promising in the sense that they correctly predict 
the delayed boundary-layer separation and reduced drag coefficients consistent with mea- 
surements after the drag crisis. In quantitative terms, the mean pressure distributions 
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and overall drag coefficients are predicted reasonably well at Ren = 5 x 105 and 106. 
However, the computational solutions are inaccurate at higher Reynolds numbers, and 
the Reynolds-number dependence of the drag coefficient is not captured. 

It must be emphasized that the results presented here are very preliminary. The grid 
used near the cylinder surface, particularly before separation, is quite coarse judged by 
the need to resolve the outer boundary-layer scales. The effect of the wall model under 
coarse grid resolution and in the laminar boundary layer is not clear. Evidently, a more 
systematic investigation is needed to separate the grid resolution and wall modeling 
effects, and to fully validate the numerical methodology in this challenging flow. 
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An experimental and computational investigation 
of flow past cacti 

By   Sharon Talley, Gianluca Iaccarino, Godfrey Mungal AND Nagi N. Mansour 

1. Motivation and objectives 
This is an interdisciplinary study motivated by the saguaro cactus and other tall ar- 

borescent (treelike) succulents that withstand high wind velocities in their natural habi- 
tat. These desert plants have a cylindrical shape, modified by complex surface geometry. 
Typical diameters are of the order of 0.5 m, and at the highest wind speeds, when the 
cactus is in danger of being uprooted, the Reynolds number (Re) can be as large as 106. 
Because the shape of an object influences the surrounding airflow, natural selection may 
favor body morphologies that reduce forces exerted by wind gusts in their habitat. We hy- 
pothesize that the tall cacti morphology of longitudinal cavities and spines may function 
to reduce wind forces, including drag and also the fluctuating side-force caused by vortex 
shedding. We will address this hypothesis by experiments and numerical simulations. 

The evolutionary process of random mutations followed by selection for or against 
those mutations is a continual shaping mechanism on organisms. Being products of their 
environment, organisms are equipped with adaptations that allow them to cope with 
the environmental stresses of their habitat. Longitudinal cavities and spines on succulent 
cylindrical plants evolved independently in two plant families: the Cactaceae of North 
and South America and the Euphorbiaceae of Southern Africa (Figs, la and lb; Gibson 
& Nobel 1986). Thus, distantly related plant species living on different continents but 
in habitats with similar abiotic stresses have converged on a common body morphol- 
ogy. Convergent evolution to a common body shape provides compelling circumstantial 
evidence for the adaptive significance of this morphology in desert environments. 

There has been much speculation on the function of cavities and spines on cacti, and 
the adaptive significance of the proposed functions is still open to speculation (Geller 
& Nobel 1984). Natural selection acts on the random mutations of existing structures 
(traits), resulting in improved structures, novel structures, and/or multiple-functionality 
of existing structures. Therefore, one function of a trait does not necessarily preclude 
other functions, and many traits may contribute to a common function. Given that the 
shape of an object affects the flow, it is surprising that no studies have examined how 
cavities and spines on desert succulents influence airflow. 

Because there are many species of tall arborescent succulents, varying in body size, 
depth and number of cavities, and spine arrangement, we will focus on one of the most- 
studied of the tall arborescent succulents, the saguaro cactus, Carnegiea gigantea (Fig. 
lb, 2, and 3). Saguaros are long-lived and slow to mature. They take 30 to 50 years to 
reach reproductive, maturity and live up to 150 years of age. Adult saguaros have one 
main cylindrical stem ranging from 0.3 to 0.8 m in diameter (Benson 1981) and over 8 
to 15 m in height (Hodge, 1991). Ten to 30 v-shaped cavities span the length of the stem 
(Hodge 1991). The number of cavities depends on the diameter of the stem, and new 
cavities can be added or deleted to maintain a cavity depth ratio {L/D - depth of the 
cavity divided by the diameter of the cylinder) of approximately 0.07 ± 0.0015 (Geller & 
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FIGURE 1. Convergence of the external morphology of desert succulents: (a) Euphorbia sp. 
(Euphorbiaceae) from Southern Africa and (b) young saguaro, Carnegiea gigantea (Cactaceae) 
from North America. 

. '• .. 

(a) (c) 

FIGURE 2. (a) Addition of cavities (ribs) on an adult saguaro trunk (b) Saguaro forest, and (c) 
Root system of a saguaro toppled by the wind. 

Nobel 1984; Fig. 2a). Apices of the cavity junctures are adorned with whorls of 15 to 30 
spines 2.5 to 7.6 cm long (Benson 1981). 

In order for wind to be a selective agent on saguaros, high wind velocities must occur in 
saguaro habitats and they must affect their reproductive success. Within the distribution 
of saguaros, high wind velocities were recorded 15 m above the ground for a nine-year 
period (Bulk 1984). The maximum wind velocity recorded was 38 m/s, (Re = 106), and 
velocities exceeding 22 m/s (Re = 7 x 105) occurred almost every month. Saguaro habi- 
tats contain less vegetation cover than other ecosystems and, consequently, have few if 
any other tall plants to shelter them from the wind (Fig. 2b). There is substantial circum- 
stantial evidence that wind gusts exert enough force to topple saguaros, and thus, cause 
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10cm 

(a) (b) 

FIGURE 3. (a) Saguaro stem anatomy (Niklas &: Buchman 1994). (b) Sketch of the cross-section 

their premature mortality (Fig. 2c; Benson 1981; Alcock 1985; Pierson and Turner 1998), 
although information on the wind velocities required to topple large desert succulents is 
lacking. The natural-selection scenario would suggest that some saguaros are toppled by 
gusts (Fig. 2b), while many others remain standing. Considering that most tall cacti live 
for 150 years and take 30 to 50 years or more to reach reproduce maturity, strong gusts 
need only occur only every 30 to 50 years to be important in the natural selection of tall 
succulent morphology. 

Another way stationary organisms can cope with high wind velocities is to increase 
their structural strength; however, investment in structural tissues has opportunity costs 
(Denny 1994). Saguaros have low investment in the structural tissues of the stem and 
even less in the roots. Succulent stems are 90 to 94% water (Gibson and Nobel 1986), 
and, therefore, use little structural tissue "wood" to support their massive structures. 
Saguaro wood is confined to the center of the stem (xylem fibers; Fig. 3a). The composite 
stem tissue has a density specific stiffness (e/p) less than half of that for a solid wood 
stem (Niklas and Buchman 1994). The ratio of dry-weight investment in root mass to 
stem mass in cacti (0.08 to 0.14) is considerably less than most other plants forms (0.3 to 
7.3), suggesting that saguaros invest comparatively little in root structural tissue (Nobel 
1994). The saguaro root system is shallow, having a mean root depth of 25 cm and 
consisting of thin roots up to 2.5 cm in diameter (Fig. 2c). Their shallow root system, 
which provides poor root anchorage, has been noted to result in saguaro toppling when 
exposed to high wind velocities (Hodge 1991). The ability to dampen fluctuating side- 
force may also be particularly important in keeping these structures upright because large 
fluctuations in forces may break or dislodge roots. Because there are probably constraints 
on tissue strength, and evolution occurs by the natural selection of random mutations, it 
is conceivable that stationary organisms may evolve shapes that reduce drag and diminish 
fluctuating side-force. 

At high Reynolds numbers (Re > 104) the drag coefficient (Cd) curves for spheres 
and cylinders have four distinct flow ranges, characterized by changes in drag caused 
by boundary-layer separation and by transition from laminar to turbulent flow (Fig. 
4a; Roshko 1961; Achenbach 1977; Farell 1981). In the subcritical range, d is almost 
independent of Re (separation is laminar). Then, at the beginning of the critical range, 
Cd drops rapidly (boundary layer undergoes transition to turbulence). The lowest Cd on 
the curve is within the critical range, at what is referred to as the critical Re. The next 
range is the supercritical range, where Cd increases with increasing Re and continues to 
increase to the fully turbulent transcritical range. 
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When comparing Cd curves of uniformly rough and smooth cylinders, rough cylinders 
have Cd curves to the left of their smooth analogs and, therefore, experience the critical 
range at lower Re (Achenbach 1971). Roughness promotes transition, and, generally, the 
greater the roughness the greater the shift of the Cd curve to the left (the degree of surface 
roughness is quantified by the parameter k/D, the height of the roughness divided by the 
diameter of the cylinder). Although a greater degree of uniform surface roughness results 
in a lower critical Re, it is accompanied by a smaller drop in Cd and a smaller critical 
Re range. In addition, rough cylinders often have higher Cd in the postcritcal regime. 

Experimental evidence shows that the shape of the Cd curve depends not only on the 
size but also on the shape and distribution of surface roughness. Cylinders with dis- 
tributed strips of roughness have been shown to experience early transition without a 
rapid rise in Cd in the supercritical range (Fig. 4b; Nakamura and Tomonari 1982). Com- 
plex surface roughness, such as dimples on a golf ball (Bearman and Harvey 1976) and 
on a cylinder (Bearman and Harvey, 1993), also have a larger Re range of Cd reduction 
than cylinders with uniform roughness. Other surface modifications have been studied 
to passively reduce drag and fluctuating lift forces on circular cylinders; however, none 
have studied spanwise v-shaped cavities with 0.07L/D. 

This project addresses fundamental concepts in evolution by examining whether organ- 
isms are optimally shaped through natural selection to reduce drag and fluctuating lift. 
The fluid mechanics of cacti has not been examined experimentally or numerically. Such 
investigation would provide information on how longitudinal cavity depth and complex 
surface roughness can affect flow. There are surprisingly few studies on the fluid mechan- 
ics of biological organisms, especially terrestrial organisms with bluff bodies. There are 
no known bluff organisms that use surface roughness to reduce drag (Vogel 1981). Sur- 
face roughness has been argued to be an unlikely adaptation to control drag, because the 
reduction in Cd afforded by the surface roughness is accompanied by a dramatic increase 
in Cd at higher Re (Denny 1988 and Vogel 1981). However, if the increase in Cd occurs 
at Reynolds numbers that are rarely if ever experienced by the organism in question, it 
should have no effect on the organism's evolution. 

2. Experimental study 
2.1. Wind tunnel 

Circular cylinders with diameter D of 9.98 cm were manufactured from Ren Shape 460 
Modeling board. Five test cylinders are considered: a smooth cylinder, a uniformly rough 
cylinder (k/D = 2.5 x 10"3), and three cylinders differing in the depth of the vertical 
v-shaped cavities (L/D = 0.035, 0.07, and 0.105, see Fig. 3b). Each L/D cylinder had 24 
cavities spanning 15°; bits were used to cut angles of 124°, 82.5° and 60° for the 0.035, 
0.07, and 0.105 respectively. Roughness on the uniformly rough cylinder was provided 
by commercial 36 grit sandpaper (hydrodynamic roughness height, k/D = 2.5 x 10-3; 
Giiven, Farell and Patel 1980). Sheets of sandpaper were cut and attached to the smooth 
cylinder with double-sided adhesive tape, and the thickness added to the cylinder was 
less than 2 mm. 

Experimental measurements were performed at flow velocities from 13 to 29.5 m/s in 
a low-speed blower wind tunnel with a test section 1.18 m x 1.18 m in cross section. 
Cylinders were mounted vertically between two endplates attached to the roof and floor, 
giving an aspect ratio of 7.06 (h/D) and a geometric blockage (cylinder diameter divided 
by the width of the test section) of 13%. The endplates were 8D long by ID wide, and 
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FIGURE 5. Smoke flow visualizations at Äe =13,000. Flow is right to left (black line behind the 
cylinders is a fracture in the glass). 

the distance between the cylinder axis and the leading edge was 3.51? (Szepessy 1994). 
The cylinder was rotated about its axis to place the cavities at different orientations to 
the flow, and then secured with supports. ■ 

Simple visualizations were performed using tufts of yarn attached to the cylinders, 
to a wand, and at the wire intersections of a fine framed grid. Flow was documented 



56 Talley, Iaccarino, Mungal, Mansour 

(a) (b) 

FIGURE 6. Velocity profiles at Re = 125,000 behind cylinders at different spanwise locations. 
Location of pitot-static probe from top endplate; L/D = 0.5, 2.3, 3.5, and 
  4.7. (a) Velocity profiles behind a smooth cylinder (b) Velocity profiles behind a cylinder 
with L/D 0.07. 

using a Camcorder (Panasonic PV-L857). Visualization experiments were also carried 
out in a low-speed smoke tunnel (Collins model # 300; Collins Radio Co., Cedar Rapids, 
Iowa) with a test section 64.3 cm deep, 61 cm high, and 107 cm wide. Vortex streets at 
Re of approximately 13,000 were observed in all cases but the cylinder with a L/D of 
0.07 (Fig. 5). The symmetric vortex shedding of the 0.07 L/D may be an artifact of the 
test cylinders not spanning the entire width of the test section. All test cylinders were 
examined in the same way. 

Wake velocity profiles were measured with a Pitot-static tube supported by a motorized 
traversing mechanism. Profiles were measured at 3.2D behind the cylinder. The Pitot- 
static probe was traversed across the test section to a distance of about D from each 
wall. A total of 63 points were measured in the wake at a sampling rate 100 Hz for one 
minute (6000 samples/point). 

2.2. Data analysis 

In the Re range from 90,000 to 200,000, the cylinders with cavities and the one with 
uniform roughness had narrower wakes, with smaller velocity defect, than the smooth 
cylinder. On both counts, this suggests that the cylinders with cavities have a lower Cd 
than the smooth cylinder. 

Velocity profiles were measured at different locations behind the cylinders to determine 
whether the flow was two-dimensional. Behind the smooth cylinder (Fig. 6a) the profiles 
are in very good agreement whereas larger discrepancies can be observed behind the 
cylinder with cavities (Fig. 6b), suggesting that longitudinal cavities may induce strong 
three-dimensional effects. Additional measurements and flow visulaization are required 
to clarify this issue. 
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FIGURE 7. Example of the computational grids: (a-b) structured grids 241 x 100 elements; 
(c-d) unstructured grids ss 20,000 elements (a-c) L/D = 0 (b-d) L/D = 0.07 

. Lower set of figures is at about 7 times the scale of the upper set. 

3. Numerical study 
3.1. Numerical method 

Preliminary simulations of the flow around a cactus section are carried out by solving 
the Navier-Stokes equations in two dimensions. Two codes are used: INS2D (Rogers & 
Kwak 1990) and Fluent (Fluent 1999). INS2D is an upwind based, third-order accurate 
code for structured (multiblock) grids; the artificial-compressibility approach is used for 
pressure-velocity coupling and the time integration is second-order accurate. Fluent is an 
unstructured-mesh solver based on second-order-accurate spatial and time discretization; 
the SIMPLE technique is used for pressure-velocity coupling. Turbulence modeling is 
based on the v2 - f model (Durbin 1995; Iaccarino 2001). 

3.2. Computational grids 
Cylinders with v-shaped cavities (with cavity ranging from L/D = 0.0 to L/D = 0.105) 
are considered. Several meshes have been generated to assess the sensitivity of the solu- 
tion. In Fig. 7, examples of the grids are shown. Simulations using the structured grids 
(Fig. 7a and 7b) have been performed using both Fluent and INS2D. The structured grid 
is generated as an O-type mesh wrapped around the cylinder. The cavities are slightly 
smoothed to improve the orthogonality of the grid lines at the cylinder surface. The 
height of the first cell is adjusted according to Re; the distance from the far field bound- 
ary is 25P as used in Rogers &; Kwak 1990. The unstructured meshes are generated using 
a quadrilateral paving technique (Blacker et al. 1991); this approach allows flexibility in 
clustering the grid cells in the wake region and close to the surface. 

Table I shows results for the computations performed on different grids at a very low 
Reynolds number. The flow is unsteady and exhibits a periodic vortex shedding from the 
cylinder, but only the averaged drag coefficient is reported. Grid independence is achieved 
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for the smooth cylinder L/D = 0 using both the structured and the unstructured grids, 
and the corresponding values are extremely close. 

The results for the flow around the cylinders with cavities show that grid independence 
is achieved only using the unstructured grids. An increase in cavity depth requires a 
finer resolution to capture accurately the in-cavity flow; in addition, the quality of the 
structured grid degrades as the cavity depth increases. It is worth noting that the results 
obtained using the finest structured grid (761 x 201) are in good agreement with the 
grid-independent results for the unstructured mesh. 

In the following Sections only results computed using the unstructured grids are re- 
ported. 

Grid Elements  L/D   L/D 
0     0.035 

L/D   L/D 
0.070 0.105 

Elements  L/D   L/D   L/D   L/D 
0     0.035 0.070 0.105 

161 x 61 
241 x 101 
481 x 101 
761 x 201 

9,600     1.312 1.131 
24,000    1.329 1.269 
40,000    1.339 1.301 
152,000   1.339 1.311 

1.172 1.257 
1.294 1.341 
1.304 1.326 
1.313 1.318 

6,300     1.267 1.171 1.212 1.255 
20,000    1.331 1.300 1.301 1.330 
42,000    1.337 1.307 1.310 1.319 
76,000    1.338 1.309 1.310 1.317 

Table I. C 

Structured grids 

omputed time-averaged Cd for different c 

Unstructured grids 

omputational grids - Re = 100 

3.3. Laminar simulations 
Flow simulations at low Reynolds number (Re = 100 and Re = 200) are carried out 
to evaluate the effect of cavity depth (and the accuracy of the predictions) without 
uncertainties related to the turbulence modeling. Two-dimensional simulations have been 
performed with unstructured grids using 6,000 to 42,000 elements (only the fine mesh 
results are presented). The calculations are carried out using a timestep AtU/D = 0.01 
(corresponding to approximately 35 time steps per vortex shedding period) and for a 
total time of TU/D = 150. The time history of drag and lift coefficients at Re = 100 are 
reported in Fig. 8a and 8b respectively. The statistics (time-averaged values, Strouhal 
number St etc.) are computed over a period Tav = 5QD/U and are reported in Table II: 
here Ci is the coefficient of fluctuating side force (peak values shown). 

L/D Cd Ci        St 

0 1.339 ± 0.010 ± 0.330 0.160 
0.035 1.304 ± 0.011 ± 0.325 0.161 
0.070 1.309 ± 0.010 ± 0.334 0.162 
0.105 1.318 ± 0.012 ± 0.336 0.161 

L/D cd Ci St 

0 
0.035 
0.070 
0.105 

1.365 ± 0.037 
1.361 ± 0.045 
1.364 ± 0.057 
1.381 ± 0.049 

± 0.664 
± 0.713 
± 0.742 
± 0.740 

0.175 
0.172 
0.172 
0.170 

Re = 100 Re = 200 

Table II. Statistics for low Reynolds number flow around cacti 

The results indicate a small drag reduction (< 10%) associated with the presence of 
the cavities. The cavity depth L/D = 0.05 is nearly optimal. The change in the unsteady 
side-force is also small, showing that the effect of the cavity is limited. 
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FIGURE 8. Time history of drag (a) and lift (b) coefficients. Re = 100. : L/D = 0; 
  : L/D = 0.07 

The results presented for the smooth cylinder at Re = 200 are in good agreement with 
the numerical simulations and the experimental data reported in Rogers & Kwak (1990). 
It is worth noting that Re = 190 represent the onset of three-dimensional flow in the 
wake of the cylinder. 

3.4. Turbulent simulations 

Calculations at Re = 20,000 and Re = 100,000 (subcritical regime, Fig. 4a) are per- 
formed using the v2 — / turbulence model. The time step, the simulated time and the 
averaging time are the same as before; the time history of lift and drag is shown in Fig. 
9. 

Compared to the results presented at low Re, the drag reduction is now larger (« 25%). 
The strength of the unsteady motion is also greatly reduced, as seen in Table III. 

L/D Cd Ci St 

0 1.683 ± 0.164 ± 1.923 0.217 
0.035 1.452 ± 0.076 ± 1.562 0.221 
0.070 1.419 ± 0.083 ± 1.245 0.224 
0.105 1.359 ± 0.052 ± 0.987 0.223 

L/D Cd Ci St 

0 1.644 ± 0.113 ± 1.791 0.228 
0.035 1.464 ± 0.120 ± 1.462 0.224 
0.070 1.401 ± 0.131 ± 1.128 0.221 
0.105 1.325 ± 0.079 ± 0.864 0.221 

^ = 20,000 Äe = 100,000 

Table III. Statistics for high Reynolds number flow around cacti 
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FIGURE 9. Time history of drag (a) and lift (b) coefficients. Re = 20,000. : L/D = 0; 
  : L/D = 0.07 

From the results presented in Table III, it appears that the cavity depth has a relatively 
strong effect on the drag and a substantial dampening effect on the unsteady motion. 

The time averaged turbulent kinetic energy for the four geometries considered is re- 
ported in Fig. 10; the intensity very close to the cylinder decreases with the cavity depth, 
but higher values are observed in the near wake. 

The comparison of the computed Cd with the experimental values for the smooth 
cylinder (Achenbach 1971) shows an overprediction of about 20%. The flow over the 
smooth cylinder in the subcritical regime is characterized by a laminar boundary layer 
separation; turbulence is generated in the separated shear layer and is sustained in the 
near wake. The smooth cylinder calculations (L/D = 0) are carried out with the v2 - f 
turbulence model switched off for 9 < 90°. This is necessary, especially at the higher 
Reynolds numbers, because turbulence models typically anticipate transition. The sim- 
ulations with cavities are carried out with the model switched on from the stagnation 
point (6 = 0°) because it is expected that transition occurs immediately after the first 
cavity. The exact location of transition has an impact on the accuracy of the drag calcu- 
lation. In addition, in the subcritical range three-dimensional effects in the real-life wake 
are substantial. 

Experimental and computed velocity profiles in the wake are compared in Fig. 11. 
The results for the smooth cylinder confirm that the calculation overestimate the drag 
(corresponding to the larger velocity defect in the wake); on the other hand, the data for 
the cylinder with cavities show remarkable agreement. It must be pointed out that the 
measurements exhibit three-dimensional effects that are not accounted for in the present 
two-dimensional simulations. 
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(a) 0» 

(c) (d) 

FIGURE 10. Time averaged turbulent kinetic energy: (a) L/D = 0; (b) L/D = 0.035; (c) 
L/D = 0.070; (d) L/D = 0.105 

4. Conclusions and future plans 
The preliminary numerical results presented suggest that the v-shaped cavities provide 

a damping effect of the fluctuating forces and a drag reduction. Further work is required 
to assess the effect of the cavities in the range of Re relevant for the cacti. 

4.1. Experimental work 

Future experiments should focus on obtaining Cd curves over a range of Re from 2 x 104 

(for computational comparisons) to 106 (limit of wind velocities in the saguaro habi- 
tat). We will measure drag directly (using a multi-component force transducer - MC3A- 
X1000, Advanced Mechanical Technology, Inc, Watertown, MA), the pressure distribu- 
tion around the test cylinders (using 16 static ports attached to a scanivalve), and vortex 
shedding frequency (using hot-wire anemometry). If there are interesting flow phenom- 
ena, the effect of spines on flow around the test cylinders will be evaluated (using 3-D 
PIV). Finally, experimental measurements will be performed on live cactus specimens. 

4.2. Numerical ccalculations 

Two-dimensional RANS calculations will be carried out up to Re = 106. The pressure 
and skin friction distributions on the surface will be examined for various cavity depth 
to evaluate the effect on the local flow characteristics. 

The effect of the location of the laminar/turbulent transition must be investigated, 
together with the impact of the turbulence modeling. 
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FIGURE 11. Velocity profiles in the wake of cylinders. ■simulations {Re = 100,000); 
o experiments (Re = 125,000). (a) smooth cylinder (b) cylinder with L/D 0.07. 

In addition, three-dimensional direct simulations will be required to perform a fair com- 
parison with the experimental measurements in the subcritical and transcritical range. 
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Interacting flamelet model for non-premixed 
turbulent combustion with local extinction and 

re-ignition 

By Heinz Pitsch, Chong M. Cha AND Sergei Fedotov 

1. Motivation and objectives 
The ability of unsteady laminar flamelet models to yield accurate predictions in non- 

premixed turbulent reacting flows has been investigated in many different studies. These 
include different geometries and flow situations, such as jet flames (Pitsch et al. 1998; 
Pitsch & Steiner 2000), diesel engines (Pitsch et al. 1996), and also show that even 
complex chemical processes such as the formation of NOz and soot can be described 
with reasonable accuracy. 

A particularly appealing feature of the model is that the local instantaneous scalar 
dissipation rate, which describes the rate of molecular mixing of fuel and oxidizer and is 
known to be the most important parameter in non-premixed combustion, appears explic- 
itly as a parameter in the model. This permits the study of influence of this important 
quantity and simplifies the physical interpretation. 

However, because of the simplifications made in the derivation of the flamelet equa- 
tions, the model is not generally valid for arbitrary situations and fails, for instance, in 
predicting lifted flames or when local extinction and re-ignition events are important. 

Local extinction and re-ignition has recently become one of the most prominent re- 
search topics in non-premixed turbulent combustion. Many studies have been devoted 
to this problem including; direct numerical simulations (DNS) (Sripakagorn et al. 2000, 
2001); modeling studies using different approaches such as transported probability density 
function (pdf) methods (Xu & Pope 2000), and the one-dimensional turbulence model 
(Hewson & Kerstein 2001); and experiments (Barlow & Frank 1998). The Sandia flame 
series, investigated experimentally by Barlow & Frank (1998) consists of six flames with 
different Reynolds numbers and degrees of local extinction. These flames have become a 
benchmark data set for modeling studies. 

Xu & Pope (2000) have presented predictions of three different Sandia flames, ranging 
from moderate to high degree of local extinction, with reasonable agreement with the 
experiments. In this study only the ensemble-averaged value of the scalar dissipation rate 
is used in the simulations, and fluctuations of this quantity are neglected. 

The influence of the fluctuations of the scalar dissipation rate has been investigated 
by Pitsch & Fedotov (2001). In this work, the flamelet equations were used, with the 
scalar dissipation rate as a random variable. To describe the evolution of the scalar 
dissipation rate, a stochastic differential equation (SDE) was formulated. From these 
governing equations, a Fokker-Planck equation for the joint probability density function 
of the stoichiometric temperature and the scalar dissipation rate was derived. It has been 
shown that the fluctuations of the scalar dissipation rate can have a very strong effect, 
leading to local extinction even when the average scalar dissipation rate is below the 
extinction limit. However, because the study presented in Pitsch & Fedotov (2001) was 
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based on the fiamelet equations, which cannot account for re-ignition, the real behavior 
of the physical system could not be investigated. 

In the present work, an extension of the fiamelet model is presented, which can ac- 
count for re-ignition. The resulting modeled equations are solved numerically, and the 
mechanisms of extinction and re-ignition are investigated. 

2. Governing equations 
2.1. Extended fiamelet model 

To derive the extended fiamelet equations, the equation for the temperature T is consid- 
ered. The extended fiamelet equations for other reactive scalars can be derived similarly. 
Since the model will subsequently be compared to the results of direct numerical sim- 
ulations (DNS) we assume constant heat capacity Cp, and negligible temporal pressure 
change and radiative heat loss. The chemistry is described by a one-step reversible reac- 
tion with net reaction rate w. A more general formulation, accounting for the neglected 
terms and complex chemistry, is a trivial extension of the following derivation. In addition 
to the temperature equation, we will use the transport equation for the mixture fraction 
Z. If the Lewis number of the mixture fraction is assumed to be unity, the equations for 
mixture fraction Z - Z(t,xi,x2,x3) and temperature T = T(t,xi,x2,x3) can be written 
as 

p^+pv-X7Z-V- (pDVZ) = 0 (2.1) 
at 

p^ + pv-VT-V- (pDWT) - pQ-w = 0, (2.2) 
at cp 

where t is the time, xt are the spatial coordinates, p the density, v the velocity vector, 
D the diffusivity of the mixture fraction, and Q is the heat of reaction. 

We now want to derive a fiamelet equation which accounts for a burning state, but also 
for local extinction and re-ignition processes. In the derivation of the fiamelet equations 
as proposed by Peters (1983, 1984), a coordinate transformation of the Crocco type is 
introduced into the governing equations, such that 

(t,xi,x2,x3)—> (t,Z,Z2,Z3), (2.3) 

in which the mixture fraction is introduced as a new independent coordinate. This implies 
that the new coordinate is locally attached to an iso-surface of the mixture fraction, say 
the stoichiometric mixture fraction Zst, and the new coordinates Z2, Z3 lie in this surface. 
Then the transformation of the derivatives is given by 

I^I+flr   v^v*A+Vz±,   ™«„   vzi = ( »/a* ) . (2.4) 

Introducing this into Eq. (2.2) and using Eq. (2.1), one obtains, for T = T{t, Z, Z2, Z3), 

- Vz± • (pDVz±T) - VziT ■ VZ^ (pD) = 0. (2.5) 

Note that in Eqs. (2.2) and (2.5) there appear two derivatives with respect to time which 
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are associated with two different coordinate systems. In Eq. (2.2), dT/dt is the rate 
of change of temperature as observed at a fixed point in space (xi,£2,23)1 whereas in 
Eq. (2.5) dT/dt represents the rate of change of the temperature when moving with the 
iso-surface of the mixture fraction at fixed (Z, Z2, Z3). 

In a subsequent asymptotic analysis, Peters (1983,1984) shows that changes of the re- 
active scalars within surfaces of constant mixture fraction are small compared to changes 
in the direction normal to this surface, and can therefore be neglected. This leads to the 
flamelet equations,consisting of the first three terms in Eq. (2.5) 

dT     pXd2T       Q 
p-dT-Tdzi-%w = 0> (2'6) 

where the scalar dissipation rate, denned as 

X = 2D(VZ)2 (2.7) 

appears as a new parameter. This equation has been analyzed in DNS of isotropic decay- 
ing turbulence with initially non-premixed reactants by Sripakagorn et cd. (2000, 2001). 
It has been shown that Eq. (2.6) describes the extinction process very well, but obviously 
fails to predict re-ignition. At locations where local extinction has occurred, the scaling 
in Eq. (2.5) changes and the arguments leading to Eq. (2.6) are no longer true. Terms de- 
scribing transport within surfaces of constant mixture fraction are then of leading order 
and therefore have to be considered. After extinction, the maximum flamelet temperature 
is small, so that changes in the direction normal to iso-surfaces of the mixture fraction 
can be neglected. If it is argued that re-ignition occurs by partially-premixed flame prop- 
agation along iso-surfaces of the mixture fraction, then an asymptotic analysis similar to 
that of Peters (1983) can be performed. Introducing a small parameter e = IF VZ, where 
£ represents the ratio of length scales of order-unity temperature changes in direction 
normal to the direction along iso-mixture fraction surfaces, the coordinates Z2 and Z3 
can be replaced by stretched coordinates such that £2 = Z^/s and £3 = Zzje. Then 

Va = Vz±/e     with     Vu =      d/d&      . (2.8) 

Introducing Eq. (2.8) into Eq. (2.5) and keeping only leading-order terms, the equations 
describing the re-ignition process are obtained as 

P??-Vz±-(pDVz±T)-pQ-w = 0, (2.9) 
at cp 

where the original coordinates Zi and Z% have been re-introduced. No scaling has been 
assumed for the time and the reaction term, but it is obvious that the accumulation and 
reaction terms are important for re-ignition, so these have been retained in the equation. 

The leading-order equation which can describe both the extinction and re-ignition 
processes can now be obtained by combining Eqs. (2.6) and (2.9), yielding the extended 
flamelet equation as 

>! - fw -v- • {pDVz-T) - plw=° •       (2-10) 

In this equation the second term describes the flamelet-type diffusive transport, while 
the third term describes the interaction of different flamelets. The coordinates Z2 and Z% 



68 H. Pitsch, C. M. Cha & S. Fedotov 

still measure physical space while Z is the mixture fraction: note, however, that because 
Z, Z2, and Z3 form an orthogonal coordinate system, the partial derivatives with respect 
to Z2 and Z% have to be evaluated at constant Z. 

2.2. Modeled extended flamelet equation 

To apply Eq. (2.10) in a numerical simulation, the newly-appearing diffusion term has to 
be modeled. A simple modeling approach is to represent this term by a molecular-mixing 
model frequently used in transported pdf modeling. Using for instance an Interaction by 
Exchange with the Mean (IEM) model, this term can be represented as 

ivzx • {pDVzi?) = -T"(T|Z), (2.11) 
P -UEM 

where {T\Z} is the average of the temperature conditioned on a given value of the mixture 
fraction, and TIEM is the mixing time. The conditional average has been used here, since, 
as mentioned above, the diffusion term modeled in Eq. (2.11) describes only mixing at a 
given mixture fraction. It is well known that the application of IEM as a mixing model for 
reactive scalars creates problems if mixing occurs between states with different mixture 
fraction. It is interesting to note that in the current application of the IEM model, where 
mixing occurs only on surfaces of constant mixture fraction, this problem does not occur. 

The modeled extended flamelet equation is then given by 

dT_X^T + T-(T\Z)_Q 
dt     2 dZ2        TIEM        CP 

V
      ' 

The remaining modeling problem is now the determination of the mixing time TIEM- 
This can be done in different ways. A particularly appealing way is to make the as- 
sumption that all changes of the temperature along iso-surfaces of the mixture fraction 
are caused by changes in the scalar dissipation rate. The advantage of this assumption 
is that it incorporates the fact that extinction is caused by excessive scalar dissipation 
rate. Introduction of the scalar dissipation rate as a new independent coordinate seems 
reasonable since the scalar dissipation is the most important parameter in non-premixed 
combustion. 

For the following derivation we first assume that the local instantaneous scalar dissi- 
pation rate can be described as a one-parameter function of the mixture fraction 

X(t,xu x2,x3) = Xst(t,Xi,x2,x3)f(Z). (2.13) 

The exact form of the function f(Z) is not important here, and can for instance be taken 
from a laminar counterflow configuration (Peters 1993), an unsteady mixing layer (Peters 
1984), or a semi-infinite mixing layer (Pitsch et al. 1998). This assumption is valid at 
least within a small region around the reaction zone, which is assumed to be laminar, 
and has also been corroborated by the DNS data used for a validation of the present 
model (Sripakagorn et al. 2000, 2001), for the conditional mean quantities. A detailed 
discussion of this assumption in the context of this DNS data can be found in Cha et al. 
(2001). A transport equation for xst = Xst(t,xi,x2,x3) has also been given by Cha et al. 
(2001) as 

p^ + pv ■ VXst - V • (pDWxst) -F = 0, (2.14) 
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where the source term F is given by 

and G describes the production of scalar dissipation rate by strain-rate fluctuations and 
the dissipation by molecular diffusion. 

With this assumption, an additional coordinate transformation t, Z, Z2, Zz —> t, Z, Xst 
can be used to replace the spatial coordinates Z2 and Z$ by the scalar dissipation rate, and 
an additional transport term in scalar-dissipation-rate space is obtained. The resulting 
equation is similar to the doubly-conditional moment-closure equations derived by Cha 
et al. (2001), but for local instantaneous quantities instead of conditionally-averaged 
ones. 

It follows from Eq. (2.13) that Xst is not a function of Z, and therefore 

/ d/dz1 \ 
Vz±Xst = VzXst     with     Vz =      d/dZ2 (2.16) 

Then the transformation of the derivatives is given by 

dt dt       dt  dXst OXst 

Introducing Eq. (2.17) into Eq. (2.10), and using Eq. (2.14) with the coordinates re- 
placed by Eq. (2.4), one obtains the equation for T — T(t, Z, Xst) as 

-aJ + FdX-t-2dZ^-YM~^W-0' (2-18) 

where 7st has been introduced as 7st = 2D (Vxst)
2. The convection term appearing in 

Eq. (2.18) from Eq. (2.14) can be neglected, by the same arguments as in the analysis 
that led to Eq. (2.9). Alternatively, the fourth term in Eq. (2.5) could be retained and 
would cancel with the convection term appearing here. 

Equation (2.18) is generally very similar to the flamelet equations given by Peters 
(1984), but with two additional terms, a convection term in Xst-space caused mainly by 
random production and dissipation of the scalar dissipation rate, and a diffusion term in 
Xst-space with 7st as the diffusion coefficient. 

The solution of Eq. (2.18) describes the temperature evolution in a coordinate system 
attached to a point of constant mixture fraction and constant scalar dissipation rate. 
However, we are interested in the development of a flamelet, which is attached to a 
stoichiometric surface at the origin of the coordinate system introduced by Eq. (2.17). 
This is generally not at constant scalar dissipation rate. The t, Z, Xst-coordinate system 
moves relative to this because of the production and dissipation of scalar dissipation rate 
F given by Eq. (2.15). We therefore introduce the concept of a "flamelet particle" and 
introduce a corresponding coordinate system. Let Xst(*) be the position of a flamelet 
particle in Xst-space. By definition, this particle moves with the net production rate F 
such that 

ÖXst 
dt 

= F(t,Z,Xst(t)). (2.19) 
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Then Eq. (2.18) can be written as 

8T     X(t)d2T     7stö
2T      Q 

*-— ^"T^-^"0' (2-20) 

where the scalar dissipation rate xst {t) is a random parameter determined by the solution 
ofEq. (2.19). 

We now introduce the non-dimensional reaction source term u, as denned in Pitsch & 
Fedotov (2001). and the non-dimensional temperature 9 defined by 

6=J~T%U        with     Tst,u = T2 + (T1-T2)Zst (2.21) 

where Tst<b is the stoichiometric adiabatic flame temperature, also defined in Pitsch & 
Fedotov (2001). The non-dimensional time and scalar dissipation rate are defined as 

r = ^i   and   x = -%- , (2.22) 
a Xst.o 

where o = AZZst (1 - Zst) and AZ is the reaction-zone thickness, and Xst,o is a reference 
value, here chosen to be the stoichiometric scalar dissipation rate at extinction. 

Equation (2.18) can then be written as 

89     ax{r)8H      TsX{r)dH 
d^"^~dz^-~2-dxJt-

u'{e)-0' (2-23) 

where Tst is a dimensionless number representing the ratio of the time scales of the 
transport in the direction of xst and the transport in the direction of Z, and is defined 
by 

T$t = -^ . (2.24) 
Xst,0 

The transport term in the direction of Z always causes heat losses away from the reaction 
zone. In contrast to this, if a locally-extinguished spot is considered, the transport term 
in the x-direction leads to a gain of heat from hotter surrounding areas. Hence, Tst 

characterizes the ability to re-ignite and will therefore be called the re-ignition parameter. 
Consequently, for Tst = 0 the flamelet equations as given in Pitsch & Fedotov (2001) are 
recovered. 

Based on the assumption that temperature changes along iso-surfaces of the mixture 
fraction are caused only by changes in the scalar dissipation rate, we have now derived 
an equation similar to Eq. (2.12). However, the present form of the mixing term in xst 

allows a straightforward physical modeling of the mixing time TIEM5 if it is modeled in 
a manner similar to Eq. (2.11). Introducing the IEM-model for the diffusion term in the 
a;st-direction in Eq. (2.23) we obtain 

89     axd29  ,     Tst    9 - (9\Z,Tst) 
8r      2ÖZ2     2<xst)

2       CIEM 
-u(6) = Q, (2.25) 

where (T\Z, Tst) is the mean temperature, conditioned on Z and Tst, of the system at a 
particular time r. The mixing time TIEM has been modeled as 

rn   /t \Xst/ fa  nc\ 
-UEM = OlEM  \L.lK>) 

7st 

and the constant CIEM is set to unity for subsequent numerical simulations. 
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2.3. Stochastic differential equations for xst and Tst 

In Eq. (2.25), xst and Tst are fluctuating random quantities. In order to solve Eq. (2.25) 
we need to derive SDEs for both. This can be done according to the procedure outlined 
in Pitsch & Fedotov (2001). The resulting equations are 

dxst = -^In (j^-) dr + ax-|=xst o dW (r) (2.27) 

and 

dTst = -^ In (T^T\ dr + CTT-|^Tst o dW (r) , (2.28) 

where dW is a Wiener process. Here Sx and <5T represent the non-dimensional charac- 
teristic times for the probability density functions (pdf) of the respective quantities to 
reach a steady state, ax and err are the variance parameters of the stationary log-normal 
pdf. 

Equations (2.25), (2.27), and (2.28) denote a closed system of SDEs and can be solved 
numerically to obtain the joint pdf of the temperature, the scalar dissipation rate, and 
the re-ignition parameter in the form p(r, 0st, a;st, Tst). 

2.4. Simplified model 

In Pitsch & Fedotov (2001) a Fokker-Planck equation for the joint pdf of temperature 
and the scalar dissipation rate was given and the corresponding system of SDEs for 
temperature and scalar dissipation rate was discussed. Here, this formulation has been 
extended to account for re-ignition, resulting in an additional SDE for the re-ignition 
parameter Tst. The solution of Eqs. (2.25), (2.27), and (2.28) is fairly straightforward, 
and the additional SDE significantly increases the computational cost. However, since the 
resulting pdf is three-dimensional, the computational requirements for achieving similar 
statistical convergence are substantially higher. For this reason we want to investigate a 
simplified model, where only the mean re-ignition parameter is considered in Eq. (2.25) 
and the SDE for this quantity does not have to be solved. This model will also be 
compared to the full model to assess the importance of the Tst-fluctuations. 

Multiplying Eq. (2.25) with p(Tst) = <5(Tst - (Tst)) and integrating over Tst yields 

89     axd*e       (T5t)  6-(6\Z) 

This equation can be solved with Eq. (2.27) to obtain the joint pdf of temperature and 
scalar dissipation rate. 

3. Results 
3.1. Analysis 

In order to analyze the influence of the additional term arising in the model, the transport 
term in Z will be modeled as described in Pitsch & Fedotov (2001), where also the 
necessary assumptions are discussed in detail. The equation can then be formulated at 
Zst leading to 

"5T + l8töst + 2<*st)
2     cIEM 

w (öst) - ° • (3,1) 
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FIGURE 1. S-curves from steady state solutions of Eq. (3.1) for different values of Tst,o 

Assuming that Tst and xst are constant, the steady-state solutions of Eq. (3.1) are easily 
computed. These solutions are shown in Fig. 1 for varying Tst. In the case Tst = 0, the 
well-known S-shaped curve is recovered. It is indicated that in the region to the right 
of the curves, the temporal change of 0st is always negative; in the region left of the 
curves, always positive. Hence, if the scalar dissipation rate is increased beyond the value 
at the upper turning point, sudden extinction occurs. Re-ignition in this case can occur 
only if the scalar dissipation rate decreases to values lower than the lower turning point, 
where the temporal temperature change is always positive until the upper steady state 
is reached. 

The influence of the diffusion term in x-space becomes very obvious in the discussion 
of the steady-state solutions for non-zero (Tst). For (Tst) = 1 this transport term leads 
to a heat flux from the hot surroundings to extinguished particles located on the lower 
steady branch. This additional term hence leads to a shift of the lower turning point 
to higher scalar dissipation rates. Extinguished particles can therefore re-ignite at much 
higher values of the scalar dissipation rate. This trend continues for increasing (Tst). The 
higher the value of (Tst), the higher the value of scalar dissipation rate, which allows for 
re-ignition. For very large values of (Tst), as shown for (Tst) = 100, the turning points of 
the S-curve, and thereby also extinction as well as re-ignition events, disappear. Instead, 
all states on the steady curve are stable. 

3.2. Numerical simulation 

3.2.1. Numerical method 
Monte-Carlo simulations are used to solve the system of equations (3.1), (2.27), and 

(2.28). Np different realizations are used to represent the statistical behavior of these 
equations. The temperature equation is integrated using a second-order Runge-Kutta 
scheme. The equations for the SDEs for xst and Tst are integrated with the second- 
order-accurate method of Milshtein (1978). The solutions for these notional particles are 
then used to obtain the pdf. 

3.2.2. Influence of the re-ignition parameter Tst 

For the results presented in this section, the variance parameters a and the time scale 
ratios S appearing in Eqs. (2.27) and (2.28) are all chosen to be unity. For Eq. (2.27), 
this choice has been justified in Pitsch & Fedotov (2001). All other parameters, such as 
the Damköhler number and the heat release parameter, have been chosen as in Pitsch & 
Fedotov (2001). Three different cases will be shown: (Tst) =1, 10, and 100. In addition, 
the case (Tst) = 0 is shown as a reference. This corresponds to the case studied in 
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FIGURE 2. Temporal development of arbitrary extinguishing particles (thin lines). Thick lines 
are steady state solutions of Eq. (3.1) for (Tst) = 0 (solid line) and (Tst) = 10 (dashed line) 

Pitsch & Fedotov (2001), where the transport in x-space does not appear in the flamelet 
equations. 

Numerical results for the system of SDEs are shown in the following Figures. In Fig. 2, 
it is demonstrated that the model presented here is capable of predicting re-ignition. In 
both Figures the paths of some extinguishing notional particles are shown. The left-hand 
Figure is for (Tst) = 0; the right-hand Figure shows particles with the same xst history, 
but for (Tst) = 10. It has been discussed earlier that for (Tst) = 0, re-ignition cannot 
occur, which can clearly be seen in the left-hand Figure. However, in the right-hand 
Figure it is observed that the extinguishing particles undergo random changes of the 
scalar dissipation rate. If xst becomes smaller than the correseponding steady solution, 
the temporal temperature change becomes positive, and the particle can re-ignite. 

The pdfs p(Qst,xst) for (Tst) = 0, 1, 10, and 100 are given in Fig. 3. For (Tst) = 0 a 
large number of particles is extinguished, and this is seen in the Figure as a very narrow 
distribution at low 0st. For (Tst) = 1 the scalar dissipation rate where re-ignition can 
occur is already greatly increased. The pdf has a similar S-shape to the steady-solution 
curve, but is more pronounced. On the right-hand side of the steady-state curve, the 
probability of low temperature is still very high. The reason is that the probability for 
ist to decrease below the re-ignition value is still very low. At (Tst) = 10, the pdf is very 
similar to the steady-state line, and the probability of low temperatures has strongly 
decreased. It should be noted that these S-shaped pdfs have also been found in DNS 
data (Sripakagorn et al. (2000, 2001)). At (Tst) = 100 extinction can hardly ever occur. 
Hence there is a very low probability of finding low temperatures. 

3.2.3. Application to DNS of non-premixed combustion in isotropic turbulence 
To further investigate and validate the proposed model it has been applied to the DNS 

experiment of Sripakagorn et al. (2000, 2001). This DNS has been specifically designed 
to investigate extinction and re-ignition. A one-step, reversible reaction between fuel and 
oxidizer evolves in isotropic, homogeneous, and decaying turbulence. Three different sim- 
ulations, for different frequency coefficients of the global reaction, lead to low, moderate, 
and high levels of local extinction. These cases are referred to as cases A, B, and C, re- 
spectively. For case B, the maximum mean stoichiometric scalar dissipation rate is equal 
to the extinction value of scalar dissipation rate; for case A, the maximum mean scalar 
dissipation rate is much lower, and for case C much higher, than the extinction value. 
The numerical parameters used in these simulations are given in Cha & Pitsch (2001). 

Here, we will present the results of two different models: 
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FIGURE 3. Joint pdfs p(©st,a;st) for (Tst) = 0 (upper left), (Tst) = 1 (upper right), (Tst) = 10 
(lower left), (T5t) = 100 (lower right); lines are steady state solutions of Eq. (3.1) for (Tst) = 0 
(solid) and (T,t) = 10 (dashed) 

(a) The full model, solving Eqs. (2.25), (2.27), and (2.28). In this model the temper- 
ature 0st, the scalar dissipation rate xst, and the re-ignition parameter Tst are treated 
as random variables; hence an SDE is solved for each of these quantities; 

(6) The simplified model, given by the solution of Eqs. (2.29) and (2.27). In this model 
only the mean of the re-ignition parameter Tst is considered, and no SDE is solved for 
Tst. 

The results of the Monte Carlo simulations are compared to DNS data in Fig. 4. Results 
are shown from left to right in order of increasing level of local extinction. Results of the 
full model are given in the upper row, results of the simplified model in the lower row. 
Numerical results are given by the lines, DNS data by the symbols. Closed symbols are 
the conditional mean temperature, open symbols represent the conditional fluctuations. 
In the DNS the mean scalar dissipation rate first increases up to approximately t* = 0.25, 
where t* is the time non-dimensionalized with the initial large-eddy turnover time, and 
afterwards decreases. Correspondingly, all cases show an extinction-dominated phase in 
the beginning at around t* = 0.5. At later times, when the mean scalar dissipation rate 
becomes smaller, re-ignition becomes important, and the mean temperature increases 
again. This is also reflected in the conditional RMS values of the temperature. When the 
scalar dissipation rate increases and thereby the probability of finding local extinction 
increases, the pdf of the temperature becomes bimodal and hence the RMS becomes 
large. During the re-ignition period, extinguished pockets change to high temperature 
again, the pdf approaches a unimodal shape again, and the RMS values become smaller. 

For case A, both models predict the conditional mean as well as the conditional vari- 
ances very well. For moderate extinction (case B), the full model predicts a consistently 
lower temperature. The analysis shows that the reason for this is the overprediction of 
local extinction and is not necessarily related to the re-ignition model. Extinction has 
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FIGURE 4. Modeling results (lines) for the full model (upper row) and simplified model (lower 
row) compared to DNS results (symbols). Closed symbols are the conditional mean temperature, 
open symbols the root mean squares. 

been shown in Sripakagorn et al. (2000, 2001) to be very well predicted by the unsteady 
flamelet model, if the exact history of the scalar dissipation rate is known. Therefore, we 
are currently investigating the applicability of the SDE for the scalar dissipation to the 
current DNS data. The Reynolds number of the simulation might not be high enough to 
validate the assumption of a Markovian process to model fluctuations of scalar dissipation 
rate. It might be speculated that the DNS would be predicted well, if the initial amount 
of extinction was not too high. The simplified model predicts re-ignition to occur much 
earlier than the full model does. This also leads to the variance being underpredicted 
after the onset of the re-ignition process. 

For case C, the full model predictions obviously tend to complete extinction. This can 
be seen from the fact that at low temperature the variance tends to zero, indicating that 
the pdf of temperature becomes unimodal at low temperatures. Note that the present 
flamelet-interaction model has the desirable feature that, if most of the system is extin- 
guished, this model will accelerate extinction of the remaining, still-burning parcels. This 
underprediction of the temperature is again attributed to the overprediction of extinction 
at early times. Again, the simplified model predicts the onset of re-ignition much earlier. 
This leads to the interesting phenomenon that the simplified model correctly predicts re- 
ignition of the entire system, while the full model does not. However, as in the case of the 
full model, the amount of local extinction at early times is overpredicted by the simplified 
model, which seems to compensate for the fact that re-ignition is overestimated. 
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4. Conclusions 
In this work, extinction and re-ignition in non-premixed turbulent combustion are 

investigated. A flamelet formulation accounting for transport within mixture-fraction 
iso-surfaces is developed. It is assumed that this transport is due only to changes of the 
local scalar dissipation rate. Space coordinates of the governing equations can then be 
replaced by the mixture fraction and the scalar dissipation rate, and so a new transport 
term appears in the flamelet equations. The "dissipation rate of the scalar dissipation 
rate", appearing as a diffusion coefficient of this term, is a new parameter of the problem. 
The resulting equations are simplified, and stochastic differential equations for the scalar 
dissipation rate and the new parameter are formulated. The system of equations is solved 
using a Monte Carlo method. The results show that the new transport term acts by 
increasing the scalar dissipation rate at the lower turning point of the S-shaped curve. 
The computed joint pdfs of temperature and scalar dissipation rate have shapes which 
are similar to those seen in DNS results. The model has been applied to the DNS of 
non-premixed combustion in isotropic decaying turbulence, showing good results for low 
and moderate levels of extinction. Currently, we are assessing the applicability of the 
developed SDE for scalar dissipation rate to the present DNS results. 
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Transported PDF modeling of turbulent 
nonpremixed combustion 

By Chong M. Cha 

1. Motivation and objectives 
In moment methods of predicting turbulent combustion (Klimenko &; Bilger 1999), clo- 

sure of the nonlinear chemical source term presents the most difficult modeling challenge. 
In contrast, the products of the state-space variables pose no explicit closure problem 
in the transport equation for the joint PDF p^e of the reacting scalars, tp, and the 
normalized temperature, 6 (Dopazo 1994): 

3 J 

where statistical homogeneity has been assumed for simplicity. Here, ip = (V>i, • • -,^N.) 
is a vector representing the concentrations of the Ns number of reacting species in the 
system; <j> — (fa,..., <t>N, > 4>N,+I) are the corresponding sample space variables for ip and 
9; V is the molecular diffusivity, assumed equal for all species; and s is the chemical source 
term, a known function of the ip and 6 sample space. The notation "(A\B)" represents 
the average of A conditional on the event B. The transported PDF equation (1.1) is 
derived from the exact transport equations of tp(x, t) and 6(x, t) (O'Brien (1980) gives a 
good, detailed description of the derivation). Because no multi-point information exists 
at this single-point level, the molecular diffusion term in Eq. (1.1) must be modeled to 
obtain closure. 

Due to the high-dimensionality of the transported PDF equation for practical engi- 
neering flows, where Ns can be large, Monte Carlo methods have been developed by Pope 
and co-workers (Pope 1990) to efficiently integrate Eq. (1.1). For closure, particle inter- 
action mixing models are used to describe molecular diffusion by prescribing a mixing 
frequency between the notional particles of the Monte Carlo calculation. For example, in 
the simplest of these particle interaction models (Dopazo 1975), 

i (») _ J^ rpN* 6{i) 

(UV»*,)« = -*'    N^l4>i 

for the i-th notional particle of the j-th species. This model is termed "linear mean square 
estimation" (LMSE). Np is the total number of particles in a computational volume. The 
mixing frequency, 1/Tj, is usually taken as the inverse of the integral time scale of the 
turbulence, TL, to within a multiplicative constant of order unity. This introduces two 
assumptions concerning the various ratios of the relevant time scales: 

(o) The mixing frequency of a passive scalar, l/T, is proportional to the turbulence 
frequency, T/TL ~ Ö (1); 

(6) The mean mixing frequency is identical for all reacting species and proportional 
to that of a passive scalar, Tj/T ~ Ö (1). 
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The constant time scale ratio for the dissipation rate of scalar and velocity fluctuations is 
a turbulence modeling issue. The latter assumption is a combustion modeling issue and 
is the focus of the present paper. 

Peters (2000) has pointed out the implicit assumption made in prescribing Tj ~ T. To 
review, for the passive scalar, £, T is the characteristic time for the dissipation of scalar 
energy: 

1   d(e) =    (2P(VQ2) _     1 
<£2>   dt (?)       ~    T 

with no change of the passive scalar mean. Defining the dissipation rate of £ as x = 
22?(V£)2> T = (f2)/(x). it follows that Equilibrium of developed turbulence implies that 
the cascade of turbulent kinetic energy produced at the large scales is in equilibrium 
with its dissipation occuring at the smallest scales. Thus, T can be represented by the 
integral scalar time scale. From assumption (a) above, the proportionality of T and the 
turbulence frequency gives T ~ TL ~ u'/L. For a reacting scalar, 

1   dftffl     (2^)        (2P(V^)2) _     1 
<^2>    dt {^) (iß*)       ~    2)  ' 

Defining Xj = 2£>(W>j)2, we have Tj = {tf)/(Xj)- Clearly, Tj = T is strictly valid only 
in the infinitely-fast and frozen-chemistry limits where s = 0; is a good approximation for 
slow chemistry where the assumption of dissipation balancing production is sufficiently 
accurate; but would be poor for fast (but not infinitely fast) chemistry where chemical 
reaction is significant enough to modifiy the energy budget. Variations of the equilibrium 
assumption, like balance of production, dissipation, and reaction, have led to insight on 
the influence of chemistry on the T/Tj ratio, but for linear reaction (Peters 2000). In 
this paper, mapping closure (Chen et al. 1989; Pope 1991) is used to develop a model for 
T/Tj for realistic chemistry. 

The paper is organized as follows: In the next section, the main ideas of mapping 
closure are summarized. A new model to prescribe the time-scale ratio of a passive-to- 
reactive scalar is formulated. The model is compared to results from DNS, where the 
exact time-scale ratio can be calculated. Finally, future applications are outlined to treat 
local extinction and reignition in the framework of transported PDF and moment closure 
methods. 

2. Results and discussion 
Very little work in applying mapping closure for turbulent reacting scalars has been 

done since its original conception by Chen et al. (1989) and generalization for multiple 
reactive scalars by Pope (1991). Gao, Jiang, and O'Brien have made many analytical 
developments for single (Gao 19916,o; O'Brien & Jiang 1991) and multiple passive scalars 
(Gao & O'Brien 1991; Jiang et al. 1992). Girimaji (1993) has considered mapping(s) 
from time-evolving reference field (s), has made comparisons with a presumed beta pdf 
distribution of passive scalar mixing (Girimaji 19926), and has pointed out problems 
with mapping closure of a passive scalar at very late stages of mixing (Girimaji 1992 a). 
Although Valino and co-workers applied a Monte Carlo method (Valiiio et al. 1991) for 
a reacting case (Valino & Gao 1992), the time scale of the reacting scalar was replaced 
by that of the passive scalar. 
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2.1. Mapping closure revisited 

The main ideas behind mapping closure are reviewed. The normalized temperature is used 
as an illustrative example, but may be replaced by any reacting scalar in the summary 
to follow. Mapping closure introduces a mapping 

6(x,t) = YN,+i(z0(z),z1{z),...,zN,(z),t) , (2.1a) 

where Y/v,+i is a deterministic function and (zo,.. ■ ,2jvJ a vector of random variables. 
Then, the gradient of 6 simply follows from application of the chain rule and can be 
written as 

j=0       J 

where J(t) is the Jacobian of the coordinate transformation z -+ x accounting for advec- 
tive stretching (Chen et al. 1989). For notations! convenience, the sample space variable 
for Zj is also represented by uZj". If the random variables (zo> • • ■ > ZN,) are jointly Gaus- 
sian, then the transported PDF closure problem is addressed as multi-point information 
for Zj are known from their single-point statistics. An equally important motivation of 
choosing all Zj normally distributed is that it also allows conditional averages of 0 to be 
related to its unconditional counterpart. More generally, it allows small-scale structure 
to be reconstructed from information at the integral scale. 

Pope (1991) has derived the governing equations for the mapping functions of a general 
chemically reacting system. In the present notation, we have, for a reacting scalar, 

|-tw«w(s!7 Zj-i     d Yj=sj(Y1,...,YN„YNa+1) . (2.2a) 

For a passive scalar, Sj = 0, and Yj is written as uXjn. No general initial and boundary 
conditions exist. "External" information on the generally time-dependent evolution of 
the unconditional statistics of |V^| (or |V£j| for Xj) must be prescribed. 

Mapping closure is a self-contained turbulent combustion model. With the solution of 
Eq. (2.2a), the solution of Eq. (1.1) can be written directly as 

fN'+1   dYj 

j=i 
P+e{<h.,-~,4>N.+i;t)=    II   ÄT^M      II J^-ite-i) » (2-2&) dzj-i 

^+1 

i=l 

where pZi is normally distributed and Yj is the solution of Eq. (2.2a). However, the 
mapping equations without simplification would be Nsl times more expensive to integrate 
and therefore would not be computationally tractable for practical engineering flows 
where the number of species is usually large. Below, we simplify and solve the mapping 
equations in the flamelet regime. 

2.2. Dissipation rate of a passive scalar 

To illustrate past work on the application of mapping closure to the turbulent mixing of 
a passive scalar advected by Navier-Stokes turbulence, we consider the statistics of the 
mixture fraction of a simple one-step, second-order, reversible reaction: F+vO # (l+i/)P, 

where one mole of fuel (F) reacts with v moles of oxidizer (0) to yield (1 + v) moles 
of product (P). The production rates for F, 0, and P are SF = —s, so = —us, and 
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sp = (1 + f)s, respectively, where 

/   Ze\ ( 1  ,o\        r     Ze(l-0) 
s(#,^o,#,0) = 4exp (-—J ^F^O - ^pj exp [~ i _ Q(i _ g) 

Here, A is the frequency factor, a is the heat release parameter, and Ze is the Zel- 
dovich number. The Schmidt number is 0.7 and Lewis numbers are unity. The molecular 
diffusivities and viscosity are independent of the temperature. The turbulent flow is in- 
compressible, isotropic, homogeneous, and decaying (c/. Sripakagorn et al. (2000) for 
details of the simulation). The passive scalar for this binary mixing problem, the mixture 
fraction, is defined as 

_ "# - V»Q + 1 
*~ V + l 

which is then conserved under reaction. 
The transport of Pzfat), the PDF of £, is governed by (O'Brien 1980) 

§-tPdv,t) = —iP^tm = -|^<VOato>P€ • (2-3) 

Spatial homogeneity has been assumed. To close Eq. (2.3), the mapping f = X(z0,t) is 
defined. Application of Eq. (2.2a), (2.16), and (2.26) gives 

dt    K°' '      ((dX/dz0)
2) \dz% dz0J 

K<-"-t) = WxJsMp"M' <2'4c) 

respectively. The independence of z0 and Vz0 (Chen et al. 1989) has been assumed. In 
Eq. (2.4a), the relation (V(VZ)2)/({dX/dz0)

2) = (P(Vz0)
2) has been used and hence 

knowledge of the Jacobian can be circumvented by knowledge of the effect of the turbulent 
velocity field on f directly. (Models for (£>(V£)2> = (x>/2 are wel1 known.) For this 
initially segregated system, boundary conditions are X(—oo,t) = 0 and X(+oo,t) = 1. 
Initial conditions are specified using an iterative approach such that the variance from 
pzJ {\dX/dz0\) = Pi gives the exact value of the DNS. The exact average dissipation 
rate from the DNS is used in integrating Eq. (2.4a). Figure 1 shows good agreement with 
the data for (X>(V02|*7> and p€ (»?,*) calculated using Eq. (2.46) and (2.4c) respectively, 
corroborating the previous work listed at the beginning of this section. 

2.3. Mapping function for a fast reacting scalar 

In the flamelet regime, ipj is governed by (Peters 2000) 

Wi = X?^ä + ä. (2.5) 
dr       2 de       J V 

Correspondingly, the mapping Yj in Eq. (2.2a) becomes a function of (z0,t) only for all 
j and the mapping equations simplify to 

dt      ((9X/92«)2) \ 0*o        8V 
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Passive scalar results. Comparison of mapping closure results with DNS data initially 
= DNS, solid line = mapping closure) and at times t/reddy = 1 (circles = DNS, 
= mapping closure), and 2 (squares = DNS, dash-dot = mapping closure). 

The mapping ipj = Yj(zo,t) is not generally one-to-one. Initial conditions for Eq. (2.6) 
can be given by Yj = il>j(X(zo,to),to), which is the steady-state solution of Eq. (2.5) with 
x/2 replaced by Eq. (2.46). Boundary conditions for Eq. (2.6) are Yj(-oo,t) = ipj(0,t) 
and Yj(+oo,t) = ipj(l,t). 

Given a solution for the mapping function Yj, small scale processes for the reacting 
scalars can be described using the average dissipation rate of the passive scalar at the 
integral scale. In particular, 

{v^m=^)=^LmiM 
2  ((dX/dzo)2) 

P^'t] = \dYjJdzV\Pzo{zo) 

(2.7a) 

(2.76) 

Using Eq. (2.7a) and Eq. (2.46), the desired time-scale ratio for a passive-to-reactive 
scalar is then 

Tj = (rP])/((dY/dz0)
2) 

T      (?)/((dX/dz0f) 
(2.8) 

Figure 2 shows good agreement with the DNS data for (i) (2P(V^p)2|V^ = </>) = 
(XP|V* = 4>) aad (ii) jtypOM) calculated using Eq. (2.7a) and (2.76) respectively. Fig- 
ure 3 shows (i) the mean and standard deviation of VT from Eq. (2.76) and (ii) the time 
scale ratio calculated using Eq. (2.8). The figure shows that the relaxation time scale for 
a fast reacting scalar, Tj, can deviate significantly from T in the flamelet regime. Further, 
the mixing time scale is reduced in the presence of active chemistry (Tj < T). 
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FIGURE 3. Prediction of time scale ratio by mapping closure in fast chemistry regime: (i) mean 
and rms and (ii) time scale ratio. Symbols are DNS data. Lines are modeling predictions. 

3. Conclusions and future work 
For sufficiently fast chemistry, the average time-scale ratio for a passive-to-reactive 

scalar was derived: 

T -   <£2>/<X> 

.   /    (tf)                 ((dX/dz0)
2) 

= mm < 1, —-  
<£2> /_ ~ (drPi/dO2 (dX/dzo)2

Pzodz0 . 
(3-1) 

where ipj(£,t) is the solution of Eq. (2.5), the first or leading-order (un)steady flamelet 
equation. Equation (2.5) cannot describe reignition. Equation (3.1) can be directly ap- 
plied to existing particle-interaction models for transported PDF closure modeling, which 
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can, in principle, describe global reignition. Equation (3.1) is not expected to describe 
the entire transition Tj/T -» 1 and the "min" function is required to properly bound the 
Tj/T ratio by the infinitely fast and frozen chemistry limits, where Tj/T = 1. 

Ongoing/future work includes application to the extinction/reignition problem based 
on the following modeling approaches. 

(a) Conditional moment closure modeling: Moment closure conditional on £ represents 
the least computationally burdensome of turbulent combustion models. Application of 
Eq. (2.2a) may yield a description of the complex shapes of the conditional pdfs when 
extinction and reignition processes are significant. This is the subject of ongoing work 
(Cha k Pitsch 2001). 

(6) Transported PDF modeling: To describe extinction/reignition using transported 
PDF modeling, more sophisticated particle interaction models are required where inter- 
mittency effects of the dissipation must be accounted for (Xu & Pope 2000). An accurate 
estimate of the overall mean mixing frequency is also essential in these local particle 
interaction models such as the extended LMSE model of Sabel'nikov k Gorokhovski 
(Sabel'nikov k Gorokhovski 2001). 
In both these applications, a sound physical basis would be necessary to assign proper ini- 
tial and boundary conditions to the more general mapping function equations, Eq. (2.2a) 
in this paper. Currently, the mapping closure approach is being developed for transported 
PDF modeling in large-eddy simulations (Cha k Trouillet 2001). 
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Higher-order singly-conditional moment-closure 
modeling approaches to turbulent combustion 

By Chong M. Cha AND Heinz Pitsch 

1. Motivation and objectives 
Currently, a fundamental closure approximation in conditional-moment-closure model- 

ing (Klimenko Sz Bilger 1999) of turbulent, nonpremixed combustion is first-order closure 
of the average nonlinear chemical source terms, w, conditioned on the mixture fraction, 
Z(t,x): 

(w(Y(t,x),9(t,x),p(t,x))mx)) K w((Y\0,m,(p\0) , (1.1) 
where Y is the vector of mass fractions of the reacting species and p is the density of the 
mixture. 6 = (T - Too)/(T/ - Too) is the reduced temperature, where Tf is the adiabatic 
flame temperature and Too is the reference temperature. For convenience, the notation 
used here does not distinguish between the random variable and its corresponding sample 
space variable. The utility of first-order closure using conditional averaging is illustrated 
in Fig. 1, which shows in subplot (i) the reduced temperature 6 as a function of £ from 
the direct numerical simulation (DNS) of Sripakagorn et al. (2000). Subplot (ii) shows 
the probability density function (pdf) of 6 conditioned on £ within a given range of 
£st ± A£, where £st is the stoichiometric value of the mixture fraction, 0.5 for this case. 
A£ decreases from the dash-dot line to the dash-dash line and finally to Af « 0 for 
the solid line. Thus, the solid line is a representation of the conditional pdf of 6 at £st. 
The figure illustrates three points: (i) the inapplicability of first-moment closure under 
conventional (unconditional) averaging, which is well known; (ii) the much-improved 
representation of the pdf of 8 by its mean value alone due to conditioning on £, helping 
to validate Eq. (1.1); and (iii) a negative skewness of the pdf due to the existence of 
local extinction and reignition events in this (numerical) experiment, which threatens 
the validity of Eq. (1.1). The extinction/reignition events, clearly visible in subplot (i) 
and evident in the pdfs at low values of 0st in subplot (ii), are interpreted as fluctuations 
about the singly-conditional mean in the framework of singly-conditional moment-closure 
modeling. 

Recently, modeling of the conditional variance has been proposed to improve closure 
of the conditional chemical source term (Swaminathan & Bilger 1998; Kronenburg et al. 
1998; Mastorakos & Bilger 1998). The conditional variance can be used (Klimenko & 
Bilger 1999) 

(o) in an additional, second-order correction to Eq. (1.1) or 
(6) to construct a presumed pdf shape for one or more reactive scalars. 

At present, we are investigating the feasibility of both these higher-order conditional- 
moment closure approaches for local extinction/reignition modeling. The DNS of Sripak- 
agorn et al. (2000), specifically designed to investigate extinction/reignition, offers an 
ideal test case to investigate the merits and drawbacks of the higher-order conditional- 
moment closure strategies. 

The paper is organized as follows: in the next section, the higher-order closure strategies 
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FIGURE 1. Motivation of the work. Subplot (i) is a scatter plot of the reduced temperature, 8, 
as a function of the local mixture fraction, f, at t* = 1/2 (time has been nondimensionalized 
by the initial large-eddy turnover time) from the direct numerical simulation (DNS) experiment 
of Sripakagorn et al. (2000). (In the DNS, F + O «-► 2P evolves in decaying, homogeneous, 
isotropic turbulence with an initial Rex = 33 on a 1283 grid.) Subplot (ii) shows the conditional 
probability density function (pdf) of 9 conditioned on £ within a decreasing range of £ values 
about £st = 0.5, the stoichiometric value of the mixture fraction: The range decreases from the 
dash-dot line to the dash-dash line and finally to the pdf conditioned on £ « f st • 

are described and governing equations given. In Sec. 3, a priori modeling comparisons 
are made with DNS experiments on a single-step, second-order, reversible reaction in 
grid turbulence. Finally, the two-conditional-moment closure modeling approaches for 
describing extinction/reignition are assessed and future directions outlined. 

2. Combustion models 

2.1. DNS experiment 

The production rates for fuel (F), oxidizer (O), and product (P) for the present numerical 
experiment of F + O ^ 2P evolving in isotropic, homogeneous, and decaying turbulence 

are wF = — w, WQ = —w, and wp = 2w, respectively, where 

w(YF,Y0,Yp,6)=Aexp 
Ze 
a 

YFYo - jpg exp 
Ze(l - 6) 

l-a(l-fl) 
(2.1) 

is the reaction rate. Here, A is the frequency factor (multiplied by density and divided 
by molecular weight, assumed equal for all species), a = (Tf-T^/Tf is the heat release 
parameter, and Ze = aTa/Tf is the Zeldovich number. Ta is the activation temperature. 
The Schmidt number is 0.7 and Lewis numbers are unity. The turbulent flow is incom- 
pressible and the molecular diffusivities and viscosity are independent of the temperature 
(see Sripakagorn et al. (2000) for details of the simulation). Chemistry rate parameters 
are a = 0.87, Ze = 4, and K = 100. Two values of A define two different numerical exper- 
iments with moderate (A = 8.0 x 104) and high (.A = 0.3 x 104) levels of local extinction. 
(These cases correspond to "Case B" and "Case C", respectively, in Cha et al. (2001).) 
Categorization of the level of local extinction by the terms "moderate" and "high" is 
described below. 
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2.2. Higher-order conditional moment closure approaches 
The conditioned average of lü as a function of all conditional moments can be obtained 
with: (i) a series expansion of the second exponential in Eq. (2.1) about e = a9'/(l-a(l- 
(0|£)))> where 6' = 9 - (d\£), valid for |e| < oo; (ii) a series expansion for (1 + e)"1, valid 
for |e| < 1; and (iii) a decomposition of all species mass fractions about their conditional 
means, Y = (Y|£)+Y'. Conditionally averaging the result yields, for the forward reaction 
rate, 

(w(YF,Yo, YP,6)\0 = WF|0, <XO\Q, (YP\0, (ö|0)(1 + & + C + H.O.T.) (2.2) 
„,     (YjY^i) Ze ((Y'9'\d     {Y^'W 

" <y*\0<X6\0    [i-a(i-(e\0W V 0*10      PfelO , 
( Ze/2 \ (6'2\{j) 

+ {l-a(l-(6\0)     a)[l-a(l-{e\0W 
r,     ( Ze/2 \ a2/Ze ((Yj9'^)     (Y&9'2\Q\ 
L -\l-a{l-(6\Q)     aJl-a(l-(6\0)\   (YF\0   +   (YolO   ) 

(YMm   _ aVZe ^3 
+ l-a(l-(6\t;))(YF\0(Yo\0     [l-a(l-(e\0)r    K' 

valid for |e| < 1. The complete series is always convergent for a < 1. For the present case 
of a single-step reaction, the conditional averages of all species and temperature can be 
obtained from the single equation for the average of 8 conditioned on £: 

{jt'^w)m = 2ti«^io, <y0io, <«»io, <0io)(i+B+c),     (2.3) 
where B and C also contain the contributions of the backward reaction. (x|£) is the 
conditionally-averaged dissipation rate of £, specified directly from the DNS. eg and ey 

closure has been invoked (Cha et al. 2001). For convenience, Eq. (2.3) is referred to as the 
cmc3 model (third-order closure), as the cmc2 model with C = 0 (second-order closure), 
and as the cmcl model with both B = 0 and C = 0 (first-order closure). All double and 
triple conditional correlations are taken from the DNS. 

2.3. Presumed singly-conditional pdf approach 

The beta distribution, or ß pdf, is a standard model to describe a random phenomenon 
whose set of all possible values lies in some finite interval (Ross 1984). The ß pdf is a 
two-parameter distribution given by 

p(6*;a,b) = <   ß(a'6) , (2.4) P\F »«>«;     ^ 0 otherwise      ' v    ; 

where 6* has been transformed (translated and normalized) onto the interval [0,1]. The 
free parameters a and b enforce {6*)(a, b) and (0*2)(a, b), the first and second moments of 
6*, respectively, and B(a, b) normalizes the pdf such that Jp(6*)d6* = 1. The presumed 
ß pdf model for describing the mixing of a conserved scalar is described in Bilger (1980). 
For the present case of a single-step reaction, p[6*) models the conditional pdf of 0/0eq, 
a reacting scalar, where 0eq is tne equilibrium value of the reduced temperature at £st. 
Applying this definition to the conditional moment equations yields 

(I"^rw)m) = 21^YF,Yo,YP,e)Pmm),(0,2\o)de*,     (2.5) 



90 C. M. Cha & H. Pitsch 

(i) Case B (ii) Case C 

FIGURE 2. Comparison of higher-moment modeling results with DNS data. Solid circles = con- 
ditional average of the reduced temperature, (#|£st), open circles = standard deviation about 
conditional means, ((#'2|fst))1/'2, open triangles = skewness, |s|/10. Solid line = first-order con- 
ditional moment closure results (cmcl), dash-dash line = second-order modeling results (cmc2), 
and dash-dot line = third-order predictions (cmc3). Subplot (i) = moderate extinction case (Case 
B) and subplot (ii) = high extinction case (Case C) from Cha et al. (2001). 

where W(YF,YO,YP,6) is a known function of the f and 6 sample space and p(0|f) is 
a function of the conditional mean and variance of 6, (6\£) and {6'2\£), respectively. 
Equation (2.5) is an integro-differential equation for (#|£)(i,£) and only {9'2\Q is taken 
from the DNS to evaluate the right-hand side of Eq. (2.5) for the a priori study. 

3. Results and discussion 

Figure 2 compares the higher-moment modeling results (lines) to the DNS experimental 
data (symbols). Solid circles are the conditionally-averaged temperature at £st taken 
directly from the numerical experiment. Subplot (i) is from the same case as was shown 
in Fig. 1. The deviation of (0|£st) from the equilibrium value, öeq = 0.83 at fst, is due 
to the local extinction/reignition events that were seen in Fig. 1 (i). Only the frequency 
factor was decreased in the DNS for the case shown in Fig. 2 (ii); this results in increased 
extinction levels, and hence shows a larger deviation from 6eq compared to the case in 
subplot (i). Open circles are the standard deviation about (ö|£st) and open triangles are 
the skewness, defined as 

s = (0'2|,f)3/2 J{0 - {e\Cifp{9\Odd , 

where p(6\Q is the conditional pdf. Note that s is a function of (03|£), a third-order term. 
In Fig. 2, solid lines are first-order modeling results (cmcl), dash-dash lines are second- 
order predictions (cmc2), and dash-dot lines are third-order modeling results (cmc3). 

In Case B (subplot (i) in Fig. 2), second-order closure causes the mean to be under- 
predicted. Consideration up to the third-order terms in Eq. (2.3) evidently counteracts 
this effect and leads to good predictions of the data. 

In Case C (subplot (ii) in Fig. 2), first-order closure is unable to predict the onset of 
reignition (in the mean). Both second- and third-order closures can predict the global 
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t" = 1/4 *' = 1/4 

91 

FIGURE 3. Conditional pdfs of 6 at £st, p(0|£st), for Case B (left column) and Case C (right 
column). Solid lines are the presumed ß pdf predictions using the exact conditional means and 
variances from the DNS. 
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(i) Case B (ii) Case C 

FIGURE 4. Comparison of presumed ß pdf modeling results with DNS data. Symbols = DNS 
data of conditional average of the reduced temperature, (0|£st) (solid circles). Lines = modeling 
results: Exact variance, (#'2|£), from DNS used in the a priori modeling results (solid lines), 
±30% relative errors added to the DNS variance (dash-dash lines). Subplot (i) = moderate 
extinction case (Case B) and subplot (ii) = high extinction case (Case C) from Cha et al. 
(2001). 

reignition, but deviate from the data beyond t* > 1/2. Of note is that the skewness, \s\, 
decreases in the higher extinction case while the variance remains comparable. 

Discussion of the modeling results in Fig. 2 centers on the conditional pdfs of 6 at 
£st, p(0|6t), for representative times of interest. Figure 3 (left column) shows p(0|£st) 
at t* = 1/4, 1/2, 3/4, and 3/2 for Case B. At early times (t* < 1/2), the pdfs are 
unimodal—have a well-defined, single peak—with some negative skewness. The series 
expansion of the conditionally-averaged reaction rate, Eq. (2.2), does not contain details 
of the shape of the pdf. Evidently, skewness, or third-order information, and variance, 
or second-order information, are sufficient to correct first-moment closure, resulting in 
the good agreement with data that was seen in Fig. 2 (i). For larger times, t* > 1/2, 
some bimodality begins to appear in the pdfs, but not enough to cause problems for 
the third-order closure, the cmc3 model. For a general unimodal pdf, at least third-order 
moments are required to capture skewness. For this experimental case with moderate local 
extinction levels, the skewness is always negative for p(0|£st) because the temperature 
can never exceed 0eq. The implication is that in such a circumstance at least third-order 
information is required in the series expansion of (w\£). 

Figure 3 (right column) shows p(6\£st) f°r Case C (corresponding to subplot (ii) in 
Fig. 2) at t* = 1/4, 1/2, 3/4, and 3/2. For t* < 1/4, the standard deviation about the 
conditional average is comparable to Case B, but with reduced skewness (c/. Fig. 2), 
and second-order closure yields comparable results to the third-order closure predictions. 
For t* > 1/2, the pdfs become bimodal—have well-defined, double peaks—and thus the 
skewness can no longer characterize the shape of the pdfs. Third-order closure also breaks 
down. Bimodality becomes stronger for increasing times with comparable peak temper- 
atures. The standard deviations in this case and in Case B (c/. Fig. 2) are comparable, 
because of the combined effect of the high extinction levels in the present case, which 
decrease (0|£st), and the bimodality of the pdf. The reduction in skewness from Case B 
is due to the remarkable symmetry of the pdfs. 
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FIGURE 5. Why the presumed ß pdf modeling works. Representative results reproduced from 
Fig. 3 with the chemical source term function (dash-dash lines) overlaid. 

The skewed unimodal and bimodal pdf shapes in Fig. 3 are due to the realistic, Ar- 
rhenius kinetics which result in a bistable dynamic system (Pitsch k Fedotov 2001), as 
determined by the steady flamelet solution (Peters 1983). With low to moderate local ex- 
tinction levels, the upper (stable) and middle (unstable) branches of the steady flamelet 
solution lead to negatively skewed pdf shapes, as was seen in the left-hand column of 
Fig. 3 (Case B). With moderate to high extinction levels, the upper and lower stable 
branches lead to bimodal pdf shapes, as was seen most dramatically in the right-hand 
column of Fig. 3 (Case C) for times t* > 1/2. That the transitional probabilities always 
correspond to the minimum probability of the bimodal distributions is a direct result of 
the unsteady dynamics of the bistable system switching between the upper, high temper- 
ature (9st ~ Ö (1)) and lower, low temperature (0st ~ Ö (0.1)) stable branches (Pitsch 
et al. 2001). This switching is of course due to extinction and reignition. 

Figure 3 also shows predictions of the conditional pdf shapes using the presumed ß pdf 
model (solid lines). In this figure, both the conditional mean and the variance were taken 
directly from the DNS data. The success of the presumed ß pdf model for passive scalar 
mixing is well known. Figure 3 shows that the presumed ß pdf model does not have the 
flexibility to describe the variety of reactive scalar pdf shapes due to the modifications by 
reaction, more precisely the extinction/reignition dynamics which result from realistic, 
Arrhenius kinetics. In particular, the unimodal peaks are always underpredicted for Case 
B (left column). In Case C (right column), the presumed ß pdf shape also underpredicts 
the twin peak densities of the bimodal pdfs, while the transitional probabilities between 
the extinguished and burning states are always overpredicted. However, in both cases, 
the overall unimodal or bimodal pdf shapes are generally well described. 

In spite of the discrepancies in the presumed ß pdf model's description of the unimodal 
and bimodal conditional pdf shapes of the reduced temperature, o priori modeling results 
of Eq. (2.5) show excellent agreement with the DNS. Figure 4 compares the results of 
the presumed ß pdf model for (0|fst) (lines) with the DNS data (symbols). Only the 
conditional variance, (6'2\£), is taken from the DNS to evaluate the right-hand side of 
Eq. (2.5). Solid lines in Fig. 4 show results using the exact variance from the DNS, and 
dash-dash lines show results with ±30% relative errors added to the DNS variance. The 
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results suggest that even a crude estimate of the conditional variance is sufficient to 
predict the effects of local extinction and reignition on (0\Q. 

Discussion of the excellent agreement between the modelling results and the DNS data 
centers on the singly-conditional pdfs of Fig. 3. The right-hand side of Eq. (2.5) can be 
interpreted as the integral over the presumed ß pdf shape, weighted by the nonlinear 
chemical source term. Figure 5 shows representative results reproduced from Fig. 3 with 
the chemical source term function (dash-dash lines) overlaid. The figure shows the relative 
weighting given to the discrepancies between the ß pdf model and the true pdfs by 
the chemical source term. When the pdf is unimodal (Case B), the underprediction of 
the peak value made by the presumed ß pdf model is reduced by the rapid decrease 
of the chemical source term as 6st -» 6eq. When the pdf is bimodal (Case C), only 
the transitional probabilities are significant and the discrepancies in the ß pdf model 
results at the twin peak locations of the true pdf are no longer important. The strong 
nonlinearity of the chemical source term, due to the realistic, Arrhenius kinetic model, 
leads to a bistable system and the characteristic unimodal and bimodal pdf shapes, 
already described. The presumed ß pdf shape can capture the overall unimodal and 
bimodal pdf shapes, with some discrepancies at the peak values of the true pdfs. Figure 5 
shows that it is the strong nonlinearity of the chemical source term which diminishes the 
importance of these discrepancies in the modelling represented by Eq. (2.5). Hence, these 
types of discrepancies are also expected to be unimportant in reacting flows of practical 
interest, where Arrhenius kinetics are used. 

4. Conclusions and future work 
With moderate levels of local extinction, the conditional pdfs are unimodal (single- 

peaked). Information about the mean and variance alone in the series expansion of the 
conditional average of the chemical source term is insufficient to describe the influence of 
the fluctuations. That is, first- and second-order closures cannot describe the conditional 
means, and third-moments (or the skewness of the pdfs) are also required to obtain good 
predictions. With high levels of local extinction, the pdf can adopt a strong bimodal 
shape, and even third-order closure is insufficient to describe the conditional averages. 

Information about the conditional second moment is sufficient to describe the effect of 
extinction/reignition on the conditional averages only if a presumed ß pdf model is used. 
The presumed ß pdf shape shows some discrepancies in describing the singly-conditional 
pdfs of a reacting scalar undergoing extinction/reignition, but the overall unimodal or 
bimodal pdf shapes are generally well described. The effects of the deviations are di- 
minished by the strong nonlinearity of the chemical source term in a singly-conditional 
closure with a presumed ß pdf shape, Eq. (2.5) in this paper, leading to excellent predic- 
tions of the conditional means. The insensitivity of the model to the conditional variance 
of the reacting scalar suggests the possibility of using the conditional variance which 
results from the fluctuations of the dissipation rate of the mixture fraction alone. 
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Progress in large-eddy simulation of premixed and 
partially-premixed turbulent combustion 

By   L. Duchamp de Lageneste AND H. Pitsch 

1. Motivation and objectives 
In many practical devices such as gas turbines and internal combustion engines, liquid 

fuel is injected as a spray and mixed with oxidizer as it vaporizes, so that combustion 
takes place in a partially-premixed regime. While partially-premixed flame propagation 
has been the subject of extensive experimental investigations (Su 2000; Muniz & Mungal 
1997), its numerical simulation remains a challenging task. The mechanisms by which 
turbulence, chemical reactions, and heat release interact are still under investigation. 
Results by Veynante (1994) suggest the importance of premixed flame propagation in the 
process of flame stabilization. While DNS of turbulent premixed flames using realistic 
chemistry is still restricted to very simple geometries, classical RANS modeling of reacting 
flows is often considered to lack precision, especially when highly-unsteady problems are 
considered. 

Different methods have been suggested to model turbulent premixed combustion in 
LES (Colin 2000; Kim & Menon 2000; Duchamp de Lageneste k Pitsch 2000). An ap- 
proach based on a mixed level-set/diffusion-flamelet library applicable to premixed and 
partially-premixed combustion has been derived by Peters (1999) for RANS and validated 
by Herrmann (2000) showing good agreement with experimental data. Beside the fact 
that this method does not require solving any additional species transport equations or 
explicit modeling of chemical reaction rates, it also allows the use of arbitrarily complex 
chemistry without leading to prohibitive computational requirements. 

The work presented here focuses on the implementation and validation of a simi- 
lar approach in the LES context. First, the governing equations to be solved are pre- 
sented together with the sub-grid models used, including an improved model for the 
turbulent burning velocity. Then we discuss the application of this approach to two 
different test cases; a turbulent Bunsen flame (Aachen flame Fs, (Chen 1996) and a 
lean, partially-premixed dump combustor, the so-called ORACLES geometry described 
in Besson (1999a) and Besson (19996). 

2. Governing equations 
2.1. Navier-Stokes equations 

We consider the low-Mach-number approximation to the Navier-Stokes equations (Williams 
1985). In the LES context, these equations are written for the filtered variables p, ü and 
Pas: 

Mass conservation 

^ + V-(p5) = 0, (2.1) 
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Momentum conservation 

^ + V-G5Ü5) = -VP + V-(M + Mt)r, (2.2) 

where the Favre-filtered velocity vector is denned as ü = pü/p, r is the Reynolds stress 
tensor, and pt the turbulent sub-grid eddy viscosity, modeled using a dynamic approach 
(Moin 1991). 

2.2. G-equation 

In the level-set framework, the instantaneous flame-front location is given by an iso- 
surface Go of a continuous field G. The evolution of this iso-surface is described by the 
so-called G-equation (Kerstein 1988), valid only at Go: 

^+u-VG = sL|VG|, (2.3) 

where SL is the laminar burning velocity. 
In the context of RANS, Peters (1999) has derived a model equation for the evolution 

of the mean flame-front location, valid in the corrugated flamelet and the thin reaction 
zones regime. Keeping in mind that in LES the reaction zone is still much smaller than 
the grid size, one can see that similar arguments can be used to propose a model equation 
describing the evolution of the filtered flame-front position. This equation reads 

p^ + pn-VG =  psT\VG\ -pD?K\VG\, (2.4) 

Propagation        Curvature 

where the turbulent burning velocity ST as well as the scalar turbulent diffusivity Df 
have to be modeled. 

While a dynamic procedure (Moin 1991; Pierce & Moin 1998) is used to compute Df, 
the turbulent burning velocity ST requires further attention. 

Peters (1999) derived the following model for ST, which in addition to the turbulent 
velocity scales {U'/SL) also takes the turbulent length scales {At/lp) into account. 

ST - SL _ _£4Ö| Af 
SL 2&I IF 

04&§ AA ,2u'At 
+ 046: 

2&1 IF J sLlF 
(2.5) 

where At is the turbulent integral length scale, IF the laminar flame thickness, u' the 
turbulent velocity fluctuation and 04, bi, and bz are constants given in Peters (1999). 

A similar expression can be proposed to model ST in LES where At then stands for 
the filter size and u' is the sub-grid velocity fluctuation. The coefficients 04, 61, and 63 
also have to be adapted to LES. 

As a first approximation, the results reported in Duchamp de Lageneste & Pitsch 
(2000) were obtained with öj and 63 taken to be the RANS values while 04 was re- 
evaluated to be 1.37. This new value was based on a turbulent sub-grid Schmidt number 
Sct = 0.4 instead of 0.7 for RANS, as reported for a non-reacting scalar in a diffusion 
flame by Pitsch & Steiner (2000). Nevertheless, there is no evidence that the turbulent 
Schmidt number should remain constant in the case of the scalar G. Consequently, this 
parameter is now computed locally as 04 = Df/(u'At) where u' and Df are evaluated 
with a dynamic model. 

As a final remark, it is important to note that in order to maintain sufficient regularity 



Level-set method for premixed combustion 99 

for G, a reinitialization procedure that constrains the G field to a distance function (such 
that |VG| = 1) has been implemented (Sethian 1996; Sussman & Fatemi 1999; Russo 
& Smereka 2000). A detailed description of the implementation of this method in our 
context can be found in Duchamp de Lageneste & Pitsch (2000). 

2.3. Temperature equation 
In the case of constant molecular properties, only the filtered density is needed in order 
to solve Eqs. (2.1) and (2.2). Nevertheless, if turbulent heat transport in the unburnt 
mixture is to be considered, it is necessary to introduce an equation for the filtered 
temperature T: 

p^+pü-VT = V-(pD?VT) + pu, (2.6) 

where Dj is the turbulent diffusivity of the temperature, obtained with a dynamic pro- 
cedure. Here, w is not a chemical source term, but a volumetric heat source that is used 
to set T to the predicted flamelet library value in the burned gases. 

Once the filtered temperature is known, the filtered density is recovered via the equa- 
tion of state. 

2.4. Mixture fraction 

Modeling partial pre-mixing or dilution effects requires the introduction of a conserved 
scalar Z, similar to the mixture fraction in non-premixed combustion. The burnt tem- 
perature is then pre-computed as a function of Z and its variance Z'2 by assuming a 
/^-function pdf for this scalar. 

In our case the values of Z range from 0 in pure air to 1 for a stoichiometric mixture, 
and are given by the solution of 

p^ + pn-VZ = V- (pD?VZ), (2.7) 

where Df is also computed dynamically. 
In partially-premixed cases, where Z is fluctuating along the Go surface, one also has 

to compute the laminar burning velocity SL and laminar flame thickness IF appearing in 
Eq. (2.5) as functions of Z. 

2.5.  Total enthalpy 
If non-adiabatic effects, such as heat losses at boundaries, are to be included, one can also 
introduce the total enthalpy if as an additional parameter in the flamelet library. H is 
also a conserved scalar and obeys an equation similar to Eq. (2.7). In that case, one of the 
energy equations, total enthalpy or temperature, would actually be redundant. However, 
the enthalpy is only used in the burnt gas to determine the burnt temperature from the 
flamelet library. The volumetric heat source term in Eq. (2.6) is then used to enforce this 
temperature in the solution of the temperature equation which is then mainly used to 
describe the turbulent temperature transport in the unburnt gas. 

2.6. Numerical methods 
The code that was used in this study was developed at the Center for Turbulence Re- 
search by Pierce & Moin (1998). The filtered low-Mach-number approximation of the 
Navier-Stokes equations is solved in cylindrical or Cartesian coordinates on a structured 
staggered mesh that can be refined independently in the axial and radial directions. The 
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numerical method is a conservative, second-order finite-volume scheme. Second-order 
semi-implicit time advancement is used, which alleviates the CFL restriction in regions 
where the grid is refined. Details of the method can be found in Akselvoll & Moin (1996). 
The code has been thoroughly validated in various studies (Akselvoll 1996; Pierce & Moin 
1998, 2001). 

3. Large eddy simulation of a turbulent Bunsen flame 
The experimental setup studied by Chen (1996) consists of a stoichiometric premixed 

methane-air flame, stabilized by a large pilot flame. Both incoming streams, the main 
jet and the pilot, have the same composition. The nozzle diameter D of the main stream 
is 12 mm. The pilot stream issues through a perforated plate (1175 holes of 1mm in 
diameter) around the central nozzle, with an outer diameter of 5.67D. The main stream 
is turbulent with a Reynolds number of Re = 23486, based on the inner nozzle diameter 
and a bulk velocity of Uo = 30 m/s. 

3.1. Grid and boundary conditions 
The computational domain extends to 20 D downstream of the nozzle and 4 D in the 
radial direction. The LES grid is 256 x 96 x 64 corresponding to approximately 1.6 million 
cells. At the inflow boundary, instantaneous velocities extracted from a separate LES of 
a fully developed pipe flow are prescribed. Convective conditions (- Akselvoll & Moin 
1996) are prescribed at the outflow boundary, while traction-free conditions (Boersma 
1998) are imposed on the lateral boundary in order to allow entrainment of fluid into the 
domain. 

3.2. Results and discussion 

The mean radial profiles of temperature and axial velocity are shown in Fig. 1 for two 
different downstream locations: here 6 is the time-averaged non-dimensional tempera- 
ture defined by 0 = (T - Tu) / (T& — Tu), and Tj, and Tu are the adiabatic burned and 
unburned temperatures respectively. U ax is the time-averaged axial velocity normalized 
by the bulk velocity Uo- 

Comparison is made between experimental data (denoted by symbols), the LES re- 
sults reported in Duchamp de Lageneste & Pitsch (2000) (dashed lines) and the actual 
simulation (solid lines). 

The major discrepancies found between the results reported in Duchamp de Lageneste 
& Pitsch (2000) and the experimental data concerned an over-prediction of the mean 
temperature increase, leading to an over-prediction of the mean spreading rate of the 
jet. Chen (1996) noted that, while still in equilibrium, the gases in the pilot flame were 
found to be at a much lower temperature than the adiabatic temperature, due to heat 
losses to the burner surface. These heat losses were not taken into account in our previous 
simulation, and are now modeled by solving a transport equation for the total enthalpy, 
which appears as a parameter in the flamelet library. Prescribing a lower enthalpy in 
the pilot stream than in the main jet leads to a predicted maximum value of the mean 
temperature in good agreement with the experimental data, especially close to the burner 
(as shown in Fig. 1). As a consequence, the jet expansion due to heat release is now 
predicted with good accuracy. 

While the evolution of the turbulent kinetic energy near the axis was generally well 
predicted in Duchamp de Lageneste & Pitsch (2000), the maximum value was over- 
predicted and the location of the peak was shifted toward the burnt side of the flame 
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FIGURE 1. Radial profiles of the mean temperature and axial velocity at different axial positions. 
Symbols represent experimental data, lines LES results. Solid lines: non-adiabatic conditions, 
dashed lines: adiabatic conditions. 
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FIGURE 2. Radial profiles of the mean turbulent kinetic energy at different axial locations. 
Symbols represent experimental data, lines LES results. Solid lines: non-adiabatic conditions, 
dashed lines: adiabatic conditions. 

(dashed lines in Fig. 2). The present simulation shows a clear improvement in both 
respects. At x/D = 2.5, both the location and the value of the peak are well predicted. 
At x/D = 6.5 the peak is well located and even though its value is still somewhat 
overestimated the agreement with the experimental data is considerably improved. 

The intensity of the peak in turbulent kinetic energy located on the burnt side of the 
flame can be directly related to the development of the mixing layer between the hot 
burnt gases and the cold entrained air. From this viewpoint, the overestimation of the 
turbulent kinetic energy in Duchamp de Lageneste & Pitsch (2000), which they found to 
be growing with distance from the burner, is consistent with the overestimation of the 
burnt-gas temperature reported in that study. The non-adiabatic conditions used in the 
present simulation improve the prediction of the location of the heat release, and thereby 
lead to a much better estimation of the development of the mixing layer. Thus, the slight 
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over-prediction still observed in the temperature profiles further downstream could be 
responsible for the higher turbulence intensities found at these locations. 

4. Large-eddy simulation of a lean, partially-premixed dump combustor 
Constructed at the Laboratoire de Combustion et de Detonique (LCD) de l'ENSMA 

Poitiers (Prance) within the Brite-Euram project BE95-1953 (Besson 19996), the test-rig 
ORACLES has been especially designed to provide accurate experimental data to assess 
the quality of different approaches in LES of turbulent premixed and partially-premixed 
combustion. 

The experimental setup consists of two channel flows emerging into a wider combustion 
chamber which is shown in Fig. 3. For the reacting case, the flame is stabilized by the 
recirculation zones created behind each step. The channels are separated by a splitter 
plate which is recessed with respect to the expansion to avoid possible anchoring of the 
flame at the tip of the plate. 

Special attention has been paid to providing suitable boundary conditions for LES. 
The two incoming channels are long enough (« 100 H where H is the step height) to 
ensure a fully-developed turbulent flow in each stream. In all the cases considered here, 
the mass flow rate is the same in both channels. 

Several different cases have been studied experimentally (Besson 1999a). Here we will 
focus on two of these: the inert flow, used as a reference case, and a reacting case, where 
the equivalence ratio for the upper stream is 0.9, while it is 0.3 for the lower stream. The 
main reason for choosing the latter case is that it will provide the opportunity to test 
the ability of our method to handle partially-premixed turbulent combustion. It is also 
worth noting that the strong acoustic instabilities that have been detected in most cases 
with constant equivalence ratio are a problem which has been avoided here, to provide a 
basic validation of the combustion model. 

4.1. Grid and boundary conditions 
The computational domain extends to 20 H downstream and 4 H upstream of the expan- 
sion. The LES grid is 256 x 128 x 64, corresponding to approximately 2.2 million cells. 
At the inflow boundary, instantaneous velocities obtained from a separate LES of two 
fully-developed channel flows are prescribed. Convective conditions (Akselvoll & Moin 
1996) are used at the outflow boundary while adiabatic no-slip conditions are enforced 
on all walls. 

4.2. Results and discussion 

4.2.1. Inert flow 

The basic features of inert flows behind a sudden expansion have been extensively 
studied both experimentally and numerically (Abbot k Kline 1962; Gagnon 1993). 

For the major part of these studies, only one stream is considered, and Abbot & Kline 
(1962) have shown that the mean flow after a sudden expansion is asymmetrical if the 
ratio AT = (Hchannei + 2ifstep)/-^channel is greater than 1.5. For the present case, the 
area expansion ratio can be evaluated to be Ar = 1.84, predicting an asymmetrical 
mean flow. The experimental results corroborate this prediction, showing an upper mean 
recirculation zone much shorter than the lower one. 

This important feature of the mean flow is captured by the LES, as can be seen on 
Fig. 3. Furthermore, Fig. 4 shows a comparison of the mean velocity profiles obtained at 
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1.1 

FIGURE 3. Cold flow simulation. Mean axial velocity. 

FIGURE 4. Cross-stream profiles of the mean axial velocity at different axial positions for the 
cold flow case. Symbols represent experimental data, lines LES results. 
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FIGURE 5. Cross-stream profiles of the mean turbulent kinetic energy at different axial 
positions for the cold flow case. Symbols represent experimental data, lines LES results. 

different downstream locations in the inert case and confirms the very good quantitative 
agreement between the LES results and the experimental data. 

Figure 5 shows vertical profiles of the turbulent kinetic energy for the axial positions 
shown in Fig. 4. The location and width of the peaks of turbulent kinetic energy down- 
stream of each step are precisely predicted by the LES while the maximum intensity is 
slightly underestimated for the first stations. It can also be observed that the evolution 
of the local maximum around the symmetry axis created by the mixing layer between 
the two incoming streams is very well captured. 

Since the intensity of the turbulent kinetic energy generated by the central mixing layer 
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IF 

FIGURE 6. SL (solid line) and IF (dashed line) as functions of the equivalence ratio <p. Both are 
normalized by their maximum values. 
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FIGURE 7. Reacting case. Contours of mean axial velocity and of Go- 

is much lower than in the shear layers behind the steps, its influence on the stabilization 
of the flame can be expected to be small in the reacting case. 

4.2.2. Reacting flow 

In the cold-flow simulation, both inlet channels have the same chemical composition. 
For the reacting case, the upper channel has a mixture of propane and air at an equiva- 
lence ratio of fa = 0.9, while the equivalence ratio in the lower channel is fa = 0.3. 

As <j> will vary along the Go surface, the laminar burning velocity sL and the laminar 
flame thickness IF appearing in Eq. (2.5) are now parameterized by fa This dependence 
is shown in Fig. 6. 

As can be seen in Fig. 6, the laminar burning velocity for <f> = 0.3 is much lower than 
for <f> = 0.9, while the laminar flame thickness follows the opposite trend. Consequently, 
the leanest branch of the flame can be expected to be close to the blow-off limit. 

Indeed, the preliminary results reported below indicate that the leanest part of the 
flame barely propagates behind the lower step while the richest part propagates much 
faster, as shown in Fig. 7. Compared to the cold-flow case shown in Fig. 3, the reacting 
case exhibits a much shorter upper recirculation zone, due to the strong acceleration 
behind the richest flame branch. The lower recirculation zone is also shortened, but to a 
lesser extent. 

Figure 8 shows the mean axial velocity profiles obtained at three different locations 
in the combustion chamber. The velocity increase in the upper part of the chamber due 
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FIGURE 8. Cross-stream profiles of the mean axial velocity at different axial positions for the 
reacting flow case. Symbols represent experimental data, lines LES results. 
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FIGURE 9. Cross-stream profiles of the mean turbulent kinetic energy at different axial 
positions for the reacting flow case. Symbols represent experimental data, lines LES results. 

to heat release is well predicted except for a slight overestimation at x/H = 3.67. The 
corresponding profiles behind the lower step are also different from the cold-flow case. 
The mean velocity is increased moderately at x/H = 3.67, and even more at x/H = 6.35. 
Overall, the quantitative agreement with the experimental data is good. 

Finally, Fig. 9 shows vertical profiles of turbulent kinetic energy for the same three axial 
locations. The agreement is reasonable for all three locations. However the simulation 
becomes less accurate for the downstream locations, which may indicate that the statistics 
are not fully converged. Nevertheless, the general trend of diminishing turbulent kinetic 
energy, especially in the richest part of the flame, is well reproduced. This is in contrast 
with the cold-flow case where, because of the converging shear layers, the turbulent 
kinetic energy increases with distance from the steps. In the reacting case, the strong 
heat release in the upper half of the domain prevents the upper shear layer frm spreading, 
while the smaller heat release in the bottom half is still sufficient to damp the turbulent 
fluctuations. 

5. Conclusions and future plans 
A mixed level-set/flamelet library formulation has been implemented as a suitable 

model for large-eddy simulation of turbulent premixed and partially-premixed flames. 
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The versatility of this approach has been demonstrated through its application to two 
very different cases. 

The first study concerns the Aachen flame F3, where the model has been shown to 
yield predictions in good agreement with the experimental data of Chen (1996). Two 
different simulations have been performed for this case. The first simulation uses adiabatic 
conditions. In the second approach, the total enthalpy is used as a parameter in the 
flamelet library to take heat losses near the burner exit into account. The latter refined 
model shows improved accuracy through a better physical description, with only a small 
computational overhead. 

The second study presented in this report concerns the LES of a turbulent, partially- 
premixed lean dump combustor, the so-called ORACLES burner. Results are compared 
to the experimental data of Besson (1999a) for the non-reacting and reacting cases. 
The non-reacting case was found to exhibit recirculation zones which are asymmetric 
in the mean, typical of supercritical flows through sudden expansions. This behavior is 
well recovered by the LES, both qualitatively and quantitatively. The turbulent kinetic 
energy is also predicted with reasonable accuracy. Preliminary results for the reacting 
case are also presented showing very good agreement with experimental data for the 
time-averaged axial velocity. The turbulent kinetic energy is predicted less accurately 
than in the non-reacting case, although the overall agreement remains acceptable. 

In the future we will focus on the derivation of a dynamic model for the turbulent 
burning velocity that will be tested against the present algebraic model. In addition the 
model will be applied to other ORACLES cases revealing combustion instabilities. 
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Generalized symmetries of the G-equation 
without underlying flow field 

By M. Oberlack f 

It is shown that the admissible symmetries of the G-equation for flame fronts in pre- 
mixed combustion depend essentially on whether the velocity of the underlying flow is 
zero or non-zero. The case of non-zero flow velocity has been exhaustively discussed by 
Oberlack, Wenzel & Peters (2001). If the flow velocity is zero a sixteen-dimensional Lie 
algebra of classical point symmetries exist. More importantly, an infinite series of gener- 
alized (Lie-Bäcklund) symmetries is derived, which includes as a special case the sixteen 
classical point symmetries. 

1. Introduction 
In recent years the G-equation, first derived by Williams (1985), has become the pre- 

dominant approach for modeling premixed combustion in a very broad range of prac- 
tical applications, such as spark-ignition engines and many others. A large amount of 
applied work has been dedicated to the G-equation. In order to make the G-equation 
amenable to numerical computations a diversity of numerical schemes have been de- 
rived, e.g. Adalsteinsson k Sethian (1999), Osher & Sethian (1988), Smiljanowski, Moser 
& Klein (1997), Sussman, Smereka & Osher (1994). Also, to make the G-approach ap- 
plicable to turbulent premixed combustion a variety of model equations has been pro- 
posed, e.g. Im, Lund & Ferziger (1997), Peters (1992), Peters (1993), Ulitsky & Collins 
(1997), Weiler, Tabor, Gosman & Fureby (1998) to name only a few. 

In contrast, considerably less work has been dedicated to the mathematical properties 
of the G-equation. In particular, only recently have the important symmetry properties 
of the G-equation been explored, by Oberlack et al. (2001). Therein classical point sym- 
metries of the G-equation in combination with the equations of fluid dynamics have been 
computed. It was shown that one particular symmetry, named "generalized scaling sym- 
metry" by Oberlack et al. (2001), has important implications for the understanding and 
modelling of the G-equation in turbulent flows. New physically-sound modelling routes 
have been suggested. However, no generalized symmetries were investigated therein, since 
their derivation for the combined set of partial differential equations would have been 
formidable. 

In the present approach we analyze a simplified version of the G-equation, where the 
flow velocity has been set to zero and the laminar burning velocity si is considered a 
constant. Physically speaking, this case describes the propagation of an infinitesimally- 
thin laminar flame sheet without flame-front advection due to an underlying flow field. 

The G-equation with zero flow velocity is somewhat related to the eikonal equation. 
In Fushchich, Shtelen & Serov (1993) and Fushchich & Shtelen (1982) it is shown that 
the eikonal and related equations admit a wide class of symmetry transformations. Sub- 

t Hydromechanics and Hydraulics Group, Darmstadt University of Technology, Petersen- 
straße 13, 64287 Darmstadt, Germany 
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sequently we prove that the set of classical point symmetries and generalized symmetries 
of the G-equation extend considerably if u = 0 is imposed. 

2. Symmetry groups of the G-equation 
In Oberlack et al. (2001) the original form of the G-equation 

ÖG 8G_ 9G_dG_ 
dt dxk        V dxk dxk' 

augmented by the equation of fluid dynamics, has been analyzed and discussed with 
respect to its classical point symmetries and the resulting physical consequences. Here x 
and t are space and time variables respectively, u is the velocity vector, s; is the laminar 
burning velocity, and G denotes a scalar field quantity determining a instantaneous flame 
front at G = Go- The G field has a physical meaning only at Go- 

During the derivation of the work in Oberlack et al. (2001) it became clear that it 
would be extremely difficult to extend this work to generalized symmetries as in Bluman 
& Kumei (1989). This task is usually considerably easier for scalar equations. For this 
reason the present work is limited to Eq. (2.1) where the flow velocity is set to zero 

8G_       dGdG 
-ft ~ Sl\ldx~kdx-k- 

(2-2) 

The latter equation has in fact close links to other equations known in mathematical 
physics. The first one is the eikonal equation which is the square of Eq. (2.2). In some 
models the squared version also contains an added constant. Though very similar in form, 
Eq. (2.2) and its squared version admit different reflection symmetries. Equation (2.2) 
admits only the reflection symmetries 

t* = t, x*i=-xu x*=Xj, G* = G, 1 = 1,2,3, j = 1,2,3/» (2.3) 

and 

t* = -t, x*i = xu G* = -G, i = 1,2,3. (2.4) 

The squared version of Eq. (2.2) admits the latter time reversal where G is still unaffected. 
In addition it allows G* = —G with t as the identity transformation. 

Equation (2.2) is also related to the usual linear wave equation ^M — ^Mf = 0. In 

contrast to the one-dimensional version, in two or higher spatial dimensions one cannot 
give a complete analytic solution of the wave equation. However, the square of Eq. (2.2) 
with si = 1 may be considered as the characteristic equation of the wave equation. 

In the subsections below, all classical point symmetries and the first elements of the 
infinite series of generalized symmetries of Eq. (2.2) are derived. It is shown how to 
construct arbitrarily many additional generalized symmetries. 

2.1. Classical point symmetries 
The purpose of the present analysis is to find all those continuous groups of transforma- 
tion (Lie groups) which do not change the structure of the equation under investigation if 
written in the new variables. In the case of Eq. (2.2) the problem simplifies to obtaining 
the generator 

X = e(t,x,G)^-t+C(t,x,G)-^-+V
G(t,x,G)-^. (2.5) 
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Here X is the infinitesimal form of the desired transformation, and f4, fl and r)G are 
the corresponding infinitesimals. The exponents of the infinitesimals denote the variables 
they refer to, and should not be mistaken for powers. 

In Oberlack et al. (2001) it is shown that in the case of a non-zero flow velocity field, 
Eq. (2.1) extended by the equation of fluid dynamics admit the usual extended Galilean 
group. In all of these groups G is trivially contained as an identity transformation. The 
only symmetry group with non-zero flow velocity which non-trivially contains the trans- 
formation of G is the group 

X = 4>(G)A (2.6) 

where tp{G) is largely arbitrary. 
Employing Lie's first theorem (see e.g. Bluman & Kumei 1989) the symmetry Eq. (2.6) 

may be written as the usual transformation in global form 

G*=?{G)   with   ^j^>0, (2-7) 

where T{G) is connected to ip(G) by 

^(G) = *"1[6 + *(G)]   and   $((7) = /-^. (2.8) 

Here \?-1 is the inverse of *. Since \t has to be invertible this poses a weak constraint 
on ip by means of the latter integral relation Eq. (2.8). 

Application of Eq. (2.5) to Eq. (2.2) leads to a considerably-extended set of groups 
comprising sixteen distinct Lie groups, each of which is infinite-dimensional because each 
contains an arbitrary function u;» 

X1=Wl(G)A (2.9) 

X2=a;2(G)|, (2.10) 

X3 =«*(<?) (t|+*i£). (2-11) 

X3+[j] = OJ3+U\(G) (xjQ^; ~ xifaT) » *'•? = 1'2'3 and * < 3>             (2-12) 

X6+[i]=o;6+[i](G)^,    i = l,2,3 (2.13) 

X9+W=«9+M(G)^t^ + af^j), 1 = 1,2,3                                      (2.14) 

Xi3 = wis(G) f (sft2 + xkxk) — + 2sftxi —J , (2.15) 

Xi3+[i] = w13+[4](G) (sft2-xkxk + 2(xli])
2)7— 

ux[i) 

n    ( 9        d d V 
+2x^{tFt+Xkdx-k-

x^dxZ) i = l,2,3 (2.16) 

where the subscript [i] means no summation. The enumeration in the index of several Wj's 
corresponds to functions belonging to different groups. Since the task of computing Eqs. 
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(2.9)-(2.16) is relatively straightforward, and can in fact for the most part be aided by 
computer algebra systems - see Ibragimov (1996) - we omit any details of its derivation. 

All Ui are arbitrary functions of G obeying the same invertibility properties as given 
below Eq. (2.8). The first nine symmetries, Eqs. (2.9)-(2.13) have close relations to those 
admitted by Eq. (2.1) extended by the equations of fluid dynamics. In contrast, the 
symmetries Eqs. (2.14)-(2.16) have no counterpart in the usual G-equation (2.1) with 
u 7^ 0. It is interesting to note that all of the "new" symmetries contain the laminar 
flame speed si explicitly. 

All of the symmetries Eqs. (2.9)-(2.16) may be written as global transformations. 
Employing Lie's first theorem, which states a unique relation between the infinitesimal 
transformation and the global transformation, we find the global transformation groups 
of Eqs. (2.9)-(2.16) 

1\ '.  t    — I, , X±  = Xj, 

G* = *"1[e + *(G)]   with   *(G) = y^y, (2.17) 

T2 : t* = ew2(G) + t, x\ = xu G* = G, (2.18) 

Ts : f = e(eu,3(G))t, x\ = e^3^»^, G* = G, (2.19) 

Ts+W :**=*, x*i = aik(G)xk, G* = G, with 

a • aT = aT • a = I, |a| = 1, (2.20) 

Tfl+M :t*=t,x\= ew6+w(G) + xu G* = G, (2.21) 
T9+[j] : t* = cosh(sj up{G) e)tsi+ sinh(sj up(G) e) Xß, 

x* = sinh(s( u)p(G) e)tsi + cosh(s; UJP(G) e) Xß, 
Xj = Xj, i = 1,2,3, j = 1,2,3/i and p = 9 + i, 

G* = G, (2.22) 

(s2t2 - xkxk) [eu>13(G)(s2t2 - xkxk) - t] 
±i3 : t   = 2—> 

xkxk - sf [eu>i3(G)(sft2 - xkxk) - t] 

, Xjjsft2 - xkxk)  

sf [ew13(G)(s2t2 - xkxk) -1]  - xkxk 

G* = G, (2.23) 

 tjsft2 -xkxk)  
!13+[i] ** 

- [eup{G){s212 - xkxk) + X[ij]   + sft2 - xkxk + x2^ 

* _       (s?^2 - XfcXfc) [eup(G)(sft2 - XfcXfc) + xH] 

sft2 - xkxk + x2^ - [ewp(G)(sjt2 - XfcXfc) + x^j] 

, _  X[j](s2t2 - xkxk)  

- [eup(G)(s2t2 - XfcXjfe) + X[ij]   + s2t2 - xkxk + x2^ 

G* =G, 
i = 1,2,3, j = 1,2,3/i and p = 13 + i, (2.24) 

Unless stated otherwise, the indices i, j and k denote 1,2,3. The notation for the indices 
i and j in Eq. (2.22) and Eq. (2.24) denote that i can be any of 1, 2 and 3, and j refers 
to the remaining two. 
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2.2. Generalized symmetries 

In mathematical physics it is known that many fundamental equations, such as the 
Burgers equation or the Korteweg-de Vries equation, admit a much wider class of sym- 
metries which go beyond the classical point symmetries called generalized symmetries 
(see e.g. Bluman k Kumei 1989). Some authors call them Lie-Bäcklund or Noether sym- 
metries. Generalized symmetries are defined such that the infinitesimals £*, £* and nG 

in Eq. (2.5) not only depend on all dependent and independent variables, but may also 
comprise derivatives of G up to a given order n. 

The actual derivation of the generalized symmetries is almost identical to that of the 
classical point symmetries. However the necessary algebra becomes increasingly more 
tedious for large orders of derivatives in the infinitesimals. For mathematical convenience, 
we here adopt Boyer's formulation of the generalized symmetries. He proved that all 
infinitesimals of the independent variables, here £' and £*, may be set to zero if at least 
all first-order derivatives of G are included in n: see Bluman & Kumei (1989). Hence 
without loss of generality we search for the generalized symmetry 

X = fj(t,x,G,G,G,...)-^ (2.25) 

where G denotes the set of all n™1 order spatial derivatives of G. In the present context 
n 

we may exclude any time derivative of G from G since it can immediately be replaced 
n 

by the right-hand side of Eq. (2.2). In the following, we indicate any derivative with 
respect to G by index notation. The time-derivative of G is defined as ^ = Gt while 

the spatial derivatives are abbreviated by ffc = G,i, fa-dx- s G'ij' etC" "^ny ^erivative 

with respect to fj is given in the usual 3-notation. 
Boyer's theorem also states that once a point symmetry such as any of Eqs. (2.9)- 

(2.16) is known it may readily be written in the form of Eq. (2.25) where fj is given - see 
e.g. Bluman & Kumei (1989) - by 

fj = V
G - Gt? - G,ie = VG- *iy/G,mG,n? - G,<f. (2.26) 

In the latter equality, Gt has been replaced using Eq. (2.2). For example Xio_i2 in Eq. 
(2.14) may be written as 

Xio-ia = wft+w(G) (si^G,mG,mXi - Gtia}tj ^,    i = 1,2,3. (2.27) 

From Eq. (2.26) it is apparent that any point symmetry is linear in Gt and G,j. However, 
the converse may not always be true. 

Keeping fj completely general and applying Eq. (2.25) and any necessary prolongation 
of X - see e.g. Bluman & Kumei (1989) - to Eq. (2.2) we obtain 

'/   d      Vfj   d        Vfj     d   \ i„ iri  „  V 
X'dG + VilGl + V^dG^) (Gt ~ s^G,nG,n) = 0, (2.28) 

eqn (2.2) 

where V/Vt and T>/Vxm are defined as 

lh!+0'&+G«s§-+a'*äi-+- <"9> 
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V 
Vxm     dx. 

Expanding Eq. (2.28) we obtain 

d_ 
ldG + G.mT^ + G,m, -?- + G      -L 

dG,i       'mi]dGA 
(2.30) 

dv , n dfj dfj dfj 
- + Gt-öä + Gt,i— + Gt,ij^ + 

- si 
G, dfj 

+ G ,m 8G 
+ G 

dfj 
'midG~ 

+ G, 
dfj 

mijdG~ 

(2.31) 

= 0. 
eqn(2.2) 

As denoted by |eqn/2 2), when solving Eq. (2.31) the reduced G-equation, Eq. (2.2), may 
be introduced to replace any term of the form Gt,ij... by the differential consequences of 
Gt. This finally leads to a single determining equation for fj of the form 

r,m dfj dfj 
+ Sl 

(j ,im^* ,jm        CT ,im& ,m" Jn^-7 ,n 

+ 

where A 

+ slAhh...in(G,G,...G) — 

vG,i>G,ti 

dfj 
(G,kG,k)2/2 

dfj 
d~G~, 

(2.32) 

= 0, 

tit2-»» comprises all the terms emerging from the differential consequences of Eq. 
(2.2). Several things are important to note about Eq. (2.32). No derivative with respect 
to G and Gti appears, so any solution for fj can depend arbitrarily on G and G,j. 

Most importantly, Eq. (2.32) is closed. We may readily verify this by choosing fj to de- 
pend only on derivatives of G up to the order n indicated by G. Computing all differential 

n 
consequences of Eq. (2.2), i.e. determining all Ai^...^ up to order n, we find that they 
contain derivatives of G only up to G. Hence, Eq. (2.32) constitutes a linear hyperbolic 

n 
equation in fj depending on the set of variables: t, x, G, G,i, G,ij, ... , G^i2,„in, where 
G and Gti appear only as parameters. 

Solutions for fj with increasing derivative order G may be successively obtained, be- 
n 

ginning with the lowest derivative order. First, we consider fj solely depending on G- 
derivatives up to order one. Hence, we limit fj to be a function only of t, x, G and G. As 

a consequence equation Eq. (2.32) reduces to 

dfj ',171 dfj 
dt      l y/G,nG>n dxm 

The characteristic equations of Eq. (2.33) are 

dxr, 

= 0. 

dt      1 A — — 1   and 
de = -«/- 

(2.33) 

(2.34) 
de "' ^G^G^' 

Equation (2.34) may readily be integrated to yield the complete solution of Eq. (2.33), 

: t. (2.35) rj = g(c,G,G)    where   d = xt +si-=d== 

g is an arbitrary function of its arguments and should be once-differentiable with respect 
to C. Note that in determining C, G,i appeared only as a parameter. 

It is important to note that C may be considered the fundamental characteristic. It 
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nicely exemplifies the solution structure of Eq. (2.2) which may be interpreted, and also 
constructed, geometrically. Given an initial condition for the G field we may propagate 
it in time with the speed si along rays normal to each instantaneous G field, as described 
by the family of curves C. 

The generalized symmetry Eq. (2.35) appears to be considerably simpler in form 
than the classical point symmetries in Subsection 2.1. However we can show that all 
point symmetries, Eqs. (2.9)-(2.16), are included in the solution Eq. (2.35) by virtue 
of Boyer's relation Eq. (2.26). E.g. the symmetries Eq. (2.14), which are rewritten in 
Eq. (2.27) using Boyer's formulation, can be derived from Eq. (2.35) by restricting fj to 
Q = -uJg+[i\Si^GtnGtnCi, i = 1,2,3. However, any solution to Eq. (2.33) which is not 
among Eqs. (2.9)-(2.16) using Eq. (2.26) cannot be written as a point symmetry. 

Enlarging the dependence of fj in the next step in Eq. (2.32) by the set of variables G, 

Eq. (2.33) extends to 

dfj G, dfj 

dt    S^^/GÄ^Xm 
+ Sl 

(G,*G,*)3/2 

dfj 

dG.r 
= 0. 

y/G,nG,n 

The corresponding set of characteristic equations, Eq. (2.34) is expanded by 

dG,jj _ 

de 
si 

",im",jm "',im"',m"',jn^T,n 
Ä      (G,kG,k)w 

(2.36) 

(2.37) 

In order to solve Eq. (2.34) and Eq. (2.37) we combine the characteristic ODE's for t 
and Gjj to obtain 

dG, 
dt 

y _ si 
;" ,ro" ,jn&,n 

v/GÄ (G,*G,*)3/2 
(2.38) 

Since Gjj is a symmetric second-order tensor, Eq. (2.38) constitutes a quadratic tensor 
equation in which G,k is a vector-valued parameter. For the purpose of solving Eq. (2.38) 
we derive the identity 

t-i 

dt 

which may be rewritten as 

dGjd_ _ üGMGüGJI _ n
dG,ki  , ^-i<Jg,iJc-i 

dt 
= 2- 

dt 
+ G 

<ki   dt & 

*G;k] 
,ki 

(2.39) 

(2.40) 
dt   ~'jt dt 

G~j is the matrix inverse of Gtij and G,ikG~k) = G~lG,kj = kj- Multiplying Eq. (2.38) 

with G~k\ and G^} we find, using Eq. (2.40), that 

hi G,kG,i M;k] 
jG^GTn       (G,„G,n)3/2 

(2.41) 

Equation (2.41) may immediately be integrated with respect to t since the right-hand side 
does not depend on Gyki. We introduce an additional identity from the Caley-Hamilton 
theorem (see Appendix A) 

^ ,r2 *       . (c    )3 [((G,kk)
2 - G^)% - 2GtMG,« + 2G%]    (2.42) 2G%k ~ 3G,jfcfeG,fcfc + {G,kky 

G~} = 
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where G^y = G,iklG<klk2 Gtkn_lknGtknj. As the final solution of Eq. (2.38), we 

obtain the characteristic tensor 

Dij =si 
äjj G,jG,j 

JG~P^     (G,mG,m)3/2_ 

+ 2A3-3A2A1 + A3 M ~ X^ ~ 2X^ + 2G*G^ ■ 
(2.43) 

In the latter characteristic the abbreviations A; are defined according to \\ = G,**, 
A2 = G,kiG,ik and A3 = GtkiGtimG,mk. Hence the complete solution to Eq. (2.32) is 
derived, where the derivative order G has been limited to n = 2, as 

n 

fj = H{C,G,G,D). (2.44) 

C and D are respectively defined by Eq. (2.35) and Eq. (2.43) and 7i is an arbitrary 
function of its arguments, being at least once-differentiable with respect to C and D. 

In principle the next step to obtain further generalized symmetries would be to in- 
clude G in 77 in Eq. (2.32). The mathematical complexity of the characteristic equations 
rapidly increases when higher-order derivatives of G are introduced into fj. However it is 
important to note that this can be done in principle, and leads to an infinite sequence of 
generalized symmetries of Eq. (2.2). 

3. Summary 
It is demonstrated that the G-equation for premixed combustion admits a very broad 

variety of symmetry properties, including those from classical mechanics. It is particularly 
interesting that the number of symmetries depends strongly on whether the underlying 
flow velocity is zero or non-zero. For zero flow, sixteen distinct symmetries have been 
established. For this case also, an infinite series of generalized symmetries has been es- 
tablished. 

In Oberlack et dl. (2001) it was shown that the symmetries of the G-equation with 
non-zero velocity are very useful in aiding the modeling process of the G-equation for 
turbulent premixed combustion. It is expected that the present findings may also be used 
to help improve turbulent combustion models. 

The author appreciates a hint from Stavros Kassinos, who pointed out the tensor 
identity Eq. (2.39). 
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Appendix A. Derivation of A x in terms of matrix-polynomials of A in E3 

In Eq. (2.41) we need to express the inverse of the symmetric tensor Gtij, denoted in 
the following by A, in terms of polynomials of G,,j itself. From tensor-invariant theory 
it is known that A-1 may be expressed in terms of A in the form 

A"1 = ai Sij + a2Aij + o3 A?,-, (A 1) 

where the ai may depend on the three scalar tensor invariants of A denoted as 

Ai = Akk,  A2 = A\k and A3 = A\k. (A2) 

Multiplying Eq. (A 1) with A and expressing A3 in terms of lower order polynomials and 
scalar invariants Eq. (A 2) using the Caley-Hamilton theorem - e.g. Spencer (1971) - we 
obtain 

Sij = aiAij + a2A\i + a3 X.Al - \AH (A? - A2) + |*y (A3 - |AJAI + |A?) 

(A3) 
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Ordering the scalar coefficients of 6ij, A,j and A?j we obtain a linear set of equations for 
the üi, i = 1,2,3. The result for the a* may be inserted into Eq. (Al) to yield the final 
solution 

V = 2A3-3A2A1 + A? M - ^ ~ 2X^ + 24] • (A 4) 
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Large-eddy simulations of combustion instability 
suppression by static turbulence control 

By J. U. Schlüter 

1. Motivation 
1.1. Combustion instabilities and coherent structures 

Current combustion research is focused on pollutant reduction and fuel efficiency. One 
strategy to achieve these goals is to use lean premixed flames instead of diffusion flames. 
However, one major drawback of lean premixed flames is their susceptibility to com- 
bustion instabilities (Putnam 1971; McManus et al. 1993). The control of combustion 
instabilities is crucial in order to progress towards highly-efficient, low-pollutant combus- 
tors. 

There are several mechanisms suspected of leading to combustion instabilities, such as 
periodic inhomogeneities in the mixture fraction, pressure sensitivity of the flame speed 
and the formation of large-scale turbulent structures (Mugridge 1980; Büchner et al. 
1993; Peters & Ludford 1983). While an attempt to suppress combustion instabilities 
in practical applications has to address all these sources, the current work focuses on 
coherent structures as the driving mechanism in creating noise. 

In vortex-driven combustion instabilities (Poinsot et al. 1987) the roll-up of a coherent 
structure near the burner nozzle bundles an amount of unburned fresh gases inside and 
increases the flame surface dramatically (Fig. 1). As a result, the fresh gases burn rapidly 
at a very distinct moment. The sudden heat release creates an acoustic wave, which - 
given the proper time-lag - delivers an acoustic perturbation. The acoustic perturbation 
triggers the roll-up of the next coherent structure in the shear layer (Crow & Champagne 
1971; Ho & Huang 1982; Ho & Huerre 1984) created near the edge of the burner nozzle. 

The Rayleigh criterion can be used to determine whether this process is self-amplifying: 
if the sudden heat release is in phase with the acoustic wave creating the next inhomo- 
geneity, then this cycle will be repeated with a certain frequency. 

The consequences of unstable combustion are often troublesome due to the intense 
pressure-fluctuation levels which can occur, as well as increased heat transfer to the 
combustor surfaces (Lang et al. 1987; Büchner et al. 1993). These conditions can result 
in system performance degradation (for example: an increase in the lean blow-off limit 
or unsteadiness in thrust production in the case of a propulsion device), unacceptable 
vibration or noise levels, and, in the worst case, system failure due to structural damage 
(McManus et al. 1993). The numerical prediction of combustion instabilities is challenging 
and has been tried only on very simple geometries (Brookes et al. 1999; Veynante & 
Poinsot 1997; Angelberger et al. 2000). 

1.2. Active vs. static control 
So far, most control strategies for combustion instabilities are based on active control 
mechanisms (McManus et al. 1993). Active control is achieved by a sensor in the com- 
bustion chamber, which measures frequency and phase of a combustion oscillation. The 
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FIGURE 1. Sketch of coherent structures as the driving mechanism in combustion instabilities. 

measured signal is then analyzed and a proper periodic response is determined. The re- 
sponse is either an acoustic perturbation or a modulation of the fuel supply (Paschereit 
et al. 1999). Active control is able to suppress combustion instabilities substantially and 
is already in use for numerous practical applications. 

However, this apparatus for active control is rather expensive and maintenance-inten- 
sive. Furthermore, since a failure of the active control system can lead to a failure of the 
whole combustion system, this approach is not advisable for aircraft engines. 

Static-control strategies are more robust and need a minimum of maintenance. With 
static control, a burner can be designed which is naturally less prone to combustion 
instabilities. However, to give design guidelines for static control, more information on 
this type of control has to be gathered. 

1.3. Static-control strategies 
Several strategies to control shear layers are known. The method that has received most 
attention is to use non-circular nozzle shapes like triangles (Schadow et al. 1988; Gutmark 
et al. 1989) and ellipses (Husain & Hussain 1983; Hussain & Husain 1987). However, the 
design of swirl combustors calls for axisymmetric nozzle shapes in order to generate swirl 
efficiently. 

Other strategies involve hardware installations inside the shear layer. Honeycombs 
have had success in straightening the flow and destroying coherent structures efficiently 
(Nieberle 1986). The installation of these devices in practical burners is rather difficult, 
since they would have to be placed in the flame front. The excessive heat these devices 
would have to sustain makes the application of these installations unlikely. 

One possibility of altering the nature of the shear layer fundamentally is to use a small 
slit near the edge at the backward-facing side of the step. Suction is a very efficient way 
to deflect the flow and to avoid large scale structures. However, in a premixed burner it 
would inevitably mean that fresh cold gases at a temperature close to the ignition point 
axe part of the fluid sucked out of the combustion chamber. The further treatment of 
these gases is problematic. 

The current study investigates static control in the form of a small circumferential slit 
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FIGURE 3. Static control by swirled coaxial flow: the generation of longitudinal streaks 
destroys large scale structures and enhances small scale mixing. 

around the nozzle, blowing a coaxial flow into the combustion chamber. This coaxial flow 
carries less than 5% of the mass-flow rate of the main flow and can be used in two ways 
to control coherent structures: 

(a) Displacement of the main shear layer (Fig. 2): the shear layer between the coaxial 
flow and the recirculation zone creates large-scale vortices, while the shear layer between 
main flow and coaxial flow creates less intense vortices, since the velocity difference is 
small. Although the intensity of coherent structures is unchanged, their influence de- 
creases, since the origin of these vortices is outside of the flame front. 

(b) Three-dimensionality of the shear layer (Fig. 3): by giving the shear layer a com- 
ponent in the third direction, e.g. by swirl, a second shear layer perpendicular to the 
main shear layer is created. As a result, a longitudinally-oriented vortex streak is created 
which disturbs vortex creation in the main shear layer (Fiedler 1998). 



122 

SMI 
1D 

J. U. Schlüter 

20D 

^^y^^^^ ^^i 

2D 

FIGURE 4. Geometry of the combustor 

2. LES of static control 
2.1. Numerical tools for turbulence research 

Recent progress in numerical tools provides new elements in turbulence research. While 
flow solvers based on a Reynolds-averaged Navier-Stokes (RANS) formulation can predict 
the main flow features, Large Eddy Simulations (LES) are able to provide a detailed look 
at the origin, development, and decay of large scale turbulent structures. This allows a 
deeper insight into the dynamics which govern coherent structures, and ultimately can 
deliver answers on how to control the flow. 

The advantage of numerical investigations over experiments is that a single parameter 
can be varied, leaving all other flow parameters unchanged. Experimental investigations 
usually encounter practical difficulties in achieving this goal. 

Since the current work focuses on coherent structures as an origin of combustion in- 
stabilities, LES can be seen as the optimal tool to to find strategies to control large-scale 
structures in order to suppress combustion instabilities. 

2.2. Test case 

In order to obtain data about general ideas for static control, the current investiga- 
tion examines a flow over an axisymmetric backward-facing step at a Reynolds-number 
Re = 30,000 (Fig. 4). This geometry corresponds to that used in an experimental inves- 
tigation (Dellenback 1986; Dellenback et al. 1988) and extensive data for the cold flow 
are available. 

While the experiments are carried out with both a non-swirling and a swirling flow, the 
LES computation focuses primarily on the non-swirled case, where vortex dynamics are 
better understood. The dynamics governing swirl flows are still controversial (Gupta et 
al. 1984; Keller 1995) and it is difficult to identify origin and control of a vortex structure 
in these flows. 

2.3. Strategy of the investigation 
It is difficult to examine naturally-excited combustion instabilities by numerical inves- 
tigations. In the current investigation, therefore, the flow is forced in order to simulate 
periodic excitation by the combustion instability. A shear layer reacting to the periodic 
excitation amplifies the periodic disturbance. The quality of a static-control mechanism 
can be determined by the ability of the control mechanism to suppress the amplification 
of the excitation. 

The external excitation of the flow makes it possible to determine the potential of a 
flame to create combustion instabilities. Whether a flame is finally unstable or not de- 
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pends on the ability of the heat release to create a periodic excitation that satisfies the 
Rayleigh criterion. The prediction of this feedback mechanism is tedious, since it involves 
computation of the acoustic wave propagation and knowledge of acoustic impedances at 
the boundaries of the computational domain. Here, for simplicity, acoustic effects have 
been explicitly excluded by using a flow solver based on a low-Mach number approxi- 
mation. This makes it possible to have a detailed look at the one-way coupling between 
excitation and flame response. If using static control results in a reduction of the flame 
response to the excitation, a decrease of the ability of the flame to create an acoustic 
perturbation can be demonstrated, indicating a robustness against combustion instabil- 
ities. 

In order to quantify the effect of a static-control device, the following procedure is 
employed. 

First, the cold flow is examined. An LES computation of the test case is compared to 
the experimental data, to give an estimate of the accuracy of the applied approach. 

Then, the excitation is carried out on the cold flow by a periodic modulation of the 
inlet profile. The shedding of coherent structures at the burner nozzle will lock into 
the forcing frequency, and a so-called triple decomposition can be applied to the flow 
variables (Hussain 1983). The instantaneous variable consists of three components; the 
time-independent component, the coherent (periodic) component and the incoherent tur- 
bulence: 

f(x, t) = fa) + fa, <j>) + f'r{x, t) (2.1) 

where f(x) is the time-average of /, f(x, <j>) the periodic component derived by phase- 
averaging, and fr(x,t) the stochastic turbulent component. 

Since f(x, <j>) contains all periodic information about the excited flow, the kinetic energy 
of the periodic fluctuation: 

£(x, ft = \ (u(x, <t>)2 + v(x, 4>? + w(x, 4>)2) (2.2) 

can be computed, and its integral over all periods and the flow domain: 
p20D    r2ir 

= I S{x,<j>)d<j>dx (2.3) 
yo     Jo 

delivers the response of the flow system to a certain frequency. By several repetitions of 
the computation with different forcing frequencies, a transfer function can be determined. 

In the third step, an LES computation of the cold flow with the static-control mecha- 
nism is performed. Again, several computations are made with different forcing frequen- 
cies and a transfer function is determined. The comparison of the two transfer functions 
delivers the effectiveness of the static-control mechanism on cold flow turbulence. 

The fourth and final step involves the computation of a reacting flow field. Because of 
the high computational costs, only one example frequency is examined. Here the phase- 
averaged heat-release Q delivers the flame response to the excitation. The comparison 
between uncontrolled and controlled flames and the comparison between reacting and 
non-reacting flows can deliver an answer on whether flame control via turbulence control 
is possible. 

2.4. LES flow solver and mesh 
For the current investigation, the LES flow solver developed at the Center for Turbulence 
Research (Pierce & Moin 1998) has been used. The code solves the filtered momentum 

■&per 
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equations with a low-Mach-number assumption on an axisymmetric structured mesh. 
As numerical method, a second-order finite-volume scheme on a staggered grid is used 
(Akselvoll k Moin 1996). 

The subgrid stresses are approximated with an eddy-viscosity approach. The eddy 
viscosity is determined by a dynamic procedure (Germano et al. 1991; Moin et al. 1991). 

In reacting cases, the G-equation approach is used to simulate a premixed flame. In 
the current case, a Bunsen burner flame has been assumed, using the same chemical 
characteristics as the LES computation of a similar flame (Duchamp & Pitsch 2000). 

The geometry consists of an axisymmetric expansion (Fig. 4). The computational do- 
main starts one diameter D upstream of the expansion and ends 10D downstream of the 
expansion in a convective outflow condition. The inflow velocity is generated by an inde- 
pendent LES computation of a periodic pipe flow which records the velocity components 
in the outflow plane and provides the data as inflow conditions. 

The mesh consists of 384x64x64 cells, adding up to 1.6M cells. It is refined in regions 
of high shear, especially around the control slit. Mesh distribution of the flow with and 
without slit are exactly the same, with the exception of the control slit itself. 

3. LES investigation on static control of the cold flow 
3.1. LES of a flow over an axisymmetric expansion 

Since experimental data are available for the cold flow of the chosen test case, the first 
step is to validate the LES flow solver against the experiments. Figure 5 shows a compari- 
son of LES and experiments of the mean axial velocity and the axial-velocity fluctuations. 
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FIGURE 6. Natural, uncontrolled vortex roll-up. Non-reacting flow. Forcing frequency St = 1.0. 
Phase-averaged crosswise vorticity component üz 

FIGURE 7. Static control by high-speed coaxial üow.(uCOax = 2umam). Non-reacting flow. 
Forcing frequency St = 1.0 Phase-averaged crosswise vorticity component Qz 

FIGURE 8. Static control by swirled coaxial flow (ueoaa: = 1 • «mat«, swirl number S = 0.25). 
Non-reacting flow. Forcing frequency St = 1.0 Phase-averaged crosswise vorticity component 

The mean axial-velocity component of the LES computation shows good agreement with 
the experiments, although the spreading rate of the shear layer behind the step is un- 
derestimated. The computed axial-velocity fluctuations also show good agreement with 
the experiment. However, the two profiles directly behind the step at x/D = 0.5 and 
x/D = 1.0 show some disagreements in shape. The highly-turbulent nature of the flow 
in this region complicates measurements and computations alike. 
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3.2. Flow response to forcing 

Forcing the flow triggers the roll-up of coherent structures in the shear layer created 
by the main jet flow and the recirculation zone at the step. In order to determine the 
amplification of the forcing by the shear layer, the results of the LES computation are 
phase-averaged. The phase-averaging begins five periods after the flow forcing has been 
started, to allow for adjustment to the periodic excitation. The averaging is then carried 
out over 30 periods. A separate study showed that this number of periods is sufficient to 
obtain a statistically-converged phase average. 

In order to visualize the vortex creation, Fig. 6a shows the the phase-averaged cross- 
wise vorticity. The development of vortex rings with the forcing frequency can be seen. 
Dark spots denote counterclockwise-turning eddies and light spots clockwise-turning ed- 
dies. A close-up of the upper part of the step (Fig. 6b) shows a vorticity sheet with 
positive sign (dark) created by the boundary layer and the shear layer between the main 
flow and the recirculation zone near the step. This vorticity sheet rolls up and creates a 
vortex ring, which is to be manipulated in order to control a flame. 

The effect of a coaxial high-speed stream on the creation of a vortex ring can be seen 
in Fig. 7a. The coaxial flow, here with a bulk velocity twice as high as the main flow, 
creates two additional vortex sheets with opposite signs. The close-up in Fig. 7b shows 
how the vorticity sheet with negative sign (white) shields the main flow and restrains 
the vorticity sheet of the main flow from rolling up into a vortex. Instead, the outermost 
vorticity sheet originating in the coaxial flow rolls up. Since this vortex consists mainly 
of fluid emanating from the coaxial flow it will have less influence on the flame front than 
in the uncontrolled case. However, the intensity of the vortex ring created by the coaxial 
flow is of approximately the same intensity as the vortex ring in the main flow in the 
uncontrolled case. 

Figure 8a shows the employment of a swirled coaxial flow as a static-control mechanism. 
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Here, the axial bulk velocity of the coaxial flow is the same as the bulk velocity of the 
main flow, and the swirl number 5: 

s._       2      Jff r2üxü^dr 

Ri + Ro   JR°rü%dr 

is approximately S = 0.25, where ux is the axial velocity component, u^ the azimuthal 
velocity component, Ri the inner radius of the coaxial slit, and R0 the outer radius of 
the coaxial slit. The effect of shielding the main flow by a vorticity sheet of opposite 
sign is still present (Fig. 8). Additionally, the creation of a shear layer in the azimuthal 
direction disturbs the vortex roll-up of the coaxial flow, and a decrease of coherence in 
the vortex can be determined. 

In order to quantify the effect of the control mechanisms, the kinetic energy of the 
periodic flow perturbation was computed and integrated over the volume behind the 
step. Figure 9 shows the results for different Strouhal numbers (St = fD/U). 

The natural, uncontrolled flow is denoted by circles. The maximum kinetic energy 
occurs near St = 0.625. Below that Strouhal number, the vortices created by the forcing 
are disturbed by the proximity of the outer wall. For sufficiently low Strouhal numbers, 
no coherent structures can be observed. 

With increasing Strouhal number, the coherent structures shed at the step get smaller, 
and thus their contribution to the periodic fluctuation of the flow decreases. Above a 
Strouhal number of St = 2.0 the importance of these coherent structures is low. A 
comparison with the literature shows that combustion instabilities in gas turbine burners 
occur in the same frequency range as the amplification of periodic disturbances found 
here (Paschereit et al. 1998; Schildmacher et al. 2000). 

The effect of the unswirled coaxial flow is not reflected in this presentation, since the 
vortex development is not prevented, but displaced. The kinetic energy of the coaxial 
flow with the same bulk velocity as the main-flow ucoax = umain is identical with the 
kinetic energy of the uncontrolled flow (crosses in Fig. 9). A high-speed coaxial flow 
{ucoax = 2 ■ Umain) even amplifies the flow response (stars in Fig. 9), since the velocity 
difference in the outer shear layer between the coaxial flow and the recirculation zone is 
even higher than in the uncontrolled flow. The effectiveness of this control measure has 
to be shown in reacting computations. 

However, using a swirled coaxial flow shows great potential even in the cold flow. Even 
the low swirl number S = 0.25 results in a considerable damping of the flow response 
(triangles in Fig. 9). An increase of the swirl number decreases the flow response even 
more (squares in Fig. 9). Here it can be seen that the swirled coaxial flow is able to damp 
the flow response by more than 50% over a broad frequency range. 

4. LES Investigation on static control of the reacting flow 
Since the computation of reacting flows is much more expensive, a full analysis like 

that for the cold flow cannot be given here, and so far, only the computations of one 
control mechanism have been carried out: the high-speed coaxial flow. In a reacting 
flow, the coaxial flow can carry either fresh air or hot products. The injection of fresh 
air near the ignition point of the flame would alter the chemical reaction of the flame 
in comparison to the uncontrolled flow. Since the current investigation concentrates on 
the attempt to control a flame mechanically and not chemically, the coaxial flow in the 
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FIGURE 10. Uncontrolled flame. Instantaneous snapshot after 6 periods of forcing. Forcing 
frequency St = 1.0. Gray-scale: temperature T. Black line: Go (flame front). 
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FIGURE 11. Static control by nigh-speed coaxial flow(ucoai = 2-umain)- Instantaneous snapshot 
after 6 periods of forcing. Forcing frequency St = 1.0. Gray-scale: temperature T. Black line: 
Go (flame front). 

computation carries hot products in order to provide the same chemical characteristics 
as the uncontrolled flame ignited by the recirculation zone at the dump. 

The high computational costs prevent the computation of physical time-spans as long 
as in the cold flow. So far, the computed time-spans are shorter than the cold-flow 
counterparts, so a statistical analysis such as phase averaging contains more uncertainties. 

Figure 10 shows an instantaneous snapshot of the temperature distribution of a period- 
ically-excited flow. The influence of the vortices created by the forcing can be seen in 
different stages. In the beginning the vortices bulge the flame-front. Fully developed, 
the vortices create the typical mushroom-shaped distortion of the flame, and during 
their decay the vortices finally detach parts of the flame. These flame pockets float far 
downstream, where they are consumed. 

Figure 11 shows the same flame with a high-speed coaxial flow. Large-scale vortices still 
distort the flame front, but have much less influence, since they are created outside the 
flame. Comparing Fig. 10 and Fig. 11, the most striking difference is that the flame with 
static control is more compact and seems much steadier than its uncontrolled counterpart, 
and no flame detachments take place. Since the small-scale mixing is enhanced by the 
coaxial flow, the flame length in this combustor is shorter than in the case without coaxial 
flow. 

In order to give a quantitative measure on the efficiency of this control method the 
flow was averaged over nine periods. The turbulent kinetic energy of the periodic velocity 
fluctuations £ was computed and integrated over all phase angles and over the volume of 
the combustion chamber. The employment of the coaxial flow resulted in a decrease of £ 
by approximately 60% in comparison with the uncontrolled flow. This figure underlines 
the efficiency of the static-control method despite its simplicity. 

Current investigations concentrate on the effect of control on the heat release and the 
influence of the swirled coaxial flow on the flame structure. 
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5. Conclusion 

The static-control mechanism described here has proven to be an effective yet simple 
way to control turbulent coherent structures in a typical dump-combustor geometry. The 
installation of this static-control method is much easier than its active-control counter- 
part. The application of static control to reacting flows has shown great potential for 
suppressing periodic flame fluctuations. 

Furthermore, LES has been a useful tool for understanding the mechanisms of vortex 
creation and suppression. Using a low-Mach-number code made it possible to explicitly 
exclude acoustic effects and pressure sensitivity of the flame, and to link the effects of the 
flame response directly to the forcing of the flow and the creation of large-scale vortices. 

Future efforts will focus on the improvement and simplification of static control of 
reacting flames. Furthermore, the extension of these concepts to swirl combustors will be 
investigated. 
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Combustion instability due to the nonlinear 
interaction between sound and flame 

By Xuesong Wuf, Meng Wang AND Parviz Moin 

1. Introduction 
Combustion instability generally refers to the sustained pressure fluctuations of acous- 

tic nature in a chamber where unsteady combustion takes place. It is essentially a self- 
excited oscillation, involving a complex interplay between unsteady heat release, the 
acoustic fluctuation and the vorticity field, which according to experimental observations 
(e.g. Poinsot et al. 1987, Yu, Trouve & Daily 1991, Schadow & Gutmark 1992), may 
be described as follows. Unsteady heat release produces sound, which then generates 
(Kelvin-Helmholtz) instability waves at the inlet (via a receptivity mechanism as it is 
referred to in laminar-turbulent transition). These waves amplify and roll up on the shear 
layer and finally break down into small-scale motions, thereby affecting the heat release. 
The whole process forms a closed loop. 

An important insight into the effect of unsteady heat release on sound amplification 
is provided by the Rayleigh criterion, which states that an acoustic wave will amplify 
if its pressure and the heat release are 'in phase', i.e. the integral of the product of the 
pressure and the unsteady heat release over a cycle is positive. The difficulty in applying 
this criterion is that unsteady heat release is often part of the solution and thus not known 
a priori. A usual remedy is to extrapolate, by using available experimental data, some 
empirical relations between the heat release and sound fluctuation. This then leads to a 
thermo-acoustic problem. Such an approach has been employed by Bloxsidge, Dowling & 
Langhorne (1988) to describe 'reheat buzz' (Langhorne 1988). Dowling (1995) formulated 
this approach in a more general setting, and discussed, inter alia, the effects of the mean 
Mach number and heat distribution. 

In the above semi-empirical approach, the hydrodynamic (and chemical) processes 
of combustion are completely by-passed. To understand the acoustic-flame coupling on 
a first-principles basis, one has to look into the structure of the flame as well as its 
associated hydrodynamic field. Fortunately, for premixed flames much knowledge about 
the last two aspects above has been obtained by using the powerful asymptotic approach 
based on the large-activation-energy assumption (Williams 1985). The reader is referred 
to Clavin (1985, 1994) for detailed reviews of the subject. This framework as well as 
relevant previous results will be used in our work. Detailed discussions will be presented 
in Section 2. 

A thorough theoretical treatment of sound-flame coupling is unrealistic at the present 
for a practical combustor, where the flow is strongly vortical and turbulent. As a first 
step, it is necessary to restrict to the simple case where the hydrodynamic motion is 
primarily due to unsteady heat release and remains laminar. 

A formal formulation of acoustic-flame coupling has been given by Harten, Kapila & 
Matkowsky (1984) for what may be called the 'high-frequency' regime, where the acoustic 
time scale is comparable to the transit time of the flame, 0{d/Ui,), where d and UL stand 

t Permanent address: Department of Mathematics, Imperial College, UK 
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for the flame thickness and speed respectively. The resulting system is nonlinear and 
requires a major numerical attack. Harten et al. considered the flat-flame case in the limits 
of low frequency and small heat release, and obtained in each limit the solution which 
describes the effect of acoustic pressure on the flame. However, they did not consider how 
the flame influences the sound. This inverse process was investigated by Clavin, Pelce & 
He (1990), who also removed the assumption of small heat release. By closing the loop, 
they were able to show that the mutual interaction leads to amplification of sound, i.e. 
to acoustic instability. For a flat flame, the hydrodynamics is completely absent, with 
the sole coupling being through the acoustic pressure affecting the temperature. 

For a curved flame, there exists an additional coupling mechanism. As was pointed 
out by Markstein (1970), the sound pressure modulates the flame and hence alters its 
surface area. This in turn leads to modulation of heat release, thereby affecting the sound 
itself. The mechanism was further analyzed by Pelce & Rochwerger (1992) in connection 
with the experiments of Searby (1992), who observed that sound was generated when a 
curved flame was propagating downwards in a tube. The curved flame is due to the well 
known Darrieus-Landau (D-L) instability. In developing a mathematical mode, Pelce & 
Rochwerger represented the curved flame by the neutrally stable D-L instability mode 
(which exists due to the stabilizing effect of gravity). A constant amplitude is prescribed 
in calculating the growth rate of sound. They showed that this coupling mechanism could 
be stronger by an order of magnitude than that considered in Clavin et al. (1990). 

The present work is aimed at improving the model of Pelce & Rochwerger (1992) in two 
somewhat related respects. First, we note that, like any marginally-stable mode, a neu- 
tral D-L mode must modulate in a weakly-nonlinear fashion rather than stay completely 
neutral. According to classical weakly-nonlinear theory (Stuart 1960), if the typical mag- 
nitude of the mode is e, the time scale of modulation is 0(e-2), comparable with the 
time scale over which the sound amplifies. Second, Searby's (1992) experiments showed 
that the flame was evolving, and that the sound amplified mainly as the flame was evolv- 
ing from a curved pattern to a flat one. Therefore for both mathematical and physical 
reasons, it is necessary to take into account the evolving nature of the flame as well as 
the back reaction of sound on the flame. For this purpose, we give a general formulation 
for the sound-flame interaction in what may be regarded as the 'low-frequency' regime 
in the sense that the acoustic time is much longer than the transit time of the flame. By 
using this basic framework, the nonlinear evolution of the acoustic and flame instability 
modes is studied in a systematic manner. 

2. Formulation 
Consider the combustion of a homogeneous premixed combustible mixture in a duct of 

width h*; see Fig. 1. For simplicity, a one-step irreversible exothermic chemical reaction 
is assumed. The gaseous mixture consists of a single deficient reactant and an abundant 
component, and is assumed to obey the state equation for a perfect gas. 

The fresh mixture has a density p-«, and temperature 0_oo- Due to steady heat 
release, the mean temperature (density) behind the flame increases (decreases) to ©<» 
(Poo)- The flame propagates into the fresh mixture at a mean speed UL, and it has an 
intrinsic thickness d. Let (x,y,z) and t denote the coordinates and time variables, nor- 
malized by h* and h* /UL respectively. The velocity u = (u,v,w), density p, temperature 
0, and pressure p are non-dimensionalized by UL, p-oo, ©-oo, and p-ooU\ respectively. 



Combustion instability 133 

We define the Mach number M = UL/ü*, where the speed of sound a* = (7P-oo//>-oo)5> 
with 7 being the ratio of specific heats. 

A key simplifying assumption is that of large activation energy, corresponding to 

ß = £(0oo - e-ooV^e2«,» 1 , (2-1) 

where E is the activation energy and TZ is the universal gas constant. Under this as- 
sumption the reaction occurs in a thin region of width 0(d/ß) centered at the flame 
front. Assuming that the front is given by x = f{y,z,t), it is convenient to introduce a 
coordinate system attached to the front, 

S = x-f(y,z,t),    V = V    t = z, 

and to split the velocity u as u = ui + v , where i is the unit vector along the duct. Then 
the governing equations can be written as (Matalon & Matkowsky 1982) 

| + ^ + V(pv) = 0, (2.2) 

du        du dp     P„  f A       1 d fds \1       „ ,„ „. 
^ + ^ + ^-vu=:-äf + ^{Au+3ä?(äi + v-v)}-pG'    (2-3) 

9v        dv .dp 

+.Pr{Av+I(v-V/|)(| + Vv)},        (2.4) 

p^- + ps^- + pvvY = 6Le-1AY-6n, (2.5) 
at ö£ 

86        88 
p^ + ps-^ + pv^e = 6A6 + 6qn, (2.6) 

supplemented by the state equation jM2p = p8, where 8 = d/h*, s = u — ft — v • y/> 

A = [i + (v/)2] |s + v2 - v2/^ - 2^(v/ • v); 

here the operators v a^d V2 axe defined with respect to t] and (. Pr and Le denote 
the Prandtl and Lewis numbers respectively, and G = gh*/Ul is the normalized gravity 
force. The reaction rate ft is taken to be described by the Arrhenius law: 

fi~«rVexp{/?(J--i)}, (2.7) 

where 0+ = 1+q is the adiabatic flame temperature. The large-activation-energy asymp- 
totic approach requires the Lewis number Le to be close to unity, or more precisely 

Le = 1 + ß~H   with   I = 0(1) . (2.8) 

To make analytical progress, we assume, in addition to ß > 1 , that 

6<1,    Af < 1 . (2.9) 

The whole flow field then is described by four distinct asymptotic regions as illustrated in 
Fig. 1. In addition to the thin reaction and preheated zones, there are also hydrodynamic 
and acoustic regions, which scale on h* and h*/M respectively. In the reaction zone, the 
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Preheated zone 

-~-\0(d)\~- 
'      '   Reaction zone 
_^|  |— O(dQ) 

Hydrodynamic 
zone 

FIGURE 1. Sketch of the problem and the asymptotic structure 

heat release due to the reaction balances the thermal diffusion, and the species variation 
balances the mass diffusion (Matkowsky & Sivashinsky 1979). In the preheated zone, 
the dominant balance is between the advection and diffusion. All the four regions are 
interactive, in that the complete solution relies on the investigation of all these regions. 

The direct interaction between the sound and the flame is through the hydrodynamic 
region, which we now consider. In this region, the solution expands as 

(P,e) =  (R0,G) + 6(Pl,e1) + ... ] 
(«. v. /)    =    («o,v0,/o) + *(ui, vi, /i) + ...   >. (2.10) 

p   =   (R0G$)+po + 6p1 + ... ) 

The solution for the density (Pelce & Clavin 1982, Matalon & Matkowsky 1982), 

Ro 
_ f 1 = R- 
-{  (l+rW = 

£<0 
q)~1=R+      £>0, 

is accurate to all orders in 6. In the following, the subscript '0' will be omitted. Substi- 
tution of Eq. (2.10) into Eqs. (2.2)-(2.4) leads to the equations governing (UQ, V0, po): 

(duo  ,     9u0 

{-dT + s°-bJ 
fdvp 
\ dt 

9so — + v v0 = 0 , 

+ v0 • v ^o 

öv0 
+ So"9T + Vo'vv° 

J      a? 

}- 
dpo 

VPo + V/o-^-ßGv/o 

(2.11) 

(2.12) 

(2.13) 

where s0 = uo - fo,t - vo • V/o- 
Embedded in the hydrodynamic zone are the preheated zone and the much thinner 

reaction zone. The jump conditions across the preheated zone were first derived by Pelce 
& Clavin (1982) for v, / < 0(1), and by Matalon & Matkowsky (1982) in the general 
case v, / ~ 0(1). These are 

M = g[l + (V/o)T* ,    [v0] = -q V /o/(l + (V/o)2)1/2 ,    N = ~q ■       (2-14) 

The front evolution is governed by the equation 

/o,t = uo(0-,7?,CIi)-vo(0-,7?JC,i)-V/o-[l + (V/o)2]i • (2.15) 

The results Eqs. (2.14)-(2.15) were originally derived by assuming that the flow is in- 
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compressible. Fortunately, they are valid for low-Mach-number flows because the acoustic 
pressure does not directly affect the preheated zone or the reaction zone to leading order. 
It only contributes a small correction of a higher order (see Clavin et al. 1990). 

The leading-order system suffices for most part of our work. However, a more general 
result may be derived if we include the jumps at 0(6), which were derived by Pelce & 
Clavin (1982) and Matalon & Matkowsky (1982). The full version is rather complex, but 
our subsequent analysis requires only the linearized results: 

[Ul] = -i/I?(g)(V2/o + V • v0) ,    [Pi] = "2 M + q V2/o + ln(l + q)^- ,      (2.16) 

[Vl] = Pr[^   +ln(l + ?){^(v0 + v/o) + Gvjfo}-«V/i, (2-17) 
rOO 

where D(q) = /    ln(l + qe~x) dx, UQ and v0 as well as their derivatives are evaluated 
Jo 

at the front £ = 0~. The function /i satisfies the equation 

/i,t = «i(0,i?,C,*) + {^ln(l + ?) + iji?(?)}{v2/o + VVo}. (2.18) 

3. Strongly-nonlinear sound-flame interaction: a general formulation 
3.1. Acoustic zone 

The appropriate variable describing the acoustic motion in this region is 

i = M£. (3.1) 

Because the transverse length is much smaller than the longitudinal length, the motion 
is a longitudinal oscillation about the uniform mean background, and the solution, for 
the velocity and pressure say, can be written as 

u = U± + ua(lt) + ... ,    p=~j + M-1p«(l»*) + ••• » (3-2) 

where U± are the mean velocities behind and in front of the flame respectively, with 
U+ — U- = q. The pressure pa and velocity ua satisfy the linearized equations 

Ä_^ ^      Ä = ^. (3.3) 
dt2     ö£2      ' dt     d£ 

As £ -*■ ±o, 

Ua^Ua(0±,t) + ...   ,     Pa^Pa(0,t)+p'a(0±,t)£+...   . 

As will be shown in Section 3.2, the acoustic pressure is continuous across the flame, but 
the flame induces a jump in ua i.e. 

[P.] = O.   M = g{(i + (v^o)2)=-i}, (3.4) 

where 0 stands for the space average of <p in the (77, £) plane, and Fo is defined in Eq. (3.5). 

3.2. Hydrodynamic zone 
In the hydrodynamic zone, ua and pa^ appear spatially uniform on either side of the 
flame, and can be approximated by their values at | = 0*. To facilitate the matching 
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with the solution in the acoustic region, we subtract from the total field the acoustic 
components as well as the mean background flow, by writing 

uo = U± + ua(0±,t) + Uo,    po = -^ + P±+p'a(0±,t)Z + Po,    fo = Fa + F0,     (3.5) 

where P± is the mean pressure (with P+ - P_ = q), and F'a = U~ — 1 + ua(0~,t). Let 
v0 = Vo- Then the leading-order hydrodynamic field satisfies the following equations 

^ + VVo = ^-Vfo, (3.6) 

f + *{^*f*V.-V«,}-f-*7«0f, (3,, 

-RGvFo+Pa^^VFo, (3.8) 

while the flame front is governed by 

F0,t = U0 - Vo • V-Fo - {(1 + (V-Fb)2)* - l} , (3.9) 

where h(£) is the Heaviside step function, J = [ua], and So = Uo — Fo,t — Vo • V Fo- 
Matching with the outer acoustic solution requires that 

Uo -> 0 ,    Vo -> 0 ,    P0,? ->• 0   as   £ -> ±oo . (3.10) 

The unsteady pressure and transverse velocity jumps are 

[P0] = 0,    [Vo] = -?V^o/(l + (Vi;b)2)1/2- (3-11) 

The hydrodynamic motion affects the ambient acoustic regions by inducing a longitu- 
dinal velocity jump. To derive this key result, we take the spatial average of Eq. (3.6) 
in the (77, C) plane, and integrate with respect to £ to obtain Uo = Vo • V-Fb> where the 
overbar denotes the mentioned spatial average. Inserting the first relation in Eq. (3.5) 
into Eq. (2.14), and taking the spatial average and using the second relation in Eq. (3.11), 
we find 

l7 = [Ua] = g{(l + (VPo)2)5-l}. (3.12) 

On the scale of acoustic wavelength, the right-hand side is equivalent to the rate of a 
concentrated unsteady heat release, which is shown to be proportional to the change of 
the surface area of the flame. 

The jump condition for Uo becomes 

[Uo] = q{(l + (V-Fo)2)"* - (1 + (V-Fb)2)* } • (3.13) 

The hydrodynamic equations, Eqs. (3.6)-(3.9), and the acoustic equations Eq. (3.3) 
form an overall interactive system via Eq. (3.4): the acoustic pressure modulates the 
flame, which in turn drives sound by producing unsteady heat release. This system uses 
two distinct spatial variables to describe two distinct motions so that, in terms of f, 
the acoustic motion has an 0(1) characteristic speed (see Eq. (3.3)), comparable with 
the hydrodynamic velocity. This has a significant advantage from the numerical point of 
view, because the acoustic speed does not impose a severe restriction on the time step. 



Combustion instability 137 

4. A weakly nonlinear case 
A flat flame may become unstable owing to differential diffusivity of mass and heat, or 

to the hydrodynamic effect associated with gas expansion. The latter is the D-L instability 
mentioned in Section 1. An interesting question is: how large-scale combustion instability 
is related to flame instabilities, which occur over small scales over which the unsteady flow 
can be treated as incompressible. A natural proposal is that combustion instability arises 
when acoustic modes of the chamber are excited and amplified by the flame instabilities 
through mutual resonance. D-L instability perhaps is the most important candidate for 
driving combustion instability since, for most mixtures, the Lewis number is close to 
unity so that the instability due to differential diffusivity is ruled out. 

In general, D-L instability occurs at all wavenumbers. However it can be stabilised by 
gravity effect, which introduces a small-wavenumber cut-off (Pelce k Clavin 1982). The 
mode with this cut-off wavenumber is nearly neutral. On the other hand, an acoustic 
mode is neutral on a linear basis. A mutual interaction can take place between the two 
when their magnitudes are still small. Such a weakly-nonlinear coupling will be analysed 
by using the general formulation in Section 3. The present analysis is motivated by the 
experiments of Searby (1992), where such an effect apparently operates. 

4.1. Analysis of the hydrodynamics of the flame 
For simplicity, we assume that the flame is two dimensional. The flame is stable when the 
flame speed UL is less than the critical value UL = (gh*/(n(l + g)))5, as was shown by 
Pelce & Clavin (1982); see also below. Suppose that the magnitude of the nearly neutral 
D-L mode is of 0(e). Then the weakly nonlinear interaction takes place over the time 
scale of 0(e-2) (Stuart 1960), and thus we introduce the slow variable 

r = e2t . (4.1) 

In keeping with this, UL is allowed to deviate from its critical value by 0(e2), and thus 
we write 

^L = 7r(l + q) + e2gd = Gc + e2gd   with   gd = 0(l). (4.2) 

To take account of the effect of Markstein length, we assume that d = 0(e2), and without 
losing generality we take e2 = Ö. 

The velocity and pressure in the hydrodynamic region expand as 

(Uo,Vo,Po) =e(Ü1,V1,Pi) + €2(Ü2,V2,P2) + e3(Ü3,Vs,P3) + ... . (4.3) 

The expansion of Fo is somewhat unusual and has the form 

JPO = Fo(r) + eJFi + e2F2 + e3F3 +... , (4.4) 

where the 0(1) term is due to the advection of the front by the accumulated streaming 
effect. By substituting the expansion into Eqs. (3.6)-(3.9) and expanding to 0(e3), we 
obtain a sequence of equations at 0(en) (n = 1,2,3). 

The leading-order solution is given by (cf. Pelce & Clavin 1982) 

(Üu Pu Fx)   =   A(T) {(->±e-*« +C±), (P±e"*< -R±GeFi), Pi} (eik* +c.c.) \ 
Vx    =   A(r)P±e-fe«(iei*"-|-c.c.) J 

(4.5) 
where A is the amplitude function of the D-L mode, and C = 0 to satisfy the upstream 
matching condition. The wavenumber fc = it so that Vi = 0 at n = 0, 1. The front 
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equation implies that P    = 0, while the jump conditions are given by the linearized 
version of Eq. (3.11) and Eq. (3.13), i.e. 

P+ - R+GcFi = -R-GcFi,    -P+ + C+ = 0,    P+ = -qkFx . 

The requirement of a non-zero solution gives the eigen-relation: gh*/Ul = (1 + q)n. The 
eigenfunction is normalized by setting Fi = 1, and then P+ = C+ = —qir = P. 

The 0(e2) terms in Eq. (4.3) and Eq. (4.4) are governed by the following equations 

dU2     dV2 

d£ + dr) 
dVi dFi 

DdU2 _,_ 8U: 
dt       of 

ae dn ' 

R9V2 + R~d7 + ae 

ae     i ' an 
dv2      dP2    „r^avi    -ydVi- 

+ Vi- 

+ 

dr) I      d£ dr) ) 

dFi     l/d-FiN2 

subject to the jump conditions 

U2 = ~2q (vA)2 + (vA)2], v2 = -q^F2 

dr) 

,   [A]- 0 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

As the forcing terms on the right-hand side indicate, there exists a mutual interaction 
between the sound and flame as well as the self-interaction of the flame. The solution, 
for U2 and F2 say, takes the form 

U2     =     Ü2,aAB(& fcq +c.c.) ei ut + TJ2 2A2 (e2 i kr, +c ^ + fj^tf 

F2   =   F2,aAB(ieikr>+c.c.)eu't+F2t2A
2(e2ik,>+c.c.) 

At cubic order, the governing equations are found to be 

(4.12) 

8U3     dV3 

d£       drj 
6V1dF2-    dV2dFi 
d£  dr)       of  dr] 

(4.13) 

du2   f du,   ^ du2   ^ dm 
Ul-bT+ 2~dT    l~drT    2~drT } 

+R{Fo,r + Ka + ^)^- RJHO^- + Pr V2UX ,(4.14) 

R 
dV3  . dV3 dPi 

+^<°''>ftf+* 

dr) J  d£ 

dV2     f BVi 

dj+ 2~dl 
dF2     dPi dF2     dP2 dFi 

a? 
.% 9V2 dVi 

f+f=-f --'* -«+*£+*£♦*£} dr) dr) 

dr)       af   dr) dr) 

+R{F0,T +F^a + V1¥±}^ -RJh(£)^ +Pr v2t>i , (4.15) 

where J = qk2. Expansion of the front equation gives 

A,r + F3,t = U3(0-,t) - Vi ■ VF2 - % • vA - VA • VF2 ■ (4.16) 
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To this order, it is only necessary to consider the component that coincides with the 
fundamental of the D-L mode, and thus we write 

(U3, P3, F3) = (#3,i. A,i, 4i)(eifc" +C.C.) ,    V3 = V3,i(^
kn +C-C.) • (4-17) 

The jump conditions at this order need some attention. A direct expansion of Eq. (3.11) 
and Eq. (3.13) shows that at 0(e3), 

ös] = -q v A -V& ,   [PS] = o,   [vs] = -q vh + |(vA)2 vA •     (4.18) 

However, since 5 = 0(e2), the (eS) terms in Eq. (2.10) are of the same order as the 0(e3) 
terms in Eq. (4.5). The jumps Eqs. (2.16)-(2.17) must be added to Eq. (4.18) to give 

Üz,i] =    \W(k)k2A - 2qk2F2,2A
3 

P3,i =    -lD{q)k2A - qk2A >  . (4.19) 

V3,i   =    -kqF3<1 - Prqk2A + ln(l+ q){kGcA)+ lqk3A3 

The equation controlling the front motion is 

Ä = Ü3>1(0-)-2k2F2,2A
3-kV2fi(0)A3-k2{?-^Ml + q) + ±lD(q))A .    (4.20) 

After substituting the leading- and second-order solutions into the right-hand sides of 
Eqs. (4.13)-(4.15), the solution for Us,i, Vs.i, etc. can be written down. Inserting it into 
Eq. (4.19) and Eq. (4.20), we obtain the amplitude equation 

A' = KA + lsA3->yb\B\2A, (4.21) 

K = ~2ÖTq)9d ~ ¥ {q + ^ ((? + 2) ln(1 + q)+ W{q)) }  ' (422) 

7s = H9 + I + ~q)k3 = (4 " q){1 + ^/W ' (423) 

-yb = {4(R+-R-)2(l + R+/R-)ku}2sm2(Ri<TwL)}/{(R+ + R-)2u2 + 4k2} .   (4.24) 

4.2. Analysis of the acoustics 
The pressure and velocity of the acoustic fluctuation are expanded as 

pa = eJ3(r)p0,i + e3Po,2 + • • • ,    "a = eB(r)ua,i + e3ua,2 + • • • , 

where B is the amplitude function. 
To leading order, pa>i and ua>i satisfy Eq. (3.3), and they have the solution 

P.,i=   e^*[a±e-ifi^«+afeiÄlw« 

(4-25) 

{a$e-iRt±»i+afe4«t} 

tiafi=   e^'i?±'[o±e-ifi^«-afeiß^«]   ^ 
(4.26) 

where a* and of are constants, and for convenience we take at = e1 -<rw . The end 
conditions are: ua,i = 0 at f = -o-L, and pa,i = 0 at | = (1 - cr)L, where L is related to 
the dimensional length of the duct I* by L = Ml*/h*, and a is a parameter characterizing 
the mean position of the flame front. Both u0,i and p0,i axe continuous across the flame, 
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i.e. [ui>a] = 0 and \pi,a] = 0, as the expansion of Eq. (3.4) shows. Application of these 
conditions leads to the dispersion relation of the acoustic mode (cf. Clavin et al. 1990), 

(R+/R-)* tan(i?io-wI)tan(fi|(l - a)wL) = 1 . (4.27) 

Inserting Eq. (4.25) into Eq. (3.3), and solving the resultant equations at 0(e3), we 
find 

Paa = e»w*{(^e-ifi^«+6jteiÄi"«) - Ä*B'| (a±e-iÄ^«-of eiÄl"«)} , 

uafi = ei»t{R±i(b?e-iR±«>i-b±ei4^ - B'i(a?e-iR±«i+a±jR±»i)} . 

It follows from substituting Fo into Eq. (3.4) and expanding to 0(e3) that 

]p2,a] = 0 , [U2,a] = 2qk2F2,aA
2B , 

The above relations together with the end conditions, ua,2 = 0 at | = -oL and pa$ = 0 
at f = (1 — a)L, lead to the amplitude equation for the acoustic mode: 

B' = XA2B , (4.28) 

i2qk*R-J(R+-R-)A 
X~ L(i(R+ + R.)u> + 2k)   ' {*   y; 

tan(RlaLjL) 

a sec2(RiaojL) + (1 - cr)(Ä+/J?_)sec2(i?|(l - <r)wL) tan2 (RiauL) 
(4.30) 

4.3. Amplitude equations 
The sound-flame interaction is thus described by the coupled amplitude equations 

A'(T) =KA + >ysA
3 - jb\B\2A ,    B'{T) = XA2B . (4.31) 

Now if the flame amplitude A is taken to be a constant, then the equation for B reduces 
to the result of Pelce & Rochwerger (1992) with B growing exponentially. In their model, 
the coupling is one-way. The present work includes the back-effect of the sound on the 
flame, leading to a better description of the experiments of Searby (1992); see below. 

The effects of the nonlinear interactions become clear if one inspects the signs of the 
coefficients. According to Eq. (4.29) and Eq. (4.24), K(x) > 0 and jb > 0, indicating 
that the flame always acts to amplify the acoustic field, while sound inhibits the flame. 
Note also that 7S is positive (negative) for q < 4 (q > 4), and hence the self-nonlinearity 
of the flame is destabilizing for q < 4 and stabilizing for q > 0. 

Assuming that the flame and sound are weak initially so that the nonlinear terms in 
the amplitude equations can be ignored, then the appropriate initial conditions are 

A ~ eKT ,    B ~ &o exp{xe2KT}   as   T -* -co , (4.32) 

where bo <C 1. Figure 2 shows the evolution of A and B for bo = 0.1, 0.05, (with 7„, 75 
and x being arbitrarily taken to be unity). The background noise remains constant when 
the flame is of small amplitude, but starts to amplify when the latter has gained a certain 
strength. The amplification is extremely abrupt, taking place primarily when the curved 
flame evolves into a flat one. The flattening of the flame is caused by the back-reaction of 
the sound. Eventually the sound saturates at a constant level. For comparison purposes, 
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FIGURE 2. Nonlinear evolution of the acoustic amplitude B and flame amplitude A. 
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FIGURE 3. Time traces of the acoustic pressure and flame position from Searby's experiment 
(Fig. 3b of Searby (1992)). 

Searby's experimental results are shown in Fig. 3. It is clear that the present theoretical 
predictions are entirely consistent with his observations in the qualitative sense. 

5. Conclusions 
In this paper, the acoustic-flame coupling, the key process underlying combustion 

instability, is studied by using matched-asymptotic-expansion techniques based on the 
assumptions of large activation energy and low Mach number. A general asymptotic for- 
mulation was given for the lower-frequency regime of practical relevance, for which the 
acoustic source is found to be directly linked to the shape of the flame. The basic frame- 
work was then used to study the weakly nonlinear interaction between an acoustic mode 
of the duct and a nearly-neutral D-L instability mode. A system of coupled amplitude 
equations was derived, and was found able to describe the experimental observations of 
Searby (1992) qualitatively. 

We note that the present analysis can be extended to include the effect of 'weak 
turbulence' (i.e. convected gusts) in the oncoming fresh mixture. It would be interesting 
to solve the fully-nonlinear system in Section 3 numerically, with a view to addressing 
whether or not the coupling leads to self-sustained large-amplitude pressure oscillations. 
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DNS of transition in hypersonic boundary-layer 
flows including high-temperature gas effects 

By C. Stemmer AND N. N. Mansour 

1. Motivation and Objective 
Wind-tunnel experiments at hypersonic Mach numbers above 10 are extremely dim- 

cult to undertake and facilities are limited. Additionally, the stagnation conditions for 
free flight under atmospheric conditions can not be reproduced. This results in a limited 
portability of the wind-tunnel results to atmospheric conditions. Therefore, numerical 
investigations of hypersonic transition can be extremely valuable in developing an un- 
derstanding of the transition process at hypersonic speeds. 

The objective of this effort is to develop an understanding of effects of nonequilibrium 
chemistry on transition. Our approach is to compare hypersonic transition on a flat plate 
under nonequilibrium chemical and thermal conditions to hypersonic transition under 
equilibrium conditions. 

In the 1950's and 60's, a series of hypersonic experiments was conducted in free flight. 
The transition location could be found but no details on the transitional structures could 
be recorded in these experiments (see Schneider, 1999, for a comprehensive review of 
supersonic and hypersonic experiments). Schneider also notes that the angles of attack 
of the test vehicles are uncertain. An ongoing experiment on transition at Ma = 21 
in Novosibirsk, Russia Mironov & Maslov 2000, promises experimental verification of 
the numerical findings to some extent. Further detailed experiments on transition at 
hypersonic speeds cannot be expected in the near future. 

2. Governing Equations 
In order not to confuse the index notations, the index i refers to the species 1-5 and no 

summation is implied on this index, whereas the indices j, k and I refer to the Cartesian 
directions x, y and z and summation from 1-3 is implied. 

The continuity equation for chemically-reacting compressible flows becomes 

^+ ,£:(*(«* + «&>> = *'«. (2J) 

where Wj represents the species production terms (see Eq. 2.19) and UD the diffusion 
velocities (see Eq. 2.16). Rewriting this equation with the species concentrations rather 
than the densities, it becomes 

^+&<*■&>-"''■ (2-2) 

where the species concentrations are given by 

a = £ (2.3) 
p 
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Note that since 

$> = 1, (2.4) 
i 

only (i - 1) equations have to be solved. 
The total mass is conserved 

dt     dxj 

The total momentum equations are 

ÖP + #-(w) = 0- (2-5) 

with 

DUJ dp       d ,0Rs 
p-=± = --£- + ^—Tjk (2-6) 

^="S + lj)+i^"''" (2'7) 

The bulk viscosity is denoted by A. 
The energy equation for the total energy becomes 

p W' + Wn = -{qj + qfh - (pujj + £.(*„ Tjk) + 2 ((ftfciß).,)     (2-8) 

where e describes the internal energy. 
The energy equation for the vibrational energy evib in the case of vibrational nonequi- 

librium is as follows 

^ + ^- {evib(uj + uf)) = -qf + QT~V + Qchem- (2-9) 

For the equilibrium case, the vibrational temperature Tvib is equal to the translational 
temperature T and eq. (2.33) is used with T replacing Tvib. 

The internal energy for the complete system is a sum of the species internal energies 
taking into account their concentrations, 

e = 5>ei. (2.10) 
i 

The equilibrium internal energy for one species consists of the translational, rotational 
and vibrational energy and the heat of formation. Note that atoms (N and 0) deliver no 
vibrational and rotational contribution to the internal energy 

e. = etranS(r) + ^rotp) + ef^T
vib) + Afl{. (2.11) 

The internal energy contributions from translation, rotation and vibration are assembled 
through the specific heats at constant volume as 

d = <?nsT + cr
v°jT + cv$Tvib + A/if. (2.12) 

The enthalpy is expressed as 

hi = c%tnsT + cr
pp + c$ + Ah{. (2.13) 

The internal energy and enthalpy are connected through 

h = e + P-. (2.14) 
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FIGURE 1. Composition of equilibrium air at 1 atm. 

The fluid is treated as an ideal gas, where the following equation holds 

P 
K, 

-XJ-E«^- Mi 

For the diffusion velocities UD, Fick's law of diffusion is employed 

dci 
piU? = -pDdxS 

(2.15) 

(2.16) 

where the diffusion coefficient is independent of the species. 
The translational and the vibrational heat conduction is described through Fourier's 

law 

qf = -K- dxj 
(2.17) 

2.1. Chemical Modeling 

A five species (N2,02,N,0,NO) model for air will be applied. The equilibrium com- 
position for air at constant pressure over temperature is shown in Fig. 1. The reaction 
rates (kf and fcj) are modeled in an Arrhenius manner according to (Park 1989). The 
model proposed by Park takes into account the translational as well as the vibrational 
temperature Tvib for each species. The vibrational temperature describes the vibrational 
relaxation, whereas a translational temperature includes the rotational relaxation, which 
is assumed to take place instantly. It only takes 9-12 molecule collisions for the rotational 
relaxation to complete, whereas the vibrational relaxation takes 105 molecule collisions 
to reach a steady state (the same order of magnitude as for the chemical relaxation). 
The seventeen chemical reactions thought to be sufficient for the modeling of air under 
the conditions of interest are as follows: (The reaction partner M represents any of the 
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five species considered; see Park, 1989.) 

[reac. 1) 

reac. 2) 
reac. 3) (2.18) 
reac. 4) 
reac. 5) 

N2 + M=^N + N + M 
02 + M#0 + 0 + M 

NO + Mv^N + O + M 

N2 + 0 # NO + N 

NO + 0 # N + 02 

with the production terms {MN2,Mo2,MNO, MNandM0 represent the species masses) : 

WN2 = MN2(Ri + Ri) 

Wo2 = Mo2(R2 - Äs) 
WNO = MNO{Rz - A4 + Äs) (2-19) 

WN = MJV(-2ÄI - A3 - A4 - Äs) 

Wo = Mo(-2Ä2 - A3 + A4 + Äs) 

where 

*--!>»• (^)(£)+xM&) VM, 
Po?^ f*^ J.^t.„./,i2->\   f* *~X>« (£)(£)+S>*v*b; v«.. 

*~?*/-(C)(£)+?*-(£)(£)(£)  (2-20) 

and the forward reaction rates fc/ for the five reactions considered are 

Jfe/,1 = 2.0 x 1015 (v/TT^)_3/2 exp(-(59,500/s/TTvib))   for M = molecule 

kf,i = 1.0 x 1016 (VTTvib)-z/2 exp(-(59,500/V2T»»))   for M = atom 

fc/2 = 7.0 x 1015 (y/TT^ib)-*/5exp(-(113,200/v/TT"6)) for M = molecule 

fc/i2 = 3.0 x 1016 (Vrf^)-S/5 exp(-(113,200/v^rr»»)) for M = atom 

Jb/,3 = 5.0 x 109 exp(-(75,500/v^T^))   for M= N2, 02 (2.21) 

kffi = 1.1 x 1011exp(-(75,500/Vrr-6)) for M= N, O, NO 

kfA = 6.4 x 1011 (V'TT^)-1 exp(-(38,370/Vrr««*)) 

Jfe/,5 = 8.4 x 106 exp(-(19,450/VTTvib)). 

The backward reaction rates kb are calculated from the equilibrium rates through 

h,i = kf,i/Keq,i (2-22) 
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The equilibrium rates are defined as 

Keqtl = exp(0.50989 • (VTT^/10, 000) + 2.4773 + 1.7132 ■ log10(10, OOO/VlT^) 

-6.5441 • (10,000/VTTvib) + o.2959i • (loVCrr™*)) 

Keqfl = exp(1.4766 ■ (VTT^/10, 000) + 1.6291 + 1.2153 • log10 (10,000/VlT^) 

-11.457-(10, OOO/VTT™6) - 0.009444 • ((10s/(TTvib)) 

Keq,3 = exp(0.50765 • (Vff^/10,000) + 0.73575 + 0.48042 • log10(10,000/VTT^6) 

-7.4979 • (10,000/VTT^) - 0.16247 • ((108/(TTvib)) (2.23) 

KeqA = exp(0.96921 • (VlT*VlO,000) + 0.89329 + 0.73531 • log10(10, OQQ/y/TT"*) 

-3.9596 ■ (10,000/VTTvib) + 0.006818 • ((108 /(TTvib)) 

Keg<5 = exp(-0.002428 • (VTT^/10,000) - 1.7415 - 1.2331 • log10(10,000/VlT^) 

-0.95365 • (10,000/VTTvib) - 0.04585 • ((10s/(TTvib)) 

2.2. Modeling of physical and transport properties 

The following relations are for a mixture of chemically-reacting gases. 

2.2.1. Specific heat at constant volume 
The specific heat at constant volume c„ for atoms is described through: 

*.« = <r = \Ri- (2-24) 

The partial derivatives of the species concentrations with respect to the temperature are 
the contributions due to chemical reactions. 

The specific heat at constant volume c„ for molecules (Vincenti & Kruger 1982) is 
made up as follows, 

„    . _ „trans   ,   „rot   ,   „vib 

-ivtb iTVtb 3 (er»/r^)'eerv^ 
- 2""*+ Ui +      reefi/T"i<> _ !)2        J' K      ' 

where ®fb is the characteristic temperature of vibration of the molecular species. 

2.2.2. Specific heat at constant pressure 
The specific heat at constant pressure cp is described by: 

Cp^^i + RiT. (2.26) 

2.2.3. Viscosity 
Blottner's formula will be employed for the modeling of the viscosity (Blottner, Johnson 

& Ellis 1971). This approximate formula is valid up to 10,000 K, far exceeding the 
temperature range of the flows investigated here. The coefficients .Aw,i?wand Cßi are 
given by Blottner et dl. 

Pi = 0.1 • exp [<7W + (In T ■ (B^ + In T ■ Aßi))]. (2.27) 
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2.2.4. Thermal conductivity 
The species' thermal conductivities are described employing Eucken's correction, given 

as (Hirschfelder, Curtiss & Bird 1964): 

*« = ßi{\<rs + o. <ib = ^«* )• (2-28) 
2.2.5. Mixing rules for viscosity and thermal conductivity 

The mixing rule in a mixture of gases, according to (Wilke 1950), is 
n 

with 
. [I + C^/M,)

1
/

2
^/^)

1
/

4
]
2 

11 (8 + SMi/M^I2 

and 
Ci/Mi 

x< =   
E^ife/M,-)' 

The same formula applies for the thermal conductivities, replacing the viscosity /u by 
the thermal conductivity k. 

Further details of the physical modeling can be found, for example, in (Sarma 2000). 

2.2.6. Diffusion coefficient 
A constant Schmidt number Sc = 0.5 is assumed (Hudson 1996) which yields for the 

diffusion coefficient: 

D = -£- = — (2-30) pSc      p 

2.2.7. Translational-vibrational energy exchange 
Vibrational energy is present only in the molecular species N2, O2 and NO, which are 

all modeled as harmonic oscillators. Therefore the following equations are valid. In case 
of the incorporation of anharmonic oscillatory molecules like CO2, different relaxation 
and energy expressions have to be applied (Vincenti & Kruger 1982). 

The translational-vibrational energy exchange is described through a Landau-Teller 
relaxation model (Vincenti & Kruger 1982) as, 

       „vib,eq frp\ _ ffvibfT<vib\ 
QT-v = £c.£i UJ    e«   U     )f (2.31) 

where the relaxation times are determined for each species as 

n = ic1exp((C2/r)
1/3), (2.32) 

Pi 

and the nonequilibrium vibrational energy depends on the vibrational temperature as 
Qyib irpvib 

vib        *-*i    /    Tf.'TVib p.     ^ **l c^vib trrvib RiTvih. (2.33) 

The equilibrium value for the vibrational energy ev
i
%b'eq follows the same expression, with 

T replacing T"i6. 
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FIGURE 2. Schematic of shock location and boundary-layer edge for hypersonic boundary 

layers on a flat plate, showing dependence on Mach number 

The chemical source term in Eq. 2.9 is expressed as the sum over the vibrational 
internal energy multiplied with the production terms: 

Qchem = Y/Ci(e
v

i
ibWi) (2.34) 

3. Future Work 
A spatial finite-difference DNS code will be applied on a Cartesian three-dimensional 

grid on a flat plate. The code will incorporate a shock-capturing technique, since the 
shock provoked by the flat-plate leading edge is the major source of nonequilibrium. For 
the high Mach numbers, the location of the shock and the boundary-layer edge, which is 
the area of linear instability for hypersonic flows, merge, and the chemical and thermal 
nonequilibrium in this region is expected to influence transition to a large extent (Fig. 2; 
see also Anderson, 1989). 

For the flight conditions investigated, the data in Fig. 3 are relevant. At a speed of 
Voo = 5.9 Km/s, dissociation of nitrogen and oxygen can be expected. For an altitude of 
ft = 25 Km, chemical and thermal equilibrium will persist at a Mach number Ma = 20. 
At an altitude of about h = 100 Km (Ma=20.8), full nonequilibrium conditions are 
present. Conditions are chosen such that ionization will not take place. This choice is 
consistent with the return path of the shuttle as it enters the athmosphere. 
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FIGURE 3. Flow regimes and thermochemical phenomena in the stagnation region of a 30.5 cm 
radius sphere flying in air (Gupta et al. 1990) 
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Temperature-fluctuation scaling in reacting 
boundary layers 

By M. P. Martin f AND G. V. Candler | 

1. Introduction 
The boundary layers that are formed on hypersonic vehicles are hot, chemically re- 

acting, and turbulent. Currently, the boundary layer on realistic hypersonic vehicles is 
simulated either assuming that the boundary layer is laminar or using simple turbulence 
models that have not been calibrated for hypersonic applications. Generally, the calibra- 
tion of turbulence models has been done using DNS databases of incompressible flows 
or using perfect-gas wind-tunnel data. If we were able to perform more accurate simula- 
tions of hypersonic flows, we might find a different chemical composition of the gas, and 
different heating-rates, than those that are currently predicted. 

In the flows of interest, the magnitude of the temperature fluctuations is very large due 
to the high energy content that is present. Furthermore, the chemical reaction rate is a 
highly non-linear function of the temperature. Therefore, temperature fluctuations may 
result in large variations in the reaction rates. In this paper we study the turbulence- 
chemistry interaction in a turbulent boundary layer and seek a scaling of the temperature 
fluctuations based on the resolved mean flow variables. The aim is to devise a model 
for the temperature fluctuations that can be used in the context of Reynolds-averaged 
Navier-Stokes or large-eddy simulations to predict accurate heating-rates and product 
formation. 

Following our previous work (Martin & Candler, 2000), we use the temporally-evolving 
DNS database of a boundary layer at Reg = 7000, edge-conditions of Me = 4.0, pe = 0.5 
kg/m3, Te = 5000 K, and wall-temperature Tw = 5000 K. These conditions represent the 
boundary layer on a 26° wedge at a Mach number of 20 and 20 km altitude. We use a single 
model reaction, SI + M ^ S2 + M, where species SI and S2 have the same molecular 
weight and number of degrees of freedom. In this way, the gas constant is not a function 
of the chemical composition of the gas and changes in pressure are only caused by density 
and temperature variations. The reaction rates correspond to oxygen dissociation, and 
SI and S2 represent molecules and atoms, respectively. Thus, production of species SI 
indicates an exothermic reaction. The reaction rate and equilibrium constant expressions 
are taken from Gupta et al. (1990). 

The paper is organized as follows. We first present a review of our previous work 
by introducing the non-dimensional parameters that govern the turbulence-chemistry 
interaction and the scaling functions that were found using DNS data of isotropic tur- 
bulence at conditions typical of hypersonic boundary layers. In a turbulent boundary 
layer, the energy transfer mechanisms are more complex than those found in isotropic 
turbulence. Thus, we present the temporal evolution equations for the turbulent kinetic 
energy and the variance of the temperature. These equations are used in the analysis of 
the turbulence-chemistry interaction. The results are divided in two sections. First, we 
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present the characteristics of the mean flow and the effect of turbulent fluctuations on 
the mean flow motion. We then discuss the turbulent energy transfer and the scaling of 
the temperature fluctuations. Conclusions are given in the last section. 

2. Background 
The nondimensional parameters governing the turbulence/chemistry interaction are 

(Martin & Candler, 1998) the turbulent Mach number, the Damköhler number, the 
Reynolds number, and the relative heat release, namely 

(2.1) 

(2.2) 

Re, = P-^, (2.3) 

Ah° = ^TT, (2.4) 
cvT + ±q2 

where q = (u^)1/2 is the rms magnitude of the fluctuation velocity; o is the speed of 
sound; rt = k/e is the turbulent time scale, where k and e are the turbulent kinetic energy 
and dissipation, respectively; rc = p/ ((u)|1)

1/2Ke?) is the chemical time scale where w 
is the source term, and Keq is the equilibrium constant; A = qrt is the characteristic 
turbulent length scale; and Ahc is the heat of the reaction. 

In our previous work (Martin k Candler, 1998 and 1999), we used DNS to perform a 
fundamental study of isotropic turbulence interacting with finite-rate chemical reactions 
at conditions typical of a hypersonic boundary layer. We found that the turbulent motion 
is fed from the energy provided by the exothermic reactions, while the reaction rate is 
increased by the turbulent temperature fluctuations. This is a feedback process that takes 
place through the pressure-strain term in the Reynolds stress equation. The feedback is 
negative for endothermic reactions, resulting in a reduction in the turbulent motion. The 
DNS database showed that the temperature fluctuations can be expressed as a function 
of the governing parameters. For endothermic reactions, the temperature fluctuations 
scale linearly with Mf. Whereas for exothermic reactions, the temperature fluctuations 
are enhanced and can be expressed as 

rRMS/(T)=A(W\/lE)B (2.5) 
= A(Ah° MtDa)B (2.6) 

where A and B are constants that depend on the specific reaction and A, also known as 
as the Taylor microscale, represents the distance traveled by a fluid particle moving at 
the speed of the turbulent intensity. The expansion length IE is defined as arc, which 
is the distance traveled by acoustic radiation from the chemistry-induced temperature 
fluctuations. Therefore, X/IE represents the ratio of the characteristic distance traveled by 
a typical particle of fluid to the characteristic distance traveled by the acoustic radiation. 

Another way to understand this ratio of length scales is to consider the variation of 
the strength of the chemistry-turbulence interaction. A positive temperature fluctuation 
increases the reaction rate, making the reaction occur more quickly, which releases more 
heat, further increasing the temperature. However, the feedback process can be weakened 
by delocalization of the interaction through turbulent motion and motion generated by 
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the local pressure fluctuations (also caused by the interaction). Therefore, in a simplified 
case where the reaction rate is held constant, the strength of the interaction varies like 
{u')2'ura = ^ = Mt. In general, the interaction strength also varies with the reaction 
rate, or in non-dimensional terms, with the Damköhler number. Thus with this argument, 
we obtain the result shown in eq. (2). 

Under the conditions chosen for our calculations of isotropic turbulence, X/IE was 
always less than one. As X/IE approaches one, T^MS/(T) becomes large, indicating a 
strong turbulence-chemistry interaction. This occurs when the fluid travels a similar 
distance to the acoustic radiation induced by the temperature fluctuations. If X/IE were 
larger than one, the interaction would be expected to weaken because the turbulent 
motion would outrun the acoustic waves produced by the interaction, and the feedback 
process would be diminished. Also, as X/IE approaches zero the pressure waves outrun 
the fluid motion and the interaction is weak. Thus, the interaction weakens when X/IE 
departs from unity. In addition, T^/iT) is affected by the heat released to the flow 
(Martin & Candler, 1998), and the length ratio must be modulated by Ah° to give an 
appropriate relation for the standard deviation. When X/IE is greater than one, we would 
not expect this fit to be valid because it predicts a further strengthening of the interaction. 
The Reynolds number did not have a significant effect for the range of conditions that we 
considered. A more detailed discussion of this scaling for the temperature fluctuations 
can be found in Martin & Candler (1999). 

3. Turbulence mechanisms 
The chemical reactions act as energy sources within the turbulent boundary layer. 

Thus, we must address the energy exchange between the turbulence and the chemical re- 
actions. There are four energy-exchange mechanisms that take place in turbulent bound- 
ary layers: transport, production, dissipation and diffusion of turbulence. The budget 
equation for the turbulent kinetic energy is 

jt(pk) + üfc(pk) = Pk + Tk + nt + nd + <f>dif + <t>dis (3.1) 

where 

du1! 
Pk = -fm'!w" g- , (3.2) 

1 d 
Tk = ~2 e;Pu»"' (3-3) 

nt = -AW,     iwgs (3.4) 

faif = o^'Va , (3-5) 

** = ^f£. (3-6) 
and Pk is the production due to the mean gradients, Tk is the redistribution of turbulent 
kinetic energy, Ut is the pressure diffusion, and 11^ is the pressure dilation, faxf is the 
viscous diffusion, <j>aa is the viscous dissipation. There are other terms that appear in 
the equation due to the Favre averaging, however these terms are negligible. Note that 
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u' and u" represent fluctuations with respect to the Reynolds and Favre averages of u, 
respectively. 

To study the turbulent internal energy we use the evolution equation for the temper- 
ature variance, which is given by 

—— = PT + TT + (Pvdis + Vtdif + fsdif (3.7) 

where 

j^-ir'E.1"'*5 

Cv       *-?    Ps 

rr = -2(7-l)2T'^ 

2 nj dui 
<Pvdis = " —Ö— 

Cv   p   OXj 

2 T' dqj 

T'  d   r^   ~dcs 

and PT is the production of temperature fluctuations due to the chemical reactions and 
h° is the heat of formation of species s; TT is the transport of temperature fluctuations 
due to the temperature-dilatation correlation; <pvdis represents the viscous dissipation 
of kinetic energy into internal energy; (ptdif is the diffusion of temperature fluctuations 
due to heat conduction qj = -ndT/dxy, and ipsdif is the redistribution of temperature 
fluctuations due to the diffusion of species, where D is the species diffusivity and cs is 
the mass fraction of species s. The last term, <fSdif is since for our model reaction the 
gradients of species SI and S2 are equal in magnitude and opposite in sign. 

4. Flow characteristics 

The species mass fractions are initialized to their equilibrium values at the averaged 
temperature. This initial state is not physical. Thus, when we turn on the reactions 
the flow undergoes a transient. Figure la shows the average temperature for the initial 
condition and after the transient. The gas near the wall is cooled considerably. The 
temporal evolution equation for the average temperature shows that the mechanisms 
causing this effect are the chemical source term and the thermal diffusion. Figure lb, 
however, shows that the mass fraction of species Si increases through the transient. 
Production of SI indicates exothermic reactions, which would result in an increase of the 
average temperature. This result can be explain by looking at the budget of the terms in 
the evolution equation for the density of species SI, which shows that, locally, species SI 
diffuses at a faster rate than the source term is destroying it. After the initial transient, the 
mean flow is in a quasi-equilibrium state. Although the chemical composition in typical 
hypersonic boundary layers is not in chemical equilibrium, these flow conditions serve to 
isolate the effect of turbulent fluctuations in the turbulence-chemistry interaction. 

Figure 2a shows the average production of SI. There is nearly no net chemical produc- 
tion away from the wall. At the wall ws is negative, indicating that destruction of SI or 
endothermic reactions are dominant. As mentioned above, the mean flow is in chemical 
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FIGURE 1. Average (a) temperature and (b) mass fraction of species SI. 

equilibrium, thus the average temperature should not decrease due to the endothermic 
reactions. Figure 2b shows the budget for £he terms in the evolution equation for (T)t. 
This equation is similar to the equation for (T'T')t but without the factors of 2T" in the 
terms on the right-hand side of eq. (4). We observe that the effect of the endothermic 
reactions is to decrease the temperature. Also the effect of the thermal diffusion is to cool 
the gas near the wall. However, these mechanisms are balanced by the large dissipation 
of kinetic energy into heat, which is represented by the viscous dissipation. 

We now consider the effect of the turbulent fluctuations in the mean flow. Figure 
3 shows the rms of the fluctuating source term normalized by its absolute magnitude. 
The magnitude of the fluctuations are higher than 60% of the average production at 
the wall and 100% elsewhere, indicating that the production of species is mainly due to 
fluctuations in the source term. The temperature fluctuations drive the chemical source 
term and since the mean flow is in equilibrium, no effect is observed in the average 
chemical composition of the gas, namely (csi) equals its equilibrium value based on the 
averaged temperature. However, we should be able to observe an effect on the magnitude 
of the fluctuating csi- Figure 4a shows the magnitude of the temperature fluctuations 
after the initial transient. The maximum is roughly 5% of the average and takes place 
in the viscous sublayer. A second peak of nearly the same magnitude develops in the 
logarithmic region. These locations are marked with symbols. For a given temperature 
there is a corresponding equilibrium composition of the gas. Table 1 gives the values of 
csi evaluated at (T)+TRMS and (T) -TRMS and normalized by (cSi) (which equals csi 
evaluated at (T)). We see that 5% fluctuation in the mean temperature can cause about 
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FIGURE 3. Normalized magnitude of the fluctuations in the production of species SI. 

30% difference in the chemical composition. Clearly, the equilibrium composition is a 
very strong function of the temperature. This is reflected in the magnitude of c'si within 
the boundary layer, which is shown in Fig. 4b. We see that variations in the equilibrium 
mass fraction are nearly those produced by the temperature fluctuations. 
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5. Turbulence-chemistry interaction 

In this section we study the turbulence-chemistry interaction and the temperature 
fluctuation scaling by studying the budget of the terms in the evolution equations for 
the temperature variance and the turbulent kinetic energy. Figure 6 shows the effect of 
the source term on the temperature fluctuation variance. The symbols are shown for 
future reference. The source term has been decomposed into the forward and backward 
components, 

tUSl = -Msi Kf -j-r—   — h rrz— 1 J MsiVMsi     MS2/ 

•    Mb     PS2   ( PSl   J-   PS2 "\ 

(5.1) 

(5.2) 
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FIGURE 6. Contribution of the chemical production to (T'T')t. The terms axe normalized 
using ul/cv zT- 

= Wf +Wb, (5.3) 

where ps and Ms are the density and molecular weight of species s, kf and kt, are the 
forward and backward reaction rates, respectively, and wj and w\, represent the destruc- 
tion and production of species Si. Thus, Wf reduces the magnitude of the temperature 
fluctuations as a result of endothermic reactions and Wb has the opposite effect. Figure 6 
also shows that both exothermic and endothermic reactions take place within the bound- 
ary layer. Figure 7a shows the budget of (T'T1) in the near wall region. At the wall the 
chemical production and thermal diffusion are balanced by the viscous dissipation and 
transport mechanisms. The species diffusivity is negligible since the gradients of species 
mass fraction are equal in magnitude and opposite in sign. Figure 7b shows the same 
budget throughout the entire boundary layer. The chemical production and transport 
mechanisms enhance the temperature fluctuations, however these terms are balanced by 
the thermal diffusion. The species diffusion term is negligible and not shown. 

Figure 8a shows the budget of the turbulent kinetic energy in the near wall region. The 
turbulent kinetic energy is nearly in equilibrium. Figure 8b shows the same budget across 
the entire boundary layer. The production term is dominant causing a net production of 
turbulent kinetic energy. The production and transport terms have the same oscillatory 
behavior in 0.1 < z/S < 0.3. This behavior is similar to that of the transport term in the 
equation for {T'T')t, as shown in Fig. 6b. Figure 9a is a plot of the temporal evolution 
of the friction velocity, uT. After the initial transient, the oscillations in uT indicate the 
presence of a physical mechanism that is damping and replenishing uT. Figure 9b shows 
the variation of turbulent kinetic energy across the boundary layer. Again the oscillatory 
behavior is observed in 0.1 < z/5 < 0.3, as in the transport and production mechanisms 
for the evolution of (T'T')t and (TKE)t. As in isotropic turbulence (Martin & Candler, 
1998), this result suggests that a feedback mechanism between the turbulent motion and 
the chemical reactions takes place. 

The effect of endothermic reactions is to damp the temperature fluctuations. How- 
ever for the conditions chosen, the turbulent kinetic energy in the boundary layer is 
self-sustained. Therefore, the turbulent temperature fluctuations are maintained. The 
exothermic reactions, however, act as heat sources increasing the temperature fluctua- 
tions. Both endothermic and reactions cause localized compressions and exothermic ex- 
pansions within the boundary layer. The turbulent kinetic energy feeds from the thermal 
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across the boundary layer. The terms are normalized using %\jcv zr. 

energy. The results suggest that this feedback mechanism takes place through the trans- 
port term in the equation for (T'T')t and through the production and transport mech- 
anisms in the equation for (TKE)*. The transport term for (T'T')t includes the correla- 
tion between temperature fluctuations and dilatation, which explains the energy transfer 
between the turbulent kinetic energy and the internal energy through the chemically- 
induced expansions and compressions. 

Figure 10 plots the magnitude of the temperature fluctuations versus the heat ratio, 
eq. (2), in the viscous sublayer and near z/8 = 0.5. ( These boundary layer locations 
are marked with symbols in Fig. 5.) The data includes several time steps during the 
simulation. The power law relation between temperature fluctuations and the heat ratio 
resembles that found in isotropic turbulence. The data collapse very well in the viscous 
sublayer, where the turbulence scales are nearly isotropic. Near the boundary layer edge 
however, the agreement is not so good. This could be because near the boundary layer 
edge the numerical resolution is not as good, since the computational grid is exponentially 
stretched. This can be seen in the lower population of symbols for the data near the 
boundary layer. It is also possible that we have not gathered sufficient statistics in time so 
as to get a large enough sample of data. A Reynolds number dependence is also possible, 
since the peak in the logarithmic region of the turbulent profiles is highly dependent on 
the Reynolds number. None of these reasons or others can be proven true with the small 
dataset that we are working with. 
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6. Conclusions 
In this paper, we have analyzed the direct numerical simulation database of a chem- 

ically reacting, turbulent boundary layer at Mach 4, Re$ = 7000, and isothermal wall- 
temperature condition. The budget of the terms in the evolution equation for the tem- 
perature show that the mean flow is in chemical equilibrium. However, the temperature 
fluctuations increase the reaction rates and therefore the chemistry is active throughout 
the boundary layer. The magnitude of the fluctuations in temperature and species mass 
fraction show that a 5% fluctuation in temperature can cause a 30% fluctuation in the 
species mass fraction. If the boundary layer is in chemical non-equilibrium, such large 
fluctuations in the species mass fraction may have a significant effect in the average com- 
position of the gas and therefore in the heating rates to the wall. Additional simulations 
are required to verify this. 

The evolution equation for the temperature fluctuations show that endothermic re- 
actions reduce the temperature fluctuations, whereas exothermic reactions act as heat 
sources that increase T'RMS. The budget of turbulent kinetic energy shows that the 
production and transport mechanisms are enhanced by the presence of reactions. The 
oscillations found in the evolution of the wall-friction velocity and in the profile of tur- 
bulent kinetic energy indicate the presence of a physical mechanism that is damping and 
replenishing the turbulent kinetic energy. 

The effect of endothermic reactions is to damp the temperature fluctuations. How- 
ever, the turbulent kinetic energy in the boundary layer is self-sustained. Therefore, 
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the turbulent temperature fluctuations are maintained. As mentioned above, exothermic 
reactions increase the magnitude of the temperature fluctuations and the temperature 
fluctuations increase the reaction rates. Both endothermic and exothermic reactions cause 
localized compressions and expansions within the boundary layer that feed the turbulent 
kinetic energy. The results suggest that this feedback mechanism takes place through 
the transport term in the equation for (T'T')t and through the production and trans- 
port mechanisms in the equation for {pk)t. The transport term for (T'T')t includes the 
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correlation between temperature fluctuations and dilatation, which explains the energy 
transfer between the turbulent kinetic energy and the internal energy through the chem- 
ically induced expansions and compressions. This result is consistent with that found 
using the DNS data of reacting isotropic turbulence (Martin & Candler, 1998 and 1999) 
and with the theoretical work of Eschenroeder (1964). 

Also as in isotropic turbulence, we find that the temperature variance can be expressed 

as A (Ah°X/lE) ■ Where \/IE is obtained from the nondimensional governing parame- 
ters and represents the ratio of the characteristic distance traveled by a fluid particle to 
the characteristic distance of acoustic radiation. Since Ah°X/lE is a mean flow quantity, 
it could potentially be used to predict the temperature fluctuations in Reynolds-averaged 
Navier-Stokes or large-eddy simulations. However, further testing of the scaling must be 
performed over a wider range of conditions. 
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Preliminary LES over a hypersonic elliptical 
cross-section cone 

By M. P. Martin, f M. Wright, } G.V. Candler, % U. Piomelli, || G. Weirs ft 
AND H. Johnson $j 

1. Introduction 
Many aspects of transitional and turbulent flows are not fully understood. This is es- 

pecially true in the hypersonic regime, where examples of unresolved issues include the 
effects of freestream disturbances and of three-dimensionality. In the absence of detailed 
experimental or computational databases to better understand these physical phenom- 
ena, we are left with excessive design conservatism and unrefined conceptual designs. 

When investigating these phenomena via CFD, direct numerical simulations (DNS) 
are not affordable. Turbulence models provide a wide range of accuracy in predicting 
turbulent flows of engineering interest. Depending on the level of detail required, one 
may choose Reynolds-averaged Navier-Stokes (RANS) models, or use state-of-the-art 
subgrid scale (SGS) models in a large-eddy simulation (LES) to obtain a more refined 
prediction. The study of fundamental physical phenomena must be done using the best 
possible prediction, namely LES. However, one must keep in mind that a key feature of 
the prediction method should be validation by experiment. 

Using the most recent laser and camera technologies, Huntley (2000) and Huntley et 
al. (2000) present the first detailed flow visualization of natural transition on a cone of 
elliptical cross-section at Mach 8. Mean flow features and details of the unstable modes in 
the boundary layer for the same configuration are given by Kimmel et al. (1997 and 1999) 
and Poggie et al. (2000), respectively. Because this flow is being extensively documented 
experimentally, and because the geometric configuration resembles that of the forebody 
of a hypersonic vehicle, this database is ideal to test the state of the art SGS models and 
LES methodology for hypersonic flows. 

The present work is an ongoing effort to provide detailed flow simulations of unsteady, 
hypersonic, transitional or turbulent flows. In Martin et al. (2000a) we develop and 
test SGS models for compressible LES using the apriori test in compressible, isotropic 
turbulent flow. In Martin et al. (2001) we validate the LES methodology by using the 
results of DNS of supersonic boundary layers, and in Martin et al. (2000b) we extend 
the LES code to generalized curvilinear coordinates and validate the implementation 
in supersonic turbulent boundary layer flow. In this paper, we present preliminary LES 
results of the flow around a section of an elliptical cross-section cone away from the tip of 
the cone. The flow conditions, simulation procedure, preliminary flow assessments, and 
future work are given in the following sections. 
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FIGURE 1. (a) Pressure and (b) density contours in the exit plane of the cone geometry for the 
laminar solution. 

2. Geometry and flow conditions 
Following the experimental configuration of Huntley et al. (2000), the lifting- body 

geometry chosen is a sharp-nosed cone of elliptical cross-section. The nominal radius of 
the nose of the experimental model is less than 200 /zm. In our simulations, we use an 
ellipsoidal nose with an 80 /zm diameter of nose ellipsoid measured on the major axis. The 
afterbody is an elliptical cross-section cone of 4:1 aspect ratio, 17.5 degrees half-angle in 
the major axis, and 0.242 m in length, resulting in base dimensions of 0.152 m across the 
major axis and 0.038 m across the minor axis. 

The freestream flow conditions are Rtoo = 14 x 106 /m, M^ = 8, p^ = 0.5, and 
Too = 58 K. For these conditions, the boundary layer is fully turbulent at position 
x=17.5 cm from the nose (Huntley, 2000). The wall-temperature condition is prescribed 
to 450 K, which is nearly adiabatic. As in the experiments, air is the working fluid. 

The Mach 8 flow around the cone at zero angle of attack is highly compressed behind 
the shock. The difference in shock strength between the major and minor axes causes 
a higher compression at the leading edge producing a crossflow from the leading edge 
to the centerline of the cone. This is illustrated in Fig. la. At the centerline the cross- 
flow velocities are zero and mass conservation induces a bulge, see Fig. lb, where the 
boundary layer is twice as thick as the boundary layer in the off-center region (Huntley, 
2000). Experiments show that transition occurs first on the centerline (Huntley, 2000). 
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Laminar at 9 cm  

Late transitional at 11.4 cm 

Fully turbulent at 17.5 cm 

24.15 cm 

Shock stand-off distance 
0.314 cm 

Shock stand-off distance 
1.62 cm = 3.24(5 (using 5 = 5 mm and d3 = 1.20c) 

FIGURE 2. Model dimensions and key flow features required to determine the grid resolution 
and computational domain size. 

3. Grid resolution 
We estimate the resolution requirements by considering the dimensions of the turbu- 

lence structure and the data provided by the experiments. Prom the experimental data 
(Huntley, 2000), the estimated wall unit is 7.5 x 10~5 m and the boundary layer along 
the centerline is laminar at x = 9 cm, late-transitional at 11.4 cm, and fully turbulent at 
17.5 cm from the nose. See Figure 2. The turbulent boundary layer at the center line is 5 
to 6 mm thick. Note that the shock-standoff angle is 9S = 1.20c, where 9S and 6C are the 
shock and cone angles, respectively. The turbulence structures on a flat plate boundary 
layer extend about 100 wall units in the spanwise direction and a few boundary layer 
thicknesses in the streamwise direction. 

In the spanwise direction we use a uniform grid spacing of 22 wall units. This estimate 
is based on the grid resolution used in previous LES of a supersonic boundary layer 
(Martin et al., 2000). For the conditions chosen, the boundary layer at the leading edge 
is laminar (Huntley, 2000). Since the flow is supersonic and the cone is at zero angle of 
attack, the flow around the top of the cone is not affected by the flow on the bottom. Thus 
only the top of the cone is simulated. In the streamwise direction, the flow is laminar at 
i = 9cm from the nose. Thus, the resolution requirements up to 9 cm from the nose 
are given by the grid convergence studies of the laminar flow at the nose. From x = 9 
cm to the base of the cone we require that the maximum grid spacing on the surface is 
33 wall units. In the wall-normal direction the grid is exponentially stretched, we require 
0.3 and S+ wall units for the minimum and maximum grid spacings within the boundary 
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layer (Martin et al, 2000), where 5+ — S/zT is about 70 for the turbulent case. The 
computational domain is large enough to include the standoff shock wave. 

4. Simulation procedure 
For the LES, we use a third-order accurate WENO (Weirs & Candler, 1997) to compute 

the convective fluxes. This scheme has low dissipation properties, and was designed to 
perform DNS and LES of compressible flows. The time advancement technique is based 
on the DPLU relaxation method of Candler et al. (1994) and was extended to second- 
order accuracy by Olejniczak k Candler (1997). The viscous fluxes are evaluated using 
fourth-order central differences. Finally, the transformation metrics are evaluated using 
fourth-order central differences so that the inaccuracy of the numerical evaluation of the 
metrics coefficients is less than the inaccuracy of the convected fluxes. 

The initial condition will be a superposition of laminar flow and a prescribed freestream 
energy disturbance spectrum. To generate the laminar solution we use a finite volume 
code (Wright et al, 1998), where we only compute 90 degrees of the cone geometry and 
use bilateral symmetry to reflect the resulting solution across the centerline and generate 
the full 180 degrees. We then interpolate the laminar solution from the finite-volume cell 
centers to the finite-difference grid points using tri-linear interpolation. 

The required SGS terms and the model representations are given in Martin et al. (2000a, 
2000b). To evaluate the model coefficients we use the Lagrangian-averaging operation, 
where the averaging is performed along a fluid particle pathline. A full description of the 
Lagrangian-average procedure can be found in Meneveau et al. (1996). 

5. Preliminary flow assessments and future work 
In this section we present a brief progress report on performing the LES. A portion 

of the cone has been initialized using the interpolated laminar solution to test the La- 
grangian implementation of the SGS models. To minimize the complexity of this test, the 
disturbances introduced by the tri-linear interpolation are used as initial disturbances. 
Figures 3 through 5 show contours of the SGS terms at the exit plane of the cone on 
spanwise wall-normal planes. These figures include a quarter of the computational do- 
main (centered about the centerline) in the spanwise direction, and about ten boundary 
layer thickness in the wall normal direction, the boundary layer thickness along the cen- 
terline is about 2 mm, three times smaller than the turbulent boundary layer thickness. 
Figures 3 through 5 show that the SGS terms are dominant in the bulge region. This 
would not be the case if the model coefficients were calculated using the ensemble average 
procedure. 

The magnitude of the initial disturbance is very small and do not grow significantly 
in time. Future work includes imposing a prescribed disturbance energy spectrum and 
running the LES for long enough to gather sufficient statistical data to assess the effect 
of freestream disturbance and study the transition and turbulence phenomena. 
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FIGURE 3. SGS stress contours on the exit plane; flow into the page. 
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FIGURE 4. SGS heat flux contours on the exit plane; flow into the page. 

FIGURE 5. Contours of SGS turbulent kinetic energy on the exit plane; flow into the page. 
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Stochastic sub-grid modeling of drop breakup for 
LES of atomizing spray 

By   Mikhael Gorokhovski f AND Sourabh Apte 

1. Motivation and objectives 
Injection of a liquid jet at relatively high liquid-to-gas velocity ratios leads to very 

complex physical phenomena, involving the stripping of filaments from distorted liquid 
surfaces, turbulence-induced breakup, multiple droplet collision, etc., causing atomiza- 
tion. This gives rise to a broad spectrum of droplet sizes at various locations from the 
injector. Kolmogorov (1941) described the breakup of droplets as a discrete random pro- 
cess, where the probability that a parent particle breaks into a given number of droplets is 
independent of the parent particle size. From Lyapunov's theorem, Kolmogorov pointed 
out that such a general assumption leads to a log-normal distribution of particle size 
in the long-time limit. Predicting these probability distributions of droplet sizes due 
atomization is the crux of sheet-breakup modeling. 

In the present work, the process of atomization is considered in the framework of a cas- 
cade of uncorrelated breakage events, independent of the initial droplet size. The cascade 
idea of droplet-sheet breakup due to Kolmogorov is explored by developing a stochastic 
sub-grid model for the production of new droplets. Finding a probability distribution 
function for droplet radii, during each breakup period, by solving a stochastic differential 
equation may give a more realistic prediction of the breakup process. A detailed theoret- 
ical analysis of Kolmogorov's model assuming the breakup frequency to depend on the 
radius of the parent particle, was performed by Gorokhovski & Saveliev (2001). It was 
shown that in the long time-limit, Kolmogorov's scaling symmetry of breakup implies 
fractal properties of the particle-size distribution. The photographic examination of an 
atomizing spray (Liu k Reitz (1993), Zhou & Yu (2000), Shavit & Chigier (1995)) also 
shows that atomization at high relative liquid-to-gas velocity is related to fractals imply- 
ing that in a broad interval of droplet radius variation, somewhere between the initial 
and the maximum stable radii, there exists no distinguishable characteristic length scale. 
Following these observations, Kolmogorov's idea of droplet breakup seems appropriate 
to model the complex fragmentary process of liquid atomization. 

2. Accomplishments 
In this paper, Kolmogorov's discrete model has been represented in its asymptotic 

Fokker-Planck approximation for droplet-size distribution function. This equation was 
applied to simulate the droplet breakup along with Lagrangian model for spray dynamics. 
Computations of spray are performed for the conditions encountered in a diesel engine 
and the spray evolution is qualitatively compared with actual photographic examinations. 
This paper shows that the numerical prediction is in qualitative agreement with the 
experimental results. A broad spectrum of droplet sizes is simulated at each spray location 
with the co-existence of large and small drops. 

f CNRS/University/IUT of Rouen 
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3. Fokker-Planck approximation for particle breakup 
Let us consider an ensemble of droplets undergoing breakup at discrete time instants 

t = 0,1,2,.... These time moments are scaled by the breakup frequency, v, such that 
(i/tf,u = 1), where tju is the breakup time. According to Kolmogorov (1941), the number 
of droplets N(r,t) of size p < r was selected amongst all the droplets N(t) at a given 
time t. The expectations of total number of droplets and of droplets of size p < r were 
denoted as N(t) and N(r,t), respectively. 

Consider breakups of a given particle size r within a time unit [t,t + 1]. Let Q{a) be 
the mean number of secondary droplets produced of size p < ar(0 < a < 1). According 
to Kolmogorov's hypothesis, the probability to break each parent droplet into a given 
number of fragments is independent of the parent droplet size. In other words, Q(a) does 
not depend on the history of breakup and is not influenced by other parent droplets. By 
this assumption, it follows that, 

N(r,t + 1)= I N{r/a,t)dQ(a) (3.1) 
Jo 

Introducing the logarithm of droplet-size, x = logr, Kolmogorov pointed out that the 
distribution function for the droplet size, T(x,i), is given by 

T(r fy_ Me*,t) _ N(e*,t) ,     . ™-~m~~^w ( } 

Further, denoting £ = logo; and Q(a) = Q(l) • 5(f), equation 3.1 can be rewritten as 

T(x,t + l)= f    T(x-t,t)dS(0 (3.3) 
J — CO 

By Lyapunov's theorem, Kolmogorov stated that from discrete model equation 3.3, 
the long-time limit form of T(x, t) tends to a Gaussian function. This implies that the 
number of droplets N(r, t) is asymptotically governed by the log-normal law. On the other 
hand, it can be shown that the model equation 3.3 is equivalent to the Fokker-Planck 
approximation of droplet breakup (Gorokhovski & Saveliev (2001)), 

^-<«^ = ^^ <"» 
where time and breakup frequency are introduced. The solution of equation 3.4 is a 

Gaussian function. This depicts the main conclusion by Kolmogorov (1941). At the same 
time, an influence of the initial distribution before breakup starts can also be taken into 
account. The solution of 3.4 is 

r       1 T(x, t) = / „     exp {X    Xo)2^T0{xo-{^t)dx0 (3.5) 
2(f>* 

where T0(x0) is the initial distribution of the logarithm of droplet radii and x0 the 
logarithm of radius of the parent droplet. Equation 3.4 can be rewritten for the normalized 
distribution of radius, /(r), to give: 

dm 
dt = -KO|: WM) + \»(f)± (r| (r/(r))) (3.6) 
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The solution of equation 3.6 has the following form 

1 fc 

rJo 
=exp 

(log(ro/r) + {put) 
2(p)vt 

fo(ro)dr0 (3.7) 

where /o(ro) is the initial distribution of droplet radius before breakup starts. 

4. Implementation into unstructured combustor code 
The implementation of the droplet-sheet breakup module into the unstructured LES 

code developed by Mahesh et al. (2001) is straight forward, as described below. The 
importance of the present work compared to the commercial softwares available for La- 
grangian particle tracking (e.g. KIVA) is that, we track each individual droplet within 
the computational domain. This requires generation of 'daughter' drops from correspond- 
ing parent droplets. Subsequently, the number of droplets within the domain increases 
rapidly. The droplet breakup pictures obtained, however, resemble closely the actual ex- 
perimental images, as opposed to a fairly collective representation obtained from the 
'parcels'-approach. Tracking each droplet, on the other hand, leads to enormous compu- 
tational costs. 

4.1. General Procedure 
The modeling of the spray equation is based on a Lagrangian formulation where each 
computational particle represents one droplet of given size, velocity and position. These 
droplets are followed as they interact and exchange momentum and energy with the sur- 
rounding gas. The unstructured LES code for gas turbine combustors (Mahesh et dl.) 
was modified in this work to incorporate the coupling between the Lagrangian tracking of 
droplets and stochastic computing of the breakup phenomenon. Two additional physical 
processes were included in the Monte Carlo procedure. Specifically, the product droplet 
velocity has been modeled and the breakup has been considered down to the local mag- 
nitude of the critical (or maximum stable) radius, rcr. The liquid fuel was injected in 
the axial nozzle direction in the form of drops with characteristic size equal to the exit 
nozzle radius and the velocity known from the liquid injection rate. 

Let us consider motion of a jth primary drop that undergoes breakup (rj > rcr). Before 
breakup starts, the size-distribution function associated with this drop, is a Dirac-delta 
function. With time, which is inversely proportional to the breakup frequency (z/), new 
droplets are created changing the droplet-radius distribution function. We suppose that 
the new distribution may be described according to the solution of equation 3.7 taken 
at vt = 1 with (0 and (f2) as parameters of the model. For every breakup time scale, 
new droplets are formed from the parent drop (rj > rcr) with radius sampled from 
equation 3.7. With subsequent breakups, the droplet is removed from the computation 
as its mass is depleted. After the sampling procedure, the current time, t, of the new 
droplets is prescribed to be zero implying that the new drops are not physically deformed. 
Lagrangian tracking is then continued up to the next breakup (vt = l,rj > rcr). In 
the present computations, we used expressions obtained from the distribution of the 
logarithm of radius. The starting distribution for the logarithm of radius of the jth 

primary drop is 

T0j(x0) = S(x0 - Xj) (4.1) 
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Using the distribution function in equation 3.5 at ut\,u — 1, one can express the solution 
by the error function, 

Tj(x,t) = 1 + erf(*-xi-® (4.2) 

The product droplet velocity is computed by adding to the primary drop velocity a 
factor Wj,„, which is randomly distributed in a plane normal to the relative velocity of 
the parent drop and gas, with the magnitude determined by the radius of the parent 
drop and the breakup frequency, v 

|w(,u|=n/ (4.3) 

4.2. Critical radius and breakup frequency 

The critical (or maximum stable) radius is determined when disruptive hydrodynamic 
forces are balanced by capillary forces 

rcr = ^ (4.4) 

where ur is the relative velocity between liquid and gas velocity, a the surface tension 
coefficient, Wecr the critical Weber number, which can be taken of the order of six over a 
wide range of Ohnesorge numbers (Gelfand et al. (1975), Pilch & Erdman (1987)). This 
expression can be further modified by estimating the mean square of relative droplet-to- 
gas velocity by mean viscous dissipation and Stokes time scale (Kuznezov & Sabel'nikov 
(1990) ): 

(u2
r) « erst (4.5) 

This gives a new expression for critical radius, 

361/3 fWecrau\1/3 

r~ = — {-^-) (46) 

This expression, however, requires a reliable knowledge of viscous dissipation rate. 
This critical radius, thereby, is calculated by the standard expression 4.4. Note that 
introducing the turbulent Weber number, WetUr = p?'"^"""', and using equation 4.5, 
one obtains, 

Wecr = ^RetUTWetur (?fz) (4.7) 
OD pg \ hur / 

Assuming that at scales where breakup takes place, RetUT is of the order of unity and 
kur « »?> one obtains, 

Equation 4.8 is used to estimate the local value of (£2). The choice of the breakup 
frequency has to be stated based on the physics of spray atomization. In this paper, the 
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breakup time scale is taken to be 

tbu = Career A—r/ur (4.9) 
VPs 

where Career — 1.73 is used in the present work. 

4.3. Choice of parameters (£) and (£2) 

Multiplying equation 3.6 by r and integrating over the entire radius range gives an 
expression for the first moment 

<r> = {r)t=oexp [v «fl + 0.5<£2» t] (4.10) 
Further more, the condition 

(?) < -\(e) (4.11) 

leads to the fact that parent droplets will disintegrate into smaller ones, ^_0 < 0. 
In this paper, the magnitude for (£2) is assumed to be proportional to the maximum 
dispersion of radius (£2) oc log 1 - log ^f. Replacing in equation 4.8, r\ by the diameter 
of parent drop, one obtains 

r /We- N1/3 

if) * - log T-f- * canst ■ log U^-J (4.12) 

with const < 1 and (£), the arbitrary parameter, obtained from equations 4.11- 4.12. 
In the present work, we used const = 0.1. 

5. An illustration of Lagrangian computation of the atomizing spray 
A liquid jet is injected through a single-hole nozzle into a constant pressure, room- 

temperature nitrogen chamber. The spray injection velocity is 102 m/s, chamber pressure 
1.1 MPa, orifice diameter 300/xm, and the dimensions of the constant volume bomb (2.8 
cm x 13.8 cm), are corresponding to the experimental conditions used by Hiroyasu & 
Kadota (1974). Figure 1 shows the distribution of droplets at various computational 
times. The near-nozzle region is mostly presented by large unbroken drops accompanied 
by small stripped droplets. The ligament-like liquid structures deflected outward are seen 
in this figure and the spray angle is close to the empirical one. The computed configuration 
of atomizing spray qualitatively resembles the spray observed from the experimental 
images. Figure 2 shows a closeup view of spray near and futher away from the injector. 
A broad spectrum of droplet sizes is present with local co-existence of large and small 
droplets, indicating the superiority of the present model over conventional droplet sheet- 
breakup model (Reitz & Diwakar, (1987)). The variation of spray penetration depth 
with time is presented in figure 3, showing reasonable comparison with the experimental 
measurements of Hiroyasu & Kadota (1974). 

6. Summary and future plans 
The stochastic modeling of the spray-sheet breakup involving Lagrangian tracking of 

the droplets along with LES of the gas-phase flow has been introduced. The process is con- 
sidered in the framework of cascade of uncorrelated breakage events,up to the maximum 
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FIGURE 1. Spray penetration at different times. The size of the circles scale with individual 
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FIGURE 2. Closeup view of droplet sheet breakup showing a wide distribution of droplet radii 
at two locations. 
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FIGURE 3. Penetration depth for 1.1 MPa. 

stable (critical) droplet size, independent of its initial size . The Kolmogorov's discrete 
model of particle breakup can be represented by its Fokker-Planck approximation and 
the solution of this equation has been used for production of new droplets. Computa- 
tions of spray at the diesel-like conditions were performed. The results compared with 
measurement showed that the computed configuration resembles qualitatively the spray 
photographic examination. A broad spectrum of droplet sizes is obtained at each spray 
location. The large number of droplets generated leads to a significant slow down of 
the computer code. In order to alleviate computational costs, we envisage to work on 
the hybrid droplets-parcels Lagrangian formulation. In this approach, if the number of 
droplets in a computational exceeds some pre-specified limit, they can be combined to 
form a parcel by conserving mass and momentum. This leads to combination of parcels 
and droplets within the computational domain and effectively reduces the actual number 
of particles being tracked. 
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Study of the turbulence modulation in 
particle-laden flows using LES 

By  Javier Garcia f 

1. Objective and motivation 
One of the most interesting problems in fluid dynamics is the prediction of particle- 

laden turbulent flows. These flows are as diverse as pollutant dispersion in the atmosphere 
and contaminant transport in industrial applications. An issue of primary importance for 
moderately dense suspensions concerns how particles affect the turbulent flow itself, the 
so-called two-way coupling. It is known that the addition of particles to a turbulent flow 
may change the intensity significantly, even at very low volume fraction. The principal 
difficulty in the prediction of particle-laden turbulent flows is that traditional approaches 
model particle transport using the Reynolds-averaged Navier-Stokes (RANS) equations. 
The RANS methods do not accurately predict the Eulerian turbulence field, and it is 
known that accurate prediction of particle transport is strongly dependent upon providing 
a realistic description of the velocity field encountered along particle trajectories. 

Although the most accurate approach to representing the structure of turbulence - 
including particle transport - is direct numerical simulation (DNS), is not practical for 
use as a predictive tool because it remains restricted to relatively low Reynolds numbers. 
An approach which is not as severely restricted in the range of Reynolds number as DNS 
is large eddy simulation (LES). LES predictions are less sensitive to modeling errors 
than RANS calculations and, since the subgrid scales are more universal than large 
scales, it is also possible to represent the effect of the subgrid scales using relatively 
simple models. A significant advantage of LES over RANS methods is that it permits a 
much more accurate accounting of particle-turbulence interactions. If modulation of the 
turbulence by particles is negligible and if the particle relaxation time is of the order of the 
turbulent time macro-scales, LES of gas-particle flows can be expected to be as accurate 
as in single-phase flow. In contrast, if two-way coupling effects are important, then the 
subgrid turbulence model might require modification. The principal objective of this work 
is application of large eddy simulation to computation of a well defined turbulent shear 
flow, fully developed channel flow, for which experimental results - Kulick et al. (1994) 
- exist for comparison. Also, a subgrid model which takes into account the presence of 
particles is proposed and evaluated. 

2. Physical and numerical model 
2.1. Fluid motion 

The space-filtered continuity and time-dependent Navier-Stokes equations were used to 
model the continuous gas phase. 

§^ = 0 (2.1) 
OXi 

f Universidad Politecnica de Madrid 
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dvgj [ dvgjVgj d   fp\{    1    d2Vgi       drij  ,  /P* ,2 2) 
9i öXJ öxj V^s/      Redxjdxj      dxj      pg 

In order to take into account the particle effect on the fluid (two-way coupling) an 
additional term was included in the momentum equation fp. This term is given by the 
sum of all forces on all particles in a fluid computational cell. 

A-iuS'" (2'3) 

where Vceii is the volume of a fluid computational cell, Nceu is the number of particles 
in that cell and fgj is the fluid force on the jth particle in that cell. 

2.2. Particle motion 
A Lagrangian approach is employed to predict the properties of each particle directly 
from the equation of motion. The particle equation of motion used in the simulations 
describes the motion of particles with densities substantially greater than that of the 
surrounding fluid, and diameters small compared to the Kolmogorov scale: 

where vPi is the velocity of the particle and vgi is the velocity of the gas at the particle 
position. An empirical relation for CD from Gift et al. (1978), valid for particle Reynolds 
numbers up to about 40, was employed: 

94 
CD = j^(l + 0.15Re°/s7). (2.5) 

2.3. SGS model 
The following assumptions have been made to derive the new model: 

(a) The density of the particles is much larger than the gas density, and Basset forces 
and virtual mass can be neglected. 

(b) The particles are spherical. 
(c) The particle volume fraction is small enough that particle-particle interaction can 

be neglected. 
(d) In the local movement of the particles, gravity can be neglected compared to 

inertia. 
The equation of motion for the particles can be rewritten as follows: 

*V,f-*V,*fc-FB (2.6) 

where u stands for the relative velocity between fluid and particle, and 

TD = \cDPgSgu\u\. (2.7) 

For the different turbulent length scales, A, in the interval between the integral and 
Kolmogorov scales (L > X > rj), it is possible to scale the different terms of the equation 
of motion: 

• For the gas phase 

Tg\ rjr (2.8) 
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vgX ~ (eA)1/3 (2.9) 

dvg_     Vg\      _A_     e^ (2.10) 

• For the particles 

rpA ~ A (2.11) 

• Drag force 

du      u\        u\       u\ 
dt      Tp\      \/u\      A 

1 

(2.12) 

ux ~ (PPVP)^\   T7    '    *     gxN1/a. (2-15) 

FD ~ ^Cz>/>9 VA (2.13) 

Substituting in the equation of motion 

»v£~*V%-*D (2.14) 

we obtain for the relative velocity: 

ei/3Ai/3 

{ppVp + \CDPgSpX)^ 

It can be seen that u\ should have a maximum for a certain value of A, given by: 

5r = 0 -> A|„«. = A* ~ ^^ ^ A* » d (2.16) 
ÖA Op Pp <->p 

/      \ 1/3   /   ,    \ 1/3 

"•~d"v/3(g)  (ds) • (m) 

It is assumed that the turbulence dissipation due to the particles occurs mainly near 
the scale A*, and it will be represented by: 

-nfr^~PgCD(^^r (2.18) 

Introducing u* from the previous equation we obtain: 

-TijSijlp ~ Pg€(j>p =*■ -TijSijlp = Cppge<t>p (2.19) 

In previous work with RANS models, by Garcia & Crespo (2000) and Crespo et al. 
(2001)) the constant Cp has been estimated by comparison with different experiments. 
Then the total dissipation can be estimated as: 

-TijSij=pge(l + Cp$p) (2.20) 

Using an eddy-viscosity model we get: 

I/T = (CSA)2|S|(1 + CP^) (2.21) 
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FIGURE 1. Particle streamwise mean velocity profiles, in wall units 

Applying the Dynamic Procedure to obtain the model coefficient, we can obtain the 
Leonard term 

di = -c(t2 |f|fa (l + Cpf;) - Ä2\S\Sij (7+ Cp^)) (2-22) 

Ma 

and, using least-squares averaging, the model parameter can be computed as: 

LkiMki 
C = - 

MkiMki 
(2.23) 

3. Simulation procedure 

The calculations have been made with Pierce's code, described in Pierce & Moin (2001) 
implemented with Oefelein's routines for the simulation of Lagrangian particle dynamics. 
Large eddy simulations were performed under conditions chosen to match the experiments 
of Kulick et al. (1994). The fluid is air (kinematic viscosity i/ = 1.5x 10_5m2s-1), and 
the friction velocity ur is 0.49 ms_1. The Reynolds number based on friction velocity 
and channel half-width is 644 (corresponding to a Reynolds number of 13,800 based on 
centerline velocity and channel half-width). The flow was resolved using 64 x 64 x 64 grid 
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FIGURE 2. Particle streamwise fluctuations: mean-square intensity profiles, in wall units 

points in the x, y, and z directions, respectively. The channel domain for the calculation 
was the same used by Wang and Squires (1996), 57r<5/2 X 25 x TTS/2. The channel half 
width is S = 0.02 m. The grid spacing in wall coordinates in the x and z directions was 
Ax+ = 83 and Az+ = 17. A stretched grid was used in the wall normal direction and 
the minimum grid spacing (close to the wall) was Aj/+ = 1.5. 

Different values for the constant Cp have been used. At present a value of 0.9 produces 
the best agreement with the experimental results. 

4. Results 
The results obtained to date are presented in Figs. 1 to 4. In all cases, the particles 

used in the simulations are copper particles with density pp = 8800 kgm-3 and diameter 
d = 70 pm. Copper particles have been chosen for the first calculations because the 
effect of turbulence modulation is more intense and therefore is more sensitive to new 
models. The Figures show the results obtained for mass loading of 40 % and 80 %. The 
experimental data are taken from Kulick et dl. (1994). 

Figure 1 shows mean streamwise gas-velocity profiles. The calculated results show that 
mean gas-velocity profiles change slightly in the logarithmic region: this result agrees 
with numerical results from Yamamoto it et al. (2001). This Figure also shows the mean 
streamwise particle-velocity profiles. The profiles for particles are flatter than those for 
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FIGURE 3. Particle wall-normal fluctuations: mean-square intensity profiles, in wall units 

the gas. This trend is also observed in the experiments, where the particle velocity profiles 
are even natter. The results calculated with the proposed SGS model have the same trend, 
but the velocities are greater than the previous results with the unmodified SGS model, 
and therefore greater than the experimental values. 

Figure 2 shows profiles of particle streamwise fluctuation intensity profiles. The model 
proposed produces a profile shifted upward, mainly close to the wall. In any case, the 
numerical results obtained with or without the modified SGS model are similar to those 
obtained by Yamamoto it et al. (2001) without inter-particle collision, but the agreement 
between numerical calculations and experimental results is not good. The results obtained 
by Yamamoto it et al. (2001) with an inter-particle collision model suggest that collisions 
could play an important role. 

Figure 3 shows fluctuation intensity profiles of the wall-normal particle velocity. In this 
case the numerical results agree well with the experiments. The fluctuation are larger 
with the proposed model, but the the opposite trend would be needed to agree with the 
experiments. 

Figure 4 shows streamwise turbulence intensity profiles. It can be seen, in the numerical 
results obtained, that an increase in the mass loading produces an slight decrease in the 
turbulence intensity profile. But not so intense than that measured in the experiments. 
In this figure the proposed model does not produce a significant change compared to the 
SGS model without modification. 
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FIGURE 4. Streainwise turbulence mean-square intensity profiles, in wall units 

5. Conclusions 
A subgrid model that takes into account the presence of particles has been investigated. 

Simulations of gas-solid turbulent flow in a vertical downward channel flow at ReT = 644 
using LES were performed in order to study the proposed model. The results obtained 
so far indicate that it will be necessary to use a more sophisticated model to capture the 
complex phenomena involved in this type of flows. A recent paper suggests that inter- 
particle collisions could play an important role. It is also thought that an anisotropic 
model could improve the numerical results. These ways will be investigated in future 
works. 
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A formulation for fast computations of rigid 
particulate flows 

By   N. A. Patankar f 

1. Introduction 
A formulation is presented for the direct numerical simulation of freely-moving rigid 

particles in fluids. This approach is an adaptation of the method described by Patankar 
et al. (2000), and does not rely on any model for fluid-particle interaction. The idea is to 
assume that the entire fluid-particle domain is a fluid and then to constrain the particle 
domain to move with a rigid motion. The fluid-particle motion is treated implicitly so 
that the mutual forces of interaction cancel because they are internal to the combined 
system. The formulation can be implemented by an immersed boundary and a fractional 
time-stepping technique. It is suitable for fast computations and can be employed for 
DNS, LES or RANS type simulations of turbulent particulate flows. 

Numerical simulation techniques for solid-liquid flows, which do not use any model for 
fluid-particle interaction, have been developed over the past ten years. In these methods 
the fluid flow is governed by the continuity and momentum equations, whereas the parti- 
cles are governed by the equation of motion for a rigid body. The flow field around each 
individual particle is resolved; the hydrodynamic force between the particle and the fluid 
is obtained from the solution and is not modeled by any drag law. These simulations, 
referred to as Direct Numerical Simulation (DNS) of solid-liquid flows, can be applied 
in numerous settings; e.g. sedimenting and fluidized suspensions, lubricated transport, 
hydraulic fracturing of reservoirs, slurries, understanding particle-turbulence interaction 
etc. 

Hu et al. (1992), Hu (1996) and Hu et al. (2001) developed a finite-element method 
based on unstructured grids to simulate the motion of large numbers of rigid particles in 
two and three dimensions in Newtonian and viscoelastic fluids. This approach is based 
on an Arbitrary-Lagrangian-Eulerian (ALE) technique that uses a moving-mesh scheme 
to handle the time-dependent fluid domain. A new mesh is generated when the old one 
becomes too distorted, and the flow field is projected onto the new mesh. A combined 
fluid-particle weak formulation is used, where the hydrodynamic forces and torques on the 
particles are not calculated explicitly. Another numerical scheme based on the moving- 
mesh technique was developed by Johnson k Tezduyar (1996). They use a space-time 
finite-element formulation and a fully-explicit scheme in which the forces and torques on 
the particles are calculated explicitly to solve the equations of rigid motion. 

Glowinski et al. (1999) presented a distributed Lagrange-multiplier/fictitious-domain 
method (DLM) for the direct numerical simulation of the motion of large numbers of 
rigid particles in Newtonian fluids. Their finite-element formulation permits the use of a 
fixed structured grid. This eliminates the need for remeshing the domain - a necessity in 
unstructured-grid-based methods. Structured grids also allow the use of fast and efficient 
solvers. In the DLM method the flow in the particle domain is constrained to be a rigid- 

f Department of Mechanical Engineering, Northwestern University, Evanston 
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body motion using a field of Lagrange multipliers. The constraint of rigid-body motion is 
represented byu = U+flxr, where u is the velocity of the fluid at a point in the particle 
domain, U and fi are the translational and angular velocities of the particle, respectively, 
and r is the position vector of the point with respect to the particle centroid. The fluid- 
particle motion is treated implicitly using a combined weak formulation in which the 
mutual forces cancel. 

A new DLM formulation for particulate flows was later presented by Patankar et al. 
(2000). In their approach, the rigid motion is imposed by constraining the deformation- 
rate tensor within the particle domain to be zero. This eliminates U and fi as variables 
from the coupled system of equations. This formulation recognizes that the rigidity con- 
straint results in a stress field inside a rigid solid just as there is pressure in an incom- 
pressible fluid. The DLM formulations of Glowinski et al. (1999) and Patankar et al. 
(2000) were implemented by using a Marchuk-Yanenko fractional-step scheme for time 
discretization. A finite-element method was used. 

The lattice-Boltzmann method (LBM) is an alternative scheme for simulating fluid flow 
problems. In LBM, simplified kinetic models, which incorporate the essential physics of 
the microscopic and mesoscopic equations, are constructed. The LBM has been adapted 
to simulate the motion of solid particles in Newtonian fluids: see Ladd (1994a), Ladd 
(1994b). Another approach, which uses an analytic solution near the particle and a 
numerical procedure away from it, was developed by Takagi et al. (2001). 

Pan k Banerjee (1997) performed DNS of fluid-particle motion in turbulent flows. 
They solved the Navier-Stokes equations with an external body-source term that models 
the no-slip boundary condition on the surface of the particles. The source term is im- 
posed only in the particle domain. The particle size is comparable to the computational 
mesh size. They use a pseudo-spectral method to solve the governing equations. All the 
calculations are carried out in the wave space, except for the evaluation of the non-linear 
advection term and the external body-source term which imposes the no-slip condition 
on the particle surfaces. While these results were helpful in the investigation of particle- 
turbulence interaction, the formulation of the problem was ad hoc. The expression for 
the source term in the particle domain was not based on rigorous theory. Iterations were 
required to arrive at a correct source term at each time step. Only the particle trans- 
lational motion was considered, and a rigorous formulation should include the particle 
rotation. 

Kajishima et al. (1999) developed an immersed-boundary approach for the DNS of 
turbulent rigid particulate flows. They added a source term in the fluid equation to 
account for the no-slip boundary condition on the fluid-particle interface. The fluid- 
particle momentum coupling was explicit, i.e. the fluid equations were solved with the 
latest known velocities of the particles and then the particle equations were solved with 
the latest known velocity field of the fluid. This procedure is often undesirable as it is 
unstable under certain circumstances: see Hu et al. (1992). The fully-explicit momentum 
coupling scheme of Kajishima et al. (1999) is first-order accurate in time. These issues 
can be particularly important in the development of robust and accurate schemes for the 
DNS of turbulent particulate flows. 

The ALE and DLM formulations have been implemented for laminar flow conditions. 
Although the DLM approach has been successfully used for computations with up to 
1204 spheres in three dimensions - see Pan et al. (2001) - the implicit coupling of fluid- 
particle momentum equations slows down the solution procedure. This is critical for DNS 
of turbulent particulate flows or for performing simulations with thousands of particles. 
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Methods based on explicit coupling can be unstable. In this paper we develop a technique 
for efficient computations of high and low Reynolds number particulate flows. The new 
formulation allows fast computations of particulate flows, and at the same time has 
implicit coupling of fluid-particle momentum equations. It can be easily implemented by 
using finite-element, finite-difference or finite-volume methods. It is suitable for DNS, 
LES or RANS type simulations of turbulent particulate flows. 

In Section 2, the numerical scheme will be presented. Results will be presented in 
Section 3. 

2. The numerical scheme 
The approach in this paper is an adaptation of the formulation of Patankar et al. 

(2000). In this Section, we will first present their formulation and then introduce our 
new approach as a modification of their method. 

2.1. The stress-DLM formulation of Patankar et al. (2000) 

Let V be the computational space, which includes both the fluid and the particle domains. 
Let P(t) be the particle domain. Let the fluid boundary, not shared with the particle, be 
denoted by dV. For simplicity we assume that a Dirichlet boundary condition is imposed 
on dV. The equations are presented by assuming only one particle in the computational 
domain. The formulation can be easily generalized beyond these assumptions. The body 
force is assumed to be constant so that there is no net torque acting on the particle. The 
governing equations for fluid motion are given by: 

M^ + (u-V)u) = V-E + P/g   in   V\WJ, (2-1) 

V-u = 0   in   V\P{t), (2.2) 
u = udV{t)   on   8V, (2.3) 

u = Ui    &    E-n = t   on   dP{t), (2.4) 
u|t=0 = uo(x)   in   V\W), (2.5) 

where pf is the fluid density, u is the fluid velocity, g is the acceleration due to gravity, n 
is the unit outward normal on the particle surface, u* is the velocity at the fluid-particle 
interface 8P(t) and S is the stress tensor. The initial velocity uo should satisfy Eq. (2.2). 
The boundary velocity in Eq. (2.3) should satisfy the compatibility condition due to Eq. 
(2.2). For an incompressible fluid the divergence-free constraint Eq. (2.2) gives rise to 
pressure in the fluid. The stress tensor is given by: 

S = -pi + n (2.6) 

where I is the identity tensor, p is the pressure and II is the extra stress tensor. For 
a Newtonian fluid II represents the viscous stress, whereas for a viscoelastic fluid it 
represents the viscous and elastic stresses in the fluid. The extra stress depends on the 
deformation rate of the fluid at a given location. In a viscoelastic fluid it also depends 
on the history of deformation. 

Patankar et al. (2000) treated the particle as a fluid with an additional constraint to 
impose the rigid motion. The governing equations for particle motion are: 

ps(^ + (u-V)u) = V-S + psg   in   P(t), (2.7) 
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V-u = 0   in   P(t), (2.8) 
V-(D[u])=0    in   P(t)     k    D[u]n = 0   on   8P(t), (2.9) 

u = Ui     k     E-n = t   on   dP(t), (2.10) 

u|t=o = uo(x)    in   P(0), (2.11) 

where ps is the particle density. Equation (2.9) represents the rigidity constraint that sets 
the deformation-rate tensor, D[u] = (Vu +Vur)/2, in the particle domain equal to zero. 
The initial velocity u0 should satisfy Eq. (2.9). The rigidity constraint ensures that the 
velocity field is divergence-free. Hence Eq. (2.8) is a redundant constraint. Nevertheless, 
it is retained in order to facilitate the application of the fluid equations in the entire 
domain. The stress inside the particle - see Patankar et al. (2000) - is given by 

S = -pi + D[A] + n (2.12) 

where A is the Lagrange multiplier due to the rigidity constraint and II is the extra 
stress tensor which depends on the deformation rate. The extra stress is zero inside the 
particle domain since the deformation rate is constrained to be zero. A two-dimensional 
case is considered for simplicity. The combined weak form of the fluid-particle equations 
is given by: 

For * > 0, find u £ Wu, p <E L2
0{V), A € H^P^))2 satisfying 

/ M^T + (u • V)u - g) • vdx - /" p(V • v) dx + J <?(V • u) dx 

+ [ n : D[v] dx+ f     (ps - Pf)(~ + (u • V)u - g) • vdx 
Jv JP{t) öt 

+ [     D[A] : D[v] dx+ f     D[*] : D[u] dx = 0, 
Jp(t) Jp(t) 

V   veWo,   qeL2
0(V)   &   «eff'TO2, (2.13) 

where 

Wu(t) = {v\v6Hl(V)2,v = udV(t)   an   ÖV}, 
W0(t) = {v\v£Hl(V)2,v = 0    on   8V}, 

L2(V) = {qeL2(V)\ [ qdx = 0}, 
Jv 

and v, * k q are the variations of u, A k p, respectively. The initial conditions are 
given by Eq. (2.5) and Eq. (2.11). The fluid-particle interface condition is internal to 
the combined system. Hence there are no explicit interface-force or velocity terms in Eq. 
(2.13). The particle translational and angular velocities are not present in the combined 
form Eq. (2.13). This is especially convenient in a three-dimensional case with irregularly- 
shaped bodies, for which there is added complexity due to the nonlinear nature of the 
angular-momentum equation. Equation (2.13) is solved by a Marchuk-Yanenko fractional- 
step scheme. The algorithm based on this scheme, given by Patankar et al. (2000), is: 

(1) Calculate particle velocity: given un and P(t„), find the translational velocity, Un, 
of the particle: 

MUn= /      psu
ndx, (2.14) 

Jp(t») 
where M is the mass of the particle. For a non-circular particle it is necessary to update 
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the angular position of the particle. The angular velocity, fin, of the particle is given by 

Ipft
n = /      rxpsu

ndx, (2.15) 

where Ip is the moment of inertia of the particle. 
(2) Explicit update of particle position: Compute Xn+1 by the following procedure: 
Set Xn+1-° = Xn. 
dok = l,K 

TTn-4-TTn_1     At 
X.n+l,fc = Xn+1,*-1 + ( *L±£ )Ä (2.16) 

2 K 

Xn+I,* = X*n+1,, + (F(Xra+1'fe"1^F(X*n+1'A))(^) (2.17) 

enddo 
Set Xn+1 = Xn+1'K, this also gives P(tn+1). 
Set 

9 TTn -I- IT™-1 

A"+1 = ^(X"+1 "X" ~ ( 2 )Af)' (2-18) 

where X is the position of the particle centroid and F denotes the collision force acting 
on the particles to prevent them from penetrating each other or the walls of the domain. 
Ac is the acceleration of the particle due to collision. This term provides an additional 
body force acting on the particle and is included in the combined momentum equation to 
be solved in the subsequent steps. Details of the collision-force model used in this paper 
can be found in Glowinski et al. (1999). An additional equation to update the angular 
position is required for non-circular particles. 

(3) Fractional step 1: Find un+1/3 6 Wu(t
n+1) and pn+x'3 € Lg(V) satisfying 

r „n+1/3      ,,n r r 
J PfC     M -g)-vdx- ^p"+1/3(V-v)dx + jvq(V.u'+1'*)dx 

+a f 277D[un+1/3]:D[v]dx = 0,    V   v € W0    &    q € Ljj(V). (2.19) 
Jv 

(4) Fractional step 2: Find un+2/3 € Wu(t
n+1) satisfying 

/ 

„n+2/3 _ „n+1/3 
Pf(- ^ + (u"+2/3 • V)un+2/3) • vdx 

+ß f 2??D[un+2/3] : D[v] dx = 0,    V   v € W0. (2.20) 
Jv 

(5) Fractional step 3: Find un+1 € Wu(t
n+1) and An+1 e H1{P{tn+l))2 satisfying 

/ Pf( A? ) • v dx + 7 / 2VT>[un+1] : D[v] dx - / psA?+1 • dx 
Jv A* Jv Jp(t»+l) 

+ f D[An+1] : D[v] dx+ f D[*] : D[un+1] dx 
./p(t"+1) Jp(f+l) 

c nn+i _ iin 

+ (Ps- Pf)(       A,       + (un+2/3 • V)u"+2/3 - g) • v dx = 0, 

V   veW0,    *eH1(P(tn+1))2. (2.21) 
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FIGURE 1. A fixed uniform triangular mesh spanning the fluid-particle domain. The circles 
indicate particle domains. A is defined on a triangular mesh (not shown in the figure) moving 
with the particles. 

n is replaced by the Newtonian stress with constant viscosity and is split into the three 
fractional steps such that a + ß + 7 = 1. Patankar et al. (2000) and Glowinski et al. 
(1999) performed simulations with 7 = 0. A fixed uniform triangular mesh was used to 
solve Eq. (2.19) & Eq. (2.20) over the entire domain (e.g. Fig. 1). To solve Eq. (2.21), 
A was defined on a triangular mesh moving with the particles. A linear interpolation 
was used to project A from the particle mesh to the uniform background mesh and 
to project u from the background mesh to the particle mesh. The above is a first-order 
time-discretization scheme. The first fractional step, Eq. (2.19), is the classical Stokes-like 
problem and is solved using a conjugate-gradient method. The second fractional step, Eq. 
(2.20), defines a nonlinear problem for velocity which is solved by using a least-squares 
conjugate-gradient algorithm. The third fractional step, Eq. (2.21), is solved by a Uzawa 
conjugate-gradient algorithm. Details are given in Patankar et al. (2000) and Glowinski 
et al. (1999). A Galerkin finite-element method was used. 

2.2. A new approach to impose the rigidity constraint 

The last fractional step, Eq. (2.21), adds computational cost to the solution procedure. 
This is the additional computational time spent to account for the presence of the parti- 
cles. The last step is a projection of the velocity field on to a rigid motion in the particle 
domain. When 7 = 0, the velocity is corrected only in the particle domains. This in- 
troduces an error in the form of small slip at the fluid-particle interface. Smaller time 
steps are preferable to reduce this error, especially when the particle and fluid densities 
are not matched. One way to minimize it is to add the buoyant-weight term in the first 
or second fractional step. In the numerical method the slip is smeared on the length 
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scale of the smallest grid size. Indeed, if 7 # 0 then there is no slip on the interface 
but it increases the computational cost. A Uzawa conjugate gradient algorithm is used 
in the current implementations of the DLM formulation: see Glowinski et al. (1999) and 
Patankar et al. (2000). The correct velocity field and the corresponding Lagrange multi- 
plier field are obtained simultaneously through an iterative procedure. Here we present 
a fast projection scheme that eliminates the need to solve the last fractional step by an 
iterative procedure when 7 = 0. Even when 7 # 0, the scheme presented can provide 
a significant reduction in the computational cost, at each iteration, as compared to the 
current implementations. 

The last fractional step Eq. (2.21), with 7 = 0, can be rewritten as 
r „n+l _ „n+2/3 r f 
/ ps£ * ).vdx=/ S-vdx+/ fvdx,   (2.22) 

yP(tn + l) At JP(tn+1) JP(tn + 1) 

where 

/ S-vdx= / psA?+1- dx 
Jp(t"+1) Jp(tn+1) 

-I 
„n+2/3 _ „n 

(Ps ~ Pf)(        A,        + (u"+2/3 • V)u"+2/3 - g) • vdx, 
p(tn+i) at 

f f • vdx = - f D[An+1] : D[v] dx 
Jp(t"+1) Jp(tn+1) 

= / (V • D[An+1]) • v dx - / (D[An+1] • n) • v dA. 
JP(t"+1) J8P(t"+1) 

S is a source term that can be calculated explicitly, based on known values of the variables, 
and f is a source term, to be determined, due to the rigidity constraint. The weak form 
of the rigidity constraint Eq. (2.9) should be solved simultaneously with Eq. (2.22). Let 
us consider the strong form of Eq. (2.22), applicable in the particle domain: 

„n+l _ „n+2/3 
Ps(- ^ ) = S + f. (2.23) 

The solution of Eq. (s2.23) can be obtained in two steps: 
(a) Find ü by solving 

Ps(U    lt       ) = S. (2.24) 

(b) Find un+1 by projecting ü on to a rigid body motion 
„n+l  .'i 

ü is an intermediate velocity field in the particle domain. Solution of Eq. (2.24) is straight- 
forward. To solve for un+1 we need f. An equation for f can be obtained by using Eq. 
(2.9). We get 

fAt 
V • (D[un+1]) = V • (D[u + —]) = 0, 

Ps 
fAt 

&   D[un+1]-n = D[u + —]-n = 0. (2.26) 
Ps 

The above equation implies that ü + (f At)/ps is a rigid-body motion, but it gives no 
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information about what this rigid motion should be. In fact, this rigid motion is the 
solution that we are seeking because ü + (fAt)/ps = u"+1. 

We can obtain the rigid motion by imposing an additional condition that, in the 
projection step Eq. (2.25), the total linear and angular momenta in the individual particle 
domains should be conserved. The required solution is then obtained by the following 
procedure: 

(i) Split ü as: ü = UR + ü', where UR is the velocity field of a rigid motion. It is given 
by: 

UR = Ü + fl X r, 

MÜ = f psüdx   &   Ipfi = I r x psudx, (2.27) 

where r is the position vector of a point with respect to the centroid of the particle. This 
computational step is cheap since it is merely an addition (integration). 

(ii) Since the linear and angular momenta should be conserved in the projection step, 
set un+1 = üfi in the particle domain. This is the required solution. Note that f = 
-(psü')/Ai. 

The solution procedure above requires no iterations and is computationally cheap. 
We replace the last fractional step Eq. (2.21) in our previous work by this equivalent 
procedure. The results are presented in Section 3. 

2.3. Application to turbulent particulate flows 

The new formulation presented above is suitable for finite-volume or finite-difference 
immersed-boundary techniques for the simulation of freely-moving particles. The key 
issue that we address in this formulation is the fast implementation of the rigidity con- 
straint, irrespective of the type of equations used to describe the fluid. Hence, it can be 
used in a DNS, LES or RANS type approach. As an example, we present a fractional 
step scheme similar to the approach of Kajishima et al. (1999) who performed DNS of 
turbulent flows with rigid particles. 

For simplicity, we assume ps = pf = p and a Newtonian fluid with constant viscosity. 
The scheme can be generalized to the unmatched-density case as in Section 2.2 above. 
The momentum equation is 

p(^ + (u • V)u) = - Vp + T7V2u + ps + f, (2.28) 

where f is the additional source term due to the rigidity constraint Eq. (2.9) in the particle 
domain. In the formulation of Patankar et al. (2000) the source term is f = V • (D[A]). 
The velocity field should be divergence-free in the entire domain. The above equations are 
to be solved on a fixed grid spanning the entire fluid/particle domain. A fractional-step 
scheme is summarized below: 

(1) Find ü by solving the following equation over the entire domain 

/,(^ir~) = limn" Hn_1) _ Vpn + ^v2(ü+un)+pg'      (2-29) 

where 

H = -p(u ■ V)u. 

The Adams-Bashforth method is used for the convection term and the Crank-Nicolson 
scheme is used for the viscous term. 
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(2) The projection of ü on to a divergence-free velocity field ü (applicable in the entire 
domain): 

V2G = ^, (2.30) 

P(^) = -VG. (2.31) 

(3) The projection of ü on to a rigid motion in the particle domain: 

Split     ü = ü# + ü',    where   VLR = U + Ö x r, 

MÜ = f psndx   k   IpCl = I r x psudx, (2.32) 

f=M^-ü); (233) 

nn+1 — fi 

iV-'' {2-34) 

where </> is the particle volume fraction in a control volume associated with a given 
grid point: see Kajishima et al. (1999). Equations (2.32)-(2.34) are based on the new 
projection scheme presented in Section 2.2. As in the approach of Kajishima et al. (1999), 
we calculate f on the fixed grid nodes. 

The advantage of our method is that the fluid and particle velocities are solved si- 
multaneously, unlike the technique of Kajishima et al. (1999) where the fluid-particle 
momentum coupling was explicit. Explicit coupling is often undesirable since it can lead 
to instabilities: see e.g. Hu et al. (1992). The additional computational cost in step 3 will 
be negligible compared to the time required to solve the fluid equations over the entire 
domain. 

A grid over the particle domain is not essential in the above approach. Integrations 
are required over the particle domains (Eq. 2.32) which do not conform with the fixed 
grid. The accuracy of the solution in the vicinity of the particle boundary depends on 
the interpolation schemes used in these integrations. The order of accuracy and the 
interpolation scheme can be improved, and need further investigation. Nevertheless, we 
believe that this is a promising approach for the simulation of large numbers of moving 
particles and for turbulent particulate flows, especially in light of the simulations of 
Kajishima et al. (1999). 

3. Results 
We validate our new formulation by presenting preliminary results of the sedimentation 

of two circular particles in a Newtonian fluid. We use the numerical scheme of Patankar 
et al. (2000), the only difference being that the new rigid-motion-projection scheme, in 
Section 2.2, is used instead of Eq. (2.21). A finite-element method is used with a triangular 
grid (Fig. 1). 

It is known that two particles dropped close to each other in a Newtonian fluid undergo 
drafting, kissing and tumbling: see Fortes et al. (1987). This simulation has been used as 
a test case in our previous work. 

We consider a channel 2 cm wide (x-direction) and 8 cm tall (y-direction). The fluid 
viscosity is 0.01 g/cm-s and the density is 1 g/cc. The particle density is 1.01 g/cc and 
the particle radius is 0.1 cm. Gravity acts in the negative y-direction. The simulation is 
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FIGURE 2. Numerical simulation of drafting, kissing and tumbling of particles in a Newtonian 
fluid. Contour plots of the vertical velocity in the fluid domain are shown at times t = 1.5s, 
2s & 5s, respectively. Darker shades imply higher downward velocity of the fluid. The particles 
are shown by white circles to make them visible; white color in the particle domains do not 
represent the vertical velocity. 

started at t = 0 s by dropping two particles at the center of the channel at a height of 7.2 
cm and 6.8 cm, respectively. The fixed (background) mesh size for velocity is 1/96 cm and 
for pressure is 1/48 cm (a coarser mesh is used for pressure to satisfy the Babuska-Brezzi 
condition). The particle mesh size is 1/96 cm. The time step is 0.0025 s. 

Figure 2 shows the numerical simulation of drafting, kissing and tumbling of particles 
in a Newtonian fluid; in agreement with experimental observations. Figure 3 shows the 
plot of particle velocities in the vertical (j/-) direction. As expected the lagging particle 
moves with a higher velocity and catches up with the particle in the front (drafting). 
The particles fall one behind the other with almost the same velocity for some time. This 
configuration is unstable in a Newtonian fluid. The particles eventually tumble and move 
apart. Convergence tests were done by changing the time step and the mesh resolution; 
similar results were obtained. 

The numerical results are compared with those obtained using the original formulation 
of Patankar et al. (2000). The vertical-velocity plot of Patankar et al. (2000) differs 
quantitatively from Fig. 3 shown here, after the kissing and tumbling phases begin. In 
their case, tumbling is initiated earlier thus giving a different graph. This is inherent in 
these simulations, since the tumbling process is a realization of an instability and can 
be affected by the accuracy of the solution procedure and the modeling of the collision 
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time(s) 

FIGURE 3. Vertical velocity of the particles. The solid line represents the velocity of the 
leading particle and the dashed line represents the velocity of the lagging particle. 

force: see Singh, Joseph & Hesla (2001). Similar differences were also observed by T.-W. 
Pan (private communication). 

4. Conclusions 
We have developed a fast projection scheme to impose the rigidity constraint for the 

direct numerical simulation of rigid particulate flows. The new formulation is suitable 
for finite-volume or finite-difference immersed boundary techniques. The scheme is im- 
plemented by modifying the approach of Patankar et al. (2000). Numerical simulation of 
drafting, kissing and tumbling of particles has been done to validate the method. 

This method can form a basis for fast computations of large numbers of moving par- 
ticles. Such simulations can be used to develop models of solid-liquid flows. The new 
approach is also suitable for the direct numerical simulation of turbulent particulate 
flows since it directly improves upon the previous efforts of Kajishima et al. (1999). The 
technique is not restricted to any constitutive model for the suspending fluid. Hence, it 
can also be used in LES or RANS type simulations. 
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Direct numerical simulation of polymer flow 

By   Y. Dubief AND S. K. Lele 

1. Introduction 
Although drag reduction due to the addition of small amounts of long-chain polymers 

has been a well-known phenomenon for about fifty years, its mechanism is still poorly 
understood. One of the first theories came from the time criterion (Lumley 1969), which 
states: for the polymer to have an effect on the flow, the characteristic relaxation time 
of the polymer solution must be longer than a relevant Lagrangian turbulent time scale 
of the flow. Following this scenario, Lumley surmises that drag reduction is caused by 
substantial stretching, also called the coil-stretch transition. Arguing that the coil-stretch 
transition does not occur in turbulent flows, Tabor & de Gennes (1986) proposed a 
different theory, the elastic theory, which states that the elastic energy stored in the 
polymer molecules is responsible for drag reduction. The polymers are thought to disrupt 
the turbulent cascade at the small-scale level. Furthering the elastic theory, Joseph (1990) 
suggested that the main effect has to be elastic since polymers attenuate small-scale 
turbulence. He related the phenomenon to the elastic wave speed. Recently, the onset 
of drag reduction and the maximum drag-reduction asymptote have been re-visited by 
Sreenivasan & White (2000) in the light of the elastic theory of de Gennes, leading to a 
provisional conclusion that the theory agrees with existing experiments. The authors also 
pointed out an extensive list of directions of research and many gaps in our knowledge 
of drag reduction by polymers. 

In a different fundamental perspective, gaining deeper insight into the mechanism of 
drag reduction by polymer additives may reveal fine details of the regeneration cycle of 
near-wall turbulence. The self-sustaining nature of the turbulent flow close to the wall has 
been extensively discussed by Jimenez & Pinelli (1999). The authors proposed a cycle that 
involves the basic ingredients of the near-wall region: quasi-longitudinal vortices, streaks, 
mean shear and non-linear effects. Quasi-longitudinal vortices are known to produce large 
downwash motions that eventually generate significant wall shear stress. Choi et al. (1994) 
obtained a drag reduction of 30%, by blowing against those downwash flows. There are 
other experiments showing that the introduction of well-located perturbation obviously 
affects the cycle and reduces the drag. Since polymers are among the best drag-reducing 
agent available so far, they might reveal where the auto-regeneration cycle is best altered 
to obtain drag reduction. 

In the past decade, numerical simulations have started to address polymer flow using 
various constitutive models. The present work follows the path opened by Sureshkumar 
et al. (1997) with the simulation of a viscoelastic channel flow based on the FENE-P 
model (Finitely Extensible Nonlinear Elastic-Peterlin: see below) and using a pseudo- 
spectral code. Even though the authors had to use unphysical parameters to match the 
low Reynolds number of their simulation, they were capable of showing drag reduction 
and velocity statistics in qualitative agreement with experiments. More recently, Min 
et al. (2001 o) reproduced similar results using a different numerical approach based on 
second-order finite difference schemes. Min et al. (20016) also investigated the role of 
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elastic energy through the use of an Oldroyd-B model, providing good support for the 
elastic wave speed theory. 

In the present work, the FENE-P model is implemented in a second-order code, sim- 
ilar to Min et al. (2001a). The numerical issues are addressed, and some solutions are 
proposed. The response of coherent structures to polymer additives is investigated and 
some "unphysical" numerical experiments are proposed to highlight some fundamental 
aspects of the mechanism of drag reduction. 

2. Numerical formulation 
Polymer molecules have typical length scales much smaller than the smallest turbulent 

flow scales. Using traditional numerical schemes for flow simulation makes the explicit 
resolution of molecules unfeasible with current computer facilities; therefore the poly- 
meric field has to be modelled. The evolution of polymers is predicted from bead-spring 
(dumbbell) models. Each dumbbell is subject to the hydrodynamic forces exerted from 
the flow to the beads, the spring force and Brownian forces. The balance of forces gives 
an evolution equation for the end-to-end dumbbell vector q, known as the FENE model. 
A constitutive approach is achieved by taking into account the Brownian motion using 
a phase average of the product of the q-components, which defines the conformation 
tensor cy = (qiqj)- The hydrodynamic and relaxation (spring) forces are explicitely sim- 
ulated; the latter force can be estimated with various models. The model used here is 
the FENE-P model, where P stands for the Peterlin function, /, defining the following 
set of equations 

dcij den dui duj       1 
-df+UkdrrCkjd^+Cikd^-w-e 

ifCi> - w' (2J) 

/=——-. (2.2) 
L* - ckk 

The parameter L is the maximum polymer extension, and the Weissenberg number, 
We, the ratio of the polymer time scale to the flow time scales and ensures the non- 
dimensionality of Eq. (2.1). Finally, the contribution of polymers to the flow enters the 
momentum equations via the divergence of the polymeric stress tensor Ty, 

^ = -^(/cy-<Jy) . (2-3) 

yielding the viscoelastic momentum equations, 

dt       jdxj        dxi     Redxjdxj       Re  dxj ' [ ' ' 

where ß is the ratio of the solvent viscosity T)3 to the total viscosity T). 
The numerical method used to solve Eq. (2.4) is based on a semi-implicit, fractional- 

step method (Le & Moin 1991). Velocities are discretized in a staggered arrangement 
while the pressure and the polymeric tensors cy and Ty are computed from the cell- 
centered nodes. The Newtonian viscous stress in the wall-normal direction is advanced 
in time with the Crank-Nicolson scheme, while all other terms in Eqs. (2.1) and (2.4) 
are advanced with a third-order Runge-Kutta method. Velocity derivatives are computed 
using second-order finite-difference schemes. To maintain good resolution, the polymeric 
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FIGURE 1. Dissipation of the compact upwind 
scheme (Eq. 3.3) for various £:  , £ = 0 
(no dissipation); , £ =0.25, 0.5, 0.75, 1. 
The arrow indicates the evolution of the dissi- 
pation as f is increased. 

FIGURE 2. Dispersion of the compact upwind 
scheme (Eq. 3.3) for various £: , exact 
differentiation,  , f = 0; , f =0.25, 
0.5, 0.75, 1. 

stress derivatives are calculated with a non-dissipative fourth-order compact scheme. The 
advection terms of Eq. (2.1) are solved using a compact upwind scheme, following the 
modification by Min et al. (2001a), as explained in the following section. 

3. Stabilisation of the conformation tensor advection 
The resolution of the conformation tensor appears to be much more delicate than for 

the velocity field. Eq. (2.1) has an advection term but, unlike a passive scalar equation, 
does not include any diffusivity. Sharp gradients in cy develop, requiring higher-order 
methods suited for such specific situations. 

Non-centered compact schemes have been developed to maintain high accuracy in 
convection-dominated problems where centered schemes, with dispersion but no dissipa- 
tion, are not robust enough. The range of applications of upwind compact schemes spans 
from breakdown in convective flows (Christie 1985) to incompressible and compressible 
flows with sharp gradients (Tolstykh 1994). They have also been recently used for poly- 
mer flows by Min et al. (2001 o). The latter authors solved the advection terms in the 
FENE-P equations with a third-order compact upwind scheme, developed by Tolstykh 
(1994) and adapted to the staggered grid used to solve the equations of fluid motion: 

(2 + 30#_! + (8 + 3s- - 3s+)$ 4- (2 - 3s+)#+1 

6 (3-1) 
= - [(-1 - 8~)4u-i + (*" + s+)4>i + (1 - s+)&+i] , 

The parameters s~ and s+ denote the sign of the velocities Ui_i/2 and ui+i/2, respec- 
tively. When s~ = s+ = 0, Eq. 3.1 reduces to a fourth-order central scheme: 

$_i + 4$ + $+i = -^[4>i+i ~ <t>i-i] (3.2) 

Min et al. (2001a) demonstrated the superiority of the compact upwind scheme relative to 
explicit upwind (QUICK) and central schemes (2nd-order explicit and 4th-order compact, 
respectively). However, as pointed out by one of the authors of Min et al. Choi (2001), 
the scheme has a low CFL (CFL~ 0.5; see Lele 1992, for more details on the time-step 
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constraint using compact schemes). Choi suggested another upwind scheme, proposed by 
Zhong (1998), whose CFL is of the order of unity. We call this scheme CUDZ. Zhong 
(1998) established his upwind compact scheme so that it remains stable using high-order 
one-sided compact schemes at the boundaries. Yet the formulation used in Eq. (3.1) and 
CUDZ lose third-order accuracy for compression and dilatation points in the direction 
of differentiation (s~ ^ s+). The error of CUDZ drops to second order at those critical 
points, while the rhs of Eq. (3.1) vanishes at dilatation points (s~ = —1, s+ = +1). 

To overcome this difficulty, we design a scheme which has the upwind/downwind for- 
mulation of CUDZ and reduces to Eq. (3.2) in compression or dilatation regimes. This is 
achieved by introducing an average of the velocity signs over the cell, e = £(s~ + s+)/2, 
where £ is the upwinding parameter, which is allowed to vary from 0 to 1. This latter 
parameter is used to control the amount of dissipation and dispersion of the scheme, 
which is now: 

(1 + eWU + 4$ + (1 - e)<t>'i+1 = i[(-3 - 2e)&_! + 4e& + (3 - 2e)cj>i+l] ,      (3.3) 

Fig. 3 shows the dissipation and dispersion of Eq. (3.3) for five different values of £ from 
0 to 1. In these plots, w defines the wavenumber and u' the modified wavenumber as 
defined in Lele (1992). As suggested by Min et od. (2001a), this scheme is supplemented 
by local artificial dissipation (LAD) 

de-     6 *■     (° ifdet(cy)X), 

dxk      6xk 
+ {/cAlgi   ifdet(c«)<0. K'' 

The operators Su and 62 are the upwind-compact and second-order central differentiation 
schemes, respectively, A* the grid mesh in the xk direction and K is a constant equal to 
10~2, according to Min et al. (2001a). This local dissipation is necessary to ensure that 
the conformation tensor remains positive-definite, hence the relation of LAD to the de- 
terminant of Cij. In our own experience, the fraction of the flow affected by LAD depends 
on the coarseness of the grid as well as on the intrinsic dissipation of Eq. (3.3). Fig. 3 
is extracted from several simulations using values of £ for the flow and grid conditions 
that will be defined below. It shows the evolution in time of the spatial-average friction 
velocity, (uT)xz as a function of time, just after the polymeric field is coupled to the 
velocity field. The coefficient K is the same for all simulations. The effect of £ on the 
drag reduction is quite significant. Using a central compact scheme (£ = 0) is associated 
with a high number of nodes affected by LAD, around 20%, and eventually causes the 
simulation to break down. The latter issue is avoided if f = 0.25; however the fraction 
of nodes with LAD remains large, ~ 10%. As will be shown below, the polymer drag 
reduction comes from the damping of vertical velocity fluctuations. When LAD affects 
too many points, it seems to weaken the predicted effect of polymers by smoothing out 
the divergence of the polymeric tensor (Eq. 2.3), resulting in a smaller drag reduction. 
For f = 0.5 and 0.75, the fraction of nodes that requires LAD is roughly the same, 1-2%, 
which is more acceptable. This fraction actually decreases when the resolution in the 
streamwise and spanwise directions is increased. At this stage of the study, it is still 
unclear which £ produces better results. Fig. 3 shows a larger drag reduction for the 
transient time; however, once a statistical steady state is reached, the amount of drag 
reduction is roughly the same. This aspect needs further investigation and for the present 
study we will consider a simulation with £ = 0.5 to diminish the impact of the numerical 
dissipation of Eq. (3.3). 



Direct numerical simulation of polymer flow 
0.045 

201 

FIGURE 3. Evolution in time of the friction velocity averaged in space with various values of £ 
(Eq. 3.3) for the advection term in Eq. (2.1).  : £ = 0; : £ = 0.25, , £ = 0.5; 
 : £ = 0.75. 

4. Stability of the relaxation term 
It would be wrong to blame the unstable numerical nature of Eq. (2.1) solely on the 

resolution of the advection term. A simple analysis of the behaviour of Cy, as its trace 
approaches L2, suggests that the positive-definiteness of the conformation tensor is also 
affected by the relaxation term. To illustrate our argument, we shall consider Eq. (2.1) 
for a one-dimensional problem, with no advection and with explicit time advancement, 

r.n+1 _ 

At 
— = 2c" 

dx L2-c-x 
-1 (4-1) 

When c£x approaches L2, say cxx = L2 - e2, an absolute requirement for the time 
advancement of Eq. (4.1) is that the solution cj*1 remains smaller than L2, which implies: 

-e2 + At <*-*£-£>-*-. <0. (4.2) 

By assuming that e2 < L2 and L4/e2 » 1, the following condition on At can be derived, 

r4 

At< 7— 

25I2   e2 - —) 2SWeJ 

(4.3) 

where S = dun/dx. Note that Eq. (4.3) makes sense only if e > L2/(2SWe). This relation 
indicates that a Euler-type scheme can easily become unstable when e2 is too small. If 
Eq. (4.2) is not satisfied, i.e. CJJ+1 > L2, then the Peterlin function (Eq. 2.2) becomes 
negative, turning the relaxation force into an extension force whose effect is to pull 
cn+2 even further beyond L2. For this situation to occur requires only an accumulation 
of small numerical errors, eventually leading to a numerical breakdown. Those errors 
might come from the time scheme as well as the advection term as discussed in the 
previous section. Eq. (4.3) provides a very strict time-step restriction which can be taken 
as the minimum of the rhs of the relation, Atmin = l/(S2We). For instance, in a low- 
Reynolds-number channel flow, where the typical time-step is of the order 10-3h/uT 

for Newtonian flow, the polymeric time-step can decrease as low as O(l0~s)h/uT for a 
realistic Weissenberg number (We = 10). For a full simulation, the stability analysis of 



202 

+ 

Y. Dubief & S. K. Lele 
1.0 

0.0       0.2       0.4       0.6       0.8       1.0 
y/h 

FIGURE 4. Mean velocity profiles scaled with inner (left) and outer (right) variables, o: 
Newtonian flow; : viscoelastic flow. 

Eq. (2.1) is not straightforward and has not been attempted here. The published results 
are somewhat conflicting on that particular issue. Sureshkumar et al. (1997) used a time 
step five times smaller than for the Newtonian case, whereas Min et al. (2001a) used 
CFL = 0.5, as required by their numerical scheme described earlier. An explanation 
of this discrepancy might be found in the numerical schemes used. Sureshkumar et al. 
(1997) stabilized the polymeric field by using the combination of an advanced semi- 
implicit scheme and the implementation of an extra diffusive term in Eq. (2.1), ndkdkCij, 
where K is a small constant of the order 10-2 -10-3. They used pseudo-spectral methods 
for spatial derivatives and it may be assumed that their procedure also helps to stabilize 
the advection term. Min et al. (2001 a) directly addressed the positive definiteness by 
using LAD wherever the determinant of the configuration tensor became negative. The 
inherent dissipation of their compact upwind scheme at high wavenumbers may also 
contribute to the overall stability. Most importantly, they addressed only small We, as 
in the present study. 

During the course of the simulations, it was found that only one or two points are 
at risk of diverging during the transient time of the simulation. A "cheap" solution is 
to re-adjust the Pertelin function (Eq. 2.2) for those points so that the trace of the 
conformation tensor remains bounded. The value of / is based on a critical value of e 
derived from Eq. (4.3) with At given by the CFL constraint. This procedure proves to be 
efficient for small We and affects less than five nodes once or twice at the very beginning 
of the simulation. Once the transient time is over, this clipping can be safely removed. 
However, for higher We, an implicit scheme for the relaxation force will be necessary. 

5. Results 
The simulation presented here corresponds to a minimal channel flow of dimensions 

irhx2hx h, for Re = 7500 based on the initial Poiseuille profile centerline velocity and 
the half-width h. The resolution is 64 x 129 x 32 which gives A+ = 15, A+ = 0.16 -» 10 
and A+ = 9. The Reynolds number based on the friction velocity for the Newtonian 
flow is ReT = h+ = 295. The Weissemberg number is equal to unity in integral scaling 
(We = XU/h) which implies WeT = 10. The maximum extension L is set to 60 and 
ß = 0.9. The maximum extension is chosen to be higher than in the work of Sureshkumar 
et al. (1997) and Min et al. (2001 o) in order to approach realistic long-chain polymer 
molecules. The contribution of the solvent to the flow is equal to that used in previous 
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FIGURE 5. RMS of velocity fluctuations scaled with inner (left) and outer (right) variables. 
Symbols denote the Newtonian flow, lines the viscoelastic flow, o, : u; D,  : v; A, 
 : w. 

studies. The initial configuration of the polymer stress tensor is the isotropic tensor 
[cij = 8ij) which implies that the flow undergoes a transient time that lasts for around 
50 h/Uc. When the solution is found to be statistically steady, around 100 h/Uc, statistics 
are collected over 200 h/Uc- 

The measured drag reduction for our simulation is 17%. Figs. 4 and 5 show the re- 
sponse of the velocity statistics to the polymeric stress in wall and integral coordinates. 
The mean velocity profile is shifted upward in the log-region. The streamwise velocity 
fluctuations are increased in the near-wall region, whereas the transverse components are 
reduced. These results are in agreement with experimental data (Warholic et al. 1999) 
and numerical results (Sureshkumar et al. 1997; Min et al. 2001a). They indicate a thick- 
ening of the buffer layer and a reduction of turbulence in the transverse directions. The 
latter aspect can be linked to near-wall vortices. The wall-normal and spanwise velocity 
fluctuations are closely related to the activity of quasi-longitudinal vortices in the buffer 
region. Kim et al. (1987) explained near-wall extrema of the variance of the streamwise 
vorticity fluctuation by the presence of those vortices located around y+ = 20. In most of 
the drag-reducing simulations, a decrease of the magnitude of w'x, v' and w' is observed, 
suggesting a weakening of the quasi-streamwise vortices. However The evolution of u'x, 
v' and w' does not explain how the near-wall vortices are modified. A simple method 
is to take advantage of vortex eduction schemes and conditional sampling, as shown by 
Dubief & Delcayre (2000). The present study relies on the Q-criterion of Hunt et al. 
(1988), which identifies regions of positive second invariant of the velocity tensor, 

Q —   n (''tj'ä'ij  — Sij&ij)    , (5.1) 

as vortices. In other words, a vortex is defined as a region where the local rotation rate 
dominates the strain rate, fly and Sy being the antisymmetric and symmetric parts of 
Vu. This criterion is also related to local minima of pressure under certain conditions 
as discussed by Dubief k Delcayre (2000). Yet the choice of a positive threshold is very 
much flow-dependent, making comparisons between flows subject to different conditions 
delicate. In order to reduce as much as possible the subjectiveness of coherent vortex 
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FIGURE 6. Q-vortex intermittency for viscoelatic, and Newtonian, flows. 

FIGURE 7. Instantaneous visualisations of the Newtonian (left) and viscoelastic (right) flow. 
Isosurfaces of positive Q, Newtonian case: Q = lU^/h2, viscoelastic case: Q = Q.ZUjh . Iso- 
contours of wall-normal velocity, contour levels varies from ±0.1C/C. Flow from left to right. 

investigation, an intermittency function can be used, denned as 

IQMQ.) = L   ifQ(Xif)>Qs. 
(5.2) 

In the case of a channel flow, averaging IQ over time and {x, z) plane gives the fraction of 
the flow occupied by vortices educed for Q > Qs at a given y. Dubief & Delcayre (2000) 
found that too-small thresholds cannot separate noise from vortices. As the threshold 
Qs augments, the regions where IQ is unity tend to define the skeleton of the vorticesf. 
Fig. 6 shows a well-marked peak around y+ = 20 for the Newtonian flow, defining the 
preferred location of the most energetic vortices in the inner region of the flow. For the 
viscoelastic flow, the peak is shifted to around y+ = 50. This plot also indicates that the 
distribution of the vortices is wider under the influence of polymers. 

The modifications undergone by the viscoelastic flow are apparent in Fig. 7 which 
plots countours of wall-normal velocity fluctuations and isosurfaces of positive Q. The 
thresholds are chosen from Fig. 6, so that the maximum of IQ is around 10%. Fig. 

f Note that the threshold defining the skeleton can vary in time and space for each vortex. 
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FIGURE 8. Left: evolution in time of the spaced averaged friction velocity. In the following 
nomenclature, the velocities designate in which momentum equations the viscoelastic effect is 
implemented for both figures. +: ww (Eq. 2.4); D: u; o: v; A: w;   : uv; : uw\ 
 : vw. Right: rms of velocity fluctuations in integral coordinates for some drag-reducing 
cases, o: Newtonian flow; uvw;  : v; w. Upper curves: u'\ lower curves: v'; 
middle curves: w'. 

7 illustrates the spreading of vortices over a wider region in the vertical direction, as 
discussed earlier. This plot underscores the significant change in the typical length scale 
of v. Compared to the Newtonian case, the structures of v are much larger. 

6. Numerical experiments 
The previous Section has established that the transverse turbulent intensities are 

damped by the variation of polymeric stress, showing a direct effect on the near-wall 
vortices. However, the statistics proposed so far fail to show where polymers act with 
respect to the energetic structures of the flow. The flexibility of computer simulations 
permits unphysical "experiments" that provides valuable information about the dynam- 
ics of turbulence. For instance, Jimenez & Pinelli (1999) used an irrotational filter to 
demonstrate that the near-wall turbulence is self-sustaining, whereas the outer region is 
not. In our context, a straightforward experiment is to modify the divergence of polymeric 
stress tensor in the momentum equations, (Eq. 2.4). The simplest investigation that can 
be performed is to remove the viscoelastic term in one or two directions by replacing ß 
by ßi {ßi = 0.9 or 1), where i is the velocity component index. The transient period, i.e. 
the time when the viscoelastic simulation is started, is chosen for study if there is one 
preferred direction in the drag-reduction process. The simulations are carried out over 
2500 iterations with a CFL-controlled time-step. 

For the traditional or reference simulation (see Fig. 8), the skin friction experiences a 
small overshoot and then undergoes a significant reduction. This feature is also found in 
Min et al. (2001a). The viscoelastic term in Eq. (2.4) is first switched off in all but one 
momentum equation. When the polymers contribute only to the streamwise momentum, 
the skin friction rapidly increases without any sign of reduction. As a consequence, the 
time-step decreases, explaining the shorter duration of the simulation. The same opera- 
tion is repeated for the v- and tu-momentum equations. The fastest reduction is achieved 
when polymers affect the wall-normal momentum. Since there is no overshoot for those 
two experiments, it is obvious that the initial behaviour of the skin friction is an effect of 
the polymeric stress on the streamwise momentum. When the viscoelastic contribution is 
switched off only in one direction, drag reduction is obtained in all experiments; however 
the reduction is noticeably smaller when the viscoelastic effects are applied on u and w 
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FIGURE 9. Evolution in time of the friction velocity averaged in space when the polymeric stress 
contribution varies according to Eq. (6.1). Left: ß~, viscoelastic effect from the wall up to <5; 
right: ß+, viscoelastic flow for -h + 6 < y < h - 5. +: full viscoelastic flow (reference case); D: 
6+ = 6; o: 5+ = 15;  : 8+ = 30; : 6+ = 45; - ■ -: 6+ = 60; : S+ = 90. 

than for the other cases. The right-hand side of Fig. 8 compares the behaviour of the ve- 
locity fluctuations when the viscoelastic effect is implemented in the v or iw-momentum. 
The statistics have been collected between t = 60h/Uc and 120h/Uc. The figure shows 
that the upward shift of u' maximum does not result from the viscoelastic effect on the 
u-momentum. The polymers might be responsible only for a marginal increase of this 
maximum. The shift is more likely dictated by the new equilibrium state reached by the 
thickened buffer layer. 

In the second set of experiments ß is a function of the vertical coordinate, 

^) = I±^I^tanh h-\vl 
e\h-\y\ 

,-h<y<+h, (6.1) 

where ß - 0.9 and 6 is the thickness of the region attached to the walls. ß~ and ß+ 

designate the functions for which the polymeric stress is active for h - S < \y\ < h and 
-h + S <y <h-6, respectively. The parameter 6 controls the transition from regions 
with polymer contribution to regions without and is taken equal to o"/25 in order to 
ensure a fairly sharp cutoff. Simulations are performed for six heights 5 = 0.02/i, 0.05fc, 
0.1ft., 0.15A, 0.2/i and 0.3/x or 6+ = 6, 15, 30, 45, 60 and 90 in wall coordinates using 
the Newtonian skin friction. The left-hand side of Fig. 9 shows that polymers need to be 
active across the entire buffer layer to achieve a drag reduction equivalent to the reference 
case. It should be noted that all curves exhibit the transient overshoot even when the 
polymer contribution is confined in the viscous sublayer (6+ = 6) and no drag reduction 
is observed. The rhs of Fig. 9 displays the response of drag when polymers are active 
only in the core of the channel flow (/?+). This procedure removes the initial overshoot, 
showing that this sharp increase of drag results from the initial stretching of the polymers 
in the viscous sublayer. Again, a significant drag reduction is observed when the polymer 
contribution covers the buffer layer, 6+ < 15, which is consistent with the conclusion 
of Jimenez & Pinelli (1999) that the cycle of near-wall turbulence is located between 
y+ = 20 and y+ = 60. For 6+ = 90, the small drag reduction can probably attributed 
to the modification of the outer region of the flow. In a similar way, Jimenez & Pinelli 
(1999) observed significant drag reduction by damping turbulence in the outer region. 

These two experiments highlight important phenomena of drag reduction with polymer 
additives. From Fig. 8, it can be inferred that polymers extract energy from the trans- 
verse momentum. To support this argument, we have studied the sign of the viscoelastic 
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acceleration A\ = (1 - ß)/Re{diTij) relative to the sign of the Newtonian acceleration, 
Af = -Ujdjm - dip+ {ß/Re)djdjUi, and that of the velocity fluctuation, m. When 
siga(Ay) = sign(u), i.e. in regions where the flow is accelerated in the y direction, the 
sign of viscoelastic acceleration in the vertical direction is mainly opposite to that of the 
Newtonian acceleration; the fraction of such occurences is of the order of 75% over almost 
the entire channel. The behavior of w is similar but the fraction is a little less, of the 
order of 65%. Accelerations in the streamwise directions are enhanced by the viscoelastic 
acceleration (up to 80%) in the viscous sublayer and the lower part of the buffer layer. 
Although AX works mostly against A% when u > 0, in the rest of the flow, Fig. 8 clearly 
shows that the action of A% away from the wall is not sufficient to prevent the drag from 
increasing due to the activity of the polymers near the wall (see the case where the vis- 
coelastic effect is applied only to the u-momentum). Fig. 9 indicates that the buffer layer, 
corresponding to the peak in vortex concentration observed in Fig. 6, plays a key role in 
the drag-reduction mechanism. Therefore it may be speculated that polymers act directly 
inside the upwash and downwash flows triggered by quasi-streamwise vortices, which is 
also supported by Hur's observations!. It also follows the interpretation of Oldroyd-B 
simulations by Min et al. (20016), which states that polymers store energy very near the 
wall and release it away from the wall. The polymers must therefore keep this energy 
during a time scale comparable to the duration of their advection to suitable altitude. 
Further investigations will be carried out to test this theory, since Fig. 9 indicates that 
the exchange of energy between the viscous sublayer and even the lower part of the buffer 
layer is not a necessity for the drag reduction mechanism. 

7. Conclusion and perspectives 
The present study has established the basis of a numerical method to simulate vis- 

coelastic flows using a second-order staggered code. The implementation largely follows 
that of Min et al. (2001a), with some modifications for the resolution of the advective 
terms. Some results have been obtained, and a flow where 17% drag reduction was ob- 
served has been investigated. Using "unphysical" numerical experiments, it has been 
suggested that drag reduction is achieved by damping strong accelerations of the vertical 
velocity fluctuation as well as of the spanwise component. The phenomenon leading to 
drag reduction does not occur in the viscous sublayer but seem to take place over the 
entire buffer layer. 

Future work will involve a refinement of the numerical method in order to assess 
the effect of numerical dissipation on the polymeric field. Also of major importance, 
an implicit scheme needs to be implemented for the relaxation term in the conformation 
tensor equations to achieve higher Weissenberg numbers. Simulations performed on larger 
computational domains and a wide range of Weissenberg numbers will form a database 
that, it is hoped, will shed light on the mechanism of drag reduction by polymer additives. 
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Structure and evolution of circumstellar disks 
during the early phase of accretion from a parent 

cloud 

By Olusola C. Idowu 

1. Motivation and Background 
The process by which a cloud of gas and dust turns into stars and planets is one of 

the most intriguing questions in astrophysics. One of the steps in this process is the 
formation of a disk surrounding a young star. The disk is important because planets may 
eventually form within it and because it feeds mass to the star. The circumstellar disk 
has two phases in its evolution. The first is characterized by accretion from the parent 
cloud directly to the protostar and on to a radially growing disk whose size is comparable 
to the stellar radius. In the second phase, accretion from the cloud to the disk has ceased. 
The flow at this later phase of evolution is nearly Keplerian and there is observational 
data at both mm and infrared wavelengths to provide guidance for theoretical work on 
the structure of the disk. In contrast, very little is known about the dynamics of the disk 
in the first phase of evolution because the forming disk is heavily obscured by the parent 
cloud. 

Shu (1977) described the mechanism for the spherically symmetric collapse of an ini- 
tially isothermal cloud. He suggested that the collapse occurs through the outward prop- 
agation of a spherical rarefaction wave. The expanding wave front reduces the support 
of pressure gradient (against gravity) behind it. This allows gas particles to fall radially 
inward increasing the mass of the central protostar. For the formation of a disk to take 
place it is necessary for there to be rotation in the parent cloud. To describe this process 
Cassen & Moosman (1981), and Terebey, Shu & Cassen (1984) assumed that the cloud 
collapses in an axisymmetric manner and each gas particles falls with a specific angular 
momentum j = rU^ where r is the radius in cylindrical polar coordinates (Fig. 1) and 
11$ is the azimuthal velocity. The axis z in Fig. 1 represents the axis of a cylindrical 
coordinate system. Surfaces of constant angular momentum are represented by nested 
cylinders. As the rarefaction front propagates, a significant fraction of the infalling gas 
will possess enough angular momentum so that it can miss the central protostar and 
become incorporated to the growing disk around the central star. In the present work we 
consider the evolution of the disk from the time t0 = £,U where £ is any positive number 
and U represents the time when the cloud begins to miss the central star defined as 

t,=o^_y/3, (i.i) 
r* is the initial stellar radius, a is the speed at which the rarefaction front propagates, 
fi0 is the rotation rate of the parent cloud and m0 is a dimensionless number equal to 
0.975 (Terebey, Shu k Cassen (1984)). 

If we assume that the total energy in the infalling cloud is small compared to gravita- 
tional potential energy (negative), and kinetic energy (positive) at the point of impact- 
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FIGURE 1. Inside-out collapse of a rotating cloud showing the surfaces of constant angular 
momentum 

ing the disk, then the fluid element arrives at a state of essentially free fall. Therefore 
the streamlines approaching the disk are well approximated by zero-energy orbits, i.e., 
parabolic trajectories. Cassen & Moosman (1981), Ulrich (1976), and Terebey, Shu & 
Cassen (1984) have used this basic fact to derive the velocity and density of infalling 
cloud onto the disk surrounding the central protostar. The velocity for the infalling par- 
ticle in spherical polar co-ordinates (a, 8,(f>) is given by 

V. m 1/2 

\ COS 00/ 

1/2 

TT      {GM\1/2 [cos90-cos6\ /       cos0 
6 = \~)    V—5^—) I + Ä 

1/2 

\   a   )      sm0 V       COSBQJ 

1/2 

(1.2) 

(1.3) 

(1.4) 

where 6 is the co-latitude and <j> is the azimuthal angle. The density distribution is given 
by 

(1.5) -     (    M K'-SR >-**•> 
where the angle #o is the inclination of each orbital plane relative to the rotation axis; it 
is related to the disk radius Rd by 

Rd 
COS3 0Q - I 1 - — ] COS0Q - -5- cosö = 0 

Rd 
(1.6) 

The disk radius Rd is obtained from Eq. (1.1) at a given to and fio- G is the gravitational 
constant, M is the mass of the central star, and M is the mass accretion rate onto the 
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star given by 

M = ^ (1.7) 
G 

(Terebey, Shu & Cassen (1984)). In cylindrical polar coordinates (r, <j>, z), radial and axial 
velocities become 

/GM\1/2/       cos0 \1/2A-cos0cos0o\ ,, _. 
^-(T)      (1 + co^j      (        sin*        j (L8) 

(GM\l/2(, ,   cos0\1/2      . nQ, % = -(—j     (1 + co^J     C0SÖ° (L9) 

while t/^ remains the same. 
Using Eqs. (1.4), (1.5) and (1.8), Stahler et al (1994) considered the motion of gas 

within a vertically mixed thin disk. The thin disk approximation consists of neglecting 
any variation in the vertical direction. 

The goal of the present work is to study via numerical simulation, the processes that 
occur within the disk as it accretes material. The motion resulting from the infalling 
streams is assumed to be governed by the Euler equations for compressible gas flow. The 
main finding so far is that the gas initially within the disk races towards the protostar 
at supersonic speed to form an equatorial concentration of mass close to the interior 
boundary of the disk. The mass concentration reduces the radial velocity which in turn 
diminishes the rate of accretion of gas from the disk to the central protostar from the 
inner boundary. The flow parameter scaling and the equations of motion used for the 
simulation are described in the next two sections. Some preliminary results from the flow 
simulation is discussed in the last section. 

2. Non-dimensionalization 
Let us begin by denoting all dimensional quantities by tildes. The basic parameters of 

the problem are the rotation rate of the parent cloud (fto)> the initial cloud temperature 
(T0), the time since the beginning of the collapse (to), the specific heat capacity of 
the gas at constant pressure (cp), the ratio of specific heats (7) and the gravitational 
constant (G). Prom these basic parameters we can derive other parameter. These are 

the gas constant {R = Cp(j - l)/i), the initial speed of sound (20 = y^RTo), the mass 

accretion rate (M) from Eq. (1.7), and the mass of the central star (M = Mt0). The four 

parameters used to scale the flow are GM, cp, M and the initial radius of the disk Rd 
obtained from ti0 via Eq. (1.1). The initial conditions of the flow is expressed in these 
four parameter. Quantities are non-dimensionalized as follows 

p{GM?l2RT ,.,   ... ., ^ _ (ür,ue,uz) (21) 

(2.2) 

(2.3) 

M 
-,          \ur,ug ,u,z 

'     vk 

yf 
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where 

Hw 
The initial Mach number of the parent cloud is given as 

Ma=J-™ (2.5) 
V hR)RdT0 

Values used for the simulation discussed in this report are G = 6.67 x 10~u N.m2/kg2, 
£ = 3, M = 2 x 1029 kg (O.1M0), Rd = 2.06 x 1010 m (0.14Au), f0 = 20K (initial cloud 
temperature), and jR — 1.4 x 104m2/(s2K) (gas constant for molecular Hydrogen). 

This gives the a cloud rotation rate Ü0 = 2.6 x 10-14s-1, mass accretion rate M = 
3.5 x 10-5 M©/yr and Mach number Ma = 48. 

3. Equations of motion and numerical methods of solution 
The flow of the gas within the disk is governed by the compressible Euler equations 

with a gravitational force due to a central point mass: 
Continuity equation 

Momentum equations 

g-t(pur) + -g-r(rpul) + -¥e{pueur) + Yz{Puruz) --± =-—- p—        (3.2) 

9 ,     ^ ,   ! 9 , \ +. 1 d t    2^ d puTue 1 dP .     . 

9 /       s      1 9 t N      1 9 , ^   ,    9 i     2^ 9P 0$ . _{pUz) + --(rpuru2) + 7g-e(pueuz) + ^(puM) =-—- p— (3.4) 

Energy equation 

where 

§l(e)+1-l(rur(e + P))+1-fe(ue(e + P)) + fz(uz(e + P)) = 0 

(3.5) 

e = ^ + |(u; + u| + u*) + p* (3.6) 

is the total energy. The gravitational potential term is given as 

GM 
* = -(r2 + z2)i/2 (3-7) 

As a prelude to proper modeling of radiative cooling, we assumed the flow is isothermal 
i.e replacing the energy equation with T = TQ. 

3.1. Numerical methods, boundary and initial conditions 
The numerical methods used for solving the above equations are similar to those used 
in studies of compressible jet flow by Freund (1997) and his code was used as a starting 
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FIGURE 2. Initial velocity in a meridional (zr) plane. The protostar is on the left of the 
diagram. (rmi„,zmin) = (0.1,-3.5), (rmax,Zmax) = (2.0,3.5) 

point. Spatial discretization in all directions was done using the sixth-order Pade-like 
scheme developed by Lele (1992). The details of the discretization schemes are discussed 
by Freund (1997). The fourth-order Runge-Kutta method was used for time advancement. 
To ensure stability we compute a time step based on the Courant-Friedrichs-Lewy (CFL) 
criterion. 

These numerical schemes were tested for different steady-state compressible gas flows: 
solid body rotation, radially converging flow (nozzle flow), and adiabatic flow of gas in 
vertical hydrostatic balance between thermal pressure and the z-component of gravity. 

At the top, bottom, and outer radial boundaries of the computational domain, the 
flow may be locally supersonic or subsonic depending on the choice of initial conditions. 
To determine the local flow at these boundaries, we apply the non-reflecting boundary 
condition of Giles (1990) using the Cassen and Moosman flow (described earlier) as the 
reference flow. To start the simulation we need an initial condition which we expect will 
form a steady or statistically stationary state. For the results shown here we assume 
that the initial condition is the same as the Cassen and Moosman flow except that to 
eliminate collisions of gas particles at the midplane of the disk, we diminished the axial 
velocity Eq. (1.9) to zero at the midplane using the function f(z) = tan.h(z/ezma.x) where 
e = 0.3. We did not specify any boundary condition at the inner boundary because the 
initial Cassen and Moosman flow at this boundary is radially supersonic. We assumed 
that the gas is initially isothermal. The initial velocity field and density are shown in 
Figs. 2 and 3 respectively. 

4. Results 
We observed that the gas initially inside the disk races towards the star to form an 

equatorial concentration of mass close to the inner boundary of the disk (Fig. 4). The mass 
concentration significantly reduces the radial velocity within the same region (Figs. 5, 6 
and 7). As the simulation progresses, the flow at the inner boundary eventually becomes 
subsonic, making our assumption of a supersonic outflow at the inner boundary invalid: 
at this point we stopped the simulation. It is possible that the equatorial concentration 
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FIGURE 3. Initial log of density contours. The maximum value is 3.024 and the minimum is 
-0.852. (rmin,Zmin) = (0.1,-3.5), (rmax,zmax) = (2.0,3.5) 

FIGURE 4. Log of density contours in meridional plane showing the equatorial concentration of 
density at the inner boundary. (rmj„,«mi„) = (0.1, -3.5), (rmal, zmal) = (2.0,3.5) 

of mass is a transient behavior and it will eventually be pushed into the protostar when 
there is sufficient build up of mass within the disk. To answer this question properly we 
need to adopt a more suitable boundary condition for the inner boundary of the disk. 
This boundary condition should allow waves propagating from inside the disk to leave the 
computational domain and disallow any incoming waves. The Giles boundary condition 
used for the other boundary cannot be used for this because a reference flow at the 
inner boundary is unknown. The mass flux at the inner boundary of the computational 
domain (M0ut) was reduced significantly (Fig. 8) because of the decreasing radial velocity 
at the inner boundary. The quantity plotted in Fig. 8 should be unity at steady state. 
Clearly, the calculation is very far from such a state. Our future research efforts will first 
concentrate on the processes involved in the approach of a circumstellar disk to steady 
state and then study instabilities and turbulence evolving from this state. 
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FIGURE 5. Contour plot of the radial velocity at time t = 0.002. Co-ordinates of the corners of 
the computational box are (rmin, zmin) = (0.1,-3.5), (rmax,Zma.x) = (2.0,3.5) 

5 

FIGURE 6. Evolution of radial velocity at the inner boundary normalized by the local speed of 
sound, o : t = 0.0000; □ : t = 0.0004; o : t = 0.0009; A : t = 0.0014; v : t - 0.0019 
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Modeling blood flow in a porcine aorta bypass 
graft: realization of physiological conditions 

By   V. Favier AND C. A. Taylorf 

1. Motivation and objectives 
Atherosclerosis, a vascular disease in which plaque deposits form in blood vessels, does 

not occur uniformly throughout the body. Rather, it is more likely to occur in regions 
of complex flow associated with vessel branching (Zarins k Taylor 1998). It is generally 
believed that low wall shear stress and high particle residence time in the regions of 
complex flow increase the susceptibility of blood vessels to disease by altering the perme- 
ability of the endothelium (mono-layer of cells at blood-vessel interface) and reducing the 
efflux of cholesterol from the wall. Surgical interventions, including bypass grafting are 
also affected by blood flow conditions. Further, it is thought that flow recirculation and 
stasis are important factors in intimal hyperplasia (cell proliferation in the inner layer of 
blood vessels that can lead to obstruction of grafts (Dilley, Mc Geachie k Prendergast 
1988). The chemical process of clotting may result at the site of a surgical wound and 
also on the surface of any artificial device that has been inserted. Lately, in areas of flow 
recirculation and stasis, the probability for clot formation has been shown to considerably 
increase (Gewertz et al. 1992). 

Quantification of blood flow is important for research in such disease, and the devel- 
opment of devices and clinical procedures to treat it. The techniques of experimental 
fluid mechanics have been effectively used in the context of artificial models to charac- 
terize flow patterns. Recently, diagnostic imaging techniques, which include ultrasound 
and magnetic resonance imaging, have allowed non-invasive, in vivo flow quantification. 
However, full velocity fields and derived quantities such as shear stress are difficult to 
obtain using in vitro or in vivo methods. Perhaps even more significant is the fact that 
for these methods new physical models have to be constructed to examine the effect of 
geometric variations. This is time-consuming and costly for in vitro models and imprac- 
tical for in vivo methods. Clearly, the need exists for computational methods capable of 
simulating blood flow using virtual models. 

Early computational studies used simple idealized models of the vascular system. Perk- 
told and colleagues examined blood flow in rigid and deformable models of carotid arter- 
ies (Perktold, Resch k Peter 1991; Perktold k Rappitsch 1995). Taylor et al. quantified 
blood flow in an idealized model of the human abdominal aorta under resting and exer- 
cise conditions (Taylor, Hughes k Zarins 1998a; Taylor, Hughes k Zarins 1999). Milner 
et al. (1998) and Taylor, Hughes k Zarins (1998b) examined blood flow in models of the 
end-to-side anastomosis (downstream connection of the end of a bypass graft to side of 
a host artery). 

To increase accuracy of the simulations and reproduce the anatomy where the arterial 
walls are curved and irregular, geometric models can be constructed from volumetric 
image data including magnetic resonance imaging (MRI) and computed tomography 

f Stanford University, Mechanical Engineering k Surgery 
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FIGURE 1. Model of the pig aorta (straight vessel) and bypass graft (curved vessel). Location 
of the measured cross-sections (l)-(6) (left). Mesh refinement at the stenosis (right). 

(CT) data (Taylor, Hughes k Zarins 1996; Milner et al. 1998; Cebral & Lohner 2001). 
These patient-specific anatomic models can be modified to reflect alternate treatment 
plans and have the potential to be used to predict outcomes of interventions and design- 
improved procedures for individual patients (Taylor, Hughes k. Zarins 1999). 

However, anatomical accuracy is not enough to simulate blood flow in human arteries 
or treatment plans. Blood flow is significantly altered under different physiological states 
(at rest and exercise for example), and varies from person to person. Few computational 
investigations have combined anatomic models reconstructed from image data with ac- 
tual physiologic boundary conditions. Ku et al. (2001) used a Dacron band to create 
a restriction (stenosis) in the descending thoracic aorta of pigs and then bypassed this 
stenosis with a Dacron graft. This aorto-aorto bypass graft was imaged using magnetic 
resonance angiography (MRA) and blood-flow velocity was measured in the aorta above 
the proximal connection of the graft to the aorta, using phase-contrast magnetic reso- 
nance imaging (PC-MRI). This flow velocity data was used to calculate the volumetric 
flow rate which in turn was used to prescribe fully-developed pulsatile flow boundary 
conditions (based on Womersley theory) at the inlet of the computational model. Com- 
puted flow rates in the bypass graft and native aorta compared favorably to the flow 
rates obtained from PC-MRI measurements in these locations. A limitation of this prior 
investigation is that a Womersley boundary condition was employed, and the effect of this 
idealized boundary condition on blood flow rate and velocity patterns was not examined. 

In this paper, we describe the effect of inflow boundary conditions on flow rate and 
velocity in the porcine aorto-aorto bypass model. We compare results of computational 
solutions performed using a Womersley inflow boundary condition and inflow velocity 
mapped directly from PC-MRI data. 

2. Methods 
The anatomic model is constructed from MRA data as follows. A vessel path is iden- 

tified and two-dimensional slice planes are positioned along this path in the volumetric 
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FIGURE 2. Flow rate, Q, versus time, t. Time A: end diastole, time B: peak systole. o-o: 
experimental data, ■: flow rate in the graft (top) and in the aorta (bottom) for the Womersley 
profile, A: flow rate in the graft (top) and in the aorta (bottom) for the three-component profile. 

image data. A level-set method is used to extract closed curves representing the vessel 
boundary in each two-dimensional plane (Wang, Dutton & Taylor 1999). A surface is 
lofted through these curves and a solid model constructed (see Fig. 1). 

An automatic finite-element mesh generator is used to discretize the solid model 
(SCOREC, Rensselaer Polytechnic Institute, Troy, NY). For the calculations described 
in the present study, a 1.2 million tetrahedral element mesh was used. It is refined in the 
vicinity of the stenosis and coarsened in the most distal region (Fig. 1, right). 

As a first approximation we assume that the vessel walls are rigid and that blood be- 
haves as a Newtonian fluid (Taylor, Hughes k Zarins 1998a). With these simplifications, 
the incompressible Navier-Stokes equations which describe the problem are given by: 

uiti   = 0 
lij + UjUitj      = ~(p,i/p) + TijJ + fi 

(2.1) 

The density p is constant, m is the ith component of the velocity, p the pressure, fi the 
prescribed body force, Ty the viscous stress tensor given by Ty = v{uitj + Uj,»), and v is 
the kinematic viscosity, where v — fi/p. 

Velocity and pressure are solved using a stabilized finite element method (Taylor, 
Hughes k Zarins 1998b; Jansen, Whiting k Hulbert 2000). A traction-free boundary 
condition is used at the outlet. 

Two different pulsatile velocity profiles are imposed at the inlet of the calculation 
domain: the actual velocities measured using PC-MRI (including in-plane components) 
or an idealized Womersley velocity profile derived from the measured flow rate. 

Womersley theory is based on the analytical solution of the Navier-Stokes equations in 
the case of a fully-developed pulsatile flow in a straight circular cylinder (of radius R). 
Keeping these assumptions in mind, it can be applied to blood flow such that when the 
flow rate, Q(t), is known, the axial velocity profile can be derived. Given the period of 
the cardiac cycle (T = 2-K/UJ), a Fast Fourier Transform is used to extract the frequency 
content of the flow waveform.  The Fourier coefficients Bn and the Womersley velocity 
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FIGURE 3. Surface plot of the velocity magnitude at cross-section (1), at end diastole for the 
Womersley profile (left) and the three-component profile (right). 

FIGURE 4. Surface plot of the velocity magnitude at cross-section (1), at peak systole for the 
Womersley profile (left) and the three-component profile (right). 

FIGURE 5. In-plane velocity vectors for the three-component profile at cross-section (1), at end 
diastole (left) and peak systole (right). Reference vector: \v0\ = 40cm.s~l 

profile in terms of the radius r and the time t are given by: 

N „r,     r on       N 

Q(t) = J2 Bne™1 and «(r, t) = ^ f 1 - (£) '] +£ 
n=0 "- •*     n=l 

TTR
2 

l-J-fr*«"') 
J,(qn«3/a) 

2Ji(anfif») 
Anwt 

where J0 and J\ axe Bessel functions, and an = Ry/(nu))/v. 
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FIGURE 6. Contours of the velocity magnitude along a transverse cross-section at end diastole, 
for the Womersley profile (left) and the three-component profile (right). 
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FIGURE 7. Contours of the velocity magnitude along a transverse cross-section, at peak 
systole, for the Womersley profile (left) and the three-component profile (right). 

In our simulations, the Womersley number is a.\ = 5.5 and the period is T = 0.62 s. 
The Reynolds number measured at the inlet varies from 320 at end diastole (time A, 
Fig. 2) to 2550 at peak systole (time B, Fig. 2). 

The flow rate is calculated from the measured data (Fig. 2, open circles). As we do not 
have a circular inlet, we first calculate the Womersley velocities for a constant radius, R, 
corresponding to the maximum radius of the lumen, and then the resulting velocity profile 
is mapped on the real geometry. The shape of the velocity profile is kept similar (with 
zero values at the boundaries and a maxima at the centroid of the vessel), and the flow 
rate is conserved, leading to a "quasi-Womersley" profile. The measured three-component 
and idealized velocity profiles are shown in Fig. 3 at end diastole and in Fig. 4 at peak 
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FIGURE 8. In-plane velocity vectors along a transverse cross-section, at end diastole, for 
the Womersley profile (left) and the three-component profile (right). Reference vector: 
|{?0| = 80 cm. s_1 

FIGURE 9. In-plane velocity vectors along a transverse cross-section, at peak systole, for 
the Womersley profile (left) and the three-component profile (right). Reference vector: 
I u01 = 80 cm.s'1 

systole. In contrast to the three-component velocity profile which is irregular (Fig. 3 
and 4, right), the Womersley solution is characterized by a smooth profile (Figs 3 and 4, 
left). The in-plane velocity for the three-component velocity profile is shown on Fig. 5 
at end diastole (left) and peak systole (right). The descending aorta is curved in such a 
way that the in-plane component of the velocity vector is not negligible at the inlet of 
the bypass graft. The flow is directed towards the bypass graft. The in-plane velocity for 
the idealized Womersley boundary condition is prescribed to be zero. 
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FIGURE 10. Contours of the through-plane velocity at cross-section (2), and end diastole, for 
the Womersley profile (left) and the three-component profile (right). 
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FIGURE 11. Contours of the through-plane velocity at cross-section (2), at peak systole, for the 
Womersley profile (left) and the three-component profile (right). 

3. Results 
With a prescribed velocity at the inlet we compute the three-dimensional velocity 

fields. We compare the volumetric flow rates in the native aorta and bypass graft (cross- 
section (3), Fig. 1) and the velocity fields for the idealized Womersley inlet boundary 
condition and measured three-component inlet velocity profile. 

The measured velocity profile at the inlet (cross-section (1), Fig. 1) was used to com- 
pute the inlet flow rate (Fig. 2, open circles). From the simulation of the two inflow 
velocity profiles, we observe that the graft and aorta flow rates measured at cross-section 
(3) (Fig. 1) are very similar. The three-component inlet velocity profile simulation (Fig. 2, 
black squares) and the Womersley inlet velocity profile simulation (Fig. 2, open triangles) 
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FIGURE 12. In-plane velocity vectors at cross-section (2), at end diastole, for the Womersley 
profile (left) and the three-component profile (right). Reference vector: |tT0| = 40cm.s-1 

FIGURE 13. In-plane velocity vectors at cross-section (2), at peak systole, for the Womersley 
profile (left) and the three-component profile (right). Reference vector: |{70| = 40cm.s-1 

show the same variations in time. The average values of the flow rate in the aorta, Qa, 
and in the bypass, Qb, are approximately 16% and 84% respectively. This corresponds 
to the experimental data, where Qa « 22% of the inlet flow rate and Qb ss 86.6% of the 
inlet flow rate. Note that, due an estimated error of 10% in the measurements, the sum 
of the aorta and bypass flow rates exceeds that measured at the inlet. 

In Figs. 6, 7, 8 and 9, a transverse cross-section through the domain enables us to 
observe the influence of the inlet boundary condition on the velocity field. At peak systole 
one can observe the existence of a recirculation zone in the inside wall of the bypass due to 
the curvature of the bypass graft. In the three-components case, a separation zone which 
is not seen with the Womersley boundary condition appears along the inside wall at the 
entrance to the bypass. This is particularly noticeable in Figs. 7 and 9. Downstream of 
the stenosis, the main orientation of the in-plane velocity vectors is similar using both 
inflow velocity conditions, and the influence of the inlet conditions decreases. 

Cross-sections (2) and (3) are located in the vicinity of the inlet of the domain. So- 
lutions at these locations demonstrate the influence of the two different inflow velocity 
profiles. With the Womersley profile, for cross-section (2) at end diastole, the through- 
plane velocity component is centered in the aorta (Fig. 10, left). When the flow increases, 
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FIGURE 14. Contours of the through-plane velocity at cross-section (3), at end diastole, for the 
Womersley profile (left) and the three-component profile (right). 

M, 
/-: Ms 

is 

I 
/ 

!\.}<S) 

"S\ 
5. ^ 

FIGURE 15. Contours of the through-plane velocity at cross-section (3), at peak systole, for the 
Womersley profile (left) and the three-component profile (right). 

at peak systole, the maximum of the through-plane velocity shifts towards the bypass, 
where the flow rate, Qb, is higher (Fig. 11, left). The in-plane velocity vectors indicate 
that the fluid follows the path imposed by the geometry of the bypass (Fig. 13, left). With 
the three-component profile, the maximum of the through-plane velocity is off center at 
end diastole and peak systole (Fig. 10 and 11, right). 

Downstream, at cross-section (3), in both cases at peak systole, the maximum of the 
through-plane velocity is located in the front side of the bypass (Fig. 14). The bypass 
is now indeed curved towards the front of the Figure. With the Womersley profile, this 
redirection of the fluid gives rise to some flow disturbances at peak systole, as revealed 
by the in-plane velocity vectors (Fig. 17 left vs. right). With the three-component profile, 
the flow follows a more natural path since it is guided from the inlet towards the bypass. 
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FIGURE 16. In-plane velocity vectors at cross-section (3), at end diastole, for the Womersley 
profile (left) and the three-component profile (right). Reference vector: \v0\ = 40cm.s-1 

FIGURE 17. In-plane velocity vectors at cross-section (3), at peak systole, for the Womersley 
profile (left) and the three-component profile (right). Reference vector: |t?0| = 40cm.s_1 

The contours of the through-plane velocity show the location of the recirculation zone 
previously discussed. Due to the influence of the bypass graft, the maximum of the 
through-plane velocity in the aorta is skewed towards the bypass side of the aortic wall 
(Fig. 14 and 15). The through-plane velocity is however more uniform with the three- 
component profile than with the Womersley profile. 

For the cross-sections further downstream (not shown here), there is less difference 
between the two inlet velocity boundary condition profiles. Further downstream, the 
geometry and flow distribution (same in both cases) dominate the flow characteristics. 

4. Conclusion and future plans 

We have examined the effect of inlet velocity profile on flow rate and velocity features 
in a porcine aorto-aorto bypass model. Either the three components of the measured 
velocity were prescribed as an inlet boundary condition, or the measured flow rate was 
used to calculate a Womersley profile for the through-plane velocity (the in-plane velocity 
is zero). We do not observe any effect on flow rates using either approach. Hence, if only 
the flow distribution is of interest, the Womersley inlet profile can be used in simulations. 
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In this case, only through-plane velocity measurements are needed to acquire the flow 
rate during the cardiac cycle. While flow distribution is unaffected by the inlet velocity 
profile, the velocity patterns are altered. The Womersley profile and the three-component 
profile show local differences in the recirculation zone and in the maximum velocity 
locations. Although not shown here, these differences decrease downstream of the bypass 
model. Since complex recirculating flow and regions of wall shear stress correlate with 
atherosclerosis, intimal hyperplasia and clot formation, three-dimensional simulations of 
blood flow using actual velocity profiles are of interest. 

The effect of the boundary conditions on flow rate and velocity profile should be 
examined experimentally in other subjects (different pigs had distinct stenosis degree 
and bypass geometry) before further conclusions are made. In addition, comparisons of 
the computed velocity with experimental data will be conducted. 

REFERENCES 

CEBRAL, J. R. & LOHNER, R. 2001 From medical images to anatomically accurate finite 
element grids. Int. J. Num. Methods Engng. 21, 985-1008. 

DILLEY, R. J., Mc GEACHIE, J. K. & PRENDERGAST, F. J. 1988 A review of the 
histologic-changes in vein-to-artery grafts with particular reference to intimal hy- 
perplasia. Arch. Surg. 123, 691-696. 

GEWERTZ, B. L., GRAHAM, A., LAWRENCE, P. F., PROVAN, J. & ZARINS, C. K. 1992 
Diseases of the vascular system. Essentials of general surgery, Williams & Wilkins, 
328-347. 

JANSEN, K. E., WHITING, C. H. & HULBERT, G. M. 2000 A generalized-alpha method 
for integrating the filtered Navier-Stokes equations with a stabilized finite element 
method. Comput. Meth. Appl. Mech. Engng. 190, 305-319. 

Ku, J. P., DRANEY, M. T., ARKO, F. R., LEE. W. A., CHAN, F., PELC, N. J., 
ZARINS, C. K. & TAYLOR, C. A. 2001 In Vivo validation of numerical predictions 
of blood flow in arterial bypass grafts. Submitted for publication to Ann. of Biomed. 
Engng. 

MILNER, J. S., MOORE, J. A., RUTT, B. K., & STEINMAN, D. A. 1998 Hemody- 
namics of human carotid artery bifurcations: Computational studies with models 
reconstructed from magnetic resonance imaging of normal subjects. J. Vase. Surg. 
28, 143-156. 

PERKTOLD, K. & RAPPITSCH, G. 1995 Computer-simulation of local blood-flow and 
vessel mechanics in a compliant carotid-artery bifurcation model. J. Biomech. 28, 
845-856. 

PERKTOLD, K., RESCH, M. &: PETER, R. 1991 Three-dimensional numerical analysis 
of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 
24(6), 409-420. 

STEINMAN, D. A. & ETHIER, C. R. 1994 The effect of wall distensibility on flow in a 
two-dimensional end-to-side anastomosis. J. Biomech. Engng. 116, 294-301. 

TAYLOR, C. A., DRANEY, M. T, KU, J. P., PARKER, D., STEELE, B. N., WANG, K. & 
ZARINS, C. K. 1999 Predictive medicine: Computational techniques in therapeutic 
decision-making Computer Aided Surgery 4(5), 231-247. 

TAYLOR, C. A., HUGHES, T. J. R. & ZARINS, C. K. 1996 Computational investigations 
in vascular disease. Computers in Physics 10, 224-232. 



230 V. Favier & C. A. Taylor 

TAYLOR, C. A., HUGHES, T. J. R. & ZARINS, C. K. 1998a Finite element modeling 
of 3-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. 
Ann. Biomed. Engng. 26(6), 1-13. 

TAYLOR, C. A., HUGHES, T. J. R. &: ZARINS, C. K. 1998b Finite element modeling 
of flow in arteries. Comput. Methods Appl. Mech. Engng. 158, 155-196. 

TAYLOR, C. A., HUGHES, T. J. R. & ZARINS, C. K. 1999 Effect of exercise on hemo- 
dynamic conditions in the abdominal aorta. J. Vase. Surg. 29, 1077-89. 

ZARINS, C. K. & TAYLOR, C. A. 1998 Hemodynamic factors in atherosclerosis. Vascular 
surgery: a comprehensive review. Moore, W. S. (Ed.), Saunders Company, 97-110. 

WANG, K. C, DUTTON, R. W. & TAYLOR, C. A. 1999 Level Sets for vascular model 
construction in computational hemodynamics. IEEE Engineering in Medicine and 
Biology 18, 33-39. 



Center for Turbulence Research 231 
Annual Research Briefs 2001 

An evolutionary algorithm for multi-objective 
optimization of combustion processes 

By   Dirk Buche f, Peter StolLj: AND Petros Koumoutsakos f 

1. Motivation and objectives 
We study the optimization of the spatial distribution of fuel injection rates in a gas 

turbine burner. An automated procedure is implemented for the optimization. The pro- 
cedure entails an evolutionary optimization algorithm and an automated interface for 
the modification of the parameters in the experimental setup for the fuel injection and 
for the post-processing. 
The evolutionary algorithm is capable of handling multiple objectives in a Pareto setup 
and of efficiently accounting for noise in the objective function. The parameterization 
considers eight analogue valves for controlling the fuel distribution, and the evaluation 
tool is an experimental test-rig for a gas turbine burner. A measurement chamber and 
a microphone are used to analyze the emissions and the pulsation of the burner, re- 
spectively. These two values are taken as objectives for the evolutionary algorithm. The 
algorithm is shown to converge to a Pareto front and the analysis of the resulting pa- 
rameters elucidates further relevant physical processes. 

2. Accomplishments 
2.1. Evolutionary algorithms 

Evolutionary Algorithms (EAs) such as Genetic Algorithms and Evolution Strategies are 
biologically-inspired optimization algorithms, imitating the process of natural evolution, 
and are becoming important optimization tools for several real-world applications. They 
use a set of solutions (population) to converge to the optimal design(s). The population- 
based search allows easy parallelizationr and information can be accumulated so as to 
generate accelerated algorithms. EAs are robust optimization methods. They do not re- 
quire gradients of the objective function, they can handle noisy objective functions, and 
they may avoid premature convergence to local minima. 

2.1.1. Multi-objective evolutionary algorithms for noisy objectives 
Real-world applications, like product-design optimization, often imply multiple objec- 

tives. For example, the cost and the quality of products are two conflicting objectives, 
usually tackled by interdisciplinary design teams. Hence no single best solution exists, 
but a set of compromise solutions. The complete set of compromise solutions is referred 
to as the nondominated or Pareto set of solutions. They represent the best solutions to 

t Institute of Computational Science, Swiss Federal Institute of Technology (ETH), Zürich, 
Switzerland 
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FIGURE 1. Illustration of noise and outliers in an experiment. For repeated measurements of the 
same operating point, the objective value / (marked by an x) changes, governed by a normal 
distribution with mean E and standard deviation a. An outlier solution is added to the figure 
and marked with a +. 

the problem and are characterized by the definition that no other solution exists that is 
superior in all objectives. 
The Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler & Thiele (1999) is a 
well-established Pareto-optimization algorithm, which uses the dominance criterion for 
the fitness assignment and selection of solutions. Noise may change the dominance re- 
lation between different solutions. Dominated solutions may become nondominated and 
the selection may be missleaded. Noise is addressed in two recent publications of Teich 
(2001) and Hughes (2001), which adapt the Pareto ranking scheme of Goldberg (1989) by 
defining probabilities of dominance between noisy solutions. Both methods assume either 
a uniform or a normal distribution of the noise and can benefit from a priori knowledge 
of its magnitude. 
In addition, a measurement may fail completely, producing outliers, i.e. arbitrary non- 
physical results. This is illustrated in Fig. 1. SPEA is an elitistic algorithm, i.e. it keeps 
the best solutions found so far until superior successors are found. Elitism is critical for 
optimizing experimental setups. The optimization algorithm might get stuck in an outlier 
solution which dominates all present solutions. Thus we propose three modifications for 
an extended multi-objective algorithm to overcome the problem of noise and outliers: 

(a) domination dependent lifetime: In contrast to elitism, which may preserve elitist 
(nondominated) solutions for an infinite time, a maximal lifetime K is assigned to each 
individual. For evolution strategies, algorithms with implemented lifetime K are referred 
to as {H,K,X) algorithms (Back, Hoffmeister & Schwefel 1991). The novel approach is 
that the lifetime is variable and related to the dominance of a solution. The lifetime is 
shortened if the solution dominates a major part of the present nondominated solutions. 
This limits the impact of a solution. 

(6) re-evaluation of solutions: In EAs, solutions with expired lifetime are usually 
deleted. In contrast, we re-evaluate all nondominated solutions whose lifetime has expired, 
and add them to the population. This enables good solutions to stay in the evolutionary 
process, but their objective values will change due to the noise in the re-evaluation. 

(c) extended update of the secondary population: The SPEA algorithm updates the 
elitist solutions always with the current population. We propose to extend the update to 
all solutions with non-expired lifetime. This reduces loss of information. 

2.1.2. Performance comparison 

The performance of the extended SPEA is analyzed on a set of test functions. The 
extended algorithm is compared with the standard SPEA of Zitzler & Thiele (1999) and 
with a non-elitistic SPEA. The non-elitistic SPEA is obtained from the standard SPEA 
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FIGURE 2. Convergence of the extended SPEA [circular symbol] on the noise-free test function 
1, compared with the standard SPEA [cross symbol] and a non-elitistic SPEA [plus symbol]. 
The mean distance P of the present nondominated solutions to the analytical Pareto front is 
plotted over the number of function evaluations N. 

by setting the lifetime of all individuals to one. Three test functions are considered. Prom 
Deb (1999), a two-objective minimization problem for an arbitrary number of real design 
variables x^ i=i...n is chosen as the first test function: 

1 
A-r 1+I>? Xl 

(2.1) 

The number of design variables n is set to 7, and the design variables are bounded with 
x\ 6 [0.5,2] and xit #i € [-1,1]. The second test function is obtained by adding, to the 
first test function, normally distributed noise with zero mean and a standard deviation of 
0.8. The third test function is identical to the first function except for generating outliers 
that replace the original solutions. With a probability of 1% per objective function, the 
objective value is divided by a factor of 10, hence producing an outlier with an improved 
value. The convergence of the extended, non-elitistic and standard SPEA algorithm is 
given for the three test functions in Figs. 2, 3 and 4. As a convergence measure, the 
mean distance P to of the present nondominated solutions to the analytical Pareto front 
is plotted over the number of function evaluations N. The comparison shows that the 
performance of the extended algorithm is equal to the standard algorithm if no noise 
occurs, but superior to the standard and non-elitistic algorithm if noise or outliers are 
involved. 

2.2. Atmospheric combustor test-rig 

Air entering a gas turbine flows through a compressor, then reacts with fuel in a com- 
bustion chamber, and is finally expanded in a turbine. The difference in power between 
the turbine output and the compressor input is the net power that can be used, say, to 
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FIGURE 3. Convergence of the extended SPEA [circular symbol] on test function 2 with normal 
distributed noise, compared with the standard SPEA [cross symbol] and a non-elitist SPEA 
[plus symbol]. The mean distance P of the present nondominated solutions to the analytical 
Pareto front is plotted over the number of function evaluations N. 

generate electricity. The combustion chambers of Alstom's larger gas turbines, e.g. GT24 
and GT26, are annular around the turbine axis, with a set of burners aligned in the 
annulus. We consider the optimization of a single burner in an atmospheric test-rig as 
illustrated in Fig. 5. Preheated air enters through the plenum chamber and is mixed with 
fuel in the low-emission burner by swirl. The burner stabilizes the combustion flame in 
a predefined combustion area by a controlled vortex breakdown. The burned air leaves 
the test-rig through an exhaust. The burner exit temperature is about 1600 to 1700if. 
The fuel is natural gas or oil and enters though injection holes, which are uniformly 
distributed along the burner. The fuel mass flows through the injection holes are the 
design variables of the setup. The mass-flow distribution is controlled by 8 continuous 
valves. Each valve controls the mass flow through a set of adjacent injection holes along 
the burner axis. In order to keep the operating conditions constant, the total fuel mass 
flow is fixed, reducing the number of free design variables for the optimization from 8 
to 7. The NOx emissions and the pulsation of the burner are the two objectives to be 
minimized. 

2.3. Optimization results 
An optimization run is performed using the extended SPEA algorithm and evaluating 
a total of 326 different burner settings. All solutions are plotted in Fig. 6. The initial 
solution is marked in the figure, and represents a setting with equal mass flow through 
all valves. The solutions found by the optimization process dominate the initial solution, 
i.e. are superior in both objectives. The occurrence of a wide Pareto front underlines the 
conflict in minimizing both objectives and just (Pareto) compromise solutions can be 
found. 
In the figure, boxes mark five different areas along the Pareto front. For the solutions 
within the boxes, the valve settings are printed in Fig. 7. For better illustration, the 
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FIGURE 4. Convergence of the extended SPEA [circular symbol] on test function 3 with outliers, 
compared with the standard SPEA [cross symbol] and a non-elitistic SPEA [plus symbol]. The 
mean distance P of the present nondominated solutions to the analytical Pareto front is plotted 
over the number of function evaluations N. 
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FIGURE 5. Sketch of the atmospheric combustion test rig with a low-emission swirl stabilized 
burner. The rates of fuel mass flow through the injection holes axe the design variables of the 
setup. The NOx emissions and the pulsation of the burner are the two objectives to be minimized. 
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FIGURE 6. All measured solutions of the burner optimization run [plus symbol] and initial 
solution [circular symbol]. 5 boxes mark different areas along the Pareto front 

settings are connected with a line. 
Box 1 and 5 are at the extreme ends of the Pareto front. Box 1 represents Pareto solutions 
with high NOj; emissions, but low pulsation. The corresponding valve settings show an 
increased fuel mass flow at valves 1, 2 and 4, while the flow at valves 5 and 6 is reduced. 
(Refer to Fig. 5 for a sketch of the valve placement.) The basic physics behind these 
settings is that the increased mass flow through valves 1 and 2 leads to rich combustion 
in the center of the burner. 

The rich combustion zone stabilizes the flame, but increases the NOx emissions. The 
lean zones are in the middle of the burner, at valves 5 and 6. 
Box 5 contains solutions with minimal NOs emissions, but high pulsation. The mass flow 
through each valve is about the same, generating no rich combustion zones. Compared 
to the initial solution, the small mass flow increase at valves 5 and 8 leads to lower NOx 

emissions, while the pulsation is unchanged. 
This burner optimization follows a series of successful application of optimization tools 
in the field of turbomachinery design (Dornberger, Buche & Stoll 2000; Dornberger et 
al. 2000; Müller, Walther & Koumoutsakos 2001). 

2.3.1. Statistical analysis 
One of the interesting features of the resulting Pareto front is the almost linear change 

in valve settings along the front. At Box 1 five valves have either strongly increased or 
decreased mass flow and the amplitude is constantly decreasing from Box 1 to 5 until 
it reaches an almost equal mass flow for all valves in Box 5. This indicates simple de- 
pendencies of the valves on the objective functions. Fig. 8 contains a scatterplot for the 
valve settings and objective functions of all measured solutions. A scatterplot contains 
all possible 2D subspace plots for all design variables and objectives. The plot in column 
9 and row 10 contains the objective space with the Pareto front. Most interesting are 
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box 2 

FIGURE 7. Mass flow m through the valves Vi,.=i...8 for solutions along the Pareto front, 
marked by 5 boxes of Fig. 6. 

the last two rows, containing the correlation of the valves with the objective functions. 
For example, the horizontal and vertical axis of the plot in row 9, column 1 represent 
valve 1 and the NO^ emission, respectively. Strong correlation is expressed by narrow 
stripes at ±45° to the axis. No correlation is implied by an axially symmetrical area 
of solutions. Strong correlation can be observed between valves 1, 2, 5, 6 and the two 
objective functions. 
The correlation coefficients for the design variables and objectives are given in Fig. 9. 
They complement the results from the scatterplot. For all valves, the correlation coeffi- 
cients have opposite signs for the two objectives. Therefore, changing the fuel injection 
in any of the valves always improves one objective while the other is worsened. Large 
coefficients indicate a strong correlation and occur between valves 1, 2, 5, 6 and the two 
objective functions. On increasing the mass flow through valve 1 and 2, the emissions 
increase while the pulsation decreases, and conversely for valves 5 and 6. 
It has to be remembered that these observations hold for solutions obtained through 
an optimization process. The distribution of the solution in the scatterplot in Fig. 8 il- 
lustrates that they do not cover the whole design space. Hence, these solutions are not 
uniformly distributed in the design space and may not be representative. 

2.3.2. Noise analysis 
The extended SPEA algorithm that is used for burner optimization contains the special 

feature of re-evaluating solutions after their lifetime expires (Sec. 2.1.1). Among the 326 
evaluated solutions, 40 were re-evaluated at least once by the optimizer. Comparing the 
difference in NOx between a solution and the re-evaluated one, the maximal difference 
is about 8% of the objective range and the mean difference is 2%. For the pulsation, 
the maximal and mean differences are 13% and 4%, respectively. Thus the noise in the 
pulsation is more critical to the optimization. The large ratio of the maximal to the 
mean difference indicate the rare occurrence of outliers and the presence of noise in the 
objective measurement of all solutions. 
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FIGURE 8. Scatterplot representing all possible combinations of 2D plots for the valves 
Vi,i=i...8 and the two objectives NO* and pulsation. 
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FIGURE 9. Correlation coefficient r between the mass flow through the 8 valves V and the two 
objectives NO* and pulsation. 



Evolutionary algorithm for multi-objective optimization of combustion processes 239 

3. Conclusions 

The present work demonstrates the capabilities of an automated optimization applied 
to the design process of gas turbine burners. The process, which includes an evolutionary 
algorithm, produces in an automated fashion an experimental Pareto front for minimizing 
pulsation and emissions of the burner. Automated optimization can be considered a 
supporting tool in a design process, complementing physical understanding as well as 
trial-and-error design. As a next step, the number of valves will be increased. This allows 
more flexibility in the fuel distribution and also allows non-axisymmetric distribution. 
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Shape optimization for aerodynamic noise control 

By Alison L. Marsden, Meng Wang AND Bijan Mohammadi f 

1. Introduction 
Noise generated by turbulent boundary layers near the trailing edge of lifting surfaces 

continues to pose a challenge for many applications. Much of the previous work on this 
topic has focused on development of accurate computational methods for the prediction 
of trailing edge noise. For instance, aeroacoustic calculations of the flow over an airfoil 
using large-eddy simulation (LES) and aeroacoustic theory have been presented in Wang 
& Moin (2000). These results compare favorably with the experiments of Blake (1975) and 
Blake and Gershfeld (1988). To make the simulations more cost-effective, Wang k Moin 
(2001) successfully employed wall models in the trailing-edge flow LES; this resulted in a 
drastic reduction in computational cost with minimal degradation of the flow solutions. 
In this study, we extend the earlier work to noise control, using shape optimization and 
control theory in conjunction with the simulation tools developed previously. 

For trailing-edge noise control, a shape design method based on control theory for 
partial differential equations and a gradient-based minimization algorithm is employed 
to optimize the trailing-edge shape. The main difficulty in gradient-based optimization 
methods is the calculation of the gradient of the cost function with respect to the control 
parameters. The most widely-used method is to solve an adjoint equation in addition to 
the flow equations. While the adjoint method has been successful in many aerodynamic 
calculations, (e.g. Jameson et al. 1998; Pironneau 1984), it is expensive and not well 
suited to unsteady flow problems. In addition, the adjoint equation is dependent on 
the flow solver and thus is not portable. Because of these issues, we have employed the 
method of incomplete sensitivities for the gradient evaluation. This method, developed by 
Mohammadi & Pironneau (2001), offers the advantage that effects of geometric changes 
on the flow field can be neglected when computing the gradient of the cost function. 
This makes it far more cost effective than solving the full adjoint problem. In LES-based 
aeroacoustic shape design, the efficiency of the optimization routine is crucial. The use of 
incomplete gradients allows us to perform the optimization with only a small additional 
cost to the flow computation. 

In order to validate and gain experience with the method of incomplete sensitivities, we 
have applied it to a model problem consisting of the two-dimensional unsteady laminar 
flow over an airfoil. This problem allows us to define the cost function based on aero- 
acoustic theory. In this article, we present results for the model problem which show a 
significant reduction in the cost function. We also discuss the addition of aerodynamic 
constraints. Section 2 outlines the problem formulation and the definition of the cost 
function. Sections 3 and 4 discuss the gradient evaluation and the optimization procedure. 
Results are presented in Section 5. 

t University of Montpellier, Prance 
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2. Formulation and cost function definition 
We begin by formulating the general optimization problem. Given a partial differential 

equation A(U, q, a) =0 defined in the domain fi with control parameters a, state vari- 
ables U and geometric entities q, we wish to minimize a given cost function J(U,q,a). 
The control problem can be stated as 

min {J(U, q, a) : A(XJ, q, a) = 0 Va* G ft,   6(U, q, a) = 0 Va* € oft}        (2.1) 
a 

where 6(U, q, a) is the boundary condition of the PDE. The cost function can be reduced 
by finding its gradient with respect to the control parameters, and then moving the 
parameters in the direction of negative gradient. In our problem, the state equations are 
the Navier-Stokes equations and the cost function is related to the acoustic source. 

We now outline the derivation of the cost function. For unsteady laminar flow past an 
airfoil at low Mach number, the acoustic wavelength associated with the vortex shedding 
is typically long relative to the airfoil chord. Noise generation from an acoustically- 
compact surface can be expressed as follows, using Curie's extension to the Lighthill 
theory (Curie 1955), 

P * ^jff2Ä(*" MIXD>        Ä = | j^miy^y (2.2) 

where p is the dimensionless acoustic density at far field position x, pij = pSij — ry is the 
compressive stress tensor, rij is the direction cosine of the outward normal to the airfoil 
surface S, M is the free stream Mach number, and y is the source field position vector. 
All the variables have been made dimensionless, with airfoil chord C as the length scale, 
free stream velocity [/«, as velocity scale, and C/U<x, as the time scale. The density and 
pressure are normalized by their ambient values. Note that Eq. (2.2) implies the three- 
dimensional form of Lighthill's theory, which is used here to compute the noise radiated 
from unit span of a two-dimensional airfoil. The radiation is of dipole type, caused by 
the the fluctuating lift and drag forces. 

The mean acoustic intensity can be obtained from Eq. (2.2), 

M6     / • • \2 

Iz=l6n^\DlCOS6 + L>2Sine) (2>3) 

where the overbar denotes time averaging, and 9 = tan-1 (22/xi). To minimize the total 
radiated power, we need to minimize the integrated quantity 

£*'"»"-£&$?+&)■ (2-4) 

Hence, the cost function is defined as 

7=(i/sn^li(y'*)d2y) + {m Is
njP2jiy't)<py) (2-5) 

which corresponds exactly to the acoustic source function. 

3. Gradient evaluation 
Given shape variables q, flow field U, and control parameters for the surface deforma- 

tion a, the cost function is ,7(U,q,a). The complete expression for the gradient of the 
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C 
FIGURE 1. Model airfoil used in shape optimization. The upper right section is allowed to 

deform. 

cost function is 

dcbi dai dqj dai dUk dqj 9a,' 
Using the incomplete-sensitivities assumption of Mohammadi & Pironneau (2001), we 

neglect the effects of geometry changes on the flow field when computing the gradient 
of the cost function. This assumption is valid for the general class of problems in which 
the cost function can be defined in terms of a surface integral. We therefore neglect the 
third term in Eq. (3.1) and compute the gradient as follows 

dJ      dJ      dJ dqj ,„ „,. 
dai dai dqj dai 

This technique has been successfully applied in a variety of applications (see for ex- 
ample Mohammadi et al. 2000, Mohammadi 1999). For the present problem, the cost 
function is based on the surface pressure (plus small viscous stresses). Since a* causes 
surface perturbations in the normal direction, and since dp/dn « 0, the incomplete- 
sensitivity assumption is particularly justifiable. 

4. Optimization procedure 
In this Section, we outline the steps in the algorithm used to optimize the airfoil 

shape using the method of incomplete sensitivities. With the cost function J defined in 
Section 2, the steps in the algorithm are as follows. We first parameterize the surface 
deformation using a polynomial 

6y = Y,Wi, (4-1) 
i 

where Sy is the surface displacement in the normal direction at the tangential coordinate 
x, and ai are the polynomial coefficients. 

The gradient of the cost function with respect to the coefficients, dJ/dai, is computed 
numerically. At each simulation time step, each coefficient is perturbed by a small amount 
e and the resulting surface displacement 6y is found. Based on incomplete sensitivities, 
the state is kept unchanged as we compute J(ai + e). We can then find the derivative 
using a finite difference 

dJ _ J(ai + e) - Jjcii) ,4 2x 
dai e 

The gradient is averaged in time to obtain dJ/dai until it converges. The surface points 
on the airfoil are then displaced according to 

6ai = -\¥-,   6y = Y/(ai + 6ai)x
i (4.3) 

dai . 
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FIGURE 3. Convergence of cost function for 
Re = 2,000, o mean value of J , A maximum 
value of J. 

where A is a scaling parameter. 
The new shape is found by deforming the surface according to y = yo + 5y. At the 

completion of each iteration, a new mesh is generated and the flow simulation is performed 
again until the solution is statistically converged. Iteration continues until the airfoil 
converges to a final shape. The method of incomplete sensitivities offers large savings 
over other methods because the flow field is frozen in the gradient evaluation, so the cost 
of the method is only slightly higher than the cost of the flow solver. 

5. Results and discussion 

To validate the optimization methodology, a model problem of the two-dimensional 
unsteady laminar flow over a shortened Blake airfoil (Blake 1975), shown in Fig. 1, is 
considered. The initial trailing-edge tip angle is 45 degrees, and the right half of the upper 
surface is allowed to deform. Both end points are kept fixed and the slope of the upper 
surface must be continuous. The flow simulation is performed using the incompressible 
Navier-Stokes solver described in Wang & Moin (2000). For noise generation by large- 
scale vortex shedding at low Mach numbers, the airfoil is acoustically compact, and dipole 
radiation described by Eq. (2.2) prevails. 

The efficacy of the optimization technique is demonstrated in the following two test 
cases, with chord Reynolds numbers of 2,000 and 10,000. Results from the lower Reynolds 
number case are shown in Figs. 2 through 5. The shape was changed in successive iter- 
ations as shown in Fig. 2, and the corresponding evolution of the mean and maximum 
values of the time-dependent cost function is depicted in Fig. 3. After eight iterations, 
the cost function is reduced to nearly zero. Fig. 4 shows the instantaneous streamwise ve- 
locity contours from the flow fields with the initial (upper figure) and final (lower figure) 
shapes. The final state exhibits a much more stable wake, where the flow in the vicinity 
of the trailing-edge is nearly parallel and steady. The lift and drag history for the low Re 
case are shown in Fig. 5. These plots show that the lift has increased and the drag has 
decreased. More importantly we see that the amplitude of oscillations in lift and drag 
have decreased, verifying that the unsteady dipole sources have been reduced. 

For the higher Reynolds number case, the results are less dramatic, but still verify 
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FIGURE 4. Instantaneous streamwise velocity contours for Re = 2,000. Upper: initial shape 
(contour levels from -0.06 to 1.22); Lower: final shape (contour levels from -0.05 to 1.23). 
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FIGURE 5. Time history of lift (upper figure) and drag (lower figure) coefficients for 
Re = 2.000. 

that the method works to reduce the cost function. Figs. 6 and 7 show the convergence 
histories of the shape and the cost function, respectively. The maximum value of the cost 
function is decreased by approximately 32% at the final (8th) iteration. An examination 
of the instantaneous flow fields shows less significant change in vortex shedding patterns 
between the initial and final shapes, indicating that the flow is less sensitive to the 
trailing-edge shape at this higher Reynolds number. It is likely that by allowing a larger 
section of the surface to deform, a greater reduction in the cost function can be achieved. 

In practical applications, it is often necessary to impose aerodynamic and geometric 
constraints, often in the form of additive penalty functions. For instance, we may wish 
to ensure that the lift does not decrease, and the drag does not increase, from their 
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FIGURE 6. Convergence of shape for Re = 
10,000. 

0.5 

0.4 

0.3 

■   |   1    M   I    |   I   I    I   I   |   I   I   I   I   |   I   I   I    I   |   I    I   I   I   |   I   I 

-A A A A 

3        4 5 6        7        8 
iteration 
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initial values. For the two cases discussed above, as the cost function decreases, the wake 
becomes narrower, the lift increases and the drag decreases (Fig. 5), which is consistent 
with the desirable aerodynamic properties. However, for more complex cases, constraints 
may be essential to meeting engineering requirements. 

In general, imposing a penalty function means redefining the cost function as follows 

J = Jong+ aCi+ßC3, (5.1) 

where a and ß are weighting coefficients and C\ and Ci are constraints. For example, 
the lift and drag constraints could be 

C\ = max 

C2 = max (^•°) ,0   , 

(5.2) 

(5.3) 

where CL„ and CD0 are the target lift and drag coefficients. Other constraints may be 
added for thickness, volume, etc. 

6. Conclusions and future work 
In summary, we have formulated and implemented a shape-optimization technique for 

reducing the aerodynamic noise from a lifting surface. The method is based on control 
theory, and uses the incomplete gradient of the cost function. The latter is directly related 
to the acoustic source functions. Results for the unsteady laminar model problem at two 
Reynolds numbers are very encouraging, and the method offers great cost savings over 
previous methods. We have demonstrated a rapid convergence of the shape and significant 
reduction in the noise generated by vortex shedding and wake instability. 

In order to test the robustness of the method, we plan to allow more flexibility in 
surface deformation, and at the same time add constraints. By allowing both the upper 
and lower surfaces to deform, we hope to achieve a greater reduction in the cost function 
at higher Reynolds numbers. For this test case, it will be essential to add aerodynamic 
constraints such as those discussed in Section 5. 
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Once the method is fully validated, we plan to extend this technique to fully-turbulent 
trailing-edge flows past an acoustically noncompact airfoil. One major issue involved 
will be denning a surface-based cost function in order to use incomplete gradients. One 
possibility is the analysis of Howe (1999) who defines an equivalent surface source in 
terms of an "upwash velocity" on the surface. In contrast, the classical trailing-edge noise 
theory of Ffowcs Williams & Hall (1970) is based on a volume integral. Alternatively, 
a more crude surface approximation of the cost function can be used so long as it is 
well correlated with the true acoustic source function. The choice of cost function will 
be influenced to some degree by whether the objective is to reduce noise in a band of 
frequencies of primary interest, or to reduce the total radiated power. 
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Incomplete sensitivities in design and control of 
fluidic channels 

By B. Mohammadi, R. Bharadwaj, J. I. Molho AND J. G. Santiago 

1. Motivation and objectives 
Control of distributed systems has various industrial applications, as it is often desired 

to keep complex multi-disciplinary systems in some given state. Definition or parameteri- 
zation of control space is the first main issue we face when formulating a control problem. 
Usually, one wishes to keep the parameterization space dimension as small as possible to 
limit the complexity of the problem. In addition, for any control approach to be effective, 
it should be realizable during the time the system is still controllable. Computational 
cost is therefore another critical issue. Our aim in this paper is to discuss alternative 
remedies for these two problems. We discuss the behavior of an electrokinetic microchan- 
nel system where the control variables include both the geometry of the microchannels 
and the temporal control of potentials. In a real system, the geometric control is achieved 
by the realization of etched microchannel structures using microlithography techniques. 
Flow control is accomplished by applying electric potentials along microchannels. We 
discuss the behavior of our design and control platform for two complementary classes 
of problems: the situation where the number of controls is small (a potential field) and 
where the number of controls is large (the geometry of a microchannel turn). 

We use our sub-optimal control technique, using accurate gradient evaluation, for the 
first class of problems. For second class, we show that the sub-optimal control is also 
efficient using incomplete evaluation of the gradient, but only for a limited class of cost 
functions. Our motivation here comes from the fact that, for a control algorithm based on 
gradient methods to be efficient, the design should have the same complexity as the direct 
problem. We therefore need a cheap and easy gradient evaluation somehow avoiding the 
adjoint equation solution. 

Since the problem involves electrostactics, electromigration, and fluid motion, we cou- 
ple several differential state equations in the simulation. In that context, the gradient- 
based minimization algorithm is reformulated as a dynamic system, which is considered 
as an extra state equation for the parameterization. This formulation makes it easier to 
understand the coupling between different components of the simulation. We look for the 
solutions to our optimization problem as stationary solutions of a second order dynamic 
system. In addition, for the system to have global search features, we use the natural 
instability of second order hyperbolic systems (Attouch & Cominetti 1996). 

2. Dynamic shape optimization and state control 
Consider the following optimization or control problem: 

mmJ(x(t),q(x),U(q),VU(q)), (2.1) 
x(t) 

E(x(t),q(x),U(Q),VU(q)) = 0, 
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9i(x(t)) <0,g2(q) <0,g3(q,U(q)) <0, 
where J is the cost function, x G Rn describes the parameterization, q describes geo- 
metrical entities (normals, surfaces, volumes,...), U € RN denotes the state variables, 
E € RN is the time dependent state equations, g\ defines the constraints on the pa- 
rameterization, <?2 those on geometrical quantities and gz defines the state constraints. 
Details of the definition of the control and design configurations are given by Mohammadi 
k Santiago (2001). 

2.1. State equations 

The problem of interest here concerns separation of charged species in an aqueous elec- 
trolyte solution by application of an electric field. The driving force for separation is the 
differences in electrophoretic mobilities (Probstein 1995). 

The electric field E = -V4>   (V/m) is the solution of the following Poisson-Boltzmann 
equation for the potential <f>: 

V.E = -A(f>= pe,    in  ft (2.2) 
er€o 

4>(^in) = Vi,      <j)(Tout) =V2, 

6 = d>z   or   -rr- = 0   on other boundaries. 
an 

where pe = £"=1 FziCi is the net charge density (Coulomb/m3), z* € Z is the valence 
number for the species i of molar concentration d (mol/m3). F is the Faraday constant 
(F = 96500) and er and e0 are the permittivity constants (respectively the relative and 
free space permittivities). The dielectric constant ereo ~ 10-9. It is important to notice 
that for most applications, the net charge density is nearly zero in the bulk. 

The flow velocity is described by the Navier-Stokes equation with Lorentz forces: 
OTT 

p— p,AU + Vp = peV<t>,    in the channel (2.3) 
at 

U = 0   on channel walls, 
f)TJ 

-/i-r—\-p.n = 0   in and outflow boundaries. 
on 

One difficulty in simulating electroosmotic flows is the computation of the velocity 
field in the electrical double layer(EDL). EDL refers to the interfacial region between the 
wall and the bulk solution, where ions having charge opposite to that of the channel wall, 
accumulate when the wall is brought into contact with the solution. The thickness of the 
EDL, at typical salt concentrations, is a few nanometers. Thus a very fine mesh near the 
channel surface is needed to describe the flow in the EDL. To avoid this computationally 
expensive step, the classical no-slip condition at the wall can be replaced by defining a 
shear plane near the wall. The velocity at the shear plane is given by the Smoluchowski 
equation: 

U = ~£o£'-EC
1 (2.4) 

where p, is the dynamical viscosity (Kg/(m s)), p the flow density (Kg/m3), p the pressure 
(Pascal) and U the flow velocity (m/s). 

((Ci), called the zeta potential, is the potential at the slip plane. Zeta potential is a 
function of the surface charge density and the local species concentration. 
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The species are advected using the following advection-diffusion-reaction equations: 

Tsr-** (2-5) 

where 

ji = -ViZiFdVt - DiVd + dU + Ri(C), (2.6) 
where vi is the electrophoretic mobility, Di is the diffusivity and Ri is the rate of reaction 
for species i. 

An equation for the generation of charge density can be derived by summation over 
the species conservation equations: 

^ = -V.i = 0, (2.7) 
at 

where i is the current charge density: 
n 

i = F^2zijh 
t=l 

where ji is given by Eq. (2.6). In addition, we have J2i &i — °- 
Away from the EDL, aqueous electrolyte solutions have negligible net charge density 

(i.e. pe = 0). For such a case, the above equations yield a new equation for the potential 
<f> instead of the Poisson-Boltzmann equation: 

-FV.{(Y,viziCi)V<l>) = V.(ElDiZiVCi). (2.8) 
t=i *=i 

This ensemble of governing equations is quite complex and it would be preferable not 
to use the above set of equations for sensitivity evaluation. This is the motivation behind 
using incomplete sensitivities presented below (Mohammadi k Pironneau 2001). 

2.2. Closure equation for x(t) 
In our approach, minimization algorithms are seen as closure equations for the parame- 
terization. In other words, we introduce a new time-dependent problem for x(t). This can 
also be seen as an equation for the structure. We can show that most linear or quadratic 
gradient-based minimization algorithms can be expressed in the following form: 

-x + e x = F(U,M-1,(VxxJ)-\VxJ), (2.9) 

where F is a function of the exact or incomplete gradient and of the inverse of the 
Hessian of the cost function. It also takes into account the projection over the admissible 
space II and the smoothing operator we use when using the CAD-free parameterization 
(Mohammadi k, Pironneau 2001). Usually, II does not depend on p except when using 
mesh adaptation. 

Let us consider the particular case of e > 0, where we recover the so called heavy ball 
method (Attouch & Cominetti 1996; Cabot 2001 and Mohammadi 1999b). The aim of 
this approach is to access different minima of the problem, and not only the nearest local 
minimum, by facilitating escape from the local minima by introduction of second-order 
perturbation terms. The difference with the original heavy-ball method is that here the 
method is seen as a perturbation of the first-order derivative while in the original method 
the steepest descent is seen as a perturbation of the hyperbolic second-order system. 
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This reformulation is suitable for numerical experiments as it enables us to tune the 
perturbation to be as small as possible. This is especially true for complex applications 
(e.g., with coupled physics), as the optimization process otherwise becomes difficult. 

Another interesting feature of the dynamic minimization algorithm is a possible cou- 
pling between several balls (points in the admissible control space) to improve the global 
search ability by communicating information between balls on their respective state. The 
idea is therefore to solve the pseudo-unsteady system ( Mohammadi 1999b) from differ- 
ent ball positions and to couple the paths using exchange of information about global 
gradients (Cabot 2001). Consider, q balls Xj, j - 1, ..,q, following the motion prescribed 
by q pseudo-unsteady systems: 

-XJ + e XJ = -{Fj + Gj), (2.10) 

where Fj is as in Eq. (2.9) and Gj a global gradient representing the interaction between 
balls (recall that each ball is a design configuration). To reach the global minima, the 
number of balls has to be large enough. A good estimate for this number is given by the 
dimension of the design space (n). Even with this number the complexity is negligible 
compared to that of evolutionary algorithms. Our experience shows that the following 
choice of Gj is satisfactory (see example below): 

k=—k^\\*J-Xk 

i = l,..,n. 

However, in CAD-free parameterization, n can be quite large and, due to the required 
computational effort for one simulation, we cannot afford more than a few (say 3 or 
4) shape evolutions at the same time. This approach can therefore be seen as an im- 
provement over the search capacity of the original algorithm. In addition, the process is 
suitable for a distributed treatment as in evolutionary-type minimizations. 

We show below the behavior of the pseudo-unsteady systems with two balls and con- 
stant A and e for the minimization of a function having several local minima (the global 
minimum is reached at (0,0)). For (x,y) €] - 10,10[x] - 10,10[ consider J denned by: 

J{x, y) = l- cos(x) cos(-jj=) + l((x - y/2)2 + 1.75j/2). (2.12) 

The aim is to show that the heavy-ball method improves a global-minimum search by 
facilitating escape from the local minima. However, finding the global minima requires 
several trials, but coupling several heavy balls can help in finding the global minima, 
even though individual balls may not converge to the global minima. 

3. Sensitivities and incomplete sensitivities 
Consider the following general simulation loop: 

J{x) : x -¥ q(x) -* U(q{x)) -► J(x,q{x),U(q(x))). 

The gradient of J with respect to x is: 

dJ__dJ_    d£dq     8J_dUdq .    . 
dx ~ dx + dq dx + 8U dq dx' ( ' ' 
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FIGURE 1. Graph of J(x,y) given by 2.12. 
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FIGURE 2. Left: Paths for the steepest-descent and heavy-ball methods starting from two 
different points. Right: By coupling the two balls in the heavy-ball method using the global 
gradient, the global minimum is reached. 

If the following requirements hold, we can introduce incomplete evaluation of this gradi- 
ent, reducing the computational cost: 

• If both the cost function and control space are defined on the shape (or on some 
part of it), 

• if 3 is of the form 

J(x)= I f{x)g(u)d-y, 
./shape 

• and if the local curvature of the shape is not too large. 
The incomplete-sensitivity approach means that we can drop the last term in Eq. (3.1). 

This does not mean, as seen below, that a precise evaluation of the state is unnecessary, 
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but that for a small change in the shape the state will remain almost unchanged, while 
geometrical quantities have variations of the same order as for the shape. 

3.1. Illustration of a few simple examples 

The argument behind incomplete sensitivities has already been successfully used in the so 
called classical equivalent-injection boundary conditions. These conditions are designed 
to study the effect of small deformations to the shape without actually analyzing defor- 
mations. Recall the implicit relation for the slip velocity on a fixed shape (subscript f) 
reproducing its displacement (subscript m). If we suppose that um ~ u/, which means 
that the sensitivity with respect to the shape dominates, we have (Mohammadi 1999a): 

UfMf = -Uf(nm - nf) + V.nm, (3.2) 

where V is the speed of the moving shape in the fixed frame attached to the fixed shape. 
In the same way, sensitivity analysis for the product u.n with respect to the shape x 
gives: 

d du dn       dn _(u.n) = _n + u_^u_ (3.3) 

where as for the transpiration condition above we supposed that fj << fj- We see 
that the state has to be accurate, and that it is more important to have an exact state 
evaluation and an approximate gradient rather than a precise (in term of operators 
accounted in the linearization) gradient evaluation based on a wrong state. This point is 
critical as designers are penalized by the cost of sensitivity evaluations which frequently 
drives them to use coarser meshes in the optimization than the meshes they normally 
use for simulations without optimization. 

Consider as cost function J = aux(a) and as state equation the following steady 
advection-diffusion equation: 

ux - Pe-1  uxx = 0, 

on ]a,l[,   u(a) = 0,   u(l) = 1. (3.4) 

The solution of this equation is: 

.fn.\ -  exp(Pe~1 a) - exp(Pe~1 x) 
U{X) ~    exp(Pe-ia)-exp(Pe-i) " {6'b) 

We are looking for Ja(a) = ux(a) + a(ux)a(a). We are in the domain of applicability 
of the incomplete sensitivities, where the cost function involves products of state and 
geometrical quantities and is denned at the boundary: 

T / v / w, -Pe-1 exp(Pe-1 a)      . .„ ., Ja(a) = ux («)(1 + 0_^-r-2L__^). (3.6) 

The second term in the parenthesis is the state-linearization contribution which is negli- 
gible for large Peclet number. In all cases, the sign of the sensitivity is always correct. 

The analysis also holds for nonlinear PDEs such as the Burgers equation. Indeed, consider 
as cost function J(a) = aux (a) and as state the steady solution of the Burgers equation 
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seen before, a being the left boundary location: 

ut + 0.5(u2)x = 0.3xu,   on ]a, 1[,   u(a) = 1,   u(l) = -0.8. (3.7) 

We have Ja(a) = ux(a) + a(ux)a(a). We are in the domain of applicability of incomplete 
sensitivities. In view of the Burgers equation, we have ux(a) = 0.3o and the exact 
gradient (Ja(a) = 0.3a + 0.3a) can be compared to the incomplete one (0.3a). We can 
see again that the sign of the gradient is correct (as is always the case) and there is only 
a factor of 2 between the exact and incomplete gradients. 

Another example concerns the sensitivity analysis for the flow rate of a Poiseuille flow 
in a channel driven by a constant pressure gradient (px) with respect to the channel 
width. The walls are at y = +/ - a. The flow velocity satisfies: 

uyy = —,    u(-a) = u{a) = 0. (3.8) 

The analytical solution satisfying the boundary conditions is: u(a,y) = §^(y2 - a2). 

The flow rate is given by «7(a) = $Zau{a,y)dy (= ~2P*a ). The gradient is given by 
(using the boundary conditions in Eq. (3.8)): 

daU(a,y)dy==^, (3.9) 
d£_ r 
da ~ J_a 

while the incomplete sensitivity vanishes. Indeed, in this example we are not in the 
(Mohammadi k Pironneau 2001) domain of applicability of sensitivity analysis because 
the cost fhction is not a product of the state and geometrical entities. 

Now consider the following cost function obtained by multiplying the flow rate by a: 
J(a, u) = /°a au(a, y)dy, which has sensitivity given by: 

<Ü = J + a
df = =£^{

2
+2), (3.10) 

da da v      3 

and here the incomplete sensitivity is ~2^° ■ This quantity always has the right sign and 
is a good example of how to reduce the cost of sensitivity evaluation by an appropriate 
redefinition of cost function. 

4. Reduced complexity models and incomplete sensitivities 
As described earlier, we drop the sensitivity with respect to the state in incomplete 

sensitivities. One way to improve this approximation cheaply is to use reduced models 
to provide these sensitivities. In other words, consider the following reduced model for 
the definition of Ü ~ U: 

x->q(x)->Ü(q(x))(^r), 

where Ü is the solution of a reduced low-complexity model (wall functions, for instance). 
The last term is an identification term for the reduced model, to produce the same results 
as the full state equation. 

The incomplete gradient of J with respect to x can be improved by adding the last 
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part from the exact gradient, but computed based on this model: 

dJ_     dJ(U)     dJ{U) dg     dJ{U) dÜ dg U 
dx~    dx    +    dg    dx+    8U    dqdxü' 

We can see that Ü is never used, only dÜ/dq. It is also important to notice that the 
reduced models need to be valid only over the support of the control parameters. We see 
below an example of such simplification. 

5. Cost function and its redefinition 
The original cost function we consider is designed to minimize the skew and band 

dispersion for the advected species and uses the fact that the iso-contours of an advected 
specie C need to remain normal to the flow velocity: 

J(x) = [{VCx U(a))2dx. (5.1) 

We see that we are not in the admissibility domain of incomplete sensitivities becasue 
the cost function is defined over the whole channel. 

To be suitable for incomplete sensitivities, we introduce the following approximate cost 
function, based on migration time along the walls of the channel to minimize the skew: 

J(X) = (/r< W* ~ L ^? +(/ri "f" ~ /r° "f ")2 (5"2) 

+(/rJfH-/rollfll)2> 
where s is the curvilinear coordinate and (r, ft) a local orthonormal basis. The last two 
terms have been introduced to control wall regularity. Indeed, we noticed that losing 
regularity increases band dispersion. We can see that the new cost function is much more 
complicated, but it is suitable for incomplete sensitivity reducing the cost of gradient 
calculation. 

Finally, to reduce the dependency on the state, we express the velocity along the wall 
using Eq. (2.4). Hence, we rewrite the first term as: 

JTi eQerC(T.E)     Jr0 e0erC(T.E) 

where £ dependence on the concentration field of species is neglected for sensitivity 
evaluation. 

6. Application to microfluidic devices 
The control and design problem we consider concerns a microfluidic electrophoretic 

separation device. In these devices a very narrow sample plug is electroosmotically ex- 
tracted from the sample reservoir into the separation channel. Then an axial electric 
field is applied in the separation channel and the various ionic species in the sample plug 
separate according to their electrophoretic mobilities. The resolution, defined as the ratio 
of distance between two nearby sample peaks to the characteristic standard deviation, 
can be enhanced by increasing the separation channel length. However the total channel 
length is limited by the device area. Therefore, to maximize the channel length per unit 
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FIGURE 3.  Extraction algorithm. Left: extracted band without control through the external 
field. Right: with control, the band dispersion has been reduced. 

device area, 180 degree channel turns are incorporated. These turns permit more com- 
pact designs. However, these turns also cause sample plug dispersion, for two reasons. 
First, species near the inner curve travel a shorter distance and secondly, there is an 
electric field gradient normal to the channel, highest near the inner radius. Thus species 
near the inner radius travel faster than those near the outer radius. The total sample 
plug variance is governed by both the injected sample plug and dispersion induced by 
the turns. For high resolution separations it is essential to reduce and control the sample 
plug skew and dispersion (Probstein 1995; Culbertson et al. 1998 and Molho et dl. 2001). 

The problem of minimization of the dispersion of the initial extracted sample plug is 
solved by tuning the external electric field in a cross geometry. Once the plug is injected 
it is convected, and the aim is to design the optimum 180 turns to minimize the skew 
and dispersion. Indeed, the skew and dispersion are due only to changes in the curvature 
of the channel. The control parameterization is therefore based, for shape optimization, 
on a geometrical CAD-free model (Mohammadi 1997) and for the initial control problem 
on the externally applied electric field. Hence in the first case the size n of the control 
space is large, while it is small in the second case. 

7. Concluding Remarks 
The main ingredients of our minimal-complexity control and optimization platform are 

incomplete sensitivity evaluation and dynamic minimization algorithms. The minimal 
complexity has to be understood in the sense that design or control have the same 
cost as the solution of the direct problem. We have successfully applied these ideas 
to design and control microfluidic devices to reduce sample plug dispersion and skew. 
Current efforts concern the extension of the present approach to optimize sample stacking. 
Sample stacking is an extensively used technique in biochemical analysis for enhancing 
the concentration to detect trace-level sample constituents. 
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FIGURE 4. Design of 180 degree turns minimizing the band skew. Left: the original turn. 
Right: optimized. The initial band geometry is almost conserved enabling high resolution elec- 
trophoretic separations. 
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Efficient Fast Multipole Method for low frequency 
scattering 

By Eric Darve 

1. Introduction 
1.1. Motivation 

The Fast Multipole Method (FMM) is a numerical method which has found wide ac- 
ceptance in the scientific community. It is a fast summation method for potentials in 
1/r and has applications in many areas such as Laplace and Poisson equations, particle 
simulations, molecular dynamics, etc. Another application of the FMM to Maxwell and 
Helmholtz equations (kernel in exp(z/cr)/r) was initiated by Rokhlin (1990). However 
the derivation of the FMM for Maxwell/Helmholtz has two major drawbacks. First, the 
method fails when the size of the clusters becomes very small compared to the wave- 
length. This problem is known as sub-wavelength breakdown. The second limitation is 
the fact that numerically the approximation error of the method cannot be reduced be- 
yond ~ 10~4 relative error even when the number of poles is increased. This is due to 
numerical instabilities which, when coupled to roundoff errors, lead to a divergence of 
the method as the number of poles is increased beyond a certain threshold. In particu- 
lar these two limitations mean that the FMM cannot be used for computations where 
the distribution of points is highly inhomogeneous (discretization of small details on the 
surface of the object for example) or when high accuracy is required (because of cavity 
resonances for example). We have developed a new variant of the FMM with complexity 
n log n which is based on plane wave expansions. This new formulation leads to a method 
which is stable at all frequencies (no sub-wavelength breakdown) and is arbitrarily accu- 
rate. This method is more efficient and mathematically simpler than previous methods, 
such as the ones described in Greengard (1998) or Hu, Chew and Michielssen (1999). It is 
also more efficient than the traditional FMM for Maxwell/Helmholtz at high frequencies, 
discussed by Darve (1999) and Engheta (1992). In this article we propose a review of 
the traditional multipole techniques for potentials in exp(i«x)/r and describe our new 
technique based on plane wave expansions. 

1.2. Overview of the article 

We start with a general overview of the article where we present the main results and 
achievements. 

We are interested in the application of the Fast Multipole Method (FMM) to Maxwell 
or Helmholtz equations. When these equations are solved using integral equations, the 
free-space Green's kernel is defined as: 

exp(iK\x - y\) 
K\x^y) = —\z—zi— F-l/l 
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This kernel can be approximated using the following expansion: 

7 r=   lim   /   etK<*rt Tla{x) da (1.1) 

where S2 is the unit sphere. We denote by |.| the modulus and by {.,.) the scalar product. 
The function Tit(r{x) is defined by: 

T^{x) = we £ {2m + 1)tmhW(K\x\)Pm(co$(<r,x)) (1.2) 
m=0 

where /im is a spherical Bessel function and Pm is a Legendre polynomial. This expansion 
has been widely used, in particular by Song et al. (1997), Epton & Dembart (1995) 
and Darve (1999), etc. 

This expansion has a major disadvantage, which is the divergence of hm (K\X\) for 
m -» +oo and for |z| ->• 0: see Eq. (2.1). This leads to two kinds of numerical instabili- 
ties. First, when the size of the clusters becomes too small the transfer function Tit<r(x) 
starts diverging. This corresponds to a situation where we have a large number of points 
concentrated in a region of diameter D where D < A, the wavelength. This is often called 
the sub-wavelength breakdown. Secondly, to reduce the error e of the method we need 
to increase I. However when / becomes large compared to K|X|, Titff(x) starts diverging. 
This means that because of strong numerical instabilities we are not able to reduce the 
error arbitrarily. For practical cases, the error e is bounded below by approximately 10~4. 

Our new formulation of the FMM, the Plane Wave Fast Multipole Method (PW-FMM), 
is based on the following expansion: 

C«M     i*. r              i r+°° r2* 
-11 f    e,K<ff,p) da+ - [ °° / " e~*2z eVx4+"2(«0S*+s'sin*) X<*X# (1-3) 

2n JSz+ 7T JX=Q J,p-0 

with r — (x, y, z) and Sz+ is the upper hemisphere (subset of the unit sphere of all points 
with positive ^-coordinate). See Eq. (3.1). These two terms have very simple values in 
the case x = y = 0, z > 0: 

— f    cMe<°"ir> da = in I e""cdC = -{elKZ - 1) 
2TT ys«+ J0 zK 

1     /-+0O    i-2-K .  r+oo i 

-/        /     e~xz e*vx*+K2(XC0S<t>+vsin<t>) xdxd<t>= /       e~vz dv = - 

Their sum is equal to s-^-, as expected. The integrand for the first integral is a smooth 
and oscillating function while the second integral contains the singularity for \x\ -> 0. 

The new formula is formally similar to Eq. (1.1). However it has the considerable 
advantage of involving only functions which are well-behaved. Instead of one transfer 
function as before (see Eq. (1.2)), we have two transfer functions defined as: 

rff(r) = ^elK<^>ls*+(<7) 

TxAr) = \* e~X*Z C'V^+^C» «"*+»•'»« 1[0:+OC](X) 
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where ls*+ is the characteristic function of the set Sz+, i.e. 

fl    ifcreS*+ 

and l[o:+oo](x) is the characteristic function of the set [0 : +00] for %. 
This plane-wave expansion has been used previously by L. Greengard et al. (1998). 

However their method is different from ours. In particular, it requires transformation 
operators to go from a traditional multipole expansion to a plane-wave expansion and 
vice-versa. In the opinion of the author, our new derivation is more consistent and con- 
ceptually simpler as we use only one kind of expansion, the plane-wave expansion. The 
FMM described in Greengard et al. involves steps with complexity p3 where p2 is the 
number of terms in the multipole expansion for a given cluster. In contrast, all operations 
for PW-FMM have complexity p2. 

The PW-FMM can also be used for l/|r| by setting K = 0 in Eq. (1.3). This leads to 
the following expansion: 

•I -I r+OO      [2-K 

-rr = - /     e~x * e%x txeM++v,in+) xdxW (!-4) 

The techniques presented in this article can thus be readily applied to l/|r| (Laplace 
equation, particle simulations, etc.). 

We start this article by pointing out the limitations of the FMM for Maxwell and 
Helmholtz equations, in particular the fact that it is unstable at low frequency (Section 2). 
Then we describe our new technique, PW-FMM (Section 3), starting with the first term 
in the expansion (1.3) (Section 3.1) and ending with a description of the second term 
(Section 3.2). 

2. Fast Multipole Method for electrodynamics scattering problems 
To justify the need for a new method we start by describing the limitations of the 

traditional FMM for Maxwell/Helmholtz or high frequency FMM (HF-FMM) as we will 
call it from now on. The reasons for this name will become apparent in the next section. 

2.1. Numerical instabilities 
The HF-FMM has been successfully used in many large scale applications, for example 
by Song et al. (1997), Chew et al. (1997), Song et al. 1998, Darve (1999) and Darve 
(2000). Figures 1 and 2 illustrate some of the computations done by Darve using the 
FMM for radar scattering problems. 

However there are two cases for which large numerical instabilities limit the usefulness 
of the FMM. Let us consider the transfer function denned by Eq. (1.2). The asymptotic 
behavior of hm {x) is 

\h®(x)\ 
Vel-e—) 

' (2-1) 
1 • 3 • 5... (2m - 1) 
 , ,  \_, - for x ->• 0 

|i|m+1 

The numerical instabilities are caused by the divergence of Jim (a:) when m -* +00 or 
x-+0. 



262 E. Darve 

~\ 
, FMM - 15 GHz 

Jmcaw 
2.m 

FMM-15 GHz 
Zone dans! "ombre 

■*sr  . 

:S=^. * ^rj»^ ..^1; 

FIGURE 1. Example of an electromagnetics computation using the FMM. The code CEM3D was 
developed by E. Darve while at Paris 6 University. The geometry of the object was provided by 
Aerospatiale. 
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FIGURE 2. Example of an electromagnetics computation using the FMM. The code CEM3D was 
developed by E. Darve while at Paris 6 University. The geometry of the airplane was provided 
by Dassault-Aviation. 

In the FMM for electromagnetic scattering, the size of the smallest clusters is chosen so 
that the number of floating-point operations is of order n log n. This is done by optimizing 
with respect to the computational expense of the far away interactions (approximated 
using the HF-FMM) and of the close interactions (exact evaluation). In particular, if 
the density of the points on the surface of the scattering object is increased, optimal 
complexity is achieved by reducing the size of the smallest clusters. If z\ and zi are the 
centers of two clusters, \z\ - z%\ is proportional to the size of the clusters. Numerical 
instabilities appear when K|ZI—Z2| becomes too small. Once, K\Z\—zi\ <S m, the function 
hm!(K\zi - z2\) diverges (see Eq. (2.1)). This means that the transfer function TitZ{a) 
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FIGURE 3. In the case of low-frequency scattering, the asymptotic complexity of the FMM 
is no longer of order nlogn. Suppose that p is the largest size of a cluster below which the 
computation is unstable. When the diameter of the object is smaller than p, the FMM consists 
of a single cluster containing all the points. All interactions have to be computed in a direct 
manner, without the use of the FMM. Then the complexity is on the order of n2 rather than 
n log n. 

diverges once K\ZI - 221 < I- When implemented on a computer, this divergence causes 
large numerical instabilities because of roundoff errors. 

The maximum density of points is large for very inhomogeneous distributions of points, 
or for low-frequency scattering when the diameter of the scattering object is very small 
compared to the wavelength (see Fig. 3). In these two cases, the numerical instabilities 
are so large that the FMM can no longer be used. Note that this behavior is very different 
from the behavior of the FMM for 1/r for which there is no such limitation. 

The purpose of our new method is to remove this limitation on the size of the clus- 
ters. This guarantees a complexity in n log n for any distribution of points even if this 
distribution is very inhomogeneous. 

Numerical instabilities can also appear when the error e is smaller than some threshold. 
We know that e for HF-FMM is, among other things, a function of I. More precisely a 
smaller e requires a larger I. Considering Eq. (2.1), we see that h${n\zi - z2\) starts to 
diverge if m becomes larger than K\Z\ — ZI\. Thus if we decrease the tolerance criterion e 
in HF-FMM below a certain threshold, the function TitZ(<r) diverges and again roundoff 
errors lead to numerical instabilities. 

As a conclusion, even though the algorithm is well-behaved analytically, strong nu- 
merical instabilities prevent the use of HF-FMM for low frequency applications and high 
accuracy computations. 

2.2. Comparison with other variants of the FMM 
Numerous authors, such as Greengard et al. (1998), Hu et al. (1999) and Hu & Chew 
(1999), have devised algorithms to tackle this problem. However these algorithms are not 
entirely satisfactory. The low-frequency Fast Multipole Method (LF-FMM) of Greengard 
and Rokhlin (1987) is a very complex scheme and requires complex transformations from 
multipole expansions to plane wave expansions and vice-versa. The Fast Inhomogeneous 
Plane Wave Expansion method of Hu et al. (1999) has the disadvantage of lacking a 
clear mathematical foundation, and several theoretical issues have not been satisfactorily 
settled. In particular, error and rates of convergence have not been well estimated so far. 

We propose a new method, called Plane Wave Fast Multipole Method (PW-FMM) 
which is based on plane wave expansions. It is related to Rokhlin-Greengard's and Hu- 
Chew's techniques. However, it has the advantage of being simpler and more efficient 
and precise error estimations can be derived. 

Unlike HF-FMM, PW-FMM is stable at all frequencies and any accuracy can be 
achieved with this method. Moreover we will show that for high-frequency applications 
the number of floating-point operations is less in PW-FMM. 
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3. Plane Wave Fast Multipole Method 
Vectors are denoted using bold face, e.g. v. Integers are denoted using Latin letters, 

e.g. n, while real numbers are denoted using Greek letters, e.g. A. 
The PW-FMM is based on the following expansion: 

£ = 11        e««^.«-) da + - /       /     e~^z e%v*+*lxeM++vtiB*) xdx*<l> (3.1) 
|r|     27T y5l:+ 7T ,/x_0 y^-o 

where r = (i,2/,2;). The set Sz+ is the subset of S2 of all the points with positive 
z-coordinate: 

Sz+ = {cr = (x,y,z), \tr\ = l,z>0} 

The variable x has dimension of the square root of a frequency. It can be readily seen 
that Eq. (3.1) is a good candidate for a fast multipole method. Indeed if discretization 
points aq and aq and weights uq and uq are chosen, Eq. (3.1) can be written in the 
following manner: 

etK\Xi-Xj\ 

. ,|   ~ Z^Uq T°q(Zl ~ *2) /j,(*t - *l)U,(Z2 ~ Xj) 

with 

and 

+ E < Th{zi ~ Z2) A(Xi ~ Zl) fh(*2" XA 

aq = (sin 6q cos </>,, sin 9q sin 0,, cos Bq) 
Ta{z) = exp(t/c(cr, z)) 
U{x)=T<T{x) 

<Tea = (Xq,<f>q) 

Tl{z) = x exp(-x2zz) expiiy/x4 + K2(zx cos<p + zy sin<j>)) 

fl{x) = exp(-x2xz) exp(iy/x4 + K2
(XX cos<j> + xy sin<£)) 

Bold face is used for 3D points while an index in normal face x, y, or z designate the x, 
y, or z coordinate of a point. The new basis functions for PW-FMM can be used in exactly 
the same manner as for HF-FMM. We now describe in more detail the behavior of the 
basis functions in Fourier space, and more specifically the fact that they are band-limited 
in Fourier space. 

We define: 
- Propagating term : Js,+ e1*^'") da. 

- Evanescent term : 1/TT /X
+
~ /£, e~^'* c*\/?+^(»-«>»*+•» •*»*) Xdxd<f>. 

3.1. Propagating term 

The propagating term is the simplest of the two terms. It is almost identical to the basis 
function for HF-FMM. However there is a significant fact which must be recognized. 

In the Multipole to Multipole step of the FMM we proceed as usual. The functions 
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f*(*,)=   £ UielK{°"Xi-Zk) (3-2) 

Then, in the Multipole to Local step, the functions gck are computed as: 

9ck{crq) = ^lK("-"Zk~Zr) fcA<yq) 
r 

However at this point some care must be taken. One may think that the usual interpo- 
lation can be performed for Local to Local transformations. However, the final integration 
is over Sz+ only, so that the integration is actually: 

[    eiK^-^gck(cr)dv= [  {elK<^-«>>ls*+(o-)}gender 
Js*+ Js2 k J 

An efficient implementation of the FMM requires that we can efficiently Fourier- 
transform band-limited functions, and these transforms are denned on S2 rather than 
Sz+. The function etK^'Zr~a>^ls'+(<r) has a very slowly decaying Fourier spectrum be- 
cause of the discontinuity. As a consequence, the number of sample points on S2 will be 
very large. This approach does not lead to an n log n method and therefore is not good. 

The solution consists in moving the characteristic function to the transfer function. 
We define the transfer function as 

T<r(zk-zr) = lsM<r)etK('T'Zk-z') 

Now the functions gck are defined as: 

9ck(cr) = £ WO **('*>>--> /c» 
r 

and the final integration is: 

L 
In Darve (1999), it is shown that e"t<<r,*r-x^ has a bandwidth on the order of K\ZT-XJ\. 

The functions fcAcq) have a bandwidth of the same order, more precisely «max |aji-zjt| 
(see Eq. (3.2)). Thus we can retain only the first K{\ZT -XJ\ + max \xi - Zk\) frequencies 
in T„{zk - zT). If we denote by p the length of the side of the cubic clusters, then 

n\zr — Xj\ < up       niaax\xi — Zk\ < np 

Thus we need on the order of 2/cp frequencies for Ta{zk -zr). To obtain the most efficient 
form of the FMM it is crucial always to retain the minimal number of frequencies, as 
this will affect the number of sample points required on the unit sphere. 

Numerical tests of accuracy must be made to find the precise relation between the 
tolerance criterion e and the exact number of frequencies that need to be retained. T is 
constructed in the following manner: 

PROCEDURE 1 (CONSTRUCTION OF T). We describe the construction ofT for the 
propagating term when a transfer is to be performed in the direction +z. First we need 
to find the minimum number of frequencies I needed for Ta[zk — zr) for a given accuracy 
e. This number is on the order of 2np where p is the size of a cluster. Then we Fourier- 
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transform 

l5.+ (o-)c*K<'7'Xfc-x'>, 

retain only the first I frequencies and inverse-Fourier-transform our function to obtain 
Tcr(zk — zr). We now have a transfer function with the minimal number of frequencies 
and thus the minimal number of sample points for a given error e. 

For all other directions z—, x± and y±, the same construction applies. This defines 
the transfer functions for all possible directions. 

We did some numerical tests to illustrate this construction. Consider the following 
function: 

10 

/c(M) = 5>e,<(',*)",l> 

t=i 

where X{ are random points inside a sphere of radius 16, and it, are random coefficients. 
We compute: 

/. 
fc(0,0)ez«e>V^ dO (3.3) 

= -•TT/2 

where z is equal to (32,32,64). We now denote 

Too(e) = e^e'0^h[_x/2:7r/2](9) 

We wish to show that using Procedure 1 for Too(#) allows accurately computing inte- 
gral (3.3) with a relatively small number of sample points for /c(o,0). Procedure 1 is 
applied in the following way. We Fourier transform Too(9), retain the lowest p frequencies, 
and set the higher frequencies to zero. Then we take the inverse Fourier transform. Let 
us denote the resulting function by Tp. We then approximate integral (3.3) using: 

2?r    ^ ,  ,  2irq    A. _ .   2nq 

2p+iX><^.°>^> 
9 

We proved that the bandwidth of fc (9,0) in 6 is on the order of the radius of the sphere, 
16. Thus we expect a very fast convergence once p is larger than 32. Figure 4 shows that 
this is indeed the case. Consider the case with 64 sample points: at this resolution the 
error is down to 1.7 x 10-9, so the computation is very accurate. This corresponds to a 
case where the transfer function T00(9) is under-resolved. The number of sample points 
64 is too small to resolve the high frequencies of the function. Figure 5 represents the 
exact transfer function Too(9) and the low-frequency approximate Tp that is used for 
p = 64. However since /c(#,0) is band limited and its bandwidth is on the order of 16, 
the computation is accurate if we use Tp rather than Too- It may seem paradoxical that 
increased accuracy is achieved by modifying the function T'oo(ö). The argument is that 
since /c(0,O) is band limited, the contribution of any frequency in T00{9) that is higher 
than 16 in this case is negligible. However since we only use 64 sample points for the 
discrete approximation of the integral, these high frequencies contribute. By smoothing 
Too(0) we exactly remove any contribution from the high frequencies and thus improve 
the accuracy. 
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FIGURE 4. The figure represents the decrease of the error with the number of sample points 
for the computation of JgStx/2 fc{6,Q) el{(e'0)'*) dB. The vertical thick line | is located at 32. 
Once the number of sample points is larger than the diameter of the sphere (32 in this case) the 
convergence is very fast. 
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FIGURE 5. This figure compares the function Too (9) (thin line —) with the smooth function Tp 
(thick line —) used in the integration. 

3.2. Evanescent term 

Consider two points x» in cluster C\ with center Z\, and Xj in cluster C2 with center 22- 
We have the following expansion: 

gl/c|x<-Xj| 

Xi — Xj\     2-K 7s*+ 

T        /-+00      />27T .  
+ - /     e-x:2(*;-*j). eWXk+i*a(.('i>i-*i)*cM4>+l*i-«>i)i>sm<t>) xd\d4 

T JY=0   J<t>=0 
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2p 

FIGURE 6. Size and distance between clusters, p is the length of the side of the clusters and 2p 
is the minimal distance between two clusters which are not neighbors. 

The integrand for the evanescent term can be split into three functions: 

F ._     (y 6) = e~x*(Xi~z^z e*iJx4+K2((xi-zi)* cos t+ixi-z^y sin <t>) 

TZl-Z2(x,<P) = l[0:+oc](x)xe-x2{zi-Z2)' eV*^((«»-**).«»*+(*i-«>»»*»*) 

G    -x(X 4>) — e~*2(*2-Xj')* eiy/xi+K2((z2-xi)xcos(p+(z2-»})vsm<j>) 

The evanescent term is now equal to: 

■1      r-t-oo        rtir 

l(xi-Xj) = - /     Fai-Zl(x,<j>)TZl-Z2(x,<f>)GZ2-Xj(x,4>)xdxdcl>.      (3.4) 
7T Jx=-oo J<t>=0 

In order to reduce the number of sample points x sn^ 4>> the functions FXi-Zl and 
GZ2-Xj need to be band limited in Fourier space for the variables x and <f>. For the variable 
X, this condition is not true, as {x{ — Z\)z and {z2 — Xj)z can have either sign and thus 
e-x (iBi-ai)r an(j e-x (.z2-xj), may be diverging exponentials. However (xi — z\)z and 
{zi — Xj)z satisfy the following equations, where p is the size of clusters C\ and C2 (see 
Fig. 6): 

(Xi - Zi)z > 
2 ' 

{z2-xj)z> -£, 

(zi - z2)z > 2p. 

(3.5) 

(3.6) 

(3.7) 

Suppose we multiply FXi-Zl(x,<P), GZ2-Xj(x,<f>) and TZl-Z2{x,4>) by the following 
factors: 

def. /    _2$P\ 

def 

FXi-Zl(x,<ß) = *M-x2:j) Fmi-Xl(x,4>) 

GZ2-Xi (x, <£) =' exp(-x2^f) GZ2-Xj (x, <f>) 

TZ1-Z2(X,4>) = exp(X
2f) TZx.Z2{x,4>) 

def ,2«^ 

4 

(3.8) 

(3.9) 

(3.10) 

then the functions FXi-Zl(x,<t>) and GZ2-Xj(x,(f>) are band limited for x- The factors 
were chosen so that the decay, when x goes to infinity, of 

v{x,4>)GZ2-Xi{x,<j>) 
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is similar to the decay of fZl-Z3(x,<!>)■ More precisely, we have the following bounds: 

\fZl-Z2(x,ct>)\<\x\ exp(-x2f) 

\FXi.Zl(x,<ß) GZ2-Xi(x, 4>)\ < exp(-x2f) 

A procedure similar to Procedure 1 can be used to construct T^_Z2 from TZl_Z2. 
We do not detail the implementation and sampling procedure for variables <f> and x- 

It is similar to the construction of Section 3.1 and is based on studying the decay of the 
Fourier spectrum of fck for <j> and x- 

4. Conclusion 
The new scheme presented in this article is based on plane-wave expansion. Unlike 

previous formulations, it is stable at all frequencies and is more accurate. This Plane 
Wave FMM (PW-FMM) involves a decomposition of exp(ikr)/r using two kinds of plane 
waves: evanescent and propagating. The basic tools required for PW-FMM are similar to 
the traditional FMM formulation (HF-FMM), but PW-FMM is stable at all frequencies 
and more accurate than HF-FMM. 

Stability at all frequencies allows PW-FMM to be used as an adaptive method, i.e. it 
is possible to consider adaptive trees, where the number of levels varies depending on the 
concentration of points. For scattering applications, this means that the method remains 
efficient even if tiny details of the surface need to be meshed using a large number of 
points concentrated in a small volume. This is not possible with HF-FMM because of 
the sub-wavelength "breakdown". 

A future publication will present the implementation of PW-FMM, a precise descrip- 
tion of the various optimization steps which can be performed, and some numerical 
results. In particular, it will contain an analysis of the performance of the method and 
its accuracy. 
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Calculating free energies using average force 

By Eric Darve AND Andrew Pohorille f % 

1. Introduction 
Many molecular-dynamics computer simulations of chemically and biologically inter- 

esting systems are devoted to calculating free-energy changes along selected degrees of 
freedom. In some instances, the full free-energy profile is of interest. For example, non- 
monotonic changes in the free energy of two small, hydrophobic species in water as a 
function of their separation, observed in computer simulations, Ludemann (1996), re- 
flect the changing patterns of hydrophobic hydration and provide important tests of 
analytical theories of hydrophobic interactions; Pratt (1977). Free-energy maps of small 
peptide units in vacuum and in water shed light on conformational preferences of the 
protein backbone; Brooks (1998). The free-energy profiles associated with the transfer of 
solutes through water-membrane systems yield solute distributions and permeation rates 
across membranes: see Wilson (1996), Pohorille (1999). In other instances, calculations 
of free-energy profiles provide a means of estimating the free-energy difference between 
the end-points which, in turn, yields the relative stabilities of the corresponding states 
of the system. Determinations of conformational equilibria in flexible molecules and as- 
sociation constants between molecular species are among important applications of such 
calculations: see Giraldo (1998), Schaefer (1998). 

The free-energy changes along the chosen generalized coordinates can be calculated 
from molecular simulations by a variety of techniques: see Frenkel (1996), Berne (1997). 
Most of them require that a sufficient, thermally-representative sample of states of the 
system is generated at different values of these coordinates. This leads to the interpre- 
tation of the free-energy changes along the chosen coordinates as the potential of mean 
force exerted by other coordinates. Only a few methods for calculating this potential can 
be conveniently, efficiently and generally combined with computer simulations. One such 
class of methods relies on obtaining the probability density function, P(£i,... ,£p), of 
finding the system at values &,... ,£p of the p selected generalized coordinates. Once 
this probability density function is estimated with satisfactory accuracy, the potential of 
mean force, A(£\,... , fp), can be readily calculated as 

Mt. • • • > &) = -*BT log P(6 ,...,&) (1.1) 

where T is temperature and kß is the Boltzmann constant. 
Another, general, method for calculating the potential of mean force requires calcu- 

lating the derivatives |r in a series of calculations, in which & is constrained to fixed 
values distributed along [ff"n, £™ox] in the range of interest. Then, the potential of mean 
force is recovered by numerical integration. The derivative of the free energy is related to 
the constraint force needed to keep the system at the fixed value of &. The exact nature 
of this relationship was a subject of some debate; see Van Gunsteren (1989), Straatsma 
(1992), Mulders (1996), den Otter (1998), den Otter & Briels (2000). Several initial 
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suggestions were found to be valid only under special circumstances; see Van Gunsteren 
(1989), Straatsma (1992), Mulders (1996). Only recently, the generally valid and practical 
to use formula was derived for one-dimensional (den Otter (1998), Sprik (1998), Ruiz- 
Montero (1997)) and multi-dimensional cases (den Otter &; Briels 2000). In this paper, 
this formula is derived in the general context of multi-dimensional reaction coordinates 
for constrained and unconstrained simulations. All previous derivations were done in 
the case of constrained simulations only. This formula requires that the constraint force 
is corrected by geometric factors that depend on £i,... , £p but not on other (usually 
difficult to define) generalized coordinates. Since the constraint force can be readily cal- 
culated in computer simulations, e.g. using the algorithms SHAKE, see Ryckaert (1977), 
or RATTLE, see Andersen (1983), practical applications of this method are quite feasible. 

Compared to the probability-density method, the constraint-force method has several 
advantages. In particular, it does not require a good guess of the biasing potential to 
achieve efficient sampling of fi,... ,£p. Providing such a guess could be a difficult task, 
especially for qualitatively new problems. Further, data analysis is markedly simpler; no 
procedure for matching results obtained for overlapping windows is required. However, 
the constraint-force method also suffers from several disadvantages. It may be inaccurate 
or inefficient if the potential of mean force is a rapidly-changing function of £i,... , fp. In 
complex cases, involving, for example, the insertion of a peptide into a membrane or the 
induced fit of an inhibitor into an enzyme, preparation of the system at consecutive, fixed 
values of the selected degrees of freedom may be difficult, and subsequent equilibration 
of the system may be slow. In some instances, application of the constraint-force method 
may lead to quasi-non-ergodic behavior. Finally, information about the dynamic behavior 
of the system, which may also be of interest in a simulation, is not available in this 
approach. 

In this paper, we propose an alternative and equally general approach to calculating 
the potential of mean force, which combines several desired features of both methods. 
As in the constraint-force method, the potential of mean force is obtained by integrating 
its derivative. This derivative, however, is calculated from unconstrained rather than 
constrained simulations. The centerpiece of our method is a new, general formula that 
connects dA/d£i with the instantaneous force acting on &. This force acts along the 
gradient of & such that if subtracted from the equations of motion the acceleration of 
£i is zero. This instantaneous force can be also related to the forces of constraint in a 
constrained simulation. Then, the forces of constraint are applied to maintain & at a 
constant value, and the force acting on & is exactly equal and opposite to these forces of 
constraint. 

The formula that relates dA/d£i to the instantaneous force acting on & is different in 
unconstrained simulations and constrained simulations. However, as will be shown below, 
it converges to the den Otter-Briels formula at the appropriate limits. The value of the 
new formula is not only in providing another route to calculating the potential of mean 
force but also in clarifying the relationship between the thermodynamic force and the 
force of constraint. By doing so it forms the theoretical basis for highly-efficient methods 
to calculate the potential of mean force and to investigate rare events (Darve (2001)). 

In the next section we derive the formula for dA/d^. This is done in two steps. 
First, the expression for dA/d^i in unconstrained simulations of a Hamiltonian system is 
obtained. Then, this expression is generalized so that it applies when the system is only 
approximately Hamiltonian, as is the case in adiabatic approximation. Then we consider 
two numerical examples - rotation around the C-C bond of 1,2-dichloroethane immersed 
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in water, and transfer of fluoromethane across the water-hexane interface. These examples 
involve only a single reaction coordinate. Applications to multidimensional cases will be 
considered separately. We close the paper with a comparison of the new method with its 
alternatives. 

2. Theory 
2.1. Generalized coordinates 

We assume that we have a set of M particles and we denote by N the total number of de- 
grees of freedom of our system (N = 3M). We further assume that exists a Hamiltonian, 
H, for this system: 

H(xi,... ,XN,Pi,. ,PN) = 2^7" m 

dxi dH 
dt ' dpi 

dpi _ 
dt 

dH 
dxi 

where (xi,... ,xn) are Cartesian coordinates, (pi,... ,pn) are the conjugated momenta, 
$ is the potential and t is time. 

We suppose that a set of N - p functions {q\,... , qN-p) can be defined such that 
(6 > • • • i £P> 9i > • • ■ ) QN-p) forms a complete set of generalized coordinates. We will often 
denote by x the vector (XI,...,XN), and similarly for £, q, p$ and pq. 

The derivative with respect to & is defined as the derivative computed with £,-, j ^ i 
and qk,k = l,...,N -p constant. Using the definition of A, Eq.(l.l), we can write: 

The probability density P for a canonical ensemble can be written as a function of the 
Hamiltonian H of the system: 

■P«T,-.® = Jff dx1...dxNdp1...dPN Sfa - £)...*(& - CP)exP(-fcff)       C2-2) 

where N is a normalization factor. 
We introduce additional notation to express the Hamiltonian H as a function of the 

generalized coordinates. 
The Jacobian, J, of the transformation from Cartesian to generalized coordinates is 

denoted by 

,«(£) (2.3) 

where J$ are the first p lines and Jq are the remaining lines. We define matrix Z as: 

Z =f JM-1^ 
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where «7* is the transpose of matrix J and M is the mass matrix: 

M = 

(m1 

0 

v" 

o 
TO2 

o \ 
0 

mNJ 

Matrix Z can be written as: 

zqi 
Hi 

where Z$ is a p x p matrix, Z^q a p x (N - p) matrix, and Zq a (N -p) x(N — p) matrix. 
The inverse of Z is denoted by A: 

A-iZ A ii 

Using generalized coordinates, the Hamiltonian of the system takes the form: 

H{£,,q,Pi,Pq) = 2P\Z^ + 2pt^ZqPq +P\ZiiPi + $^'?) 

where p| and pq are the transposes of vectors p$ and pq. 
Inserting the expression for P from Eq. (2.2) into (2.1), we obtain: 

QA     fdqdpqdpz ff:exp(-^) 

d£i        fdqdpqdps exp(-^) 

(2.4) 

(2.5) 

with a change of variables from Cartesian coordinates to generalized coordinates. For all 
functions F, we define the statistical average of F at fixed £* = (ff,... ,£*) as: 

_ Jdx1...dxNdp1...dpN 8(£i - gi)-(E($p ~£p) exp(-1gT)F(x1,... ,xN) 
{   '«* ~ Jdx1...dxNdp1...dPN <5(6 - £)■•■*(& " $) exp(-s^) 

fdqdpqdpz F(xi,... ,xN) 
fdqdpqdpz exp(-^) 

where in the last equation f = f*. With this notation, we can rewrite Eq. (2.5) as: 

dA_/dH\ (2.6) 

After differentiating both sides of Eq. (2.4) and integrating over p^ and pq, we obtain a 
new expression for Eq. (2.6) 

V;A = ( Vc$ + kBTVt: log | J\) (2.7) 

The derivative of the free energy can be seen as resulting from two contributions: the 
mechanical forces acting along £ and the variations of the volume element associated with 
the generalized coordinates. This formula has been previously derived in many papers, 
e.g. Ruiz-Montero (1997) and den Otter & Briels (2000), and is also given by Frenkel 
and Smit (1996). 
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2.2. Thermodynamic force 
In this and the following Sections, we use the fact that, for a given £*, it is possible to 
choose a basis q such that: 

Z,dC,q) = 0,    Vg. (2.8) 

This choice of q leads to a simplified derivation of our analytical results. 
Eq. (2.6) explicitly depends on the choice of all generalized coordinates, including q. 

As this is not practical from a computational point of view, we now modify this equation 
to obtain an expression independent of the choice of q. This is done by analytically 
integrating as many terms as possible in Eq. (2.6). 

We start by simplifying the notation: 

, def    ,  _/ def      id .„ -, 
Xi = ^TiXi V, = — ^ (2.9) 

pl   dg p^ (2 10) 

The symbol • denotes a dot product or a matrix-vector product. 
We start from the equation for the time evolution of p^: 

The momentum vector p$ is defined as the derivative of the Lagrangian with respect 
to ^: 

3 * 

We can differentiate both sides of Eq. (2.12) with respect to t and use Eq. (2.11) to 
obtain an expression for |£. As the right-hand side of Eq. (2.12) is the sum of two 
products, its derivative contains four terms: 

dH _    dpu _    y> d{A{\jj d£j y^f . ,   d2^ 
d£i "     dt   ~    ^    dt     dt Z^W^ dfl 

3 ' „ (2-13) 
Ed[Aiq]ik dg*, Y^ri   i   ^1k 

—dT~ dt    2J «'    *2 
k k 

Because q satisfies Eq. (2.8), the last term in Eq. (2.13) is equal to zero. Eq. (2.13) can 
be further transformed using the chain rule of derivation to obtain: 

dH -     Vr7-M   ^4.^7-11    \dZ(-   «'!,«       V d\Aia\ik dqk ,914s 

*l j }k k 

By expressing p'x in terms of p$ and pq, one can prove that the second term of Eq. (2.14) 
is equal to 

^-[Z« Uj~dx]~l 
jklr l 

jk jklr ' (2.15) 

dx'i jklr ' 
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where J' is defined as J but with x replaced by x'. 
In the last equation, we have split the right-hand side into odd and even functions of 

Pt and pq . We want to compute 

/ 
A     A ,       H   \9H 

ZcA
d!/-^i. (2.18) 

Because we chose a basis q such that Eq. (2.8) is true, the function exp(-p^) is even in 
Pt and pq. Therefore in Eq. (2.15), all odd terms in p$ and pq cancel whereas even terms 
contribute. An analytical integration over p$k leads to: 

jk jkrl ' ' 

Using the fact that vectors ■^-jftr satisfy Eq. (2.8) and are therefore orthogonal to 
V£i,..., V£p, one can prove that the third term on the right-hand side of Eq. (2.14) does 
not contribute to (V^iJ)^. In matrix notation, inserting Eq. (2.16) in Eq. (2.14) gives: 

(VsH)t: = kBT (£ i-Zf1 • diZi • Zf1 • VO« - (Z^U (2-17) 

where we denote diZ^ = -g^. 
If we denote by A the vector of RATTLE Lagrange multipliers - Andersen (1983) - 

they are by definition such that: 

def     d?£ 
dt2 

We now summarize what we have obtained so far. We started our derivation from 
Eq. (2.6), which relates the derivative of A with respect to & to the average of |^. We 
observed that this expression is not very useful, because it depends on a particular choice 
of generalized coordinates. We transformed this expression by analytically integrating 
some terms and obtained Eq. (2.17). This new expression is much more useful than the 
initial one, Eq. (2.6), as it can be computed numerically without any explicit reference 
to a particular choice of generalized coordinates. Finally, by inserting Eq. (2.18) in the 
last term of Eq. (2.17), we obtain: 

VCA = (A+kBT £ iz- • ftz€ • v • *e)€ */ (FW^        (2.19) 

Eq. (2.19) has a similar interpretation to Eq. (2.7) although the terms are different. 
The first term A is related to the force acting along f, which is the opposite of the 
constraint force. The second term ^; ^-ö/Z^"1 • 0^ is a correction term which accounts 
for the variation of an infinitesimal volume element in generalized coordinates. 

2.3. Decoupled degrees of freedom 
It is often desirable to consider a situation where £ is decoupled from the other degrees 
of freedom. By decoupling we mean that ^jf- is not a function of the coordinates q, but 
instead is governed by some other equation of motion. In the previous paper, Darve 
(2001), we derived the formula for ^ that applies to a single reaction coordinate. In this 
paper, this formula is generalized to a multi-dimensional case. 

One example of decoupling is a constrained simulation in which £ is constant. In this 
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case £ = 0 and 0 = 0. We will see that using Eq. (2.19) we recover the result of den 
Otter and Briels (2000). Our derivation can thus be seen as a generalization of their 
result. Another choice, which was previously discussed in Darve (2001), is a diffusion 
equation such that the motion of £ is random and approximately adiabatic. The choice 
of a Langevin equation is a convenient one because adiabatic approximation can be 
achieved simply by varying the diffusion constant. 

Deriving the relation for V? A in the decoupled case requires modifying the probability 
density of p$. Previously this density was given by: 

,f = e*p(-MM) (2.20, 

For a constraint simulation, /$ becomes a Dirac delta function at the location of the 
constraint whereas for the other decoupled case, /$ is a constant function. Since the 
equation for the decoupled case can be used for an arbitrary /?, it can be seen as a 
generalization of Eq. (2.19). Thus, one can implement the equation for the decoupled 
case (Eq. (2.21)) and use it in all situations. 

After calculating analytically the integral over p€ in Eq. (2.19) with /$ given by 
Eq. (2.20), we obtain the correction for the decoupled case: 

8A WF* (A + E,^
1
]« ((#)' • % ■ (f) + ^V'fc • v log |Z«|) Y 

V  J-L±    (2.21) 
% " <lM 

In this equation, we have used the notation Hj for: 

Hj = Z;1 4 Uj {Jtf Zf1 (2.22) 

Note that Hj is a function only of the first and second derivatives of f with respect to 
Cartesian coordinates, and thus can be easily computed numerically. 

2.4. Constrained simulation 
In the particular case of a constraint simulation, £ = 0, which leads to: 

dA   (m*{x+ k-¥ ZfäWti ■ V''°8lZ<l))) 

*= (w-> 
(2.23) 

This is the formula obtained by den Otter and Briels. Note that this formula is applica- 
ble to the case of several degrees of freedom. Several authors derived a similar equation for 
a single reaction coordinate (see den Otter (1998), Sprik (1998)). Note that in Eq. (2.23), 
Z€ is a matrix, |Z?| denotes its determinant and A is a vector. This contrasts with the 
case of a single reaction coordinate in den Otter (1998), Sprik (1998). 

3. Numerical Results 
To examine the performance of the method based on Eq. (2.21), we studied two test 

cases. One example involved calculating the potential of mean force for the rotation of 
the C-C bond in 1,2-dichloroethane (DCE) dissolved in water. In the second example, the 
potential of mean force for the transfer of fluoromethane (FMet) across the water-hexane 
interface was obtained. 
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The first system consisted of a DCE molecule surrounded by 343 water molecules, all 
placed in a cubic box whose edge length was 21.73 Ä. This yielded a water density approx- 
imately equal to 1 g/cm3. The second system contained one FMet molecule and a lamella 
of 486 water molecules in contact with a lamella of 83 hexane molecules. This system was 
enclosed in a box, whose x, ^/-dimensions were 24 x 24 Ä2 and the z-dimension, perpen- 
dicular to the water-hexane interface, was equal to 150 Ä. Thus, the system contained 
one liquid-liquid interface and two liquid-vapor interfaces. The same geometry was used 
in a series of previous studies on the transfer of different solutes across the water-hexane 
interface; see Darve (2001). In both cases, periodic boundary conditions were applied in 
the three spatial directions. 

For DCE in water, the potential of mean force was calculated along £, defined as the Cl- 
C-C-Cl torsional angle. For the transfer of FMet across the water-hexane interface, £ was 
defined as the z component of the distance between the centers of mass of the solute and 
the hexane lamella (since both cases involved only one-dimensional potentials of mean 
force, we drop the subscript i following f). For each system, three sets of calculations were 
performed. They yielded A(£), using the probability-density method and the methods of 
the constraint force from unconstrained and constrained simulations. 

To obtain A(£) from the probability density method, a series of simulations was per- 
formed. For DCE, we used a single window and a biasing potential obtained previously 
(Darve (2001)). The trajectory was 2 ns long. For FMet, f was constrained by a har- 
monic potential in five overlapping windows. No biasing potential was applied. For each 
window, a molecular-dynamics trajectory 2.4 ns long was obtained. From this trajectory 
the probability density, P(£)> was calculated. The probability density in the full range of 
£ was constructed by matching P(£) in the overlapping regions of consecutive windows. 
A(£) was calculated from the complete P(£) using Eq. (1.1). 

Calculations of ^4 from unconstrained simulations were very similar. For DCE, we 
used a biasing potential and one window. For FMet we did not use a biasing potential 
and divided the full range of £ into five windows. In these simulations, however, there 
was no need for windows to overlap. The molecular-dynamics trajectory in each window 
was 1.5 ns long. In each molecular dynamics step, the force of constraint was calculated 
using RATTLE. Since no biasing force was applied the average force in each bin along £ 
was simply the arithmetic average of the instantaneous forces. 

^4 was obtained from constrained simulations by generating a series of trajectories, 
in which £ was fixed at several values uniformly spanning the full range of interest. For 
DCE, simulations were carried out at 37 values of £ in the range between 0 and 180 
deg. This corresponds to 5 deg separation between two values of £. For FMet, £ was 
fixed at 102 values between -10.1 Ä and 10.1 Ä (0.2 A separation between two values). 
The constraints on £ were enforced using RATTLE. The average thermodynamic force 
was obtained by correcting the calculated constraint force according to Eq. (2.23). Once 
calculations of ^ were completed for all discrete values of £, A(£) was obtained by 
numerical integration. 

The potentials of mean force for rotation of DCE in water and transfer of FMet across 
the water-hexane interface, obtained from all three methods, are shown in Figs. 1 and 
2, respectively. For DCE, gauche and trans conformations were found to have nearly 
the same free energy, and were separated by a barrier 4.2 kcal/mol high. The gauche 
conformation corresponds to a torsion angle of about +/- 60 deg (i.e. Cl is not in the 
plane defined by C-C-Cl) and the trans conformation corresponds to a torsion angle of 
180 deg (i.e. this is the conformation where the two Cl are on the opposite sides of the C- 
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C bond). These results are in close agreement with the results obtained previously using 
the same potential functions (Benjamin (1993), Pohorille (1993)). For FMet, the free 
energy between dissolving this molecule in water and in hexane was found to be 0.6 kcal 
mol-1. An appreciable minimum in the potential of mean force, approximately 1.4 kcal 
mol-1 deep, was observed near the interface. A very similar profile of A(£) was obtained 
using the particle-insertion method of Pohorille, Chipot, New and Wilson (1996). 

4. Discussion 
In both numerical examples presented in the previous section, the method based on 

calculating the probability density along £ and both methods relying on calculating f| 
yield the potentials of mean force that are identical to within statistical error. This 
confirms applicability of Eq. (2.19) to the calculation of the potential of mean force in 
unconstrained simulations. 

The method based on Eq. (2.19) has an important advantage over the probability 
density method. No post-processing of the data obtained from different windows, such 
as WHAM (Kumar (1995)), is needed. The average force in a given bin along £ is simply 
the arithmetic average of instantaneous forces recorded in this bin in all windows (if 
different biasing forces were used in different windows they have to be subtracted before 
the average is calculated). In fact, no overlapping between consecutive windows is needed 
if a sufficiently good estimate of the average force is obtained from one window. 

The new approach does not suffer from the disadvantages of the method based on 
calculating the force in constrained simulations. These disadvantages were discussed in 
the Introduction. In addition, calculating the forces of constraints becomes less demand- 
ing. In constrained simulations, analytical formulas for calculating forces of constraints 
cannot be used. Instead, iterative procedures with very low tolerance, sometimes requir- 
ing double-precision arithmetic, have to be applied. This is needed to prevent drift of 
the constraint from the preset value due to the accumulation of numerical errors. This 
problem, however, does not exist in unconstrained simulations. Accuracy in calculating 
the forces of constraints does not influence motion of the system. This calculation is just 
a measurement performed on the system and should be done sufficiently accurately that 
numerical errors associated with this measurement have only negligible contribution to 
the statistical error of the average force. This is not a very stringent requirement. 

This work was supported by the NASA Exobiology Program. The authors thank Dr. 
M. A. Wilson for helpful comments. 

REFERENCES 

ANDERSEN, H. C. 1983 RATTLE: a 'velocity' version of the SHAKE algorithm for 
molecular dynamics calculations. J. Comput. Phys. 52, 24-34. 

BENJAMIN, I. &; POHORILLE, A. 1993 Isomerization reaction dynamics and equilibrium 
at the liquid-vapor interface of water — a molecular dynamics study. J. Chem. Phys. 
98, 236-242. 

BERNE, B. J. & STRAUB, J. E. 1997 Novel methods of sampling phase space in the 
simulation of biological systems. Curr. Opin. Struct. Biol. 7, 181-189. 

BROOKS, C. L., Ill 1998 Simulations of protein folding and unfolding. Curr. Opin. 
Struct. Biol. 8, 222-226. 



280 E. Darve & A. Pohorille 

-20    0     20    40    60    80   100  120  140  160  180 200 

FIGURE 1. The free energy of rotating DCE around the C-C bond computed using the probability 
density method ( ) and the methods of the constraint force from unconstrained (—D — ) 
and constrained simulations (—x — ). On the x-axis is the value of the Cl-C-C-Cl torsional 
angle (in deg). On the y-axis is the free energy (in kcal mol-1). 

-0.5 

FIGURE 2. The free energy of transferring FMet across the water-hexane interface computed 
using the probability density method ( ) and the methods of the constraint force from 
unconstrained (—a — ) and constrained simulations (—x — ). On the x-axis is the value of of 
the reaction coordinate £ (in Ä). On the j/-axis is the free energy (in kcal mol-1). 

CHERN, S. S., CHEN, W. H. & LAM, K. S. 1999 Lectures on differential geometry. 
World Scientific. 

DARVE, E., WILSON, M. A. & POHORILLE, A. 2001 Calculating free energies using 
scaled-force molecular dynamics algorithm. Mol. Sim., in press. 

DEN OTTER, W. K. 2000 Thermodynamic integration of the free energy along a reaction 
coordinate in Cartesian coordinates. J. Chem. Phys. 112, 7283-7292. 

DEN OTTER, W. K. k BRIELS, W. J. 2000 Free energy from molecular dynamics with 
multiple constraints. Mol. Phys. 98, 773-781. 

DEN OTTER, W. K. k BRIELS, W. J. 1998 The calculation of free-energy differences 
by constrained molecular-dynamics simulation. J. Chem. Phys. 109, 4139-4146. 

FRENKEL, D. k SMIT, B. 1996 Understanding molecular simulation. Academic Press. 



Calculating free energies using average force 281 

GIRALDO, J., WODAK, S. J. & VAN BELLE, D. 1998 Conformational analysis of GPA 
and GPAP in aqueous solution by molecular dynamics and statistical methods. J. 
Mol. Biol. 283, 863-882. 

JORGENSEN, W. L., CHANDRASEKHAR, J., MADURA, J. D., IMPEY, R. W. & KLEIN, 
M. L. 1983 Comparison of simple potential functions for simulating liquid water. J. 
Chem. Phys. 79, 926-935. 

JORGENSEN, W. L., MADURA, J. D. & SWENSON, C. J. 1984 Optimized potential 
energy functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638-6646. 

KUMAR, S., ROSENBERG, J. M., BOUZIDA, D., SWENDSEN, R. H. & KOLLMAN, P. 
A. 1995 Multidimensional free-energy calculations using the weighted histogram 
analysis method. J. Comput. Chem. 16, 1339-1350. 

LUDEMANN, S., SCHREIBER, H., ABSEHER, R. & STEINHAUSER, 0.1996 The influence 
of temperature on pairwise hydrophobic interactions of methane-like particles: a 
molecular-dynamics study of free-energy. J. Chem. Phys. 104, 286-295. 

MARTYNA, G. J., KLEIN, M. L. & TUCKERMAN, M. 1992 Nose-Hoover chains — the 
canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635-2643. 

MULDERS, A., KRüGER, P., SWEGAT, W. & SCHLITTER, J. 1996 Free energy as the 
potential of mean constraint force. J. Chem. Phys. 104, 4869-4870. 

POHORILLE, A. &c WILSON, M. A. 1993 Isomerization reactions at aqueous interfaces. 
Reaction Dynamics in Clusters and Condensed Phases — The Jerusalem Symposia 
on Quantum Chemistry and Biochemistry (Jortner, J., Levine, R. D. & Pullman, 
B., eds.), Kluwer, Dordrecht, 26, 207. 

POHORILLE, A., CHIPOT, C., NEW, M. H. &; WILSON, M. A. 1996 Molecular modeling 
of protocellular functions. 
Pacific Symposium on Biocomputing '96 (Hunter, L. & Klein, T. E., eds.), World 
Scientific, Singapore, 550-569. 

POHORILLE, A. & WILSON, M. A. 1996 Excess chemical potential of small solutes across 
water-membrane and water-hexane interfaces. J. Chem. Phys. 104, 3760-3773. 

POHORILLE, A., WILSON, M. A., CHIPOT, C, NEW, M. H. & SCHWEIGHOFER, K. S. 
1999 Interactions of small molecules and peptides with membranes. Lesczynski, J. 
(Ed.), Computational Molecular Biology, Theoretical and Computational Chemistry, 
Elsevier, Amsterdam, 485-526. 

PRATT, L. R. & CHANDLER, D. 1977 Theory of hydrophobic effect. J. Chem. Phys. 67, 
3683-3704. 

RUIZ-MONTERO, M. J., FRENKEL, D. & BREY, J. J. 1997 Efficient schemes to compute 
diffusive barrier crossing rates. Mol. Phys. 90, 925-941. 

RYCKAERT, J., CICCOTTI, G. & BERENDSEN, H. J. C. 1977 Numerical integration of 
the Cartesian equations of motion for a system with constraints: molecular dynamics 
of n-alkanes. J. Comp. Phys. 23, 327-341. 

SCHAEFER, M., BARTELS, C. & KARPLUS, M. 1998 Solution conformations and ther- 
modynamics of structured peptides: molecular dynamics simulation with an implicit 
solvation model. J. Mol. Biol. 284, 835-848. 

SPRIK, M. & CICCOTTI, G. 1998 Free energy from constrained molecular dynamics. J. 
Chem. Phys. 109, 7737-7744. 

STRAATSMA, T. P., ZACHARIAS, M. & MCCAMMON, J. A. 1992 Holonomic constraint 
contributions to free-energy differences from thermodynamic integration molecular- 
dynamics simulations Chem. Phys. Lett. 196, 297-302. 



282 E. Darve & A. Pohorille 

VAN GUNSTEREN, W. F. 1989 Methods for calculation of free energies and binding con- 
stants: Successes and problems, In Computer Simulation of Biomolecular Systems: 
Theoretical and Experimental Applications, Van Gunsteren, W. F. k Weiner, P. K. 
(Eds.), ESCOM, 27-59. 

WILSON, M. A. k. POHORILLE, A. 1996 Mechanism of unassisted ion transport across 
membrane. J. Am. Chem. Soc. 118, 6580-6587. 



Center for Turbulence Research 283 
Annual Research Briefs 2001 

Buckyballs in water: structural characteristics and 
energetics 

By 
E. M. Kotsalis, R. L. Jaffe, J. H. Walther, T. Werder AND   P. Koumoutsakos 

1. Motivation and Objectives 
The 1985 discovery by Curl, Kroto, and Smalley of the molecule C60 (dubbed "buck- 

minsterfullerene" and nicknamed the "buckyball") marked the first time that elementary 
carbon was found to form stable molecules in which the atoms are arranged in closed 
shells. Ever since then, chemists have found numerous ways to produce variations on that 
theme, generically dubbed "fullerenes". One such class of molecules is that of the carbon 
nanotubes, which are novel structures with unique mechanical and electrical properties 
(Odom et al. 2000). Applications of buckyballs have been proposed in fluidic sensor tech- 
nology (Wang et al. 1996; Amao et al. 1999). The interaction of the buckyball with the 
surrounding fluid is therefore of great importance. In this study we consider the structural 
characteristics and energetics of buckyballs in water using molecular-dynamics simula- 
tions. Specifically, we report on the breathing frequency of a buckyball in water, and 
characterize the carbon-water interface through water density profiles and the orienta- 
tion of the water molecules. Finally we consider the energetics involved in introducing 
a buckyball into water to study the hydrophobic-hydrophilic behaviour of the buckyball 
water interface. 

2. Accomplishments 
2.1. Method of calculation 

The buckyball-water system is studied using molecular-dynamics simulations. The water 
molecules are modeled by the flexible SPC potential which features harmonic stretch and 
bend terms between the oxygen and hydrogen atoms. The non-bonded interactions in- 
volve a Coulomb term between the partial charges of the water, computed using a smooth 
truncation, and a Lennard-Jones term between the oxygens of the water (Walther et al. 
2001). The buckyball is modeled by terms describing Morse bond stretch, harmonic cosine 
bending and a 2-fold torsion potentials. We also consider Lennard-Jones interactions be- 
tween carbon-carbon (excluding 1-2 and 1-3 pairs) and oxygen-carbon atoms. The water 
molecules are initially placed on a regular cubic or rectangular lattice for the simulation 
of one or two buckyballs in water, respectively. The system is equilibrated to obtain the 
desired temperature of 300 K using velocity scaling. The timestep is 0.2 fs which has 
been proved sufficient for stability of the trajectory and conservation of energy. The ini- 
tial placement of the water molecules does not allow a predetermined bulk water density 
in the vicinity of the buckyball. Therefore, during the equilibration we adjust the size 
of the computational box by re-positioning the periodic boundaries to match the target 
bulk density of water p0 of 997 kg m-3. 
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TABLE 1. Summary of cases considered, nww denotes the number of water molecules and nß the 
number of buckyballs in the simulation. Case 12 corresponds to a simulation of the buckyball in 
vacuum and the cases with ns = 0 correspond to a pure water simulation, re is the long-range 
cutoff we used and S is the initial wall-to-wall distance of the two buckyballs. 

Case nwM nß rc(Ä) S(Ä) 

1 702 1 9.50 
2 702 1 12.66 
3 1304 1 15.83 
4 961 2 12.66 4.676 
5 1018 2 12.66 6.676 
6 1019 2 12.66 7.676 
7 1123 2 12.66 8.676 
8 1120 2 12.66 10.676 
9 1120 2 12.66 12.676 

10 729 0 9.50 
11 729 0 12.66 
12 0 1 12.66 

3.672 
3.670 
3.668 
3.666 
3.664 
3.662 
3.660 
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FIGURE 1. Left: The carbon-carbon Lennard-Jones interaction energy. Right: The oscillation of 
the radius of the buckyball. 

2.2. Buckyball in vacuum 

Previous studies of carbon nanotubes (CNT's) in vacuum and in water (Walther et al. 
2001) indicated that the present CNT potentials provide an accurate description of the 
breathing mode of the CNT. The present studies extend the validation of the potentials 
by considering buckyballs in vacuum and in water. The simulation for the buckyball in 
vacuum was conducted for 6 ps with an initial 2 ps equilibration. The predicted breathing 
mode extracted from the time history of the radius of the buckyball is 542 cm-1. This 
result is in good agreement with the experimental Raman spectroscopy value of 491 cm-1 

(Venkateswaran et al. 1999). A useful observation is that the energy due to carbon-carbon 
Lennard-Jones interaction also oscillates with a frequency of 542 cm-1. Introducing the 
buckyball in water increased the frequency of the breathing mode to 546 cm-1 and the 
Lennard-Jones potential oscillated with a frequency of 547 cm-1 (see also Fig. 1). A 
similar, small increase was also observed in the CNT case (Walther et al. 2001). The 
characteristics of all the MD trajectories are shown in Table 1. 
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2.3. Buckyball in water 

Molecular-dynamics trajectories were computed for a buckyball in water. Three cases 
were considered: Case 1 with the buckyball surrounded by 702 water molecules and a 
cutoff of 3<700 (9.5Ä); Case 2 with the buckyball surrounded by the same number of 
water molecules but with a cutoff of 4a00 (12.66Ä); and Case 3 with a long-range cutoff 
of 5a00 and the buckyball surrounded this time by 1304 water molecules (Table 1). The 
size of the computational box in Cases 1 and 2 was 28 x 28 x 28 Ä and in Case 3 it was 
34 x 34 x 34 Ä. We performed these three different simulations in order to get cutoff 
independent results. The choice of a cutoff length of 4cr00 is sufficient because Cases 2 
and 3 revealed no significant difference in the orientation of the water molecules and in 
the number of the hydrogen bonds that are built, and there was no noticeable distinction 
between their radial density profiles (see Fig. 2). We will present here the results from 
Case 2. The statistics are collected after the equilibration every 20 fs until 50 ps of the 
system with a total of 1500 samples. 

2.3.1. Radial density profiles 
The radial density profiles of the water for Case 2 shown in Fig. 2 are sampled in 

60 spherical bins of constant spacing extending from the surface of the buckyball. The 
coincidence of the peaks in the oxygen and hydrogen profiles at a distance r* of 3.2 A 
measured from the surface of the buckyball indicates that the water molecules tend to 
be tangential to the buckyball surface. It is important to note that the closest oxygen-to- 
buckyball surface is detected at a distance of 2.3 Ä and the closest hydrogen at distance 
of 1.3 A. The difference in these distances corresponds to the OH bond length. From the 
plots (see also Fig. 2) we may conclude that the water molecules stand off approximately 
3.2 A from the surface of the buckyball. 

2.3.2. Angle profiles 
Let TBO denote the line from the buckyball center to the oxygen atom of a water 

molecule. The spatial orientation of the water molecules is probed by considering the 
following three angles: (i) the angle <j> formed by reo and the dipole moment, (ii) the 
angle ip between TBO and each of the OH-bonds and (iii) the angle a formed by reo 
and the normal to the plane of the water molecule (see Fig. 3). Because of the planar 
symmetry of water we compute the absolute value of a. The orientation of the water is 
computed at a distance of 2.8, 3.2, 3.9, 4.7, 5.9 and 7.4 A from the buckyball surface to 
the oxygen of a water molecule, respectively. At a distance of 2.8 A and 3.2 A the plane 
of the water (a-angle) clearly shows the preference for an angle of about 180° (see Fig. 4) 
indicating that the HOH-plane is tangential to the surface of the buckyball. The peaks in 
the distributions become less pronounced, and the most probable angle shifts to 160° and 
140° at distances of 3.9 and 4.7 A, respectively. At a distance of 5.9 A there is a slightly 
elevated probability for an angle of 90°. This distance corresponds to the second peak 
in the water density profile. Concerning the orientation of the dipole moment (<£-angle), 
at distances of 2.8 and 3.2 A, the angles are distributed around 90° with an average of 
88° (see Fig. 5). It can be seen that the distributions become broader as the distance 
increases. The profile for the orientation of the OH-bonds (^-angle: see Fig. 6) at 2.8 A 
shows that the strongest preference is for an angle of about 95° which confirms, like the 
previous angle profiles, that the HOH-plane is tangential. As the distance is increased, 
the profile has its peaks at 100°, 110°, 123°, and finally 180° at a distance of 5.9 A: this 
corresponds to a rotation of the plane around its normal. Finally, at a distance of 7.4 A, 
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(b) 

FIGURE 2. (a): The radial density profile of water for Case 2. The arrows indicate the center of 
the bins used for the profiles of the orientation of the water, (b): Oxygen density profile. —I—: 
(po/Po) a11«1 hydrogen density profile - -x- -: {PH/P%) for Case 2 where p% and p% are the 
bulk densities of oxygen and hydrogen, respectively, r* is the distance from the surface of the 
buckyball. c): The radial density profiles for Cases 1, 2 and 3. There is no noticeable distinction 
between the ones of the Cases 2 and 3. In Case 1 the value of the reduced density at the first 
peak is 17.5 % higher. 

FIGURE 3. Definition of the dipole (</>), OH (ip) and plane (a) angles. 

bulk properties have been reached and all the angles are equally probable, as expected 
in bulk water. 

2.3.3. Hydrogen-bond profile 
It is well known that liquid water has a network of hydrogen bonds. The introduction 

of the buckyball into water results in a disruption of these hydrogen bonds. The number 
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FIGURE 4. (a)-(f): The probability distributions show the orientation of the plane (a) for the 
distances of 2.8, 3.2, 3.9, 4.7, 5.9 and 7.4 Ä from the surface of the buckyball, respectively. We 
compute the absolute value of the cosine because of the planar symmetry of water. (Case 2) 

o.o     o.s 
cos<j> 

0.0        0.5 
cos<j> (e) cos<£ (f) 

FIGURE 5. (a)-(f): The probability distributions show the orientation of the dipole moment (<j>) 
for the distances of 2.8, 3.2, 3.9, 4.7, 5.9 and 7.4 Ä from the surface of the buckyball, respectively. 
(Case 2) 
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FIGURE 6. (a)-(f): The probability distributions show the orientation of the OH bonds (ip) for 
the distances of 2.8, 3.2, 3.9, 4.7, 5.9 and 7.4 Ä from the surface of the buckyball, respectively. 
(Case 2) 
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FIGURE 7. This figure shows the number of hydrogen bonds per water molecule in the vicinity 
of the buckyball. (Case 2) 

of hydrogen bonds per water molecule (as shown in Fig. 7) decreases from 3.79 in the 
bulk to 2.75 at the buckyball water interface. A reduction to 3.67 is also observed at the 
lowest peak of the radial density profile at a distance of 4.7Ä. The results are consistent 
with previous findings for the CNT case (Walther et al. 2001) and there are no noticeable 
curvature effects. 
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FIGURE 8. Time history of the minimum carbon-carbon (S) spacing between two buckyballs in 
water. The initial centre-of-mass (COM) spacing is: —: 12 Ä; —: 14 Ä; : 15 Ä; ■•■: 16 A; 
—: 18 A; :20Ä. 

2.4. Two buckyballs in water 
To study the hydrophobic interaction between buckyballs in water, we conduct simula- 
tions of two buckyballs initially placed at a center of mass distance of 12, 14, 15, 16, 18, 
and 20 A, corresponding to a wall-to-wall distance of 4.676, 6.676, 7.676,8.676,10.676 and 
12.676 Ä, respectively (see Fig. 8). The center of mass of the buckyballs is fixed during 
the first 15 ps of the equilibration to allow the water to stabilize between the buckyballs. 
After the release of the buckyballs each system is equilibrated for another 10 ps and the 
simulations are continued to a maximum of 130 ps depending on the observed drying be- 
haviour. A cutoff of 4<700 was used throughout (see Table 1 for the list of the simulations). 
The number of hydrogen bonds that the buckyballs will disrupt depends on the exposed 
surface between them and the water. That surface area is minimised when the buckyballs 
move close together (drying) so that there is no water between them. In this state their 
centers of mass will come to a distance of 10.5 A as observed in the simulations and they 
will not allow the existence of water between them. For distances up to 15 A drying takes 
place in less than 60 ps (Fig. 8). In Case 7 (16 A) drying is completed at about 120 ps. 
The fact that in Case 8 (18 A) the buckyballs came together in a time period smaller 
than in Case 7 is due to random motion of the system. When we placed the buckyballs 
at a distance of 20 A, drying had not yet taken place at 120 ps. Snapshots of the atomic 
structure from the simulations are shown in Figs. 9,10 and 11 for Cases 5 and 7. 

2.5. Energetics 
The introduction of (hydrophobic) fullerenes in water requires energy in order to create 
the accommodating cavity in the water. In a related study, the energy involved in solvat- 
ing a (16,0) carbon nanotube was found to require approximately 29 kJ mol-1 (Walther 
et al. 2001). The corresponding surface tension of the curved CNT-water interface was 
found to be 127 dynes cm-1, and similar to the value found for the planar liquid-vapour 
interface of 124 dynes cm-1, indicating a negligible curvature effect. 

The surface tension of the two-buckyball system considered in § 2.4 is computed for 
the dry, equilibrium state shown in Fig. 11. The surface area of the water is estimated as 
1060.72 A2. This corresponds to the surface of two intersecting spheres, with the radius 
of the buckyball plus the distance to the first peak of the radial density profile (3.2Ä). 
The surface energy is calculated from the difference between the average potential energy 
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FIGURE 9. Left: The two buckyballs of Case 5 just before they axe released at 15 ps. The water 
molecules are stable. Right: The two buckyballs of Case 7 at a center-of-mass spacing of 10.5 Ä 
after 125 ps. 

V     Sir*        t 

fr^cAt <t',v. fe-   /i 

FIGURE 10. The two buckyballs of Case 5 at a center-of-mass spacing of 12.6 A after 20 ps. 
The thickness of the water slab in the direction normal to the paper is 6 Ä. 

^■t*'*1 

JVfVt 
<jjt- V 

FIGURE 11. The two buckyballs of Case 5 at a center-of-mass of 10.5 Ä after 60 ps. The 
thickness of the water slab in the direction normal to the paper is 6 A. 

(per water molecule) of bulk water, -43.44 ± 0.15kJmol-1 (Case 11) and the elevated 
potential energy of the buckyball-water system, -42.33 ± 0.13kJmol_1 (Case 5: 1018 
water molecules). Thus the computed surface energy is 177 dynes cm-1, which consists 
of a 40 % increase compared to the CNT-water interface, indicating a significant curvature 
effect. However, further studies are being conducted to confirm this result. The systems 
consisting of a single buckyball in water did not allow an accurate extraction of the 
surface energy, due to the smallness of the surface area. 
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3. Conclusions and Future Work 

We found that the water molecules stand approximately 3.2 Ä from the buckyball, 
and their plane is oriented tangential to the buckyball surface at the buckyball-water 
interface. At the interface the number of hydrogen bonds per water molecule was found 
to be 2.75. We also found that the surrounding water did not affect the breathing mode 
of the buckyball. We showed that if we place two buckyballs in water the drying will take 
place within a time period of 60 ps for a distance between their centers of mass up to 
15 A. In the cases of 16 and 18 Ä distance, the drying was complete within a period of 
125 ps. For the case of 20 Ä distance, drying did not occur at all. Also, we analysed in 
detail the energetics of the process of introducing two buckyballs into water. The surface 
energy in the case of introducing two buckyballs in water at an initial distance of 14 A 
is large than in the case of carbon nanotubes (Walther et al. 2001), due to curvature 
effects. Future work will include further validation of the interacting potentials and the 
behaviour of functionalised buckyballs. 
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Instability of Blasius boundary layer in the 
presence of steady streaks 

By Xuesong Wuf AND Jisheng LuoJ 

1. Motivation and objectives 
It is well known that the instability of boundary layers is sensitive to the mean velocity 

profile, so that a small distortion to the basic flow may have a detrimental effect on its 
stability. The main interest of the present paper is in investigating the mechanisms by 
which a relatively weak distortion can significantly affect the instability of an otherwise- 
uniform Blasius flow. Specifically, we shall address two issues: (a) how the Tollmien- 
Schlichting instability, which operates in the absence of any distortion, is modified by 
a weak distortion, and (b) whether or not a weak distortion is able to cause inviscid 
instability. 

Many factors can cause three-dimensional steady or unsteady distortions in the form 
of streamwise or longitudinal vortices. These include small steady or unsteady perturba- 
tions superimposed on the oncoming flow, imperfections at the leading edge, crossflow 
instability, and Görtier vortices induced by surface curvature, as well as certain excitation 
devices. Distortion of this kind also arises due to the nonlinear interaction between pairs 
of Tollmien-Schlichting waves. The resulting perturbed flows are spanwise-dependent but 
essentially unidirectional, i.e. the transverse velocity components are much smaller than 
the streamwise component. The instability of such transversely sheared flows has at- 
tracted a great deal of interest because it appears to be related to various aspects of the 
transition process, such as secondary instabilities and by-pass transition. 

A distortion of particular interest occurs when the boundary layer is subject to rel- 
atively high free-stream turbulence level. As was first observed by Dryden (1936) and 
Taylor (1939), small low-frequency three-dimensional perturbations in the free stream 
produce significant distortion within the boundary layer, leading to alternating thicken- 
ing and thinning of the layer in the spanwise direction. Steady disturbances also cause 
a similar type of variation (Bradshaw 1965). Recent experimental studies show that the 
distortions are in the form of elongated streaks (see e.g. Kendall 1985, Westin et al. 1994, 
Alfredsson & Matsubara 2001, and references therein), now commonly referred to as the 
Klebanoff mode, as a tribute to the contribution of Klebanoff (1971). These experiments 
have provided fairly complete quantitative data about the characteristics of Klebanoff 
modes themselves. However, the instability of the streaks and its role in the transition 
process remain poorly understood. The main obstacle of course is the random nature 
(in both time and space) of free-stream disturbances and the associated Klebanoff mo- 
tion, which make a quantitative study extremely hard. Numerous researchers instead 
investigated steady distortions, induced in a controlled manner. 

Hamilton & Abernathy (1994) used surface roughness elements to create single or 
multiple streamwise vortices. These vortices cause the distorted flow profile to have an 
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inflection point. An inflection point, however, does not always lead to the inviscid in- 
stability. Only when the distortion exceeds a certain critical magnitude do localized 
inviscid-instability waves start to appear. These waves may decay, or occasionally de- 
velop into turbulent spots if the distortion strength is just above the critical value. As 
the distortion is increased further, the local instability leads to persistent self-sustaining 
turbulent spots. 

Asai, Fukuoka &; Nishioka (2000) and Asai (2001) investigated in detail the instability 
of an isolated streak, which was produced by a small screen set normal to the wall. The 
low-speed streak was shown to support both symmetric (varicose) and antisymmetric 
(sinuous) modes. These investigators mapped out the amplitude development as well as 
the spatial structure of each mode. 

Bakchinov et al. (1995) generated periodically-distributed longitudinal vortices by ar- 
ranging roughness-element arrays in a regular spacing along the spanwise direction. For 
strong modulation, inviscid-instability modes were found to develop out of the back- 
ground disturbances, and their frequencies were well above those of unstable TS waves 
in the Blasius flow. At moderate modulation, instability waves with typical frequencies 
of T-S waves can be observed, but they amplify more rapidly than in the Blasius flow. 

Obviously, the instability of boundary layers subject to finite-amplitude steady dis- 
tortions is an interesting and important problem in its own right, and an attack on it 
requires a major numerical study. The main concern of this paper is with the sensitivity 
of the boundary-layer instability to a steady distortion. For this purpose, it is appro- 
priate to consider the case where the distortion is relatively weak that it represents a 
sort of 'imperfection'. A weak distortion has the advantage of being more amenable to 
analytical treatment, yet as we shall argue, the resulting simple model may well offer 
relevant insights to the case of stronger distortion. 

There have been numerous theoretical studies of the instability of shear flows (bound- 
ary layers or channel flows) perturbed by distortions in the form of streaks. The interested 
reader is referred to Anderson et al. (2001) for relevant references. Often the streaks were 
modeled in a rather ad hoc fashion. In the present work, we insist that the distortions 
must be realizable, at least in principle, i.e. they may be generated by either by a specific 
excitation device or by external disturbances. At any rate, they must be appropriate 
(approximate) solutions to the Navier-Stokes equations. To fix the idea, we consider the 
instability of the steady distortion that has been considered by Goldstein & Wundrow 
(1995), The basic observation is that the Blasius profile has small curvature near the 
wall, so that even a small distortion may lead to an inflection point and possibly to 
essentially-inviscid instabilities. 

The essential physical and analytical insights can be gained by an asymptotic ap- 
proach based on a high-Reynolds-number assumption, which stands as the only means 
for providing a self-consistent mathematical description of the key process involved. 

2. Theoretical considerations 
2.1. Formulation 

We consider the two-dimensional incompressible boundary layer due to a uniform flow 
Uoo past a semi-infinite flat plate. As in Goldstein & Wundrow (1995), a small-amplitude 
spanwise-dependent motion is assumed to be imposed at a distance L downstream from 
the leading edge. The Reynolds number is defined as 

R = UooL/u , (2.1) 

where v is the kinematic viscosity. We shall assume that R » 1. 
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The flow is to be described in the Cartesian coordinate system (x, y, z), with its origin 
at the location where the crossflow is introduced, where x, y and z denote distances 
in the streamwise, normal and spanwise directions respectively, and they are all non- 
dimensionalized by S = LBr1!2, the boundary-layer thickness at x = 0. The time variable 
t is normalized by <5/^oo- The velocity (u,v,w) is non-dimensionalized by U<x>, while 
the non-dimensional pressure p is introduced by writing the dimensional pressure as 
(Poo + pUlaP), where p«, is a constant and p is the fluid density. 

The profile of the Blasius boundary layer, UB{V), has the behaviour that as y -> 0, 

%(!/)-> Ay-^j,4 + ... 

where the skin friction 

A = Ao(l +»A"*)~1/2   with   Ao« 0.332. (2.2) 

Let A denote the characteristic length scale over which the spanwise variation of the 
imposed flow occurs. We assume that A is much larger than the local boundary-layer 
thickness 6, i.e. 

so that the variation of the distortion can be described by the slow variable 

Z = az . (2.3) 

A crossflow CMWo(y,Z) is imposed at x = 0 by some excitation device. In the labo- 
ratory this may be achieved by inserting a thin wire with non-uniform cross-section into 
the main part of the boundary layer. A small screen set normal to the wall, as in the 
experiments of Asai et al. (2000), probably produces a similar effect. 

The mean-flow distortion so generated is analyzed in detail by Goldstein & Wundrow 
(1995), who show that the flow in the region x = O^a'1) is fully interactive, but the 
distortion is too weak to affect the instability. The important location is at x = 0(a3Rz), 
where the perturbed streamwise velocity profile develops an inflection point in the wall 
layer y = 0(a), if the imposed crossflow has a magnitude CM ~ R~ = (In a)'1. For peri- 
odic distortion, a pair of oblique modes is in resonance with the distortion if the spanwise 
wavelength of the former is twice that of the latter. The characteristic streamwise wave- 
length of the instability modes is found to be comparable with that of the mean-flow 
distortion. The growth rate induced by the resonance has the same order of magnitude 
as that due to viscosity if a = 0(R~&) but is larger if a » R~&. In the latter case, the 
instability is inviscid. 

The main interest of the present paper will be localized distortion since distortions of 
this form were produced and studied in number of experiments. It will be shown that an 
inviscid instability may occur in a region farther downstream than that considered by 
Goldstein & Wundrow (1995). 

The region in which this instability operates, as well as its characteristic time and 
length scales, can be determined by a scaling argument based on three considerations. 
First, suppose that at a typical streamwise location x ~ I » 0{o-sR%), the wall layer has 
a width y ~ &. Then the balance between the advection term UB-J% a^d tne diffusion 
term R~% JT- in the streamwise momentum equation requires that 

? ~ ^ • (2-4) 
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Secondly, for the distortion to be able to induce an essentially-inviscid instability, its 
curvature must be comparable to the 0(a2) curvature of the Blasius flow in the wall 
layer, that is 

% ~ *2 , (2-5) a* 
where CD stands for the magnitude of the streamwise velocity of the distortion. Thirdly, 
if we seek instability modes with 0(a) streamwise wavenumbers, then their growth rate 
would be of 0(<x4). It turns out that such modes exist if 

&5 ~ a2 . (2.6) 

This relation ensures that the spanwise modulation appears at the same order as the 
streamwise evolution in the final amplitude equation; this point will become clear later. 

It follows from Eqs. (2.4) and (2.6) that the instability will operate in the region where 
a; ~ I = 0(R*os), and so we introduce the variable 

x = x/(a*Ri). (2.7) 

For £ = 0(1), the instability modes that the perturbed mean flow can support have 
streamwise wavelength of 0(a~*), much shorter than the 0(a~l) spanwise length scale 
of the distortion. The phase speed is 0(a) so that the frequency is 0(ai). Without losing 
generality, in the rest of the paper we put 

i a = cr5 . 

2.2. Solution for the mean-flow distortion 

The solution for the distortion was considered in detail by Goldstein & Wundrow (1995). 
The required solution corresponds to the downstream limit of theirs, and also it is only 
necessary to present the solution in the viscous wall region, which has a width of 0(a*). 
The appropriate transverse variable is 

Y = 4- . (2.8) 
<7» 

The mean flow expands as 

A0   4     1 U = aXoY + a*(U - gy4 - -X0xY) + ... , (2.9) 

W = R-*er-l(W+ ...). (2.10) 

The solution is simply the first terms of (3.43) in Goldstein k Wundrow (1995), namely 

Ü = axB'(Z)F(rj) ,    W = äB(Z)G(rj) , (2.11) 

where the similarity variable is defined as 

77 = (Ao/#y. (2.12) 

The functions F and G satisfy the equations 

F"' + \rjiF"-\riF' = -G,    G" + \n2G' = 0 . (2.13) 

They are subject to the boundary conditions 

F = F" = G = 0   at   7) = 0 , (2.14) 
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F-*lnr7,    G -*■ 1    as   r) -» oo. (2.15) 
The boundary-value problem Eqs. (2.13)-(2.15) was solved numerically. 

It should be pointed out that the curvature alteration in the wall layer is much larger 
than that in the main region despite the fact the streamwise velocities in both layers 
have the the same order of magnitude. This feature turns out to be important for the 
instability of the perturbed flow. 

3. Results 
3.1. Linear instability 

When x = 0(1), the distortion to the mean flow is still small in the whole flow field. An 
important point to note is that in the viscous wall region the curvature of the mean-flow 
distortion is comparable with that of the original Blasius flow, that is, the curvature of 
the total mean flow is altered by 0(1) in relative terms, and moreover becomes spanwise- 
dependent. This leads to a fundamental change of the instability property. 

As was indicated by the scaling argument in Section 2, the admissible modes have 
streamwise wavenumbers of 0(a), frequencies of 0(CT

2
) and growth rates of 0(<r4); so we 

introduce 
C = oax - Put ,    X = <74z , (3.1) 

to describe the rapid oscillation and the relatively slow amplification of the modes re- 
spectively, where a and u are the scaled wavenumber and frequency. We expand a and 
the phase speed c = u/a as 

a = an + GGL\ + ... ,    c = — = Co + crc\ + ... . 
a 

The most unstable modes that the perturbed flow can support must have a spanwise 
length scale comparable with that of the distortion. Modes with a shorter spanwise 
length scale may be treated in a quasi-planar manner, but they have smaller growth 
rates, and moreover their phase speeds would be a function of Z, contradicting the 
experimental observation of Asai (2001) and Bakchinov et al. (1995) that the phase 
speed is constant along the spanwise direction. Such modes will be discarded. Therefore 
the spanwise variation of relevant instability waves is described by the variable Z. In the 
main part of boundary layer, the modes take the form, to leading order, 

u = eA{X, Z)ü! (y) e! c +c.c. + ..., (3.2) 

where e represents the magnitude of the modes, and A is the amplitude function. 
Since the wavelength of the instability modes is long compared with the boundary 

layer thickness, the linear instability problem is governed by a five-zoned asymptotic 
structure that is akin to that for the upper-branch instability of the unperturbed Blasius 
boundary layer (cf. Bodonyi & Smith 1981, Goldstein & Durbin 1986). It consists of 
the upper layer, the main layer, the Tollmien layer, the viscous Stokes layer as well as 
the critical layer centered at the position where the basic flow velocity equals the phase 
velocity c. 

The solution in each of these regions can be obtained by following what is now a fairly 
routine procedure (see e.g. Wu, Stewart & Cowley 1996). Matching these solutions gives 
the leading-order dispersion relation 

co = 2* , (3.3) 
Ao 
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and the relation for the growth rate 

Ax - -j-Azz = (c+ - c-) + [     ,    *° _. + iXoU, (3.4) 
4Q0 L2fi46-5(2a0co)= J 

where (c+ - c~) is the jump across the critical layer. In the linear regime (e <g. 1), 

c+-c- = ircoYc{-^ + ÜYY(Yc,Z))A, (3.5) 

where Yc = co/Xo is the scaled critical level. Inserting Eq. (3.5) into Eq. (3.4) gives 

Ax -^-Q
Azz= (70 + f{Z))A , (3.6) 

where 
„4 \2 
 _^o_ 
4A0 

T 2Ri&5{2a0co)2 ' To = -^ + -r-^—T. (3-7) 

7(Z;x) = 7rcg(j-)lf"foe)crB'(Z) = 7(*)*£'(Z) , (3-8) 

with 7?c = ^•(^■)3. Here use has been made of Eqs. (2.11) and (2.12), and the logarithmic 
factor ä has been absorbed into the definition of B. Obviously 70 is the growth rate in 
the absence of the distortion, with the second term in 70 representing the contribution 
from the viscous Stokes layer, which is the sole instability mechanism when the distortion 
is absent. 

The derivation of Eq. (3.6) is based on the fact that the major curvature alteration 
occurs in a wall layer. As is indicated by Eq. (3.6), in this case the curvature alteration in 
the wall region is the sole quality that characterizes the instability of the perturbed flow; 
the distortion in the main part of the boundary layer turns out to be largely irrelevant. 

Equation (3.6) can be viewed as a Schrödinger equation with a purely imaginary po- 
tential ij(Z). It admits solution of the form 

A = $(Z)e(a+^x , (3.9) 

where a is a complex constant, and $(Z) satisfy 

**z = 4iao(7(Z)-o)*- (3-10) 

For localized j(Z), the boundary conditions are 

*(Z)-»-e^-4iao0>iz    as   Z->±oo, (3.11) 

where the square root is taken to be the one with a positive real part so that $ decays 
to zero ±00. We can derive a general result similar to the familiar 'semicircle theorem': 

min7(Z) < R(a) < max7(Z) . (3.12) 

Equation (3.10) with Eq. (3.11) forms an eigenvalue problem to determine a. The real 
part of o represents the excess growth rate induced by the mean-flow distortion or streak. 
Depending on the size of CT, the instability may be of quite different nature. Equations 
(3.7) and (3.8) indicate that the growth rate due to the viscosity is negligible if a » R~™ 
or equivalently if the magnitude of the streamwise velocity of the distortion satisfies 

eD » It"* . 
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FIGURE 1. Distribution of distortion and eigenfunction, distortion, ■*r *i. 

This implies that, when the distortion exceeds some threshold, the instability becomes 
essentially inviscid, with the growth rate 

K = or — 
4A0 

(3.13) 

although it may be argued that inclusion of the viscous growth in this case would give 
a more general result. When to ~ R~K the distortion provides a modification to the 
viscous growth rate, and the modes may be viewed as a kind of modified T-S waves, even 
though they do not necessarily reduce to the usual T-S waves at the zero-distortion limit. 

The eigenvalue problem Eqs. (3.10)-(3.11) is solved numerically for a spanwise distri- 
bution of the form 

B'(Z) = B0sech(|) tanhZ , (3.14) 

where d is a measure of the spanwise length scale of the distortion. Figure 1 depicts a 
typical shape, which is quite similar to that in the experiments of Asai et al. (2000) and 
Asai (2001). Also shown in the Figure is a typical distribution of the eigenfunction $. 
Clearly, the instability mode is confined to the region of the mean-flow distortion, and 
decays rapidly away from it. The mode is symmetric, i.e. varicose, in nature. No anti- 
symmetric (or sinuous) mode has been found. Asai et al. (2000) attributed the varicose 
modes to the inflection point in the normal direction UYY = 0, and the sinuous modes to 
the inflection in the spanwise profile, Uzz = 0. The former is present in our theory, but 
the latter is absent. That sinuous modes are absent from our results is consistent with 
the conclusion of Asai et al. 

In order to understand the general properties of the problem, calculations were first 
performed for the artificial case where 7 = 1. The variation of or with B0 is plotted 
in Fig. 2a for two fixed values of d. It shows that or > 0 when the distortion exceeds 
a threshold magnitude Bc. Below Bc, the localized mode does not exist. Instead there 
exists a continuous spectrum for which o is purely imaginary so that $ is only bounded 
at Z = ±00. The continuous spectrum can be viewed as the usual T-S waves, whose 
shape is deformed by 7(2) but whose growth rates are not affected. The existence of a 
threshold means that the localized modes do not reduce to the usual T-S waves as the 
distortion is reduced; instead they merge with the continuous spectrum. 

Figure 2b shows the variation of aT with d. For each fixed Bo, there exists a threshold 
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FIGURE 2. Variation of ar with Bo and d. Curves (l)-(3) correspond to BQ = 5, A and 3. 

dc above which a localized mode comes into existence. The growth rate increases with 
the spanwise length scale d, and quickly saturates at the 'two-dimensional limit' when d 
is large enough. This conclusion is in agreement with the experimental finding of Asai 
(2001), although in his experiments the distortion has a rather large magnitude. It seems 
reasonable to suggest that the present simple theory captures some generic feature of the 
instability. 

Next we present the instability results for the particular distortion considered in Section 
2, for which 7 depends on x and is evaluated by solving Eqs. (2.13)-(2.15) numerically. 
It is found that F > 0 but F" < 0, and as a result 7 < 0 (see Eq. (3.8)). Therefore 
according to the result shown in Fig. 2, inviscid instability is possible only for Bo < 0, 
i.e. when the distortion is characteristic of a low-speed streak. 

For a given BQ, the inviscid growth rate K(U,X) as defined by Eq. (3.8) will be a 
function of x and u = aoCo, the frequency of the instability mode. As shown in Fig. 3a, 
in the streamwise region in which the distortion is significant, the perturbed flow supports 
a band of instability modes. The instability will manifest itself as an oscillation of the 
streak. In Fig. 3b, we plot the variation of the growth rate K with x for three typical values 
of w. As is illustrated, a mode with a suitable frequency experiences amplification in a 
finite streamwise region, beyond which it decays. The spatial extent and the frequency 
range of the unstable modes can best be demonstrated by plotting the contours of the 
growth rate K(U,X) in the x - w plane; see figure 4. For B0 = -7, the perturbed flow is 
unstable in the streamwise window between x « 1.2 and x « 19. The unstable frequency 
band varies with x, but roughly speaking the overall range is between u = 0.2 and 
1.2. The frequency of the most unstable modes in the upstream end is fairly small, but 
increases with the downstream distance, implying that the oscillation of the streak will 
become progressively more rapid. 

3.2. Nonlinear instability 

As an instability mode amplifies, nonlinear effects may become important. For an insta- 
bility wave with an asymptotically small growth rate, it is now well recognized that the 
dominant nonlinear interactions will first take place within the critical layer to produce 
a velocity jump across this layer. For reviews, see e.g. Goldstein (1994) and Cowley & 
Wu (1994). For the present problem, the nonlinear jump becomes comparable with the 
linear jump when 

e = 0% . (3.15) 
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FIGURE 4. Contours of growth rates (Bo = -7). The outermost contour corresponds to the 
neutral curve K(U, &) = 0. 

We also assume that the Reynolds number scales with CT as follows 

R 2 =ra .13 (3.16) 

so that the viscous diffusion appears as a leading-order effect in the critical layer, where 
r is a parameter of order one, reflecting the effect of viscosity. In passing we note that the 
experiments of Bakchinov et al. (1995), in which the instability of a Blasius boundary 
layer subject to a spanwise-dependent distortion was investigated, point to the existence 
of a well defined critical layer, in which the mode attains its largest magnitude. 

The nonlinear jump is the same as that calculated by Wu (1993) and Wu et al. (1996). 
Inserting that jump into Eq. (3.4), we obtain the amplitude equation that describes the 
nonlinear instability of the perturbed flow 

Ax - j-Azz = (7o + 7(Z))A + iN(X,Z) (3.17) 

where the nonlinear term 

N = f j°°K& n\s) l?A{X - S)A(X - £ - T))AZZ(X -2^-rf) 
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FIGURE 5. Nonlinear evolution of a localized mode (w = 0.8, x = 6.5). (a) The amplitude on the 
symmetry plane ln|A(X,0)| v.s. X for s = 0 (purely inviscid case), 1 and 10.  the linear 
limit, (b) Spanwise distribution of \A\ at X = 3.02, 3.54 for s = 1, showing self-focusing as X 
increases. The least 'compact' of the three curves corresponds to the linear limit. 

+er)A(X - 0 [A(X - £ - n)A*z(X - 2£ - rf}] ^ 

+e[A(X-0A(X-Z-r,)A*z{X-2t-r,j\\dtdV,    (3-18) 

with 

mr,\s) = e-s{2e+Zev),    s = \al\lr. 
In Eq. (3.17), the amplitude function has been suitably renormalized so that the coef- 
ficient multiplying i N is unity. The amplitude A should match with the linear solution 
upstream, and so we have 

A -> $(Z) e(a+™'x    as   X -► -oo . (3.19) 

The nonlinear amplitude equation Eq. (3.17) was solved for the localized distortion. 
The mode was chosen to be the most unstable one in Fig. 4, which exists at x « 6.5 
and has frequency u = 0.8. The nonlinear evolution of |A(-X",0)|, the amplitude on the 
symmetry plane, is shown in Fig. 5a for three viscous parameter values. Nonlinearity 
enhances the amplification, and apparently leads to a singularity at a finite distance 
downstream. Viscosity delays the formation of the singularity but cannot eliminate it. 
Figure 5b shows that the nonlinear effect deforms the shape of the mode, and a singularity 
of self-focusing type appears to be forming at Z = 0. A plausible structure for this 
singularity was proposed in Wu (1993). In the vicinity of the singularity, the present 
theory breaks down and strong three-dimensionality may act to 'regularize' the solution. 

4. Conclusions and discussions 
In this paper, we have shown that the instability of Blasius boundary layer can be 

significantly modified, and even fundamentally altered, by certain small-amplitude dis- 
tortions which feature low-speed streaks. This occurs when the curvature of the distortion 
becomes comparable to that of the Blasius profile in a suitable vicinity of the wall. A self- 
consistent asymptotic theory is presented for distortions whose spanwise length scale is 
larger than the boundary-layer thickness. The instability of the perturbed flow is shown 
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to be governed by a remarkably simple system, a Schrödinger equation with a purely 
imaginary potential. 

A moderate distortion induces an excess growth rate comparable to that due to vis- 
cosity, and the instability modes can be viewed as a kind of modified T-S wave. This 
modification however is non-trivial because the spanwise shape is dictated by the distor- 
tion. The modes do not reduce to the usual T-S waves in the zero-distortion limit. 

When the strength of the distortion exceeds a certain threshold, essentially-inviscid 
localized instability arises. The characteristic streamwise wavelength of the instability 
modes is much shorter than the spanwise length scale of the distortion, and their char- 
acteristic frequencies are higher than those of typical T-S waves on Blasius flow. Also 
the instability occurs in a limited streamwise window, and hence on the purely linear 
basis, the instability modes will die out. However they can enter a nonlinear regime if a 
significant magnitude is attained. The continued nonlinear development of these modes 
is governed by a modified form of the evolution equation derived by Wu (1993), and 
the nonlinear effect is found to be strongly destabilizing, causing the amplitude to break 
down rapidly in the form of a finite-distance singularity. The instability may lead to 
patches of streak oscillation, which may well breakdown into turbulent spots. 

While the theory is built upon a set of rather restricted asymptotic relations, it does 
appear to be capable of reproducing the major laboratory observations qualitatively. For 
instance, the existence of a threshold magnitude and the occurrence of oscillation patches 
are in agreement with the conclusions of Hamilton & Abernathy (1994). As mentioned 
above, the theoretical prediction that the growth rate increases with the spanwise length 
scale of the distortion is consistent with the measurements of Asai (2001). The predicted 
frequency range of the inviscid unstable modes, as well as the excess growth exhibited 
by the T-S waves confirm the findings of Bakchinov et al. (1995). 

It should be noted that the distortions in the experiments are actually comparable with 
the basic Blasius flow so that they must be governed by nonlinear equations as opposed 
to the linear equations employed in our theory. Based on the above broad agreement, 
it seems reasonable to argue that the nonlinear structure of the distortion should not 
affect the qualitative feature of the instability, and that the simple model captures the 
key physics of the instability. From the qualitative point of view, the failure to describe 
the sinuous instability mode seems to be the only obvious shortcoming of the model. 
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Effects of long-wavelength Klebanoff modes on 
boundary-layer instability 

By Xuesong Wuf AND Meelan ChoudhariJ 

1. Introduction 
It is known that low-frequency components of three-dimensional vortical disturbances 

in the free stream can be entrained into the boundary layer due to the nonparallel flow 
effect, producing significant distortion in the form of alternate thickening and thinning 
of the layer in the spanwise direction. This observation goes back to Dryden (1936) and 
Taylor (1939) who, in fact, suggested that the entrained vortex motion, rather than the 
Tollmien-Schlichting (T-S) instability, was the cause of transition to turbulence. The 
dispute continued until the experiments of Schubauer and Skramstad (1948), which were 
conducted by minimizing the free-stream perturbations, fully validated the instability 
theory of Tollmien (1929) and Schlichting (1933). Since then, most research efforts have 
focused on transition at low levels of free-stream turbulence. 

There has also been a significant amount of research on transition at moderate to 
high free-stream turbulence levels, primarily because of its relevance to turbomachinery 
flows. This has led to renewed interest in the findings of Dryden (1936) and Taylor 
(1939). Recent experimental studies (see e.g. Kendall 1985, Westin et al. 1994, Matsubara 
& Alfredsson 2001, and the references therein) show that the boundary layer filters 
out the high-frequency components of free-stream turbulence, while amplifying the low- 
frequency parts of the signature. The distortion within the boundary layer is dominated 
by streamwise velocity fluctuations, which are manifested in the form of longitudinal 
vortices or streaks. These streaks are now referred to as Klebanoff modes, in recognition 
of the contribution of Klebanoff (1971). In this paper, we shall refer to them as Klebanoff 
distortions or fluctuations, so as to avoid possible confusion when genuine instability 
modes are being discussed. 

The boundary-layer response to small-amplitude unsteady vortical disturbances was 
calculated by Gulyaev et al. (1989) and Choudhari (1996) using linearized unsteady 
boundary-layer equations. Leib et al. (1999) pointed out that this approach is restricted 
to the region relatively close to the leading edge where the spanwise length scale of 
the perturbation is much larger than the local boundary-layer thickness. The continued 
growth of the perturbation amplitude and boundary-layer thickness implies that nonlin- 
earity and cross-flow ellipticity will become significant sufficiently farther downstream, 
at which point the flow must be governed by boundary-region equations. For further 
work in the context of boundary-region equations, the reader is referred to the papers by 
Wundrow & Goldstein (2001), Goldstein & Wundrow (1998) and other references therein. 

Direct laboratory investigations of the transition process in the presence of Klebanoff 
fluctuations have been made by a number of investigators. At moderate levels of free- 
stream turbulence, Arnal k Juillen (1978) and Kendall (1990) have observed intermittent 
appearance of wave packets inside the boundary layer. While their exact origin remains 
unclear, a series of experiments conducted by Kendall (1991, 1998) has helped reveal 
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some unusual attributes of these wavepackets. First, they appear only when the free- 
stream turbulence exceeds a threshold amplitude of about 0.1%. Second, their growth 
rates are considerably larger than those of the T-S waves, being also dependent on the 
turbulence level. Third, the frequencies of these waves are significantly higher than those 
of T-S instability. Finally, these packets are more confined laterally, spreading rather 
slowly in the spanwise direction as they propagate downstream. Thus far, there has been 
no physical explanation for the above features. However, the present findings will shed 
some new lights on these observations. 

Rather than studying naturally-occurring wavepackets, Watmuff (1997) used a har- 
monic point source to generate spanwise-localized wavetrains in a controlled fashion. 
He found that even a weak Klebanoff perturbation can induce severe distortions of the 
higher-frequency wavetrain, such that any comparison with calculations that do not ac- 
count for the presence of Klebanoff modes becomes almost meaningless. 

In addition to investigating the role of conventional T-S waves during transition in the 
presence of moderate free-stream turbulence, it is also important to examine alternative 
instability mechanisms. Streak instability, in particular, has attracted much attention 
in recent years. Matsubara, Bakchinov & Alfredsson (2000) reported that streaks or 
Klebanoff modes are unstable, and this can lead to a meandering and oscillation of the 
streaks and an eventual breakdown into turbulent spots. 

In an effort to understand streak breakdown, Andersson et al. (2001) modeled the 
streak structure by a steady, spanwise-periodic distortion to a Blasius boundary layer. 
An inviscid stability analysis based on Floquet theory suggested that the streaks become 
unstable only when the amplitude of the associated streamwise velocity perturbation 
exceeds approximately 26% of the free-stream velocity. This estimate is perhaps too high 
to be representative of typical Klebanoff distortion in natural disturbance environments. 
The present theory, however, suggests that the unsteadiness of the Klebanoff distortion 
(even if at rather low frequencies) may exert a significant effect on the resulting high- 
frequency secondary instabilities (see §2.2). 

Direct numerical simulations of transition due to high free-stream turbulence were 
performed first by Rai k Moin (1993), and more recently by Jacobs & Durbin (2001). 
The latter found that the boundary-layer response to free-stream turbulence was indeed 
dominated by low-frequency streaks. However, these streaks appeared to be fairly stable 
and it was only after they had lifted up to the outer part of the boundary layer to form 
a 'backward jet' that the breakdown to turbulent spots occurred. 

In this paper, we investigate the instability of a Blasius boundary layer perturbed by 
Klebanoff distortions. Our main interest will be in relatively small-amplitude distortions, 
which are not atypical of many experimental situations. As in Wu & Luo (2001, referred 
to as I hereafter), we shall address two issues: (a) how the T-S instability, which operates 
in the absence of any distortion, is modified by a weak Klebanoff distortion, and (b) 
whether or not a weak distortion can induce a predominantly-inviscid instability. An 
asymptotic approach based on the high-Reynolds-number assumption is used, aimed at a 
systematic and consistent treatment of both the Klebanoff fluctuation and the secondary 
instability of the resultant perturbed flow. To make analytical progress, we also assume 
that the spanwise length scale of the Klebanoff distortion is larger than the thickness 
of the boundary layer. While the assumptions made will, no doubt, restrict the validity 
of the conclusions obtained, we believe that the analytical simplicity of this approach 
provides extra insights that might not have been easily apparent using a less restrictive, 
but primarily numerical, approach. 



Effects of Klebanoff modes on instability 307 

2. Formulation 
Consider the two-dimensional incompressible boundary layer due to a uniform flow 

with velocity J7oo past a semi-infinite flat plate. Superimposed on the incoming stream is 
a small-amplitude, three-dimensional vortical disturbance (i.e., a gust) that is advected 
at the free-stream speed. For simplicity, we assume that the gust is harmonic in time, 
with a frequency of faUoo/K where fa denotes the non-dimensional frequency parameter 
and A represents the dimensional length scale of the gust in the spanwise direction. 

The flow is to be described in the Cartesian coordinate system (x,y,Z), with its origin 
at the plate leading edge. Here, x, y and Z denote the streamwise, normal, and spanwise 
coordinates nondimensionalized with respect to A. The time variable t is normalized by 
A/C/oo and the velocity components (u,v,w) and pressure p are normalized by Uoo arid 
pU^c, respectively, where p denotes the fluid density. The Reynolds number R\ = U^h/v 
is assumed to be a large parameter throughout this analysis (i.e., R\ ^ 1). 

The streamwise and normal velocity components of the Blasius flow are given by 

(UB,VB) = {F'in), (2xRA)-HvF' - F)} , 

where r\ = R]/2y/V2x and F(n) satisfies the Blasius boundary-value problem 

F'" + FF" = 0 ,    with   F(0) = F'(0) = 0;    F'(oo) = 1 . (2.1) 

2.1. Flow distortion associated with Klebanoff modes 
The boundary-layer response to a three-dimensional convected gust was analyzed by 
Gulyaev et al. (1989), Choudhari (1996) and Leib et al. (1999). Similar to their work, 
the velocity field of the disturbance superimposed on the oncoming flow has the form 

uoo = CD(fico^m««>£'(£),tBeoW)) et*>(»-*)+»*»» , (2.2) 

where to represents the gust amplitude, and ki and fa denote the streamwise and trans- 
verse wavenumbers, respectively. We assume that &i, fo < 1 so that Woo -C uoo, #oo 
(= 0(1)). Note that we now allow for a general spanwise dependence of the gust via the 
arbitrary function B(Z). 

The inviscid solution can be written as (Leib et al. 1999) 

"D = ez>[uoo + V <t>] (2-3) 

where <f> denotes the potential. To the required order, <j> is governed by the boundary 
value problem 

VV = 0 , (2.4) 

V</>-»0asy-»oo; "i 
(2.5) 

#c,0) = 0   (z<0),    <t>y(x,0) = -VooB'(Z)eik^x-t)        (a? > 0). J 
The full solution to Eqs. (2.4)-(2.5) can be found by the standard Wiener-Hopf technique. 
However, for the purpose of stability analysis, we confine ourselves to the region x 2> 1 
and fci < 1, such that fax = 0(1). The inviscid solution under these conditions can 
be obtained by neglecting the x-derivative term in Eq. (2.4) and solving the resultant 
two-dimensional Laplace equation in the half-space y > 0. This yields the slip-velocity 
components in the streamwise and spanwise directions 

9    f°°  B(C) 
Us «Uoo,      WSKVOQ £?**«■ 
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FIGURE 1. Variation of U'"(Q,x) (- 
(- 

■ real part, imaginary part) and |£/'(0,x)| 
- • —) with x. 

The distortion within the boundary layer is a small perturbation to the Blasius flow, 
and its leading-order solution takes the form 

w's(Z).     w',{Z), 

<™*>-[-T*-T -V,ws(Z)W e_it+c.c.+ .. (2.7) 

where we put x — kix and t = kit. The functions (Ü, V, W) are governed by the linearized 
unsteady boundary-layer equations (Leib et al. 1999) 

dü_±dü + dv+w = 0j 
dx     2x drj      drj 

1    +     dx     2xdr]       2x     + 2xdr)2 : 

T77     ^dW     F 8W      1 d2W 

(2.8) 

(2.9) 

(2.10) 
dx      22 dr)      2x dr)2 

The appropriate boundary conditions are 

U = V = W = 0   at   77 = 0;    Ü -+ 0,    W->eiJ    as   TJ-^OO. (2.11) 

In the upstream limit (x -> 0), the flow becomes quasi-steady and its solution matches 
that of Crow (1966), 

Ü -> \xr}F" ,    V -> \(r)2F" - 3T?F' .- F) ,    W^F' . (2.12) 

It turns out the instability of the perturbed flow at a given streamwise location is 
controlled by two local quantities, viz., U'{0,x) and U'"(0,x). Their variation with x is 
shown in Fig. 1. 

2.2. Scaling arguments 

The Klebanoff distortion in the boundary layer is concentrated in the streamwise region 
where x = 0(1), i.e., at a distance of I* = 0(fcf XA) downstream from the leading edge. 
Accordingly, we now introduce the Reynolds number based on I*: 

R = 
UoJ* =*<£>. (2.13) 

Analysis shows that the effect of Klebanoff distortion is most significant for those 
instability modes whose growth characteristics are controlled by the curvature of the 
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perturbed flow in the vicinity of the wall. A crucial observation is that, for the low- 
frequency (but unsteady) distortion, 

Ü"~ri   as   77->0. (2.14) 

In a wall region, therefore, the Klebanoff fluctuation with suitable fci and ep may alter 
the curvature of the Blasius profile by 0(1), while the perturbation to the streamwise 
velocity itself remains small. This, in turn, can lead to fundamental changes in the nature 
of instability in the flow. This scenario is rather different from the case of a completely 
steady distortion, for which Ü" ~ rf as 77 -* 0 and, therefore, no new instability can 
emerge until the distortion amplitude becomes 0(1). Thus, there exists a crucial differ- 
ence between steady and unsteady distortions, no matter how low the frequency of the 
unsteady distortion. 

The characteristic length and time scales of the linear instability of the perturbed base 
flow, as well as the required strength of the distortion, is determined through a scaling 
argument as described below. 

Consider a wall layer of thickness a relative to the mean boundary-layer thickness of 
R-§1* (a < 1). The curvature of the distortion becomes comparable with that of the 
Blasius profile itself when 

eDa(j) ~ a2 . (2.15) 

We now seek instability waves whose streamwise wavenumbers (non-dimensionalized by 
R2/I*) are also of 0(a). 

While the growth rates of the instability modes are controlled by the distortion in the 
wall region, the distortion in the bulk of the flow also affects the instability wave by 
producing an 0(a) correction to the phase speed and wavenumber. We will show that 
this correction is crucial to determining the spanwise distribution of the instability mode. 
The appropriate treatment can be given only when 

(72 ~ —-— . (2-16) 

The exact reason for choosing the above scaling will be given in the next section. 
Prom Eq. (2.13), Eq. (2.15) and Eq. (2.16), it follows that the streamwise wavenumber 

of the resultant instability waves is related to the other flow parameters via: 

and that the required magnitude of the distortion is 

«J>-*!*(£)"*■ (2-18) 

It can be shown that, for the Klebanoff distortion to induce an 0(1) (or larger) change 
in the viscous growth rate of the instability modes of interest in an unperturbed Blasius 
flow, we need to have a » R~&. On the other hand, the foregoing analysis was based 
on the assumption that a •C 1. These considerations impose the following restriction on 
the range of streamwise locations where the present analysis is formally valid: 

Äjj* « j < RA . (2.19) 

While the Klebanoff distortion modulates on the slow variables x and i, instability 
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waves oscillate on the much faster variables aR*x and a2R^t. We thus introduce 

t; = aRi(ax-au>i) , (2.20) 

to describe the oscillation of the carrier wave, where the scaled wavenumber a and scaled 
frequency u are given via 

a = ao + <rai + <j2a.2 ,    c = u/a = CQ + oc\ + äc2 + ... . 
■>i- The amplitude of the instability wave amplifies on the variable X = äAR^x, which 

exceeds the viscous growth rate of the lower branch T-S modes when a » ÜT1/32. 
Since X is also much faster than x according to Eq. (2.17) and Eq. (2.19), the space and 
time modulation of the distortion can be treated as parametric when the stability of the 
perturbed flow is studied. 

3. Results: intermittent instability 
For the scalings identified in the previous section, the linear instability of the perturbed 

flow is governed by a five-zoned asymptotic structure similar to the case of a steady 
distortion that was analyzed in I. Unlike that distortion, however, the Klebanoff distortion 

in the main deck (y = ^r-y = (2x) 277 = 0(1)) interacts with the instability wave. This 
interaction has to be analyzed in order to determine the mode shape in the spanwise 
direction. In the main deck, the total streamwise velocity of the base flow is given by 

UB + eUD(y,Z;x,i)    with   UD = -w's(Z)(t)e"*r +c.c^j , (3.1) 

whereas the associated fluctuation induced by the instability wave takes the form 

u = {A(X)§(Z)Uo(y) + aA(X)^{Z)VX + &2$2(Z,X)Ü2 + *3Ü3+ ...}?< +c.c, (3.2) 

where A(X) is the amplitude of the wave. The solution in the other four decks can be 
sought via similar expansions. Imposing asymptotic matching requirements up to 0(a2) 
leads to an eigenvalue problem involving the (standard) Schrödinger equation 

-$zz=(ip(Z;x,t)-as)$ , (3.3) 

for the spanwise distribution of the instability mode. Here, the "potential" ip is given by 

V(Z;x,i) = 2Mf)Q° = -~?l(i/'e-if +c.c.)w's(Z) = -fo,i)w'.{Z),       (3.4) 
A (2x)2A 

and as represents the eigenvalue parameter. 
It now becomes clear that the reason for choosing Eq. (2.16) was to ensure a balance 

between the spanwise variation $zz and the wavenumber correction ag$ in Eq. (3.3). 
Without retaining $zz, a« would be parametrically dependent on the spanwise variable 
Z. Then the first- and second-order derivatives with respect to Z would produce secular 
terms proportional to x and x2, thereby invalidating the entire perturbation expansion 
scheme. 

There is extensive literature on the Schrödinger operator. For our purpose, it suffices 
to mention that for a localized potential that is not negative-definite, the spectrum of the 
Schrödinger operator includes discrete eigenvalues with real-valued eigenfunctions that 
decay exponentially as Z -*■ ±00. For later analysis, it is convenient to normalize the 
eigenfunction such that f™ $2 d Z = 1. The Schrödinger operator also has a continuous 
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spectrum, for which $ remains finite and oscillatory as Z -» ±00; however, only the 
discrete spectrum is considered in this paper. 

The analysis can be carried to higher orders in a routine manner (cf. Wu, Stewart & 
Cowley 1996). The crucial equation, which determines the leading order growth rate, is 
obtained by considering the next, i.e., fourth term in the expansion for each deck. The 
final result is given by 

' -$2,zz = i{XD{^a°-as}z2-Ax$+(:yo + l(Z))A$ + ix(Z,X),      (3.5) 
400"""       l     2A 

7o = —JT + 
•n A 

4A      2Ria5{2a0Co)i ' 

j(Z;x,i) = -^-(2xri{ü"'(0,Z;x)e-ii+c.c.}w's(Z) = -j(x,t)w's(Z) ,       (3.6) 

where x is a real-valued function that does not affect the growth rate of the disturbance. 
Equation (3.5) is an inhomogeneous Schrödinger equation. The standard procedure of 

imposing the solubility condition yields Ax = (70 + Kd)A , where 

K<2 

/oo 
y(Z)$2dZ. (3.7) 

■00 

The growth rate therefore corresponds to (70 + «d), K<* being the excess growth rate 
induced by the distortion. When a » R~™, the excess growth rate becomes much 
larger than the second term in 70, which corresponds to the viscous contribution to the 
growth rate (Goldstein k Durbin 1986). In other words, the instability modes of interest 
are now predominantly inviscid, with a growth rate that is given by 

—^fw« (3.8) 

As the distortion amplitude is further increased, the inviscid growth rate continues to 
increase and, when a > R'1/32, it exceeds the growth rate of the longer wavelength 
lower-branch modes which are described by the triple-deck structure and correspond to 
the most-unstable modes of the unperturbed flow. Clearly, the nature of the instability 
has been fundamentally altered at this stage. 

In summary, we have seen that the asymptotic regime studied above describes a con- 
tinuous transition as the distortion amplitude is varied, from a modified form of the 
short-wavelength, viscous modes in an unperturbed Blasius flow to primarily-inviscid 
modes that eventually dominate the overall instability of the perturbed flow. Because 
the structure of these modes can be localized in the spanwise direction and, in general, 
is completely dictated by the shape of the Klebanoff distortion, we will refer to these 
modes as localized T-S modes. 

In order to aid our subsequent discussion, we first present solutions for the spanwise 
distribution B(Z) = zi+di- A localized distribution of this type is believed to be appro- 
priate to Klebanoff distortions with a finite correlation distance in Z (i.e., relative to A) 
although, of course, periodic distributions (corresponding to large coherence in Z) can 
also be analyzed rather easily. It follows from Eq. (2.6) that 

"*) = l|l|^EBoS(z)' with B° = 2™°°-        <3-9) 
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FIGURE 2. Eigenvalues as v.s. Bo' varicose modes, sinuous modes. 

All of the calculations presented in this paper pertain to the (arbitrary) choice of d = 4. 
Just to illustrate the behavior of the spectrum, we first set V> = 1 in Eq. (3.4) and plot 

the eigenvalues as for a range of B0 (Fig. 2). Symmetric (varicose) modes can be found 
for both positive and negative B0, except for the gap 0 < B0 < 0.16 = Bc where they 
do not exist. Unlike the Schrödinger operator with a purely imaginary potential (i.e., 
the case analyzed in I), the standard Schrödinger equation also admits anti-symmetric 
(sinuous) modes in addition to the varicose ones. These modes appear only for negative 
BQ- For Bo < 0, there also exist higher modes, symmetric or anti-symmetric, and they 
are distinguished by the number of zeros in the corresponding eigenfunctions. These 
higher modes are generally less unstable than the first ones and, accordingly, will not be 
discussed here any further. 

Equations (3.3), (3.4) and (3.6) are used in conjunction with Eq. (3.8) to compute the 
inviscid growth rate due to the Klebanoff distortion. The growth rates of both the sinuous 
and varicose modes at three separate instants of time are shown in Fig. 3 for the case of 
x = 2.0 and Bo = 1-4. Observe that the sinuous modes have considerably larger growth 
rates than the varicose modes. For this reason, we shall focus on the anti-symmetric 
modes henceforth. Indeed, in the experiments of Matsubara k Alfredsson (2001), the 
sinuous modes were observed to occur more frequently. 

As described earlier in the context of Fig. 2, the sinuous modes exist only when 4>(x, i) 
is negative, i.e., at those instants during the Klebanoff-mode cycle when the perturbed 
flow is characterized by a significant low-speed streak. This finding is consistent with 
most experimental observations. Furthermore, the instability occurs only in that part 
of cycle when 7(x,t) is also negative. On the other hand, 7 and xf> tend to 0 as both 
x -*• 0 and x -»• 00 (see also Fig. 1). Thus, 7 and V have appreciable sizes over only a 
restricted window in the streamwise direction. The instability modes under consideration 
are, therefore, expected to be localized in space as well as in time. 

This local and intermittent nature of the instability can be demonstrated by plotting 
the growth-rate contours in the u> — x plane at various instants, as shown in Figs. 4a- 
d for the case of B0 = 1.4. At f = -1.8, a small 'bubble' of instability is observed 
within the u> — x plane, indicating that the instability starts at a slightly earlier time. 
As time increases, the 'bubble' grows in both spatial and spectral extent, reaching its 
maximum at t « -0.82, after which the 'bubble' shrinks and finally disappears, before 
re-emerging during the next cycle of the Klebanoff mode. Of course, given the disparity 
between the temporal scales of the Klebanoff mode and the instability waves, the latter 
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FIGURE 3. Instability caused by a Klebanoff distortion. The streamwise location is fixed at 
x = 2.0 and BQ = 1.4. The Figure shows the growth rates of varicose ( ) and sinuous 
modes ( ) at three instants: (1) t = ^>{x) - |TT; (2) i = 4>{x) - \ir; (3) i = <j>{x) - §§7r. 

FIGURE 4. Contours of growth rates of the local instability induced by a Klebanoff mode 
(Bo = 1.4). Figures (a)-(d) correspond to the instants t = —1.8, -1.25, -0.82, -0.44. 

could amplify substantially within a single period of modulation and, therefore, reach 
sufficiently high amplitudes to induce a local breakdown. In reality, the modulation is 
stochastic so that this local instability takes place randomly as, indeed, has been observed 
in the experiments of Kendall (1985). 

From Figs. 4a-d, one may deduce useful information about the spatio-temporal be- 
haviour of the instability. The localized structure of the instability wave in both x and Z 
suggests that the unstable modes would be manifested as patches of oscillations. Strictly 
speaking, the center of these patches can only be determined after considering the com- 
plex history of the disturbance motion. However, it may still be useful to model the 
center of a patch as being close to the x location that corresponds to the growth rate 
maximum in Figs. 4a-d. From i = —1.80 to i = -0.82, the center of the patch migrates 
from x = 0.8 to 1.6, yielding an apparent patch convection velocity of Vc « 0.82. Though 



314 X. Wu & M. Choudhari 

this prediction is based on a number of simplifying assumptions, migration of patches at 
such a speed appears to have been observed in experiments as well. 

4. Discussions and conclusions 
In this paper, we have investigated the effect of long-wavelength Klebanoff fluctua- 

tions on the instability of the Blasius boundary layer. By using an asymptotic approach 
based on the high-Reynolds-number assumption, we have derived a self-consistent, albeit 
simplified, mathematical model, which appears to capture certain key elements of this 
problem. Specifically, our analysis indicates that relatively weak Klebanoff fluctuations, 
which do not alter the velocity profile by 0(1), may change the near-wall curvature of 
the underlying Blasius flow by 0(1). This, in turn, has the effect of modifying and even 
fundamentally altering the instability of the boundary-layer flow. Specifically, a local- 
ized distortion may induce both sinuous and varicose modes of instability. However, the 
sinuous modes are found to be more unstable, in general. 

When the distortion is just strong enough to produce an excess growth comparable 
to viscous growth, these modes may be viewed as modified T-S waves. However as the 
strength of the distortion exceeds a threshold range (in an asymptotic sense), the insta- 
bility becomes essentially inviscid, and the characteristic frequencies and growth rates 
are now much higher than those of the T-S waves in an unmodified Blasius flow. Because 
the Klebanoff distortion modulates the base flow in both t and x, its effect on the insta- 
bility is intermittent in time and localized in space, i.e., it is manifested only during a 
certain phase of the modulation and in a limited window along the streamwise direction. 
In particular, the dominant sinuous modes appear during the phase in which the flow is 
characterised by low-speed streaks. 

An interesting feature of the instability modes analyzed in this paper is that, despite 
the low-frequency nature of the Klebanoff distortion, the unsteadiness of the latter plays 
a crucial role in this model. Specifically, the above instability modes would not have 
been predicted for a small-amplitude Klebanoff distortion if it had been treated as being 
steady. Moreover, the intermittent nature and the convection of unstable patches or spots 
are both attributable to the unsteadiness of the distortion. 

The qualitative predictions of our theory are consistent with laboratory observations. 
Our results indicate that the streaks can become unstable even without appreciable 
changes in the Blasius profile. This is precisely what Matsubara et al. (2000) concluded 
on the basis of their experimental studies. The predicted patches of oscillations have been 
observed in numerous experiments. The elevated growth of instability wave packets in the 
presence of Klebanoff distortion has also been observed in the experiments by Kendall 
(1991), as mentioned in the Introduction. 

The seemingly puzzling and conflicting experimental observations can be reconciled to 
some degree when reinterpreted in the fight of our theoretical results. As mentioned in 
§1, the wavepackets develop out of the background disturbance and amplify downstream. 
Kendall (1990) associated these with T-S waves. We believe that they are likely to be 
packets of the local T-S waves identified in this paper, rather than the usual T-S waves 
in an unmodified Blasius flow. These local T-S waves exhibit virtually all of the unusual 
characteristics observed by Kendall: the onset threshold, the excess growth, and the range 
of higher frequencies. Since their growth rates depend on the magnitude of the Klebanoff 
fluctuation, it is to be expected that their amplitude at a particular observation point 
should have a nonlinear relation with the magnitude of the Klebanoff motion. Since the 
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spanwise extent of these local T-S modes is determined by the Klebanoff distortion, it is 
not surprising that they undergo little lateral spreading. 

The extreme sensitivity of the boundary-layer response to harmonic point excitation 
(Watmuff 1997, 1998) can also be explained. In the presence of Klebanoff fluctuations, 
a point excitation definitely generates local T-S modes as well. Therefore, the general 
response cannot be represented as a summation of the conventional T-S waves, as was 
done in the calculation. This may be the reason why a meaningful comparison is not 
possible unless the Klebanoff fluctuation is substantially reduced. 

Jacobs & Durbin (2001) concluded from their direct numerical simulations of bypass 
transition that the streaks close to the wall are stable. Our results seem to be in conflict 
with this finding. There could be a number of reasons for the disagreement. It might 
be that the present instability is so weak that it is masked by other more vigorous 
processes. Alternatively, it is plausible that the instability modes identified herein were 
not excited in their simulations. Finally, the energy of the free-stream disturbances in 
their simulation is contained in a band of rather high frequencies (an order-of-magnitude 
higher than typical frequencies of T-S waves) and, therefore, the streaks are not a linear 
response to the low-frequency components. Rather, they are generated nonlinearly by 
the interaction of higher-frequency components. The question as to whether or not this 
is the cause of the discrepancy remains open at this point. 

The present work is, of course, far from being a complete or quantitatively accurate de- 
scription of the problem. The primary shortcoming is its neglect of the spanwise ellipticity 
of the Klebanoff fluctuation. The more general problem for Klebanoff distortions with 
an 0(1) wavelength, including the effects of nonlinearity and stochasticity, is currently 
under investigation. Nonetheless, the simplicity of the current model, together with the 
physical insights derived from it, appear to justify the assumptions made herein. The 
theory, we believe, sheds useful light on a very complex process which has so far eluded 
a first-principles explanation. 

The work of XW was carried out during his sabbatical in 2001 at ICASE NASA Langley 
and the Center for Turbulence Research. He would like to thank Professors Parviz Moin, 
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The large-scale organization of autonomous 
turbulent wall regions 

By Javier Jimenezf, Oscar FloresJ AND Manuel Garcia-Villalbat 

1. Introduction 
It has become clear in the last few years that wall-bounded turbulence below y+ « 80 is 

a relatively autonomous system which not only functions in almost the normal way when 
the outer flow is artificially removed (Jimenez & Pinelli, 1999), but which is otherwise 
responsible for the generation of part of the turbulent energy dissipated in the outer flow 
regions (Jimenez, 1999). The structures in this near-wall layer scale approximately in wall 
units. None of this can of course be taken as proof that there is no interaction in natural 
wall turbulence between the inner and the outer layers, or that the inner layer is not 
modified by the presence of the core flow. It nevertheless suggests that any interaction is 
probably weak and affects only secondary aspects of the flow dynamics. 

It has also been known for some time that there are structures in the outer flow 
which are very large, with lengths that scale at least in part with the boundary layer 
thickness (Perry, Henbest & Chong, 1986; Jimenez, 1998; Kim & Adrian, 1999). These 
structures contain most of the turbulent kinetic energy in the overlap region, and it is 
to be expected that their effect should be felt in some way by the near-wall structures 
(Hunt & Morrison 2000). Since the ratio between the boundary layer thickness, h, and 
the viscous wall length scale is the friction Reynolds number ReT = uTh/v, the outer 
structures become much larger than the near-wall ones as ReT increases. It can then 
be expected that any outer-inner interaction should include in that limit the large-scale 
organization of the near-wall layer. 

The purpose of this paper is to explore that organization, and to attempt to clarify 
its origin. To that effect we will present numerical experiments in which the outer flow 
is effectively removed, and in which the scaling in wall variables should be strict. The 
nature of the interaction between the different layers will then be studied by comparing 
the large scales of these autonomous walls with those of full turbulent flows at various 
Reynolds numbers. 

The organization of the paper is as follows. The numerical technique used to isolate 
the wall region is described in Section 2. The results, with special emphasis on the large- 
scale spectral characteristics of the isolated walls, are then discussed in Section 3 and 
compared with those of experimental and numerical full turbulent flows. Finally some 
conclusions are offered and opportunities for future work are explored. 

2. The numerical experiments 
The numerical scheme used for the autonomous simulations is similar to that described 

by Jimenez & Pinelli (1999) and by Jimenez & Simens (2001), but the method has been 
slightly modified, and the version described here should be preferred to those in the 
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previous references. The Navier-Stokes equations are integrated in the form of evolution 
equations for the wall-normal vorticity wy and for <j> = V2t>, using a pseudospectral code 
with Fourier expansions in the two wall-parallel directions and Chebychev polynomials 
in y, as in Kim, Moin & Moser (1987). At each time step the right-hand sides of the two 
evolution equations are multiplied by a damping mask 1 - MF(y), where 

F(y) = 0   if   y<5x,       F(y) = l/T   if   y > 52, (2.1) 

with the two limits connected smoothly by a cubic spline. Each time step can be written 
schematically as 

w(t + At) = [w(t) + MN(t)][l - AtF(y)} « u(t) + At[N(t) - F(y)u(t)], (2.2) 

where w stands for any of the two evolution variables, and N represents the full right-hand 
side of the Navier-Stokes equations. To the lowest order Eq. (2.2) is the discretization of 

dtw-N = -F{y)u. (2.3) 

In this interpretation the mask, where active, acts as a zeroth-order damping term for 
the evolution variables, both of which are related to the vorticity, and T is a damping 
time which is independent of the length scale of the fluctuations. In practice the time 
stepping is a third-order Runge-Kutta in which the masking filter is applied at each 
substep, and T has to be multiplied in Eq. (2.2) by 3/2 to be consistent with Eq. (2.3). 
The Navier-Stokes equations are not modified at all below the mask lower limit Si. 

When T is compared with the time \2/v needed by molecular viscosity to damp a 
fluctuation of size A, it defines a cut-off length scale A = (i/T)1/2. Fluctuations shorter 
than this length are predominantly damped by viscosity, while longer ones are damped 
by the numerical mask. This scale is expressed in wall units as 

A+=T+i/2 (24) 

In the experiments in this paper T+ « 1, and all the fluctuations in the masked layer 
are essentially suppressed by the mask. While this is true for vorticity fluctuations, irro- 
tational ones are not affected, and the outer edge of the Navier-Stokes layer is bounded 
by a potential core which prevents the formation of viscous boundary layers at the mask 
boundary. 

While the flows in Jimenez k Pinelli (1999) and Jimenez & Simens (2001) were inte- 
grated at constant mass flux in a channel, the present experiments are carried at constant 
driving stress in a 'semi-infinite' domain. No-slip impermeable boundary conditions are 
imposed at y = 0, and the velocities are matched to the outer potential fluctuations at 
the edge of the computational domain, y = 1, using the method introduced by Corral & 
Jimenez (1995). The Chebychev polynomials of the wall-normal expansions are defined 
in a domain which is twice as high as the actual computational one, and only even or 
odd polynomials are used, depending on the variable to be represented. The mask height 
is adjusted so that the vorticities are essentially zero at the edge of this computational 
domain, so that their wall-normal spectral expansions remain accurate. The expansions 
of the variables which extend into the potential region, such as the velocities, are supple- 
mented by exponentials. The coefficient of the exp[i(az + ßz)] Fourier component of the 
wall-normal velocity is, for example, expanded in terms of odd Chebychev polynomials 
plus the extra basis functions, 

exp[±(a2 + ^2)1/2j/]I (2.5) 
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which are homogeneous solutions of the Helmholtz equation satisfied by that particular 
Fourier mode as a consequence of incompressibility. Corral & Jimenez (1995) adjusted the 
coefficients of those extra functions to ensure the impermeability condition at y = 0 and 
the vanishing of the potential fluctuations as y -¥ oo. The present code incorporates the 
extra freedom of substituting the condition at infinity by an impermeable slip boundary 
at y = H > 1, where the streamwise, wall-normal and spanwise velocity components, u, 
v and w, satisfy 

v = 0,        dyu = dyw = 0. (2.6) 

The limit 1/H -¥ 0 recovers the semi-infinite domain discussed above. 
The evolution equations for the (0, 0) Fourier modes of u and w cannot be expressed 

in terms of uy and <j>, and are not modified by the numerical mask. Their expansions are 
also special. The exponentials are replaced by linear functions, 

o0 + boy, (2-7) 

whose coefficients have to adjusted. Because there are no Reynolds stresses in the region 
where the mask is active, and because no mean pressure gradient is applied, the mean 
velocity profiles in the potential core are linear in y, with a slope b0 that can be chosen 
arbitrarily (see Fig. la). The additive constant a0 is then determined by the boundary 
condition at the wall. In our experiments the asymptotic slope of the profile of w is taken 
as zero, but that of u provides the driving force for the flow and determines the wall 
friction. All experiments in this paper are scaled so that the height of the computational 
domain is y+ = 120. Note however that this height is irrelevant, because no turbulent flow 
extends above the mask height, which is always lower. The relevant turbulent Reynolds 
number is the height of the damping function 5f = uT&i/v, which determines the largest 
possible wall-normal size of the turbulent structures. 

Since the goal of this paper is to study the large-scale organization of the wall, the 
simulations are carried out in computational boxes whose streamwise and spanwise peri- 
odicities are long, L+ « 104, and wide, 1+ « 103. The resolution is in all cases Ax+ = 9 
and Az+ = 5 before dealiasing by the 2/3 rule, resulting in 1536 x 192 collocation points 
for the largest of the computational boxes discussed below. In the wall-normal direction, 
along which the expansion is not dealiased, 49 even or odd Chebychev modes are used. 
The first collocation point is at y+ = 0.06. 

3. Results 
As already reported by Jimenez k Pinelli (1999), the turbulence statistics in these 

large autonomous boxes agree well with those of regular simulations in the unmasked 
layer, at least as long as 6f > 50. To avoid complications with marginal mask heights, 
all the experiments in this paper are run with 6f = 72. Some of the resulting statistics 
are compared in Fig. 1 with the results for a complete channel at ReT = 550 (del Alamo 
& Jimenez, 2001). The mean velocity shows a short 'logarithmic' layer before joining the 
linear profile of the irrotational region, while the velocity and vorticity fluctuations agree 
well with the results of the full channel up to about half the mask height. The peaks of 
the vorticity profiles located just above öi are artifacts of the damping mask. They have 
already been described by Jimenez & Simens (2001), and are due to the reconnection 
of the vortex lines after they are truncated by the damping. The results for the other 
fluctuating quantities are similar to those included in the figure. 

Our present concern is the spectral distribution of the turbulent energy among the 
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FIGURE 1. Mean profiles for: , an autonomous wall 5+ = 72, J* = 108, L+ = 1.2 x 10 , 
Lf = 103, 1/H = 0; , a complete channel, Rer = 550, L+ = 1.4 x 104, L+ = 7 x 103. (a) 
Mean velocity. (6) Streamwise velocity fluctuations, (c) Wall-normal vorticity fluctuations, (c) 
Spanwise vorticity fluctuations. 

different size ranges. It was shown by Jimenez & Pinelli (1999) that these autonomous 
flows contain structures which are visually indistinguishable from the velocity streaks and 
quasi-streamwise vortices found in the near-wall region of regular wall turbulence (Robin- 
son 1991), and that they share with them their characteristic streamwise and spanwise 
length scales, A+ x A+ « 500 x 100, and their advection velocity 17+ « 14. Individual 
structures of similar sizes have been isolated by different methods in simplified Poiseuille 
flows (Jimenez & Moin 1991; Jimenez & Simens 2001; Waleffe 2001) and Couette flows 
(Nagata 1990; Waleffe 1998), and the intuitive reason for their scaling properties is that 
the presence of the wall constrains the wall-normal velocity fluctuations to sizes of the 
order of the wall distance. 

On the other hand Townsend (1976) noted that no such constraint exists for the wall- 
parallel fluctuations, which can be larger. He named those hypothetical large structures 
'inactive' because they could not, by themselves, create Reynolds stresses. We noted 
in the introduction that very large structures have indeed been identified and studied 
in the logarithmic layer. Hites (1997) measured the longitudinal velocity spectrum in 
boundary layers over a wide range of Reynolds numbers. He found that above y+ « 40 
the streamwise velocity spectrum is bimodal, with a shorter peak that scales in wall units 
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FIGURE 2. Longitudinal energy spectra for various near-wall flows. y+ = 20. Gray levels cor- 
respond to the magnitude of kxEUu, as a function of the wavelength Xx = 2n/kx. Each line 
corresponds to a different Reynolds number. The upper block is interpolated from fifteen spec- 
tra of boundary layers (Hites, 1997). The lower one is interpolated from three numerical channels 
at ReT = 180, 360 and 550 (del Alamo k, Jimenez, 2001). The middle line is the autonomous 
wall computation in Fig. 1, whose Reynolds number has been assigned in a completely arbitrary 
manner. The dashed line is Xx = 10h, where h is either the channel half-height or the boundary 
layer thickness, and the solid one is Aj = 1000. 

and a longer one that scales in outer units, but he noted that the longer peak disappears 
below that height. His conclusions are strengthened by the comparison by Österlund et 
al. (2000) of the same data with spectra obtained on a different installation by a different 
group, as well as by the results obtained by Kim & Adrian (1999) in pipe flows above 
y+ = 100. Older data to the same effect are summarized in Jimenez (1998). Most of 
those studies are restricted to the upper buffer layer and to the logarithmic layer, and 
do not emphasize the near-wall region. 

More recently Metzger & Klewicki (2001) compared spectra at y+ = 15 in two bound- 
ary layers with Reg = 2000 and 5 x 106, and found a large excess of low-frequency energy 
in the latter with respect to the former. DeGraaff k Eaton (2000) made a compara- 
tive study of several boundary layers in a range of Reynolds numbers similar to those 
of Hites (1997). Although they did not measure spectra, they found that the intensity 
of the near-wall peak of the longitudinal velocity fluctuations, which is well inside the 
near-wall region, increases slowly with Reynolds number, again pointing to an effect of 
the outer flow on the wall layer. 

In fact, a careful replotting of the available data very close to the wall confirms that 
the structures in this region are also subject to large-scale effects. This can be seen in 
Fig. 2 which shows longitudinal spectra of the streamwise velocity at y+ = 20. The 
contour plot corresponds to individual premultiplied spectra which have been stacked 
together as a function of their Reynolds numbers, and which are treated as if they were 
a single function of ReT and of the streamwise wavelength \x = 2ir/kx. The upper block 
in the figure corresponds to the boundary layers in Hites (1997), while the lower one 
corresponds to three numerical channels by del Alamo & Jimenez (2001). The single 
spectrum between the two blocks will be discussed below. 
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It is clear that the long-wavelength end of the spectrum moves to the right as the 
Reynolds number increases, and that in the boundary layers it is approximately lo- 
cated at ten times the boundary layer thickness. The long-wavelength end of the channel 
spectra also lengthens with Reynolds number, but it does not seem to follow the same 
law. This disagreement is probably only apparent, and the spectra of the two highest- 
Reynolds number channels collapse fairly well with those of the boundary layers when 
the boundary layer thickness is denned as 2.5 times the channel half height. This is not 
unreasonable, since the outer part of the boundary layer, characterized by intermittent 
incursions of irrotational fluid, is missing from the channels, each of whose walls can 
roughly be described as the inner, fully-turbulent, part of a boundary layer. The main 
short-wavelength peak of the spectra remains relatively constant at x+ « 1000 within 
this Reynolds numbers range. 

Note that the large structures in the long-wavelength end of the spectra, with lengths 
of the order of 104 —105 wall units, are unlikely to be individual streaks. It is tempting to 
conclude that their origin is the distortion of the near-wall layer by the outer flow, which 
imposes on the wall its own large scales, but it is also possible that the wall organizes 
itself. Such self-organization is observed in many nonlinear systems, and it is of some 
interest to determine whether the near-wall large scales are autonomous or exogenous. 
Their expected behavior would be different in each case. If they were forced from outside 
it might, for example, be possible to control them by acting on the outer flow, while if 
the organization is self-induced such controls would probably be ineffective. 

The question can be tested using the autonomous numerical simulations described in 
Section 2, since in them there are no outer structures with which the wall can interact. 
Figure 3 displays two-dimensional spectra from a numerical channel at ReT = 550 (del 
Alamo & Jimenez, 2001), and from an autonomous wall with 6+ = 72. Both are computed 
in periodic boxes which are chosen to be as large as possible to minimize the interference 
of the computational domain with the large structures. 

The first surprise is the almost perfect correspondence between the autonomous case 
and the fully-turbulent case, which strongly suggests that the large-scale organization of 
the wall regionis not due to the outer flow. There are no turbulent fluctuations above 
y+ « 80 in the autonomous case. The agreement is specially good for the wall-normal 
component, for which the structures are relatively short and narrow. Their size more 
or less agrees with the individual vortex-streak structures isolated by Jimenez & Moin 
(1991). The second surprise is that the large structures of the streamwise velocity, and 
to a certain extent those of w, are actually longer in the autonomous wall than in the 
full channel. This also runs counter to the idea that the outer flow is the origin of the 
large near-wall scales. 

The one-dimensional spectrum of u in the autonomous wall has been included in the 
compilation in Fig. 2 as the narrow line in the gap between the high-Reynolds number 
boundary layers and the channels. The Reynolds number assigned to it in the figure, 
ReT = 1000, is completely arbitrary since, if any Reynolds number could be assigned 
to that flow, it would be the height 6+ = 72 of the numerical mask. The fact that this 
spectrum does not look out of place in its arbitrary location emphasizes that it is much 
longer than what could be expected from its thickness. The same conclusion can be drawn 
from the comparison of the one-dimensional spectra in Fig. 3(6). 

The apparently contradictory observations that, on the one hand the large-scale struc- 
tures are present in autonomous walls lacking an outer flow, while on the other hand 
they are limited in real boundary layers to lengths shorter than a fixed multiple of the 
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FIGURE 3. (o), (c), (e) Premultiplied two-dimensional velocity spectra, kxKzE
2D(Xx, Xz), as 

functions of the streamwise and spanwise wavelengths. y+ = 16. Shaded contours are the au- 
tonomous wall in Fig. 1. Lines are a full turbulent channel with ReT = 550 (del Alamo & 
Jimenez, 2001). The solid lines are Xx = Xz, and correspond to horizontally isotropic structures. 
The dashed lines have logarithmic slopes 1/3, and pass through Aj = Xf = 50. The contours 
are (0.25, 0.5, 0.75) times the maximum value of each spectrum. (6), (d), (f) One-dimensional 
streamwise spectra, kxE(Xx), for the same data. , full channel; , the autonomous 
wall in Fig. 1. , an autonomous wall with the same parameters except Lj = 6 x 103. (o), 
(6) Streamwise velocity, (c), (d) Wall-normal velocity, (e), (f) Spanwise velocity. 
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FIGURE 4. Each shaded contour is a premultiplied two-dimensional spectrum of the streamwise 
velocity at a different distance from the wall. From darker to lighter y+ = 10(10)60. The flow is 
the autonomous wall in Fig. 1, and the contour values are the same as the outermost contour 
in Fig. 3. The length of the two axes correspond to the size of the computational box. The two 
trend lines are as in Fig. 3. 

flow thickness, are best reconciled by assuming that the autonomous wall layer would 
by itself form infinitely long structures, and that the effect of the outer flow is to break 
those very long structures into pieces which are shorter than a given length. This is not 
as unlikely as it may seem, since the aspect ratio of the longest structures in Fig. 3(a) 
is already Lx/y = 200, and it is difficult to see how such a number might differ from 
infinity in terms of dynamics. 

This raises the question of why the autonomous spectrum decreases sharply at its 
long-wave end in Fig. 3(6). In other words, why it is not really infinitely long. Part of the 
answer might be the interference of the finite size of the box, since the decrease appears 
only in the second longest numerical harmonic, which is probably strongly influenced 
by the finite domain. This possibility is reinforced by the behavior of the autonomous 
spectra farther from the wall. The good correspondence with the spectra of the full flows 
is maintained up to y+ « 40, but higher up the autonomous box is both too short and 
in particular too narrow to contain its own structures. This is seen in Fig. 4 which shows 
spectra as a function of wall distance. The highest level in that figure is already close to 
the numerical mask, at it is clear that it is constrained at it widest point by the width 
of the box. It is plausible to suppose that one result of that constriction might be to 
limit the extent of the spectra everywhere. On the other hand, an attempt to reproduce 
that effect using shorter numerical boxes did not produce clear results. The right-hand 
side of Fig. 3 contains spectra from two autonomous simulations, in addition to those 
from the full channel. The results discussed up to now have been those from the longest 
autonomous box, but the figure also shows another set of spectra from a box of the same 
width, but only half as long. They are difficult to distinguish from those in the longer 
box and, in particular, the Euu spectrum in the shorter box does not show a sharp drop 
in its longest harmonic comparable to that in the longer box. More work is needed before 
the effect of box size is clarified, and more extensive simulations are in progress. 

It is clear from Fig. 3 that the longer scales are also wider, and that this part of the 
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flow is far from being isotropic. This is specially true of the longitudinal velocity, and it 
is interesting that the 'ridge' in that spectrum follows fairly closely the power law 

A, ~ A*. (3-1) 

It is dangerous to extrapolate similarity laws from limited experimental data without a 
plausible theoretical model, but del Älamo k Jimenez (2001) found the same power law 
in complete channels near the wall, giving some support to the idea that the relation 
might be real. The spectra of the other two velocity components are closer to being 
isotropic. 

Del Alamo & Jimenez (2001) show that, in the logarithmic layer of complete wall- 
bounded flows, the two-dimensional spectra satisfy a different power law 

A*~A2, (3.2) 

and they speculate that it may be related to the downstream spreading of perturbations 
induced on the mean velocity profile by localized transverse velocities. In essence they 
propose that Eq. (3.2) is a reflection of the form of the similarity solutions of the diffusion- 
advection equation, 

dxu = {dyy¥dzz)u, (3.3) 

which take the form 
u = x^uiy/x1/2, z/x1'2). (3.4) 

The relation Eq. (3.2) would derive from the form of the spanwise similarity variable in 
Eq. (3.4). 

A similar argument can be used to support Eq. (3.1). Near the wall the mean flow 
velocity is closer to a pure shear than to the approximately- constant velocity of the 
logarithmic layer. The diffusion equation then takes the form 

ydxu = (dyy + dz2)u, (3.5) 

whose similarity solutions are 

u = x-'uiy/x1'3, z/x1'3), (3.6) 

leading to Eq. (3.1). Note that these arguments can only be treated as indicative, since the 
diffusion at the scale of these large structures is probably due to smaller-scale turbulence, 
while both Eq. (3.3) and Eq. (3.5) assume a constant eddy viscosity. 

4. Conclusions 
We have shown that the self-sustaining small-scale structures of the near-wall region 

are able to organize themselves into much larger scales, especially visible in the spectra of 
the streamwise velocity component. In the absence of any outer flow the length of these 
large structures appears to be infinite, at least within the limits of the present numerical 
simulations, but in actual turbulent flows they scale as multiples of the flow thickness. 
We have suggested that this interaction takes the form of a shortening of the near-wall 
structures by the random perturbations originating in the outer flow. 

The precise mechanism of this interaction is not clear from the present experiment. 
The numerical parameter H at which the slip boundary condition (2.6) is applied was 
introduced for this purpose, on the assumption that the postulated infinite length of 
the structures in the autonomous simulations was a reflection of the infinite distance 
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at which the irrotational boundary condition was applied. An autonomous box was run 
using H = 2, which corresponds to a slip wall at y+ = 240 but, while the spectra 
shortened a little, the effect was too weak to be considered as a model for the interaction 
in real flows. Presumably the rotational fluctuations of the turbulent core flows are more 
effective in disturbing the wall that the irrotational fluctuations in our model. 

We have shown that the width of the near-wall large structures scales like the cube root 
of their length, and we have proposed a simple scaling explanation for that power law. The 
assumption is that the large u-structures are the dissipating wakes of the perturbations 
introduced in the mean profile by occasional small-scale sweeps or ejections. The essence 
of this argument is that the large scales, being very anisotropic and therefore subject to 
very different time scales in their transverse and longitudinal directions, can be modelled 
as linear objects which only see the small-scale turbulence as either an eddy viscosity or 
as a random forcing. If this is true, it should possible to derive quantitative predictions on 
their spectra from the properties of some modified Orr-Sommerfeld or Squires equation. 

This work was supported in part by the Spanish CICYT contract BFM2000-1468 and 
by ONR grant N0014-00-1-0146. O.F. and M.G-V. were supported in part by undergrad- 
uate fellowships from the Universidad Politecnica of Madrid. We are grateful to J.C. del 
Alamo and P. Bradshaw for reading an early version of the manuscript and providing 
useful suggestions. 
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Direct numerical simulation of the very large 
anisotropic scales in a turbulent channel 

By Juan C. del Alamof AND Javier JimenezJ 

1. Introduction 
Over the last decades the knowledge on the small scales of turbulent wall flows has 

experienced a significant advance, especially in the near-wall region where the highest 
production of turbulent energy and the maximum turbulence intensity occur. The de- 
velopment of computers has played an important role in this progress, making direct 
numerical simulations affordable (Kim, Moin & Moser, 1987), and offering wider obser- 
vational possibilities than most laboratory experiments. 

The large scales have received less attention, and it has not been until recently that 
their significance and their real size have been widely recognized, thanks in part to 
the experiments by Hites (1997) and Kim & Adrian (1999), and to the compilation 
of experimental and numerical data by Jimenez (1998). Two are the main reasons for 
this. In the first place, when Townsend (1976) originally proposed the existence of very 
large anisotropic scales (VLAS) in the overlap layer under the 'attached eddy' hypothe- 
sis, he described them as 'inactive', not containing Reynolds stresses. Perry, Henbest k 
Chong (1986) repeated that assertion in their elaboration of Townsend's model, and this 
has probably contributed to their relative neglect by later investigators. Jimenez (1998) 
showed however that this characterization is only partly correct, and that the VLAS 
carry a substantial fraction of the Reynolds stresses. We will provide in this report fur- 
ther evidence that they carry a substantial part of the turbulent energy in the flow and 
that they are 'active' in Townsend's sense. 

The large size of these scales also makes them difficult to study, both experimentally 
and numerically. Many of the high-Reynolds number laboratory experiments lack spec- 
tral information, have too few wall distances, or have data records which are too short to 
capture the largest scales. Moreover, most of of them contain only streamwise informa- 
tion, and data on the spanwise scales are scarce. The requirements of both a very large 
box and a high Reynolds number has made direct numerical simulation of the VLAS 
unapproachable until today. Previously available numerical databases were restricted to 
low Reynolds numbers, with little or no separation between the small and large scales 
(Kim, Moin & Moser, 1987), or to small computational boxes which interfere with the 
VLAS (Moser, Kim & Mansour, 1999; Abe, Kawamura & Matsuo, 2001). 

The purpose of this report is to serve as a preliminary description of a newly compiled 
numerical database of the characteristics of the large scales in turbulent channel flow at 
moderate Reynolds numbers. 

t School of Aeronautics UPM, 28040 Madrid, Spain 
j Also at School of Aeronautics UPM, 28040 Madrid, Spain 
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ReT Ax+ Az+ kyZiax Lx/h Lz/h Nx Nz N» Numerics 

Moser et a I. (1999) 590 7.2 3.6 7.2 2TT TV 512 512 257 Spectral 
Abe et al. (2001) 640 8.0 5.0 8.2 6.4 2 512 256 256 Second order FD 

Present :ase 1 550 8.9 4.5 6.7 8TT 47T 1536 1536 257 Spectral 
Present :ase 2 180 8.9 4.5 6.1 12TT 47T 768 512 97 Spectral 

TABLE 1. Summary of cases. The resolution is measured in collocation points 

2. The numerical experiment 
Our investigation has been carried on a direct numerical simulation of the turbulent 

incompressible flow in plane channels at Reynolds numbers Rer = 180 and Rer = 550, 
based on the wall friction velocity, uT, and on the channel half-width ft. The emphasis 
in this report will be on the latter of those two simulations. The numerical code is fully 
spectral, using dealiased Fourier expansions in the streamwise and spanwise directions, 
and Chebychev polynomials in the wall-normall one, as in Kim, Moin & Moser (1987). 
Although there are computations in the literature at somewhat higher, although com- 
parable, Reynolds numbers (Moser, Kim & Mansour, 1999; Abe, Kawamura & Matsuo, 
2001; see table 1), we believe that this is the first simulation in which the numerical box 
is large enough not to interfere with the largest structures in the flow. 

The experimental results for high-Reynolds number turbulent wall flows (see the refer- 
ences given in the previous section) reveal that the premultiplied one-dimensional stream- 
wise velocity spectrum kxE]^(kx,y) has two peaks. The first one is in the wall region 
and scales in wall units. Its position does not vary with the distance y to the wall and 
corresponds to the size of the buffer layer streaks. At the top of the buffer layer, the first 
peak coexists with a second one which scales in outer units and is characteristic of the 
outer region. The second peak becomes stronger as the Reynolds number increases and 
its position corresponds to the VLAS. Its length increases with y and reaches a maximum 
of 4 - 15 S (where 8 is the characteristic flow thickness) at a wall distance which scales in 
outer units and which depends on the type of flow. Beyond that level, the peak moves to 
shorter wavelengths, until the streamwise turbulent energy becomes associated to scales 
of length \x « S at y = Ö. With this information in mind, and with the aid of tests cases 
performed at ReT — 180 and ReT = 550 in boxes of different sizes, we have used a box 
of size Lx 

directions for our ReT = 550 simulation 
The longest scales in the numerical channels occur in the streamwise velocity u at 

y « 0.5ft. Fig. 1(a) displays the premultiplied one-dimensional spectra kxE\%(kx) at 
that level. It is clear that the most energetic structures have lengths of 2 - 5ft, which 
are represented by the Fourier modes 5 — 12 in our simulation at ReT = 550, and 7 — 18 
in the one at ReT = 180. The dynamics of the first few Fourier modes are affected by 
the periodicity of the box, essentially because their resolution in wavelength space is too 
coarse to provide a healthy interaction amongst the different length scales. The even- 
odd structure of the long-wave end of the 1 - D spectrum at ReT = 550 in Fig. 1(a) is 
probably due to this effect. It also appears at other wall distances, and has been observed 
in numerical channels performed with completely different numerics (Guglielmo Scovazzi, 
private communication). 

The widest scales appear at the center of the channel in the spanwise velocity w, whose 

x Ly x Lz = 87rft x 2ft x 47rft in the streamwise, wall-normal and spanwise 
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FIGURE 1. Premultiplied one-dimensional spectra at y = 0.5/i. , present ReT = 550; 
  , present ReT = 180. (a) kxE^(kx). (b) kzEl^{kz); 

FIGURE 2. (a) Ratio &{ between the unresolved and total energies for the (i) velocity component 
along the direction (j), as a function of y. o, $£; A , $£,. (b) Fraction 0^ of the energy of the 
derivative of the (i) velocity component with respect to the direction (J), which is aliased along 
that same direction, plotted as a function of y. o, Q%; A , ©J. In all cases, the open symbols 
refer to the present ReT = 550 simulation, and the closed ones to the one by Moser, Kim & 
Mansour (1999) at ReT = 590. 

transverse one-dimensional spectra kxE]^]{kz) have been represented in Fig. 1(b). In this 
case the peaks of the spectra are sharper than those in Fig. 1(a). Thus, although the 
most energetic structures.are again associated to low Fourier modes (6 — 13 at ReT = 550 
and 5 — 9 at ReT = 180), there is relatively less energy in the poorly-represented modes 
than in the streamwise direction. 

A more quantitative check of the adequacy of the numerical box is to calculate the 
fractions $£ and $£, respectively of the streamwise energy (u'2) contained in the Fourier 
modes kx = 0, kz ^ 0, and of the spanwise energy (tu'2) contained in the Fourier modes 
kx 7^ 0, kz = 0. These ratios give an idea of how much turbulent energy is contained in 
fluctuations which are longer or wider than the numerical box, and which are treated 
numerically as if they were uniform in x or z. In Fig. 2(a) we represent $£ and §£, from 
our DNS at ReT = 550 and from Moser, Kim & Mansour (1999). Note that in the latter, 
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with LxxLz = 2nh x irh, roughly 20% of the energy of u is contained in structures which 
are longer than the numerical box, and that the behavior of tu in 2 is even worse in the 
outer region, where 30% of its energy is unresolved. From these data we conclude that 
the box of that simulation is too small to represent the largest flow structures, and that 
even the present one is in some ways marginal. It should however be noted that numerical 
experiments at ReT = 180 in a shorter box with Lx = 8n, instead of 127r, showed very 
little degradation in the resolved part of the longitudinal spectra. On the other hand, 
low resolution experiments in a box of length Lx = 6ir at the higher Reynolds number 
showed signs of contamination of the spectral peak by the numerical effects mentioned 
above for the long spectral modes. 

The grid resolution, given in table 1, is intermediate between those used by Moser, Kim 
& Mansour (1999) for their cases Rer = 180 and ReT = 590, and is slightly marginal for 
the smallest scales, specially in the x direction. The result is a spurious accumulation of 
enstrophy in the short-wavelength tails of the spectra of the velocity derivatives, where 
they are improperly represented. The most underresolved derivatives are dxv in x and 
dzu in z. Fig. 2(b) displays the fractions 0* and 0„ of the enstrophy contained in these 
underresolved tails in a way similar to Fig. 2(a). The underresolved enstrophy is in this 
case defined as the integral of the 'hook' in the premultiplied spectrum of the derivative 
in question, from the highest wavenumber to the location of its first minimum. There 
is more or less five times more underresolved enstrophy in our numerical channel that 
in the one from Moser, Kim & Mansour (1999). The comparison of Figs. 2(a) and 2(b) 
shows that the improperly resolved enstrophy at the short-wave ends of the spectra is of 
the same order as that of the improperly resolved energy in their long-wave ends. 

To achieve stationary statistics for structures of wavelength A the simulation has to be 
run for several turnover times A/uT, which becomes fairly expensive in these long boxes. 
Our experience with test cases at Rer = 180 indicates that to have some confidence in 
the statistics of the largest scales the simulation should be run for roughly 10 wash-out 
times Lx/Ub, where Ub is the bulk mean velocity of the flow. The statistics presented here 
for the ReT = 550 case have been collected during 10 wash-out times, after discarding 
initial transients. 

3. Results 
3.1. Two-dimensional velocity spectra in the near-wall region 

Figs. 3 and 4 display linearly spaced isocontours of the premultiplied two-dimensional 
energy spectra faj = kxkzEij(Xx,Xz,y) as functions of the wavelength vector (Ax, Az) = 
(2ir/kx,2Tr/kz). Note that 

/•OO      /-OO 

<«;«}) = J    j    ^(As.A^dOogAxJdOogA,), (3.1) 

so that these figures express how much energy is contained in structures of length Xx 

and width \z. The shaded contours come from the simulation at ReT = 550, while the 
line contours are from the one at Rer = 180. The four wall distances in Fig. 3 are 
y+ = 15, y+ = 90, y — 0.2/i, y — 0.5ft, corresponding respectively to the bottom and 
the top of the buffer layer, and the bottom and the core of the outer region. In Fig. 4 
the three wall distances are y+ = 15, y+ = 90 and y = 0.5ft. 

In the wall region the spectrum of the streamwise velocity (Fig. 3 a) peaks around 
A+ « 700, A+ « 100, which is the size of the buffer layer streaks. The spectra of the two 
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FIGURE 3. Premultiplied two-dimensional spectra <puu of the streamwise velocity, as functions of 
the streamwise and spanwise wavelengths at three representative wall distances, (a) Wall units, 
y+ = 15; (b) Wall units, y+ = 90 (y = 0.5Ä at ReT = 180); (c) Outer units, y = 0.2h {y+ = 90 at 
ReT = 550); (d) Outer units, y = 0.5/i. Shaded contours, iZer = 550; line contours, ReT = 180. 
In all the cases there are five linearly increasing contours. ■••■ , locus of two-dimensional isotropic 
structures Xz = Xx; the dotted line in (a) is A^" ~ (A+)3, passing through Xt = Xt = 50; those in 
(b), (c) and (d) are Xxy = X\, and the point where this line crosses the dashed one corresponds 
to three-dimensionally isotropic structures. 

other velocity components peak around A+ w 250, A+ « 50 - 100 (see Figs. 4o and 46), 
corresponding approximately to the dimensions of an individual system of counterrotat- 
ing quasi-streamwise vortices (Kim, Moin & Moser, 1987). 

There is still not general agreement about the scaling in the near-wall region. Contrary 
to the classical idea that inner scaling should work close enough to the wall, several 
experimentalists have found evidence suggesting that this is not so, and in particular 
that the streamwise normal stress (u'2) increases with the Reynolds number throughout 
the wall layer, when expressed in wall units at a fixed y+. Some of these researchers 
(DeGraaf & Eaton, 2000; Perry & Li, 1990) have argued that the Reynolds number 
dependence is due to the contribution of Townsend's (1976) 'inactive' motions. They 
note that this contribution scales in outer units, and are motivated by this observation 
to introduce 'mixed' scaling in which (u'2) is proportional to the geometric mean of the 
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FIGURE 4. Premultiplied two-dimensional spectra as functions of the streamwise and spanwise 
wavelengths at three representative wall distances, (a), (c) (e), <pvv; (b), (d) (f), <j>ww. (a), (b) 
Wall units, y+ = 15; (c), (d) Wall units, y+ = 90 (y = 0.5A at ReT = 180); (e), ({) Outer 
units, y = 0.5/i. Shaded contours, ReT = 550; line contours, ReT = 180. In all the cases there 
are five linearly increasing contours. ••■• , locus of two-dimensional isotropic structures Xz = Xx; 
the dotted lines in (a) and (b), are A+ ~ (A+)3 passing through A+ = A+ = 50; those in (c), 
(d), (e) and (f) are Xxy = A, and the point where both lines cross in those figures corresponds 
to three-dimensionally isotropic structures. 
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friction and outer velocities. Hites (1997) presents a similar argument, but favors an 
interpretation in which the inner and outer contributions are scaled independently, with 
no simple overall law. Jimenez, Flores & Garcia-Villalba (2001), using data from Hites 
(1997) and from the present numerical simulations show that the short-wavelength end 
of the one-dimensional streamwise u spectrum at y+ = 20 scales well in inner units, while 
its long-wavelength end scales in outer units. It was already noted by Townsend (1976) 
that the no-slip impermeability condition at the wall does not limit the size of the u and 
w velocity structures, while the effect of the no-slip condition is limited in height to a 
few wall units. We can therefore expect the large scales, even if they originate far from 
the wall, to penetrate deep into the near-wall layer, causing (u'2) to have both local and 
global contributions. 

In fact, the only region of the two-dimensional u-spectra in Fig. 3(a) that does not 
collapse well in wall units is the upper-right corner, which corresponds to the large 
structures which dominate the outer-layer spectra in Figs. 3(c) and 3(d). As we move 
deeper into the buffer layer the energy contained in the large scales increases (Fig. 36), in 
agreement with the common observation that the collapse of (u12) in inner scaling worsens 
as the wall distance increases. Recent experimental spectra by Metzger & Klewicki (2001) 
at y+ = 15 in the atmospheric boundary layer show that a substantial fraction of the 
streamwise turbulent energy is contained in very large structures at those extremely high 
Reynolds numbers {Res ~ 106). Jimenez, Flores & Garcia-Villalba (2001) have argued 
that the effect is actually repressing, with the outer large scales preventing the wall 
streaks from becoming 'infinitely' long. 

It is worth pointing out that the u spectrum in this region lies approximately along 
the power law 

K ~  {K)\ (3-2) 
implying that, while the structures of the streamwise velocity become wider as the be- 
come longer, they also become more elongated, since they progressively separate from 
the spectral locus of two-dimensional isotropy. The spectrum of w does not share this 
property and is more isotropic in the (x, z) plane. The spectrum of v is very anisotropic 
in the near-wall region, but as we move away from the wall it develops a second isotropic 
component (Fig. 4c,e) whose relative strength increases with the wall distance, and which 
becomes dominant close to the center of the channel. 

3.2. The very large anisotropic scales in the outer layer 
Above y+ « 60, the spectrum of the streamwise velocity becomes quite different from 
the spectra of the wall-normal and spanwise velocities, as we can see in Figs. 3 and 4. 
The spectrum of u is anisotropic and has two components. The first one is associated 
to small scales, and collapses fairly well for our two Reynolds numbers when plotted as 
a function of (A+, A+) at a constant y+ (Figs. 3o and 3&). The second one is related 
to large anisotropic structures and collapses well when plotted at a constant y/h as a 
function of (\x/h, -WA) (Figs. 3c and 3d). Below j/+ « 60 the small-scale component 
is the most important one, and the peak of the spectrum collapses in wall units as in 
Fig. 3(a). Far from the wall (y > 0.3/i), it is the large-scale component which dominates, 
and the peak of the spectrum collapses in outer units as in Fig. 3(d). This description 
suggests that, at least in turbulent channels at moderate Reynolds numbers, there exists 
a family of u structures in the inner region which scales in wall units and another one in 
the outer region which scales in outer units. 

The present results resemble those of the high-Reynolds number experiments of Hites 
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FIGURE 5. Superimposed contours of 0.2 times the maximum of <f>uu at five wall distances in the 
outer layer (from dark to light y = Q.lh(0.1h)0.5h). They are represented as functions of the 
streamwise and spanwise wavelengths nondimensionalized with the wall distance. , locus 
of two-dimensional isotropic structures X./y — Xx/y; •■■■ , (A2/y)2 = Xx/y. The point where 
both lines cross corresponds to three-dimensionally isotropic structures. 

(1997) and Kim & Adrian (1999), although there is a significant difference. In the numeri- 
cal channels the two spectral peaks corresponding to the VLAS and the wall streaks never 
coexist. Instead, we observe an intermediate region of wall distances (y+ > 60, y < 0.3/i) 
where the peaks of the u spectra do not collapse in inner or in outer units (Figs. 3c and 
3d). One reason for this discrepancy may be that the viscous and the large-scale com- 
ponents of the u spectra have comparable intensities in our moderate-Reynolds number 
simulations. Hunt & Morrison (2000) have noted that the energy contained in the outer 
structures increases with the Reynolds number and will eventually become much larger 
than that in the inner ones, so that the large scales would eventually become dominant 
even very near the wall. The failure to observe an overlap in our simulations could be 
related to that effect; although we clearly observe the two spectral components in the 
two-dimensional spectra, the outer one is never strong enough in the inner region to 
appear as a peak in the one-dimensional spectra. On the other hand, new measurements 
at extremely high Reynolds numbers by Morrison et al. (2001) in pipes do not show any 
region in the flow with double spectral peaks for the one-dimensional u-spectra, and the 
question should therefore be consider as still open. 

The spectra of v and w are also in this region more isotropic than those of u. The 
spectrum for w is closer to two-dimensional isotropy than that of v, but it is flatter, 
in the sense that it is both wider and longer than v for a given height. It is difficult 
from the present results to obtain clear spectral scaling laws for the transverse velocity 
components. In the lower part of the outer layer the small scales of the spectra collapse 
well in inner units (Figs. 4c and 4d), similarly to what happens with the streamwise 
velocity, but in this case the large scales do not collapse in outer units. Further away 
from the wall we have been unable to find any scaling that collapses the spectra at 
ReT = 180 with those at ReT = 550. In Figs. 4(e) and 4(f) the spectra are represented 
in outer units and only collapse, and even then imperfectly, for the largest scales. 

The two-dimensional spectrum of the streamwise velocity exhibits a different behavior 
in the outer layer than in the wall region (see Eq. 3.2). Fig. 5 displays superimposed 
contours of <puu at five different wall distances in the outer layer ranging from y = O.lh 
(light) toy = 0.5h (dark). The spectra are nondimensionalized with y and collapses well 
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FIGURE 6. Premultiplied 1-D spectrum of streamwise velocity, in outer units. The shaded con- 
tours are the present Rer = 550 simulation; the symbols are experiments by Nakagawa & Nezu 
(1981). iandA, ReT = 696; ■ and o , ReT = 318. Open symbols, (A>s; closed symbols, (A)e. 

along the dashed line, which corresponds to the power law 

Xxy = Xz
2. (3.3) 

A possible explanation for this power law is that the structures in the streamwise velocity 
are the decaying wakes of approximately isotropic v and w structures. Those of diameter 
Xz decay in times of order X2

Z/VT under the action of an eddy viscosity VT, leaving 'wakes' 
in the streamwise velocity whose length is 

Ax ~ UbXl/i/T, (3.4) 

assuming that they are convected at a velocity of the order of the bulk velocity. The 
choice of a constant advection velocity implies that necessarily the large structures feel 
the wall, since velocity itself is not a Galilean invariant. 

The relation (3.3) not only expresses how <j>uu is organized in the plane (XX,XZ) at a 
given wall distance. Since Eq. (3.4) links the coefficient of the power law in Eq. (3.3) to the 
magnitude of the eddy viscosity, the fact that all the spectra in Fig. 5 are aligned along 
a single line implies that vj is proportional to y, in agreement, and in strong support, to 
the similarity arguments about the scaling of the Reynolds stresses used in the standard 
derivations of the logarithmic velocity profile. It also helps understand why the outer 
structures become more isotropic with wall distance (which can be noticed from the 
displacement of the contours in figure 5), since the decaying time of the wakes decreases 
as the eddy viscosity increases. It should however be noted that the eddy viscosity in this 
flow, as measured from the mean velocity profile, only increases approximately linearly up 
to y « 0.2, and is constant thereafter, so that most of the spectra in Fig. 5 are outside the 
region of linear dependence. The present model can therefore only be taken as indicative 
until detailed calculations are carried out using the real eddy viscosity distribution. How 
it can be reconciled with the different power law (3.2) observed near the wall is briefly 
discussed in Jimenez, Flores & Garcia-Villalba (2001). 

The spectra of the three velocity components suggest that the u structures in the outer 
flow region resemble the buffer layer streaks, although they differ from them in that they 
are themselves turbulent, and in that it is unclear whether they are flanked by quasi- 
streamwise vortices. They seem however to be associated with roughly isotropic turbulent 
structures of the transverse velocities whose width increases with y (Fig. 4), but whose 
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FIGURE 7. Premultiplied two-dimensional cospectra as functions of the streamwise and spanwise 
wavelengths at two representative wall distances, (a) Wall units, y+ = 15; (b) Outer units, 
y = 0.5fc. Shaded contours, ReT = 550; line contours, ReT = 180. In all the cases there are 
five linearly increasing contours. •■■• , locus of two-dimensional isotropic structures Xx = A*; the 
dotted line in (a) is A+ ~ (A+)3, passing through A+ = A+ = 50; that in (b) is \xy = A?. 

kinematics are unknown. The u-VLAS also widen with wall distance, specially above 
the buffer layer. This is shown in Fig. 6, which displays the transverse one-dimensional 
spectrum kzE™ at ReT = 550. The spectrum has been plotted as a function of A2 and y, 
and it has been non-dimensionalized with the local streamwise energy (u'2)(y). The figure 
therefore shows how much energy is associated to u structures of a certain width \z at a 
given distance to the wall. The figure also includes the widths of the u structures obtained 
by Nakagawa & Nezu (1981). They measured the spanwise organization in a turbulent 
open channel with a free surface using the autocorrelation of the streamwise velocity 
conditionally averaged with the presence of ejections, (A)e, and sweeps, (A)s. Their data 
agree reasonably well with ours even in the outer region, where the different geometrical 
configurations could be expected to affect the nature of the flow. The transverse one- 
dimensional spectra of the transverse velocity components, not shown here, behave with 
y very much like those of u. 

3.3.  The cospectrum 

The cospectrum is particularly important because its integral is the Reynolds stress 
(uV), and determines the mean velocity profile U and the production of turbulent kinetic 
energy. 

Fig. 7 shows the premultiplied two-dimensional cospectra in the near-wall and in the 
outer regions of the flow in the same fashion as the two-dimensional premultiplied velocity 
spectra. They resemble much more the premultiplied spectra of u in Figs. 3(a) and 3(d) 
than those of v in Figs. 4(a) and 4(e). This is true at all wall distances. The cospectra 
collapse in inner scaling in the near-wall region and in outer scaling in the outer region, 
in the same way as the u-spectra. But unlike the latter the cospectra fully collapse in 
wall units in the near-wall region, suggesting that the outer large structures do not affect 
the Reynolds stresses very close to the wall. This result agrees with the experiments by 
DeGraaff & Eaton (2000), who found that (uV) scales in inner units close to the wall 
and give support to the law of the wall U+ = U+(y+). Jimenez (1998) also noted that 
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FIGURE 8. Structure parameter o-uo as a function of the streamwise and spanwise wavelengths 
at two representative wall distances. Present ReT = 550. (a) wall units, y+ = 15; (6) outer units, 
y = 0.5h. In both cases there are five linearly increasing contours. •••• , locus of two-dimensional 
isotropic structures Xz = Xx; the dotted line in (a) is (A+)3 ~ A+ passing through y+ = 50; that 
in (b) is Xl = yXx. 

the one-dimensional experimental cospectra in the logarithmic layer scaled with y much 
better than any of the other available velocity components. 

It is of special interest that in the outer region, the VLAS carry a substantial fraction 
of the Reynolds stresses even if they are not present in the spectra of the wall-normal 
velocity in Fig. 4(e). Jimenez (1998) observed that the vanishing of the premultiplied 
spectrum of v for long or for wide waves is not sufficient to imply that the premultiplied 
cospectrum also vanishes in that limit, as it had been previously assumed (Perry, Henbest 
& Chong, 1986). Let 

a/2 
VJ ! Eu =   CT. ■jyHi^lll-jy (3.5) 

where cruv is the structure parameter, which measures the correlation between u and v 
and the efficiency of those fluctuations in transporting momentum. In the present simu- 
lations, Evv is independent of Xx for the long scales and consequently, the premultiplied 
v spectrum 

{2-K)
2
EVV 

goes to zero as l/A^ when A^ > 1, while 0UU decays more slowly. It then follows from 
the square root in in Eq. (3.5) that in the limit of very long wavelengths the behavior of 
the premultiplied cospectrum depends on the prefactor auv. 

Fig. 8 displays the spectral distribution of the structure parameter in the near-wall 
region and in the outer layer. Its magnitude is low around Ax = Xz, where it is approxi- 
mately a function of the distance to that line, in agreement with the intuitive idea that 
isotropic turbulence cannot transport momentum. On the other hand, <JUV approaches 
unity for the VLAS, which are thus shown to be very efficient in transporting momentum. 
The result is that they actually carry an important fraction of the Reynolds stresses in 
the outer flow, as shown in Fig. 7. 
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4. Discussion and conclusions 

We have performed the first direct numerical simulation of turbulent channel flow 
using both a computational domain big enough to capture the largest structures in the 
outer flow and a Reynolds number high enough to observe some separation between those 
structures and the ones in the near-wall region. 

The results show that there are very large elongated structures in the outer region of 
turbulent channel flow whose size scales with h. We have suggested that they can be 
understood as the wakes left by compact isotropic structures decaying under the action 
of an eddy viscosity as they are convected by the mean flow. Both the spectra and flow 
visualization suggest that the VLAS are also very high, and that they can hit the walls, 
which would help understand the Reynolds number dependence in the scaling of (u12) 
in the near-wall region (Perry & Li, 1990; DeGraaf & Eaton, 2000). We have seen that 
the large structures in the outer layer widen with the wall distance faster than the buffer 
layer streaks, reaching widths of order of the channel height. The observed widening 
may be linked to the downstream evolution of the wakes that we have suggested as the 
origin of the VLAS. The large anisotropic structures in the outer flow not only carry a 
substantial fraction of the kinetic energy of the flow, but also a substantial fraction of 
the Reynolds stresses, and are therefore 'active' in the sense of Townsend (1976). 

We have noted that our Reynolds number is still too low to draw strong scaling con- 
clusions for some of the variables involved, because the separation between the outer 
and inner scales of the flow is still moderate. Computer limitations do not allow direct 
numerical simulations in the range of Reynolds numbers in Hites (1997), Kim & Adrian 
(1999), Metzger & Klewicki (2001) and Morrison et al. (2001) in a near future, although 
some of the open questions can probably be addressed at much lower Reynolds numbers. 
Large eddy simulations could be very valuable in this respect if they could be shown to 
represent the VLAS sufficiently well. The wake model that we have proposed suggests 
that they should, but it is still not sufficiently clear what is the origin of the forcing of 
those wakes, and whether they are independent of the detailed dynamics of the wall, 
which is imperfectly resolved by the LES. 
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by ONR grant N0014-00-1-01416. We are specially indebted to the CEPBA/IBM center 
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CFD analysis of flow in an open-jet aeroacoustic 
experiment 

By Stephane Moreau f, Gianluca Iaccarino, Michel Roger % AND Meng Wang 

1. Motivation and background 
When considering the sound emitted by a rotating machine such as an engine cooling 

fan, an airplane turbofan, or an air-conditioning unit, one major contributor to the 
overall noise is the blade trailing edge noise. It comes from the conversion of local flow 
perturbations at this geometric discontinuity into acoustic waves propagating in space. 
Depending on the flow Reynolds number (based on the local chord length) and the 
trailing edge geometry, this acoustic scattering is associated with most of the broadband 
component and some narrower band structures of the far-field acoustic spectrum (Brooks 
& Hodgson 1981; Blake & Gershfeld 1988). This mechanism also provides the minimum 
noise configuration of such machines when all interactions with their environment (inlet 
turbulence ingestion and flow distortion, rotor-stator interaction with the downstream 
stationary components) are removed (Wright 1976; Caro & Moreau 2000). 

The study of trailing-edge noise or airfoil self-noise has received much attention mainly 
in the late seventies and early eighties. It involved measurements of wall pressure fluc- 
tuation spectra and far-field acoustic spectra on various two-dimensional aerodynamic 
profiles in anechoic wind tunnels {e.g. Blake 1975; Blake & Gershfeld 1988; Fink 1975; 
Brooks & Hodgson 1981). The experimental database has been used in the late nineties 
to validate numerical prediction methods for trailing edge aeroacoustics {e.g. Wang and 
Moin 2000). For typical engine cooling fan applications, which involve transitional and 
turbulent flows at Reynolds numbers of O(105), numerical simulations require the resolu- 
tion of the noise-generating eddies over a range of length scales. The traditional unsteady 
Reynolds-averaged Navier-Stokes (RANS) approach needs to be substituted by the more 
expensive large-eddy simulations (LES) to yield the necessary unsteady surface pres- 
sure fluctuations and the near-field fluctuating Reynolds stress that provide the acoustic 
source functions. The radiated noise can then be computed using aeroacoustic theory 
such as an integral solution to the Lighthill equation (Wang 1998; Manoha et dl. 2000; 
Wang & Moin 2000). 

In all previous LES simulations (Manoha et al. 2000; Wang & Moin 2000), the airfoils 
were assumed to be in free air. In contrast, most trailing-edge aeroacoustics experiments 
(with the exception of Blake (1975) where no acoustic measurement was made) have 
been conducted in open-jet wind tunnel facilities, where the airfoil is immersed in a jet 
downstream of the nozzle exit. The proximity of the airfoil to the jet nozzle exit and the 
limited jet width relative to the airfoil thickness can cause the airfoil pressure loading and 
flow characteristics to deviate significantly from those measured in free air, and hence 
alter the radiated noise field. The present work is aimed at quantifying these installation 
effects and providing insights into the flow physics in this type of open-jet experiment. A 
systematic CFD study, based on RANS models, of flow conditions in a recent experiment 
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| Ecole Centrale de Lyon (ECL), Prance 



344 Moreau, Iaccarino, Roger & Wang 

Far-field 
Microphone 

'Ja 

Anechoic Chamber 

FIGURE 1. Sketch of an open-jet aeroacoustic experiment. 

at Ecole Centrale de Lyon (ECL) (Roger 2001) is carried out and compared with flows 
over an isolated airfoil in a uniform stream. The results shed some light on the fidelity 
of the flow conditions in the previous numerical simulations of trailing-edge experiments, 
and provide guidance for the appropriate boundary conditions needed in future LES of 
such experiments. 

2. Experimental setup 

In order to measure only the airfoil self-noise the aerodynamic profile must be isolated 
as much as possible from the inlet duct providing the necessary air flow in a large quiet 
environment. Moreover, the inlet duct should have a low background noise and have a 
low residua] turbulence (< 1%), which explains the maximum outlet sections of about 0.5 
m in the majority of test facilities. Finally, to avoid contamination of the acoustic signals 
by the flow field, the air stream should be confined, away from the far-field microphones. 
All the above criteria tend to show that an open-jet anechoic wind tunnel provides the 
best experimental compromise. The smaller anechoic wind tunnel at ECL is shown in 
Fig. 1. 

Recently, Roger (2001) performed measurements using a NACA0012 airfoil and a blade 
profile provided by Valeo Motor and Actuators. The former is used to provide validation 
against the earlier experiment of Brooks & Hodgson (1981). The latter is a much thinner 
airfoil (about 4% thickness to chord ratio compared to 12% for the NACA0012), with 
both blunt leading and trailing edges. It has been designed to achieve low drag by con- 
trolling the chordwise diffusion (hence called "CD profile"). Moreover, the NACA0012 
is symmetric whereas the Valeo airfoil is cambered, with a camber angle of about 12 
degrees. The flow conditions for the CD profile are a free stream velocity of 16 m/s and 
a Reynolds number Rec of about 1.2 x 105. The actual experimental setup is comparable 
to that used by Brooks & Hodgson (1981). The geometric angle of attack of the airfoil 
can be continuously adjusted. 

Flush mounted Remote Microphone Probes (RMPs: see Perennes 1999) on the airfoil 
allow the measurements of both the mean wall static pressure and the fluctuating pressure 
spectra. A movable microphone is placed in the far field to collect the acoustic spectra 
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simultaneously. Finally, tuft visualizations are used to estimate the flow separation zones 
and a hot wire rake is employed to measure the wake velocity profiles close to the trailing 
edge. Good repeatability has been achieved on this data set. At zero degree angle of 
attack (a = 0°) the flow is fully attached whereas at a = 2° a separation region appears 
near the trailing edge. Further increase in the angle of attack shows the presence of a 
laminar separation bubble at the leading edge. At much larger incidence (a « 15°), the 
airfoil seems to be completely stalled, which is confirmed by a tuft survey along the 
chord. 

Airfoil Tested c      s       d      w 

NACA0012 (Brooks k Hodgson 1981) 61.0 46.0 15.0 30.0 
NACA0012 (Roger 2001) 10.0 30.0 10.0 13.0 
Valeo CD (Roger 2001) 13.0 30.0 10.0 13.0 

Table 1. Comparison of some aeroacoustic experimental dimensions (in cm) 
c = chord, s = span, d = distance from nozzle exit to airfoil nose, w = jet width. 

The various length scales involved in the above experiment are compared in table 1 
with data corresponding to the experiment of Brooks & Hodgson (1981). By examining 
the chord to span ratio, we can estimate the possible 3D effects induced by the side 
plates. Brooks & Hodgson's (1981) experiment exhibits some 3D influence as indicated 
by the non-uniform surface pressure spectra in Fig. 8 of their paper. In contrast, Roger's 
experiments are expected to be free of these effects at midspan where the RMP sensors 
are mounted. By comparing the airfoil thickness and the jet width (or nozzle exit width), 
we obtain an estimate of the blockage induced by the airfoil in the jet; it is significant in 
Brooks & Hodgson's experiment. Moreover, data from jet boundary corrections for airfoil 
tests in open-jet wind tunnels (Knight & Harris 1985) suggest that all the experiments 
in Table 1 suffered from significant variations of the effective angles of attack. The jet 
width also provides the extent of its potential core and therefore gives an estimate of the 
interaction of the shear layers created at the nozzle lips with the airfoil. If a typical core 
length of four to five jet widths is assumed, by comparison with the airfoil chord length 
and thickness, it becomes clear that such interaction is present in Brooks & Hodgson's 
setup. Finally, the distance from the nozzle exit to the airfoil leading edge gives a hint 
of the potential interaction between the nozzle and airfoil flows and the consequent local 
modification of the flow angle of attack. The above-mentioned effects do not appear 
important in Blake's (1975) experiment because the airfoil is fully inside the jet nozzle, 
and the nozzle width is 48 times the airfoil thickness. 

3. Numerical study 
Two-dimensional RANS simulations have been carried out to investigate the effect of 

the experimental setup on the airfoil aerodynamic loading and on the flow field develop- 
ment. Configurations ranging from the complete setup reported in Fig. 1 to an isolated 
(free air) airfoil are considered. 

The RANS calculations are performed using unstructured grids (Fig. 2) generated 
by a quadrilateral advancing-front algorithm (Blacker et al. 1991). The mesh around 
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FIGURE 2. Unstructured grids for the Valeo CD airfoil (a); close-ups of the leading edge (b) and 
trailing edge (c). A particularly refined and smooth grid is required in the leading edge area 
where a laminar separation is expected at large angles of attack. 

the airfoil has been refined so that accurate representation of the leading-edge laminar 
bubble and trailing-edge turbulent separation can be achieved. The outer grid is then 
generated according to the domain considered (Fig. 3). 

Simulations presented here at Rec = 120,000 were performed using the v2 — f tur- 
bulence model (Durbin 1995; Iaccarino 2001). Additional calculations using different 
turbulence models have been carried out by Henner et al. (2001) at Valeo, and show 
comparable results when the k-u and SST models are employed. This observation is 
consistent with the findings of Kalitzin (1999). 

3.1. Grid sensitivity study 
Grid-sensitivity studies are conducted in the simplest case of an isolated airfoil. The sim- 
ulations are performed using the computational domain shown in Fig. 3a; a rectangular 
box with about four chord lengths above and below the airfoil and six chord lengths 
upstream and downstream of the airfoil. The incoming flow is assumed uniform, corre- 
sponding to the mean velocity at the nozzle exit; inlet boundary conditions are applied on 
the left and bottom boundaries. On the upper and right boundaries a constant pressure 
condition is used. Two unstructured grids have been used; the coarse one has only about 
30,000 cells whilst the finer mesh has 55,000 cells. In addition, calculations performed 
on a multiblock grid generated by Valeo (Henner et al. 2001) with 66,000 elements are 
presented. The simulations were carried out at an angle of attack a = 8°. The pressure 
and skin-friction distributions are shown in Fig. 4. At this angle of attack a laminar 
separation bubble near the leading edge and a trailing-edge recirculation are present 
(cf. Fig. 4b). The calculations on different grids show remarkably good agreement. 
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FIGURE 3. Computational domains used for (a) the isolated airfoil and (b) the full wind-tunnel 
setup (the dashed line represents a simplified wind tunnel setup). 
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FIGURE 4. Grid sensitivity study; (a) pressure and (b) skin friction distribution on the airfoil 
surface. : unstructured fine grid, line: unstructured coarse grid; ■ : Valeo multiblock 
grid. 

3.2.  Wind tunnel simulations 

The simulation of the complete wind tunnel setup has been carried out in the domain 
shown in Fig. 3b. The width of the jet nozzle exit is 13 cm. Pressure distributions are 
shown in Fig. 5, together with the measurements and the isolated-airfoil calculations for 
angle of attack a = 12°. 
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FIGURE 5. Pressure loading on the airfoil surface at a = 12°.  
simulation; : isolated airfoil; o : experiments. 

: full wind tunnel 

The agreement between the full wind-tunnel simulation and the experiment is satisfac- 
tory, whereas a very different loading is obtained in the case of an isolated airfoil. This 
is also shown in Fig. 6, where the velocity contours are plotted for both simulations. The 
isolated-airfoil computation shows a large laminar separation bubble near the leading 
edge and a separation near the trailing edge. In contrast, in the computation for the 
wind-tunnel domain, the shear layers emanating from the lips of the nozzle exit have a 
strong influence on the flow around the airfoil, and the boundary layers remain attached 
to the airfoil. Additional simulations performed at Valeo (Henner et al. 2001) show that 
a similar pressure distribution (and flow field) is obtained when the same airfoil is placed 
in a cascade setup. It was argued that the shear layers coming from the nozzle lips confine 
the flow in a manner similar to that of a blade row in a cascade. 

It is evident that a simple correction for angle of attack, which is commonly employed 
to account for the effect of the open jet {e.g. Brooks et al. 1986), cannot be successful 
in this situation. Interestingly, most of the aeroacoustic experiments cited above have 
similar geometrical configurations, and are therefore affected by the finite jet width and 
interference from the nozzle exit. 

3.3. Effect of jet width 
Having established and explained the large differences between the isolated airfoil case 
and the same airfoil in an open-jet acoustic tunnel, we then studied the influence of 
the jet width on the velocity and pressure distributions. The motivation for this study 
is to provide guidance for the design of future experiments with minimal interference 
effects, and for setting up the appropriate LES boundary conditions if such interference 
is present. 

A somewhat simplified computational domain has been considered. It starts at the jet 
exit and encloses the airfoil at the correct relative location, as denoted by the dashed-line 
box in Fig. 3b. Computations have been done for Several jets, with exit width ranging 
from 13 cm to 50 cm. The airfoil angle of attack is a = 8° in all cases. The velocity 
distribution near the nose shows no laminar separation for jet sizes of up to 40 cm 
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FIGURE 6. Contours of velocity magnitude. (a)(c) isolated airfoil, (b)(d) full wind tunnel 
simulation. Dark areas correspond to high velocity. 

(e.g. Figs. 7a and 7b). Although separation is present when the jet width is increased to 
50 cm (cf. Fig. 7c), it is very weak compared to the isolated airfoil case shown in Fig. 7d. 
The jet-width effect is also confirmed by the corresponding pressure distribution curves 
shown in Fig. 8. 

Except in the immediate vicinity of the trailing-edge, the pressure loading on the rear 
part of the airfoil approaches that of an isolated airfoil as the jet width is increased. On 
the other hand, the leading-edge pressure distribution remains substantially different, 
indicating that the proximity of the airfoil to the jet exit must be accounted for. 

4. Conclusions 
A detailed RANS simulation of a full open-jet wind tunnel experiment has shown strong 

effects of the jet nozzle and the finite jet width on the aerodynamic loading and flow char- 
acteristics. When the jet width is not sufficiently large compared to the frontal "wetted" 
area of the airfoil, the airfoil behaves in a manner closer to a cascade than to an isolated 
profile. The significant modification of the lift distribution and flow field can in turn af- 
fect the nature of the sound radiation. These effects have implications for the appropriate 
boundary conditions needed to conduct LES of open-jet aeroacoustic experiments, and 
could be responsible for the discrepancies among some earlier experimental and compu- 
tational studies (e.g. the different boundary layer thicknesses observed by Manoha et al. 
(2001)). To reproduce the experimental flow conditions accurately, free-stream boundary 
conditions are not adequate (unless the jet is very wide). More realistic conditions based 
on experimental velocity profiles or RANS calculations should be imposed. 

A simpler computational model of the open-jet acoustic tunnel with an inlet velocity 
profile of variable width has also been devised. This configuration captures most of the 
experimental setup effects in open-jet facilities, particularly in the aft section of the 
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(c) (d) 

FIGURE 7. Contours of velocity magnitude. Jet width: (a) 13cm, (b) 30cm, (c) 50cm, (d) oo 
(isolated airfoil). Dark areas correspond to high velocity. 
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FIGURE 8. Pressure loading on the airfoil surface at a = 8°. : isolated airfoil; : w 
= 13cm; : w = 30cm; : w = 40cm;  : w = 50cm; o : experiments. 

airfoil which is critical to trailing-edge noise. The simplified configuration allows for 
quick parametric studies of the dependence of flow conditions on the airfoil profiles and 
the angle of attack, which is particularly useful for the design of experiments as well as 
for RANS and LES simulations. 
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RANS solvers with adaptive structured boundary 
non-conforming grids 

By Sekhar Majumdar, Gianluca Iaccarino, AND Paul Durbin 

1. Motivation and objectives 
The objective of the present work is to develop robust RANS solvers for accurate 

computation of flow and heat transfer in complex geometries, such as arise in engineering 
design. In CFD analysis, the most time-consuming process is often the generation of an 
acceptable grid — whether it is a boundary-conforming, curvilinear mesh, or even a 
completely unstructured mesh. The present work focuses mainly on RANS solution of 
viscous and turbulent flows, where the relevant governing equations always impose strict 
requirements on the grid and on the solution algorithm. The special problems that arise 
in RANS solvers, coupled to turbulence models, have not been addressed in the literature 
on locally refined, Cartesian meshes, or in papers on the use of boundary non-conforming 
grids. 

The ideal would be to develop a RANS code, with advanced turbulence models, 
that can perform flow and heat transfer analysis directly on the CAD representation 
of a surface, avoiding the cumbersome process of surface meshing. Such a development 
would have the potential for an enormous impact on applied computational analysis. The 
present research aims to exploring promising avenues in this direction. 

1.1. Issues with Cartesian meshes 
Flow solvers using Cartesian meshes have two major issues: (1) how to define a complex 
shaped surface accurately and (2) how to satisfy the relevant boundary conditions for 
the governing equations of pressure, velocity and turbulence scalars at any point lying 
on a curved boundary surface. These issues are addressed in available literature under 
two different approaches. An approach using forcing functions was originally proposed 
by Peskin (1972) and pursued further by Mohd-Yusof (1997), Verzicco et al (2000) and 
Fadlun et al (2000). The forcing technique is most natural when applied to the Navier- 
Stokes equations for momentum; but formulation of forcing terms for turbulence model 
equations could be very cumbersome. The basic idea is that a forcing term is added to 
the equations in cells intersected by a boundary; the magnitude and direction of the force 
is adjusted so that the boundary conditions are satisfied. 

The other approach is designated as cell cutting: here, Cartesian faces of cells that 
are intersected by the curved surface are replaced by the surface face. Such splitting 
generates non-rectangular cells, which may be handled efficiently only by an unstructured 
flow solver. 

In the present work a new approach, designated as an extended Ghost Cell Method, is 
being explored for RANS applications. It promises to provide the flexibility needed for 
imposing the various boundary conditions of interest in turbulence modeling. Indeed, the 
approach is simply to impose the specified boundary condition by interpolation onto a 
surface that does not coincide with a computational mesh surface - or, more correctly, 
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to use the condition on that non-computational surface to extrapolate the variable value 
to a ghost node, inside the body. 

1.2. Special issues in RANS computation 

The RANS equations for incompressible flow are 

DtU = -VP + V • [(1/ + VT)(SU + V'C/)] 

v-uJ <"> 

The point to note here is that VT is an eddy viscosity which is determined by further 
transport equations. A variety of models are discussed in Durbin & Pettersson Reif 
(2000). Generic issues in solving turbulence models can be illustrated by reference to the 
widely used k-e model. 

The transport equations for k and e are 

Dtk = 2uT\S\2 - e + V • [{v + vT)k] 

A distinction from conservation equations is obvious: the right-hand sides contain source 
and sink terms. In the major part of a turbulent shear layer there is a rough balance 
between sinks and sources. The source and sink terms strongly couple the k equation 
to the e equation and this argues for a coupled solution. (This is believed to be one 
reason why explicit solution algorithms are not effective on turbulence models. The usual 
rationale is that explicit methods are not efficient for bringing the source terms into 
balance. Implicit schemes are better and are the basis of most robust routines for solving 
turbulence models.) 

Another source of stiffness occurs near the boundaries. The no-slip conditions on Eq. 
(1.2) are 

Jb(0) = 0,        e(0) = lim 2vk/y2. 

This is imposed numerically by evaluating the right-hand side at the first computational 
point above the surface. The factor of 1/y2 can cause numerical stiffness if the k and e 
equations are not solved as a coupled, implicit system. 

Adequate near-wall resolution is required to properly compute heat transfer, skin fric- 
tion and flow separation. In general the grid should be strongly anisotropic, with small 
spacing in the wall-normal direction. This grid requirement is tied to the geometry, and 
mandated by the boundary layers. Separated shear layers can exist within the flow; they 
also demand local grid refinement, although now tied to the flow field, not the geometry. 
To capture such features the anisotropic refinement needs to be adapted to the solution. 

The established approach to handle the above-mentioned issues is to construct body 
fitted meshes - structured or unstructured - with high resolution next to solid surfaces. 
Sometimes the mesh is adapted in the course of the solution - usually on unstructured 
grids. The present approach differs in both respects: the near-wall refinement is intended 
to be done with a Cartesian grid, without body fitting. Boundary conditions are imposed 
by an interpolation method designated as a generalized 'Ghost Cell' approach. Similarly, 
flow as well as the boundary adaptation are carried out by locally refining a quasi- 
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structured grid inside the flow and the refinement is non-isotropic which can be easily 
achieved in a Cartesian grid environment.* 

During the last six months, attempts have been made to develop the two different 
aspects of this research project in parallel. The first part concentrates on the method of 
local refinement in structured Cartesian grids: the second part explores the appropriate 
interpolation or reconstruction schemes to handle the boundary conditions, while solving 
the RANS equations using a finite-difference solver and a Cartesian grid not conform- 
ing to the body surfaces. Accomplishments so far are described below in two different 
subsections. 

2. Accomplishments 
2.1.   Local refinement using Cartesian grids 

2.1.1. Methodology 
Most research on solution-adaptive gridding has been reported for unstructured so- 

lution methods (Mavripilis, 1995). Local adaptation involves inserting nodes within a 
pre-existing mesh. Local mesh refinement is considered to be suited only to unstructured 
solution algorithms because the element connectivity is explicit and local. However, in 
the present work we propose a somewhat analogous method that can be developed for 
structured grid algorithms. 

The locally adaptive method proposed herein is motivated by the idea of ibJanking 
(Benek et dl, 1985); the terminology, iblank, comes from a variable name used in computer 
codes. Originally ibJanking was a device to insert geometry into a structured grid by 
extending the grid inside the body, then blanking out the interior portion. The region 
inside the body is decoupled from the fluid via boundary conditions. In the original 
approach the interior region is solved, although the equations there are arbitrary It is 
straightforward to revise such algorithms so that the blanked region is skipped, requiring 
neither storage of variables nor solution of equations. For present purposes, the notionally 
blanked portion of the grid could be larger than the active portion. Our solution algorithm 
skips the blanked portion. 

Conceptually, our method consists of adding grid lines where needed, and blanking out 
all but the portion of those lines that lies in the area where higher resolution is required. 
Since the blanked portion is skipped, the actual method adds line segments (refer to 
Fig. 4). The line segments lie on an underlying, notional, structured grid. The notional 
grid would be constructed from active and blanked nodes, as illustrated by Fig. 1. The 
black circles denote an initial, coarse grid. The gray circles indicate points added through 
local refinement. They amount to inserting an extra grid line in the fc-direction, a portion 
of which is active, the rest blanked — as indicated by the open circles. A discrete solution 
scheme must be adapted for this class of grids. 

The node labeled H (usually called a 'hanging node') in Fig. la is connected to three 
active nodes. To complete the finite difference stencil a solution value is interpolated to 
the point labeled I. Note that I is only used to complete the stencil at H; otherwise it 
is treated as blanked. The interpolation stencil determines the effective finite difference 
scheme, and its local accuracy. 

For instance, if the value at I is linearly interpolated between its vertical neigh- 
bors, then the 6-point stencil in Fig. lb is implied by the 5-point stencil in figure la. 
A centrally-differenced j derivative is second-order accurate for a symmetric stencil: 
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FIGURE 1. Finite difference stencils for hanging nodes, (a) Active (•, £) and blanked (O) grid 
points. Points indicated by • show the initial grid; those indicated by £• are added through 
refinement; ® is an interpolated point (H Hanging Node; I Interpolation Node), (b) Effective 
stencil at an interpolation node. 

SJU = \{uj+\ — Uj-i). However, with an interpolated value as in figure lb, the accuracy 
becomes first order because of the asymmetry: 

siu3,k = 2 ( 2^'+1,*+1 + ui+i>*-i) ~ ui-^k J (2.1) 

irrespective of the fact that the value Uj+itk = |(%+I,A+I + Uj+i,k-i) is a second-order 
interpolation in the fc-direction. 

In a 2-D grid of N2 nodes, the number of hanging nodes will be O(N). Hence the 
global error of a second-order method on complete stencils would not be reduced by 
first-order accuracy adjacent to interpolation points. However, the local dissipative error 
due to first-order convection might be undesirable. Local accuracy can be increased by 
modifying the interpolation stencil. The formula 

Uj+i,k = ^(uj+i,k+i + Uj+i,*-i) - ^(uj,k+i + u3,k-i - 2uj,fc) (2.2) 

provides a second-order difference. 

2.1.2. Application examples 

Fig. 2 shows the block refinement of the grid for flow over a backstep. The coarse 
grid is refined uniformly in two blocks. The upper right corners of each block contain 
unacceptable interpolation points; in order to apply the interpolation formula Eq. (2.2) no 
other inactive points should appear in the stencil. The encircled regions contain locations 
where deletions are needed to form acceptable interpolation stencils. 

A flow computation has been performed on the grid of Fig. 2. The full domain extends 
over — 4 < x < 35, 0 < y < 6 with a symmetry condition at y = 6. Streamlines, velocity 
vectors and convergence history are displayed in Fig. 3. This particular grid is simply 
block-refined; it is not adapted locally to the solution. It serves primarily to illustrate the 
effectiveness of the solution algorithm and to show that the solution continues smoothly 
across the interpolation points. Also, no numerical instabilities are encountered. 

Second order formulae for the interpolation Eq. (2.2) are used in this computation. The 
convergence history of Fig. 3 is for a pseudo a time-step of At = 2.5 based on free-stream 
speed and step height of unity; this corresponds to a fine grid CFL number of 6.5. With 
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FIGURE 2. Block refinement for flow over backstep. Two levels of refinement axe shown. The 
y-axis has been magnified by a factor of 2. Faint lines are the coarse grid. Circles indicate where 
the interpolation points were revised. 
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FIGURE 3. Streamlines and velocity vectors for backstep at step height Reynolds number=200 
on grid of figure 2. The full domain is — 4 < x < 35, 0 < y < 5. Residual plot shows the 
maximum absolute residual (solid) and maximum divergence (dashed). 

At = 10.5 the same level of convergence (i.e., to single precision) was obtained in only 
300 iterations. 

As a further example of application of the present technique, an adaptive grid refine 
ment for the driven cavity flow proposed by Ghia et al (1985) is shown in Fig. 4. The 
adaptation function is based on a linear combination of velocity and pressure gradients. 
The initial (uniform) grid consists of 20 x 20 cells; three successive refinement steps are 
employed. The final mesh is shown at the left of Fig. 4. Active nodes are clustered in the 
eddies and near to the walls. The refinement is distinctly non-isotropic. 

The streamlines at the right of Fig. 4 show the presence of secondary recirculation 
regions at the lower corners, in good qualitative agreement with benchmark results of 
Ghia et al (1985). A more quantitative comparison is reported in Fig. 5: velocity profiles 
on vertical and horizontal centerlines are reported there for the adapted grid, and are 
compared to the solution on a uniform 100 x 100 grid. The agreement between these two 
solutions is quite good. Note that the locally-refined solution cuts through the highly- 
irregular grid at the center of the cavity. The grid in Fig. 4 contains 4,683 active points; 
the finest level corresponds to a 80 x 80 full grid. 
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FIGURE 4. Computational grid and streamlines for the flow in a square cavity at Re = 1,000 
using adaptive locally refined grids. Hanging nodes are interpolated using Eq. (2.2). 

>    rfi 

FIGURE 5. Velocity components in vertical and horizontal centerline; flow in a square cavity at 
Re = 1,000. Uniform mesh; Locally refined grid, o : Ghia et al, (1982) 

2.2. Ghost-cell method for RANS solvers 

2.2.1. Basic concept 

The first step in this method is to tag all grid nodes according to whether they are 
inside, outside or bound the body. Points that bound the body are inside, but have 
at least one neighbor outside as shown in Fig. 6a. The body around which the flow is 
to be computed is usually represented as a closed polygon. The tagging can be done 
using an efficient search method. The computational node in question is connected by a 
linear segment to a point chosen far outside the body polygon to be scanned. One then 
determines whether this line segment is intersected by the body polygon. If the number 
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of intersections is even or zero, the node is outside the body: if the number of intersection 
is odd the node is inside. 

Once the inside nodes are identified, the boundary nodes lying inside the body and 
connected to at least one computation node in the flow domain are marked as the Ghost 
nodes or Ghost points in the flow computation. The flow solver senses the presence 
of the boundary through the values of flow variables at the ghost nodes, which are 
computed using a local Reconstruction Scheme involving the ghost node and some of 
its neighboring flow nodes. The interpolation function and the relevant boundary and 
domain where the interpolation function can be evaluated matters of choice. Polynomial 
functions are usually efficient since these are compatible with the finite-difference stencils 
which link the ghost node to the flow computation nodes. The solution accuracy depends 
to a great extent on the degree of the interpolating polynomials used. But polynomials 
of higher degree, although expected to be more accurate, may often lead to serious 
boundedness problems and hence to numerical instability. Three different interpolation 
procedures have been attempted so far for a few validation test cases. The variable values 
at the ghost cell can be updated either in an implicit or an explicit manner, depending 
on the coupled flow solver. Implicit updating is in general observed to have enhanced 
numerical stability whereas explicit updating of the ghost node values often requires 
very low underrelaxation factors for numerical convergence. 

2.2.2. Interpolation procedures 

1. Linear interpolation in triangular domain 
The simplest approach to linking the ghost node to the surrounding fluid nodes is to 

construct a triangle where the ghost node forms one of the vertices and the other two 
nodes lie in the flow domain. These triangles can be chosen by the user depending on the 
configuration: see Fig. 6a, where G is the ghost node, Fl and F2 are the fluid nodes and 
B, the midpoint of the intercept, is assumed to be the wall node where the boundary 
conditions are satisfied through the interpolation procedure. 

A simple linear interpolation formula in a 2D space is taken as 

<j> = aix + 02J/ + °3 (2.3) 

The flow solver usually needs the variable values at the ghost node as weighted combi- 
nation of the values at the neighboring nodes, in the following form 

4>G = Wi<j>i + W2(f>2 + WB<t>B (2-4) 

It is therefore most convenient to evaluate the relevant weighting coefficients and the 
neighboring node indices in a pre-processor and use them later in the flow solver. The 
weighting coefficients can always be expressed in terms of the interpolating polynomial 
in the following form: 

[wx,W2,w3]t = T-1[xa,yo,l]t (2-5) 

where in the case of a linear interpolation T is a 3 x 3 matrix, whose elements can be 
computed from the coordinates of the three boundary points of the interpolation space. 
Either the values or the normal derivatives are specified on that boundary, XG, VG are 
the coordinates of the ghost point. 

In the preliminary calculations this simple linear relationship is used to extrapolate 
the ghost-point value at G — which obviously lies outside the interpolation space. The 
major drawback experienced with such extrapolation is that large, negative weighting 
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FIGURE 6. Schematic representation of the interpolation procedure; (a) Linear interpolation, 
(b) Quadratic interpolation, (c) Bilinear interpolation (G Ghost point, I Image point) 

coefficients are often encountered. Although these are algebraically correct, they can 
lead to to severe numerical instability of the coupled flow-solution algorithm. 

Using the concept of an image point inside the flow domain for each ghost node is 
a better procedure to ensure suitable weighting coefficients of the neighboring nodes. 
In this approach, an image point I is identified in the fluid, along the normal to the 
boundary through the ghost node G. It lies at a distance equal to that of the ghost node 
from the same boundary (Fig. 6c). The value of the flow variable is first evaluated at 
this image point using the chosen interpolation scheme. The principle of maxima can be 
used to show that if a linear (or bilinear) interpolation scheme is employed, the weighting 
coefficients are guaranteed to be positive and less than unity. However this argument is 
not valid when normal derivative conditions on a solution variable are applied at any 
boundary point of the interpolation space. The value at the ghost node can be expressed, 
assuming a linear variation along the line connecting G and 7, as 

<j>G = 20B — <Pi- (2.6) 

The wall boundary conditions are satisfied at B, the foot of the perpendicular from the 
ghost point G on the wall segment. For velocities and some of the turbulence scalars, the 
value of <t> may be set to zero at B on a non-moving wall;, but for pressure or turbulence 
dissipation (e), the wall value also needs to be evaluated from the neighboring node 
information in order to obtain the ghost-point value. 

2. Bilinear interpolation in rectangular domain 
If the interpolating polynomial is assumed to be bilinear in a 2D space, it involves 

four constants and hence needs four conditions to be specified on the boundary of the 
interpolation space. For a given body polygon, it is quite straightforward to compute the 
intersection-point coordinates on the different cell boundaries of the grid network.Thus 
any ghost node forming one corner of a grid rectangle may have two different types of 
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intersection as shown in Fig. 6c. In both cases, however, the two fluid nodes and the two 
wall-intersection nodes may be used for evaluation of the relevant weighting coefficients 
for the image point. The polynomial in this case may be written as 

<j> = a\X + a2y + azxy + a4. (2.7) 

The wall intersection points PI and PI on the computational grid lines are used in 
evaluation of the interpolating polynomial, and the wall boundary conditions are satisfied 
at the point B. The required weighting coefficients are computed using the same principle 
described for linear interpolation in triangular space - only the matrix T connecting the 
interpolation point coordinates will now be different. 

3. Linear-quadratic interpolation along wall-normal direction 
Most second-order-accurate, finite-difference flow solvers use quadratic variation of 

flow variables in the direction normal to the wall. The higher order interpolation during 
reconstruction is therefore expected to retain the formal second order accuracy of the 
scheme. If the flow variables are assumed to vary in a quadratic manner along the wall 
normal direction and linearly along the wall, the interpolating polynomial is: 

<j> = ayn2 + 02« + 03* + a$nt + 05 (2.8) 

where the wall coordinates n and t as shown in Fig. 6b. The normal to the wall intersects 
the adjacent grid lines at two points and the variable values at these two points in turn 
depend on the neighboring flow node values. Hence the five constants of the assumed 
polynomial are evaluated from the four neighboring flow nodes, marked with filled-in 
circles, and the wall point (Fig. 6b). The ghost-node value is either extrapolated or 
evaluated using the concept of an image point. The use of the image point in case of a 
quadratic interpolation may produce better weighting coefficients, but their values are no 
longer guaranteed to be positive and less than unity as they are in the linear interpolation 
scheme. 

2.2.3. Test cases 
The numerical method of the RANS flow solver to which the present ghost cell approach 

is coupled is based on a Cartesian, two-dimensional Navier Stokes code. The discretization 
technique is cell-vertex, finite differences over structured meshes. The convection term is 
third-order upwind biased; diffusion terms are second-order centered. The pseudo-time 
integration is implicit and the equations are solved in a coupled manner. The implicit 
matrices are inverted by Gauss-Seidel line relaxation. The ghost-cell procedure has so far 
been tested for two laminar flows, using linear or bilinear interpolation, and for a simple 
turbulent flow using quadratic interpolation. 

1. Laminar flow around a semi-circular cylinder at Reynolds number of 150 
A semi-circular shape was chosen to avoid flow unsteadiness and vortex shedding ob- 

served for circular cylinders at this Reynolds number. This calculation uses the linear 
interpolation scheme in triangular domains around the ghost points. Three grids of dif- 
ferent grid fineness are used, covering the cylinder zone by 20x20, 40x40 and 80x80 
uniformly-spaced grids. These provide 43, 87 and 177 ghost points respectively to repre- 
sent the curved boundary. The finest Cartesian grid used, superimposed on a boundary- 
fitted (radial polar) grid of approximately the same grid spacing, is shown in Fig. 7. 
Results obtained from the boundary-fitted grid calculation are compared in Fig. 8 to 
those of the present ghost-cell procedure. 

The present results with the finest grid are observed to be the closest to the solution 
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FIGURE 7. Test problem for semi-circular cylinder and close view of the Cartesian grid 
overlapped with the boundary-conforming radial polar grid 

(a) (b) 

FIGURE 8. Circumferential variation of (a) skin-friction and (b) pressure coefficient for flow 
around a cylinder (Re = 150). : Radial polar grid, (o , A , □ ) Cartesian grid with o 177 
ghost points , A 87 ghost points and □ 43 ghost points. 

obtained from the boundary-fitted grid. The discrepancies observed in the maximum 
value of the skin friction and for the surface pressure in the post-separation region may 
be attributed to the inaccuracy introduced by the linear interpolation procedure used 
for local reconstruction. The mild kinks or wiggles are always observed in Cartesian grid 
calculations with ghost cells. This may perhaps be attributed to the circumferential vari- 
ation of the distance between the wall point where the boundary conditions are satisfied, 
and the corresponding ghost point. In a boundary-fitted grid, the normal distance of the 
near-wall point can be systematically controlled and maintained to vary continuously 
along the body surface. On the other hand in the boundary non-conforming situation, 
the distance between the wall and the ghost point, primarily decided by the geometry of 
the body and the Cartesian grid intersection, may often have an erratic variation along 
the body surface. 

2. Laminar flow past a two-dimensional bump 
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FIGURE 9. Test problem for flow past a two-dimensional bump and close view of the Cartesian 
grid. 
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FIGURE 10. Longitudinal variation of (a) skin-friction and (b) pressure coefficient for flow past 
a bump (Re = 1000). : boundary-conforming grid, o non-conforming grid. 

This test case has been chosen to validate the present ghost-cell procedure for two- 
dimensional turbulent flow in a geometry for which detailed measurement data of Web- 
ster et al (1996) are available. Because handling the boundary conditions for turbu- 
lence scalars is not so straightforward, attempts have first been made to analyse laminar 
flow over the same geometry and to compare the results with other calculations using 
boundary-conforming grids. The surface bump on the lower wall of a channel is defined 
by three tangential circular arcs and is shown schematically in Fig. 9. The boundary layer 
experiences the effects of significant surface curvature and streamwise pressure gradient. 
The present calculation uses uniform plug flow at the channel inlet at a flow Reynolds 
number of 1000, based on the bump chord length. 

A close-up view of the rectangular grid used near the concave root of the bump is also 
shown in Fig. 9 . As stated earlier, the difficulty in using the boundary-non-conforming 
grid is the lack of control on the resolution near the boundary. The only way to obtain 
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FIGURE 11. Transverse variation of mean velocity and turbulence quantities for fully developed 
channel flow (Re based on half channel height = 10,000).  boundary conforming grid, 
o A □ o non-conforming grid (o U, ^ 100k, n 50 e and o 100 u2). 

adequate resolution is to use a very fine uniformly-spaced grid in the region covered by 
the intersecting curved boundary. The present calculation uses a 201x201 Cartesian grid, 
out of which 101 x 101 points cover the bump region. Since the bump height is only about 
6.5% of the chord length, the grid aspect ratio is always of the order of 15 near the bump 
surface region. This computation uses bilinear interpolation in rectangular interpolation 
space coupled to the image-point concept discussed in the previous section. 

Fig. 10 shows the longitudinal variation of the surface pressure and the skin-friction 
coefficient for the flow, computed in the present procedure directly from the spatial 
interpolation scheme used in the local reconstruction. Comparison to results obtained 
from boundary-conforming grid for the same configuration at the same Reynolds number 
shows excellent agreement for the surface pressure distribution; but the skin friction is 
observed to be under-predicted by about 5%, especially near the top of the bump. Usually 
skin friction is very sensitive to the resolution of the boundary layer. In a boundary-non- 
conforming grid environment, this resolution would always vary along the body surface 
and inadequate resolution at some of the longitudinal sections may lead to inaccurate 
near-wall velocities and hence a wrong value of C/. 

Some mild kinks are observed in the results based on the ghost-cell procedure, espe- 
cially near the beginning and end of the bump, where the weighting coefficients of the 
interpolation procedure suddenly change from the uniform value over the flat part of the 
channel to new values as the bump starts or ends. It is further observed that as the flow 
Reynolds number is increased, the amplitude of these wiggles grows, and may eventually 
lead to numerical instabilities. 

3. Fully developed turbulent flow in a plane 2D channel 
This simple example is chosen to test the capability of the present ghost-cell procedure 

when coupled to a RANS solver with a standard turbulence model. The boundary non- 
conformity is maintained by placing the channel wall between two horizontal grid lines. 
Quadratic interpolation along the boundary-normal direction is used in this case. 

The v2 - f turbulence model (Durbin, 1995) is used for this RANS computation of 
channel flow. In the reconstruction procedure, the boundary conditions satisfied at the 
wall point axeU = V = k = v2 = f = dp/dy = 0. Evaluation of the non-zero value of the 
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turbulence dissipation e at the wall point is however not so obvious. The value of e at wall 
points is set to 2uk/y2 where k is the turbulence kinetic energy at the near-wall node at 
a normal distance y from the wall surface. As mentioned in Section 1, such a boundary 
condition can cause undesirable numerical stiffness and was therefore implemented in a 
coupled, implicit manner. 

Fig. 11 shows the transverse profiles of the mean longitudinal velocity and differ- 
ent turbulence quantities computed using the conventional body-conforming as well as 
the present body-non-conforming grids. Reasonable agreement between the two results 
demonstrates the accuracy of the ghost cell procedure with quadratic interpolation, at 
least when the body boundaries are parallel to either of the Cartesian grid directions. 

3.   Conclusions and future tasks 
The ghost-cell procedure to handle complex-shaped curved boundaries using a Carte- 

sian grid has been validated for a few two-dimensional flow situations. Work is in progress 
to study the numerical stability of the procedure — especially how to ensure numeri- 
cally amenable values of the interpolation weights, and to eliminate the large-amplitude 
oscillations of the solution which are often observed at high flow Reynolds number. 

The validation examples have shown that adequate near-wall resolution can be ob- 
tained in the present method only by using a very fine grid. This usually implies many 
wasteful, inactive nodes in a fixed Cartesian grid. Therefore the local refinement proce- 
dure, already developed for structured Cartesian grids, now needs to be coupled to the 
ghost-cell procedure to develop an efficient and accurate RANS solver. We then propose 
to extend the methodology to three-dimensional flow and validated against measurement 
and/or other computation data for some turbulent flow examples of industrial interest. 
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Modeling the "rapid" part of the 
velocity/pressure-gradient correlation in 

inhomogeneous turbulence 

By   S. V. Poroseva 

1. Motivation and objectives 
The Reynolds-stress transport equation (RSTE) includes the velocity/pressure-gradient 

correlation < pjUi >. Following Rotta (1951), it is common practice to split this corre- 
lation into two parts: the pressure-strain correlation < pu^j > and the pressure-diffusion 
part < put >j. This approach has advantages if one simulates homogeneous turbulence 
with a two-equation turbulence model. In homogeneous turbulence, both the pressure 
diffusion term < pu{ >,j and the pressure-strain term < pu^i > do not contribute to the 
transport of the turbulent kinetic energy (k). 

In inhomogeneous turbulent flows, however, the modeling of the pressure-diffusion 
term in the fc-equation is challenging. Direct numerical simulation (DNS) data from free 
shear flows (Rogers & Moser 1994; Moser et al. 1998) show that the contribution of the 
pressure diffusion in the turbulent kinetic energy balance is not negligible, especially in 
the central core of the flow. The current practice of using a single model for both the 
pressure diffusion and the turbulent diffusion is not likely to be successful because the two 
have qualitatively different profiles. It was shown by Lumley (1978), that in homogeneous 
turbulence the "slow" part of the pressure diffusion term can be modeled as 

 < pUi >(f= - < UmUmUi >,j . (1.1) 
p '       5 

Thus, a model for the turbulent diffusion can absorb only this "slow" term. The contri- 
bution of the "rapid" part and the surface integral in the exact integral expression for 
the pressure diffusion term (Chou 1945) should also appear in the modeled turbulent 
kinetic energy transport equation. 

Judging by DNS data, the term < pui >j cannot be ignored in the transport equations 
for Reynolds stresses and should be modeled as well as the pressure-strain term < pu^j >. 
Thus, two models for the pressure-containing correlations are necessary, and splitting 
the correlation < pjUi > into two parts becomes a disadvantage. The direct modeling 
of the correlation < p^m > is a natural choice. Here, models for the "rapid" part of the 
velocity/pressure-gradient correlation in the Reynolds-stress transport equation (RSTE) 
and of the pressure-diffusion term in the turbulent kinetic energy transport equation 
(Poroseva 2000) are considered and tested against post-processed DNS data from a wake 
and a mixing layer (Rogers & Moser 1994; Moser et al. 1998). 

2. Model expressions 
To derive the model for the "rapid" part of < pjui > in inhomogeneous turbulence, 

it was suggested by Poroseva (2000) to go back to the original idea of Chou (1945) 
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and consider the exact integral expression for the velocity/pressure-gradient correlation 
< ptjUi >. This expression holds rigorously in an incompressible flow. For a compressible 
flow, it works as an approximation. The "rapid" part of that expression can be written 
as following: 

-J < pjui >« = -± 11 j [Um,n < <* >'Jj \dV. (2.1) 

The prime '"" indicates that the quantities should be evaluated at a point P', with 
coordinates x't, which ranges over the volume V, and r is the distance from point P' to 
point P with coordinates X{. The correlation on the left-hand side of Eq. (2.1) is evaluated 
at point P, whereas all derivatives on the right side are taken at P'. The integrand in 
Eq. (2.1) is non-zero only over the volume where the two-point correlation < u'nUi > (or 
more precisely < u'nmUi >) does not vanish. In other words, for a fixed point P, only 
those points P' which lie within the length scale of the two-point correlation measured 
from P, contribute to the integral in Eq. (2.1). If one assumes that the function U'mn 

varies more slowly than the two-point correlation within the volume determined by the 
length scale of the two-point correlation, then, to the first approximation, we can rewrite 
Eq. (2.1) as 

-- < p,jUi ><'>= ~Um,n J J f < <«i >',mj \W (2-2) 

(Chou 1945). Notice that this is not an assumption of turbulence homogeneity: all func- 
tions are regarded as functions of space coordinates. 

Chou (1945) suggested modeling the sum of the two pressure-containing correlations 
as 

11^ = (< PtjUi > + < pjUj >)(r) = anmjiUm,n, 

though no specific form for the tensor function anmji was derived in his work. The idea 
to model not the sum, but each correlation separately, was applied for the first time to 
the pressure-strain correlation < pmj > by Rotta (1951). This idea has been found more 
fruitful for the correlation < pjUi > also (Poroseva 2000) and it yields 

and 

where 
1    r t i 

anmji = 2^  /     < U'nui >',mj ~W- 

In this way, more specific conditions can be imposed on anmji: 
(i) symmetry in permutation of indices m and j; 
(ii) from continuity: ammji = 0; 
(iii) from Green's theorem: anjji — 2 < u„Uj >, 

and a number of model coefficients can be eliminated. The final model expression for 
anmji includes two coefficients: 
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dnmji = ~~r(< UiUi > ^n+ < uium > 5jn) + T < WjU„ > Sjm + (2.3) 

Clb^ uiUJ > ^mn+ < WjWm > 8jn)+ < UiUn > 6jm + 

K\OijOmn + dimOjnj— < UjUm > Ojn 

2(< UjU„ > Sim+ < UmUn > Sij)] + 

C2b(< UiUj > 5mn+ < UiUm > 6jn~ < UjUn > 6im - 

3 
< UmUn > Sij) + kSinSjm - 2 < uium > 5j„]. 

Then the model for the "rapid" part of the pressure-containing term in the RSTEs is 

n£} = --(< P,iUj > + < ptjUi >) = (2.4) 

_ ( c + 2Cl + ^2 ) (< UiUm > Urn,j+ < UjUm > Um,i) 

+ ( - - Cx - -C2 j (< UiUm > Uj,m+ < UjUm > Ui,m) 

+k(d + C2)(Uij + Ujti) - (4Ci + C2) < umun > Um,nSij. 

Note that expression Eq. (2.4) is obtained with the assumption of flow incompressibility. 
Thus terms in Eq. (2.3) that involve 8mn make no contribution in Eq. (2.4). 

Coefficients C\ and C2 are, in the general case, unknown functions of several param- 
eters (see discussions in Lumley 1978; Reynolds 1987; Ristorcelli 1995; Girimaji 2000). 
However, the behavior of these functions can be specified for some known limit states of 
turbulence. 

Setting < UiUj >= 2/Zk8ij it is easy to show that expression Eq. (2.3) satisfies, for any 
values of the coefficients C\ and C2, the exact solution for isotropic turbulence subjected 
to sudden distortion (Rotta 1951; Crow, 1968; Reynolds 1976) 

/ g 2 \ 
Q>nmji = "> I 'TZOniOmj ~ "TZKynmOji "T OnjQmi) I • 

In the case of homogeneous turbulence, an additional condition based on permutation 
of the indices n and i can be imposed on Eq. (2.3). It results in the following relation 
between model coefficients: 

|-|Ci-C2 = 0. (2.5) 

Under the condition given by Eq. (2.5), model Eq. (2.4) for Ely transforms to the known 
model of Launder et al. (1975). Note that this connection between coefficients exists only 
in a homogeneous flow, and does not hold in the general case. 

Model Eq. (2.4) for njj^ is realizable. If < uaua > (a = 1,2,3) are the eigenvalues of 
the Reynolds-stress tensor, then we obtain the following realizability constraint 

11$ = 0, if < UiUi >= 0 
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corresponding to the limit state of two-component turbulence (Schumann 1977; Pope 
1985; Shih et al. 1994). Index 1 is chosen arbitrarily. Writing Eq. (2.4) for n[i , one gets 

n£} = 2k(d + C2)U1A + (-4d - C2) < umun > Um,n = 0 

or 
2kUiA- < umun > Um,n . 

W == —^2X7TT ^ 77 • l^-"J 2kUi,i - 4 < umun > l/m,n 

Taking into account that among all eigenvalues only < U2U2 > and < U3U3 > are not 
equal to zero and < U2U2 > + < U3U3 >= 2k as well as Um,m = 0, then Eq. (2.6) can be 
rewritten as 

n =-C    Ul'^4k~ < UßUß >) + 2^^(fc~ < U0UP >) (2 7) 
1 2 C/i,i(10fc - 4 < u^u,3 >) + 8Uß,ß(k- < UßUß >)' K ' ' 

where ß = 2 or 3 (no summation on ß). This condition is satisfied with C\ = C? = 
0, for instance, but it allows other solutions for specific turbulence states. Again, this 
connection between coefficients is valid only in the two-component limit. Consideration 
of two-component homogeneous turbulence is interesting itself and will be addressed in 
the future. Here, we simply notice that Eq. (2.5) and Eq. (2.7) do not contradict each 
other, but for specific turbulence states they fully define the set (Ci,C2). 

In the transport equation for the turbulent kinetic energy, model expression Eq. (2.4) 
for IK' contracts to a model for the "rapid" part of the pressure diffusion term with the 
only model coefficient: 

1 »- --<pUi>y=\-- + Ck)P (2.8) 

where 

C* = yCi+3C2. (2.9) 

Here, P = — < UiUj > |^f. The coefficient Ck is a function of the same parameters as 
coefficients C\ and C2. In homogeneous turbulence, substitution of Eq. (2.5) in Eq. (2.9) 
gives Ck = 0.6. 

An important question in modeling the pressure diffusion term < put >,i is whether 
a model expression for this term should be of the diffusive type also. However, this 
question addresses the complete model for < pui >,», which includes "rapid", 'low", and 
"surface" parts in inhomogeneous turbulence, and does not apply to each part separately. 
Only the "rapid" part is the concern of the present study. Moreover, the properties of a 
model for < pui >,j should not be considered separately from a model for the trace of 
the dissipative tensor £y. On the contrary, the physical assumptions and mathematical 
approximations used in deriving the two models should be the same if the models are to 
be consistent. This is the only way one can hope for inaccuracy in a model for one term 
to be compensated for by a model for another term. In other words, the equality sign 
stands not between each exact term and a model expression for it, but between the sum 
of exact terms and the sum of models for them: 

< put >,i -v < UijUij >= -(Jiy    - e\i '). 
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With such an approach, the properties of the sum should be conserved in modeling rather 
than the properties of each term separately. The commonly-used model e^ = 2/3<$y£ is 
not consistent with any known model for II,j to the author's knowledge. More work 
should be done in this direction. 

3. Results 
Post-processed DNS data for the wake (Moser et al. 1998) were used to evaluate terms 

in the model expression Eq. (2.4). Eq. (2.8) was tested against DNS data in two flows: 
the plane mixing layer (Rogers & Moser 1994) and the plane wake (Moser et al. 1998). 
DNS data for the pressure diffusion in the turbulent kinetic energy balance (solid lines) 
are compared with model profiles (dashed lines) in Fig. 1. Because at present DNS data 
are not available separately for the "slow" and "rapid" parts of the pressure diffusion, 
only evaluation of the joint performance of Eq. (1.1) and Eq. (2.8) is possible. Therefore, 
inaccuracies of model Eq. (1.1), derived under the assumption of turbulence homogeneity 
(Lumley 1978), are absorbed in the value of Ck- To calculate model profiles, DNS data for 
the production and turbulent diffusion terms are used. The optimal value of the coefficient 
Ck in Eq. (2.8) is determined by adjusting the maximum of a calculated profile to match 
the maximum of the DNS profile. Its value was found to be equal to 0.52 in the mixing 
layer (Fig. la) and 0.5 in the wake (Fig. lb). 

DNS profiles of 11^, ü^, and 11^ in the wake (solid lines) are compared to model 
ones (dashed lines) in Fig. 2. Model profiles are obtained by substituting the DNS data 
for the mean velocity and Reynolds stresses in the model expression Eq. (2.4) for IL^'. 
The coefficient C\ = 0.4 was chosen by matching the calculated profiles to the DNS ones. 
The value of C2, C2 = -5/6, is calculated from Eq. (2.9) using known Ck and C\. The 
agreement between the DNS data and the calculated profiles is very good, except that 
the levels of nj^ and II^ are slightly overpredicted. One of the possible reasons for 
this disagreement is the dependence of C2 on the coefficient Ck, which is not exact, but 
absorbs the inaccuracies of the model for the "slow" part of the pressure diffusion. 

It is important to clarify the question of the functional form of the coefficients Ck,Ci, 
and C2. Conditions Eq. (2.5) and Eq. (2.7) provide relationships between the coefficients 
in particular limit states of turbulence, but do not indicate on what parameters the co- 
efficients depend. This information can be partly drawn from DNS, experimental data, 
and results from RANS calculations of classical self-similar free shear flows, equilibrium 
boundary layers with and without pressure gradients, and separated flows. Such flows 
were calculated by Poroseva (2000) and Poroseva & Iaccarino (2001), using the k-s tur- 
bulence model with the "rapid" part of the pressure diffusion term taken into account. 
Good predictions for mean velocity, shear stress, friction coefficient, and turbulent kinetic 
energy profiles were obtained in all test flows. 

The value of Ck in Poroseva (2000) and Poroseva & Iaccarino (2001) is calibrated by 
matching the non-dimensional turbulent kinetic energy level in the flow. Consequently, its 
value depends on the conditions which determine that level. The turbulent kinetic energy 
level is not unique even in the same flow. Indeed, it does appear from both experiments 
and DNS (see discussion in Rogers & Moser 1994 and Moser et al. 1998) that, even in 
geometrically-equivalent flow situations at the same Reynolds number, multiple asymp- 
totic states are observed. This difference between alternative states manifests itself in 
both the statistics and the flow structure. Under appropriate scaling, the mean-velocity 
and shear-stress profiles are universal or near universal, but normal stresses and turbulent 
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kinetic energy profiles are non-unique. DNS confirms that statistical differences reflect 
the differences in the large-scale structure of turbulence, which depends strongly "on un- 
controlled and possibly unknown properties of the initial or inlet conditions" (Moser et al. 
1998). Also, large-scale structure is influenced by flow geometry, boundary conditions, 
external forces etc. (Tsinober 1998). Among other factors connected with large-scale 
structure are Reynolds number and flow geometry. The coefficient Ck seems to be influ- 
enced by both factors. However, the database used by Poroseva (2000) and Poroseva & 
Iaccarino (2001) does not facilitate distinguishing their influence on the coefficient value, 
as data for different test flows were obtained at different Reynolds numbers. 

On the other hand, the coefficient C* is an explicit function Eq. (2.9) of the two 
coefficients C\ and C2, which are linked to each other by Eq. (2.7) in the two-component 
turbulence limit. Because mean velocity gradients are involved in that expression, a 
functional dependence of C* on velocity gradients could be expected. However, each test 
flow was successfully reproduced with the same value of Ck- Moreover, mean velocity 
gradients, like mean velocity components, appear not to be sensitive to initial or inlet 
conditions, whereas large-scale structure and, as a result, the value of Ck strongly depend 
on them. This suggests that although there may be some dependence of the coefficient 
on mean velocity gradients, it seems to be of secondary importance in inhomogeneous 
flow. 

4. Conclusions 
In the present research, model expressions for the "rapid" parts of the velocity/pressure- 

gradient correlation in the RSTE and the pressure diffusion in the turbulent kinetic 
energy transport equation (Poroseva 2000) were evaluated using DNS data. For the 
velocity/pressure-gradient correlation such data are available in a wake (Moser et al. 
1998). For the pressure diffusion, there exist DNS data in two flows: a wake and a mixing 
layer (Rogers & Moser 1994; Moser et al. 1998). DNS data and calculated model profiles 
agree very well. 

The contribution of the "rapid" part of the pressure diffusion appears in the standard 
k-s equation through an additional model coefficient Ck- THere is probably some de- 
pendence of the coefficient on mean velocity gradients, but it is apparently of secondary 
importance. Each test flow was successfully reproduced with a constant value of Ck in 
Poroseva (2000) and Poroseva & Iaccarino (2001). The value Ck = 0.6 can be rigorously 
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FIGURE 2. "Rapid" part of velocity/pressure-gradient correlations in the Reynolds-stress 
budget in the wake. ( ) DNS profiles, ( ) calculated profiles 

derived for homogeneous turbulence. However, the optimum value of the coefficient in 
inhomogeneous flows changes from flow to flow, depending on different factors controlling 
the large-scale turbulence structure. Among these factors are initial or inlet conditions, 
Reynolds number, flow geometry, and boundary conditions. These conditions make large- 
scale structure non-universal, even in geometrically equivalent flow situations at the same 
Reynolds number, as DNS and experimental data demonstrate. Moreover, it is not ob- 
vious that all conditions controlling the large scales have been defined and, even if they 
were known, the link between them and the large-scale structure they produce may not 
necessarily be evident and predictable. 
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Simulating separated flows using the k-e model 

By   Svetlana Poroseva AND Gianluca Iaccarino 

1. Background and motivation 
Two-equation turbulence models (Jones & Launder 1972; Launder & Sharma 1974) are 

widely used in industrial CFD applications although their shortcomings are well known. 
Model limitations have different origins: the performance of the Boussinesq assumption 
and the choice of the second turbulence scale to build the eddy viscosity have been inves- 
tigated thoroughly (Cousteix & Aupoix 1997; Apsley & Leschziner 2000). The present 
paper focuses on the turbulent kinetic energy transport equation and on the modeling 
parameters in the standard k-e model based on the linear Boussinesq assumption. 

The model coefficients in turbulence modeling are usually kept constant in turbulent 
flows with different geometry and at different Reynolds numbers. Various criteria have 
been used to define universal values for the constants: the decay of isotropic turbulence 
is usually considered to fix the value of C£2\ the slope of the mean-velocity profile in 
boundary layers (the Karman constant) determines a relationship between the constants 
as, Cp, C£i and CE2- The use of these asymptotic constraints on the model constants 
provides a formally-consistent model. 

The k-e model constants have assumed different values depending on the applications. 
Several investigators (Durbin 1991, 1995; Yakhot and Orszag 1986; Shih et al. 1995) 
have introduced a variable C£i depending on various geometrical and flow parameters 
(i.e. the strain rate, wall distance, vorticity magnitude, etc.) to introduce the effect of the 
near-wall anisotropy. Similarly, it was demonstrated by Lumley (1978), Reynolds (1987), 
Ristorcelli (1995) and Girimaji (2000) that, in turbulence models based on Reynolds- 
stress transport equations, the coefficients should be functions of flow parameters. 

In a previous study (Poroseva k Bezard 2001) it was shown that, after tuning the coeffi- 
cients, the standard k-e model was successful in reproducing the measured mean-velocity 
and shear-stress profiles for several flows (self-similar free shear flows and equilibrium 
boundary layers in different pressure gradients). According to that study, the coefficients 
Cß and Ce2 have the standard values, 0.09 and 1.92 respectively; the relation between 
coefficients a* and <re is more important for the model accuracy than their absolute val- 
ues. This is especially important in unbounded flows where turbulent diffusion plays a 
significant role. A constant ratio as/ak = 1/0.67 = 1.5 was recommended for practical 
purposes instead of the standard values, ae = 1.3 and ak = 1. The value of the coefficient 
Cei, has a strong effect on the calculated results; its value depends on the type of flow 
considered and on the Reynolds number. 

The rationale behind the choice of the value of the coefficient Cei goes back to the 
formulation of the transport equation for turbulent kinetic energy originally derived 
assuming homogeneous turbulence. It was shown by Poroseva (2001) that the "rapid" 
part of the pressure diffusion term can be modeled as an extra production term in the 
fe-equation. The same contribution appears in the e equation through the coefficient Ce\. 
Following the work by Poroseva & Bezard (2001) a modified k-e model with tuned 
coefficients is applied to simulate separated flows in a planar diffuser, over a backstep, in 
a channel with wavy walls, and in an axisymmetric combustion chamber (Fig. 1). 
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2. Turbulence modeling 

The exact equation for the turbulent kinetic energy in incompressible flows can be 
derived from the Navier-Stokes equations: 

Tr dk 8Ui 

dxi dxj 

< v 
dui dui 

dxk dxk 

82k 1  d dp 
>+Udxj-2dx-<UiUiUj> + <dx-i

Ui> (2.1) 

where Ui and m represent the mean and fluctuating velocity components respectively, 
p is the instantaneous pressure and < — > represents the time average. The terms on 
the right hand side are the turbulent kinetic energy production (Pk), the dissipation (e), 
the molecular diffusion, the turbulent diffusion and the pressure diffusion. The latter is 
usually split into "slow" and "rapid" parts; Lumley (1978) showed that the slow part 
can be modeled as a diffusion process and, therefore, incorporated into the turbulent 
diffusion term. 

Poroseva (2001) suggested a model for the "rapid" part of the velocity-pressure gradient 
correlation < p,jUi >. In the turbulent kinetic energy transport equation, the model 
contracts (at j — i and summation over indexes) to a model for the "rapid" part of the 
pressure diffusion. The new proposed form for the A; equation is: 

TT 9k  - P 
Uidx--Pk ■e + 

dxj K)£]+(-S+*)*-     <2'2» 
where the last term on the right hand side shows the contribution of the "rapid" part of 
the pressure diffusion. It must be pointed out that this formulation for the "rapid" part 
of the pressure diffusion is similar to the model derived ad hoc by Demuren et dl. (1996) 
by analyzing DNS data; according to this work the Ck coefficient should vary between 
0.6 and 0.9. Equation (2.2) is an extension of the standard k equation but it still does 
not represents the velocity/pressure-gradient correlation explicitly; the slow contribution 
is still lumped in with the turbulent diffusion term. 

The equation for the turbulence dissipation e closely resembles Eq. (2.2): 

de      ._   _     _    .e       d 
Uiöx- = {C-P-C^k + dx- 

Finally the eddy viscosity is defined as : 

ae ) dxj 
(2.3) 

vt = C,- 

The standard values of the model coefficients are: 

(2.4) 

C» = 0.09; C,i = 1.44; Cs2 = 1-92; Ck = 0.6; ak = 1; ae = 1.3. 

The value Ck = 0.6 corresponds to homogeneous turbulence (Poroseva, 2001). This model 
will be referred to as model LSI. 

A second set of constants has been used (LS2) 

Cß = 0.09; Cc2 = 1-92; ak = 1; ae = 0.67 
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xyR = 1.68      x/R = 3.6 

(c) (d) 

FIGURE 1. Test problems considered: (a) Backstep; (b) Diffuser; (c) Wavy Channel; (d) 
Combustion Chamber 

The values of Ce\ and Ck have been chosen to fit the experimental data for each test 
case and will be reported later. 

Equations (2.2-2.4) represent the high-Reynolds-number form of the k-e model; the 
damping function approach proposed by Launder & Sharma (1974) has been used to 
correct the behavior of turbulent quantities in the viscous dominated near-wall regions. 

Results obtained using the four-equation v2 — f model (Durbin 1995) are also included 
for comparison. 

3. Results and discussion 
The steady two-dimensional Reynolds-averaged Navier-Stokes equations for an incom- 

pressible fluid are solved using a commercial CFD code (Fluent v5.3). 
The first problem selected is the backstep flow (Jovic & Driver 1995), reported in 

Fig. la. The Reynolds number based on the inlet velocity and the step height is 5,100. 
The flow at the inlet is a fully developed boundary layer. Separation is fixed at the step 
and the expansion generates a large recirculating region with strong negative velocity and 
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(a) 00 (c) 

FIGURE 2. Results for the flow over a backstep: velocity (top) and turbulent kinetic energy 
profiles (bottom), (a) x/H = -3; (b) x/H = 4; (c) x/H = 6. o : experiments; : model 
LSI; : model LS2; : v2 - f results. 

high turbulent kinetic energy (measurements are available at several stations downstream 
the step). The coefficients for the model LS2 are defined as C£i = 1.85 and C* = 0.8. 
Figure 2 shows results for strearnwise velocity and turbulent kinetic energy (scaled by 
the inlet velocity). All three models predict similar profiles upstream of the step (Fig. 
2a). Downstream, the LSI does not correctly reproduce the separation zone, whereas the 
LS2 and v2 - f models are in good agreement with the experimental data (Figs. 2b-2c). 
In addition, the LSI fails to predict the correct friction coefficient c/ in the recirculating 
bubble and underestimates c/ in the recovery region, whilst the other models produce 
very similar friction levels (Fig. 3). 

The second test case is the flow in an asymmetric diffuser (Fig. lb). The flow is fully 
developed at the inlet. The Reynolds number based on the bulk velocity and the inlet 
height is 20,000. The presence of a mild adverse pressure gradient induces separation on 
a smooth surface, which is very challenging for turbulence models. Mean velocity and 
turbulent kinetic energy profiles are available as well as skin friction (Buice k Eaton 
1997) to identify the extent of the separated region. As in the previous case, the LSI 
predictions are in poor agreement with the measurements; on the other hand, the model 
LS2 (with coefficients Cei = 1.5 and Ck = 0.6) is accurate in predicting both the mean 
velocity and the turbulent kinetic energy (Fig. 4). The LS2 model captures the extent of 
the separation region very well (Fig. 5). 

The third case is the flow in a periodic wavy channel (Fig. lc). The Reynolds number 
based on the bulk velocity and the average channel height is 11,000. The flow separates on 
the downhill slope and reattaches uphill; only mean velocity measurements are available 
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FIGURE 3. Results for the flow over a backstep: skin friction coefficient, o : experiments; 
 : model LSI; : model LS2; : v2 - f results. 
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FIGURE 4. Results for the flow in a diffuser: velocity (top) and turbulent kinetic energy profiles 
(bottom), (a) x/H = 24; (b) x/H = 28; (c) x/H = 32. o : experiments; : model LSI; 
 : model LS2; : v2 - f results. 

in this case (Kuzan 1986). All the models are reasonably accurate in predicting the 
velocity profiles. The coefficients used for the LS2 model are Cei = 1.5 and C* = 0.6. 

The fourth case is an axisymmetric combustion chamber (Fig. Id). A central pipe 
stream and an annular swirling stream enter a large cylindrical chamber, and in response 
to a strong adverse pressure gradient a small recirculating region is created. The Reynolds 
number based on the pipe bulk velocity and diameter is 75,000. Streamwise and swirl 
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FIGURE 5. Results for the flow in a diffuser: skin friction coefficient, o : experiments; 
model LSI; : model LS2; : v2 - f results. 

00 (b) 

FIGURE 6. Results for the flow in a wavy channel: axial velocity profiles, (a) x/H = 0.25; (b) 
x/H = 0.75. o : experiments; : model LSI; : model LS2; : v2 — f results. 

velocities are measured at various stations in the chamber (Hagiwara et al. 1986). The 
coefficients used in this case are Cei = 1.7 and C* = 0.6. 

Model LSI considerably overestimates the extent of the recirculating bubble and the 
velocity on the chamber axis; models LS2 and v2 - f, on the other hand, predict the 
velocity quite accurately (Fig. 7). The swirl velocity is reproduced fairly well by all 
models. 

4. Conclusions and future plans 

A modified form of the turbulent kinetic energy equation that explicitly accounts for 
the "rapid" part of the pressure diffusion term (Poroseva, 2001) has been tested for sepa- 
rated flows. The production term in the equation is controlled by an additional coefficient 
(Ck) related to the CE\ coefficient in the e equation. The choice of the coefficients in the 
k - e models is known to be critical for the accuracy of the numerical predictions. The 
results presented in this work complement the results for free shear flows and equilibrium 
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FIGURE 7. Results for the flow in a combustion chamber: axial (top) and swirl velocity com- 
ponent profiles (bottom), (a) x/R = 0.7; (b) x/R = 1.68; (c) x/R = 3.6. o : experiments; 
 : model LSI; : model LS2; : v2 - f results. 

boundary layers reported by Poroseva & Bezard (2001), and indicate the optimal values 
for these coefficients for massively-separated flows. 

It is worth noting that the Ck values found in this study are within the range suggested 
by Demuren et al. (1996) from the analysis of DNS data of wakes and mixing layers. 

The proposed form of the turbulent kinetic energy equation is not complete. It reflects 
only the additional contribution of the rapid part of the pressure diffusion term. In order 
to derive the complete form of the equation in inhomogeneous turbulence, two more 
issues must be considered: (i) modeling the "slow" part of the pressure diffusion term 
in inhomogeneous turbulence, (ii) consistency of the models for the velocity-pressure 
gradient correlation Ily and the dissipation tensor eij. These issues will be addressed in 
the future. 

Several formulations are available in the literature to define the value of Ce\ as function 
of various flow and geometrical parameters. As an example, in the v2 - f model (Durbin, 
1995) the following function is used: 

Csl = 1.3 + 0.25/ [1 + (0.15d/D)2]4 

Here d is the distance from the walls and D is a turbulence length scale proportional to 
fc3/2/£. This corresponds to a linear interpolation between a near wall value of 1.55 and a 
free stream value of 1.3. Other formulations (Shih 1998) use the ratio between production 
and dissipation of turbulent kinetic energy to achieve the same goal of interpolating 
between two values of Cei- Future work will address the influence of different formulas 
on the computed results. 
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Wall corrections in modeling rotating pipe flow 

By   S. V. Poroseva 

1. Motivation and objectives 
The presence of a wall significantly influences the turbulence structure of a flow. Wall 

effects are naturally described by the exact transport equations for turbulence charac- 
teristics with appropriate boundary conditions imposed. In practice, however, turbulent 
flow features are simulated with the averaged Navier-Stokes equations in which some 
terms must be modeled. This implies that the model expressions used for those terms 
should respond correctly to the presence of the wall. 

The terms to be modeled in the averaged Navier-Stokes equations are dissipative ten- 
sors, pressure-containing correlations, and turbulent diffusion terms. Modern turbulence 
models are mostly based on the second-order weighted averages of the Navier-Stokes equa- 
tions, the Reynolds-stress transport equations (RSTE), from which simpler, industry- 
oriented turbulence models are then derived. To date, model expressions for the dissipa- 
tive tensor eij, the pressure-containing correlations Ily and the turbulent diffusion term 
have been derived based on assumptions which are not consistent for the different terms. 
Moreover, some of those assumptions are too simplified to reflect the real physics of a 
flow: they hold only for some limiting states of turbulence that are rarely (if at all) met 
in real flows. As a result, turbulence models do not naturally reproduce wall effects, and 
usually need additional wall corrections. It is important to clarify which model expres- 
sions contribute most to model failure and are therefore in most need of such corrections. 
The present study is not an attempt to solve this problem in general, but only in a 
particular case of turbulent flow: flow in an axially-rotating cylindrical pipe. This flow is 
of interest because it relates to phenomena encountered in various engineering systems 
involving boundary layers on rotating surfaces, e.g., heat exchangers and rotor cooling 
systems. 

It was shown by Kurbatskii k Poröseva (1999) that the commonly-used model of Daly 
& Harlow (1970) for the turbulent diffusion does not adequately describe the behavior of 
the third-order velocity moments in a pipe flow. At present, the tensor-invariant model 
of Hanjalic & Launder (1972) is the best choice for modeling turbulent diffusion in the 
RSTE. Though it is less accurate in predicting the third-order moments than models 
based on the transport equations for these moments, the HL model provides results which 
are quantitatively comparable with those obtained using more accurate models. Also, it is 
cheaper and more robust in different combinations of Reynolds and rotation numbers. The 
difference between results obtained with the DH and HL models is large, especially near 
a wall, and increases with swirl. The tensor-invariant model for the turbulent diffusion 
significantly improves the description of turbulence structure near a wall, especially with 
large wall rotation. Nevertheless, in a stationary pipe, changing the DH model to a more 
adequate turbulent diffusion model does not solve the problem of inaccurate prediction of 
the turbulent intensities near a wall. The model expressions for the dissipative tensor and 
the pressure-containing correlations (Launder et al. 1975) used in Kurbatskii & Poroseva 
(1999) still need additional wall corrections (So & Yoo 1986; Gibson & Launder 1978). 
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Of the other two terms in the RSTE that need to be modeled, the present study focuses 
on the pressure-containing correlations. One of the reasons for this is the fact that little 
progress has been made in modeling the dissipative tensor. With the state of art in this 
field, it is possible to say that including or excluding wall corrections in commonly-used 
models for e^- does not make those models more or less physical. To date, their main 
function is more to compensate for inaccuracies in modeling other terms, rather than 
to reproduce the dissipative process itself accurately. In contrast, progress in modeling 
the pressure-containing correlations is more noticeable. New approaches based on more 
refined physical assumptions (e.g. Speziale et al. 1991; Kassinos et al. 2000, 2001) have 
been developed in the last decade. It could be expected that their performance should 
depend less on wall corrections. One of the objectives of this work was to clarify this 
question. 

Rotation can have a crucial role in the development of wall corrections to model ex- 
pressions for the pressure-containing correlation. It was noticed by Gibson k Launder 
(1978) that, in a stably-stratified boundary layer, wall effects diminish as stability is in- 
creased. Though the physical mechanism of influence of rotation on a pipe flow structure 
differs from that of stable stratification, the analogy between those two flows is very well 
known. Thus, it can be expected that wall effects in a rotating pipe flow will diminish 
with increasing rotation number N, defined as the ratio of the pipe wall velocity W0 to 
the mean-flow velocity at the pipe center U0. Indeed, it was found by Poroseva et al. 
2000, 2001) that including the wall effects (Gibson k Launder 1978; Durbin 1991) in 
turbulence models, such as the structure-based Q model (Kassinos et al. 2000, 2001) and 
the non-linear SSG model (Speziale et al. 1991), does not decisively improve the ability 
of the models to describe a flow under rotation, though it does improve the description 
of turbulence structure in a stationary pipe flow. The maximum value of the rotation 
number N at which a model still appropriately reproduces the turbulence structure is the 
same in both cases; whether wall effects are included in the model or not. Moreover, the 
stronger the rotation, the smaller the influence of wall effects on flow characteristics. This 
conclusion relates in larger degree to the mean-velocity components and shear stresses. 
Turbulent kinetic energy is more sensitive to the description of wall effects. This question 
is the second focus of the present work. 

2. Models 
There are two ways to evaluate the performance of different model expressions for the 

pressure-strain correlations. The most physical way would be to use direct numerical 
simulation (DNS). This gives complete information in the case of low-Reynolds-number 
flows. However, with increasing Reynolds number, the contribution of the different physi- 
cal mechanisms to turbulence processes changes. Therefore, some conclusions valid at low 
Reynolds numbers will not necessarily hold for high Reynolds numbers. Such a situation 
could be expected for wall effects, which are the focus of the present study. The flow in 
the current work was calculated at two Reynolds numbers, 2 x 104 and 4 x 104, which 
are too high to apply DNS. For such Reynolds numbers, another way to evaluate model 
expressions for Ily can be used. Namely, to calculate the flow with a turbulence model, 
in which model expressions for the turbulent diffusion and the dissipative tensor are kept 
the same, but the model for the pressure-containing correlations is adjusted. 

The transport equation governing the evolution of the Reynolds stresses has the fol- 
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lowing form 

Here, 

D < UjUj > 

D~t 
— JTij ~T &ij ~r 11« j      £{j - 

Dt ~   jdxj + dt' 
Ui are the mean velocity components, and Ui are the fluctuating velocity components. 
Cartesian tensor notation is used throughout the text for the sake of simplicity. The 
production term Py = - < Uiuk > Uk,j- < UjUk > Uk,i does not need modeling. The 
diffusion term Dij includes the molecular diffusion v{< UiUj >,kk) {v is the kinematic vis- 
cosity), which also does not need modeling, and the turbulent diffusion - < UiUjUm >,m. 
The DH model (Daly & Harlow 1970): 

< UiUjUk >= —CS\T{< UmUk >< UiUj >>m) 

has been chosen to model the turbulent diffusion in the present study. Here, Csi = 0.18 
and the time scale r is modeled as r = k/e, where e is the dissipation rate of the 
turbulent kinetic energy k. Though the HL model (Hanjalic & Launder, 1972) proved 
to give better results in a pipe flow (Kurbatskii & Poroseva, 1999), the main focus of 
the present study is evaluation of the performance of the pressure-containing correlation 
models, not suggestions for a complete RSTE model, and the simplest turbulent-diffusion 
model serves for this aim. 

The pressure-containing correlation term Ily = -(< UiPj > + < u,p,j >)/p (p is 
the pressure fluctuation, p is the flow density) is usually split into the pressure-strain 
correlations < (utj + Uj^p > /p and the pressure-velocity correlations -(< u,p >j + < 
Ujp >,i)/p- Then the correlations -(< Uip >,j + < Ujp >,i)/p are either combined with 
the turbulent diffusion term or neglected. Neither practice has solid justification, but at 
the moment this issue will be skipped and the same approach will be used throughout 
this work. Thus, progress in modeling the pressure-containing correlations mostly relates 
to modeling the pressure-strain correlations. Based on previous work on modeling a pipe 
flow (for a review see, e.g., Poroseva et al. 2000), the following model expressions for the 
pressure-strain correlations were chosen for evaluation: the IP model and the full LRR 
(Launder et al. 1975), the linearized SSG (Gatski k Speziale 1993) and the non-linear 
SSG (Speziale et al. 1991). All models can be represented by the same expression: 

Utj = -(C[e + 2C^P)ba + C'2e (bikbkj - ^bubuS^ + (c'3 - C'fs/büQ) kS{j 

+C'4k I bikSjk + bjkSik - -rbkiSuSij J + C'hk{biküjk + bjktiik) 

with different coefficients: 

IP : {Ci, C[\ C2, C's, C3*, d C't) = (3.6, 0, 0, 0.8, 0, 1.2, 1.2) 
LRR: (Ci, C'{, C2, C3, C3*, CJ, CJ) = (3.6, 0, 0, 0.8, 0, 1.75, 1.31) 

LSSG : (Ci, C{*, Ci, C3, <%, C4, C5) = (3.4, 1.8, 0, 0.36, 0, 1.25, 0.4) 
SSG : (C{, C[\ C2, C3, C'3\ Ci C6) = (3.4, 1.8, 4.2, 0.8, 1.3, 1.25, 0.4) 

Here, by = l/2(< uiUj > /k - 2%/3), 5« = (Uitj + l7w)/2 and fly = (Uitj - Uiti)/2. 
Note that in the present study the value of the coefficient C[ in the LRR model is 3.6 
instead of the usual 3.0. 
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A new approach, which offers an alternative to the standard method based on the 
modeling of the RSTE, is the structure-based Q model (Kassinos et al. 2000, 2001). 
A preliminary formulation of this approach has been evaluated here also. The pressure 
effects are treated in the Q model in a more profound way: non-local effects are taken 
into account by incorporating additional structure tensors into the model. Details of the 
transport equation for the third-rank Q-tensor can be found in Kassinos et al. (2000) 
and Poroseva et al. (2000, 2001). 

The dissipation tensor Sij is modeled by the isotropic expression, with a correction for 
low Reynolds numbers near a solid wall, as 

2 r        .   < UiUj > ,n ,. 
e« = ösüe + 2v V— (2-1) o xn 

(So & Yoo 1986), where xn is the normal distance to a pipe wall and öij is the Kronecker 
delta tensor. The equation for the dissipation rate of the turbulent kinetic energy is used 
in the following form 

^ = [{v5jk + Ctr < Ujuk » ej) k + I (CnP - C*£2e) - ^/i- (2-2) m     lv„JB,„t.   ..j.,^.^,^-»-      -M-,      x[ 

n 

Here, P = Pa/2. The model coefficients are: Ce = 0.18 (0.22 for the Q model), CeX = 1.54 
(1.5 for the Q model), C*2 = C£2/2 in a stationary pipe flow and C£2 = H/6. The 
functions /i and /2 are damping functions (So & Yoo 1986): /i = exp (-0.5x„u»0/i/), 
where u»0 is the friction velocity, and /2 = 1 - 2/9 exp - (k2/(6ve))    . In rotating flows 
the model coefficient C*2 is a function of the "Richardson number" 

C;2 = max(1.4, (^2/2(1 - CRRi)),    CR = 2, (2.3) 

8W W 

Ri = dr 

m+m 2 • 

The restrictive condition on the value of C*2 is imposed to avoid excessive values of the 
dissipation rate close to a wall, which would be predicted in rotating flows. 
Modification of the C*2 coefficient by the Richardson number is necessary to reproduce 
correctly the effects of strong turbulence suppression observed in an initial pipe section. 
It was found by Kurbatskii & Poroseva (1999) and Poroseva et al. (2000, 2001) that 
the choice of a model for the pressure-strain correlation, and the presence of additional 
wall corrections to that model, do not solve the problem, and an Ri modification is still 
necessary. In this study, more models are examined to clarify the question. 

When the fully-developed part of the flow is simulated with the same CR = 2, turbu- 
lence is suppressed very soon, at N = 0.5. This contradicts the experimental observations 
(Kikuyama et al., 1983; Nishibori et al. 1987; Imao et al, 1996) which show decreasing 
turbulence level with increasing rotation, but not full suppression. On the contrary, they 
show the existence of some limit state, which is rather insensitive to further increase of 
rotation and to Reynolds number. The level of turbulence is lower than in a stationary 
pipe, but not by much. Therefore, the present RANS calculations of a fully-developed 
rotating pipe flow are made with CR = 0. In (2.3), U and W are the axial and the 
circumferential mean velocity components respectively, r is the radial coordinate. 

The presence of damping functions in Eqs. (2.2)-(2.3) is also not influenced by the 
pressure-strain correlation model. It relates to formulation of a model for the dissipative 
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tensor. Though it is evident that a more physical alternative to Eqs. (2.1)-(2.3) should 
be sought in the future, in a pipe flow this formulation provides good, stable results 
with different combinations of Reynolds and rotation numbers. Moreover, with such a 
formulation, the step size in the axial direction is significantly larger than, for instance, 
that in the formulation used by Kassinos et al. (2000) and Poroseva et al. (2000, 2001). 
The issue of computing time becomes very important when complex model expressions 
for Ilij- are incorporated into the model. 

3. Results 
All approaches to modeling the pressure-strain correlation have been evaluated at two 

Reynolds numbers, 2 x 104 and 4 x 104. Note again that all parts of the turbulence model 
except the pressure-strain model were kept the same for all computations. The same 
flow conditions were applied as in the experiments (Kikuyama et al., 1983; Zaets et al. 
1985): a rotating flow was obtained by conveying a fully-developed turbulent flow from 
a stationary cylindrical pipe into a rotating cylindrical section of the same diameter. 
As experiments demonstrate (Kikuyama et al, 1983; Zaets et al. 1985; Nishibori et al. 
1987; Imao et al. 1996), it is possible to distinguish two regions in a rotating pipe flow, 
with different turbulence structure. In the initial pipe section, with a length of about 
301? (D = 2R is the pipe diameter), strong suppression of turbulence characteristics is 
observed (Zaets et al. 1985). After suppression, however, statistical quantities increase 
in value and eventually stabilize at some level which is lower than in a stationary flow, 
but not by much (Nishibori et al. 1987). This is the region of fully-developed turbulence, 
which is observed beyond about 170D for any Reynolds number (Kikuyama et al., 1983; 
Imao et al. 1996). 

In the calculations, the grid was non-uniform in r, the total number of nodes being 
128 (64 for the Q-model) at Re = 4 x 104 and 68 at Re = 2 x 104. 

The RSTE model with the IP model expression for the pressure-strain correlation does 
crucially need additional wall corrections. The turbulent diffusion model has practically 
no influence on mean-velocity components (Kurbatskii k Poroseva, 1999). Results for 
different turbulence characteristics at Re = 2 x 104 are in strong disagreement with 
experimental data (Imao et al. 1996). The disagreement increases significantly with in- 
creasing rotation number. Profiles of the axial mean velocity are shown on Fig.la. With 
increasing Reynolds number (Re = 4 x 104), the dependence of the model results on 
additional wall modifications decreases for the mean velocity components (Fig. lb) and 
the shear stress (Fig. 2a). However, the turbulent kinetic energy does need additional 
wall corrections. The higher the value of the rotation number, the less critical the wall 
corrections become. This is especially true at higher Reynolds number. 

The mean velocity profiles calculated with the LRR, LSSG, SSG, and Q models are 
given in Figs. 3-4. 
Nearly all models predict the axial mean velocity well, in a stationary pipe and with 
increasing rotation number (up to N = 1). Only the non-linear SSG model already fails 
at N = I, Re = 2 x 104, predicting complete turbulence suppression. This contradicts 
the experimental data (Kikuyama et al, 1983; Nishibori et al. 1987; Imao et al. 1996). 
The other models do not fail at N = 1, but they show the same incorrect tendency to 
turbulence suppression and fail at larger JV. One must conclude that modern turbulence 
models provide trustworthy results in a rotating pipe flow only at moderate rotation 
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FIGURE 1. Axial mean velocity at a) fie = 2 x 104, b) fie = 4 x 104. Calculations: ( ) IP 
model. Experiments: a) (o) N = 0., (@) N = 0.5 (Imao et al. 1996); b) (♦) N = 0., 

(0) AT = 0.6 (Zaets et al. 1985) 

1.0 r 6r 

FIGURE 2. Calculations by the IP model at fie = 4 x 104: a) shear stress, b) turbulent kinetic 
energy (see notation in Fig. lb). 

numbers (N < 1). The additional wall corrections developed to date do not improve this 
situation (Poroseva et al. 2000, 2001). 

At higher Reynolds number, Re = 4 x 104, solutions obtained with the different models 
become very close to each other. 

At fie = 4 x 104 results for the circumferential mean velocity are more sensitive to 
model choice than results for the axial mean velocity (Fig. 4a). However, with increasing 
Re, profiles calculated with different models again become close to each other (Fig. 4b). 
The LSSG gives slightly better profiles at fie = 2 x 104 than the other models. The LRU 
and SSG models generally give very similar results, but the LRR does not fail at JV = 1. 

The second-order statistics are shown in Figs. 5-9. All models overpredict the normal- 
ized shear-stress profile < uv > at Re = 2 x 104 (Fig. 5a: Um is the area-mean axial flow 
velocity). At fie = 4 x 104 the results are in very good agreement with the data (Fig. 
5b). In a stationary pipe flow no additional wall correction is necessary. With increasing 
rotation, some difference between calculated and experimental profiles is observed in the 
near-wall region. However, this difference can easily be corrected by changing the tur- 
bulent diffusion model from the DH model to the tensor-invariant HL, as was shown by 
Kurbatskii & Poroseva (1999) (see Figs. 7 and 8 in that work). 

The choice of a turbulent diffusion model is also important for correct prediction of 
the turbulent kinetic energy in a fully-developed rotating pipe flow. If the IP model 
expression is combined with the DH turbulent diffusion model in the RSTE turbulence 
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FIGURE 3. Axial mean velocity at a) Äe = 2 x 104, b) Re = 4 x 104. Calculations: ( ) 
LKR, ( ) LSSG; (  ) SSG; ( ) Q. Experiments: a) (o) N = 0., (®) AT = 0.5, 
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FIGURE 4. Circumferential mean velocity at a) Re = 2 x 104, b)fie = 4x 104 

(see notation in Fig. 3). 

model, the turbulent kinetic energy is significantly overpredicted (Fig. 9 in Kurbatskii 
& Poroseva, 1999): the calculated level is even higher than in a stationary pipe flow, in 
strong contradiction of the experimental data. As has been found in the present study, 
the use of more refined model expressions for the pressure-strain correlation does not 
solve this problem. All models predict the turbulent kinetic energy in a fully-developed 
rotating pipe flow to be greater than in a stationary pipe flow. In Fig. 6a only the profile 
for the LRR model is shown at N = 0.5. The other models give qualitatively similar 
results, which are omitted from the plot to reduce the number of curves. The rest of 
the curves on Fig. 6a correspond to N = 0. Wall modifications do not improve these 
results either (Kurbatskii & Poroseva, 1999; Poroseva et al 2000, 2001). However, using 
the HL turbulent-diffusion model instead of the DH model did help to correct results 
in Kurbatskii & Poroseva (1999). Possibly, this will also solve the problem when other 
model expressions for the pressure-strain correlation are incorporated into the RSTE 
model. Additional calculations at Re = 2 x 104 and lower should be made to clarify the 
role of the turbulent diffusion model in RSTE model performance. 
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FIGURE 5. Shear stress at a) Re = 2 x 104, b) Re = 4 x 104 (see notation in Figure 3). 
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FIGURE 6. Turbulent kinetic energy at a) Re = 2 x 104, b) Re = 4 x 104 

(see notation in Figure3). 

In a stationary pipe flow at Re — 2 x 104, the Q model predicts the turbulent kinetic 
energy better (Fig. 6a). Wall corrections are necessary only in the region (0.8 < r/R < 1). 
Figure 6b shows profiles for the turbulent kinetic energy at Re = 4 x 104. They are in 
better agreement with the experimental data than for Re = 2 x 104. Also, the results 
obtained by different models are close to each other, though the Q-model becomes better, 
relative to the other models, with increasing rotation. It is seen that in a stationary pipe 
flow all models need additional wall corrections. With increasing rotation, the necessity 
for such corrections significantly decreases. 

The partition of turbulent kinetic energy between different components in a stationary 
pipe flow is shown in Figs. 7 and 8. For more detailed information in the near-wall 
area, the data of Laufer (1954) are also given in Fig. 7. Those data were obtained at 
Re = 5 x 104 and therefore can be used only for qualitative comparison. 

At Re = 4 x 104(Fig. 7), all models reproduce each component of the turbulent kinetic 
energy in the core of the flow very well. The LRR model yields a < u2 > profile which 
lies rather far from the experimental data in the remainder of the flow. The LSSG pro- 
vides slightly better results than the other models for all components. The SSG needs 
corrections for < w2 > more than other models. All models need corrections near the 
wall, in regions which are roughly (0.8 < r/R < 1) for normalized < v? > and even 
smaller, (0.9 < r/R < 1), for < v2 > and < w2 >. It is seen in the plots that it is the 
axial component of the turbulent kinetic energy that mostly needs additional treatment. 
Radial < v2 >, and to a lesser degree circumferential < w2 > components, though they 
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FIGURE 7. Turbulent kinetic energy components in a stationary pipe flow at Re = 4 x 10 
a) < u2 > /ul0 (upper), < v2 > /i40 (lower); b) < w2 > /ul0. Notation is inn Figure 3, (A) 

correspond to experimental data of Laufer (1954). 
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FIGURE 8. Turbulent kinetic energy components in a stationary pipe flow at Äe = 2 x 10 
a) V< v? >/Um (upper), \/< v2 >/Um (lower); b) V< w2 >/Um (see notation in Figure g3). 

FIGURE 9. Effect of rotation on the turbulent kinetic energy components (Äe = 4 x 104: see 
notation in Figure 3). 

could be predicted better, contribute less than < v? > to the turbulent kinetic energy 
neax a wall.   . 

At Re = 2 x 104, the partition of the turbulent kinetic energy between components 
is shown in Fig. 8. The Q model gives the best agreement with the experimental data. 
Wall corrections are again necessary only in the region (0.8 < r/R < 1). It seems that 
the size of this region is not significantly influenced by Reynolds number, at least for Re 
values in the range considered here. In rotating flow all three components are significantly 
overpredicted (not shown here) as in the case of the turbulent kinetic energy. 

The influence of rotation on profiles of turbulent kinetic energy components at Re = 
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4 x 104 is shown in Fig. 9. It is seen that the Q model describes the change in the 
< u2 > profile with increasing rotation very well, and does not need an additional wall 
correction. Also, the SSG model describes the core of a flow well, whereas the LRR and 
the LSSG models overpredict the value of the normalized axial component in the core 
but underpredict it in the near-wall area. Profiles of < v2 > and < w2 > at N = 0.15 
are better described in the flow core by the LSSG and LRR models. At this value of N 
no model needs wall corrections. At N — 0.6 results obtained by different models are 
comparable. All models overpredict the core values of < w2 > but underpredict in the 
near-wall region, though they show qualitatively correct behavior in the latter region. In 
this case LRR gives worse agreement with the experimental data. As for calculations of 
< v2 > at N = 0.6, it is difficult to choose which model gives the best results. All profiles 
are comparable and in satisfactory agreement with the experiments. Problems observed 
in the near-wall region can be corrected, at least in some degree (Kurbatskii & Poroseva, 
1999), by choosing a turbulent diffusion model more suitable to the flow. However, the 
cause of the strong overprediction of < w2 > in the core of the flow is not clear at the 
moment. 

4. Conclusions and future plans 
Being the simplest, the IP pressure-strain model is widely used in practical applica- 

tions. However, as we have seen, this model is too simple to describe complex physics 
in a pipe flow. The simplicity in such a case is actually a disadvantage, to compensate 
for which the RSTE model should include additional wall corrections, such as damping 
functions or the elliptic relaxation scheme. This makes the final model more complex, 
not necessarily more physical or cheaper than more refined basic approaches to pressure- 
strain correlation modeling. 

The other four pressure-strain models tested in the present study capture the physics 
of the pipe flow significantly better. Profiles of the mean velocity components, calculated 
without wall corrections, are in good agreement with the experimental data. The models 
give results close to each other, but at Re = 2 x 104 the circumferential mean velocity 
profiles calculated by the Q model are rather far from the experimental data. With 
increasing Reynolds number, the difference between profiles calculated with the different 
models becomes negligible. 

Practically no model needs additional corrections for the < uv > shear stress at high 
Reynolds number (Re = 4 x 104). Disagreement between calculations and experiments 
observed for < uv > in the near-wall region of rotating pipe flow at N = 0.6 can be 
reduced significantly by choosing a more adequate model for the turbulent diffusion, as 
was shown by Kurbatskii & Poroseva (1999). The popular DH model does not correctly 
describe the third-order moments anywhere in a pipe flow. The influence of these mo- 
ments, which appear in the exact turbulent diffusion terms, is significant, especially in 
the near-wall region. The tensor-invariant HL model was recommended by Kurbatskii & 
Poroseva (1999): it will be applied in the future to simulate a pipe flow at low Reynolds 
number, to clarify in more detail the role of the turbulent diffusion model in such a flow. 
It is expected that predictions ofthe effect of rotation on the second-order statistics at 
Re = 2 x 104 (which are all overpredicted) will also be improved in this way. 

The prediction of the turbulent kinetic energy and its partition between components 
near a wall in a stationary pipe flow is not strongly influenced by the turbulent diffusion 
model. Therefore, all models need additional wall corrections for the turbulent kinetic 
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energy, and especially for its axial component, in the region 0.8 < r/R < 1 approx. It 
seems that the size of this region is not much influenced by Reynolds number, at least in 
the range of values considered here. The radial component needs less correction and the 
circumferential one needs only minor corrections, if any. Any wall modifications applied 
to a turbulence model should reflect the observed anisotropy. 

In general, the LRR model still seems to miss some important physics. This results 
mostly in poor predictions of the turbulent kinetic energy and its axial component in a 
stationary pipe flow. The SSG fails at N = 1, predicting flow relaminarization, which is 
in complete disagreement with the experiments. Other models also predict flow relami- 
narization, but at least at higher values of the rotation number. The Q model gives better 
results for turbulent kinetic energy in a stationary pipe flow at both Reynolds numbers, 
and with increasing rotation at Re = 4 x 104. Also, it better describes the partition 
of the turbulent kinetic energy between its components at Re = 2 x 104. However, the 
circumferential mean velocity profiles calculated with the Q model are in poorer agree- 
ment with the experimental data than the profiles obtained with the other models. Note 
however that unlike the other models tested here, the Q model formulation used in this 
work is incomplete, in the sense that only the transport equation for the Q-tensor incor- 
porates the new structure tensors. The Q-model formulation for the dissipative process 
that was used here does not include those tensors, even though there is good reason to 
expect a significant effect of turbulence structure on the dissipative process. Work by 
the structure-based modeling group at Stanford to include structure information in the 
transport equation for a second turbulence scale is currently in progress. A full evalua- 
tion of the potential of the structure-based model will become possible once this work is 
completed: therefore the results reported here for the Q model are preliminary. Finally, 
the LSSG is the recommended choice for practical calculations at the moment. The 
model provides a reasonable balance between complexity and quality of performance at 
all Reynolds and rotation numbers considered here. 

The influence of Reynolds and rotation numbers is similar. With increases in either 
parameter, predictions without additional wall corrections in the pressure-strain models 
improve significantly. 
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