
AFRL-IF-RS-TR-2002-6
Final Technical Report
February 2002

FORMAL METHODS FRAMEWORK

WetStone Technologies

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20020308 035

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-6 has been reviewed and is approved for publication.

APPROVED:

JAMES L. SIDORAN
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Hßhway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503.

1. AGENCY USE ONLY (Learn blank) 2. REPORT DATE

FEBRUARY 2002
3. REPORT TYPE AND DATES COVERED

Final Jun99-Jun00
4. TITLE AND SUBTITLE

FORMAL METHODS FRAMEWORK

6. AUTHORIS)

Chester Hosmer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

WetStone Technologies
17 Main Street, Suite 237
Cortland New York 13045

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

5. FUNDING NUMBERS

C - F30602-99-C-0166
PE- N/A
PR- 1065
TA- 09
WU-P2

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-6

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: James L. Sidoran/IFGB/(315) 330-3174

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This contract final technical report documents the Formal Methods Framework (FMF) project results. This project considers
the impact of formal methods on industries such as high assurance and telecommunications software and proposes a
framework within which formal method can be used more effectively to produce reliable and correct software. A FMF is
developed an populated, and areas of future improvement such as extensibility, scalability and range of applications are
identified.

14. SUBJECT TERMS

Formal Methods, Classification, Telecommunications
15. NUMBER OF PAGES

106
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTFIACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std.23S. 18
Designed using Perform Pro, WHS/DIOR, Ocl 94

Table of Contents

1 Period of Performance 1

2 Detailed Program Schedule 1

3 Background 1

3.1 Existing Tool Classification and Terminology Documents 2

4 Project Activity 4

4.1 Classification of Formal Tools 5

4.2 Taxonomy of Formal Terms 6

5 Conclusions and Future Work 6

5.1 Long-term Future Work: Formal Methods Framework 7

5.2 Travel 8

5.3 References 8

Appendix A - Questionnaires 11

ACL2 11

HOL 17

Larch Prover (LP) 22

PVS. 28

Z/EVES 35

Concurrency Factory 41

Murphi 47

SVM Cadence 53

SPIN 59

NRL Protocol Analyzer 65

SCR* 71

Tatami 77
What Tool Makers Need for Tool Integration (1 received response) 83

Table of Contents (Continued)

Appendix B: Formal Methods Term Taxonomy 84

Background 84

Taxonomy 84

li

1 Period of Performance

This report reflects performance from 5/26/99 through 10/26/99.

2 Detailed Program Schedule

The following represents the schedule for this project:

Progress Months
Jun Jul Aug Sep Oct Nov

Perform initial research & project setup 4

Form Collaborations / Research Tools / Distribute questionnaires

Examine tools for possible framework properties

Identify framework properties
- 'i !&

Prepare Final Report
.-'. .'-"i",; •;'..'"C

3 Background

Our survey of the current practices in formal methods in academia and industry [Barj98]
indicates that formal methods (FM) are a promising technology that is eliciting more and more
industrial interest. Major issues in software and hardware industry are complexity and size, and
current practices such as simulation cannot perform to the desired level of satisfaction anymore.

In the hardware industry, formal tools are popular and adopted in standard engineering practice.
Many tool vendors such as Crysallis or Synopsis make formal tools and/or integrate formal tools
in their commercial CAD toolkits. For Example, Cadence is currently producing a "Verification
Cockpit" toolset. Incentives are: high cost of design errors, standard notation (VHDL/Verilog),
and use of standard tools. Formal methods replace simulation, with the prevalent use of model
checking to reveal errors.

In the commercial software industry, there is none or very little use of formal methods. The
barriers include: product patches are distributed electronically, software is written in many
languages, there is very little use of any tools, and software engineering is not a discipline based
on formalism and mathematics such is digital design.

High assurance and telecommunications software industry use formal tools to some degree, with
their use increasing. Telecommunications industry is driven by (often international) standards

compliance and need for test-case derivation. Information security industries, such as electronic
commerce and banking, network security, and military applications are motivated by the virtue
of information as commodity, with tangible material and strategic cost. Safety critical
applications applications, such as avionics, medicine, railroads, and nuclear power applications
are motivated by having human lives at stake.

Most formal methods practitioners agree that many additional steps are needed to take formal
methods from research to industrial practice. Most commonly mentioned features include:
infrastructure, such as robust and supported tools, easy to use, with verified libraries; publicizing
success stories; and user education.

Some preliminary work can be done in order to make formal methods more approachable to
users. IEEE Formal Methods Planning Group met in an open meeting in November 1998 at SRI
International, Menlo Park, CA, to discuss what steps, if any, can be taken towards
standardization of formal methods. The consensus was that standardization is premature, and that
it would be necessary to collect information on the existing formal tools and somehow classify
them, and collect and standardize formal methods terminology. The project described in this
report addresses those concerns.

We attended World Congress on Formal Methods, which was attended by about 500 formal
methods specialists from all over the world. During 1.5 hr meeting called IEEE Formal Methods
Planning Group Birds-of-a feather meeting, formal methods experts discussed what needs to be
done in formal methods, using our work on tool classification and taxonomy. The resulting
recommendations are included in the conclusion.

A long term goal of WetStone Technologies, Inc. is to produce a robust, industrially usable
Formal Methods Framework (FMF) that is populated by several formal methods and tools. This
framework must be extensible, scaleable, and general enough to address a range of application
problems but specific enough to address desired application domains. An undertaking of this size
would require partnership between several teams with different expertise and several years of
work. In this effort, we are taking the first step by outlining the preliminary work necessary to
pave the way for the creation of the fully developed Formal Methods Framework.

3.1 Existing Tool Classification and Terminology Documents

Some documents and databases which outline formal methods terminology, tools used and
experience reports already exist. We will not discuss databases of links to various tool pages,
such as [BoweWWW], but rather databases which attempted to classify tools based on some
predetermined criteria.

Formal Methods Europe (FME) is "an organization supported by the Commission of the
European Union, with the mission of promoting and supporting the industrial use of formal
methods for computer systems development." FME organizes seminars and a yearly international
symposium, and produces a newsletter. FME's web page [FME] contains some case studies,
formal methods database, and a tools database. The case studies database seems not to be up to
date, and the tools database seems not to be up to date, with the latest additions in 1997, although
the web page claims 6-month updates. The tools database contains about 60 international tools
and is, in our opinion, suitable for a quick overview of tools. The tools are classified by the
following categories:
• Tool name
• Usage and applicability
• Languages supported
• List of applications (if available)
• Functionality: yes/no answers to the following:

Syntax checking
Static semantics
Animation.execution
GUI
Pretty-print
Typechecking
Proof support
Refinement
Test-case generation

• Environment, number of installations, last update
• Contact
• Availability
• Description.

European Workshop on Industrial Computer Systems (EWICS) Formal Methods subgroup
produced documents that contain some formal methods terminology, formal methods database,
and a classification of methods by their theoretical basis [EWICS98]. EWICS formal methods
database is relatively current (dated June 1998) but it contains only CCS, COLD, OBJ, SAGA-
LUSTRE, Z, RAISE, B and VSE formal methods, and it focuses more on methods than on tools.
The methods are classified as:

Formal method name
Summary
Applications
Properties
Relation to other formal methods
Theoretical basis
Tools
Appraisal:

• Maturity
• Availability
• Strength
• Industrial experience
• Tool availability

• Application and experience matrix
• Tools matrix
• Bibliography

Craigen, Gerhart and Ralston have published "An International Survey of Industrial Applications
of Formal Methods" [CrGeRa93], which contains much valuable information but is dated as
1993. [ClWi96] paper has some experience reports as well and is more recent. Experience
reports need to be kept in an up-to-date database available on the web.

Some definitions of formal methods terms are published in the following reports and databases,
such as: NASA's Formal Methods Guidebooks [NASA97, NASA98]; EWICS' Guide
[EWICS98]; Laprie's report "Dependability: Basic Concepts and Terminology" [Lapr];
"Dictionary of Algorithms, Data Structures and Problems" [Black99], compiled by Paul Black
for CRC Dictionary of Computer Science, Engineering and Technology; and Rushby's technical
report on "Formal Methods and Their Role in the Certification of Critical Systems" [Rush93,
Rush95]. Various formal methods terminology is scattered throughout the published literature,
such as [ClWi96]. Effort is needed to collect the terminology as is used today and converge it
into a common terminology, i.e. formal methods "lingua franca."

4 Project Activity

The immediate goals for this project were to:
1. Collect terminology and develop a taxonomy of terms used in formal methods
2. Classify a subset of formal tools.

Our intent is to contribute to a more widespread use of formal methods by making formal
methods more accessible and understandable to potential users, including industrially-oriented
users new to formal methods. We developed a questionnaire that should help potential and new
users assess what tools are available for their needs. The questionnaire was used to collect
information on selected tools, and develop classification and taxonomy based on the collected
information.

We have presented this work at World Congress on Formal Methods (FM'99) during IEEE
Formal Methods Planning Group Birds-of-a-Feather meeting. Discussion ensued that points in
the direction of future work and confirms the orientation towards industrial practitioners. The
main points of the discussion are outlined in the "Conclusions" section.

4.1 Classification of Formal Tools

We compiled information on the best-known and widely used formal tools, with emphasis on
tools aimed at industrial practitioners without extensive formal methods expertise. The tools are:
1. Theorem provers: PVS, ACL2, HOL, Larch LP tool, Z/EVES;
2. Model checkers: SMV, SPIN, Murphi, Concurrency Factory;
3. Other tools: NRL Protocol Analyzer, SCR*, Tatami.

We have devised a questionnaire to aid in collecting and classifying this information. There are
many criteria for classifying the tools, based on the intended use of the tool survey. Possible
audiences include tool developers, industry/users, and academia/researchers. We have assumed
that the tool survey will be used by users new to the tools to aid them in selecting appropriate
tools. We envisioned users who are interested in practical application of the tools and possibly do
not have extensive background in formal methods. We chose the main categories for classifying
the tools to be:

1. general description of the tool;
2. tool implementation (such as what language the tool is implemented in, is the tool

extensible);
3. tool features and utilities (such as validated libraries, GUI, typechecking, prettyprinting,

editing);
4. tool input and output;
5. tool applications (such as application domains, levels of abstraction;
6. resources required to run the tool (such as licensing, platform, operating system);
7. resources available (such as manuals, courses, contacts);
8. more specific detailed questions pertaining specifically to model checkers and theorem

provers; and
9. open-ended questions for quick assessment of tools' strengths and weaknesses, and a list

of case studies and experience reports.

We have designed the basic questionnaire and revised it based on the feedback from the
Engineering Consortium, various verification mailing lists, and SRI CSL. We also modified the
questionnaire for on-line filling.

For each tool, we filled the questionnaire as a "new" user, i.e. we have studied the readily
available literature about the tool as if we are evaluating it for potential use. Questionnaires were
then distributed to tool makers and user mailing lists for feedback. Returned questionnaires were
edited for consistency between various responses. All questionnaires came back with feedback
except for Larch LP, Tatami, and NRL Protocol Analyzer. (According to Jeannette Wing at
FM'99, use of Larch language and tools is on the sharp decline and that might explain lack of
interest in participating in this survey.)

The questionnaires are in the Appendices. We posted the questionnaires on WetStone's web
page, as http://www.wetstonetech.com/fm quest.html. and requested that it be linked to various
formal methods web repositories, such as Engineering Consortium page and World Wide Web
Virtual Library on Formal Methods. The questionnaires were presented at the World Congress
on Formal Methods (FM'99).

4.2 Taxonomy of Formal Terms

We have examined [NASA97, NASA98] FM guidebooks, various papers on formal methods
including [ClWi96] and many others, various technical reports such as [Rushby95] and
combined existing definitions into a formal methods terminology. The taxonomy is application-
domain independent. It is intended to satisfy a wide range of users, including practicing
engineers who might not be fully trained in mathematical logic. For a more theoretical treatment
of technical details involved in formal methods, a reader is referred to textbooks on logic and
theoretical studies of languages such as [EWICS98]. The taxonomy is presented in the
Appendix, and posted on WetStone's web page at http://www.wetstonetech.com/fm quest.html.

5 Conclusions and Future Work

The following work is needed to move formal methods into a more mainstream practice:
1. A common terminology. Various differing definitions need to be converged into a common

terminology to be accepted as the "lingua franca" of formal methods, and potentially
standardized.

2. Common APIs and exchange formats for tool interoperability, potentially to be standardized.
3. Classification of formal methods, based on their language, method, and tool, as well as the

relationship between them. Ideally, also include classification based on application domains.
4. Guidelines for using formal methods in industrial practice, including the following:

a. Overview of the state-of-the-art in formal methods practice.
b. A classification of tools, containing short overview and description of each tool, time-

stamped and indicating if the tool is industrial strength or research prototype.
c. A questionnaire which users can use to guide them in selecting tools.
d. Experiences database, organized by application type and industry area; or, for each tool,

what types of problems it was used for.
e. Examples done in each tool, using similar problems as benchmarks.
f. A catalogue of formal methods courses, training, books, and other educational resources.
g. "Method behind the method" for tools, i.e. how can each method/tool be used and/or

what is its theoretical basis for implementation.
h. A bibliography of links to the above information, to be posted on a web site.

5. Developed "infrastructure," such as verified libraries and transition from research prototype
tools into industrial strength tools.

6. Integration of tools into toolkits, and integration of tools into industrial process flow.

This project has accomplished items 3.b and 3.c, and produced the first draft of item 1. [Barj98]
addressed item 3.a, but the overview needs to be updated yearly. The future work would be to
address the remaining items.

5.1 Long-term Future Work: Formal Methods Framework

In order to integrate tools into a framework, items 2 and 3.g must be completed first. Our
perspective and long-term goal is to identify robust tools that can be integrated together in a
formal toolkit or added to existing toolkits. In order to accomplish that, we need to:
• Identify application or class of problems. Possible choices at this moment seem to be:

• hardware/software co-design
• information/networking security
• system-level design.

• Identify collaborators. Tool integration can be achieved only with the assistance of tool
makers. We need to identify collaborators that can bridge the gap between research and
industrial practice.

Potential collaborators include: Derivation Systems (contact Dr. Bhaskar Bose); Dr. Perry
Alexander (U of Cincinnati); SLDL project (contact Dave Barton, Intermetric Inc.) and the tool
integration group at Ptolemy Project (contact Dr. Edward Lee, U of California at Berkeley).

Derivation Systems company is dedicated to making industrial formal methods products.
Employees are Ph.D.-level trained in formal methods. Therefore, this company provides
expertise in commercial applications of formal methods research. Furthermore, the company
sells formal hardware tools, and recently has acquired software expertise in formal network
assurance for secure Java applets.

SLDL (System-Level Design Language) project is an ongoing, industry-driven effort to develop
a language and its tool support for describing systems-on-silicon. SLDL is intended for use by
electrical engineers designing microsystems with embedded software. SLDL is of interest to our
project because of its plug-and-play architecture. SLDL framework will include bridging the
semantics of several existing domain-specific system languages (e.g. Esterel, SDL, and C++).

Dr. Perry Alexander has been involved in several projects that bridge the gaps between formal
methods research and industrial practice, hardware and software. For example, CEENS project
(sponsored by Air Force), SLDL project, and HEPE project (sponsored by DARPA/ITO).
CEENS project had the goal to develop methodology and tools necessary to support board and
module level of electronic integration and develop a commercial products. The project involved
collaboration between Dr. Alexander and commercial companies TRW, Motorola, and Mentor
Graphics, and included industry review board. HEPE project deals with high assurance
heterogeneous network assurance prediction, and thus provides with software experience.

Some of the tools we have examined already integrate with other tools, for example PVS
integrates with SCR*, which integrates with SPIN. The trend is between integration between
theorem provers and model checkers, such as in PVS and SMV.

There are many ways to integrate tools. Ideal toolkit would consist of a "stack" of tools that can
address various levels of abstraction to aid in development by transformation. Ideally, tools
would be able to share common data. In practice, tools have been integrated based on shared
APIs and sockets (such as in Z/EVES); or common meta-language (such as in UniForm and
Express IT toolkits, and many commercial non-formal CAD toolkits) or some logic as the logical
framework (such in Maude). We envision a formal methods framework that integrates several
tools in an open environment. The tools should be either extensible or with provided API, and
contain many "convenience" non-formal tools, such as typecheckers, editors and prettyprinters,
as well as validated libraries. What is needed is more validated libraries for theorem proving, and
macros of temporal logic formulas for model checking. Our goal would be to integrate theorem
proving and model checking in an efficient way.

Tools which look promising for such integration are PVS, SCR* and SPIN, since they have
already begun their integration. For example, PVS already contains a model checker, but it
would be more efficient from a user's point of view to not have to learn another tool, e.g. an
experienced SPIN user should be able to supply input to PVS and vice versa.

An outcome of this work would be to produce guidelines on how to express various properties in
various tools, which is one of the features states as "needed" by the formal methods community.

An advantage of combining tools such as PVS and SPIN is the possible extent of cooperation
from tool vendors and users. PVS distribution does not contain source code, so it is not user
extensible, but PVS is a product of a commercial company and there are human resources
available to extend the tool, even though PVS itself is free. SPIN source code is freely available
and often extended by users. The combination of the two could result in a tool suite that is free
and capable of integrating model checking and theorem proving in an effective way.

5.2 Travel

Date Destination Purpose of Trip

5.3 References

[ACL2] Applicative Common Lisp (ACL2) home page,,
http://www.cs.utexas.edu/users/moore/acl2/index.html.

[Barj98] Milica Barjaktarovic, "The State-of-the-art in Formal Methods," AFOSR Summer
Research technical report for Rome Research Site, AFRL/IFGB.
http://www.wetstonetech.com/fm quest.html.

[Blac99] Paul Black, ed., "Dictionary of Algorithms, Data Structures, and Problems,"
compiled originally for the CRC Dictionary of Computer Science, Engineering
and Technology. http://hissa.ncsl.nist.gov/~black/DADS.

[BoweWWW] Jonathan Bowen (webmaster): "WWW Virtual Library on Formal Methods",
http://www.coiTilab.ox.ac.uk/archive/formal-methods/,
links to individual tools' pages.

[ClWi96] Edmund M. Clarke, Jeannette M. Wing, at. al. "Formal Methods: State of the Art
and Future Directions." ACM Computing Surveys, 28(4):626-643.

[EWICS98] European Workshop on Industrial Computer Systems, Technical Committee 7
(Safety, Reliability, Security), Formal Methods subgroup, "Guidance on the Use
of Formal Methods in the Development of High Integrity Industrial Computer
Systems." Parts I, II, working paper 4001, June 1998. http://www.ewics.org.

[EWICS98'] European Workshop on Industrial Computer Systems, Technical Committee 7
(Safety, Reliability, Security), Formal Methods subgroup, "Guidance on the Use
of Formal Methods in the Development of High Integrity Industrial Computer
Systems." Part III, "A Directory of Formal Methods," working paper 4002, June
1998. http://www.ewics.org.

[Factory] Concurrency Factory home page, http://www.cs.sunysb.edu/~concun-

[FME] Formal Methods Europe home page, http://www.cs.tcd.ie/FME/, or
http://www.fme-nl.org.

[HOL90] HOL home pages,
http://www.coiTilab.ox.ac.uk/archive/formal-methods/hol.html

[Lapr] Jean-Claude Laprie, "Dependability: Basic Concepts and Terminology."
Laboratory for Analysis and Architecture of Systems (LAAS) - CNRS, LAAS
report No92043. http://www.laas.fr.

[Murphi] Murcp homepage, http://sprout.stanford.edu/dill/murphi.html.

[NASA98] "Formal Methods Specification and Verification Guidebook for Software and
Computer Systems, Volume I: Planning and Technology Insertion" [NASA/TP-
98-208193], 1998. http://eis.ipl.nasa.gov/quality/Formal Methods/

[NASA97] "Formal Methods Specification and Analysis Guidebook for the Verification of
Software and Computer Systems, Volume II: A Practitioner's Companion"
[NASA-GB-001-97], 1997.
http://eis.ipl.nasa.gov/qualitv/ForiTial Methods/

[NRL] NRL home page, http://www.itd.nrl.navv.mil/ITD/5540/projects/crvpto.html

[PaulWWW] Larry Paulson (webmaster): http://www.cl.cam.ac.Uk/users/lcp/hotlist#Systems

[TalcWWW] Carolyn Talcott (webmaster):
http://www formalstanford.edu/clt/ARS/ars-db.html

[PVS] PVS home page, http://pvs.csl.sri.com

[Rush93] John Rushby, "Formal Methods and Their Role in the Certification of Critical
Systems", SRI International Technical Report CSL-93-7, March 1993.
http://csl.sri.com/csl-93-7.html.

[Rush95] John Rushby, "Formal Methods and Their Role in the Certification of Critical
Systems", SRI International Technical Report CSL-95-1, March 1995.
http://csl.sri.com/csl-95-l.html.

[SCR] SCR home page, http://www.chacs.itd.nrl.navy.mil/SCR

[SMV] SMV home page, http://www-cad.eecs.berkeley.edu/~kenmcmil

[Spin] Spin home page, http://netlib.bell-labs.com/netlib/spin/whatispin.html

[Z/EVES] Z/EVES home page, http://www.ora.on.ca/z-eves.

10

Appendix A - Questionnaires

ACL2

****************************** ACL2 ***********************************
****************************ggp _ 1999**********************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
X other: _integrated toolkit: logic, mechanized proof assistant,

executable model environment.
o Application domain(s) or class(es) of problems originally intended.

Formal verification o digital systems.
Building executable models that can be run and/or symbolically

executed,
o Intended audience.

Engineers and mathematicians working on industrial-strength
applications.

More generally, anyone wanting to reason about formal models,
o Language(s) and/or technique(s) that the tool is based on.

ACL2 logic (a subset of first-order applicative Common Lisp, i.e.
excluding non-applicative aspects such as higher-order functions,
circular structures, and Common Lisp Object System).

o Reasoning mechanisms used for the tool.
Mathematical induction, rewriting, decision procedures (equality, BDDs,
linear arithmetic), heuristics

o Comparable languages/tools.
HOL, PVS, (Pc-)Nqthm.
ACL2 is industrial-strength successor of Boyer-Moore theorem prover
Nqthm).

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Applicative Common Lisp (Allegro, GCL, Lispworks, Lucid, MCL).

o How extensible and/or customizable is the tool.
_X source code given
_X tool implemented in a public-domain language
_X other: _users post libraries

Features enabling modification include
extensive comments in sources and applicative
coding style (e.g., no global variables).

11

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
 GUI
_X Library of standard types, functions, and other constructions

_X the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
X reasonably comprehensive
 quite comprehensive

_X Editing and document preparation tools
 GNU Emacs
 ACL2 event files can be published in LaTex, HTML, Scribe, or

ASCII text. Formatting is user-extensible.
 Cross-referencing
 Browsing
 Requirements tracing
_X Incremental development across multiple sessions
 Change control and version management
_X Consistency checking

(via the "encapsulate" form)
X Completeness checking

(in the sense that theorems can be proved)
_X Other:

_infix interface to ACL2, to ease familiarizing with ACL2 for
those not familiar with Lisp prefix syntax.

o How interactive/mechanized/automated is the tool.
_X fully automated

(model execution)
_X user guided

(theorem prover)
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
X synchronous
X asynchronous
X mixed

o Input to the tool.
Model in ACL2 and proof hints.

o Output from the tool.
Proof results.
Execution results.

o The language used for input to the tool has (check all that apply)
_X formal semantics
_X modern programming language constructs (e.g. if-else):

12

 strong typing
_X modularity
_X hierarchical design
_X parameterization

(in the sense that functions can be parameterized)
 communication between processes
 buffered

_X built-in model of computation
other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X requirements
X design specification
X implementation
x test derivation

(not part of the system, but conveniently user-implementable)
_X RTL
X netlists
 transistor level
X other: In principle, any level can be addressed, but some

levels would require more work than others.
o Has the tool been integrated with other tools?
 no
 yes

with
with

X do not know
_Many loose integration, via translators into ACL2,
_but no tight integration known to tool makers.

6. RESOURCES

o Resource requirements for the tool:
UNIX version Sun OS, Linux
Windows version
Mac version _X
Memory: at least 16MB, preferably at least 64MB

o Cost, rights and restrictions:
 free, no license
_X free, license required

(GNU General Public License)
 for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

13

 other:
o User background prerequisites (check all that apply):

_X BS degree
 MS degree
 Ph.D. degree
_X knowledge of logic

X first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic
_X other: minimal familiarity with Common Lisp

o User's learning curve, if all prerequisites are met:
 one month

two months
_X less than six months
 other:
 months

o Tool support
X upgrades/maintenance

Last version produced at this date: _ACL2 v.2.4, 1999
X manual

_X on the web
X training

(tutorials on the web)
X listserv
 mailing list
_X dedicated conference(s)/workshop(s)

(One held in March 1999; next is anticipated in Oct. 2000)
 human "help line"
_x book(s)

(To appear in 2000).
X journal/conference publications
X other: _bug reports to acl2@lists.cc.utexas.edu_

_libraries, hypercard on the web
o Current contact.

http://www.es.utexas.edu/users/moore/acl2/index.html
acl2@lists.cc.utexas.edu (subscribe to acl2-

request@lists.ee.utexas.edu)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply)
 equivalence
 modal logic

14

temporal logic
system or process invariants
built-in support for checking for:
 deadlock
 livelock

other:

other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism

using
 simulator:
 interactive
 random

 feedback on in what state verification failed
 trace leading to the state

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
X partially mechanized

o Support for developing and viewing the proof.
Prover gives output showing the progress of the proof that users
typically inspect in order to develop appropriate lemmas (rules) to
assist in subsequent attempts. An interactive loop allows finer
control of the proof process, as does a tool for monitoring the
rewriter. "Proof trees" provide a sort of outline mode for the
proof that can ease browsing,

o Presentation of proof to the user.
The proof is presented as formulas that the prover is attempting to

reduce
to "true",

o Tool supports (check all that apply):
_X automated support for arithmetic reasoning
X automated support for efficient handling of large propositional

expressions
X automated support for rewriting
X possible to use lemmas before they are proved.

_X possible to state and use axioms without having to prove them.
X new definitions can be introduced and existing definitions

modified during proof
(at least, if "during proof" is interpreted as "during
the proof effort" then this is done all the time)

 facilities for editing proofs
_X the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
Caveat to the above: Some of the basic foundations are
collapsed, e.g., as "trivial observations"

X reasonably easy to reverify a theorem after slight changes to
the specification

9. OPEN-ENDED QUESTIONS

15

o Strengths of this tool.
Industrial-strength tool.
Built and based on a programming language, so models can be

symbolically
executed, run, and theorem-proved.
State-of-the-art heuristics and efficiency for inductive theorem

proving.
o Limitations of this tool.

Reasoning directly about quantified notions can be very awkward.
Learning curve.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Digital systems verification.
Bridging the gap between current practice (simulation) to the goal
practice (formal verification) using symbolic execution, or
less ambitiously, by providing a formal language for
reasonably efficient simulation,

o Applications that the tool was used for - case studies, examples,
success stories.

See http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html,
Examples:
industrial microprocessor AMD5K86 and K7 floating-point verification,
Motorola CAP DSP design.
Verification of COBOL Year 2000 conversion rules.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

16

HOL

***************************** HOL *****************************
********************************Sep_ 1999****************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
X mechanized proof assistant
 other:

o Application domain(s) or class(es) of problems originally intended.
General - from formalizing pure mathematics to verification of
industrial hardware.
Has been used for hardware and software verification,

o Intended audience.
General.

o Language(s) and/or technique(s) that the tool is based on.
Higher-order logic interfaced to Standard ML as the meta language,

o Reasoning mechanisms used for the tool.
Higher order logic, using predicate calculus with terms from the typed
lambda calculus (i.e. simple type theory),

o Comparable languages/tools.
ACL2, Eves, Isabelle, Nqthm, LAMBDA, LP, Nuprl, PVS
ProofProver (commercial implementation of HOL used fo reasoning about Z
specifications)

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Standard ML (Moscow ML for HOL98, New Jersey ML for HOL90).
A non-standard ML for HOL88.

o How extensible and/or customizable is the tool.
X source code given
X tool implemented in a public-domain language
 not extensible by user

other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI

(as a downloadable extension to HOL)
X Library of standard types, functions, and other constructions

_X the library is validated

17

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
X quite comprehensive
Editing and document preparation tools

emacs interface (as a downloadable extension)

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:

o How interactive/mechanized/automated is the tool.
 fully automated
_X user guided

other:

. TOOL INPUT AND OUTPUT

Input to the tool.
Higher-order logic proof description.

Output from the tool.
Proof goals proved or not.

The language used for input to the tool has (check all that apply)
_X formal semantics
X modern programming language constructs (e.g if-else) :

X strong typing
_X modularity
X hierarchical design
X parameterization
X built-in model of computation

other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
X requirements
X design specification

18

_X implementation
 test derivation
_X RTL
_X netlists
_X transistor level
X other: mathematics
(in principle, every level can be addressed, but lower levels
require more work)

o Has the tool been integrated with other tools?
 no
_X yes

with Isabelle
with _ProofProver
with _CHOL, non-specialist user interface to HOL
with

 do not know
Note: Many extensions and interfaces, such as GUI, Emacs.

Many embedded languages, such as Z, CCS.

6. RESOURCES

o Resource requirements for the tool:
UNIX version precompiled binaries for Sun3, Sun4, MIPS, Alpha_
Windows version
Mac version
Memory:

o Cost, rights and restrictions:
_X free, no license
 free, license required
 for educational and research use only ■

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:
o User background prerequisites (check all that apply):
 BS degree
_X MS degree
X PhD degree
X knowledge of logic
 first-order
X high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
 less than six months
X other

19

 6 months
o Tool support

_X upgrades/maintenance
Last version produced at this date: HOL98

_X manual
_X on the web

_X training
(courses at various locations, lectures and tutorials on the web)

X listserv
_X mailing list
_X conference(s)/workshop(s)

(annual international intercontinental conference TPHOL)
 human
_X book(s)
X journal publications
X other: web pages with code depositories and ftp/fag

archive
 HOL2000 initiative, to design next generation

HOL-like provers
 special journal issues related to HOL
 user meetings
 very extensive documentation (tutorial, description,

manual, manual for each supported library, primer for
beginners, notes, user manuals, applications)

 bug/problem reports: hol-supprt@cl.cam.ac.uk
o Current contact.

http://www.cl.cam.ac.uk/Research/HVG/HOL
info-hol@lal.cs.byu.edu (subscribe at info-hol-request@lal.cs.buy.edu)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
 temporal logic
 system or process invariants
 other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism(s)

using
 simulator
 interactive
 random

 feedback on in what state verification failed
 trace leading to the state

 built-in support for checking for:
 deadlock
 livelock
 boolean propositions

other:

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

20

o Degree of proof mechanization.
 fully mechanized
X partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
X automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
X new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
X the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
_X reasonably easy to reverify a theorem after slight changes to

the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Powerful proof mechanism for formal verification, induction,
infinite data sets. Active and large established user group.

o Limitations of this tool.
Difficult to specify control sequences, takes a long time to learn.
Less payoff for lower levels of abstraction,

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Verification of problems containing extensive data path.
o Applications that the tool was used for - case studies, examples,
success stories.

Some are posted http://www.dcs.glasgow.ac.uk/-tfm/hol-bib.html
Examples: embedding of various languages (e.g. Z, CCS, hardware
languages); security; distributed systems; protocols; hardware;
networking elements; compiler verification; real-time systems; reactive
systems.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal Methods/

21

Larch Prover (LP)

***************************** Larch Prover (LP) **********************
********************************** sep. 1999**************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
 X other: integrated suite of tools:

LP mechanized proof assistant, LSL checker and
LCLint C program checker.

o Application domain(s) or class(es) of problems originally intended.
Software design and verification. Concurrent algorithms in
hardware and software. Circuits.
Intended to assist users in finding and correcting flaws in
conjectures that need to be proven,

o Intended audience.
Programmers, designers.

o Language(s) and/or technique(s) that the tool is based on.
Multi-sorted first order logic. User specifies axiomative theories
to be proved.

Note: each Larch specification contains two components: one
written in a Larch Interface Language, which is designed for
a specific programming language; and another written in
Larch Shared language (LSL), which is independent of any-
programming language. Larch Interface Languages exists for
C (LCD, Ada, Modula-3, VHDL, and others.

LSL tool checks for syntax and type errors in LSL specifications,
and can translate it into input files, for LP.

LCLint tool statically checks C programs, including common lint
checks such as type inconsistencies, ignored return values,
likely infinite loops, as well as assertions about assumptions in
desired places in the C code ad errors in dynamic memory management.

o Reasoning mechanisms used for the tool.
Theorem proving, including forward and backward inference, equational
term-rewriting, induction rules.

o Comparable languages/tools.
HOL, PVS.

2. TOOL IMPLEMENTATION

22

o Underlying mechanism of the tool's implementation.

o How extensible and/or customizable is the tool.
 source code given
 tool implemented in a public-domain language
 not extensible by user

other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
 GUI
 Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

 Editing and document preparation tools

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:

o How interactive/mechanized/automated is the tool.
 fully automated
X user guided

other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:

23

 synchronous
 asynchronous
 mixed

o Input to the tool.

o Output from the tool.

o The language used for input to the tool has (check all that apply)
_X formal semantics
X modern programming language constructs (e.g. if-else):

_X strong typing
_X modularity
X hierarchical design

_X parameterization
 communication between processes
 buffered

_X built-in model of computation
other:

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements
X design specification
X implementation
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
X yes - please name tool and applications

with LSL and LCLint, as mentioned above_
with
with

do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version _Intel Linux, SPARC SunOS4.1, Solaris 5.3_
Windows version
Mac version

24

Memory:
o Cost, rights and restrictions:

X free, no license
 free, license required
 for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply):
 BS degree
X MS degree
 Ph.D. degree
_X knowledge of logic

X first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
X less than six months
 other
 months

o Tool support
X upgrades/maintenance

Last version produced at this date: _vs3.1b, 1999_
X manual

X on the web
 training
 listserv
 mailing list
X dedicated conference(s)/workshop(s)
 human "help line" _X book(s)
X journal/conference publications
X other: newsgroup comp.specification.larch_

 ftp archive
o Current contact.

http://www.sds.lcs.mit.edu/spd/larch/

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
 temporal logic

25

system or process invariants
built-in support for checking for:
 deadlock
 livelock

other:

other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism

using
 symbolic simulator:
 interactive
 random

 feedback on in what state verification failed
 trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
_X partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.

o Limitations of this tool.

26

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

o Applications that the tool was used for - case studies, examples,
success stories.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

27

PVS

***************************** pvs ***************************
******************************* Sep m 2.999**************************

For this particular tool, please answer the following questions based
on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
X other:

Verification system consisting of a specification language
and support tools, including a mechanized proof checker
integrated with a model checker, ground evaluator, and tabular
specification tool.

o Application domain(s) or class(es) of problems originally intended:
Formalization and verification of requirements and design-level
specifications of hardware and software systems.

o Intended audience:
Anyone interested in formal support for conceptualization and
debugging of algorithms, and of software and hardware systems.
Both academic and industrial settings,

o Language(s) and/or technique(s) that the tool is based on:
Classical, typed higher order logic augmented with predicate subtypes,
dependent typing, abstract data types, and parameterized theories,

o Reasoning mechanisms used for the tool:
Low-level decision procedures (including propositional
simplification; ground procedures for equality, arithmetic,
array, and datatype operations; and model checking) combined
with user-definable, high-level proof strategies.
Sequent Calculus notation.
CTL model checking using mu-calculus.

o Comparable languages/tools:
PVS provides more automation than a low-level proof checker
(e.g., LCF, HOL, Nuprl, Coq), and more control than a highly
automatic theorem prover (e.g., Otter, ACL2). PVS's capabilities
are somewhat less generic than Isabelle's.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation:
Common Lisp (preferably Franz Inc's Allegro Lisp) with CLOS extensions.
Emacs or XEmacs (version 19 or later), Tcl/Tk, LaTex.

o How extensible and/or customizable is the tool?
 source code given
X tool implemented in a public-domain language

28

not extensible by the user
X other:

The PVS environment, including Lisp, Emacs, X windows,
and Tcl/Tk, are customizable. Tool makers accept and
incorporate suggestions for extending/integrating PVS.

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI
X Library of standard types, functions, and other constructions

X the library is validated

The extent of the library is (speaking from the point
of view of a potential user):
 not very comprehensive
X reasonably comprehensive
 quite comprehensive

X Editing and document preparation tools
X GNU or X Emacs
X Customized prettyprinting and typesetting (using LaTex)

 Cross-referencing
X Browsing
 Requirements tracing
X Incremental development across multiple sessions
 Change control and version management
X Consistency checking
X Completeness checking

Other
o How interactive/mechanized/automated is the tool?
 fully automated
X user guided

(simpler steps are automated)
X other:

 The user may also define application-specific
strategies to automate the verification.

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
 asynchronous
X mixed:

o Input to the tool:
ASCII text consisting of a specification in the PVS language,

o Output from the tool:
Proof results, status information, alltt and latex output,
specification files, proof files,

o The language used for input to the tool has (check all that apply):
X formal semantics
X modern programming language constructs(e.g. if-else) :
 if-else, let, where

29

 structured datatypes (e.g., records, tuples, ennumerations)
 abstract data types
 tabular notation

_X strong typing
_X modularity
 hierarchical design
X parameterization
 communication between processes
 buffered

 built-in model of computation
_X other:

 Undecidable typechecking: to cope with this, the
typechecker generates proof obligations, most
of which are discharged automatically by the prover.

 Overloading: PVS allows a liberal amount of overloading.
Automated support for judgements and coercions (conversions)
 Total vs partial functions: in PVS, functions represent

total maps; partial functions are admitted within this
framework via the predicate subtype mechanism.

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply):
_X requirements
_X design specification
X implementation
X test derivation

_X RTL
 netlists
 transistor level
_X other:

 mathematics
(in principle, every level can be addressed, but some levels
require more work than others)

o Has the tool been integrated with other tools?
 no
X yes:

 model-checker (Janssen's BDD-based model checker for the
propositional mu-calculus Technical Univ. of Eindhoven)

 TAME (Lynch-Vaandrager Timed Automata system models NRL)
 SCR* (Software Cost Reduction method NRL)
 Invest (Tool for automatic invariant generation Verimag)
 Pamela (VDM-style verification system Univ. of Bremen)
 Mona (language/tool for monadic second order logic BRICS)
 SVC (Stanford Validity Checker for subset of first-order

logic Stanford University)

6. RESOURCES

o Resource requirements for the tool:
UNIX version: precompiled for Solaris 2 or higher (SPARC

workstations),
Redhat Linux

Windows version

30

Mac version
Memory: 20 mb disk space, 50 mb swap space, 32 mb real memory

o Cost, rights and restrictions:
 free, no license
X free, license required
 for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other

o User background prerequisites (check all that apply):
X BS degree
 MS degree
 Ph.D. degree
X knowledge of logic

X first-order
 high order

X familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
 less than six months
X other

 6 months

o Tool support:
X upgrades/maintenance

Last version produced at this date: PVS 2.3, 1999
X manual

X on the web
X training

(tutorials on the web)
 listserv
_X mailing list
 dedicated conference(s)/workshop(s)
 human "help line"
 book(s)
X journal/conference publications
X other:

 bugs, problems, suggestions to pvs-bugs@csl.sri.com
 list of user suggestions and SRI's responses on the web
 archive, FAQ, libraries on the web

o Contact:
pvs-request@csl.sri.com
http://pvs.csl.sri.com

31

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply)
_X equivalence
_X modal logic
_X temporal logic

(CTL and fair CTL)
_X system or process invariants
X built-in support for checking for:

X deadlock
X livelock
X boolean propositions
X other: fairness
other

o Tool supports (check all that apply):
X optimization and state reduction mechanism
 simulator
 interactive
 random

_x feedback on state in which verification failed
(Counterexample generation is currently under development.)

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization:
 fully mechanized
_X partially mechanized
(although finite state verification and the proof of many
straightforward results are fully automatic. There is also a batch
mode in which proofs may be easily rerun, and a facility for
defining proof strategies to automate proofs.

o Support for developing and viewing the proof:
Tcl/Tk interface to display proof trees and theory hierarchies.
Proofs yield scripts that may be edited, attached to additional

formulas,
and rerun. Proofs may also be checkpointed, providing rapid access to
parts of a proof the user wishes to examine or adjust.

o Presentation of proof to the user (e.g., user input or canonical
expressions
with or without quantifiers):

Proofs are presented in a sequent-style representation. PVS takes
care to assure that the initial proof goal transparently reproduces
the formula input by the user. Quantification is retained; implicit
universal quantification in the user's specification is made explicit.

o Tool supports (check all that apply):
X automated support for arithmetic reasoning

_X automated support for efficient handling of large propositional
expressions

32

X automated support for rewriting
X possible to use lemmas before they are proved.
X possible to state and use axioms without having to prove them.
X new definitions can be introduced and existing definitions

modified during proof
X facilities for editing proofs

_X the foundations (i.e., all axioms, definitions, assumptions,
lemmas) of the proof are identified

_X reasonably easy to reverify a theorem after slight changes to
the specification

X other:
 integration with CTL model checking
 ground evaluator (providing "run" speeds comparable to

imperative programs)
 proof strategies
 proof storage, replay, and checkpointing
 graphical display of proof trees, theory hierarchies, and
prover commands
 proof chain analysis
 proof and theory status reporting

9. OPEN-ENDED QUESTIONS

o Strengths of this tool:
Comprehensive, interactive environment for writing formal
specifications and checking formal proofs, including tight integration

of
algorithmic and deductive proof technologies.
Generic system well suited to, e.g., prototyping specialized
strategies, embedding logics, and exploring strategies for integrating
formal techniques, as well as to undertaking proofs of difficult
algorithms and complex systems.

o Limitations of this tool:
PVS's capabilities complement, but do not compete with those of

dedicated
lightweight tools for specialized applications.
Not industrial strength, but a mature research prototype.
User learning curve.

o Estimated possible uses of the tool (e.g., applications, classes of
problems, stages of production cycle):

Hardware verification, embedding logics, fault-tolerant algorithms,
library development, invariant generation and abstraction, distributed
algorithms, requirements specification and verification, security
protocols, test generation.

o Applications that the tool was used for - case studies, examples,
success stories:

Posted on http://pvs.csl.sri.com. Examples:
Hardware:
 Collins Commercial Avionics microprocessor design
 Fujitsu high level design and validation of ATM switch

33

NASA single pulser digital circuit
 IEEE 854 floating point standard
 SRT division
Distributed Algorithms:
 FLASH cache coherence protocol
 bounded retransmission protocol
 real-time controllers

Fault Tolerant Algorithms:
 Fault-tolerant agreement and diagnosis protocols for various

architectures and fault models
Embedding Logics:
 Duration calculus
 The B-method
 A real-time Hoare logic

Invariant Generation and Abstraction:
 PVS has been used as a simplifier in several systems for

the heuristic discovery of loop invariants for distributed
protocols

Requirements:
 Space Shuttle flight software
 Cassini spacecraft fault-protection software

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

34

Z/EVES

************************************2/EVES*****************************
************************************Sep. 2999**************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
X mechanized proof assistant
 other: Z interface to EVES mechanized proof assistant.

o Application domain(s) or class(es) of problems originally intended.
Analytical support for writers of Z specifications.
Formal methods courses.
Various applications in safety- and security- domains.
o Intended audience.

Students, lecturers, researchers, commercial users interested in
rigorous

specifications supported by rigorous analysis,
o Language(s) and/or technique(s) that the tool is based on.

Z, Verdi, s-Verdi.
Verdi is a language based on untyped set theory,

o Reasoning mechanisms used for the tool.
General theorem proving, specifying and implementing programs,
proving consistency between specification and implementation.

Syntax and type checking, schema expansion, domain checking,
pre-condition calculation, refinement, and general conjectures about a
specification.
EVES has a programming component and supports pre/post
proofs, in addition to general mathematical modeling,
o Comparable languages/tools.

ProofPower, Cadiz and Zola.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Implemented in Lisp,

o How extensible and/or customizable is the tool.
 source code given
X tool implemented in a public-domain language
X not extensible by user

other:

APIs are now defined for Z/EVES allowing for interchanges between
tools.

35

Plans are to augment Z/EVES with 3rd party developments. Currently,
only

executables are distributed.

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI
_X Library of standard types, functions, and other constructions

X the library is validated
The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
X quite comprehensive

It contains all of the Spivey toolkit, which is the general
basis for all Z specifications.

_X Editing and document preparation tools
_Framemaker-based Z editor
Framemaker editor that has an API connection to Z/EVES.

 Cross-referencing
X Browsing

(to be completed soon)
 Requirements tracing
 X_ Incremental development across multiple sessions

(to be completed soon)
 Change control and version management
 X_ Consistency checking

X Completeness checking
X Other:

 syntax and type checking
 schema expansion
precondition calculation_
_domain checking
roving consistncy between specification and implementation

support for the Mathematical Toolkit as described in
Spivey's 2nd edition of "The Z Notation"

o How interactive/mechanized/automated is the tool.
 fully automated
_X user guided

some prover steps are automated
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
 asynchronous
 mixed

o Input to the tool.

36

Z, Verdi or s-Verdi specification,
o Output from the tool.

Proof results.
o The language used for input to the tool has (check all that apply)

Note: the following paragraph refers to Verdi language:
X formal semantics
X modern programming language constructs (e.g. if-else):

X strong typing
_X modularity
X hierarchical design
X parameterization
X communication between processes
 buffered

 built-in model of computation
other:

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
X requirements
X design specification
X implementation
 test derivation
 RTL
 netlists
 transistor level
X other: mathematics

o Has the tool been integrated with other tools?
 no
_X yes - please name tool and applications

with Z browser, supplies text input to Z/EVES
with Z-browser plug-in, for displaying Z notation using

Netscape; runs on Windows 95/NT
with Z Abstract Syntax Tree Viewer, to display abstract

syntax trees of Z specifications; runs on Windows 95/NT_
with Zeus (Framemaker editor)

with RoZ (an environment integrating UML and Z)
with Z animator (work in progress)
 do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version SunOS 4.x, Linux ELF
Windows version 3.1,95,98,NT
Mac version
Memory: at least 32Mb

o Cost, rights and restrictions:

37

free, no license
_X free, license required

for educational and research use only
 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply):
X BS degree
 MS degree
 Ph.D. degree
_X knowledge of logic

X first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

X other: The above checked fields refer to performing proofs.
Type checking, schema expansion, pre-condition calculation,
domain checking without proof, require no knowledge of
logic.

o User's learning curve, if all prerequisites are met:
 one month
 two months
 less than six months
 more than six months
 months

Mote: Depends upon application. Type checking, schema
expansion, pre-condition calculation, and domain checking (without proof)
should only take a day or two to learn. Learning to preform more serious
proofs could take several months.
o Tool support

X upgrades/maintenance
Last version produced at this date: _vs.3x, due November

1999
_X manual

_X on the web
X training

Course is provided.
X listserv
 mailing list
X conference(s)/workshop(s)
X human

ORA will provide consulting.
 book(s)
X journal/conference publications

other:

o Current contact.
http://www.ora.on.ca/z-eves/

38

zeves@ora.on.ca (subscribe at zeves-request@ora.on.ca)

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
 temporal logic
 system or process invariants
 built-in support for checking for:
 deadlock
 livelock
 other:
other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism

using
 symbolic simulator:
 interactive
 random

 feedback on in what state verification failed
 trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
_X partially mechanized

o Support for developing and viewing the proof.
Proof browsing,

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).
Z-like notation,
o Tool supports (check all that apply):

X automated support for arithmetic reasoning
X automated support for efficient handling of large propositional

expressions
X automated support for rewriting
X possible to use lemmas before they are proved.
X possible to state and use axioms without having to prove them.
X new definitions can be introduced and existing definitions

modified during proof
Would have to restart the proof.

X facilities for editing proofs
X the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
_X reasonably easy to reverify a theorem after slight changes to

the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.

39

Rigorously developed SPARC Verdi compiler for EVES/Verdi.
Synergy of an expressive writable notation (Z) with an automated
Analytical engine. Useful for the Z community.
o Limitations of this tool.

Limited to Z community, can take long time to learn,
o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Education, safety, security,
o Applications that the tool was used for - case studies, examples,
success stories.

Some are posted on http://www.ora.on.ca/biblio-welcome.html.
Analysis of authentication protocols, including X.509.
Design of a prototype High Assurance One-Way Link.
Many proprietary applications.

References:

[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for
Software and Computer Systems", vol.1,
http://eis.j pi.nasa.gov/quality/Formal_Methods/

40

Concurrency Factory

********************** CONCURRENCY FACTORY ************************
**************************** Sep. 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
X other: _integrated toolset: model checker, simulators,

graphical and textual user interface, code
generator

o Application domain(s) or class(es) of problems originally intended.
Concurrent systems, such as protocols or control systems;
networks of finite-state processes.
Industrial problems, e.g. in telecommunications industry,

o Intended audience.
Protocol engineers and software developers.

o Language(s) and/or technique(s) that the tool is based on.
GCCS, a graphical variant of the process algebra CCS aimed at
specifying hierarchical networks of processes.
VPL, a textual language for hierarchical networks of processes,
with support for complex data and control structures.

o Reasoning mechanisms used for the tool.
Computing set of transitions possible for a system in a given state
using formal operational semantics.
GCCS interpreted by all the tools in the toolkit.

o Comparable languages/tools.
CWB, Spin.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
C++, Tcl/Tk.

o How extensible and/or customizable is the tool.
 source code given
X tool implemented in a public-domain language
 not extensible by user
 other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI

for GCCS

41

Library of Standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

Editing and document preparation tools
textual user interface for VPL

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:
 graphical compiler for generating Facile code (similar

to Standard ML and CCS), Java and Ada'95 code.
 graphical simulators for GCCS

simulator for VPL

o How interactive/mechanized/automated is the tool.
_X fully automated
 user guided
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
X asynchronous
 mixed

o Input to the tool.
GCCS or VPL specification or combination of the two.

o Output from the tool.
Step 1: networks of finite-state processes.
Step 2: model checking and/or code generation,

o The language used for input to the tool has (check all that apply)
GCCS:
X formal semantics
 modern programming language constructs (e.g. if-else):

 strong typing
 modularity
X hierarchical design
 parameterization

42

communication between processes
 buffered
built-in model of computation

_X other: _graphical_
based on CCS

VPL:
_X formal semantics
X modern programming language constructs (e.g. if-else)

 integers of limited size
 arrays and records of integers
 if-then-else

while-do
select

strong typing
modularity
hierarchical design
parameterization
communication between processes
 buffered
built-in model of computation
other: finite data domain

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements
X design specification
X implementation

(code generation)
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
_X no
 yes

with
do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version SunOS 4.1 or Solaris on Sun SPARC_
Windows version
Mac version
Memory:

43

o Cost, rights and restrictions:
 free, no license
X free, license required

X for educational and research use only
 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply):
X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

_X familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
X one month
 two months
 less than six months
 other
 months

o Tool support
X upgrades/maintenance

Last version produced at this date: _1998_
New version to be released in near future.

 manual
 on the web

 training
 listserv
 mailing list
 dedicated conference(s)/workshop(s)
 human "help line"
 book(s)
X journal/conference publications

other:

o Current contact.
concurrocs.sunysb.edu
http://www.cs.sunysb.edu/-concurr

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
_X modal logic

linear-time local and global model checker for alteration-free

44

modal mu-calculus
_local model checker for real-time extension for the above logic
temporal logic
system or process invariants
built-in support for checking for:
 deadlock
 livelock

other:

X other: strong and weak bisimulation

o Tool supports (check all that apply):
LMC (local model checker):
_X optimization and state reduction mechanism

using on-the-fly execution and partial order reduction_
 simulator:
 interactive
 random

 X_ feedback on in what state verification failed
X trace leading to the state

(if the user chooses so)

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

8. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Designed for use by protocol engineers and software developers, for
industrial-scale problems.
Specification, simulation, verification and code generation of concurrent
systems modeled as hierarchical networks of finite-state processes.

45

Sophisticated graphical support for specification and simulation.
Automatic code generation from verified specifications.

o Limitations of this tool.
Finite-state systems,

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Main application area is reactive systems, including embedded system
software, process control systems, telecommunication protocols, security
protocols, and e-commerce protocols.

o Applications that the tool was used for - case studies, examples,
success stories.

Posted on http://www.cs.sunysb.edu/~concurr/. Examples:
Specification and verification of: GNU UUCP i-Protocol, E-2C Hawkeye

Early
Warning Aircraft Display LAN Protocol, RETHER real-time Ethernet

protocol.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

46

Murphi

***************************** MURPHI **********************************
***************************** Sep. 1999********************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
X model checker
 theorem prover
 mechanized proof assistant
 other:

o Application domain(s) or class(es) of problems originally intended.
Hardware protocol verification, optional extensions for cryptographic
protocols.
Early design stages, error finding,

o Intended audience.
Digital designers,

o Language(s) and/or technique(s) that the tool is based on.
Murphi language: collection of guarded rules (condition/action),
which are executed repeatedly in an infinite loop (similar to
Chandy and Misra's Unity language.)

o Reasoning mechanisms used for the tool.
Explicit state space enumeration, depth- or breath- first search;
simulation,

o Comparable tools:
SMV, Spin, Concurrency Factory, CWB.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
C++,

o How extensible and/or customizable is the tool.
X source code given
X tool implemented in a public-domain language
 not extensible by user

other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
 GUI
 Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of

47

a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

Note: while there is no standard library, a number of types and
functions that are commonly provided by a library are provided in
the language, for example, arrays, records, Multiset and

Scalarset.
Editing and document preparation tools

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:

o How interactive/mechanized/automated is the tool.
_X fully automated
 user guided
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
X asynchronous

(interleaving)
 mixed

o Input to the tool.
Murphi description,

o Output from the tool.
If a boolean invariant is violated, error message and error trace.
Reports if error or assertion statements are reached,

o The language used for input to the tool has (check all that apply):
X formal semantics

_X modern programming language constructs (e.g. if-else):
 if
 switch

for
while

strong typing
modularity
hierarchical design
parameterization

48

communication between processes
 buffered
built-in model of computation
other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements
X design specification
 implementation
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
X yes

with SVC
with
do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version precompiled for: INDY IRIX 5.3,

SunSPARC20 SunOS 4.1.3_U1, 4.1.4, 5.4,
SunSPARCserver-1000 SunOS 5.5,
Intel Linux 1.3.48, 2.0.27, 2.0.34, 2.0.36_

Windows version
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
X free, license required

(however, user does not have to send in anything)
 for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply)
X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic

49

first-order
high order

familiarity with a high-level programming language
familiarity with process algebra
familiarity with temporal logic
other:

o User's learning curve, if all prerequisites are met:
X one month
 two months
 less than six months
 other:
 months

o Tool support
_X upgrades/maintenance

Last version produced at this date: _Murphi 3.1, 1999
_X manual

X on the web
 training
 listserv
_X mailing list
 dedicated conference(s)/workshop(s)
 human "help line"

book(s)
X journal/conference publications
X other: bug reports, suggestions to murphi@verify.stanford.edu

o Current contact.
http://sprout.Stanford.edu/dill/murphi.html
murphiOverify.Stanford.edu

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
 temporal logic
_X system or process invariants (boolean propositions true

for all states of the system/process)
 built-in support for checking for:

X deadlock
 livelock
 other: error statements

 assertion statements

other:

o Tool supports (check all that apply):
_X optimization and state reduction mechanism

state reduction using:
 symmetry (description has identical elements that

50

can be permuted consistently without changing
verification properties)
_reversible rules (condition/action can be executed "in
reverse")
_repetition constructors (keeping track of how many-

processes
are in the same state)

 hash compression algorithms for probabilistic
verification

optimization using:
 probabilistic verification
 state space caching
 parallel Murphi
 using magnetic disk instead of main memory

 simulator:
 interactive

X random
X feedback on in what state verification failed

X trace leading to the state
other:

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Designed for industrial use by non-experts in formal methods.
Optimization and state reduction algorithms and techniques,

o Limitations of this tool.
No checking for liveness and fairness properties (e.g. livelock)

51

No message communication.
Not possible to describe sequential behavior,

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Multiprocessor cache coherence protocols. Security protocols,
o Applications that the tool was used for - case studies, examples,
success stories.

Listed at http://sprout.stanford.edu/dill/murphi.html. Examples:
Verification of cache coherence protocols for Sun UltraSparc-1
Verification of cache coherence and link level protocol for Sun's S3.mp
multiprocessor
Specification and verification of Sparc V9 TSO, PSO, RMO memory models
Cryptographic and security protocols
Verification of a part of "Scalable Coherent Interface" IEEE Std 1596-

1992
Proprietary industrial protocols, for Fujitsu, HAL Computer Systems,
HP, IBM, ad others

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.j pi.nasa.gov/quality/Formal_Methods/

52

SVM Cadence

**
******************** SMV cadence Berkeley Labs *********************
**************************** Sep. 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
X model checker
 theorem prover
 X_ mechanized proof assistant

(of limited scope and built on top of the model checker)
 other:

o Application domain(s) or class(es) of problems originally intended.
Hardware verification,

o Intended audience.
General.

o Language(s) and/or technique(s) that the tool is based on.
SMV input language is used to describe a refinement hierarchy (that
is, specifications at multiple levels of abstraction).
Specifications are written in temporal logic, or an HDl-like
equational notation. It is also possible to input models in a
synchronous version of the Verilog HDL. The logic is effectively
a first-order, quantifier free, linear time temporal logic,

o Reasoning mechanisms used for the tool.
Model checking (determines the truth of temporal formulas by exhaustive
state-space exploration).

o Comparable languages/tools.
Spin, the Concurrency Workbench, the Concurrency Factory, VIS,
Mocha, COSPAN, FormalCheck.
This tool is an extension of Carnegie Mellon SMV to support
compositional methods.
Note: SMV is a research vehicle, and is not directly related the
FormalCheck product from Cadence.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
OBDD-based model checking algorithm, implemented in C language.
Compositional proof methods, also implemented in C.

o How extensible and/or customizable is the tool.
 source code given
 tool implemented in a public-domain language
X not extensible by the user.
 other:

3 . TOOL FEATURES AND UTILITIES

53

o Tool supports the following (check all that apply):
_X GUI
 Library of standard types, functions, and other constructions
 the library is validated

of
The extent of the library is (speaking from the point of view

a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

Note: while there is no standard library, a number of types and
functions that are commonly provided by a library are provided in the
language, for example, bit vectors and binary arithmetic, arrays,
structures. Queues are notably absent, however.
_X Editing and document preparation tools

Emacs interface

Cross-referencing
X Browsing
 Requirements tracing
 Incremental development across multiple sessions
 Change control and version management
 Consistency checking
 Completeness checking
_X Other:

 BDD library (implemented in C) for sequential verification_
 support for refinement verification

o How interactive/mechanized/automated is the tool.
X fully automated
X user guided

(User guidance is required for refinement verification.)
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
X synchronous
X asynchronous

_X mixed
o Input to the tool.

Model in SMV language (a collection of properties expressed
in temporal logic) or Synchronous Verilog (which is then translated
into SMV language).

o Output from the tool.
Yes/no answer to posed temporal formulas, counterexample if "no."

Also,
keeps track of the status of proof obligations in compositional

proofs.
o The language used for input to the tool has (check all that apply):

formal semantics

54

etc.

_X modern programming language constructs (e.g. if-else):
control constructs: if/else, while, forall, default
data types: scalars, enumerated types, structures, arrays

_X strong typing
(typing is used only to enforce symmetry)

_X modularity
_X hierarchical design
_X parameterization

(can describe designs with arbitrary number of components,

_X communication between processes
(signals and shared variables)
 buffered

 built-in model of computation
other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements
X design specification

_X implementation
test derivation

_X RTL
_X netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
X yes - please name tool and applications

with _bounded model checker form CMU_
with
with

do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version Intel 386 Linux, SPARC SunOS, Solaris, HPUX,

MlPS/Irix.
Windows version NT, 95
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license

X free, license required
X for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

55

 other:
o User background prerequisites (check all that apply):

X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
X familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
_X two months
 less than six months
 other
 months

o Tool support
_X upgrades/maintenance

Last version produced at this date: 1999_
_X manual

_X on the web
X training

lecture notes and tutorials, on the web
 listserv
X mailing list
 dedicated conference(s)/workshop(s)
 human "help line"
 book(s)
 journal/conference publications
X other: _archive and FAQ, on the web_

_questions and comments to smv-users@cadence.com

o Current contact.
http://www.cs.cmu.edu/~modelcheck/index.html for older version of SMV

http://www.eis.ksu.edu/santos/smv-doc/
http://www-cad.eecs.berkeley.edu/~kenmcmil/
smv-users@cadence.com

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
X temporal logic

 CTL, LTL
 system or process invariants
 built-in support for checking for:

deadlock

56

livelock
other:

other:

o Tool supports (check all that apply):
X optimization and state reduction mechanism

using _ compositional methods: data type reduction,
uninterpreted functions,
cone-of-influence reduction,
temporal case splitting,
constant propagation,
circular compositional proofs,
symmetry reductions,
induction over the natural numbers,
refinement verification.

X simulator:
 interactive
 random

X feedback on in what state verification failed
X trace leading to the state

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

Note: SMV is not a general purpose theorem prover, but it does provide
a special-purpose proof assistant.

o Degree of proof mechanization.
 fully mechanized
X partially mechanized

o Support for developing and viewing the proof.
Graphical browser,

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

None,
o Tool supports (check all that apply):

X automated support for arithmetic reasoning
(limited to modular, binary arithmetic)

X automated support for efficient handling of large propositional
expressions

 automated support for rewriting
X possible to use lemmas before they are proved.
X possible to state and use axioms without having to prove them.
X new definitions can be introduced and existing definitions

modified during proof
X facilities for editing proofs
X the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
X reasonably easy to reverify a theorem after slight changes to

the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.

57

Combines model checking and compositional proof methods.
This means that, on the one hand, the state explosion

problem can be avoided by decomposition, while on the other hand, model
checking can be used to avoid writing detailed invariants by hand,

o Limitations of this tool.
Not user-extensible, in the way that most proof assistants are.
Limited to first-order temporal logic.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Hardware verification,
o Applications that the tool was used for - case studies, examples,
success stories.

Verification of the RTL-level implementation of a cache coherence
protocol

(SGI), as well as numerous cache coherence protocols at an
abstract level.
Verification of standard hardware protocols, e.g. Futurebus+ and PCI
local bus protocols.
Numerous applications in low-level hardware verification.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1,
http://eis.jpi.nasa.gov/quality/Formal_Methods/

58

SPIN

***************************** Spin *******************************
*******************************gep_ 1999******************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
X model checker
 theorem prover
 mechanized proof assistant
 other:

o Application domain(s) or class(es) of problems originally intended.
Software, distributed systems,

o Language(s) and/or technique(s) that the tool is based on.
PROMELA (PROcess MEta LAnguage), a non-deterministic language
loosely based on Dijkstra's guarded command language notation,
and borrowing the notation for I/O operations from Hoare's CSP

language.
o Reasoning mechanisms used for the tool.

State space exploration (exhaustive or partial); simulation.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
ANSI C, on-the-fly checking,

o How extensible and/or customizable is the tool.
_X source code given
X tool implemented in a public-domain language
 not extensible by user

other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI

(Xspin)
 Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

59

Note: while there is no standard library, a number of types and
functions that are commonly provided by a library are provided in
the language, for example, arrays and queues.

Editing and document preparation tools

 Cross-referencing
 Browsing
 Requirements tracing
 Incremental development across multiple sessions
 Change control and version management
X Consistency checking
X Completeness checking
 Other:

 depository of source code extensions on SPIN web
page_

o How interactive/mechanized/automated is the tool.
X fully automated
X user guided

(simulation option)
other:

TOOL INPUT AND OUTPUT

Tool supports these models:
 synchronous
X asynchronous

(interleaving)
 mixed

Input to the tool.
Model written in PROMELA (somewhat resembles a C program).

Output from the tool.
Yes/no answer to posed tests;
trace leading to errors;
% coverage of state space.

The language used for input to the tool has (check all that apply)
X formal semantics

_X modern programming language constructs (e.g. if-else):
 if-else

do

 strong typing
 modularity
 hierarchical design
_X parameterization
X communication between processes

 X buffered
 X rendezvous

X through shared memory
X built-in model of computation

60

other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
X requirements
X design specification
X implementation
X test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
_X yes

with SCR* toolset for tabular specifications_
with PEP
with
with

do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version any standard UNIX, Linux
Windows version 95/98, NT
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
X free, license required

X for educational and research use only
 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply):
X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

X familiarity with a high-level programming language
 familiarity with process algebra

61

_X familiarity with temporal logic
other:

o User's learning curve, if all prerequisites are met:
_X one month
 two months
 less than six months
 other:
 months

o Tool support
_X upgrades/maintenance

Last version produced at this date: Spin 3.3.3, 1999_
X manual

X on the web
 training
 listserv
 mailing list
X dedicated conference(s)/workshop(s)

(annual, international, since 1995)
 human "help line"
_X book(s)
X journal publications
X other: regular electronic newsletter

(mailed out and posted on the web page)
 proceedings of Spin workshops, on the web page
 web page with source code extensions depository
 bug reports and suggestions, to the newsletter

o Current contact.
spin_list@research.bell-labs.com (newsletter)

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
X temporal logic

 LTL
_X system or process invariants
_X other: never claims (Buchi automata)

 trace can be replayed in simulator to demonstrate
property violation

o Tool supports (check all that apply):
X optimization and state reduction mechanism

using partial order reduction,
bit-state hashing (optional),
Wolper's hash-compact method (optional),
storing reachable states with minimized automaton,
statement merging,
nested depth-first search algorithm

_X simulator
X interactive
X random

62

claims)

X guided
feedback on in what state verification failed
X trace leading to the state

built-in support for checking for:
X deadlock
X livelock
X boolean propositions
X other: LTL formulas (internally converted into never

 dynamically growing and shrinking number of
processes
 s emaphore s

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

9. OPEN-ENDED QUESTIONS

o Strengths of this tool.
Easy to learn by people with some programming experience.
Optimized for verifying large problem sizes (e.g. bit-state hashing,
on-the-fly checking).
Actively contributing user community in more than 40 countries,

o Limitations of this tool.
Not efficient to specify large data sets,

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Develop verified process control systems from requirements to
implementation.

Trace logical design errors in distributed systems, such as
operating systems, railway signaling protocols, data communications
protocols, switching systems, concurrent algorithms,

o Applications that the tool was used for - case studies, examples,

63

success stories.
Posted throughout Spin News Letters and workshop proceedings,
http://netlib.bell-labs.com/netlib/spin/news.
Some examples include: specification, design, verification and
implementation of a safe object oriented process control application,
verification of Java applications, steam boiler,
hardware cache coherence protocols,
NASA's fault tolerant embedded space craft controller,
a multi-threaded plan execution programming language
of NASA's New Millennium Remote Agent artificial intelligence
based spacecraft control system architecture,
telecommunications and security protocols,
Dutch mobile sea-level control.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

64

NRL Protocol Analyzer

**
***************************** NRL PROTOCOL ANALYZER ******************
************************************ Sep. 1999************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
X model checker
 theorem prover
X mechanized proof assistant

other:
o Application domain(s) or class(es) of problems originally intended.

Analysis of cryptographic protocols used to authenticate principals and
services

and distribute keys in a network.
Proving properties of security protocols and finding flaws in them,

o Intended audience.

o Language(s) and/or technique(s) that the tool is based on.
NRL language, loosely resembling Prolog, used to
model a protocol as a set of transitions of interacting state machines,

o Reasoning mechanisms used for the tool.
Extended term-rewriting model of Dolev and Yao.
Specify insecure states and prove them unreachable, by using either:
exhaustive search backwards from the state; or
proof techniques for reasoning about state models (using induction
for infinite state and narrowing for word reduction).

o Comparable languages/tools.
STeP.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Prolog.

o How extensible and/or customizable is the tool.
 source code given
X tool implemented in a public-domain language

other:

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):

65

GUI
Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

Editing and document preparation tools

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:

o How interactive/mechanized/automated is the tool.
X fully automated
X user guided

 possible to switch between automated and manual mode
other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
 asynchronous
 mixed

o Input to the tool.
Description of state in terms of words known by intruder and values
of local state variables,

o Output from the tool.
Complete description of all reachable states and non-redundant
paths that may precede the specified state.
Proof failed/passed,

o The language used for input to the tool has (check all that apply):
X formal semantics

66

modern programming language constructs (e.g. if-else)

strong typing
modularity
hierarchical design

_X parameterization
 communication between processes
 buffered

 built-in model of computation
other:

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements
_X design specification
 implementation
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
 yes

with
with
with

do not know

Interface for a requirements language.
Interface for high-level security language CAPSL.

4. RESOURCES

o Resource requirements for the tool:
UNIX version
Windows version
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
 free, license required
 nominal distribution charge
 fee for underlying tool(s)
 free for educational and research use only

67

flat license fee
per user license fee
royalties per use
other:

o User background prerequisites (check all that apply):
 BS degree
 MS degree
 Ph.D. degree
_X knowledge of logic
 first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
 less than six months
 more than six months
 months

o Tool support
_X upgrades/maintenance

Last version produced at this date: 1999_

manual
 on the web
training
listserv
mailing list
conference(s)/workshop(s)
human
book(s)
journal/conference publications
other:

o Current contact.
Catherine Meadows
Code 5543, Naval Research Laboratory, Washington DC 20375
meadows@itd.nrl.navy.mil

http://www.itd.nrl.navy.mil/ITD/5540/projects/crypto.html

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

Note: we will consider the state exploration portion of NRL
Protocol Analyzer as "model checker."

68

o Verification mechanism(s) (check all that apply)
 equivalence
 modal logic
 temporal logic
 system or process invariants
 built-in support for checking for:

 deadlock
 livelock

other:

other: state exploration_

o Tool supports (check all that apply):
X optimization and state reduction mechanism

using narrowing algorithm
 built-in rules for discarding redundant/unreachable

paths and states
_user-generated rules using a database of formal

languages_
 symbolic simulator:
 interactive
 random

X feedback on in what state verification failed
X trace leading to the state

7. QUESTIONS ABOUT THEOREM PROVERS/MECHANIZED PROOF ASSISTANTS [NASA98]

Note: we will consider the proof-oriented part of NRL protocol Analyzer
as "theorem prover".

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.
o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified

69

reasonably easy to reverify a theorem after slight changes to
the specification

8. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
o Limitations of this tool.
o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.
o Applications that the tool was used for - case studies, examples,
success stories.

Questionnaire for potential users:

o Briefly describe problems that you need solved (in order to help us
estimate if those problems can be addressed by formal tools).
o Have you used formal tools? If yes, for what application? What were
the areas of satisfaction? What were the problem areas? What would you
like to see in the future?
o Describe your dream toolkit.
o What would you consider a "good place" to integrate formal tools
in existing or separate toolkits?

Questionnaire for tool makers/integrators:

o If you already produce and/or sell toolkits, would you be interested
in integrating formal tools in the toolkit, and why.
o What information do you need in order to be able to integrate formal
tools in a toolkit.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

70

SCR*

**
*************** software Cost Reduction (SCR*) ************************
************************ Sep. 1999*************************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
X other: integrated environment.

Consistency checker and simulator
integrated with external tools:
model checker (Spin) and mechanized
proof assistant (PVS).

o Application domain(s) or class(es) of problems originally intended.
Software requirements specification,

o Intended audience.
Software developers.

o Language(s) and/or technique(s) that the tool is based on.
SCR requirements method, based on tables,

o Reasoning mechanisms used for the tool.
A form of classic state machine model,

o Comparable languages/tools.
Requirements State Machine Language (RSML)/SMV, SVC.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Currently: C, C++, executes on Sun workstations.
New version, scheduled for October 1999, is implemented in Java
and will execute on PC's,

o How extensible and/or customizable is the tool.
 source code given
X tool implemented in a public-domain language

_X other: currently developing a toolset architecture that
will make the integration of external tools easier

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
_X GUI
 Library of standard types, functions, and other constructions
 the library is validated

71

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

X Editing and document preparation tools
_specification editor for creating requirements

specifications

_X Cross-referencing
X dependency graph browser_

_X Browsing
 Requirements tracing
_X Incremental development across multiple sessions
 Change control and version management
_X Consistency checking
X Completeness checking
 Other:

 simulator, with visual front ends tailored to
particular applications (e.g. cockpit controls)
 automatic derivation of more abstract models from SCR

specifications (e.g. for more efficient model checking)_
 pretty-printer
 typechecker
 syntax checker_

o How interactive/mechanized/automated is the tool.
_X fully automated
_X user guided
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports this kind of models:
 synchronous
 X_ asynchronous

mixed
o Input to the tool.

Tabular SCR specification; asynchronous input from non-deterministic
environment.

o Output from the tool.
Specification editor output:

 dictionaries with static information (e.g. names of variables,
user-defined types)

 tables
Dependency graph browser:

 directed graph depicting dependencies among variables.
Consistency checker:

 syntax and type errors, missing cases, variable name
discrepancies, unwanted nondeterminism, and circular

definitions.
Abstraction derivator:

 more abstract model, eliminated irrelevant variables and
unneeded detail

72

o The language used for input to the tool has (check all that apply)
X formal semantics
 modern programming language constructs (e.g. if-else):

_X strong typing
_X modularity
 hierarchical design
 parameterization
 communication between processes
 buffered

X built-in model of computation
other:

3. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
X requirements
 design specification
 implementation
 test derivation
_x RTL

(under current investigation)
 netlists

transistor level
X other: documentation

 levels that can be addressed with Spin and PVS_
o Has the tool been integrated with other tools?
 no
X yes

with _Spin model checker
with _PVS theorem prover using TAME high-level user interface
with
with

do not know

4. RESOURCES

o Resource requirements for the tool:
UNIX version SunOS
Windows version for Oct'99 release
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
X free, license required

X for educational and research use only
 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee

73

royalties per use
other:

o User background prerequisites (check all that apply):
X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
_X one month
 two months
 less than six months
 other
 months

o Tool support
X upgrades/maintenance

Last version produced at this date: _1998_
X manual
 on the web

X training
 listserv
 mailing list
 dedicated conference(s)/workshop(s)
 human "help line"

book(s)
_X journal/conference publications

other:
o Current contact.

Naval Research Laboratory,
Code 5546, Washington DC 20375
kirby@itd.nrl.navy.mil
labaw@itd.nrl.navy.mil

http://www.chacs.itd.nrl.navy.mil/SCR

6. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

Note: this section applies to model checker Spin.

o Verification mechanism(s) (check all that apply):
 equivalence
 modal logic
X temporal logic

 LTL
X system or process invariants
X other: never claims (Buchi automata)

 trace can be replayed in simulator to demonstrate

74

property violation_

o Tool supports (check all that apply):
X optimization and state reduction mechanism

using partial order reduction,
bit-state hashing (optional),
Wolper's hash-compact method (optional),
storing reachable states with minimized automaton,
statement merging,
nested depth-first search algorithm

X simulator
X interactive
X random
X guided

X feedback on in what state verification failed
X trace leading to the state

 built-in support for checking for:
X deadlock
X livelock
X boolean propositions
X other: LTL formulas (internally converted into never

claims)
dynamically growing and shrinking number of
processes
 semaphores

7. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

Note: this section applies to mechanized proof assistant PVS, with TAME
interface and SCR validity checker.

o Degree of proof mechanization:
 fully mechanized
X partially mechanized
(although finite state verification and the proof of many
straightforward results are fully automatic. There is also a batch
mode in which proofs may be easily rerun, and a facility for
defining proof strategies to automate proofs.

o Support for developing and viewing the proof:
Tcl/Tk interface to display proof trees and theory hierarchies.
Proofs yield scripts that may be edited, attached to additional

formulas,
and rerun. Proofs may also be checkpointed, providing rapid access to
parts of a proof the user wishes to examine or adjust.

o Presentation of proof to the user (e.g., user input or canonical
expressions
with or without quantifiers):

Proofs are presented in a sequent-style representation. PVS takes
care to assure that the initial proof goal transparently reproduces
the formula input by the user. Quantification is retained; implicit
universal quantification in the user's specification is made explicit.

o Tool supports (check all that apply):
_X automated support for arithmetic reasoning
_X automated support for efficient handling of large propositional

75

expressions
_X automated support for rewriting
_X possible to use lemmas before they are proved.
_X possible to state and use axioms without having to prove them.
_X new definitions can be introduced and existing definitions

modified during proof
X facilities for editing proofs
X the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
X reasonably easy to reverify a theorem after slight changes to

the specification
_X other:

 integration with CTL model checking
 ground evaluator (providing "run" speeds comparable to

imperative programs)
 proof strategies
 proof storage, replay, and checkpointing
 graphical display of proof trees, theory hierarchies, and

prover commands
 proof chain analysis
 proof and theory status reporting

8. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
Mathematically founded tool for non-specialists in formal methods.
Well-developed user interface,

o Limitations of this tool.
Flat structure of specifications,

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Requirements specification, specification, verification, documentation,
o Applications that the tool was used for - case studies, examples,
success stories.

Listed in
http://www.itd.nrl.navy.mil/ITD/5540/personnel/heitmeyer.html.

Avionics systems, telephone networks, nuclear power plants, etc.:
English-language requirements for NASA International Space Station.
Requirements specification for flight guidance system.
Specification and verification of contractor-developed: Weapons Control
Panel, and a cryptographic system.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook
for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

76

Tatami

**
***************************** Tatami System ************************
******************************* ggp_ ^999***************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
X mechanized proof assistant
X other: _integrated suite of tools: Kumo, web-based proof

assistant; barista proof server; tatami database and
protocol for data exchange; and truth maintenance
system, for keeping track of users who are
cooperating on the same proof.

o Application domain(s) or class(es) of problems originally intended.
Web-based cooperative design, specification and validation of
software systems, especially concurrent 00 systems,

o Intended audience.
Software engineers.

o Language(s) and/or technique(s) that the tool is based on.
0BJ3 (order sorted equational logic), BOBJ (extension of OBJ,
first order logic with equations as atoms).

o Reasoning mechanisms used for the tool.
Inference rules in first order logic with equational logic,
including induction and coinduction.

o Comparable languages/tools.
This system is an extension of CafeOBJ system, which is a
network-based environment for supporting systematic
creation, checking, verification and maintenance of 00 formal
specifications.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.
Java 1.2, OBJ3.

o How extensible and/or customizable is the tool.
 source code given
X tool implemented in a public-domain language

other:

3. TOOL FEATURES AND UTILITIES

77

o Tool supports the following (check all that apply):
_X GUI
 Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

X Editing and document preparation tools

Cross-referencing
X Browsing

Requirements tracing
_X Incremental development across multiple sessions
_X Change control and version management
 Consistency checking
 Completeness checking
_X Other:

executing proof scores on a remote server_

o How interactive/mechanized/automated is the tool.
_X fully automated
_X user guided
 other:

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
 asynchronous
 mixed

o Input to the tool.
Specification in BOBJ; prof script with execution commands in
Duck language.

o Output from the tool.
Proof results.
Kumo generates web pages with documentation based on user input,

o The language used for input to the tool has (check all that apply):
_X formal semantics
X modern programming language constructs (e.g. if-else):

78

strong typing
modularity-
hierarchical design
parameterization
communication between processes
 buffered
built-in model of computation
other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
X requirements
X design specification
X implementation
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
X yes - please name tool and applications

with _CafeOBJ environment
with
with

do not know

6. RESOURCES

o Resource requirements for the tool:
UNIX version
Windows version
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
 free, license required
 nominal distribution charge
 fee for underlying tool(s)
 free for educational and research use only
 flat license fee
 per user license fee
 royalties per use

other:

79

o User background prerequisites (check all that apply):
_X BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
_X less than six months
 other
 months

o Tool support
_X upgrades/maintenance

Last version produced at this date: _1999_

X manual
X on the web

 training
listserv

X mailing list
for CafeOBJ

X dedicated conference(s)/workshop(s)
for CafeOBJ

 human "help line"
X book(s)

for 0BJ3
X journal/conference publications

other:

o Current contact.
http://www-cse.ucsd.edu/groups/tatami/

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply)
 equivalence
 modal logic
 temporal logic
 system or process invariants
 built-in support for checking for:
 deadlock
 livelock
 other:
other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism

80

using
 symbolic simulator:
 interactive
 random

 feedback on in what state verification failed
 trace leading to the state

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.
Web-based,

o Presentation of proof to the user (e.g., user input or canonical
expressions,
with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

9. OPEN-ENDED QUESTIONS

o Capabilities of this tool.
Ease of use, user interface and system operation designed for software
engineers who are not experts in formal methods.
Will be possible to use various proof checkers other than Kumo.

o Limitations of this tool.
Kumo is not a powerful proof assistant like HOL or PVS.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

Cooperative web-based software system design and validation,
o Applications that the tool was used for - case studies, examples,
success stories.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.

81

http://eis.jpl.nasa.gov/quality/Formal_Methods/

82

What Tool Makers Need for Tool Integration (1 received response)

Questionnaire for tool makers/integrators:

o If you already produce and/or sell toolkits, would you be interested
in integrating formal tools in the toolkit, and why.

Integration is happening. Need a spectrum of tools for any kind
of useful system.

o What information do you need in order to be able to integrate formal
tools in a toolkit.

API, sockets main link into Z/EVES.

83

Appendix B: Formal Methods Term Taxonomy

Formal Methods Term Taxonomy

Background

Mature life-cycle process, in the context of system engineering, consists of: requirements
definition, system design, high-level design, low-level design, implementation, testing (unit
testing, component testing, and system testing), user support, and maintenance.

Model is a system of definitions, assumptions and equations, set up to represent and discuss
physical phenomena and systems. In the context of mathematical logic, a model is an
implementation, I, of a set of well-formed formulas of a formal language such that each member
of the set is true in I.

Axiom is a mathematical formula that can assert arbitrary properties over arbitrary (new or
existing) entities.

Definition, is an axiom that introduces a new symbol and gives its value or meaning as a
function of previously existing symbols.

Theorem is a logical formula derived from axioms using inference rules.

Method, in the context in an engineering discipline, describes a way in which a process is to be
conducted. In the context of system engineering, a method consists of: 1) underlying model of
development; 2) a language or languages; 3) defined ordered steps; and 4) guidance for
supplying them in a coherent manner.

Proof is a chain of reasoning using rules of inference and a set of axioms that leads to
conclusion, i.e. it is derivation of a theorem.

Step-wise refinement, in the context of system engineering, is the process of deriving level /+/
of the process cycle from level /, and refining level i based on level i+1, in systematic fashion
through all cycles of life-cycle.

Taxonomy

Abstraction is the process of simplifying and ignoring irrelevant details and focusing, distilling,
and generalizing what remains. In formal methods, abstraction is a tool for eliminating

84

distracting detail, avoiding premature commitment to implementation choices, and focusing on
the essence of the problem at hand.

Breadth-first search is a search that generates first all the immediate neighbors of a state, then
all the next neighbors, and so on.

Completeness is a property defined as presence of all possible cases.

Consistency is a property defined as lack of conflicting cases.

Explicit model checking is a type of model checking in which the system to be analyzed is
represented by enumerating its states and transitions. State exploration is performed over
individual states. The term "model checking" usually implies explicit model checking.

Formal analysis is mathematically-based analysis.

Formal method is a mathematically-based technique for describing system components,
properties and/or behavior. Formal methods are different than traditional engineering
mathematics in the sense that they are used for describing digital systems, such as hardware and
software, using logic and discrete mathematics. A formal method has an underlying theoretical
model against which a description can be verified. It consists of a notation (i.e. formal
specification language) and some form of deductive apparatus (i.e. proof system).

Formal methods may be applied at varying levels of rigor or formalization. Listed in order of
increasing formality and effort, a suggestive guide to levels of rigor includes:

1. Use of notations and concepts derived from logic and discrete mathematics to develop
more precise requirements statements and specifications. Proof, if any, is informal.

2. Use of formalized specification languages with mechanized support tools ranging from
syntax checkers and prettyprinters to typecheckers.

3. Use of fully formal specification languages with rigorous semantics and correspondingly
formal proof methods that support theorem proving and model checking.

Formal proof is a complete and mathematically based argument for the validity of a statement
about a system description. A proof proceeds in a series of steps, each of which draws
conclusions from a set of assumptions. Justification for each step is derived from a small set of
rules which state what conclusions can be reasonably drawn from assumptions. Such justification
eliminates ambiguity and subjectivity from the argument. Formal proofs may be prepared
manually or, preferably, with the assistance of a formal methods tool.

Formal specification is a description of a planned or existing process, entity and/or system,
written in a formal language. It is a concise and unambiguous description of the behavior and/or
properties of the process/entity/system, and can be written at various levels of abstraction and
formalization. It can be used for requirements, system design, high-level design, and low-level

85

design specification, as well as test derivation. The most formal specifications are written in
languages with well-defined semantics that support formal deduction and allow the
consequences of the specification to be calculated through proof of putative theorems.

Formal (specification) language is a mathematically based language, and has a formal syntax
and semantics.
• Formal languages can be broadly classified as model-oriented, property-oriented, or a

combination of both. Model-oriented languages explicitly model system behavior. Property-
oriented language describe properties of the system.

• Formal languages can also be classified as sequential or concurrent, if they are used to specify

sequential or concurrent systems, respectively. For example, process algebras are model-oriented

languages which describe the behavior of concurrent systems by describing their algebra of

communicating processes.

• Formal languages can be executable, and can have tool support.
• Programming languages are formal languages, but are not considered appropriate for use in

formal specifications because of: insufficient abstraction ability (e.g. in "true" formal
languages, types do not have to be directly implementable); often there is a lack of complete
formal semantics.

Formal (methods) tool is a program that implements some aspect of formal analysis, thus
providing mechanized, computer assisted support for formal analysis. Like formal methods,
formal methods tools can be formalized to various levels of rigor, from syntax checkers to
theorem provers.

Formal validation is a type of formal analysis in which an implementation is tested in execution
to demonstrate that it satisfies its requirements specification. Informally, it is proving that the
requirements are right, (i.e. we are building the desired system).

Formal verification is a form of formal analysis in which each level of development is proven
to satisfy the requirements of its superior level, (i.e. formal specification satisfies the
corresponding formal requirements specification, and implementation satisfies the corresponding
formal specification). Informally, it is proving that a system is built to its requirements.

Formalization is the application of a certain level of mathematical rigor; or the act of
formalizing an informal process, system or entity by making it more mathematically rigorous. In
the context of using formal languages and tools, levels of formalization are (in increasing order):
1. Use of mathematical concepts and notation, informal analysis (if any), absence of

mechanized assistance.
2. Use of formalized specification language with some mechanical support.
3. Use of formal specification language with comprehensive mechanized environment, which

includes mechanized proof assistant/theorem prover and/or model checker.

86

Mechanized proof assistant is a formal tool that implements theorem proving in an interactive
way, requiring the user to guide the proof steps.

Model checking is a type of formal analysis that relies on building a (usually finite) model of a
system and checking that a desired property holds in that model. The verification task is to
demonstrate that the system is a model that satisfies the putative property. The specification
should be syntactically and semantically correct. The check is performed as an exhaustive or
partial state space search, often breadth-first. Model checking is based on a verification
algorithm and thus requires no assistance from the user, i.e. it is "automatic."

Model checker is a formal tool that implements model checking. Model checkers usually rely on
various algorithms, such as bit-state hashing or symmetry, to reduce state space search, and/or in
the case of very large systems could provide an option to perform nearly exhaustive state space
search.

Theorem proving is a type of formal analysis in which a proof of a property is performed over a
specification. Both the specification and its properties are expressed as formulas in some kind of
mathematical logic. The verification task is to show that the formal specification of the system
implies the formal statement of a putative system property. The specification should be
syntactically and semantically correct.

Theorem prover is a formal tool that implements theorem proving in an automated way, not
requiring user assistance.

Parser is a formal tool that checks syntactic consistency.

Requirements specification is a specification describing essential, necessary or desired
attributes of a system or system components.

Rule of inference is a rule in mathematical logic that defines the reasoning that determines when
a conclusion may be drawn from a set of premises. In a formal system, the rules of inference
should guarantee that if 'the premises are true, then the conclusion is also true.

Specification animators (or emulators) are executable programs which reinterpret a formal
specification into a high-level dynamically executable form. Specification animations are not
formal in a strict sense, but support the formal requirements and design verification process by
providing analysts with an early view of the high-level dynamic behavior of the requirements.

Symbolic execution is execution which does not require parameters to have known values, (i.e.,
allows parameters in symbolic form).

Symbolic model checking is an approach to model checking in which the system to be analyzed
is described by equations or logical formulas. For example, a form of symbolic model checking
uses the state reduction technique to analyze sets of states, represented as Boolean formulas,

87

instead of individual states. For illustration, let us consider the state in which V is set to 0. All
states that have V set to 0 are marked, and all states that can reach the marked states in one step
are marked. This procedure is repeated until no new states can be marked. This set of states is
then analyzed.

Symbolic simulation is a form of simulation that allows input parameters to be supplied in
symbolic form, (e.g. as variables or functions).

Traceability of requirements is a property which means that system-level requirements are
traceable to identifiable (functional) subsystems, components, or interfaces.

Typechecking is a form of formal analysis that detects semantic inconsistencies and anomalies,
ensuring that entities must match their declaration and be combined only with other entities of
the same or compatible type.

Typechecker is a formal tool that implements typechecking.

Unparser (or pretty-printer) is a tool that translates internal representations into display, and
outputs formatted text. Usually used at the specification level.

88

Questionnaire
Tools Makers/Users

***************************** Tool name ************************
***************************** current date ************************

For this particular tool, please answer the following questions grouped
based on: general description of the tool, tool implementation, tool
features and utilities, applications and resources.

1. GENERAL DESCRIPTION OF THE TOOL

o Rough classification:
 model checker
 theorem prover
 mechanized proof assistant
 other:

o Application domain(s) or class(es) of problems originally intended.

o Intended audience.

o Language(s) and/or technique(s) that the tool is based on.

o Reasoning mechanisms used for the tool.

o Comparable languages/tools.

2. TOOL IMPLEMENTATION

o Underlying mechanism of the tool's implementation.

o How extensible and/or customizable is the tool.
 source code given
 tool implemented in a public-domain language
 not extensible by user

other:

89

3. TOOL FEATURES AND UTILITIES

o Tool supports the following (check all that apply):
 GUI
 Library of standard types, functions, and other constructions
 the library is validated

The extent of the library is (speaking from the point of view of
a potential user):
 not very comprehensive
 reasonably comprehensive
 quite comprehensive

 Editing and document preparation tools

Cross-referencing
Browsing
Requirements tracing
Incremental development across multiple sessions
Change control and version management
Consistency checking
Completeness checking
Other:

o How interactive/mechanized/automated is the tool.
 fully automated
 user guided

other:

90

4. TOOL INPUT AND OUTPUT

o Tool supports these models:
 synchronous
 asynchronous
 mixed

o Input to the tool.

o Output from the tool.

o The language used for input to the tool has (check all that apply)
 formal semantics
 modern programming language constructs (e.g. if-else):

strong typing
modularity
hierarchical design
parameterization
communication between processes
 buffered
built-in model of computation
other:

5. TOOL APPLICATION

o Abstraction level that the tool can address (check all that apply)
 requirements

' design specification
 implementation
 test derivation
 RTL
 netlists
 transistor level

other:

o Has the tool been integrated with other tools?
 no
 yes - please name tool and applications

with
with
with

do not know

91

6. RESOURCES

o Resource requirements for the tool:
UNIX version
Windows version
Mac version
Memory:

o Cost, rights and restrictions:
 free, no license
 free, license required
 for educational and research use only

 nominal distribution charge
 fee for underlying tool(s)
 flat license fee
 per user license fee
 royalties per use

other:

o User background prerequisites (check all that apply):
 BS degree
 MS degree
 Ph.D. degree
 knowledge of logic
 first-order
 high order

 familiarity with a high-level programming language
 familiarity with process algebra
 familiarity with temporal logic

other:

o User's learning curve, if all prerequisites are met:
 one month
 two months
 less than six months
 more than six months
 months

o Tool support
 upgrades/maintenance

Last version produced at this date:
 manual
 on the web

 training
 listserv
 mailing list
 dedicated conference(s)/workshop(s)
 human "help line"
 book(s)
 journal/conference publications

other:

o Current contact.

92

7. QUESTIONS APPLYING TO MODEL CHECKERS ONLY

o Verification mechanism(s) (check all that apply)
 equivalence
 modal logic
 temporal logic
 system or process invariants
 built-in support for checking for:
 deadlock
 livelock

other:

other:

o Tool supports (check all that apply):
 optimization and state reduction mechanism

using
 simulator:
 interactive
 random
 simbolic

 feedback on in what state verification failed

 trace leading to the state

other:

93

8. QUESTIONS ABOUT THEOREM PROVERS [NASA98]

o Degree of proof mechanization.
 fully mechanized
 partially mechanized

o Support for developing and viewing the proof.

o Presentation of proof to the user (e.g., user input or canonical
expressions, with or without quantifiers).

o Tool supports (check all that apply):
 automated support for arithmetic reasoning
 automated support for efficient handling of large propositional

expressions
 automated support for rewriting
 possible to use lemmas before they are proved.
 possible to state and use axioms without having to prove them.
 new definitions can be introduced and existing definitions

modified during proof
 facilities for editing proofs
 the foundations (i.e., all axioms, definitions, assumptions,

lemmas) of the proof are identified
 reasonably easy to reverify a theorem after slight changes to

the specification

94

9. OPEN-ENDED QUESTIONS

o Capabilities of this tool.

o Limitations of this tool.

o Estimated possible uses of the tool, such as applications, classes of
problems, stages of production cycle.

o Applications that the tool was used for - case studies, examples,
success stories.

References:
[NASA98] NASA, "Formal Methods Specification and Verification Guidebook for

Software and Computer Systems", vol.1.
http://eis.jpl.nasa.gov/quality/Formal_Methods/

95

Questionnaire
Potential Users

♦ Briefly describe problems that you need solved (in order to help us estimate if those
problems can be addressed by formal tools)

♦ Have you used formal tools? If yes,

♦ For what application?

♦ What were the areas of satisfaction?

♦ What were the problem areas?

♦ What would you like to see in the future?

♦ Describe your dream toolkit.

♦ What would you consider a "good place" to integrate formal tools in existing or
separate toolkits?

96

Questionnaire
Tools Makers/Integrators

♦ If you already produce and/or sell toolkits, would you be interested in integrating
formal tools into the toolkit, and why?

♦ What information do you need in order to be able to integrate formal tools into a
toolkit?

«U.S. GOVERNMENT PRINTING OFFICE: 2002-710-0 3B-1U2?''

97

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

