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ABSTRACT

      When tracking with multi-sensor systems, the set of sensors used may be asynchronous and there may
be communications delays between sensor platforms and the fusion center.  Despite these conditions, it is
desirable that each sensor maintains an accurate track.  It has been recognized for some time that the use
of a multiple model filter is superior to the use of a single model filter for tracking maneuvering targets.
However, existing multiple model tracking algorithms use Markov switching, assuming that the
likelihoods of the target state switching between kinematic models are known.  The objectives of this
paper are twofold.  First, it will present a Multiple Model (MM) tracking algorithm, called the ARMM
algorithm, that does not assume a priori knowledge of the target transition probability matrix.  This work
attempts to relax some of the assumptions found in the most widely used MM tracking algorithm.
Second, it will be shown that the ARMM algorithm can also be used as the second, and final, stage in a
logical process for fusing asynchronous tracks from multiple sensors that use different kinematic models
in their individual track filters.

1.0  INTRODUCTION

     Assume the existence of an algorithm that can optimally fuse asynchronous track data from multiple
sensors using filters with different target motion models.  An optimal, Multiple Model (MM) filter would
be a special case of this algorithm and could be obtained by: (1) requiring the measurement provided to
each filter to be the same, and (2) assuming that the measurements are taken at the same time
(synchronously).  From this realization, the authors were led to consider an analytic approach used to
derive two, asynchronous, track fusion algorithms for multiple sensors, whose filters use the same model,
as the approach for deriving a MM filter.  This resulting algorithm, which will be called the ARMM filter,
uses only the filter residuals to provide an on-line capability for weighting the output of the two local
tracks.  This algorithm does not require a priori knowledge of the target state transition likelihoods.
Additionally, it will be demonstrated how tracks of the same target from different sensors and generated
by filters using different kinematic models (it is possible that the individual tracks can each be from a
different sensor or, in other instances, that some of the sensors are producing more than one track from
filters with different target models) can be combined to produce a fused system track using the ARMM.
This is accomplished by applying either of the track fusion algorithms multiple times and then combining
the results of the individual applications with the ARMM.  This paper provides building blocks to be used
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in the design of track fusion systems, where the tracks are provided by different sensors.  These tracks
may be asynchronous, have different communications delays, and be generated using different models of
the same target.

     This paper is organized as follows.  In section 2, background on target tracking and track fusion, as it
relates to MM algorithms, is presented.  Next, the analytical approach is presented in section 3.  Two
track fusion algorithms derived using the analytical approach are presented in section 4.  In section 5, the
derivation of the ARMM algorithm is presented, while in section 6, simulation results obtained using the
ARMM to track a simulated target are given.  A summary and conclusions are given in section 7.

2.0  BACKGROUND

2.1 TARGET  TRACKING

     For many target tracking applications, it is not possible to predict the beginning and end of a target
maneuver.  Hence, when tracking a target with unknown and variable dynamics, it is difficult to decide on
the dynamics model to be used by the tracking filter during a given time segment of its trajectory.
Existing approaches can be divided into two classes: the Single Model (SM) approach and the Multiple
Model (MM) approach.

     In the SM approach only a single model filter is used at a given time (see [1]-[4], among others).  The
tracking starts with a filter that uses a Constant Velocity (CV) model and a low process noise until a
maneuver is detected.  Upon maneuver detection, the state process noise of the filter is increased in [1],
while [2] estimates the target acceleration and treats it as an input to the filter.  In [3], the filtered state is
augmented during a maneuver, while in [4] the target acceleration is treated as a bias whose estimate is
used to correct the output of the CV filter.  The success of the single model approach is heavily dependent
on the quality of the maneuver detector used.

     The MM approach employs multiple filters at any given time, each with a single different model.  The
outputs of these filters are then weighted to obtain the final target track.  Probability techniques are used
to determine the weights to be assigned to these tracks.  Since a number of models (filters) are used in
parallel, contrary to the SM approach, there is no hard switching between models.  This approach
eliminates the need for maneuver detection and filter initialization.  It is worth noting that, conceptually,
this MM approach can lead to an optimal solution to the tracking problem.  However, the optimal solution
will become intractable due to the exponential growth with time of the number of track histories.  For this
reason sub-optimal solutions are considered (see [5] and [6]), where a limited number of filters are used.
For example, the filter used in [6], known as the Interacting Multiple Model (IMM) filter, uses only two
models: a CV and a CA (Constant Acceleration) model.

     One of the shortcomings associated with existing MM approaches is that the knowledge of the
probability that governs the likelihood of transitions between dynamic models (called switching
coefficients) is assumed known.  This assumption requires a priori knowledge about the target’s
trajectory and is clearly not reasonable when it comes to tracking unknown targets in real time.  As a
result, it is necessary to use offline techniques, such as running multiple Monte Carlo experiments using
different trajectories and a number of “candidate” switching coefficients, to determine the “best”
switching coefficients.  Another, perhaps mild, deficiency of the IMM is it’s use of the approximation that
a sum of Gaussian probability functions (pdfs) is itself a Gaussian pdf

2.2  TRACK FUSION

     In the past, track fusion algorithms have not been considered as the primary means of fusing multi-
sensor data for several reasons.  First, fusion algorithms that could be shown to optimally combine tracks



from sensors that reported their tracks asynchronously (either because a target’s position was measured at
different times or because of communications delays or both) did not exist.   This reason has recently
been negated by [7] for the case where all of the sensors use track filters having the same dynamical
model.  In order to obtain a globally optimal solution for this case, it is necessary to feed the fused track
back to each of the sensors to be used as the input state [7].  Of course, this still leaves to be solved the
case where there are multiple subsets of track filters with each subset using a different dynamical model
in it’s filters.

     Second, single model filters, such as the Kalman filter, do not realistically reflect the true covariance
of the track except when their dynamical model matches the dynamics of the target.  Otherwise, the
covariance provided by the filter is smaller than the true covariance.  Since most known track fusion
algorithms utilize the inverse of the covariance of the track to weight the contribution of its state vector to
the fused state vector, filters that are not doing well because of a model mismatch are contributing more
than they should to the fused track.

     If one decides to use the SM approach to alleviate this problem, there are still grave shortcomings.  SM
approaches can quickly discern when a target starts maneuvering, however, they cannot accurately
determine when the target has stopped maneuvering and returned to straight and level motion and will
continue to track with the maneuver model filter.  When this occurs, the SM model will not provide a
good estimate of the covariance.  Also, when the SM model transitions from one model to another, one
must wait for the new filter to settle before the covariance can be considered meaningful.

     On the other hand, the MM approach provides a soft switching mechanism between models that
precludes the need for filter initialization and settling.  Also, the ability of MM algorithms to detect a
maneuver and respond to that maneuver by increasing the weight given to the filter with the more
accurate target motion model is good.  Therefore, MM algorithms seem to be the best candidate for
filtering data from multiple sensors when the tracks from these sensors are to be fused.  However, a
logical approach to fusing MM algorithms is needed.

3.0 ANALYTICAL APPROACH

     Begin by considering the following generic system.  There exist a target being observed by one or two
sensors whose dynamics of motion are assumed to be governed by

)()()( tWGtAXtX +=& ,                                                                 (1)

where )(tX  is the target state and )(tW  is a zero mean Gaussian process with covariance

)()(])()([ τδτ −=′ ttqWtWE .                                                             (2)

There are two different paths that can be taken from this point.

3.1  INITIAL ASSUMPTIONS FOR THE FIRST PATH

     The first path, which will be denoted as the MSSM (Multi-Sensor, Single Model) process, assumes
that there are two sensors, each with a single Kalman filter to produce local tracks and each using the
same dynamical model of the target.  Also, it is assumed that, in general, the time at which each sensor
takes a measurement of the target’s position is different, in other words the sensors are asynchronous,

2,1,1 =<<− ittt kik  (see Figure 1).  The measurement model for the ith filter, i=1, 2, is given by

)()()( iiiiii tVtXHtz += ,                                                                (3)



where )( ki tV  is a zero mean, white, Gaussian, measurement noise process.  Here
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and the prime is used to denote matrix transpose (See [7] or [8]).

3.2  INITIAL ASSUMPTIONS FOR THE SECOND PATH

     The second path, denoted as the SSMM (Single Sensor, Multi-Model) process, assumes that there is
only one sensor and two Kalman filters are processing it’s measurements.   Therefore the tracks produced
by these sensors are synchronous.  However, it is assumed that one filter has a CV model (call this LP1)
while the other has a CA model (call this LP2), which leads to two target motion models given by:

LP1:                                         )()(),()( 1111111 kkkkk tWGtXtttX +Φ= ++ ,                                              (10)

LP2:                                       )()(),()( 2221212 kkkkk tWGtXtttX +Φ= ++ ,                                             (11)

where
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It is worth noting here that

)()( 21 kk tMXtX = ,                                                                    (16)

where
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     Let )( ktX  be the true target state whose actual dynamics are unknown.  Let the true measurement
model of the target state be given by

)()()( kkk tVtXHtz += ,                                                                    (18)

where )( ktV  is a white Gaussian process noise;

),0(~)( kk RNtV .                                                                      (19)

The measurement models used by the local processors are given by

)()()( kikiiki tVtXHtz += ,                 i=1, 2,                                              (20)
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Note that, even though the measurement models given by Eqs. (20)-(22) are different, they must both
produce the same numerical measurement of the target position as the one given by Eq. (18).  This
implies that the local models must be valid models in the sense that they produce the same measurement
data as the true target model.  Assuming that the measurement noise is modeled correctly in both the local
and true target model, i.e., )()( kki tVtV = , then the local models are valid if for any time tk

)()()( 2211 kkk tXHtXHtXH == .                                              (23)

A necessary and sufficient condition for Eq. (23) to hold is that there exist a mapping iM between H and

iH , i=1, 2, such that [10]

iiMHH = .                                                                  (24)



3.3  ASSUMPTION COMMON TO BOTH THE MSSM AND SSMM PROCESSES

     The analytical approach continues by assuming a functional form for the fused track.  The form of the
fused state is hypothesized as being a linear combination of the local state updates (at their respective
times) and the fused state predicted to the time at which fusion is to occur:

)()()()( 2222111110 ttXLttXLttXLttX kkfkkf ++= −  ,                                  (25)

where 1−kt  is the previous time at which the fused state was generated and kik ttt ≤≤−1 .  In some cases,

00 =L , as will be seen later.

3.4  STEPS REQUIRED IN THE MSSM PROCESS

     The MSSM process leads to the development of fusion algorithms which take asynchronous tracks
(thus kk tttt ≤≤− 211 p ) and obtains a fused state estimate at some desired time, kt .  The initial step is to
substitute the Kalman update equations for tracks 1 and 2 and the prediction equation for the fused track
into Eq. (25).  Then the expected value of the error of the fused state is formed:

)]()([)](
~

[ kkkfkkf tXttXEttXE −= .                                                        (26)

There are two requirements set.  First, it is required that the fused state update be unbiased (the term in
Eq. 26 is equal to zero) when the predicted fused state is unbiased.  This leads to a relationship between

0L , 1L , and 2L .  Then, the covariance of the fused state, )( kkf ttP , is formed and the relationship

between 0L , 1L , and 2L  is used to reduce the covariance to a function of two variables; assume that it is

a function of 1L  and 2L .  Second, it is required that the trace of the covariance be minimized.  In order to

meet this requirement, the first derivative of the trace of )( kkf ttP  is taken with respect to 1L  and 2L ;

each of  these two equations is then set equal to zero.  This will result in two equations with two
unknowns.  These equations are solved for 1L  and 2L  and then they are used in the first relationship to

obtain a solution to 0L .  If 00 =L , then one uses the unbiased condition to obtain 1L in terms of 2L , uses
this relationship to reduce the number of unknowns in the equation for the covariance to one, takes the
derivative of the covariance, sets it to zero, and obtains 2L .   2L  can  then be use to find 1L .

     One of the most important tasks in obtaining a track fusion formula from this technique is to obtain
and use the correct expression for the expected value of  the product of the predicted value of  the ith filter
and the process noise of the jth filter.  It can be shown that (see [7], [8], and [9]):
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3.5  STEPS REQUIRED IN THE SSMM PROCESS

     The SSMM process leads to the development of MM filters that take two synchronous tracks
( kttt == 21 ) generated using measurement data from a single sensor and multiple filters and combines
these tracks to obtain a fused estimate.  There have been two methods developed for this process.  The



first method assumes that each filter produces its own fused track and that this track is used as the input
state on the next update cycle:

 )()()( 212111
1

kkkkkkf ttXLttXLttX += ,                                                     (28)

)()()( 222121
2

kkkkkkf ttXLttXLttX += .                                                     (29)

It is then proposed that there is another stage where the fused outputs of the two Kalman filters are fused:

)()()( 2
2

1
1 kkfkkfkkf ttXLttXLttX += .                                                       (30)

This is not the method that will be used to generate the ARMM algorithm; the second method, to be given
next, is the one that will be used.  A complete derivation of the results used in this first method can be
found in [11].  In fact, the structure given by Eq. (30) was shown to be theoretically optimal where the
switching coefficient are proportional to the local filter residues.  As the noise level of sensor increases,
the separation between switching coefficients becomes less obvious.

     The second method is less complicated.  Here, it is assumed that there is no feedback and one is
attempting to solve for two coefficients:

)()()( 2211 kkkkkkf ttXLttXLttX += .                                                       (31)

 In other words, one starts by substituting the Kalman update equations for tracks 1 and 2 into Eq. (25)

(with 00 =L ).  Next, the expected value of the error of the fused state, )](
~

[ kkf ttXE , is formed (see Eq.

(26)).   In this case, it is not possible to determine if the expected values of the error for tracks 1 and 2 are

unbiased.  However, it is necessary to require that )](
~

[ kkf ttXE  be independent of the true target state

(which is unknown).  This leads to a relationship between 1L  and 2L .

     The requirement that the covariance be minimized as in the MSSM process is not used here.  If one
insists on keeping this requirement, it leads to values for 1L  and 2L  that are not responsive to changes in
the target’s dynamics.  This is undesirable since a change in the target’s dynamics should result in a
change of the weightings (contributions) of the filter updates.  In order to provide a method that adapts 1L

and 2L  to the dynamics of the target in a real time application, the residues of the two local processors,

the one relationship between 1L  and 2L , and the assumption that

ML ′=α1 ,                                                                               (32)

),,,,,,,,(2 γββγββγββdiagonalL = ,                                                       (33)

   are used to generate their values.  Here, 1=γ .

4.0  FUSION ALGORITHMS OBTAINED USING THE MSSM PATH

     First, consider the following architecture where tracks from multiple sensors, that make their
measurements at different times, are fused and the fused track is sent back to each sensor’s Kalman filter



to be used as the input to the Kalman filter when determining the next update (Figure 1).  One assumes
for the solution the functional form given in Eq. (25).  As shown in [7], the coefficients are given by:

),(),( 22110 kk ttLttLIL Φ−Φ−= ,                                                     (34)
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Also, the updated covariance of the fused track is given by
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where

2211 ELELIT −−= ,                                                             (42)

),( kiiii ttHKE Φ= .                                                               (43)

     On the other hand, it might be necessary to have an open loop architecture for generating a track fusion
algorithm.  In such an architecture, the track of each sensor is generated when a measurement in the
desired time interval is taken and then they are fused to obtain the system track.  There is no feedback
(see Figure 2).  Under the requirements that the solution be unbiased and and the covariance be
minimized,  the solution will only be MMSE.  One proceeds in the following manner (see [9] for more
details).  The solution is assumed to have the form given by Eq. (25) with 00 =L .  Following the format
used in [7], one obtains

)2|2(22)1|1(11)|( ttXLttXLttfX kk += ,                                                  (44)
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                        Figure 1.  Asynchronous track fusion architecture with feed back.
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                           Figure 2.  Open loop, asynchronous, track fusion architecture.
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     Each of these two, asynchronous, track fusion algorithms have been shown, in the limit as kttt →21, ,
to provide the same results as those obtained independently in earlier publications for sensors taking their
measurements synchronously.  Since the synchronous case is a special case of the asynchronous case, this
lends credibility to these algorithms.  This agreement has been demonstrated in [8] for the optimal,
asynchronous, track fusion algorithm and in [9] for the MMSE, asynchronous, track fusion algorithm.

5.0  DERIVATION OF  THE ARMM FILTER

     Assume that the fusion center computes its track as

)|()|()|( 2211 kkkkkkf ttXLttXLttX += ,                                                 (58)

where )|( kki ttX  is the local state produced by LPj (local processor j), j=1, 2, )|( kkf ttX  is the fused

track at time k, and 1L and 2L are unknown switching coefficients (see Figure 3).  Define

)()|()|( kkkfkkf tXttXttE −= .                                                      (59)

Using Eq. (58),
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Following the work in [11], one has

)()(1 kk tMXtX = ,                                                                 (61)
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It is worth noting that Eqs. (61) and (62) represent static relationships at time k and do not necessary hold
between measurements.  Using Eqs. (60)-(62), one obtains

)()()|()|()|( 212211 kkkkkkkf tXILMLttELttELttE −+++= ,                                  (63)

where )|( kki ttE  is the error of the state estimate of LPi at time kt .  To eliminate the dependence of

)|( kkf ttE  on X( kt ), one must have

ILML =+ 21 .                                                                      (64)

Eq. (64) represents the first condition on the choice of the switching coefficients.   In what follows, a
practical structure will be imposed on these matrices.   Namely, these switching coefficients will be
restricted to:

ML ′=α1 ,                                                                          (65)



Figure 3.  Open loop track fusion architecture

),,,,,,,,(2 γββγββγββdiagonalL = ,                                                     (66)

where 1=γ .  Eqs. (64)-(66) imply
1=+ βα .                                                                        (67)

To obtain another condition to determine the switching coefficients, with the above structure, using real
time information , the residuals of the LPs will be used.

     Let

)|(),()()( 1111111 −−−Φ−= kkkkkk ttXttHtztr ,                                                   (68)

)|(),()()( 1121222 −−−Φ−= kkkkkk ttXttHtztr .                                                  (69)

It is proposed to choose α and β as follows:

)]()'()()'(/[)()'( 221122 kkkkkk trtrtrtrtrtr +=α ,                                                 (70)

)]()'()()'(/[)()'( 221111 kkkkkk trtrtrtrtrtr +=β .                                                  (71)

The rationale for this choice is that if LP2 is doing poorly, then its residue will be large.  The fusion
center will then tilts toward LP1.  Note that by using Eqs. (70) and (71), Eq. (67) is satisfied.  Also, the

)( ktz

Local Processor
1

Local Processor
2

   Fusion Center

)|(,)|( kkfkkf ttPttX



covariance of the fused state, )|( kkf ttP , is the same as )|(2
kkf ttP  found in Eq. (43) of [11] with 21L

replaced by 1L .

6.0  SIMULATION RESULTS

     In order to observe the effectiveness of the ARMM algorithm, it has been used to filter the data from a
simulated target that has segments of time where it is flying at a constant velocity and other time
segments where it is maneuvering.  The profile of this target in the horizontal plane (X-Y plane) is given
in Figure 4 and the vertical profile (motion along the z-axis) is given in Figure 5.  Additionally, the
velocities are given in Figures 6-8 and the accelerations are given in Figures 9-11.

     A simulated, three dimensional sensor was used to produce the measurement data and it’s data rate
was set at 1 Hz.  The measurement noise covariance of the sensor is given by











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
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rrr

rrr

rrr

R

20/20/

20/20/

20/20/

 ,                                                                  (72)

where r is a parameter that has been given the values 10 m2 (which represents a reasonably accurate
sensor) and 100 m2 (which is a relatively inaccurate sensor).

     A CV and a CA filter were used in the ARMM algorithm.  A process noise of q1=100 was used for the
CV filter and a process noise of q2=200 was used in the CA filter.  A Monte Carlo simulation of 50 runs
was performed for each value of r.  The switching coefficients, α and β ,  over the entire trajectory for the
choice r=10 are given in Figure 12.  There is good separation between α (denoted as 1 on the graph) and
β (denoted as 2 on the graph) except in the region between t=30 seconds and t=70 seconds.  In this
region, the target underwent a weak maneuver.  Because of the values chosen for q1 and q2, this weak
maneuver appears to be a CV trajectory to the CV filter and a CA trajectory to the CA filter with equal
likelihood.  The RMS values of the speed over the trajectory (except for t=0 to t=50 seconds) for the CV
filter (denoted as 1 on the graph), the CA filter (denoted as 2 on the graph), and the ARMM algorithm
(denoted as 3 on the graph) are shown in Figure 13.  It is seen that the RMS speed for the ARMM stays
close to the CV filter’s RMS value of the speed when the target is not maneuvering and stays near the CA
filter’s RMS value of the speed when it is maneuvering.  The average velocity error is somewhere
between 4m/s and 5 m/s.  The RMS value of the position is not shown because of lack of space.  It was
felt that the error in the velocity is more critical when it comes to predicting the future position of the
target in order to maintain track on the target than it’s RMS position error at the time the track is updated.

     For r=100, the switching coefficients over the entire trajectory are given in Figure 14.  The switching
coeffficients are slightly less well defined for this case than the r=10 case.  (The α and β  are identified
by the same numbers used in Figure 12.)  However, they still display good separation everywhere except
in the region between t=30 seconds and t=70 seconds, for  the same reason that they were not separated in
this region when r=10.  The RMS speed errors for the two filters and the ARMM are given in Figure 15
and are denoted by the same numbers used in Figure 13.  The graphs in Figure 15 and Figure 13 look the
same just the scale of the errors are larger in Figure 15.  Here, the average RMS speed error for the
ARMM alogrithm appears to be between 8m/s and 10 m/s.
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Figures 4 and 5.   The upper plot is figure 4 and it depicts the target motion in the X-Y plane or the
target’s horizontal profile (both axes are in meters).  The lower plot depicts the target motion along the Z-
axis or  the  target’s vertical profile.  The vertical axis is in meters and the horizontal axis is in seconds.
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Figure 6.  Plot of the target’s x-velocity (vertical axis in meters/second) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 and the trajectory ends at approximately t=275 seconds.
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Figure 7.  Plot of the target’s y-velocity (vertical axis in meters/second) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 and the trajectory ends at approximately t=275 seconds.
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Figure 8.  Plot of the target’s z-velocity (vertical axis in meters/second) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 and the trajectory ends at approximately t=275 seconds.
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Figure 9.  Plot of the target’s x-acceleration (vertical axis in m/s2) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 sec. and the trajectory ends at approximately  t=275 sec.
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Figure 10.  Plot of the target’s y-acceleration (vertical axis in m/s2) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 sec. and the trajectory ends at approximately  t=275 sec.
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Figure 11.  Plot of the target’s z-acceleration (vertical axis in m/s2) versus the time (horizontal axis in
seconds).  The start time of the trajectory is t=0 sec.and the trajectory ends at approximately t=275 sec.
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Figure 12.  This figure shows the switching coefficients for the CV (1) and CA (2) filters over the
trajectory for a reasonably accurate sensor (r=10).  No delineation is made between  the gains for  the CV
and CA filters from  t=30 sec. to t=70 sec. because they are too close to each other.
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Figure 13.  The RMS speed errors for the CV (1) and CA (2) filters and the ARMM filter algorithm (3)
from t=50 sec. to t=275 sec. (r=10).   The values for (3) lies between  (1) and (2) when the target is slowly
maneuvering (or not maneuvering at all) and is on  top of (2) when the target is strongly maneuvering.
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Figure 14.  This figure shows the switching coefficients for the CV (1) and CA (2) filters over the
trajectory for a more inaccurate sensor (r=100).  No delineation is made between the gains for the CV and
CA filters from  t=30 sec. to t=70 sec. because they are too close to each other.
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Figure 15.  The RMS speed errors for the CV (1) and CA (2) filters and the ARMM filter algorithm (3)
from t=50 sec. to t=275 sec. (r=100).  The values for (3) lie between  (1) and (2) when the target is slowly
maneuvering (or not maneuvering at all) and is on  top of (2) when the target is strongly maneuvering.



7.0  SUMMARY AND CONCLUSIONS

     One of the important elements of this paper is the analytical approach discussed in section 3.  From
this analytical approach, it is possible to derive track fusion algorithms for sensors that provide tracks
asynchronously and with communications delays.  In particular, it is possible to derive an optimal track
fusion algorithm for these sensors that can take asynchronously generated tracks and fuse them at any
chosen point in time.  Actually, this track fusion algorithm has some of the same properties as a Kalman
filter.  First, it uses tracks generated by filters using only a single model.  Second, it is optimal when the
target’s dynamics match that model.  Third, it uses its output state vector and covariance at tk-1 as input
when determining the update at tk.  This analytic approach also has been used to derive a track fusion
algorithm that is not optimal (only provides a MMSE solution) but will fuse the tracks from the same set
of sensors under the same conditions.

     The analytical approach also can be used to generate MM filters using data from a given sensor.  The
one derived in this paper  is called the ARMM and provides a solution to the open loop architecture (no
feedback required).  The extensive simulation testing of this filter has not been performed yet.  Therefore,
the next step will be to compare how well it can track a target following a set of trajectories as compared
to the IMM which appears to be the accepted standard at this time.  Even though the investigations into
it’s capabilities are incomplete, the ARMM exhibits two important properties.  First, the switching
coefficients appear to be relatively unaffected by the sensors measurement inaccuracies.  Second, the
RMS error of the position (which was not shown in the paper) and of the speed for the fused state are
close to those of the CV filter when the target is in the CV mode and close to those of the CA filter when
the target is in the CA mode.  This seems to indicate the successful on-line switching capability of the
ARMM.

     Beside being useful as a MM filter, the ARMM can also be used to produce a fused track from
multiple sensors supplying local track updates asynchronously using filters having different dynamics
models.  This can be accomplished by using either of the two asynchronous track fusion algorithms
presented in section 4.  The optimal track fusion algorithm will be considered first because it has
similarities to a Kalman filter.  Since there is no feedback used in the other track fusion algorithm, its use
in place of a Kalman filter is more tenuous.

     Assume one has four filters tracking the same target, two with one model, say CV, and two with
another model, say CA, and all of the measurements are the same dimensionally.  The filters can be
distributed among sensors in one of three ways: (1) the filters can each reside in a different sensor, (2) one
of each model can reside in  one sensor and each of the other two filters in a different sensors, or (3) two
sensors can each have two filters, each of the two filters with a different model.  Of course, under any of
these three conditions some of the tracks may be synchronous.  The optimal track fusion algorithm can be
used once to fuse the tracks from the two filters with a CV model and then again to fuse the tracks from
the two filters with the CA model.  The two applications of the optimal track fusion algorithm would
provide fused tracks at the same time.  At this point, one can think of each of the two fused state vectors
as the output of optimal, single model filters.  They can be used as input to the ARMM algorithm in place
of the input from two, single model, Kalman filters.  The result is a fused track obtained from multiple
asynchronous tracks generated with different dynamics models.

     There is one important aspect that must be considered here.  That is, what does one use for the filter
residuals when calculating α and β in the ARMM algorithm?  A reasonable and consistent choice is the
following: predict the previous fused update for each model to the point of the last measurement taken by
any one of the four sensors.  That measurement is then used to form the residues as done in section 5
(Eqs. (68) and (69)).



     The only difference in the use of the suboptimal track fusion algorithm instead of the optimal track
fusion algorithm is that there is no information fed back to the local filters.  On the positive side, this
allows more variability in the local tracks used.  For instance, if a MM algorithm such as an IMM
algorithm is being used by all of the sensors, the tracks from the CV model filter in each IMM could be
fused and then the tracks from the CA model filter in each IMM could be fused.  Then the ARMM could
be used to combine the fused CV track and the fused CA track.  The local IMM filters could continue
generating the local tracks to produce a local track picture.   Of course, there are definitely concerns about
the accuracy of this approach and they will be considered in the near future.

          Finally, the use of an IMM structure in place of the ARMM structure is considered but only for the
case when one is using the optimal track fusion algorithm in place of the Kalman filter.  The IMM
computes model likelihoods to be used in combining the output of the optimal track fusion algorithms for
the CV and CA models and  to compute the mixed state estimates (mixture of the previous output of the
CV and CA model track fusion algorithms) used as input to the CV and CA track fusion algorithms.  The
main difference in the multisensor IMM structure and the multisensor ARMM structure is that: (1) the
mixed fused state estimate is used as input to each optimal track fusion algorithm and is predicted to the
time of the last measurement taken by any of the four sensors and (2) for each model, the residual
covariance is used to normalize the residues which are then used to compute the model likelihoods.
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