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Abstract  

Comparison of series of live-fire test results with stochastic simulation model 
output has been a long-standing problem. The usual approach, the order by 
probability (OP) test, allows neither for quantification of typical adjustments 
made in the implementation of the test nor for sensitivity analysis. A new test is 
presented here which may be used in conjuction with the OP test to provide 
these missing features. 
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1.   Vulnerability Models 

The task at hand is to compare a set of live-fire (LF) results as a group to stochastic 
simulation model output in order to determine if the model adequately predicts 
the LF results. The simulation is replaced by a simple probabilistic model, and 
statistical tests are conducted to determine if the LF results are consistent with the 
idealized simulation distribution. 

Assume initially that a stochastic vulnerability/lethality (VL) model predicts either 
no loss of function (LoF) or complete LoF for a particular component, system, or 
vehicle. Under a fixed set of input conditions, output typically varies due to the 
stochastic nature of the model. The output of such a model can be represented 
as X e {0,1}, where Pr[X = 1] = p = 1 - Pr[X = 0] and the single parameter p of 
the model lies in the interval [0,1]. The values of X have the interpretation that 
X = 1 indicates complete LoF and X = 0 indicates no LoF, so that X is in fact 
the LoF. This random variable X has a Bernoulli distribution with parameter p. 
Equivalently, X is a binomial random variable with sample size 1 and parameter 
p, denoted X ~ B(l,p). 

The model independently exercised under k sets of input conditions (each 
representing a distinct shot with a particular target, threat, geometry, etc.) is 
denoted by the vector X = (X;)f=1 = (X1,X2,...,Xk) with vector parameter p 
= (Vi)\=v Each x" G I0'1} is the LoF for configuration i, and Pr[X, = 1] = p{ 

= 1 - Pr[Xj• = 0]. The distribution of the vector X is fc-dimensional binomial of 
sample size 1 and parameter p with independent components, or X ~ Bjt(l,p). 
Component i of k has the binomial distribution X; ~ B(l,p,)- 

Each set of conditions is associated with a single experimental result in L/ € {0,1}, 
which together constitute the data vector L = (L;)-=1 G S = {0,l}fc. So L is a 
k-vectOT of zeros and ones, and the sample space has size 2k. 

As VL models increase in complexity, they allow for partial LoFs, so X € [0,1]. For 
a simple example, suppose that a vehicle has a maximum speed of 60 mph. If the 
vehicle can maintain that speed after the shot, then X = 0 since there is no LoF. If 
the vehicle cannot move, then there is total LoF and X = 1. And if the vehicle can 
operate at a maximum speed of 30 mph, then one might assess the LoF at X = 0.5. 

Typically the number of outputs for a single input configuration is finite and in 
fact completely exhausted after a few hundred or a few thousand iterations, giving 
perhaps as many as a dozen distinct output LoFs. 



In one dimension, the model output LoF, denoted X, can take on any of the n values 
of x = (*;)Li with respective probabilities p = {pj)"=v so that Pr[X = Xj] = pj where 
jyj=i Pj = 1 and each pi > 0. The one-dimensional model for X is finite discrete, or 
multinomial with sample size one, value parameter x, and probability parameter 
p. This is denoted X ~ M(l,x,p), and the sample space or set of possible values of 

Xis{*;}J«i- 

Again, the model can be exercised under k sets of input conditions, each 
representing a distinct shot. The VL model is then fc-dimensional vector 
multinomial Mk(l,x,p) of size 1 where the value parameter list is x = (xi)ki=l with 
Xi - (x,-,;)"^ and the probability parameter list is p = (pi)k=1 with pt = {pi,j)"'=1 for 
each i of k, so that Pr[X,- = *,,,■] = pitj. This means that for shot i, the LoF value Xjj 
occurs in the model with probability p,,;. In this case, it is assumed that the data 
vector of LF LoF assessments L = (L,-)-L1 lies in the sample space S = ®k

=1{xirj}"'=v 

which means that each single result L, lies in the appropriate set {Xirj}"'=1. 

A final generalization occurs when L does not necessarily lie in S. For example, 
it may be reasonable to conclude that in one dimension the LF LoF assessment 
L = 0.26 is consistent with the model X ~ Mjt(l,x,p) where LoF values x 
= (0.00,0.25,0.50) have respective probabilities p = (0.10,0.85,0.05), whereas L = 
0.99 is not. In this case, it is desirable to test whether L is close to X in some way. 

The tests under consideration here assume that L is an Mjt(l,x,0) vector, perhaps 
Bk(l,6), or close to an Mk(\,x,d) vector. Furthermore, the VL model is assumed 
to be X ~ Mk(l,x,p). These tests all take the form of either 

H0 : 0 = p 

Hx:6 + p (1) 

or 

H0:EL = EX 

Hi:EL^EX. (2) 

The model parameter (x,p) is estimated from n iterations of the VL model, so the 
output is Mk{n,x,p). It is thus possible to provide error bounds, etc., for the 
estimates of {x,p). This estimation problem is ignored without further mention, 
and (x,p) is taken to be the true parameter of the VL model. 

More detailed information about the concepts of probability and statistics used 
here are presented in the Appendix. 



2.   The Order by Probability (OP) Test 

The OP test was originally designed to check the consistency of component-wise or 
system-wise VL model predictions for a single threat-target interaction, where each 
vector dimension represents a single component or system in the vehicle.1 Each 
of k components survives or is destroyed independently so the appropriate model 
for a single shot against a single vehicle is vector binomial Bk(l,d). The parameter 
vector is 0 = (0,);=i'in wnJch 0; represents the probability that the z-th component 
is killed. A modification of the original test exploits the empirical distribution 
of the simulation vector for use when the component or system kill probabilities 
are deemed nonindependent. A reliable estimate of the empirical simulation 
distribution may be difficult to obtain. For example, a set of 20 components 
presents over one million possible outcomes; furthermore, a large sample may be 
required to accurately characterize the relative frequency of occurrence of the less 
likely outcomes. 

However, distinct threat-target interactions (separate shots) are independent, so 
the binomial/multinomial OP test is applicable to a set of separate-shot complete- 
vehicle LoFs. The original formulation of the OP test applies when the response 
and predictions are in {0,1} for each dimension. The test can be extended to the 
case of the Mjt(l,x,0) version of the VL model discussed in the previous section, 
where vehicle LoFs lie in [0,1]. The fth threat-target interaction of k assumes 
each of its n{ possible LoF values (x,',;)"ii with respective probability p;,;-, and the 
interactions are independent. So the simulation distribution is taken to be vector 
multinomial of sample size 1. 

A technical description of the OP test follows, first in the original binomial form 
and then in the multinomial form. This level of representation engenders formulae 
that easily translate into computational instructions. 

2.1   Technical Description 

In the binomial case the simulation distribution is X ~ Bk(l,p), and the experiment 
distribution is assumed to be L ~ Bk(l,0). The OP hypothesis test is 

H0:6 = p 

Hi-.e^p. (3) 

^ebb, D. W. "Tests for Consistency of Vulnerability Models." BRL-TR-3030, U.S. Army Ballistic 
Research Laboratory, Aberdeen Proving Ground, MD, August 1989. 



Since E Z = 6 when Z ~ Bk{l,6), this is the same as 

H0:EL = EX 

Hi'.EL^EX. (4) 

The OP test is a generalized likelihood ratio test. The sample distribution is Z 
~ Bjt(l,0), where the parameter space is 0 = [0,1]* and the null space is 0O = {p}- 
The test of 

H0 : 6 € ©o 

Hi:0€0-0o (5) 

uses the generalized likelihood ratio A(L) as a test statistic. The generalized 
likelihood ratio function is 

AWBS8upMePr.[Z = t]=Pr"IZ = '1-/''(t)' (6) 

where fp is given by equation (A-9) in the Appendix, so the test statistic is 
X{Z) = fp(Z). Construction of the test statistic distribution follows. Let {T„}^=1 

be an enumeration of the sample space S = {0,1}* so that /P(Z) takes the values 

{fp (T«) }n=i • T^en ^e distribution of fp (Z) is given by 

Pre[/p(Z) = /p(i)]     =     ]T     Pre[Z = r„]    =     X)     MT")' (7) 

where, again, /e is as in equation (A-9). Now, /p(Z) has small values significant. 
The order can be reversed by using for a test statistic either T(Z) = gp(Z) 
= 1 -/P(Z), or, equivalent^, the rank T{Z)=g;(Z) of gp(Z) in {gP(r„)}?=1, both 
of which have large values significant. Note that g* = f~, the descending rank of 

/p(Z)in{/p(r„)}tr 
In either case, the cdf of T(Z) is 

fi»(0 = X>(^)J[r(TB)...)(0>    Le-' 
«=i 

2* 

= £MOV*)H(0, (8) 
n=l 



and the null distribution is given when 6 = p. The decision rule is to reject if 
T(Z)>Ta, where the critical value is the usual Ta = Qp(l-a0). The power of the 
test under the alternative 6 is 1 - ß = 1 - Fe{Ta). 

Extension to the multinomial VL model is transparent. In this case, the sample 
distribution is Z ~ Mjt(l,x,0). The hypothesis test again takes the form 

H0 : 6 = p 

Hx-.d^p, (9) 

where the simulation distribution is X ~ M]c(l,x,p) and the experiment 
distribution is L ~ Mjt(l,x, 0). Note, the values x that the model and data take are 
fixed and assumed to be identical. It is the probability of occurrence 0 of these 
values that is being tested. In terms of components, the parameter of interest 
is 0 = ((0i,;)yii)fLi- In the multinomial case, the test is not a test of EL = EX, 

since EZ = (Y^jLiei,jzi,j)ki=i for z ~ Mk(l,z,9). At any rate, this is another 
generalized likelihood ratio test, and construction of the test statistic is analogous 
to the binomial case. The generalized likelihood ratio is 

where fX/V is given by equation (A-13), so the test statistic is fX/P (Z). Let {rn }^=1 be 
an enumeration of the sample space S = <8)jL1{a:,-j}yi1, where N = f]f=i ni- Then 
fXiP (Z) is defined on {fXiP (T„ ) }£La. The distribution of fX/P (Z) is given by 

Pxx,e[fX/P(Z) = fXrP(t)}=     'J2      Prx,e[Z = rn] 

= x; /^(T»)' (n) 
fx,pM=fx,p(t) 

where fX/6 is given by equation (A-13). It is equivalent to use either T(Z) 
= gx>p(Z) = l-fx,p(Z) or the rank T(Z) = glv(Z) ofg*,p(Z) in {gx,P(rn)}^=v both 
of which have large values significant. Again, g*xp = jxp. 



In either case, the cdf of T(Z) is 

N 

h,e{t) = ^fx,B{*n)I\T{Tn),°°){t).   i-e-, 
71 = 1 

N 

= ^2fx,e(*n)l\gx,pM,~){t)    or, 
n=l 

N 

= E/^T")%,MH(<)' <12> 
n=l 

and the null distribution is given when 0 = p. The decision rule is to reject if 
T{Z) > Ta, where the critical value is Ta = QX,P{1 -a0). The power of the test 
under the alternative (x,9) is 1 -ß = 1 - FXtg(Ta). 

In practice there may be "degenerate" distributions, which arise when there is a 
single number coming out of X in some component. That is to say «,- = 1, X, = x\, 
and pi = 1 for some i. If L, / x„ reject H0. Otherwise, test the nondegenerate 
components as above. 

Of course, the multinomial model subsumes the binomial model. With model 
output and data limited to {0,1} it is certain that L lies in S, the sample space of 
the model X. This is not necessarily so for the multinomial model. For some i 
it may be that L, does not lie in {xi^Ly This event occurs with null probability 
zero, hence ranks higher than any vector the model produces. And so the null 
hypothesis is rejected here. 

2.2   The Need for Sensitivity 

Analysts have attempted to modify the OP test in order to eliminate the strict 
requirement that L e S. Such modifications usually invoke some comparison 
of L{ with model output x,j, for example, through using histogram techniques 
or "binning close values together," which implies the construction of a distance 
measure on a space containing the model output X and data vector L. In other 
words, this introduces into the analysis a concept of distance between model LoF 
vectors. The OP test does not use the model output values, only their probabilities 
of occurrence. Model prediction values are used as an index to the probabilities 
that are being compared. So the actual data and model values have no part in the 
OP test and are only introduced in an effort to generalize the test and as an aid in 
understanding OP test results. The OP test statistic cannot provide any indication 
of the effect of these adjustments. However, it is possible to construct a test that 
incorporates model outcome values (in addition, of course, to their probabilities of 
occurrence) and enables quantification of such effects. 



A similar difficulty can arise in the application of the OP test even when L 
G S. Suppose the test results in rejection. The analyst may wonder why and 
ask if a particular component is responsible for the reject decision. The usual 
tack taken here is to examine the location of L among the values of X to gain 
insight about the behavior of g*XiV{V) among g*XrP{X). Again, the OP test can 
only provide information when the real (or altered) experiment results lie in the 
simulation sample space. The new test to be proposed can accommodate arbitrary 
incremental adjustments to the experiment data and allow for true sensitivity 
analysis. 

This situation also arises in power consideration. A significance level a may be 
chosen to manipulate ß against a certain alternative, seeking a low ß against a 
"highly unlikely" outcome. The unlikeliness of an outcome is most likely to be 
judged by its distance from likely outcomes in terms of value and not probability. 

Sometimes the OP test gives surprising results. Consider a multinomial example 
in one dimension with x = (0,0.15,0.9) and p = (0.8,0.04,0.16). Statistics are g*xp 

= (1,3,2) with cdf values (0.8,1,0.96). Set the significance level at a0 = 0.16. Then 
Ta = 2 and the reject region is gXiV e {3}, orxe {0.15}. If the data is L = 0.15, the 
test rejects Ho. Note that the expected value of the model is E X = 0 x 0.8 + 0.15 
x 0.04 + 0.9 x 0.16 = 0.15. So the OP test asserts that the data does not come from 
the model distribution when the data is in fact the mean of the model distribution 
and is in the model sample space. Note that if the data is L = 0.9, the OP test does 
not reject Ho. This value of x is far removed from the mean of the distribution in 
the following sense. Consider a statistic that is the rank of distance from the mean. 
Thatis, T* = (2,1,3) with cdf values (0.84,0.04,1). With a = 0.16, the test based on 
this statistic has T£ = 2 and so rejects Ho when L = 0.9 but not when L = 0.15. On 
one hand, L = 0.15 is a rare event and L = 0.9 is more likely to occur. On the other 
hand, L = 0.15 lies nearer to a group of more likely outcomes than does L = 0.9. 

It is beneficial to quantify the concept of distance that is already being used in 
conjunction with OP test analysis of LF experiments. This can be accomplished 
with the use of a statistic and hypothesis test based on a measure of central 
tendency in the model/simulation output value space. Such a test is now 
proposed. 

3.   The MX Test 

The VL  model with output  X  in the  sample  space   S = ®\=i{xi,j}niL\  *s 

/c-dimensional vector multinomial Mj.(l,x,p) with value parameter list x and 



probability parameter list p. A test of the hypothesis 

H0:EL = EX 

Hi:EL^EX (13) 

is conducted using the test statistic T = MX)P given by 

1=1 ' 1=1 

where   m; = EX,-,   s2 = VarX,-,   and   4(f) = -^i. (14) 

This is a test of E L = E X given that Var L = Var X under H0. It is not required that 
Le S. The distribution of MXiP is, of course, 

F{t) = Pr[Mx,p{Z)^t\. (15) 

When Z ~ Mfc(l/z/0), this is 

N 

F2,o(0 = £/*.«(*») Vx,(Tn)HO' (16) 

n=l 

where Z G ®k
i^l{zi,jYjLl = {*X=i and N = ElLi"" with Ufl given hY 

equation (A-13). Note that the T„ comprise an enumeration of the Z sample space, 
not the sample space of the simulation X. The distribution parameter (x,p) of 
X enters the calculation through the indicator of \MXfV{xn),°°); and the probability 
that MXip(Z) assumes a particular value is 

Pr2,e[Mx,p(Z) = MX,P(T„)] = £Pr2,e[Z = T,-] 
/ 

= '52fzfi(*i)>Mx,P(ri) = MXiP(T„)}, (17) 
; 

where I = {i \ MXiV(*i) = MXiV{xn)}, which is a sum of probabilities from the 
distribution of Z. The null distribution of MXiP{Z) is given when Z ~ Mk(l,x,p)- 

The statistic MX/P has an approximate chi-square distribution, MXiP ~ xl> under 
the null hypothesis. The distribution of MXiP under an alternative hypothesis 
is approximately noncentral chi-square, MXiP ~ Xk,s> with tne usual noncentrality 
parameter 5 = £f=1 (E Z, -E X,)2/Var X,-. 

This test, based on a multinomial distribution with a x2 approximation, will be 
referred to as the MX test. 



4.   Demonstration 

For illustrative purposes, consider a test for the binomial model with parameter 
p = (0.1,0.2,0.3,0.4,0.8) at the significance level a0 = 0.1. Power is calculated 
against the specific alternative 6 = (0.9,0.2,0.3,0.6,0.8). Distributions of the test 
statistics are shown under the null and alternative hypotheses, along with a, 
power, and values of the test statistics. Figure 1 shows the MX test statistic MXiV 

with its x2 approximation. Figure 2 shows the rank M* p of the MX statistic. 
Figure 3 shows the OP test statistic gXiP. Figure 4 shows the rank g*x p of the 
OP statistic. Correspondence of the null ranks is shown in Figure 5, along with 
the sizes and probabilities of the reject and accept regions. True significance 
levels are 0.025 + 0.066 = 0.091 for the OP test and 0.066 + 0.018 = 0.084 for 
the MX test. Note that Pr[reject MX | reject OP] = 0.066/0.091 = 0.73 and that 
Pr[reject OP | reject MX] = 0.066/0.084 = 0.79. So, these two different tests do not 
always yield the same decision. The probability that a random point passes one 
test and fails the other is 0.025 + 0.018 = 0.043, and 3 points out of 32 lie in this 
region. 

To assess the general power characteristics of these tests consider, for fixed 
dimension k, specifying a null distribution {pi)\=1 with uniform random 
components and testing this against a uniform random alternative (<7i)*=1 for fixed 
a0. This gives a random value for the Type II error probability ß. Repeat this 2500 
times to get empirical distributions, which are estimates of the distributions of ß 
for a test of a random null against a random alternative. Estimated median power 
1 — ß is shown for various values of k in Table 1. The power of the OP is greater by 
as much as 2%, so there is little appreciable difference between the two tests. 

5.   Application 

Data from a series of 14 LF tests will now be used to illustrate these statistical 
procedures by comparing the LF results to predictions generated by the 
MUVES/S2 simulation model. The LF LoF assessment data L and parameters 
for the LoF simulation distribution X are presented in Table 2 for MLoF (mobility 
LoF) and Table 3 for FLoF (firepower LoF). The parameters of the simulation model 
are LoF values x and their respective probabilities of occurrence p. Tables 4 and 5 
include respectively for MLoF and FLoF the additional quantities involved in the 
calculation of the MX statistic detailed in equation (14). 



First, consider the MLoF data. The five degenerate (single-valued) distributions of 
shots 3, 8, 9, 10, and 13 agree with their LF results, so we proceed to analyze the 
remaining set of size 9. Note that L4, L6, and Ln do not lie in the sample space of 
the simulation distribution. So the OP test is not applicable here. 

However, one may argue that, in practice, the L4 value of 0.26 is "close enough" to 
the value of 0.22 in the model distribution for that shot for the two to be considered 
equal. This justifies changing the value of L4 to 0.22 for the purposes of conducting 
the OP test. Likewise, L6 = 1 and x6A = 0.96 are "close", so we change L6 to 0.96. 
Then, noting that Ln = 0.04 is close to xi2,2 = 0.02, we declare that Ln = 0.02. The 
modified LF vector now lies in the simulation sample space, and the OP test can be 
applied. The resulting p-value is 0.19, insufficient evidence to reject discrepancy 

at the 10% significance level. 

On the other hand, L12 = 0.04 is equally close to x12,3 = 0.06. So we might as well 
declare that Ln = 0.06. The OP test in this case has a p-value of 0.086, indicating 
disagreement between the model and the experiment at the 10% level. 

So, for this particular example, the OP test outcome can be manipulated at will to 
conclude consistency or inconsistency. Also, the effects of the adjustments made 
in this process cannot be quantified. 

Now consider application of the MX test to the MLoF data. Even though the LF 
results from shots 4, 6, and 12 do not lie in the simulation distribution they are 
considered "close enough" to justify use of the MX test. Unlike the application of 
the OP test in dealing with this discrepancy, no alteration of the data is necesary 

for the MX test. 

The p-value for the exact MX test is 0.069, and the p-value of the x2 approximation 
to the MX distribution is 0.12. These levels most likely but marginally indicate that 

Ho should be rejected. 

Shot L4 has the greatest \A\ of 3, so this may be the shot most responsible for the 
rejection. The data here is L4 = 0.26, to be compared with X4 parameters of x4 

= (0.02,0.06,0.1,0.22) andp4 = (0.36,0.38,0.13,0.13), which give a mean of 0.0716 
and a standard deviation of 0.0631. Deleting L4 from the data set and performing 
the MX test on the remaining set of size 8 yields an exact p-value of 0.78, and an 

approximate p-value of 0.74. 

So the MX test has been used here to isolate the single shot that is responsible for 
possible discrepancy between the simulation predictions and LF results. 

In the manner of a sensitivity analysis, the effects on the p-value of altering the data 
values L4, L6, and Lu are shown in Table 6. The other six nondegenerate shots 
retain their original data values, which did not need to be altered for application 
of the OP test; and sensitivity analysis is conducted on the full nondegenerate data 

10 



set of nine shots. The MX test enables quantification of the effects of altering data, 
which is not possible relying solely on the OP test. This is certainly desirable. 
Clearly, the value of L 4 is the main factor in the outcome of the test. Given that 
L12 = 0.04 is close enough to 0.02 or 0.06, and that L(, = 1 is close enough to 0.96, 
we see that changing L4 from 0.26 to 0.24 results in a determination of model 
consistency at the 10% level, independent of the value of Li2 G {0.02,0.04,0.06} 
or of he e {0.96,1}. Therefore, given that L4 = 0.26 is close enough to 0.24, we 
conclude that the MLoF model and LF results are consistent. 

Similarly changing the value of L4 from 0.26 to 0.22 raises the exact p-value to 
0.22. A reasonable conclusion to draw from this exercise is that marginal rejection 
is solely caused by underestimation on the part of the simulation by an amount in 
the neighborhood of 0.02-0.04 for shot 4. 

Therefore, the decision to accept or reject model consistency hinges on the practical 
significance of this quantifiable discrepancy. 

A similar consideration applies to the FLoF data. The p-values are essentially zero, 
and this can be attributed to shots 5 and 6 in which L5 and L(, are both equal to 0.05. 
As can be seen in Table 7, reduction of these data to somewhere between 0.02 and 
0.03 results in p-values exceeding 0.2. The test is highly sensitive to the values 
of L5 and Lö, and the original conclusion of inconsistency results from the model 
underestimating the LF responses of 0.05 for shots L5 and L(, by an amount in the 
neighborhood of 0.02-0.03. 

Again, the MX test has allowed for quantification of the modeling discrepancy 
responsible for rejection of consistency, which then must be interpreted in the light 
of practical significance. 

In conclusion, the MX test can be used to perform sensitivity analyses in tests for 
the consistency of live-fire results and simulation predictions. The MX test can be 
used to identify the critical shots that cause decisions of inconsistency for a series 
of predictions. The MX test can also be used to quantify the inconsistency in those 
predictions in a manner not possible with the OP test. 

11 
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Table 1. Demonstration median power against random alternative. 

k OP MX 

5 0.62 0.61 
6 0.69 0.69 
7 0.76 0.74 
8 0.78 0.77 
9 0.84 0.82 

10 0.85 0.84 

17 



Table 2. Basic MLoF data and model. 

Li       Hi j 
12       3      4       5 

0 3x0       0.02 0.06 

p     0.88  0.1    0.02 

3 1 

4 0.26 

5 1 

6 1 

7 1 

8 0 

10 0 1 

11 1 2 

12 0.04 5 

13 1 1 

14    1        2x01 
p    0.18 0.82 

X 0 1 

p 0.32 0.68 

X 1 

p 1 

X 0.02 0.06 0.1 0.22 

p 0.36 0.38 0.13 0.13 

X 0 1 

p 0.56 0.44 

X 0 0.02 0.8 0.96 

p 0.21 0.29 0.46 0.04 

X 0 1 

p 0.34 0.66 

X 0 

p 1 

X 1 

p 1 

X 0 

p 1 

X 0 1 

p 0.3 0.7 

X 0 0.02 0.06 0.1    0.26 

p 0.27 0.42 0.16 0.14 0.01 

X 1 

p 1 
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Table 3. Basic FLoF data and model. 

i   u      m        j 
1 

1 0.98 2x0     0.98 
p     0.06 0.94 

2 0.02 3 

3 1 1 

4 0.94 3 

5 0.05 2 

6 0.05 2 

7 0.02 2 

8 0 1 

9 0.02 1 

10 0 1 

11 1 2 

12 1 8 

13 1 1 

14 1 2*01 
p    0.18 0.82 

X 0 0.02 0.04 

V 0.32 0.66 0.02 

X 1 

V 1 

X 0.06 0.56 0.99 

V 0.38 0.5    0.12 

X 0 0.02 

V 0.56 0.44 

X 0 0.02 

V 0.51 0.49 

X 0 0.02 

V 0.34 0.66 

X 0 

V 1 

X 0.02 

V 1 

X 0 

V 1 

X 0 1 

V 0.3 0.7 

X 0 0.06 0.14 0.2    0.56 0.66 0.98  1 

V 0.12 0.17 0.06  0.02  0.05 0.01  0.43  0.14 

X 1 

V 1 
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Table 4. MLoF data and model. 

i Li mi Si Ai «» i 
12       3      4      5 

1 0 0.0032 0.0101 -0.32 3 

P 

0       0.02 0.06 

0.88 0.1    0.02 

2 1 0.68 0.466 0.69 2 

P 

0       1 

0.32 0.68 

3 1 1 0 0 1 X 

V 

1 

1 

4 0.26 0.0716 0.0631 3 4 X 

V 

0.02 0.06 0.1    0.22 

0.36 0.38 0.13 0.13 

5 1 0.44 0.496 1.1 2 X 

V 

0       1 

0.56 0.44 

6 1 0.412 0.402 1.5 4 X 

V 

0       0.02 0.8    0.96 

0.21  0.29 0.46  0.04 

7 1 0.66 0.474 0.72 2 X 

V 

0       1 

0.34 0.66 

8 0 0 0 0 1 X 

V 

0 

1 

9 1 1 0 0 1 X 

V 

1 

1 

10 0 0 0 0 1 X 

V 

0 

1 

11 1 0.7 0.458 0.65 2 X 

V 

0       1 

0.3    0.7 

12 0.04 0.0346 0.0403 0.13 5 X 

V 

0       0.02 0.06 0.1    0.26 

0.27 0.42 0.16  0.14 0.01 

13 1 1 0 0 1 X 

V 

1 

1 

14 1 0.82 0.384 0.47 2 X 

V 

0       1 

0.18 0.82 
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Table 5. FLoF data and model. 

i Lj    mi       S{ Ai      tii      j 
12345678 

1 0.98 0.921    0.233     0.25 2   x 0     0.98 
p  0.06 0.94 

2 0.02 0.014    0.01       0.60 3x0     0.02 0.04 
p 0.32 0.66 0.02 

3 11 0 0      1^1 

V 1 

4 0.94 0.422    0.313     1.70 3   x 0.06 0.56 0.99 
p 0.38 0.5    0.12 

5 0.05 0.0088 0.00993 4.10 2x0     0.02 
p 0.56 0.44 

6 0.05 0.0098 0.01       4.00 2x0     0.02 
p 0.51  0.49 

7 0.02 0.0132 0.00947 0.72 2x0     0.02 
p  0.34 0.66 

800 0 Olxo 

V i 

9 0.02 0.02     0 0       1   x 0.02 

V 1 

10 00         0           Olxo 

V 1 

11 1      0.7       0.458     0.65 2x0     1 
p 0.3   0.7 

12  1        0.619    0.439       0.87  8x0      0.06 0.14 0.2    0.56 0.66 0.98  1 
p 0.12 0.17 0.06 0.02 0.05 0.01  0.43 0.14 

13 1      1 0 Olxl 

V i 

14 1      0.82     0.384     0.47 2x0     l 
p 0.18 0.82 
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Table 6. MLoF p-value sensitivity. 

u U Ll2 p-value 

MX OP 

note 

0.22 0.96 0.02 0.23 0.19 pass OP 

0.22 0.96 0.04* 0.24 - 

0.22 0.96 0.06 0.21 0.086 fail OP 

0.22 1* 0.02 0.21 - 

0.22 1* 0.04* 0.22 - 

0.22 1* 0.06 0.19 - 

0.24 0.96 0.02 0.14 - 

0.24 0.96 0.04* 0.14 - 

0.24 0.96 0.06 0.12 - 

0.24 1* 0.02 0.12 - 

0.24 1* 0.04* 0.13 - 

0.24 1* 0.06 0.11 - 

0.26* 0.96 0.02 0.074 - 

0.26* 0.96 0.04* 0.076 - 

0.26* 0.96 0.06 0.067 - 

0.26* 1* 0.02 0.067 - 

0.26* 1* 0.04* 0.069 - true data vector 

0.26* 1* 0.06 0.063 - 

"*" denotes actual data value 
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Table 7. FLoF p-value sensitivity. 

u L5        Lö        p-value                   note 

MX             OP 

0.94* 0.02 0.02 0.56 
0.94* 0.02 0.03 0.23 
0.94* 0.02 0.05* 0.037 

0.94* 0.03 0.02 0.21 
0.94* 0.03 0.03 0.087 
0.94* 0.03 0.05* 0.012 

0.94* 0.05* 0.02 0.028 - 

0.94* 0.05* 0.03 0.0091 - 

0.94* 0.05* 0.05* 0.0000002 - true data vector 

0.99 0.02 0.02 0.47 0.339 
0.99 0.02 0.03 0.19 - 

0.99 0.02 0.05* 0.031 — 

0.99 0.03 0.02 0.18 
0.99 0.03 0.03 0.078 
0.99 0.03 0.05* 0.0092 

0.99 0.05* 0.02 0.024 
0.99 0.05* 0.03 0.0073 
0.99 0.05* 0.05* 0 

"*" denotes actual data value 
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Appendix.  Background, Notation, and Terminology 

The material in this section can be found in any standard text on mathematical 
statistics, such as Mood, Graybill, and Boes.1 It is presented here for easy reference. 

A.l   Some Useful Functions 

The indicator function for the set S is 

hit)-I1'   teS (A-l) 
\o, t$s. 

The cumulative distribution function (cdf) of a univariate random variable (rv) X 
is the left-continuous function 

F(f) = Pr[X<t]/    teR (A-2) 

and its right-continuous pseudo-inverse is the quantile function (qf) 

Q{u) = in£{t:F(t)Zu},    «€[0,1]. (A-3) 

For continuous distributions Q = F_1. For any rv, Q(0) = -«>. 

A discrete finite random variable X defined on the sample space S = {tf}"=1 has 
probability function f(t) = Pr[X = t] and cdf 

n n 
F(t) = Pr[X < t] = ^Pr[X = U]IM{t) = ^fW^t). (A-4) 

1=1 i=i 

The empirical cdf based on the i.i.d. data {X,}f=1 is the discrete cdf of n 
equiprobable points 

F
»(0 = ^E

I
[X«H(0 (A

'
5) 

1=1 

and its inverse is the empirical qf Qn(u). For any (discrete, continuous, or mixed) 
rv 

F(Q(«))>«   and   Q(F(t))^t. (A-6) 

1Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd edition, 
NY: McGraw-Hill, 1974. 
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A.2   Some Useful Random Variables 

These particular random variables play a part in the procedures discussed and 
developed in this report. In general, A ~ B means that the random variables A 
and B have the same distribution. So "~" can be read "has the same distribution 
as" or "is distributed as" or "is equal in distribution to." 

A scalar Bernoulli(0) or binomial B(1,0) random variable Z is defined on S 
= {0,1}, and the parameter is 0 = Pr[Z = 1] = 1 - Pr[Z = 0]. So its probability 
function is 

fe{t) = FTe{Z = t] = eIw{t){l-d)'i^t),    te{0,l}, (A-7) 

and its moments are 

EZ = 0   and    Var Z = 0(1-0). (A-8) 

A sample of n independent B(1,0) random variables has the usual binomial 
distribution B{n,6). In the vector case, the binomial Bk(l,6) random variable is 
Z = (Z,-)jLa with parameter 0 = (0;)*=1. Each component Z, ~ B(1,0;), and they 
are independent. So Z is defined on S = {0,1} x • • • x {0,1} = <8»f=1{0,l> = {0,1}*. 
The probability function of Z is 

k k 

fe(t) = Pre[Z = t) = Y[K»[Zi = tt] = nfl,',,l(,,)(l - 0:)7<°>(O, CA-9) 
i=i i'=i 

where t = (*i)?=i e {0'1)*- Moments are given by 

EZ, = 0,    and    VarZ; = 0,(1-0,). (A-10) 

A sample of n independent Bjt(l,0) random variables has the vector binomial 
distribution B)t(n,0). 

A scalar multinomial M(l,z,0) random variable Z has parameter (z,0) where z 
= (z;)jf=1 and 0 = (0;)^! with ^J=i Bj = 1 and 0< 0/ < 1 for each ;. The 
distribution is given by Pr[Z = z;] = 0;, so the sample space is S = {z/}"=1- The 
probability function for Z is 

n 
>,.(') 

/z,e(0 = Pr2,e[Z = t] = ne;        '    te{2/}/=i' (A-H) 

and its moments are E Zm = Y?j=i djz"j'> so 

EZ = J2eizi   and    VarZ = ^0;z|-(EZ)2. (A-12) 
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A sample of n independent M(l,z,0) random variables has the usual multinomial 
distribution M(n,z,6). The vector multinomial Mfc(l,z,0) random variable Z 
= (Z,-)f=1 has parameter (z,0), where z = (z,-)f=1 and 0 = (0,)f=1. The ith component 
Zf ~ M(l,z;,0,), where z* = (z;,,-)^! and 0/ = (fy)"=Li- The sample space is 
S = <8>^=1 {z,-,7- }/=! • The probability function is 

MO = Pr2,*[Z = t] = U^elZi = U] = Utl^ii){tl). (A"13) 
f=l i'=l ;'=l 

where t = (t,-)f=1 e ^{z;,,}^, and moments are given by E Zf = £"!i 0,-,,-z^, so 

»,• «i 

EZf = £$,;2i,/    and    VarZ,-= ^^;-z?/-(EZl-)2. (A-14) 
;=i ;=i 

In fact, Bk(l,6) ~ Mjt(l,(0,l),(l - 0,0)). A sample of n independent Mk(l,z,6) 
random variables has the vector multinomial distribution Mfc(n,z,0). 

A.3   Hypothesis Testing 

A hypothesis test is a procedure for determining the truth of some conjecture about 
the parameter of a probability distribution based on data, which is an observation 
from the distribution. Suppose the data U is a random variable defined on a 
sample space S according to a probability law with parameter 0, and that T : S —> M 
is a function so that T(U) is a statistic. Consider the hypothesis test 

H0:9 = y 

H-y.O^y, (A-15) 

which asserts that the correct value of 0 is in fact y. If small T indicates that G = y 
and large T indicates otherwise, then T is said to have large values significant. The 
decision rule is to reject H0 if T > Ta where the critical level Ta is chosen so that 
the probability of an incorrect decision under the null hypothesis, or Type I error, 
is no greater than a0. This requires that Ta is large enough that Pry[T > Ta] < a0 

but no larger. So choose 

Ta = inf{T:Prr[T>Ta]^a0} 

= inf{T:Pry[T<To]^l-a0} 

= inf{T:Fy(t)>l-a0} 

= Qr(l-a0). (A-16) 
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Then the actual probability of Type I error (also called the size of the critical region 
or significance level of the test) is 

a = Pry[T > T„] = 1 - Pry[T < Ttt] = 1 - Fr(Ta) = 1 - Fy(Qy(l - a0)) 

<l-(l-o0) = o„ (A-17) 

as required. The p-value of the test, denoted p, is defined as 

p = l-FY{T). (A-18) 

If p < a, then Fr(T) > Fr(Ta) and T > Ta.   Thus, p < a implies that H0 is to be 
rejected. 

The Type II error probability ß of making an incorrect decision under an alternative 
with the specific parameter value 6 is 

ß = ?Te[T^Ta} = Fe(Ta), (A-19) 

and the probability of making the correct decision under 9 is the power of the test 

l-jß = Pre[r>T„] = l-Fe(ra). (A-20) 

(X(,))f=1 denotes the order statistics of (X;)"=1, so that X(,) ^ X(,+1).     And 
X* denotes rank, so X^ = i.     Descending rank will be denoted by X~, so 
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