
REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-02-
Public reporting burden lor this collection of information is estimated to average 1 Hour per response, including the time for reviewing instnj
the data needed, and completing and reviewing this collection of information Send comments regarding this burden estimate or any otner
reducing this burden to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis High
Management and Budget, Paperwork Reduction Proiect (0704-0188). Washington. DC 20503

cJD^
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
9/30/2001

3. REPORT TYPE AND DK .
Final report March 15, 1998 -June 1.2001

4. TITLE AND SUBTITLE
Semantic Issues for Component Technologies

6. AUTHOR(S)
Beverly A. Sanders

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer and Information Science and
Engineering
P.Ö.Box 116120
University of Florida
Gainesville, FL 32611-6120
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR
801 N. Randolph Street, Room 732
Arlington, VA 22203-1977

11. SUPPLEMENTARY NOTES

ISa.DISTRIBUT.ON/AV^IL^e^^^YATEMENTA
Approved for Public Release

Distribution Unlimited

5. FUNDING NUMBERS
AFOSR G4514209-12

pfflfi b^s-l-OSGö

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

20020315 085
iV0T

W:
Lf

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The availability of components that can be assembled together to build - customized system promises to decrease software
development costs and, one hopes, also increase the reliability of the resulting system. Clearly, this promise can only be
realized when a system designer has adequate information about the components that will be used to predict how systems
containing them will behave. This project explored approaches to specifying components using formal techniques that
allow a component developer to verify that the component itself satisfies its specification, and also allow the system
builder who uses the component to reason about the behavior of systems containing that component.

A general theory guarantees properties for components was developed. A guarantees property of a component describes
the behavior of systems containing that component. In order to use the general theory, it must be instantiated as and
extension of a more complete programming logic. Case studies were performed with two programming logics: UNITY,
and CTL. In the latter case, model checking tools for mechanized reasoning about closed systems specified in CTL were
used along with assertional techniques to reason about composite systems.

14. SUBJECT TERMS
Composition, program verification, temporal logic

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Final Report: Semantic Issues for Component
Technologies

Beverly A. Sanders
Department of Computer and Information Science
University of Florida Gainesville, FL 32611-6120

AFOSR Grant 4514209-12

September, 2001

1 Status of Effort

The availability of components that can be assembled together to build a
customized system promises to decrease software development costs and,
one hopes, also increase the reliability of the resulting system. Clearly, this
promise can only be realized when a system designer has adequate informa-
tion about the components that will be used to predict how systems con-
taining them will behave. This project explored approaches to specifying
components using formal techniques that allow a component developer to
verify that the component itself satisfies its specification, and also allow the
system builder who uses the component to reason about the behavior of
systems containing that component.

A general theory guarantees properties for components was developed.
A guarantees property of a component describes the behavior of systems
containing that component. In order to use the general theory, it must be
instantiated as and extension of a more complete programming logic. Case
studies were performed with two programming logics: UNITY, and CTL. In
the latter case, model checking tools for mechanized reasoning about closed
systems specified in CTL were used along with assertional techniques to
reason about composite systems.

2 Accomplishments

2.1 Introduction

Suppose that a component, call it F, satisfies some specification, call it
SpecF, and another component G satisfies a specification SpecG. A sys-
tem builder hoping to utilize these components would like to answer "What
can one then say about F o G, a system built by combining, or composing,
Fand GT.

As a simple example that illustrates the generality of the issue: suppose
SpecF is UF weighs less then 10 grams" and SpecG is "G weighs less than
15 grams." We can immediately conclude that F o G weighs less than 25
grams. This particular form of specification, namely giving the weight of
some physical component, admits simple reasoning in composed systems since
weight is additive.

An example more typical of the intended domain of exploration, con-

current software systems, is the following: Suppose component F controls
a resource and satisfies the specification: "if F holds the resource and it is
requested by a client, then the client with the earliest request will eventually
be granted the resource." Suppose the clients all satisfy the specification:
"if a client G holds the resource, it will eventually return it to the the con-
troller." Can one then conclude that in a system composed of the controller
and clients that "all requests for the resource will eventually be granted" ?

Unfortunately, these specifications cannot be composed as simply as the
component weight example. Depending on how the components interact in
ways not specified, the desired conclusion may or may not hold. A goal of
this project was to increase the fundamental understanding of composition
and develop techniques for sound reasoning about composition, both as a
general concept, and in the specific context of concurrent and distributed
programming.

This work will contribute to the ability of the Air Force to leverage the
development effort of software components by allowing them them to be used
in multiple systems. By understanding the issues affecting the behavior of
systems in composition, component developers can design components that
are easier to reason about and use. More effort can be placed in the vali-
dation of the components, since this work is "reused" when the components
are reused, provided the component specifications are developed with the
needs of composition in mind. With sound techniques for reasoning about
components, the confidence in systems that use them can be increased.

The approach taken in this project can be summarized as follows:

• Look for simple and general notions of composition.

• Identify classes of properties that compose well

• Develop a calculus of composition

• Instantiate the general theory as an extension of a specific programming
logic, in this case UNITY and CTL.

• Since CTL is well supported by tools for model checking, the use of
model checking for reasoning about program composition was investi-
gated.

2.2 Technical Results

2.2.1 Definitions

Let VQ be a set of systems with well-defined semantics. A property is a pred-
icate (boolean valued function) on VQ. Since properties are predicates, the
set of properties is closed under logical negation, conjunction, and disjunc-
tion. We use symbols F, G and H for systems, X, Y, and Z for properties.
So, Z.H is function Z applied to argument H, and therefore, Z.H is the
boolean: property Z holds for system H.

Composition is denoted with a composition operator o of type VQ x VQ —>
VQ. We require that o is associative with identity SKIP, where SKIP G VQ.

and if a composed system is in VQ then all its components are also in
VQ:

FoGeVQ=>FeVQAGeVQ.

We begin by assuming that o is symmetric (commutative). The set VQ need
not be closed under composition: It is possible that F o G is not in VQ even
though F and G are.

The function component from systems to properties is defined as follows:
For a system F, component.F is a property that holds for all systems that
can have F as a component and only such programs.

component.F.H = (3G : F o G G VQ : F o G = H)

From the definition of component, if G is a component of H and H is a
component of F then G is also a component of F:

component.G.H A component.!!.F => component.G.F

Since SKIP can be composed with any program, and F composed with SKIP
is F itself, F is a component of itself:

(VF :F EVQ : component.F.F)

and SKIP is a component of all systems:

[components KIP]

2.2.2 Classes of easily composable properties

Two classes of properties of interest were identified:

• Existential. A property is existential if holding for a single component
is sufficient for the property to hold for any system containing that
component.

More formally, a property X is an existential property exactly when for
all g

(3G : G G G : X.G) => X.(oG :GeG:G) (1)

An example is a property that states that "eventually the value of vari-
able x will change". Assuming fairness, it only requires one component
to guarantee this for it to hold in the entire system

• Universal Universal properties hold for a system if they hold for each
component in the system. A property X is an universal property exactly
when for all G,

{\/G:GeG: X.G) => X.{oG :GeQ:G) (2)

An example is a property that states that "x never decreases". This will
be the case if no component ever decreases the value of x, (assuming
an underlying model that allows each component to read and modify
x atomically.)

Existential and universal properties are very convenient because they al-
low reasoning about a system by reasoning about the individual components.
Clearly, not all properties of interest are existential or universal. Among
other issues, a way to talk about constraints on the environment in which
a component is deployed is needed. To do this the notion of a guarantees
property, based on ideas originally proposed by Pnueli [Pnu84] was define. A
guarantees property (X guarantees Y) is a property of a system F if and
only if all systems that have F as a component and have X as a property also
have Y as a property. We refer to properties of the form (X guarantees Y)

as guarantees properties. A guarantees property is a higher-order property
since it depends on the entire set of systems. More formally:

(X guarantees Y).F = (VH : component.F.H : X.H =*► Y.H) (3)

An example of a guarantees property is "the value of x is nondecreasing"
guarantees eventually x will be at least 10. It would be expected that this
property would hold for any component, say F with the existential property
that "eventually the value of x will change". As discussed above, the left
side of the guarantees property is a universal property, thus could be checked
by checking each component of the system individually. The guarantees
property encapsulates the inductive reasoning needed to conclude the right
side of the guarantees property so that it can be essentially reused every time
the component F is deployed.

In contrast to a common interpretation of rely/guarantee specifications,
the meaning of (X guarantees Y).F is not that if the environment H of F
has property X then the composed system F o H has property Y. This
interpretation leads to difficulties when viewing a composed system as a
component in a larger system.

Guarantees means that if the composed system FoH has property X then
the composed system FoH has property Y. Since both the left and right
hand sides of the guarantees refer to properties of the same system, from the
associativity of composition, guarantees properties are existential. Thus if
Xguarantees Y.F holds for some component F, then Xguarantees Y.F o G
Further, guarantees satisfies many of the rules of implication. It is disjunctive
in the left operand, conjunctive the right operand, and satisfies a contrapos-
itive property. A useful theorem about guarantees that was used implicitly
in the example above is Given X A Y => Z where X is universal and Y is
existential, is Y.F =$■ (Xguarantees Z).F.

An additional property env has been studied. env.P.F means that P
must hold for any component that can be composed with F. Typically,
an env property P is most useful if it can be verified during compilation
or linking. Knowledge of the env property can be used to weaken the left
hand side of guarantees properties, essentially transferring some of the proof
burden from the programmer.

To composition theory described so far can be summarized as comprising

• A general and simple notion of composition

• Identification of important classes of properties: existential, universal,
guarantees, and env.

• Rules for manipulating properties

2.3 Specializing the compositional theory

The work involved in proving that a system satisfies some properties involves
the following:

• The component developers prove that the components satisfy their
guarantees and other properties. Although this may be difficult, it
is only done once.

• The systems developer who uses a component must prove that the
system satisfies the left had side of the guarantees properties. Since
this must be done each time the component is used in a system it is
desirable that this be easy. It helps if the properties on the left side
are universal or existential so that they may be checked separately for
each component.

In order to prove that a component satisfies a specification, a model-specific
theory is needed. In this project, two different programming models were
instantiated.

2.3.1 UNITY

UNITY is a programming logic originally described in [CM88] with later
versions in [Mis95a, Mis95b]. Although quite simple, Chandy and Misra, and
others have demonstrated that many interesting programs can be specified
in the model.

Programs, which are considered to generate infinite computations, are
specified with 3 basic properties that form a fragment of linear time temporal
logic.

• p next q means that p => q, and that during the entire computation, if
p holds at some point, then q holds after the next step.

transient p means that, if p holds at any point in the computation,
eventually p will become false. Alternatively, transient p means that p

7

cannot remain true forever. Transient properties depend on an implicit
fairness assumption.

• p -^ q means that during the entire computation, if p holds at some
point, then eventually q will hold.

A study of these properties revealed that next properties are universal,
transient properties are existential, leads — to properties are neither, but a
new axiomatization was developed that allows all leads — to properties to be
derived from a set of next and transient properties.

These rules are as follows:

Transient rule
transient p

p ~> -ip

Progress, safety, progress

p next q, r "
pAfv (q Ar) V (->r A s)

Disjunction

Pi next q
(Vi :pi)^q

Transitivity

P ^ Q, q^ r

V

(4)

(5)

(6)

(7)

Additional proof rules, such as an induction rule, can be derived from
these properties.

The importance of this rule is that when one wants a leads-to property on
the right side of a guarantees property, the transient and next properties used
in the hypothesis of the transient and progress, safety, progress rules become
the properties on the left side of the guarantees property. In addition, any
transient property satisfied by the component can be eliminated from the list
of left-hand side properties. The remaining properties are either existential
or universal. The user of the component need not perform a complicated
progress proof, but only needs to prove a set of simpler next, and possibly,
transient properties. Here, the guarantees property encapsulates difficult
reasoning so that it only need be done once.

8

2.3.2 CTL

The theory of composition was also studied in the context of CTL. CTL is
a branching time temporal logic. Among other reasons, it is of interest be-
cause of the availability of tools to verify finite state systems with properties
specified in this logic using a technique called model checking [CGP99]. The
model checker takes a description of a finite state system and a property,
and either determines that all possible computations of the finite state sys-
tem satisfy the property, or shows a counterexample. In contrast to theorem
proving, model checkers do not (in principle) require cleverness or help from
the user, thus have the potential to become more widely used than many
other approaches to formal verification.

One of the major limiting factors in CTL model checking in practice is
the state explosion problem, and this has motivated most of the work on
using composition with CTL [BCC98, GL94]. By decomposing a system
into parts that can be checked separately, larger systems can be handled.
Much of the work also considers synchronous composition, the appropriate
type of composition for hardware. This project considered open systems
where the components are combined with asynchronous composition. Other
work on model checking for open systems [KV97] has indicated that certain
formulations of using model checking for components is intractable in general.

Rather than attempting to model check guarantees properties directly,
the approach in this project was to combine model checking with deduction.
Let P be a program property and / a component, the notation P.f means
that / satisfies property P. Also, let ct- be some component, the expansion
of this component, denoted by Cj, is a program that behaves as c, but it
has some additional variables1. These additional variables might have any
initial value that does not change during the execution of Cj. The propose
validation process is as follows: Each component Ci has some properties Ai:

Ei such that A{.Ci =>• A.Ci and ej.C; =>■ ü^c,-. A is universal and
E\...En is an existential property. One can then conclude that the entire
system (i.e., the composition of all the Q'S) satisfies A A (Vi :: Ei). Since
many important properties are neither existential nor universal guarantees
properties of some components are used to prove these remaining properties.
Suppose there is a component Cj such that (F guarantees G).Cj).Cj. Then,
the entire system satisfies G if A A (Vi :: Ei) =^> F. All the properties AiS
and EiS should be verifiable using model checking only. A set of theorems

:The variables of the entire system that are not visible to this component

might also be published by the developer of the components to facilitate the
proofs. Any proofs done by the component developer can be reused. Several
case studies are described in [AG01, AS02, AS].

2.3.3 Discussion

In both UNITY and CTL, the treatment of initial conditions must be done
very carefully. In a closed system, the initial conditions may be used to con-
clude that some states are unreachable. These states can then be ignored.
When a component is placed in a larger system, however, interactions be-
tween components may cause some of these states to become reachable, and
the unreachable states can not longer be ignored unless deliberate steps are
taken to ensure that they will remain unreachable in the composition. This
may involve introducing guarantees properties, or placing constraints on the
composition.

A fairness assumption states that each component will be given a chance
to execute. (There are several technical definitions of fairness that one could
consider.) Fairness assumptions are essential to the identification of any
progress properties as existential. In UNITY, fairness is an implicit part of
the underlying programming model. In CTL, they are not. We found that, in
contrast to the usual approach of considering fairness as part of the system,
it is more convenient to consider both fairness and initial conditions as part
of a property.

For UNITY logic, a very strong compositional result was obtained: All
UNITY properties are either existential, universal, or follow from properties
that are existential or universal. The proof of a property generates the left
side of a guarantees property as a byproduct of the proof process. In CTL,
some properties were identified as existential and universal and theorems
developed. Since CTL is a much more expressive logic than UNITY, the
compositional results are not as strong as in UNITY and are available for
only a subset of CTL properties. Another factor is that in CTL, proofs are
generally not constructed, but model checking is used instead. The value of
these results depend on how useful they are in practice. Several case studies
showed that the partial results were adequate for at least some interesting
problems. Discovering the compositional characteristics of other property
patterns remains an important problem for future work. The work on CTL
is described in detail in [AG01] a PhD thesis by Hector Andrade-Gomez, and
[AS02, AS].

10

2.4 Related work: A Pattern Language for Parallel
Programming

At the suggestion of the program manager, this project is briefly described
here. This work was funded by the National Science Foundation and Intel
with collaborators Berna L. Massingill and Timothy G. Mattson.

A design pattern is a description of a high quality solution to a frequently
recurring problem which presented in a prescribed format in order to help
both the reader and the pattern writer focus on the essential aspects of the
problem. A pattern language is a set of patterns that could used together,
and which are organized into a structured hierarchical catalog. The pattern
language for parallel application programming presents a collection of pat-
terns that guide a programmer from the initial stages of parallel program
design, such as finding the concurrency in a problem, to identifying the al-
gorithm structure to be used along with patterns for supporting structures.
The pattern language is described in [MMS99, MMSOOb, MMSOOa, MMS01]
can be viewed at www.cise.ufl.edu/research/ParallelPatterns.

The experience shows that a pattern language can be an effective way to
organize expertise in a given area. The important characteristics are

• Each pattern has a name, providing a common vocabulary for solutions

• Each pattern contains a concise description of the problem it will solve,
the context where the solution is applicable, and the main tradeoffs that
must be made.

• Patterns often contain references to related patterns, and to patterns
that are likely to be useful in the next step of the design process.

Patterns may prove to be a useful way of organizing knowledge about
composition as well.

References

[AG01] Hector A Andrade-Gömez. Model Checking for Open
Systems: A Compositional Approach to Software Ver-
ification. PhD thesis, University of Florida, 2001.
http://etd.fcla.edu/etc/uf/2001/ank6403/thesis.pdf.

11

[AS] Hector A. Andrade and Beverly A. Sanders. Model checking for
open systems, submitted for publication.

[AS02] Hector A. Andrade and Beverly A. Sanders. An approach to
compositional model checking. In Proceedings of Formal Methods
for Parallel Programming: Theory and Applications, Fort Laud-
erdale, 2002. IPDPS2002, IEEE Press, to appear.

[BCC98] Sergey Berezein, Sergio Campos, and E.M. Clarke. Compositional
reasoning in model checking. In Proceedings of the Workshop
COMPOS'97, February 1998.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT press, 1999.

[CM88] K. Many Chandy and R. Misra. Parallel Programing a Founda-
tion. Addison Wesley, 1988.

[GL94] Orna Grumberg and David Long. Model checking and modular
verification. ACM Trans. Program. Lang. Syst., 16(3):843-871,
May 1994.

[KV97] Kupferman and M. Y. Vardi. Module checking revisited. In Proc.
of the 9th conference on Computer-Aided Verification (CAV97),
pages 36-47, 1997.

[Mis95a] J. Misra. A logic for concurrent programming: Progress. Journal
of Computer and Software Engineering, 3(2):273-300, 1995.

[Mis95b] J. Misra. A logic for concurrent programming: Safety. Journal
of Computer and Software Engineering, 3(2):239-272, 1995.

[MMS99] Berna L. Massingill, Timothy G. Mattson, and Beverly A.
Sanders. Patterns for parallel application programs. In Pro-
ceedings of the Sixth Pattern Languages of Programs Workshop
(PLoP99), 1999. See also our Web site at http://www.cise.
uf1.edu/research/ParallelPatterns.

[MMSOOa] Berna L. Massingill, Timothy G. Mattson, and Beverly A.
Sanders. A pattern language for parallel application program-
ming. In Proceedings of the Sixth International Euro-Par Con-
ference (Euro-Par 2000), 2000.

12

[MMSOOb] Berna L. Massingill, Timothy G. Mattson, and Beverly A.
Sanders. Patterns for finding concurrency for parallel appli-
cation programs. In Proceedings of the Seventh Pattern Lan-
guages of Programs Workshop (PLoP'OO), August 2000. See
also our Web site at http://www.cise.ufl.edu/research/
ParallelPatterns.

[MMS01] Berna L. Massingill, Timothy G. Mattson, and Beverly A.
Sanders. Parallel programming with a pattern language. In-
ternational Journal on Software Tools for Technology Transfer,
3(2), 2001.

[Pnu84] Amir Pnueli. In transition from global to modular temporal rea-
soning about programs. In Krzysztof R. Apt, editor, Logics and
Models of Concurrent Systems, pages 123-144. Springer-Verlag,
1984.

3 Personnel Supported

• Beverly A. Sanders, faculty

• Hector Andrade-Gomez, graduate research assistant

• Rohit Mavarapu, graduate research assistant

4 Publications

• Hector A Andrade-Gömez. Model Checking for Open Systems: A Com-
positional Approach to Software Verification. PhD thesis, University
of Florida, 2001. http://etd.fcla.edu/etc/uf/2001/ank6403/thesis.pdf.

• Hector A. Andrade and Beverly A. Sanders. Model checking for open
systems, submitted for publication to Formal Aspects of Computing.

Hector A. Andrade and Beverly A. Sanders. An approach to compo-
sitional model checking. In Proceedings of Formal Methods for Par-
allel Programming: Theory and Applications, Fort Lauderdale, 2002.
IPDPS2002, IEEE Press, to appear.

13

•

•

•

Beverly A. Sanders. Using atomic await commands to develop concur-
rent programs in Java. Software-Concepts and Tools, 19, 2000.

Beverly A. Sanders. The shortest path in parallel. Information Pro-
cessing Letters, 77, 2001.

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Patterns for parallel application programs. In Proceedings of the Sixth
Pattern Languages of Programs Workshop (PLoP99), 1999. See also
our Web site at http: //www. eise. uf 1. edu/research/ParallelPatterns.

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders. A
pattern language for parallel application programming. In Proceedings
of the Sixth International Euro-Par Conference (Euro-Par 2000), 2000.

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Patterns for finding concurrency for parallel application programs. In
Proceedings of the Seventh Pattern Languages of Programs Workshop
(PLoP'00), August 2000. See also our Web site at http://www.cise.
uf1.edu/research/ParallelPatterns.

Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders.
Parallel programming with a pattern language. International Journal
on Software Tools for Technology Transfer, 3(2), 2001.

5 Interactions

5.1 Participation/presentations

The PI has organized the following workshops during the term of this grant

• International Workshop on Formal Methods for Parallel Programming:
Theory and Applications, 2001. In conjunction with IPDPS 2001, San
Francisco, CA.

International Workshop on Formal Methods for Parallel Programming:
Theory and Applications, 2001. In conjunction with IPDPS 2000, Can-
cun, MX

14

• International Workshop on Formal Methods for Parallel Programming:
Theory and Applications, 2001. In conjunction with IPDPS 1999, Or-
lando, FL.

The PI has participated (or was an author of a paper presented by a co-
author) in the following conferences

• Europar 2000. Munich, 2000.

• Sixth Workshop on Pattern Languages of Programs (PLoP99), Urbana,
2001.

• Seventh Workshop on Pattern Languages of Programs (PLoP2K), Ur-
bana, 2000.

• Symposium in Honor of Edsger W. Dijkstra. Austin, 2000.

5.2 Transitions

Dr. Laurence Paulson, of Cambridge University has mechanized our UNITY
instantiation of the guarantees properties in the Isabelle theorem prover.
This work not only has the potential to provide a useful tool for system
developers who work with UNITY, but has also let to important insights
about composition in strongly typed formalisms.

6 New Discoveries

None

15

