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1    Status of Effort 

The availability of components that can be assembled together to build a 
customized system promises to decrease software development costs and, 
one hopes, also increase the reliability of the resulting system. Clearly, this 
promise can only be realized when a system designer has adequate informa- 
tion about the components that will be used to predict how systems con- 
taining them will behave. This project explored approaches to specifying 
components using formal techniques that allow a component developer to 
verify that the component itself satisfies its specification, and also allow the 
system builder who uses the component to reason about the behavior of 
systems containing that component. 

A general theory guarantees properties for components was developed. 
A guarantees property of a component describes the behavior of systems 
containing that component. In order to use the general theory, it must be 
instantiated as and extension of a more complete programming logic. Case 
studies were performed with two programming logics: UNITY, and CTL. In 
the latter case, model checking tools for mechanized reasoning about closed 
systems specified in CTL were used along with assertional techniques to 
reason about composite systems. 

2    Accomplishments 

2.1     Introduction 

Suppose that a component, call it F, satisfies some specification, call it 
SpecF, and another component G satisfies a specification SpecG. A sys- 
tem builder hoping to utilize these components would like to answer "What 
can one then say about F o G, a system built by combining, or composing, 
Fand GT. 

As a simple example that illustrates the generality of the issue: suppose 
SpecF is UF weighs less then 10 grams" and SpecG is "G weighs less than 
15 grams." We can immediately conclude that F o G weighs less than 25 
grams. This particular form of specification, namely giving the weight of 
some physical component, admits simple reasoning in composed systems since 
weight is additive. 

An example more typical of the intended domain of exploration, con- 



current software systems, is the following: Suppose component F controls 
a resource and satisfies the specification: "if F holds the resource and it is 
requested by a client, then the client with the earliest request will eventually 
be granted the resource." Suppose the clients all satisfy the specification: 
"if a client G holds the resource, it will eventually return it to the the con- 
troller." Can one then conclude that in a system composed of the controller 
and clients that "all requests for the resource will eventually be granted" ? 

Unfortunately, these specifications cannot be composed as simply as the 
component weight example. Depending on how the components interact in 
ways not specified, the desired conclusion may or may not hold. A goal of 
this project was to increase the fundamental understanding of composition 
and develop techniques for sound reasoning about composition, both as a 
general concept, and in the specific context of concurrent and distributed 
programming. 

This work will contribute to the ability of the Air Force to leverage the 
development effort of software components by allowing them them to be used 
in multiple systems. By understanding the issues affecting the behavior of 
systems in composition, component developers can design components that 
are easier to reason about and use. More effort can be placed in the vali- 
dation of the components, since this work is "reused" when the components 
are reused, provided the component specifications are developed with the 
needs of composition in mind. With sound techniques for reasoning about 
components, the confidence in systems that use them can be increased. 

The approach taken in this project can be summarized as follows: 

• Look for simple and general notions of composition. 

• Identify classes of properties that compose well 

• Develop a calculus of composition 

• Instantiate the general theory as an extension of a specific programming 
logic, in this case UNITY and CTL. 

• Since CTL is well supported by tools for model checking, the use of 
model checking for reasoning about program composition was investi- 
gated. 



2.2    Technical Results 

2.2.1    Definitions 

Let VQ be a set of systems with well-defined semantics. A property is a pred- 
icate (boolean valued function) on VQ. Since properties are predicates, the 
set of properties is closed under logical negation, conjunction, and disjunc- 
tion. We use symbols F, G and H for systems, X, Y, and Z for properties. 
So, Z.H is function Z applied to argument H, and therefore, Z.H is the 
boolean: property Z holds for system H. 

Composition is denoted with a composition operator o of type VQ x VQ —> 
VQ. We require that o is associative with identity SKIP, where SKIP G VQ. 

and if a composed system is in VQ then all its components are also in 
VQ: 

FoGeVQ=>FeVQAGeVQ. 

We begin by assuming that o is symmetric (commutative). The set VQ need 
not be closed under composition: It is possible that F o G is not in VQ even 
though F and G are. 

The function component from systems to properties is defined as follows: 
For a system F, component.F is a property that holds for all systems that 
can have F as a component and only such programs. 

component.F.H = (3G : F o G G VQ  : F o G = H) 

From the definition of component, if G is a component of H and H is a 
component of F then G is also a component of F: 

component.G.H A component.!!.F => component.G.F 

Since SKIP can be composed with any program, and F composed with SKIP 
is F itself, F is a component of itself: 

(VF :F EVQ  : component.F.F) 

and SKIP is a component of all systems: 

[components KIP] 



2.2.2     Classes of easily composable properties 

Two classes of properties of interest were identified: 

• Existential. A property is existential if holding for a single component 
is sufficient for the property to hold for any system containing that 
component. 

More formally, a property X is an existential property exactly when for 
all g 

(3G : G G G : X.G)   =>  X.(oG :GeG:G) (1) 

An example is a property that states that "eventually the value of vari- 
able x will change". Assuming fairness, it only requires one component 
to guarantee this for it to hold in the entire system 

• Universal Universal properties hold for a system if they hold for each 
component in the system. A property X is an universal property exactly 
when for all G, 

{\/G:GeG: X.G)  =>  X.{oG :GeQ:G) (2) 

An example is a property that states that "x never decreases". This will 
be the case if no component ever decreases the value of x, (assuming 
an underlying model that allows each component to read and modify 
x atomically.) 

Existential and universal properties are very convenient because they al- 
low reasoning about a system by reasoning about the individual components. 
Clearly, not all properties of interest are existential or universal. Among 
other issues, a way to talk about constraints on the environment in which 
a component is deployed is needed. To do this the notion of a guarantees 
property, based on ideas originally proposed by Pnueli [Pnu84] was define. A 
guarantees property (X guarantees Y) is a property of a system F if and 
only if all systems that have F as a component and have X as a property also 
have Y as a property. We refer to properties of the form (X guarantees Y) 



as guarantees properties.   A guarantees property is a higher-order property 
since it depends on the entire set of systems. More formally: 

(X guarantees Y).F = (VH : component.F.H : X.H =*► Y.H) (3) 

An example of a guarantees property is "the value of x is nondecreasing" 
guarantees eventually x will be at least 10. It would be expected that this 
property would hold for any component, say F with the existential property 
that "eventually the value of x will change". As discussed above, the left 
side of the guarantees property is a universal property, thus could be checked 
by checking each component of the system individually. The guarantees 
property encapsulates the inductive reasoning needed to conclude the right 
side of the guarantees property so that it can be essentially reused every time 
the component F is deployed. 

In contrast to a common interpretation of rely/guarantee specifications, 
the meaning of (X guarantees Y).F is not that if the environment H of F 
has property X then the composed system F o H has property Y. This 
interpretation leads to difficulties when viewing a composed system as a 
component in a larger system. 

Guarantees means that if the composed system FoH has property X then 
the composed system FoH has property Y. Since both the left and right 
hand sides of the guarantees refer to properties of the same system, from the 
associativity of composition, guarantees properties are existential. Thus if 
Xguarantees Y.F holds for some component F, then Xguarantees Y.F o G 
Further, guarantees satisfies many of the rules of implication. It is disjunctive 
in the left operand, conjunctive the right operand, and satisfies a contrapos- 
itive property. A useful theorem about guarantees that was used implicitly 
in the example above is Given X A Y => Z where X is universal and Y is 
existential, is Y.F =$■ (Xguarantees Z).F. 

An additional property env has been studied. env.P.F means that P 
must hold for any component that can be composed with F. Typically, 
an env property P is most useful if it can be verified during compilation 
or linking. Knowledge of the env property can be used to weaken the left 
hand side of guarantees properties, essentially transferring some of the proof 
burden from the programmer. 

To composition theory described so far can be summarized as comprising 

• A general and simple notion of composition 



• Identification of important classes of properties: existential, universal, 
guarantees, and env. 

• Rules for manipulating properties 

2.3    Specializing the compositional theory 

The work involved in proving that a system satisfies some properties involves 
the following: 

• The component developers prove that the components satisfy their 
guarantees and other properties. Although this may be difficult, it 
is only done once. 

• The systems developer who uses a component must prove that the 
system satisfies the left had side of the guarantees properties. Since 
this must be done each time the component is used in a system it is 
desirable that this be easy. It helps if the properties on the left side 
are universal or existential so that they may be checked separately for 
each component. 

In order to prove that a component satisfies a specification, a model-specific 
theory is needed. In this project, two different programming models were 
instantiated. 

2.3.1    UNITY 

UNITY is a programming logic originally described in [CM88] with later 
versions in [Mis95a, Mis95b]. Although quite simple, Chandy and Misra, and 
others have demonstrated that many interesting programs can be specified 
in the model. 

Programs, which are considered to generate infinite computations, are 
specified with 3 basic properties that form a fragment of linear time temporal 
logic. 

• p next q means that p => q, and that during the entire computation, if 
p holds at some point, then q holds after the next step. 

transient p means that, if p holds at any point in the computation, 
eventually p will become false. Alternatively, transient p means that p 
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cannot remain true forever. Transient properties depend on an implicit 
fairness assumption. 

• p -^ q means that during the entire computation, if p holds at some 
point, then eventually q will hold. 

A study of these properties revealed that next properties are universal, 
transient properties are existential, leads — to properties are neither, but a 
new axiomatization was developed that allows all leads — to properties to be 
derived from a set of next and transient properties. 

These rules are as follows: 

Transient rule 
transient p 

p ~> -ip 

Progress, safety, progress 

p next q, r " 
pAfv (q Ar) V (->r A s) 

Disjunction 

Pi next q 
(Vi :pi)^q 

Transitivity 

P ^ Q, q^ r 

V 

(4) 

(5) 

(6) 

(7) 

Additional proof rules, such as an induction rule, can be derived from 
these properties. 

The importance of this rule is that when one wants a leads-to property on 
the right side of a guarantees property, the transient and next properties used 
in the hypothesis of the transient and progress, safety, progress rules become 
the properties on the left side of the guarantees property. In addition, any 
transient property satisfied by the component can be eliminated from the list 
of left-hand side properties. The remaining properties are either existential 
or universal. The user of the component need not perform a complicated 
progress proof, but only needs to prove a set of simpler next, and possibly, 
transient properties. Here, the guarantees property encapsulates difficult 
reasoning so that it only need be done once. 

8 



2.3.2    CTL 

The theory of composition was also studied in the context of CTL. CTL is 
a branching time temporal logic. Among other reasons, it is of interest be- 
cause of the availability of tools to verify finite state systems with properties 
specified in this logic using a technique called model checking [CGP99]. The 
model checker takes a description of a finite state system and a property, 
and either determines that all possible computations of the finite state sys- 
tem satisfy the property, or shows a counterexample. In contrast to theorem 
proving, model checkers do not (in principle) require cleverness or help from 
the user, thus have the potential to become more widely used than many 
other approaches to formal verification. 

One of the major limiting factors in CTL model checking in practice is 
the state explosion problem, and this has motivated most of the work on 
using composition with CTL [BCC98, GL94]. By decomposing a system 
into parts that can be checked separately, larger systems can be handled. 
Much of the work also considers synchronous composition, the appropriate 
type of composition for hardware. This project considered open systems 
where the components are combined with asynchronous composition. Other 
work on model checking for open systems [KV97] has indicated that certain 
formulations of using model checking for components is intractable in general. 

Rather than attempting to model check guarantees properties directly, 
the approach in this project was to combine model checking with deduction. 
Let P be a program property and / a component, the notation P.f means 
that / satisfies property P. Also, let ct- be some component, the expansion 
of this component, denoted by Cj, is a program that behaves as c, but it 
has some additional variables1. These additional variables might have any 
initial value that does not change during the execution of Cj. The propose 
validation process is as follows: Each component Ci has some properties Ai: 

Ei such that A{.Ci =>• A.Ci and ej.C; =>■ ü^c,-. A is universal and 
E\...En is an existential property. One can then conclude that the entire 
system (i.e., the composition of all the Q'S) satisfies A A (Vi :: Ei). Since 
many important properties are neither existential nor universal guarantees 
properties of some components are used to prove these remaining properties. 
Suppose there is a component Cj such that (F guarantees G).Cj).Cj. Then, 
the entire system satisfies G if A A (Vi :: Ei) =^> F. All the properties AiS 
and EiS should be verifiable using model checking only.  A set of theorems 

:The variables of the entire system that are not visible to this component 



might also be published by the developer of the components to facilitate the 
proofs. Any proofs done by the component developer can be reused. Several 
case studies are described in [AG01, AS02, AS]. 

2.3.3    Discussion 

In both UNITY and CTL, the treatment of initial conditions must be done 
very carefully. In a closed system, the initial conditions may be used to con- 
clude that some states are unreachable. These states can then be ignored. 
When a component is placed in a larger system, however, interactions be- 
tween components may cause some of these states to become reachable, and 
the unreachable states can not longer be ignored unless deliberate steps are 
taken to ensure that they will remain unreachable in the composition. This 
may involve introducing guarantees properties, or placing constraints on the 
composition. 

A fairness assumption states that each component will be given a chance 
to execute. (There are several technical definitions of fairness that one could 
consider.) Fairness assumptions are essential to the identification of any 
progress properties as existential. In UNITY, fairness is an implicit part of 
the underlying programming model. In CTL, they are not. We found that, in 
contrast to the usual approach of considering fairness as part of the system, 
it is more convenient to consider both fairness and initial conditions as part 
of a property. 

For UNITY logic, a very strong compositional result was obtained: All 
UNITY properties are either existential, universal, or follow from properties 
that are existential or universal. The proof of a property generates the left 
side of a guarantees property as a byproduct of the proof process. In CTL, 
some properties were identified as existential and universal and theorems 
developed. Since CTL is a much more expressive logic than UNITY, the 
compositional results are not as strong as in UNITY and are available for 
only a subset of CTL properties. Another factor is that in CTL, proofs are 
generally not constructed, but model checking is used instead. The value of 
these results depend on how useful they are in practice. Several case studies 
showed that the partial results were adequate for at least some interesting 
problems. Discovering the compositional characteristics of other property 
patterns remains an important problem for future work. The work on CTL 
is described in detail in [AG01] a PhD thesis by Hector Andrade-Gomez, and 
[AS02, AS]. 
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2.4    Related work:   A Pattern Language for Parallel 
Programming 

At the suggestion of the program manager, this project is briefly described 
here. This work was funded by the National Science Foundation and Intel 
with collaborators Berna L. Massingill and Timothy G. Mattson. 

A design pattern is a description of a high quality solution to a frequently 
recurring problem which presented in a prescribed format in order to help 
both the reader and the pattern writer focus on the essential aspects of the 
problem. A pattern language is a set of patterns that could used together, 
and which are organized into a structured hierarchical catalog. The pattern 
language for parallel application programming presents a collection of pat- 
terns that guide a programmer from the initial stages of parallel program 
design, such as finding the concurrency in a problem, to identifying the al- 
gorithm structure to be used along with patterns for supporting structures. 
The pattern language is described in [MMS99, MMSOOb, MMSOOa, MMS01] 
can be viewed at www.cise.ufl.edu/research/ParallelPatterns. 

The experience shows that a pattern language can be an effective way to 
organize expertise in a given area. The important characteristics are 

• Each pattern has a name, providing a common vocabulary for solutions 

• Each pattern contains a concise description of the problem it will solve, 
the context where the solution is applicable, and the main tradeoffs that 
must be made. 

• Patterns often contain references to related patterns, and to patterns 
that are likely to be useful in the next step of the design process. 

Patterns may prove to be a useful way of organizing knowledge about 
composition as well. 
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5    Interactions 

5.1    Participation/presentations 

The PI has organized the following workshops during the term of this grant 

• International Workshop on Formal Methods for Parallel Programming: 
Theory and Applications, 2001. In conjunction with IPDPS 2001, San 
Francisco, CA. 

International Workshop on Formal Methods for Parallel Programming: 
Theory and Applications, 2001. In conjunction with IPDPS 2000, Can- 
cun, MX 
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• International Workshop on Formal Methods for Parallel Programming: 
Theory and Applications, 2001. In conjunction with IPDPS 1999, Or- 
lando, FL. 

The PI has participated (or was an author of a paper presented by a co- 
author) in the following conferences 

• Europar 2000. Munich, 2000. 

• Sixth Workshop on Pattern Languages of Programs (PLoP99), Urbana, 
2001. 

• Seventh Workshop on Pattern Languages of Programs (PLoP2K), Ur- 
bana, 2000. 

• Symposium in Honor of Edsger W. Dijkstra. Austin, 2000. 

5.2    Transitions 

Dr. Laurence Paulson, of Cambridge University has mechanized our UNITY 
instantiation of the guarantees properties in the Isabelle theorem prover. 
This work not only has the potential to provide a useful tool for system 
developers who work with UNITY, but has also let to important insights 
about composition in strongly typed formalisms. 

6    New Discoveries 

None 
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