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1. Introduction 

Cirrus clouds  are frequently characterized by their optical depth at a specific wavelength, usually in 
the visible near 0.55 um or at lidar wavelengths 0.6328 um. For example, subvisual cirrus is defined 
as ".... any high clouds composed primarily of ice ... and whose vertical visible optical depth is 0.03 
or less."   It is frequently necessary to know the optical depth at a different wavelength. In this 
report, we compute the optical depth as a function of wavelength for the two cirrus cloud models 
resident in MODTRAN 4 ("standard" and "subvisual"). 

The Moderate Resolution Transmittance (MODTRAN) code, developed by the Air Force Research 
Lab (AFRL), calculates atmospheric transmittance and radiance for frequencies fin wavenumbers) 
from 0 to 50,000 cm"  at moderate spectral resolution, primarily 2 cm-  (20 cm- in the UV).   The 
development of the MODTRAN model was motivated by the need for higher spectral resolution than 
was available in the Low-Resolution Transmittance (LOWTRAN7). MODTRAN's capabilities 
include spherical refractive geometry, solar and lunar source functions, scattering (Rayleigh, Mie, 
single and multiple), and default atmosphere profiles (gases, aerosols, clouds, fogs, and rain). MOD- 
TRAN version 4 release 1 is the most current release and was used for these calculations. 



2. Calculations 

The defining input parameters for both cirrus cloud models in MODTRAN4 are extinction coeffi- 
cient KE (km- ), cloud thickness L (derived from the specified cloud base height and cloud top 
height), cloud base height, and choice of cloud model, standard or subvisual. The optical depth, x, of 
the cloud is defined as 

T = KEL = (KS + KA)L, (1) 

where KE is the extinction coefficient (km- ), and L is the cloud thickness. Ks and KA are the scat- 
tering and absorption components of KE, respectively. x is a unitless quantity. 

The transmission, t, of the cloud is then given by 

t = exp(-KE L) = exp(-x). (2) 

The threshold optical depth for subvisual cirrus is 0.03, which corresponds to a transmission of 0.97. 
Note that when the optical depth is small, i.e., x « 1, then the series expansion reveals 

t=l-x + x2/2!-x3/3! = l -x, (3) 

which handily reproduces t ~ 0.97 when x = 0.03. 

Owing to particle size effects and variations of the index of refraction with wavelength, A,, x also var- 
ies with wavelength. The wavelength dependence for KE, KA, and asymmetry are hard-coded into 
MODTRAN4 for both cirrus cloud models. These values were computed by Shettle et al.   based on 
Warren's optical constants  and Shettle et al.'s assumed particle size distribution given by the log- 
normal distribution function: 

dN/da = n(a) = a aa exp(-ba), (4) 

where CL is the particle radius, and a, a, and b are constants. Figure 1 shows the particle size distribu- 
tions used to compute KE. The mean (mode) particle radius tt, for the standard and subvisual models 
is 64 urn and 4 urn, respectively, and the calculations were performed under the assumption that all 
the particles are spherical. 
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Figure 1.     The particle size distribution for the subvisual model contains 

more particles cm   , and they arc on average much smaller (flmotjc 

= 4 urn) than for the standard model (tf mode = 64 urn). 

Figure 2 shows the optical depth of both cloud models, normalized to unity at 0.55 urn, extracted 
from MODTRAN4. Since % is proportional to KE, this is essentially KE normalized to unity at 0.55 
urn. It is obvious that the standard model's optical depth varies very little with wavelength, but the 
subvisual model's optical depth varies considerably. The reason for this is relatively simple, and 
relates to the particles' optical depth. 

Small particles tend to be optically thin, and the large particles tend to be optically thick. This is best 
expressed in terms of the scattering size parameter X (= 2na/X) '  and the absorption size parameter 
Q. (=4jcka/?i) . These values are shown in Table 1, which is calculated for the mode particle sizes 4 
and 64 urn, using the optical constants of Warren.    Thus, the small particles' behavior is dominated 
by absorption, while the large particles' behavior is dominated by scattering. The composition of a 
large particle (X or Q.» 1) is less important than its size because its extinction properties will be 
dominated by scattering. Extinction by small (optically thin, X or Q. « 1) particles, on the other 
hand, is more sensitive to composition (optical constants) because the actual absorptions play a rela- 
tively larger role. 
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Figure 2.     The extinction coefficient, KE, for the subvisual model displays 

significantly more spectral structure than does the standard model. 
The values for KE are normalized to unity at 0.55 (am. 

Table 1.     Scattering and Absorption Size Parameters for the Standard and 
Subvisual Cirrus Cloud Mode Particle Sizes in MODTRAN4 

a = 4 urn a = 64 urn 

subvisual (£i«1) standard (X»1) 

Mpm) X n X n 

2 13 0.01 201 0.19 

4 6.3 0.02 100 0.3 

6 4.2 0.27 67 4.3 

8 3.4 0.07 50 1.2 

10 2.5 0.08 40 1.4 

12 2.1 0.32 33 5.2 

The wavelength dependence of Ks and KA for the subvisual cirrus model is shown in Figure 3, and 
that of the Standard cirrus model in Figure 4. 
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Figure 3. The components of extinction coefficient, KE, (absorption KA and 

scattering Ks) as a function of wavelength for the subvisual cirrus 
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Figure 4.     The components of the extinction coefficient, KE, (absorption KA 

and scattering Ks) as a function of wavelength for the standard cir- 
rus model in MODTRAN4. 



The asymmetry parameter ,g, characterizes the scattering of light for the particle as a whole. For pure 
forward scattering, g would be +1.0, and for pure backscattering, g would be -1.0. For a symmetric 
scatterer (like a Rayleigh scatterer), g would be zero. Figure 5 shows the asymmetry parameter, g. for 
both the standard and subvisual cirrus models as a function of wavelength. In both cases, g is 
between about 0.75 and 1.00, though the standard model is generally much closer to unity at all 
wavelengths. This is because the standard model has larger particles, and these are more efficient 
forward scatterers than the smaller particles that comprise the subvisual cirrus model. 
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Figure 5.     The asymmetry parameter, g, as a function of wavelength is 

between about 0.75 and 1.0 for both models. The values for both 
models are greater than 1, indicating that the particles are primarily 
forward scatterers. 



3. Summary and Conclusions 

The normalized wavelength-dependent optical depth of the two cirrus cloud models resident in 
MODTRAN 4 ("standard" and "subvisual") has been presented and decomposed into its scattering 
and absorption components. We find that the optical depth as a function of wavelength is signifi- 
cantly different for the two models, most of which is attributable to particle size effects. The wave- 
length-dependent asymmetry parameter is also presented, and shows similar particle size effects. 
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