ArRMY REeseaArcH LABORATORY

ENVELOPE: A New Approach
to Estimating the
Delivered Performance

of High Performance Processors

by Daniel M. Pressel

ARL-TR-2671 February 2002

Approved for public release; distribution is unlimited.

20020318 109

/}

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer's or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2671 February 2002

ENVELOPE: A New Approach
‘to Estimating the

Delivered Performance

of High Performance Processors

Daniel M. Pressel

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Simulating a computer run can be an excellent method for identifying
performance bottlenecks and is especially valuable when discussing systems that
do not yet exist. Traditional simulations collect a program trace and then have a
simulator execute some subset of the trace one instruction at a time.
Unfortunately, all of the standard variants of this technique are far too slow to
use on jobs for high-end High Performance Computers and Supercomputers. We
have developed an approach based primarily on an analysis of the memory
access patterns and the number of floating point operations being executed that
will estimate the performance of any run in a small fixed amount of time (e.g., a
few seconds or less). Experience has shown that the results are nearly always
within a factor of 2 of the measured results and frequently are within 15% or
better of the measured results.

ii

Acknowledgments

The author wishes to thank Csaba Zoltani and Dixie Hisley of the ARL and
Punyam Satya-narayana of Raytheon for providing the necessary Perfex data.
He would also like to thank the many researchers who have published
performance results for the NAS and Linpack Benchmarks. Special thanks go to
Csaba Zoltani, Dixie Hisley, Punyam Satya-narayana, John Levesque, Marek
Behr, Steve Schraml, Allan Snavely, Sirpa Saarinen, and Shirley Moore for
providing performance data used in the testing of these tools. Additional thanks
are extended to Susan Sassaman of Business Plus Corp. (BPC) for editorial
services on this report.

Note: Definitions for boldface text can be found in the Glossary.

iii

v

INTENTIONALLY LEFT BLANK

Contents

Acknowledgments iii
List of Tables vii
1. Introduction 1
2. Description of the Simulator 2
3. The Equations 5
3.1 Commonly Scalar Values.........oeinciviininiinenscnsnseesessssessesssenss 5
3.2 SCratCh AITAYSccovceeirernniieniinnsniesissssnsssisiessisssssssssssessssssssssssssssssssssssssses 6
3.3 Blocked Memory Access Patterns ... 6
34 STRIDE-N Memory Access Patterns...........ccocoeureinenensecinnesesnencscsennssenens 9
3.5 STRIDE-1 Memory Access Patterns.........ouvcvvecrcnsinennecnncnsnnicenenennns 12
4. Associated Tools 13
5. The Equations for the Associated Tools 14
5.1 Conventions Used in Subsections 5.2 and 5.3.........cccccocnurrenirrisncnennnn. 14
5.2 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of a priori Data and Data From Perfex.........ocoeucueunnee 15
5.3 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of Data From HPM and Perfex..........coevivencnniniscnnncs. 16
54 Conventions and Approximations Used in Subsections 5.5-5.8........... 17
5.5 Solving for the STRIDE-N Access Pattern Parameters..........coeceueurerencnes 19
5.6 Solving for the Blocked Access Pattern Parametersccocoeucicuunence 20
5.7 Checking for the Case of a Small Working Set Without a Large
WOTKING St ...cueiririntentsict st sasss s sassssnins 21
5.8 Handling the Case Where No Working Sets Exist..........cececovuvereuinrinnunes 22
6. Future Work | 23

7. Results and Conclusions
8. References

Glossary

Distribution List

Report Documentation Page

vi

23

41

43

45

49

List of Tables

Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack

Power 3 Thin SMP nodes 100 x 100 benchmark.c.cocueeveverveeeresrrrsreesesseonns 24

Table 2. Input parameters for an IBM SP with 375-MHz Power 3 Thin SMP
nodes for the CG NAS benchmark (class B using MPI) with prefetching
HAISADIEA." .oovvevrriirrerreerienrresreeteeeessessesssessesssesssessesssessssssessnssssesassessessessssssssssssssesssess

Table 3. A comparison of predicted results from ENVELOPE to measured
TESUIES. ovuvutetctettn bbb

Table 4. A sample run of the program that uses Perfex data to suggest the
input parameters for use with the program ENVELOPE............ccccocovurvruriuennen

27

30

vii

INTENTIONALLY LEFT BLANK

viii

1. }Introduction

Simulating a computer run can be an excellent method for identifying
performance bottlenecks. This can be especially valuable when discussing
systems that do not yet exist. As such, it can augment benchmarking efforts by
helping to explain, or even predict, results as opposed to simply reporting them.
Unfortunately, traditional techniques in tl'us field have suffered from three
constraints:

o)) Descnbmg a modern processor architecture with sufficient fidelity to
ascertain the validity of the results is difficult.

(2) The simulations are so expensive to run that many jobs were simply
considered to be prohibitively expensive to simulate. This can be an
especially serious problem in the areas of high-end High Performance
Computers and Supercomputers.

(3) Even when it was practical to run a simulation, it was frequently
impractical to run it multiple times to quantlfy the benefits of various
approaches to code tuning.

An example of this can be found in a recent posting to the comp.arch news group
by a quote from Christopher Brian Colohan, a graduate student at Carnegie
Mellon University:

I am currently working on a project which involves detailed
processor simulation of the SPECInt2000 benchmarks. We are
encountering the usual problem with simulations: they are taking
too long, even when we use the provided “test” input. (The test
input for bzip2 takes 41 seconds to run on our SGI Origin machine
-- simulating more than a second or so of real CPU time on our
simulator gets kind of painful. . .).

In response to this posting, John Mashey of SGI responded:

I think people have tried to achieve this effect by taking slices of
SPEC and other benchmarks in order to get, for example,
reference streams to analyze alternate designs for memory
hierarchies (i.e., this is different from changing the input). For
example, for some codes, the performance on a few iterations
would model the entire computation but, of course, this doesn’t
work for others [1].

Note: Definitions for boldface text can be found in the Glossary.

In a similar vein, Naraig Manjikian [2] has stated that when using the
SimpleScalar tool set on a 333-MHz Sun Ultra/10 workstation, the simulation
rate was approximately 300,000 instructions/second (compared to a peak rate of
over 1 billion instructions/second when executing code directly on the
hardware).

Considering the BT, CG, LU, and SP NAS (class B) benchmarks the floating point
operations count range from 54 to 686 billion floating point operations for a
single run. On a 300-MHz R12000-based Origin 2000 using a single processor,
this translates into measured run times of 1,250-9,700 seconds. Clearly, if
simulating a 41-second run is a problem, these industry standard benchmarks for
high performance computing must be all but out of reach.

In response to this problem, we have developed an entirely different approach to
simulating these runs. This approach is based on the time tested concept of
“Back-of-the-Envelope” calculations. With this in mind, we have named our
program “ENVELOPE.” Rather than trying to simulate every aspect of the
microarchitecture, this approach assumes that the computer architects know how
to design a processor. In particular, if they claim that the peak floating point
speed is 1 GFLOPS, then we take them at their word and use that number in the
simulation. This also applies to various numbers involving memory, cache, and
TLB latency and bandwidth. When combined with other system parameters and
information about the code to be run on the system, an estimated performance is
produced in a small fixed amount of time (e.g., 1 second). This run time is short
enough to allow one to easily investigate the effects of turning various hardware
features (e.g., prefetching) on or off and/or investigate various ways in which
the code might be tuned.

2. Description of the Simulator

The current version of ENVELOPE prompts the user for input (this can come
from a redirected file), writes its output to standard output, and also writes an
annotated copy of the input to the file ENVELOPE.INPUTS. This later file can
easily be edited and used as input in a future run (the annotations will be
ignored by ENVELOPE). The output is broken into two categories—prompts for
input and results. Every line that is considered to be a result begins with a pound
sign (#) so that it can easily be searched when using GREP. Under the direction
of Shirley Moore of the University of Tennessee at Knoxville, work is under way
to produce a friendlier user interface using Java.

The first 18 lines of input describe the hardware in terms of peak characteristics
(e.g., peak bandwidth between the outermost level of cache and the processor, in
million bytes per second), minimum characteristics (e.g., memory latency in

nanoseconds), fundamental values (e.g., cache line size in bytes), and
miscellaneous descriptions regarding the friendliness of the processor’s design
(e.g., describing the pipeline depth as short, moderate, deep, or very deep). This
last set of values is used to estimate how much the peak speed of the processor
should be discounted. The goal here is to somewhat level the playing field
between designs that are blazingly fast but terribly unfriendly to program and
those that made tradeoffs between peak speed and usability by keeping the
number of operations in flight low and/or supporting features such as Out-of-
Order execution and/or register renaming. In most cases, this heuristic makes
little difference in the final result, since the performance of the memory system is
frequently the limiting factor.

The remaining questions ask the user to describe the software and its memory
access patterns. In theory, this information can be derived through inspection of
the user’s program. In practice, only the simplest of programs can be analyzed in
this manner with sufficient precision. As an aid to this process, a tool has been
developed, which will be described in more detail in sections 4 and 5. The main
characteristic here is that the variable usage can be broken down into the
following categories:

(1) Variables that spend a significant amount of time mapped to a register and
therefore have a negligible number of loads or stores associated with them.

(2) Scratch arrays that have potentially been sized to fit in one of the levels of
cache. An estimate of the size of the working set is supplied by the user.
This can also be used to estimate the parameters for any working set that
might exist. The assumption here is that there is a negligible cache miss rate
associated with this working set, but that the flow of data between the
cache and the processor still needs to be modeled.

(3) Blocked arrays or alternatively a second, presumably larger, working set. If
this is used to model a blocked access pattern and if the working set is too
large to fit into cache, a STRIDE-N access pattern is assumed. However, if
the option of treating this as just another working set is used and if it fails
to fit into cache, a STRIDE-1 access pattern is assumed. This flexibility
allows us to model the behavior of a wide range of programs that benefit
from the presence of a large cache and is particularly useful for programs
with two or more distinct sizes of working sets.

(4) Arrays accessed with a STRIDE-N access pattern. In most cases, this access
pattern will result in a high TLB miss rate. Almost all programs that we
have looked at have at least some data that is accessed in this way;
although for well tuned codes, less than 0.1% of all loads/stores will fall
into this category. The LU NAS benchmark is an interesting exception to
this rule. It can have 0.45-0.57% of all loads/stores falling into this category
(depending on the version of the code being used). Fortunately, on many

systems, the resulting TLB misses seem to hit in cache, resulting in an
acceptable level of performance. Unfortunately, it can be difficult to predict

- such behavior without a priori knowledge and/or experimental results to
compare to. However, when such results are available, the hardware
parameter for the TLB latency can be adjusted to a more appropriate value
(e.g., subtract off the cost of a cache miss from the normally used cost of a
TLB miss).

(5) Arrays accessed with a STRIDE-1 access pattern.

For categories 3-5, the amount of data reuse (cache and register levels combined)
can be specified. This allows accurate modeling of programs that might not have
a working set, or alternatively, the working set might be orders of magnitude
larger than the cache. Even so, the program need not be restricted to using each
data item in a cache line just once per cache miss. However, for some usage
patterns, a usage factor in the range of 1 to 2 is exactly what will be seen. The
ability to specify the amount of data reuse supports the widest possible range of
programs without requiring hard coding in any assumptions.

ENVELOPE has been extensively tested with several numerically intensive
programs using a variety of RISC and CISC processors. It is also designed to
handle codes with few, if any, floating point operations. Furthermore, it should
be able to model other types of architectures (e.g., vector processors), although
no attempt has been made to date to exercise either of these capabilities.

- Table 1 shows an example of an input file describing the Linpack 100 x 100

benchmark running on an IBM SP with 375-MHz Power 3 Thin nodes. The
parameters in this file were derived using a detailed analysis of the source code,
as well as taking into account common compiler optimizations.

Table 2 shows an example of an input file describing the NAS CG class B
benchmark (MPI). Since this benchmark uses an unstructured grid, which
inhibits prefetching, prefetching has been disabled. Again, the system being
modeled is an IBM SP with 375-MHz Power 3 Thin nodes.

The predicted level of performance for the Linpack 100 on the IBM SP (as
previously described) is 359 MFLOPS, while the measured level of performance
is 426 MFLOPS. The predicted performance is within 19% of the measured
performance. If one assumes that the benchmark was run on a dedicated node,
then the processor could have used a larger percentage of the memory
bandwidth. This allows the predicted performance to increase to between 481
and 559 MFLOPS (depending on the precise limitations of the processors
memory interface), or within 11-31% of the measured performance [3].

For the CG benchmark, the predicted level of performance is 53 MFLOPS. The
measured level of performance is 46 MFLOPS, or within 15% of the predicted
level of performance [4]. Table 3 contains additional results.

3. The Equations

This section will discuss some of the equations used by ENVELOPE in estimating
the performance of a program. The complete set of equations is quite lengthy and
is beyond the scope of this paper. However, this discussion should be adequate
in giving one a feel for how this program works.

3.1 Commonly Scalar Values

The time spent loading and storing commonly used values into the registers is
computed using the following equations. It is important to note that it is
assumed that these values can be found in one or more levels of cache and these
operations will not result in any TLB misses. There is also an implied assumption
-that a processor cannot do more than one memory operation per opportunity to
launch a multiply-add instruction. A few processors can, in fact, do better than
that under certain circumstances. For most RISC and CISC processors, this is not
a concern. However, it might be an important consideration if this code were to
be used to model the performance of a Cray C90. '

P#SV@ * #S

Runtime = Runtime + ,
UR#SV@ * UL2BANDWIDTH

(Y

where # can either be L for LOAD or S for STORE and @ can either be
DEDICATED* or GENERAL.t

P#SV@ refers to the percentage of the total amount of data that is either being
loaded or stored (depending on what # is) of the specified class of values (as
specified by @). #S is the total amount of data that is either loaded or stored.
Therefore, the numerator refers to the amount of data being loaded or stored for
this class of data. UR#SV@ refers to the amount of reuse at the register level for
the data in question. The higher the level of reuse, the fewer the loads and stores
that will actually be executed. In other words, for programs like Linpack, the
code might indicate that a value will be loaded for each and every multiply-add
instruction. However, a smart compiler might actually perform the load just
once. In that case, the value for UR#SV@ would be large enough to make this
part of the calculation irrelevant. Finally, UL2BANDWIDTH is the bandwidth

* The term DEDICATED implies that the values will only be used in calculations involving
other commonly used values. A prime example of this is Horner’s algorithm for evaluating
polynomial equations. "

t The term GENERAL implies that while the value will be “locked” into a register, it will be
used in conjunction with other classes of variables. Therefore, the cost of the floating point or
integer calculations that this value is involved with will be charged to the other classes of variables.
An example of this type of variable might be PL

between the processor and the outermost level of cache (frequently, the L2
cache).

For the DEDICATED variables, it is also necessary to calculate the time spent
performing calculations involving these variables. This calculation is fairly
straightforward. The only complicating factor is that since some, if not all, of
these calculations can be paired up with load and store instructions on today’s
superscalar processors, one must avoid counting these cycles twice. This can be
done by subtracting the time spent on the loads and stores for DEDICATED
variables from the time spent computing with them. Since it is possible that the
loads and stores will take longer, one needs to take the maximum of the
difference and zero to avoid overcompensation.

3.2 Scratch Arrays

The next order of business is to account for the time spent dealing with small
scratch arrays that will normally be “locked” into one or more level of cache.
This is not assumed to be the case, but will generally be the case. Using the same
notation and terminology as in subsection 3.1, the equations will be:

P#SA@ * #S

. 2
UR#SA@ * UL2BANDWIDTH

Runtime = Runtime +

Again, one must also take into account the time spent performing caluclations
that only involve the scratch array and the commonly used values discussed in
section 3.1.

A complicating factor is that one must also take into account the cache misses
associated with these scratch arrays. ENVELOPE assumes that the number of
TLB misses associated with the scratch arrays will be negligible. If the working
set for the scratch arrays is larger than the size of the outermost level of cache,
then ENVELOPE will assume a STRIDE-1 access pattern. Otherwise, ENVELOPE
assumes that there is a sufficient level of data reuse at the cache level that the cost
of batching up the cache can be ignored. Since this will normally be the case, we
will not discuss the equations used any other time.

3.3 Blocked Memory Access Patterns

This portion of the code can either be used to estimate the cost of a code segment
with a blocked memory access pattern or to estimate the cost of code segment
involving scratch arrays with a larger working set. In the latter case, the
estimated size of the working set should be negated and specified as the block

size* The details associated with the handling of the case where the block size
(or second working set size) is larger than the size of the cache will not be
discussed. However, they are similar to the cases discussed in subsections 3.4
and 3.5.

With everything fitting into cache, one still has to be concerned with the cache
misses associated with batching up the cache. Furthermore, unlike subsection 3.2,
ENVELOPE does not assume that this cost can be ignored. In the case of a
blocked access pattern, the level of reuse might be fairly modest (e.g., 2-10). Even
in the case of a second level of working set, the level of reuse might be more
limited. This part of the program is split into the following two cases:

(1) In the case where prefetching has been essentially disabled by setting the
maximum number of outstanding prefetches/cache misses to 1, the latency
of a cache miss will effectively determine the usable memory bandwidth.

(2) In the other case, the memory bandwidth will be the limiting factor.*

The first step is to determine the number of cache misses. This number is not
actually used for the calculation of runtime and performance. It is however used
to estimate the number of bus transactions. Calculating the time required to
perform the cache misses is much more complicated. Some of the complicating
factors are as follows:

* The negative value is used as a flag when the working set is larger than the cache. If the block
size is positive, then ENVELOPE will estimate the cost of the loads and stores as though this code
segment was using a STRIDE-N access pattern (the most expensive access pattern). However, if
the block size is negative, then ENVELOPE estimates the cost of the loads and stores as though this
code segment was using a STRIDE-1 access pattern. While this access pattern is more expensive
than living out of cache, it is significantly less expensive than a STRIDE-N access pattern.

t Earlier in the program, the memory bandwidth was adjusted, when necessary, to handle the
situation in which the supported level of prefetching was insufficient to fully utilize the complete
memory bandwidth.

1 ENVELOPE actually supports three separate values for the memory bandwidth:

(1) The bandwidth when only performing loads.

(2) The bandwidth when only performing stores.

(3) The bandwidth when performing a balanced mix of loads and stores.

For some systems, the three values will be the same. However, for the HP PA 8XXX series of
processors, on a well balanced system, the third value will actually be the sum of the first two
values. As a result of this, it is necessary to determine the amount of data being loaded and stored,
pair the loads and stores at the mixed bandwidth rate, and then finish up with any nonpaired loads
or stores. This assumes that the code pairs loads and stores as much as possible. This is not always
the case, but is a good assumption for codes that call the BLAS routines, copy arrays, transpose
arrays, and perform a variety of other common operations. However, for a program which copies
data into a small buffer that is “locked” into cache, pounds on the buffer, and then writes the
results out to a large global array, this can be a poor assumption. Fortunately, for many systems,
this discussion is academic, since the three values are identical. In the remaining situations, it
appears as though the maximum error is an overestimation of the performance (under estimation
of the run time) by a factor of 2.

(1) Additional memory traffic resulting from the coherency protocols for cache
lines that are stored to.

(2) The allocation of memory bandwidth to handle the portion of the loads and
stores that can be overlapped with each other.

(3) Calculating the time required for those loads or stores that could not be
overlapped with stores or loads respectively.

(4) The grouping of data into data structures. In particular, the inefficiencies
that can result if most accesses to the structure use less than 100% of the
data (this will result in the consumption of additional memory bandwidth).

(5) The level of temporal locality (the number of times a value is reused prior
to eviction from the cache).

Additionally, the number and cost of the TLB misses must be accounted for.
Fortunately, this process is somewhat simpler than it was for cache misses, since
ENVELOPE assumes that TLB misses are handled one at a time by the processor
and cannot be overlapped with anything. In the case where the cost of the stores
is expected to be greater than the cost of the loads and prefetching is supported,
the equations are as follows:

PLGB * LOADS GSIZE

current cache misses = * . 3
UCLGB * L2LSIZE GDENSITY

PLGB * LOADS * RMTRANSACTIONS
UCLGB * PUMRBANDWIDTH '

@

current run time =

current TLB misses=

PLGB * LOADS + PSGB * STORES . GSIZE (5)
UCLGB * PAGESIZE UCSGB * PAGESIZE GDENSITY

TEMPBUSTRANSACTIONS = current cache misses *
RMTRANSACTIONS + current TLB misses.
GSIZE 4
GDENSITY (7)

current TLB misses * TLATENCY * 107°.

(6)

TEMPRUNTIME = current run time

. PSGB * STORES GSIZE
current cache misses = * (8)

UCSGB * L2LSIZE GDENSITY
current bus transactions = current cache misses * WMTRANSACTIONS. 9)

current run time =
PSGB * STORES * WMTRANSACT IONS

UCSGB

- currentruntime * PUMWBANDWIDTH (10)

UMWBANDWID TH

GSIZE

TEMPRUNTIME = TEMPRUNTIME + current run time GDENSTTY 1)

total run time = total run time + TEMPRUNTIME. (12)

TEMPBUSTRANSACTIONS = (13)
TEMPBUSTRANSACTIONS + current bus transactions.

total bus transactions = (14)

total bus transactions + TEMPBUSTRANSACTIONS.

Other cases which are handled separately but in a similar manner are:

(1) Working set fits into cache, with loads taking longer than Stores, with
prefetching supported.

(2) Working set does not fit into cache, and default back to a STRIDE-N access
pattern has been specified. :

(3) Working set does not fit into cache, and default back to a STRIDE-1 access

pattern has been specified. In this case, all of the possible ways for

' computing a STRIDE-1 access pattern for a data set not fitting into cache
must be handled (see subsection 3.5 for details).

(4) Working set fits into cache, but prefetching is not supported. This precludes
the possibility that cache misses resulting from loads and stores can be
overlapped, since cache misses resulting from loads cannot even overlap
with themselves.* ‘

3.4 STRIDE-N Memory Access Patterns

In theory, this should be the easiest of the memory access patterns to handle. In
reality, some additional complications have arisen that are causing some
problems. These complications will be discussed in greater detail as this section
progresses. Unlike subsection 3.3, there are only two cases that need to be
considered here:

(1) All of the data fits into cache. In this case, ENVELOPE assigns the cost of
batching up the cache to this access pattern. The cost is calculated in a very
simple manner designed to produce the smallest possible cost (e.g., the
minimum number of cache misses and assuming that prefetching is
supported).t Additionally, if any calculations are specified for this access
pattern, their cost will also be calculated.

* In some cases, this might be too pessimistic, since some systems might support the
overlapping of coherency traffic (e.g., write backs from cache to main memory as part of an
eviction) with the handling of a cache miss. It is not clear what the exact importance of this form of
overlapping would be; therefore, it is currently treated as a higher order effect and is ignored.

t+ In some cases, this may be overly optimistic; however, it is unlikely that any jobs other than
some of the smaller benchmarks (e.g., Linpack 100 x 100) will ever fall into this case.

(2) By far, the more common case and, therefore, the one that will be
considered in greater detail is the case where the amount of data is too
large to fit into the cache (probably by a large amount).

In this section, the following simplifying assumptions are made when handling
the second case:

(1) TLB misses do not overlap with anything.

(2) TLB misses have a fixed cost, with the page table entry coming from main
memory.

(3) Effectively, no form of overlapping multiple cache misses can occur, since
each of the cache misses will be associated with a TLB miss.

(4) The grouping of data into structures can reduce the number of TLB misses.”

(5) Each TLB miss is expected to have a cache miss associated with it. In
reality, it is possible for an algorithm (e.g.,, LU decomposition) to loop
through a few hundred pages of data with a STRIDE-N access pattern. In
such a case, there can be significantly more TLB misses than cache misses.
However, for an algorithm with a random access pattern and /or a working
set involving tens of thousands (or more) of pages of data, each TLB miss
should have a corresponding cache miss.

Of all of these assumptions, the second assumption seems to be causing the most
problems. If the TLB misses occur in a cyclic fashion, it is conceivable that a
processor might store the page table entries in cache. On many systems, this
would decrease the cost of a TLB miss by at least a factor of 2. Calculations based
on benchmarking studies made for the NAS LU Benchmark (class B) indicate that
on many systems, this is almost certainly happening. At the present time, the
best solution to dealing with such a case is to significantly decrease the estimated
cost for TLB misses when modeling such a run. It should be noted that to avoid
problems with ENVELOPE's error checking and default mechanisms, the cost of
a TLB miss should be at least 1 nanosecond.

* For codes that were analyzed by hand, this can be an important effect. However, since the
author expects that most codes will be analyzed using the tool discussed in section 4, this effect is
insignificant. The tool discussed in section 4 recommends input to ENVELOPE based on the
output from a Perfex run. In that case, any benefit from the grouping of data into structures has
already been accounted for by a corresponding reduction in the measured TLB miss rate. Such a
reduction would be expressed as a decrease in the estimated percentage of the work that is mapped
to the STRIDE-N access pattern.

+ This is not as serious a problem as one might expect. If one assumes that most programs will
be analyzed by the tool in section 4, then since that tool makes the same assumption, everything
should work out. There might be some minor discrepancies due to the cache misses being handled
one at a time; whereas, if they were mapped to a STRIDE-1 access pattern they could be overlapped
using prefetching. However, for a well-tuned code, one can expect the number of TLB misses to be
significantly smaller than the number of cache misses. In this situation, all of this becomes a higher
order effect that can be safely ignored.

10

The resulting equations are as follows:

PLGN * LOADS
current cache misses = (15)

UCLGN * DSIZE * GDENSITY
current TLB misses = current cache misses.

GSIZE * DSIZE ‘ (16)
L2LSIZE

current cache misses = current cache misses * ’71 +

current bus transactions = current cache misses *

RMTRANSACTIONS + current TLB misses. a7
current cache misses * MLATENCY *
current run time =| RMTRANSACTIONS + + 1077, (18)
current TLB misses * TLATENCY
TEMPRUNTIME =current run time. (19)
TEMPBUSTRANSACTIONS = current bus transactions. (20)
currént cache misses = PSGN * STORES . 21)
UCSGN =* DSIZE * GDENSITY
current TLB misses = current cache nﬁsses. (22)
. . *
current cache misses = current cache rmssgs * ’71 + GSI?EZL SI;)ES IZE-I (23)
current bus transactions = current cache misses * 4)
WMTRANSACTIONS + current TLB misses.
current cache misses * MLATENCY #
current run time =| WMTRANSACTIONS + Cx10? (25
current TLB misses * TLATENCY
TEMPRUNTIME = TEMPRUNTIME + current run time. (26)
total run time = total run time + TEMPRUNTIME. 27
TEMPBUSTRANSACTIONS = 28)
TEMPBUSTRANSACTIONS + current bus transactions.
total bus transactions = total bus transactions + 29)
TEMPBUSTRANSACTIONS.
TEMPRUNTIME =
2.0 * PGNMADDS * NMADDS PGMULTIPLIES *+ NMULTIPLIES (30)
UMADDS UMULTIPLIES

11

GNADDS * NADDS
TEMPRUNTIME = TEMPRUNTIME + P S N +

UADDS (31)
PGNIOPS * NIOPS
UIOPS '
TEMPRUNTIME =
MAX | TEMPRUNTIME, PLGN % LOADS+PSGN #* STORES ' 32)
UL2BANDWIDTH
total run time = total run time + TEMPRUNTIME. (33)

3.5 STRIDE-1 Memory Access Patterns

Once again, the STRIDE-1 Memory Access pattern requires the handline of the
following special cases:

(1) The data set being small enough to fit entirely in cache. Again, this case is
primarily there to support some small benchmarks (e.g., Linpack 100 x
100). As seen in subsection 3.4, the cost of the cache and TLB misses have
already been accounted for. Therefore, all that remains is the
straightforward handling of the cost of the instructions themselves. This is
done in a manner that is very similar to the last four equations in
subsection 3.4.

(2) A STRIDE-1 access pattern with prefetching disabled. This implies that the
cache misses do not overlap. Therefore, whether the loads or stores take
longer to complete is not a concern.

(3) The cases of a STRIDE-1 access pattern with prefetching enabled. The
relative costs of the loads and stores is now a concern. While these two
cases must be handled separately, the resulting equations both look very
similar to those used in subsection 3.3. Therefore, they will not be repeated
here.

What will be looked at here is the second case. The resulting equations are as
follows:

current cache misses = PLG1 + LOADS * GSIZE (34)

UCLG1 * L2LSIZE GDENSITY

current TLB misses =
(PLG1 * LOADS GSIZE] (35)

UCLGI * PAGESIZE | GDENSITY

current bus transactions = current cache misses * (36)
RMTRANSACTIONS + current TLB misses.

12

current cache misses * MLATENCY *
current run time =| RMTRANSACTIONS + current TLB misses | * 1072,
+ TLATENCY

TEMPRUNTIME =current run time.

TEMPBUSTRANSACTIONS =current bus transactions.

PSG1 * STORES _ GSIZE
UCSG1 * L2LSIZE GDENSITY "

PSGl * STORES | _ GSIZE
UCSG1 * PAGESIZE GDENSITY "

current bus transactions = current cache misses *
WMTRANSACTIONS + current TLB misses.

current cache misses * MLATENCY *
current run time =| WMTRANSACTIONS + x 1072
current TLBmisses * TLATENCY

current cache misses =

current TLB misses =

TEMPRUNTIME = TEMPRUNTIME + current run time.
total run time = total run time + TEMPRUNTIME.

TEMPBUSTRANSACTIONS =
TEMPBUSTRANSACTIONS + current bus transactions.

total bus transactions = total bus transactions +
TEMPBUSTRANSACTIONS.

TEMPRUNTIME =

2.0 * PGIMADDS = NMADDS+PG1MULTIPLIES * NMULTIPLIES

UMADDS UMULTIPLIES

PGIADDS = NADDS+
UADDS

TEMPRUNTIME = TEMPRUNTIME +

PGIIOPS * NIOPS
UIOPS '

TEMPRUNTIME =

MAX(TEMPRUNTIME, PLGl * LOADS+PSGl * STORES}

UL2BANDWIDTH
total run time = total run time + TEMPRUNTIME.

(37)

(38)
(39)

(40)

(41)

(42)

(43)

(44)
(45)

(46)

(47)

(48)

(49)

(50)

(51)

4. Associated Tools

Unfortunately, most people will find it difficult, if not impossible, to analyze the
usage patterns of most programs with sufficient detail for use with ENVELOPE.
In an attempt to solve this problem, we have written a second program which

13

prompts for information from an instrumented run (e.g., Perfex on an SGI system
and or the Hardware Performance Monitor on Cray vector systems). Based on a
modest number of questions, it will solve a series of equations and supply a set
of numbers for use with ENVELOPE. Unlike ENVELOPE, some assumptions and
heuristics are used in this tool. As a result, the results may not be unique and
probably will not exactly match what would be produced by a detailed analysis
of the user’s program. However, the results should be sufficient to allow
ENVELOPE to accurately predict many aspects of the performance of the user’s
program (e.g., run time and performance in terms of MFLOPS). Table 4 shows a
sample run of this program.

5. The Equations for the Associated Tools

This section will discuss some of the equations used by the tool which uses data
from Perfex (or similar programs/libraries, e.g., PAPI) to simplify the job of
creating an input file for ENVELOPE. This tool contains two parts. The first part
is optional, and when used, will use one of two approaches (depending on the
available input data) to estimate the number of floating point adds, multiplies,
and multiply-add instructions that are executed during a run. It should be noted
that each of these instructions actually represents a group of instructions (e.g.,
“adds” includes adds, subtracts, compares, as well as other less frequently used
instructions such as convert, int, abs, etc.). Subsections 5.1-5.3 will discuss this
part of the tool in greater detail.*

The second part of the tool calculates (or, in a few cases, provides crude estimates
based on rules of thumb) most of the remaining inputs needed to describe the
software to ENVELOPE. This part of the tool will be discussed in subsections
5.4-58.

5.1 Conventions Used in Subsections 5.2 and 5.3

The following conventions will be used in subsections 5.2 and 5.3 to simplify the
equations.

* One important point to remember is that some compilers will only produce independent
multiply and add instructions, other compilers will preferentially produce multiply-add
instructions, and a few will produce a mix based on some optimization criteria. Furthermore, for
some hardware, this will make little if any difference in the performance. However, for other
systems, there might be a significant difference in performance (e.g., up to a factor of 2). Therefore,
in cases where the tool estimates that a large number of independent multiply and add instructions
are being used, one might want to calculate the performance based on both that set of numbers and
on the assumption that the hardware is executing the instructions as though they were chained
multiply-add instructions. Fortunately, in most cases, factors such as the amount of time spent on
cache misses and the ratio between memory operations (loads and stores) vs. floating point
operations may eliminate most of the potential difference in performance.

14

NADDS = number of floating point add instructions.

NFINST = number of floating point instructions.

NFLOPS = number of floating point operations.

NMADDS = number of floating point multiply-add instructions.
NMULTIPLIES = number of floating point multiply instructions.
NRECIPROCALS = number of reciprocal approximation instructions.
“>"” = greater than.

“>” = greater than or equal to.
“<” = less than.

" _n

<” =less than or equal to.

5.2 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of a priori Data and Data From Perfex

If one has access to a count of the number of floating point operations for a run,
as is frequently the case for industry standard benchmarks, then one can use that
information in conjunction with the floating point instruction count from Perfex
to estimate the number of times each of the three classes of instructions (adds,
multiplies, multiply-adds) is executed during a run. Alternatively, by comparing
the floating point instruction count from two runs (one compiled with the use of
multiply-adds enabled and one compiled with their use disabled), one can also
use the following equations:

If NFINST > NFLOPS, then
NMADDS = 0.0,
NADDS =05 » NFLOPS,
and
NMULTIPLIES = NADDS. (52)
Otherwise, if FLINST < 05 » NFLOPS, then |
NMADDS =05 * NFLOPS,

NADDS =0.0,
and
NMULTIPLIES = 0.0. (53)
Otherwise,
NMADDS = NFLOPS - NFINST,
NADDS = NFINST - NMADDS,
and

15

NMULTIPLIES = 0.0.* (54)

It is important to note that the equations being used have been made more robust
by eliminating the assumption that the compiler produced a floating point
operation count that was identical to that produced by a priori knowledge. In
some cases, an optimizing compiler might do slightly better. In other cases, an
optimizing compiler might even add floating point operations if it thought that
the efficient use of multiply-add instructions would improve the overall
performance of the code. By not relying on this assumption, one can be certain
that none of the operation counts will ever be negative or exceed the specified
number of floating point operations.

5.3 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of Data From HPM and Perfex

If one has access to both the output from the hardware performance monitor on a
Cray Research vector processor (e.g., C90) and the floating point instruction
count from Perfex, one can estimate the number of times each of the three classes
of instructions (adds, multiplies, multiply-adds) is executed during a run. In this
case, the reciprocal approximation instruction from the Cray vector processor
will be lumped in with the multiply instructions. The rationale for this is to treat
the combination of the reciprocal approximation with the additional refinement
step as a divide instruction. ENVELOPE suggests that divides be included with
the multiply instructions with an appropriate weighting factor. Effectively, this is
what we are doing in the following equations:

If NADDS + NMULTIPLIES + NRECIPROCALS < NFINST, then
NMULTIPLIES = NMULTIPLIES + NRECIPROCALS,
NMADDS =0.0, (55)

and
NADDS remains unchanged.

Otherwise, if NADDS + NMULTIPLIES + NRECIPROCALS > 0.5 * NFINST,
then

NMADDS = minimum of (NADDS or NMULTIPLIES),
NADDS = NADDS - NMADDS,

* For most of today’s processors, the cost of a floating point add is the same as the cost of a
floating point multiply. Therefore, assigning all of the excess floating point instructions to the
floating point adds will not effect the results produced by ENVELOPE. However, on some older
processors such as the MIPS R4000/R4400 and the KSR1, this assumption is no longer valid. On
these machines, there may be a difference in the estimated performance, and one might want to
determine what the bounds on this performance are by running ENVELOPE twice—once with all
of the excess instructions classified as floating point adds and the second time with all of the excess
instructions classified as floating point multiplies.

16

and
NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (56)
Otherwise, if NADDS < MULTIPLIES, then
NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES -
NFINST or NADDS),
NADDS = NADDS - NMADDS,

and
" NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (57)
Otherwise,
NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES -
NFINST or NMULTIPLIES), '
NADDS = NADDS - NMADDS,
and
NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (58)

Again, one can see that we were careful to handle the situations where the
numbers do not add up. However, to the extent that numbers do add up, we
make the assumption that programs take advantage of chained multiplies and
adds on the Cray vector processors. Therefore, these chained operations should

be translated into multiply-add instructions for the purposes of running
ENVELOPE.

5.4 Conventions and Approximations Used in Subsections 5.5-5.8
In subsections 5.5-5.8, the following approximations are made:

(1) Since Perfex is being used to return data on a complete run, the data is not
broken down by subroutine, let alone memory access pattern. Therefore,
for each type of memory access pattern (e.g., STRIDE-1), this tool assumes
that the same percentage of loads as stores are used in a section. This does
not mean that the STRIDE-1 access pattern has both a billion loads and a
billion stores. Rather, it means that if 5% of the total loads exhibit the
STRIDE-1 access pattern, we will assume that 5% of the total stores will also
exhibit this access pattern.

(2) For the same reasons as in (1), we will assume that the same percentage of

- multiply-adds, adds, multiplies, and integer operations unrelated to
address calculations (normally, the number of these calculations will be
zeroed out for floating point intensive applications) are used for each type
of memory access pattern. Furthermore, we will assume that this
percentage is the same as that calculated in (1).

17

(3) In accordance with the way ENVELOPE is set up, we will assume that each
TLB miss has a cache miss associated with it. This need not be the case if
the cache line is still in the cache, as can happen with a STRIDE-N access
pattern executed with a cyclic basis. However, if the number of data items
is too large or if the access pattern is actually fairly random, then this
assumption is correct. In either case, since Perfex does not provide a way to
distinguish between the two cases, both ENVELOPE and this tool have
been set up to function in this manner. Therefore, this should not result in
any problems.

(4) The recommended values for the group size and group density are 1 unless
known otherwise, in which case, one might want to use the value 1 since
the consequences of the grouping of data were already factored into the
output of Perfex and would be difficult to compensate for at this point.

(5) The number of integer loads and stores is negligible for a floating point
intensive code. So the time required for them can be ignored.

(6) Data reuse at the register level has already been factored in by the compiler,
having eliminated the loads and stores at compile time. Therefore, there
were no “theoretical” loads and stores to be accounted for by the
*SVDEDICATED and *SVGENERAL input parameters. The recommended
output values will then be 1.0 for the “Used” values indicating no data
reuse and 0.0 for the “percentage” values indicating no work is attributed
to this access pattern.

In subsections 5.5-5.8, the following conventions will be used:

ADJMEM = the adjusted number of memory operations.

CIL1 = the number of L1 cache misses attributed to anything other than a
STRIDE-N (or random) access pattern. This can result from either a STRIDE-1
access pattern or a second larger working set that fits into the L2 but not the L1
cache.

C1L2 = the number of L2 cache misses attributed to anything other than a
STRIDE-N (or random) access pattern. Primarily, this is expected to be the
result of a STRIDE-1 access pattern.

CGBL1 = The L1 cache misses associated with a larger working set (e.g., from a
blocked access pattern involving large “global” arrays).

CN = the number of cache misses attributed to a STRIDE-N (or random) access
pattern.

DSIZE = the size of the data item in bytes (usually 8).

DPERL1 = L1LSIZE/ DSIZE = the number of data elements per L1 cache line.

DPERL2 = L2LSIZE/ DSIZE = the number of data elements per L2 cache line

L1LSIZE = the size of the cache line in the L1 cache.

LIMISS = the number of L1 cache misses.

L1PERL2 = L2LSIZE/L1LSIZE = the number of L1 cache lines per L2 cache lines.

L2LSIZE = the size of the cache line in the L2 cache.

18

L2MISS = the number of L2 cache misses.

L2PERPAGE = PAGESIZE/L2LSIZE = the number of L2 cache lines per page.

NLOADS = the number of LOADS that graduated (completed).

NSTORES = the number of STORES that graduated.

PAGESIZE = the page size in bytes.

PERGI1 = The percentage of the memory operations with a STRIDE-1 access
pattern. Initially, this value will be set to 0.0.

PERGB = The percentage of the memory operations associated with the blocked
memory access pattern associated with the larger working set.

PERGN = The percentage of the memory operations with a STRIDE-N access
pattern.

PERSA = The percentage of the memory operations associated with the use of
small scratch arrays in the smaller working set.

TLBMISS = the number of TLB misses.

USEG1 = The data use/reuse for the STRIDE-1 access pattern. Initially, this value
will be set to 1.0, indicating no reuse. However, if the value for PERGI changes
from its initial value of 0.0, this number will be recalculated. '

USEGB = The data use/reuse associated with the blocked memory access pattern
associated with the larger working set.

USEGN = The data use/reuse for the STRIDE-N access pattern. This will always
be hardwired as 1.0, indicating no reuse. This does not really matter since any
reuse that does occur will simply be charged to another access pattern in a
manner that does not result in additional TLB or cache misses.

5.5 Solving for the STRIDE-N Access Pattern Parameters

The next stage of the process is to solve for the STRIDE-N access parameters,
since that will tell us how many L2 misses remain to be allocated among the
remaining access patterns. Again, reasonable checks will be made and, if
necessary, the values will be adjusted accordingly. The need for this can have
any number of sources (e.g., extraneous cache and TLB misses due to
timesharing a processor or alternatively process migration on a shared memory
SMP). The tool will now solve the following system of equations:

L2MISS = CIL2 + CN. (59)
| CIL2
TLBMISS=— 2 on
S=12PERPAGE ' © (60)

Solving for C1L2 and CN, one comes up with the following equations:
L2MISS - TLBMISS

ClL2= o To
" L2PERPAGE (61)
CN=L2MISS-CIL2. 62)

19

Performing the sanity checks, one ends up with

If C11L2 < 0.0, then

ClL2=0.0and
CN = L2MISS. (63)
Otherwise, if CN < 0.0, then

C1L2 = L2MISS and
CN=0.0. (64)
ADJMEM = NLOADS + NSTORES. (65)
PERGN=7A-I§MN—EI\Z. (66)
ADJMEM = ADJMEM - CN. (67)
C1L1 = L1IMISS - CN. (68)
CGBL1=CIL1-CIL2 * LIPERL2. (69)

5.6 Solving for the Blocked Access Pattern Parameters

Now that the STRIDE-N access pattern has been accounted for and the number
of memory operations and cache misses that remain to be accounted for is
known, we proceed to the question of the existence of a large working set which
will live out of the L2 cache. The heuristic that will be used at this point is
somewhat arbitrary but is based on the concept that unless there is a reasonable
amount of data reuse, one cannot say that a working set exists.
If LlPEIij;}k %) >4.0,then we have a large working set, and the following

equations are used:

PERG1=0.0. (70)
USEG1=1.0. (71)

This implies that all of the remaining L2 cache misses will be charged to the
blocked access pattern, with no work assigned to a STRIDE-1 access pattern. This
is a somewhat arbitrary assignment. However, since both access patterns will
produce the same ratio between TLB misses and L2 cache misses, this should not
be a problem as long as the working set fits into the cache. If one moves onto a
system that lacks an L2 cache or where the cache is too small, then one needs to
specify if ENVELOPE is to treat the resulting access pattern as if it is STRIDE-1 or
STRIDE-N. The recommended default when using this tool is STRIDE-1, which is
specified by negating the estimated size of the working set to be discussed in
more detail in section 5.8.

20

The tool now assumes that all of the L1 cache misses are the result of this larger

working set, since if a smaller working set also exists, it will live out of the L1

cache. As such, the smaller working set is expected to have a negligible cache

miss rate. This corresponds to the use of small scratch arrays (the SA input
. parameters for ENVELOPE).

ADJMEM = ADJMEM —CIL1 * DPERLI.)
If ADJMEM < 0.0, then

ADIMEM = 0.0. | (73)

_ CIL1 * DPERLI
PERGB = 7 GADS + NSTORES® (74)
USEGB = CILI : (75)

L1IPERL2 * C1L2

PERSA = ADJMEM (76)

NLOADS + NSTORES'

The recommended size for the large working set is 1.0 MB, with a STRIDE-1
access pattern if the cache is too small. The choice of 1.0 MB is somewhat
arbitrary but is based on most SGI systems in recent years using a L2 cache size
of 1-8 MB. Furthermore, most of the competing systems, when equipped with a
large cache, also have a cache size of at least 1 MB. However, experience has
indicated that some of the NAS benchmarks have a large working set small
enough to fit in the caches of the Cray T3E and the IBM SP with Power 2 Super
Chips. Therefore, prudence dictates that one might want to compare the
predicted performance to the measured performance on one of these systems in
an attempt to fine-tune this parameter. All we know for certain is that the size of
the larger working set is somewhere between the size of the L1 and L2 caches.
This concludes the handling of the situation in which a large working set occurs.
Subsections 5.7 and 5.8 only apply to the situation where a working set is either
‘missing or not very effective. ‘

5.7 Checking for the Case of a Small Working Set Without a Large
Working Set

The tool starts out by setting the parameters that describe the larger working set,
causing that access pattern to be skipped by ENVELOPE.

PERGB = 0.0. (77)
USEGB = 1.0. (78)

Once again, the tool uses a heuristic to check to see if a small working set exists
and is effective.

21

ADJMEM

DPERLI1 * CGBLI
there is a cache resident small scratch array. The tool now calculates what
percentage of the memory operations involve this small working set and what
percentage needs to be mapped to the STRIDE-1 access pattern to achieve the
correct number of L2 cache misses and TLB misses. It should be noted that the
small working set is assumed to have an insignificant number of L2 cache misses
and TLB misses associated with it. Since the STRIDE-1 access pattern is being
used only to the extent necessary to account for the L2 cache misses and the TLB
misses, it will be assigned a data use/reuse value of 1.0, indicating that all data
reuse is associated with the small working set.

PERSA — ADIMEM — CIL2 + DPERL2. 79)
NLOADS + NSTORES

> 4.0, then we have a small working set. This means that

If PERSA > 1.0, then

PERSA = 1.0. (80)
PERG1 = 1.0 - PERSA - PERGN. (81)

If PERGI1 > 1.0, then
PERGI = 1.0. (82)

If PERSA < 0.0, then
PERSA = 0.0. (83)
USEGI = 1.0. (84)

The last remaining value is the estimated size of the smaller working set. All we
know for certain is that it has to fit into the 32 kB cache of the MIPS R10K or
R12K processor of the system that has been used. It probably is somewhat
smaller than that, so the tool recommends the value of 12 kB, which is a safe
number for almost all of the RISC processors made since 1990. The tool has now
completed its task, and subsection 5.8 should be skipped.

5.8 Handling the Case Where No Working Sets Exist

The tool has now determined that no working sets exist, so all of the data access
must be mapped to either a STRIDE-N access pattern or a STRIDE-1 access
pattern. In subsection 5.5, the portion mapped to the STRIDE-N access pattern
was calculated, leaving the STRIDE-1 access pattern to be handled now.

PERSA = 0.0. (85)
PERGGI = 1.0 — PERGN. (86)
USEG! = - ADIMEM (87)

DPERL2 * CIL2"

22

The only complicated part of this is that any data reuse that occurs must now be
mapped to the STRIDE-1 access pattern, as was done in the last equation. This
concludes the discussion of the equations and logic behind this tool.

6. Future Work

Work is currently under way to improve the usability of this code. Additionally,
research has been initiated to try and identify what characteristics of a parallel
code need to be taken into consideration when estimating the performance of a
parallel program. Unfortunately, our initial experience in this area indicates that
this is a highly complex problem that is probably too difficult to tackle in the
general case. We hope that in the future, we will be able to produce useful
simulators for some of the more commonly found cases.

7. Results and Conclusions

We have created an entirely new simulator based on Back-of-the-ENVELOPE
calculations that is capable of simulating the performance of computationally
intensive workloads in a short fixed amount of time. An associated tool that
makes the simulator friendlier to use has also been discussed. Experience with
using ENVELOPE has shown that in almost all cases, it can accurately predict the
performance of the user’s code to within a factor of 2 of the measured value.
Furthermore, in many cases, we were able to achieve agreement with
experimental results to within +10-15%.

23

suonerado 1adajur jo Iaquunu aif 00+320000000°0
dnoi8 a3 jo Asuap a st 000000'L

dnoi3 s Jo azis ayj st 000000'L

(ss¥) udjooy Lrowaw 3y 20-48666666'L

*2}3 ‘Sppe Jo IaquInu ay} 00+30000000°0

*239 ‘sarpdnnu jo Iaquinu sy 00+30000000°0
sppeuw jo Jaquinu ayj 0°000cve

go ur zossadoxd ayy Aq paioys uraq ejep jo Junowre ay)
g0 ur Jossadoid ayy ojur papeo] 3uraq Eiep jo Junowte ay)

€0-166666595C
€0-420000.9°L

‘a1emijos
33 Jo SonSLIalRIRYD [BIBUID) $334q U1 wiay1 ejep A} JO BZIS 8
suoneiado 1233)ur 10y ajel yjead 0000°00S1L
sass1ut ayded /sayajerd Suipueisino Jo JIaquInu WNWIxXew ayy oL
Bunweuay] 1335130y A
uonNIAX3 IBPIN-JO-INQO £
ydap aurjedid aw w
sppy Sunu.ioyiad uaym paads yead a3 0000°0SZ
sardnny Sunuioyiad uaym paads yead sy 0000052
saavn Suruoyiad usym paads sjead au 0000°00S1L
ssnu 9jLIm 1ad suopdesuey ,snq,, Jo Iaquinu Ay Z
pu0d3s /A S9ILIM /SPEaI JO XIW B I0J \jpImpueq Alowaw 000070001
Pu0das /gIA UT S2ILIM 10J \Ipimpueq Aowawt 0000°0001
puodas /g Ul Speal 10§ yipLmpueq Alowaw 0000°000L
SN ut Aouaye] g11 00008
g ur az1s aded ¥
puodas /gA Ul si1y 10j [apimpueq ayded 000°0008
sajAq ul az1s aul] syded 871
g Ul 921 3Yoed 0000008
"alempiey ay) Jo sonsLIsRIRYD) GN ur Aouaje] Arowaw 00°00%
SLNANI'EdOTIANT 10j IO THANA 4q paonpoil] suonejouuy vleq Induj

SJUDWIWIOD) [RUOBIPPY

jrewyousq Q0L X 001 SPPOU JINS UYL € Jamod oedur] a3 10 ZHN SZ€ YIIM JS INdI ue 10§ sisjowrered ynduy ‘1 9[qeL

24

*9ZIS 39S SunjIopm

yuridjooy Arowaw Aerre yojeads ayy

20-4000041°L

TVIANIDVSS 23e3uadia 00+30000000°0

TVIANTAOVSSE pasn 000000'T
‘sfeire TVIANTOVST 28ejuaoiag 00+50000000°0

yojeds urajoaur suonerado 130 TVIEANADVST Pasn 000000'T
SJOIVS 28euadiag 00+30000000°0
SAavVvs a8eusdiag 00+30000000°0
SAITILLINAVS 28euadiag 00+30000000°0
SAAVINVS 28eua19g 00+30000000°0
AALVOIAIAVSs 23ejuadiag 00+30000000°0

QaLvOIaaavssd pesn 000000'T

's19)s13a1 ul p[ay eiep pue sdeire aaLyDIaaavs1a8eiuaniag 00+30000000°0
yojemns urajoaur Ljuo suoyeradp QaLVOIqIavsTyd posn 0000001
TVIANIDASS 29e)uad1ag 00+20000000°0

TVIANIOASSY Pasn) 000000'L

*$193s1321 Ut p[ay TVIINADAS] 28wjuadiag €ECEEEE

ejep Suiajoaur suonesado 12yO TVIANIOAST Posn 0000°00L
SJOIAS 28ejuadiag 00+30000000°0

SAAVAS 23ejuad1ag 00+30000000°0

SHT'TJLLINNAS 23ejuadiag 00+30000000°0
SAAVINAS 23ejuadiag 00+30000000°0
AFLVIIAIAASS 28eusdrag 00+30000000°0

AALVDIAIAASSY Pasn 000000'L
"s193s518a1 Ul pjay dALVIIAIAAST 23ejuadiag 00+H0000000°0

ejep Surajoaur Ajuo suogeradp AQALVDIAIAAST pPasn 000000'T

SHUBWIWOD) [eUONIPPY SLNINI'AdOTIANE 10] AIOTIANT 4q paonpoi1 suopejouuy ejeq ndug

"(panunuod) yreuwnypuaq 0L * 00T SPPOU JINS UIYL € Jomo] yoedury ayj 10j ZHIN SZE PIM IS WAI ue 10§ siopowrered ynduy T s[qe],

25

SdOI1O 28ruadiag 0000°001

Saavio 28eusdiag 0000001

SAITAILINNID a8ejuad1ag 0000°001

SAQVINID a8ejuadiag 0000001

196 a8euadiag 0000001

195D pasn 000000'L

‘urayed ssadoe 197 @8ejuad1a g 00000°29

1 2p1ug e 3urajoaut suoyeradQ 197D pasn 0000£9'T
SAOIND 28vjuadiad 00+30000000°0

SAQVND 28euadiag 00+30000000°0

SAI'TdILTNAND 23ejuad19] 00+30000000°0

SAAVIAND 28ejusdiag 00+30000000°0

NOS 28ejuadia 00+H0000000°0

NDSD Pasn) 000000'L

.Ewﬂ&& $Ssa00e ZUA wwmuﬁwuumn— 00+40000000°0

N 2pHis e 3uiajoaut suoperadQ NDTID Pasn 000000'L
az1s 320[q Ay 000000'T

SJOIgD @8ejuadiag 00+0000000°0

5aaveo 28muadisyg 00+30000000°0

SHI'TJILTNNED 28vuadiag 00+30000000°0
Saavngs a8ejuadiag 00+30000000°0
g9s 23rjuad19] 00+30000000°0

195 Supjiom 1981e] 495D pasn 000000'L

sﬁCOuwm e lo Ewﬁm& §$Sad0e —uwv—un:n— mo..— wwﬁcmuuwnu 00+30000000°0
e 19yj1e Buiajoaut suogeradQ 491D Pasn 000000'T

SJUSWWO) [RUOHIPPY SLNINT'HdOTIANE 10§ HIOTIANH 4q peonpoid suopejouuy ere(ndyj

‘(panunuod) sreunyduaq g0 x Q0L SoPouU JINS U], € I9mo] yoedur] ay3 10J ZHA G/€ PIM JS JNG] ue 1oy siajowered ynduy [o[qe]

26

suonerado 1Jajul Jo Isquunu i 00+50000000°0
dnoi8 ayj jo Ay1suap ayy st 0000001
dnoi8 ayj yo az1s ayy sI 000000°'1
(ss¥) yuudjooy Arowaw oy 0000°944
230 ‘Sppe JO JaquInu 3y 00+30000000°0
*23 “sarjdynu Jo Jaquinu sy} 00+50000000°0
SppeEW JO JoquInu a3y} 0T+H8879048°C
a0 ut rossadoid ayy £q paioys Suiaq ejep jo yunouwre ay} 0004078
"2XEMJOS go ut Jossadoxd ayj ojur papeo| Suiaq ejep Jo Junowe ay) 0000°829
a3 JO SOUSIISPRIEYD [LIDUID) $934q u1 wa)1 ejEp BU JO IZIS 8
suonerado 1933ur 10§ a3e1 Mead 000°00ST
sassnuu ayded/saydjayerd Surpue)sino Jo Jequnu WNWIXeur ayj 1
Surnweusyy 1935189y A
uonnNIAX IDPIN-Jo-InQO A
ydep surppdid ayy w
sppy Suruuojzad uaym paads yead ayy 0000052
sordnny Sunurogiad uaym paads sead ayy 0000°0SZ
SAAVIA Sunuroyiad usym paads yead ayy 000°00ST
ssrwi oyum 1ad suonoesuen; ,snq,, JO IoqUINU 3} z
PpUOd3s /(A SIILIM /SPEDT JO XTW B I0J YIpImpueq Alowsul 00070001
PpUoD3s /GIA UI SI}LIM 10] JIpImpueq A1owdw 000°0001
PpuodasS/gIA Ul SpEaI 10§ YIpimpueq Arowsw 000°0001
SN ut Aduaje] 411 00007008
@ ur azis a8ed ¥
puodas/gIA Ut Sy 10 yipimpueq ayoed 000°0008
$934q u1 9z1s duUlj ayoed 871
qIA Ul 9ZISs ayded 000000'8
arempiey ayj JO soysuRjoRIRYD) . SN ur £>uaje] Lrowaw 0000°00%
SJUIUILIO]) TEUOHIPPY SLNINI'3dOTIANA 10J HIOTHANH £q paonpoiq suonejouuy ejeq indug

: ./paIqestp,, Sunyeyerd
WM (IJIN Sursn g ssep) yrewnpusq SYN DD 243 10§ s3pou JINS UL € 1mMOd ZHN-GLE WM S INGI ue 10j s1jpwered jnduj -z 9qe]

27

"9ZIS 135 BUINIOM

juudjooy L1owsw Lerre YysjeIds ay)

20-4000041°1

TVIANTOVSS 23rjuadiag 00+30000000°0
TVIANIDOVSSY Pasn 000000°
‘sAeire IVIANIOVST 28ejuadiag 00+30000000°0
yoeids urajoaur suonesado 1330 TVEANIOVSTY Posn 000000°1
SAOIVS 23ruadiog 00+30000000°0
SAQVVs 23eiuadiag 00+:0000000°0
SAITJLLTNIAVS 23euadiag 00+30000000°0
SAAVINVS 23ejuadiag 00+30000000°0
adiv2Iqaavss 28ejuandg 00+30000000°0
Qa.1vDIaaavssy pasn 0000001
"s19351301 Ut pjay ejep pue shere AiLvDIaIavs1 28euuadng 00+30000000°0
yages duiajoaut Ljuo suoyeradQ A41vDIadavsTd pasn 000000'1
TVIINIDASS 23e1uad1ag 00+:0000000°0
TVIANIDASSY Pasn 000000 L
519381821 u1 play TVHANIOAST 23e1uan1ag 00+H0000000°0
ejep Surajoaut suoyesado YO TVMANIOASTY Pasn 000000'1
SJOIAS 23ejuadiag 00+30000000°0
SAAVAS 23ejuan1ag 00+30000000°0
SHITJLLTNNAS 28ejuadniag 00+:0000000°0
SAAVINAS 93ejuadning 00+50000000°0
AALYDIAIAASS 23euadiag 00+30000000°0
aa.LvDIaaaAssy pasn 000000'1
"$13)s1321 Ul pRY QAaLVDIAdaAs 23ejuadeg 00+30000000°0
ejep Suiajoaut Luo suogerado AaLvIIaQIdAST pasn 000000'T
SJUAWWIOY) [RUOHIPPY SLNINI'AdOTIANE 10j HIOTIANH 4q paonpoi] suoyejouuy eje(ndug

“(panunuod) , pajqesip,, Sunyjeyaid

WM (IJA Sutsn g ssep) sreunpusq SYN DD 243 10§ Sapou JIAS UNY]L € 1Mod ZHIN-GZE Yim dS NG ue 10j srvjourered jnduf -z dqe],

28

SAOITD 23ejuad1ag €LL66'66
Saav1o 23ejuadiag €1L66°66
SAI'TILLININTD 28ejuadisg €1166'66
SAAVINID 8ejuadiag £LL66'66
196 23ejuading €LL66'66
195D Pasn 810650'C
-wrayyed ssaooe 1971 28ejuadiag €L266'66
1 opmg e Suiajoaur suogeradp 197D Pasnl 810S50°C
SAOIND @dejuadiag €0-A89FPE€9T T
SAAvND 28ejusdiag £0-489F€9T'T
SHITILLTNAND 28ejuadiag €0-489¥7€9C°T
SAAVINND 93ejuadiag €0-A89FFE9T'T
NOS 28ejus019 €0-489%F€92°T
NOSD posn 000000'T
‘wraped ssadoe NO1 a8ejuadiag €0-489% V€9 C
N 2pmg e uiajoaut suoneado NOTD pasn 000000'1
9215 YP0[q 33 00000110~
SdOIgO 28ejuadiag 00+30000000°0
saavao 23ejuaniag 00+:0000000°0
SAINJLLTNNGD 28eud1o 00+30000000°0
SAAVINGD 23ejuading 00+30000000°0
g49s 98ejua0I1ag 00+30000000°0
"}9s Sunjrom 1a81e| 495D pasn 000000'T
\ﬁGOme e I0 Ehwﬁm& SSad0E ﬁm&uo_ﬂ mU.._ uwﬁﬁwuum& OO+NOOOOOO0.0
e 1oyyre Surajoaut suonesadp 491D pasn 000000°T
SJUSWWO) [EUOHIPPY SLNINI'AdOTIANT 103 IJOTIANI 4q peonpoid suogejouuy eje(] indug

M (JJN Suisn g ssep) yreunyousq SYN DD 3y} 10 S9pou JINS UNYL € 12MOJ ZHIN-GZE Yim JS NGI ue 10§ s1ojpurered jnduj g 9jqel

(penuguod) , pajqestp,, Sunpyeyord

29

"3pou pajedIpap e ununsse ‘[6] 101 89 29 ds 0S2-M70

[6] €1 89 rée] ds 0S2-M20

"3YoeD 77 0} SISSIW g] L, PU 9pou pajedipap e Surumsse ‘[6] €40 68 11 n1 0S2-M20

[6] 60'1 8 74 n 05220

[6] 18°0 8¢ L) 0S2-M20

[9] 91’1 6L 89 la 05Z-M20

"aAnda33aul st Sunydyejeid jey) Sununsse ‘[g] .50 L8 Zs1 HILD S61-)20

[s] LS0 /8 61 HLD S61-)T0

[£] 160 0S S5 panqusip-agd G61-)20

980 LL1 50T pateys-qe:d S61-)20

"apou pejedIpap e ununsse ‘[G] 190 ré £9 ds S61-M20

(sl $8°0 w 0s ds G61-M20

(9} 650 147 VL nl S61-M20

"3YoeD 7] 0} SISSIWI]|, PUB 9pOu pajedipap e Surumsse ‘[G] $8°0 26 801 n1 S61-M20

(<] [ZA8} 26 vz ni G61-20

[<l 160 6€ £ 9D S61-M20

[<] 980 s $9 14 S6L-320

(el 980 211 €l 001 % 001 ordur] G61-320
papipald | (SIOTIN) | (SAOTLIN)

adInog paadg paadg jyreunjpuag wdshg

pPoINSean pamseajN paipipai]

‘syinsa1 pamseaus 0} §JOTIANH woij s}nsax paipaid jo uostredwod vy ¢ djqe],

30

"aARaygaut st Junydjeyaid jey) Sununsse ‘[g] 790 L6 951 HID 000019 NNS
[8] 50 L6 481 HILD 000014 NNS
080 081 ST pareys-qed 000014 NNS
-aanaygaul st Juryojsyeid yeyy Sununsse ‘[g] LLO €61 st HID 00%-)€0
[8] 990 €61 T6¢ HILD 009-I€0
G6'0 LLE L6€ pazeys-Qed 005-E0
"apou pajedipap e ununsse ‘[01] 960 a4 LTl ds 00F-I€0
[o1] 91 w b ds 00510
"ayoeD 7] 0} SISSIW ¢][, pue apou pajedIpap e Jumumsse ‘[O1] STl yee 6.1 n1 000
[o1] 91 yee Yrat 01 00510
"aAnoaggaul st Junppyageid jeyy Surumsse ‘(o] oc'1 69 €5) 00F-€0
[o1] LL0 69 06 %) 003-)I€0
[o1] W01 0€1 8¢l hk:| 00%-E0
[o1] €470 661 €Lt 001 % 001 Yoedury 00%-YE€0
"2AdagyaUl SI dunypiayaId Jey) Surnumsse ‘[g] 090 GZ1 60T HID 00€-)120
[8] 09°0 o174 | 80C H1D 00€-20
[zl So'T 79 6S pemqrusip-ded 00€-120
¥6°0 8T $97 pareys-qed 00€-3120
"apou pajedipap e ununsse ‘[9] 660 69 W7 ds 00€-)120
[9] 8Tl 69 4% ds 00€-)120
"3Yyoed 7] 0} SISSIU g], pue Ipou pajedipap e upwnsse ‘[9] 140 88 174! n1 00€-5120
[9] 60'1 88 I8 n1 00€-M20
[9] 060 44 6¥ 2D 00€-)20
9} €01 (44 0z ld 00€-)120
[€] 160 €41 641 001 % 001 oedury 00€-)120
papipald | (SIOTHW) | (SIOTIW)
aomog poadg paadg sjreunyouag wayshg
pamsesjy paanses]y paIpal]

“(panunuod) s}Nsa1 painseaw 03 IO TIANH woij sjjnsax pajorpaid jo uosuedwod v ¢ 3[qeL

31

[€] 0l S9¢ (144 001 x 001 oedur] SET-O5¢d
[] 901 [#4 89 ds 0¢1-OS¢d
"ayoed 03 sasstu g Junumsse ‘[g] 490 246 144! ni 0Z1-Ds¢d
[€] LL0 L6 9?1 ni 0¢1-O5¢d
(sl 0,0 vo1 8yl 14 0ZI-DSed
-j10ys sem yidap aurpdid ays yeyy indut aIvAML ‘I€] 8T'1 €€T 861 001 X 001 Yoedury 0C1-DSed
[€] 8I'L €eC 861 001 x 001 >oedur] 0CL-OStd
“aanPa33ou st Junyieyerd jeyy Sununsse ‘[g] 80 €9 L HID 299-2d
[8] €40 €9 98 HLD £799-7d
[£] 9¢'0 154 811 pamquystp-ged 006-d€L
“Buryoyejead jo asn 100d Bununsse ‘[g] 760 44 Lb ds 006-3€L
(sl 50 124 ¥8 ds 006-4EL
[€] 870 99 LEL ni 006-d€L
“Bupydyayaid jo asn 100d Bununsse ‘[G] LEO 11 o¢ W) 006-F€L
[sl v1°0 11 18 2D 006-3EL
-Bunyojeyeid jo asn sood Sununsse ‘[g] raN| 86 rde 19 006-d€L
(<] 0 8G 8€1 14 006-HEL
“dunyisgaid jo asn sood Jununsse ‘[/] 1Tl LS Ly panquisip-aed 00Z1-9€L
[4] S0 LS L1 pamnqinstp-aed 00C1-d€L
-Buiyoyoyoid jo asn aood Bununsse ‘[g] 01 0S 6¥ ds 00Z1-d€L
{sl S50 0s 16 ds 00C1-d€l
1] S0 62 sl nl 00cl-3¢€l
-Buiyaioyoad jo asn aood Sununsse ‘[g] 1€0 o1 € %) 0021-A€L
[s] 1o 01 6 20 00¢1-4EL
“Buryoyegead jo asn 100d Bununsse ‘[g] A L9 ¥ 14 00TL-9EL
[} €70 L9 961 14 00CI-d€L
papipaid | (SJOTIN) (SAOTAN)
admog poadg paadg yiewyduag wid)shg
pamsea]y | painsespy pawIpaid

-(panuRuod) s)[Nsa1 painseaw 0} IO TAANH woij sjnsai payrpaid jo uosaedwod v ¢ Aqe],

32

33

“(19 BJep Y SSep 2yj IOj 2Ie S)NSI paInseswt ayy) [Z1] AR LL 99 ds CT-€AAMOd
"3oed 7] 0} SISSIWI LI, pue opou pajedipap e Jununsse ‘[Z[] 18°0 151 VL1 n1 CT-€AIMOd
*(398 ejep Y Ssepo 2y 10j SIe s}Nsa1 pansesaw ayy) [z1] 10'T 51 6€1 n1 CT-€AAMOd
-Buryozeyerd jo asn s0od Sununsse ‘[¢1] 9.1 ¥L ré 4 %) TCT-€4AMOd
[en] $5°0 ¥L 9€1 %) CT-€4AMOd
“Bumyojayeid jo asn zood Sunumnsse ‘[z1] 8v'1 So1 L 14 TTT-YAMOd
"(39 Bjep Y SSe[d ayj I0J oIe S)[nsal paInsesaw 3yi) [¢1] 6¥0 S0t GIT 14 CT-€49MOd
[€l 69°0 0sZ €9€ 001 X 001 oedury TCT-€94AMOd
3] 68°0 8 ¥6 ds 002-€4AMOd
"9yoeD 7] 0} SISSIWI 1], PUe pou pa3edIpap e Sununsse ‘[] 99°0 Vig! we n1 00Z-€49MOd
12} 160 Vig! st n1 00Z-€49MOd
“Bunyogeged jo asn 1ood Sunumsse ‘[¢] 960 R 6L 2D 002-€4IMOd
. 12} 150 ¥ 98 e 00Z-€99MOd
‘Bunyoyayexd jo asn sood Surumsse ‘[§] 080 801 sel 14 00Z-€44MOd
¥ €40 801 Vil 14 002-€49MOd
[11] 640 €€T 66T 001 X 001 Yoedury 002-€9AMOd
“Sunypyagerd jo asn z00d Sununsse ‘[/] 9€0 €€ 6 panquIsIp-ged 091-DS2d |
[Z] LT0 €€ €71 pamquusip-aed 091-D52d |
[€<1y - 9z1 6 €2 ds 091-Ds2d |
*3ped 03 sasstu g1 L, Sununsse ‘[5] 180 6T1 091 n1 091-DS2d
. 2] €60 6C1 8€1 n1 091-DStd
“Bunyojageid jo asn 1ood Bununsse ‘6] 6€0 I€ 08 %) 091-DStd
[s1 820 1€ rAA 2D 091-DSzd
[sl 840 €1 691 14 091-DSzd
I€] €1 GIe 96T 001 X 001 oedury 091-DS2d
papIpald | (SAOTINW) | (SAOTIN)
20Inog paadg paadg yreunpuag wshg
painseajy | paimsesyy | papIpalg

“(ponunuod) s)nsal pamseauwt 0 FJOTIANA woxy synsa1 papipaid jo uosedwod v ¢ 3[qeL

‘Jos ejep y ssep (xnurl/$9dl) [911 | 611/641 L21/261 £01 ds 005-02sAa
‘ayoed g7 0} sassnu g1], Surumsse ‘[91] | 79'0/99°0 LEL/9%1 112 n1 005-02sa
‘195 ejep y ssep (xnury/p9ndl) [91] | €£0/8L0 LE1/9F1 L81 n1 005-0zsa
“Bunyorajaid jo asn s0od Bununsse ‘[91] [16'1/20C 06/S6 Wiz oD 00s-02sd
‘oS eyep v ssep (xnury/$9dl) (911 | $20/840 06/56 e oD 005-02sa
"Jos ejep y ssep (xnur]/p9NdlL) {911 | S8°0/10°1 ¥41/902 y0z 1d 00S-0zsd
‘wiaysAs pajedipap e Sununsse ‘[¢] | GL0/€T1 04T/ 0bY 86€ 001 x 001 >edur] 005-02SA
“(payiodal a1am sanjea Juaoyip Apuedyrudis omy) [¢] | Z8°0/1€°1 LT/ O0VF 9¢€ 001 x 001 >oedury 005-02sa
"aapdayjoul st Suryojegeid jey) Surunsse ‘[g] 88°0 754 60€ HLD | YStH-sZe-€4aMOd
{8l 290 e 60V HID | ySiH-5ze-€43MOd
"3YdEd 7] 0} SISSIW g |, pue 9pou pajedipap e Sununsse ‘[G1] €51 88 s61 N1 {| YSIH-SLE-€4IMOd
[s1] €2 882 6C1 01| USH-GZE-€4AMOd
‘Bunyoyagead jo asn sood Sununsse ‘[g[] ¥l Sy 12 9D | YStH-64e-€ddMOd
[s1] 150 9g 011 9D | YSIH-GLE-€dIMOd
28] $8°0 {747 508 001 % 001 oedury | ySiH-s2e-€d4IMOd
"3pou pajedipap e dununsse ‘[§] 60°1 98 6L dS | unNI-GZE-€4IMOd
64! ¥S61 98 95 dS | umN1-GZe-€4IMOd
"3YdED 7] O} SASSTUI [PUE apou pajedipap e ununsse ‘[§] G660 vee 8€T N1 | uNI-SZ£-€dAMOd
[¥] 15 44 (44 6 N1 | unyl-gZe-€4IMOd
“Buryogegeid jo asn 100d Sunumsse ‘[] £8°0 foi S 0D | umL-6e-€94IMOd
71 €80 o7 i DD | ulI-G/ZE-€dIMOd
“Bunypyeyaad jo asn 100d Sunumsse ‘[p] 780 vL 06 19 | unL-6/e-€9dMOd
[¥] 80 174 06 1d | unyr-c/e-eddmod
28] 61’1 9Ty LS€ 001 x 001 >pPedury | uny1-Z€-€4IMOd
papipald | (SJOTAW) | (SJOTAN)
90IMog paadg paadg yIeunjouag wayshg
painsea]y painseajy pepIpal]

-(panunuod) sj[nsal painseauwt 0} FJOTIANH woij synsal pajorpaid jo uosuedwos v ¢ 3[qe],

34

[61] €0'T 6€ 8¢ ds £6/- 1~ Wn[ud]

"3YoeDd 7] 0} SISSIW (][, pue Spou pajedipap e Sununsse ‘[6]] 1610 901 911 n1 £€- 11" wnyua]

[61] 00T 901 €5 n1 £6/-TII-WnN[ua]

“3unyojegeid jo asn 100d Jurumsse [61] €1 8¢ 62) £eL-TI-WmBUS g

[61] €1 8€ 6C ®) £€/-TI-Wn[ud]

[61] 7'l 8S [§4 ld €C- T UN[USJ

[61] ¥ ¥ Ly ds 0SH-1[-wnjua]

"aUoeD 7] 0} SASSI gL, pue apou pajedIpap e Sununsse ‘[6]] 86°0 001 Z01 n1 0SH-T[-Wmyua]

[61] 00T 001 0s ni 0SH-II-unyus

-Bunyoeyeid jo asn 100d Bunumsse ‘[61] 30T 87 Vré %) oSH-I-wnyua g

[61] $0'L 8T L2 2D 0SP-1I-wnpuad

[61] Wl 96 6€ 1d 0SH-[I-unnyua

[€] ¥8°0 86 911 001 X 001 >Pedur] 0SH-TI-wnpud]

“uIo)SAs pajedipap e Sununsse ‘1] 8T'1 0s1 Jzat ds £99-0%SH

[£1] €€l 0S1 eIl ds £99-0%SH

*ayoed 777 03 sasstu g1 urunsse ‘[£[] 80°1 0sz 2574 n1 £99-0¥SH

[£1] [ZAN 0S¢ 4114 1 £99-0%59

‘Bupyoyegard jo asn 100d Sununsse ‘[g1] 7Ar oLl 6% %) £99-0%SH

[81] 080 A L€l 9D £99-0¥S4

[£1] 99°0 0S1 97C 14d £99-0¥SH

“waysAs pajedipap e Surunsse ‘[¢] 0Tl 195 9% 0011 £99-0¥S3

[€] oc'l 195 (152 0011 £99-0¥SH

“19s eJep Y Ssep (xnur]/$9NAL) [91] | S0'1/6L'T wi/191 GEI ds 00S-0¥SH

-ayped 71 03 sasstw g1, Surumsse ‘[97] | €9°0/06°0 ZE1/061 1414 n1 00S-0¥SH

"Jos ejep y ssep (xnurl/$9ndl) [911 | 140/20'1 Z€1/061 /81 n1 005-0¥SH

‘Sunyeyaid jo asn 10od Surumsse ‘[91] | S8°1/16'T £8/06 Ly D 005-0%SH

“Jos ejep y ssep (xnury/$9nNdl) [91] | T£0/%20 £8/06 44 D) 005-0¥SH

"}9s ejep v ssep (xnurl/$9NAUL) [911 | 98°0/660 GL1/%61 $0T 14 005-0%SH
papIpald | (SJOTANW) | (SAOTIW)

90Iog paadg paadg yreunpuag widyshg

paInsesin painsea]y pajipaig

“(panunuod) symsa1 pamsesur 0} IO TIANH woj sjnsa1 pajorpaid jo uosiredwod v ¢ 3[qeL

35

‘01 O 1030¥j € se yonuwi se £q A1ea

WS adueunoyiad jJo [pad] payipaid ayy Ut 2dusIayIp Y duls ussedde Apyerpaunu sem ssausjendordde pue pasu ayj ‘apews alem sjusunsnipe a3

2I9M $OSED JSOWI U] “BjEp [EMPE 33 1Y 0} paisnipe aq pInoys 210JoI0Y} pUE S3}PWINSS UkY) SISSINT 210W dIE SISQUINU 3533 Jey) St SIy3 10] uonesyysnl

YL “(FEL OUd JO YLD G3-96 A 10§ g3 08 10 DST W JO 3Yed @3-§TL 23 0] g 00T “8+3) durydew seopted e jo ayded Yy ul 3y pROM JEYM

03 azis sy} Suisearop £q Juswaaide 19339q Apuedyruds 103 am ‘sased SWOS Ul ‘IGASMOH "gIA [2q O} 9ZIS 3y} eWS3 03 IS00UD M *(PIsn Suraq wayshs
ay3 uo Suipuadap ‘gIN 8-1) T 34} JO IZIS Y} UBY) DIOW OU 3q 0} UMOW dIe ‘[7] 3y} J0U Inq ‘BYded 77T 3Y3 Ul 3Y Jey) SIas Supjiom jo azis ay) ‘AjIe[IuIS e

“Aorjod jo 1apew

e Se gy 21 2q 0 395 Sun{I0Mm 33 JO IZIS DY} SJEWNSI IM ‘IIAIMOH “(XOJI9J UNI 03 pasn Juraq SIUIYDEUL B3 UO SYded |7 343 JO SZIS 31Y3) 32IS Ul] Z¢€ Ueyy
2I0W OU q O} LMOUS| 316 SYPEd [Y3 UI 3l Jey) S39s uIyIop "sassand auios axew 0) pey am ‘sjas Sunjiom enuajod jo sazis Sunjiom ay) Sunewyss uj e

-paadxa aq pinom jeym uey) a1ow Aq Aiea ued sjnsal Ay ‘ejep

paInseaw 3Yj 10§ Pasn SEM UOISISA UDIYM PUe BJep X2J19J dY} J93[[01 0} Pasn sem dpod jO UOISIOA UdIYm uo Gurpuada(g “(suuroperd awos 10j jsea] je)
pasoadui sey sopod asay jo uogeznundo ay) ‘awy 1AQ “syreuyduaq SYN IdIN 243 Jo suolsiaa ajdpnut 4q pasned uoISnjuOd dUI0S Udaq OS|E SeY 1Y e

"anjes painseaw

3y} ynm aur] ut srow uondipaxd ayy Buuq pmom amjesy renoned e jjo Juruing J1 93s 03 pajejnd[ed sem sanjea paio1paid Jo Jas puodas e ‘Sased WS
uj *(suoyonysut [ppew] ppe-A[dnnuw pue Suryiojaid ~8-9) sa1mn)es) [eIngIYdIE UILHRD WOY SURAUIG 0 SPA[ISLUDY) PUI| 0] LIS JOU OP $POD SWIOS o
“(Z 9dN) 2POd 343 JO UOISIoA [JIA 343 Suisn 3os ejep g ssep ayj 10§ a1e JS pue ‘1] ‘DD ‘1d SIPWYdUaq SYN YL o

ISAON
"2A1IJD %0¢ St Suypiejald Suiwnssy ¥6'0 LT5 866G paieys-(ed awopiadng JH
"2aA19J3 %40 st Surydyejaid Sununssy 16'0 LTS 08S paieys-qed swopiadng gt

6.0 135 149 paieys-Qed awopiadng J}{
“2A1IJJ %0¢ st Jumypiegeid Sununssy 780 1€ 08€ pareys-qed 0¥5-00S8 dH
"2A03YJ3 %0 St Jurydiegeld Sununssy S0 11€ L1 pareys-qed 0vH-00S8 dH
19°0 1€ £0S paieys-ed 0FP-0058 dH
(€l 080 SLE L9¥ 001 % 001 oedur] 0VP-0058 dH
[s] €40 9 LL ds 081-0008 dH
[<] 190 <9 801 n1 081-0008 dH
-Bunyoyayaid jo asn sood Bununsse ‘[g] 81 6S Pe 14 081-0008 dH
[s] 050 65 811 g 081-0008 dH
(€l 90 961 $ET 001 X 00T >oedury 081-0008 dH
popRIpa1d (SIONW) (SdOTIW)
admog poadg paadg Sjrewyouag wRsAg
painsea]\ paansesin psidIpalg

-(PANUKUOD) S}NSaI painseaw 0 FJOTIANH woiy synsai paydrpaid jo uostredwod y ¢ S[qeL,

36

TV JO [ureryds aaa3g Aq parpddns a1am sypnsax pue ased 3saj ay [, “Suruuns gOJ 843 JO N0 3pod WSD B STHID
*(uo pauIny dUB[NQIN YPIM SaU0Z a1y3) a[noafold jurod prid uornu-1 e sem ases)say 9y, “10ssadold a[3uls e uo uoIsIaA
SIU} UnI 03 JNOIIP N ew suonejiw] Arowsw ‘A[ajeuniiojur) -dueuriojiad Jossadoid af3urs ay3 Jo uoneWIRsaISpUN SY} U JNSax I ‘Sased dWos W
“orym ‘suni sossadoxd JyS1e Buisn painseswr sem 3pod Y} JO UOISIdA AIOWDW PaINqLRSIp 3y Jo adueuriojtad ay], ‘suni 1ossadoxd o[durs 1oy painseaw
Sem 9pod A} JO UOISIoA AIOWdw pareys ay jo adueurroyrad Y] ‘swd)sAs 1910 10J IJIN pue (0002 WSLQ [9S W pue ‘e, Ler) ‘qel, Aei) ayy “8+9)
wiay 11oddns jey sweyshs uo sped WHNHS Sasn (1€ JO UolsIaa Arowawr pajngrusip ayy S[iym ‘apod ayy aziafjered o3 saansaarp sapidwod (JauedQ
a1d) aaneu ayy sasn Qg JO uoisiaa Arowaw pareys ayL ‘swiopeld Arowaw panqrysip uo una o) paziundo sem pue ‘Iajua)) yoreasay Sunnduio)
uew0j19J Y3 Auiry ‘g () oy Jo A[1aunIo] ‘Iyag aIe]N Aq pajeald sem Ipod aYyj JO UOISIBA PU0das Y ‘0007 UISLIO [DS 943 Se yons saInjoajnyie
paseq-ayoed Arowaw pareys uo AQUSIIR unx 03 Joyine ayj Aq payrpow usaq sey Jey} SsWY YSYN JO 1o apod 4D widun ue o} s19jo1 g€ e
: (g0
1030ej e 03 dn £q soueurroyrad 30ag5e ued SNy} “YZ0 IDS 343 U0 “3'9) paInseaws aSIMIYI0 3q P[nom uel ssa] Apuedyrudis aq y3nu Aousye| ayy usyy ‘sawin
ssadde A1owaw WIoJIUNuoU Yjim wajsAs e Jo tossadoxd s[Burs e ojuo ,payooj, aq ued qof aip J1 ‘Aprernuig “Suryoiejerd oy yypimpueq Arowsuw ayj jo
aIeys Jikj S ULl S10W asn ued qof ayy) pajepul Afferynte aq W Snu asueurioyiad Jo [9A9] paInseawr Sy USY) “WRlSAS pajedipap e uo Jossadold a[durs e
Buisn apew azom spuswaInseaw ay J1 Y3 198 03 JNOYJIP 8q ued waysAs Arowawr paseys e 10§.4oudle] AIoWIdW pue YpImpueq A1owaw s[qe[reAe sy, e

37

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE.

$ envelope.perfex-guide

This program is designed to request a limited amount of information {some hardware and some from
running PERFEX or a similar tool) and then to output a recommended set of input for some of the
input values requested by the program envelope. This program makes heavy use of heuristics, so in
no way is it as accurate as a line-by-line analysis of the source code. However, in many cases, it will be
good enough. One point of caution: The values for "the scratch array memory footprint” and "the
block size" are guesses. They could be larger than these guesses (up to the limits of the size of the L1
and L2 cache, respectively). It is even possible that work assigned to large global blocked arrays
represents a second working set that should be assigned to the scratch arrays or vice-versa. The
rationale for doing things the way they have been done is that it supports two distinct working set
sizes within the constraints of the ENVELOPE program.

We will start off by trying to estimate the number of floating point MADD, ADD, and MULTIPLY
instructions. This is an imperfect process. In particular, it is sometimes difficult to know what to call a
MADD, since the SGI hardware can efficiently process independent ADDS and MULTIPLIES in the
same cycle. In theory, this can result in up to a factor of 2 difference between the predicted and
measured levels of performance. The only solution to this problem is to compare the prediction for the
system used to run PERFEX, with the measured number, and to then fine-tune the numbers
accordingly.

This section of the program can work in three ways:

1) Skip this section entirely.

2) Combine Perfex data with an a priori knowledge of the total number of floating point operations to
estimate things.

NOTE: The a priori knowledge can be easily gained by measuring the number of floating point
instructions with MADDS turned off. On the SGI Origin, this is done by compiling with the -mips3
option.

3) Combine Perfex data with numbers from the Cray Hardware Performance Monitor to estimate
things.

What do you want to do (enter 1, 2, or 3)?

2

What is the total number of floating point operations?

5.8937688E10

What is the number of Graduated Floating Point instructions (from Perfex)?
27917089584

For the purpose of running ENVELOPE, it is estimated that there are:
2.9468844E+10 the number of madds

0.0000000E+00 the number multiplies, etc.

0.0000000E+00 the number of adds, etc.

NOTE: Given the input, it is generally impossible to precisely know the ratio between ADD and
MULTIPLY instructions, but for the purpose of this program, it doesn't matter.

Unless you know the memory footprint (e.g., use the number from TOP for RSS), you might want to
assume 1024 MB.

Unless you know the size of the group, assume 1.
Unless you know the density of the group, assume 1.

Unless the code does a lot of integer operations, other than for address calculation, assume 0.0.

38

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE (continued).

What is the line size for the L1 cache in bytes (32 bytes on the O2K)?

32

What is the line size for the L2 cache in bytes (128 bytes on the O2K)?

128

What is the size of a page of memory (for an Origin 2000 or Origin 3000, use 16 kB) in kB?
16

What is the size of the data item in bytes (usually 8)?

8 .
How many LOADS graduated (from Perfex)?
84240901392

How many STORES graduated (from Perfex)?
1128365872

What is the L1 Miss rate (from Perfex)?
36720735_ _3552

What is the L2 Miss rate (from Perfex)?
2598239936

What is the TLB Miss rate (from Perfex)?
22215984

Additional values to use as input for ENVELOPE are as follows.
128.0000 cache line size in bytes
16.00000 page size in kB
627.6436 the amount of data being loaded into the
proc. InGB
8.406981 the amount of data being stored by the
proc. InGB

1.000000 Used RLSVDEDICATED
0.0000000E+00 Percentage LSVDEDICATED
1.000000 Used RSSVDEDICATED -
0.0000000E+00 Percentage SSVDEDICATED
0.0000000E+00 Percentage SVMADDS
0.0000000E+00 Percentage SVMULTIPLIES
0.0000000E+00 Percentage SVIOPS
0.0000000E+00 Percentage SSVDEDICATED
0.0000000E+00 Percentage SSVDEDICATED
1.000000 Used RLSVGENERAL
0.0000000E+00 Percentage LSVGENERAL
1.000000 Used RSSVGENERAL
0.0000000E+00 Percentage SSVGENERAL
1.000000 Used RLSADEDICATED
0.0000000E+00 Percentage LSADEDICATED
1.000000 Used RSSADEDICATED
0.0000000E+00 Percentage SADEDICATED
0.0000000E+00 Percentage SAMADDS
0.0000000E+00 Percentage SAMULTIPLIES
0.0000000E+00 Percentage SAADDS
0.0000000E+00 Percentage SAIOPS
1.000000 Used RLSAGENERAL
0.0000000E+00 Percentage LSAGENERAL
1.000000 Used RSSAGENERAL
0.0000000E+00 Percentage SSAGENERAL
1.1700000E-02 the scratch array memory footprint
1.000000 Used CLGB

0.0000000E+00 Percentage LGB

1.000000 Used CSGB

0.0000000E+00 _ Percentage SGB

39

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE (continued).

0.0000000E+00 Percentage GBMADDS
0.0000000E+00 Percentage GBMULTIPLIES
0.0000000E+00 Percentage GBADDS
0.0000000E+00 Percentage GBIOPS
-1.000000 the block size

1.000000 Used CLGN

2.2634468E-03 Percentage LGN
1.000000 Used CSGN

2.2634468E-03 Percentage SGN
2.2634468E-03 Percentage GNMADDS
2.2634468E-03 Percentage GNMULTIPLIES
2.2634468E-03 Percentage GNADDS
2.2634468E-03 Percentage GNIOPS
2.055018 Used CLG1

99.99773 Percentage LG1

2055018 Used CSG1

99.99773 Percentage SG1

99.99773 Percentage GIMADDS
99.99773 Percentage GIMULTIPLIES
99.99773 Percentage G1ADDS
99.99773 Percentage G110PS

i
|
|
40

8. References
Mashey, J. Comp.arch Newsgroup. 25 October 2000.

2. Manjikian, N. “Multiprocessor Enhancements of the Simple Scalar Tool Set.”
Computer Architecture News, vol. 29, no. 1, New York: ACM Press, March
2001. .

3. The results for the Linpack (100 x 100) Benchmark maintained as part of the
Performance Database Server at <http:/ /www.netlib.org>.

4. Levesque,]. Personal communication. IBM Research, 12 December 2000.

5. “Complete NPB 2 Data 11/17/97: Graphs and Tables.” Published
electronically at <http:/ /www.nas.nasa.gov/Software/NPB>.

6. Hisley, D., C. Zoltani, and P. Satya-narayana. Personal communication.
US. Army Research Laboratory, Aberdeen Proving Ground, MD, and
Raytheon, U.S. Army Research Laboratory-Major Shared Resource Center,
Aberdeen Proving Ground, MD, 2000.

7. Behr, M. Personal communication. U.S. Army High Performance
Computing Research Center, Aberdeen Proving Ground, MD, 2000.

8. Schraml, S., and K. Kimsey. Personal communication. U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 2001.

9. Performance results published electronically at <http:/ /www.ncsa.org>.

10. “SGI Origin 3000 Series Performance Report 1.0.” Published electronically at
<http:/ /www.sgi.com>. 20 September 2000.

11. “IBM Redbook S$G24-5155-00.” Published electronically at <http://
www.ibm.com>. October 1998.

12. “IBM Redbook SG24-5611-00.” Published electronically at <http://
www.ibm.com>. 23 December 1999.

13. Cappello, F., and D. Etiemble. “MPI versus MPI+OpenMP on the IBM SP for
the NAS Benchmarks.” Published in the conference proceedings for SC2000
and electronically at <http://www.sc2000.org>.

14. Performance results published electronically at <http:/ /www.ibm.com>.

15. Snavely, A. Personal communication. San Diego Supercomputer Center,
University of California at San Diego, CA, 2001.

16. Performance results published electronically at <http:/ /www.nersc>.

41

17. Patel, J. “ParkBench and EuroBen Benchmarks on the AlphaServerSC.”
Published electronically at <http://www.cs.utk.edu/~patel/paper html>.

18. Saarinen, S. Personal communication. National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign, IL, 2001.

19. Hsieh, J., T. Leng, V. Mashayekhi, and R. Rooholamini. “Architectural and
Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of
Small-Scale SMP Servers.” Published in the conference proceedings for
SC2000 and electronically at <http:/ /www.sc2000.org>.

42

Glossary

ARL
BLAS
CFD
CIsC

CSM

CPU

GFLOPS

High-Level Languages

kB
Low-Level Languages

MB
MFLOPS
MHz
MPI
MSRC
NAS

PAPI

U.S. Army Research Laboratory
Basic Linear Algebra Subprograms
Computational Fluid Dynamics

Complicated Instruction Set Computer — an approach to
processor design that assumes that the best way to get
good performance out of a system is to provide
instructions that are designed to implement key
constructs (e.g., loops) from high-level languages

Computational Structural Mechanics
Central Processing Unit
Billion Floating Point Operations per Second

Computer languages that are designed to be relatively
easy for the programmer to read and write. Examples of
this type of language are FORTRAN, COBOL, C, etc.

Thousand Bytes

Computer languages that are designed to reflect the
actual instruction set of a particular computer. In
general, the lowest level language is known as Machine
Code. Just slightly above Machine Code is a family of
languages collectively known as Assembly Code.

Million Bytes

Million Floating Point Operations per Second
Million Hertz (cycles/second)
Message-Passing Interface

Major Shared Resource Center

Numerical Aerospace Simulation—a division of the
Information Sciences and Technology Directorate at
NASA Ames Research Center, Moffett Field, CA

Performance Application Programming Interface

43

RISC

SMP
SPEC

44

Reduced Instruction Set Computer - an approach to
processor design that argues that the best way to get
good performance out of a system is to eliminate the
Micro Code that CISC systems use to implement most of
their instructions. Instead, all of the instructions will be
directly implemented in hardware. This places obvious
limits on the complexity of the instruction set, which is
why the complexity had to be reduced.

Symmetric Multiprocessor

Standard Performance Evaluation Corporation-a
company formed to create industry standard
benchmarks (mostly for desktop systems)

NO. OF
COPIES

2

ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC OCA

8725 JOHN] KINGMAN RD
STE 0944

FT BELVOIR VA 22060-6218

HQDA

DAMO FDT

400 ARMY PENTAGON
WASHINGTON DC 20310-0460

osD
OUSD(A&T)/ODDR&E(R)
DRRJ TREW

3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDA TF

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

US MILITARY ACADEMY
MATH SCI CTR EXCELLENCE
MADN MATH

. THAYER HALL

WEST POINT NY 10996-1786

DIRECTOR

US ARMY RESEARCH LAB
AMSRL D

DR D SMITH

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
AMSRL CT AIR

2800 POWDER MILL RD
ADELPHI MD 20783-1197

NO. OF
COPIES ORGANIZATION

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRLCILL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRLCIIST
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

2 DIR USARL
AMSRL CILP (BLDG 305)

45

NO. OF
COPIES ORGANIZATION

1 HPCMO
CHENRY
PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
L DAVIS
DPTY PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
V THOMAS
DISTRIB CTRS PRJT OFCR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
J BAIRD
HPC CTRS PR]JT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 HPCMO
L PERKINS
CHSSI PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

1 RICE UNIVERSITY
M BEHR
MECHL ENGNRG MTRLS SCI
6100 MAIN ST MS 321
HOUSTON TX 77005

1 RICE UNIVERSITY
T TEZDUYAR
MECL ENGRG MTRLS SCI
6100 MAIN ST MS 321
HOUSTON TX 77005

1 J OSBURN
CODE 5594
4555 OVERLOOK RD
BLDG A49 RM 15
WASHINGTON DC 20375-5340

46

NO. OF

COPIES ORGANIZATION

1

NAVAL RSRCH LAB

] BORIS

CODE 6400

4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

NAVAL RSRCH LAB

D PAPACONSTANTOPOULOS
CODE 6390

WASHINGTON DC 20375-5000

NAVAL RSRCH LAB

G HEBURN

RSRCH OCNGRPHR CNMOC
BLDG 1020 RM 178

STENNIS SPACE CTR MS 39529

AJR FORCE RSRCH LAB DEHE
R PETERKIN

3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

AIR FORCE RSRCH LAB
INFO DIRCTRT

R W LINDERMAN

26 ELECTRONIC PKWY
ROME NY 13441-4514

R A WASILAUSKY
SPAWARSYSCEN D4402
BLDG 33 RM 0071A

53560 HULL ST

SAN DIEGO CA 92152-5001

USAE WTRWYS EXPRMNT STA
CEWESHV C

JPHOLLAND

3909 HALLS FERRY RD
VICKSBURG MS 39180-6199

USA CECOM RDEC
AMSEL RD C2

B SPERLMAN

FT MONMOUTH NJ 07703

SPACE AND NVL WREFR SYS CTR
K BROMLEY

CODE D7305 BLDG 606 RM 325
53140 SYSTEMS ST

SAN DIEGO CA 92152-5001

NO. OF

COPIES ORGANIZATIO!

3

USA HPCRC

B BRYAN

PMUZIO

V KUMAR

1200 WASHINGTON AVE

S MINNEAPOLIS MN 55415

USA HPCRC

GV CANDLER

1200 WASHINGTON AVE
S MINNEAPOLIS MN 55415

NCCOsC

L PARNELL

NCCOSC RDTE DIV D3603
49590 LASSING RD

SAN DIEGO CA 92152-6148

UNIVERSITY OF TENNESSEE

S MOORE

INNOVATIVE COMPUTER LAB
1122 VOLUNTEER BLVD STE 203
KNOXVILLE TN 37996-3450

SDSC UNIV OF CA SAN DIEGO
A SNAVELY

9500 GILMAN DR

LA JOLLA CA 92093-0505

NCSA

152 CAB

S SAARINEN

605 E SPRINGFIELD AVE
CHAMPAIGN IL 61820

USA ERDC

D DUFFY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

JHENSLEY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

MFAHEY

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

NO. OF

COPIES

ORGANIZATION

1

20

USA ERDC

T OPPE

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

W WARD

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

USA ERDC

R ALTER

CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CI H

C NIETUBICZ

S THOMPSON
AMSRL CI HC

P CHUNG

J CLARKE

D GROVE

D HISLEY

M HURLEY

AMARK

D PRESSEL

R NAMBURU

D SHIRES

R VALISETTY

CZOLTANI
AMSRL CI HI

A PRESSLEY
AMSRL CI HS

D BROWN

T KENDALL

P MATTHEWS

K SMITH

R PRABHAKARAN

47

48

INTENTIONALLY LEFT BLANK.

" REPORT DOCUMENTATION PAGE OmB N 07040188

Public reporting burden for this collection of is to ge 1 hour per the time for g data
gathnrlnn and malntalnlnn the data needed, and and g the collection of Send this burden or any other aspnd of thls
of suggestions for reducing this burdlm to H Services, Di for [o] lons and Rep
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project{0704-0188), Washington, DC 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 2002 Final, 1 October 2000 — 15 August 2001
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ENVELOPE: A New Approach to Estimating the Delivered Performance of High | 665803.731
Performance Processors

6. AUTHOR(S)
Daniel M. Pressel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory : REPORT NUMBER
ATTN: AMSRL-CI-HC ARL-TR-2671

Aberdeen Proving Ground, MD 21005-5067

|5 SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT(Maximum 200 words)

Simulating a computer run can be an excellent method for identifying performance bottlenecks and is especially
valuable when discussing systems that do not yet exist. Traditional simulations collect a program trace and then have a
simulator execute some subset of the trace one instruction at a time. Unfortunately, all of the standard variants of this
technique are far too slow to use on jobs for high-end High Performance Computers and Supercomputers. We have
developed an approach based primarily on an analysis of the memory access patterns and the number of floating point
operations being executed that will estimate the performance of any run in a small fixed amount of time (e.g., a few
seconds or less). Experience has shown that the results are nearly always within a factor of 2 of the measured results and
frequently are within 15% or better of the measured results.

14. SUBJECT TERMS 15. NUMBER OF PAGES
high performance computing, supercomputer, performance modeling 54

16. PRICE CODE

{77 SECORTTY CLASSIFICATION] 78 SECURTY CLASSIFICATION | 75, SECURITY CLASSIFIGATION | 20, LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

49 Prescribed by ANSI Std. 239-18 298-102

50

INTENTIONALLY LEFT BLANK.

