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1 Objectives

Feedback control systems for aerospace applications must maintain precise control despite uncer-
tain operating conditions and unanticipated circumstances such as battle damage. These systems
must be designed to perform robustly, despite uncertain design models and difficult to analyze
nonlinear effects. They must also be capable of learning and adapting when accumulating data
indicates that previous models must be abandoned and that existing control strategies must be
changed. This three-year research program centered on developing and improving the engineering
techniques for robust control design, with particular emphasis on the need for data-driven design
methods well-suited to situations in which available mathematical models are poor or unreliable.
The research results are expected to facilitate the design of control systems that learn, discover
and evolve in order to compensate for the effects of battle damage, equipment failures and other
changing circumstances. Potential applications include aircraft stability augmentation systems,
highly maneuverable aircraft design, missile guidance systems, and precision pointing and tracking
systems.

2 Executive Summary

Thirty-nine publications supported under AFOSR Grant F49620-98-1-0026 have either appeared,
been submitted or are currently pending publication [1]-[39]. The subject matter of these AFOSR
supported publications may be roughly grouped as follows:

Robust LMI/BMI/IQC Multivariable Control Theory
— Controller Synthesis [2, 15]
— Uncertain Time-delays [9, 10, 21, 25, 29, 33, 35, 39]
— Nonlinear Systems [4, 12, 13, 25, 30, 31, 34, 38]

Unfalsified-Control, Learning, Adaptation & Controller Identification [5, 8, 11, 16, 20, 22, 23,
26, 27, 32, 36, 37]

Control Design Applications [1, 11, 20, 21, 32]

Editorial, Review & Survey Articles [3, 7, 6, 14, 17, 19, 24, 28]

Generally, the theoretical developments embodied in the above listed recent AFOSR-supported
publications have been accompanied by software implementation and test case studies. The LMI
/BMI/IQC theory plays a critical role in extending and generalizing the H, robust controller
design theory that has already proven its value in aircraft flight control applications [40, 41, 42]. It
allows greater flexibility in handling structured uncertainties, controller complexity constraints and
gain-scheduling requirements. The generalized Popov multiplier robustness analysis and synthesis
techniques [43, 44, 45] developed in have led directly to improved approaches for the design of active
vibration damping systems for flexible space structures [1]. The effective and rapid transition from
theory to practice has been facilitated by my on-going non-AFOSR-supported involvement with
Dr. R. Y. Chiang in upgrading the MATLAB ROBUST CONTROL TOOLBOX, a robust control design
software product published by The MathWorks and in widespread use by government, university
and aerospace engineering company labs [46].
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2.1 Research Highlights
Nonlinear Robustness Analysis

A major breakthrough has been the development of optimally precise multiplier methods for an-
alyzing robustness of systems having repeated monotone nonlinearities, such as saturations or
relays [34, 13]. We have derived the largest class of bounded linear time-invariant operators that
preserve positivity of repeated monotone nonlinearities. It reduces conservativeness of IQC stabil-
ity analysis of systems having repeated monotone nonlinearities to the minimum possible. Utility
of this characterization stems from the fact that such nonlinearities are typically encountered in
stability of anti-reset windup schemes among other applications. We have also derived the time
varying counterpart of this class of operators.

These results dovetail with earlier results giving a multiplier interpretation of robustness theory
in general, including its newly popular LMI/BMI/IQC formulations. Our results enable accurate
reliable analysis of stability robustness of systems like missiles, aircraft and robots that typically
have control actuators or other components with position or rate limits (i.e.saturation) or on-off
(i.e., relay) devices. These results are surprising because (1) they are a quantum leap forward
in a once much-studied field that had lain dormant for most of the past 30 years and (2) they
will have an very broad practical impact because will give significantly less conservative sufficient
conditions for stability for the most commonly encountered sorts of nonlinearities. The results are
the best possible for repeated monotone nonlinearities in the sense that there is no broader class
of multiplier-type (or IQC) robustness conditions that can do better without further information
about he nonlinearities.

Data-Driven Unfalsified Control

Perhaps the most significant new results pertain to our recent development of data-driven methods
for robust and adaptive control design based on our unfalsified control theory [5, 8, 11, 16, 20, 22,
23, 26, 27, 32, 36, 37].Unfalsified control theory facilitates the representation of adaptive processes
of control law discovery from evolving information flows and noisy data. In this paper, the theory
of unfalsified adaptive control is examined from the behavioral perspective of Willems. An ab-
stract, but parsimonious, min-max optimization problem formulation is developed that describes
and unifies direct adaptive control, learning theory and system identification problems in a common
behavioral setting based on the concept of controller/model unfalsification. Thus, adaptive control
is seen to be firmly and directly linked to, and to conceptually unified with, the growing body of
knowledge on behavioral approaches to model validation and unfalsified system identification. The
results elucidate and underscore the fertile conceptual links that exist between adaptive control
theory and the rich theory of system identification.

This unfalsified control theory is a precise, data-driven approach to adaptive controller synthesis
based on evolving measurements of plant response. Unlike traditional control design methods where
controller choices generally depend heavily of prior knowledge of plant models and error-bounds,
the unfalsified control theory gives primary emphasis to the precise analysis of the implications
of evolving experimental measurement data. A plant model, though useful, is not essential and
common adaptive control pitfalls associated with unrealistic assumptions and excessive reliance on
prior knowledge are circumvented.
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2.2 Personnel

Personnel supported by AFOSR Grant F49620-98-1-0026 included the Michael G. Safonov (PI),
and PhD students V. Kulkarni, M. Jun, S. Bohacek, A. Grishencko. The research supported by
the grant resulted in two PhD theses, including V. Kulkarni {38] and M. Jun [39]. Three other
fellowship students worked closely with the PI on the research, including H. Meng, P. Brugarolas
and R. Mancera whose PhD theses expected to be completed in 2002.

3 Major Accomplishments

3.1 All Multipliers for Repeated Monotone Nonlinearities
Introduction

In stability analysis, a given system S is often decomposed into two interconnected subsystems
— a linear time invariant subsystem H in the feedforward path and an otherwise subsystem A in
the feedback path. More often than not, a repeated monotone nonlinearity, say N, is encountered
as the subsystem A (see, e.g., [47], [48], [49], [50], [51] and references therein). A key step in
multiplier based stability analysis of such systems is to characterize a class of multipliers, i.e. a
class of convolution operators, such that every element M of it preserves positivity of N in the sense
that N > 0 implies M*N > 0. Stability of the system is then deduced if there exists at least one
such multiplier M such that M H > 0 and if, in addition, H has a finite gain (see [52, Theorem 2],
[47], [4] and references therein for a detailed relevant discussion). Effectively, positivity preserving
multipliers give an integral quadratic constraint (IQC) characterization of N (see [53] for IQC’s —
theory and applications). The larger the class of the positivity preserving multipliers the better it
is, for the sharper is its IQC characterization and the lesser is the conservativeness in the stability
analysis.

The best available class of positivity preserving multipliers so far for repeated SISO monotone
nonlinearities is the one recently derived by D’Amato et al. [47]. Whether it is the best possible
as well has been unclear. It turns out that they have stipulated an unnecessary condition on the
multipliers. Identifying and relaxing this condition, in this note we have obtained a larger — indeed,
the largest possible — class of positivity preserving multipliers for such nonlinearities. Specifically,
we have characterized the largest possible classes of both linear time-invariant as well as linear time
varying operators that preserve positivity of such nonlinearities. Essentially, our results generalize
the non-repeated monotone nonlinearity results of Willems [54, Ch. 3] to the case of repeated
monotone nonlinearities.

Saturation nonlinearities, dead zone nonlinearities, sigmoidal nonlinearities are some of the
many examples of monotone nonlinearities. When input-output channels of A, or a sub block of
it, feature the same such nonlinearity, an instance of repeated monotone nonlinearity is on hand.
Computation of stability margin of anti windup schemes is one of the engineering applications in
which repeated monotone nonlinearities appear (see, e.g., [47, 49, 55]). Reduction of conservatism
in such stability margin estimates is thus a motivating application of this paper.

The paper is organized as follows. In Section 3.1, the necessary terminology is introduced and
the problems are formally posed in Section 3.1. Background results are in Section 3.1. Our main
results are presented in Section 3.1 and discussed in Section 3.1. The paper is concluded in Section
3.1.
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Preliminaries

The notation used is summarized in Table 1. Capital letter symbols, e.g. F' and G, denote operators
whereas small letters, e.g. = and y, denote real signals which may possibly be vector-valued or
matrix-valued. The vector space £7 is generally referred to as £3. Z denotes the set of all integers.
(-)* denotes conjugate transpose of a vector or matrix (-); (-)7 denotes its transpose. A sequence
{z(k)}2 _, is described simply as {z}. Statements of the form “A related to B” and “C related
to D” are abbreviated as “A (C) related to B (D)”. D € R™™ is said to be Hurwitz if each of its
eigenvalues has a strictly negative real part. Other terms not defined here may be found in [56]
and [53].

Symbol Meaning Table 1: Notation
R (C) Set of all real (complex) numbers.
Z Set of all integers.
herm(m) = 2(m +m*), for m € C™*™ or R™*".
skew(m) = g(m —m*), for m € C**™ or R"*™.
o]
Z y(k)Ta:(k) for discrete time signals;
<£E, y) = k:=°—°oo
/ y(®)Tz(t) dt for continuous time signals.
\ —o0
(Ed] = /(z, z).
( o0
Z lz(k)|  if = discrete time;
[lz|]x =9 k=ze
/ |z(t)| dt if z continuous time.
2 Spa::e ofofiiscrete time signals ¢ for which ||z|| exists.
Ly Space of continuous time signals z for which ||z|| exists.
z(-) Fourier transform of z, either discrete or continuous.
5 _ { Kronecker 6(k), if discrete time;
1 Dirac §(t), if continuous time.
Mi(H) i-th eigenvalue of matrix H.
A(D) Least eigenvalue of a Hermitian matrix D.
MIMO Multi-Input-Multi-Output.
SISO Single-Input-Single-Output.

Definition 1 [operator: positive, bounded]

An operator F mapping a space X into itself is said to be positive if (z,Fz) > 0Vx € X. A set
S is said to be bounded if there exists a v € R such that ||y|| < v for all y € S. An operator
F: X —Y is said to be bounded if the image under F of every bounded subset of X is a bounded
subset of Y. |

Definition 2 [sequences: similarly ordered, unbiased|

The sequences {x} and {y} of real scalars are said to be similarly ordered if x(k) < x(l) implies
y(k) < y(l) for all k,l € Z. They are said to be unbiased if z(k)y(k) > 0 Vk. They are said to
be similarly ordered and symmetric if they are unbiased and, in addition, the sequences {|z|} and
{lyl} are similarly ordered. m
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Definition 3 [associated matrix, kernel
Given a bounded possibly time varying linear operator M : £5 — &, y = Mz is given as

y(k) = Y iy 2(l) Vk€Z,
l=—0

where Ty € RP*P Vk,l; the associated matrix M of M is defined as

my-1 TMig M1l M1z M3

Ma,_1 Moo M1 M2 Ma3

The symbol m;j, i,j € Z denotes the (i, )-th scalar element of the matriz M ; for example, mgg
denotes the upper left entry in the p X p matriz Moo and m_po denotes the upper left entry in the
p X p matriz M_19. If Mk = Mgynitn VK, I,n € Z then M is said to be block Toeplitz and M
is said to be a time invariant operator or, alternatively, a convolution operator. For a bounded
possibly time varying continuous time linear operator M : Lo — Lo

o

y(t) = / it r)a(r) dr VtER.
—00

the kernel m(t, 7) € RP*P is the counterpart of My ;. In the continuous time case, M is called a time

invariant operator or, alternatively, a convolution operator if m(t, 7) = m(t+v,7+v) Vi, 7,v € R.

For a convolution operator M, a shorthand notation for m(t, ) and m; ; is m(t — ) and m(i — j),

respectively with m(t) and (k) denoting the respective impulse response. g

Definition 4 [hyperdominance, dominance]
An operator M : £y — {3 is said to be doubly dominant if the elements m;; of its associated matriz
have the following properties.

[o.¢] o0
mi > > myl, ma= > |mgu| Vi
PR—r j=—o0iti

If, in addition, it also holds that
my; <0, Vi#j

then M said to be doubly hyperdominant. For an operator M : Lo — Log, these notions are defined
in terms of its kernel in an analogous manner with integrals suitably replacing sums. |

Definition 5 [monotone nonlinearity]

The class Nys of MIMO monotone nonlinearities consists of all memoryless mappings N : RP — RP
such that N(z) is the gradient of some convez function P : RP — R and 3C € R 3 ||N(z)|| <
Clle].

N ={N € Ny|N(0) =0}, Nogg = {N € N|N(z) = —=N(—z) Vz}. ad
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Definition 6 [repeated SISO monotone nonlinearity]
The class of repeated SISO monotone nonlinearities is the subclass N® of N with element N €
NZES of the form

N(Q) = [#(¢1) #(G2) ---d(G)]T W eRP 1)
where ¢ € N, ¢ SISO. A shorthand notation for (1) is N = diag(¢). The class NES is defined by
replacing N in the definition of NS by Nogq. O

Definition 7 [multipliers]
MZES denotes the class of MIMO convolution operators, either continuous or discrete, such that
the impulse response of an M ¢ Mfd% is of the form

m=gd—nh (2)
where g, h(-) € RP*P satisfy
9ii 2 Z |91_7|+Z“h1]” Vi=1,2,...,n (3)
i=1,i#j
n
9> Y |g¢j|+2||hij||1 Vi=1,2,...,n. (4)
j=Li#i i=1

The subclass MFS is obtained by further stipulating

9ij SOVi# 4, hij(-) >0Vi,j. (3)

Under the restriction
g, h are Hermitian matrices, (6)
the subclass MP (MD,)) is derived from MES (ME3). o

Remark 1 D’Amato et al. [47] showed that MP (MDP,}) preserves positivity of NBS (WES). g

Problem Formulation

Problem 1 Find the largest class of bounded linear operators and the largest class of bounded
convolution operators that preserve positivity of every nonlinearity in NES (NE odd O

Background Results

Paraphrased for notational ease, the main result of D’Amato et al., viz. [47, Theorem 1], is as
follows.

Lemma 1 [47, D’Amato et al.]
MP (MD, ) is positivity preserving for NS (NES). O
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The above result is stated a sufficiency condition and it is not made clear if there exists a larger
class of bounded convolution operators that preserves positivity of N7 (MES). In this regard, it
is worthwhile to note the following interesting SISO case result of Willems (see {54, Theorem 3.11,
pp. 63]). For easy reading, its statement is slightly modified.

Lemma 2 [54, Willems]

Let M : £y — £y be a bounded linear operator. Then, (x, My) is nonnegative for all similarly ordered
unbiased (similarly ordered symmetric unbiased) sequences {z},{y} € &2 if and only if M is doubly
hyperdominant (doubly dominant). O

Main Result

Theorem 1 [Solution to Problem 1]

A bounded linear operator M mapping €5 into &5 [or Ly into Lo] preserves positivity of every

N € NES (N € NES) if and only if its associated matriz [kernel] is doubly hyperdominant (doubly

dominant). Furthermore, a bounded convolution operator M mapping Ly into Ly, or mapping £

into £5, preserves positivity of every N € N5 (N € NES) if and only if M € MFS (M € MES).
g

Proof: We shall prove the result for NBS. The case for N (fflg follows on similar lines. First,
the result will be proved for the discrete time case.

An N € NB5 can be expressed as N = diag(¢) where ¢ € N, ¢ SISO. Given sequences {z;}
of real valued scalars, define y; = ¢(x;) i = 1,2,...,p. Note that the sequences {z;} and {y;} are
similarly ordered and unbiased for all i since N € N. Define (k) = [z1(k) za(k) ... z,(k)]T,
5(k) = [y1(k) y2(k) ... yp(k))T for all k € Z. Note that the sequences {Z} and {7} are similarly

ordered and unbiased. Observe that (z, My) = <§, M i]> where the sequences {z} and {y} are
defined by

z(k) = [z1(k) za(k) ... zp(k)]T, y(k) = [ya(k) ya(k) ... yp(k)]" VE

and M : o — 05 with its associated matrix same as the associated matrix M of M. Since M
is bounded, M is a bounded operator as well. By Lemma 2, <E, M §j> is nonnegative if and only

if M is doubly hyperdominant. This is proves the result for bounded linear operators. To prove
the result for bounded convolution operators, note that the associated matrix M of a bounded
convolution operator M is block Toeplitz. Since M is block Toeplitz, the double hyperdominance
conditions need only be checked on a block of p columns and on a block of p rows. The conditions
are precisely the ones given by (3)-(5).

To prove the result in the continuous time case, note that continuous time signals z.,y. can
be sampled with sampling interval ¢ to produce discrete time signals in 3, say zg4e, ¥4 such
that zq(k) = Ve zc(ke), yac(k) = Ve yc(ke). Likewise, given a continuous time linear operator
M. : Ly — Lo,

o0
z:(t) = / me(t, 7)y(r) dr Vi,

—00

may be discretized as 24 = Mg (Y4, i.e. as

x>
zae(k) = Y Mrwael) Vk

l=—00
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Figure 1: The feedback system S. H is stable, causal and linear time invariant; N € N, (fig .

where, for all £ and [,
1

My = —/ / mc(t, T) dr dt.
€ Jte((k—1)e,ke] J T((I-1)e,le]

With this discretization, the continuous time inner-product {xc, M.y.) is then recoverable as the
limit
<xw Mcyc> = ll_r’% <wd,e, Md,eyd,e> :

Taking the limit as € — 0, the continuous time case proof then follows using the discrete time case
arguments. QED.

Remark 2 By Theorem 1, Mfﬁi preserves positivity of the identity matrix. Thus, every element
M of MFESZ has the property that herm(M(-)) > 0. -

Remark 3 From Theorem 1, it follows that every convolution operator that preserves positivity
of NBS (NESY and, in addition, has a Hermitian frequency response matrix is an element of
MP (MB,)). However, MP (MD,)) is strictly a subset of MBS (MEY) because the condition (6)
stipulated by D’Amato et al. [47] is unnecessary for the positivity preservation. n

Discussion

By letting go of the unnecessary condition (6) stipulated by D’Amato et al. [47], we have obtained a
larger — indeed, the largest possible — class M5 (Mfd%) of multipliers that preserve positivity of
NES (N Cﬁg ). However, an incremental improvement can be claimed only if it can be demonstrated
that use of this larger class of multipliers leads to a further reduction in conservativeness of IQC
stability analysis. The following example demonstrates that the conservatism is indeed further
reduced.

Example 1 Consider the feedback system S (see Fig. 1) in which N € N'®5 and H is the trivial
stable memoryless linear operator having constant frequency response

A(w)= [ > o ] Vo,

The objective is to determine if the system is stable. Stability is established if (cf. [52, Theorem
2], [53, Theorem 1]) there exists a positivity preserving multiplier M such that the operator M H
is positive, i.e.

herm (m(w)ﬁ(w)) >0 Vw. (7)
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It may be checked that —ﬁ(w) € R?*? is not Hurwitz so that, by Lyapunov Criterion (see, e.g.,
[57, Theorem 2.6-1]), herm (Pﬁ(w)) # 0 for any P = PT > 0. In view of the condition (7), it then

follows that stability cannot be determined using M € MP since (see Remark 2) M(w) = m(w)? >0
for every M € MP. On the other hand, choosing the asymmetric multiplier

MZ[—(I).Q (1)] (®)

which may be verified to be in M7 (so that M € MZEP as well), the condition (7) is satisfied so
that stability of the system is established using the class M®S derived in this note. Even if the
nonlinearity N were odd, using similar arguments it follows that stability cannot be determined
using M € Mfdd whereas it can be determined using the multiplier given by (8). This demonstrates

an example in which MBS (Mfd%) leads to a strictly less conservative stability analysis than
MP (MGy). .

Remark 4 The above example shows that our main result incrementally improves upon the main
result in [47]. Its utility can be seen via the same engineering application considered by D’Amato
et al. [47, Automatica version). n

Summary: All Multipliers for Repeated Nonlinearities

We have derived the largest possible class of bounded MIMO linear operators that preserve posi-
tivity of repeated monotone nonlinearities. Also derived are the largest possible classes M and
Mgfi of bounded MIMO convolution operators that preserve positivity of repeated monotone and
repeated odd monotone nonlinearities, respectively. It follows that (see Remark 2) modulo the
restriction that multipliers have a Hermitian frequency response for all frequencies, D’Amato et al.
[47] have actually derived the largest possible classes of multipliers that preserve positivity of such
nonlinearities. The less restrictive nature of our multipliers produces less conservative stability
results. We have demonstrated this conservativeness reduction via an example.

3.2 Unfalsified Control — A Behavioral Approach to Learning and Adaptation
Introduction

A fundamental activity in processes of system identification and, more generally, in all processes
of scientific discovery is the fitting of models to data. Goals or cost functions are set based on
beliefs about instrument accuracy or other model performance criteria, then and scientists attempt
experimental validation, or unfalsification, of data against various parameterized classes of plausible
models in the hope the one or more of the hypothesized plausible models proves have a superior fit
to the data, relative to the specified modeling goals or cost functions. The challenges faced by the
to the system identification specialist and the experimental scientist are the same. Moreover, these
challenges are not dissimilar to those faced by adaptive control designers seeking to find a faithful
mathematical representation of the control-decision-relevant information in evolving observational
data.

One interesting development in recent years has been the advent of the unfalsified control para-
digm [58]-[5] which has advanced the model validation/unfalsification paradigm of system identifi-
cation theory to the control validation paradigm for understanding and analyzing adaptive control
algorithms. In adaptive control and system identification, as in other scientific endeavors, a parsi-
monious mathematical representation of the essential issues is preferred. For adaptive control, one
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such paradigm is provided by unfalsified control theory. The unfalsified control theory views the
control problem as an identification problem in which the objective is that of directly identifying
a control law or “action rule” that is consistent with traditional control performance goals, prior
knowledge, and evolving observational data.

Unfalsified adaptive control software has been developed and design studies have been con-
ducted. For example, the theory has recently been applied to the design of a robust adaptive
controller for a two-link robot manipulator arm in [11] and to the design of an adaptive missile
autopilot [20]. Unfalsified control theory provided the basis for a general purpose algorithm for
automatic tuning of PID controller gains [22]. Recently, the unfalsified control approach has been
applied in experimental settings ranging from the ACC benchmark control problem [62] to indus-
trial process control [64, 65, 66]. These design studies seem to confirm theoretical expectations that
adaptive controllers optimally designed via unfalsified control theory exhibit a precise, sure-footed
response in the face of evolving uncertainties and parameter variations.

In this paper, we formulate the unfalsified adaptive control problem in the behavioral framework
of Willems ([67],[68]). Our results are closely related to, but different from, the indirect adaptive
method of Polderman [69] in which an unfalsified plant model is identified from within a prescribed
model set. Unlike Polderman, we bypass the intermediate step of plant model identification and,
also unlike Polderman, we make no assumptions about the ‘true plant’ lying in an assumed model
set. We make no assumptions on the plant.

Background: Behavioral Theory

At the heart of the behavioral theory of Willems [67, 68] is the definition of a mathematical model.
This definition is formulated according to the black box point of view, “in which we focus on how
a system behaves, on the way it interacts with its environment, instead of trying to understand,
in the tradition of physics, how it is put together and how its components work” ([67],{68]) . This
definition of a mathematical model formalizes the black box point of view. Like Willems, we back
off “from the usual input/output setting, from the processor point of view, in which systems are
seen as influenced by inputs, acting as causes, and producing outputs through these inputs, the
internal conditions, and the system dynamics.”

Willems begins with the assumption that there is a phenomenon to be modeled. He then “casts
the situation in the language of mathematics by assuming that the phenomenon produces elements
in a set Z” ([67],[68]), called the universum. The elements of Z are called the outcomes of the
phenomenon. “A (deterministic) mathematical model for the phenomenon (viewed purely from the
behavioral, the black box point of view) claims that certain outcomes are possible, while others are
not. Hence a model recognizes a certain subset B of Z. This subset will be called the behavior (of
the model).” Formally,

Definition 3.1 A mathematical model is a pair (Z,B), with Z the universum — its elements are
called outcomes — and B C Z the behavior.

Definition 3.2 A controller is a mathematical model.

Regarding data and measurements, Willems [67] says: “We will now cast measurements in this
setting. We will assume that we make certain measurements which we will call the data.” “...we
...assume that the data consists of observed realizations of the phenomenon itself. Thus, a data
set will be a nonempty subset D of Z.”
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Following Safonov and Tsao [58], we will work with data information that can evolve with time.
Thus we will have a universum of time signals and a data set contained in a time varying projection
of this universum.

Definition 3.3 Given a vector space of time signals Z, a model (Z,8), a mapping P, : Z — Z
and a data set D, 4 P.D C P;(Z), we say that the model (Z, B) is unfalsified by the data set D, if

D, C P(B).

Typically P(z) is the experimental observation time sampling operator, which returns values of
z(t) only for past time instants (or possibly time intervals) over which experimental observations of
z(t) have been recorded. In this setting, definition of controller falsification (cf. [58, 60]) becomes

Definition 3.4 Given a vector space of time signals Z, a controller (Z,B.), a desired closed loop
behavior (Z,B,), a mapping P, : L — Z, and a data set Dy C Pr(Z), we say that a controller
(Z,B.) is unfalsified by the data set D, if

P.(P7Y(D;)) N B,) C P(By).

The data set D, is a set of actual experimental observations of the plant behavior as observed
through the time-sampler P.. Thus, P 1(D;) is the set of behaviors that interpolate the observed
data. For example, if we have recorded experimental observations of the first component z;(t) of a
vector-valued signal z(t) = [z1(t), z2(t),...,zn(t)]T € L3[0,00) during the time interval ¢ € [0, 5],
then P1(z) is the set of signals {y € L2[0,00) | y1(¢) = z1(t)Vt € [0,5]}. The set B is the set of
signals which satisfy the constraints imposed by the controller ¢, so definition 3.4 says roughly that
a controller is defined to be unfalsified if the set of signals z that are consistent with the data and
the controller is, at the past observation times, a subset of a given performance target set P-(Bg).

A particularly useful projection operator for dealing with past time only information is the time
truncation operator P, defined by

po={ 50 55

As explained by Willems ([67],[68]), the intersection of behaviors is “a way of formalizing that addi-
tional laws are imposed on a system.” Thus, the role of a controller is to impose constraints on the
plant behavior. On the other hand, our goal is to select, based on the data, the constraints imposed
by the control law and the performance criterion, the best among the set of given controllers. In
order to do that we introduce a cost function

Jz):Z—-R (9)
which may be used to sift controllers and to choose an optimal cost-minimizing controller having
the least unfalsified cost based on the experimental evidence D,.

Direct Adaptive Control: Behavioral Formulation

We now explain how problems of adaptive control and learning theory may be parsimoniously and
precisely embedded within the behavioral framework. At the crux is the observation that most
such problems may be faithfully represented in terms of constraints on signals and other variables
z € Z. The set Z is called the universum. Typically, the n-tuple z includes directly observable
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manifest variables Zpmws (Viz., control and sensor signals), command input signals Zcmmand, and
possibly additional latent vaeriables z... such as disturbances, noise, state-variable trajectories,
error signals and so forth. That is, 2 = {Zmanitests Zcommands Ziatent } € Lomanitest X Lcommand X Ligtems = £. 1N
stochastic settings, the latent variable n-tuple z,... also includes conditional probability density
functions describing some of the other latent variables [60, 18, 8].

It is convenient to view the constraints on the n-tuple of signals z € Z as arising from four
distinct types of information, each possibly evolving with time:

1. Goal (cost function and/or design specification)

2. Belief (assumptions, prior knowledge, noise models, plant parameterizations, etc.)

3. Hypothesis (candidate control law, candidate plant/noise model)

4. Data (observations, samples of the signal 2z, available at current time 7)

FEach of these four types of information is representable as a mathematical constraint on z:

Y Zeommand, J{2) <7, (cost J(z) > 0 no bigger than v for any command input) (10)
K(z) =0, (hypothetical controller and/or model K € K) (11)
B(z) <0, (fixed beliefs, assumptions & prior knowledge) (12)
Pr(Zanitest) = Zdatay  (Zmanitess MUst interpolate observed data 2g.,) . (13)

In turn, the four constraints (10)-(13) define, respectively, four subsets of the universum Z, viz.
Z..i(7)s Zigporhesis(K), Zieter, Zaaa C Z. (14)

Thus, the problem of direct adaptive control (or, controller identification from data), can be for-
mulated in the Willems behavioral framework as follows.

Problem 1 (Behavioral Adaptive Control) Given a class of controllers K = {(Z,B.(0)) |6 €
O}, where © is a set of parameter vectors, the performance (cost) index J(z) the time truncation
operator P., 7, and a data set D, C P.Z, find the set of parameters ©* such that K € K that
minimizes the cost y subject to the constraint (cf. [60, 18, 8]) that, for each

é € Zhypothesis(K) N Zbelief N Zdata; (15)
there is at least one z such that
and Zeommand — €command (16)
PSS zgoal(’y) n zhypothesis(K(e)) N Zbelief N Zdata' (1 7)
Discussion

If the set (15) is empty for some K, then the currently available data 24, provides no information
on this K, which is therefore trivially optimal with cost v = 0; otherwise, the adaptive feedback
control problem emerges as the following optimization: At each time 7, find a control law K which
solves

VYopt := Min max min -y (18)
K ¢ z
subject to (15)-(17). In many practical cases (e.g., [58, 18, 20, 11]), the cost «y can be expressed

directly in terms of zy,., and K in which case (15)-(18) simplify t0 Yope := ming y(Zuua, K).
Noteworthy are the symmetries revealed in the condition (17) with respect the information
content of goal, belief, hypothesis and data. Set intersection is a commutative and associative
operation; so all four types of information are logically equivalent in (17). For example, this means
that the prejudice inherent in viewing one’s data through a prism of belief Z,;. is logically equiv-
alent to assuming additional data “interpolation” constraints (Z. « Zua N Zpeier). The standard
unfalsified control problem considered in [58, 59, 60, 20, 11, 5] corresponds to the limiting case in
which “the prism of belief” Z, is the unconstraining “all-pass” filter Z (i.e., the universum).
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Equations (15)—(17) underscore fertile conceptual links between adaptive control theory and
the rich theory of system identification: The chief differences between identification and adaptive
control arise from the precise forms of the cost functions J(z) and of the admissible hypotheses
K(z). In system identification the admissible K(z)’s are typically noisy open-loop plant models
and the cost function J(z) measures probable modeling error deduced via a prism of beliefs about
noise statistics. In adaptive control on the other hand, the admissible K(z)’s might typically be
candidate controllers and the cost J(z) could be a weighted sum of the sizes of tracking error and
control signals.

Summary: Unfalsified Control — A Behavioral Approach to Learning and Adaptation

The main goal of unfalsified control theory has been to close the loop on the adaptive and robust
control design processes by developing data-driven methods to complement traditional model-based
methods for the design of robust control systems. The crux of the unfalsified control theory is the
observation that adaptive control is from a behavioral theory perspective essentially equivalent to
system identification. In this paper, we have developed a behavioral formulation of the problem of
direct adaptive control, viz., the problem of identifying an optimal controller that is unfalsified by
data available at each time 7 with respect to the least value of a cost function. The main result is
the formulation of direct adaptive control problems provided by Problem 1. This result establishes
a firm theoretical link between Willems’ behavioral framework and direct adaptive control theory,
expanding known links to model validation, unfalsified system identification theory, and behavioral
indirect adaptive control approach of Polderman [69].

4 Conclusions

With support from AFOSR Grant F49620-98-1-0026, significant progress has been made in theory
for reliable computation of robust controllers, in the field of nonlinear robustness analysis, and in the
development of the unfalsified control theory formulation of adaptation and learning problems. Our
new results in nonlinear robustness analysis for systems with repeated nonlinearities are important
breakthroughs of broad applicability to most all control designs. They will enable one to more
accurately predict and correct stability problems that commonly occur with control actuators hit
position or rate limits.

Progress in unfalsified control theory, a new formulation of adaptive control problems developed
with AFOSR support, gives sharp mathematical representation of the role of experimental data in
identifying robust control laws and provides a practical technique for identifying robust controllers
in real-time with little or no apriori information. This theory cuts to the heart of a long-standing
problem faced by control engineers, which has been the need for a data-driven theory that provides
a unified basis for precisely representing and exploiting evolving information flows from models,
noisy data, and more. The theory has unveiled important links between robust control, adaptive
control and artificial intelligence. It is a conceptual breakthrough because it distills the mathe-
matical essence of control-oriented learning by focusing sharply on what is, and is not, knowable
from experimental data and by challenging both the need and the appropriateness of a number of
common assumptions. The results of our unfalsified control research have not only solidified the
theoretical foundation of adaptive control. They have also permitted efficient design of feedback
control systems endowed with an unprecedented ability to accurately assess and exploit evolving
real-time information flows as they unfold, thereby endowing control systems with the intelligence
to quickly and sure-footedly adapt to unfamiliar environments. The effectiveness of the unfalsified
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approach to adaptive control design has recently been demonstrated with simulated design studies
for missile autopilot [20], a robot manipulator arm [11], an industrial machine tool [66] and a gen-
eral purpose adaptive PID controller that automatically discovers suitable controller gains, when
they exist, based on real-time data without the need for plant model [22]. These research results
will mean control designs that can more quickly and reliably compensate for uncertain effects of
battle damage, equipment failures and other changing circumstances.
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Interactions & Coupling Activities

Gov’t Panel: Michael G. Safonov
NSF Panel on Knowledge and Distributed Intelligence.

Learning and Intelligent Systems.
Arlington, VA, July 1998.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, Workshop for Michael Athans, Tampa, FL, December 19, 1998, 1998.
60th birthday celebration honoring M. Athans.

Talk: M. G. Safonov.
Synthesis of positive real feedback systems: A simple derivation.
Talk, UCSB, Santa, Barbara, CA, October 16, 1998.

Gov’t Panel: NSF Panel. Knowledge and Distributed Intelligence: Learning and Intelligent Sys-
tems, Washington, DC, March 15-16, 1999.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, IFAC Intl. Workshop on Control of Uncertain Systems, Hong Kong, Univ. of Science &
Technology, June 30 — July 2, 1999.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, Poster Presentation, AFOSR Workshop on Dynamics and Control, Dayton, OH, August
4-6, 1999.
ftp://routh.usc.edu/pub/safonov/safo99h.ppt

Talk: M. G. Safonov.
CACSD design process.
Talk, Panel Discussion on Perspectives on Computer Aided Control Systems Design, IEEE
Symp. on Computer Aided Control System Design, Kohala Coast-Island of Hawaii, HI, Au-
gust 22, 1999.
Plenary session.
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Talk: M. G. Safonov.
Multiplier IQC’s for uncertain time delays.
Talk, Tokyo University, Tokyo, Japan, May 22, 2000.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, SICE Conference, Kariya, Japan, May 24, 2000.
Invited plenary talk.

Talk: M. G. Safonov.
Robust control tutorial.
Talk, Tokyo University, Tokyo, Japan, May 31, 2000.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, Kyoto University, Kyoto, Japan, June 2, 2000.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, Osaka University, Osaka, Japan, June 6, 2000.

Talk: M. G. Safonov.
Unfalsified direct adaptive control of a two-link robot arm.
Talk, Titech, Tokyo, Japan, June 13, 2000.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, AFOSR Workshop on Dynamics and Control, Dayton, OH, August 21-23, 2000.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, University of California, Santa Barbara, CA, October 13, 2000, 2000.

Talk: M. G. Safonov.
Robust control, feedback and learning.
Talk, Caltech, Pasadena, CA, October 16, 2000, 2000.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, University of California, Santa Barbara, CA, November 17, 2000.

Talk: M. G. Safonov.
Robust control, feedback and learning,.
Talk, IEEE Control Society, San Diego Chapter, La Jolla, CA, January 18, 2001.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, University of California San Diego, La Jolla, CA, January 18, 2001.

Talk: M. G. Safonov.
Zames-Falb multipliers for MIMO nonlinearities.
Talk, Workshop in honor of Boyd Pearson, Rice University, Houston, TX, March 9-10, 2001.
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Talk: M. G. Safonov.
Data-driven behavioral formulation of the adaptive feedback control problem.
Talk, AFOSR Workshop on Dynamics and Control, Dayton, OH, July 30 —~August 02, 2001.
ftp://routh.usc.edu/pub/safonov/safo0lo.pps

Software: Effective and rapid transition from theory to practice has been facilitated by my on-
going non-AFOSR-supported involvement with Dr. R. Y. Chiang in upgrading the MATLAB
RoBUST CONTROL TOOLBOX, a robust control design software product published by The
MathWorks and in widespread use by government, university and aerospace engineering com-
pany labs.

Technology Transitions

e Semiconductor Manufacturing Process Control
Enabling Unfalsified Control Theory

Research:

Performer: Dr. Robert Kosut, SC Solutions, Sunnyvale, CA 94085; (408)
617-4527

Customer:  Dr. Robert Kosut, SC Solutions, Sunnyvale, CA 94085; (408)
617-4527

Result: Used unfalsified control technique to tune controller for semi-

conductor manufacturing process.
Application: Higher quality semiconductors.

e Commercial Robust Control Software

Enabling Robust control theory, including LMI/BMI methods

Research:

Performer: ~ Michael G. Safonov/USC (213) 740-4455

Customer: The MathWorks, Inc./Natick, MA Mr. John Little, (508)
653-1415

Result: Improved and reorganized algorithms for robust control in
various MATLAB software products, including the Robust
Control Toolbox, Mu-Synthesis Toolbox, and LMI Toolbozx.

Application: Faster, cheaper, more reliable control design for advanced
aerospace and other control systems.

New Discoveries, Inventions, or Patent Disclosures. None
Honors/Awards

e Honor/Award: Elected IEEE Fellow 1989
Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: IEEE

e Honor/Award: Author of 4 papers selected for inclusion is IEEE 1986
Press anthology of key papers in control, “Robust
Control” ed. P. Dorato

Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: IEEE
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e Honor/Award: Author of 4 papers selected for inclusion is IEEE 1990
Press anthology of key papers in control, “Recent Ad-
vances in Robust Control” ed. P. Dorato and R. Ye-
davalli
Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: IEEE

e Honor/Award: Awards Chair 1993-1995
Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: American Automatic Control Council

e Honor/Award: Editorial Board. 1990-2001
Int. J. Robust and Nonlinear Control

Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: J. Wiley

e Honor/Award: Assoc. Editor, Systems and Control Letters » 1995-2001
Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: Elsevier Science Publishers

e Honor/Award: Invited Plenary Speaker May 2000
Honor/Award Recipient(s): Michael G. Safonov
Awarding Organization: Society of Instrumentation and Control Engineers (SICE, Japan).



