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Abstract 

Large Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) calculations have 
been performed of the turbulent flow over a smoothly contoured ramp. The upstream conditions 
are prescribed as a canonical turbulent boundary layer, obtained from a separate pre-computation. 
The flow in the primary calculation develops downstream, first experiencing an increase in the 
surface skin friction due to ramp curvature, then exhibiting a shallow separation with subsequent 
reattachment on a flat section downstream. The computational domain includes the downstream 
recovery region, enabling an assessment of model predictions of the recovery process. The tur- 
bulence models implemented are the Spalart-Allmaras one-equation model, referred to as S-A 
throughout, (Spalart and Allmaras 1994), V2F (Durbin 1991), and a modified version, referred to 
as MV2F (Lien and Durbin 1996). Visualizations of the instantaneous flow shows thaMhe separa- 
tion location fluctuates at a higher frequency than the reattachment location, with the instantaneous 
reattachment trajectory giving indications of short shedding events. The mean velocities collapse 
to the universal log law at about four ramp lengths downstream of the beginning of the curved 
section whereas the turbulence quantities recover more slowly. 

The recovery process is non-monotonic in that it is started by a decay process and followed 
by a rebound process. The outer layer is more dominant in the former while the inner layer is 
more dominant in the latter. The commonly observed drop in the Reynolds shear stress directly 
after reattachment is believed to be typical for geometry induced separation, rather than for flows 
with a fixed separation location. Upstream of separation the predictions from all the models show 
good agreement with measurements. The models, however, respond differently to the separation. 
As far as mean and integral quantities are concerned, S-A predictions are closest to LES results. 
Downstream of separation, V2F yields a better agreement with S-A and LES than its modified 
version, which exhibits a distinctly late reattachment and slower recovery. The slow recovery of 
S-A in skin friction predictions and V2F mean velocities and the over-prediction of the backflow in 
the separation region seem analogous to related predictions in reattaching flows. On the turbulence 
quantities, V2F yields a better agreement with LES than the other models. All the models, however, 
fail to follow closely follow the dynamics of the inner layer in the rebound process. 
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1    Introduction 

The study of turbulent separation and reattachment has attracted many researchers due to its fre- 
quent occurrence in practical flows. While our understanding of the characteristics of turbulent 
boundary layers up to separation has been fairly well developed, our knowledge on the flow in the 
separation and recovery region is less mature. A closed separation, although mostly undesired, 
often inevitably occurs in many flows of hydrodynamic and aerodynamic interest. It is useful, 
therefore, to develop a more comprehensive understanding of the reattachment and recovery pro- 
cesses in order to eventually control these processes, improve device performance, etc. Moreover, 
reattachment and recovery processes forms a stringent test for engineering turbulence models, an 
attractive aspect of the present flow being the detailed set of measurements available for model 
assessment. ,. 

Quantitative information on the characteristics of turbulent boundary layers up to separation has 
been gathered for several years, e.g., the work leading to Stratford's criterion on flat plate turbulent 
boundary layer separation (Stratford 1959a, b), among others. Measurement of adverse pressure 
gradient (APG) flows by Simpson et al. (1977) showed that the universal log law is maintained 
until quite close to separation. Perry and Schofield (1973), Yaglom (1979) and Durbin and Belcher 
(1992) provided an outer-layer scaling law that is applicable in APG flows approaching separation. 
Measurements from Alving and Fernholz (1995) yields a better collapse using the Perry-Schofield 
coordinates compared to Yaglom (1979) or Durbin and Belcher (1992). The outer layer profile 
shape based on the latter was given by Dengel and Fernholz (1990). 

A great deal of the knowledge on separating flows and on the recovery process after reattach- 
ment is up to date qualitative. The structure of a separating turbulent boundary layer in a divergent 
channel was considered by Simpson et al. (1981). Measurements on a backward facing step (BFS) 
were obtained by, among others, Bradshaw and Wong (1971) and Adams and Johnston (1988). 
Bradshaw and Wong (1971) proposed a model for reattachment based on the splitting of the re- 
attaching flow into the upstream and downstream directions. Adams and Johnston suggested that 
the mean flow in the recirculation region from the wall out to the peak of the backflow has laminar- 
like features despite the high level of fluctuating motion. Recently, DNS results on a separated 
turbulent boundary layer created by blowing and suction was provided by Na and Moin (1998), 
which showed a similarity of the kinetic energy budget in the separation region to that of a plane 
mixing layer. In the backward facing step the maximum Reynolds shear stress decreases after 
reattachment (e.g., Kim et al. 1980, Le et al. 1997), but this attehuation is delayed in turbulent 
separations due to the APG (see Driver 1991, Na and Moin 1998, Alving and Fernholz 1996). 
It is, however, unclear whether this difference is more affected by the geometry or by the differ- 
ence in the character of separation where it is fixed in BFS flows but fluctuates in APG-induced 
separations. 

Though details on the separation processese governing many flows remains incomplete, another 
topic of considerable interest is downstream recovery following reattachment. This is probably due 
in part to the fact that many of the features of the recovering boundary layer following reattachment 
are qualitatively independent of the upstream history of the flow (Castro and Epik 1998). There 
are, however, issues that seem to be conflicting and deserve clarification. Smits and Wood (1985) 
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reported in their review that the recovery of a boundary layer after a perturbation is initiated from 
the wall by the formation of an internal layer Which grows outward as the shear layer travelis 
downstream. This is in accordance with the shorter response time of the inner layer compared 
to the outer layer (Smits and Wood 1985). The study of Alving and Fernholz (1996) on a mild 
separation of a turbulent boundary layer suggests, on the contrary, that the recovery process occurs 
largely in the outer layer. Castro and Epik (1998) also concluded that the turbulence structure in 
the inner layer develops no more quickly than the outer layer and that the overall recovery rate is 
determined by the latter. 

In the present study we consider a turbulent separation over a smoothly contoured ramp. The 
geometry is shown in Figure 1, along with contours of spanwise vorticity from a low Reynolds 
number Large Eddy Simulation. The separation occurs slightly downstream of the onset of curva- 
ture with the extent of the reversed-flow region slightly larger than half of the ramp length. As in 
other reattaching flows, the turbulent motions after reattachment spread over a larger wall normal 
extent than before separation. This flow is intermediate between the backward-facing step and 
separation over a flat plate created by an adverse pressure gradient (e.g., as in Na and Moin 1998) 
in that it contains features specific to each of these two regimes. As in the BFS, the separation over 
the ramp considered in this study is induced by geometry changes, but the separation location is 
not fixed by a feature of the geometry, analogous to APG-induced separation flows. 

The purpose of this study is two-fold, i.e., first to clarify some physical issues, such as the 
role of the inner and outer layers in the recovery process and the primary factors causing the 
difference in Reynolds shear stress behavior between BFS and APG flow, and second to compare 
the predictions from some of the leading turbulence models. To achieve the first objective, the 
computational approach is based on LES using the dynamic eddy viscosity model (Germano et 
al. 1991). For the second objective, the turbulence models utilized are the one-equation Spalart- 
Allmaras (1994) model, the four-equation v2-f of Durbin (1991), and its modified version which 
is a computationally more efficient version (see Lien and Durbin 1996). The Spalart-Allmaras 
model is referred to as S-A throughout, v2-f as V2F, and the modified version as MV2F. 

Menter (1996) compared the S-A model to the experimental measurements on turbulent separa- 
tions in both the BFS of Driver and Seegmiller (1985) and APG measured by Driver (1991). In both 
cases, S-A under-predicts the skin friction following reattachment and over-predicts the backflow 
in the BFS. The V2F models have been applied to prediction of the separated flow over an airfoil 
(Lien and Durbin 1996, Iaccarino and Durbin 1996) and BFS (Durbin 1995 and Michelassi et al. 
1996). The predictions of the baseline and modified versions are comparable on the airfoil con- 
sidered by Lien and Durbin (1996) and in a good agreement with experimental measurements. 
Compared to the experiment of Driver and Seegmiller (1985) on the high Reynolds number BFS, 
the predictions from Michellasi et al. (1996) on exhibited a slow recovery of the mean streamwise 
velocity and an over-prediction of the backflow, similar to that shown by the S-A results. The 
present study is therefore useful to provide some context as to whether such behavior is typical for 
the turbulence models considered. 

The remainder of this report is organized as follows. The governing equations, boundary condi- 
tions, and properties of the numerical solver and the RANS turbulence models, and subgrid model 
for the LES are outlined in Section 2.  We present the flow configuration and the validation of 



the computational approach in Section 3. The results on the mean flow, integral and turbulence 
quantities are discussed in Section 4. Finally, we summarize our findings in Section 5. 

2   Numerical Method 

We consider incompressible flows governed by the conservation of mass and momentum, 

djUj   —   0, (1) 

dtUi + dj(uiUj) + dip - djUij.   =   0. (2) 

The viscous stress tensor a in the Navier-Stokes equations above is given by, 

<?ij=  \Jte+,'t)Si3> (3) 

where 

Sij = djUi + diUj, (4) 

is the strain rate tensor. The Reynolds number Re is based on the boundary layer thickness at 
the inflow plane and the freestream velocity. The indices vary as i, j = 1, 2 in two dimensions 
(RANS simulations) and i,j = 1,2,3 in three dimensions (LES). The eddy viscosity ut closes the 
Reynolds stress term for both RANS and LES. 

2.1    Fractional Step Method 

The governing equations above are solved using the fractional step method (Chorin 1967 and 
Temam 1979). This method is comprised of three sequential steps. In the first step, an intermediate 
velocity ü is computed from, 

Ui ~ Ui + fodjiuiUj)" + ßidj(uiUj)n-1 + djaij   =   0. (5) 
At 

The Adams-Bashforth method, ßQ = 3/2 and ß\ = —1/2, is used for the convective term and 
the cross derivatives of the viscous terms. The remaining viscous terms are computed using the 
Crank-Nicholson method. In the last fractional step the resultingintermediate velocity is corrected 
by the equation, 

1   A      *+%>n+1=0. (6) 
At 

Prior to performing this correction the pressure p is computed by solving the Poisson equation, 

diipn+l = ^tdiui, (7) 

which is obtained by taking the divergence of (6) and substituting the divergence-free constraint 
for un+1. In three dimensions, a fast Fourier transform technique is used in solution of the Poisson 



equation for the spanwise direction, which is statistically homogeneous. Periodic conditions are 
applied along the span. No-slip conditions are satisfied at the lower wall whereas zero normal 
velocity and zero normal derivative of the streamwise velocity hold along the upper boundary. At 
the inflow boundary a zero pressure gradient turbulent-velocity profiles are imposed, corresponding 
to the target inflow Reynolds number. All the velocity components are extrapolated at the outflow 
boundary with an additional correction to ensure the condition of zero flux at the boundaries. 

In the present study, we apply the fractional step method on in curvilinear non-orthogonal sys- 
tems. A more detail formulation of the method can be found in Wu and Squires (1994). The 
variables are located according to the standard staggered grid arrangement. The spatial discretiza- 
tion is centered and second-order accurate. 

2.2   RANS Models 

Two RANS models are investigated in the present study, the one equation S-A model and a four- 
equation V2F model. In addition, we consider a modification of the second model, referred to as 
MV2F. 

a. S-A model 
The S-A model of Spalart and Allmaras (1994) solves one transport equation for the eddy viscos- 

ity:, 

- )   + —{djD)2 + -dj {{v + v)djD) , (8) 

where d is the distance to the closest wall. The eddy viscosity is expressed in terms of v as, 

X3 _Y_ 
X3 + cgi v 

Vt = Ufvi,     fvl = .,3 3   ,     X = ~ ■ (9) 

The production term Cl is given by, 

n = a + ^/„2, f,^i-TJLK, (io) 

with Q being the absolute value of the vorticity. The blending function fw reads as, 

1/6 

Ju 
1 + d w3 

96 + c6
w3\ 

,   9 = r + cw2{rb-r), (11) 

r = min ( -J^—, 10 ) . (12) 

The coefficients are as follows, 

en   =   0.135,   a = 2/3,   c62 = 0.622,   « = 0.41, (13) 

_Cbl    .    1 +Q>2 _ A Q _ O —71 
Cwi     —    —Ö ~i >     cw2 — U.O, Cu,3 — Z,     Cv\ — l.l . 

Kl a 



The eddy viscosity vanishes at the wall as well as at the upper boundary, assuming that the upper 
boundary is sufficiently far from the lower wall. 

b. V2F model 
The V2F model of Durbin (1991) employs the standard K — e equations 

dtK + djtujK) 

with the wall condition, 

P-e + dj 

Ct\P — Ce2€ 

oK i 

+ dj 

K 

- + ^)dje 

Kw = 0,   €«,->• 2v— yl 

The rate of turbulence kinetic energy production P is defined as, 

P = vt [djUi + diUj] grad(u). 

The v2 transport equation reads, 

d^ + djiujv2)   =   Kf-nv2^ + dj[(v + vt)djv
2], 

where / in the v2 equation is evaluated from, 

K 

9tf = f | + (d - 1) - (d - n)|5 + C2- - / + Cll'duf 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

A pseudo time derivative is used for solving the / equation in order for the transport equations to 
have the same structur. The time scale T and length scale I are given by, 

T = max f'G) e 
,    I2 = max 

*2 ■<T) 

3\ 1/2' 
(20) 

In the "standard" V2F model n = 1, which yields the wall conditions, 

(24 - An)v2v2 2(U>V 
v'w

2 = 0',   Jw 
c«,ir ewyq 

Finally, the eddy viscosity is computed using, 

vt = Cßv
2T. 

The model constants appearing above are, 

a „   -   0.19,   Cel = 1.3 + 0.25/[l + (0.5?//02]4> 

Ci2   =   1.9,    d = 1.4,   C2 = 0.3,   CL = 0.3, 

(21) 

(22) 

(23) 

a v 70,     oK = 1.0,   oe = 1.3. 



c. MV2F model 
In addition to the two model outlined above, we test the performance of a modified version of the 
original V2F model proposed by Lien and Durbin (1996). The modification is merely brought into 
the model to enhance its numerical stability if applied to certain numerical schemes. In explicit 
and uncoupled schemes a numerical instability can occur due to the term y4 in the denominator of 
(21) for /. To counter this problem, a modification is made by setting n = 6. In this way one can 
apply the condition /(0) = 0 as the wall boundary condition. Moreover, Cel and Ce2 alter to, 

C6l = 1.55 + cxp(-A£Äj),   CO = 1.92, (24) 

where A€ = 0.00285 and Ry = y\fk/v. The other constants which also change are, 

ae = 1.5   and   CL=0.17, (25) 

the remaining constants are kept unchanged. 
For all the models the derivatives of v, K, e, v2 and / with respect to the streamwise coordinate 

is set to zero at the outflow boundary. At each time step the transport equation for v, K, e, v2 and / 
are solved using successive over-relaxation until the maximum residuals reduce to machine zero. 

2.3   LES Model 

In LES the Navier-Stokes equations (l)-(2) are spatially filtered. The filtered solution / is related 
to / via, 

m,t) = JG^-V)f(rj,t)dV, (26) 

where £ and 77 are coordinate vectors in the flow domain T. For the filter function G a top-hat filter 
is implicitly imposed by the numerical approach, 

G(z) = { *?   if '**' < A'/2 f°r * = ly 2'3 (27) 
^ '      \ 0     otherwise    , 

where Aj is the filter width in the x,-direction and A3 = At A2A3* Throughout, A, equals twice 
the grid spacing in the x% -direction. The filter function G is constrained by the following normal- 
ization condition, 

I G{z)dz = 1. (28) 
IT 

Applying the filtering procedure to the Navier-Stokes equations we obtain, 

djüj   =   0, (29) 

dtUi + dj{uiUj) + dip - dj G^+i\Nu) 
0 + ev . (30) 



ev is a residual term rising from filtering the viscous term due to the nonlinearity. This term is 
second order in the filter width as shown by Ghosäl and Moin (1995) and therefore can be neglected 
in our second order accurate discretization. The subgrid-scale eddy viscosity ut is used to close the 
residual stress, 

Tij = ÜfÜTj - ÜiÜj = -utSij(u), (31) 

where 5y is the strain rate tensor of the filtered velocities. Note that formally only the anisotropic 
part of the turbulent stress, rfi = r^ - 5ijTkk/S, is modeled. The present formulation, however, 
yields the same result for the model coefficient. In the dynamic formulation the eddy viscosity 

reads, 

ut = CdA
2\S(n)\   with |S(ü)|2_=isy(ü)S«(ü). ""        (32) 

Cd is the model coefficient that is dynamically determined using the Germano identity (Germano et 
cd. 1991). This identity reads, ' 

where r^ is the Reynolds stress tensor (31). The hat filter denotes the test filter corresponding to a 

filter width A, to distinguish it from the basic filter, denoted by the bar filter, with a filter width A. 
The other terms are given by, 

Tij   =   ü{ü]-üiüj, (34) 

Lij   =   üiüj - üiüj . (35) 

The tensor Ly can be explicitly calculated from the basic filtered variables ü. 
Substituting the subgrid model (31) into the Germano identity yields, 

CjMi^Lij, (36) 

where 

M^ = -tVea)!^) + (Aa|5(ü)|Sy(ü)f • (37) 

The notation ( f denotes that the hat-filter is applied to the term between the brackets. The unknown 
Cd is calculated by using a least-squares approach following Lilly (1992), 

< MuLy > 
d     <MijMij>' 

where the symbol < - > is an averaging operator over the homogeneous direction (in this case the 
spanwise direction). Formally, only the anisotropic part of ry,Tjj and L^ is included in (31), (35) 
and (35), respectively. This would result in QMy = Ly- in (36). The expression for Cd, however, 
remains unchanged as MyLy = MijLij. 



3   Flow Configuration and Validation 

We consider a Newtonian flow over a ramp at Reynolds number 10400 based on the inflow bound- 
ary layer thickness and freestream velocity. The geometry of the ramp is shown in Figure 2 using 
the ramp length as the characteristic length scale. The inflow boundary is located four ramp lengths 
upstream of the onset of curvature and the outflow boundary is at 6.5 ramp lengths downstream for 
the LES. The outlet location for RANS is one ramp length further downstream, merely because it 
is affordable for RANS to have a longer recovery domain. 

The RANS calculations are performed on a grid of 323 x 53 in the x and y directions, respec- 
tively. We use notation x, y, z and u, v, w instead of X{ and u», i — 1,2,3 from this point for 
convenience. This grid correspondgs to Ax+ — 134 and y+ — 1.44 at the first grid point from 
the wall. Grid refinement tests are carried out using a resolution 338 x 58 and 233 x 38. The two 
produce nearly the same result as illustrated by the pressure coefficient and the skin friction for 
the S-A model in Figure 3 and 4. The same conclusion holds for the other models. Therefore, the 
intermediate grid 323 x 53 is sufficient and is selected for the remaining calculations. The LES 
grid is 484 x 60 x 101, equivalent to Ax+ = 80, Az+ = 22 and y+ = 1.2 at the first grid point 
from the wall. This implies that the streamwise velocity and the pressure adjacent to the wall is 
computed at about y+ = 0.6 as we follow a staggered grid arrangement. This LES resolution is 
considered sufficiently accurate as in a previous study of flow over a bump using the same numer- 
ical method reasonable results have been obtained from a slightly coarser resolution at a higher 
Reynolds number (Wu and Squires 1998). The high ratio of Ax/Az is meant to capture the long 
structure of near wall streaks. 

In the RANS calculations the inflow profiles are obtained from a separate flat-plate boundary 
layer calculation using the same turbulence model. The Reynolds number of the flat plate flow 
ranges from 5000 at its inflow to 15000 at its outflow boundary and the solution at Reynolds 
number 10400 is extracted for the inflow profiles of the ramp simulation. A rescaling procedure 
is used to generate the time dependent inflow condition for LES (Lund et al. 1998). The time 
dependent solution is then extracted in the same way as in the RANS inflow generation. The 
inflow condition for both RANS and LES satisfies the universal log law. We also check the effect 
of upper boundary condition. From a computation using no-slip conditions along the upper wall, 
we confirm that there is no significant interference from the upper boundary in that no separation 
occur due to the adverse pressure gradient. 

In addition, we compare the effect of Reynolds number on the solution with the theoretical 
prediction. The results of Re = 10400 are compared to those of Re = 60000. The higher Reynolds 
number enhances the peak in the wall pressure, as shown in Figure 5, but suppress the peak in the 
shear stress and integral quantities, as illustrated by the skin friction in Figure 6 and the shape factor 
in Figure 7. The high Reynolds number skin friction prior to separation and in the recovery region 
is lower than that from the low Reynolds number case, in accordance with the case of zero pressure 
gradient. In theory, assuming that the streamwise velocity at the inlet has a 1/7 power-law profile, 
the skin friction at Reynolds number 10400 and 60000 (equivalent to Re0 = 1320 and 7641) are 
4.24 x 10~3 and 2.73 x 10~3, respectively (Schlichting 1979, Equation 21.12). Our result produces 
the corresponding values of 4.26 x 10-3 and 2.75 x 10~3, respectively. The level of the skin friction 
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after reattachment is much lower than the value on the flat plate boundary layer at the same Reg. 
The local skin friction, Cf = 2Tw/(pUe(x)2), after reattachment, however, is in fair agreement with 
the corresponding canonical value. Here, Ue(x) is the edge velocity as function of the stream wise 
coordinate, computed from the corresponding wall pressure coefficient. The inlet shape factor of 
the low Reynolds number case is about 1.4. The theoretical shape factor for the 1/7 power profile 
is about 1.286, which is closely mimiced by the inlet shape factor of the high Reynolds number 
case. The sharp peak in the shape factor is due to the sharp corner of the ramp. The results shown 
for this Reynolds number effect used the V2F model. Similar results are obtained using the other 
turbulence models. 

4   Results 

4.1   Mean and Integral Quantities 

In this section we compare the results from the RANS cases, SA, V2F and MV2F, with those from 
potential flow and LES. Unlike in a backward facing step or in flow separation under APG or via 
blowing and suction, the pressure distribution in the present study is complicated by the existence 
of a strong favorable gradient due to the convex curvature of the ramp followed by an even stronger 
adverse pressure gradient due to the ramp corner stagnation (Figure 8). The separation is indicated 
by a small plateau in the neighborhood of the ramp comer (x/Lr=l, with Lr being the ramp length). 
The potential flow produces higher extrema in the wall pressure distribution due to the absence of 
viscous effects. As the region of non-rotational flow in the RANS and LES are smaller than in the 
potential flow, the viscous flow produces a lower wall pressure than the potential flow downstream 
of the ramp. 

Figure 10 shows that following the flow acceleration the skin friction quickly decreases towards 
separation with the LES prediction being reaching zero prior to the RANS results. This rate of 
reduction in the wall stress from the LES, however, slows prior to reaching, resulting in about 
the same prediction in the separation position as in the RANS results. The slower approach in Cf 
towards zero in the LES is due to the intermittency in the separation location, which is not captured 
by the RANS models. We discuss the instantaneous separation of LES in more detail below. The 
S-A model shows a slower recovery compared to V2F model. The MV2F result substantially over- 
estimates the skin friction in the recovery region. The slow recovery of S-A in the skin friction is 
also observed by Menter (1996) in the backward facing step. The separation location from S-A is 
slightly downstream of that predicted by V2F. In contrast to the separation point, the reattachment 
point is more affected by the different turbulence models. The LES produces the reattachment the 
furthest upstream followed by subsequently S-A, V2F and MV2F predictions. 

The above statistical features are consistent with the contours of the separation bubble shown 
in Figure 9. The bubble contour is given by the value of y(x) which satisfies, 

ry 
/   u(x,, 

Jo 
, s)ds = 0, (39) 

where u is the mean streamwise velocity. The size of the separation bubble from S-A is comparable 



to that of the LES, whereas the V2F models produce excessive bubbles with MV2F's being the 
largest. This over-estimation of the bubble size in combination with the late reattachment by 
the V2F models may explain the slow recovery of these models, especially the modified version, 
as discussed below. The fact that the results up to separation including the separation location 
from the different models agrees quite well shows that the models can handle attached flow under 
varying pressure gradient. The deviation in the bubble size and the reattachment location on the 
other hand indicate that modeling separated flows remains a delicate task, at least for the models 
considered here. 

The good agreement in the separation location between LES and the RANS models is quite 
surprising as the instantaneous separation from LES is very volatile and spreads over a band of 
separation buffeting. This is shown in Figure 11 where the position of zero skin friction of the flow 
averaged over the spanwise direction are plotted against a time measure. The solid line-represents 
the most upstream separation location and the dashed line the most downstream before the skin 
friction reaches its minimum value. Between these two lines there are small separation regions as 
illustrated'by the streamwise development of the skin friction over the spanwise direction, but not 
in time (Figure 12). This region fluctuates strongly in time and the time-averagin results in the 
reduced rate in approach to zero in the skin friction, as shown in Figure 10. Unlike the separation 
location, the reattachment location shown in Figure 11 migrates in a less chaotic manner with 
time. The dashdot line is the most upstream reattachment location after the skin friction reaches 
the minimum value whereas the dotted curve in the figure are the most downstream. The figure 
shows an interesting feature in that the reattachment location is most of the time formed by a single 
line with jumps upward from time to time. It appears that there is a fraction of the separated region 
which cannot follow these sudden movement upwards and this part reattaches later in time as 
represented by the dots in the figure. This shedding process, however, does not occur periodically. 
A similar instantaneous behavior of the separation and reattachment location is also observed by 
Na and Moin (1996) in their DNS of turbulent separation under blowing and suction, but these 
investigators do not report a multiple in the separation or reattachment positions. 

As a consequence of having a larger bubble size, V2F and MV2F results produce larger shape 
factors beginning from the middle of the separation region. The shape factor from all the models, 
including the LES, nearly returns to its equilibrium value of about 1.4 (Figure 13). Note, however, 
that this feature does not imply that the flow is recovered. In fact, at a moderate Reynolds number 
as used in the present study the canonical shape factor still depends on the Reynolds number, 
decreasing with increasing Re$ in the streamwise direction. A better measure for the recovery is 
the Clauser parameter, 

G = \/VC~f^jp- ■ (4°) 
In Figure 14 the Clauser parameter from all the models suggests that the flow after reattachment 
is still far from recovered. The values of the Clauser parameter in equilibrium turbulent boundary 
layers range from 5.9 (Clauser) to 6.8 (Cole) according to Castro and Epik (1998), whereas the 
present values in the vicinity of the outflow boundary range from 7.3 (S-A) to 8 (V2F and MV2F). 
Even if the local skin friction is used, the Clauser parameter ranges from 6.8 to 7.6 which are still 
high for the canonical boundary layer. 
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Figure 15 shows the development of the stream wise velocity profiles plotted in semi-logarithmic 
coordinates, taken from the LES mean flow. It shows a large perturbation in the separation region 
and the recovery process following reattachment. In the logarithmic layer the streamwise velocity 
following reattachment drops below the log-law, which is typical in reattaching flows. The pro- 
files then gradually increase and approach the log-law. The comparison of this recovery process 
amongst the various models is shown in Figure 16. It shows that the streamwise velocity profiles 
have recovered the log layer at x/Lr = 5.2, except for the MV2F result. The recovery of MV2F 
is distinctly slower than the other cases, which is consistent with the larger separation bubble and 
later reattachment described previously. The scatter between different models in the wake region 
on the other hand persists further downstream to x/Lr — 6.5, indicative of the flow probably not 
yet being fully recovered. The higher value of the Clauser parameter than usual for an equilibrium 
boundary layer supports this suspicion. Given that the Clauser parameter is a function of inte- 
grals of the profile, this parameter covers the inner and outer region. The difference in the mean 
flow recovery rate between the inner and the outer region is also reported by Alving and Fernholz 

(1995). 
Figure 17 shows the development of the streamwise velocity profiles beginning from the center 

of separation. As already indicated by the skin friction, the RANS models produce a stronger 
reverse flow than predicted in LES in the separated region. Analogous behavior is observed by 
Michelassi et al. (1996) in comparison of V2F with the experiment of Driver and Seegmiller (1985) 
in the backward-facing step. The profiles from the V2F predictions become positive further from 
the wall compared to S-A and LES results, which also explains the larger size of the separation 
bubble. Proceeding further downstream, S-A profiles follow LES predictions closely up to about 
y/5 = 0.3, which covers the inner layer. In the outer region of the logarithmic layer, S-A profiles 
consistently over-predict those from the LES. A similar picture emerged in the work of Menter 
(1996) in the comparison of an APG-induced separation with the experimental data from Driver 
(1991). On the contrary, V2F profiles under-estimate the recovery of LES in the inner log layer 
but shows a good agreement in the outer log layer, in agreement with Michelassi et al. (1996). 
The log layer extends in this case from y/6 = 0.1 up to 1.5. The low Reynolds number case of 
Michelassi et al. (1996), however, yields a better collapse with experiment. The MV2F results 
underestimates the recovery throughout nearly the entire extent of the log layer. Apparent is the 
later reattachment of the V2F models also corresponding to delayed recovery. 

The good agreement in the velocity profiles between S-A and LES in the region very close to 
the wall contradicts with the view based on the skin friction in which S-A recovers more slowly 
than V2F. This suggests a relatively weak correlation in the velocity profile and wall shear stress 
in the recovery region. Accuracy in the predicted wall shear stress depends on the ability of the 
model to adequately account for processes affecting the velocity gradient at the wall. The recovery 
process in the turbulence structure is represented by the turbulent fluctuating quantities, discussed 

in the next section. 
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4.2   Turbulence Quantities 

Figure 18 shows the normal stress v2 from LES, V2F and MV2F calculations at several downstream 
stations. The value of v2 from the RANS models are lower than the normal fluctuations in the 
LES in the reattachment zone. Note that this comaparison is not one-to-one in the sense that 
v2 is simply a velocity scale in the V2F closure. The quantity can be associated with the wall- 
normal fluctuations in a flat-plate boundary layer, but is otherwise a velocity scale used in the 
model to determine the eddy viscosity. Nevertheless, its evaluation against wall-normal fluctuating 
velocities in the LES is useful. Proceeding downstream from reattachment the normal stress decays 
and the peak is taken over by MV2F model. Downstream of x/Lr = 3 the decrease of MV2F 
is much slower than the other two cases, yielding a consistently higher v2. The decay process 
persists up to below the level upstream of separation near the wall, indicating a very slow recovery 
of the normal stress. In general, the fluctuations from LES decay more quickly with the increasing 
distance from the wall than the RANS results. The original V2F and the modified version MV2F 
agree well in the attached region upstream to the separation point. The separation, however, brings 
deviations between the two in the recovery region. 

As in v2, the predictions of u2 in Figure 19 shows some discrepancies between the various mod- 
els, especially in the inner region. The data of the RANS cases are reduced by using Boussinesq 
approximation, 

k       3  J ~    k   J' 

The deviation tends, however, to decrease proceeding further downstream from reattachment. 
Figure 20 shows the peak distribution of the Reynolds stress u'v' from LES, SA, V2F and 

MV2F in the streamwise direction. In the separation region the values of u'v' from the RANS 
models under-predict that from LES. The Reynolds shear stress drops directly after reattachment. 
The same behavior is observed in BFS flow (Kim et al. 1980, Le et al. 1997) but not in sepa- 
rated flows induced by APG (Driver 1991, Alving and Fernholz 1996, Na and Moin 1998) where 
the Reynolds shear stress levels remain high after reattachment before they begin to decay. This 
implies that the different behavior of the shear stress following reattachment between BFS and 
APG flows is primarily caused by the difference in geometry as opposed to the unsteadiness of the 
separation location. 

The Reynolds shear stress from the various models are close to each other in the region 
upstream of separation as illustrated by the data at x/Lr = —3 in Figure 21. Beginning at 
x/Lr = 3.97 the Reynolds shear stress from the RANS cases in general over-estimates that from 
the LES. Consistent with the picture of the normal stresses, u2 and v2, the shear stress from MV2F 
is always higher than V2F in the inner region with that of V2F closer to LES predictions. The 
Reynolds stress from the S-A model is close to V2F and LES in the inner layer but over-estimates 
them in the outer layer. The Reynolds stress in S-A is calculated using the strain rate tensor, S^ 
and Boussinesq approximation shown above. 

Despite the scatter among different models, they show a common behavior. The peak of the 
Reynolds stresses reaches its maximum in the separation region. In the course through the separa- 
tion region the maxima move further away from the wall, which is clearly seen from the data just 
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downstream of the reattachment point. At the same time the stresses grow outward. Proceeding 
further in the streamwise direction, the maxima of the Reynolds stresses decrease gradually up to 
a lower value than prior to separation and tend to flatten. This flattening of the relaxing Reynolds 
stresses is also observed by other workers, e.g., Alving and Fernholz (1996), among others. At 
the reattachment region the stresses u2 and u'v' very close to the wall drop to a lower level than 
before separation. This at least can be seen clearly from the LES result. Further downstream from 
reattachment the flow very close to the wall flow begins to regain its stress level compared to the 
level before separation. This can be seen from the LES prediction of u2 which shows the formation 
of a sharp peak close to the wall. This process takes place rather slowly in that even in the most 
downstream location it is still far from recovered. In contrast to u2 and u'v', the effect of the sep- 
aration on v2 is apparently more permanent. The stress level still subsides across the shear layer. 
The recovery, which is shown to begin from the wall region by the other components of Reynolds 
stresses, has not yet appeared in this quantity. 

Figure 22 shows the streamwise development of the peak of the turbulent kinetic energy from 
LES, V2F and MV2F model predictions. The kinetic energy is rescaled by its maximum value 
at the inflow boundary. The kinetic energy from LES increases the most rapidly in the separated 
flow region, followed by MV2F and V2F subsequently. Similar to the normal component of the 
Reynolds stress, the increase of the kinetic energy after separation is more rapid than its decrease 
after reattachment. Again, V2F and MV2F agree with each other upstream of the separation but 
respond differently to the separation. As in the predictions of the Reynolds stresses, the peak of the 
turbulence kinetic energy from V2F moves closer to that of LES than MV2F in the recovery region. 
As will be shown next, the decreasing peak after reattachment is located in the middle of the shear 
layer. The peak is then taken over by the flow adjacent to the wall during the re-development 
process further downstream. 

Wall-normal profiles of the turbulent kinetic energy at several streamwise stations is shown in 
Figure 23. Although the maximum in the kinetic energy from the RANS cases, especially from 
MV2F case, is generally higher than that from LES, the kinetic energy levels become zero at 
about the same wall-normal location. The larger separation bubble predicted by the V2F models 
apparently does not result in the expansion of turbulence kinetic energy towards the outer region. 
The recovery process observed in the turbulent stresses is again seen in the kinetic energy. The 
elevated peak of the turbulence kinetic energy through the separation region moves away from 
the wall. Proceeding further downstream, the peak decreases rapidly up to below the level prior 
to flow separation and forms a plateau at the same time. A sharp peak gradually appears at the 
vicinity of the wall indicating that the region of energetic turbulent motions is beginning from the 
wall. The fall of the Reynolds stresses and the turbulence kinetic energy in the recovery region 
to the magnitude lower than in the zero pressure gradient case indicates that the recovery process 
of the turbulence quantities is not monotonic. A rebound process, albeit slowly evolving, will 
consequently follow the decay process. 

At the furthest downstream location the turbulence structures remain strongly distorted from 
its canonical found in equilibrium boundary layers. The turbulence structure is evidently still far 
from recovered. A longer extent for the recovery region is required to see how the recovery process 
from the wall further evolves and how the outer layer returns to its canonical form. The outer layer 
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turbulence structure induced by the separation seems to possess a considerably long timescale. 
Note that in canonical boundary layers the turbulence structure also grows along with the growth 
of Reg. For the current configuration, the boundary layer thickness for a zero pressure gradient 
layer at the current outflow boundary would be about 2.6 times its thickness at the inflow. The 
turbulence structure normally vanishes at some distance outside the boundary layer edge. In the 
present case the turbulence quantities become zero slightly above y/5 = 3. Therefore it is unlikely 
that the energetic outer layer turbulence will further decay to return its canonical form. More likely 
is that the recovery of the turbulence structure is initiated from the inner layer near the wall. 

The possibility still exists that the outer layer feeds the regeneration of the inner layer. In 
this case, the outer layer would play the dominant role in the recovery process as suggested by 
Alving and Fernholz (1996) and Castro and Epik (1998). The production term of the turbulence 
budget, however, confirms the presumption on the role of the inner layer as shown iirFigure 24 
and Figure 25. The former shows the production of the turbulent kinetic energy and shear stress 
at several streamwise stations while the latter shows the production of the streamwise and normal 
components of the Reynolds stress, respectively. These productions terms are given by 

P{k) = -M{dÜ/dy + dV/dx) + {rf-rf)dV/dy (42) 

P(-u'v') = tfdV/dx+lßdÜ/dy (43) 

P(u2) = 2{uidV/dy-vhJi)dlJldy (44) 

P(v
2) = -2(tfdV/dy+üW)dV/dx. (45) 

Although small, dV/dx is included for completeness. The data is taken from the LES predictions 
and considered to be representative as the same trend is produced by the V2F models. The pro- 
duction of turbulent kinetic energy and Reynolds shear stress before separation (x/Lr = —3) is 
dominant in the near wall region. The peaks shift to the middle of the shear layer just downstream 
of reattachment. The magnitude of the peak, however, decays proceeding streamwise and the peak 
is taken over by the near wall region. The domination of the near wall production term is more 
profound further downstream. The production term of u2 is similar to that of the turbulence kinetic 
energy. This term for v2 generally does not play a significant role. Only in the separation region up 
to reattachment it is markedly large and the peak is located closer to the wall than in other turbu- 
lence quantities though it drops rapidly further downstream. The small production term explains 
the distinctly slow recovery of v2. In summary, the overall result on the turbulence quantities indi- 
cates that the outer layer plays the dominant role only in the decay process, whereas in the rebound 
process this role is taken over by the inner layer. The rebound of the inner layer proceeds very 
slowly indicating that the dissipation also plays a significant role in this region. 

5   Conclusion 

The flow considered in this study is complicated by the subsequence of acceleration due to the 
convex curvature of the ramp and deceleration due to the ramp corner. This results in a favorable 
pressure gradient upstream of the separation point and downstream of the reattachment point. This 
complication, however, does not significantly change the general feature of the recovery process as 
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observed by other workers. The instantaneous separation trajectory, as shown by the LES results, 
fluctuates at a higher frequency and more irregularly than reattachment trajectory. In addition, 
there are multiple separation locations indicating the existence of intermittent reverse flow regions 
upstream of the main separation region. The reattachment trajectory is mostly formed by a single 
line. A multiple in the reattachment locations occurs only sporadicly and over very short time 
intervals, indicating the existence of shedding events. Beginning from about four ramp lengths 
downstream of the ramp the streamwise velocity profile from all the models, except MV2F, col- 
lapses to the universal log-law. There remain the high value of the Clauser parameter, however, 
suggesting that the outer layer of the mean flow has not fully recovered. 

The rate of the increase in turbulence fluctuations at the beginning of the separation region is 
higher than the rate of their decrease after reattachment. Although the mean flow in the log layer 
is recovered, the turbulence structure is far from recovered to canonical profiles as in equilibrium 
boundary layers. The development of the turbulence stresses and kinetic energy through the sepa- 
ration region is characterized by the increase of the peak until it reaches a maximum in the middle 
of the separation region and the shift of the peak away from the wall. At the same time the tur- 
bulence level decreases very close to the wall but strongly increases in the outer region. Through 
the recovery region the peak tends to flatten and the near wall structure starts to regain the levels 
prior to separation. The recovery process of the turbulence quantities is not monotonic, however, 
in that it is characterized by a rapid decay process followed by a slow rebound process. The outer 
layer is more dominant during the decay while the inner layer initiates the rebound. The commonly 
observed drop of the Reynolds shear stress directly after reattachment in the BFS is believed to be 
typical for geometry induced separation flows rather than for flows with a fixed separation location. 
In APG induced separation this Reynolds shear stress decay is delayed. 

Regarding the performance of the RANS models, upstream of the separation all the turbulence 
models show a good agreement between each other as well as with LES. Through the separation 
region and further downstream, however, V2F and MV2F predictions exhibit discrepancies with 
those from V2F model being closer to the LES results. MV2F recovers much more slowly than 
the other models, which is partly caused by its later reattachment and larger bubble size. As far 
as the mean flow is concerned, S-A yields a generally better agreement with LES than the V2F 
models, which is evident from the result of the separation bubble geometry, the location of the 
reattachment point, the integral quantities, and the streamwise velocity profiles. The Reynolds 
shear stress from S-A, however, decays too slowly with increasing wall normal coordinate. A 
slower recovery directly after reattachment is observed in the skin friction of S-A compared to 
the other models, which seems to be typical for this closure. In spite of this slow recovery in C/, 
the velocity profiles follow the corresponding relaxation from LES better than the V2F models, 
indicating that the overall recovery rate cannot be judged from the behavior of the skin friction 
alone. The slow recovery of mean velocity seems to be typical for the V2F models in high Reynolds 
number reattaching flows. All the models over-predict the backflow in the recovery region. 

The Reynolds stresses and the turbulence kinetic energy from V2F show a good overall agree- 
ment with those from LES. The agreement is better proceeding further downstream in the recovery 
region. MV2F consistently over-estimates the turbulence quantities in the recovery region. The 
inner layer dynamics of the turbulence kinetic energy and the streamwise component of Reynolds 
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stress during the rebound process is, however, only slightly captured by the turbulence models. 
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Figure 1: LES predictions of spanwise vorticity contours at the center plane. 
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Figure 8: Wall pressure coefficient at Reynolds 10400; triangle: potential flow, solid: LES, dash: 
S-A, dashdot: V2F, dots: MV2F. 
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Figure 9: Contour of separation bubble; solid: LES, dash: S-A, dashdot: V2F, dots: MV2F. 
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Figure 10: Skin friction coefficient; solid: LES, dash: S-A, dashdot: V2F, dots: MV2F. 

27 



1.8 

1.6 

1.4 

1.2 

0.2 

solid     : first separation 

dash      : last separation 

dashdot   : first reattachment 

dots      : last reattachment 

/"•+.. 
_.£_    : i       *-, 

_i_ j_ 

20 40 60 80 100 
time 

120 140 160 180 

Figure 11: Migration of separation and reattachment point in time, solid: first separation, dash: 
last separation, dashdot: first reattachment, dots: last reattachment. 
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Figure 12: Skin friction of spanwise-averaged flow. 
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Figure 13: Shape factor; solid: LES, dash: S-A, dashdot: V2F, dots: MV2F. 
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Figure 14: Clauser parameter; solid: LES, dash: S-A, dashdot: V2F, dots: MV2F. 
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Figure 15: Development of the streamwise velocity log-profiles in the x-direction, taken from LES 
mean flow. 

32 



30 

20 

10 

0 

30 

20 

10 

0 

x/L       =-3 ramp 
small dots: log-law 

solid    : LES 
dash     : SA 
dashdot : V2F 
dots     : MV2F 

30 v+ 

x/L       =3.97                            ^=^ ramP                                ^^LZ 
20 

•^J*'*' 

10 

n 

^^" 

10" 10' 

30 \T 

20 

X/L       =6.5                                -=_^ ramp                                           ^^M«M.; 

10 «t*?^ 

10" 1(f 

Figure 16: Streamwise velocity profiles at x/Lr 

S-A, dashdot: V2F, dots: MV2F. 
-3, 1.6, 2.73, 3.97, 5.2, 6.5; solid: LES, dash: 
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Figure 17: Streamwise velocity profiles at x/Lr = 1.07, 1.52, 1.98, 2.44, 2.89, 3.35, 3.80, 4.26; 
solid: LES, dash: S-A, dashdot: V2F, dots: MV2F. 
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Figure 18: Normal stress u2/^oo ^n me wa^ normal direction at x/Lr = -3, 1.6, 2.73, 3.97, 5.2, 
6.5; solid: LES, dashdot: V2F, dots: MV2F. 
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Figure 19: Normal stress M
2
/^OO in the wall normal direction at x/Lr = -3, 1.6, 2.73, 3.97, 5.2, 

6.5; solid: LES, dashdot: V2F, dots: MV2F. 
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Figure 20: Local maxima of u'v'/U^ in the streamwise direction; solid: LES, dashdot: V2F, dots: 
MV2F. 
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Figure 21: Reynolds shear stress u'v'/U^ at x/Lr 

dots: MV2F. 
-3, 3.97, 5.2, 6.5; solid: LES, dashdot: V2F, 
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Figure 22: Local maxima of turbulent kinetic energy in the streamwise direction; solid: LES, 
dashdot: V2F, dash: MV2F. 
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Figure 23: Turbulent kinetic energy in the wall normal direction at x/Lr = -3, 1.6, 2.73, 3.97,5.2, 
6.5; solid: LES, dashdot: V2F, dots: MV2F. 
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Figure 24: Upper frames: production of turbulent kinetic energy," —u'v'{dU/dy + dV/dx) + (u2 — 
v2)dV/dy, at x/Lr = -3 (diamond), 1.6 (square), 2.73 (solidX 3^97 (dash.^5^ (dashdot) and 6.5 
(dots). Lower frames: production of turbulent shear stress, u2dV/dx + v2dU/dy with symbols 
denote the same as above. 
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