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INTRODUCTION 

Our original proposal was in two parts. The first involved improved optimization 
methods for clusters and weakly interacting systems. Traditional optimization methods 
do not take into account the special character of these systems, such as the large 
disparity between the forces within and between molecules, and are thus inefficient. 
Our aim here was to develop an efficient optimization procedure for weakly interacting 
molecular clusters, as well as for other non-standard optimization scenarios, such as 
molecular adsorption on a model surface. 

The second project dealt with improved electronic structure methods for large molecular 
systems The main thrust here was the development of efficient algorithms for the 
computation of both canonical and local MP2 energies and gradients. Current density 
functionals are not able to adequately model dispersion forces and MP2 should be a 
good option here. These latter calculations can eventually supply molecular energies 
and gradients for the optimization project. We have also developed a preliminary 
version of an atom-centered fast multipole program for large-molecule DFT 
calculations. 
This final report summarizes the progress made in these areas during the period of this 
grant award. No great detail is given, as this has to a large extent already been 
provided in our previous yearly reports. 

1. Optimization of Molecular Geometries 

a. Cluster and Rigid-Body Optimization 
We have successfully developed and fully implemented an algorithm for the efficient 
optimization of molecular clusters. This uses a special set of what we have called 
cluster coordinates, which comprise the usual stretches, bends and torsions to describe 
the interactions within each molecule (the intramolecular geometry) and inverse- 
distance coordinates to describe the interactions between individual molecules in the 
cluster (the intermolecular geometry). Our new cluster coordinates reduce the number 
of geometry optimization cycles required for convergence by up to an order of 
magnitude relative to Cartesian coordinates, and also significantly relative to other 
coordinates, e.g., distance coordinates. Molecular clusters usually have a number of 
minima, and cluster coordinates are often more successful in reaching low-lying minima 
than are Cartesians. 
In addition by using a Schmidt-Orthogonalization scheme for imposing constraints 
introduced earlier (J.Baker, A.Kessi and B.Delley, J.Chem.Phys. 105 (1996) 192), it is 
possible to effectively constrain all the intramolecular degrees of freedom in a molecular 
cluster and in this way carry out complete rigid-body optimizations. 

We illustrate the efficacy of our new cluster coordinates by optimizing the geometries of 
twenty randomly-generated clusters, each containing ten hydrogen molecules. Table 1 
shows the starting energy, the number of optimization cycles needed to converge and 
the final energy for optimizations using both Cartesian and cluster coordinates. As can 



be seen, the average rate of convergence is over ten times faster with cluster 
coordinates than with Cartesians, and in each case the optimization converged to a 
lower final energy. 

Table 1 
Starting energy, number of cycles to converge and final energy for the RHF/3-21G 
optimization of 20 randomly generated clusters of 10 H2 molecules (initial bond length 
0.72 A) 

cluster 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

average 

starting energy 

-11.166613 
-11.151158 
-11.159068 
-11.142043 
-11.177657 
-11.178220 
-11.150748 
-11.152618 
-11.170617 
-11.148964 
-11.157261 
-11.171696 
-11.161546 
-11.164816 
-11.143458 
-11.151136 
-11.157329 
-11.171771 
-11.141685 
-11.150264 

Cartesian 
cycles  energyb 

613 
506 
282 
100 
776 
305 
338 
410 
454 
425 
431 
501 
500 
435 
478 
965 
555 
357 
172 
307 

-11.230147 
-11.230130 
-11.230023 
-11.229742 
-11.230133 
-11.229987 
-11.230103 
-11.230122 
-11.230144 
-11.230093 
-11.230073 
-11.230054 
-11.230130 
-11.230041 
-11.230110 
-11.230106 
-11.230116 
-11.230074 
-11.229711 
-11.230016 

cluster coordinates3 

cycles  energy15 

34 
33 
30 
55 
24 
58 
31 
47 
17 
42 
70 
39 
66 
33 
32 
54 
33 
41 
39 
35 

-11.230188 
-11.230208 
-11.230193 
-11.230162 
-11.230170 
-11.230176 
-11.230226 
-11.230212 
-11.230226 
-11.230196 
-11.230190 
-11.230223 
-11.230223 
-11.230176 
-11.230226 
-11.230208 
-11.230206 
-11.230190 
-11.230206 
-11.230202 

446  -11.230053 41      -11.230200 

intermolecular cluster coordinates were based on simple inverse distances (1/R) 
convergence criteria were a maximum gradient component < 0.00005 au and an energy 
change of < 10"7 hartree 



b. Geometry Optimization for Reactions on Model Surfaces 

We have developed an efficient and automatic procedure for optimizing the geometries 
of surface-adsorbate systems. Internal coordinates (stretches, bends and torsions) are 
generated for the surface and the molecule being adsorbed separately, and additional 
linking primitives are generated to connect the two parts. The often high atomic 
connectivity in the model surface makes it possible to ignore torsions, spanning all 
surface degrees of freedom using stretches and bends only, greatly reducing the 
dimension of the primitive space. Cartesian coordinates (i.e., fixed atoms) can be 
constrained within a delocalized internal coordinate optimization (by constraining all 
primitives that involve solely the fixed atoms in their definition), and the effects of 
freezing various surface layers on reaction energetics and geometries can be 
investigated. 

We have used this procedure to investigate the dissociative adsorption of water on the 
reactive site of the silicon (100) surface, modelled using Si9Hi2 and Sh7H2o clusters 
(see Fig. 1). The Si atoms labelled 1 and 2 in both cases constitute the "active site" and 
these two atoms are formally unsaturated. They are considered to be in the first (or 
surface) layer in our model. Si atoms 3, 4, 5 and 6 comprise the second layer. All other 
Si atoms are taken as the third layer. Apart from the two surface atoms, the remaining 
Si atoms are saturated by adding hydrogens. 

The reaction is considered to take place by first forming a complex between water and 
the Si surface, with a bond forming between the water oxygen and, say, Si atom 1, with 
Si atoms 1 and 2 and the water molecule all in the same plane; this is followed by a 
lengthening of one of the water O-H bonds and the partial formation of a Si-H bond with 
Si atom 2 (in the transition state), leading to the final product with the water molecule 
completely dissociated and full Si-OH and Si-H bonds at the previously unsaturated Si 
centers.This process is shown schematically in Fig. 2. By systematically fixing Si atoms 
(and their attached hydrogens) in the three surface "layers" defined above, we can 
investigate the effects on the reaction energetics of freezing various surface layers. 

Reaction energetics are shown in Table 2. We used density functional theory 
(specifically the hybrid B3LYP functional with the standard 6-31G* basis set). All 
structures were taken to be closed shell singlets. The initial geometries of both Si9H12 

and Si17H20 were fully optimized at B3LYP/6-31G*. 



Figure 1a: Structure of Si9Hi2 

Figure 1b: Structure of Sii7H2o 

Si1 Si2 



Table 2 Energetics of the dissociative adsorption reaction (H20 —> H + OH) on the 
model Si9H12 and Si17H20 surfaces (in kcal/mol relative to the initial adsorbed complex 
as the energy zero) 

surface type 
fixed surface 
layer 1 free 
layers 1 & 2 free 
unconstrained 

S19H12 + H20 
+5.3 

+11.7 
+14.4 
+14.9 

H20-Si9H12 
0.0 
0.0 
0.0 
0.0 

transition state 
+3.1 
+4.0 
+5.3 
+5.5 

Si9H13OH 
-53.0 
-53.8 
-52.3 
-53.0 

surface type 
fixed surface 
layer 1 free 
layers 1 & 2 free 
unconstrained 

Sii7H20 + H20 
+5.8 

+12.9 
+15.1 
+15.8 

H2O-Sii7H20 

0.0 
0.0 
0.0 
0.0 

transition state 
+2.8 
+4.0 
+5.1 
+5.1 

Si17H21OH 
-53.1 
-53.8 
-52.4 
-52.7 

As can be seen from Table 2, the effect on the overall relative energetics of freezing 
various surface layers is minor. The initial binding between water and the model surface 
is fairly strong systematically increases with increasing surface relaxation; this must be 
the case as we are comparing fully optimized reactants with only a partially optimized 
complex - relaxation of each surface layer can only lower the energy of the complex, 
thus increasing the binding. However, the relative energy difference between the 
adsorbed complex, the transition state, and the dissociatively adsorbed product, hardly 
differs as we systematically relax the surface. The only real trend is a small but steady 
increase in the transition state barrier with increasing surface relaxation. The energetics 
on the totally frozen compared to the totally relaxed surface are very similar, as are the 
results for the Sii7H20 cluster compared to Si9Hi2. 

Given the quality of the calculations (a reasonable but not especially high level of 
theory) our conclusions are: (1) that the frozen surface model provides a pretty good 
picture of the overall reaction energetics; and (2) that the Si9H12 model surface seems 
to be perfectly adequate to describe the dissociative adsorption of a water molecule on 
a silicon cluster. 



Figure 2: Schematic of geometrical arrangement around the active site for the 
dissociative adsorption of water on a model Si (100) surface for: (a) the initial adsorbed 
complex; (b) the transition state; (c) the dissociatively adsorbed product (see Table 1) 
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c. Large-Molecule Optimization 

The bottleneck preventing the efficient use of internal coordinates in large systems is 
the time taken to transform the gradient (and possibly the Hessian) from Cartesian 
coordinates to internal coordinates, and to transform the new geometry from internal 
coordinates back to Cartesians. The latter step is needed to calculate the energy and 
gradient for the next optimization step. Both these transformation steps formally scale 
as the cube of the system size, 0(N3). We have developed several novel algorithms to 
reduce this scaling to near-linear. 

The gradient transformation can formally be written as 
gcart    =    Bt gint (1) 

where B is the (linearized) transformation matrix from Cartesian to internal coordinates 
(the so-called Wilson B-matrix). As it is not a square matrix, BT does not have a regular 
inverse, and the usual trick is to define (Bf)"1 = (BBf)"1B, which acts as a left inverse in 
the sense that (Bt)"1ßt= 1- The cubic computational dependence of traditional internal 
coordinate transformations is caused by the presence of this formal matrix inverse. 

Using this left inverse we can write 

gint = (BVg03* = (BBVB gcart (2) 

which can be rearranged to 

(BB^g"*   =   Bgcart (3) 

Splitting off the diagonal D of BBf, we can rewrite eq. 3 as 

Dgint   =   Bg^t (D-BBf)gint (4) 

and convert it into an iterative scheme 

gint(k+1)   =   D'1 [ B gcart + (D - BBf) gint(k) ] (5) 

which can be solved by the preconditioned conjugate gradient method. Solution of Eq. 
5 is formally 0(N2) as it no longer contains a matrix inverse. In practice, however, the 
actual order depends on how rapidly the procedure converges; if it takes O(N) cycles to 
converge, then nothing is gained. 

The backtransformation of the new geometry from internal to Cartesian space is also 
accomplished iteratively via 

x(k+1)  = x(k) + (BV(k)[q - q(k)] (6) 

Here q is the (known) new geometry in internal coordinates and the iterative procedure 
is typically started (k=1) using the old Cartesian geometry (and the old B matrix). 
Although this iterative back transformation normally converges extremely rapidly 
(differences between q and q(k) of < 10"10 in 3-5 cycles), it formally requires the 
construction and inversion of a new B matrix at each iterative cycle. A better scheme, 
which works unless the displacements are very large, is to keep the old (B )" matrix 
throughout; this increases the number of cycles but each cycle is now much less 
expensive as no matrix inverse is needed. 



Our first approach involved direct solution of Eq. 2 using natural internal coordinates 
and a scheme in which the formal inverse of BBf is replaced by the inverse of its 
approximate symmetric Cholesky decomposition LdLf, where L is lower triangle and d 
is diagonal. In the decomposition, we keep only elements of L that exceed a small 
threshold; this number is expected to grow approximately linearly with system size. This 
reduces the gradient transformation to roughly 0(N2); it also has the advantage that the 
same decomposition can be used for the backtransformation, Eq. 6 (assuming that the 
geometry change is not too large). 

We subsequently developed an alternative approach using delocalized internal 
coordinates and the iterative gradient transformation of Eq. 5. Delocalized internals are 
formed by diagonalization (or its equivalent) of BBt on the first optimization cycle and, 
after transformation to the new coordinate space, the BBf matrix is usually diagonally 
dominant throughout the optimization. This ensures that Eq. 5 converges rapidly. 
However, the main advantage of delocalized internals is that the formal 0(N ) traditional 
backtransformation can be replaced by a Z-matrix approach which is O(N). (This Z- 
matrix backtransformation cannot readily be used with natural internals because they 
mix in too much of the formally redundant part of the full space of primitive internals.) 
Unfortunately, delocalized internals - being linear combinations of all possible stretches, 
bends and torsions in the primitive space (unlike natural internals, which are linear 
combinations of just a few primitives and are highly localized) - are not efficient beyond 
a certain molecular size (around 500 or so atoms) due to their lack of sparsity. Natural 
internals are sparse, but are increasingly difficult to generate as molecular size and 
topological complexity increases. 

Our most recent approach is capable of carrying out large-molecule geometry 
optimizations directly in the full space of primitive internal coordinates. Normally far 
more primitive stretches, bends and torsions can be generated for a large molecule 
containing N atoms than the 3N-6 that are necessary to span all the internal degrees of 
freedom. Although the B matrix in primitive internals can have a much greater 
dimension than, say, its equivalent in delocalized internals, it is highly sparse, having at 
most 12 non-zero entries per column regardless of the number of primitives, which 
could easily be in the tens of thousands for a system with a few thousand atoms. If we 
let gint = Bx, then substituting into Eq. 1 gives 

gcart    _   BtBx (7) 

We can solve this set of linear equations to get x, and then back-substitute to get g,n. 
This involves the formal inverse of B*B (instead of BB*), and not only does this matrix 
have smaller dimension than BBf (3N-6 instead of the size of the primitive space), but it 
turns out that its approximate Choleskly decomposition has a sparser L matrix than for 
the corresponding BBf matrix, leading to a further reduction in CPU time for the 
transformation. 

Work in this area is ongoing, generously supported by a new Air Force grant (Award 
number F49620-00-1-0281), and we hope to further improve the performance of our 
large molecule optimization algorithm. 

To give some idea of the efficiency of our coordinate transformations, and the 



performance of the optimization overall, we present the following three Tables. Table 3 
shows timings for various steps in the large-molecule, delocalized internal coordinate 
algorithm, together with the timings (old) if all transformations were done using full 
matrix inversions. 

Table 3 
Timings (CPU; seconds) on an IBM RS6000/390 workstation for various steps in the 
internal-coordinate large-molecule optimization algorithm. 

cycle3 B Matrix 
construction 
old      new 

gradient0 

transformation 
old      new 

back0 

transformation 
old        new 

total 
time 

old      new 

Jawsamycin (C32H43N306, 84 atoms) 
1 34.01     12.61 2.01 0.03 16.54 0.12 
2 2 09      0.27 2.03 0.10 16.54 0.14 
3 2 12      0.27           2.02 0.12 16.54 0.17 

30              2 12      0.27           2.01 0.55 12.37 0.23 

53.41 13.61 
20.68 0.53 
20.70 0.58 
16.52 1.07 

Taxol (C47H51NO14,113 atoms) 
1 110.06    23.09           4.46 0.05 
2 4.57      1.45           4.41 0.22 
3 4.58      1.45           4.41 0.22 

68              4.59      1.44           4.46 1.36 

(Alanine)2o (C60H102N20O21, 203 atoms) 
1 826.07 97.25   99.91 0.29 
2 23.71  9.30   99.96 1.07 
3 23.80      9.27        100.01 1.42 

63            23.80      9.29        100.37 2.50 

36.19 0.23 152.24 24.90 
36.15 0.25 45.17 1.96 
36.15 0.25 45.18 1.96 
27.10 0.98 36.19 3.82 

492.97 0.42 1439.47 118.48 
626.28 0.51 750.13 11.06 
620.58 0.51 744.57 11.38 
372.89 0.58 497.24 12.55 

a Shown are timings for the first three optimization cycles and the final cycle. Convergence criteria 
are: maximum gradient component < 0.00005 Eh/a0; energy change < 10" Eh 

b Timings for B matrix construction on cycle 1 include once only construction of delocalized internals 
c The fast gradient and back transformation were converged to an accuracy of better than 5x10 

10 



As can be seen, the savings are enormous even for these relatively small systems. Our 
most recent BtB algorithm, using either natural internal coordinates or a full set of 
primitive internals, is even faster for all steps except possibly the backtransformation. 
Table 4 shows timings for the gradient transformation and the total (average) time per 
optimization cycle for a series of alanine polypeptides; also shown are the density (the 
percentage of non-zero elements) in the Cholesky decomposition for both the B B and 
the original BB1" algorithm. 

Table 4. Comparison of the performance of the BfB and BBf formalisms for alpha- 
helical alanine polypeptides. The following data are shown: the density (the fraction of 
non-zero elements) in the Cholesky factors, and the average time (Tcycie, sec) per 
optimization cycle (a few decompositions, one force transformation, and a line search 
including 4-5 geometry back-transformations) on a 300 MHz Pentium II PC for both the 
BfB and BB1" formalisms. For the BfB formalism the average time (TF0rce, sec) of a 
single force transformation step is also shown. 

Alanine polypeptides B*B BBf 

# of alanine # of atoms Density % 1 Force 1 cycle Density % 1 cycle 

units 
10 109 17.95 0.05 0.77 26.37 1.09 

20 209 9.63 0.11 1.61 18.86 2.70 

30 309 6.58 0.21 2.62 13.20 5.21 

40 409 4.99 0.24 3.88 10.77 8.24 

50 509 4.02 0.37 5.23 9.32 12.29 

100 1009 2.04 0.70 11.17 5.94 40.04 

200 2009 1.03 1.33 22.74 3.88 137.97 

300 3009 0.69 2.01 . 32.28 - - 

500 5009 0.41 2.49 49.55 - - 

700 7009 0.30 3.40 71.45 - - 

999 9999 0.21 4.57 91.62 - - 

Finally Table 5 directly compares the performance of our large-molecule internal 
coordinate optimization algorithm with the standard conjugate gradient optimizer in 
Cartesian coordinates in the TINKER molecular mechanics package (J.W.Ponder, 
Software Tools for Molecular Design, version 3.7, June 1999) for the same alanine 
polypeptides shown in Table 4. As can be seen, our algorithm converges in dramatically 
fewer energy and gradient evaluations than the more traditional Cartesian optimizer and 
typically converges to a lower final energy. This is particularly apparent for the larger 
systems. 

11 



Table 5 Comparison of optimizations of alpha-helical alanine polypeptides using 
natural internal and Cartesian coordinates. The initial and final energies (kcal/mol) and 
the number of gradient and energy evaluations are shown for Cartesian optimizations 
as implemented in the TINKER program (minimize.x) and natural internal coordinate 
optimizations in our program 

Natural Internal Coordinates TINKER (0.01 kcal/mol A) 

#of initial #of final #of final 

alanines energy E G energy E G energy 

10 11.4867 31 138 -43.3114 313 578 -43.3124 

20 6.2427 38 168 -97.4764 412 770 -97.4768 

30 0.7077 50 216 -152.1734 354 675 -152.1717 

40 -4.8271 53 237 -206.8709 335 636 -206.8696 

50 -10.3619 64 314 -261.5697 436 797 -261.5688 

100 -38.0366 71 340 -535.0629 664 1246 -535.0583 

200 -427.7795 69 336 -1082.0471 1589 3020 -1081.9656 

300 -650.1882 76 368 -1629.0323 2191 4051 -1628.7909 

500 -2630.4851 48 234 -2723.0002 6369 12228 -2719.7795 

700 -3688.1297 50 244 -3816.9708 6536 12614 -3799.8068 

999 -5269.9224 55 267 -5452.4565 7851 15165 -5414.0775 

12 



II. Electronic Structure Theory 

a. Local Electron Correlation 

We have continued developing our local second-order Moller-Plesset perturbation 
theory code. 

<This part to be completed by PP> 

b. Atom-centered fast multipoles 

The aim of this research project is to develop a fast and accurate DFT program for 
large molecules. Instead of calculating all the two-electron integrals as in the traditional 
quantum chemical approach, we expand the Coulomb potential in terms of spherical 
harmonics over atom-centered grids. Our approach is similar to that of Delley in the 
DMol program (B.Delley, J.Chem.Phys. 92 (1990) 508), except that we subsequently fit 
the potential rather than do a global fit to the density as is the case in DMol. In large 
molecules, the Coulomb potential between atoms that are far apart can be described by 
a simple multipole expansion, and this is where we hope to gain efficiency over the 
more traditional methods. Our approach is conceptually similar to the Continuous Fast 
Multipole Expansion (C.A.White, B.G.Johnson, P.M.W.Gill and M.Head-Gordon, 
Chem.Phys.Lett. 230 (1994) 8). However, in CFMM the molecule is divided into artificial 
rectangular boxes, with multipole expansions being used to describe the Coulomb 
interactions between boxes that are far enough apart. These rectangular boxes require 
high order multipoles and are responsible for the fact that CFMM becomes really 
efficient only for huge systems. Our approach, with spherical atom-centered 
expansions, is more physical and expected to give a crossover with traditional methods 
at much smaller system size. 

Initially we have concentrated on producing accurate and reliable DFT energies for 
small and medium-sized molecules and have, we believe, obtained some of the most 
accurate energies using this approach that have been reported to date. We have been 
very careful with our numerical integration techniques, and can take the various 
expansions involved to high orders in spherical harmonics to reach limiting values. 
Using identical Gaussian basis sets, we can directly compare energies from the fully 
numerical spherical harmonics code with energies from traditional quantum chemistry 
DFT codes to determine how high to take L in the spherical harmonics expansion to 
accurately reproduce traditional DFT energies. Our findings suggest that high values of 
L are needed even to reproduce relative energies accurately, and that the default 
expansions in many commonly used codes are probably too low to give reliable 
energetics. 

Table 6 shows energies for a number of di- and tri-atomics for L values in the spherical 
harmonics expansion from 0 to 19. For most of the molecules investigated, absolute 
energies do not stabilize until at least L=11 and for some, e.g. F2, not even then. 

13 



Table 6 Analytical and numerical BLYP/6-31G** SCF energies (hartree) for a number 
of small molecules for L values in the spherical harmonic expansions from 0 to 19 

Lmax H2 LiH HF Li2 LiF 

0 -1.159720 -8.099536 -100.552673 -15.158289 -108.390760 

1 -1.156331 -8.070451 -100.321579 -14.965681 -107.743656 

2 -1.166369 -8.068231 -100.376894 -14.979977 -107.459285 

3 -1.168114 -8.064447 -100.409630 -14.991192 -107.380373 

4 -1.168037 -8.064419 -100.414410 -14.994298 -107.371944 

5 -1.167918 -8.066075 -100.412624 -14.993896 -107.382928 

6 -1.167889 -8.066663 -100.411409 -14.993019 -107.393007 

7 -1.167888 -8.066573 -100.411075 -14.992559 -107.398321 

8 -1.167890 -8.066523 -100.411025 -14.992445 -107.400443 

9 -1.167890 -8.066545 -100.411029 -14.992465 -107.401152 

10 -1.167890 -8.066544 -100.411050 -14.992502 -107.401342 

11 -1.167890 -8.066533 -100.411075 -14.992524 -107.401334 

12 -1.167890 -8.066531 -100.411078 -14.992527 -107.401307 

13 -1.167890 -8.066531 -100.411080 -14.992527 -107.401258 

14 -1.167890 -8.066530 -100.411079 -14.992527 -107.401204 

15 -1.167890 -8.066530 -100.411079 -14.992527 -107.401158 

16 -1.167890 -8.066530 -100.411079 -14.992527 -107.401126 

17 -1.167890 -8.066530 -100.411079 -14.992527 -107.401107 

18 -1.167890 -8.066530 -100.411079 -14.992527 -107.401100 

19 -1.167890 -8.066530 -100.411079 -14.992527 -107.401098 

no pruning* -1.167891 -8.066535 -100.411094 -14.992534 -107.400661 

exact -1.167896 -8.066464 -100.411080 -14.992538 -107.400627 
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Table 6 (continued) 

Lmax CO N2 F2 H20 C02 

0 -112.815305 -108.970494 -199.188346 .76.444437 -187.634789 

1 -113.259613 -109.387299 -199.355946 -76.249007 -188.254279 

2 -113.207833 -109.412242 -199.500291 -76.365904 -188.444913 

3 -113.269420 -109.490394 -199.476625 -76.404018 -188.490216 

4 -113.292217 -109.512858 -199.480261 -76.403080 -188.569540 

5 -113.296366 -109.515300 -199.488192 -76.399434 -188.566628 

6 -113.295616 -109.513217 -199.492640 -76.398689 -188.566551 

7 -113.294325 -109.511063 -199.493785 -76.398819 -188.565544 

8 -113.293430 -109.509823 -199.493646 -76.398901 -188.563028 

9 -113.292972 -109.509398 -199.493387 -76.398906 -188.563087 

10 -113.292799 -109.509394 -199.493261 -76.398917 -188.562201 

11 -113.292770 -109.509498 -199.493201 -76.398933 -188.562271 

12 -113.292775 -109.509517 -199.493181 -76.398935 -188.562270 

13 -113.292783 -109.509524 -199.493160 -76.398934 -188.562268 

14 -113.292787 -109.509525 -199.493146 -76.398934 -188.562287 

15 -113.292789 -109.509525 -199.493139 -76.398933 -188.562287 

16 -113.292790 -109.509524 -199.493138 -76.398933 -188.562290 

17 -113.292790 -109.509524 -199.493139 -76.398932 -188.562291 

18 -113.292789 -109.509524 -199.493142 -76.398932 -188.562290 

19 -113.292789 -109.509524 -199.493143 -76.398932 -188.562290 

no pruning* -113.292929 -109.509526 -199.492959 -76.398934 -188.562392 

exact -113.292888 -109.509547 -199.492937 -76.398886 -188.562330 

" the various atom-centered grids are normally "pruned" to reduce the number of angular grid points in 
appropriate regions of space, e.g., close to the nucleus; "no pruning" energies are with the full grid 
without any reduction in the number of angular grid points. 
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To give some idea as to the relative accuracy of our fully numerical DFT energies we 
note that Becke and Dickson have taken L up to 11, but their reported energy for, e.g., 
C02 (see Table II in A.D.Becke and R.M.Dickson, J.Chem.Phys., 89 (1988) 2993) 
deviates by 0.016 hartree from the exact value, compared to our error of 0.000062 
hartree (Table 6). The current default in DMol is L = 4. 

3. Other Projects 
In addition to our two major research topics, a number of other research projects in the 
Pulay group have been supported from our Air Force grant. 

• We have implemented a new Gaussian-weighted operator, originally developed by 
Rassolov and Chipman for MCSCF wavefunctions (V.A.Rassolov and D.A.Chipman, 
J.Chem.Phys. 105 (1996) 1470), for the calculation of spin densities at nuclei in 
density functional theory. Applications to first row atoms and some diatomic and 
small polyatomic molecules show good agreement with experiment. 

• We have carried out a thorough investigation into the inner-hydrogen migration and 
ground-state structure of porphycene (a structural isomer of porphyrin). We were 
able to convincingly show via good quality density functional calculations and an 
SQM force field analysis of the vibrational spectrum, that the ground-state structure 
is the C2h trans isomer and a previously proposed scheme for the inner-hydrogen 
migration involving both the trans and eis isomers was not viable. 

. We have investigated the structure and IR spectra of a number of metal tris- 
acetylacetonates, correcting some of the experimental assignments and predicting 
the geometry and vibrational spectrum of several species (e.g., the scandium 
compound), which, to our knowledge, have not been experimentally determined. 
Excellent agreement was obtained with experimental IR spectra for the Al, Fe and 
Cr compounds. 
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