
AFRL-IF-RS-TR-2001-260
Final Technical Report
December 2001

THE COMMON AUTHENTICATION PROTOCOL
SPECIFICATION LANGUAGE (CAPSL)
INTEGRATED PROTOCOL ENVIRONMENT

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G379

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20020308 039
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-260 has been reviewed and is approved for publication.

APPROVED:

GLEN E. BAHR
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 07040188

Public reporting burden for this collection of information is estenated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

DECEMBER 2001
3. REPORT TYPE AND DATES COVERED

 Final Aug98-MOO
4. TITLE AND SUBTITLE

THE COMMON AUTHENTICATION PROTOCOL SPECIFICATION LANGUAGE
(CAPSL) INTEGRATED PROTOCOL ENVIRONMENT

6. AUTHOR(S)

Grit Denker, Jonathan Millen, Harald Ruess

5. FUNDING NUMBERS

C - F30602-98-C-0258
PE- 62301E
PR- G379
TA- 84
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park California 94025-3493

8. PERFORMING ORGANIZATION
REPORT NUMBER

SRI-CSL-2000-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-260

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Glen E. Bahr/IFGB/(315) 330-3515

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

CAPSL is a Common Authentication Protocol Specification Language intended to support analysis of cryptographic protocols
using formal methods. CAPSL is adapted for use by various protocol analysis tools using an intermediate language, named
CAPSL Intermediate Language (CIL). This report includes a CAPSL tutorial, the syntax of CAPSL and CIL, and the
abstract rewriting model underlying CIL. Algorithms are given for translating CAPSL to CIL and for CIL rule optimization.
Methods are given for integration of CAPSL and CIL with analysis tools, specifically Prototype Verification System (PVS),

Maude, and Athena, and for protocol analysis using PVS and Maude.

14. SUBJECT TERMS

Common Authentication Protocol Specification Language, CAPSL, Computer Security,
CAPSL Intermediate Language, CIL, Prototype Verification System, PVS, Maude, Athena,
Public Key

15. NUMBER OF PAGES

136

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) {EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 04

Contents

1 Introduction 1

1.1 Cryptographic Protocols 1

1.2 Message Modification Attacks 2

1.3 Specification and Analysis Tools 3

1.4 CAPSL Features 4

1.5 The Intermediate Language CIL 5

1.6 Summary of This Document 5

2 CAPSL 7

2.1 CAPSL Tutorial 7

2.1.1 Encryption 8

2.1.2 Fresh Keys 9

2.1.3 The Lowe %-Operator 9

2.1.4 Address Convention 10

2.1.5 Goals 11

2.1.6 The Needham-Schroeder Public Key Handshake ... 12

2.2 Types and Declarations 12

2.2.1 The Type Hierarchy 13

2.2.2 Declarations 14

2.2.3 Typespecs 15

2.3 Protocol Specifications 17

2.3.1 DENOTES Declarations 17

2.3.2 Assumptions 18

2.3.3 Messages 18

2.3.4 Goals 19

2.4 The MESSAGES Section 19

2.4.1 Message Format 19

2.4.2 Actions 22

2.4.3 Phrases 22

2.4.4 Subprotocols and Selection 23

2.5 Environment Specifications 25

3 CIL 28

3.1 Multiset Rewrite Rules 28

3.1.1 The MSR Protocol Model 29

3.1.2 CIL Rule Syntax 30

3.2 Translator Overview 31

3.2.1 CIL Output 31

3.2.2 Translation Stages 33

3.2.3 DENOTES Processing 34

3.3 Abstract Rule Generation 35

3.3.1 Translator State 36

3.3.2 Computability and Receivability 36

3.3.3 Message Rules 38

3.3.4 Equational Actions 40

3.3.5 Subprotocols 41

3.4 Local Assertions 42

3.5 An Attacker Model 42

4 Optimization of CIL Rewrite Rules 45

4.1 Motivation 45

4.2 Optimization Examples 46

4.3 Optimization Steps 49

4.4 Properties of Optimization 50

4.4.1 Soundness 51

4.4.2 Termination and Uniqueness 52

4.5 Implementation 54

5 Analysis Tools 57

5.1 Connector Design 57

5.2 PVS 59

5.2.1 Modeling 60

5.2.2 Inductive Relations 62

5.2.3 Ideals and Coideals 63

5.2.4 Protocols and Secrecy 64

5.2.5 Example: The Otway-Rees Protocol 67

5.2.6 Conclusions 70

5.3 Maude 71

5.3.1 The Maude Language 72

5.3.2 Translation of the CAPSL Prelude 73

5.3.3 Definition of the CIL model 75

5.3.4 Maude Attacker Model 76

in

5.3.5 Translating CIL Protocols and Environments 78

5.3.6 Search Strategy and Optimization 82

5.3.7 Conclusion 86

5.4 Athena 87

5.4.1 The Translation Strategy 87

5.4.2 Normalization: Non-Message Rules 89

5.4.3 Type and Function Limitations 90

5.4.4 Goal Generation 90

6 Concluding Remarks 92

Bibliography 94

A CAPSL and CIL Syntax 99

A.l CAPSL Syntax 99

A.2 CIL Syntax 104

B The Prelude 106

B.l Basic and Boolean 106

B.2 Field 107

B.3 Symmetric-Key Encryption 108

B.4 Public-Key Encryption 110

B.5 Key Agreement Ill

B.6 Public-Key Sealing Ill

B.7 Timestamps 112

B.8 List 112

B.9 End Prelude Marker 112

IV

C CAPSL Examples 114

C.l SSL Handshake 114

C.2 Secure Remote Password (SRP) Protocol 116

D CIL Output Example 118

D.l CAPSL Specification for NSPK 118

D.2 CIL Output for NSPK 119

List of Figures

Figure 1.1: Needham-Schroeder Public-Key Protocol
Figure 1.2: Lowe's Attack
Figure 1.3: Overview of the Environment
Figure 2.1: The Type Hierarchy

1
3
6
13

VI

Chapter 1

Introduction

1.1 Cryptographic Protocols

In computer networks, cryptography is used to protect private messages and
to authenticate the source and content of messages. Security objectives may
take a sequence of several messages, that is, a protocol, to achieve. A pro-
tocol can be specified diagrammatically as in Figure 1.1. This particular
protocol is supposed to establish a session between principals A and B in
such a way that each principal authenticates the identity of the other princi-
pal, and they share two session-specific secrets Na and N),. (This is actually
not the whole protocol in [NS78], but just the handshake that comes after
an earlier part in which the public keys are obtained.)

{A, N } a JPB

<Na^>PA

<Nb>PB

Figure 1.1: Needham-Schroeder Public-Key Protocol

The bracketed term {A, Na}pß represents the encryption of the concatena-
tion of A and Na using the public key of B. It is assumed here that A has
previously obtained i?'s public key and that only B has the corresponding

secret key, and vice versa for B. The message fields Na and Nb are nonces,
meaning that they are fresh, in the sense that they have not been used before
by the principal that originates them. If they are large enough and randomly
generated, they could be used as keys to encrypt subsequent messages.

The secrecy claim is based on the argument that A has given Na directly
only to B, because only B could have decrypted the message in which Na

was introduced. Similarly for B and Nb. The protocol also provides entity
authentication, i.e., evidence that the other principal is currently actively
participating in the protocol, because it includes acknowledgments from B
and A containing the nonces they received.

The same protocol is often represented in a more algebraic style, like this:

A-+B:{A,Na}pB
B-+A:{Na,Nb}PA

A->B: {Nb}pB

CAPSL is an outgrowth of this algebraic message-list style.

1.2 Message Modification Attacks

There is a message modification attack on the Needham-Schroeder protocol,
found by Lowe [Low96]. Message modification attacks assume that there is
an intruder or attacker in the network who can intercept messages, record
them, and replace them with modified or different messages, which may
appear to have come from different sources. The intruder may also act as
a legitimate principal, either because he is one, or because he has some-
how obtained a long-term secret key of one. Lowe's attack is illustrated in
Figure 1.2.

In this figure, the center column represents the intruder playing two roles.
One role is as himself, principal X, responding to A in the left-hand session
of the protocol. The intruder is also masquerading as A in the right-hand
session of the protocol, indicated with (A) in parentheses. There is a security
breach in the right-hand session, because B ends up believing he has been
talking to A, and that Nb is shared only with A.

{A,N},
a'PX

{A,N},
a JPB

(A)

<Na^>,

{Na^>F PA

'PA

{Nh> b'PX
X

(A)
{Nh> b'PB

Figure 1.2: Lowe's Attack

1.3 Specification and Analysis Tools

The existence of message modification attacks led to the development of
methods to detect them. Several approaches have been developed, as rep-
resented by papers such as [MCF87, Mea91] on goal-directed state search
tools implemented in Prolog, [Kem89, Pau98] on the application of general-
purpose specification and verification tools, [BAN90, GNY90] on specially
designed logics of belief, and [Ros95, Low96, CJM98] on the application
of model-checking tools. This is far from a complete list of papers on the
subject.

These tools and their successors have been effective, but it is difficult for
analysts other than their developers to apply them. One reason for this
difficulty is that the protocols must be respecified for each technique, and it
is not easy to transform the published description of the protocol into the
required formal system.

Some tool developers began work on translators or compilers that would
perform the transformation automatically. The input to any such transla-
tor still requires a formally defined language, but it can be made similar
to the message-oriented protocol descriptions that are typically published.
This approach was taken with an earlier version of CAPSL [Mil97]; ISL,
supporting an application of HOL to an extension of the GNY logic [Bra97];
Casper [Low98], for the application of FDR using a CSP model-checking ap-
proach; and Carlsen's "Standard Notation" [Car94], which was translated

to per-process CKT5 specifications.

A proposal for CAPSL was first presented at the 1996 Isaac Newton Insti-
tute Programme on Computer Security, Cryptology, and Coding Theory at
Cambridge University. A version of CAPSL very close to the current one
was subsequently implemented as an interface to the NRL Protocol Analyzer
[BMM99].

The CAPSL language and supporting tools are still under development. This
document offers a snapshot of the current design, not only for CAPSL itself,
but also for the strategy by which CAPSL can be adapted for use by various
protocol analysis tools. The core of this strategy is the use of an intermediate
language, CIL, that is closer to the state-transition representation used by
almost all of these tools. An overview of the CAPSL and CIL environment
was given in [DM00]. Current documentation, the translator, and other
resources are available on the CAPSL Web site [MilOOb].

1.4 CAPSL Features

The acronym "CAPSL" stands for "Common Authentication Protocol Spec-
ification Language." The language is intended to support analysis of cryp-
tographic protocols using formal methods.

The core of a CAPSL specification is a message section showing the ab-
stract format of a sequence of messages. Message fields are named and their
types are indicated, but details such as field lengths and bit patterns are
not shown. Only that information essential for protocol failure analysis is
retained, resulting in a clear, simple model of the protocol.

Encryption operators, hash functions, and other computations are treated as
abstract operators whose properties are specified axiomatically in auxiliary
abstract data type specifications. Specifications for some popular opera-
tors, representing the abstract features of cryptosystems like DES, RSA,
and Diffie-Hellman, are included in a prelude file supplied with the CAPSL
translator.

Sometimes the protocol requires computations and tests that are not con-
veniently expressed using just the message sequence. In CAPSL, one can
insert assignment statements and equations representing computations and
tests.

An important part of the protocol specification is a statement of its security
objectives. There is a "GOALS" section for this purpose, which may include
secrecy and belief statements. Initial assumptions are also specified formally
and placed in a section prior to the message list. It is possible to place
assertions within the message list as well, to indicate intermediate goals or
message idealizations, to help support belief logic analysis.

Finally, there is also a way to specify scenario details to support search tools
that require setup of individual sessions.

1.5 The Intermediate Language CIL

The CAPSL Intermediate Language (CIL) serves two purposes: to help
define the semantics of CAPSL, and to act as an interface through which
protocols specified in CAPSL can be analyzed using a variety of tools.

The idea is illustrated in Figure 1.3. CAPSL is parsed and translated to CIL,
and there are different translators, called connectors, from CIL to whatever
form is required for each tool. CIL is designed to make the translation to
tool-specific representations as easy as possible. The translator from CAPSL
to CIL can deal with the universal aspects of input language processing, such
as parsing, type checking, and unraveling a message-list protocol description
into the underlying separate processes.

Fortunately, the protocol specifications required for most protocol analysis
tools have considerable structural similarity. They generally specify a proto-
col with state-transition rules for communicating processes. CIL uses multi-
set term rewriting rules that permit state changes to be presented concisely,
and in a way that closely matches the requirements of analysis tools. This
approach was influenced by an analysis example using Maude, by Denker,
Meseguer, and Talcott, presented at a LICS '98 workshop [DMT98a], and by
Mitchell's multiset rewriting formulation, presented at a Computer Aided
Verification workshop in 1998, and also later, in more detail, in [CDL+99].

1.6 Summary of This Document

Chapter 2 introduces the CAPSL language with a tutorial including a se-
quence of simple examples. It then goes on to present the elements of the

CIL

PVS

Inductive

Verification

Maude
Model

Checker

NRL
Protocol

Analyzer

Figure 1.3: Overview of the Environment

syntax systematically. Chapter 3 describes CIL and its relation to the un-
derlying abstract rewriting model. It also presents the algorithm for trans-
lating CAPSL to CIL, and in particular the way the rewrite rules are gener-
ated. Chapter 4 explains the optimization step, which reduces the number
of rewrite rules almost in half. Then, Chapter 5 addresses the integration
of CAPSL and CIL with analysis tools, using connectors. Analysis tech-
niques for PVS and Maude are summarized, and the connector to Athena
is described. There is a short conclusion, Chapter 6. The report has several
appendices containing examples and reference information.

Chapter 2

CAPSL

A CAPSL specification is made up of three kinds of modules: typespec,
protocol, and environment specifications, usually in that order. Typespecs
declare cryptographic operators and other functions axiomatically. Environ-
ment specifications are optional; they are used to set up particular network
scenarios for the benefit of search tools. Some standard typespecs in a
prelude file are automatically utilized by the CAPSL translator, so many
protocols can be specified with only a protocol module.

This introduction to the CAPSL language begins with a tutorial sequence
of protocols designed to illustrate the basic features of CAPSL.

2.1 CAPSL Tutorial

Here is the simplest example of a protocol specification.

PROTOCOL Simple1;
VARIABLES

A: Principal;
MESSAGES

A -> A: A;
END;

Protocol Simplel has only one message, in which principal A sends its name
to itself. As in a strongly typed programming language, variables must be

declared and typed. Principals are objects that can occur as the source or
destination of a message.

Here is a slightly more complex example.

PROTOCOL Simple2;

VARIABLES

A, B: Principal;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: A;

END;

The HOLDS declaration states that the process executing on behalf of A has
been initialized with the principal B chosen as the responder. Read it as
"A holds B." If the HOLDS assumption is omitted, the CAPSL translator
will complain that sender of the first message does not know the receiver
address. It is unnecessary to say HOLDS A: A because, by convention, prin-
cipals always hold themselves.

2.1.1 Encryption

Certain types of principals possess long-term keys. PKUser is a subtype of
Principal possessing a public key pair. If A is of type PKUser, pk(A) is its
public key and sk(^4) the corresponding private (secret) key. Thus, A could
encrypt its message to B as follows:

PROTOCOL Simple3;

VARIABLES

A, B: PKUser;

ASSUMPTIONS

HOLDS A:.B;

MESSAGES

A -> B: {A}pk(B);

END;

The notation {field}key is syntactic sugar for the function call ped(key,field).
The function ped is the standard abstract public key encryption and decryp-
tion function. (If the key is a symmetric key, the syntactic sugar expands

internally into a call on se, the standard abstract symmetric key encryption
function, instead.)

2.1.2 Fresh Keys

Session keys are usually assumed to be fresh, generated in some way that
ensures (up to a cryptographically unlikely coincidence) that each new one
has not been used before. To be useful as a key, the new value should be
unguessable. Sequence numbers, for example, are fresh but not unguessable.
Here is an example of session key generation:

PROTOCOL Simple4;

VARIABLES

A, B: Principal;

K: Skey, FRESH, CRYPTO;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: {A}K;

END;

In this example, Skey is a symmetric key type, and the declaration of K has
two keywords FRESH and CRYPTO called properties. The CRYPTO property
indicates unguessability.

Simple4 is not useful because B does not hold K and cannot decrypt the
message to obtain A. In CAPSL, this protocol specification is semantically
illegal because it implies that B decrypts the message, and the translator
will complain that the message is not "receivable" by B. Declaring that B
holds K does not work, because, in the first message, A cannot generate
K as a fresh value if it is already held by B, and the translator complains
accordingly. But there is a way to specify that B does not try to decrypt
the message.

2.1.3 The Lowe %-Operator

The author of the protocol can specify that B accepts the encrypted term
without attempting to decrypt it, by declaring a variable in which B stores
the received value. The different views of the message - the encrypted form

seen by A and the atomic form seen by B - are separated by the % operator,
which was introduced by Lowe in Casper [Low98]. We can see how the %
operator is used in this version of the protocol:

PROTOCOL Simple5;

VARIABLES

A, B: Principal;

K: Skey, FRESH, CRYPTO;

F: Field;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: ({A}K)'/.F;

END;

The type Field is the supertype of all types that can be used as message
fields, including principals, keys, and terms constructed by encryption and
concatenation.

The %-operator has a weaker binding precedence than encryption, so, for
example, ({A}K)'/,F can safely be written as {A}K"/,F.

2.1.4 Address Convention

Suppose we wish to extend Simpleö to a longer protocol in which B replies
to A with F.

PROTOCOL Simple6;

VARIABLES

A, B: Principal;

K: Skey, FRESH, CRYPTO;

F: Field;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: {A}K'/.F;

B -> A: F;

END;

10

The reply message is unacceptable to the CAPSL translator because "sender
does not know receiver address." The problem here is that since B can't
decrypt the message, B has not learned the value of A. By convention, the
source address of the message is not considered part of the content, and is
not readable by the receiver of the message. Realistically, this seems reason-
able because, although the same "Principal" type is used in the abstraction
in both the address and content portions of the message, implementations
distinguish an address specification - such as an IP address - from a sub-
ject name, which is a text string chosen to be meaningful in the application
context. Protocols presented in the literature are inconsistent with regard
to this convention.

2.1.5 Goals

In order to analyze the security of a protocol, there must be a statement of
its objectives. In CAPSL, there is a GOALS section to express secrecy and
authentication claims. In the following simple example protocol, we might
imagine that the designer intended for if to be a secret shared only by A
and B, and that when B receives it, B can be assured that it was sent by
A.

These two goals are stated as SECRET and PRECEDES assertions. A SECRET
assertion says that the value of a variable generated by its nominal originator
cannot be obtained by the intruder (unless the intruder is acting in one of
the legitimate roles of the protocol). A PRECEDES./!, B\Vi,V2,... assertion
says that if B reaches its final state, then A must have reached a state that
agrees with B on Vi, V2,....

PROTOCOL Simple7;

VARIABLES

A, B: Principal;

K: Skey, FRESH, CRYPTO;

F: Field;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: {A,K}pk(B);

GOALS

SECRET K;

11

PRECEDES A: B I K;
END;

In this protocol, K as generated by A is kept secret, but it might not reach
B. The message received by B could have been forged by the intruder. Thus,
the value of K received by B is not necessarily from A, so the PRECEDES
goal would fail.

2.1.6 The Needham-Schroeder Public Key Handshake

This tutorial concludes with the CAPSL specification of the Needham-
Schroeder public key handshake mentioned in the Introduction. There is
a type Nonce used in this protocol which is assumed implicitly, by conven-
tion, to have the property FRESH (but not necessarily CRYPTO).

PROTOCOL NSPK;

VARIABLES

A, B: PKUser;

Na, Nb: Nonce, CRYPTO;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: {A,Na}pk(B);

B -> A: {Na,Nb}pk(A);

A -> B: {Nb}pk(B);

GOALS

SECRET Na;

SECRET Nb;

PRECEDES A: B I Na;

PRECEDES B: A | Nb;

END;

2.2 Types and Declarations

Typespecs define the types and operators used in protocol specifications.
There is a subtype relation that places types in a hierarchy. Both typespecs
and protocol specifications can declare types, constants, functions, and vari-

12

ables. The difference is that declarations appearing in typespecs are uni-
versal and re-usable, while those in protocol specifications are specific to a
protocol. Before describing typespecs protocol specifications, we present the
type hierarchy and show the kinds of declarations that may appear in either
typespecs or protocol specifications.

2.2.1 The Type Hierarchy

Messages in cryptographic authentication protocols are constructed using
cryptographic operators and other functions, such as concatenation and hash
functions. Every message field is of type Field, but certain operators require
or produce fields of particular subtypes, such as key types. Field is a subtype
of the universal type Object, and there are other types of objects that are
not used as message fields, such as Role, Spec and Boolean. A portion of
the type hierarchy is shown in Figure 2.1.

Object

Field Role Boolean Spec

Tape Atom List Pspec Tspec Espec

I ' 1 I [
Principal Skey Pkey Nonce

I
PKUser

Figure 2.1: The Type Hierarchy

In principle, all functions used in CAPSL and the data types they oper-
ate on must be specified axiomatically in typespecs. The types that are
shown in the hierarchy and the most commonly used encryption operators
are included in the prelude. The current prelude is given in Appendix B.

13

2.2.2 Declarations

Declarations include IMPORTS, TYPES, VARIABLES, FUNCTIONS, and
CONSTANTS, in no particular order except that identifiers must be declared
before they are used.

IMPORTS. An IMPORTS declaration names one or more specifications
(this is one reason why specifications are named) and indicates that the
declarations contained in them or imported by them are to be used as though
they were included in the present specification. An IMPORTS declaration
permits the CAPSL translator to process a sequence of specifications and
check that imported specifications have occurred earlier in the sequence.
The CAPSL translator assumes that user specifications implicitly import
the whole prelude, so that it is not necessary to import any specification in
the prelude explicitly.

Importation of declarations brings all symbols into the same context. One
may not, for example, declare the same function or variable twice; a "du-
plicate declaration" error message will result. There are three exceptions
to this, as noted below, for function overloading, function refinement, and
dummy variables.

TYPES. A type declaration TYPES T\,... : T;... introduces new types Ti,...
and indicates that they are subtypes of T. The supertype is optional, and if
it is left out, the new types are assumed to be subtypes of Atom (a generic
fixed-length field type).

VARIABLES. A variable declaration VARIABLES Vi,... : T, Pi,...]... intro-
duces protocol variables of type T, optionally with properties Pi,.... The
FRESH and CRYPTO properties were mentioned above; others will be intro-
duced where they are relevant.

A variable declared in a typespec is a dummy variable, and the same variable
may be redeclared as the same type in another typespec. A variable declared
in a protocol specification is a protocol variable and it may not also be
declared elsewhere. (A future version of the CAPSL translator may treat
dummy variable declarations as local to permit redeclaration in another
context.)

FUNCTIONS. A function declaration FUNCTIONS Fi(Ti,...) : T2, Pi,...;...
declares the type signature of one or more functions. Function values may
have the properties PRIVATE, ASSOC, and COMM. Private functions are dis-

14

cussed below in the typespec section. The ASSOC and COMM properties des-
ignate associative and commutative binary functions, to obviate axioms for
that purpose.

The same function name may be re-used for another function for the sake
of either overloading or refinement. Overloading means that the function
name is used with a different signature that does not overlap with an ear-
lier declaration, such as different forms of addition for Skeys and Booleans.
Refinement means that domain restriction implies a range restriction, such
as the refinement of encryption from fields to atoms, shown in the next
subsection.

CONSTANTS. A constant is essentially a function with no arguments. A
constant declaration has the form CONSTANTS Ci,... : T\\....

2.2.3 Typespecs

A typespec consists of some'declarations, followed optionally by some ax-
ioms. Typespecs usually introduce a new type and some functions defined
on it, but in some cases they merely extend an existing typespec by defining
new functions on existing types.

Here is an example of some related typespecs found in the prelude.

TYPESPEC PKEY;

TYPES Pkey;

END;

TYPESPEC SPKE;

IMPORTS PKEY;

FUNCTIONS

ped(Pkey, Field): Field;

ped(Pkey, Atom): Atom;

END;

TYPESPEC PPK;

IMPORTS SPKE;

TYPES PKUser: Principal;

FUNCTIONS

pk(PKUser): Pkey;

15

sk(PKUser): Pkey, PRIVATE;

VARIABLES

A: PKUser;

X: Field;

AXIOMS

ped(sk(A),ped(pk(A),X)) = X;

ped(pk(A),ped(sk(A),X)) = X;

INVERT ped(pk(A),X): X I sk(A);

INVERT ped(sk(A),X): X I pk(A);

END;

The first typespec declares a data type Pkey (public key). New types are
subtypes of Atom unless otherwise indicated. The second typespec defines
public-key encryption using a single encryption/decryption function ped.
This function has two type signatures, a more general one for encrypting
fields, and a more specific one that says that atomic fields are encrypted to
atomic fields. This is an example of function refinement.

The encryption/decryption cancellation property for public-key encryption
is not stated in this typespec, because key pairs will be generated by func-
tions associated with Principal subtypes.

Typespec PPK defines a subtype PKUser of Principal. PKUsers have two
functions defined for them giving their permanent public and secret keys.

Functions are normally public or universal, in the sense that anyone can
compute them, given the argument values. This is not what we want for the
secret-key function, for if anyone could compute the secret key sk(A) just
by knowing A, the secret key would hardly be secret. Hence the PRIVATE
property.

If the first argument of a function is of type Principal, it can be declared
with the PRIVATE property to indicate that the value is available only to the
principal named in the first argument. Thus, only Alice can find sk(Alice).

There are four axioms in PPK. The first two say that sk(yl) and pk(A) are
inverse keys with respect to ped, in either order. The CAPSL translator does
not "understand" these axioms; it simply passes them on through CIL to the
analysis tools. However, the invertibility properties of ped are also expressed
in the corresponding INVERT statements. These are used by the CAPSL
translator to check implementability of specifications. INVERT t: x\y means
that any party (either legitimate or the intruder) holding term t containing

16

a variable x can compute x provided that it holds y. y could be a list of
terms. The use of INVERT statements is covered in more detail in Chapter 3.

The use of typespecs to define subtypes of Principal with functions to look
up their long-term keys is an important, original stylistic aspect of CAPSL.

2.3 Protocol Specifications

A protocol specification has the form:

PROTOCOL name;
declarations
ASSUMPTIONS
assumptions
MESSAGES
messages and actions
GOALS
goals
END;

There is one special kind of declaration that occurs only in protocol speci-
fications: DENOTES declarations.

2.3.1 DENOTES Declarations

DENOTES declarations allow a variable to be defined as the value of an ex-
pression. This is helpful in protocols where there are certificates or tickets or
public values with a complex structure, and we want to define them initially
and use a variable for them in the body of the protocol. A DENOTES decla-
ration section can declare more than one variable. It has the form DENOTES
V = e : A,...;... where e is a term and A is a principal. More than one
principal, or none, may be listed.

A declaration V = e : A is treated as an assignment action that is executed
by A when V is first used by A. This might happen when A is putting V
into a message, or when A receives a message purportedly containing V so
that it can make a comparison. A DENOTES action is used only once by each
agent, since V is held thereafter.

17

It is possible to omit the principal from the DENOTES declaration, as in
DENOTES V = e. In this case, all principals will use this action.

DENOTES equations must be placed in logical order. That is, if there is
a DENOTES equation V = f{X) and also a DENOTES equation for X, the
equation for X must appear earlier.

The variable on the left in a DENOTES declaration must be declared sepa-
rately. It is a real protocol variable, not merely a placeholder for macro
substitution.

DENOTES declarations are helpful when the same value is computed in dif-
ferent ways by different principals. One example of this is in generating
a common key via Diffie-Hellman agreement. Another example is when a
long-term key must be looked up using a different private function by each
principal.

2.3.2 Assumptions

Syntactically, assumptions include statements and certain special forms. As-
sumption statements are boolean-valued terms or equalities. The special
form most commonly used as an assumption is the HOLDS form.

CAPSL also allows statements and other assumptions to be qualified with
the belief operator, e.g., BELIEVES A : BELIEVES B : HOLDS A : K, read: UA
believes that B believes that A holds K." This syntax is included to help
support belief logic applications of CAPSL. Belief assumptions are useful
only in conjunction with a suitable modal logic to infer belief goals.

There is also a KNOWS operator. This does not refer to values, as HOLDS does.
Instead, it is Hintikka's epistemic logic operator, related to BELIEVES. The
relationship is that KNOWS A : <j> is equivalent to 0 A BELIEVES A : <f), i.e.,
belief plus truth.

2.3.3 Messages

The MESSAGES section of a protocol specification is a sequence of messages,
among which actions may be interleaved. The MESSAGES section may end
with a subprotocol invocation. These are complex enough subjects so that
a separate section is allocated to discuss them.

18

2.3.4 Goals

The GOALS section states the security objectives for the protocol. Syntacti-
cally, the same assertions that are legal as assumptions are legal as goals.
However, in the GOALS section one expects to see secrecy and authentication
assertions.

Secrecy. A SECRET assertion has the form SECRET V : Pi,.... It says that the
protocol variable V is secrets shared only by the principals Pi,.... The list
of principals may be omitted, in which case it is understood that the secrets
are shared by all of the principals playing legitimate roles in the protocol
session. The semantics of secrecy assertions is discussed in depth in [MROO].
The CAPSL translator does not yet (at this writing) introduce "spell" events
as described in that paper; it merely parses the SECRET assertion and passes
it on in abstract syntax.

Precedence and Agreement. A PRECEDES goal has the form PRECEDES
A,B\V\,V2,.... Intuitively, this says that if some instance of the B role
reaches its final state, it agrees with some instance of the A role on A, B, Vi,
and V<i-

Agreement is like precedence except that there is no existence claim. For
example, the goal AGREE A, B : V\, ...\W\,...; says that if there is any instance
of A that agrees with B on A, B, W\,..., then it must agree on Vi,... also.

2.4 The MESSAGES Section

The message format is straightforward, but there are some interesting fea-
tures in the presentation of message fields. We discuss those below. Besides
messages, the MESSAGES section may contain actions and subprotocol invo-
cations.

2.4.1 Message Format

A message has the form

id. sender -> receiver: field, ...;

19

The sender and receiver must be protocol variables of type Principal, and
the content fields are terms of type Field. The message id (and its associated
period) are merely decorative and optional. Some infix operators and other
notational conveniences have been introduced to permit CAPSL messages
to look like those in the literature. The existing infix operators fall into four
categories: concatenation, encryption, arithmetic, and the %-operator.

Concatenation. A sequence of fields may be concatenated into a single
longer field, usually for the purpose of having them encrypted together.
Curly brackets { , } and square brackets [,] denote different kinds of
concatenation, which are translated into different functions, cat and con
respectively, cat is associative and con is not.

Both cat and con are binary. Longer concatenations are parsed under the
assumption that right association is intended. Thus, [a, b, c) is parsed as
[a,[b,c]].

Associativity of concatenation matters when we try to decompose a concate-
nation. With non-associative con, the first component of a concatenation
[[A,B] ,C] is [A, B]. With associative cat, the first component of {{A, B},C}
would be A, unless A is itself a concatenation.

To deal with this question we differentiate between atomic fields, which
form the subtype Atom of Field, and those fields that are expressible as a
concatenation of smaller fields. The first component of a cat concatenation
is the first atomic component. Most types - all types in the prelude except
Field and List - are subtypes of Atom.

Note. A message A -> B: {C,D} can be received by B only if C is atomic.
If C is not atomic, B cannot parse the concatenation from left to right - it
won't know where C stops and D begins. The translator generates an error
message if this condition is not met.

Encryption. Putting a key after a bracketed expression denotes encryption,
using ped if the key is of type Pkey or se if the key is of type Skey. Thus,
the expression {A, K}pk(B) is interpreted as ped(pk(B), cat(A, K)).

A key after brackets also indicates encryption even without a concatenation,
so that {X}K is interpreted as se(K, X).

Decryption with sd is indicated with a prime, for example, {X}'K.

The same encryption functions are invoked with square brackets; the only
difference is that the con operator is used for the concatenation. There is

20

no difference between {X}'K and [X] 'K.

Arithmetic. CAPSL permits infix arithmetic operators +, -, *, /, and "
with type Skey. These are automatically translated to functions pis, mns,
tms, div, and exp, which appear in the prelude. The prelude does not
attempt to axiomatize these functions. It is assumed that any verification
tool that can deal with these functions has its own understanding of them,
and the connector for that tool will rename them appropriately.

In protocols, arithmetic is usually finite-field arithmetic with respect to some
modulus. The value of the modulus may be important for cryptanalysis but
it often does not matter for protocol analysis. An example of the use of
these operators, the SRP protocol, appears in Appendix C.

Arithmetic is used most often to compute symmetric keys, and that is why
these operators are defined on type Skey. It may be desirable to broaden
the domain of arithmetic to all atomic types, with some protection against
mixing different types.

Some protocols add or subtract one from a nonce in a handshake response
to protect against replay. They don't really need arithmetic. They can use
any value-changing function. A protocol can have a declaration FUNCTIONS
inc (Nonce): Nonce if it needs to increment a nonce for this purpose. No
axioms are needed.

Lowe's %-Notation. Sometimes it is necessary to distinguish between the
sender's view of a message and the receiver's view, because the receiver may
have more or less knowledge about the structure of a message field than the
sender. For this purpose, we exploit the %-notation introduced in Casper
[Low98].

A %-term is a term of the form u%v, or a term containing some subterm
of that form. In the %-term uYov, u is the sender's version of the term
and v is the receiver's version. A term like {A'/,B, C/.D} makes sense, since
the sender constructs {A, C} and the receiver sees {B, D}, while a term like
A7,{C/,D}K does not make sense. No % should be within the scope of another.
Any %-term could be written equivalently with only a single top-level use
of %. The precedence of % is lower than that of any other operator except
a comma separating fields.

21

2.4.2 Actions

An action is an statement that occurs in a message list. An equational action
like X = e may be either an assignment that sets X or a comparison test,
depending on whether or not the agent already holds X in that state. If X
is held, the equation can only be a comparison test, because variables do
not change value. But if X is not held, the equation must be an assignment,
since it would be undefined as a test. If there is a term other than a variable
on the left, the action must be a comparison test. (However, in the future
CAPSL may support assignment into an element of an array, and then the
expression on the left will be an indexed variable.)

CAPSL can handle an equation with a concatenation of variables on the
left, such as {A, B} = e. This is expanded into two equations, in this case
A = f irst(e); B = rest(e).

The result of a failed comparison test, incidentally, or the evaluation of any
other kind of statement to false, is that the acting agent does not make any
further state transitions. That is, it crashes silently. If the failure of the test
is supposed to generate an error reply, that must be indicated explicitly in
the protocol specification, using the conditional selection syntax discussed
below.

Actions may also be of the form ASSUME statement or PROVE statement.
These are essentially assumptions and goals, respectively, except that they
are associated with intermediate states rather than with initial and final
states.

2.4.3 Phrases

When processing an action, the CAPSL translator must determine which
agent (actually, which role) is taking the action, so that it can determine
which variables are held. The acting agent is usually apparent from the
position of the action in the message list. For example, in the message-list
fragment

A -> B: X;
X = Y;
B -> C: Z;

22

it is obviously B who executes the action X = Y. But, what if two messages
in a row are sent by the same agent? For example,

A -> B: X;
X = Y;
A -> C: Z;

Now it is not clear whether the action is taken by B after receiving the
first message, or by A before sending the next. The ambiguity is resolved
in CAPSL by inserting a slash "/" as a phrase divider to separate receiver
actions from sender actions. In this case, if we intended that the action be
performed by B, we would write:

A -> B: X;
X = Y;/
A -> C: Z;

The term "phrase" refers to a message and the actions before and after it
by its sender and receiver. Invocations and selections, explained in the next
subsection, are also phrases.

2.4.4 Subprotocols and Selection

Some complex protocols are actually frameworks that guide a communica-
tion session through a sequence of "exchanges" or subprotocols. A subpro-
tocol is a way to encapsulate a logically cohesive sequence of messages. In
CAPSL, a subprotocol is just a separate protocol module.

A protocol Pi may invoke another one, say P%, by using an INCLUDE Pi
phrase (called an invocation) in place of a message. The two protocol spec-
ifications would occur in the order Pi,P2, so that variables defined in Pi
may be imported and used in P2. The name P2 should be declared in Pi
as a constant of type Pspec. The outline of invocation use is something like
this:

PROTOCOL PI;
CONSTANTS P2: Pspec;

MESSAGES

23

INCLUDE P2;

END;

PROTOCOL P2;

IMPORTS PI;

END;

Conditional Selection. The selection of later subprotocols may be con-
ditional on data values or agreements reached in earlier message exchanges.
Another reason for conditional branching in a protocol might be to provide
an error reply as an alternative to a normal continuation after some test
fails. In CAPSL, a conditional expression selecting alternative invocations
is called a selection. An alternative in a selection could be any kind of
phrase, so it could be a message, an invocation, or a nested selection. The
SSL example in Appendix C illustrates how this is done. Here is an outline
of how a selection is used:

PROTOCOL PI;
CONSTANTS P2: Pspec;

MESSAGES

IF A = B THEN INCLUDE P2;

ELSE INCLUDE P3; ENDIF;

END;

PROTOCOL P2;

IMPORTS PI;

END;

PROTOCOL P3;

IMPORTS PI;

END;

There is a problem, in principle, with continuing a protocol with more mes-
sages after a selection with alternative subprotocols. Different subprotocols

24

may cause different sets of program variables to become held. The legality
and meaning of subsequent messages is then ambiguous.

Presently, CAPSL deals with this problem in a rather draconian way by
requiring that no statement may follow an INCLUDE, even when there is no
selection. Invocations can be chained, however, to achieve sequencing. For
example, protocol Pi in the outlines above could contain another invocation
at the end of its MESSAGES section.

A more advanced treatment of subprotocol invocation would be to give them
arguments so that they could have their own protocol variable contexts, just
as program subroutines do. At the moment, this feature would probably
outstrip the capabilities of protocol analysis tools. Analysis is simpler if
we assume that subprotocols do not "return," they just take over from the
parent session.

2.5 Environment Specifications

When a protocol is being analyzed or simulated, the analyst may have to
specify which agents are to be run. The analyst may also have to sup-
ply other run-specific information such as the initial knowledge of the at-
tacker. CAPSL specifications can include ENVIRONMENT specifications con-
taining this kind of information. Each environment specification sets up a
different scenario for analysis. An environment specification contains dec-
larations, one or more AGENT sections, and, optionally, any of an EXPOSED
section, an AXIOMS section, and an ORDER section.

An environment specification defines constants for principals and perhaps
other values like compromised keys. The specification constructs agents by
naming the principal, role, and initial values for each agent.

Declarations to name principals and other constants could be placed in this
section. For example, suppose we want two principals, Alice and Bob, taking
the usual 'A' and 'B' roles, and Mallory as a dishonest principal. We might
set that up like this:

ENVIRONMENT Testl;

IMPORTS NSPK;

CONSTANTS

Alice, Bob: PKUser;

25

Mallory: PKUser, EXPOSED;

AGENT Al HOLDS

A = Alice;

B = Bob;

AGENT Bl HOLDS

B = Bob;

EXPOSED

{Bob}sk(Alice);

END;

An environment specification imports the protocol specification it applies
to, in order to refer to its protocol variables (A, etc.). Agents are named
(this is an implicit declaration of a constant of type Agent) and constants
must be given as values for the protocol variables initially held by the agent,
as required in the protocol assumptions. The first equation, by convention,
names the principal that owns the agent, so that the role of the agent can
be determined. Nonces could be assigned values here or not, depending on
the needs of the analysis tool.

When several environment specifications are included to analyze different
scenarios, each one can import previous specifications to take advantage of
the constant declarations in them. Agent declarations are not imported.

The initial knowledge of the attacker is in the EXPOSED section. This would
normally be a list of terms that the attacker is assumed to hold initially,
possibly including some items that are declared in the protocol as secret.
The attacker may be implicitly assumed to hold agent names.

A principal with an EXPOSED property is one whose private data is all held
initially by the attacker. In this example, if Mallory is EXPOSED, the values
of private functions with Mallory as the first argument (such as, for example,
sk(Mallory)) would not have to be added to the EXPOSED list, because they
are implicitly assumed to be exposed.

Agents are, by default, assumed to run concurrently. CAPSL permits an
ORDER section to specify some series-parallel sequencing of agents, for the
benefit of search tools that could save time when such a restriction is as-
sumed. For example, we might say: ORDER (Al; A2) I I Bl to mean that
agent A% does not start until A\ ends, but that sequence runs concurrently
with B\.

An environment specification may have an AXIOMS section for assumptions

26

about its constants, e.g., AXIOMS sk(Alice) = SKa.

27

Chapter 3

CIL

3.1 Multiset Rewrite Rules

Support for multiple analysis tools is accomplished through the CAPSL
Intermediate Language (CIL) [DM99b]. The purpose of CIL is to unam-
biguously define the meaning of a protocol specification. CIL also acts as
an interface through which protocols specified in CAPSL can be analyzed
using a variety of tools.

The challenge for the design of CIL was to make it general enough and
expressive enough to represent a wide range of protocols, and yet at a low
enough level to be close to the representation used by most verification
or model-checking tools. Many such tools share a specification style that
incorporates state-transition rules specified in a pattern-matching style, with
symbolic terms to represent encryption and other computations. There is
usually a separate and fairly standard intruder model.

As an example of the use of pattern matching, if there is a message B -> A:
B, {Na, Nb}PK(A), we infer that A will accept only messages whose second
field is of the form {Na, Nb}PK(A). This implies that A must decrypt the
message content and confirm that the result is a concatenation of two fields
of type Nonce. Furthermore, if A already holds a value for Na or JVj,, it will
compare that with the one in the message. "Accepting" a message means
that A will undergo a state transition as a result of receiving it.

The commonality in the abstract symbolic treatment of protocols was rec-
ognized and codified in the Cervesato, et al meta-notation, in which state

28

transitions are expressed with multiset rewriting (MSR) rules [CDL+99].
The MSR notation was adapted for CIL. Their notation, according to the
authors, could be regarded as either an extension of multiset rewriting with
a kind of existential quantification, or a Horn fragment of linear logic. The
simplicity and generality of this formalism made it suitable to serve as the
language in which to express the semantics of CAPSL. Furthermore, the
term-rewriting aspect corresponded well with the analysis approach taken
by Denker, Meseguer, and Talcott with Maude [DMT98b]. CIL may be
regarded as a notational variant of the MSR formalism in which certain
specific conventions have been used to set up protocol models derived from
CAPSL specifications.

3.1.1 The MSR Protocol Model

The MSR formalism uses transition rules of the form

Fi,...,Fk —> (3X\,...,Xm)Gi, ...,Gn,

where each Fj and Gj is a "fact." Facts are atomic formulas of the form
P(*i, ■.., tr) where P is a predicate symbol and the arguments t{ are terms. A
term is constructed from typed constants, variables, and function symbols.
Free variables are implicitly universally quantified.

The state of a system can be represented by a multiset of facts. A rule is
eligible to fire when the facts on the left side of the rule can be matched
with facts in the multiset. When a rule fires, the matching facts in the
multiset are removed from it and replaced by the facts on the right side of
the rule, instantiated according to the substitution required by the pattern
match. Removing a fact from the multiset reduces its multiplicity by one, if
it was more than one. Facts in the multiset are typically ground terms (no
variables) when finite-state search tools are used.

The existential quantifier in linear logic has a special meaning. Quantified
variables are instantiated with fresh (unused) constants. This behavior is
used to model generation of nonces.

In protocol modeling, facts are used to express the entrance of a process into
a state, or the transmission of a message. In MSR, a state is represented by
a fact A{(...) where A is the name of a protocol variable of type Principal,
i is a state label, usually an integer, and the arguments are the "memory"
of the agent in that role and state. A message (in our dialect) is a fact

29

M(a,b,t) where a and b are principals and t is a term representing the
message content. Another kind of fact can represent attacker knowledge.

Rules with an empty left side are interpreted as initialization or fact-gener-
ating rules. For each role in the protocol, an initial state fact is generated
with initially held variables. The rule

—>A0(A,B),B0(B)

creates two facts representing the initial state of two new agents. Since A
and B are variables of type Principal, this rule can initiate sessions between
any pair of principals. Thus, A0(A,B) says that an agent playing the 'A'
role of the protocol is in a state labeled 0 and is ready to begin a session
between principal A, which owns the agent, and principal B.

The message A -> B: A, {N}SK(A) would result in at least two transitions,
one for the sender A and one for the receiver B. The A transition would be:

A0(A,B) —► (3iV)^(A,£,iV),M(A,2M^msk(A)}).

The B transition would be:

B0(B), M(X,B, {A, {N}sk(A)}) —> B,(B, A,N).

The X in the sender position of the received message is a new variable.
We assume here (like Paulson [Pau98]) that message facts indicate the true
sender of the message, but that receiver transitions can depend only on the
content of the message, and therefore the sender field is not matched with
any other variable.

3.1.2 CIL Rule Syntax

MSR rules appearing in the output of the CAPSL translator are expressed
in CIL syntax, in a uniform functional notation. All state facts are of the
form state(ro/e, num, terms(...)), where role is a role constant constructed
from a principal variable name, such as roleA, and num is a state label,
usually a natural number. The memory items are arguments of the terms
list. Encryption and concatenation are expressed using the functional forms
declared in the prelude or other typespecs. Messages are msg facts.

So, for example, the transition

A0(A,B) —► {3K)AX{A,B,K),M{A,B,{A}K)

30

would appear in CIL as

rule(facts(state(roleA,0,terms(A,B))),
ids(K),
facts(state(roleA,1.terms(A,B,K)),

msg(A,B,terms(se(K,A)))))

The syntax of CIL, which includes other items besides rules, is given in
Appendix A.2.

3.2 Translator Overview

3.2.1 CIL Output

The translator from CAPSL to CIL has some commonplace tasks to per-
form, like parsing and typechecking, and it also performs the conceptually
challenging task of unraveling a message-list protocol description into a set
of rewrite rules. Besides the rules, the output of the translator includes sym-
bol table information and other information that will be used by connectors
and analysis tools.

The output of the CIL translation has several parts:

1. slot table

2. symbol table

3. axioms

4. localized assumptions

5. protocol rewrite rules

6. localized goals

7. environment information

The actual output of the CAPSL translator is a text file expressing this
information in the abstract syntax of CIL, using a functional notation. A
CIL specification has the form:

CILspec(
symbols(symbol(...),...),

31

slots(slot(A,roleA,1),...),
axioms(...),
assumsO ..),
rules(
rule(facts(...),ids(...),facts(.. .)),

),
goals(...),
envs(...),

)

The CIL specification of NSPK can be found in Appendix D.

A symbol table entry has the form

symbol(ident,status,arg-types,value-type,properties)

where ident is the symbol name, status is the kind of symbol, one of op
for a function or constant, pvar for a protocol variable, var for a dummy
variable, or type for a type name. The argument types are in a list of
the form ids(...) and the properties are in a list of the form props(...).
The symbol table contains all identifiers declared in all of the specification
modules.

The slot table maps each protocol variable in the original specification to
an argument position in the state predicate of each role. This is necessary
for interpreting goals, agent initialization, and other statements that refer
to protocol variables.

For example, if we assume that B has the value Bob in the initial state of an
agent in role 'A', namely state(roleA,0,terms(Alice,Bob)), we need to
know that B is the second argument in the terms list of the roleA state fact.
This is expressed by the slot table entry slot (B,roleA,2). The slot number
for a program variable does not change once it is created; this convention is
enforced by the way the translator generates state facts.

Axioms from typespecs and environment specifications are consolidated into
a single list.

The difference between axioms and assumptions is that axioms are universal
and only refer to dummy variables, while assumptions, like goals, refer to
program variables and are localized to particular states. Thus, axioms are

32

simply passed on as the abstract-syntax form of axioms that occur in the
CAPSL specification. Assumptions and goals are expressed in the form
loc(nodes(node(roZe, state), ...), assertion).

A CAPSL assumption is localized to the initial state, and a typical node
would be node(roleA.O). Declarations of such role constants are added
automatically to the symbol table. CAPSL goals are localized to the final
state, as determined by the translator. The assertion is the abstract-syntax
form of the CAPSL assertion.

The CIL format for rules was summarized above, and the process for gen-
erating them is discussed in detail below in this chapter.

An environment entry has the form

environment(ident, agents(...), exposed(...), order(...))

where the exposed and order components may be empty, and an agent is
specified as agent(«den£, eqns(eqn(pvar, term), ...)). The identifier is just
a reference constant, and the equations assign values to protocol variables.
The first protocol variable listed is the principal whose variable name defines
the role being played by the agent. Other protocol variables are set as
required to provide initial values. The values are usually given as constants
declared in the environment. The CIL symbol table includes those constants.

3.2.2 Translation Stages

The major stages in translation are the following:

1. Parsing and type checking

2. Syntax transformations

3. Rule generation

4. Local Assertions

5. Optimization

Parsing checks CAPSL syntax and produces a parse tree. Type checking
confirms the consistency of type and signature declarations with each other

33

and with terms occurring in axioms, messages and elsewhere. In the process,
it replaces generic encryption expressed with bracketed terms by a choice of
ped or se by checking the type of the key. It also generates a symbol table.

There are several syntax transformations:

1. INCLUDE phrases are expanded by replacing them by the message list
of the named protocol.

2. Infix arithmetic operators are converted to functional form.

3. cat and con applications are made binary by assuming right associa-
tivity.

4. Uses of % are checked and lifted to the top level of each term. The
function symbol for % is lowe.

5. Role constants are created for participating principals.

6. DENOTES equations are inserted where necessary. This is covered in
more detail in the next subsection.

3.2.3 DENOTES Processing

The idea behind DENOTES processing is to insert an equational action into
the message list when a variable with a DENOTES equation is seen for the first
time by each principal. These modifications are made in abstract syntax to
the parse tree, rather than to the original CAPSL text.

Suppose that the specification contains DENOTES X = f(Y) : A, and that
the first reference to X by A is in an action, say Z = g{X). This is the
simplest case, and the equation for X is placed just before the action.

Even in this simplest case, we must consider that Y might have a DENOTES
definition, and its use will recursively require the insertion of its equation,
and so on. This concern is handled by (1) requiring that DENOTES equations
be placed in logical order, so that, in this case, the equation for Y comes
before the equation for X; and (2) processing the DENOTES equations in re-
verse order, so that the equation for Y will be inserted before the previously
inserted equation for X.

34

Suppose the first reference to X by A is in a transmitted message, say A ->
B: Y, X. As in the case of of an action, we place the equation for X just
before the message.

Suppose the first reference to X by A is in a received message, say B ->
A: Y, X. Then we cannot place the equation before the message, because it
would be executed by B rather than A.

What we do, instead, is (1) replace X in the message by the right side of the
equation, f(Y), and then (2) insert the equation for X after the message.
This is equivalent to having written

B -> A: Y, f(Y);
X = f(Y);

3.3 Abstract Rule Generation

The core of translating CAPSL to CIL is the creation of rewrite rules from
messages and actions. To create rules successfully for a message, the message
must be implementable. Two issues for implementability are invertibility and
computablitity of message fields.

Each message gives rise to at least two transitions, one for the sender and
one for the receiver. With respect to the sender, the translator must check
whether the sender is capable of computing all the message fields-that is,
whether the message is computable. For a message to be computable, the
sender must hold the variables mentioned in it and be able to access any
private functions used.

With respect to the receiver, the translator has to test the message for
"receivability." A variable is receivable, whether it is already held or not. If
it is held, the receiver performs a comparison with the prior value. If it is
not held, it is learned, and a slot in the state is created for it. In the case of
a functional term, receivability means that the term is either computable,
so that the receiver can compare the received value to its own locally stored
or recomputed value, or it is invertible, so that the receiver can decompose
it, and then test or store or further decompose each extracted subterm.

The algorithm for generating rules, with definitions for computability and
invertibility, is given in this section. For purposes of presenting the algo-
rithm, we regard the translator as a finite-state machine. Its state is a set

35

of role states, its inputs are the messages in the message list, presented in
order, and its outputs are the generated rules.

3.3.1 Translator State

The state of a role is represented by a term S(p, n, x) where p is a protocol
variable of type Principal, n is a state number, and x is a sequence of terms
held by p. Most of the terms in x are protocol variables, but compound
terms may be present as well.

Before any message is processed, the initialization rules are generated, one
for each role in the protocol. The initial role state for p has n = 0 and a
sequence x that begins with p and also includes any variables declared as
held by that principal in the ASSUMPTIONS declaration.

For our purposes in describing the translation, we represent a message as a
term M(p,q,tVor) where p and q are the variables representing the sender
and receiver of the message, and t%r shows the sender's version t of the
message content and the receiver's version r. In CAPSL, a message can have
several fields, but for simplicity we assume here that t and r are single terms.
If the message has more than one field, its content could be represented as
a concatenation of these fields.

3.3.2 Computability and Receivability

We begin with some necessary terminology. In general, a boldface symbol
is a sequence, sox = x\, ...,xn for some n. In some contexts we will also
use x to refer to the set of its components. R(p) denotes the symbol of type
Role which corresponds to a symbol p of type Principal.

Accessibility. A function /(y) is p-accessible if / is not private (does not
have the PRIVATE property) or / is private and y\ = p.

Computability. In defining computability of a term, we assume that some
terms are held-this is the set G-and we derive the set of additional variables
X that are needed to compute the term. The principal p is mentioned only
because of the need to test accessibility.

t is p-computable given G with X if

1. t € G and X = 0 or

36

2. t is a protocol variable and t £ G and X — {£} or

3. t = /(y), /(y) is p-accessible, each yi is p-computable given G with

Xi,andX = U<-y»-

We say that t is p-computable given G if £ is p-computable given G with 0.
If Z is a set of terms, we say that Z is p-computable given G with [JteZ At
if each £ e Z is p-computable given G with ^4t.

As an example, consider t := ped(SK(yl),iV). t is ^4-computable given {^4}
with {N} because ped is not private, and, although SK is private, SK(.A) is
A-accessible.

Invertibility. To define p-invertibility, we assume that there are axioms
of the form inv(/(y),yj, Z) for some operators /, where y is a sequence of
different variables and Z is a list of terms not including yj. An invertibility
axiom states that /(y) can be inverted to compute a value for yi provided
that the values of all terms in Z are computable. For example, {X}pk(A) can
be inverted to compute the value for X given sk(A). The CAPSL concrete
syntax for an invertibility axiom uses the keyword INVERT, and in the CIL
syntax this becomes an invertible statement. Encyrption functions are
generally invertible; look at the prelude for examples of invertibility axioms
for them.

t is p-invertible at i given G if t = /(y) and invertible(/(y),y;,Z) and Z
is p-computable given G.

Receivability. If a term t is a variable or constant (a function with no
arguments), receiving it means to compare it with the terms in the held set
G and add it to G if it is not there. If t is compound, it must be either
computable or invertible, and in the latter case the components extracted
from it are received recursively. This process enlarges G to H.

t is p-receivable given G to H if

1. £ is p-computable given G and H = G, or

2. t is ^-computable given G with {£} and H = G U {t}, or

3. We have:

(a) t = /(y) is p-invertible at some j given G and

37

(b) y' is sequentially p-receivable given G to if', where y' is the
maximum subsequence y^, ...,yjfc such that t is p-invertible at ij
given G, and

(c) if t is p-computable given H' then H = H' else H = H' U {£}.

Sequential receivability expresses the notion that variables learned while
receiving a message can be used to compute terms received later in the
same message.

y = yi,...,yn is sequentially p-receivable given G to Hit, for j — 1, ...,n, j/j
is p-receivable given Gj to Hj, where Gj = H.j-\ and HQ = G and Hn — H.

The success or failure of the sequential receivability test depends on the
order of the sequence of terms, since the held set G is augmented as part
of the process. A more forgiving definition would be able to rearrange the
order to find one that works, and it could be implemented by making several
passes over the sequence.

As an example, consider t := ped(sk(^4), N). t is B-receivable given {^4} to
{A, N, t}. Upon receiving t the agent in role B not only learns the nonce N
but also the whole term t since t is not .B-computable given {A, N}.

3.3.3 Message Rules

A message M(p,q,t%r) gives rise to two protocol rewrite rules, one for p
to send the message t, and one for q to receive r. Each protocol rewrite
rule is generated by a translator state transition. A transition associated
with sending the message affects only the sender-role state, and the one
associated with receiving the message affects only the receiver-role state.

A schema is a way of presenting a set of translator transitions in a parame-
terized form, independent of the particular state number and term sequence.
There is a Send schema for the sender-role transition and a Receive schema
for the receiver-role transition. A schema may specify conditions on the
state transition; if they are not satisfied, the transition fails, and so does the
translation. A schema ends with a protocol rewrite rule.

The Send schema says that if the message is computable, possibly with a
set of new variables, the sender can transmit the message. The sender must
also hold the identity of the receiver.

38

Notation. If A is a set of variables, A consists of the elements of A written
as a sequence, in some arbitrary but consistently chosen order.

In the Schemas below, a variable t is called new in the current translator
state if t is a protocol variable, t is of type Nonce or has the FRESH property,
and no other principal q has t in its current state. A set of new variables is
also called new.

Send schema:
Current state: S(p, n, x)
Message: M(p,q,t%r)
Condition: q € x and t is p-computable given x with A and A is
new
Next state: S(p, n + 1, xA)
Rule: S(J?(p),n,x) —> {3A),S(R{p),n + l,xA),M(p,q,t)

The Receive schema says that if the message content is receivable with
learned terms A, the receiver accepts the message and adds the terms in
A to its state.

Receive schema:
Current state: S(q, n, x)
Message: M(p,q,t%r)
Condition: r is g-receivable given x to H and A = H — x
Next state: S(q, n + 1, xA)
Rule: S{R{q),n,x),M(U,q,r) —>• S{R{q),n + l,xA)

The receiver of a message cannot see the sender's address. Thus, we assume
an arbitrary sender variable U of type Principal.

Example. Given the translator state S(B, 2, [B, A]) and the message M(A, B,
{N}sk(A}), the new translator state is S(B, 3, [B, A, N, {JV}sk(A)]) and the
following CIL rule is generated to receive the message:

rule(facts(state(roleB,2.terms(B,A)),
msg(Z,B,terms(ped(sk(A),N)))),

idsO,
facts(state(roleB,3,terms(B,A,N,ped(sk(A),N))))).

39

3.3.4 Equational Actions

The right side of an equational action is always tested for computability.
Depending on the computability of the left side, the action is understood to
be an assignment or a test for equality. If the left side terms are con or cat,
we handle them in a particular way.

The Test schema says that if both sides of the action are computable, then
the receiver performs a test. Two rules are created for this purpose. In
the first transition the equation is added to the list of terms. If the test is
evaluated to true, then the second transition advances the state number and
deletes the equation.

Action schema (test):
Current state: S(p, n, x)
Action: t = t'
Condition: t and t' are p-computable given x
Next state: S(p, n + 2, x)
Rules: S{R{p),n,x) —► S(R(p),n + l,x(t = t'))

S(R(p),n + 1, true) —► S(R{p),n + 2, x)

The Assignment schema requires that the right side is computable and that
the left side is a protocol variable that is not held by the agent. Then the
agent can perform an assignment transition.

Action schema (assignment):
Current state: S(p, n, x)
Action: y = t'
Condition: t' is p-computable given x and y is a protocol vari-
able, y ^ x
Next state: S(p, n + 1, xy)
Rule: S{R(p),n,x) —► S(R(p),n + l,xi')

If the left hand of the action is a variable that is not held by the acting
agent, then the action is an assignment. The newly assigned term is added
to the termlist and there is an associated slot table entry that relates the

40

term to the variable y. Consequently, the next rule, if any, refers to the term
as variable y.

There are two special action Schemas in case the outmost function on the left
side is one of the two concatenation functions. If the left side of the equality
is a term using cat or con, then the action is split into two equalities, one
for each component of the concatenation.

Action schema (con):
Current state: S(p,n,x)
Action: con(y, z) = t'
Condition: t' is p-computable given x
Rules: < rules for y = head(t') >

< rules for z = tail(t') >

Action schema (cat):
Current state: 5(p,n,x)
Action: cat(y, z) = t'
Condition: t' is p-computable given x and y is atomic
Rules: < rules for y = first(t') >

< rules for z = rest(f) >

The schema for cat is more restrictive since the first operator on cat is
only defined if the first argument is an atom.

3.3.5 Subprotocols

The schema for selection says that the agent first has to evaluate the con-
dition. If the condition is true, it transitions into a new state that is the
starting state for all rules generated for the subprotocol Pi. If there are k
transitions for p in subprotocol Pi, then the p starts from state n + k + 3 in
the branch in which the condition did not hold true.

Selection schema:
Current state: S(p, n, x)
Phrase: if t then Pi else Pi

41

Rules: S(R(p),n,x) —> S{R(p),n + l,x(t = true))
S(R(p),n + l,xtrue) —► S(R{p),n + 2,x)
S(R(p),n + 1,xfalse) —► S(R(p),n + 3 + k, x)
< rules from Pi; p starts from n + 2; p has /c transitions >
< rules from P2; p starts from n + 3 + k >

States of other agents in the protocol may be changed in the invoked sub-
protocols. Thus, the next states of other agents have to be also reflected
accordingly in the branches of the selection.

3.4 Local Assertions

When initial conditions, messages and actions are converted to state transi-
tion rules and assertions are moved into a separate list, the temporal inter-
leaving of intermediate goals or idealization assumptions with the message
list must be replaced by a different kind of interleaving, which associates
them with network states. A network state is represented with a list of roles
and state labels.

For the sake of uniformity, initial assumptions are localized to the network
state in which all roles are at state zero. Assertions in the GOALS section are
localized to the network state in which all roles are in the last states produced
by the rule generation process. (Or all such last states, if branching occurs.)

A local assertion is of the (abstract) form

loc(node sequence, assertion)

where nodes have the following (abstract) syntax:

node(role, state-label)

3.5 An Attacker Model

The CAPSL translator does not generate attacker rules, because most at-
tacker rules would be standard and built into any analysis tool that needs

42

them. A standard attacker model would include an attacker memory fact
such as N(u), meaning that the attacker holds the term u. Because the
attacker can intercept any message, there could be a rule M(A,B,T) —>
N(T) and a similar rule for forging messages, N(T) —> N(T),M(A,B,T).
There would be rules for decomposing and synthesizing messages using the
available concatenation and encryption functions. A general attacker model
of this kind is described in [CDL+99].

The attacker should be able to compute the value of any function declared
in a typespec, given its arguments, except private functions. If there is a
standard ("Spy") or declared dishonest principal, the attacker can compute
that principal's private values, e.g., sk(Spy). The attacker can compute
constants, since they are simply functions with no arguments.

Connectors should generate certain protocol-specific or scenario-specific rules
for initializing the attacker, using information from the environment speci-
fication.

Initially the attacker holds all exposed terms as declared in the environment
section. For instance, in the environment used as an example in Section 2.5,
the exposed term {Bob}sk(Alice) results in a fact-generating rule for the
attacker, in CIL syntax:

rule(facts(),ids(),facts(net(ped(sk(Alice),Bob)))),

where net(...) is the CIL version N(...) above.

If a principal is exposed, then all private functions defined for this principal
are also exposed. If Mallory is a PKUser, there would be a rule

rule(facts(),ids(),facts(net(sk(Mallory)))),

for example.

Since all constants are computable by the attacker, there would be rules like

rule(factsO,ids().facts(net(Alice)))

for all principal constants named in the environment.

For purposes of inductive proof, it is simpler to assume that all principals
are held by the attacker, with a rule

43

rule(facts(),ids().facts(net(A)))

where A is a variable of type Principal. On the other hand, inductive proofs
might model the attacker in -a way that is equivalent to a rule model but
expressed quite differently, using Paulson's Analz and other set closure func-
tions [Pau98, MROO].

An environment might declare constants that are supposed to be secret,
such as nonces, session keys, and perhaps symbols defined to name long-
term secret keys using axioms. These constants can be declared with the
CRYPTO property to prevent them from being given to the attacker initially.

A protocol might include variables representing nonces that are not secret,
such as sequence numbers, or weak passwords. If these values are not pro-
tected in messages, the attacker will obtain them by eavesdropping, but if
they are protected by encryption, there will need to be further attacker rules
stating that they can be produced by the attacker, to represent guessing or
routine computations.

44

Chapter 4

Optimization of CIL Rewrite
Rules

4.1 Motivation

The basic, natural translation from CAPSL to CIL, as described Chapter 3
and [DM99a], generates two rewrite rules per message, one for the message
sender and one for the message receiver. Often, however, the transition
that receives a message and the one from the same agent that sends a reply
can be collapsed into a single transition that does both, and MSR protocol
encodings produced by hand usually have this characteristic. Successive
computations by the same agent to update or enlarge its state memory can
also be combined.

The optimization algorithm described in this chapter automatically imple-
ments the kind of rule combinations that would typically be done by hand.
Relative to the simple message-by-message translation, this reduces the
number of rules, as well as the number of states per role, by about 50%. We
show that this reduction is sound in the sense that it is attack-preserving,
by essentially the same definition used in [SS98]. The optimizing trans-
formation has been implemented as a post-processing step in the CAPSL
translator.

The number of rules has direct impact on the performance of state evalua-
tion tools such as model checkers. In the model-checking approach, a finite
instantiation of the protocol is tested for security breaches. For this purpose,

45

an exhaustive search strategy enumerates all reachable states for a given ini-
tial state and tests whether they invalidate a given security property. Even
for small protocols and very restricted numbers of sessions the number of
states explodes. This is due partly to the fact that the intruder behavior
is highly non-deterministic, and partly due to the fact that new sessions
involving legitimate principals may be created and execute asynchronously.
Thus, a linear reduction in the number of rules can reduce the number of
states to be explored by an exponential factor.

Because optimizations are performed as a series of successive rule-combina-
tion steps, there is a question as to whether the order of combination steps
affects the size of the final set of rules. We show that the optimization,
considered as a reduction system, is terminating and confluent, and hence
canonical, so that the final set of rules is unique.

4.2 Optimization Examples

We illustrate the optimization steps with the help of the NSPK protocol
given in Section 2.1.6. The following two rewrite rules represent i?'s receipt
of the first message and JETs sending of the second message of NSPK.

rulel : B0(B) M(X,B,{Na,A}pk(B)) -> Bx{B,Na,A)
rule2: Bi(B,Na,A) ->

(3Nb) B2(B,Na,A,Nb) M(B,A,{Na,Nb}pk(A))

Under the assumption that agents have a deterministic behavior, i.e., at
most one rule is applicable in each agent state, we know that after the
receiving the message from A, the only thing B can do is to reply with the
second message to A. The following optimized rule combines B's behavior
into a one-step transition in which B receives A's message and immediately
replies to it:

rulel, 2 : B0(B) M(X,B,{Na,A}pk(B)) ->
(3Nb) B2(B,Na,A,Nb) M(B,A,{Na,Nb}pk(A))

When the two rules are combined, the original pair of rules is deleted. Op-
timization occurs only when there is no other way to enter state B\, so in
effect state B\ is also eliminated.

46

Combining the rules in this example is straightforward since the right-hand
side of the first rule and the left-hand side of the second rule are identical.
More generally, for two rules R and R! to be optimizable it is necessary
(though not sufficient) that the state fact on the right-hand side of R is an
instantiation of the state fact on the left-hand side of R'. The next example
illustrates this.

For the sake of this example, replace the message B -> A: {Na,Nb}pk(A)
message in NSPK by a sequence of two actions, an assignment and a message
transmission, so that the message list is:

MESSAGES
A -> B: {A,Na}pk(B);

T = -[Na, Nb};
B -> A: {T'/.{Na,Nb}}pk(A);
A -> B: {Nb}pk(B);

This message list yields the following CIL rules for B transitions.

rule! : B0(B) M(X,B,{Na,A}pk(B)) -> B^B^N^A)
rule2: Bi{B,Na,A) -»•

(3Nb)B2(B,Na,A,Nb,{Na,Nb})
rule3 : B2{B,Na,A,Nb,T) ->

B3(S,iVa,A,iVfc,T) M(B,A,{T}pk(A))

In this case, besides combining rule! and rule2, we can also combine rule2
and ruleS, since B2(B, Na, A, Nb, T) can be instantiatiated to B2(B, Na, A, Nb,
{Na, Nb}) with the substitution T i-> {Na, Nb}. Thus, we can optimize these
rules to

rule2,3: Bi(B,Na,A) ->■
{3Nb) B3(B,Na,A,Nb,{Na,Nb})

M(B,A,{Na,Nb}pk(A)).

Attack Preservation. In order to assure that our optimization technique
is attack-preserving, we need to make further restrictions on the form of
optimizable rules. For a pair (R, R') of rewrite rules to be combined, we
require that the second rule has no messages on the left-hand side. We
show with the help of a simplified example that allowing a message on the
left-hand side of the second rule is unsafe.

47

Assume the following two rewrite rules for an agent in role B.

rulel : B0(B) -> Bi(B,B)
rule2 : Bi(B,B) M{A,B,sk(B)) -»• B2{B,B)

Since the state predicate B\(B, B) occurs in both rulel and rulel one might
be tempted to optimize these rules to

rulel,2 : B0(B) M(A,B,ak(B)) -> B2(B,B).

Assume furthermore that M(A, £?, sk(B)) is an impossible message, because
B never transmits sA;^, and that B\ is a state in which a protocol invariant
fails, perhaps because it requires that the first two components of B's state
must be different. Thus, the failure state is reachable in the original protocol
specification, but since B\ has been deleted by optimization and B2 cannot
be reached since M is impossible, the attack state is no longer present in
the optimized protocol. This is why the left-hand side of the second rule is
not allowed to have messages.

Name clashes. Before we can formally define the optimization of two
rewrite rules, we have to deal with variable name clashes. In order to
avoid accidentally introducing bindings between variables, we apply renam-
ing functions. The following example illustrates the need for renaming.

Assume the following two rules which accidentally use the same variable X:

rulel : B0(B) M(X,B,A) -> Bi(B,A)
rule2: BX{B,A) -> (3X) B2{B,A,X).

These rules are optimizable. The variable X is used in both rules, though
there is no relation between the variable X of rulel and the variable X
of rule2. To avoid introducing a binding between these two independent
variables, we rename X of rule2 to X' in the optimized rule. Thus, the
optimized rule for rulel and rule2 is

rulel,2: B0{B)M{X,B,A) -> {3X') B2(B,A,X').

The coincidence of variables B and A in the two rules is not a problem
because the need to unify the B\ facts in the two rules determines the
appropriate substitution for them.

48

4.3 Optimization Steps

As intuitively illustrated in the previous section some restrictions on rules
are necessary to guarantee an attack-preserving optimization. In summary,
we only consider rules that describe asynchronously communicating, deter-
ministically behaving agents, where each agent state is generated by at most
one rule.

Local rule. For optimizations we deal only with local rules, in which only
one state fact appears on the left and one on the right of the rule. The
rules that arise from protocol transitions in an asynchronous environment
are normally local, since only one agent changes state at a time.

A rule is local if it is of the form

R : F M -)• (3V) F' M'

where F, F' are state facts for the same role, and M and M' contain no
state facts. Sets of variables and multisets of facts are denoted in bold-face
letters.

Deterministic rule. States that are optimized away have to be determin-
istic in both directions. The first rule of an optimized pair needs a backward
deterministic state on the right, while the second rule needs a forward de-
terministic state (the same state) on the left.

A state Ai is forward deterministic in 1Z if there exists at most one rule in
TZ with a fact of that state on its left-hand side. A local rule is forward
deterministic if its state is forward deterministic.

A state A{ is backward deterministic in 11 if there exists at most one rule in
11 with a fact of that state on its right-hand side. A local rule is backward
deterministic if its state is backward deterministic.

A state A{ is deterministic in 11 if it is both forward and backward deter-
ministic.

Optimizable pair of rules. In the following definition of optimizable pairs
of rules, Vars(G) is the set of variables occuring in G.

Given a pair of local rules (R, R') in 1Z of the form:

Ä:FM!4 (3Vi) G M2

R': G'-> (3V2) # M3

49

Then the pair (R,R') is a-optimizable if

1. R and R' are local on the same role

2. There are no variable name clashes between R and R'

3. There exists a substitution a on Vars(G') such that G'/a — G

4. The state of which G is a fact is deterministic.

As mentioned before, name clashes have to be resolved before our optimiza-
tion technique is applied. Name clashes can always easily be resolved by
renaming variables. In section 4.5 we describe how variable renaming can
be efficiently realized for CIL.

Optimization step and optimized rule. We now can present the defi-
nition of the optimized rule for an optimizable pair of rules.

Given a pair (R, R') of a-optimizable protocol rewrite rules of the form:

R-.FMx-* (3Vi) G M2

R' : G' -> (3V2) H M3

then an optimization step removes R, R' from TZ and replaces them with
R° = opt{R,R'), defined as

R° : F Mi -> (3Vi V2) M2 {H Ms)/a.

4.4 Properties of Optimization

We show that optimization is sound in the sense that it is attack-preserving.
We also show that, under additional assumptions, it delivers a unique set of
optimized rewrite rules regardless of the order in which optimization steps
are applied. Detailed proofs can be found in [DMKFGOO].

Protocol Security Invariants
Before we go into the details of the proof, we make some observations about
protocol properties. Like Shmatikov and Stern [SS98], we only deal with
protocol security properties that are invariants; that is, they are properties
of the global state that are supposed to hold for all reachable states.

50

Furthermore, the invariants depend only on state facts and intruder memory,
not on message facts. Secrecy invariants state that the intruder memory does
not contain certain terms (which appear in the state memory of some honest
principal), and other security properties such as agreements and precedence
refer only to state facts. As pointed out in [SS98], if a security invariant is
false, it remains false if the intruder's knowledge increases. They called this
property monotonicity of invariance.

We make use of a more general characterization of security invariants. In
protocols that can be expressed in CAPSL and translated to CIL, state
memory is monotonic for honest principals as well. Once an honest agent
holds a value for a protocol variable (associated with an argument position
in its state memory), that value never changes. It follows that invariants
that depend only on the global state cannot change their truth value once
the relevant variables have become defined for a given agent. In particular,
if a state invalidates a protocol invariant, every successor state will violate
this invariant as well. We refer to this property as persistence of violations.

4.4.1 Soundness

Our soundness argument reasons about the state graph {S,T) of a rule set.
The nodes of this state graph are the possible global states (multisets of
ground facts) S of the protocol. The graph has directed, labelled transitions
(edges) T consisting of pairs of states related by the instantiation of a rule,
which labels the transition. A state is reachable if there is a sequence of
transitions to it from the empty multiset, which is the initial state. We will
refer to a state graph simply by its transition set T, since one can find all
reachable states in it.

For example, the transition s —► s' means that there exists a rule R : F -»■
(3V) G and a substitution a such that F/a is a subset of s and the resulting
system state s' is derived from s by replacing the multiset of ground terms
F/a with the multiset of ground terms G/a. (The substitution a assigns
unused values to the variables in V.)

Optimization steps eliminate two rules and replace them with a new com-
bined rule. This changes the state graph by eliminating those transitions
labelled with instantiations of the eliminated rules, and adding new transi-
tions made possible by the new combined rule. The new state graph has the
same set of states, but some of the states have become unreachable because

51

some local states have been optimized away.

Attack preservation. An optimization step taking T to T' is attack-
preserving if, for any security invariant <p, and any state s reachable in T
that violates <p, there is a state s' reachable in T" that also violates (p.

Theorem 1 Optimization steps are attack-preserving.

In the proof of the above Theorem we make use of a lemma that shows
that a transition instantiating the second rule R' of an optimizable pair
(R,R') commutes with any other transition in T. The basic idea is to
show that if a state violating a security invariant is reachable with a path
that includes transitions due to one or both of the rules that have been
eliminated by the optimization step, then that state is reachable using an
alternate path that uses the new rule resulting from the optimization. The
alternate path is constructed using commutativity properties implied by the
lemma. Sometimes, one cannot reach the original violation state, but then
one can reach another state reachable from the violation state, which must
be a violation state by the persistence-of-violations assumption.

4.4.2 Termination and Uniqueness

The motivation for optimization is to reduce the number of states in order
to speed up state evaluation tools such as model checkers. Our proposed
optimization technique consists of single optimization steps performed in
sequence. For analysis tools it is of importance whether the order in which
optimization steps are performed has an impact on the final set of rules or
on the final number of rules. We will show that optimization is terminating
and delivers a unique result.

Optimization can be understood as a rewrite system in which a set of rules (a
term) is rewritten to an optimized set of rules (another term). A well known
result in the theory of rewrite systems says that a term has a unique normal
form (i.e., it cannot be further rewritten into another term) if the rewrite
system is canonical (for details see for instance [Sny91]). For a rewrite
system to be canonical it has to be noetherian and confluent. Noetherian
systems have no infinite sequences of rewrites. A rewrite system is termed
confluent when for any term which can be rewritten into two different terms
via several rewrite steps, there exists a common reduction term.

52

We show that our optimization process, understood as a rewrite system
tranforming between sets of rules, is canonical. That means that optimiza-
tion is a terminating process which delivers a unique set of rules as result.
Therefore, speaking in terms of the associated state graphs, the original
state graph T and the fully optimized state graph T", we can infer that T" is
uniquely determined. For practical purposes that means that applying the
optimization steps proposed in this paper in any order always leads to the
same optimized state graph which can be used for security analysis.

Theorem 2 Given a state graph T, then there exists a uniquely determined
fully optimized state graph T'.

In order to prove termination and uniqueness of optimization we make use
of two lemmas. The first one states that a rule is optimizable with at most
one rule to the right (in an optimizable pair) and at most one rule to the
left.

Using this lemma, we can argue that a given set of rules can be arranged
into a totally ordered list of rules such that two rules are optimizable only if
they are adjacent (but adjacent rules do not necessarily form an optimizable
pair). In the following we refer to such a list as list of optimizable rules.
We show that optimization steps are locally confluent. That means one can
always reach a common list of rules after two optimization steps (generally,
local confluence allows for more than two rewrite steps).

The second lemma is concerned with local confluence. It states that if two
optimization steps involve different optimizable pairs of rules, then they are
commutative. That is, they might be executed in either order and the order
has no effect on the resulting list of rules. If two optimization steps have
a common rule, then after one optimization step the other optimization
step is no longer applicable since the rule which both steps had in common
has been deleted. But the new optimized rule can be taken for another
optimization step to yield a common list of rules. Moreover, the optimization
relation between rules is preserved. In summary, we show that performing
optimization steps on a list of optimizable rules satisfies the following two
conditions.

1. Performing an optimization step rewrites a list of optimizable rules
into another list of optimizable rules. Assume in the original list the
pair (Äi,i?2) has been optimized to R°, then R° is optimizable to

53

the left with whatever rule Ri was optimizable to the left, and R° is
optimizable to the right with whatever rule R2 was optimizable to the
right.

2. Moreover, we show that optimization steps are locally confluent. That
is, given a list of optimizable rules that can be rewritten into two
different list of optimizable rules, we can always perform one more
optimization step in order to reach a common list of optimizable rules.

Since the set of rules is finite and each optimization step reduces the number
of rules by one, the optimization process is terminating. Therefore, the
optimization process describes a rewrite system that is noetherian. A well
known result in the theory of term rewrite system says that a system is
canonical if it is noetherian and confluent. A noetherian system is confluent
if and only if it is locally confluent. Thus, using the local confluence Lemma
concludes the proof of Theorem 2.

4.5 Implementation

A CIL rewrite-rule optimizer has been implemented in Java and is applied as
a post-processing step in the CAPSL-CIL translator. It is publicly available
together with the CAPSL parser, type-checker and CAPSL-CIL translator
at the CAPSL web site [MilOOb].

The optimizer starts reading a CIL specification and checks pairs of rewrite
rules for optimizability. In order to decide whether two rules are optimiz-
able, the optimizer needs to access information from the CIL specification.
In particular, in order to decide whether two state facts are optimization
compatible, the types of symbols are checked. This way we can guarantee
that a proper substitution mapping between state predicates exists. More-
over, the optimizer needs to access assumptions and goals in order to check
that the states to be eliminated are not named in goals and assumptions.
As long as two optimizable rules are found, the optimizer computes the op-
timized rule, deletes the original rules and adds the new optimized one to
the rule set.

Variable Renaming. In previous sections we mentioned the problem of
name clashes. The simple-minded solution is to rename all variables in one
of the rules in an optimizable pair to new variables. For instance, given the
optimizable rules

54

rulel : B0(B,A) M{X,B,A) -> (3X)Bl(B,A)
rule2: Bi(B,A) -> (3X) B2(B, A,X)

we could rename the variables B, A, and X of rulel using the renaming map
B^B',A^A',X^X':

rulel : BX{B\A') -*• (3X') ß2(ß', v4',X')

Now, the rules do not have any variable names in common and we may
optimize them obtaining

rulel,2 : B0{B) M{X,B,A) -> {3X') B2(B,A,X').

As one can observe, some of the renamed variables are mapped back to
their original name due to the given substitution map a. For instance,
in the example above B' has been mapped back to B using a. Thus, a
more efficient solution for eliminating name clashes is to only rename those
variables which are not mapped by the substitution mapping a.

Let (R, R') be an optimizable pair of protocol rewrite rules

R:FMt^ (BVx) Pn{x) M2

and
R' : Pn(y) -» (3V2) G M3

where F,G,Pn(x),Pn(y) are state facts, x = x\...xr, y = y\...yr, and
Mi,M2,M3 are multisets of message facts. Let W and W be the set of
variables occurring in R and R' respectively.
The optimum of R and R', R°, is computed by the following algorithm:

1. E = {xi | Xi = yi A i = 1,... ,r}

2. C = {u\u(=W Au€W' AugE}

3. Mren = {u M- u' | u € C A u' $ (W U W')}

4. itren = -K /M.Ten

Let Rren = Pn&) -> (3V2) G' M^

5. Msubst = {y't*-* Xi\y'i^xiAi = l,...,r}

55

6. R° : P Mi -»• (3Vi V'2) M2 (C M'3)/MSIi6s()

7. The symbol table of the CIL specification is updated with all newly
introduced variables.

C represents the set of variables which may cause a clash. The variables in
C are renamed in R' with new variables using the renaming map Mren. The
optimum is now computed using the new rule Rren- At last, new variables
are introduced in the symbol table.

We have applied the optimizer to several protocol specifications. The CAPSL
specifications of the protocols may be found at our web site [MilOOb]. The
CIL specifications were generated using the publicly available CAPSL-CIL
translator. Table 4.1 shows the results. The reduction ratios clearly show

Protocol # Input Rules # Output Rules Reduction Ratio
NSPK 7 5 28.57%
EKE 14 6 57.14%

Otway 9 6 33.33%
WMF 5 4 20%
SRP 19 8 57.89%
SSL 29 11 62.07%

Voucher 10 5 50%

Table 4.1: Reduction ratio of CIL rules

that the optimizer may reduce the number of rules significantly. This way,
the performance of verification tools, such as finite-state exploration tools,
can be drastically increased.

56

Chapter 5

Analysis Tools

Integration of CAPSL with protocol analysis tools includes two principal
activities: development of connectors for interfaces from CIL to existing
tools, and development of analysis techniques using general-purpose tools
that can be adapted for this purpose. In particular, PVS can be applied to
construct inductive proofs of protocols, and Maude can be used as a model
checker with a suitable meta-level search strategy.

Connectors are being written to integrate CIL with a variety of formal se-
curity analysis tools, not only PVS and Maude, but also Athena [Son99,
MilOOa]. In this section we describe the analysis techniques developed for
the application of PVS and Maude. Before doing so, we summarize the
common features of the connectors developed for PVS, Maude, and Athena.

5.1 Connector Design

Each connector has to fulfill the following two characteristics:

Syntactical and semantical correctness. One has to decide which CIL
pieces are necessary for the translation into the targeted tool, and
how they are translated. The resulting specification needs to meet
all syntactical requirements of the target language and the translation
has to express CIL constructs in a way that fits with the semantics
of the analysis tool. In some cases CIL constructs can be translated
in a straightforward fashion into concepts of the target language, in

57

other cases the connector translation re-interprets CIL constructs and
expresses them via appropriate (combinations of) language constructs
of the target language.

Practicability. Though there might exists an obvious translation into the
language of the analysis tool, the resulting specification might not be
in a format that supports efficient and practical analysis. For instance,
executability, non-determinism, and performance aspects of the trans-
formed specification have to be taken into consideration. The connec-
tor algorithm might need to perform alterations or optimizations in
order to meet these criteria.

In order to accomplish these objective, certain issues must be addressed:

- The translation strategy for transition rules

- Initialization

- Type and function limitations

- Goal generation

- Software engineering considerations for expediting connector writing.

The translation strategy is different for each tool, and generally it is not too
difficult, due to the functional congruence between CIL rules and most tool
transition rules.

Intialization refers to the transfer of protocol-specific declarations into the
language of the analysis tool, as well as the generation of any protocol-
specific attacker rules.

Tools are sometimes limited with regard to the set of datatypes and functions
with which they can deal effectively. The connector must resolve incompati-
bilities between the tool's vocabulary and the typespecs provided in CAPSL
by the prelude and the user.

The CAPSL translator passes goal statements on almost unchanged to the
connector, which must do the best it can to generate tool-specific versions
of those goals.

Given that we have written three connectors and expect that others will be
written, we have attempted to make the common features as transferable

58

as possible. There is fairly good support for writing connectors in Java.
There is a Java class to parse the CIL output into a labelled tree structure,
using another Java class defining the labelled tree type. The user-invoked
connector class is typically a short standard program that invokes the parser
and passes the parse tree to a workhorse translator class.

The parser and tree class can be re-used as is, and the user-invoked connector
class of one connector is only a few lines different from that of another. The
workhorse translator class is, of course, tool-dependent, but it can make good
use of the tree-manipulating functions provided. Programming a connector
in this environment is much like LISP programming.

5.2 PVS

The PVS specification and verification environment was developed at SRI
and has been applied to many different design problems for high-assurance
hardware and software [ORS92]. Our approach to using PVS for crypto-
graphic protocol verification began with Paulson's trace model [Pau98].
We then modified and further developed the approach to work with a state-
based model which is more compatible with the one built into CIL.

While the summary of our PVS approach in this section is intended to
be readable without a prior background in the application of PVS, some
experience with PVS would be necessary to put it into practice.

While the protocol modeling approach and the inductive proof technique
apply to both secrecy and authentication goals, the main emphasis of this
section lies in the description of our formalization of the secrecy theorem
published in [MROO]. This theorem reduces secrecy proofs for protocols to
first-order reasoning; in particular, discharging these proof obligations does
not require any inductions. The trick is to confine the inductions to general,
protocol-independent lemmas, so that the protocol-specific part of the proof
is minimized. Moreover, secrecy protocols are modularized in the sense that
there are separate verification conditions for each protocol rule.

We illustrate the encoding of specific protocols in our model using the
Otway-Rees protocol [OR87]. We do not, however, go into details of proofs,
since they are mostly straightforward adaptations of the ones stated in [MROO].

In order to formulate our results, we borrow the notion of ideals on strand
spaces [THG98], and we show how this concept is useful in a state model

59

context for stating and proving secrecy invariants. We show how the com-
plement of an ideal, which we call a coideal, serves as a catalyst to apply
Paulson's calculus-like set operators. Our protocol model is also unusual in
that message events are interspersed with "spell" events that generate the
short-term secrets in a session and specify which principals are supposed to
share them.

Besides proving secrecy results of standard benchmark protocols like the
Otway-Rees and the Needham-Schroeder (public key) protocols, our meth-
ods have been applied successfully (by B. Dutertre of SRI International) in
the process of verifying the group management services of Enclaves [Gon97].

5.2.1 Modeling

The modeling task begins by defining the primitive data types that may
occur as message fields: agents, keys, and nonces. This choice of primitive
types is derived from Paulson's approach, and the PVS connector has to
convert CAPSL types into these, such as from Principal (and all subtypes)
to agent.

These sets of objects belonging to these primitive data types are assumed
to be disjoint, and they are all subtypes (subsets) of the field type field.
They are modeled as abstract datatypes in PVS.

An agent is either an 'ordinary' user, a dedicated server Srv, or the sup-
posedly malicious Spy. Each agent A has some long-term keys: a public key
Pub (A), a corresponding private key Prv(A), and a symmetric key Shr(A).

Message fields are divided into primitive and compound fields. The primi-
tive fields containing agents, nonces, and keys are constructed as Agent (A),
Nonce (N), and Key(K). (The PVS conversion mechanism is used to suppress
these injections in the sequel.) Compound fields are constructed by concate-
nation or encryption. The concatenation of X and Y is the term X ++ Y. The
encryption of X using the key K is Encr(K,X), regardless of the type of key.
The possible message fields are elements of the datatype field.

Agents and compound fields are never designated as secret by policy, though
some compound fields may have to be protected to maintain the secrecy of
some of their components. Thus, we define basic fields as nonces and keys,
which are the kinds of primitive fields that may be designated as secret
according to policy. The PVS definition of the membership predicate basic?

60

is shown below.

basic?: set[field] = union(Nonce?, Key?)

As a notational convention, variables A, B and variants always stand for
agents; K and variants always stand for keys; and N and variants are always
nonces. X, Y and Z are arbitrary fields.

Each key K has an inverse.

inv(K): key =
CASES K OF
Pub(A): Prv(A), Prv(A): Pub(A),
Shr(A): Shr(A), Ssk(A): Ssk(A)

ENDCASES

Thus, both Shr(A) and Ssk(A) are symmetric. The special agent Server is
assumed to hold the symmetric (and thus, shared) key Shr(A) of any agent
A.

There are three kinds of events: messages, spells, and state events.

event: DATATYPE
BEGIN

MsgCCont: field): Msg?
Cast(Secrets: set[(basic?)], Cabal: set[agent]): Spell?
State(Role: nat, Label: nat, Memory: field): State?

END event

Messages are essentially Paulson's Says events, and the content of a message
event is a field. We do not need to refer to the sender and receiver of
a message. A spell generates certain session-specific primitive fields and
designates them as secret. A spell is an event Cast(S, C), where S is a set
of short-term basic fields called the book, and C, the so-called cabal, is a set
of agents who are permitted to share the secrets in S.

As a notational convention, we use E (and variants) to denote events, while
M is a message and C is a spell.

61

A global state is simply a collection of events. Notationally, variants of H are
global states. We shall see later that states reachable by a protocol contain
messages in transit and local states of agents participating in the protocol.

global: TYPE = set[event]

We extend the notion of a content to global states in the natural way. Spells
and state events do not contribute to the content. Similarly, the secrets of
a state are obtained as the basic fields of the secrets of its cast events.

sees(H)(X): boolean =
EXISTS (M: (Msg?)): member(M.H) & Cont(M) = X

secrets(H)(X): boolean =
EXISTS (C: (Spell?)):
member(C,H) & basic?(X) & member(X,Secrets(O)

5.2.2 Inductive Relations

The fundamental operations on sets S of message fields, as introduced by
Paulson, are Parts (S), Analz(S), and Synth(S).

Briefly, Parts(S) is the set of all subfields of fields in the set S, including
components of concatenations and the plaintext of encryptions (but not the
keys). Note that if member (X, Parts({Y})), then X is a subterm of Y, in the
sense of [THG98], written X <= Y. The subterm relation is a partial order.

Analz(S) is the subset of Parts(S) consisting of only those subfields that
are accessible to an attacker. These include components of concatenations,
and the plaintext of those encryptions where the inverse key is in Analz(S).

Analz(S)(X): INDUCTIVE bool =
S(X)

OR (EXISTS Y: Analz(S)(X ++ Y))
OR (EXISTS Y: Analz(S)(Y ++ X))
OR (EXISTS K: Analz(S)(Encr(K, X)) AND Analz(S)(inv(K)))

The intruder in our model synthesizes faked messages from analyzable parts
of a set of available fields. This motivates the definition of f ake(S).

62

Fake(S): set[field] = Synth(Analz(S))

Fake.Parts: LEMMA Parts(Fake(S)) = union(Parts(S), Fake(S))

5.2.3 Ideals and Coideals

If the spy ever obtains some secret field X, it can transmit X as the content
of a message. Thus, our secrecy policy is that if the message with content
X occurs in some trace, then NOT member(X,S), where S is a set of basic
secrets.

The invariant that we will actually prove is that NOT member (X, Ideal (S)),
where Ideal (S) is the ideal generated by S: the smallest set of fields that
includes S and which is closed under concatenation with any fields and under
encryption with keys whose inverses are not in S. Here, Ideal (S) is the k-
ideal 4 [S] from [THG98] where k is the set of keys whose inverses are not
in S.

With our choice of k, the ideal is defined as follows:

Ideal(S)(X): INDUCTIVE boolean =
S(X)

OR (EXISTS Y, Z: X = Y ++ Z & (Ideal(S)(Y) OR Ideal(S)(Z)))
OR (EXISTS Y, K: X = Encr(K, Y) & Ideal(S)(Y) & NOT S(inv(K)))

Under the assumption that any term not in the ideal may be already com-
promised, it is necessary to protect this whole ideal, because compromising
any element of the ideal effectively compromises some element of S. It turns
out that protecting this ideal is also sufficient.

The complement of and ideal, which we call a coideal, is denoted by Coideal (S).
This defines the set of fields that are public with respect to the basic secrets
S, i.e., fields whose release would not compromise any secrets in S.

The property that makes the notion of "coideal" worth defining is that
coideals are closed under attacker analysis, thereby implying that protection
of the ideal is sufficient.

Analz_Closure: LEMMA Analz(Coideal(S)) = Coideal(S)

63

Synth.Closure: LEMMA subset?(S,(basic?)) =>

Synth(CoideaKS)) = Coideal(S)

5.2.4 Protocols and Secrecy

A protocol specifies which messages or spells can be added to a global state.
A secret in a spell book must be unused in the prior state, in the sense that
it is not a part of any message content and it has not occurred as a secret
in a prior spell.

unused(H: global)(X: field): boolean =
basic?(X) & NOT(Parts(sees(H))(X)) & NOT(secrets(H)(X))

A protocol rule is a triple consisting of a pre- and a post set of events and
a set of nonces. Intuitively, such a rule is applicable in some global state H
if the pre events are a subset of H and if the nonces in the rule are unused
in H. A rule fires by deleting the pre events from the state and adding the
post events.

rule: TYPE =
[# Pre: set [event],

Nonces: set[(basic?)],
Post: set[event] #]

There are several local conditions on protocol rules. First, there is at most
one spell in the post, and a cast and a message event may not occur simul-
taneously in the post. Second, all secrets of casts in the post must be subset
of the rule nonces. Third, regularity states that whenever a longterm key
K is neither in the parts of the content or the memory of the pre then it is
also not in the parts of the content or the memory of the post.

single_spell(post: set[event]): boolean =
FORALL (C, Cl: (Cast?), E: (Event?)):

(member(C, post) & member(Cl, post) => C = Cl)
& (member(C, post) & member(E, post) => NOT Msg?(E))

64

fresh(Ns: set[(basic?)], post: set[event]): boolean =
FORALL (C: (Cast?)): member(C,post) => subset?(Secrets(C),Ns)

regular(pre, taul): boolean =
FORALL(K: longterm) :

(NOT(Parts(sees(pre))(K)) & NOT(Parts(memory(pre))(K)))
=> (N0T(Parts(sees(post))(K))

& N0T(Parts(memory(post))(K)))

It is usually straightforward to check that rules of a specific protocol obey
these conditions. Usually, we (mis)use the PVS prover to automatically
check these static conditions.

Rules that satisfies the conditions above are collected in the type protocol.

protrule(rl: rule): boolean =
single_spell(Post(rl))
& fresh(Nonces(rl),Post(rl))
& regular(Pre(rl),Post(rl))

protocol: TYPE = set[(protrule)]

A protocol P and a given set of initial knowledge I (of the spy), a global I-
extension is a binary relation of states. This relation determines a transition
system. An extension is either honest, i.e. it corresponds to a move by a
player following the rules, or it is faked by the spy. As usually, the spy is
reduced to add only messages with a content that can be inferred from the
content of the current state and the initial knowledge.

honest(P: protocol)(H, HI): boolean =
EXISTS(rl: (P)):

subset?(Nonces(rl), unused(H))
& subset?(Pre(rl), H)
& HI = union(Post(rl), difference(H, Prestates(rl)))

faked: set [field]) (H, HI): boolean =
EXISTSU: (Fake (union (sees (H), I)))): HI = add(Msg(X) , H)

65

global_extension(P: protocol, I: set[field])(H, HI): boolean
= honest(P)(H, HI) OR fake(I)(H, HI)

We need some further concepts before stating our secrecy theorem. The
basic secrets associated with a spell include not only the elements of the
spell book but also the long-term secrets of the agents in the cabal.

ltk(C: (Cast?))(X: field): boolean =
Key?(X)

& longterm(VaKX))
& EXISTS(A: agent): Q(A)(Val(X)) & Cabal(C)(A)

basic_secrets(C)(X: field): boolean =
basic?(X) AND (Secrets(C)(X) OR ltk(C)(X))

A spell is compatible with an initial knowledge set that does not compromise
its associated basic secrets, or mention the short-term secrets in its book.

compatible(I: set[field])(C: (Cast?)): boolean =
disjoint?(basic_secrets(C), Parts(D)

The set of reachable states H is defined in the usual way using a least fixed-
point definition.

reachable(P, I)(H): INDUCTIVE boolean =
empty?(H) OR (EXISTS (G: global):

reachable(P, I)(G)
& global_extension(P, I)(G, H))

A protocol is secure with respect to its secrecy policy and the spy's ini-
tial knowledge I if every reachable state it generates is secret-secure. This
property, for traces, was called "discreet" in [MROO].

secret_secure(I: set[field])(H: global): boolean =
FORALL C: compatible(I)(C) & H(C)

=> subset?(sees(H), Coideal(basic_secrets(C)))

66

The secrecy proof for a protocol has a protocol-independent part and a
protocol-dependent part. The protocol-dependent part is expressed by the
occultness property defined below. It says that if the prior state is secret-
secure, the next message event generated by the protocol does not compro-
mise a secret. This has to be proved individually for each protocol. This
protocol property was called "discreet" in [MROO].

occult(P: protocol): boolean =
FORALL (I: set[field], H: global,

C: (Cast?), rp: (protrule)):
reachable(P, I)(H)

& secret_secure(I)(H)
& compatible(I)(C)
& H(C)
& subset?(Pre(rp), H)
k P(rp)
=> subset?(sees(Post(rp)),Coideal(basic_secrets(C)))

The protocol-independent part of a secrecy proof is the Secrecy theorem. It
only has to be proved once.

secrecy: THEOREM
occult(P) => subset?(reachable(P, I), secret_secure(I))

The proof of this theorem is along the lines of the proof in [MROO] for proving
a secrecy theorem for trace models, but now the induction is on the length
of protocol extensions.

Notice that these are strictly secrecy results, and show only that the secrets
generated in a particular run of the protocol are not compromised. Most
authors of protocol proofs have noted that the security objectives of a proto-
col may be undermined in other ways than by compromising secrets, usually
due to some failure of authentication. Possible combinations of secrecy and
authentication are discussed in [MROO].

5.2.5 Example: The Otway-Rees Protocol

The goal of the Otway-Rees protocol is to mutually authenticate an initiator
and responder and to distribute a session key generated by the server. The

67

protocol consists of four messages, presented below as they appear in a
CAPSL MESSAGES section.

The security objective is to prove that none of the secrets Na, Nb, or K are
disclosed.

orl. A -> B: M,A,B,{Na,M,A,B}Kas7.Fl ;
or2. B -> Srv: M,A,B,FlUNa,M,A,B}Kas,{Nb,M,A,B}Kbs;
or3. Srv -> B: M,{Na,Kab}Kas'/.F2,{Nb,Kab}Kbs;
or4. B -> A: M,F2'/.{Na,Kab}Kas;

The full protocol specification includes DENOTES declarations indicating that
Kas and Kbs are the keys shared by A and B, respectively, with the server
Srv.

The PVS encoding of this protocol shown below was produced by hand. The
PVS connector produces a much less readable version. The PVS connector
is also, as of this writing, not yet capable of producing the spells and proof
obligations automatically. Here we only state a selection of the formalization
of the Otway-Rees protocol rules.

The spell rule spll generates the nonce Na as needed for the first protocol
step. Note that the server need not be mentioned in the cabal.

spll(A, B: agent, Na: nonce): (protrule) =
(# Pre := emptyset,

Nonces := singleton(Na),
Post := singleton(Cast(add(Na,emptyset),

add(A, add(B, emptyset))))
#)

The type constraint (protrule) causes the PVS type checker to generate
verification conditions corresponding to the conditions on protocol rules.
These and all the other verification conditions are easily discharged using
the PVS prover.

Sending and receiving is split into two parts. The first step in the Otway-
Rees protocol, for example, is transcribed as follows.

sndl(A, B: agent, N, Na: nonce): (protrule) =

68

(# Pre := add(State(roleA, 0, A ++ B ++ Srv),
add(Cast(add(Na, emptyset),
add(A, add(B, emptyset))), emptyset)),

Nonces := add(N, emptyset),
Post := add(State(roleA, 1, A ++ B ++ Srv ++ Na),

add(Msg(N ++ A ++ B ++
Encr(Shr(A), Na ++ N ++ A ++ B)), emptyset))

#)

rcvl(A, B: agent, N, Na: nonce): (protrule) =
(# Pre := add(State(roleB, 0, B ++ Srv),

singleton(Msg(N ++ A ++ B
++ Encr(Shr(A), Na ++ N ++ A ++ B)))),

Nonces := emptyset,
Post := singleton(State(roleB, 1, B ++ Srv ++ N ++ A))

#)

Rules that introduce nonces (to be kept secret) take them from a prior spell
with the expected cabal. When an agent uses a secret from a spell book, the
agent does not see any of the other secrets in the same spellbook, though it
might know about them from prior messages.

In general, a sequence of states generated by these rules interleaves the
behavior of as many agents as we wish, and any number of concurrent or
sequential sessions of the same agents. Altogether, the Otway-Rees protocol
is formalized as follows.

otway_rees: protocol =

{ r: (protrule) I

EXISTS A, B, N, Na, Nb, K:

r = init(A, B)

OR r = spll(A, B, Na)

OR r = sndl(A, B, N, Na)

OR r = rcvl(A, B, N, Na)

OR ...}

The secrecy theorem states that it suffices to show occult (otway^rees). In
a first step, using skolemization and split rules in order to show occultness
for reach rule separately. For the lemma below occultness follows trivially
for most protocol rules.

69

sufficient_for_occultness: LEMMA

disjoint?(Msg?, Post(rp)) => occult(singleton(rp))

It remains to prove occultness for four rules in the Otway-Rees protocol. In
the case of the sndl rule, for example, one has to prove:

{-1} subset?(sees(H), Coideal(basic_secrets(C)))

{-2} reachable(OR, I)(H)

{-3} H(C)

{-4} H(State(roleA, 0, A ++ B ++ Srv))

{-5} H(Cast(add(Nonce(Na), emptyset),

add(A, add(B, emptyset))))
|

{1} Coideal(basic_secrets(C))

(N ++ A ++ B ++ Encr(Shr(A), Na ++ N ++ A ++ B))

Currently, we still prove these kinds of verification conditions in an inter-
active way (typically around 20-40 interactions per rule), but the repetitive
patterns in these proofs suggest higher-level proof strategies.

5.2.6 Conclusions

Our secrecy theorem separates protocol-dependent and protocol-independent
aspects of secrecy proofs. The protocol-dependent part is to show the oc-
cultness property, which only asks whether honest messages compromise
secrets, given strong assumptions about the preservation of secrecy in the
prior message history.

The secrets to be protected are defined in an explicit, uniform way by intro-
ducing "spell" events into the protocol. Spell events generate the short-term
secrets for a particular "cabal", the set of agents sharing the new secrets.
Secrets are shown to be protected even when the long-term secrets of other
agents, or the short-term secrets in other protocol runs (with other spells)
are compromised.

The closure results on the coideal have turned out to be a useful addition to
the arsenal of proof techniques, enabling interesting examples to be shown
secure. Protocol proofs are still complex enough so that we feel proof-
checking and automation to be valuable for the sake of assurance, and we

70

believe that the same techniques that simplify manual proofs will also be
helpful in organizing machine-assisted proofs.

Currently, we are developing high-level PVS strategies for automatically
discharging most verification conditions for typical protocol rules. In these
strategies we try to capture the repetitive patterns that have been showing
up in hand and mechanized interactive proofs. It is our hope that, using
these strategies, we can prove secrecy results about realistic protocols in
a fairly automatic way. We have developed an initial version of the PVS
connector, but it needs to be improved to create more readable protocol
theories and to incorporate goal information.

5.3 Maude

In this section we describe the design decisions and optimization solutions
for a CIL connector to Maude. Maude is a novel, wide-spectrum executable
formal specification language that has been successfully applied to commu-
nication and security protocols (see case studies on the Maude web page
[MauOO]). In particular, Maude can be efficiently used as a model checker
for security protocols as shown in [BDOO, DMTOO, DMT98b]. In order to
minimize translation efforts into Maude and achieve maximal reusability of
search strategies, attacker model and other predefined data structures, we
designed a CIL-to-Maude connector that has been implemented in Java.
Such a connector automatically translates CIL specifications into Maude,
and, thus, enables a protocol designer to make use of the Maude model
checking facilities without knowing Maude specifics. The following is a list
of "ingredients" for the CIL connector to Maude:

- Specification of pre-defined CAPSL data types in Maude;

- Representation of the CIL model in Maude;

- Definition of an attacker model;

- Algorithm for translating protocol specific CIL constructs (such mes-
sage lists and environments) into Maude;

- Definition of a general search strategy for model checking;

- Protocol-dependent and protocol-independent optimization techniques
that improve the performance of the Maude model checker;

71

We illustrate the design of the CIL-to-Maude connector by means of an
example. A prototypical implementation of the Maude connector in Java is
finished. In the appendix we present the Maude specification that has been
produced using the connector.

5.3.1 The Maude Language

Maude [CDE+99, CELM96, MauOO] is a multi-paradigm specification lan-
guage based on rewriting logic [Mes92]. Maude specifications can be effi-
ciently executed using the Maude rewrite engine, thus allowing their use for
system prototyping and the debugging of specifications.

Part of what makes Maude very well suited for the purpose of protocol
analysis is its flexible wide-spectrum character: it can deal with very early
design phases such as architectures and high-level designs, can be used to
quickly develop executable prototypes, and can also be used to generate
code. There is also a wide range of options on the kind of analyses that
can be performed. One can develop formal models of a system very early,
can debug formal specifications—which can be partial and incomplete—
by executing them, can do more exhaustive model-checking and symbolic
simulation analyses, or, for highly critical subsystems, can in fact do full
formal verification using Maude's theorem proving tools.

The Maude model checker makes use of the reflective capabilities of rewriting
logic and Maude [CM96]. Reflection allows user-defined execution strategies
that can be formally specified by rewrite rules at the metalevel, including
strategies such as breadth-first-search that can exhaustively explore all the
executions of a system from a given initial state.

We briefly summarize the syntax of Maude. In the CIL-to-Maude connector
we mainly make use of the following two types of modules:

- functional modules, that are equational theories used to specify alge-
braic data types; they are declared with the syntax f mod . . . endf m,
and

- system modules, that are rewrite theories specifying concurrent sys-
tems; they are declared with the syntax mod ... endm, and

Immediately after the module's keyword, the name of the module is given.
After this, a list of imported submodules can be added. One can also de-

72

clare sorts and subsorts (specifying sort inclusion) and operators. Operators
are introduced with the op keyword. They are declared with the sorts of
their arguments and result, and syntax is user definable using underscores
'_' to mark the argument positions. Some operators can have equational at-
tributes, such as assoc and comm, stating, for example, that the operator is
associative and commutative. Such attributes are then used by the Maude
engine to match terms modulo the declared axioms.

We make use of two kinds of logical axioms, namely, equations—introduced
with the keywords eq, or, for conditional equations, ceq—and rewrite rules—
introduced with the keywords rl, or for conditional rules crl. Functional
modules can only have equations, whereas system modules can have any
kind of axioms. The mathematical variables in such axioms are declared
with the keywords var and vars.

5.3.2 Translation of the CAPSL Prelude

Our current connector is restricted to the operators provided in the CAPSL
prelude (i.e., list concatenation, cryptographic operators for symmetric and
public key encryption, etc.) which have been efficiently translated into
Maude. The Maude module with the CAPSL prelude is automatically
loaded with any CAPSL protocol specification.

In general any CAPSL type declaration can be translated into Maude. The
reason for this restriction lies in the attacker model. The complexity of the
attacker model is proportional to the number of function declarations and
axioms. The more operators are defined, the more possible computations
an attacker can perform. We restricted our attacker model to the usual
functionality of composing and decomposing as well as encrypting and de-
crypting messages using the standard operators defined in the prelude (e.g.,
cat,con,ped.se). As a consequence, we only deal with type specifications
from the CAPSL prelude.

Type, function, and constant declarations. Type and subtype decla-
rations correspond to sort and subsort declarations in Maude. For
instance, the declaration TYPES Role, Spec, Agent: Object trans-
lates into the Maude sort declarations

sorts Object Role Spec Agent .

and additional subsort declarations

73

subsorts Role Spec Agent < Object .

Since there exists no default supersort in Maude we have to explicitly
define subsort relationship for all subtypes of Atom. Functions and con-
stants are both translated into Maude operator declarations. In Maude
an operator is defined by a name, a list of argument sorts and its target
sort. Constants are operators with empty argument parameter. For
instance, the CAPSL function cat (Field, Field): Tape, ASSOC
is translated into op cat : Field Field -> Tape [assoc]. We
introduced two additional boolean operators to deal with invertibil-
ity statements: op INVERT.:_|_ : Field Field List [Field] ->
Boolean to capture invertibility axioms that have a list of fields as
third parameter and op INVERT.:_ : Field Field -> Boolean to
represent invertibility axioms with only two parameters.

Variables and axioms. Variable declarations such as VARIABLES Al: Atom
are expressed in Maude as var Al : Atom. CAPSL axioms are rep-
resented by Maude (conditional) equations. For instance, the axiom
first (cat (Al, XI)) = Al looks like this eq first (cat (Al,XI)) =
Al in Maude. IF-THEN-ELSE axioms such as

IF keypair(PKl.PKIl) THEN ped(PKIl, ped(PKl, XI)) = XI

ENDIF

can be represented by a conditional equation

ceq ped(PKIl, ped(PKl, XI)) = XI
if (keypair(PKl, PKI1) == true).

Properties. As for properties, associativity (ASSOC) and commutativity
(COMM) are supported by Maude. The privacy property PRIVATE is
treated indirectly. A private function symbol is one which cannot be
accessed by the attacker (unless the symbol is private to the attacker).
We provide a tailored solution to assure that the attacker only uses
appropriate functions in rewrite rules. CRYPTO is treated similarly. So
far we only handle the FRESH property of Nonces by introducing a
counter that guarantees freshness of nonce values (see Section 5.3.4
and Section 5.3.5).

Using these general guidelines we translated the CAPSL prelude into a
Maude module.

74

5.3.3 Definition of the CIL model

The flexibility of Maude allows us to simulate CIL rewrite rules using a
syntactical representation that matches a mixfix1 version of the CIL notation
of Section 3.1.2. In order to achieve this goal, we provide a standard Maude
specification that defines all sorts, operations and equations necessary to
describe the specifics of a CIL model such as state, msg and intruder facts.
The following functional theory (i.e., a functional module without equations)
defines CIL facts.

fth FACT is
protecting FIELDS .

protecting CAPSLPRELUDE .

sort Fact .

op Msg : Principal Principal Fields -> Fact . *** msg fact
op State : Role Machinelnt Fields -> Fact . *** state fact
op Net : Fields -> Fact . *** intruder fact

endfth

The imported module FIELDS defines an operator op [_] : List [Field]
-> Fields . to represent field lists enclosed in square brackets such as

[A,B,Na]. LIST is another parameterized module that defines list opera-
tions. The CAPSL prelude is also imported in order to refer to the sorts
Principal and Role. Multiset of facts are then defined by the following
theory.

fth FACTS is
protecting MSET[Fact] .

sort Facts .

op [_] : MSet[Fact] -> Facts .

op attack : -> Facts .

endfth

'We prefer to use the mixfix notation over prefix notation since it is more readable
and shortens the protocol specifications. Thus, instead of using the prefix operator facts
for multisets of facts, we used square brackets around multisets of facts. We also enclose
term lists in square brackets.

75

The imported module MSET[Fact] defines multisets of facts using "," for
separating facts. The term [State(roleA, 1, [A,B,Na]), Msg(UNK, A,
[ped(pk(A), cat(Na,Nb))])] is of sort Facts due to the above theory
(assuming appropriate variable declarations). This representation is very
close to the CIL notation introduced in Section 3.1.2. The constant attack
of sort Facts is used in the search. For a given protocol specification, we
negate the goals and define systems states as patterns that invalidate the
goals. We then define equations that rewrite a system state that invalidates
a goal into attack. The search strategy terminates when an attack state is
found. Further down we give details for the search strategy.

With the help of the above module we can mirror the CIL rules in Maude in
a very straightforward way with only few alterations. One alteration is that
Maude rewrite rules need a label. The current automated CIL-to-Maude
translator numbers the rules consecutively.

5.3.4 Maude Attacker Model

The computational capabilities of an intruder are modelled by rewrite rules.
Information that can be extracted from messages sent to, or intercepted
by, the attacker are stored in the global state as data of the form Net(l)
where 1 is a variable of sort Fields. We model possible attacker actions
using additional rules that intercept messages (and place them on the net),
fake new messages, decompose messages on the net and place their parts
on the net, compose messages from parts, and encrypt messages. We give
a few examples here.

crl [intercept] :
[Msg(a,b,l), fs] => [Net(l), fs]
if (not(Net(1) in fs) and not(spyOf(a) == true)) .

crl [fake] :
[Net([a]), Net(l), fs]
=> [Net([a]), Net(l), Msg(Spy,a,l), fs]
if (not(spyOf(a) == true) and not(Msg(Spy,a,l) in fs)) .

crl [fake2] :
[Net([a]), fs] => [Net([a]), Msg(Spy,a,[a]), fs]
if (not(spyOf(a) == true) and not(Msg(Spy,a, [a]) in fs)) .

crl [decompose] :
[fs] => [analyze(nets(partition(fs))),

76

nonNets(partition(fs))]

if (card(analyze(nets(partition(fs))),

nonNets(partition(fs))) > card(fs)) .

The intercept rule says that the content of any message that is not ad-
dressed to a spy can be intercepted by it (there may be more than one spy
in the system) if the spy can learn some new data. The latter condition,
formalized as not (Net (1), assures that the intruder only intercepts when
she gains some value by intercepting the message. If the intruder already
knows the content of the message, that is Net(l) in f s (f s is a variable
of sort fact set), than intercepting the message is useless. This condition
speeds up the search process by avoiding exploring unnecessary states, fake
states that for an agent a on the network and for a message 1, the message
Msg(Spy,a,l) is inserted into the global state. The condition assures that
the spy does not send a faked messages to himself and that the message
is new. Note that we have adopted the convention of [Pau98] where the
message source and destination arguments are the true source and intended
destination of the message, and they are not accessible to the receiver of
the message. Hence, Spy is the sender here (and in rcvMsgl the sender is
unknown). The rule f ake2 is similar but allows matching with only one state
fact. The decompose rule is implemented in such a way that in one step the
attacker retrieves the maximum amount of information from the currently
held fields by applying decomposition and decryption functions defined in
the prelude. The decompose rule partitions the fact set into attacker facts
and non-attacker facts. The function analyzed recursively applies decom-
position and decryption operators on the attacker facts until no more addi-
tional knowledge is extracted. For performance reason^, this rule only fires
if the attacker knowledge can be increased. In order to achieve determinism
for each composing step, the corresponding rules only create one new term
using one of the composition or encryption functions defined in the prelude.
Thus, for each of the constructional operators such as ped, se, con, cat
there are rules in the Maude attacker module that describe state transitions
that create new attacker facts. The attacker might need to apply these rules
several times successively in order to build a composed message which he
wants to fake.

77

5.3.5 Translating CIL Protocols and Environments

The parts of a CIL specification that are relevant for producing the corre-
sponding Maude specification are Symbols, Axioms, Rules, Environment,
and Goals.

Symbols

Symbol declarations are translated in very straightforward manner to Maude.
Depending on the kind of symbol declaration, they result in Maude sort and
subsort declarations or operator declarations.

Type declarations. A type declaration symbol(identl,type,ids0,ident2,
props ()) turns into sort declarations with associated subsort decla-
rations: sort identl and subsort identl < ident2.

Constant or function declarations. The declaration symbol(?'den£, op,
args, val, props) is translated into op ident : args -> val [props] .

Variable declarations. A variable declaration symbol (ident, var/pvar,
ids(), val, props) corresponds to the following Maude variable decla-
ration var ident : val .

Properties of variables cannot be expressed directly in Maude. So far
we treat FRESH, CRYPTO, and EXPOSED properties in the connector to
Maude. They are not expressed by similar Maude concepts, rather we
provide tailor-made solutions.

For the sort of a fresh variable we define constructors that fulfill the
freshness requirement. For example in the case of nonces, our cur-
rent implementation uses integers to enumerate instances of a sort.
op Nonce_ : MachineInt .-> Nonce defines a nonce generator that
produces Nonce 1, Nonce 2, Machinelnt is a Maude specific
data type for integers. There are several ways to assure freshness of
nonces. We chose to maintain a system counter as part of the protocol
that is increased each time a fresh variable of some sort is generated.

Analogous to the PRIVATE property of functions, a CRYPTO property of
a variable is expressed implicitly. That means that no attacker rule can
make use of a crypto variable, unless it is held by the attacker or can
be generated by the attacker using public functions. The semantics of

78

the RANDOM property is still to be defined in CIL. EXPOSED terms will
be handled in the initial state of an attacker. EXPOSED(sk(Alice))
is translated into Net ([sk(Alice)]) expressing that the secret key of
Alice is on the network (and thus, known to the attacker).

Axioms

It is relatively easy to translate CIL Axioms into Maude. CIL only uses
equations, boolean predicates, if-then-else expressions and the invertibility
predicate. Each of these concepts can the represented via conditional equa-
tions in Maude. For instance, the following set of CIL axioms

axioms(if(keypair(Kl,K2),eqn(ped(Kl,ped(K2,F)),F).true),
keypair(sk(U),pk(U)),
invertible(ped(pk(U),F), F, terms(sk(U)))

translates into the Maude (conditional) equations

ceq ped(Kl,ped(K2,F)) = F if keypair(Kl,K2) .
eq keypair(sk(U),pk(U)) = true .
eq INVERT ped(pk(U),F) : F I sk(U) = true .

Rules

Using the Maude module for the CIL model, we can mirror CIL rewrite
rules almost identically in Maude. There are two main differences. For
one, rules in Maude have to be labelled. We currently number rules rules
consecutively. The second difference is that, depending on the solution we
chose for generating fresh values, additional predicates might show up in the
rules. This cannot be avoided, since the abstract concept of fresh values has
to be implemented in an executable formalism like Maude. In the following
we chose to use a counter fact Cnt (n), which determines the next available,
fresh integer in order to create nonces. The counter is updated any time a
nonce is created. Though the counter is not by itself secret, and thus, it
looks as if the attacker can generate any nonce (including those generated
by honest agents), we assure in the attacker model, that the attacker does
not access the counter, unless to create its own nonces.

79

The following rules correspond to the CIL rules for NSPK for sending and
receiving the first message.

rl [1] :
[State(roleA.O,[A,B]),Cnt(n),fs]
=> [State(roleA.l,[A,B,Nonce (n+1)]),

Msg(A,B,[ped(pk(B),cat(Nonce (n+1),A))]),Cnt(n+l),fs] .

rl [2] :
[State(roleB,0,[B]),Msg(UNK,B,[ped(pk(B),cat(Na,A))]),
Cnt(n),fs]

=> [State(roleB,l,[B,Na,A]),Cnt(n),fs] .

f s is a free variable that matches the remaining facts in the multiset.

Conceptually, initialization rules could be translated one-to-one into Maude
rules:

rl [initA] :
[mt] => [State(roleA.O,[A,B])] .

The problem with such an initialization rule is that it is always enabled since
mt is the identity element of the multiset operator [_] for facts, and thus,
any system configuration has mt as a sub-configuration. This would unnec-
essarily cause the Maude model checker to loop infinitely. Moreover, the
variables on the righthand side are free. The Maude model checker needs to
bind variables to values in order to execute the protocol for specific agent in-
stantiations. To resolve both problems, we decided to skip the initialization
rules and instead provide a means of setting up agents for model checking
sessions by using the environment information.

Environment

Each test environment results in an initial configuration that is modelled
as a fact set. Currently, we only handle environment in which all agents
exists concurrently. Here is the initial state for the test environment Testl
of NSPK given in Section 2.5.

op Testl : -> Facts .

80

eq Testl = [State(roleA,0,[Alice,Bob]),
State(roleB.O, [Bob]),
Net([Mallory]).Net([Alice]), Net([Bob]),
Net([ped(sk(Alice),Bob)])] .

The attacker knows the names of all principals that are part of the session
and the exposed term.

Goals

The secrecy goal for Na in NSPK is localized into the CIL goal loc (nodes (
node(roleA,3), node(roleB,3)), secret(Na,ids(A,B))). This goal is
violated for an agent A, if the A-agent is in a session with another honest
agent, has the nonce Na in its memory, and the spy also knows this nonce
(i.e., Net([Na]) is in the multiset of facts). Therefore, we can characterize
what states represent attacks. For the given NSPK secrecy goal, a state rep-
resents an attack when an agent has sent his nonce, encrypted, to another
agent (different from the spy) but the nonce has been compromised by the
spy, i.e., is on the net. For efficiency reasons, we implement this characteriza-
tion in the following way. We search for the smallest A-state that contains the
secret Na. For NSPK this is State(roleA.l, [A,B,Na]). Since the A-agent
can grow over time, the state number can change and there might be addi-
tional slots after Na. Thus, we use the pattern State (roleA ,n, [A ,B ,Na,f 1])
where the free variable f 1 matches the rest of the fields.

A violation of the secrecy goal for Na is defined by the following axiom.

ceq [Net([Na]),
State(roleA,n,[A,B,Na,fl]), fs] = attack

if not(spyOf(A) — true) and not(spyOf(B) == true) .

The predicate spyOf determines that the nonce was not deliberately sent by
an agent to an intruder.

PRECEDES goals can also be interpreted in Maude with the help of additional
equations. The PRECEDES goal loc (nodes (node (roleA, 3) ,node(roleB,3)),
precedes (B, A, ids (Na))) is fulfilled whenever B is in its final (third) state
in which it holds a value for A, B, and Na, then there exists an agent in
role A that agrees with B on these values. Here is the appropriate Maude
formalization

81

ceq [State(roleB,3,[B,Na,A,Nb]),fs) = attack
if not(State(roleA,n,[A,B,Na,fl]) in fs)

and not(spyOf(A) == true) and not(spyOf(B) == true) .

5.3.6 Search Strategy and Optimization

The aim of model checking is to explore the state space for possible attacks.
In problems like ours where the state space is infinite, model checking based
on enumerative search constitutes a semi-decision procedure.

By applying rewrite rules, Maude can be used to build parts of the compu-
tation tree rooted at the initial state. In particular, the Maude interpreter
delivers one particular branch of the computation tree determined by in-
terpreter's default evaluation strategy for applying rules. However, to find
possible attacks we need to explore all possible branches.

We proceed by employing Maude's metalevel reasoning capabilities and de-
fine, at the metalevel (in Maude), a strategy that specifies how the rules
should be applied. To do this we define, within a Maude module, a function
that implements an iterative deepening search on a tree specified, implicitly,
by an initial state and rewrite rules of another module. Writing the search
strategy for model-checking on the meta-level allows to import any protocol
description and run the search strategy with that protocol. Thus, we spe-
cialize the search strategy to the given initial protocol state and the module
defining the protocol rules. In doing so, the protocol specification becomes
a term on the metalevel that is passed to, and manipulated by, the search
strategy.

(fmod SEARCH is
protecting META-LEVEL[NSPK] .

endfm)

For practicality reasons we defined a bounded depth-first search strategy
instead of a breadth-first search strategy. A breadth-first search strategy
can be obtained by iteratively calling the depth-first strategy with increas-
ing depths. To specify a depth-first search strategy, we formalize a func-
tion whose arguments are the protocol module in which the reduction takes
place, the current search path (i.e., a sequence of steps, where each step is a

82

triple consisting of a rule label, a Maude-internal substitution number, and
the new term), the current depth of the search tree, the maximum depths,
and a list of protocol rule names (quoted identifier list QIDL). Initially, the
path is the initial test term as defined by the environment specification
op bdfs : Module Path Machinelnt QidList -> Strategy . Qid is a
Maude specific data type for strings.

Below we show part of our bounded depth first seach strategy.

ceq bdfs(M,path(APATH,step(L.N.T)).DEPTH,MAX,QIDL)
= if DEPTH < MAX

then (if nextRewrite(M, T, L, QIDL) == none
then backtrack(M,path(APATH,step(L,N,T)),

DEPTH,MAX,QIDL)
else ids(M,path(path(APATH,step(L,N,T)),

nextRewrite(M,T,L,QIDL)),
DEPTH + 1,MAX,QIDL)

fi)
else backtrack(M,path(APATH,step(L,N,T)).DEPTH,MAX,QIDL)
fi

if T =/= {'attack}'Facts .

ceq bdfs(M, path(APATH, step(L, N, T)), DEPTH, MAX, QIDL)
= stop(DEPTH, path(APATH, step(L, N, T)))
if T == {'attack}'Facts .

The strategy conceptually builds a search tree, where each node corre-
sponds to a state of the protocol, and each successor node is reached by
applying a rewrite rule, matching the variables of the rule with values
from the current multiset of facts. The search strategy remembers the
current path of the search tree as a sequence of steps. A step records
the latest rule that has been applied, the substitution number (that is
a Maude specific number from which one can derive the substitution be-
tween the protocol state and the rule variables) and the new protocol state
(op step : Qid Machinelnt Term -> Step).

For a given state, this strategy performs a rewrite step that generates a
successor state. At each step, we test for an attack or backtrack in case the
branch terminates or the maximum depth is reached.

{'attack}'Facts is the representation of the NSPK term attack at the

83

search meta-level.

In theory, iterative deepening can find any attack, but in practice heuristics
are needed to do so using manageable resources. The performance of a
search strategy like the one above can be enhanced significantly if one adds
heuristics that tune the model checking process to the application at hand.
In the case of security protocols analysis we have gained lots of experience
by model checking several protocols. In the following we summarize our
main ideas to speed up the model checking process.

Protocol-independent Optimization

Which rules and in what order those rules are applied has an impact on
the performance of the model checker. Our optimization techniques and
heuristics for the Maude model checker either effectively prune the search
tree or reorder it.

Discarding rules. Some rules might be redundant in the sense that they
are not necessary to find attacks. For instance, the overhear rule of an
the attacker is an example of such a rule. As long as there are rules
for intercepting and faking a message, the effect of overhearing a rule
can always be simulated by replaying it. Therefore, we chose not to
implement such a rule in our attacker model.

Prioritizing rules. During the process of building the search tree one can
apply re-ordering functions that give priorities to rules which are ex-
pected to lead faster to attacks. This is a heuristic in the sense that for
different protocols and attacks different heuristics might turn out to be
better. In the protocols we investigated we were successful with order-
ing the Maude rewrite rules, such that the attacker intercept rule gets
high priority, next followed by the rules which describe the protocol,
and lower priorities for the other attacker rules, with the composition
rules having the lowest priority. Essentially we followed the intuition
that, the more restricted the enabling condition for a rule is, the less
likely it is that it will occur. Thus, giving it a high priority does not
result in search trees, in which those rules are always applied first.
This is similar to optimization techniques suggested by Shmatikov et
al [SS98]. In their approach an intruder always intercepts (our weaker
version: intercept has high priority), and an intruder does not send

84

if an honest agent can send (our version: protocol rules have higher
priority then fake rules).

Restricting rules sequences. Another optimization technique we used
was to prune the search tree such that each sequence of applied rules
satisfies special successor-rule conditions. For example, once an at-
tacker fakes a message, he does that with the intent of some agent
receiving that message. Thus, during the search we assure that a fake
rule is always followed by a rule which denotes the receipt of the mes-
sage. Moreover, optimization steps as discussed in Chapter 4 can also
be implemented on the meta-level of search. In [BDOO] we formalize
that certain action sequences must occur as a block (without other
interleaved actions). For example, local computations of agents, such
as receiving a message, followed by internal computations, followed by
sending a new message, can be summarized to one step. Similarly, a
message which was intercepted by an attacker should be decomposed
in the subsequent step. One can define arbitrary dependencies between
rules and enforce their order in the search strategy.

As long as those dependencies are only used to reorder the search tree,
there is no danger of missing out on an attack. In those cases where
one can show that the optimization preserves all attacks, one can even
prune the search tree.

The above listed optimization ideas have been implemented in Maude on
the meta-level,and,thus, they are independent of the protocol to which the
search is applied. Further details can be found in [BDOO].

Protocol-dependent Optimization

Other optimization techniques depend heavily on the protocol which is to
be analyzed. We made use of two techniques.

Message format This technique tests the message format of composed
and faked messages. For this purpose we added conditions to the fake-
rule and the rules for composing (i.e., concatenation or encryption)
such that they are only enabled if the resulting field fulfills the for-
mat of the message contents of the protocol. We defined a predicate
isInMsgContentFormat that is defined to be true for any field that

85

has (partially) the format of a valid protocol message. The following
describes part of the definition for NSPK.

eq Net([A,Na]) isInMsgContentFormat = true .
eq Net([ped(K,cat(Na,A))]) isInMsgContentFormat = true .

Receivability of faked messages. Moreover, we test whether a faked mes-
sage is receivable in a given state of the protocol. For instance, the
first message of NSPK is receivable whenever an agent in role B in
state zero exists in the multiset of facts.

eq Msg(UNK,b,[ped(pk(B),cat(Na,A))]) isReceivableln
[State(roleB,0, [B]), fs] = true .

5.3.7 Conclusion

In the process of designing a CIL connector to Maude, we tackled some
essential issues about the practicability of a connector. Our aim is not just
to translate the CIL specification into an executable Maude specification,
but to yield an efficiently executable and practically analyzable protocol
specification. In order to meet this goal, we solved the issues involved in
translating CIL into an equivalent Maude specification and we proposed and
fine-tuned several optimization techniques that will improve the performance
of the Maude model checking tool.

A prototype of the CIL-to-Maude connector has been implemented in Java
using the existing support classes. The implementation of the CIL-to-Maude
connector took one-person week.

As mentioned before the current connector is restricted on the predefined
data types of the CAPSL prelude and supports the optimization strategies
discussed in the previous session. Order specification in environment decla-
rations are not yet handled. In environment specifications one can define a
principal as exposed, meaning that all the secrets ofthat principal are known
to the attacker. This issues needs to be addressed in future extensions of
the connector. Further investigation is also necessary in order to define the
semantics of protocol goals other than secrecy or agreement goals.

86

5.4 Athena

Athena is a model checker for security protocols [Son99], based on the strand
space representation [THG98]. The required input format for Athena was
obtained from draft material supplied by its author, Song.

An Athena specification has two parts: a sequence of strands and a sequence
of verification conditions. A strand is a sequence of nodes. A node consists
of a "sign" or direction (send or receive, represented by "->" and "<-") and
a term representing the content of a message. Nonces introduced or "origi-
nated" in a sent message are also listed. A strand specification of a protocol
is a parametric strand in the sense of [CDL+00], which addresses transla-
tions between MSR and strand space protocol models in a general setting.
A strand specification is parameterized by the list of protocol variables that
must be instantiated to create a particular strand.

Here is the "A" strand from the NSPK example in Athena:

P_A(0,3) {
VAR: P_A, P_B, N0NCE_Na, NONCE.Nb;
-> : E{C[NONCE_Na,P_A],PUBKEY_P_B}

I New(NONCE_Na);
<- : E{C[NONCE JJa,NONCE Jlb],FUBKEY_P_A};
-> : E{NONCE_Nb,PUBKEYJP_B};

Issues in writing a connector to Athena come up in five areas:

1. The basic translation strategy to produce strands

2. Normalization: non-message rules

3. Type and function limitations

4. Goal generation

5.4.1 The Translation Strategy

CIL rewrite rules update the state of exactly one role at a time. A rule may
have a received message on the left or a sent message on the right, or both.

87

A message on the left generates a "receive" node in the strand associated
with the rule's role, and a message on the right generates a "send" node
for the same role. Any variables listed as nonces of the rule become nonces
of the send node. In [CDL+00], MSR specifications were "normalized" to
generate all nonces in the initialization rule of each role, but we do not do
that, because we would lose the information as to which node originated the
nonce, which is required for Athena.

Rewrite rules are not required to be in the expected order associated with
message events or state changes, and the connector was written so that nodes
will be added in the correct sequence regardless of the rule order. However,
the CAPSL translator now generates rules in the expected order, primarily
to make the rule output as readable as possible, and future connectors should
be able to take advantage of that.

There must be a strand for each role in the protocol. To find the roles, we
can get a list of symbols of type Role from the CIL symbol table; but this
not quite right because the translator generates a role constant for every
variable of type Principal. Such a variable is usually a role, but it could be
just a message field, and the translator does not check whether a message is
actually sent to or from that principal. The connector generates an empty
strand for a non-role principal, which is a nuisance but not a serious problem.
The CAPSL translator should probably refrain from generating roles for such
variables.

The strand parameters are the protocol variables that must be instantiated
to produce a particular strand. These variables occur as slots in states of
the strand's role, and they are found in the slot table.

Once the protocol variable parameters used by the strand are found, we
have to ensure that these same variables are used in the strand node specifi-
cations. Strands are generated from rewrite rules, but, as remarked earlier,
the variables in rewrite rules are, in principle, dummy variables that are
subject to renaming, and the renaming can be different in each rule. The
CAPSL translator ordinarily uses the original protocol variables in the rules,
for the sake of rule readability, but there is presently no guarantee of that.
Hence the connector replaces the rule variables with protocol variables. This
is done using the slot table. The protocol variable corresponding to a rule
variable is found by observing which slot it occupies in the rule's right-hand
state fact, which should have them all.

In an Athena specification, variable names are prefixed by the variable type

name. The mapping of CAPSL type names to corresponding Athena type
names is built into the present connector. This topic is discussed further
below under the limitations issue.

5.4.2 Normalization: Non-Message Rules

A normalized MSR rule in [CDL+00] either sends or receives one message.
CIL rules may have a message on both the receive and the send side, and they
could also have no messages, as in the case of state initialization rules, actions
that assign a value to a new variable, and actions that test an equation or
other boolean condition.

Initialization rules are not a problem; they just create a strand to which
nodes will be added. Rules that both send and receive messages are also
no problem, they just create two nodes. Non-initialization rules with no
messages are a problem because no node is created for them; the information
they carry is lost.

An assignment action in CAPSL, such as C — A, generates a rule like
B\(B,A) —>• B2(B,A,A) and creates a slot table entry for C as slot 3 of
B. Later rules will refer to slot 3 of B by the variable C without regard for
its value. For example, the message B —> A : C becomes B2(B,A,C) -»■
Bz(B, A, C), M(B, A, C). The B strand will have A, B and C as parameters,
and the connector will give it a node to send C. The correct strand should
send A instead.

Fortunately, the assignment action problem goes away because the CAPSL
optimizer combines assignment rules with other rules, so that the CIL out-
put only has the single rule Bx(B,A) ->■ B3(B,A,A),M(B,A,A), which
generates the correct node. This may be viewed as a kind of normalization
step.

We are less fortunate with test actions. A test C — A (in a state where
C and A are held) generates two rules, one to evaluate the equation and
one to continue if it is true: B2(B,A,C) -> Bs(B,A,C,C — A) and
Bs(B,A, C, true) ->■ B^(B,A, C). Neither of these generates a node, and
the information that C = A is lost. Both C and A are strand parameters,
and they could be instantiated to be unequal to produce a strand that is
inconsistent with the protocol. Furthermore, the optimizer does not help
here; it can only combine the second rule with a later one.

89

The way to handle this, at the moment, is just to write the protocol without
putting in test actions. Most protocols don't need them; their main purpose
in CAPSL is to control conditional branching, an advanced feature.

5.4.3 Type and Function Limitations

CAPSL permits new field types, as well as new encryption and other compu-
tational functions, to be introduced using abstract datatype specifications
(called typespecs in CAPSL). Analysis tools are often limited in their adapt-
ability to extensions. Like the PVS tools we are developing, Athena can
presently deal only with simple abstract operators. The ones currently sup-
ported are public-key and symmetric-key encryption, concatenation, hash-
ing, MAC (keyed hash) and a few standard data types like P for principals
and NONCE for nonces. The connector translates the equivalent CAPSL stan-
dard types and functions (in the prelude) into them - for example, Principal
to P, ped(.,.) to E{.,.}, etc.

For types and functions without equivalents in Athena, the connector pre-
serves their names, and they appear in the connector output. The Athena
user can then see the unrecognized symbols and attempt to rewrite the pro-
tocol specification without them. The connector can be modified easily to
add more types and functions. When future versions of Athena permit user-
defined new field types and functions, the connector will have to be extended
to make use of the symbol table and axiom entries in the CIL.

5.4.4 Goal Generation

Goals in Athena are specified with a list of partially instantiated strands,
with conditions as to which combinations of these strands are permitted
to appear in a bundle. A secrecy goal says that a strand with a given
value for a secret variable is not compatible with a standard intruder (or
"penetrator") "flush" strand with the same value. An agreement goal says
that the existence of a strand with values for certain variables implies the
existence (in the same bundle) of another strand with the same values for
the same variables. These goals can be generated in a straightforward way
from the SECRET and PRECEDES goals in CAPSL.

In the current version of Athena, symbolic constants used to indicate values
of variables are always formed simply by appending "0" to the name of the

90

variable, and the connector does that. More general value assignments are
possible in CAPSL through the use of environment modules.

As an example, the CAPSL goal appearing in CIL as precedes (B, A, ids (Na))
says that if A reaches its final state, there is or was a state of B agreeing
with A on B, A, and Na. This goal is stated in Athena as:

VC. {Strand(0,3)[(P_B,B0),(P_A,A0),
(NONCE_Na,NaO)]} =>

{Strand(l,3)[(P_B,B0),(P_A,A0),
(NONCE_Na,NaO)]}

where strand 0 is the A strand and strand 1 is the B strand.

91

Chapter 6

Concluding Remarks

CAPSL, CIL and the translation between them are designed to address
important goals in cryptographic protocol specification for analysis pur-
poses. With a common specification language, it becomes possible to har-
ness the combined power of many tools for protocol analysis in a practical
way. The components of the CAPSL environment include transportable
software for translation of CAPSL to CIL, and connectors to adapt CIL to
the input languages of various analysis tools. This software is still under
development, but a CAPSL-to-CIL translator is available on the Web site
http: //www. csl. sri. com/"millen/capsl. The site also contains more ex-
amples of CAPSL specifications and other documentation.

With CAPSL, one can express protocols in the simplest accepted message-
list form. Type specifications in CAPSL and their use for introducing new
operators and subtypes bring an expanding class of protocols within reach.
There are plans to broaden the applicability of CAPSL further with exten-
sions for multicast protocols.

CAPSL simplifies what used to be the most awkward aspect of abstract
protocol specification, the distinction between short-term session data and
the long-term data associated with persistent entities. This was done by
applying the general type specification mechanism, together with the novel
concepts of private functions and invertibility axioms.

The intermediate language CIL was chosen with an eye toward a clear
analysis-level modeling semantics and a universal pattern-matching tran-
sition rule style that lends itself both to model checking and inductive proof

92

techniques.

We have techniques for inductive protocol proof using PVS and model check-
ing using Maude. In the process, we have confirmed that CIL output is a
good match for the specification needs of these tools. With the Athena con-
nector, we have made a start on linking CAPSL to independently developed
analysis tools as well.

93

Bibliography

[BAN90] M. Burrows, M. Abadi, and R. Needham. A logic of authenti-
cation. ACM Transactions on Computer Systems, 8(1):18—36,
1990.

[BD00] D. Basin and G. Denker. Maude versus Haskell: an Experi-
mental Comparison in Security Protocol Analysis. In K. Fu-
tatsugi, editor, Third Intern. Workshop on Rewriting Logic
and Its Applications, Kanazawa City Cultural Hall, Kanazawa,
Japan, September 18-20, 2000, pages 235-256. To appear: El-
sevier Science B.V., Electronic Notes in Theoretical Computer
Science, http://www.elsevier.nl/locate/entcs/,2000.

[BMM99] S Brackin, C. Meadows, and J. Millen. CAPSL interface for the
NRL protocol analyzer. In IEEE Symposium on Application-
Specific Systems and Software Engineering Technology (AS-
SET '99), 1999.

[Bra97] S. Brackin. An interface specification language for automati-
cally analyzing cryptographic protocols. In Symposium on Net-
work and Distributed System Security. Internet Society, Febru-
ary 1997.

[Car94] U. Carlsen. Generating formal cryptographic protocol spec-
ifications. In IEEE Symposium on Research in Security and
Privacy, pages 137-146. IEEE Computer Society, 1994.

[CDE+99] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. Quesada. Maude: Specification and
Programming in Rewriting Logic. SRI International, Com-
puter Science Laboratory, Menlo Park, CA, January 1999.
http://maude.csl.sri.com/manual/.

94

[CDL+99] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Sce-
drov. A meta-notation for protocol analysis. In 12th IEEE
Computer Security Foundations Workshop, pages 55-69. IEEE
Computer Society, 1999.

[CDL+00] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Sce-
drov. Relating strands and multiset rewriting for security pro-
tocol analysis. In 13th IEEE Computer Security Foundations
Workshop. IEEE Computer Society, 2000.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In Meseguer [Mes96], pages 65-89.

[CJM98] E. Clarke, S. Jha, and W. Marrero. Using state space explo-
ration and a natural deduction style message derivation engine
to verify security protocols. In Proc. IFIP Working Confer-
ence on Programming Concepts and Methods (PROCOMET),
1998.

[CM96] M. Clavel and J. Meseguer. Reflection and Strategies in
Rewriting Logic. In Meseguer [Mes96], pages 125-147.

[DM99a] G. Denker and J. Millen. CAPSL and CIL Language Design:
A Common Authentication Protocol Specification Language
and Its Intermediate Language. CSL Report SRI-CSL-99-
02, Computer Science Laboratory, SRI International, Menlo
Park, CA 94025, 1999. http://www.csl.sri.com/~denker/
pub_99.html.

[DM99b] G. Denker and J. Millen. CAPSL intermediate language. In
FLoC Workshop on Formal Methods and Security Protocols,
1999.

[DM00] G. Denker and J. Millen. CAPSL integrated protocol environ-
ment. In DARPA Information Survivability Conference (DIS-
CEX 2000), pages 207-221. IEEE Computer Society, 2000.

[DMKFG00] G. Denker, J. Millen, J. Kuester-Filipe, and A. Grau. Optimiz-
ing protocol rewrite rules of CIL specifications. In 13th IEEE
Computer Security Foundations Workshop, pages 52-62. IEEE
Computer Society, 2000.

95

[DMT98a] G. Denker, J. Meseguer, and C. Talcott. Protocol specifica-
tion and analysis in Maude. In Formal Methods and Security
Protocols, 1998. LICS '98 Workshop.

[DMT98b] G. Denker, J. Meseguer, and C. Talcott. Protocol Specification
and Analysis in Maude. In N. Heintze and J. Wing, editors,
Proc. of Workshop on Formal Methods and Security Protocols,
25 June 1998, Indianapolis, Indiana, 1998. http://www.es.
bell-labs.com/who/nch/fmsp/index.html.

[DMTOO] G. Denker, J. Meseguer, and C. Talcott. Formal Specification
and Analysis of Active Networks and Communication Pro-
tocols: The Maude Experience. In D. Maughan, G. Koob,
and S. Saydjari, editors, Proc. DARPA Information Surviv-
ability Conference and Exposition, DISCEX2000, January 25-
27, Hilton Head Island, SC, USA, pages 251-266, 2000. http:
//schafercorp-ballston.com/discex/.

[GNY90] L. Gong, R. Needham, and R. Yahalom. Reasoning about
belief in cryptographic protocols. In IEEE Symposium on Re-
search in Security and Privacy, pages 234-248. IEEE Com-
puter Society, 1990.

[Gon97] L. Gong. Enclaves: enabling secure collaboration over the
Internet. IEEE J. of Selected Areas in Communications,
15(3):567-575, April 1997.

[Kem89] R. Kemmerer. Analyzing encryption protocols using formal
verification techniques. IEEE Journal on Selected Areas in
Communication, 7(4), May 1989.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. In Proceedings of TACAS, volume
1055 of Lecture Notes in Computer Science, pages 147-166.
Springer-Verlag, 1996.

[Low98] G. Lowe. Casper: a compiler for the analysis of security pro-
tocols. Journal of Computer Security, 6(l):53-84, 1998.

[MauOO] Maude Web Site, http: //maude. csl. sri. com/, 2000.

[MCF87] J. Millen, S. Clark, and S. Freedman. The Interrogator: pro-
tocol security analysis. IEEE Transactions on Soßware Engi-
neering, SE-13(2):274-288, February 1987.

96

[Mea91] C. Meadows. A system for the specification and verification of
key management protocols. In IEEE Symposium on Security
and Privacy, pages 182-195. IEEE Computer Society, 1991.

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model
of Concurrency. Theoretical Computer Science, 96(1):73-155,
1992.

[Mes96] J. Meseguer, editor. Rewriting Logic and Its Applications,
First International Workshop, Asilomar Conference Center,
Pacific Grove, CA, September 3-6, 1996. Elsevier Science B.V.,
Electronic Notes in Theoretical Computer Science, Volume
4, http://www.elsevier.nl/locate/entcs/volume4.html,
1996.

[Mil97] J. Millen. CAPSL: Common Authentication Protocol Specifi-
cation Language. Technical Report MP 97B48, The MITRE
Corporation, 1997.

[MilOOa] J. Millen. A CAPSL connector to Athena. In H. Veith,
N. Heintze, and E. Clarke, editors, Workshop of Formal Meth-
ods and Computer Security. CAV, 2000.

[MilOOb] J. Millen. CAPSL web site.
http://www.csl.sri.com/~millen/capsl,2000.

[MR00] J. Millen and H. Rueß. Protocol-independent secrecy. In 2000
IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2000.

[NS78] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of
the ACM, 21(12):993-998, December 1978.

[OR87] D. Otway and O. Rees. Efficient and timely mutual authenti-
cation. ACM Operating System Review, 21(1):8-10, 1987.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, 11th Interna-
tional Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748-752.
Springer-Verlag, 1992.

97

[Pau98] L. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1):85—128, 1998.

[Ros95] A. W. Roscoe. Modelling and verifying key-exchange protocols
using CSP and FDR. In 8th IEEE Computer Security Founda-
tions Workshop, pages 98-107. IEEE Computer Society, 1995.

[Sny91] W. Snyder. A Proof Theory for General Unification.
Birkhäuser, 1991.

[Son99] D. Song. Athena: a new efficient automatic checker for secu-
rity protocol analysis. In 12th IEEE Computer Security Foun-
dations Workshop, pages 192-202. IEEE Computer Society,
1999.

[SS98] V. Shmatikov and U. Stern. Efficient Finite State Analysis for
Large Security Protocols. In 11th IEEE Computer Security
Foundations Workshop, Rockport, Massachusetts, June 1998,
pages 106-115. IEEE Computer Society, 1998.

[THG98] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand
spaces. In 11th IEEE Computer Security Foundations Work-
shop, pages 66-78. IEEE Computer Society, 1998.

98

Appendix A

CAPSL and CIL Syntax

A.l CAPSL Syntax

Here is an informal presentation of the CAPSL concrete syntax. In this
grammar, curly brackets { } indicate a sequence of one or more of the
enclosed item. A vertical bar — separates choices. Optional items are
enclosed in square brackets []. Literal tokens appear enclosed in single
quotes ', except for keywords, which are all caps.

There is a general meta-rule for forming nonterminals representing lists. If
x is a nonterminal symbol, then x_list represents zero or more occurrences
of x separated by commas.

Comments in CAPSL are surrounded by/* */,e.g.,/* this is a comment

The grammar permits constructs that are illegal for semantic reasons, such
as improper ordering or type inconsistency. The grammar also permits some
illegal constructs that could have been eliminated with a more elaborate
grammar, but can also be handled by later checks. An example is that the
% operator should be used only in message fields.

Identifiers are sequences of alphabetic characters and digits, and may also
contain the underline _ character. An identifier that consists solely of digits
is a number.

specification:

. 99

{protocol I typespec I environment}

protocol:

PROTOCOL ident ';'
{declaration}

[ASSUMPTIONS

{assertion ';'}]

MESSAGES

phrase_seq

[GOALS

{assertion ';'}]

END;

typespec:

TYPESPEC ident ';'

{declaration}

AXIOMS {statement ';'}

END;

environment:

ENVIRONMENT ident ';'
{declaration}

[AXIOMS

{statement ';'}]
{agent}
[EXPOSED term_list ';']
[ORDER order ';']
END;

agent:

AGENT ident HOLDS

{equation ';'}

order:

ident /* of agent */

I
'(' order ';' order ')'

I
'(' order 'II' order ')'

100

declaration:

IMPORTS ident_list ';'

I
FUNCTIONS {func_dec}

I
VARIABLES {variable.dec}

I
CONSTANTS {variable_dec}

I
DENOTES {equation [':' ident_list] ';'}

I
TYPES {type.dec}

assertion:

HOLDS ident ':' ident_list

I
BELIEVES ident ':' assertion

I
KNOWS ident ':' assertion

I
ASSUME assertion /* as an action */

I
PROVE assertion /* as an action */

I
SECRET ident [':' ident_list]

I
AGREE ident_list ':' ident_list 'I' ident_list

I
PRECEDES ident ':' ident 'I' ident.list

I
statement

statement:

logicstmt

I
IF logicstmt THEN simplestmt [ELSE simplestmt] ENDIF

I
INVERT term ':' ident I term.list

logicstmt:

101

simplestmt

I
NOT '(' simplestmt ')'

simplestmt:

equation

I
term

equation:

term '=' term

variable_dec:

ident_list ':' ident [',' property_list] ';'

type_dec:

ident_list [':' ident] ';'

func_dec:

ident '(' ident.list ')' ':' ident [',' property.list] ';

phrase_seq:

phrase

I
phrase ['/'] phrase_seq

phrase:

[{action ';'}]
message

[{action ';'}]

I
invocation

I
selection

action:

equation I ASSUME assertion I PROVE assertion

invocation:

INCLUDE ident ';' /* naming a protocol */

102

selection:

IF statement THEN phrase ELSE phrase ENDIF ';»

message:
[ident '.'] ident '->' ident ':' term_list ';'

property:

CRYPTO I FRESH I PRIVATE I EXPOSED I ASSOC I COM

term:

ident

I
functioncall

I
bracket

I
lowe

I
paren

functioncall :

ident '(' term_list ')'

/* arithmetic expressions with +, -, *, /, and

(for exponentiation) are supported, and

treated as function calls on pis, mns, etc. */

bracket:

'{' term_list '}' ['"] [term] /* single quote for decrypt */

I
'[' term_list ']' ['"] [term]

lowe:
term "/,' term

paren:
'(' term ')'

103

A.2 CIL Syntax

This is the syntax of CIL output in functional notation. Identifiers in quotes
are literal tokens, as are parentheses and commas. Other identifiers are
nonterminals. We use the 'Jist' meta-rule here too.

specification: 'CILspec'(symbols, slots, axioms, assums,
rules, goals, envs)

symbols: 'symbols'(symbol_list)

symbol: 'symbol'(ident, status, ids, ident, props)

status: 'type' | 'op' I 'var' I 'pvar'

ids: 'ids'(ident_list)

props: 'props'(property_list)

slots: 'slots'(slot_list)

slot: 'slot'(term, ident, number)

axioms: 'axioms'(stmt_list)

stmt: equation | term

equation: 'eqn'(term, term)

term: ident I fncall

fncall: ident(term_list)

assums: 'assums'(loc_list)

loc: 'loc'(nodes, statement)

nodes: 'nodes'(node_list)

104

node: 'node'(ident, number)

rules: 'rules'(rule_list)

rule: 'rule'(facts, ids, facts)

facts: 'facts'(term_list)

goals: 'goals'(loc_list)

envs: 'envs'(env_list)

env: 'environment'(ident, agents, exposed, order)

agents: 'agent'(ident, eqns)

eqns: 'eqns'(equation_list)

exposed: 'exposed'(terms(term_list))

order: 'order'(orderspe c)

orderspec:

ident

I 'allpar'

I 'seq'(orderspec, orderspec)

I 'par'(orderspec, orderspec)

105

Appendix B

The Prelude

This appendix specifies the predefined types. The typespecs given here are
combined into a file prelude.cap that is automatically read and imported
by the CAPSL translator prior to user-supplied specifications.

B.l Basic and Boolean

These types are for basic objects that are not message fields. Note that there
is an undeclared "Object" type. No axioms are given for booleans because
it is assumed that any protocol analysis tool will have these built in.

TYPESPEC BASIC;
TYPES

Role, Spec, Agent: Object;
Tspec, Pspec, Espec: Spec;

END;

TYPESPEC BOOLEAN;
IMPORTS BASIC;
TYPES

Boolean: Object;
CONSTANTS

true, false: Boolean;
FUNCTIONS

and(Boolean, Boolean): Boolean, ASSOC, COMM;

106

or(Boolean, Boolean): Boolean, ASSOC, COMM;

not(Boolean): Boolean;

if(Boolean, Boolean, Boolean): Boolean;

END;

B.2 Field

The Field type is the universal supertype for all message fields. There is
a subtype Atom of Field for fields that can be detached from the left of a
concatenation. A type declaration with no explicit supertype implies a su-
pertype of Atom. A Tape is a nonatomic field; it is a concatenated sequence
of atoms. The ASSOC property of cat declares that it is associative without
the need for explicit axioms.

TYPESPEC FIELD;

IMPORTS BOOLEAN;

TYPES

Field: Object;

Tape, Atom: Field;

Principal, Nonce, Number: Atom;

FUNCTIONS

cat(Field, Field): Tape, ASSOC;

first(Tape): Atom;

rest(Tape): Field;

VARIABLES

X: Atom;

Y: Field;

AXIOMS

first(cat(X, Y)) = X;

rest(cat(X, Y)) = Y;

INVERT cat(X, Y): X;

INVERT cat(X, Y): Y I X;

END;

107

B.3 Symmetric-Key Encryption

The basic Skey type is used by several sets of encryption operators. The
only operators given in this root typespec are a hash function and a keyed
hash (message authentication code). The DES system could be modeled
with the se, sd pair. The only form of single-operator symmetric system
that is commonly seen in practice is xor, given below.

TYPESPEC SKEY;

IMPORTS FIELD;

TYPES Skey;

FUNCTIONS

sha(Field): Skey;

mac(Skey,Field): Skey;

END;

TYPESPEC DSKE;

IMPORTS SKEY;

FUNCTIONS

se(Skey, Field): Field;

sd(Skey, Field): Field;

AXIOMS

se(Skey, Atom): Atom;

sd(Skey, Atom): Atom;

sd(K, se(K, D)) = D;
se(K, sd(K, D)) = D;
INVERT se(K, D): D I K;
INVERT sd(K, D): D I K;

END;

TYPESPEC XOR;

IMPORTS SKEY;

FUNCTIONS

xor(Skey, Skey): Skey, ASSOC, COMM;

AXIOMS

xor(xor(K,K),Kl) = Kl;

INVERT xor(K,Kl): K I Kl;

INVERT xor(K,Kl): Kl | K;
END;

108

/* Symmetrie Key Client, Server */

TYPESPEC SKCS;

IMPORTS SKEY;

TYPES Client, Server: Principal;

VARIABLES

S : Server;

C : Client;

FUNCTIONS

csk(Client): Skey, PRIVATE;

ssk(Server,Client): Skey, PRIVATE;

AXIOMS

ssk(S, C) = csk(C);

END;

/* Mutual Symmetrie Key Node */

TYPESPEC MSKN;

IMPORTS SKEY;

TYPES Node: Principal;

FUNCTIONS

msk(Node, Node): Skey, COMM, PRIVATE;

END;

/* Arithmetic operations may be used in CAPSL with the

infix syntax +, -, *, /, ".

*/

TYPESPEC ARITH;

IMPORTS SKEY;

CONSTANTS 1: Skey;

FUNCTIONS

pls(Skey, Skey): Skey, ASSOC, COMM;

mns(Skey): Skey;

tms(Skey, Skey): Skey, ASSOC, COMM;

div(Skey, Skey): Skey;

exp(Skey, Skey): Skey;

/*
AXIOMS

109

*/
END;

B.4 Public-Key Encryption

As in symmetric-key encryption, there is a basic public-key type, used for
both public and private keys. The single-operator version ped models RSA
at a very abstract level.

TYPESPEC PKEY;

IMPORTS FIELD;

TYPES Pkey;

FUNCTIONS

keypair(Pkey, Pkey): Boolean, COMM;
END;

TYPESPEC SPKE;

IMPORTS PKEY;

FUNCTIONS

ped(Pkey, Atom): Atom;

ped(Pkey, Field): Field;

AXIOMS

if keypair(K, Kl) THEN ped(Kl, ped(K, X)) = X ENDIF;

if keypair(K, Kl) THEN INVERT ped(K, X): X I Kl ENDIF;
END;

/* PPK provides simple standard public/private key lookup. */

TYPESPEC PPK;

IMPORTS PKEY;

TYPES PKUser: Principal;

FUNCTIONS

sk(PKUser): Pkey, PRIVATE;

pk(PKUser): Pkey;

AXIOMS

keypair(sk(P),pk(P));

INVERT ped(sk(P),X): X | pk(P);

INVERT ped(pk(P),X): X I sk(P);

110

END;

B.5 Key Agreement

This key agreement type is meant to express the basic properties of Diffie-
Hellman key agreement. The kap operation creates a public value that can
be combined with an Skey to produce another Skey using kas. This type
specification omits significant relations that emerge when kap is implemented
by raising a known base value to the Skey power modulo a prime.

TYPESPEC KeyAgreement;
IMPORTS SKEY;
TYPES Pval;
FUNCTIONS

kap(Skey): Pval;
kas(Pval, Skey): Skey;

AXIOMS
kas(kap(Ka),Kb) = kas(kap(Kb),Ka);

END;

B.6 Public-Key Sealing

The following public-key seal operation could be implemented with a keyed
hash, but it may also be viewed as a primitive operation. It could be the
basis for a signature if one assumes that the sealing key is private to the
signer.

TYPESPEC PKSeal;
IMPORTS PKEY;
TYPES Pseal;
FUNCTIONS

seal(Pkey, Field): Pseal;
verify(Pkey, Pseal, Field): Boolean;

AXIOMS
IF keypair(K, Kl) THEN verify(Kl,seal(K, X), X) ENDIF;

END;

111

B.7 Timestamps

Timestamps are used simply by assuming that each agent that generates or
checks a timestamp holds it initially. Equality comparisons can be used to
simulate "nearness." A more advanced version might check ordering.

TYPESPEC TIMESTAMP;

TYPES Timestamp;

END;

B.8 List

The List type support the non-associative concatenation operator.

TYPESPEC LIST;

IMPORTS FIELD;

TYPES List;

FUNCTIONS

con(Field, Field): List;

head(List): Field;

tail(List): Field;

AXIOMS

head(con(X, Y)) = X;

tail(con(X, Y)) = Y;

INVERT con(X, Y): X;

INVERT con(X, Y): Y;

END;

B.9 End Prelude Marker

This type is placed at the end of the prelude to mark the separation of
symbols and axioms in the prelude from those in user-supplied typespecs.
This separation is helpful for connectors that provide built-in support for
the prelude types.

TYPESPEC ENDPRELUDE;

112

CONSTANTS endprelude: Boolean;

AXIOMS

endprelude = true;

END;

113

Appendix C

CAPSL Examples

This appendix contains two relatively complex examples of CAPSL. The SSL
example illustrates conditional selection of subprotocols. The SRP example
illustrates use of arithmetic. Both utilize customized subtypes of Principal.

C.l SSL Handshake

The Secure Socket Layer (SSL) Handshake Protocol, version 3, is an Internet
Draft that can be found on the Netscape site, http: //home .netscape. com/
eng/ssl3. This CAPSL example is a partial version that expands only one
of the cipher spec options, Diffie-Hellman. RSA and Fortezza-DMS are
the others. This version also does not perform client authentication. For
simplicity we omit the cipher suite and compression method lists.

The CAPSL text illustrates conditional selection of subprotocols and the
DENOTES section. The sha operator is used wherever hashes are called for,
and much of the detailed construction of hashes and key material has been
simplified. The method for simplifying hashes is to include the contribut-
ing data but ignore ordering, constants, and other details that affect the
cryptographic strength but not the logical structure of the protocol. The
key agreeement operators are used instead of explicit exponentiation in the
Diffie-Hellman exchange, so the base and modulus are not mentioned.

TYPESPEC SSLS;

TYPES CertServer: PKUser;

114

FUNCTIONS

T(CertServer): Field; /* PK certificate */

VARIABLES

Sv: CertServer;

CONSTANTS

CA: PKUser; /* Certificate Authority */

AXIOMS

T(Sv) = {Sv,pk(Sv)}sk(CA);

END;

PROTOCOL SSLHandshake;

IMPORTS SSLS;

TYPES CipherSpec;

VARIABLES

C: PKUser;

S: CertServer;

Rc.Rs: Nonce, CRYPTO; /* Client/ServerHello.random */

CS: CipherSpec;

SID: Nonce; /* session id */

PMS: Skey; /* pre-master-secret */

MS: Skey; /* master secret */

PKs: Pkey; /* Server public key pk(S) */

CONSTANTS

DH, RSA, DMS: CipherSpec;

SSLDH, SSLRSA, SSLDMS: Pspec;

DENOTES

MS = sha({PMS,Rc,Rs});

ASSUMPTIONS

HOLDS C: S, CS;

MESSAGES

ClientHello. C -> S: C.Rc.CS;

ServerHello. S -> C: S.Rs.CS;

ServerCertificate. S -> C: T(S)*/,{S,PKs}sk(CA);

IF CS = DH THEN INCLUDE SSLDH;

ELSE IF CS = RSA THEN INCLUDE SSLRSA;

ELSE IF CS = DMS THEN INCLUDE SSLDMS;

/* ELSE INCLUDE SSLERR; */ ENDIF;

ENDIF; ENDIF;

GOALS

SECRET MS;

115

PRECEDES C: S I MS,Rs,Rc;
END;

PROTOCOL SSLDH;

IMPORTS SSLHandshake;

VARIABLES

Yc,Ys: Pval; /* key agreement public values */

Xc,Xs: Skey, FRESH,CRYPTO; /* key agreement secret values */

D: Field;

MESSAGES

ServerKeyExchange. S -> C: kap(Xs)*/.Ys, ({sha(kap(Xs))}sk(S))'/.D;

{D}PKs = sha(Ys);

/* SeverHelloDone. S -> C: { } */

ClientKeyExchange. C -> S: kap(Xc)'/.Yc;

PMS = kas(Yc.Xs);/

PMS = kas(Ys.Xc);
ClientFinished. C -> S: sha({MS,C});

ServerFinished. S -> C: sha({MS,S});
END;

/* protocols SSLRSA, SSLDMS, and SSLERR would be needed */

C.2 Secure Remote Password (SRP) Protocol

SRP is a protocol in the EKE family designed to defeat password guessing,
developed at Stanford. There is a web site for it, http://srp.Stanford,
edu/srp/. This CAPSL specification incorporates a few modifications for
simplicity:

1. There is no mention of the modulus N for finite field arithmetic. Arith-
metic is done on Skeys.

2. The checks that B, u, and A are not zero are omitted.

3. Messages 3 and 4 to confirm reception of the key K are simpler than
the suggested ones.

TYPESPEC User;

TYPES User, Host: Principal;

116

FUNCTIONS

g: Skey; /* generator */

p(User): Field, PRIVATE, CRYPTO; /* password */

s(Host.User): Field, PRIVATE; /* salt */

v(Host.User): Skey, PRIVATE; /* password verifier */

AXIOMS
v(Hl,Ul) = g~sha({s(Hl,Ul),p(Ul)});

END;

PROTOCOL SRP;

IMPORTS User;

VARIABLES

U: User;

H: Host;

A, B: Skey;

a, b, u: Skey, FRESH, CRYPTO;

K,S,s,x: Skey;

DENOTES

A = g"a;

B = v(H,U) + g-b;

x = sha({s,p(U)});

v = g"x;

ASSUMPTIONS

HOLDS U: H;

MESSAGES
1. U -> H: U, A; /* U generates a */

S = (A*v(H,U)~u)~b; /* H generates b */

K = sha(S);

2. H -> U: s(H,U)7.s, B, u;

S = (B - v)"(a + u*x);

K = sha(S);

3. U -> H: {A}K; /* proves U holds K */

4. H -> U: {B}K; /* proves H holds K */

GOALS

SECRET K;

END;

117

Appendix D

CIL Output Example

This appendix shows the actual CIL output for the NSPK protocol with a
sample environment.

D.l CAPSL Specification for NSPK

PROTOCOL NSPK;

VARIABLES

A, B: PKUser;

Na, Nb: Nonce, CRYPTO;

ASSUMPTIONS

HOLDS A: B;

MESSAGES

A -> B: {A,Na}pk(B);

B -> A: {Na,Nb}pk(A);

A -> B: -CNb}pk(B);
GOALS

SECRET Na;

SECRET Nb;

PRECEDES A: B I Na;

PRECEDES B: A I Nb;

END;

ENVIRONMENT Testl;

118

IMPORTS NSPK;

CONSTANTS

Alice, Bob: PKUser;

Mallory: PKUser, EXPOSED;

AGENT Al HOLDS

A = Alice;

B = Bob;

AGENT Bl HOLDS

B = Bob;

EXPOSED

{Bob}sk(Alice);

END;

D.2 CIL Output for NSPK

This is the CIL output from the CAPSL specification above. Note that
the prelude was incorporated, resulting in many symbol table entries and
axioms.

CILspecC

symbols(mbols(

symbol(Object,type,ids(),Object,props()),

symbol(BASIC,op,ids(),Tspec,props()),

symbol(Role,type,ids().Object,props()),

symbol(Spec,type,ids() ,Object,propsO),

symbol(Agent,type,ids().Object,props()),

symbol(Tspec,type,ids().Spec,props()),

symbol(Pspec,type,ids().Spec,props()),

symbol(Espec,type,ids(),Spec,props()),

symbol(BOOLEAN,op,ids(),Tspec,props()),

symbol(Boolean,type,ids(),Object,props()),

symbol(true,op,ids(),Boolean,props()),

symbol (false, op, ids () ,Boolean,propsO),

symbol (and, op, ids (Boolean, Boolean) ,Boolean,propsO),

symbol (or, op, ids (Boolean, Boolean) ,Boolean,propsO) ,

symbol(not,op,ids(Boolean) ,Boolean,props()),

symbol(if,op,ids(Boolean,Boolean,Boolean),Boolean,props()),

symbol(FIELD,op,ids(),Tspec,props()),

119

symbol(Field,type,ids(),Object,props()),
symbol(Tape.type,ids()»Field,props()),
symbol(Atom,type,ids(),Field,props()),
symbol (Principal, type, ids () ,Atom,propsO) ,
symbol(Nonce,type,ids(),Atom,props()),
symbol(Number,type,ids(),Atom,props 0),
symbol(cat,op,ids(Field,Field),Tape.props(ASSOC)),
symbol(first,op,ids(Tape),Atom,props 0),
symboKrest,op,ids(Tape),Field,propsO),
symbol(Al,var,ids(),Atom,props()) ,
symbol(XI,var,ids(),Field,props()),
symbol(SKEY,op,ids(),Tspec,props()),
symbol(Skey,type,ids(),Atom,props()),
symbol(sha,op.ids(Field),Skey,props()),
symbol(mac,op,ids(Skey,Field),Skey.props()),
symbol(DSKE,op,ids(),Tspec,props()),
symbol(se,op,ids(Skey,Atom),Atom,props()),
symbol(sd,op,ids(Skey,Atom).Atom,props()),
symbol(se,op,ids(Skey,Field),Field,props()),
symbol (sd, op, ids (Skey, Field) .Field.propsO) ,
symbol(Kl,var,ids(),Skey,props()),
symbol(K11,var,ids(),Skey,props()),
symbol(XOR,op,ids(),Tspec.props()),
symbol(xor,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),
symbol(SKCS,op,ids(),Tspec,props()),
symbol(Client,type,ids()»Principal.props 0),
symbol(Server,type,ids().Principal,props()),
symbol(SI,var,ids(),Server,props()),
symbol(Cl,var,ids().Client.props()),
symbol(csk,op,ids(Client),Skey,props(PRIVATE)),
symboKssk, op, ids(Server, Client), Skey, props (PRIVATE)) ,
symbol(MSKN,op,ids(),Tspec,propsO),
symbol(Node,type,ids(),Principal,props()),
symbol(msk,op,ids(Node,Node),Skey,props(COMM,PRIVATE)),
symbol(ARITH,op,ids(),Tspec.props()),
symbol(1,op,ids(),Skey,props()),
symbol(pis,op,ids(Skey,Skey),Skey,props(ASSOC,COMM)),
symbol(mns,op,ids(Skey),Skey.props()),
symbol(tms,op,ids(Skey,Skey),Skey.props(ASSOC,COMM)),
symbol(div,op,ids(Skey,Skey),Skey,props()),

120

symbol(exp,op,ids(Skey,Skey),Skey.props()),

symbol(PKEY,op,ids 0,Tspec.props 0),
symbol(Pkey,type,ids(),Atom,props()),
symbol(PK1,var,ids(),Pkey »props()),
symbol(PKIl,var,ids() .Pkey.propsO),
symbol(keypair,op,ids(Pkey,Pkey),Boolean,props(COMM)),

symbol(SPKE,op,ids(),Tspec.props 0),
symbol (ped, op, ids (Pkey, Atom) ,Atom,propsO),
symbol (ped, op, ids (Pkey, Field) ,Field,propsO),
symbol(PPK,op,ids(),Tspec,props()),
symbol(PKUser,type,ids() .Principal,propsO),
symbol(sk,op,ids(PKUser),Pkey,props(PRIVATE)),
symbol (pk, op, ids (PKUser) .Pkey.propsO) ,
symbol(PKU1,var,ids 0,PKUser.props 0),
symbol(KEYAGREEMENT,op,ids(),Tspec,props()),
symbol(Pval,type,ids(),Atom,props()),
symbol(kap,op,ids(Skey),Pval,props()),
symbol(kas,op,ids(Pval,Skey),Skey,props()),
symbol(PKSeal,op,ids(),Tspec,props()),
symboKPseal,type,ids(),Atom,propsO),
symbol (seal, op, ids (Pkey, Field) .Pseal.propsO),
symbol(verify,op,ids(Pkey,Pseal,Field),Boolean,propsO),

symbol(TIHESTAMP,op,ids(),Tspec »props()),
symbol(Timestamp,type,ids(),Atom,props()),
symbol (LIST, op, ids (), Tspec, propsO) ,
symbol (List, type, ids (), Atom, propsO),
symbol (con, op, ids (Field, Field),List,propsO) ,
symbol (head,op,ids(List),Field,propsO),
symbol(tail,op,ids(List) .Field.propsO),
symbol(XI,var,ids0 ,Field,propsO),
symbol(Yl,var,ids 0,Field,props()),
symbol(ENDPRELUDE,op,ids(),Tspec,props 0),
symbol(endprelude,op,ids0 ,Boolean,propsO),
symbol(NSPK,op,ids 0,Pspec.props 0),
symbol (A,pvar, ids 0, PKUser, propsO),
symbol(B,pvar,ids(),PKUser.props 0),
symbol(Na,pvar,ids(),Nonce,props(CRYPTO,FRESH)),
symbol(Nb,pvar,ids0,Nonce,props(CRYPTO,FRESH)),
symbol(Test1,op,ids(),Espec,props()),
symbol (Alice, op, ids 0,PKUser,propsO),

121

symbol(Bob,op,ids(),PKUser,props()),

symbol(Mallory,op,ids(),PKUser,props(EXPOSED)),

symbol(Al,op,ids().Agent,props()),

symbol(Bl,op,ids(),Agent,props()),

symbol(roleA,op,ids() ,Role,propsO),

symbol(roleB,op,ids(),Role,props()),

symbol(UNK,pvar,ids().Principal.props())

).
slots(

slot(A,roleA,1),

slot(B,roleA,2),

slot(B,roleB,l),

slot(Na,roleA,3),

slot(A,roleB,2),

slot(Na,roleB,3),

slot(Nb,roleB,4),

slot(Nb,roleA,4)

),
axioms(

eqn(first(cat(Al,Xl)),A1) ,

eqn(rest(cat(Al,Xl)),Xl),

invertible(cat(Al,Xl),Al,termsO),

invertible(cat(Al,Xl),XI,terms()),

eqn(sd(Kl,se(Kl,Xl)),X1),

eqn(se(Kl,sd(Kl,X1)),X1),

invertible(se(Kl,XI),XI,terms(Kl)),

invertible(sd(Kl,Xl),XI,terms(Kl)),

eqn(xor(xor(Kl,Kl),K11),K11),

invertible(xor(Kl,Kll),K1,terms(Kll)),

invertible(xor(Kl,Kll),Kll,terms(Kl)),

eqn(ssk(Sl,Cl),csk(Cl)),

if(keypair(PKl,PKIl),eqn(ped(PKIl,ped(PKl,Xl)),X1).true),

keypair(sk(PKUl) ,pk(PKUD),

invertible(ped(sk(PKUl),X1),XI,terms(pk(PKU1))),

invertible(ped(pk(PKUl),X1),Xl,terms(sk(PKUl))),

eqn(kas(kap(Kl),K11),kas(kap(Kll),K1)),

eqn(keypair(PKl,PKIl),verify(PKIl,seal(PKl,Xl),X1)),

eqn(head(con(XI,YD) ,X1),

eqn(tail(con(Xl,Yl)),Y1),

invertible(con(Xl,Yl),Xl,terms()),

122

invertible(con(Xl,Yl),Y1,terms()),

eqn(endprelude,true)

),
assums(loc(nodes(node(roleA,0).node(roleB,0)).holds(A,ids(B)))),

rules(
rule(facts(),ids(),facts(state(roleA.O,terms(A,B)))),

rule(facts(),ids(),facts(state(roleB,0,tenns(B)))),

rule(
facts(state(roleA,0.terms(A,B))),

ids(Na),
facts(state(roleA,l,terms(A,B,Na)),msg(A,B,terms(ped(pk(B),cat(A,Na)))))

).
rule(

facts(state(roleB,0,terms(B)),msg(UNK,B.terms(ped(pk(B),cat(A,Na))))),

ids(Nb),

facts(
state(roleB,2,terms(B,A,Na,Nb)),

msg(B,A,terms(ped(pk(A),cat(Na,Nb))))

)

),
rule(

facts(
state(roleA,l,terms(A,B,Na)),

msg(UNK,A,terms(ped(pk(A),cat(Na,Nb))))

),
ids(),
facts(state(roleA,3,terms(A,B,Na)Nb)),msg(A,B,terms(ped(pk(B)JNb))))

),
rule(

facts(state(roleB,2,terms(B,A,NaJNb)),msg(UNK,B,terms(ped(pk(B),Nb)))),

idsO,
facts(state(roleB,3,terms(B,A,Na,Nb)))

)
),
goals(

loc(nodes(node(roleA,3).node(roleB,3)),secret(Na,ids 0)),

loc(nodes(node(roleA,3),node(roleB,3)),secret(Nb,ids())),

loc(nodes(node(roleA,3).node(roleB,3))»precedes(A,B,ids(Na))),
loc(nodes(node(roleA,3),node(roleB,3)),precedes(B,A,ids(Nb)))

),

123

envs(

environment(

Testl,

agents(

agent(Al,eqns(eqn(A,Alice),eqn(B,Bob))),

agent(Bl,eqns(eqn(B,Bob)))

),
exposed(terms(ped(sk(Alice),Bob))),

order(allpar)

)
)

«U.S. GOVERNMENT PRINTING OFFICE: 2002-710-038-10205

124

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

