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EXECUTIVE SUMMARY 

This research presents and documents an improved methodology for the prediction of empennage 
maneuver loads of a general aviation aircraft. Previous research using Neural Networks and 
angular accelerometers achieved predictions of strains to within ±50|is of the measured strains in 
100% of the cases for the vertical tail and 93% for the horizontal tail. The improved 
methodology is based on maneuver recognition using Neural Networks with the focus on both 
cost saving and improving the horizontal tail predictions. The recorded data are first classified 
by data clusters corresponding to known maneuvers then analyzed using Neural Networks trained 
for those maneuvers. This weighted sum approach successfully predicted strains to within ±50p.s 
of the measured strains in 100% of the cases for the horizontal tail. Angular accelerometer 
signals were replaced by numerically differentiated rate-gyro signals for the Neural Networks, 
and the predictions were found to be comparable resulting in considerable cost savings for the 
required minimum instrumentation. 
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1. INTRODUCTION. 

1.1 OVERVIEW. 

With recent improvements in flight data technology, airframe maintenance based on individual 
aircraft tracking has become feasible. For aging aircraft, this could potentially increase aircraft 
safety while keeping operating costs down. Aircraft operated regularly under severe conditions, 
such as low altitude surveying, patrolling, and flight training, would be checked in time to avoid 
unexpected failures, while airplanes flown in a much less severe environment would benefit from 
less frequent inspection cycles. The knowledge of the loads experienced by each aircraft is, 
therefore, essential to individual aircraft tracking. This would provide the information necessary 
to compile accurate fatigue load spectra and flight profile information for the aircraft. Future 
airplane designers could refer to this database to better estimate operational loads encountered in 
service and accurate predictions of airframe fatigue life could be made. If necessary, designers 
could then modify the design or require specific inspection cycles to ensure airworthiness of the 
aircraft. 

Strain gages provide a direct method of measuring structural loads. However, the installation of 
strain gages on aircraft already in service is labor intensive and, most likely, cost prohibitive for 
many small aircraft operators. An alternate method in which instrumentation can be easily 
installed in a remote location, such as within the airplane center of gravity (CG) envelope, or in a 
readily accessible space, such as the baggage compartment, which can provide equivalent data, 
seems more practical. Thus, a methodology to estimate structural loads using remote sensors 
with the desired accuracy comparable to strain gages needs to be developed. 

While extensive research has been completed on aircraft wing loads, work on empennage loads is 
still rather scarce. Since 1993, DeFiore and Kim [1] have been working on developing a 
methodology for the prediction of the empennage in-flight loads of small aircraft so that an 
appropriate flight loads database can be compiled. Initial phase of this work was to predict the 
strains in horizontal and vertical tail spars and verify these with strain gage measurements 
installed in the aircraft. Once the method has been validated, predictions can be extended to 
other locations of the structure including panels. The predicted strains can then be used to 
calculate the structural loads using traditional methods such as Skopinski, et al. [2]. The 
instrumentation must be simple, rugged, easy to install and maintain, and inexpensive in order to 
be accepted by the general aviation community. 

In recent years, there have been good advances in the prediction methodology [3], but further 
improvement in accuracy of the predictions is sought particularly for the horizontal tail. Previous 
work treated all the data collected during maneuvers with a single Neural Network for vertical 
tail and for horizontal tail. In this study, the classification of the data by maneuvers is sought for 
improving the accuracy of predictions. If maneuvers can be identified from the data, then a 
network specifically developed for that maneuver can be used to achieve better accuracy of 
prediction. Only empennage maneuver loads are addressed in this report. 



1.2 PREVIOUS RESEARCH. 

The most comprehensive project to date on maneuver and gust loads on general aviation aircraft 
is the National Aeronautic and Space Administration and Federal Aviation Administration 
(NASA/FAA) VGH study [4]. The VGH recorder provided a time-history of the indicated 
airspeed, pressure altitude, and normal acceleration near the center of gravity of the airplane and, 
while the data are being used for the fatigue analysis of empennage structures, it is more 
applicable for wing structures. A total of 42,155 hours of data was collected on 105 airplanes. 
Final documents [5 and 6] are fatigue evaluation reports for small and commuter airplane 
certification under Part 23 of the Code of Federal Regulations (CFR) and are based on the 
analysis of these data. 

hi the Netherlands, researchers confirmed the findings by Kim, et al. that the data from the 
vertical acceleration at the center of gravity of an aircraft correlated well with wing loads but not 
with tail loads [7]. The relationship between the aircraft motion parameters (lateral and vertical 
accelerations; pitch and yaw rates) and tail loads appeared to be lacking. Hence, they measured 
the loads due to bending moments directly with strain gages for their study, a method amenable 
to large aircraft. In a cooperative program with Fokker Aircraft, a KLM Fokker 100 was 
instrumented by the Dutch National Aerospace Laboratory (NLR). It was equipped with nine 
strain gage bridges (three shear and six tension bridges), an aircraft monitoring system, and a data 
recorder. The tail load spectra were developed from the data collected. 

hi the U.S., the Navy developed a method for fatigue life evaluation using a Structural Data 
Recording System (SDRS) that recorded up to 20 flight variables, including normal acceleration, 
roll rate, altitude, angle of attack, wing sweep angle, and Mach number [8]. The method used 
Neural Networks (NNs). It was used to predict strains on the B.L.10 longeron of an F-14. The 
Neural Network was trained on a file recorded during a series of maneuvers and tested on a file 
recorded during maneuvers typical of fleet operations. The correlation of predicted to measured 
strains was 0.97 for the training file and 0.93 for the validation file. Similarly, the U.S. Navy 
also developed a SDRS system to track fatigue loads of dynamic components in helicopters [9]. 
From 1993 to 1995, 42 SDRS units were installed in an AH-1W fleet, and a total of 2,836 hours 
of flight data were recorded. A fleet average mission spectrum was created and component 
fatigue lives were calculated. Cost analysis showed that substantial savings was possible with 
the SDRS. 

More recently, Neural Networks were also used to study fatigue crack growth. Crack- 
propagation noise is recorded using acoustic emission transducers. Environmental and structural 
noises distort acoustic emission signals beyond easy recognition. Hill, et al. [10] showed that 
Neural Networks could be used effectively to classify acoustic emission signals for aluminum 
structures. Classification of the acoustic signals was accomplished by an unsupervised Neural 
Network known as Self-Organizing Maps (SOM). 

1.3 CURRENT APPROACH. 

The objective of this work is to improve the methodology for the prediction of the empennage in- 
flight maneuver loads of general aviation aircraft.   Kim, et al. were successful in developing a 



methodology for the prediction but it required the use of angular accelerometers that are 
relatively expensive for general aviation use and the predictions for the horizontal tail were not as 
accurate as for the vertical tail. 

hi 1993, Kim found that multivariate regression analysis was not sufficient for predicting 
empennage flight loads. The analysis showed that, while there was a relatively strong correlation 
between airplane lateral accelerations (CG_Ny and Tail_Ny) and the strains in the vertical tail, 
the correlation was very weak between airplane vertical accelerations (CG_Nz and Tail_Nz) and 
horizontal tail strains. The major reason was due to the presence of nonlinear relationships 
between remote sensor data and strain gage measurements caused by time delays in maneuver 
loads. This time delay (phase lag between sensor and strain gage measurements) varied from 
maneuver to maneuver. Kim hypothesized the existence of some nonlinear relationship between 
the accelerations near the CG of the aircraft and the strains in the empennage structure. To solve 
this problem, Neural Network analysis was chosen. Neural Network analysis is a powerful tool 
for searching relationships of this type where there is an unknown, possibly nonlinear, 
relationship between a set of input parameters (data collected at the aircraft CG) and the outcome 
(strains in the empennage). 

In this work, it is hypothesized that predictions can be improved with Neural Networks 
developed for a particular maneuver and applied to that maneuver than from a Neural Network 
trained on the composite of maneuvers and applied to a specific maneuver. In general, the 
training of a Neural Network is sensitive to the specificity of the data. If it is possible to separate 
clusters of data as specific maneuvers with Neural Networks, after separation of the data by 
maneuvers, a different maneuver-specific Neural Network could be applied to each of the data 
clusters to obtain the loads with improved accuracy. 

For the previous work, the hardware required for the predictions included three angular 
accelerometers. Angular accelerometers are too expensive for general aviation use and 
significant cost savings is possible if relatively inexpensive solid-state rate gyros can be 
substituted for the angular accelerometers. To validate this approach, angular acceleration 
information was provided to Neural Networks both directly after numerical differentiation of the 
rate-gyro signals and indirectly with rate-gyro signals, allowing the Neural Networks to self- 
determine the best relationship. Numerical differentiation of the rate-gyro signals provided a 
slightly better result and is presented in this report. 

2. BACKGROUND THEORY. 

2.1 BASIS OF NEURAL NETWORK ARCHITECTURE. 

Neural Networks represent an attempt to copy the working human brain. NNs belong to the field 
of artificial intelligence but differ from expert systems. No initial knowledge or explicit rules for 
processing the knowledge have to be coded by the programmer. A NN learns the rules by itself 
and is very useful in problems of prediction, classification, object or word recognition, 
optimization, and filtering. 



Each functional part of the brain finds its equivalent in NNs. In the brain, neurons receive and 
process signals from other neurons through input structures called dendrites. If activated 
sufficiently by this signal, the neuron will emit an output signal through a structure made of 
different "branches" called an axon. The output signal is transmitted from the branches of the 
axon to different neurons' dendrites (input structures) through connections called synapses. 

In NNs, neurons become processing elements (PEs). The processing performed by a neuron, due 
to input signals that it receives, is represented by a transfer function (TF). This TF can be a 
threshold function that only transmits information when the input signal reaches a minimum 
level. The output path of a PE, which would be an axon for the brain, is connected to the input 
path (dendrites) of other PEs by connection weights that correspond to the synaptic strength of 
neural connections. 

Signals on the input lines to a PE are modified by the weights prior to being summed. Then, the 
weighted summation becomes the input to a TF. Most common are sigmoid and hyperbolic 
tangent functions. The choice of TFs depends mostly on the required characteristics (continuity 
of the function and its derivative, etc.) and on the range of input data and expected answers. 
Details about TFs can be found in references 11 and 12. 

Usually, NNs consist of many PEs joined together and organized in layers. A NN is composed of 
an input layer, which receives all the external data, and an output layer, which holds the response 
of the network to a given input. Between those two layers are the hidden layer(s). hi figure 1, 
circles represent the PEs. 

External Data- 

O 
O 

o 

o 

o 
o Response 

Input layer        Hidden layer      Output Layer 

FIGURE 1. TYPICAL ARCHITECTURE OF A NETWORK 

2.2 NETWORK OPERATION. 

In as much as humans are first taught to speak, count, read, and recognize people, subsequently, 
they expand on this knowledge to situations that are new. A similar process is used in NNs. In 
the first phase, the network is trained on a training set: it generates rules. In the second phase, 
the network applies the rules learned to a new set of data (the validation set). 

hi supervised training, the correct answer is given to the network. By comparing its answer to 
the correct answer, the network corrects the rule that it was using through modification of input 
weights of the PEs (figure 2). 



desired 
output 

input processing 

T. 
actual 
output 

comparison 

FIGURE 2. SUPERVISED TRAINING 

In unsupervised training, the correct answer is not provided to the network. The most that can be 
expected from this model is to identify groups with similar patterns, a process that is called 
"clustering." The SOM is an application of this method. 

2.3 BACKPROPAGATION NEURAL NETWORK. 

The backpropagation, or back-error propagation, method is perhaps the most widely used NN. In 
this work, it is used for prediction of strains and classification of flight maneuvers. The training 
process is supervised. It follows a simple concept: if the NN gives a wrong answer, the weights 
are modified until the error is minimized. 

2.3.1 Backpropagation Architecture. 

Backpropagation NNs are usually layered with each layer fully connected to the layer below and 
above. PEs of the same layer are not interconnected. In figure 3, the weights of connections are 
denoted, vih, between input PEs (A3) and hidden PEs (Yh), and, cdho, between hidden PEs (Yh) 
and output PEs (Zo). 

niPML-P-Mtenis 

.XI 

Input Layer 

Hidden I.aver 

Zo          Output lLayer 

FIGURE 3. BACKPROPAGATION NEURAL NETWORKS, FULLY INTERCONNECTED 



Initial values of the weights have to be set before the training can begin. If they are too small, the 
application of a transfer function to the weighted sum will induce very small inputs to the hidden 
and output layers. If initial values are too large, inputs to the hidden and output layers will be 
large and may fall in the saturation region of the transfer function. In that region, the derivative 
of the transfer function is close to zero and may prevent the algorithm from converging. To solve 
this dilemma, a common procedure is to assign random values between -0.5 and 0.5 to the 
weights. 

The input layer must have a number of PEs equal to the number of input variables. PEs in the 
output layer must be as many as the predicted variables for the prediction problem and as many 
categories as possible for classification problems. The best number of PEs in the hidden layer is 
found by trial and error. The number of hidden layers is determined by the type of problem. For 
example, a linear problem requires no hidden layer while problems that are more complex 
necessitate one or more hidden layers. 

2.3.2 Backpropagation Training Algorithm. 

A NN is given an input that propagates forward from the input layer through each hidden layer to 
the output layer. The output PE provides the network's response. When the network corrects its 
internal parameters, the correction mechanism starts with the output PE and propagates backward 
("backpropagates") through the hidden layers to the input layer. At a glance, the training of a 
backpropagation NN consists of three phases as shown in figure 4. 

Feedforward of the training input 

yL 
Backpropagation of the associated error 

M/ 
Adjustment of weights 

FIGURE 4. PRINCIPLE OF BACKPROPAGATION TRAINPNG 

The adjustment of weights follows a learning rule.  A description of different types of rules can 
be found in reference 13. Only one of them, the Delta-Bar-Delta rule, is explained here. 

During training, each PE receives a weighted sum of inputs to which it applies a transfer 
function, F. The result is named the activation: 

yh = F(lxl vih) for a pE in the hidden layer 

zo=F(Lyh coho) for a pE in the output layer 



Each output PE compares its output value "zo" with its target value "to" to determine the 
associated error for that pattern. Based on this error, correction factor So and oh are computed 
using the following equations 

Sh=(to-zo)*F'(Zyh coho) for an output PE 

5h = E(& coho)*F'(Tjc i vih) for a hidden PE 

From these two equations, it can be seen that Sh can only be calculated once So has been 
determined; the error is backpropagated. The derivative of the transfer function, F, is needed. 
Hence, for the ease of solution, F is chosen such that it is continuous and easily differentiated. 
The logistic and hyperbolic tangent transfer functions are the most commonly used in 
backpropagation NNs. 

A large value for Vindicates that a large correction should be made to the incoming weights. Its 
sign reflects the direction in which the weights should be changed. 5 is used to distribute the 
error from the output PE to the input layer through the hidden layers. After all the 8 factors have 
been determined, the weights for all layers are adjusted simultaneously. The adjustment to the 
weight cdio, (from hidden PE Yh to output PE Zo) is based on the factor So and the activation 
value yh of the hidden PE Yh: 

Acoho = aSoyh 

In the same manner, the adjustment to the weight vih (from input PE Xi to hidden PE Yh) is 
calculated as 

Aoih=aöhxi 

a is the learning rate selected by the operator before the training begins. Its value ranges from 0 
to 1. The learning rate affects the duration of the training; the larger a is, the larger the 
correction of the weights per training pass. The network is at risk to oscillate about the solution 
without converging. Conversely, if a is small, the weights are corrected by small amounts at 
each period of the training, and it takes too much time to converge. The value of a can be varied 
for more efficient learning. In this case, the learning rate a would begin at a relatively large 
value and would be decreased over the learning process. The initial value of a is set by choice, 
typically between 0.2 and 0.5. The value of a is then decreased as iterative training continues. 
Acceptable rates of change are 

ca=aO(\-t/T) 

where t is the current training iteration, and T is the total number of training iterations to be 
completed, or 

at-r *a 



where r is the learning coefficient ratio. To determine if a should be modified, a transition point 
is defined: it is the number of iterations that must occur before a is reduced, an iteration being 
the processing of one input data set. The transition point should be at least equal to the number 
of training data sets. 

hi order to determine if the training has been achieved, tests are performed periodically on the 
training and validation sets. When the results start degrading, training is stopped and the weights 
are held at their values. 

2.4 UNSUPERVISED NEURAL NETWORK, SELF-ORGANIZING MAPS. 

hi unsupervised training, no additional information is necessary other than the input vector. 
Neural Networks have to identify groups of similar input patterns. Teuvo Kohonen developed 
this technique between 1979 and 1982. The concept is to consider the output cells as occupying 
positions in space. Cells close to each other are known as neighbors. The positions of cells are 
mapped to their behavior so that cells with similar input become neighbors. In the SOM, clusters 
aggregate geometrically within the network output layer. This method was tested to recognize 
and categorize maneuvers from the data collected during flights. 

2.4.1 Self-Organizing Map Architecture. 

A SOM typically consists of three layers: an input layer, a hidden or Kohonen layer, and an 
output layer. The hidden layer allows the SOM to complete its task. The input layer is fully 
connected to the bidimensional Kohonen layer. PEs are interconnected in the Kohonen layer but 
not in the input or output layers (figure 5). 

Input 1.. 

Hidden l.ilv«p 

Output I.nycr 

FIGURE 5. SELF-ORGANIZING MAP ARCHITECTURE 



The capability of a SOM to classify data is dependent on the number of PEs. Even though the 
optimum number of PEs in the hidden layer cannot be determined precisely, it does increase with 
the number and complexity of inputs. 

2.4.2 Self-Organizing Maps Training Algorithm. 

When an input pattern is presented to the NN, each input PE transmits a signal to the hidden 
layer. Hidden PEs then sum their inputs and compete to find a single winning PE. The 
Euclidean distance, D, of each hidden PE is calculated and the PE with the smallest D is selected. 
The Euclidean distance measures the difference between the desired signal and the input pattern. 
It is defined as 

D = \\X-Wh\\ = VS(z = l..n)(xi - cdh)2 

The suffix h refers to a PE of the hidden layer and i to a PE of the input layer, n is the number of 
input values, Xis the vector of inputs, and Wis the set containing the corresponding weights: 

X- (xl,x2, x3, ,xn) 
W= (colh, colh, oih, , amh) 

Those quantities are presented in figure 6. 

xiQ 

FIGURE 6. CONNECTIONS FROM THE INPUT LAYER TO A HIDDEN PE Yh 

The selected PE, or the winning PE, denoted by c, is chosen such that 

Dc = \\X-Wc\\ = minh {\\X-Wh\\}. 

If two PEs have the same value Dc, then by convention, the unit with the lower index h is 
chosen. The output of the winning PE is translated into a coordinate by output neurons. These 
coordinates represent the input signal to the topological map. 

Once a winner has emerged, the PEs in the immediate vicinity (neighborhood Nc) of the winner 
adjust their weights to more closely resemble the winner.  The size and shape (square, diamond, 



circle) of the neighborhood must be determined before the training begins.   Weights of the PEs 
are updated as follows: 

Acoih = a(xi - coih) 
Acoih - 0 

if PE/z is inAfc 
otherwise 

and 

(asTz)new = (crih)o\d + Acoih 

where a is the learning rate. 

Next, the size of the neighborhood needs to be specified. Typically, its initial width is relatively 
large and is decreased during training iterations. For example, if Nc has a square shape of width 
"d" the value of d is decreased according to the equation 

d=dO(l-t/T) 

where dö is the initial value of d. The final neighborhood size is chosen to be either one or two. 
It contains only the winning PE or the winning PE and its immediate neighbors. At a glance, the 
training of a SOM is represented by three (phases see figure 7). 

Locate the winning PE 

3L 
Increase matching ofthat PE and its neighbors by adjusting their weights 

JZ_ 
Gradually decrease the size of Nc and the amount of change to the weights 

FIGURE 7. PPJNCIPLE OF SOM TRAINING 

Once the NN has been trained, the weights of all the PEs are held constant. 

2.5 LEARNING VECTOR QUANTIZATION NEURAL NETWORK. 

A method similar to SOM that uses supervised training is the Learning Vector Quantization 
method (LVQ). This method is used for problems of classification. It is a variation of the 
Kohonen SOM method that merges self-organization and supervised training. Its purpose is 
classification, and several versions of the LVQ method are available. 

10 



2.5.1 Learning Vector Quantization Architecture. 

Like in SOM, LVQ models have three layers: an input layer with as many PEs as there are input 
parameters, a hidden or Kohonen layer, and an output layer with a PE for each category. Once 
again, the number of PEs in the hidden layer is determined by trial and error. However, each 
category of the output layer has corresponding same number of PEs in the hidden layer. 

2.5.2 Learning Vector Quantization Training Algorithm. 

2.5.2.1 LVQ1. 

Other versions of LVQ NN are based on the method described here. Like in SOM, a global 
winning PE is first determined. It has the smallest Euclidean distance from the input vector: 

Dc = ||X- Wc || = minh {\\X- Wh ||} 

The calculation of the Euclidean distance for the global winner does not involve any bias factor. 

hi the simplest version of LVQ, only the weights of the winning PE are modified. The main 
difference with the SOM lies in the type of modification performed on the weights. The category 
of the input vector is known, and each PE of the hidden layer is assigned to an output PE, i.e., to 
a category. The winning hidden PE, h, may or may not be in the category of the input vector. 
The modification of the winner's weight is: 

Acoih = a(xi - oih)        if PE h is in the correct category 
Acrih = -a(xi - oih)      if PE h is not in the correct category 

and 

(cdh)new = (oxh)o\d + Aoih 

Hence, if the PE is in the good category, its weight becomes closer to the input signal, and if the 
PE is a wrong category, its weight diverges from the input signal. Here again, a is the learning 
rate and is reduced depending on the learning rate ratio. 

In this simple form, LVQ1 algorithm presents a major inconvenience. Some PEs tend to win 
each time, while others have very few chances to win. An option called LVQ1 with conscience 
[13] permits control of how often each PE wins. It is similar to the mechanism described 
previously. LVQ1 with conscience determines not only a global winner among all the classes but 
also an in-class winner. 

The frequency with which the PE h wins is given by 

p(h)=(l - /?)*p(h) ifh is not the in-class winner for this step 

p(h)={[ - ß)*p(h)+ß      ifh is the in-class winner for this step 
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In LVQ models, ß is called the frequency estimation. The in-class winner is determined by using 
a biased Euclidean distance 

B(h)=y[N*p(h)-\] 

where N is the total number of PE in the hidden layer and /is the conscience factor. In LVQ1 
with conscience, the in-class winner PE is always moved towards the input signal, even if it is in 
the wrong class. 

2.5.2.2 Other Versions: LVQ2, LV02.1, and LVQ3. 

hi other versions, not only the winning PE, but also the closest PEs from the winning PE are 
modified. In LVQ2, the second winner is modified if it is in the right category while the winner 
is not. However, this correction happens only if the second winner is close enough to the winner 
(at a distance ca). hi LVQ2.1, the winner and second winner are both modified if they are within 
a distance a, as long as any one of them is in the correct category while the other is not. Finally, 
in LVQ3, the two first winners are modified as long as they are within the distance a. 

2.6 TRAINING PARAMETERS. 

Training parameters control the changes that occur in the hidden layer during the learning period. 
The learning coefficient a, the learning ratio, and transition points have been mentioned 
previously, but two more parameters need to be explained: ß and y. They control the frequency 
p(h) that PE Yh is allowed to win. This controlling mechanism keeps track of how often a PE 
wins and adjusts the network so that losing PEs are encouraged to win. This allows for better 
separation of categories in the output map. The frequency p(h) with which the PE h becomes a 
winner is updated at each transition point: 

P\h)- V ~ ß) * P\h) if h is not the winner for this step 
p(h)= (l-ß)*p(h)+ß      i{his the wirmer for this step 

y is used to determine a bias term Bh that is added to the Euclidean distance function for the PE 
Yh. It favors PEs that have not won recently and thus encourages all the PEs of the hidden layer 
to be utilized. 

Bh=y[N*p{h)-l] 

where N is the total number of PEs in the hidden layer. Initially, p(h) is set to UN, so Bh = 0. If 
a PE Yh wins often, p{h) is high, Bh is high, and a high number is added to the Euclidean 
distance D so that the PE has fewer chances to win. On the other hand, if a PE Yh does not win 
often, p(h), Bh, and D become smaller, and PE Yh has a greater chance to win. 
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3. TESTING AND DATA PROCESSING. 

3.1 EXPERIMENTAL SETUP. 

A Cessna 172P (C172P) was instrumented with air data transducers to record airspeed and 
altitude, two linear accelerometers near the aircraft CG, two linear accelerometers mounted on 
the tailcone bulkhead, three rate gyros and three angular accelerometers mounted on an 
instrument pallet in the baggage compartment, and a pitot-static flight test boom with angle-of- 
attack and sideslip vanes. The airplane was also instrumented with eight temperature 
compensating strain gages: two in the right wing front spar, four in the left horizontal tail 
stabilizer front spar, and two in the vertical fin front spar. For this work, only one gage is used 
for each tail, i.e., the gage on the port or left spar cap for the vertical tail (VTP), and the gage on 
the top spar cap for the horizontal tail (HTT), the others serving as backup gages. The 
instrumentation aboard the C172P is detailed in reference 3 and is included here as table 1 and 
figure 8. 

TABLE 1. INSTRUMENTATION DESCRIPTION 

Type Qty Model Manufacturer 
Linear Accelerometer 4 Columbia Research SA-107BHP Columbia Research Laboratories, Inc. 
Rate Gyro 3 Gyrostar ENV-05H-02 Murata Mfg. Co. Ltd. 
Angular Accelerometer 3 Shaevitz, Inc. Shaevitz, Inc. 
Portable Computer I IBM PC Compatible 
Portable Data Acquisition System 1 Daqbook216 IOTech, Inc 
Strain Gage 4 Columbia Research Model 2681 Columbia Research Laboratories, Inc. 

V«*rtJc*J T*il - 
Strain Senior« 

Tall Mr. Tail Ny 
Linear Ac«I«romeler* 

FIGURE 8. INSTRUMENTATION SETUP 
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3.2 DATA COLLECTION. 

3.2.1 Collected Data and Testing Procedure. 

Twenty-two channels were recorded using the data acquisition system Iotech DaqBook 216 
portable: eight strain gage outputs, sideslip, angle of attack, airspeed, altitude, four linear 
accelerometers—two near aircraft CG (CG_Nz and CG_Ny) and two in the aircraft tailcone 
bulkhead (Tail_Nz and Tail Ny), three rate gyros (pitch, roll, and yaw), and three angular 
accelerometers (pitch, roll, and yaw). Data was collected in-flight using a laptop computer. The 
sampling rate was set at 200 Hz, while the recording duration varied from 30 seconds (6,000 
records) to 5 minutes (60,000 records). Data collection is started manually by the flight test 
engineer at the pilot's signal. A few seconds of straight and level data are collected before and 
after each maneuver to verify that the instruments are operating correctly and to provide a 
baseline. The data are collected in binary format and converted to ASCII format for easy 
analysis. Detailed descriptions of the data acquisition system and testing procedure can be found 
in reference 3. 

The methodology should be applied to any flight condition (speed, altitude, maneuver) within the 
flight envelope. However, for safety reasons, only a subset of the envelope was tested. Files 
containing the 22 channels were collected for flights at 3,000 ft for seven different maneuvers: 
dutch-roll, roll, sideslip left, sideslip right, stabilized-g turn right, stabilized-g turn left, and push- 
pull. Data was collected at 65, 80, and 95 KIAS. Maximum bank angles for roll and stabilized-g 
turns were 60 degrees, and a maximum of 3 g's was induced during push-pull maneuvers. 

Table 2, taken from reference 3, shows the maximum and minimum strain increments in the 
empennage for each maneuver in the training and validation set for the NN. 

TABLE 2. MINIMUM AND MAXIMUM STRAIN INCREMENTS RECORDED 

Vertical Tail Horizontal Tail 

Maneuver 

Maximum Strain 
Increment 

(us) 

Minimum Strain 
Increment 

(us) 

Maximum Strain 
Increment 

(us) 

Minimum Strain 
Increment 

(us) 
Dutch-roll 165 -178 112 -131 

Roll 29 -119 95 -160 

Sideslip left 4 -92 26 -98 

Sideslip right 17 -68 82 -59 

Push-pull -5 -61 44 -97 

Stabilized-g turn right 4 -71 32 -67 

Stabilized-g turn left 14 -69 17 -63 

From table 2, it can be seen that roll and dutch-roll maneuvers induce the greatest strain 
increments for the horizontal and vertical tails. Kim, et al. predicted the strains induced by those 
two maneuvers without considering the other maneuvers.   The other maneuvers induced strains 
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only in the insignificant region (see section 4.1). The strain increments shown are relative to the 
baseline 1-g level flight condition. 

In theory, the horizontal tail loads should be very small during pure sideslip maneuvers. 
However, the strains measured for these maneuvers were nevertheless relatively high. This is 
because as the airplane is maintained in a 1-g steady-state sideslip condition, the airplane tends to 
bank and lose altitude. To counter these tendencies, the pilot must apply opposite aileron and up 
elevator that increases the horizontal tail load. 

3.2.2 Preparation of Data for Analysis—Data Filtering. 

Initial work with the IoTech data acquisition system showed significant noise in the data. To 
filter the data, DADisp 4.0 software, from DSP Development Corporation, was used to perform a 
frequency spectrum analysis. Signals corresponding to the pilot control inputs, i.e., maneuver 
loads, had frequencies of 1.5 Hz or less so a low pass filter with a cutoff frequency of 2 Hz was 
used with the DADisp4.0. Kim, et al. compared predictions obtained using filtered and unfiltered 
data to train the Neural Network. Filtered data yielded better predictions and were used for this 
work. 

4. DISCUSSION OF RESULTS. 

The primary objective of this research is to improve the percentage of correct predictions of 
significant strains in the horizontal tail. It is desired that 100% of the predicted strains in the 
significant region be within the tolerance band (see section 4.1). A secondary objective is to 
reduce the cost of the sensors required for the prediction. The methodology is required to be 
accurate and reliable, but also affordable for operators of small general aviation aircraft. The 
range of acceptable prices for the low-cost flight data recorder is estimated between $2,000 and 
$3,000. Since the price of an angular accelerometer can vary from $1,700 to $3,000 each, 
finding a suitable low-cost alternative is paramount to satisfy the design criteria. If it works, rate 
gyros would provide a low-cost alternative at less than $300 each. 

4.1 FATIGUE DATA CONSIDERATION. 

The search for a methodology to predict empennage in-flight loads is driven by the requirement 
to avoid aircraft structural failure due to fatigue loads. Low stresses induced on the airframe do 
not cause appreciable fatigue damage. An accurate prediction of those stresses is of no interest. 
Only stresses that cause failure below the endurance limit need to be investigated. 

Figure 9 is the S-N curve of an Al 2024-T3 sheet [14]. For this material, the worst case for 
fatigue damage is for stresses over 5,000 psi with full stress reversal. The strain gages in the test 
aircraft are located approximately one-third semi-span outboard from the fuselage centerline. If 
the bending moment in the horizontal tail causes maximum stresses at the wing root, the 
minimum stress of concern at this location would be 5,000 psi. Assuming a linear relationship, 
the stress at the gage location would be approximately 1,600 psi. Thus, the insignificant region 
was defined conservatively as below 1,000 psi or below lOOpx. 
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Similarly, it is desired that the stresses be predicted as accurately as they are plotted in the S-N 
curve. Thus, a tolerance band of ±500 psi or ±50px was adopted as successful prediction criteria. 

IT. 2021-n SUCH KT-i.Q EH,™ 
rcr* STKESS 
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io* id" 
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i    ■ 

;   i 
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FIGURE 9. S-N CURVE OF AN Al 2024-T3 SHEET 

Inspections of figure 10 show that, for the flight envelope tested, dutch-roll (DRL) and roll 
maneuvers were the most significant maneuvers for the horizontal tail. In comparison, the peak 
load shown during the push-pull (PPL) maneuver corresponds to a 3-g pull-up condition. The 
peak load for stabilized-g turns (STGL and STGR) occurs during the roll entry, and the peak load 
during sideslip (SSL and SSR) maneuvers occurs due to up elevator deflection required to 
maintain altitude; a condition that is not common during routine operations. 
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FIGURE 10. HORIZONTAL TAIL LOAD DURING MANEUVERS 

Kim, et al. [3] used two sets of NNs for empennage load predictions: one for the horizontal tail 
and one for the vertical tail. For the horizontal tail, the best predictions were obtained when the 
NN was trained on angular accelerometer signals and vertical acceleration at the aircraft CG 
(CG_Nz). Data used for the training belonged to dutch-roll, roll, and push-pull maneuvers at 80 
KIAS. For the vertical tail, the NN was trained on signals from the angular accelerometer along 
the x- and y-axes collected during roll and dutch-roll maneuvers. NNs used were of modular 
architecture, which is a generalization of backpropagation NNs. The learning rule was of the 
type Extended Delta-Bar-Delta, and the transfer function was the hyperbolic tangent. For the 
horizontal tail, 93.3% of the significant strains were predicted within ±50p.s of their measured 
value. Incorrect predictions were obtained when testing the NN on data from dutch-roll and roll 
maneuvers at 95 KIAS. In contrast, 100% of the strains were predicted correctly for the vertical 
tail. 

4.2 RESULTS FROM SUPPRESSION OF THE ANGULAR ACCELEROMETER. 

To meet the cost objective of the instrumentation, it was necessary to find a suitable low-cost 
substitute to the relatively expensive angular accelerometers. To this extent, validation that the 
angular accelerometer data could be obtained from rate gyros was necessary. 

4.2.1 Utilization of the SJRnal from Rate Gyroscopes. 

Rate gyroscopes indicate rate of rotation, i.e., the angular velocity co, about an axis, while angular 
accelerometers measure the rate of change of angular velocity with respect to time, dco/dt. If the 
signal from the rate gyro is smooth enough, it can be differentiated to provide the same 
information as the angular accelerometer.   The differentiation of the rate-gyro signals can be 
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obtained by multiplying the difference between two succeeding samples by the sampling rate. A 
sample of signals from angular accelerometers (figure 11) and those obtained by differentiation 
of rate-gyro signals (figure 12) is shown below. 
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FIGURE 11. ANGULAR ACCELEROMETER SIGNALS 

FIGURE 12. RATE-GYRO SIGNALS AFTER NUMERICAL DIFFERENTIATION 
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4.2.2 Findings. 

Signals from the angular accelerometers were replaced by signals from the rate gyros after 
numerical differentiation. Results were comparable if not slightly better. Table 3 presents those 
results. 

TABLE 3. SAMPLE OF NEURAL NETWORKS PREDICTIONS TRAINED ON 
RATE-GYRO SIGNALS AFTER NUMERIC AL DIFFERENTIATION 

Results Obtained With "Predict" 
Prediction of Horizontal Tail 
Maneuver 

Entire Data File Significant Stress Region 
No. of 

Records 
No. of Error 

>500 psi 
Max 
Error 

No. of 
Records 

No. of Error 
>500psi 

Max 
Error 

Dutch-roll, 80 KIAS, Training set 5,801 0 37 384 0 18 

Dutch-roll, 80 KIAS, Validation set 5,801 48 68 45 0 14 
Dutch-roll, 95 KIAS, Training set 5,801 568 73 184 0 16 

Dutch-roll, 95 KIAS, Validation set 5,801 456 74 730 167 74 
Roll, 65 KIAS, Training set 5,801 0 48 313 0 23 
Roll, 65 KIAS, Validation set 5,801 16 52 25 0 19 
Roll, 80 KIAS, Training set 5,801 0 46 585 0 31 

Roll, 80 KIAS, Validation set 5,801 54 59 297 t) 23 

Roll, 95 KIAS, Training set 5,801 40 60 1,021 19 53 

Roll, 95 KIAS, Validation set 5,801 91 61 748 4 51 

Total 232,040 17,511 (34.1)* 4,332 190 (32.2) 

*Average error 

In the significant region, the NN trained on the signals from the rate gyros after differentiation 
gave better predictions than those trained on the angular accelerometer data. The number of 
predictions outside of the tolerance band decreased from 275 (6.4%) to 190 (4.4%) records. The 
accuracy of the predictions was improved slightly. The average error of prediction decreased 
from 34.1 us to 32.2\iz. Throughout the entire file, the results were similar. It was unexpected 
that better results were obtained with differentiated rate-gyro signals than with angular 
accelerometers. This is believed to be due to variations in the sensitivity and signal quality of the 
sensors and is not considered to be of much significance. 

4.3 RESULTS FROM IMPROVEMENT OF THE PREDICTIONS BY MANEUVER 
CLASSIFICATION. 

As previously stated, prediction of strains should be accurate for any flight condition. The seven 
maneuvers flown represent the main motions that can be encountered in flight. It was 
hypothesized that predictions obtained with a NN developed for each specific maneuver would 
be more accurate than the predictions obtained with a single NN trained on composite 
maneuvers. After validation of this hypothesis, the next step is to distinguish in the data file, the 
records belonging to each of the seven maneuvers and to apply the corresponding NN on the data 
clusters. Since the user has no interaction with the data acquisition system during the flight, the 
separation of data clusters by maneuver is performed postflight. NN is used to recognize the 
characteristics of each maneuver and automatically classify the records by maneuvers. 
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4.3.1 Neural Networks Specific to Each Maneuver. 

Specific NNs were built and tested for each maneuver. The parameters modified for each NNs 
training were the input variables and speed of training. Results were generally close, and table 4 
represents the best combinations of parameters obtained. 

TABLE 4. PARAMETERS USED FOR THE NN OF EACH MANEUVER 

Input Parameters Speed 
Dutch-roll CG Ny, rate gyro differentiated 80 and 95 KIAS 
Rolf CG Nz, rate gyro differentiated 65, 80, and 95 KIAS 
Sideslip CG Ny, rate gyro differentiated 80 and 95 KIAS 
Push-pull CG Nz, rate gyro differentiated 80 KIAS 
Stabilized-g turn CG Ny, roll, yaw, pitch 80 KIAS 

* For the roll maneuver, the NN used was also trained on the dutch-roll maneuver. It still gave very good results for 
roll and allowed the correct prediction of dutch-roll records that were improperly classified as roll. 

4.3.2 Classification. 

4.3.2.1 Evaluation of the Results. 

Classification aims to discover significant regularities within the input data of different groups. 
The network is trained to recognize to which group or data cluster the data record belongs. 
Ideally, the classification NN should be able to classify correctly 100% of the records, but two 
important factors must be considered. Even if the NN attained 100% correct classification on the 
training set, it is very likely that some records of the validation set will be classified in the wrong 
cluster. During test flights, and in particular during an operational flight, pure maneuvers rarely 
exist, e.g., a roll maneuver induces unintentional sideslips. In this case, some records might be 
classified incorrectly, but the prediction of strains still needs to be correct. To solve this 
problem, during the NN training, binary vectors were assigned with each record. For example, if 
two classes had to be classified, records belonging to class 1 were assigned a binary vector (1,0) 
and those of class 2, a binary vector (0,1). During the recall phase, a record might be classified 
as (0.6, 0.4). In this case, applying the weighted sum approach, the strain was calculated as the 
adjunction of the strain that would be induced in class 1 multiplied by the weight 0.6 to the strain 
induced in class 2 multiplied by the weight 0.4. 

4.3.2.2 Classification Algorithm. 

Different methods of classification, such as SOM, backpropagation with two and three hidden 
layers and LVQ were tested. While LVQ gave very good results for classification, 
backpropagation NN was better suited for the load prediction problem. 

In order to reduce the number of classes from seven to five, sideslip right and left as well as 
stabilized-g turns right and left were considered as one maneuver. The choice of input variables 
for the classification NNs was done by visual comparison of the traces of the data channels for 
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the different maneuvers. For example, the first NNs tried were expected to distinguish the seven 
(or five) maneuvers. It was thought that any maneuver could be resolved into a combination of 
three fundamental motions: roll, pitch, and sideslip. Thus, a NN with only three classes was 
built, but the predictions were not satisfactory. 

To overcome this shortcoming, a different strategy was tried with much better success. Since 
dutch-roll can be considered as a coupled roll and sideslip motion, the five maneuvers were 
classified into two classes: one with roll, dutch-roll, and sideslip, and the other with push-pull 
and stabilized-g turns. Finally, since maximum errors of predictions were associated with the 
roll maneuver, this maneuver was isolated from the four other maneuvers as the first step of the 
classification. Then, the dutch-roll was separated followed by push-pull, sideslip, and stabilized- 
g turns. Figure 13 illustrates the classification algorithm. 

5 maneuvers 
(0.9S) 

CGNz, CG_Ny. d(rate) 

4maneuvers 

CGNz, CGNy,Ro!l,Yaw/Pitch 

3 maneuvers 
(0.96) 

CGNz. CG _Ny, d(rale) 

y~ \ 
SSLR             PP          STGLR DRL 
(0.97S) (0.976)         (0.978) (0.96) 

CG_Ny, CGNz,          CG_Ny, . CGJNy 
d(rate) d(rate) Roll,Yaw,Pitch d(rate) 

Roll 

ROLL 
(0.957) 
CGNz, 
d(rate) 

FIGURE 13. CLASSIFICATION ALGORITHM 

The numbers in parentheses indicate the average rate of classification obtained. The term d(rate) 
represents the signals from the three rate gyros after numerical differentiation. 

4.3.2.3 Findings. 

Table 5 represents the classification obtained for each file. The first column indicates the 
maneuver corresponding to the files. The five following columns details how the files were 
classified. Numbers correspond to the percentages of records among the six files (three training, 
three validation) corresponding to each maneuver, classified in a given class. 
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TABLE 5. SUMMARY OF CLASSIFICATION 

Maneuver 

Classified as 
Dutch-Roll 

(%) 

Classified 
as Roll 

(%) 

Classified as 
Sideslip 

(%) 

Classified as 
Push-Pull 

(%) 

Classified as 
Stabilized-g Turn 

(%) 
Dutch-roll 84 10 5 1 0 

Roll 3 86 5 4 2 
Sideslip left 2 6 86 5 1 
Sideslip right 1 2 79 16 2 
Push pull 0 1 5 92 2 
Stabilized-g turn left 4 4 10 8 74 
Stabilized-g turn right 5 4 14 20 57 

Ten percent of dutch-roll was classified as roll. This explains why the NN applied to roll also 
had to be trained on dutch-roll. If the NN that separates roll from dutch-roll can be improved, a 
NN trained only on roll could be used for it. 

Table 6 presents the errors of prediction obtained after classification. For comparison, table 7 
gives the results published previously by Kim, et al. [3]. Table 8 summarizes the percentages of 
correct classification and the number of strains predicted with an error greater than 50u.s of their 
recorded values for each maneuver. 

TABLE 6. SUMMARY OF PREDICTIONS AFTER CLASSIFICATION 

Results Obtained With 
"Predict'Trediction of Horizontal 
Tail Maneuver 

Entire Data File Significant Stress Region 

No. of 
Records 

No. of 
Error 

>500 psi 
Max 
Error 

No. of 
Records 

No. of 
Error 

>500 psi 
Max 
Error 

Dutch-roll, 80 KIAS, Training set 5,801 60 65 384 0 16 

Dutch-roll, 80 KIAS, Validation set 5,801 67 61 45 0 9 

Dutch-roll, 95 KIAS, Training set 5,801 0 43 184 0 13 

Dutch-roll, 95 KIAS, Validation set 5,801 220 81 730 0 43 

Roll, 65 KIAS, Training set 5,801 24 63 313 0 17 

Roll, 65 KIAS, Validation set 5,801 105 82 25 0 24 

Roll, 80 KIAS, Training set 5,801 16 55 585 0 34 

Roll, 80 KIAS, Validation set 5,801 74 66 297 0 21 

Roll, 95 KIAS, Training set 5,801 60 68 1,021 0 49 

Roll, 95 KIAS, Validation set 5,801 78 66 748 0 42 

Total 232,040 6,383 
(2.75%) 

4,332 0 (26.8) 
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TABLE 7. SUMMARY OF PREDICTIONS PREVIOUSLY PUBLISHED IN REFERENCE 3 

Results Previously Published 
Prediction of Horizontal Tail 
Maneuver 

Entire Data File Significant Stress Region 

No. of 
Records 

No. of 
Error >500 

psi 
Max 
Error 

No. of 
Records 

No. of 
Error 

>500 psi 
Max 
Error 

Dutch-roll, 80 KIAS, Training set 5,801 0 49 384 0 45 
Dutch-roll, 80 KIAS, Validation set 5,801 102 58 45 0 36 

Dutch-roll, 95 KIAS, Training set 5,801 357 69 184 0 32 

Dutch-roll, 95 KIAS, Validation set 5,801 604 82 730 202 82 

Roll, 65 KIAS, Training set 5,801 0 40 313 0 30 

Roll, 65 KIAS, Validation set 5,801 0 42 25 0 38 

Roll, 80 KIAS, Training set 5,801 0 44 585 0 44 

Roll, 80 KIAS, Validation set 5,801 58 55 297 0 39 

Roll, 95 KIAS, Training set 5,801 103 66 1,021 34 55 

Roll, 95 KIAS, Validation set 5,801 236 63 748 54 59 

Total 232,040 16,950 
(7.3%) 

4,332 290 (46) 

TABLE 8. SUMMARY OF CLASSIFICATION AND PREDICTION FOR EACH 
MANEUVER 

Maneuver 
Percentage of 

"Correct Classification" 

Percentage of Errors of 
Prediction > 50|ie in 

Entire Files 
Dutch-roll 84% 2.9% 
Roll 86% 8.6% 
Sideslip left 86% 4.3% 
Sideslip right 79% 7.3% 
Push-pull 92% 0.04% 
Stabilized-g turn left 74% 0.15% 
Stabilized-g turn right 57% 2.8% 

The worst percentage of errors of prediction was from the roll maneuver. This is because the NN 
was also trained on dutch-roll. This choice was guided by the primary objective of this work, 
i.e., correct prediction of strains in the significant region. The predictions have improved 
significantly, i.e., the number of errors was reduced by two-thirds in the entire file. In the 
significant region, the region of primary interest, no error was greater than 50u.s achieving the 
desired degree of accuracy comparable to that of the vertical tail predictions. 

5. CONCLUSIONS AND RECOMMENDATIONS. 

Neural Networks (NNs) were chosen on the hypothesis that stresses induced in the empennage 
are related by some relationship, not necessarily linear or obvious, to the accelerations measured 
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near the aircraft center of gravity (CG). For the prediction of strains in the horizontal tail, it has 
been shown that the utilization of the signals of the rate gyros after numerical differentiation 
could be substituted for the signals from the angular accelerometers without losing accuracy. 
The results are expected to be similar for the vertical tail. 

Classification of the records by maneuver was thought to be a solution for improving the 
accuracy of the predictions from the previously published work. NNs have been used to 
automatically classify the data by maneuvers. This classification of records by maneuvers, plus 
the application of a NN specific to that maneuver in conjunction with the weighted sum 
approach, allowed a significant reduction of the number of errors of prediction. For the 
horizontal tail, 97% of the strains for the entire data set were predicted within 50u.e of their 
recorded value. In the significant region, 100% of the strains were predicted within 50u,s. In 
comparison, previous methodology for the horizontal tail yielded only a 93% success rate within 
the significant region with a maximum error of 82u.e. 

The Neural Network methodology provides a viable alternative to determining the strains 
induced by maneuvers in the empennage. Due to the nature of the sensors, it has an additional 
advantage in that rate gyros and angular accelerometer signals are much less susceptible to signal 
noise that is prone to strain gage measurements. 

Recommendations for future work are: 

a. Classification of sideslip and stabilized-g turns left and right with specific NN for each 
should be tested. 

b. Effects of changes in altitude and airspeeds need to be investigated for high-performance 
airplanes with large altitude and airspeed operating envelopes. 

c. An empennage load survey should be performed using the traditional method with strain 
gages and compared to predictions made using the NN methodology. 

d. NN using power spectral density needs to be investigated for improvements in 
computational speed as well as maneuver and gust load separation. 

e. The methodology should be tested on other aircraft and in particular on aircraft with 
different empennage configuration. 
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APPENDIX A—NEURAL NETWORKS TESTED 

The first objective was the improvement of the predictions for roll and dutch-roll maneuvers, 
especially at 95 KIAS. A hypothesis was that a network trained on 95 KIAS could accurately 
predict the strains at 95 KIAS. Since the files collected during flights contain airspeeds, it is 
possible to separate the data by speed (or ranges of speed), and apply the network corresponding 
to this speed. However, if trained on a composite file of roll and dutch-roll at 95 KIAS, Neural 
Network (NN) did not give correct results, even on the training file. An explanation for this is 
that at 80 KIAS, the difference between the maneuvers is not significantly pronounced so the 
network could find a general rule for roll and dutch-roll. However, as the airspeed increases, 
characteristics of each maneuver become more noticeable. NNs cannot find a single general 
relationship between the input signals and the strains for the composite file. Therefore, no 
classification by speed was attempted for the previously published unique NN approach. 

NNs were also trained on a file composed of dutch-roll and roll maneuvers at 80 and 95 KIAS. 
The only file for which predictions remained outside of the tolerance band was the validation file 
for dutch-roll at 95 KIAS. In the significant region, the maximum error was decreased from 
82jj,s with Professional n/PLUS to 72us, and the number of records outside of the tolerance band 
decreased from 202 to 146 records. 

When classification approach was first tested, coefficients given by the NN were not considered 
as "weight" coefficients, but as indicator of the class. For example, for a classification between 
two classes, if the resulting classification was (0.6, 0.4), the record was considered to belong to 
class 1, and the predicted strain associated to this record was obtained with the Neural Network 
of class 1. Predictions obtained in this simple way were unacceptable. 

Many other different classifications were also tested. Results obtained on validation files for roll 
and dutch-roll at 95 KIAS are shown in tables A-l to A-5. 

TABLE A-l. RESULTS FOR ROLL AND DUTCH-ROLL AT 95 KIAS 

Number 
of 

Classes Classes 
File 

Name 

Max. 
Error in 
Entire 

File (us) 

No. 
Errors 

>50u£ in 
Entire 
File 

Max. 
Error in 

Significant 
Region 

(us) 

No. Errors 
>50us in 

Significant 
Region 

5 drl,roll,ppl,ss,stg RL95V 128 822 117 431 
DRL95V 50 28 38 0 

3 roll,ss,ppl RL95V 98 226 67 3 
DRL95V 87 495 72 146 

2 drl+roll+ss/ppl+stg RL95V 100 56 100 9 
DRL95V 69 185 30 0 
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TABLE A-2. RESULTS FOR ROLL AND DUTCH-ROLL AT 95 KIAS 

File Roll Dutch-Roll Sideslip Push-Pull 
Stabilized-g 

Turn 

Correct 
Classification 

(%) 
RL65T 5423 18 157 126 77 93 

RL80T 5315 109 21 212 144 91 

RL95T 5460 30 48 133 130 94 

DRL65T 550 5080 60 105 6 87.5 

DRL80T 234 5367 186 14 0 92.5 

DRL95T 428 5168 184 10 11 89 

SSL65T 410 29 4877 485 0 84 

SSL80T 542 213 4808 194 44 82 

SSL95T 395 193 4746 281 186 81 

SSR65T 22 0 4499 1290 0 77 

SSR80T 189 41 4430 1034 107 76 

SSR95T 51 41 4923 786 0 85 

PPL65T 123 0 41 5496 141 94 

PPL80T 41 1 95 5529 135 95 

PPL95T 41 0 136 5619 5 97 

STGL65T 68 0 1194 933 3606 62 

STGL80T 164 428 214 471 4524 78 

STGL95T 337 114 89 113 5148 89 

STGR65T 265 389 937 2030 2180 37 

STGR80T 215 15 381 826 4364 75 

STGR95T 295 92 352 668 4394 75 

RL65V 4423 272 414 397 294 76 

RL80V 4011 355 937 424 74 69 

RL95V 5151 155 280 116 99 88 

DRL65V 595 4451 695 57 3 76 

DRL80V 856 4577 325 34 9 78 
DRL95V 783 4468 212 231 107 77 

SSL65V 342 107 5223 129 0 90 

SSL80V 308 1 5361 131 0 92 

SSL95V 47 0 5049 579 126 87 

SSR65V 186 54 3879 1138 544 67 

SSR80V 143 43 4815 768 32 83 

SSR95V 12 0 5101 517 171 88 

PPL65V 106 0 177 5364 154 92 

PPL80V 162 7 848 4701 83 81 

PPL95V 45 0 364 5262 130 90 

STGL65V 163 166 511 677 4284 73 

STGL80V 425 337 956 447 3636 62 

STGR65V 231 813 1036 1174 2547 44 

STGR80V 159 188 1199 1048 3207 55 

STGR95V 279 358 779 1272 3113 53 
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TABLE A-3. RESULTS FOR ROLL AND DUTCH-ROLL AT 95 KIAS 

Dutch-roll Roll Sideslip Push-pull SGT 
Dutch-roll 29,111 3,446 1,662 451 136 
Roll 939 29,783 1,857 1,408 818 
Sideslip left 543 2,044 30,064 1,799 356 
Sideslip right 179 603 27,647 5,523 854 
Push pull 8 518 1,661 31,971 648 
Stabilized-g turn left 1,361 1,357 3,366 2,814 25,908 
Stabilized-g turn right 1,855 1,444 4,684 7,018 19,805 

TABLE A-4. RESULTS FOR ROLL AND DUTCH-ROLL AT 95 KIAS 

Maneuver 

Classified as 
Dutch-Roll 

(%) 

Classified 
as Roll 

(%) 

Classified as 
Sideslip 

(%) 

Classified as 
Push-PuU 

(%) 

Classified 
as SGT 

(%) 
Dutch-roll 83.6 9.9 4.8 1.3 0.4 
Roll 2.7 85.6 5.3 4 2.4 
Sideslip left 1.6 5.9 86.4 5.2 1 
Sideslip right 0.5 1.7 79.4 15.9 2.4 
Push pull 0.03 1.5 4.8 91.8 1.9 
Stabilized-g turn left 3.9 3.9 9.7 8 74.4 
Stabilized-g turn right 5.3 4.1 13.5 20.2 56.9 

TABLE A-5. RESULTS FOR ROLL AND DUTCH-ROLL AT 95 KIAS 

Maneuver 

Percentage of 
"Correct 

Classification" 

Number of Error of 
Prediction > 50us 

in Entire Files 
Dutch-roll 83.6 1,000 
Roll 85.6 2,990 
Sideslip left 86 1,482 
Sideslip right 79 2,520 
Push pull 91.8 14 
Stabilized-g turn left 74 51 
Stabilized-g turn right 57 959 

For completeness, different NN for sideslip left and right and for stabilized turn left and right 
should be tried. Improvement of predictions may be possible by sorting the data for each 
maneuver and speed and applying corresponding NNs. 
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