
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thiscollection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JeffersonDavis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Bud et, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1-7 July 1999
2000 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
International Conference on Curves and Surfaces (4 th). Held in Saint-Malo,
France on 1-7 July 1999. Proceedings, Volume 1. Curve and Surface Design. F61775-99-WF068

6. AUTHOR(S)

Pierre-Jean Laurent, Paul Salonniere, Larry L. Schumaker, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Association Francaise d'Approximatiion (AFA) REPORT NUMBER
c/o P.J. Laurent ISBN 0-8265-1356-5
La Pereree 38420
France

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
EOARD
PSC 802 Box 14
FPO AE 09499-0039

11. SUPPLEMENTARY NOTES
Published by Vanderbilt University Press, Nashville, TN. Series: Innovations in Applied Mathmatics. This work relates to
Department of the Air Force grant issued by the European Aerospace Office of Research and Development. The United States
has a royalty free license throughout the world in all copyrightable material contained herein.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release. U.S. Government Rights License. All other rights A
reserved by the copyright holder. (Code 1, 20)

12. ABSTRACT (Maximum 200 words)

This volume contains 45 papers presented at the 4th International Conference on Curves and Surfaces held in Saint-Malo,
France on 1-7 July 1999. The companion Volume 2: Curve and Surface Fitting contains 43 papers.

The conference presents the classical domain of Approximation Theory (interpolation, smoothing techniques, splines, radial
basis functions, wavelets) as well as more technical aspects of geometric modeling, computer-aided design and mechanics.

13. SUBJECTTERMS 15. NUMBER OF PAGES
EOARD, Foreign reports, Computer science, Computer graphics, Computer-aided design, Curve
fitting, Mathematics

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

20011203 231



Curve and Surface Design

Saint-Malo 99

EDITED BY

Pierre-Jean Laurent
Laboratoire de Mod6lisation et Calcul
Universit6 Joseph Fourier
Grenoble, France

Paul Sablonniere
Laboratoire de Logiciel, Analyse Num~rique et Statistiques
Institut National des Sciences Appliqu6es
Rennes, France

Larry L. Schumaker
Department of Mathematics
Vanderbilt University
Nashville, Tennessee

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

VANDERBILT UNIVERSITY PRESS

Nashville

fl9 ~Oc -O i



U.S. Government Rights License
This work relates to Department of the Air
Force Grant/rContract issued by the European
Office Aerospace Research and Development
(EOARD). The United States Government
has a royalty-free license throughout the world
in all copyrightable material contained herein

© 2000 Vanderbilt University Press
All Rights Reserved

First Edition 2000

04 03 02 01 00 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Curve and surface design: Saint-Malo 99 / edited by Pierre-Jean Laurent,
Paul Sablonni~re, Larry L. Schumaker.

p. cm - (Innovations in applied mathematics)
Includes bibliographical references.
ISBN 0-8265-1356-5 (alk. paper)

1. Computer graphics. 2. Computer-aided design. 3. Curves, Algebraic-Data
processing. 4. Surfaces, Algebraic-Data processing. I. Laurent, Pierre-Jean, 1937-
II. SablonniRre, Paul, 1947- III. Schumaker, Larry L., 1939- IV. Series.

T385 .C857 2000
006.6'9--dc21 99-086571

Manufactured in the United States of America



Curve and Surface Design



Innovations in Applied Mathematics

An international series devoted to the latest research in
modem areas of mathematics, with significant applications
in engineering, medicine, and the sciences.

SERIES EDITOR:
Larry L. Schumaker
Stevenson Professor of Mathematics
Vanderbilt University

PREVIOUSLY PUBLISHED TITLES INCLUDE

Curves and Surfaces with
Applications in CAGD (1997)

Surface Fitting and
Multiresolution Methods (1997)

Mathematical Methods for
Curves and Surfaces 11 (1998)

Mathematical Models in
Medical and Health Science (1998)

Approximation Theory IX
Volume 1. Theoretical Aspects (1999)

Approximation Theory IX
Volume 2. Computational Aspects (1999)



CONTENTS

Preface .................. ............................ .. viii

Contributors ................ .......................... ... ix

Factorizations of Normalized Totally Positive Systems
J. M. Carnicer and E. Mainar .......... .................. 1

Intersections et Convergence
Paul de Faget de Casteljau ......... .................... 9

Implicitization Matrices in the Style of Sylvester with the Order
of Bkzout

Eng-Wee Chionh, Ming Zhang, and Ronald Goldman .. ...... .. 17

Better Pasting via Quasi-Interpolation
Blair Conrad and Stephen Mann ........ ................ 27

Conjugate Silhouette Nets
W. L. F. Degen ......... ........................ .. 37

From PS-splines to NURPS
Paul Dierckx and Joris Windmolders ....... .............. 45

Distance Calculation between a Point and a NURBS Surface
Eva Dyllong and Wolfram Luther ..... ................ .. 55

Curves from Motion, Motion from Curves
Rida T. Farouki ..... ..... ... ....................... 63

Curvature and Tangency Handles for Control of Convex Cubic Shapes
G. Figueroa, M. Paluszny, and F. Tovar ..... ............. ... 91

Monotonicity Conditions of Curvature for B~zier-de Casteljau Curves
Jean-Charles Fiorot and Laurent Schiavon .... ............ ... 99

From Local Approximation to a G1 Global Representation
C~dric G6rot, Dominique Attali, and Annick Montanvert ........ 109

A Class of Totally Positive Blending B-Bases
Laura Gori, Laura Pezza, and Francesca Pitolli ............. .119

Rational Ruled Surfaces Passing through Two Fixed Lines
Gueorgui H. Gueorguiev ......... .................... 127

Deformation Criteria for the Direct Manipulation of Free Form Surfaces
Stdphane Guillet and Jean-Claude Ldon ...... ............. 135

Generation of Surfaces with Smooth Highlight Lines
Masatake Higashi, Hiroto Harada, and Mitsuru Kuroda ... ...... 145

v



vi Contents

MIPS: An Efficient Global Parametrization Method
Kai Hormann and Giinther Greiner ....... ............... .. 153

Comparison of Different Multisided Patches Using
Algebraic Geometry

Kqstutis Kar~iauskas and Rimvydas Krasauskas ... ......... .. 163

N-sided Surface Generation from Arbitrary Boundary Edges
Kiyotaka Kato .............. ........................ .173

Advantages of Topological Tools in Localization Methods
Mohammed Khachan and Patrick Chenin ..... ............ .. 183

Fast Voronoi Diagrams and Offsets on Triangulated Surfaces
Ron Kimmel and James A. Sethian ....... ............... .. 193

On the Geometry of Texture
Ron Kimmel, Nir A. Sochen, and Ravi Malladi .... .......... .203

Optimization of a Curve Approximation Based on NURBS Interpolation
Jdr6me L6pine, Frangois Guibault, Marie-Gabrielle Vallet

and Jean-Yves Trhpanier ........... .................. .. 213

Filling N-sided Holes Using Combined Subdivision Schemes
Adi Levin ................ .......................... .221

Dealing with Topological Singularities in Volumetric Reconstruction
H. Lopes, L. G. Nonato, S. Pesco, and G. Tavares ..... ......... 229

Linear Envelopes for Uniform B-spline Curves
David Lutterkort and J6rg Peters .......... ................ 239

N-sided Surfaces: a Survey
Pierre Malraison ............. ....................... .. 247

Approximated Planes in Parallel Coordinates
Tanya Matskewich, Alfred Inselberg and Michel Bercovier ..... .. 257

Applications of Sphere Geometry in Canal Surface Design
Christoph Miurer ........... ....................... .. 267

Geometric Computing with CGAL and LEDA
Kurt Mehihorn and Stefan Schirra. ...... ............... .277

A Geometric Approach for Knot Selection in Convexity-Preserving

Spline Approximation
R. Morandi, D. Scaramelli, and A. Sestini ....... ........... .287

Convergence of Approximations for Arrangements of Curves
Manuela Neagu and Bernard Lacolle ....... .............. .. 297

The (2-5-2) Spline Function
Jae H. Park and Leonard A. Ferrari ..... ............... .. 307



Contents vii

Error Analysis of Algorithms for Evaluating Bernstein-B6zier-Type
Multivariate Polynomials

J. M. Pefia ................. ......................... .315

A Basis for Homogeneous Polynomial Solutions to Homogeneous Constant
Coefficient PDE's: An Algorithmic Approach Through Apolarity

Michel Pocchiola and Gert Vegter ........ ............... .. 325

Triangular G2-Splines
Hartmut Prautzsch and Georg Umlauf ..... .............. .. 335

On Calculating with Lower Order Chebyshev Splines
Mladen Rogina and Tina Bosner ......... ................ .. 343

A Declarative Modeler for B-Spline Curves
Vincent Rossignol and Marc Daniel ....... ............... .. 353

Diffuse Curvature Computation for Surface Recognition
J. M. Savignat, 0. Stab, A. Rassineux, and P. Villon .......... .. 363

Discrete Fairing of Curves and Surfaces Based on Linear Curvature
Distribution

R. Schneider and L. Kobbelt .............. ................. 371

Triangulating Trimmed NURBS Surfaces
Chang Shu and Pierre Boulanger ......... ................ .. 381

Surface Interpolation of Non-four-sided and Concave Area by NURBS
Boundary Gregory Patches

Junji Sone, Kouichi Konno, and Hiroaki Chiyokura ... ....... .. 389

Central Conics on Parabolic Dupin Cyclides
Kenji Ueda ................. .......................... 399

Adaptive Parameterization and Approximation for CAD Data Reduction
G. Wahu, J. M. Brun, and A. Bouras ......... .............. 407

On the Geometry of Sculptured Surface Machining
Johannes Wallner and Helmut Pottmann .... ............. .. 417

Extensions: Extrapolation Methods for CAD
Hans J. Wolters ............. ........................ .. 433



PREFACE

During the week of July 1-7, 1999, the Fourth International Conference on
Curves and Surfaces was held in Saint-Malo (France). It was organized by the
Association Frangaise d'Approximation, (A.F.A.). The organizing committee
consisted of L. Amodei (Toulouse), J.-L. Bauchat (Metz), A. Cohen (Paris),
J.-C. Fiorot (Valenciennes), J. Gaches (Toulouse), G.-P. Bonneau (Grenoble),
Y. Lafranche (Rennes), P.-J. Laurent (Grenoble), M.-L. Mazure (Grenoble),
J.-L. Merrien (Rennes), C. Potier (Paris), C. Rabut (Toulouse), P. Sablonni~re
(Rennes), L.L. Schumaker (Nashville), C. Vercken (Paris).

The conference was attended by 275 mathematicians from 37 different
countries, and the program included 10 invited one-hour lectures and 190
half-hour research talks or poster presentations. A number of research talks
were presented in eight minisymposia organized by W. Dahmen, R. DeVore,
D. Donoho, J. Hoschek, B. Lacolle, H. Pottmann, M. Sabin, and J. Stbckler.

The proceedings of this conference consists of this volume (containing 45
papers), and the companion volume Curve and Surface Fitting: Saint-Malo
1999 (containing 43 papers).

We would like to thank the following institutions for their financial or
technical support and their contribution to the success of this conference:
Ministbre de l'Education Nationale, de la Recherche et de la Technologie;
European Office of Aerospace Research and Development (Air Force Office
of Scientific Research, United States Air Force Research Laboratory); Insti-
tut National des Sciences Appliqu6es de Rennes; Institut d'Informatique et
de Math6matiques Appliqu6es de Grenoble; Conseil R6gional de Bretagne;
Minist~re de la D6fense (contrat No 9960014, Direction des Systbmes de
Forces et de la Prospective, Service de la Recherche et des Etudes Amont,
Sous-direction Scientifique, Bureau de la Prospective Scientifique, D616gation

G~n6rale pour l'Armement); Universit6 Pierre et Marie Curie (Paris); Labo-
ratoire de Mod~lisation et Calcul de Grenoble; Institut National des Sciences
Appliqu6es de Toulouse; Universit6 Joseph Fourier (Grenoble); Vanderbilt
University (Nashville); Ministbre des Affaires Etrangbres; Matra Datavision;
Ecole Nationale Sup6rieure des Arts et M6tiers de Metz; France T616com;
Ecole Nationale Sup6rieure des T6l6communications (Paris); Ecole Centrale
de Nantes.

We would like to thank Gerda Schumaker for assisting with the prepara-
tion of the proceedings.

Nashville, Tennessee April 5, 2000
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Factorizations of Normalized

Totally Positive Systems

J. M. Carnicer and E. Mainar

Abstract. The de Casteljau algorithm for evaluation of B6zier curves
can be generalized to curves generated by any normalized totally positive
basis. The construction of this algorithm is based upon a factorization
of the system as a product of bidiagonal stochastic matrices of functions.
These factorizations depend on a selection of a sequence of rectangular
bidiagonal matrices of decreasing dimensions.

§1. Introduction

The Bernstein basis b'(t):= t)-iti can be used for defining a BSzier
curve

y(t) := V (t), t E [0,1].
t=O

By means of the degree raising technique, we can express the B6zier curve in
terms of the Bernstein basis of one higher degree: -y(t) = Zn. 1 Qbn+,l(t),
t E [0, 1]. Indeed, the relations

_____ i++ 1lb(t) = n l lb + b 1 (t), i= 0,... ,n, (1.1)0(t) b t)+ i+1

can be written in matrix form as
(bn,...,bn) -- (bn+l,., bn+1•(1

o ... 0 n+l,(1.2)

where A is an (n + 2) x (n + 1) nonnegative stochastic bidiagonal matrix. Such
a matrix can be written as:

01
0 0 ...... 0 1

Pierre-Jean Laurent, Paul Sablonni-re, and Larry L. ,chusaker (eds.), pp. 1-8.
Copyright 02000 by Vanderbilt University Press, Nashville, TN.
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2 J. M. Carnicer and E. Mainar

Equality (1.2) corresponds to the choice

=i + i=1,...,n. (1.4)

Using (1.2), we can write

,y(t) = (bn',...,b)(P0 ,...,pn)T = (b+l,...,b+I)A(Po.... , Pn)T,

which proves that the new control polygon is given by

(Qo,..., Qn+i)T := A(Po,... ,Pn)T. (1.5)

On the other hand, the de Casteljau algorithm for the pointwise evalua-
tion of the curve is based on the following well-known recurrence relations

b'•+(t) = Aj-(t)bV_1(t) + (1 - Ai(t))bn(t), i = 0,...,n + 1, (1.6)

where Ai(t) := t for i = 0,... ,n, A-1 (t) := 0, and An+ 1 (t) := 1. Indeed, we
can write (1.6) as

(bn+1 (t)'., bn+1 n t, b())At,(17
. . . b + 1 (t )) = (b o ( ) . . • t ) ~ ) 1 7

where A(t) denotes the nonnegative stochastic bidiagonal matrix

1 - ;•o(t) Ao(t)

A(t) 1 A. .. .~)A~) (1.8)

1-A(t) = y•ln+(t),

Then, starting with a Bizier curve y(t) =- Q•bo (1.7) gives
-. (,)b= +b)lQo,...,~ Q l)T = (b',... bn) (Po(t),... P(t))T,

where
(po(t),..., Pn(t))T := A(t)(Q 0,... Qn+l)T.(19

Equality (1.9) describes the first step of the de Casteljau algorithm for the
evaluation of y(t).

Bernstein bases are totally positive on [0, 1]. In this paper we shall prove
that similar properties hold for any totally positive basis of functions. Let us
recall that a totally positive matrix is a matrix such that all of its minors are
nonnegative. A totally positive system of functions defined on I is a system
(uo,. .. ,u,,) such that (uj(ti))o<ij<. is totally positive for all to < ... < t, in
I. A normalized totally positive (NTP) basis (u 0 ,... ,u,) is a totally positive
system of linearly independent functions such that _i-o ui = 1.

Given an NTP basis (0~+1,..., Un+l) on an interval I, and a nonnegative
stochastic (n + 2) x (n + 1) matrix A of rank n + 1, we shall consider the system
of functions defined by

(`a ,... ,,n) :=_ (Un--I .n+,, 1.0
0 1 . . . , "n~_) I. ( . 0
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Starting from a curve 7 (t) = Zn=o Piu'(t), t C I, clearly (1.10) allows usto exressit a -y~) . n+1 Qi-} + (~lt•

to express it as y(t) Z~ Qz-.,)O 2 ), where the points Qi are defined by
(1.5). In this paper we will derive from (1.10) the existence of nondecreasing
functions A0 ,. . . , An with values in [0, 1] such that

Un~lt)'..,Un+l(t)) = (un(t),... , u(t))A(t), t E 1. (1. 11)

The matrix A(t) is defined from Ai as in (1.8). Starting with a curve Y(t)

Zn=l Qiu•+(t), t E I, we will be able to write it as -y(t) = -•_0 Pi(t)u=(t),
where the points Po(t), ... , P,(t) are again given by (1.9). On the other hand,
we shall check that (1.10) implies that (u ,...., u') is an NTP basis on I. It
will therefore be possible to iterate this process. Doing so, we shall obtain a
de Casteljau type algorithm for the evaluation of -1(t).

Pottmann and Mazure in [5,6,7] developed generalizations (1.11) of the
de Casteljau algorithm for Tchebycheffian curves. Here we show that these
generalizations can be also obtained for any curve generated by an NTP basis.

We observe that for each value of t, the point Pij(t) is a convex combina-
tion of two consecutive points, obtained in the previous step of the algorithm.
Therefore, these algorithms can be seen as corner cutting algorithms for curve
evaluation [4].

§2. Recurrence Relations for NTP Systems

The following proposition allows us to describe the generalization of formulae
(1.6) to any NTP systems related by a matrix (1.3). First we need to show
the following auxiliary result.

Lemma 2.1. Let (u .0 n+1) be an NTP basis of functions defined on
I and Un.., : n+ n'A (2.1)

0 n 0 . n+l)1

where A E IR(n+ 2)x(n+l) is of the form (1.3). Let Ci := {t E I I u0(t) # 0}.
Then
(i) u t)/u]'(t), t E Ci, is a nondecreasing function,

(ii) ai+1un+1 (t)/u7(t) E [0, 1], for all t E Ci.

Proof:
(i) Since A is bidiagonal, we can write

un(t)=(1--ai)un+l(t)+ai+lun+l(t), teI, i=O,...,n. (2.2)

Observe that, since A is nonnegative and (u0+1,... un+) is NTP, then0 ""'n+1)

un'(t) > 0, for all t E Ci. Moreover,

21 (t)I =Z 1 (t)3
U n( 8) U '+n Il(s) -- ) u n+ 1(8) U '+1 s --0 0, t < s, (2 3

because (u•+1 , ~ )+1) is totally positive. Formula (2.3) implies that
un+1/u, is nondecreasing in Ci.
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(ii) Using (2.2), we can write
Oai+lui+1 (t) _ ili+1 (t)<1,tEC.[

0 ý < u(t) (1 _ a,)un+l(t)+ali+(t
ai-ln+l (t)

The following proposition is devoted to showing that formula (1.11) holds
for NTP bases. nl,.Un+') and (un,....,un) be two NTP bases
Proposition 2.2. Let (u ,, an+1 0 b
of functions on I related by (2.1), where A is a matrix (1.3) (rank A = n + 1).
Let Ci := {t E I I 0u'(t) # 0}. Then the functions Ai : I --* -+R, i = 0,...,n,
defined by

) {a+i~inf{un+l(s)/un(s) I s E Ci}, if u!(s) = 0, Vs < t,Ai(t) ajjin =1
ai+l sup {uj+1 (s)/ut'(s) I s E Ci, s < t}, otherwise,

(2.4)
are nondecreasing, and satisfy

0 < • i(t) < 1, Vt E I, i =0,...,n. (2.5)

Furthermore, if we use definition (1.8), then (1.11) holds.

Proof: Since (u ,...., un) are linearly independent, then Ci # 0 for all i.
Therefore, by Lemma 2.1 (ii), we can defineo+11

Ki := a+l m I• ui+(s) s ECi C [0, 1].

If the condition 0' (s) = 0, Vs < t, does not hold, then the set {s C Ci 1 s < t}
is nonempty and by Lemma 2.1 (ii), we can define

i-Ai(t) := a+l supl u (s) sECi,s<t <_1.
un (s)

We have seen that Ah, i = 0,... ,n, are well-defined and that (2.5) holds. In
order to see that Ai(t) are nondecreasing, let us observe first that if {s E Ci I
s < t1 } = 0 and {s E Ci I s < t2} 7 0, then tl must be less than t2 . Therefore,
we only have to show that Aj(t 1) ! Ai(t 2 ) only for all tl < t2 such that there
exists some s < tj with ui(s) : 0. We observe that {s E Ci I s < tl} C {s c
Ci I s < t 2}. Therefore, by Lemma 2.1 (i),

ai+j sup + sECi,)sE tl C i}<ai+lsup I Ui(s) s E Ci,s < t 2}•

We now establish the relation

ai+ju+- (t)=hi(t)un(t), Vt EI, i = 0,... ,n. (2.6)

If ui(t) = 0, then by (2.2), + iU~'1 (t) = 0, and (2.6) trivially holds. Other-
wise, we have t E {s E Ci I s < t}, and by Lemma 2.1 (i),

/•i~t) = O +Xn1 (t)/Un (t),Ai(t) = cei+1Un4li

so (2.6) is confirmed again.
Finally, using (2.6) and (2.2) we can write

firl(t)unl(t) + (l _ -i(t))un(t)= aiun+l(t) +un(t) - i+lEn+ll(t) = un,+l(t)
for alltEIandi=0,...,n. E3
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§3. A Generalization of the de Casteljau Algorithm for NTP Bases

Given an NTP basis (un,... , u,) of a space Un of functions defined on I,
we can obtain a sequence of NTP bases (u0k,..., uk) of (k + 1)-dimensional
subspaces Uk by the recurrence( Uk(t),... (t) + 1l(t),... 1 (

(U0 k+l( ))Ak+l, k =n-l,n-2, ... ,O,7 (3.1)

where Ak+l E R(k+2)x(k+1) is a matrix of type (1.3), rankAk+l = k + 1.
In fact, since Ak+j are nonnegative bidiagonal matrices, it easily fol-

lows, using Theorem 2.3 of [1], that Ak+1 is totally positive and, using the
Cauchy-Binet formula (formula (1.23) of [1]), that the systems (3.1) are totally
positive. Taking into account that (u k+l,..., Uk•+1) is normalized and Ak+l is
stochastic, we derive that the systems (3.1) are also normalized. Furthermore,
formula (3.1) relates two bases if and only if rank Ak+1 = k + 1. Observe that
rankAk+l < k+ 1 if and only if there exist 1 < i < j < k such that aý+' = 1
and -k+ 0.

Let us observe that the subspaces Uk form a chain, that is,

Un :D Un-1 D ... D U1 D U0 = span{l}.

Moreover, since (uJ) is an NTP basis of U° then u°(t) = 1, for all t E I.
By Proposition 2.2, the bases of (3.1) are related by

,uk~ ltt)) = (uk(t),... ,uk (t))A,(t), t E I, (3.2)

where Ak+l(t) is a matrix of type (1.8). We shall denote by A)C+l(t) the
(i + 1,i + 2) entry of Ak+l(t). The recurrences (3.1) and (3.2) give

(uk (t),...uk (t)) =U ('(t),...un(t))A ... A+Ak, t E 1, (3.3)

and
(uk (t),...uk(t)) A, A(t)A2(t)'"..Ak(t), t E 1, (3.4)

for k = 0, . . . , n, with the convention An ... Ak+l equals the identity matrix
when k = n and A,(t) ... Ak(t) equals the scalar constant 1 when k = 0.

Formulae (3.4) can be interpreted as a factorization of the NTP system
(uk, ... , uk) as a product of bidiagonal stochastic matrices of functions.

Let us summarize all the conclusions in the following theorem.

Theorem 3.1. Let (u...... ,ul) be an NTP basis of functions defined on I.
Let Ak E IR(k+l)xk, k = 1,...,n, be matrices (3.1) of maximal rank. Define
NTP systems (Uk,..., uk ), k = 0,..., n- 1, by (3.1) (or equivalently by (3.3)).
Then there exist matrices Ak(t) of type (1.8) whose (i + 1, i + 2) entry Aý(t)
is nondecreasing on I and with values in [0,1], k = 1,... , n, such that (3.2)
and (3.4) hold. In particular,

(u n (t),...u n(t)) = A , (t) ... A .(t), VtE 1. (3.5)
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Moreover, for any control polygon P0 ... Pn, consider the following generaliza-
tion of the de Casteljau algorithm:

for j = 0,1,...,n
jPn(t) := Pj

for i = n- 1,-,1,0

for j = 0,1,.. .i

Pj'(t) := (1 - A'+ (t))pj'+l(t) + A'+ (t)Pj'+l(t)

At each step we have

"ly(t) = Pj(t)u'(t), tEI, i= 0,..., n. (3.6)
j=0

In particular -y(t) = P°(t) for all t C I, that is, this generalized de Casteljau
algorithm reconstructs the curve from its control polygon.

Proof: The existence of the matrices Ak(t) of type (1.8), satisfying (3.1) and
(3.2) follows from Proposition 2.2. From the algorithm we see that

(P o'(t),..., P i'(t))T = Ai+ ,(t)(P o"'(t),. , P M (0))T

and by (3.5) we can write

_Y(t) =(u,(t),... , u(t))(Po,... , p)T =

Ai(t) ... Ak(t)Ak+l (t) ... A.(t)(P0 , pj)T
(Uko(t),...,ukk(t))(Pok,(t),...,Pkk(t))T. [

Example 3.2. When applying Proposition 2.2 to (1.1) or (1.2), the func-
tions that we obtain are Ai(t) = t, i = 0,... ,n. Hence we obtain (1.7), and
the corresponding algorithm described in Theorem 3.1 is just the classical de
Casteljau algorithm for polynomials. Of course, any other choice of a sequence
(Ak), k = 1,... , n, of nonnegative stochastic matrices of maximal rank could
lead to another de Casteljau type algorithm. For instance, if we consider the
Bernstein basis (b01, bR, b2) of degree 2, the matrix

A2: 13 2/3

defines a NTP basis ((1-t)(3-t)/3, t(4-t)/3) on [0, 1]. This system generates
a subspace of quadratic functions, different from the polynomials of degree less
than or equal to 1. Furthermore, the functional matrices obtained by applying
Proposition 2.2

'j 2to
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lead to a corner cutting algorithm different from the classical de Casteljau
algorithm.

In [2], it was shown that, in any space with an NTP basis, there exists
a particular NTP basis called the normalized B-basis which has the optimal
shape preserving properties among all NTP bases of the space. In Theorem
4.3 of [3] it was shown that if (u'+1, in+)' is a normalized B-basis of
an (n + 2)-dimensional space and (un,...,un) is a B-basis of an (n + 1)-
dimensional subspace, then there exists a matrix A (1.3) such that

( n ... 'Un U + ... ' , .n.+l)

Thus, B-bases provide good examples of when Theorem 3.1 can be applied.
In the case of polynomial spline spaces (see [2]), the normalized B-basis is
precisely the B-spline basis.

Let T = {C0 =.....= tk-1 < tk _"' .tn < t.+1 .. tn+k},

ti < ti+k, for all i, be an extended knot sequence and

NZT(t) := (t,+k - ti)[t,.. ,ti+k](. - t)k- , t C [to, tn+1], i = 0, ... ,n,

the associated B-spline basis of the space S-. Let us insert a knot r in T such
that tj < 7 < tj+1 (if r = tj then the multiplicity of tj must be less than k)

and define a new sequence of knots t

ti, 05i5j,
ti= T, i = j+1,

ti-l, j+2<i<n+k+l.

The normalized B-bases of $•- and Sý are related by a matrix (1.3) with
T

0, <_i < j-k +1,
ai: (ti+k-I - -T)(ti+k-1 -- ti), j - k + 2 <_ i <_ j,

1, j+1<i <n.

Applying Proposition 2.2 to both B-spline bases, a relation (1.11) is obtained.
In order to obtain a generalized de Casteljau algorithm, we first remove suc-
cesively all interior knots until we arrive at the Bernstein basis. Then we can
continue with the steps of an evaluation algorithm for polynomials (e.g., the
de Casteljau algorithm). We illustrate this procedure with a simple example:

Example 3.3. Take 1- := (0, 0, 1/2, 1, 1), T := (0, 0, 1, 1). The associated
B-spline bases are related by a matrix (1.3):

O'T(t, N 'TW )= (NY;,j_(t),gN •,t (t),g •.T ) 1 2 1 2 , t E [0, 1].

Using Proposition 2.2, we obtain that these bases are also related by (1.11)
with a matrix (1.8), where

Ao(t) = min(1,t/(1 - t)), Al(t) = max(O, (2t - 1)/t), t E [0,1].



8 J. M. Carnicer and E. Mainar
The evaluation algorithm for -y(t) := PIN,(t) can be described as

follows. First compute

PJ(t) :=(1 - A0(t))P0 + Ao(t)P 1 , Pl(t):= (1 - A1(t))P1 + A1(t)P 2 ,

and then -y(t) = (1 - t)P•(t) + tP•(t). Note that the last step of the algo-
rithm corresponds to the de Casteljau algorithm. Of course, this algorithm is
different from the classical de Boor-Cox algorithm for evaluation of B-splines.
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Intersections et Convergence

Paul de Faget de Casteljau

Abstract. C'est en 1958, que j'ai rejoint l'6quipe de fraisage num6rique,
CAO de la pr6histoire, anim6e par Monsieur de la Boixibre : Farfelus
pour les uns, fous pour d'autres, personne en dehors de notre chef n'aurait
os6 parier un seul kopek sur 1avenir de cette technique. Les problbmes

Ssurmonter 6taient aussi nombreux que fort ardus : Par exemple, celui
d'intersections, ou racines. Nos ordinateurs se bloquaient. De toute ur-
gence, il fallait mettre sur pied une m6thode efficace, en harmonie avec les
exigences de ce nouvel outil. Apr~s tant d'essais d'autant plus volumineux,
que longtemps infructueux, comme tout parait simple, quand on pr6sente
le joyau final! Mieux encore, une idWe directrice, qui comblera d'aise les
f6rus de fractions continues, nous y conduit en toute logique.

§1. Un Peu d'Histoire

Pour ddmarrer 1'6tude des formes de C.A.O., quelques instants de r6flexion
pouvaient suffire, pour se convaincre que, pour concilier les impdratifs du
dessin h ceux d'une production de calculs, la seule solution acceptable restait
l'utilisation en gdomdtrie affine des formes paramdtriques polynomiales h tra-
vers lFalgorithme devenu c6lbbre. La ndcessitd d'obtenir une solution, unique
pour tout param~tre, interdisait des calculs aventureux. MWme si le calcul de
fonctions du genre arc cos(x), au voisinage de x = 0, aurait gagn6 du point de
vue logique, de l'utilisation de formes vf, d6jh multiforme, les math6matiques
en sont rest6es aux sdries enti~res! (rarement, les fractions rationnelles, frac-
tions continues...).

Il n'en restait pas moins h traiter de nombreux problbmes, qui, chacun,
pouvait me donner l'impression d'avoir h passer le concours de l'agrdgation,
me crdant des cauchemars nocturnes, tout en regrettant am~rement le bon et
solide poste de professeur qui aurait pu &tre le mien.

"M'sieur, qa ne marche pas!", phrase rituelle, qui m'annon§ait encore une
nouvelle catastrophe, h cette dpoque hdroique, pour ne pas dire prdhistorique.
Cela m'arrachait h mes m6ditations et reveries oh je me figurais dans une
sorte de paradis terrestre, oh les m~mes visiteurs me fdlicitaient de ma dernibre
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trouvaille d'un "Ce n'est vraiment pas mal, votre truc!", phrase toujours rest~e
dans le virtuel de ma pens~e.

Parmi ces innombrables probl~mes, qui me ramenaient brutalement au
sens des r6alit~s, ii y eut le probl~me des intersections. 12i encore, pas ques-
tion d'adopter une attitude universitaire, autour d'une savante discussion sur
l'existence et la nature d'6ventualit6s favorables. Il fallait "produire" une
racine et une seule, et de surcroit, de valeur acceptable. Cette fois, l'unicit6
devenait difficile h garantir, surtout au voisinage de racines multiples, voisines
ou confondues. Aucune des tentatives de tenir compte des termes non lin~aires
(Whittaker, etc ... ) pour amn6liorer la m~thode de Newton ne s'est vraiment
impos~e. Et les exploitations en ordinateurs atteignaient la limite du quart
d'heure qui, par pr~caution, en limitait la dur~e! Et de plus, il fallait agir
vite, tr~s vite. .. .pour reprendre un probl~me tr~s classique h z6ro, en poussant
notre "cri de guerre" :"Mais, qu'alors y faire?" (jeu de mots: allusion h un
calorifere).

§2. Expos6 du ProblMre

On veut calculer la valeur de x, qui v~rifie H'quation

P(X) =0,

oii P(x) est un polyn6me (ou un d~veloppement limit6, en s~rie de Taylor,
d'une fonction f (x) ... ).

Ce probl~me se pose aussi h plusieurs inconnues; ainsi, pour n =3, calcul
de x, y, z pour que { (X,Y, Z) = O,

Q(x,y)z) =0,
R(x, y, z) = 0.

Pour le cas n = 2, j'ai pr~sent6 au congr~s de Schlof3 Dagstuhl (Saarland
1996) une fort jolie m6thode, habile manipulation de g~om~trie projective, tr~is
efficace; malheureusement, tous mes efforts de 1'6tendre hi d'autres valeurs de
n oat 6chou6. J'ajouterai h l'adresse des chercheurs, qui auraient la t~m~rit6
d'6tudier le cas n = 3, que j'avais bien cern6 la difficult6 qui rendait ce cas
impossible.

Les seules 6quations qui conduisent h~ une solution unique, sont du premier
degr6. Ii nous reste la possibilit6 de tenter une identification autour de x = 0
du polyn6me P(x) h une fraction rationnelle dont le num~rateur soit lin6aire.

n = 1 (X) - a + bx
n=1~ P~+ dx +ex2 +.

n = P(,Y, ) _a + bx + cy + dz

On en d6duit une suite d'approximations de la racine, chacune utilisant
les pr~c~dentes, de fa~on optimale. Cela peut se prouver par l'analyse, et
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le v6rifier sur des exemples concrets: elle est ia meilleure, compar6e h toute
manipulation du m~me type.

L'identification brutale, terme h terme, conduit h~

A+Bx+Cx 2 -AB + (B 2-AC)x
B - Cx + ...

A ±Bx +Cx 2 + Dx 3 _A(B 2-AC) + [A(AD-BC) + B(B 2 -AC)]x
B2 -AC + (AD-BC)x + (02 -BD)X2 + ...

A+Bx+Cx 2 + Dx 3 +Ex 4 _num
den'

num =A[A(AD - BC) + B(B 2 - AC)
+ [A2 (BD - AE) + AB(AD - BC) + (B2 - AC) 2]X

den =[A(AD - BC) + B(B2 - AC)
"+ [A(BD - AE) - C(B 2 - AC)]x
"+ [B(AE - BD) - C(AD - BC)X 2

- [A(D 2 
- CE) + B(BF - CD) + C(C 2 

- BD)]X3 + .

Seuls les num~rateurs nous int~ressent:

B A 0 0 0...
C B AO0 0 ...
D CB A 0...
E DC B A...
F E DC B...

Si on appelle Uj la succession des d~terminants utilisant les i premi~res lignes
et colonnes de la matrice ci-dessus, en posant U0 1, on obtient la s~quence
d'approximations

Xi = i

--4 (Newton), X2 coincide avec Whittaker, mais non X3 et au delh.
Mais il y a mieux a faire

§3. Aigorithme

Une 6tude compl~te de cette question prouve que P'on obtient le maine r~sultat
en utilisant un algorithine qui rappelle le schama de Hdrner.

Ei s'agit de calculer la racine x, en partant de ia valeur x = 0 d'une sanie
enti~re type MacLaurin 6crite sous la forme

ao = alx+a2X2 +... + anXn+.

On 6crit alors i'algorithme sous la forme:
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ao = aIN donne N ~- Newton
ao = (a, + a2 N)P "1 P -. Whittaker 1
ao = [a, + (a2 + a3 N)P]Q ") Q -Fractions continues 22

a0 = {a, + [a2 + (a3 + a4N)P]Q}R ") R 5 3

130'

On a indiqu.6 h droite le nombre (*) de possibilit6s d'utilisation des approxi-
mations ant6rieures, dans un ordre diff~rent, ou avec r~p~tition. Mes 6tudes,
h 1'6poque, m'ont conduit h prouver qu'audune ne fait mieux, avec les hy-
pothbses adopt~es (le nombre 130 est la somme des trois pr~c~dents, pour
tenir compte de toutes les approximations nouvelles).

Cette me~thode est d'autant plus ejjicace que la s6rie ai inverser est plus
convergente ;cela se v6rifie pour e', sin(x), sh(x), pour calculer ln(x), Arc
sin(x), Arg sh(x).

On va, h titre d'exemple, calculer le logarithme n~pcirien de 2, lh oh la
scirie In(1 + x), au bord de son cercie de convergence, est particuli~rement
d~sesp~rante.

Il convient de n'y voir qu'un exemple, et non une invitation h faire le calcul
des logarithmes de cette fa~on-lh. Notons encore tout I'intir&t d'inverser les
lignes trigonomcitriques par l'utilisation simultan&e du sinus et du cosinus, ou
encore pour un triangle rectangle les cotcis S, C, H du sinus, du cosinus et
l'hypot~nuse.

Pour les lecteurs intciress6s par cette question, on peut d~montrer deux
sciquences de r~duites de fractions continues, coincidant une fois sur deux, ou
encadrant par exc~s et par d~faut, la valeur exacte de la fonction :l'une de
ces sciquences se rattache au dciveloppement de Arc tg(ýo/2) = t avec S =
2t, C = 1 - t2 , H = 1 + t2

' l'autre est originale. A l'cipoque ohi le calcul
des fonctions n'citait pas encore tr~s au point, au niveau des ordinateurs, les
formules simplificies de Arc sin et Arc cos nous ont rendu un grand service.
Ainsi, yp# S. 14+ qui n'est pas ridicule hi S =1, C = 0 : p 1 12. Mais
cela n'est pas le sujet de cet expos6.

Exemnple num~rique:

Appliquons cet algorithme au calcul de x, dcifini par:

2 = ex.-.1.+.....+.............( 1 + X) ...

On trouve ainsi :

(*) on pourrait encore considcirer les possibilitcis obtenues, en prenant les
formes polaires des N, P, Q. Ainsi, h la seconde ligne, au lieu de aiP, on

craialN+P, etc...
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N= 1 =1.00
p 2 =0.6666

-2- 0.69230

R §-52= 0.693 333
S 375= 0.693_1608
T = 3246 =0.693145 41
U = 32781-0631497

47293 0.9-4 7

V 378344 -06317164
545 835 06317164

W = 4912515 -0.693 147 183 3377087261-

= 70872610 -0.693 147 180 436102247563 -

0.693 147 180 559 945 309

soit environ un gain d'une d~cimale A chaque it6ration, ce qui reste plus
qu'honorable compar4 avec les s6ries traditionnelles ln(1 + u) avec u=1
ou ln( 'ju) avec u = 1, bien plus convergente.

§4. Promenade au. Pays du Logaritlime

Ei est toujours passionnant de reprendre h son compte 1'tude des fonctions
616mentaires, qui conduisent h des d~veloppemnents d'une telle richesse, qu'ils
paraissent in~puisables. Ainsi en est-il. avec le logarithme, l'6tude qui suit,
et qui n'est qu'un. tout petit aper~u des propri6t~s que r6vble l'analyse, sans
parler des propri~t6s d6voil6es par l'arithm~tique.

L'4tude pr~c~dente, reprise de fagon litt~rale, founit la succession d'appro-
ximations
(x - 1) ; 2 (-) ; 24+ 3(L1)( +26 +1

On constate d~jh plusieurs r~gles emnpiriques. Sans insister, posons:
si n -- 2p - (x-') P2-2 sifl=2 p+ 1: fl(x-1)(x+1)Q~-

On peut encore r~duire l'criture de ces polyn6mes reconnus symn6triques, en
posant x + -1 - 2 = 2t et Si kq = 1 pour les polyn6mes P et kq = q pour les
polynbrmes Qx
Q ou P = 1
P1 ou. Q, = t + 3k2
P2 ou Q2 = t2 + 15k2t + 30k3
P3 ou Q = t3 + 63k2 t

2 + 420k 3t + 630k4
P 4 ou Q = t4 + 255k 2 t

3 + 4410k3 t
2 + 18900k 4t + 22680k5

On peut encore comparer ces fonctions avec les r~duites du d~veloppemnent
de ln(x) en fractions continues, tr~s inhabituelles, parce qu'elles sont centr6es
autour de x = 1 au lieu du z6ro habituel. Elles sont trbs faciles h obtenir,
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par int6gration de formules Q(x)ln(x) - P(x) = k(x - 1)n , altern6es avec des
changements de x en 11x, qui change le signe de ln(x).

On remarquera les carr6s des coefficients du bin6me, dans les expressions
des d~nominateurs de rang pair (cela se d~montre).

X2-1 +2 4x-5 3x x
2

-1) X
3

±178x
2

-9r,1O
( - 1) +1 I 4x+2 I x+4r+l1 9 X

2
1X+

1iix ý2,7x1-2 ý7x-i11i 3X
4
k128X

3
+108X

2
_ 192x-47 . 25 

4 
160 

3 
1 60x-25

3( 9 9+1) ' 1(i+8+12x+1) '6(x
4

+6 ;
3
+3 +16x+1)

Si66o-poex, et en utilisant la valeur des r~duites paires,
on peut m~me arriver h 6tablir cette formule particuli~ment brillante

lx)-2[D, DjD 2 +D 2 D 3 +D 3 D 4 + _+_____.

1 2 3 4 n

Remnarque. L'~tude arithm6tique, 4 laquelle j'ai fait allusion, ob6it h une
d6marche oppos6e h celle de la table des nombres premiers. On ne retient
des nombres entiers que ceux dont les facteurs premiers ne sont que les n
premiers nombres de cette table des nombres premiers. Les in~galit6s sur leurs
logarithmes qui en d~coulent fournissent une s~rie de solutions aux probl~mes
de Dirichiet-Hermite. On trouve ainsi une explication rationnelle aux gammes
musicales... Voir h ce sujet les derniers chapitres de mon livre "Quaternions".

Ces consid~rations s'appliquent aussi h des fonctions. Ainsi trouver les
meilleures solutions polynomiales h un degr6 donn6, sensiblement proportion-
nelle h~ un arc, et h leurs sinus et cosinus. On peut y rajouter la tangente,
etc...

§4. Gas de Plusieurs Variables

Le regard de l'analyse
Le probl~me est trop vaste pour 6tre expos6 en quelques lignes. Nous

renvoyons aux ouvrages sp6cialis&s, pour constater qu'il ne suffit pas de se
dormer p points, pour d~finir la valeur de p coefficients d'une interpolation hi
plusieurs param~tres. 11 intervient alors la notion de silhouette du polyn6me
associ6 h une grille de points donn~s. Les silhouettes les plus consid6r~es, h
deux variables, peuvent 6tre ainsi triangulaires E 'y avec a +3 : • n, ou
encore rectangulaires si a < n, 3 • q et carries si nfl q. Paradoxalement,
c'est avec les grilles les plus r~guli~res qu'on rencontre le plus de contraintes
h respecter.

G'est en fonction de la notion de sihouette que l'on imposera un certain
ordre de classement aux termes d'un polyn6me h plusieurs variables. Pour
d~terminer une fraction rationnelle h num6rateur lin6aire au voisinage d'un
point, on peut imaginer N'criture d'un d~terminant dont la premi~re ligne
s'6crit:

1, x) y) fL xf, yf, X If, Xyf, y2 f,....
la deuxi~me ligne exprime que f passe par le point X, Y, F (d6terminant nul, si
deux lignes 6gales) ensuite, un point voisin en X (puis en Y) et par diff~rence
avec cette seconde ligne s'exprimera h partir des d6riv~es partielles en X (puis
en Y). On poursuivra les lignes suivantes avec les d~riv6es d'ordre sup6rieur.
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Mais voilh ! On se heurte h un mur: le probl~me est ind~termin6.
"Qu'alors y faire" ? Faut-il renoncer ? Le probl~me exige une solution,

brillante, on batarde, peu importe, ii condition d'en trouver UNE !D~marche
industrielle, et non universitaire.

Alors, miracle !Quelle que soit la faqon dont on 16ve l'ind~termination,
par un choix arbitraire d'un terme de chaque degr6 du d~nominateur, on
retrouve le m~me num~rateur; or c'est de lui et de lui seul qn'on a besoin, et
tout rentre dans l'ordre.

Ici, honn~tement, je dois avouer, que je n'ai d6velopp6 ce calcul, assez
fastidieux, que dans le seul cas de deux: variables.

Retour h l'algorithme
Ei est plus rapide de faire un raisonnement, qne d'aucuns jugeront fort

acrobatique, mais parfaitement correct. Dans chaque 4quation, on suppose
le probl~me r~solu, pour tontes les variables, except6 une, d'abord x (puis
Y1 z),.. .). On applique alors notre algorithme an calcul de la premiere ap-
proximation de Newton donc Na, (puis Ny, N,,). On r6soud le syst~me, ce qui
donne Nx,,Ny, N,.

On utilise ces valeurs approch6es, comme on sait le faire pour determiner
Pa, (puis Py,, P.,) et par suite Pa,, Py, P,. Une troisi~me 6tape permettra le
calcul de Q.,,Qy, Q,, etc..

La meilleure silhouette qui convienne est donc carrie (a < n, '3 :5 n, -Y : n),
ou compl~t~e par des 0.

Remarque: Quel que soit le nombre de variables, l'optimisation du calcul
montre que l'id~al se situe entre la seconde it~ration Pa,, Py, P_., et la troisi~me
Qa,, QU,, Q~. -Apr~s il est pr~f~rable de revenir h un d~veloppement de Tay-
lor centr6 sur ce nouveau point, sauf cas de singularit6 extraordinaire, qu'en
principe on ne doit pas rencontrer dans la pratique industrielle.

Voilh, en raccourci, 1'expos6 de ce probl~me tr~s utile. Son 6tude ap-
profondie pourrait faire l'objet d'une th~se compl~te. La discussion semble
ici escamot&e: ce nWest pas tout* h fait vrai; car si une discussion s'impose,
c 'est qne, dans la pratique industrielle, il n'y a plus de solution pratique. Par
exemple, on ne cherche jamais l'intersection d'une forme avec une verticale,
qui coupe la forme en trois points, int~rieurs an carreau consid~r6. Comment
l'usinerait-on ? Comment l'embontir ?

Paul de Faget de Casteijan
4 Avenue du Commerce
78000 Versailles, France



Implicitization Matrices in the Style of

Sylvester with the Order of B zout

Eng-Wee Chionh, Ming Zhang, and Ronald Goldman

Abstract. Resultants are the standard tool used to compute the im-
plicit equation of a rational curve or surface. Here we present a new way
to compute the implicit equation of a rational curve by taking the deter-
minant of a matrix having the style of the Sylvester resultant but the size
of the B6zout resultant. Thus the new method has the advantages of both
resultant schemes, representing the implicit equation as the determinant of
a matrix with simple linear entries and lots of zeros just like the Sylvester
resultant, but with the same small size as the B~zout resultant.

§1. Implicitization and Resultants

In Computer Aided Geometric Design (CAGD), curves and surfaces have two
standard representations: parametric and implicit. The parametric represen-
tation is convenient for rendering curves and surfaces, whereas the implicit
representation is useful for checking whether or not a point lies on a curve
or surface. In the ideal situation, both representations are available. Given
the parametric form of a curve or surface, one basic problem in CAGD is im-
plicitization - that is, to find the implicit representation. Resultants are an
effective tool for solving this problem for rational curves and surfaces [4,5].

Resultants are polynomial expressions in the coefficients of a set of poly-
nomials; the vanishing of these expressions signals that the set of polynomials
have a common root. For two univariate polynomials, there are two standard
resultant formulations: Sylvester's resultant and B1zout's resultant. Given
two degree n polynomials

n2 n

f = ait, g= bit,
i=O i=O
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the Sylvester resultant is the determinant of the 2n x 2n matrix

ao bo
a, b1  ao bo

a, b .

an-, bn-1 ao boSyl(f,g) = .
an bn an-, bn- 1  a, b1

an bn

•"•an-, bn-1

an bn

Thus, the Sylvester resultant is just the determinant of the coefficient matrix
of the polynomials f, g,..., tn- 1 f, tn-Xg [6,9]. The B~zout resultant of f and
g is the determinant of the n x n coefficient matrix Bez(f, g), where Bez(f, g)
is defined by

f(t) g(t)
f( a•) g( a•) -- 1 ... tn-1].Bez(f, g).-[1I ... on-1 ]T .

Explicit entry formulas for the B~zout resultant and fast computational algo-
rithms for these entries can be found in [4,1].

The Sylvester and B6zout resultants each have certain advantages and
disadvantages. The Sylvester resultant is sparse and all the nonzero entries
of the Sylvester resultant come directly from the coefficients of f or g. The
entries of the B6zout resultant are more complicated. However, to calculate
the Sylvester resultant, a large determinant has to be computed, whereas the
B~zout resultant matrix is much more compact.

To see why resultants arise naturally in implicitization, consider a rational
curve

x(t) y(t)x =W(t)' Y =W(t)' ,

where x(t), y(t), w(t) are polynomials. To obtain the implicit representation
F(X, Y) = 0 for curve (1), introduce two auxiliary polynomials (in t)

X . w(t) - x(t), Y . w(t) - y(t). (2)

By definition, the resultant of these two polynomials vanishes if and only if
they have a common root, i.e. if and only if the point (X, Y) satisfies the two
equations

X. w(t) - x(t) = 0, Y. w(t) - y(t) = 0,

for some value of t. Thus, (X,Y) makes the resultant of X . w(t) - x(t),
Y . w(t) - y(t) vanish if and only if (X, Y) is on curve (1). So setting the

resultant to zero yields the implicit equation of the parametric curve.
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But which form of the resultant should one use? The Sylvester resultant
has simple linear entries and lots of zeros, but to calculate the Sylvester re-
sultant a large determinant has to be computed. The B~zout resultant has
a more compact form, but the entries are much more complicated than the
entries of the Sylvester resultant. Here we present a new way to compute the
implicit equation of a rational curve by taking the determinant of a matrix
having the style of the Sylvester resultant but the size of the B6zout resultant.
Thus the new method has the advantages of both resultant schemes. That
is, the new approach represents the implicit equation as the determinant of
a matrix with simple linear entries and lots of zeros just like the Sylvester
resultant, but the matrix has the same small size as the B~zout resultant.

Surfaces are beyond the scope of this work, but we hope to develop similar
techniques for rational surfaces in a future paper [2].

§2. Implicitization from Moving Lines

In this section, we consider first rational curves of even degree. We begin
by reviewing the concept of a moving line that follows a rational curve [7,8],
and we show that there are always at least two moving lines of degree m
that follow a rational curve of degree 2m. The m x m B6zout determinant
of these two moving lines has been used by previous authors to establish the
efficacy of implicitization by the method of moving conics [3,8]. Here we
prove that the 2m x 2m Sylvester determinant of these two moving lines is an
implicit expression for the rational curve if and only if there are no moving
lines of degree < m that follow the curve. This construction generates an
implicitization matrix in the style of Sylvester with the order of B~zout. At

the end of this section, we develop similar results for rational curves of odd
degree.

2.1 Even degree rational curves

A rational curve of degree 2m can be written as (x(t) : y(t): w(t)), where

2m 2m 2m

x(t) = Zait', y(t) = Zb i t', w(t) = Zcztt (3)
i=0 i=O i=0

and gcd(x(t), y(t), w(t)) = 1. We can think of a rational curve as the track of
a moving point.

Analogously, a moving line of degree d is defined by an implicit equation
of the form

(Aox + Boy + Cow) +... + (Adx + Bdy + CdW)td = 0, (4)

where the coefficients Ao, Bo, Co, ", Ad, Bd, Cd are constants. We say that
the moving line (4) follows the rational curve (3) if and only if

(Aox(t) + Boy(t) + Cow(t)) + ... + (Adx(t) + Bdy(t) + CdW(t))td 0 O. (5)
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For example, the equations

x.w(t)-w x(t)=0, y-W(t)-w-y(t) =o,

or equivalently,

X.w(t)-x(t) =0, Y.w(t)-y(t) =0,

are two moving lines of degree 2m that follow the rational curve (3). Thus
the standard way to find the implicit equation of the rational curve (3) is to
compute the resultant of these two moving lines of degree 2m that follow the
curve. To simplify the determinant that represents the implicit equation, we
are going to take the resultant of two moving lines of degree m that follow the
curve.

By equating the coefficients of the powers of t in (5) to zero, we obtain
2m + d + 1 equations in 3d + 3 unknowns. The 3d + 3 unknowns A 0 , B0 , Co,
. ' ., Ad, Bd, Cd of the moving line (4) can be found by solving the (2m + d +
1) x (3d + 3) linear system

Coeff( x(t), y(t), w(t), •.., x(t)td, y(t)td, w(t)td)
. [A0  Bo Bo ".. Ad Bd Cd]=0,

where "Coeff" stands for the matrix whose columns are the coefficients of
the given polynomials. When d = m, the dimension of the linear system is
(3m + 1) x (3m + 3). Consequently, there are at least two linearly independent
solutions p(x, y, w; t) and q(x, y, w; t).

The 2m x 2m Sylvester matrix Syl(p, q) obtained by eliminating t from
p and q can be written as

Syl(p,q) =Coeff(p, q, pt, qt, ... , ptm-l, qtm-1).

Theorem 1. ISyl(p, q)I = 0 is the implicit equation of the rational curve (3)
when there are no moving lines of degree < m that follow curve (3).

Proof: Since the implicit equation of a rational curve of degree 2m is repre-
sented by an irreducible polynomial of degree 2m [8], we need only establish
three facts:

1) ISyl(p, q)l 0,

2) ISyl(p, q)I is of degree at most 2m,

3) ISyl(p, q)I vanishes on (x(t) : y(t) : w(t)).

From the properties of resultants, we know that ISyl(p, q)j - 0 if and
only if p and q have a common factor g(t) of degree > 1. Since p and q are of
degree 1 in x, y, w, one of g and p/g would be of degree 1 in x, y, w, i.e. a
moving line of degree < m that follows the curve. But by assumption there
are no such moving lines, so ISyl(p, q)I cannot vanish identically.
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Since ISyl(p, q) l is the determinant of a 2m x 2m matrix with linear entries
in x, y, w, obviously the degree of ISyl(p, q)I is at most 2m in x, y, w. Finally,
p(x, y, w; t) and q(x, y, w; t) follow the rational curve, so

p(x(to),y(to), w(to);to) 0- 0, q(x(to),y(to),w(to);to) - 0,

for any parameter to. That is, the two polynomials

p(x(to), y(to), w(to); t), q(x(to), y(to), w(to); t)

have a common root to. Hence, the resultant

ISyl(p(x(to),y(to),w(to);t), q(x(to),y(to),w(to);t))i = 0.

Therefore, ISyl(p,q)l vanishes on (x(t): y(t): w(t)). El
In summary, we have shown that for a degree 2m rational curve, the

2m x 2m Sylvester determinant of two degree m moving lines is the implicit
equation of the curve if there are no moving lines of degree < m that follow
the curve. The existence of a moving line of degree m - 1 that follows the
curve is equivalent to the vanishing of the 3m x 3m determinant

ICoeff( x(t), y(t), w(t), ... , tm-lx(t), tm-ly(t), tm-lw(t) )I
This determinant is a polynomial in the coefficients of x(t), y(t), w(t) and
therefore almost never vanishes. However, in case such lower degree moving
lines do exist, the desired Sylvester determinant can be salvaged by finding
the A-basis (see Section 3).

2.2 An example

Consider the rational sextic curve

x(t) = 1 + 2t 2 + 2t 5 , y(t) = 2 + t 6, w(t) = 1 + t + 2t 2 + 2t 3 + t4 + t6 .

To use the standard method to implicitize this curve, we introduce two aux-
iliary polynomials

X .w(t) - x(t), Y . w(t) - y(t).

Their Sylvester resultant is the 12 x 12 determinant

-1+X -2+Y 0 0 ... 0 0
X Y -1+X -2+Y .. 0 0

-2 + 2X 2Y X Y ... 0 0
2X 2Y -2 + 2X 2Y ... 0 0
X Y 2X 2Y ... 0 0
-2 0 X Y .. -1+X -2+Y
X -1+Y -2 0 ... X Y
0 0 X -1+Y *.. -2+2X 2Y
0 0 0 0 ... 2X 2Y
0 0 0 0 ... X Y
0 0 0 0 ... -2 0
0 0 0 0 ... X -1+Y
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where the six columns in the middle have been omitted. The Bdzout resultant
is the 6 x 6 determinant [4,1]

2X-Y -4+4X 4X-2Y 2X-Y -4+2Y 1+X-Y

-4+4X 4X 2X-Y -4+2Y 1+X+Y -X

4X-2Y 2X-Y -4-2Y 1+X-Y -X+4Y 2-2X-2Y

2X-Y -4+2Y 1+X-Y -X+4Y 2-2X+2Y -2X

-4+2Y 1+X+Y -X+4Y 2-2X+2Y -2X+2Y -X

1+X-Y -X 2-2X-2Y -2X -X 2-2Y

On the other hand, using linear algebra, it is easy to calculate two moving
lines of degree three following this curve:

(855w + 31x - 443y) + t (77y - 778w - 231x)

+ t2 (338x - 666y) + t 3 (25w + 333x - 25y) = 0,

(780w - 413y + 46x) + t (-748w + 82y - 196x)

+ t2 (25w - 631y + 333x) + t3 (303x) = 0.

The new method computes the implicit equation for this curve by taking the
6 x 6 Sylvester determinant of these two moving lines:

-443y + 31x + 855w 46x - 413y + 780w 0
-778w - 231x + 77y -748w + 82y - 196x -443y + 31x + 855w

338x - 666y 25w - 631y + 333x -778w - 231x + 77y
25w + 333x - 25y 303x 338x - 666y

0 0 25w + 333x - 25y
0 0 0

0 0 0
46x - 413y + 780w 0 0

-748w + 82y - 196x -443y + 31x + 855w 46x - 413y + 780w
25w - 63 1y + 333x -778w - 231x + 77y -748w + 82y - 196x

303x 338x - 666y 25w - 631y + 333x
0 25w + 333x - 25y 303x

Using Mathematica, we verified that all three methods produce the cor-
rect implicit equation for the given rational curve. Notice that the determinant
generated by the new method has the structure of the Sylvester resultant but
the order of the B6zout resultant.

2.3 Odd degree rational curves

For a rational curve of degree 2m + 1, there is always at least one non-zero
moving line of degree m and at least 3 linearly independent moving lines of
degree m + 1 that follow the curve. Therefore, there always exists a moving
line p of degree m and a moving line q of degree m + 1, where q is not a
multiple of p, that follow the rational curve. Suppose there is no moving line
of degree < m that follows the curve. Then by an argument similar to the
case of even degrees, the Sylvester resultant of p and q is the determinant
of a (2m + 1) x (2m + 1) matrix that represents the implicit equation of the
rational curve.
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§3. Anti-Annihilation by p-Basis

The implicitization method in Section 2 works when there are no low degree
moving lines that follow the curve. In the rare cases when there do exist low de-
gree moving lines following the curve, the Sylvester resultant used in Section 2
generally vanishes identically [7]. In order to circumvent this difficulty- that
is, to counter the annihilation effect of low degree moving lines- and show
how the desired Sylvester-style/B6zout-size determinant can still be obtained,
we need the notion of a a-basis [3].

Consider a degree n rational curve (x(t) : y(t) : w(t)). By solving an
(n + d + 1) x (3d + 3) linear system [Section 2.1], we find that the number of
linearly independent degree d moving lines that follow this curve is at least
(3d + 3) - (n + d + 1) = 2d + 2 - n. Thus the system always has solutions
when 3d + 3 > n + d + 1 or d > n/2 - 1. Hence if f is the lowest degree in t of
all the moving lines that follow the curve, then p K< Ln/2j. Let p be a moving
line with the lowest degree p that follows the curve.

By our previous analysis, there are at least 2(n - p) + 2 - n = n + 2 - 2p
linearly independent moving lines of degree n - p that follow the curve. Not
all of them can be multiples of p because p can only generate n + 1 - 2p
independent moving lines of degree at most n - /t: p, ... , ptn-2-J. Hence there
is a degree n - IL moving line q that is not a multiple of p.

The two moving lines p and q that we just constructed have the following
nice property:

Theorem 2. Any degree d moving line 1 that follows the curve (x(t) : y(t)
w(t)) can be written uniquely as Ap + Bq, where A is a polynomial in t of
degree at most d - pi, and B is a polynomial in t of degree at most d + / - n
[3].

Proof: [3] presents a proof of this result based on ideal theory. Here we
provide a simpler proof using only linear algebra. A degree d moving line can
always be written as

I = l•(t)x + lY(t)y + l'(t)w,

where 1,, ly, l, are polynomials in t of degree at most d. It will be very
convenient in the following discussion to treat a moving line 1 as a vector
1 = (/x(t),/y(t),lw(t)). Furthermore, note that since the components of the

vector Fare polynomials, the scalar field is the field of rational functions in t.
Let

'= (x(t),y(t),w(t)), fi= (px(t),py(t),pw(t)), ý= (qx(t),qy(t),q.(t)).

Since, by assumption, the dot products # i5  = f' = 0, the vector if is

proportional to the cross product f x ý. That is,

f x (6)
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where gcd(u, v) = 1. Since at least one component of f is of degree n and all
the components of 15 x 4* are of degree at most n, the degree of u is at least as
great as the degree of v. Moreover, by (6), u(t) divides each component of f';
thus u(t) divides gcd(x(t), y(t), w(t)) = 1. Therefore, the degree of u and the
degree of v are both zero, so

F = A g x (7)

where A is a constant.
Let 1 be a degree d moving line following the curve. We have 1 . f = 0

and # -. * = 0, T. - i= 0, Thus F, fl, 4* are linearly dependent. Since p and q are
linearly independent, we can write

F= A(t)j7+ B(t)T, (8)

where A(t) and B(t) are rational functions in t. By (8) and (7), we have

1 x = A(t)15 x 4= - r€. (9)

A

If A(t) is a polynomial, its degree is at most d - I because all the components

of I x '7are of degree at most d + n - p and at least one component of F is of
degree n.

Next we show that A(t) is indeed a polynomial. Since gcd(x(t), y(t), w(t))
is equal to 1, there exist polynomials x*(t), y*(t), w*(t) such that

x(t)x*(t) + y(t)y*(t) + w(t)w*(t) = 1.

Let f* = (x*(t),y*(t),w*(t)). Applying F .- * = 1 to (9), we have

A(t) = Aix 7. l*. (10)

Since the components of all the vectors on the right hand side of (10) are
actually polynomials rather than rational functions in t, A(t) must also be a
polynomial in t.

The fact that B(t) is a polynomial of degree at most d + p - n can be
established similarly.

Finally we show that A(t) and B(t) are unique for any given 1. Suppose
we have

Aj(t)ýF+ Bl(t)T'= A2(t)g+ B2(t)•';

then (Al(t) - A 2(t))7y = (B 2 (t) - Bj(t)).7. If B 2 (t) - Bi(t) is not zero, then
it divides A,(t) - A2(t), otherwise p = g . (x,y, w) is not a moving line with
minimal degree that follows the curve. But this would mean that 4' is a
multiple of P, hence, the moving line q is a multiple of the moving line p,
which is contrary to assumption. Therefore Al(t) = A 2(t) and Bi(t) = B 2(t).
0
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The two moving lines p and q in Theorem 1 are called a j-basis of the
curve (x(t): y(t): w(t)).

We have shown in Section 2.1 that when there are no moving lines of
degree < m following a rational curve of degree n = 2m, there will be two
moving lines of degree m following the curve and their Sylvester determinant
gives the implicit equation. Clearly these two moving lines are simply p and
q in Theorem 1 with IL = m = n - ja. Theorem 1 also tells us that for
p < d < n - p, a degree d moving line 1 has the form

1 = cop + clpt + ... Cd-ptt,

where ci are constants because 1 is of the form Ap + Bq with B = 0 due to
the degree constraints on A and B. Consequently, the Sylvester determinant

of any two of these degree d moving lines vanishes as both are multiples of p;
furthermore, the number of such linearly independent degree d moving lines
is Nd = d - p + 1. In particular, when there are moving lines of degree < m
that follow the curve, we have p < m < n - IL, so the Sylvester resultant of
any two degree m moving lines vanishes and there are Nm = m - IL + 1 > 2
degree m moving lines following the curve. Note that we can find Y in terms
of Nm:

,t= m - Nm + 1,
Nm = 3m + 3 - Rank of

Coeff( x(t), y(t), w(t), M .. , tm x(t), tm y(t), tm w(t)).

In general then, for a degree n rational curve (x(t) : y(t) : w(t)), we can
obtain the p-basis functions p and q by straightforward linear algebra. Since
p is irreducible (by degree minimality) and q is not a multiple of p, they have
no common factors. Hence their Sylvester resultant

Syl(p, q) = Coeff (p, pt, ... , pt"-"- 1, q, qt, ... , qt'-1)

is a matrix of size n x n whose determinant does not vanish identically. By
the divisibility and degree argument of Section 2.1, we see that this Sylvester
determinant gives an implicit expression for the rational curve (x(t) : y(t)
w(t)) in the style of Sylvester with the order B~zout.

As an example, consider the degree n rational curve

(x(t) : y(t) : w(t)) = (1 : tn-1 : 1+ tn). (1

Simple calculations reveal that p = x+ty-w and q = tn-lx-y. The Sylvester
determinant

x-w -y

p ... pt'•- q= Y " =()-lY+X(X-W)n-1

"X-W
y X

is easily seen to represent the implicit equation of this rational curve.
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Better Pasting via Quasi-Interpolation

Blair Conrad and Stephen Mann

Abstract. Surface pasting is a hierarchical modeling technique that
places feature surface atop base surface with approximate continuity. In
this paper, we describe the use of quasi-interpolation to set the bound-
ary control points of the pasted feature. To achieve interactive perfor-
mance for surface pasting, we modify the coefficients and weights of quasi-
interpolation and devise an efficient sampling scheme. The new sur-
face pasting technique is actually faster than the original surface pasting
method when using the same number of feature control points, with a
much lower discontinuity between the feature and base surface.

§1. Introduction

Spline curves and surfaces are used in many areas of computer graphics and
computer aided geometric design. In particular, tensor product B-spline sur-
faces are commonly used in modeling and computer animation because they
have many attractive properties, such as a compact representation and ad-
justable levels of internal continuity [7].

Frequently, the user of a piece of modeling or animation software will
want to add a region of local detail to a B-spline tensor product surface,
but the knot structure will be too coarse to allow the fine-grained control
that the user desires. Traditional methods of increasing the complexity of
the surface include inserting knots using either Boehm's algorithm [3] or the
Oslo algorithm [6]. The insertion of a knot into either of a surface's knot
vectors causes an entire row or column of subpatches to be split - rather
than increasing the number of subpatches locally, extra subpatches are created
across the width or breadth of the surface.

Forsey and Bartels [8] developed hierarchical B-splines to allow the user
to add local detail to a tensor product B-spline surface while maintaining B-
spline continuity. Hierarchical B-splines suffer from several drawbacks: the
regions of added detail must remain parametrically aligned with the base,
and it is impractical to slide the features or to maintain a library of overlays
that may be added to a base surface. Wavelets [10] can be used in a similar
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hierarchical modeling technique, but they also require the detail regions to be
parametrically aligned with the base.

Displacement mapping is another technique for adding local detail to a
surface while adding as few extra control points as possible. Every point on
the feature is defined by a displacement vector relative to a certain point in
a reference plane. To evaluate the surface at the detail, you add the displace-
ment vector of the feature to the corresponding point on the base surface.
The greatest disadvantage to using displacement mapped surfaces is the com-
putational cost. Multiple surface evaluations must be used to determine each
point to be rendered on the composite surface.

Surface pasting, suggested by Forsey and Bartels [2], is a generalization of
hierarchical B-splines that was intended to combine the flexibility of displace-
ment mapped surfaces with the speed of evaluation enjoyed by hierarchical
B-splines. This technique has the flexibility of displacement mapping, but it
is much cheaper since only the control points of the feature must be mapped,
rather than the larger number of surface points to be rendered. This combina-
tion of flexibility and speed has drawn the attention of the modeling industry
to surface pasting - recent versions of Houdini, a commercial animation tool
produced by Side Effects Software, have included support for surface pasting.

However, surface pasting is only an approximation, and as such it does
not have the same continuity properties as displacement mapping or hierar-
chical B-splines. In general, there is no guaranteed continuity between the
feature and the base surfaces. By inserting knots into the feature surface,
the error between the feature boundary and the base surface can be reduced
to any desired tolerance, but many knot insertions may be required to get
the desired approximation, and the resulting additional control points in the
feature dramatically increase the cost of the pasting operation.

In this paper, we suggest altering the surface pasting technique to improve
the approximate continuity between the feature and base surfaces by using
quasi-interpolation to set one or more of the outer rings of feature control
points.

§2. Surface Pasting

Since the work in this paper is an extension of surface pasting, we will give a
quick review of how pasting works. For details on standard surface pasting,
see any of the earlier works on the subject [1,2].

The pasting process is illustrated in Figure 1. Surface pasting combines a
base surface and a feature surface, each of which is in tensor-product B-spline
form. The feature's control points are adjusted so that the boundary of the
pasted feature lies on or near the base surface, and the shape of the pasted
feature reflects the original shape of the feature imposed as a displacement of
the base surface.

To map the feature's control points, the feature's domain is embedded in
the feature's range (upper left of Figure 1). Next, a local coordinate frame
_ij= {uij, vij, wij, Oij } is constructed for each feature control point Pij
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Feature Surface _ __

Base Surface Composite Surface

Fig. 1. Surface Pasting.

where the origin Oij of each frame is the Greville point corresponding to
Pij, two of the frame's basis vectors are the parametric domain directions
and the third basis vector is the direction perpendicular to the domain. Each
control point Pij is then expressed relative to its local coordinate frame Fij
as Pij = ouij + 3vi,j + 7wij + Oij.

Next, we associate the feature's domain with a region in the base's domain
(right half of Figure 1). This gives the location on the base surface where we
will place the feature. We now map each coordinate frame Fij onto the base
surface, giving a new coordinate frame F'•,j = {uj, vj, w,j,O'ij I whose
origin Uij is the evaluation of the base surface at Oij, and two of its basis
vectors lie in the tangent plane of the base surface at that point, the third
being perpendicular to the tangent plane. We then use the coordinates of
each feature control point Pij relative to Yi,j as coordinates of the elements
of the frame Fi',j. This gives us the location of the pasted feature control
point, P! - = auý,. + Ivl, + -ywý, + O'ij.

§3. Feature Boundaries

With standard surface pasting, the boundary control points of the pasted fea-
ture surface (Figure 2) are conventionally placed on the base surface, resulting
in an almost Co join. Likewise, the second layer of feature control points are
also conventionally located on the base surface, giving an almost C' join. By
inserting knots into the feature surface, the discontinuity between the feature
and the base can be made as small as desired.

One disadvantage of using knot insertion to decrease the discontinuity
between the feature surface and the base surface is that it greatly increases the
number of control points in the feature surface. In addition to increasing the
storage requirements of the feature surface, this increases the computational
cost for interactive modeling, as each feature control point needs to be mapped
with the pasting process described in the previous section.

The goal of this work is to find better settings of the boundary layers of the
feature control points to minimize the Co and C1 discontinuities. Thus, we will
find better settings of the control points illustrated in Figure 2. In this figure,
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Fig. 2. Approximate CO boundary points and C 1 boundary points.

the circled points are set using quasi-interpolation: the black control points
will be set to interpolate position and derivative information sampled from
the base surface; the gray control points will be set using quasi-interpolation;
and the remaining control points will be set using the standard surface pasting
process.

§4. Quasi-Interpolation

Quasi-interpolation is a spline approximation technique developed by de Boor
and Fix [4]. Their method, given a function f defined over a region of 7R
and a partition 7r of 7R, constructs a degree m spline, F~f, that approximates
f. F~f is called the quasi-interpolant of f. The quasi-interpolant is a local
approximation in that its value at u depends only on the values of f in a small
neighborhood around u, it reproduces polynomials of degree m or less, and it
provides a high order approximation to f, with IFf - fI being 0(llrim+l).

Lyche and Schumaker [9] describe a family of quasi-interpolation opera-
tors Q which include the one of de Boor and Fix. They take

M

Qf =) AfB, (1)
i=O

where the JBý= 0 are the B-splines and {A}M are linear functionals. The
linear functionals can be chosen so that Q is applicable to a wide class of
functions, Q is local, and Qf approximates smooth functions with a high order
of accuracy. Then the operator Q can be applied to a real-valued function f
to produce a B-spline curve Qf that approximates f.

The quasi-interpolant Qf approximates a smooth function f with a high
order of accuracy because Q is constructed specifically to reproduce polynomi-
als. The Lyche-Schumaker quasi-interpolants approximate smooth functions
with accuracy of up to 0(hm+l) for a function with a sufficiently high degree
of continuity. In addition, quasi-interpolants can be constructed using linear
functionals that can be quickly evaluated, resulting in a fast approximation op-
erator. The combination of high accuracy and speed make quasi-interpolation
a fitting tool to improve the approximate continuity around the boundary of
pasted features.



Better Pasting via Quasi-Interpolation 31

The quasi-interpolant Qf is in B-spline form. Each control point of Qf
is a weighted sum of linear functionals applied to f:

m

Pi = ai,j Ai,j f.
j=O

One particular choice of the Lyche-Schumaker quasi-interpolants corresponds
to

Ai,jf = [-r,O, Ti,1, ... ,

where the T's are locations at which to evaluate f, and oij is the blossom [11]
of

Pij(u) = (U - TiO)(U -ro) ... (U -

evaluated at ui, ..., Ui+m-1, where the ui are the knots of Qf. This results in
a quasi-interpolant where Qf = f when f is a degree m or lower polynomial
and if Qf # f, then the error has the best possible order.

§5. Modified Quasi-interpolant

The Lyche-Schumaker quasi-interpolant uses cheap coefficients and expensive
linear functionals. For interactive modeling using surface pasting, the linear
functionals are recalculated frequently (i.e., when we slide the feature across
the base) and the coefficients are recalculated less frequently (only when we
perform knot insertion to reduce the C' discontinuity). Thus, to match the
quasi-interpolant to our application, we made new, cheaper linear functionals,

Ajf =

This choice of Aij results in more expensive aij, which are now the blossom
of

pj,j(u) U - (2)
ktj Tij - Ti'k

evaluated at ui, ... , ui+m-1, where the ui are the knots of Qf. Note that the
Lyche-Schumaker linear functionals require computing a divided difference of
the samples while ours do not, but the denominator term of (2) makes our a
coefficients more expensive than theirs.

To use the quasi-interpolant on all four boundaries of a feature, the ends
of the connecting boundary curves must match. This is most easily achieved
by modifying Q to reproduce position and (to use the quasi-interpolant on the
cross-boundary derivatives) d derivatives at its endpoints.

Thus, we devised a quasi-interpolant that we call Qd, where the linear
functionals for the control points near the ends of the curves are derivatives of
the original curve at the endpoints. This quasi-interpolant is actually a spe-
cial case of the Lyche-Schumaker quasi-interpolant. The Qd quasi-interpolant
requires different A's and p's at the endpoints, which in turn require new a's.
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For 0 < i < M, and 0 < j < m, we define Qd as

M M mn

i=O i=0 j=O

where f f(-ij), if d < i < M-d

SD.f (um.-i), if i < d and j < i

I|Dif(uM), ifiŽ>M-dandj<M--i

,0, otherwise

11U T,k if d<i<M-d

k~i Tij - Ti~k

( (u-u--•.) if i<d and j <i

(u--UM)j' if i>M-d andjM-i

0, if i<d and j>i

aij= 0, if i>M-d and j>M-i

IPi'j(ui, ... , Ui+m- 1), otherwise

where the rijs are as defined in the next section. Note that for d < i <
M - d, the pi,js are merely Lagrange polynomials. This quasi-interpolant Qd

interpolates the position and derivatives at the endpoints and has optimal
error bounds as discussed by Conrad [5].

Sampling discipline

The above equations require us to sample the function f to be approximated
at some values 7i~j, and (3) suggests that we require about m + 1 samples
of the base surface for each boundary control point of the feature. Since the
quasi-interpolant error bounds hold for most choices of T's, we managed to
reduce the number of samples of the base surface by selecting the ri,j in the
following way:

"* Place the first d and last d control points in groups of their own; divide
the remaining control points into groups as indicated by the pseudo-code
of Figure 3; each group k will contain control points PNk, ... , PNk+nk-1,

where Nk = _--1 nt and nk is the number of control points in group k;

"• Let -yi be the Greville point associated with control point Pi; then for
each group k, choose the interval from which to sample as

[ak, bk] = [(YNk-1 Y+ ^Nk)/2, (YNk+l -1 +YNk+l)/2];

"* Set Tij = ak +j(bk - ak)/m, for i = Nk,...,Nk+! - 1 and j = 0,...,m;

"* Sample f at the Tij; note that you can share the first and last samples
between groups,
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I :=M -2 * d + 1
numFulIGroups := [I/mJ
L:= I - m * numFulUGroups
if L = 0

make numFulUGroups groups of m
else if numFulUGroups =_ 0 (mod 2)

put leftovers in middle group; all others have m
else there are an odd number of full groups

ifL-0 (mod2)
first and last groups contain L/2 each; all others

else
move one control vertex from middle full group to the leftovers
the first and last groups each contain (L + 1)/2,
the middle group contains m - 1, and the others contain m

Fig. 3. Pseudo-code for grouping.

I I It

A A A A A A A A A A

Fig. 4. Sampling discipline for quasi-interpolated surface pasting.

Pseudo-code for our grouping scheme appears in Figure 3, and the sampling
is illustrated in Figure 4. The white and gray points are samples of the base
surface; the black points represent the control points for the quasi-interpolant
(the actual quasi-interpolant control points will lie much closer to the curve;
we have moved them away from their actual position for illustrative purposes);
the dotted lines indicate the boundaries between the groups, with the gray
points being shared by two groups; and the triangles indicate the position of
the Greville points.

This sampling method reduces the number of base surface evaluations to
about one sample per control point.

Quasi-interpolated surface pasting

Ideally, we would be able to integrate quasi-interpolation into surface pasting
by running four independent quasi-interpolations to set the boundary control
points, then four more independent quasi-interpolations to set the second layer
of control points, and so on. However, as seen in Figure 2, the boundary layers
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of control points overlap, and while the gray control points in this figure can
be set independently, the black ones are shared by two boundaries. To build
a tensor-product patch, we need the two quasi-interpolation solutions that
compute a group of black points to give these points the same settings.

Our solution is to sample the base surface at the corners of the embed-
ded feature domain for position and as many derivatives as we are trying to
approximate along the boundary. In our implementation, we were only trying
to achieve approximate C' continuity, so we sampled for position and first
derivatives (including mixed partial derivatives).

Next, we used the Qd operator to set d + 1 outermost rings of control
points. With d = 1 (the right side of Figure 2), this means that we make eight
applications of the Q1 operator, four for the outer layer of control points,
and four for the next layer of control points. In each application, the Q1

operator interpolates four values (those indicated by the black points) and
quasi-interpolates the remaining values.

Note that while we quasi-interpolate points to compute the first layer of
control points, to compute the second layer of control points, we first quasi-
interpolate cross-boundary derivative vectors. The vector coefficients of this
second quasi-interpolant are then scaled and added to the first layer control
points to produce the second layer of control points.

We set the remaining interior control points, which do not affect the
cross-boundary derivatives, using the standard pasting method.

Results

We integrated the Q0 and Q1 quasi-interpolants into surface pasting. In our
particular implementation, this results in a cubic quasi-interpolant being used
to approximate a C2 curve. Theoretically, the quasi-interpolant described in
this paper should have 0(h 3 ) order of accuracy, which matched our empirical
tests. This is an improvement over standard pasting, which empirically had
0(h 2 ) accuracy on the same data.

We achieved a similar improvement for the cross-boundary derivatives
(improving from 0(h') to 0(h 2 )), and the Q1 method has an additional ad-
vantage over standard pasting: for standard pasting, you insert knots in one
parametric direction to decrease the CO discontinuity, and insert knots in the
other parametric direction to decrease the C1 discontinuity. With the Q1

method, inserting knots in one parametric direction will decrease both the CO
and C1 discontinuity along the boundary.

Visually, the quasi-interpolation surface pasting method gives significant
improvements in the approximate Cd continuity around the feature bound-
aries. An example appears in Figure 5. In all three images, the feature
surface has the same number of control points. The large gap that appears in
the standard surface pasting example has almost disappeared with the Q0 and
Q1 pasted surfaces, but a "corner" has appeared in the Q0 surface. However,
Q 1 pasted surfaces have better approximate continuity (both C' and C') and
are cheaper to paste than standard pasting, assuming we use feature surfaces
having the same number of control points for both standard and Q' pasting.
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Fig. 5. Standard pasted feature, Q0 pasting, and Q1 pasting.

This computational gain for Q1 pasting is a result of quasi-interpolating
the cross-boundary vector field when computing the second layer of control
points. We obtain the vectors to quasi-interpolate when we evaluate the base
surface for quasi-interpolating the boundary curve. Thus, we avoid having to
evaluate the base surface when computing the second layer of control points.

The biggest computational gain, however, comes from needing fewer con-
trol points for Q 1 feature surfaces than for standard pasting surfaces to achieve
the same tolerance along the boundaries. In particular, in the examples we
tested, the Q 1 method required one third the number of boundary points
as the standard surface pasting method to achieve the same error along the
boundary. This results in one-ninth the total number of control points in the
feature, resulting in roughly a factor of ten speedup for quasi-interpolated
surface pasting over standard surface pasting.

Conclusion

Surface pasting is a flexible modeling technique that allows the creation of
multi-resolution surfaces by hierarchically composing tensor product B-spline
surfaces. The resulting composite surface is only approximately CO and ap-
proximately C1 . In this paper, we developed quasi-interpolation operators to
reduce the CO and C' discontinuities between the feature and base surfaces.
By reducing the C' and C 1 discontinuities, we can use fewer control points in
the representation of the feature surfaces, resulting in a significant speedup of
the pasting technique.

We implemented the technique described in this paper for pasted surfaces
of arbitrary degree, and tested the method on cubic and quartic surfaces.
While we have only reduced C' and C1 errors, the extension to higher levels
of approximate continuity is straightforward, but calculating the coefficients
that weight the linear functionals will be more complicated.
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Conjugate Silhouette Nets

W. L. F. Degen

Abstract. Conjugate nets, Laplace transformations and projective
translation surfaces are exploited for CAGD purposes. The latter are
shown to be equivalent with conjugate nets having degenerated Laplace
transforms. Relations to conjugate nets with planar silhouettes, supercy-
clides and Dupin cyclides are given.

§1. Conjugate Nets and their Laplace Transforms

Conjugate nets play an important role in classical differential geometry, espe-
cially because of their projective invariance (see [3]). Representing a surface
in d-space by homogeneous coordinates

S ... x:D-.1d+l, DCIR2, xECo[D], (1)

where D is an open connected domain of the "parameter plane" R 2 , then a
conjugate net is defined by the validity of a Laplacian equation

xuV + axu + bx, + cx = 0 (2)

with certain functions a, b, c E Co [D]. To exclude planar surfaces

dimspan(XzXu,xV,zU,XVV) > 3, d> 3 (3)

is assumed throughout. The geometric meaning of (2) for d = 3 is that
the characteristic lines of the tangent planes along one isoparametric line are
tangent to the other. A second characterization is that the two tangents to
the isoparametric lines have a harmonic cross ratio with the two asymptotic
tangents.

The most important property of conjugate nets is that they have in both
isoparametric directions a Laplace transformed net (Laplace transform) which
is defined by the striction points of the two developables generated by the
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tangent planes along the net curves (isoparametric lines). Analytically, they
are given by

L,,(x) ... y= x, + bx, (4)
!:(x) ... z:=x,+ ax. (5)

Indeed, by (2), we get

y, = hx - ay, (6)

z,, = kx - bz (7)

with

h=bv+ab-c, k=a, +ab-c (8)

being the so-called Darboux invariants. Eqn. (6) shows that the line x A y is
tangent to the u-curve (isoparametric line with v =const, u varying) on the
surface (X)D as well as tangent to the v-curve on (Y)D; analogously x A z is
tangent to the v-curve on (x)D and the u-curve on (Z)D.

In euclidean differential geometry, conjugate nets owe their importance
to the fact that the curvature lines on every surface are conjugate (except
at umbilic points). Thus, for CAGD applications, one can profit from the
theory of conjugate nets since, for instance, the two families of circles on a
Dupin cyclide or the net of profile curves and meridian circles on a surface of
revolution is a conjugate net.

In this paper we deal with the special case that the two Laplace transforms
degenerate into curves. Assuming that the net curves have nowhere asymptotic
directions, i.e.

xAxA•^XU#0, xAxvAXVv#ý40, (9)

then the degeneration conditions y A yu A y, = 0 and z A z. A z, = 0 imply

h=0, k=0 for all(u,v) GD. (10)

Definition 1. A conjugate net in 3-space satisfying (10) with regularity con-
ditions (3), (9) is called a conjugate silhouette net.

This notation is justified since by (4), (6), (10) all u-tangents along a
v-curve meet at the fixed point y, thus building up a general cone with apex
y. Thus the v-curve x(uo, v) can be considered as a silhouette on the surface
S by central illumination from y. Similarily the u-curves are silhouette lines
by central illumination from z.

On the other hand, it is easy to see that a net of silhouette lines on a
surface whereby the centers of illumination vary on two curves is automatically
conjugate, provided that the generators of the enveloping cones are tangent to
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the net curves. Thus, the equations (2), (10) characterize conjugate silhouette
nets (up to degenerated cases).

At first glance, this class of surfaces seems to be very restricted. But
this is not true: it comprises many subclasses of surfaces considered in CAGD
literature such as Dupin cyclides ([2,4,7]), supercyclides ([1,5,8,9]), nets with
planar silhouettes ([6]) etc.. As for all of these examples, the whole class of
conjugate silhouette nets is well-suited for CAGD applications, in particular
for geometric modelling purposes because of their simple blending properties:
Putting two of them together along a common net curve immediately yields
a Gl-continuity, once the corresponding centers of illumination coincide.

But there is still another reason making these surfaces worth consider-
ing in CAGD: They admit a very simple generation as so-called "projective
translation surfaces", as will be derived in the next section.

§2. Projective Translation Surfaces

Let

L, ... P : I 1,-'-R•dl, £2 ... q : 12 -- Rd+l (11)

be two C°-curves in d-space represented also in homogeneous coordinates
(11, 12 being two open nonvoid intervals of IR). Then one gets a surface S (1)
simply by setting

S ... x(u,v) :=p(u) +q(v), (u,v) cI, x 12:= D (12)

Definition 2. Surfaces defined by (12) via two curves (11) are called projective
translation surfaces.

This definition generalizes the usual euclidean (or affine) definition of
translation surfaces, where the same formula (12) is used but interpreted in
affine (non-homogeneous) coordinates. So one curve can be considered to
move along the other thus sweeping out the surface. In the projective case,
the generating point x(u, v) always lies on the line p(u)Aq(v) joining these two
points of C1 and C2 independently. It must be noticed that the normalizations
are essential (not arbitrarily to be choosen like usually when dealing with
curves): they determine the position of that point x(u, v) on the line p(u) A
q(v).

Now we can establish one of our main results:

Theorem 1. Every conjugate silhouette net is a projective translation sur-
face, and the net curves correspond to the isoparameter lines in the represen-
tation (12).

Proof. We have, by definition, h = 0, k = 0, and hence in particular

au = bv. (13)
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Assuming D to be simply connected, we conclude that there exists a C'-
function f : D --* R with

f.=b, f,=a. (14)

Taking p := ef, we calculate Pu = pb, Pv = pa and Puv = (pb), = p(ab+b,) =
pc, the latter observing (8), (10). Since p • 0 in D, we can renormalize
Y:= px, obtaining

Y = (puv - pc)z + (pu - pb)x. + (pv - pa)x., (15)

and thus

Y = 0. (16)

This equation immediately yields a representation (12) by integration (possi-
bly restricted to a rectangle I, x 12 within D). 0l

Up to now we think of that renormalization as always having been done,
so the Laplace equation (2) has the coefficients

a=0, b=0, c=0. (17)

Therefore, the Laplace transforms (4) and (5) are now given by

dp(u)

£.(x) ... z(v) dq(v) (19)
dv vEI 2 .

Calling these curves the projective hodographs of p and q respectively, we
can state

Corollary. The Laplace transforms of a conjugate silhouette net £ are the
projective hodographs of the generating curves C1, C2 of L (considered as a
projective translation surface).

§3. Axial Silhouette Nets

Definition 3. A conjugate silhouette net is called axial if the generating
curves C1, C2 in its representation (12) as a projective translation surface are
(parts of) straight lines. These lines are called the first and the second axis of
the net.

The conditions for axial conjugate silhouette nets are that p,p',p" and
likewise q, q', q" must be linearly dependent (a prime at p indicating deriva-
tion with respect to u and at q with respect to v). Assuming p, p' and likewise
q, q' to be linearly independent (otherwise the point would be stationary) we
have

p" = ap +flp', q" = -yq + bq' (20)

with some C°-functions a, 6 of u and -y, 6 of v characterizing axial nets.
This has many consequences; most of them we proved earlier for super-

cyclides and for nets with planar silhouettes [5,6]. Now we give the result for
the general case of axial silhouette nets:
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Theorem 2.
a) All the net curves (of both families) are planar curves,

b) The planes of the net curves of each family belong to a pencil,

c) The axes of these two pencils coincide with the second and the first axis
of the net (i. e. the plane of a curve of the first [second] family passes
through the second [first] axis,

d) The apexes of the envelopping cones (the "light centers") along a u-curve
[v-curve] lie on the second [first] axis,

e) Any two u-curves [v-curves] are projectively equivalent to each other.

Proof: We perform the proofs only for the u-curves; the assertions with
respect to the v-curves follow analogously.

a): From (12), (20) we derive

Zu P', Zuu= ap + Op', (21)

S= (a' + a,3)p + (C + p' + / 2)p'. (22)

Hence xu A zuu A xuuu = 0, meaning that the u-curves are planar.
b), c): Eqns. (21) show that p, p' are contained in the plane x A xu A XUU

of this u-curve; but p, p' span the first axis.
d): The apex of the envelopping cone is given by (21) as p'. Hence it is

lying on the first axis.
e): Assumption (9) implies a 5 0 for all u E 11. Thus, xu and xuu can

be eliminated from (21) and with this Eqn. (22) yields

Xuuu = ( T+@)tuu + ( a/3+a+)3',)Xu. (23)

Thus the coefficient of the fundamental equation (see [3]) do not depend on the
second parameter v; this means geometrically that all u-curves are projectively
equivalent. 0

For CAGD purposes rational (and polynomial) surfaces are of particular
interest. The explicit representation (12) makes it very easy to pick out ratio-
nal surfaces from that general class: The only thing one has to do is to insert
rational representations for p(u) and q(v). We restrict this procedure to axial
nets, and derive from it the (rational) B~zier representation.

Theorem 3. For any pair of planar rational curves C1 and C2 , there exists
an axial conjugate silhouette net having its u-curves projectively equivalent to
C1 and its v-curves projectively equivalent to C2 . The axes can be arbitrarily
prescribed as two skew straight lines.

Proof: Let C1, C2 be represented in planar homogeneous coordinates by
triples of linearly independent polynomials

C1 ... xi=fi(u)(i=0,1,2), C2 ... xi=gi(v)(i=0, 1,2). (24)
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Furthermore, let the axes be spanned by vectors a, b E ]R 4 and c, d G 1R4

resp. Then det(a, b, c, d) 0 0 since the axes are assumed to be skew. With
this we can set

1 901
p(u) 1 (f,(u)a+f 2(u)b), q(v) (gi(v)c+g 2(v)d) (25)

getting the desired axial net S by (12) (restricted to intervals 11,12 C R
where fo(u) resp. go(v) have no zeros). Now, indeed, the u-curves are planar
and projectively equivalent to C1 since, for fixed v = vo, we have 5(u) =
fo(u)p(u) = fo(u)q(vo) + fl(u)a + f 2 (u)b so that fi(u) are the coordinates
with respect to basis q(vo), a, b. The proof for the v-curves follows the same
line, mutatis mutandis. 13

Obviously, the representation (25) is not unique. But we can immediately
derive from (12) and (25) the Bdzier representation of S: First renormalize
(12) with the factor fo(u)go(v) getting

Y(u,v) = go(v)(f1(u)a+f 2(u)b) + fo(u)(gi(v)C+g 2 (v)d), (26)

and then we expand the polynomials f (u) and gi(v) with repsect to the Bern-
stein basis

n m

fi(u) •-•ai,jBy(u), gk(v) = A- k,lB3(v), (27)
j=0 1=0

getting the usual homogeneous Bdzier representation

v(uV) = bjiB7(-)Bm (v) (28)
j=0 1=0

with the control points

bj,l = 03o,t(aija + a 2,jb) + ao,j ()31, c + 032,1d). (29)

Since these calculations can be done also backwards, we obtain

Corollary. The conditions (29) for the control points characterize a (n, in)-

rational B1zier surface (28) to be an axial conjugate silhouette net.

§4. Applications to Dupin Cyclides

Dupin cyclides are special kinds of supercyclides [5], and therefore they should
have representations as axial conjugate silhouette nets so far they have fourth
order and skew axes. However, their usual representation starts from the
midpoint curves Y(u) and Z(v) of the two families of envelopping spheres
and results in

-D ... X(u, v) = r 2(v)Y(u) + ri(u)Z(v)
r2(v) + rl(u) (30)
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where rl, r2 denote the corresponding radius functions. Though this is also a
sum of two vectors it has neither the form (12) nor are the components parts
of straight lines.

Thus, the question arises of how to transform (30) into (12). The first
step to solve this problem consists in passing to homogeneous coordinates
X = (x0,0x,x 2 ,X 3)T

X=Px' p •lR\{O} (31)

(i.e. x0 = p.1, xi = p. Xi (i = 1,2,3)) and to take in the present case
p =1 + - yielding indeed (12)

PM rl(u) q(v) r2(v) (32)

1 )1r-• Y(u) r--2(u)

However, the curves p and q describe an ellipse and a hyperbola as before.
Obviously, another representation of the same kind (12) must satisfy

P(u) =p(u) +c, 4(v) =q(v) -c (33)

with a constant vector c.
Starting with the explicit representations

1 1

1-u 2  1 + v 2

Y(u) = u Z(v) = (34)2u 0

+uP 2v

0 _V2-PW

(with some shape parameters d, p, c, jo' < 1, w = v1 - a 2) and observing the
corresponding radius functions

r1(u) = fo(u) , go(v) (35)
1+ U2 ' 2- 1

whereby

fo(u) = (1 + u 2)dp - (1 - u 2)pa, go(v) = (1+v 2)p- (1-v 2 )d,

we finally obtain

10 (
P(u)-fu) ((I + U2) A foM))d + 0(36)

A M da 0 2pwu

0) 0
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and

gou) V2) + 1 go(v)) d 2 ( 2 0w(3JJ

0 2pu~v

with
C 1. (1, 0, 0, 0 )T

Thus we proved

Theorem 4. The formulas (36), (37) (inserted into (12)) yield an explicit
representation of nonparabolic Dupin cyclides with skew axes as axial con-
jugate silhouette nets with respect to a suitable (homogeneous) coordinate
system.
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From PS-splines to NURPS

Paul Dierckx and Joris Windmolders

Abstract. A normalized B-spline representation for Powell-Sabin (PS)
spline surfaces is extended to piecewise rational surfaces (NURPS). We
investigate the adaptation of existing algorithms operating on B-splines
to this more general case, the influence of weights and their geometri-
cal interpretation, the possibility of representing planar sections, and the
conversion from rational B6zier to NURPS surfaces.

§1. Basic Concepts

1.1. PS-splines

Let S2 C R2 be a simply connected subset with polygonal boundary 6Q. Let
A be a conforming triangulation of Q having n vertices Vi with coordinates
(ui, vi), i = 1,..., a, and let A* be a Powell-Sabin (PS) refinement of A (see,
e.g. [3]), where each triangle p E A is divided into 6 subtriangles. A Powell-
Sabin (PS) spline is a piecewise quadratic polynomial with C1 continuity on Q.
Dierckx [1] shows how to calculate a normalized B-spline basis for PS-splines:

Definition 1. A PS-spline surface has a normalized B-spline representation

n23

s(u,v) = E cijBJ(u,v), (u,v)e(2, (1)
i=1 j-1

where cij = (cTj, cjcj) are the B-spline control points and Bi (u, v) are
the normalized B-splines.

This representation shares a number of properties with tensor-product
B-splines, making it a powerful tool for representing surfaces in CAGD. We
summarize the most important properties here. For details we refer to the
original paper [1].
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Si, 2

Q , " h, " k j . ..i \

\ I !ýL u ,_

Fig. 1. Domain triangle.

Property 1. {Bi (u, v)}i~l,...,, is a partition of unity:{ B(uv)_>0, (u,v)Aj,

Zi, •=B•(uv) -l, (u,v) 2 a.

Furthermore, Bij (u, v) is nonzero only on triangles p G A having Vi as a
vertex:

Property 2.

MB• (V) OBq (V()
Bu(V) -_ v -0, 10 i. (2)

The local control, affine invariance and convex hull properties follow im-
mediately. Linear functions can be represented exactly. In particular, we will
make use of the representations

n 3 n 3

U=Z UijjBi (u, v), v j= ZZ , iB(u )

i=1 j=1 i=1 j=1

Definition 2. The PS-triangles tl(Q1,1 , QI,2, Q1,3), l = 1,..., n in the planar
domain have as vertices the B-spline ordinates Qjj(Ujj, V1,j), j = 1, 2, 3.

Consider a domain triangle Pi,j,k(Vi, Vj, Vk) E A with its PS-refinement
(see Figure 1). Denote the B6zier ordinates as se,,, v = i, j, k,1 = 1, 2, 3, 4;
tl,m,UI,m, (1,m) E {(i,j),(j,k),(k,i)} and vi,j,k. They can be written as
unique barycentric combinations of the B-spline ordinates:

So ,l = ce, Qv,i + 00,1 Qv,2 + 70, Qv,3, (3)

tl,m = 
6

1,m 81,2 + frm Srm,3, (4)

Ul,r = 
6

1,m Sj,4 + fl,m Sm,4, (5)

Vi,j,k = Ai,j,k Si,4 + Pi,j,k Sj,4 + Vi,j,k Sk,4. (6)

For a given PS-refinement A*, the position of the B1zier ordinates is
fixed. This is not the case for the B-spline ordinates. The following lemma
however states that there is a restriction on the B-spline ordinates.
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Lemma 1. In order for the basis functions {Bi (u, v)}if,.., to constitute a
partition of unity on 9, it is required that for each vertex Vi, i = 1,... ,n,

the PS-triangle ti(Qi,1 , Qi,2, Qi,3) contains the Powell-Sabin points, i.e., the
B1zier ordinates si,1, 1 = 1, 2, 3, 4, of any domain triangle having Vi as one of
its vertices.

There is a one-one connection between the barycentric coordinates of the
Powell-Sabin points at vertex Vi with respect to ti and the value of the basis
functions BJ(u,v), j = 1, 2, 3, and of their derivatives at Vi, e.g.

Bi1 (Vi) a= i,, B? (V7i) = ij,1 B3 (Vi) = -yi,. (7)

Given a PS-spline surface (1), the corresponding B~zier net can be calculated
efficiently by using convex barycentric combinations of the B-spline control
points only:

Property 3. Applying equations (3)-(6) where the ordinates are replaced by
control points, yields the corresponding B1zier net of the surface.

Finally, via the concept of control triangles, the B-spline control points
give us valuable insight into the shape of the surface:

Definition 3. The control triangles are defined as Ti(C1,1, Cl, 2, Ci, 3 ).

Property 4. Each control triangle Ti(ci,, C1,2, Cl, 3 ) is tangent to the PS-
surface at s (V1 ).

1.2. NURPS

The Normalized B-spline theory for PS-surfaces can now be extended to a
rational scheme just like tensor product B-splines are extended to NURBS.
Referring to Figure 1, we use the boldface notation for the B~zier points,
e.g. Sv,. Points in homogeneous space get a h-superscript, e.g. sh Their

Shrc hy h,z wcomponents are s ,s , vs ",,s

Definition 4. A Non Uniform Rational Powell-Sabin (NURPS) spline surface
has the form

n 3

( =E=1 Ej=i ci wijBi(u,v)

- = j1 =1 wi,jBqB(u,v) (u,v) e f2, (8)

where cij = (cf -, . cf.) are the B-spline control points. We impose that
wij > 0 in order for s(u, v) to be defined anywhere on Q.

If wj = 1, i = 1,... , n, j = 1, 2, 3, then (8) reduces to (1). The following
properties are readily verified:
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Property 5.
n 3

s(u' V) E E cij e*(u, V), (9)
i=1 j=1

where

¢3 (u, v) = w(1B)(u,v)
Ei=I j=1 w,,jB•q(u, V)

and
{ v) 0, (uv) EE 1, E3a

Furthermore, i,j (u, v) is nonzero only on triangles p G A having Vi as a
vertex.

This again implies the local control, affine invariance, and convex hull
properties.

Property 6. A NURPS representation (8) is the 3D-projection in Euclidean
space of a 4D PS-spline in homogeneous space:

n 3

s(u,v) = E ci'jBj (u,v), (11)
i=1 j=1

ca = (Wijcjy, W,,jcj, Wi,jcj, Wi,j. (12)

§2. Evaluation and Subdivision

The evaluation of s(u, v) is performed in two steps:

"* First, the corresponding rational piecewise B~zier representation is cal-
culated.

"* Then, the rational de Casteljau-algorithm calculates a point on this ratio-
nal piecewise quadratic B~zier surface. This section shows how to perform
the first step in a numerically stable way. For the second step, we refer
to Farin [2], Chapter 17.9.

2.1. In homogeneous space

Formulae (3)-(6) can be applied directly in homogeneous space, e.g.
h Ch eh Ch(3

av, ' a•civ,1 +{ 0cvi v,2 +- +0 v,l (13)

[ h~ h,y h,z w3h xs , sh, y, s h :, s.,t

vi, ~ )i s h h (14)
k Ai,j,k ,4 "-+ /ij,k j,4 + 1

'i,j,k Sk,4

S(Vh,x Vh,y vh, Vh=ki,j,kVi,j,k, idj,k,Viw,j,k,
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Projection back to Euclidean space yields

1shz• = hy h,z h, hy h

S W % W ) Vij,k =~* II. ,1 W
vI v7 / VF., V!-jk' Vr,,,

This algorithm has a serious drawback: if the weights vary greatly in
h,r h,rmagnitude, the coordinates sv, ,Vi 1k, r = x,y,z are blown away; the cal-

culations don't operate in the convex hull of the control net anymore, and
numerical stability is endangered.

2.2. A rational algorithm

The idea behind the rational de Casteljau-algorithm from Farin [2] is to im-
prove numerical stability by rearranging the calculations, avoiding working in
homogeneous space:

av,( "= Ov,I Wv,1 + "
3
v,L Wv,2 + "Yv,l Wv,3. (15)

Set

= avL wv, 1 > 0, _,- v,j Wv,2 >_ 0, Y,,l Wv, 3 > 0. (16)
8v,I 8 v,l 5v,l

Then
Sv,I = 5v,L cv,1 + A1,1 Cv,2 + 7v,j Cv,3 (17)

with
&v,l + &, + jvl = 1. (18)

The point Sv,l is a convex barycentric combination of Cv,1, Cv,2 and Cv,3, SO
numerical stability is guaranteed. Likewise, we find

tm = 6
L,m S0 +-,m E", , (19)I'm 81,2 8m,37

lm =UL, m 1,4 + El,m 8
5

m,4, (20)

VF i,j,k A si,4 + 1i,j,k Sý'4 + Vij,k sw,4, (21)

61__,m sw EI,m Sw,3

_im S,2, EL,m t , (22)
I'm I'm

- 1,m s, 4  m -,Um sn,4 (23)
,Uw , l'm - w ,
I'm ELIm

A si,4,k S 1 4/.ij,k S,_4 - 'i,j,k S..•,4
,, k , = F.(24)

10 1,3,k ,j,k

where

1,.m + FL,m = 6
1,m + il,. = Ai,j,k + Ai,j,k + Fi,• = 1,
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and finally

tl,m = bl,mn SI, 2 + j1,m Sm,3, (25)

Ul,m = 
6
1,m S1,4 + lrm Sm,4, (26)

Vij,k = Ai,j,k Si, 4 + 1i,j,k Sj,4 + iVijk Sk,4. (27)

All formulae are convex barycentric combinations operating in the convex
hull of the B-spline control net. After having computed the rational B1zier
representation, Farin's rational de Casteljau algorithm can be used to evaluate
the surface at any point (u, v) E Q.

2.3. Subdivision on uniform triangulations

The evaluation and subdivision of spline curves and surfaces are closely related
problems. For the particular case of a uniform triangulation A, a subdivision
scheme for PS-surfaces has been derived [4]. As an application, it was shown
how a wireframe of the surface can be calculated in an efficient and numeri-
cally stable way. This scheme can easily be extended to NURPS on uniform
triangulations again using Farin's technique from the previous section. The
details are omitted here.

§3. Control Planes

Recall that the NURPS representation inherits the convex hull, affine invari-
ance, and local control property from the normalized B-spline representation.
This section adds the tangent property to the inheritance list, and shows how
the rational representation allows for more flexibilty when designing surfaces.

3.1. Tangent property

Referring to the locality of the B-splines (2), it is easy to verify that the
evaluation of s(u, v) and its derivatives at vertex Vi yields

S(Vi) = &i,1 ci,1 + Ai cl,2 + 5,i, Ce,3 , (28)

as(y7)
au = ei,1 ci, 1 + ei,2 Ci,2 + ei, 3 Ce,3 , (29)

09s(Yd)O9V - di ci, 1 + di, 2 Ci,2 + di, 3 Ci,3, (30)

for some
el,1 + el,2 + ei, 3 = di,1 + di, 2 + di,3 = 0.

It follows that the control triangle at Vi is tangent to the surface at s(V1 ), i.e.,
any point p in the tangent plane is a barycentric combination of the control
points Ci,1, ci,2 , ci,3:

p= s(Vi)+a ! +b ( , a, be ]R.

This is illustrated in Figure 2 (left).
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Fig. 2. NURPS surface and its control planes; local planar effects.

3.2. Shape parameters

Farin [2] introduces the concept of shape parameters with respect to rational
Bdzier curves. A geometric handle allows the designer to influence the shape
of the curve in a predictable way, rather than requiring the input of numbers
for the weights. In the same work, it is stated that this property does not
carry over to rational Bdzier surfaces on triangles, but shape parameters can
be defined for NURPS.

Recall that (&v,,,iV,1,'•V,1) are the barycentric coordinates of Sv,l with
respect to control triangle T,(cv,1, Cv,2, Cv,3). From (16) it follows that sv,1

can be moved within T, to a new location , while keeping its
weight s', constant. The corresponding PS-weights are found immediately
as

Wv,1 = ," Wv,2 -- V (31)
oav,1 0,1 7'v,1

This shows how (&z,1,,&,1, ývy) can be used as shape parameters.

3.3. Planar sections

Definition 5. Let [t 1 ,t 2 ,. .. ,tn] denote the convex hull of the 3D points
tl~t2, .. • tn.

Definition 6. Let S(A) denote the image of a subset A C 9 under (8).

Definition 7. Let r(a, b, c) denote the Bdzier subtriangle in the domain plane
with vertices a, b and c.

If the control triangles of adjacent vertices Vi, Vj, Vk are chosen to be
coplanar, then the surface section S (pijj,k (Vi, Vj, Vk)) will be in the same
plane, as a consequence of the convex hull property. However, using the
weights in the NURPS representation, it is possible to achieve more local
planar effects.

The rational evaluation algorithm from Section 2.2 reveals that for wi,1 =

Wi,2 = WO = w - 00, i E (1,..., n) and referring to Figure 1, the following
holds on the domain triangle pi,j,k(Vi, Vj, Vk):

tid --- i~ ,Es,jS 3

t ij + • Si,2 + - Sj,3. (32)
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Sb 0 ,b 0,2,0

b2,0,0  

1,1,0

Fig. 3. B~zier triangle.

Thus,
lim tij = si,2. (33)

WL- 00

Likewise, for the other B~zier points of r (s,1i,j, Vi,j,k), we find

sij = aij ci,1 + /Ji,l ci, 2 + Yi,1 ci,3 , I = 1, 2,4, (34)

lim uiu = lim Vij,k = si, 4. (35)

Consequently,
S (T 7(i,1, t ,Vj,k)) = [sii, si,2 , Si,4]

Similar reasoning on the other B1zier subtriangles shows that

S (T (si1, Vi,j,k, tk,i)) = [si, 1 , Si,4 Si, 3 ],

S (r (tij, Sj,1 , Vij,k)) = [Si, 2 , Si, 4 ],

S (T (tk,i, Vi,j,k, Sk,1)) = [Si, 3 , Si,4],

S (T (V,,j,k, Sj,i, tj,k)) = [si,4]

S (T (vi,j,k, tj,k, Sk,1)) = [si, 4•]

and therefore,

S (Pi,j,k (Vi, Vj, Vk)) = [si,, si,2 , si,4 , si,3] C [Ci,, Ci,2, Ci,3]

The latter image is a planar surface section. Figure 2 (right) shows some
NURPS surface with very large weights at a vertex.

§4. Conversion from Rational B~zier to NURPS Representation

Suppose we are given a rational quadratic B1zier surface on one domain tri-
angle (see Figure 3) P(si,,, Sj,l, 8k,1)

b(u,v) b h B2 t 2,t 3), (36)
°il,i2,i3 ,1,i2,i3(t'1•

i1 +i 2 +i3=2

where il, i2 , i3 > 0, (u, v) E p and (t 1, t2 , t 3 ) are the barycentric coordinates of
(u, v) with respect to p. In this section it is shown how a NURPS representa-
tion

3

s(u, v)= E ZcmB'(u,v) (37)
l=i,j,k m=1

of the given surface, for a specific choice of the PS-triangles, is immediately
obtained. To simplify the notation, the surfaces are considered in homoge-
neous space.
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'lbo, 1 ,2

, 1,0,0 ,I I I' b~~

-- ij O--' 1,0,0

8,i' b2 ,0, 0  d1 0 0 O .0 0 ,0

Fig. 4. Subdivision at vij,k and tij.

Lemma 2. Suppose we are given a triangle t (Vi, Vj, Vk) with barycenter z.

If W, denotes the midpoint of the side opposite to V,, then (z + VI) /2 is the
barycenter of the triangle t (IVI, Wm,, Wn) , l,m, n E {i, j, k}, l1 m 0 n.

The construction of the NURPS representation relies on the de Castel-
jau-algorithm for B~zier triangles (see, e.g., [2]). Subdivision at the barycenter

of p and at the midpoint of edge sisj, 1 (see Figure 4) yields the new B~zier
points

blh 1 h h h
1,0,0 = 1 (b2,0,0 + bl,1,o + bo,1 ) , (38)

bl,h 1 bh h hb01,0 = (,i,o + bo,2,0 + bo,1,1) (39)

bl,h 1 bho,o,1 = ((i,o,+ + bO,1 1 + bo,,) (40)

2,o0,+ = ( 1,oo b 1,h + , (41)

dho = (bhoo + b1, 1,0 ), (42)10, 2

do:l, = 2(b ,1 ,o + bo,2,0), (43)

1,h 1 h -1,h,
do:o,1= 2(bj:h,0 O , + b1,0), (44)

02, l(dlo,h + d1,h). (45)

After subdivision of the two remaining edges, the 6 subtriangles thus obtained
constitute a PS-refinement of p, say, with interior point Vi,j,k and edge points
tij, tj,k , tk,i (see Figure 5, left). A NURPS representation of the given surface

on this PS-refinement is easily obtained (see Figure 5, right). Set

Qv,1 = SVI, v = i,j, k,

Qi,2 = Qj,3 = tij, Qj,2 = Qk,3 = tj,k, Qk,2 = Qi,3 =tk,i,

and
chj = bh c h bhh = b h

2, 2,0,01 1,1,0, i,3 - 1,0,17
cj =bh ch,2 h bh Ch = bbh

0,2,0' 0,1,11 j,3 1,1,0,

C h = b h ch, =bh Ch - b hk , 1 0, 0 ,2 , 1,0,1 k,3 -- 0,1,1,
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Sk,2 4,3
kk ,s Ck

Uk,

8i,- L$Iý,2 
.3

Fig. 5. PS-refinement.

Then by Lemma 2, it follows that the PS-points sv,i, 1 = 1, 2, 3, 4 are inside the
PS-triangle t, v = i,j,k. Now recall formula (13) for v = i,j,k, and I = 4,
and formula (14), with av,4 = 0,v,4 = 'v,4 = 1, resp. Ai,j,k = i,j,k = Vi,j,k

in order to calculate the corresponding B~zier points of this NURPS surface.
It turns out that these equations are exactly the same as the subdivision
formulae (38)-(41). Likewise, since in (3)-(5)

1 1
(av,2, 

3
v,2 -Y,,2) = ( , - , 0),

1(,0, 1),

1 1
(61"'el.) (- -),

for v = ij, k and (l, m) G {(ij), (j, k), (k, i)} , similar reasoning shows that
calculating the corresponding B6zier net of (37) exactly yields the B6zier net
of (36) after the proposed subdivisions. Hence, b(u, v) = s(u, v) on p.
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Distance Calculation Between a Point
and a NURBS Surface

Eva Dyllong and Wolfram Luther

Abstract. In this paper, we consider the computation of an Euclidean
shortest path between a point and a modelled curve or surface in three-
dimensional space, which is one of the fundamental problems in robotics
and many other areas. A new accurate algorithm for the distance-calcula-
tion between a point and a NURBS curve and its extension to the case
of a point and a NURBS surface is presented. The algorithm consists of
two steps, and is crucially based on appropriate projections and subdivi-
sion techniques. To solve a nonlinear polynomial system derived from the
classical formulation of the distance problem, the well-known Newton-type
algorithms or subdivision-based techniques first considered by Sherbrooke
and Patrikalakis are used. Their modifications in conjunction with a low
subdivision depth in the presented algorithms yield a verified enclosure of
the solution.

§1. Introduction

The distance-calculation is an essential component of robot motion planning
and control to steer the robot away from its surrounding obstacles or to work
on a target surface. The obstacles may be polyhedral objects, quadratic sur-
faces, which include spherical and cylindrical surfaces or more general surface
types like the non-uniform rational B-splines (NURBS). Most of the well-
known algorithms in the fields of computational geometry, robotics and Com-
puter Aided Design are focused on computing the distance between polyhedra,
as the problem is easier to solve and the answer is sufficient for many prob-
lems. For example, if a free-form designed obstacle like a NURBS surface is
located at a great distance from a moving robot, then it is sufficient in the
next step to know the distance values from certain sensor points on the robot
to the convex hull of the NURBS control points, which describes a convex
polyhedron, instead of the more time-consuming and expensive computation
of the exact distance values. But if the robot approaches an obstacle, more
details are necessary, and fast and accurate algorithms for finding the nearest
point on the NURBS curve or surface are highly recommended.
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There is an abundance of literature to calculate the distance between
convex and non-convex objects. For convex polyhedra, a lot of algorithms
exist [1,4]. Two well-known algorithms, the Gilbert method (GJK, [8]) and
the algorithm of Canny and Lin (CL, [3]) present iterative solutions to the
problem, i.e., both construct a sequence of pairs of proposed distance points
which are then improved by gradient descent. Another wide field consists of
algorithms for general, mainly convex objects [5,7,13]. But in particular for
objects defined by NURBS, there are only a few contributions in the litera-
ture. In [2], Cameron and Turnbull focus on computing the distance between
convex objects defined by NURBS curves or patches, for which the critical
step is the evaluation of the support mapping. The method is based on the
Gilbert-Foo algorithm [7] for general convex objects with adjustments of the
termination criteria like the support mapping for NURBS, which uses deriva-
tives of their basis functions and the Newton-Raphson method (NR solver)
for finding the roots. An algorithm for the computation of stationary points
of a squared distance function is presented in [11]. This problem is converted
to ne polynomial equations with ne variables expressed in a tensor product
Bernstein basis. The solution method uses subdivision relying on the convex
hull property of Bernstein polynomials and minimization techniques.

In this paper we describe a new algorithm which consists of two steps, and
is mainly based on accurate projections and subdivision techniques. In the first
step, the NURBS curve is decomposed into rational B6zier segments. Then
some evaluations of suitable scalar products decide on further subdivision of
a rational B~zier segment. This subdivision is iterated until certain criteria
are fulfilled. In addition, a composition of the new method together with
the classical formulation of the distance problem based on the calculation of
a solution of nonlinear polynomial systems is presented. The algorithm is
extended to the case of a NURBS surface.

§2. Problem Formulation

A NURBS curve C(u) of degree p is a vector-valued function of one parameter
defined by

d(u) = EZ-O Ni, (u)wiPi a K uK b
EZ o Ni,p(u)wi '

where {- = (xi,yi,zi) E lR3}7=0 are the control points, {wi}J7 0 are the
weights, and {Ni,p(u)}7U0 are the pth-degree B-spline basis functions defined
on the knot sequence U = f-i}i'o with {ui = a}P% and {ui === 2~=o ad{i=•i=n+l

Let/PW = (wx, wy, Wz, w) = (x',y',z',w') E ]R4 and H be the perspective map
given by

S ' if w' #0,i H{.P'} = H{(x',y',z ,W')l = ,•(" •, ifw:O
(x', y', z'), if w' = 0.

Applying H to the nonrational B-spline curve in homogeneous coordinates
n

Ow(u) = Nip(u)Pi (1)
i=0
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yields the corresponding NURBS curve d(u), i.e., d(u) = H{dW(u)}.
Similarly to the curve case, we define a NURBS surface using the tensor

product scheme. Accordingly, a NURBS surface S(u, v) is a bivariate vector-
valued piecewise rational function of the form

Zi=0 EZTn0 Ni,p(U)Nj,q(V)Wi~JAiJS(u, v ) - E=° --° Ni,p(u)Nj,q(v)wi,j Pivj

with the bidirectional control net Pij, the weights wij and the B-spline basis
functions Ni,p(u) and Nj,q(v).

For a given point G e R 3 we address the problem of finding a shortest
straight line segment [Q, Db with b E d(u) or b E S(u, v), respectively. We
assume that all weights of the rational curves and surfaces are positive, to
ensure that the convex hull property holds.

§3. Distance Algorithm for a Point and a NURBS Curve

In this section, an efficient and accurate algorithm for distance calculation
between a given point Q and a NURBS curve d(u) is presented, which is a
kind of an adaptive system of solution methods. The extension to the case of
a NURBS surface works analogously.

The algorithm consists of two steps. In the first step, the NURBS curve
is decomposed into rational B~zier segments Cj(u), j = 1,... , np, which can
be realized once in the preparation phase. In [12] Piegl and Tiller present
an efficient algorithm for computing the np B6zier segments using the ho-
mogeneous form given by (1). Thus, our task is to compute the distance
between a point and a rational B~zier curve. After decomposition, the dis-
tances between Q and each endpoint of the rational B6zier segments i (u)
are calculated, and the smallest value is stored as a first rough approximation
to the distance value d. In the second step, the rational B6zier segments are
processed gradually. Let &jk, k = 0,... ,p, be the control points of the j-th
B~zier segment di(u), j E {1,... ,np}. Then, for each Pik, k = 1,... ,p - 1,
the distance to the straight line supporting the line segment l(Pj,o, Pj,p) be-
tween the endpoints PA, 0 and Pj,p is calculated, and for each projection point
R•,k, k = 1,... ,p - 1, on the line, we test if Rj,k belongs to the line segment
l(P,0, P), using suitable scalar product evaluations. If Rj,k ý l(Pj,o, Pj,p)
for at least one k E {1,... ,p - 1}, then the B6zier segment is subdivided into
two Bdzier segments, for which the second step of the algorithm has to be
started again. Otherwise, the algorithm tests whether the B6zier segment can
be replaced by the line segment l(f j,0,1fj,p) using the theorem by Wang and
Xu (see Sec. 3.2). If Cj(u) is nearly a straight line, with a given accuracy
E, then the distance between the point Q and the line segment l(Pj,0,Pj,p)
is calculated. The distance d is updated if a smaller value is found, and j is
replaced by j + 1. If Cj (u) is not nearly a line segment, the following scalar
products

Sk := - fijj) - (Ak - Al) for k = 2,...,p- 1,
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Fig. 1. Convergence of the algorithm.

are calculated. If all Sk _> 0, i.e., all Pik, k = 1,... ,p- 1, are on the same
side of the line supporting (P3j,o, Pj,p), then the algorithm tests the position of
point Q. Otherwise, the Bdzier segment Cj(u) is subdivided into two segments.
To test whether Q lies in an influence area of the Bdzier segment Cj(u), the
projection point RQ of Q on the line supporting l(.Pj,o, .j,p) is calculated and
its position on the line is checked. If/&Q ý l(f1j,o, _Pj,p), the distances d(o, Pj,o)
and d(tO, Pj,p) are calculated, d is updated if necessary and j is replaced by
j + 1. Otherwise, the B1zier segment has to be subdivided into two segments
to increase the accuracy of the result. Fig. 1 shows how the algorithm works.

The subdivision of a rational Bdzier segment can be continued until the
termination criteria (see Sec. 3.2) are fulfilled or it can be interrupted after
some steps, and afterwards the distance problem can be transformed in terms
of the solution of the polynomial equation

4 - d(u)) -'(u) = 0 (2)

in the variable u, where &'(u) describes the derivative of the curve 0(u). This
is mainly recommended for NURBS surfaces with a large curvature to avoid a
high depth of subdivision. We calculate the roots of this equation using either
the well-known (interval) Newton method, or one of the recently implemented
solution methods briefly described in Sec. 3.3 (see [10]). A diagram illustrating
the outline of the distance algorithms is given in Fig. 2.

input: 0, e(u): n,p, U, •i, w,
decomposition: C(u) "- j(u): p,, k, (i = U . p)

first approach to distance d := min1 mmnn d(d, A o), d(d, P
sub := 0 n, n,

for j=l. nP

yes sub < sub- no
estimation criteria

subdivision of e(u) NP / LP / PP solver
sub++

distance calculation to line segment
update d and list of distance points Dk

output: distance value d, list of distance points Dk

Fig. 2. Outline of the distance algorithm.
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3.1. Subdivision

The subdivision of the control polygon of C (u) determinated by P }k=0
into two B6zier segments with control points {Qo,}Jo and {,-IJ=0 works
in homogeneous coordinates, and reads as follows:

for k = 0 to p do
begin QO := Pf0 ; Qlip-k :=-

for 1 = 0 to p-k-i do
AP, + A'1+1)/2.0 end

Extending the idea from B~zier curve Cf (u) to B6zier surface ,jJ (u, v) by
calling the routine twice, first in u and then in v direction, a subdivision of
Si](u, v) into four B6zier patches is realized (see [12]).

3.2. Termination criteria

In [15] Wang and Xu prove the following theorem:

Theorem 1. For the rational B6zier curve O(u) of degree p,

d(C(u),l(Po,Pp)) < 0 max d(Pi,l(Po, Pp)),1<i~p-1

where (u) = =o Bi,p(u)wi /• i 0 Bi,p((u)wi with the Bernstein polyno-
mials Bi,p(u) of degree p, and

, 10- (1+ max( 1,-1)( max wi)(2P- 1 - 1)

d(C(u), l(Po, Pp)) sup { inf d(C(u), tPo + (1 - t)!p)}.
a<u<b O_<t<l

If after some subdivision steps, d(O, l(Pj,o, Pj,p))) >_ d + d(Cj0 (u), l ( Pj,o, Afij,p)),
or the curve can be approximated by l(-Pjo, fij,p), i.e., d(Cj (u), l(fPj,o, Pj,p)) is
not greater than the desired tolerance e, the subdivision of the segment stops
after this step.

If wi = const, the curve Cj(u) describes a B6zier curve, and the termi-
nation criterion of Theorem 1 is reduced to testing the following conditions:
(1 - 1/2P-1 )d(P-j,k,l(.Pj,o, fP,)) < e for k = 1,... ,p - 1. In addition, for a
B6zier curve the following theorem proved in [14] specifies the number of nec-
essary subdivisions, i.e., after r subdivision steps the curve can be replaced
by the line segments:

Theorem 2. For the B6zier curve d(u) of degree p with control points
1P = (xi,yi, zi)},=o and any given E > 0, let L := maxo<i<p-2{Ixi - 2xj+i +
Xi+21, Iyj - 2 yi+1 +-Yi+21, Izi - 2zi+1 + zi+2 1}, and r := log4 (v/3p(p- 1)L/(86)).
Then, for a < a <3 < b and - log 2(()3 - a)/(b - a)) > r,

d(C(u), l(C(a), C(1 ))) < ,.

If at the beginning of the subdivision the value r can be calculated, then it is
not necessary to perform the termination tests of Theorem 1.
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3.3 Solution techniques and complexity analysis

The distance problem can be converted into a problem of computing all roots
of a system of nonlinear polynomial equations in one or two variables. There
are two techniques designed to solve such a problem in n, variables efficiently;
the projected-polyhedron (PP) and the linear programming (LP) technique,
developed by Sherbrooke and Patrikalakis [10]. They rely on representation
of polynomials in the multivariate Bernstein basis, the convex hull property
and on the subdivision or linear programming technique. Alternatively, the
Newton-Raphson method can be used to find the roots of the nonlinear poly-
nomial equations.

Next, we analyse the amount of time required to execute each step of
the distance algorithm in case of the NURBS curve. The decomposition of
the curve d(u) of degree p into np B6zier segments takes at most O(p . np)
operations, and the first approach to the distance value needs np+1 steps. The
total cost of the distance calculation for np B6zier segments with subdivision
depth of k is in worst case O( 2kp2 • np) independently of the method used
(subdivision-based technique or PP/LP solver) for finding the distance points.
In this case (ne = 1), close to a simple root, quadratic convergence is achieved.

§4. Distance Algorithms for a Point and a NURBS Surface

In the case of a NURBS surface §(u, v), the distance algorithm maintains its
structure. After the decomposition of the surface into np ' nq B6zier patches
Sij (u, v) with control points /'3•' (0 < k < p, 0 < I < q), the first approxi-
mation to the distance value d is calculated taking the minimum of distances
d(Q, Pk~) for k = 0,p and I = 0, q. The termination critera for subdivision of

non-degenerate B6zier patch 9ij (u, v) (Pa, P"j 15" are not collinear) are(P0,0 Pp,0, arear

modified in the following way:
(we~~~o,.,- ij i " j"ij i~j "i~j

-P w,q d Pi,tý , /( P/,0ý, P•,':) ) <- D (wo, , ., Lopjt)d( Pý,t , ( Po~ PP,:)

i0- 0 (P ,
and ( P8 0 pOP8:0)X (Pq P , <0

for all 1 < k < p, 1 < I < q, and e = O,p (where x denotes the cross
product). In this case ij(u, v) can be replaced by a plane segment defined

by 8jPp,0 and POq', the subdivision of qi j(u, v) is stopped, and the distance

between the plane segment and the point Q is calculated. The remaining tests
are performed in the u and v directions analogously to the curve case using
the tensor-product structure of q i,j(u,v). If the point Q does not lie in the
influence area of the B6zier patch qi,j (u, v), i.e., the projections onto the lines

forming the boundary of the triangle defined by P8:0, Pp:o, and P2 "q or defined

by Pp:q, .Pogi' and /3* do not belong to sides of the triangle, the distance

between the point Q and one of the boundary lines §ij (u,v), u E {a, b},
v E {c, d}, is calculated, d is updated if necessary, and the subdivision of
9ij (u, v) is interrupted.
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If a particular depth of subdivision is obtained, the subdivision of the
B6zier patch can be stopped, and the PP or LP solver for nonlinear polynomial
systems in two variables can be applied to the B~zier patch. The equations
for Sij (u, v) read as follows analogously to (2):

2p-1 2q 2p 2q-1

E Eak,1Bk,2p-1(u)B1,2q(v) = 0 and E E bk,1Bk,2p(U)Bl,2q-l(V) 0
k=0 1=0 k=0 1=0

with
min(p-l,k) min(ql) (p-1) (k )P (q) (

akl = E1 Eq (P 1,t -st k1-t

s=max(0,k-p)t=max(0,l-q) (2k-) (I)

min(p,k) min(q-l,l) (P) p (q-1)(q) q -J

bk,l = E (2Ep) (2q- 1 s,t+l -- s,t ( k-s,l-t

s=max(0,k-p)t=max(0,l-q) k I

The combination of a classical formulation of the distance problem and
the subdivision technique is recommended if a high subdivision depth is ex-
pected, e.g., if r in Theorem 2 is too large in case of a very bent B~zier curve.

§5. Concluding Remarks

The method described in this paper computes the distance between a point
and a NURBS curve or surface. Our goal was to provide a reliable method to
solve this problem. The first few subdivision steps and tests quickly locate the
regions of potential solutions. Then the subdivision can be either continued,
or one of the equation solvers or even a distance-calculation algorithm for
polyhedra can be applied [4,5]. We have developed an interval version of the
PP/LP algorithm using interval arithmetic and considering a correct handling
of roots of order two, suitable modifications of Graham's scan algorithm for
building the convex hull, the revised simplex method by Gass, and an adapted
interval-based subdivision by de Casteljau. The solver has been implemented
in C++ using the library Profil/BIAS (see [9]). This improves the robustness
of the distance-algorithm, assures an interval enclosure of the solution, and
makes it suitable for verification of off-line tasks in path planning.

Some modifications to the algorithms could improve performance, e.g., if
upper bounds on the derivatives of order two for the curve or surface are known
[6]. But doubtless our NURBS-based algorithm will be slower, e.g., compared
with our algorithms [4,5], where we deal with the objects as polyhedra. In a
more complete distance tracking system, such as a manipulator in a complex
environment, a progressive switch from a spherical or polyhedral enclosure of
the objects to NURBS surfaces is recommended, especially if contact problems
are investigated.
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Curves from Motion, Motion from Curves

Rida T. Farouki

Abstract. Geometry and kinematics have been intimately connected in
their historical evolution and, although it is currently less fashionable, the
further development of such connections is crucial to many computer-aided
design and manufacturing applications. In this survey, we explore a variety
of classical and modern problems that illustrate how simple rules of motion
produce interesting curves and, conversely, the computational problems of
generating motions with prescribed paths and speeds. These encompass
the geometry of trajectories under centripetal forces; the transformation of
rotary motion into motion along general curves by mechanisms; real-time
curve interpolators for digital motion control; and the description of spatial
motions that involve variations of both position and orientation. Such case
studies illustrate some of the intellectual appeal, and practical importance,
of a sustained dialog between the study of curves and of motions.

§1. Preamble

Our intent in this paper is to survey the intricate web of historical connections
between geometry and kinematics, a theme that has played a key role in the
development of mechanics and analysis. In contemplating this theme, we are
obviously confronted by a profusion of interesting and fruitful topics - and
we are thus obliged to adopt a rather anecdotal approach.

Apart from its intrinsic interest, we choose this subject with the hope of
promoting greater synergy between modern-day problems of geometric design
and motion control. Modern CAD systems are mainly concerned with creating
"static" geometrical descriptions of artifacts, but the processes by which these
artifacts are actually fabricated often involve complicated motions of a tool -
e.g., a cutter in a milling machine, or a wire electrode in electrical discharge
machining - relative to a workpiece. Compared to the sophistication of CAD
models, current methods for motion planning in manufacturing processes are
often rather crude and naive. Thus, there is much scope for securing greater
precision and reliability, through the use of advanced mathematical methods,
in the relatively undeveloped field of manufacturing geometry.

The symbiosis between geometry and kinematics has deep historical roots.
Newton, in his Quadrature of Curves (1676), aptly characterizes it as follows:
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Lines (curves) are described, and thereby generated, not by the
apposition of parts but by the continued motion of points ... These
geneses really take place in the nature of things, and are daily seen
in the motion of bodies.

However, this has not always been a happy union. Insofar as it embodies both
spatial and temporal information, kinematics subsumes geometry. To upgrade
a curve into a motion requires the ability to rectify (or measure arc lengths of)
curves. As a basic philosophical tenet, Descartes held this to be impossible -
see §3 below - and he sought to banish all curves whose definitions explicitly
or implicitly assume rectifications from the "rigorous" domain of geometry to
the nascent (and less-exact) science of mechanics. Although, in modern times,
the philosophical/existential problem of rectification is no longer troublesome,
we must still address the computational difficulties it entails (see §3).

The antithesis of Descartes' attempt to divorce geometry from kinematics
would ultimately find its logical expression, in the context of the special theory
of relativity, with Minkowski's introduction [42] of the concept of "space-time"
as the most natural setting for the study of physical phenomena:

Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two
will preserve an independent reality.

The recent introduction of the Minkowski metric of space-time into problems
of geometric design reveals a remarkable confluence of ideas concerning medial
axis transforms, Pythagorean hodographs, envelopes, and offset curves [43].

In this survey we shall attempt, through a series of anecdotal sketches, to
promote greater interest in the relationship between geometry and kinematics,
and its application to CAD/CAM problems. We commence in §2 and §3 with
a brief review of the manner in which curves may be defined, and the problems
that measurement of arc length incurs. Perhaps the simplest motion is that of
a particle experiencing a force toward a fixed center, of magnitude proportional
to a power of the radial distance r. As is well-known, Newton showed that an
r- 2 force of gravity explains the conic form of planetary and cometary orbits.
We shall see in §4, however, that this is just one aspect of a more profound
theory of motion under centripetal forces in Newton's Principia.

Mechanisms such as gears, cams, and linkages are used to transform forces
and motions in machinery. In §5 we discuss the four-bar linkage, a mechanism
that directly transforms rotary motion into motion on a general curved path.
CNC machines offer a more flexible approach to motion generation, based on
sophisticated servo-systems that drive linear or rotary axes in a coordinated
manner. In §6 we discuss the problem of real-time interpolators, which must
accurately and efficiently interpret the path and speed information to generate
"reference point" data required by the digital control algorithm.

The preceding examples are concerned with motion in Euclidean spaces.
A motion that involves not just positional but also orientational coordinates
(such as in 5-axis machining) may be regarded as the motion of a point in a
higher-dimensional, non-Euclidean (soma) space. Some subtle problems that
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arise with such motions are discussed in §7. Finally, §8 offers some concluding
thoughts on our theme of connections between geometry and kinematics.

§2. Curves and Motions

Analytic geometry has its origins in the computational investigation of curves
specified by suitable coordinate equations. There are basically two ways to
define a plane curve in terms of Cartesian coordinates (x, y). We may select a
predicate function, that indicates whether or not each point in the plane lies
on the curve - this is typically a bivariate polynomial f in the coordinates,
and the curve is the locus of points on which the polynomial vanishes:

f(x, y)=O. (1)

On the other hand, we may choose a pair of generating functions

x(t) , y(t) (2)

that produce an ordered sequence of curve points when evaluated at successive
values of a continuous "auxiliary variable" or parameter t.

Whereas the implicit description (1) is essentially "static," the parametric
form (2) offers a more "dynamic" characterization of curves - it embodies the
suggestion of motion along a curve, incurred by steady increase of the curve
parameter t. It is a mistake, however, to invest too much hope in the capacity
of parametric curves to adequately describe motions. Motion specification is
concerned as much with the instants in time at which a body assumes given
positions along a path, and corresponding velocities and accelerations, as with
the path geometry. A motion is really a geometrical locus in Minkowski space,
with one temporal and one or more spatial dimensions.

Of course, we can always interpret the parameter t as time, and equations
(2) then completely specify a motion. However, if we wish to use only "simple"
(polynomial or rational) functions, such motions are mathematical curiosities:
except in trivial cases, they are neither solutions to appropriate equations of
motion, nor do they represent motions of practical interest that we may wish
to impose on a given locus. To emphasize that the curve parameter generally
lacks any geometrical or temporal significance, we henceforth use the Greek
character ý to denote it, and we explicitly reserve t for time.

Connections between the study of curves and motions is a recurrent theme
in the history of science and technology. At the inception of analytic geometry,
motions offered an intuitive means to construct and analyze loci of increasing
sophistication: see, for example, the remarkably diverse historical applications
of the roulettes generated by the rolling motions of lines and circles (cycloids,
circle involutes, epicycloids and hypocycloids, epitrochoids and hypotrochoids)
discussed in [21]. Conversely, the conics of the ancient Greeks make a rather
surprising appearance in the solution to the premier problem of dynamics: the
determination of planetary orbits. In the modern computer era, the problem
of producing a desired motion along a given path is central to real-time control
of manufacturing, inspection, robotic, and other devices.
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§3. Towards an Impossible Ideal

Since speed on a curved path is the rate of change of distance with time, the
problem of rectification - i.e., the measurement of arc length - is evidently
critical to the description of motion. This problem, however, has been fraught
with computational difficulty since Descartes founded analytic geometry in an
appendix La gdom'trie [15] to the Discours de la mdthode pour bien conduire
sa raison et chercher la v&ritW dans les sciences (1637). He asserts that:

Geometry should not include lines (curves) that are like strings,
in that they are sometimes straight and sometimes curved, since the
ratios between straight and curved lines are not known, and I believe
cannot be discovered by human minds, and therefore no conclusion
based upon such ratios can be accepted as rigorous and exact.

Nevertheless, Descartes' dictum began to crumble almost immediately after
its enunciation, amid a flurry of counter-examples.

For example, Galileo [26] realized that, when a body is dropped into a hole
drilled through the center of a static Earth, it executes linear simple harmonic
motion across the full Earth diameter under the influence of gravity:

... if the terrestrial globe were perforated through the center, a
cannon ball descending through the hole would have acquired at the
center such an impetus from its speed that it would pass beyond the
center and be driven upward through as much space as it had fallen,
its velocity beyond the center always diminishing with losses equal
to the increments acquired in the descent ...

On a rotating Earth, however, the body will have an initial tangential velocity,
and the nature of its motion in the hypothetical case of "permeable" matter
(which exerts gravitational forces but does not impede motion) is not obvious.
Galileo's pupil, Evangelista Torricelli (1608-1647), conjectured that the path
would be a logarithmic spiral about the Earth's center, described by

r = aekO (3)

in polar coordinates (also known as an "equi-angular" spiral, since the tangent
makes a fixed angle, cot- 1 k, with the radius vector). Isaac Newton re-iterated
this conjecture [2,60] in a letter dated November 28, 1679 to Robert Hooke,
who criticized it during a Royal Society meeting the following December 11.
As we shall see in §4 below, Torricelli and Newton were quite wrong: the path
is actually - as intuitively argued by Hooke - an ellipse.

During his investigations, however, Torricelli discovered a rectification of
the spiral (3) in 1645 through the Archimedean "method of exhaustion" - he
showed that, for -oo < 0 < 0, the arc length equals the length of the tangent
at 0 = 0 extended to the y-axis [9] - namely, -+ k- 2 a (see Figure 1). This
is a truly remarkable result, since the curve must execute an infinite number
of gyrations about the origin before terminating there!
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:P

Fig. 1. The arc length of (3) for 9 < 0 equals the length PQ on the tangent line.

The logarithmic spiral was also known to Thomas Harriot (1560-1621) as
the projection of a rhumb line on the Earth's surface - i.e., the path traced by
a ship that sails in a fixed compass direction - onto the equatorial plane [55].
Jakob Bernoulli was so fascinated by the self-similarity of this curve under
coordinated rotations and dilatations about the origin, that he arranged to
have it engraved on his tombstone with the caption Eadem mutata resurgo [3]
- "Though changed I shall arise the same."

Subsequently, another curve was rectified by Gilles Personne de Roberval
(1602-1675) and Christopher Wren (1632-1723) - namely, the cycloid

x(9) = a(O-sin0), y(O) = a(1-cos0) (4)

traced by a fixed point on a circle of radius a that rolls without slipping on a
straight line (see Figure 2). They showed that a single "arch" (0 < 9 < 27r) of
this curve has length 8a. Although it has now fallen into obscurity, the cycloid
was a virtual "proving ground" for novel mathematical ideas and methods in
the mid-17th century: it caught the attention of all the leading scientists, and
prompted international competitions and acrimonious controversies. See [21]
for a discussion of its tautochrone and brachistochrone properties.

To Descartes, however, the rectification of curves such as the spiral (3) and
the cycloid (4) was suspect - they are not true "geometrical" (i.e., algebraic)
but rather "mechanical" (i.e., transcendental) curves. By introducing angular
variables, their definitions essentially presuppose a rectification (of the circle).
Nonetheless, it was not long before even an algebraic curve, under the scrutiny
of William Neil (1637-1670), Hendrick van Heuraet (1633-1660), and Pierre
de Fermat (1601-1665), succumbed to rectification - the cuspidal cubic

X(6) = 62, y = k6 3  (5)

known as the "semicubical parabola." Its arc length s, measured from • = 0,
is an algebraic function of the parameter:

s() = (9k 20 2 + 4)3/2 - 8

27k
2
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Fig. 2. Cycloid: the length of an arch is eight times the radius of the rolling circle.

Ironically, van Heuraet - an associate of Huygens - published his results in
an appendix to van Schooten's 1659 Latin version of Descartes, Geometria a
Renato Des Cartes. Neil's results also appeared in 1659, in the Tractatus duo,
prior de cycloide, posterior de cissoide published by John Wallis, and Fermat's
work followed in 1660 in De linearum curvarum cum lineis rectis comparatione
dissertatio geometrica- an appendix to a treatise by de Lalouv~re (this was
the only publication by Fermat to appear during his lifetime).

Christiaan Huygens (1629-1695), in his Horologium oscillatorium of 1673,
gave a historical account [34] of these rectifications that provoked arguments
over the priority he attributed to van Heuraet and Wren for their discovery -
see Chapter 8 of [31]. This dispute reflects the philosophical importance of the
rectification problem, which had been held impossible through long tradition
that originated with Aristotle, was reinforced in the 11th century by Ibn Rushd
(Averroes), and culminated in Descartes' dogmatic assertion. Huygens' theory
of evolutes and involutes, employed in his design of an isochronous pendulum
clock [21], offered profound new insight into this age-old problem. The cubic
(5) was recognized as the evolute (locus of centers of curvature) of a parabola,
while the cycloid (4) has an identical (displaced) cycloid as its evolute.

All these results preceded a formal development of the calculus. Whereas
the latter resolved existential issues concerning arc lengths by defining them,
for a (sufficiently smooth) parametric curve (x(ý), y(ý)), through the integral

s(5) = x' 2 ()+ yy'2 () d,, (6)

there remained the awkward fact that this does not admit analytic reduction
except in trivial or exceptional cases, such as the cubic (5).

In fact, with the emergence of differential geometry, it became customary
to assume s - 6 - i.e., the integrand in (6) is precisely unity - although this
natural or arc-length parameterization has only a hypothetical existence: it is
fundamentally incompatible with curves (except straight lines) parameterized
by "simple" functions. This fact is obvious for polynomial curves, but its proof
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for rational curves is subtle [23], involving Pythagorean triples of polynomials,
partial fraction decompositions, and the calculus of residues.

An offshoot to this proof was the introduction of Pythagorean hodograph
(PH) curves, whose hodograph components satisfy the condition

X/2(ý) + y'2 (ý) a26

for some polynomial or(6), and are thus [22] of the form

S= u2(6)_V2(6), y'(6) = 2u(6)v(6), 0,(6) = u2(6)+V2(6)

where u(6), v(6) are relatively prime polynomials. For PH curves, the integral
(6) evidently reduces to a polynomial function of the parameter 6. This fact
proves especially propitious in the formulation of real-time CNC interpolators
for digital motion control applications (see §6 below).

Venturing beyond PH curves, one may seek to encompass a broader class
of loci by allowing more complicated arc-length functions. Suppose we allow
s to be an algebraic function of the parameter • i.e., there exists a bivariate
polynomial F(., .) such that (6) satisfies

f(s(6),C) = 0.

An algebraic function cannot, in general, be described by a simple closed-form
expression. Nevertheless, one can show [53] that (6) is algebraic if and only if
there exists a polynomial h(6) such that

[x,2(6) + y,2 ( )] h(.) - h'2(ý).

As an immediate consequence, if the function (6) is algebraic, it must have the
simple form s(ý) = 2V/() + constant (note that the PH curves are subsumed
as special instances, corresponding to h = 1 [f u2 + v2 d6 ]2). The cubic (5) is

the simplest (non-PH) example of these algebraically-rectifiable curves, with
h(ý) = (9k 2 2 +4) 3/2916k 4 - indeed, it is the unique cubic with this property.
See [53] for details on algebraically-rectifiable quartics and quintics.

Since arc-length parameterization by rational functions is fundamentally
impossible, it seems natural to ask "how close" we can approach this elusive
ideal. Consider, for example, a degree-n polynomial curve r(C): a parameter
transformation C E [ 0,1] -- r E [0, 1 ] of the form

(l -a)T

a(1 -,r) + (1 - a)r

gives a rational representation of the same degree, and offers a single degree of
freedom, a, to control the "parameter flow" over the curve. Using the integral

I = (Ir'(r)l - 1)2 dT (7)
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as a measure of "closeness" to arc-length parameterization (for which I = 0),
the value of a that minimizes (7) can be found [18] as the unique root on (0, 1)
of a quadratic equation; see also [36]. However, this optimal parameterization
offers limited scope for improvement, since we fix the curve degree n.

Another approach, based on the polynomial arc-length functions s(ý) of
PH curves, employs the Legendre series to compute a convergent sequence of
(constrained) polynomial approximations 6l(S), 6 2(s),.... to the inverse of this
function [19], such that

lim ýk(s(')) =- 1 for E [0,1],
k-oo

given the normalization s E [0, 1]. The coefficients of 6k (s) can be determined
through closed-form reduction of certain integrals. For sufficiently high k, the
re-parameterized version rk(s) = r(ýk(s)) comes arbitrarily close to the exact
arc-length parameterization, although it is formally of degree kn.

§4. Curves from Motion I. Centripetal Forces

By integrating the description of the forces and laws of motion that govern a
physical system, the science of dynamics provides a rigorous and quantitative
approach to analyzing motions. Perhaps more so than in any other branch of
science [12], the theoretical canonization and empirical triumph of dynamics
are the fruits of a single pre-eminent mind: Sir Isaac Newton.

Perhaps the simplest (non-trivial) problem of dynamics is that of motion
under a centripetal force - i.e., a force always directed toward or away from
a fixed center, whose magnitude depends only on distance r from that center.
The term centripetal-- "seeking the center" - was introduced [60] by Newton
in his De motu corporum in gyrum of 1684 (in recognition of the fact that, to
overcome the inertial tendency of a body to move in a straight line, circular
motion requires a steady force directed toward a fixed center):

I call that, by which a body is impelled or attracted toward some
point which is regarded as a center, centripetal force.

The basic questions concerning centripetal forces are: what kinds of orbit arise
from different dependencies of the force on r - and, conversely, knowing the
type of orbit, can we deduce the dependence of the force on r?

In the late 17th century the context for interest in such questions was, of
course, the search for an explanation of Kepler's (empirical) laws of planetary
motion - namely: (i) the orbits of the planets are ellipses, with the sun at one
focus; (ii) the radial line between the sun and a planet sweeps out area at a
uniform rate; and (iii) the squares of the orbital periods are proportional to the
cubes of the mean distances of planets from the sun. As we now know, these
are direct consequences of an inverse-square (r- 2 ) gravitational force. Newton
discovered this at an early stage in his career, but remained characteristically
secretive about it. It is Edmond Halley who deserves credit for coaxing Newton
into disseminating his arguments and, ultimately, codifying dynamics through
publication of the Principia. According [13] to Abraham de Moivre:
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In 1684 D' Halley came to visit him at Cambridge, after they
had been some time together the Dr asked him what he thought the
Curve would be that would be described by the Planets supposing
the force of attraction towards the Sun to be reciprocal to the square
of their distance from it. Sr Isaac replied immediately it would be
an Ellipsis, the D' struck with joy & amazement asked him how he
knew it, why saith he, I have calculated it, whereupon D' Halley
asked him for his calculation without any further delay, Sr Isaac
looked among his papers but could not find it, but he promised to
renew it, & then send it him ...

In fact Halley, as Clerk to the Royal Society, printed the Principia at his own
expense; the Society's funds had been depleted by the production of a Historia
Piscium (History of Fishes) that failed to become a best-seller. Subsequently,
Halley's salary was paid entirely in copies of this Historia Piscium [13].

The inverse-square nature of gravitational force, now common knowledge,
was established by Newton as the rational explanation for Kepler's laws. It is
not widely known, however, that the Principia thoroughly analyzes a variety of
power-law (rn) centripetal forces, and shows that different integer exponents
n yield circular, conic, spiral, and other orbits in an often surprising manner.
The profundity of these results - and their anticipation of an elegant theory of
dual centripetal forces due to K. Bohlin [7] and E. Kasner [38] - has recently
been emphasized by Arnol'd [2], Chandrasekhar [10], and Needham [45].

As reflected in the title of Chandrasekhar's recent book [10], the obscurity
of such interesting results in the Principia is due to Newton's exclusive reliance
on forbiddingly Euclidean argumentations. The modern reader, equipped with
predominantly analytic/algebraic skills, is usually reduced to a state of dismay
and bewilderment upon a first encounter with the Principia. Needham [45]
argues convincingly that the re-discovery of Newton's "geometrical calculus"
is a very rewarding endeavor, and Arnol'd [2] gives an example of the type of
problem - the transcendental nature of certain area integrals - that seems
"obvious" to Newtonian thinking, but not to modern modes of thought.

To elucidate connections between the Principia's results and the Bohlin-
Kasner theory of dual centripetal forces, it is convenient [2,44] to adopt the
complex-number representation z = x + i y = r ei° of the Euclidean plane.
Under a centripetal force proportional to the n-th power of distance Lfrom
the origin, the equation of motion is then

d2z z

dt 2  Z . (8)
Here, the centripetal force is attractive or repulsive according to whether k is
positive or negative. Hooke's law, for example, corresponds to n = +1, while
n = -2 represents a Coulomb (gravitational or electrostatic) force.

There are two "constants of motion" associated with solutions z(t) to the
differential equation (8) - the angular momentum and energy,

L=Im( dz 2 dO and E 1 dz 2 +kIZ+ . (9)
L jI t J dt 2 dt n+ 1



72 R. T. Farouki

Fig. 3. Constancy of angular momentum L under an r-2 centripetal force.

Although we may formally replace lzlnl/(n + 1) by In Izi when n = -1, this
case is usually excluded. For n < -2, the "potential energy" component of E
is naturally negative, and tends to zero as Izi -- no. Conversely, for n > 0, the
potential energy is naturally positive and vanishes when Izi = 0. The function
In Iz1, however, diverges for both IzI -+ 0 and IzI -* oo; it does not represent
a satisfactory scale-free potential energy with a natural reference value.

The polar form of L given in (9) serves as a reminder of its geometrical
interpretation, namely, the rate at which the position vector sweeps out area in
the orbit - this constancy of "areal velocity" is expressed by Kepler's second
law. Section II of Book I of the Principia is devoted to "the determination of
centripetal forces," and Newton's immediate concern [46] is to prove:

PROPOSITION I. THEOREM I

The areas which revolving bodies describe by radii drawn to an immovable
centre of force do lie in the same immovable plane, and are proportional to
the times in which they are described.

PROPOSITION II. THEOREM II

Every body that moves in any curved line described in a plane, and by a
radius drawn to a point either immovable, or moving forwards with an uniform
rectilinear motion, describes about that point areas proportional to the times,
is urged by a centripetal force directed to that point.

In other words, Newton first shows that "centripetal force - L = constant"
(this principle is illustrated in Figure 3, for the case of a Coulomb r-2 force).

Consider now the conformal map z --+ w of the plane given by

W = z0', (10)

under which the orbit z(t) determined by equation (8) is transformed into an
orbit w(,r), where t and r- denote times on these orbits corresponding to an
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angular position 6 about the origins of the z and w planes. Writing z = r eiO

and w = peiO, we stipulate that these orbits have equal angular momentum

2 dO 2 dO
= r- = P - = constant, (11)

and we ask: is the orbit w(T) also the solution to an equation of motion

d - - WI 'm  - (12)

dT2  IWI

under a power-law centripetal force - and if so, how are the exponents n, m,
a related? It transpires that this problem has an elegant and unique solution:
corresponding force-law exponents n and m are related by

(n + 3)(m + 3) = 4, (13)

and the exponent a of the map (10) is given in terms of them by

n+3 2 2
2 m+3 (14)

To derive equations (12)-(14), we first note from (10) and (11) that derivatives
with respect to t and r are related by

d t2(1_)d (15)

Now by applying (15) to w z za twice, and invoking (8), we obtain

d 2W [= 1dz ý2 IzIn 1 ]z w2-3a ZYO- =T2 2a(1-Ia) at + k 2(a- 1)1 zaI

We observe that by choosing 2(a - 1) = n + 1, i.e., a = (n + 3)/2 as in (14),
the expression in brackets coincides with the energy constant E in (9). With
this choice, substitution from (10) gives

d2w 2a(a- 1) E IwI(2-3,)/a Wi-*I/3

This is of the desired form (12), with K = 2a(a-1)E and m = (2-3a)/a, i.e.,
a = 2/(m + 3) as in (14). Finally, equation (13) follows from the individual
relations in (14), between n and a, and m and a, derived above.

Equation (13) describes a hyperbolic relation between the force exponents
n and m. For each n, except -3, the orbit z(t) determined by (8) is mapped
by (10) into a dual orbit Wt(T) of equal angular momentum, determined by (12).
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Dual orbits corresponding to integer force exponents are of special interest -

they are (with n > m) as follows:

(a) n--+1, m=-2, z-z 2 ,

(b) n =-1, m= -1, z -z,

(c) n =-4, m =-7, z z-112,

(d) n=-5, m=-5, z z-'z .

Cases (b) and (d) identify "self-dual" forces (as noted above, however, case (b)
is usually excluded on physical grounds). Case (a) reveals the beautiful result
that an orbit z(t) under a linear Hooke's-law force is mapped by w = z 2 to
an orbit w(r-) under an inverse-square Coulomb force. Indeed, Newton shows
that the Hooke and Coulomb forms are the only centripetal forces that admit
conic orbits. In this regard, see [44] for an interesting anecdote concerning the
£1 note issued to commemorate the Principia's 300th anniversary.

To investigate the geometry of orbits under power-law centripetal forces,
it is convenient to employ polar coordinates (r, 0). Using the fact that r29 = L,
we can write the scalar components of the equation of motion (8) as

F - L
2
r-3 + krn = 0 and 2÷/6 + r9 = 0, (16)

where dots denote time derivatives. To eliminate the time variable, and obtain
a purely geometrical description of the orbit, we set u = 1/r and note that

d .d 2d
- 9- = Lu

With 3 = =k/L 2, the first of equations (16) can then be transformed [10,57] to

u" + U - /3u-(n+2) = 0, (17)

where primes denote derivatives with respect to 9. By solving this differential
equation, we obtain polar-coordinate expressions r(9) = 1/u(9) describing the
shapes of orbits. One may verify the functional form and geometrical nature
of some representative solutions known to Newton:

n = +1 : r(9) = (/3 sin 2 9 + cos2 
9)-1/2 ellipse, center at origin;

n = -2: r(9) = (3 + cos9)-1 ellipse, focus at origin;

n = -3: r(9) = exp ( v/-- 1 9) logarithmic spiral;

n = -5: r(9) = v/--/2 cosO circle through origin.

The cases n = 1 and -3 are treated in PROPOSITION X. PROBLEM
V and PROPOSITION IX. PROBLEM IV of the Principia, Book I. The case
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n = -5 is pathological, since the orbit passes through the center of force! In
PROPOSITION V. PROBLEM II, Newton actually treats a generalization of
the n = -5 case - he shows that a particle p will execute a circular orbit if
it is attracted to any center c by a force proportional to r- 2 t-3, where r is
the distance of p from c, and f is the length of the chord containing p and c.
When c lies on the circle, we have f = r, and hence an r- 5 force.

In Section III of Book I, Newton is concerned with "the motion of bodies
in eccentric conic sections." He treats the case n = -2 in PROPOSITION XI.
PROBLEM VI, and also discusses parabolic and hyperbolic orbits. Kepler's
third law is also derived, in PROPOSITION XV. THEOREM VII.

Incidentally, the case n = 1 provides the correct solution to the problem
of motion in the gravity of a permeable rotating Earth, considered by Torricelli
(see §3). If the Earth is a homogeneous sphere of mass M and radius R, the
gravitational force at distance r from the center is equal to

GM(r/R)
3

r2

G being the gravitational constant - i.e., it is proportional to r. Thus, the
path is an ellipse, and not the logarithmic spiral suggested by Torricelli (which
requires an r- 3 force). Actually, it is a very shallow ellipse - the minor axis is
smaller than the major axis R by the dimensionless factor V/GM/w 2R 3 ; 291,
where w = 27r rads/day (this factor is the ratio of the orbital velocity at r R R
to the tangential velocity wR at the equator due to the Earth's rotation).

A shallow ellipse is an obvious perturbation to Galileo's simple harmonic
motion through a non-rotating permeable Earth, and in retrospect Torricelli's
conjectured spiral trajectory - revived by Newton in 1679 - may seem rather
naive. Newton soon redeemed himself, however, through the publication of his
Principia in 1686, which contains the correct solution as part of a remarkably
comprehensive theory of orbital motions under centripetal forces.

It is a sobering experience, for the modern reader, to pierce the Principia's
veil of geometrical argumentations, and appreciate its profound insights. To
contemporaries, Newton's creation was a virtually miraculous event - Halley
composed an ode to preface the Principia, extolling "the illustrious man" and
his work, "a signal distinction of our time and race" [46]:

Matters that vexed the minds of ancient seers,
And for our learned doctors often led
To loud and vain contention, now are seen
In reason's light, the clouds of ignorance
Dispelled at last by science ...

However, Newton was not exempt from the sarcasm of critics, such as the poet
Alexander Pope [51], who were often more eloquent in their converse views:

Superior beings, when of late they saw
A mortal man unfold all Nature's law,
Admired such wisdom in an Earthly shape,
And showed a NEWTON as we show an ape.
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r-5 force r-2 force

Fig. 4. Geometry of zero-energy orbits under r- 5 and r- 2 centripetal forces.

To conclude, we note that the singular orbit r(O) = V3-/2 cos 0, identified
above for an r- 5 force, corresponds to the case where the orbital energy

÷2  L 2  k
E 2 • + 2r2 4r4

is zero: it is the analog of zero-energy parabolic orbits under an r- 2 force (see
Figure 4). As r -- 0 (t --+ rk/8L3 ), the positive kinetic energy and negative
potential energy both become infinite in a manner such as to maintain E = 0.
The angular momentum L is also conserved, in a limiting sense, as r -+ 0.

For orbits with E / 0, equation (17) can be integrated to obtain

Vfl-1/r du 0
T du

v Vs /o fU4 - 2U2 +y

where -y = E/L 2 and r = r0 for 0 = 0. A further reduction, giving r explicitly
in terms of 9, is possible upon introducing Jacobian elliptic functions [41], but
we shall not pursue it here. A special case is a circular orbit u = uo = 1/ro, of
energy E = 4(2L

2 - ku2)u2, but this is highly unstable - any perturbation
will cause r to rapidly decay to 0 or grow to oo (see Figure 5, comparing orbits
under r- 5 and r- 2 forces perturbed by introducing an initial negative/positive
radial velocity corresponding to a 10-3 fractional change in E).

" ... ...................... . . -

r-5 force r-2 force

Fig. 5. Relative stability of circular orbits under r- 5 and r- 2 centripetal forces.
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Fig. 6. Geometrical dimensions of a planar four-bar linkage.

In fact, only the n = +1 and -2 force laws admit stable periodic orbits,
in the sense that perturbations to them always produce similar, "neighboring"
closed orbits (a proof is given in Appendix A of Goldstein [28]).

§5. Curves from Motion II. Four-bar Linkage

A mechanism is a device that is designed to transform "input" motions and
forces, from a given power source, into "output" motions and forces - better
suited for use in some practical application. A mechanism typically comprises
several rigid members connected by joints that allow certain types of relative
motion. According to the Kempe theorem [39], mechanisms that employ only
revolute and prismatic joints can (in principle) be designed to produce motion
along any plane algebraic curve. We consider here the coupler curves of planar
four-bar linkages, which serve to transform a rotational input motion into an
output motion along some general curved trajectory.

(In early studies, such mechanisms were called three-bar linkages, since
the "ground" link was not counted. It is now customary to include it, to give
a closed kinematic chain. The idea of kinematic chains was introduced by the
German engineer Franz Reuleaux, in his Theoretische Kinematik of 1875).

Figure 6 shows the geometrical configuration of a four-bar linkage. Such
mechanisms are found in diverse contexts (windshield wipers, electric shavers,
cranes, etc.). Historically, the most famous example was the "parallel motion"
mechanism devised by James Watt (1736-1819) for his double-acting steam
engine of 1782. In Figure 6, the link of length k is held fixed, while links of
length r and R pivot about its two endpoints. These links are connected by
a further link of length c, whose ends are thus constrained to lie on circles of
radii r and R centered on (0, 0) and (k, 0). A point at a fixed position relative
to the link of length c thus traces a locus, called the coupler curve, when the
links of length r and R rotate (see Figure 7). We identify a specific point p
by taking it to be the apex of a triangle of sides a and b, with base c.
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........ ..

Fig. 7. Generation of a coupler curve by a four-bar linkage.

According to the Grashof theorem [29], the sum of lengths of the shortest
and longest links should not exceed the sum of lengths of the other two links,
if there is to be continuous relative rotation between two links. This condition
is satisfied by the configuration shown in Figure 6, a crank-rocker mechanism:
the link of length r (the crank) completes full revolutions, while that of length
R (the rocker) oscillates through partial revolutions; the link of length c is the
coupler. Other possible mechanisms - the double-crank or double-rocker -
are obtained by varying the lengths k, r, R, and c of the links.

Four-bar linkages are capable of generating a rich variety of curved paths:
the Hrones-Nelson "atlas" [32], for example, illustrates over seven thousand
different forms of the coupler curve! These paths are all (parts of) an algebraic
curve of degree 6, that depends on six parameters - the dimensions k, r, R,
a, b, and c. Its equation can be succinctly expressed [4] in the form

f(x,y) = u2(x,y) + v2 (x,y) - w2(x,y) = 0 (18)

where
u(x,y) = a[ (x- k) cos, -+ ysiny] (x 2 +y 2 +b 2 -r 2 )

- bx[(x - k) 2 + y2 +a 2 -R2],

v(x,y) = a[ (x- k)sin-y- ycos-,] (x 2 + y 2 + b2 - r 2 ) (19)

+ by[(x-k)2 +y 2 +a 2 _R2],

w(x, y) = 2ab [x(x - k) sin-y + y 2 sin - - ky cos -y],

and we have introduced the angle y = cos- 1 (a 2 + b2 
- c2 )/2ab in lieu of c. The

curve defined by (18) and (19) has an ordinary triple point at each of the two
circular points at infinity, and three affine double points (two of which may
be complex conjugates) that always lie [4] on the circle

X2 - kx + y2 - kycot'y = 0, (20)
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Fig. 8. Coupler curves for various values of the parameters k, r, R, a, b, c.

illustrated in the example in Figure 9 below. The coupler curve falls one short
of the maximum of 10 double points that an algebraic curve of degree 6 may
have, and is therefore of genus 1 - i.e., it is an elliptic curve.

For a crank-rocker, the curve defined by (18) and (19) always comprises
two real loops. The physical mechanism traces just one of them: to trace the
other loop, the initial configuration of the linkage must be changed. Further
examples of crank-rocker coupler curves are shown in Figure 8. For double-
crank and double-rocker mechanisms, the coupler curve also has two loops, but
in the latter case the mechanism cannot trace either loop entirely. Four-bar
linkages that do not satisfy the Grashof condition exhibit single-loop coupler
curves, which may self-intersect (as in the Figure 9 example - note that the
mechanism cannot trace the entire curve). Equations (18) and (19) encompass
all these forms for suitable choices of k, r, R, a, b, and c.

Fig. 9. Single-loop coupler curve for a non-Grashof mechanism.
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Fig. 10. Peaucellier mechanism: circular motion of P yields linear motion of P'.

A remarkable property of four-bar linkage coupler curves is expressed by
the Roberts-Chebyshev theorem [50] - a given coupler curve may actually be
traced by three different four-bar mechanisms (which are said to be cognates
with respect to the given curve). This is not merely a mathematical curiosity:
once a path is realized through a specific mechanism, one of its cognates may
be found to produce better force transmission characteristics.

The design of a mechanism for a given path may be based on consultation
of an "atlas" of coupler curves [32], or use of numerical methods to find the
linkage dimensions that will give a locus interpolating prescribed points [6,58].
Allowing for freedoms in the choice of coordinate system, the general coupler
curve defined by (18) and (19) can be made to interpolate nine points, but
determining the mechanism parameters involves solving a formidable system of
non-linear algebraic equations. Wampler et al. [58] have shown, for example,
that (counting cognates) the nine-point problem has 4326 solutions, many of
which may correspond to complex values for the link dimensions, or interpolate
the discrete points on incompatible portions of the coupler curve.

As previously noted, one of the first applications of four-bar linkages was
to transform the reciprocating linear motion of a piston into rotary motion of a
shaft. Watt, Chebyshev, Roberts, and others proposed approximate solutions
to this problem, but linkages that offer exact transformations between linear
and circular motion were not known until 1864, when a captain in the French
army, A. Peaucellier, devised the mechanism shown in Figure 10, comprising
four links of length a and two of length b (> a). If the point P is constrained
to move on a circle passing through the pivot 0, the point P' traces a straight
line, such that 0, P, P' always remain collinear, and the distances r and r'
of P and P' from 0 satisfy rr' = b2 - a2 . Thus, P and P' are images of each
other under inversion in the circle with center 0 and radius •b 2

- a 2.

Further details on the geometrical and kinematical properties of coupler
curves may be found in standard texts [4,16,30,33] on kinematics - see also
[47] for an interesting history of coupler curve synthesis methods.
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§6. Motion from Curves I. Multi-axis CNC Machines

We have described above how interesting curves can arise from motions under
specified kinematical or dynamical constraints. Computer numerical control
(CNC) technology is concerned with the converse problem - i.e., the physical
realization (by cutting tools, robot arms, sensors, etc.) of motions specified
by geometrical paths and given speeds or feedrates along these paths.

To produce a desired motion, a CNC machine must drive each of its axes
in an independent but coordinated manner. The controller algorithm employs
digital representations of space and time: the unit of time, or sampling interval
(typically - 1 millisecond), is defined by a "clock" within the algorithm, while
the basic length unit (BLU, typically -. 10 microns), or spatial resolution of
the machine, is determined by position encoders mounted on its axes.

Within each sampling interval At, the controller must compare the actual
position of each axis (as measured by the encoders) with the intended position
(computed from the specified paths and feedrates by a real-time interpolator).
The discrepancy between the actual and desired positions is used to generate
control signals for the machine drives, ensuring that the specified paths/speeds
are accurately realized. The discrete positions on a curved path r(6) computed
by the interpolator are known as reference points - they are identified by the
sequence CO, 6i, 62,... of parameter values satisfying $0 = 0 and

S-a = At for k = 1,2,... , (21)

where a(•) - Ir'(ý)I is the parametric speed of the curve and V is the (constant
or variable) feedrate. Since the integral does not ordinarily have a closed-form
reduction, and the unknowns are limits of integration, equation (21) is difficult
to solve accurately and efficiently - even if V is constant.

Because of this computational difficulty, it is customary to employ simple
(piecewise-linear/circular) "G code" approximations to curved tool paths [1].
Compared to its electromechanical hardware sophistication, the part program
data that drives a CNC machine is embarrassingly crude. Some authors [11,61]
have proposed to drive CNC machines along general curved paths by invoking
approximate solutions to (21), based on the Taylor-series expansion

V V /1r'r
4k-1 + At + v- 2 V)Y (' .+ (22)

where primes indicate derivatives with respect to the curve parameter ý, and
it is understood that or, r', r", V, V', etc., are evaluated at G-1.

The extension of (22) to cubic and higher-order terms incurs complicated
coefficients, and is thus ill-suited to real-time computation. Truncation errors
are inevitable with this approach (most implementations, in fact, retain only
the linear term). Note also that, for a non-constant feedrate, the variation of
V cannot be usefully specified as a function of 6. It must be given in terms of
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Fig. 11. Curvature dependent feedrate (24) for a constant material removal rate.

a physically meaningful variable, such as time t, arc length s, or curvature r,
- in terms these variables, the derivative of V in (22) may be written as

a dV dV dn dV
V dt - ds ds dr,

The Pythagorean-hodograph curves offer an elegant and rigorous solution
to this dilemma [24]. For PH curves, the integral (21) admits a simple analytic
reduction - not only for constant feedrate, but also varying feedrates specified
in a number of useful ways, such as:

(a) any function V(t) of time with known indefinite integral;
(b) a linear or quadratic polynomial V(s) in the arc length;
(c) simple rational expressions V(K) in the local curvature;
(d) constant feedrate V along an offset to a specified curve.

In (almost) all these cases, the interpolation equation (21) reduces to the form

s(,Wk) = F(...,Gk-0), (23)

where s(ý) is the polynomial arc-length function of the PH curve, and F is a
known elementary function of the parameters describing the feedrate variation
and the preceding reference point Ck-l. Since s(C) is a monotone polynomial,
equation (23) has a unique real root for the value of Gk, which may be obtained
to machine precision by a few Newton-Raphson iterations starting from ck-1.

The ability to perform real-time interpolation with continuously varying
feedrates is extremely useful in a variety of practical problems. For example,
the curvature-dependent feedrate

S- v0
V5) =(24)1 + K(d - 1)
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Fig. 12. Measured feedrate (left) and cutting force (right) using the function (24).

can suppress machining force variations [20] when a fixed depth of cut 6 is to
be removed along a curved path r(ý) with a tool of radius d (see Figure 11: the
material removal rate is higher at the "concave" location b than the "convex"
location c if a constant feedrate Vo is employed). Figure 12 shows the measured
feedrate and (time-averaged) cutting force, as obtained from an experimental
implementation of the PH curve interpolator for (24) on a CNC mill.

An important use of time-dependent feedrates V(t) is the specification of
smooth accelerations and decelerations along curved paths. This is especially
important for high-speed machining, in which the dynamical issues of starting
and stopping high-speed motions on curved paths become a serious concern.
With G code part programs, for example, acceleration/deceleration intervals
may span many short linear/circular segments, and thus require a cumbersome
real-time block "look ahead" capability for their implementation.

Using PH curves, on the other hand, it is easy to specify a smooth feed
acceleration from feedrate V = 0 for t < 0 up to a desired constant feedrate
Vm for t > T along a curve r(ý). If r = t/T is the "normalized" time during
the acceleration interval t E [0, T], we use the polynomial feedrate function

n

V(T) = k (1 -])nkTk (25)
k=0

of odd degree n, with Vo ..... V(.-l)/ 2 = 0 and V(n+l)/2 . Vn = Vm.

This gives C(n- 1 )/ 2 continuity with V = 0 for t < 0 and V = Vm for t > T -
in particular, n = 3 and n = 5 yield C' and C 2 feedrate variations.

The interpolation equation for such time-dependent feedrate functions
on PH curves is remarkably simple - it is precisely of the form (23), with the
right-hand side being simply the integral F(r) of (25), a polynomial of degree
n + 1. Only the right-hand side "constant" changes on using higher degrees n,
and the incremental cost of evaluating this constant, in each sampling interval
At, is insignificant for any "reasonable" choice of the degree n.

There are many other possibilites for specifying and optimizing feedrates
along PH curves. For example, curved paths are realized on CNC machines by
coordinated motions of independently-powered axes, and the chosen feedrates
and feed accelerations should not impose demands on the motors of each axis
that exceed their torque or power capacity. For PH curves, a thorough analysis
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of this problem is possible [25], allowing an a priori determination of safe fixed
feedrates and minimum feed acceleration intervals for a given path geometry.

§7. Motion from Curves II. Quaternion Methods

We have only been concerned, thus far, with the motion of points in Euclidean
spaces. The problems of motion in non-Euclidean spaces, or motion of bodies
of finite extent (involving changes of position and orientation), are much more
challenging - they arise frequently in animation, robotics, 5-axis machining,
dynamics, and many other applications. Thus, to conclude, we briefly consider
some basic problems in the use of quaternions [5,8,52] to formulate spatial rigid
body motions as time-parameterized loci in non-Euclidean spaces.

This subject has seen intense interest [17,27,35,37,40,48,54,59] - see also
the extensive bibliography in [52] - in recent years, and substantial progress in
"motion design" has been made. Nevertheless, the fundamental problems we
encounter with purely translational (point) motion carry over to and, indeed,
become much deeper in the context of general spatial motions.

The revival of quaternions in motion-design applications helps remedy a
steady historical decline of interest in them. The introduction of quaternions
by Sir William Hamilton (1805-1865) predates (and subsumes) development
of the "ordinary" vector analysis in R 3 by James Clerk Maxwell (1831-1879),
Josiah Willard Gibbs (1839-1903), and Oliver Heaviside (1850-1925), who -
along with later generations of physicists - considered quaternions to be an
unduly cumbersome medium for describing the laws of nature [14].

A general displacement in Euclidean 3-space R 3 can be interpreted as a
screw displacement - i.e., a rotation about a fixed axis and a translation along
that axis [8]. Six parameters are required to describe such displacements. Let
P = (X, Y, Z)T and p = (x, y, Z)T be point coordinates in a "fixed" frame E
and a "movable" frame a. The spatial displacement carrying E into a may
be described by an orthogonal rotation matrix M and a translation vector d:

P = Mp + d.

The rotation matrix can be expressed in terms of Euler parameters

co = cos 10, cl = A sin ¢, c 2  /sin €, c3 = v sin!,

where (A,/p, v) are direction cosines of the axis and 0 is the rotation angle, as

0c + c1 - c2 - c3  2(clC2 - coc3) 2(clc3 + cOc2)
2(c2cl + coc3) Cc2 c 2 + cc - cC2 - co + •

2 2 2 2 2
2(c3cl - coc2) 2(c3c 2 + COCl) - c -2c2 + cod)

Note that, since the Euler parameters satisfy the normalization condition

S+ 2+ 2 2 = 1, (26)
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only three are independent. In lieu of the translation vector d = (di, d2 , d3),
Study [56] introduced four new parameters:

c' = (cidi + c2 d2 + c3d 3)/2,

c' = (-cod - cd 2 + c 2 d3)/2,

2 = (CAdi - cod 2 - cid3)/2,

C' = (-c 2di + c1d2 - cod3)/2,

which, by definition, satisfy the constraint

c0c + cIc4 + c2C2 + c3C4 = 0. (27)

The set of all displacements in 1R3 can then be regarded as points, or soma, in
a 6-dimensional space spanned by eight coordinates (Co, c, r2, c3, c3, c1, C2, C' )
subject to the two algebraic constraints (26) and (27).

A compact and elegant algebraic description of these soma is obtained [8]
by combining the eight coordinates into a dual quaternion of the form

C = co + ec• + i(cl + Ec') + j (c 2 + Ec2) + k (c3 + Ec3). (28)

Here, the quaternion basis elements satisfy the multiplication rules

ij = k, jk = i, ki = j, i2 =j 2 =k 2 =-1

(so that multiplication is non-commutative: j i = - i j, etc). The components
of the quaternion (28) are "dual numbers" of the form x + E x' for real x, x'
- the dual basis element e satisfies e2 = 0 (# E). The relations (26), (27) and
62 = 0 ensure that (28) is a unit dual quaternion: its components satisfy

(co+eca)+ + _C+ )2 + (c + CC,) 2 + (ca_+Cc) 2 = 1.

For a spatial displacement specified by the unit dual quaternion (28), we can
extract the geometrical parameters as follows:

d = 2(cc -coc'-cxc'), € = 2cos-'co, (A)pv) - nsin ½€1O'

where c = (cl,c 2 ,c 3), c' (c4,c2,c3), 0 < cos- 1 cO < 7r, and x is the familiar
vector cross product in JR 3 . Note also that the translation distance is

d = Idl = 2 c/2 + c1 -+ c/2 "+c/

When c' = c' = c2 = c= 0 the dual quaternion (28) specifies a pure rotation
(the non-commutativity of quaternion multiplication reflects the importance
of the order in which spatial rotations are executed - see Figure 13).
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Fig. 13. Effect of rotations Rx(cs)Rz(fl) and Rz(3)R(c(a) applied to a vector v.

The principal advantage of the form (28) is that the outcome of successive
displacements, A followed by B, corresponds to the ordered product C = BA
of their dual quaternion representations. With

A = ao + Ea• + i(a, + Ea') + j (a 2 + Ea2) + k (a 3 + ea3),
bo= +bEb + i(bl + -b') + j (b2 +rb ) + k(b 3 +-b),

the elements of C are homogeneous quadratic forms in those of A and B:

co = aobo - albi - a 2b2 - a3b3,

C, = albo + aobl + a 3b2 - a2b3,

C2 = a 2 bo + aob2 + alb3 - a 3b, ,

C3 = a 3bo + aob3 + a 2b, - alb2,

co= aob0, + aob o - alb' - a'bl - a 2b' - a'b2 - a 3b' - ab
1 1 2 2 2 ab3 3 ab3,

= alb0 + a'bo + aobl + aob1 + a3b + a3b2 - 3 3

c2 = a 2b0 + a2bo + aob2 + a'ob 2 + alb' + a'b 3 - a 3 bl - a/3b1 ,

c' = a 3bo + a'bo + a0 b3 + a~b3 + a 2b1 + a2b, - alb2 - alb 2 .

Now a general rigid body motion, involving both translation and rotation,
corresponds to a locus of points in soma space, where a value of the time t is
associated with each point. It is tempting to invoke a unit dual quaternion
C(t) parameterized explicitly by "simple" - i.e., (piecewise) polynomial or
rational - functions of time, and most motion design schemes rely upon this
model. Typically, a sequence C1,... ,CN of displacements at times t1, ... ,tN
are specified, and one seeks a "smooth" motion interpolating them.

In §2 we emphasized that motion specification is as much concerned with
velocities and accelerations - determined by the precise nature of the time
parameterization - as with the path geometry, and this precept also holds for
spatial rigid body motions. An ad hoc or "indirect" time parameterization of a
quaternion locus C(t) can incur linear/angular velocities or accelerations that
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are undesirable or, at least, only determinable a posteriori - after the motion
has been specified, rather than being an integral part of its specification.

For rational point motion, the difficulty in simultaneously specifying both
path geometry and speed along the path arises from the fact that curves do
not, in general, admit rational arc length representations. As indicated in §6,
the use of special (PH) curves can resolve this problem. For rational rigid body
motions, however, the difficulty is not just one of computation, but also the
more fundamental issue of how we characterize "distance travelled" in terms of
both the translational and orientational components. Should they be treated
together, or separately? In other words, can we introduce a suitable metric for
soma space that allows us to define "arc length" along a unit dual quaternion
locus C(t), and thus formulate methods to specify both positions/orientations
and linear/angular speeds for rational spatial motions?

Ravani and Roth [49] have proposed, by analogy with elliptic geometry, a
metric that yields a dual number value for distances in soma space. However,
the use of this metric in motion design, or of alternate (real-valued) functions
that exhibit the usual properties of metrics, remains to be explored.

§8. Closure

With its opening AXIOMS, or LAWS OF MOTION, the Principia establishes
uniform motion as the natural state of a free body. The forces that act upon
bodies incur deviations from uniform motion, in a deterministic though subtle
manner that reveals appealing and useful connections between geometry and
kinematics. Although, in this rather brief and eclectic survey, we have offered
only a few illustrative anecdotes on this theme, we hope they have stirred the
interest of some inquisitive readers, and have thus helped to promote further
theoretical developments and practical applications.
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Curvature and Tangency Handles for
Control of Convex Cubic Shapes

G. Figueroa, M. Paluszny, and F. Tovar

Abstract. We consider the problem of modelling a plane convex shape
with a closed component of an algebraic non-singular cubic. All nine
degrees of freedom are interpreted as visual handles, namely: tangency to
three prescribed lines at three given points and the curvatures at these
points.

§1. Introduction

Algebraic curves, beyond conics, where introduced in CAGD by Sederberg
[6] in 1984. Paluszny and Patterson [1-3] studied splines constructed with
segments of cubic algebraic curves, called A-splines. Tovar, Paluszny and
Patterson [4] looked at A-splines constructed with segments of singular al-
gebraic cubics, which are just rational cubics, with new, geometrically more
meaningful, control handles for their shape. Non-singular cubics are classi-
cally well-known objects Salmon [5]. Projectively they could be of two types:
two or one circuit cubics. A two circuit cubic consists of two pieces, one of
which can be realized affinely as a convex closed curve, called an oval.

The goal of this paper is to study the feasibility of using ovals to model
plane convex shapes. We remark that ovals are not splines, they are C'
curves. Therefore, the main advantage of using ovals for modelling of convex
shapes is that no stitching of segments is required, which would be the case
for splines. In fact, a convex shape represented by a cubic oval doesn't have
any joints at all. It seems natural to place the study of cubic ovals within the
context of A-splines because they are connected components of cubic algebraic
curves. Moreover, the techniques to study the shape handles for their control
are similar to those used for A-splines as mentioned above. In particular,
we want to control the shape of an oval through its control triangle, contact
interpolation, and curvatures at three prescribed points, see Figures 1-4.
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Fig. 1. Shape control by moving vertices of the control triangle.

Fig. 2. Shape control by moving one of the tangency points.

I'

Fig. 3. Shape control by moving two of the tangency points.

Fig. 4. Sharpening the curvature at one contact point.

§2. Barycentric Coordinates and Curvature at the Endpoints

The general algebraic cubic in cartesian coordinates x, y is given by

F(x, y) = a30 x 3 + a03Y3 + a21x 2y + a12XY2 + a20x 2 + a 02y2

+ alxy + alox + aoly + aoo.
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(x1 ,yi)

(x0,y0) (x2,yd)

Fig. 5. Cubic with two prescribed tangencies.

If the cubic interpolates two points (xo, Yo) and (x2, y2), and it is tangent
to two lines joining these points to a third point (xi, Y) as shown in Figure
5, then its expression in terms of the barycentric coordinates (S, T, U) with
respect to the triangle of vertices (xO, yo), (xi, Yi) and (x 2, Y2) reduces to

F(S, T, U) = aS2 U + bSU 2 - cST 2 - dT 2U + eSTU + fT 3  (1)

where a, b, c, d, e and f are arbitrary real coefficients. This was observed by
Sederberg [6]. In Paluszny and Patterson [2] it was shown that the curvatures
k, and k, of (1) at (xo, Yo) and (x 2, Y2) are given by

- c A
a (V/(xl - xo) 2 + (Yi - yo) 2 )3

d A
b (/(xl - x2)2 + (yy - y2)2)3

where A is the area of the triangle with vertices (xo, yo), (xi, y1 ) and (x2, Y2).

§3. Three Prescribed Contacts

We now focus on the family of cubics with three prescribed contacts. Consider
a triangle of vertices Po, P1 and P2 , and let (s, t, u) be the corresponding
barycentric coordinates. Choose one point on each side, as shown in Figure 6.

The barycentric coordinates of each Qi are Qo = Qo(O, to,uo), Q, =
Q,(si, 0, ul), and Q2 = Q2 (s2 , t 2, 0). The general equation of a cubic passing
through these points and tangent (or singular) at them to the sides of the
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p,

;Q2 /,--/---

PO P2
Q,

Fig. 6. Barycentric coodinates of side points.

\ ~/'

/\

Fig. 7. Wrong contacts.

triangle is
(s8a300 - 2ao30t3)st 2

G(s, t, u) =a300s + ao03t + a0 0 3u +t3 )S~t (t3 .3

(ao3Ot2 - 2s3a 3OO)s 2t a(ta03O - 2aoo 3 3)tu 2+ . t2 + to 0

(aoo3u3 - 2t3ao3O)t 2u (s3a300 - 2aoo 3u3)su 2

-•-t20U0 SlU2

(ao0 3u3 - 2s1a 30O)s 2 u+ 2 -l + aluistu.

Note that there are four free homogeneous parameters. These have to be used
for two purposes:

"* to guarantee that the cubic is actually a two circuit cubic and that the
interpolation occurs at points of the oval,

"* to express the free parameters in terms of the curvatures at the interpo-
lation points, and find interval ranges for their meaningful modification.
The first point is crucial because we need to preclude situations in which
the contacts occur at points off the oval, as illustrated in Figure 7.
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§4. Curvatures at the Contact Points

We need to control the curvatures at the interpolation points. The first step
will be to find formulas for the curvatures in terms of the free parameters a 300,
a 030 , a0 03 and a111 of the cubic, as expressed in the barycentric coordinates
(s, t, u). In the next section we will produce inversion formulas for the aijk in
terms of the curvatures, which will allow us to find oval shapes with prescribed
curvatures at the prescribed contacts. It will be convenient to express the
curvatures k, and k. at Q2 and Q0 respectively, in terms of the barycentric
coordinates s, t, u with respect to Po, P1 and P2. As remarked in the previous
section

- cI AI
ai (P71Q0) 3

where A, is the area of triangle I, P1 Qo denotes the distance between P1 and
Qo, and a,, bi, c, and di, are the coefficients of the cubic in the barycentric
coordinates with respect to Q2, P1 and Qo, compare with (1). And similarly

- di AI

b, (P 1Q 2)3

In fact if a, b, c, d, e, f are the coefficients of the cubic in the barycentric
coordinates with respect to the triangle PoP1P 2 as expressed in (1), then the
coefficients a,, b1 , ci and d, of this cubic with respect to the triangle I of
vertices Q2, P1 and Qo are obtained by a linear change of variables:

uOul(a 2 2- / 2 )ao0 3 -- t0s.1(2a 300uos 2 + 2toao30t2ul - alllS2t 2uoul)
= S2U1t2

2al t2U t2U U2

S s 2 1 (a + )a3oo - t1u (2ao3a oS1t2 + 2S2 oaoo3 u1 - allSAtouoi)t2S1 U2

where a = UlsAto, 3 = uot 2s1 , and

ao a t3 + s~a3 oo
CI a0O t2 2a ,

d, a003u° + a0 3 t0t2

Using the relationship between the areas of the triangles PoP 1 P 2 and
Q 2P 1 Qo as illustrated in Figure 6, it follows that ku and k, can be expressed
directly in terms of the geometry of the triangle PoPIP 2 :

ku- 4c, uo Aa 2(2

- 4di s 2  A
= b u2(pp 2)3(3)



96 G. Figueroa, M. Paluszny, and F. Tovar

\ /

/\
/\

U=0 0
X ----- \

i\ %' Y,,

/I\\, / Ill

t0 ~ \PP/ t~ o P2'\

Fig. 8. Curvatures at the contact points.

where A is the area of the triangle PoP 1 P 2. To compute the curvature kt at
Q, with barycentric coordinates (sl, 0, ul), we consider triangle II to get

- 4d 1 t 2  Abii u2 (Po•P2 )3 " (4)

It is easy to show that using triangle III instead, we obtain the same expression
for kt.

Figure 8 illustrates the relationships between the coordinates of contact
points Qo, Q, and Q2 and curvatures k,, kt and ku.

§5. Inversion Formulas and Shape Control

Equations (2)-(4) can be rewritten as

kuS2ai - uocI = 0

k~u~bi - sod, = 0

ktulai - t2cII = 0,

where the a, b, c, d coefficients are given in terms of a300, a030, ao03, and a111
and k5, kt and ku are proportional to the curvatures k,, kt and ku, i.e.

- 3 3 - 3
- APip -7 Pp2  T- Pp2ku = ku A I0------t A A k, ---k,

The formulas for the aijk in terms of k8, kt and ku are

a300 = u1t (ktku(a + 3)3(sis 2 - touo(a + /)k•)

+ ult 2(tu0k, - s2tok3 I s kt)),
a030 = u~s•(k~ku(a + 03) 3 (tot 2 - slul(a + /3)kt)

+ 383uskt _ U~t~k, _-3tk
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a003  0ts (kskt(a + 0) 3 (uoul - t2s2(a + O)k,)

+ sito(s t ku - t3u3k8 - s u kt)), (5)

all, = (a + 0)
3 (ksktk,(a + 3)((a - 0)2 - 2a/)

+ 2k kt utos5u1 + 2ksk, uotot2s 2 + 2t2ss2 u 2kk)

3(a 2 + 8 2)(tot2S2 sik + Uotot 2u1 k, + uos 2s2u2kt)
+ (a + 0)(( _ '6)2 + ao).

As established above, see Figure 7, further constraints are required for the
contacts to occur at points of the oval, and for the latter to be contained
inside the triangle PoP1 P2 . Given the points Qo, Q, and Q2, (2) determines
a cubic which is tangent to the sides of triangle PoP 1 P 2 at these points. To
guarantee that the points Qo, Q, and Q2 lie on the oval it is sufficient that the
coefficients a 300, a 030 and ao0 3 have the same sign. Indeed, the first condition
implies that the third intersection of the cubic with each of the lines s = 0,
t = 0 and u = 0 occurs outside the triangle. Since each contact Qj accounts for
two intersections, if the cubic at every Qj bends inwards the triangle PoP 1 P 2 ,
then the contacts actually occur at points of the oval of the cubic which then
has to lie inside the triangle. The positivity of k,, kt and k, guarantees that
the curve bends towards the interior of the triangle, see [3].

Given the contacts at Qo(O,to,uo), Ql(si,O,ul) and Q2 (s2 ,t 2 ,0), see
Figure 6, for ao03, a030 and ao03 to have the same sign, it is enough to take

=o 8 281

touo(a +/3)'

° Ulsl(a +,6)' (6)

kUO _ uouJ

s 2t2(a + +)
Note that given an oval with three prescribed curvatures, when we fix

two of them the equations for the aijk in terms of the third are linear. So, it
is easy to find an interval range for the modification of the third curvature,
while keeping the coefficients a 3 00, a 03o and a0 03 of the same sign.

§6. Conclusion

A convex shape can be modelled with a cubic oval controlled by a triangle that
contains it. By moving the vertices, we drag the oval along (see Figure 1).
Moreover, given any triangle and three points, one on each of its sides, we can
produce a convex shape that contacts the triangle at these points. This convex
shape is our cubic oval. Furthermore, we can prescribe the curvatures at these
three points, within precisely defined conditions. If we fix two curvatures, the
third curvature can be modified within an interval which can be computed by
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solving a system of linear inequalities. In fact given the vertices of the control
triangle, the contact points at its sides and the three initial curvatures kV, k°
and k° as given by (6), it is always possible to modify any of them keeping
the other two fixed.

This entails solving the linear inequalities a 3 00 > 0, a03O > 0 and a003 > 0,

or a 300 < 0, a03O < 0 and a003 < 0 given by the linear system (5).
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Monotonicity Conditions of Curvature
for B6zier-de Casteljau Curves

Jean-Charles Fiorot and Laurent Schiavon

Abstract. In this paper, we deal with the monotonicity of curvature
problem for B6zier-de Casteljau curves. We focus more particularly on
the cubic case. A condition about decreasing curvature at the origin of a
cubic curve is given so that it implies decreasing curvature at every point.
The corresponding cubics are determined by their control polygon.

§1. Introduction

The problem discussed here concerns the shape control of curves; mainly how
to obtain curves with a monotone variation of curvature. The aim is to find
the widest class of curves with monotonely increasing or decreasing curvature
variation. This problem mainly arises in car body shape design.

Let P be a n-degree B6zier-de Casteljau planar curve defined on [0, 1]
given by its control polygon {P 0 , P 1 ,..., Pn}. Let us consider 1 =1 PoP, 1, and,

Vi =1,... ,n-1, set hi =1 PjPj+l I / I Pj-lPi land oi = (PjPi+1 , Pj-lPi). We
say that P admits the representation (hi,... , hn-1; (Pi, ... , 5 0n-1; 1). Higashi,
Kaneko and Hosaka [3] characterized the monotonicity of curvature when Vk =
1,... ,n - 1, hk -= h and SOk = yp : hcosWo > 1 and h < cos W are respectively
the condition of decrease and increase of the curvature. This model has been
used recently by Mineur, Lychah, Castelain and Giaume [4] to control a shape
when fitting a curve to a set of given data.

Here, we focus on the cubic case. From the representation (hi, h2 ; WOl, Wo2;
1) of P, we apply the de Casteljau Algorithm at t value belonging to the interval
of definition, and we determine by induction the parameters characterizing the
two segments given by the Subdivision Algorithm. This process enables us to
determine the curvature p. Then, we seek cubic curves for which decreasing
curvature at the origin implies decreasing curvature at every point. Such
curves are determined via the parameters r* = h 2l/hl, ol and Wo2. The study
falls into two cases : r* > 1 and r* < 1. For the second case, we give a more
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strict decreasing curvature condition at the origin in order to get the decrease
of p everywhere.

In the framework of Fiorot and Jeannin [1] and Fiorot, Jeannin and Taleb
[2], an attempt to extend these results to rational cubic curves has been made.

§2. de Casteljau Algorithm

Let P be a B6zier-de Casteljau cubic curve (BCc in short) defined on [0, 1] with
its control polygon {Po,P 1 ,P2 ,P3} and representation (hi, h 2; W1, 2 ;1). For

t e [0, 1], the de Casteljau algorithm gives the points p(j)j=o,.,3 fined

by the relation p(j-") _ (1 pU) +±tPj) and we obtain P(t) = Po(3). Now,
we set Vk = 1, 2,

(1) (p(i) p(2) pkp~l) 6 (l) P1)pk-l p(2)-p())ly , - 1kl - Pk -1, - k-1r_), k k k 1 -

Ip() p(2)(0 pk)-1 k-11
k Pk- 1 Pk(l) 1

and

pP)(' 2) )

(2) p(2 ( ,P(3 p'11)P b(2) p(1)p 1  ), A (3)p(2))

1Y1~* 0 R (100 0 -- 00 1 1 2 )

After some calculations, we obtain Vk = 1, 2,

= ((1 t) 2 + 2t(1 - t)hk cos SOk + (hkt)2 )½. (1)

Then,
exp(i,•1)) =((1 - t) + hkexp(icpk)t)/A(°), (2)

exp(ib•')) ((1 - t)exp(iPk) + hkt) /A4), (3)

( 1) = .+ P) [2,r], (4)

11 2t 1
ý10

-(1 -t) + 2t(1 - t)hl' COS 0 + (h(1))) , (6)



Monotonicity Conditions of Curvature 101

exp(i'•y2 ) = ((1 - t) + h(l)exp(iV(1))t) /A 1 ), (7)

exp(i •2))= ((1 - t)exp(iw1)) + h(1)t) /A(' (8)

Remark 1. For t E [0, 1], the de Casteljau Algorithm splits the curve P into
two segments: the left one is the restriction of P to the interval [0, t] defined

by the control polygon {P 0 , p(1), p( 2), p(3)} which admits the representa-

tion (A(°), A(1)' ,(1) y(2),-It), whereas the right one is the restriction to [t, 11
defined by {Po(3), 1 p)(1) P3} which admits (h(1)/A(1),h21A(°); 6(2) 6(1).

1 0 1 / 1 2 7 1 , •2 ,

l, - t)) as a representation.

§3. Curvature Characterization

We determine the curvature radius R and the curvature p = at every point
of the curve P via the parameters mentioned above. Let us remember that
the curvature radius R is determined by the approximation R ý-_ -A, where
s denotes the arc length and a the angle of the tangent vector with a fixed
direction.

First, we give the expression of R at t = 0. Let us consider a value t near
0. We have the following approximations

As - (1 + A(°) ± 1)•1÷
Aa = _-y~i) _ (•2) _ _ si(71) +(2)).

By using (1) - (7), we obtain when t tends to 0

3 1
R(0) -- 2 hi sinVi" (9)

Now for t E (0, 1], we apply (9) to the right segment whose origin is 0(3)

Then, the curvature radius at t is

R~) 3 _A(°)A( 1)1(1 -t)
R(t) = 2 (h)1/A(1)) si- t(2)

I 1 1 "U

Therefore, (8) implies

R(t) = - h•10)(hsl))3 (10)2 h(l) sin R()"

Application. Let us consider the case hl = = h and V01 = Wp2 = V with

so e [0, 1]. One can prove that Vt E [0,1], A(0) = A(')(- A), •o1) = • and
h•l) = h. Then, we obtain with (10), Vt E [0, 1], p(t) = 2h sin 5 /(31A 4 ).

Differentiating A = ((1 - t)2 + 2t(1 - t)h cos V + (ht) 2) ½, we deduce that
h cos W >_ 1 and h < cos V are respectively the condition of decrease and
increase of the curvature [3].
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§4. Decreasing Curvature Condition in the Case r* > 1

Let P be a BCc curve with representation (hi, h 2; ýl, ý2; 1), and let

(W1, W2) E [0, 1)2. For t F [0, 1] , we set r = A(1)/A(0 ). At t = 1, this
parameter is r*. Moreover, we define

A = sin(- 1 ) + (2)) sin(1yj) + (2))

sin 27('1) ' sin 2y(2)

At t = 1, we prove via (1) - (7) that these parameters are respectively

A- sin((pi + (P2) . _ sin(•i + WP2)

sin 2 1 ' sin 2n 2

Lemma 1. At t = 0 and t = 1, we have respectively the equivalences:

3hicos'pl - r*A*) 1 <=ý p'(0) <0 (11)

h2  3 1 - r*u) cos W2 4 p'(1) <0. (12)

Proof: We calculate p'(0) as limt-o (p(t) - p(O))/t via (9) and (10). We
obtain

p'(0) = p(0)(hl(h 2 sin(WI + W2) - 2 sin 'P - 6 sin 'o1(hl cos W, - 1)). (13)

Then, with the above definitions of A* and p*, we obtain (11). At t = 1, we
consider the curve P(1 - t) which has the representation (1/h 2, 1/h1; W2 ,'Pl;
h1 h21). E]

Remark 2. The equivalences (11) and (12) do not depend on the interval of
definition.

Lemma 2. Let P be a BCc curve defined on interval [tI, t 2] with the repre-
sentation (hi, h 2 ; V1, 'P2; 1). Let us suppose that r* > 1. Then,

p'(tl) < 0 rý p'(t2) < 0.

Proof- We have the successive inequalities

h 2 > h, > 2 r*A*- -1 1 -> r**)cos P0.
- 3 COS ýp1 2

The first one uses the definition of r*. The second one uses (11). From the
identity

sin 2 ('Pl + WP2) - sin 2(W1 - WP2) = sin 2'p1 sin 2'P2,

we deduce A*/M* > 1. After some calculations, we obtain the third one and
consequently (12). 0
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Fig. 1. Decreasing curvature domains for r* = 1, 1.5 and 3.

Lemma 3. Let P be a BCc curve defined on [0, 1]. With the previous nota-
tion and hypothesis, we have

r* cos(W1 + W2) - cos 29o1 Ž! 0 o* Vt E [0, 1], r > 1.
Proof: For t E [0, 1], we find that l()A()2 - (A°)4is positive if

(1 - t)2Ao + 2t(1 - t)A 1 + t 2A2 > 0

with SA0 = 2(r* cos('Pl + 'P2) - cos 2W,),
A1 = 2hi(r* cos W2 - cos Wl),
A2 = h2(r*2 - 1),

is positive. Then r* cos('P1 + W2) - cos 2W,1 _ 0. Conversely, this inequality is
equivalent to

(r* cos 2 - cos W1) cos W1 _Ž (r* sin W2 - sin '1) sin W1.

Considering the cases 'P1 •5 W2 and WP2 < WP1, we see that the coefficients of
the above Bernstein polynomial are positive. El

Proposition 1. Let P be a BCc curve defined on [0, 1] with the representa-
tion (hi, h2; W1, W2; 1). Let us suppose that r* > 1. We consider the domain

D1 = {(W1, W2) E [0, 2)r* cos(WP + W2) - cos2Wl > 0}.

'2'

For (W1, '2) E D 1, we have

p'(0) _< 0 -ý* Vt E [0, 1], p'(t) < 0.

Proof: The proof is a consequence of Lemmas 1 and 2. 0

The domains corresponding to different values of r* are described via the
following graphs in function of W1 (horizontal axis) and W2 (vertical axis). In
Figure 1, the white part represents the decreasing curvature domain whereas
the dark one denotes a domain where the decrease at t = 0 is not possible
(rWA* > 3). One can notice that the latter is empty when r* > 6. In the grey
part, we cannot say anything about the monotonicity.
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§5. Decreasing Curvature Condition in the Case r* < 1

With r* < 1, the condition p'(0) < 0 is too strict, so we consider the following
sufficient condition on decreasing curvature at the origin:

p'(0) :5 4 (1 - -1½) p(0)'

which is equivalent to

3 rA
2hi COS V 1- * (14)

If we set
3• hlcoswlll-I3]

23

(14) becomes r*a* > 1. Furthermore, we set Vt E [0, 1],

a=3 A(0) CO(1) I( rA\
2 131

A calculation gives a = (1 - t) + a*t.

Remark 3 . The inequality (14) does not depend on the interval of definition.

Lemma 4. Let P be a BCc curve defined on interval [t1 , t2] with the repre-
sentation (hi, h 2; Wi, (P2; 1) and r* < 1. Let us consider domain

D 2 = {(V1 ,W2) C [0, "[,r* cosW2 - cosl W1> 0}.
'2'

Then V (01,V2) C D 2,

p'(tl) !_ 4 1 - ) p(tl) =:' p'(t 2 ) <_ 0.

Proof: For (V1,W2) E D 2, we have

( r*A*) (i 1 CO V*u* 1COS Wlo 2 5 2 2

which, with (14), implies

h2 = r*hl 2 (1-r) -1  > 3 (- cos'2. W2-3 -cosW1 - -2 3)
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Lemma 5. Let P be a BCc curve defined on [0, 1]. Under the previous
hypothesis, we have

V('Pi, W2 ) E D 2 *Vt E [0,1], rCos y2) - Cos 1 ) _> 0.

(2) >(1) ndolyiProof: For t E [0, 1], we find that r cos -y - cos 71y >0 if and only if

(1 - t)(r* cos(W1 + 'P2) - cos 2W,) + hi(r* cos W2 - cos Pl)t > 0.

Then r* COS W2 - COS WP1 _ 0. Conversely, r* COS W2 - cos 01 > 0 and r* < 1
imply W2 •< W1. Then r* sin W2 - sin W, < 0. Consequently,

r*cos(Wl-102)-cos 2,1 =(r*cos (W1rkP2) -cos 2W1)cos, --(r*sinW2 -sinai)sin'Pi

is positive. [

Lemma 6. Let P be a BCc curve defined on [0,1]. Under the previous
hypothesis, we have V(Wl, W2) E D2,

hl(r*2a* - 1) + 2(r*a*2 cosW2 - cos W1) _ 0 ' Vt E [0, 1], ra > 1.

Proof: The last inequality is equivalent to deciding whether a fifth-degree
polynomial is positive. We verify that all its coefficients are positive but for
one. The positivity of this coefficient is equivalent to the first inequality in
the lemma. E]

Proposition 2. Let P be a BCc curve defined on [0,1] with the representa-
tion (hi, h 2; V1, W2; l). Let us suppose that r* < 1. We consider the domain
D2 as mentioned above and

D 3 = {((Pl,P 2) E [0, 2),hl(r*2a* - 1) + 2(r*a*2 cosP2 -cosWl) > 0}.
2

Then, V(Wl, W2) E D 2 n D3 ,

p'(0)_:54(1 -1 p(0) =: t E [0, 1], p'(t) 0_ .

Proof: The proof is a consequence of Lemmas 5,6 and 4. 11

Here, we describe the different admissibility domains D 2 nlD 3 (represented
in white) for several values of r* in considering that a* = 1/r*. As illustrated
in Figure 2, there is a domain continuity when r* is near 1 with the case
r* = 1 (Figure 1). When r* decreases, the domain gets smaller and smaller
and then it is finally empty for r* ý- 0, 33. If we take a* > 1/r*, the domain
size increases and tends to D2.
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6o 3 o 9 o 6 o Q 3 o

Fig. 2. Decreasing curvature domains for r* = 0.99,0.95,0.9 and 0* = 1/r*.

§6. Examples

Our results are illustrated by examples of BCc curves whose curvature de-
creases. For each curve, one quarter of the curvature radius is represented at
t values 0, 0.1, 0.2, ... , 1.

Example 1. r* = 1 and p'(0) = 0. The first curve with small angles (•, •)
and a length rate hi - 0.99 (Figure 3 (a)) is characterized by a small radius
increase. The second one has angles (1, M) and hi c- 1.36 (Figure 3 (b)).

Example 2. (V1, '2) = (•,) and p'(0) = 0. The curve with r* = 1.25
(Figure 4 (b)) is tighter than the curve with r* = 1 (Figure 4 (a)).

Example 3. r* = 1.5 and (P1,W2) = (Q5, E) We compare the curvature
radius increase at the origin for a curve (Figure 5(a)) with p'(0) = 0 (h, -
1.71) and another one (Figure 5 (b)) with p'(0) = -0.12 p(O) (h, - 2.05).

Example 4. We consider two curves with r* < 1 and a* = 1/r*: r*
0.95, (W'1, (2) = (E, E) and r* = 0.9, (W1,W2) = (E, E). The parameters
obtained by calculations (take the equality in (14)) are respectively h, -1 1.44,
p'(0) = -0.03 p(O) and hi ý- 1.28, p'(0) - -0.06 p(O) (Figure 6 (a)-(b)).

Fig. 3. (a) r* = 1, (01, o2) = (•, •), (b) r* = 1, (01, 2) = (•, •).
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Fig. 4. (a) r* = 1, (ý'i, V2) (3,), (b) r* = 1.25, ('1, W'2)= (-, •)"

7/

Fig. 5. r* = 1.5 and ('Pi, W2) = (R, ') (a) p'(0) = 0 , (b) p'(0) = -0.12p(O).

Fig. 6. (a) r* = 0.95, ('1, W2) -- (, -), (b) r* = 0.9, (VI, VP2) - (6, -).
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From Local Approximation to a

G 1 Global Representation

CUdric G~rot, Dominique Attali, and Annick Montanvert

Abstract. To represent a complex surface, it is useful to describe it as
a set of simple parametric primitives such as quadrics. But if one wants
to use few primitives, these have to be smoothly blended. To define this
blending, we propose to describe the initial global surface with charts. The
blending surfaces result from a convex combination of primitives whose
weights are defined on open sets of R2 given by the charts. We have
established the properties that the weight functions must satisfy to obtain
a G1 representation of the global surface, and we have constructed such
functions.

§1. Introduction

The abundance of high quality volumetric image data and new performant seg-
mentation methods for multidimensional image data make 3-D objects ready
for analysis. Volumetric objects are basically represented by a binary voxel
representation or by a triangulation of the surface. Because they are based
on huge lists of voxels or surface elements, they are not efficient for capturing
global and local shape features with a view to characterizing shape proper-
ties. The spline surfaces can be very useful, but become difficult to use for
topologically arbitrary surfaces modeling because they require a rectangular
parameterization. On the contrary, any surface can be approximated using
quadric surface patches as in [2]. While they lead to a good shape descrip-
tion, the quadric patches do not define an overall continuous surface. Ideally,
a surface representation for image analysis should allow us to represent con-
tinuously any complex surface with few parameters, and to extract shape
properties as well.

We propose to represent a surface with charts. A chart is composed
of a patch U lying on the surface and a homeomorphism of U onto a 2D-
domain. This notion has already been used, but essentially for image synthesis.
Thus, in [14], it allows texture mapping on a triangulated surface which is too
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Pierre-Jean Laurent, Paul Sablonnibre, and Larry L. Schumaker (eds.), pp. 109-118.
Copyright @ 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.



110 C. Gdrot, D. Attali, and A. Montanvert

complex to be described by only one chart. It is also used in [9] to design a
surface with B-splines on any topological polyhedra, and in [15] to generalize
the B-splines for constructing surfaces from irregular control meshes that can
be embedded in the plane. Then, Eck et al. [5] use this notion to design a
subdivision mesh from any triangular mesh.

We use it for image analysis because it allows to unfold a complex surface
(for instance the surface of a brain). It is then an appropriate tool to extract
surface features. Before using it, we first have to construct it. To do so, we
begin by representing the surface by means of a set of simple surfaces called
primitives (quadrics for instance) which approach it locally. (We currently
study new processes to extract primitives from 3D objects). As mentioned
above, the primitives do not define a globally continuous surface in general.
So they have to be smoothly blended. This paper is focused on a solution to
the blending problem.

Several different approaches to surface blending have been suggested.
Firstly to fill a hole on a surface, one can interpolate a position and tangency
conditions network [18,7,16,4], or construct a rational patch to fill a polygonal
hole [10,8]. Our blending problem is not to fill a hole. But our approach solve
this problem too. Secondly, to blend two surfaces, one can apply a rolling-ball
algorithm [1,3,6]. But one cannot blend more than three surfaces at the same
time. One can also meld isopotentials if the primitives are implicitly defined,
[17,11,12]. But this seems to be a too restrictive condition. Our approach
differs from these methods in that we blend any number of primitives at the
same time, provided they can be parameterized.

This paper begins with mathematical definitions which are necessary to
define our representation with charts. Then we present our approach for
surface blending. Next we illustrate the different steps of our approach with
some examples. Finally, we conclude with future work.

§2. Surface Representation with Charts

We begin with some mathematical definitions coming from differential geom-
etry [13].

Definition 1. A n-dimensional manifold is a topological space such that each
point admits a neighborhood homeomorphic to R'.

Definition 2. A chart (U, 0) is composed of an open set U of an n-manifold
and a homeomorphism 0 of U onto an open set of R'•.

Definition 3. Two charts (Ui, Oi) and (Uj, Oj) agree with each other if their

transition function

¢ij= V o 071: oi(Ui n Uj) -* Vj(Uj n Ui)

is a diffeomorphism.

Definition 4. Such a collection of maps charting all of the manifold is called
an atlas.
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Remark. Every 2-dimensional manifold admits an atlas.

To give an atlas describing a surface is to give a representation of it with
charts. This representation possesses two main advantages. Firstly, it com-
bines local information with global information (0- 1 is a local parameteriza-
tion of the surface). That means one can work locally on the surface without
undesirable consequences on the global surface because the atlas maintains
this consistency by definition. Secondly, an atlas allows to translate problems
given on any 2-dimensional manifold into problems given on 1R2.

§3. Smooth Blend

We have given the mathematical definition of the representation with charts.
We now discuss how to use it to construct a G1 global representation of a
surface. Our aim is to represent a 2-dimensional manifold V by means of a
set of simple surfaces called primitives (quadrics for instance) which approach
V locally. To be more precise, we assume a family {Ui} of open sets on V the
union of which covers V and such that each Uj is approximated by a primitive
Pi in such a way that there is a bijection bi of Uj onto Pj: Pi = bi(Ui).
The blend we want to construct between the primitives Pi must be a smooth
surface S which overlaps a closed set of each Pi, called pure area and defined
by bi(U \ Uji Uj). So, to be able to construct a smooth blend, the primitives
must overlap sufficiently (see §4.1).

The blend is defined as a convex combination of the primitives Pi which
approximate overlapping open sets U2. The surface S is defined by an atlas
and is a representation of V.

Hypotheses.

e We suppose that Pi are 2-dimensional manifolds parametrized by pi,
homeomorphisms which are C1 on an open set £1, of ]R2 : P2 = Pi(Qi).

e Let Qkj be the open set of 7l defined by £lij = pi (bi(Ui n Uj)).

e We suppose that there exist some bijective transition functions ij :
Qjj - Qjj, such that Vkj o Wik = Wij. In particular, fjii = Qi and
Vii is the identity. We write P(N) for the set of subsets of IN, and define
for all i

Ti :i-* P(N)
m H{j E IN: m E Qij}

* Let the weight functions ai be defined on Qj and satisfying the following:

Property 1. Convexity
la) Vi, VmGE j,0 < a(m) • 1

lb) Vi,Vm E R,EjE-i(m)ao(9ij(m)) = 1.

Property 2. Regularity
2a) ai (m) = 1 if pi (m) belongs to the pure area,
2b) ai(m) = 0 if m does not belong to Si.
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* We define for all i

'i :'Qi -_4 R3

m F-4 E aj(,ij(m))pj('Pij(m))"

jElZ(m)

Remark. This definition is consistent: oj (Vij(M)) = Wi (M).

Proposition. With these hypotheses we get:

"• If oi is bijective, Pij is C' and ai is C0, then S is a 2-dimensional manifold
for which an atlas is {(W7

1
-(pi), W 1

)}.

"* If wij is C1 and ai is C', then S is described by a Cl-atlas (S is then a
G1-surface).

Property 2a guarantees that Soi(in) = pi(m) if pi(m) belongs to the pure

area. Properties 2a and 2b can be inconsistent with each other if the pure
area is not strictly included in pi(Qj). But in this case, another primitive can
be introduced, which overlaps locally Pi.

On one hand, our representation is more efficient if few primitives are
used. On the other hand, S is closer to V when more primitives are used.

So the appropriate balance must be found with regard to these needs. But,
if the blend is not defined specifically to perform the approximation of V by
S, the approximation error is on the same order of magnitude as that due to
the local approximation by each primitive. This last property is due to the
convexity property followed by the weight functions.

To construct weight functions which satisfy the convexity properties, we
first construct functions /3i satisfying the following

Property 3.

3a) Vi, Vm E Qj, 0 1< 3ji(m) < 1,

3b) Vi, Vm c Qi,ZjEli(m())j(POij(in()) # 0,

3c) 3i (m) = 1 if pi (m) belongs to the pure area,

3d) /3i(m) = 0 if m does not belong to 92i.

Then, the weight functions ai defined by the following expression have
all the desired properties:

/3i(m)

where Wij is a C 1 transition function.

§4. Applications

In this paper, we detail the construction of the open sets Qj, the weight

functions aj, and the functions Woi. Further work will focus on the construction
of domains Ui and the transition functions oij.
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0.5e7 --

0.167 ...

Fig. 1. Functions b(p) and 0(p, 0).

4.1. Weight functions

As shown in §3, to construct satisfactory weight functions, we first construct
function /i satisfying Property 3. We suppose the open set Q is a disc whose
radius is R. Let r be the radius of the smaller disc having the same center as
Q and including the set of points {m E 1 : p(m) belongs to the pure area}.
To simplify the notations, we call this set of points the pure area too. Then
we can give a cylindric definition of 0, where t is a shape parameter:

,3(p, 9) = b(p)

with
(1if P <r,

P(p) ifr < p!< r +t,
b(p) = L(p) ifr + t < p5 <R- t,

1 -P(R +r-p) ifR-t<p<R,
10 ifR < p,

where L(x) = Dx+E, P(x) = Ax 2 +Bx+C and D R-t_ E = 1-(R+r)D
R-r-t' 2 '

A B = -2Ar, C = 1- Ar 2 -Br.

Fig. 2 shows the weight function a after normalization, in a case where P
is combined with five other primitives.

In order that the small disc whose radius is r better fits the pure area,
two modifications can be easily implemented. Firstly, we can define the small
disc containing the pure area with different center than the center of Q. '3
will have the same definition but with R depending on 9. Secondly, we can
use ellipses rather than discs.

The parameter t, which belongs to (0, 0.5), controls the nonlinear part of
b. The smaller t, the smaller this part is. To avoid a final surface which is
visually too sharp, t must be neither too small nor too large.

The size of the pure area also plays an important role in the surface
smoothness. As shown in Fig. 4, if the pure area is too large, then the transi-
tions between the primitives are too sharp in regards with the resolution of a
visualization process. On the contrary, a pure area which is too small causes
smooth transitions, but the shape of primitives is lost. In the example shown
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Fig. 2. Function a for a fixed 0 and for all 9.

zoo

o:.

open set Q,
where the paraboloid
z=(x- k,) (y- k,) • .. ./ ]o

is defined

open set D i
where the paraboloidz=k-xy • -Y 2

is defined

Fig. 3. Blending paraboloids: an example satisfying the hypotheses (r - 0.71R).

oi 4?0i 4

Fig. 4. Blendings with too large (r = 0.85R) and too small (r 0.07R) pure areas.

in Fig. 3, we have implemented a case where the pure area is half the area of
Q. This balance gives a good solution.

We have constructed satisfactory weight functions. To apply our repre-
sentation we must define the functions Ii, bijective and C' transition functions
oioj, and check that (pi is bijective to be sure that S is a G' surface.
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4.2. A simple case

We first apply our representation in the case where the surface V to be repre-
sented can be described by v(x, y) = [x, y, f(x, y)], (x, y) c D C R 2 : a land
surface in topography for example.

We suppose that a set of open discs f2i is defined by any local approx-
imation strategy, and parameterizations pi(X, y) = [x, y, pf (x, Y)], (x, y) E

Pi are given such that D C Ui Qi and each pi is a C1 approximation of
{v(x, y) : (x, y) c i nD1.

It is easy to check if a point (x, y) is inside a disc flj, and so to define
Zi(x, y). Besides, the transition functions Wij are, in this case, the identity,
which is C1 and bijective. Finally, the functions Wi constructed by convex
combinations of such pi are bijective. So, the surface S described by the atlas
{(y-l(f),-l)} is G 1.

Fig. 3 shows an example of this first case. We deal with six open discs.
One of them, £li, is centered on the origin. The others are centered on the
vertices of a pentagon which encircles Pi. The primitives are paraboloids.
The central one is defined by z = k - x2 - y 2, and the others by z = (x -
k!) 2 + (y - k?)2 where k* are constant.

This example displays the blend between two primitives quite similar
locally around their parts to blend (a central and a peripheral), and between

two dissimilar primitives (two peripherals). The surface is smooth even if
adjacent primitives are strongly different from each other.

4.3. A more general case

Most of the surfaces to be represented cannot be described by [x, y, Vz (x, y)].
To deal with any surface V, we require a triangular mesh which is a first

approximation of V. To simplify the notations, we name this mesh V too. We
define on it a set of domains Ui. Each Ui is a set of vertices, edges and faces
of V. It is isomorphic to an open disc, and well approximated by a primitive
(a plane in Fig. 7).

In this case, we do not give an analytic expression to the functions pi,
Wij and the open set 4ij, but they are defined on a finite set of points. They
are described by links between vertices of different meshes (see Fig. 5). For

instance, we construct a mesh Qi lying on R 2, using the bijective harmonic
map presented in [5], on Ui, see Fig. 6. Therefore, each vertex u of Ui is linked
to a vertex w of Pi. Because of these links, -i, Wij and £lij can be defined on
the vertices of £i as follows:

For every vertex u of V, we construct l(u), the list of the vertices
linked to u. Each of these vertices lies on a different Qj. l(u) contains
only one vertex w if w belongs to a pure area. Let w be a vertex of an
open set £i. Let u be the vertex of Ui (and so V) linked to it. For all
i, if one of the vertices of 1(u), w', belongs to Qj, then Ti(w) includes
j, w belongs to 4ij and Wij(w) = w'; or else w does not belong to
N4i.
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/s_/ P(,

Fig. 5. Notation in the general case.

The functions /3/ are calculated as in §4.1, and thanks to 1i, we calculate
a2 on the vertices of .

In the same way, we construct a mesh Pi, which is in bijection with Ui and
whose vertices lie on the primitive which approximate U2. Thanks to the links
between the vertices of Ui and Qi, we define the links between the vertices of
£1, and P2. These links define the paramatrization pi on the vertices of •i.

We then construct a mesh S whose vertices are calculated by •i defined
on the vertices of gnr as in §3.

Assuming there exist C1 functions apij and P which interpolat e values
set on the vertices of i., and satisfy the hypotheses given in §3, the vertices
of S lie on a G1 surface.

Remark. Because we do not give an analytic expression for PT and t ij, we
have to store the meshes of i and Pi. In future work, we will either have to
give simple expressions for those functions, or decrease the size of the meshes.

§5. Conclusion
The representation with charts can be used to construct a useful surface model.
But, before applying it to real data, we still have two crucial steps: the defi-
nition of the domains U, and the definition of transition functions. Then we
will apply it to image analysis problems such as registration, surface feature
extraction, texture mapping or animation. More precisely, we will begin with
the visualization of S by a mesh hierarchy which offers different levels of detail.
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Fig. 6. An open set Qj.

Fig. 7. The meshed primitives Pi and the mesh S.
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A Class of Totally Positive Blending B-Bases

Laura Gori, Laura Pezza, and Francesca Pitolli

Abstract. Totally positive blending bases present good shape preserving
properties when they are used in CAGD. Among these bases there exist
special bases, called B-bases, which have optimal shape preserving prop-
erties. In particular, the corresponding control polygon is nearest to the
curve among all the control polygons; thus many geometrical properties
are similar to the ones of the curve. Examples of totally positive blend-
ing B-bases are the Bernstein polynomials and the B-spline basis. Our
purpose is to construct new classes of such bases starting from compactly
supported totally positive scaling functions.

§1. Introduction

One of the main goals in Computer Aided Geometric Design (CAGD) is to
predict or control the shape of a curve by studying or specifying the shape of the
control polygonal arc formed by certain points which define the curve, typically
the coefficients when the curve is expressed in terms of a particular basis. This
is possible when we choose as a basis a system of functions v = (vo,... ,Vn)

with suitable shape preserving properties. This means that the geometrical
properties of the curve in R2

n
7 (X)= P vi (X), X EI c ,(1

i=0

constructed on the control points Pi E R 2, i = 0,...,n, are implied by the
geometrical properties of the control polygon P0 ... P,. The shape preserving
properties of each representation (1) depend on the characteristic of the system
V.

The bases commonly used in CAGD, such as Bernstein bases, B-splines,
/3-splines, nonuniform rational splines (NURBS), are blending totally positive
systems. This means that the collocation matrix

M o (V0 -.. , Vf (V,(Xj))n 0 . (2X... ) X60
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for any sequence x0 < ... < x,, xi E I, i = 0,...,s, is totally positive (i.e.,
all its minors are non-negative), and the basis functions add to one, that is

n

Yvi(x)=1, xe1. (3)
i=0

The importance of blending totally positive systems is due to the fact that
they enjoy two properties which are usually demanded for curve control: the
convex hull (CH) and the variation diminishing (VD) properties (see, for in-
stance, [5,6]). As a consequence, in many ways the shape of the curve Y
mimics the shape of the control polygon PO ... Pr,. However, blending totally
systems usually do not enjoy a property which is also important: the end-point
interpolation (EPI) property.

Bases which simultaneously satisfy the VD, CH and EPI properties can
be obtained by considering blending B-bases [5].

Following [5], a totally positive (TP) system u of linearly independent
functions is said to be a B-basis if any totally positive basis v of the space U
generated by u satisfies the condition

v = uA, A nonsingular totally positive matrix. (4)

In [4] it was proved that if there exists a blending TP basis in U, then there ex-
ists a unique blending B-basis for that space. B-bases have optimal properties
in the geometric context [5], that is, in particular, the control polygon with
respect to the B-basis is nearest to the curve among all the control polygons
with respect to any other TP basis.

Some examples of B-bases are given in [4,5]; in particular, the B-spline
basis is the blending B-basis in the space of the polynomial splines of degree
m, on a given interval with a prescribed sequence of knots.

At this point, it is worthwhile to remark that in the case of cardinal
splines (knots at the integers), this basis is related to the cardinal B-spline
Nm, defined by N' = N`- 1 * NO, where No is the characteristic function of
[0, 1) and * denotes the convolution product (see, for instance [8]).

On the other hand, N m is a scaling function, that is the solution of the
functional equation

Im+1Nm (x)= >--- (mn lN- (2x -i), x E R. (5)

i=o

In this paper, we analyse the more general problem of the construction
of blending B-bases considering, instead of N m , a scaling function satisfying
a functional equation more general than (5):

W(x) = 1 aiW(2x - i), x G R, (6)
iE2Z



Totally Positive Blending B-Bases 121

where the mask a = {a}aiE satisfies the following conditions:

S a 2i+1-- 5a2, = 1. (7)
iE2Z iE2Z

It is known that a solution Vo of (6) exists if the mask a satisfies further
conditions, in addition to (7). In particular, if:

i) a is compactly supported on [0, m + 1] (with aoam+l # 0),
ii) the symbol

m+1

p(z) = 1 aiz' (8)
i=O

has roots with negative real part (Hurwitz polynomial),
then there exists [8] a unique scaling function solution of (6), whose support
is [0, m + 1], such that

E w(x-i)=1, x IR. (9)
iE23

Moreover, the functions {W(. - i), i C 2Z} are linearly independent and totally
positive on R.

The aim of this paper is to construct new classes of blending B-bases,
from a given system {J(. - i),i E Z}, where Z is a finite subset of 2Z and Wo
is a scaling function. In Section 2 some preliminaries are outlined, whereas in
Section 3 this construction is specialized to the new classes of scaling functions
introduced in [10]. Finally, Section 4 is devoted to some examples.

§2. Preliminaries

Let I = [a, /3], with a, ,3 integers, be a finite interval of R and let W be a
compactly supported scaling function, whose support is [0, L], associated with
a mask a enjoying the properties i) and ii) of the previous section. Then, the
system of n = / - a + L - 2 functions

:{•(x -i),a -nL+l_•i_/3-1}, xE[a,O], (10)

constitutes a blending (cf. (9)) TP basis in the space U, generated by itself,
and fulfils some interesting shape preserving properties.

Indeed, because of the properties of V mentioned above, the basis 4
satisfies the CH and the VD properties. Thus, 4 preserves monotonicity and
convexity, that is, any straight line cuts the curve yp no more often than
it cuts the control polygon [7]. Further shape preserving properties can be
deduced by the generalized VD property for TP bases (see [2]).

It is rather natural to wonder whether $ is a B-basis, too. To this end
we can use the following proposition from [4].
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Proposition A. A TP basis B ((n,... ,) is a B-basis if and only if the
following conditions hold:

inf Jý I(x) }in Cj(x) I 0 '= ,

for al i 5 j.

Clearly, Proposition A provides a useful test to check if a TP basis is a
B-basis. If the check fails, one can construct the unique blending B-basis of
the space Up by means of the procedure given in [4, Th 3.6 and Th. 4.2].

§3. Construction of B-bases of Scaling Functions

One of the main advantages of the cardinal B-spline as scaling function is
that its mask has an explicit expression (cf. (5)). A wide generalization of
the cardinal B-splines was developed in [10], where a new family of scaling
functions has been introduced by means of a new family of masks, which
have an explicit expression. These scaling functions depend on certain free
parameters, have prescribed smoothness and, as for the cardinal B-splines,
are compactly supported, totally positive and centrally symmetric. They were
introduced as follows.

Let H denote the set of all compactly supported and centrally symmetric
masks whose symbol is a Hurwitz polynomial. In [10] it was proved that a
mask a belongs to H if and only if its coefficients are of the type

k /2
^(m,k) k/ r)m +1--2r)

a, = br(m - ') i = 0,1,...,m+1, (11)

where m = 2,3,..., k is an even integer such that 1 < k < m, and

b~r) = b~r_) (k- 2r + 2 b(r_1) r=0,1...,K, K:= k-1,\i - lV•l r =01..K +KI=)-I, (12)

i =r + 1,...,K + 1,

and 0), i = 0,... , k, are such that

k(b-)r b b0)), r 10,1,.. k
K

0)= 2 k- -2 °0 ), (13)

i=o
det (b1 i 1,ij = 1,...,p) > 0, p= 1,...,k

(assume (l) =0 for i < 0 or i > 1).
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Due to the properties of a E H, the scaling function Pim,k, which is the
solution of the scaling equation

m+l

(Pm,k(x) Z a IPk) mk(2x - i), x E R, (14)
i=O

is compactly supported on [0, m+l] and centrally symmetric, and the functions

{'Pm,k( - i), i E 2Z} are linearly independent, normalized and TP. Moreover,
recalling that a scaling function belongs to Cr(IR) if and only if the symbol
can be factored as

p(z) = (z + 1)r'lqmr(z), qm-r(1) = 2', (15)

(see [8]), one can prove that POm,k G Crn-k(]R).

Remark. Choosing suitably the coefficients MO), the Wom,k reduces to the
cardinal B-spline of degree m, and the Wm,k can be viewed as a generalization
of the cardinal B-splines. In particular, for k = 1, the unique family of scaling
functions that we obtain are the cardinal B-splines. Moreover, in the case
when m = 3, the coefficients of the mask (11) are a subset of those of the
filters exploited by Burt and Adelson in vision analysis [1].

Following the procedure outlined in the previous section, any of the scal-
ing functions WPm,k can be used to construct a blending TP basis 4I"m,k defined
on a finite interval. Observe that a space is suitable for design purposes if it
has a blending TP basis.

By means of Proposition A, it is easy to show that the basis "in,k is
not a B-basis. Then to obtain a blending B-basis starting from the functions

VPm,k(X - i), we have to apply the procedure given in [4]. The corresponding
algorithm can be illustrated as follows. Let

where the values of Pm,k can be evaluated by means of the cascade algorithm
[12]. For j = 0,..., m - 2, define iteratively

+ j - inf/ u i_ 1 i=m)m-1, .. ,J +1,

u, i = j,j- 1,...,0.

Then, let
v0 r u Tn-i, a - M- ... ,0- 1,

and for j = 0, ... , m - 2 define iteratively

+ j - inf• v- •j i=O,l,...,#•-2-j,

vq, i =) f- 1 -j,...,)3 - 1.
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The system ,!nk {bi := 0-,{i = a-rm,... , - 1}, forms a B-basis. The
system {dibi, i = a - M,...,/ - 1}, where di, i = a - m,...,/3- 1 are positive
constants such that da-mba-m + "". + do-lb3- 1 = 1, is the required blending
B-basis.

We remark that one of the difficulties in applying this method lies in the
evaluation of inf(uJ/uJ- 1 ) and inf(vq/vi 1). For instance, in the examples of
Section 4, the infimums has been evaluated by extrapolating the values that
the involved functions ui and vi assume in a suitable right neighbourhood of
a and in a suitable left neighbourhood of/3, respectively.

§4. Examples

For k = 2, the mask (11) depends on a free parameter b(°), which for com-

putational convenience we chose as a dyadic fraction: b•°) = 2 -h. Thus, the
explicit expression of the mask coefficients becomes

=2h) 2-h [r + 1 +4(2hm - )( -)'1 (16)

(j = 0,1,..., m + 1, m > 2, h > m - 1), which corresponds to the symbol

Pm,h(Z) = 2 -h(1 + z)m-i(z
2 + ( 2 h-m+2 - 2)z + 1). (17)

Observe that the second term in the mask (16) can be seen as a perturbation
of the mask of the cardinal B-spline to which (16) reduces when h = m.

Given the interval I = [a, /3], we can construct the family of blending TP
bases

lm,h = {0mh(X - i), a - M < i < /3 - 1}, (18)

where m > 2 and h > m - 1. In Fig. 1 the basis 43,4 defined on the interval
[0,4] is displayed (dashed line) together with the corresponding blending B-
basis (solid line) obtained by means of the procedure outlined in the previous
section.

For k = 4, the symbol p(z) depends on two free parameters, that is b°)0

and b(°), which again, for computational convenience, we choose as dyadic

fractions: b•°) = 2 -h, b(0) = 21-h; h, l ICR are arbitrary numbers such that
h > rn - 2 + log2 (1 + 21-1), in order to fulfil the third of (13). Thus, the
symbol has the form

Pm,h,l(Z) = 2 -h(1 + Z)m- 3 (Z4 + 2'Z 3 + ( 2 -m+4+h - 2 - 21+1)Z2 + 2 1z + 1)

(19)

where m > 3, and the coefficients a,,m , 0 < i < m + 1, of the corresponding
mask are

ah,) = 1 [(M+ 1 +(2 -4) (M--) +(2-m+4+h - 21+2) (m-3)]&'m =h i (t-4 i--1 i i--2 "

(20)
Also in this case, the mask of the cardinal B-spline N m can be obtained
setting suitably the parameters h and 1, that is, h = m and I = 2. In Fig. 2
the blending TP basis 45,6,2 defined on the interval [0, 6] is displayed (dashed
line) together with the corresponding blending B-basis (solid line) obtained.
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Fig. 2. The blending Bbasis B (solid line) and the blending TP basis 4)3,4
(dashed line) in the interval [0, 4].
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Remark. When the scaling function is just N', the procedure outlined here
gives the basis of the cardinal B-splines as defined in [11].
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Rational Ruled Surfaces Passing
Through Two Fixed Lines

Gueorgui H. Gueorguiev

Abstract. For any positive integer n, a rational ruled surface of degree
n + 1 is constructed which passes through two arbitrary skew lines in the
three-dimensional Euclidean space. In the cases of two parallel or inter-
secting lines, a rational ruled surface of degree 2n + 1 is constucted which
contains the lines. Any surface is a preimage of a plane under a bira-
tional space transformation. This interpretation gives implicit equations
and parametric representations of the considered surfaces.

§1. Introduction

Ruled surfaces play an important role in computer aided geometric design (see
[2,5,6]). In this paper, we construct rational ruled surfaces which are general-
izations of the hyperbolic paraboloid and the hyperboloid of one sheet. Our
main results describe three families of ruled surfaces which pass through two
skew lines, two parallel lines, and two intersecting lines. The resulting surfaces
in three-dimensional Euclidean space R3 (especially their parts without singu-
larities) can be used in engineering and manufacturing. These ruled surfaces
are found by the use of some birational transformations of ll31. This inter-
pretation also provides a way for finding an implicit equation and parametric
representation of any such surface.

The paper is organized as follows. We introduce special birational trans-
formations of the projective space p 3 in Section 2. Any transformation
determines a three-parameter family of surfaces whose images are planes.
Corresponding transformations and rational surfaces in ]R3 are described
in Section 3. For any positive integer n, a rational ruled surface of degree
n + 1 is constructed which passes through two arbitrary skew lines in the next
section. The rational ruled surfaces of odd degree passing through two parallel
or intersecting lines are considered in the last two sections.
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§2. Birational Transformations of the Projective 3-Space

Any rational surface is birational equivalent to a plane. In particular, the
preimage of a plane under a birational space transformation is a rational
surface. In this section, we shall consider birational transformations such that
the preimage of an arbitrary plane is a rational ruled surface. First, we briefly
recall some basic notions for birational transformations.

Definition 1. Let p 3 be the three-dimensional complex projective space.
The map ofF 3 into itself

T : p
3 , p3

is called a birational transformation if there exists an open subset U C ]P3 in
the Zariski topology such that the restriction TIu : U --+ U is a one-to-one
correspondence.

In terms of homogeneous coordinates, the map T is birational, if

i) T is given by the equations

P'Xf = F'(Xo, X1, X 2 , X 3 ), i = 0, 1, 2, 3, (1)

where F"' are homogeneous polynomials of the same degree and p' is a
nonzero factor of proportionality;

ii) The inverse map T-1 exists and is given by the equations

P Ixf• = Fi"(Xo, X 1 , X 2 , X 3 ), i = 0, 1, 2,3, (2)

where Fi' are also homogeneous polynomials of the same degree
and p" : 0.

In (1) and (2), the quadruples (Xo,X 1 ,X 2 ,X 3), (X6, X1, X2,X3) and
(X1', X1', X2', X3) are homogeneous coordinates of the points q E ]P3 , q' =
T(q) and q" = T-l(q), respectively. Moreover, it is possible that degF.'
degFi".

A fundamental (or base) locus of the birational transformation T given
by (1) is the variety of common zeros of the polynomials Fl'. There is a three-
parameter family of rational surfaces such that the image of any surface under
T is a plane. Then, the intersection of all such surfaces is the fundamental
locus of T. Note that the birational transformations of the projective space
are also called Cremona transformations. More information for the birational
transformarions can be found in [1] and [4].

Now, we shall study a class of birational space transformations. For any
three fixed numbers 01 E C \ {0}, 02 E C \ {0} and 0 E C \ {0, 1}, and for
any positive integer n, we may consider the map To : p 3 __ ]p3 given by the
equations

PX =(1X - 02Xn)Xo,

AX• =(0 1 X• -Xn 2 X)Xl - (1 - 0)0 1 (XlX' -( X2X3),PX I= Xn (~ n _ Xn), (3)
pX• =(01 X( - 02X-)X 2 - (1 - 0)0 2 (XiX6 - X 2X'),

pX' =( 1 Xon - 02X3)X 3 .

From the condition 0 5 1, it follows that To is not the identity mapping.
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Theorem 1. The map To is a birational transformation, and the reducible
curve 01X0z - 0Xn = o

B XIXon - X2XL = 0

is the fundamental locus of To.

Proof: Let C be the surface given by the equation 91Xo - 0 2X3 = 0. Then,
the map To is a one-to-one correspondence in the set P 3 \ C which is open in
the Zariski topology. On the other hand, the inverse mapping To7' is defined
by the equations (3) in which 0 is replaced by 0-1. Thus, To is birational. The
curve B is the set in which To is not defined. Hence, B is the fundamental
locus of To. E

The linear transformations of pn (n = 1, 2, 3) and their invariant, a
cross-ratio, are studied in detail in [7]. Some geometric properties of the
nonlinear transformation To can be described in terms of a cross-ratio and
collineations. The line S03 C p 3 given by X0 = X3 = 0 is the n-fold line
of the ruled surface G given by the equation X1 Xo - X 2Xn = 0. Let c be
the point with homogeneous coordinates (0, 01, 02, 0). Then, for any point
q E 1p3 \ C, the joining line Zqq meets G at the second point qO 5 c. From here,
the point q' = To(q) lies on the line Tqq, and the cross-ratio {c, q0 ; q, q'} = .
Continuing in this way, we consider a plane P given by AoX 0 + A3X 3 = 0,
where (Ao, A3) E C2 \ {(0, 0)} and An : A• n 01 : 02. Then, the intersection
P n G falls into n-fold line S03 and another line H not containing the point
c. From the equations (3), we may conclude that To preserves P and the
restriction To0 p : P -+ P is a plane homology with a vertex c, an axis H and
a modulus 9. It is clear that the set of all fixed points of To is G \ B.

Theorem 2. Let V be a surface in p 3 such that the image To(V) is a plane.
Then, V is a rational ruled surface of degree n + 1. In the case n > 2, the
singular locus of V is an n-fold line S03.

Proof: From the (3) it follows that the surface V is given as the locus of

3

(91Xo - 0 2X3)(5 AiXi) - (1 - 0)(A1 01 + A2 02 )(X 1 Xo' - X 2 Xn) = 0, (4)
i=O

where Ai E C for i = 0,1,2,3 and i=0 IAI A 0. Hence, degV = n+ 1. By
(4), if P is a plane through the line S03, then the intersection P n V falls into
the n-fold line S03 and another line L. This means that V is a ruled surface.
It is known from [3] that the singular locus of a ruled surface is connected.
Thus, Sing(V) = S03. El

§3. Birational Transformations of the Euclidean 3-Space

Suppose that 01, 02 and 9 are nonzero real numbers. Then, by (3), this
defines a birational transformation of the 3-dimensional real projective space,
or equivalently, a birational transformation of the projective extension of the
Euclidean 3-space. Thus, we get a birational transformation of the Euclidean
3-space.
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Theorem 3. Let n be a positive integer, 01 and 02 be positive real numbers,
and let 0 E R \ {0, 1}. Then, the transformation T 1 : R 3 __- R 3 given by the
equations in Cartesian coordinates

X' = {(01 - 02 z')x - (1 - 0)0I(x - Yz')}(0i - 02z')-1,

Y' = {(01 - 02 zn)y - (1 - 0) 0 2(X - yzn)}(01 - 02 z)- 1 , (5)

Z = Z,

is birational. If V is a surface in iR3 and the image T2(V) is a plane, then V
is a rational ruled surface of degree n + 1, and there is an unique generatrix
of V in any plane Pt given by the equation z - t = 0 (t C IR).

Proof: Substituting X 1Xo 1 
= x, X2Xo1 = y and X3 Xo1 = z (into the

equations (3)), we obtain (5). Then, the statements follow from Theorem 1
and Theorem 2. L3

The inverse transformation T1-' is defined by (5), where 0 is replaced by
01. Hence, both T1 and TT1- are not defined at the points of the reducible
surface given by the equation 01 - 02z' = 0. Any surface V contains the
reducible curve B 1 given by 01 - 0 2z' = x - yz" = 0 which is the fundamental
locus of T1. If two lines are components of the curve B 1, then there is a
family of rational ruled surfaces V passing through the lines. We shall use
this property in the next sections.

Definition 2. We say that the type of the surface V C R 3 is HtPn+i if its
transform TI (V) is a plane.

It is clear that in the case n = 1, V is a hyperbolic paraboloid.

§4. Skew Lines

In this section we fix two skew lines L1 and L2 in the Euclidean space R3. Let
V be the angle between the lines L1 and L2, and let d be the distance between
the same lines. Without loss of generality, we suppose that 0 < V <_ and
tan V z dn. The mutual position of L 1 and L2 is completely determined by O
and d.

Theorem 4. For any positive integer n, there exists a two-parameter family
of rational ruled surfaces which meet the following requirements:

i) The type of any surface is 7'Pn+l,

ii) Any surface passes through L 1 and L 2.

Proof. Let (x, y, z) be Cartesian coordinates in 1R3. Then, we may assume
that

L, z d 0 and L2 :
x -- dny =0 kx - y + 1 -- 0,

where k = d csinW+cosV Consider the birational transformation T1 defined by

(3) in which 01 = d' and 02 = 1. If the surface V C R3 is given as locus of
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(dn - z)(Ao + AlX + A2 y + A3 z) -(1- 0)(Aid' + A 2)(x- yzn) = 0, (6)

where Ai E R (i = 0,1,2,3) and E3 0 1oAiA 1 0, then the image T1 (V) is a
plane. Let Ao = 1, Al = k0- 1 + (1- 0-1)d-n, A2 = -1, and A3 = bt E R.
Thus, we obtain a 2-parameter family of rational ruled surfaces V(9, it) given
by

(dn - zn){1 + (0-1k + )x - y + ±Az}

+ (1 - 0-1)(dnk - 1)(x - yzn) = 0.

The pencil of lines on V(9, M) can be represented as L(t) = Pt n Qt (t E IR),
where the plane Pt is given by z - t = 0 and the plane Qt is given by

(d n• _ tn){X + (0- 'k + 1 - )1x - y + It}l
dn )x-±t

+ (1 - 0-1)(dnk - 1)(x - ytn) = 0.

Then, L, = L(t = d) and L2 = L(t = 0). 0
Now, we can obtain a parametric representations of the above surfaces.

If 0 $ 0, 1 and pt are fixed real numbers, then the parametric equations of the
surface V(9, /z) are

fi (u, t)
x~u Y-gi(t) z~t,

where u and t are real parameters,

fl(u,t) = (td - dn){1 + (0-1 k + d - 0-1 d-n)u + Att}

+ (1 - 0-1)(1 - kdn)u

g1(t) = tn - dn + (1- 0-1)(1 - kdn)tn.

§5. Parallel Lines

Using the birational transformations defined in Section 3, we can construct
noncylindrical rational ruled surfaces of odd degree which pass through two
fixed parallel lines.

Theorem 5. Let L, and L2 be two parallel lines in the Euclidean space
JR3. Then, for any positive integer m, there exists a four-parameter family of
rational ruled surfaces which meet the following requirements:

i) The type of any surface is 7"LP2m+1;
ii) Any surface passes through L, and L2.

Proof. Let 2d be the distance between L, and L2. Then, we may suppose
that

L1  z + (-1)jd =0
z - d2my 0, =1,2.
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Consider the transformation T1 given by the equations (3), in which
01 = d2", 2 = 1 and n = 2m. If V C ] 3 is a surface such that
the image TI(V) is a plane, then V is given as locus of

(d 2m - z2m)(A0 + A,1 x + A2 Y + A3 Z) - (1 - 0)(A1 d
2 , + A 2 )(x - yZ 2

m) = 0,

where A• E IR and _i=0 IAil 5 0. For t E R, let Pt be the plane given by the
equation z - t = 0 and Qt be the plane given by the equation

(d 2 m - t 2 m)(A0 + A, x + A2 Y + \ 3 t) - (1 - 0)(A1 d
2 - + A2 )(x - yt 2m) = 0.

Then the one-parameter family of lines L(t) = Pt n Qt C V contains the lines
Li = L(t = d) and L2 = L(t = -d). 0

The above description of the generatrices of the surface V also gives its
parametric equations

x =u,

(t 2- - d2m)(A 0 + A1 u + A3 t) + (1 - 0)(A1 d
2 - + A2 )u

= - A2 (d 2 - - t
2
m) + (1 - 0)(A1 d

2 m + A2 ) t2m

z =t,

where u and t are real parameters.
Finally, we observe a special property of the surface V E -'P2m+1. From

the proof of Theorem 5, it follows that the lines L(t) and L(-t) are parallel
for any t $ 0. Moreover, if t1 : t 2 and tj :A -t 2 , then L(tj) and L(t 2 )
are skew lines. In other words, the rational ruled surface V E HP2m+l is
noncylindrical.

§6. Intersecting Lines

First, we consider another interpretation in R 3 of the birational transforma-
tion To. Next, using this interpretation, we construct a four-parameter family
of nonconic rational ruled surfaces which pass through two fixed intersecting
lines.

Theorem 6. Let 7P be an acute angle, and let T2 : R 3 _+ ]R3 be the trans-
formation given by the equations

X= x{h(x,y) - zn} - (1 - 9){xh(x,y) - yzn}

h(x,y) - zn- vr2(1 - 9){xh(x,y) - yzn}tan 0

y= y{h(x,y) -zn - (1 - 0){xh(x,y) - yzn}
h(x, y) - zn- vr(1 - 0){xh(x, y) - yzn}tan (7)

z/ = z{h(x,y) - zn}
h(x,y) - zn- V-2(1 - 9){xh(x,y) - yzn}tano'

where 0 E R\{0,1} and h(x,y) ={1- _an(X+y)}n. Then, T2 is bira-

tional. If W c R•3 is a surface such that the image T2 (W) is a plane, then W
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is a rational ruled surface of degree n + 1, and the singular locus of W is the
n-fold line

z -0S : I -/2 =0"S:X+y_ ta.nP

Proof: Substituting into (3) 01 = 02 = 1, o x x tanO
XX _ ytXn fX-

Xo+y+tan- -n-3 z, we get (7). Thus, the statement fol-
XO+X 1+X2 f2 ,' XO+X 1+X2lows from Theorem 1 and Theorem 2. E

Definition 3. We say that the type of a surface W C R 3 is 7'OSn+l, if the
transform T2 (W) is a plane.

Note that in the case n = 1, W is a hyperboloid of one sheet.

Theorem 7. Let L1 and L2 be two intersecting lines in R3 , and let m is
a positive integer. Then, there is a four-parameter family of rational ruled
surfaces such that the type of any surface is "OiS2mnq+1 and any surface passes
through L1 and L2.

Proof: Let 20 be the angle between L1 and L2 . Then, we may suppose that
(x-y =0
L (x+y)tan ±+(-1)j+'/ "z- i- =0 1,2.

Consider the transformation T2 given by the equation (7) in which n = 2m.
If W C R3 is a surface and the image T2(W) is a plane, then W is given by

(AO + Al x + A2 Y + A3 z){h(x,y) - z(}

- (1 - 0)(v/2Ao tanV- + A1 + A2 ){xh(x,y) - yzn} = 0,

where Ai E R, E3 0 1Aid I 0. Let Pt (t E IR), be a plane given by

tan 4'1 t- V(x +y) =0 
(9)

and let Qt (t e R) be a plane given by

(Ao + A,1 x + A2 y + A3 t)(1 -t2r)

- (1 - 0)(vfAo tan 0 + A, + A2 ){x - yt 2 m} = 0.

Then, the line L(t) = PF fl Qt lies on W for any t E ]R. It is easy to see
that L1 = L(t = 1) and L 2 = L(t = -1). Hence, W is a ruled surface which
contains L 1 and L 2. [
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Equation (8) with the additional conditions x < 0 and y _• 0 determines
a domain on the surface W which is smooth and without singularities. Other
properties of W follow from (9) and (10). The line L(t) intersects the line
L(-t) at a point on n-fold line S for any t E IR\ {0}. If ti $ t 2 and t, : -t2,

then L(t 1 ) and L(t 2) are skew lines. This means that W is a nonconical
surface.

Finally, the parametric representation of the ruled surface W is

f 2 (ut tank f2(u, t)),

92- (t) 2 9g2(t)

where u and t are real parameters, and

f(u, t) = (1 - 0)(vf2 tan 'A0 + A,1 + A2 ) - (A0 + A•1 u + 3 t)(1 _ t23 ),

g2(t) = (1 - 0)(V2-tan 4Ao + A, + A2)t 2
- + A2 (1 - t2ý).

Using the general properties of the birational transformations, we get the
implicit equations of the surfaces in the last three sections. But to find the
parametric representations of these surfaces, we apply the specific properties
of the transformations T1 and T2.
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Deformation Criteria for the Direct

Manipulation of Free Form Surfaces

St6phane Guillet and Jean-Claude LUon

Abstract. The approach proposed here is based on coupling a mechan-
ical model to the input surface geometry provided by the designer. The
mechanical model is based on a set of bar networks subjected to tension
forces only. Constraints are specified by the designer to express the defor-
mation behaviour of the surface in the area of interest and define functional
dimensioning objectives to perform a direct manipulation of the surface.
Generally, this process leads to a globally underdetermined system of equa-
tions, i.e. the number of unknowns (external forces) is significantly greater
than the number of equations generated by the designer's constraints. To
this end, a minimization problem is formulated which expresses various de-
formation behaviours. In contrast to difference of deformation approaches
based on mechanical models like membrane models, finite element models,
which solely rely on strain energy minimization criteria, the approach pro-
posed here provides the designer various criteria to help him/her create
different deformation behaviours like an area minimizing criterion, ex-
pressing a minimum change of the shape in the deformed area, expressing
a deformation with slowly varying curvature in the deformed area, pro-
viding a deformation behaviour which allows to approximately preserve
the section of pipe-like surfaces subjected to bending deformations. As
depicted, multiple criteria help the designer express various deformation
behaviours which are required during a design process.

§1. Context of Surface Deformations

The shape modification of an object during a design process depends on the
context of this process. In the field of mechanical engineering design, con-
straint requirements can be either aesthetic [3,7] or functional [1].

Without adequate 3D modification tools, the surface deformation leads
the designer to tedious manipulations, i.e., displacements of numerous control
polyhedron vertices, chain modifications of patches or surfaces, etc.

The basic aim of these deformation tools would be to provide the user an
easy and intuitive control of the surface shape. Their parameters should be

automatically related to the parameters governing the deformation process.

Curve and Surface Design: Saint-Malo 1999 135
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Such approaches fit into a class [3,5,9] that helps a designer shape the overall
object, but they are not suitable for generating free-form surfaces which accu-
rately match geometric constraints involving functional parameters. A second
class of 3D modification tools covers the approach of Celniker [2], Kondo [6],
Light [8] and Welch [10]. These types of tools fall into the domain of paramet-
ric or variational design tools. Among these approaches, some [6,8] focus on
parametric or variational models applied to 2D models. Others [2,10] perform
a surface deformation subjected to constraints such as prescribed curvature
or surface rectitude using a membrane model which cannot provide some de-
formation modes like bending.

The approach presented here fits into this last category. Similar to the
approach of Celniker and Welch, the current one also uses a mechanical model.
However, its formulation is simpler than Celniker and Welch's, and thus it is
easier to manipulate and it allows generation of isotropic and anisotropic de-
formations. The approach introduced here is a new development around a
free-form deformation method [4]. The scope of the present work focuses on
the introduction of a set of deformation criteria which cannot be provided by
membrane models or other mechanical models subjected to small displace-
ments and linear behaviour material law hypotheses.

§2. Principle of the Parametric Deformation

Before studying the deformation criteria presented here, it is suitable to sum-
marize the objectives and the constraints related to the parametric deforma-
tion process. The features of the current work are the following:

"* the treatment of configurations involving multiple trimmed free-form sur-
faces based on a B-Spline model,

"* the direct manipulation of the geometry through a small number of pa-
rameters to allow an easy and intuitive control of the surface shape,

"* the possibility for the user to create local or global deformations of the
geometry and to obtain different solutions with one set of geometric con-
straints,

"* the fast computation which allows an easy integration of the parametric
deformation tool into an integrated design process.

In the context of the approach introduced here, different constraints reduce
the complexity of the problem:

"* the surface patch decomposition is preserved, i.e., degrees, nodal se-
quences and topology are kept constant,

"* Co continuity between patches is maintained. Go and G1 continuities
are approximated along the trimming lines. To this end, a discretization
process is applied to these lines without modification of their degree,

"* trimming lines on the surface are kept unchanged into their parametric
space. A trimming line is defined as a set of connected trimming curves.

The aim of the parametric approach is to deform a set of trimmed free-form
surfaces subject to geometric constraints. The geometric constraints are cur-
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Deformed Initial geometry

phase 5 phase 0

phase 4 ph ase I - _ýo

phase 3 phase 2- -Pos r-

the nodes Geometric features

New external forces Mechanical features

Fig. 1. Main steps of the parametric modelling process.

rently restricted to the control of the dimensions of an object though other
categories of constraints can be set up to achieve other functions.

Prior to the description of the minimization criteria used here, it is suit-
able to describe how geometric and mechanical features fit together. The
resulting surface geometry is obtained from the initial one through five steps
(Figure 1):

"* step one is devoted to the creation of the geometric features. These
features help specify some target parameters of the surface shape, the
deformed area and the continuity conditions between trimmed patches.
In the case of Figure 1, one feature is generated by the user. Currently,
the design constraints can be displacements of points, lines; tangency
constraints with planes; contact with another free form surface; internal
continuity constraints between patches,

"* step two of this method involves mechanical features. These features are
based on parameters of the mechanical model (topology, mobility and
force density) used to obtain a deformed geometry and on the choice of
a minimization criterion. Thus, the user can obtained different solutions
with a unique set of geometric features.

These first two steps are devoted to the initialization of the process. The user
can modify one or all these features if he/she does not accept the deformed
geometry. The next two steps are transparent for the user, and focus on the
computation of the deformed geometry:

"* step three: a relationship between geometric and mechanical features
contributes to the computation of new external forces through an opti-
mization process. Different minimization functionals can be incorporated
into this process,

"* step four: these new forces influence the static equilibrium positions of
bar networks (mechanical models). New 3D positions of the nodes of the
bar networks are computed, i.e., new 3D positions of the vertices of the
control polyhedrons of the trimmed surfaces.
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Fixed node (NJ Free node (NI)

fbj

Bar (B) ---

(b) The controlpolyhedrons of Cal and Ca2 can be merged to
(a) An example of bar network form onebar network because they are connected along their

entire boundary whereas Ca3 generates another bar network
since Ca3 is connected to Cal and Ca2 along a trimming line.

Fig. 2. Bar networks used to control the shape of surfaces.

§3. Mechanical Deformation Features

Mechanical model of deformation

The bar network (Figure 2a) is built from bars B with pin joints which are
assumed to rotate without friction [4,11]. All bars are under tension. The
parameters governing the static equilibrium state of such a network are

"* the mobility of the nodes N, i.e., fixed (Nf) or free (NI) to move in 3D
space,

"* the topology of the bar network, i.e., the way the bars B are connected to
the nodes N of the network,

"* the force density qj attached to each bar Bj of the network is defined
as the ratio between the internal force fbj into the bar and its length 1j

(qj = &, qj > 0). The positivity constraint ensures the tension state

in every bar Bj,

"* the external force fi which may be applied to the ith mobile node of the
bar network.

Linear static equilibrium

Static equilibrium of a bar network is achieved when the sum of the external
force fi applied at the ith node equilibrate the forces applied by each bar
meeting at that node. This statement becomes

nb.
fi + E qj.-(Xk -- Xii)=O0, i C 1..n} 1

j=O

where x1i stands for the coordinates of the ith free node, qj.(xk - xti) denotes
the tension force into the jth bar meeting at node i, nbi designates the number
of bars meeting at node i and nt the number of free nodes of the bar network.



Deformation Criteria for Free Form Surfaces 139

Given the topology of the bar networks, the equilibrium equations are{D. Xj + JDf . xf = f,
IDI. y, + Agf. yf =-- fy I

1Dt. zi + D .z = fz.

for one bar network, where D)1 is a positive definite matrix which ensures the
existence and unicity of either equilibrium positions (xi, yl, z1) or external
forces (f,, fy, f2 ).

Generally, the objective is to calculate the 3D position of free nodes.
These new positions are obtained with a linear equation system through
changes of variables of the parametric process, i.e., the external forces fi.

Analogy used for surface deformation

The deformation method uses an analogy between the control polyhedron of
a surface and the mechanical equilibrium position of a bar network. One bar
network is associated with one or several surfaces as follows:

"* the nodes of a bar network coincide with the entire set of vertices of the
control polyhedron of a free-form surface (either trimmed or not),

"* the CO continuities are directly incorporated into the mechanical model.
In this case, several bar networks can be merged together.

§4. Deformation Criteria

The geometric constraints generated by the designer to prescribe dimensions
combined with the equilibrium equations of the bar networks form the global
set of constraints

G = G (fl,... ., & ., , fly,. . ., & ,y, fl•,... , fn, z),( 2

= G(F) = 0, i c {1,...,n},

where each constraint is expressed in terms of the external forces applied to
the bar networks. External forces have been chosen as unknowns rather than
force densities qj because they produced intermediate solutions which reflected
a real deformation process of a surface whereas iterating with qj produced
oscillations around the solution. Then, the resolution has been conducted
using an augmented Lagrangian method to provide robustness to the solving
process.

Because the number n, of constraints is usually significantly smaller than
the number of unknowns, and assuming that there is no local configuration
with an overconstrained subset of equations, a functional I)(F) can be associ-
ated with (2) to obtain a solution which matches a specific designer's interest.
Overconstrained subsets of equations can be encountered when a subset of (2)
is such that there exists locally for a given surface more constraints then the
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bar network (Rb) and control Polygon (Pc)

f f%
the intensity and th~e direction of the

Curve (C) externalforces

Fig. 3. Relationships between external forces at nodes and the shape of a curve.

number of free parameters x1, yj, zi. When G contains nonlinear equations,
their derivatives are related to the geometrical and mechanical parameters by

k _OG 8, 8a)i OX x 80 O Y, fyt 80, i OZp azi,Z3 OFj - OXp axi, O9Fj + Yp Oyl, aFj + Zp " zi, i9Fj ' i

where OGi ,0. O are related to the geometric constraints set by the de-OX, 81',,' a Zy,

signer, P-, , ----P come from the relationship between the surface and the
OXlq ' aYlq OZlq

bar networks and OFx , Ofe , OF, are coefficients of JD'1.

External forces at nodes and shape relationships

According to (1), external forces at nodes are governed by the length of the
bars as well as the angle between the bars meeting at a node. Figure 3a
illustrates such a configuration for a bar network which corresponds to the
control polygon of a B~zier curve with uniform force densities in its bars.

Then, it can be stated that a regular bar network has smaller external
forces than an irregular one, since regular control polygons resemble the shape
of the curve, and therefore have smaller length sides and wider angles between
bars (Fig. 3b).

With uniform force densities, the direction of the external forces is close
to the bisecting line of two adjacent bars or, for a bar network attached to
a surface patch, this direction is close to the average normal direction at the
given node. However, this behaviour does not necessarily generate acceptable
shapes (as depicted in Figure 4) and needs to be combined with the regularity
criterion of the intensities.

A change in the intensity of an external force at a node Nk results in a
change of position of the free nodes whose amplitude decrease from Nk. The
direction of movement of the free nodes is similar to that of the external force
which has been modified [7] at Nk. In turn, the displacement of the points
on a curve or on a patch follows the geometric property of B6zier or B-Spline
models, i.e., points move in the direction of the movement of a control point.
Their displacement amplitude is therefore smaller than that of Nk.



Deformation Criteria for Free Form Surfaces 141

Fig. 4. Specific configuration where external forces coinciding with bisecting
lines does not provide a smooth curve.

1[k] [kf]
--------------------------------

Fig. 5. Criteria related to the external force at a free node.

Various deformation criteria

Based on the previous relationships, three categories of criteria have been
identified:

* the first one is related to the external forces at the free nodes of the bar
networks,

* the second one acts simultaneously over the external forces and average
normal direction at the free nodes,

e the third one acts over the average force around a free node, but is not
described here because of lack of space).

The first category takes as input either the external force or the varia-

tion Aik]of this force at the iteration [k] when the constraints expressed are
nonlinear (see Figure 5).

When considering the functional 4D[k]o = min (TAF[k]. AF[k]), the de-
signer expresses the minimum change in the shape of the object at each iter-
ation until the constraints G are satisfied.

When considering qkn]. = min (T(F[k] - Fl°o). (F[k] - Flo)) as the func-

tional associated with G, the designer expresses the minimum change of the
object shape between the input geometry and the output. In case of linear

[k] [qconstraints, Loc4) and 4I) are identical. This functional tends to preserve as
much as possible the previous work of the designer, and therefore is of specific
interest during a modeling process.
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Fig. 6. Criteria acting over the intensity and the direction of the external force
at a node.

When considering the functional 4),t min (TFk. F[k]), the designer
expresses the fact that the resulting surface is not based on the input one
since the initial external forces are not taken into account. Furthermore, the
minimization of the intensity of the external forces at the free nodes expresses
that the output control polyhedrons form an approximation of a minimal
surface. Hence, the output surface attached to the bar networks represents an
approximation of the minimum surface area satisfying the constraints. This
approximation is even more effective when the control polyhedrons converge
toward the surface itself.

The second category of criteria acts simultaneously over the intensity
and direction of the external forces at free nodes so that the direction of the
forces meet a given criterion. To this end, an average normal direction is
built according to the position of the nodes around the target node. Fig-
ure 6 illustrates the planes surrounding the ith free node at iteration [k - 1][k-11

which participate to the definition of the average normal direction Nmoy-i.
When considering the functional [k]o = min (TAFk]o.AFpkr]o), the forces

minimized correspond to the difference between the projection f'i-. of the

external force onto Nmo.Ji and the force at the k teration, i.e.
-- k-1 .N [k-1] . •

Ik] .N -]_ k1 1

Using this criterion, the designer expresses that the output surface tends
to minimize the area while being smooth since the intensity of the forces
tend to decrease like (D tt as well as the direction of the forces tend to be more[k-l]

regular using Nmoy.i. This criterion takes into account the shape of the input

geometry, but generates a surface which is 'smoother' than with 4{z].(pkkl T A i[k]•- [k]

When considering the functional rot = min' ANko]t , the forces

minimized correspond to the difference between the external force k-1] ro-[k-l] -- k at iteain
tated onto the direction of NMOYi and the force at the kth eration,

i k) Je.] _ IkI k-l] I Sk-l]i.e. AFrot-z % k I llNm,yo-,_ Such a functional tends to preserve
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Fig. 7. Illustration of the influence of the deformation criteria.

the intensity of the external forces while modifying their direction in order to
smooth the surface. Combined with anisotropic force densities in the bars of
the networks, this criterion expresses the deformation behaviour of pipe-type
objects when their are subjected to bending deformations. Though the previ-
ous criteria are nonlinear even if G is linear, their efficiency is strong enough
to justify their use during a design process.

§5. Results and Examples

The above deformation criteria have been applied to different categories of
surfaces to illustrate their typical behaviour according to the configurations
described in the previous section. Figure 7a shows the effect of 7 7b illus-
trates 4i,,i, 7c 4)tot, 7d 4bpro and 7e Drot under various designer constraints.

Two distinct input geometries are used. The upper one is a one patch
surface, and two types of boundary conditions were used, i.e. fixed boundary
lines and fixed corner points. The design constraint is formed by a position
and tangency constraint. The bottom one is a multipatch surface with G1

continuity constraints, where the designer has specified position and tangency
constraints along the extreme boundary line of the surface.

§6. Concluding Remarks

The deformation criteria presented provide a diversity of control of shape.
They form an efficient complement to the geometric constraints set by the de-
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signer to let him/her adapt the result to his/her needs. Such a diversity cannot
be achieved using a mechanical approach solely based on a minimization of the
strain energy of membrane type structures. Furthermore, the criteria set up
are not bound by a small displacements hypothesis and can handle geometric
constraints involving significant shape changes.

Future work will focus on the cross influence between the deformation
criteria and the boundary conditions applied to the bar networks to provide
more intuitive user interactions.
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Generation of Surfaces with
Smooth Highlight Lines

Masatake Higashi, Hiroto Harada,
and Mitsuru Kuroda

Abstract. This paper proposes a method which generates smooth sur-
faces from four boundary curves. A criterion is introduced to represent
smoothness of highlight lines which are an approximation of reflection
lines and are sensitive to the surface irregularity. The criterion is the
square of projected curvature of highlight lines per unit length. To obtain
the surfaces which satisfy the criterion, the evolutes of their parametric
lines which influence highlight lines are determined to change smoothly.
The evolutes are represented with two segments of second-degree rational
B6zier curves, whose parameters are determined to minimize the crite-
rion. The method is extended to determine a surface when a highlight line
is given by a designer. Some examples of boundary curves with various
patterns of curvature variation are shown to generate smooth surfaces.

§1. Introduction

In the design of aesthetic shapes like automotive bodies, curvature variation
of surfaces is very important. Designers determine shapes according to their
great concern for the reflected images of the surroundings, shade lines, and
highlight lines. Since reflection and shading are affected by changes of surface
normal, the curvature distribution of the surface should be smooth and formed
as designers want.

Spline interpolation, fairing and lofting methods [3,8] which are widely
employed in industrial applications cannot assure smooth distribution of cur-
vature of a surface, although they generate surfaces which pass through the
given points and satisfy second degree continuity. On the other hand, methods
[4,10] which simulate the minimization of the elastic energy for a thin plate can
generate smooth surfaces, but cannot always obtain the shape which designers
want for the given boundary conditions.

Hence we have proposed a surface generation method [7] which directly
determines curvature distribution of a surface from four boundary curves by
smoothly interpolating the locus of an evolute of a generatrix of a surface. In
this paper, we extend the method to determine a shape which has smooth
highlight lines directly according to the criterion introduced.
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§2. Highlight Lines and their Criterion

Highlight lines are images (reflection lines) on surfaces of a product or its clay
model for parallel lines such as fluorescent lamps on a ceiling, and they are
used for the evaluation of surfaces in the automotive industry. If they are not
as smooth as designers want, the surface of the clay model is modified until
the shape becomes satisfactory.

To evaluate and modify these images in the computer using a CAD sys-
tem, several methods were proposed. Klass [9] tried to correct local irreg-
ularities of a surface using reflection lines. Chen and Beier [1,2] introduced
an equation of approximated highlight lines for the real time evaluation of
a surface, and applied it to modification of NURBS surfaces. The equation
represents normal projection of parallel lines to surfaces. On the other hand,
Higashi et al. [5,6] introduced an equation of pseudo-highlight lines which are
silhouette lines of a surface for incident directions. These highlight lines have
been used in a practical CAD system in the automotive industry [5], because
they are sensitive to surface irregularities and they had been checked manually
on drawings.

Let an incident direction, a surface, and its normal at parameter (u, v)
be L, S(u, v) and n(u, v). The equation of a silhouette line is

n(u, v). L = 0. (1)

If the incident direction is rotated around an axis, we obtain a group of sil-
houette lines and call them a silhouette pattern.

We introduce a criterion H of smooth highlight lines, that is a silhouette
pattern, in order to automatically generate a surface which designers want. Let
the projected curvature of a silhouette line be gi (s). Here, suffix i corresponds
to highlight line i, s is a parameter of an arclength, and the number of highlight
lines is n. We denote the length of each line by si. Then we get

n n
H = 2 (s)ds/ si. (2)

0=i i=1

§3. Concept of Surface Generation Based on Evolute

A surface is generated by moving a generatrix along two directrices. When
the shape of the generatrix is changed with movement, the interpolation of the
movement is not simple. Blending of boundary curves or interpolation of the
boundary conditions does not necessarily create a good curvature distribution
of the surface.

A generatrix should be moved so that the curvature distribution becomes
smooth and satisfies the highlight line criterion described in the previous sec-
tion. The curvature distribution of the surface is represented as a surface,
by making the locus of the evolute of the generatrix. We call the surface
generated from the locus an evolute surface. Fig. 1(a) shows an object surface
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(a) Generatrix and evolute (b) Evolute surface and generated surface

Fig. 1. Generatrix and evolute surface.

and its generatrices along with the corresponding evolutes. If the generatrix
is a space curve, its evolute cannot be determined uniquely. We define the
evolute to be related to the surface property by fixing the freedom around the
tangential direction [7]. Let the given curve, the curvature radius and torsion
be R(s), p(s) and T(s), and let n(s) and b(s) denote normal and binormal
vectors. They are represented as functions of arclength s. Then the equation
of the evolute is

r(s) = R(s) + p(s){n(s) + tan(- f T(s)ds + D)b(s)}. (3)

We determine the arbitrary constant I) so that the starting point of the evolute
is located at the direction of the surface normal, defined by the outer product
of the tangents of the generatrix and the directrix.

Since an evolute is a curve of the curvature center of a generatrix, the
quality of the surface is satisfactory if its evolute surface is smooth. Hence
we determine the evolute surface first as a smooth surface, and then we align
it according to the constraints of the evolute such that the difference of the
curvature radii at the end points is equal to the length of the evolute and the
tangent directions at the end points of the evolute are the same with those of
the normal vectors of the involute. We note that a generatrix corresponds to
a v-constant parametric line of the surface, and is represented by parameter
u. Let the generated surface (involute), the evolute surface and the curvature
radius at the starting point be S(u,v),E(u,v) and p(v). Then we get the
equation of the object surface:

S(u,v) = E(u,v) + {p(v) - IEu (u,v)Idu}l u (u, v) (4)IO EU(u, v)" I 4*

Here, the curvature radius p(v) is determined by aligning the evolute to the
directrices, and suffix u denotes partial differentiation. Fig. 1(b) shows an
evolute surface and a generated surface satisfying the constraints.
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(a) Control points of evolute (b) Shape parameters

Fig. 2. Control points and shape parameters of evolute.

§4. Surface Generation Satisfying Highlight Line Criterion

We generate a surface with smooth highlight lines as well as smooth curvature
distribution. We approximate the evolute of the generatrix by second-degree
rational Bdzier curves because they are conics and have smooth curvature dis-
tribution. Then, we interpolate an evolute surface smoothly from the evolutes
of two boundary curves. If we interpolate the shapes of the evolutes linearly,
the surface becomes smooth, but the highlight lines do not necessarily satisfy
designers. So, we interpolate the change of the shape of the evolute using a
polynomial function.

We approximate an evolute with two segments of Bdzier curves as shown
in Fig. 2(a). By using two segments, we can represent all the patterns of cur-
vature distribution of a simple curve. The patterns are divided into monotone
(increasing or decreasing) and not monotone (with maximum or minimum in
the middle). When a curve is not monotone in curvature, its evolute has a
cusp point in the middle. Fig. 2(b) shows examples of evolutes and their Bdzier
polygons for different curvature patterns. The left figure has a monotone cur-
vature distribution, and the right figure has a cusp point at the maximum
curvature radius. We connect two segments at the junction point with tan-
gential continuity. Control points qo1, q02(qlO), and qii are collinear.

Interpolating control points qio, qni, qi2, and weight wi along v direction,
we get an evolute surface

B2(u)qio(v) + B2(U)Wi#)qil (v) + B2(u)qi2(v)
E (u, v) = B0 (u) + B?(u)wq(v) + 2 (u) ) (5)

Here, the index i represents the i-th segment, and B?(u) is a Bernstein poly-
nomial.
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(a) (b)

Fig. 3. Example 1 of smooth highlight lines. (a) linear interpolation: H =

0.128 x 10-3, (b) minimum H: H = 0.055 x 10-3.

Since we interpolate the shape of the evolute instead of the positions of
control points, the number of its independent parameters becomes eight as
shown in Fig. 2(b). They are the lengths of edges (Ai, Bj), the included angles
9i between edges, and the weights wi, i = 1, 2. Using the shape parameters,
we align the control polygons on the directrices. Then we get the functions of
control points in (5).

We interpolate these shape parameters smoothly with a second-degree
polynomial. Let the set of the parameters be A. Then we get

A(v) = (1 - v) 2 A(0) + 2v(1 - v)A' + v 2A(1). (6)

A, is a control variable for each shape parameter. We determine these control
variables to obtain a surface with smooth highlight lines by minimizing eq.
(2). Starting from the values of A for the linear interpolation, we search the
values for the minimum criterion by changing them so as to decrease H step
by step.

When a given boundary is a space curve, we have to approximate its
evolute with third-degree B~zier curves for representing its torsion. In this
paper, we only treat planar evolutes, but we can extend the method to the
cases of space curves using the algorithm given in [7].

We show some examples of surfaces generated from four boundary curves
with different types of curvature distribution. In Fig. 3, both boundary curves
have monotonic curvature, but in Fig. 4, they have opposite curvature changes.
On the other hand in Fig. 5 one boundary curve has a maximum curvature
radius in the middle. Each figure shows an evolute surface and the generated
surface with a silhouette pattern on the surface. Figures (a), (c) and (e) are the
results of linear interpolation of the shape parameters, while the parameters
are determined to get the minimum highlight line criterion in figures (b),
(d) and (f). All the surfaces are smoothly generated, but from the point of
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(c) (d)

Fig. 4. Example 2 of smooth highlight lines. (c) linear interpolation: H =

11.24 x 10-', (d) minimum H: H = 0.139 x 10-3.

(e) (f)

Fig. 5. Example 3 of smooth highlight lines. (e) linear interpolation: H =

0.450 x 10-3, (f) minimum H: H = 0.067 x 10-3.

highlight-line smoothness, the surface quality is much improved in the right-
hand figures. We cannot find the difference from usual surface evaluation,
especially in Fig. 3, but H is reduced to less than one half. In Fig. 4 and
Fig. 5, highlight lines are better and the shapes of the evolute surfaces are
quite different.

§5. Surface Modification by Specified Highlight Line

Next, we consider modification of a surface according to the designer's inten-
tion. A designer wants to specify a highlight line on the surface by indicating
the line to be changed. We determine the control variables in (6) so that
the surface has the specified highlight line. We calculate the squared sum of
the angle difference between tangent directions of the two highlight lines at
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/c(v)
c(v) /

Fig. 6. Modification of surface by highlight line specification. A solid line h(v)
is a highlight line to be modified and a dashed line c(v) is specified one.

(a) (b)

Fig. 7. Surface modification by highlight line specification.

the several corresponding points (see Fig. 6). Then, we change the surface to
minimize the value of

20 2 _____

E = arccosl (V ) lfi) (7)

Fig. 7 shows an example of surface modification. The upper two figures
are projected highlight lines, and the lower two figures are an original surface
and modified one with their evolute surfaces. In the left figure (a), a dashed
line is a highlight line specified by a designer to change the corresponding
highlight line (bold line). In the right figure (b), the surface is modified to
have the specified highlight line. As a result, its silhouette pattern is changed,
but the curvature distribution is smooth, as required by the designer.
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§5. Summary

We have proposed generation and modification methods of surfaces which
obtain not only smooth curvature distribution, but also smooth highlight lines.
The generated surface is globally smooth because it is generated so that its
evolute surface becomes smooth. Further, the shape of the evolute surface
is determined to minimize the introduced highlight line criterion, while the
surface satisfies the specified highlight line when it is given by a designer.
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MIPS: An Efficient Global

Parametrization Method

Kai Hormann and Giinther Greiner

Abstract. The problem of parametrizing 3D data points is fundamental
for many applications in computer-aided geometric design, e.g. surface
fitting, texture mapping, and remeshing. We present a new method for
constructing a global parametrization of a triangulated (topologically disk-
like) surface over a planar region with minimal distortion. In contrast to
many existing approaches which need the boundary of the parametrization
to be fixed in advance, the boundary develops naturally with this new
algorithm.

§1. Introduction

In general, a triangulated set of data points Pi 3E R 3 with triangles Tj =

A(Pj0, P 1, Pj2 ) and a 2-manifold domain Q C IR3, over which the points are
to be parametrized, are given. In most cases the domain is either planar
(0 C R 2 C R3 ) or a polygonal mesh with planar facets. The task is now
to find parameter values pi E 0, one for each data point Pi, such that the
topology of the point set is preserved, i.e., the triangles in the parameter
domain tj = A(pi 0 ,pil ,pi 2 ) must not overlap.

After determining the parameter values, the interpolation problem can be
written as follows: find a function F : 2 __+ R 3 with F(pi) = Pi [5,8,12]. The
simplest solution to this problem is the piecewise linear function that linearly
maps each parameter triangle tj to the corresponding surface triangle Tj (i.e.,
F(tj) = Tj). This function is typically used in the case of texture mapping,
where color information is defined in the parameter domain and mapped onto
the 3D object to make it look more realistic [1,13]. The function F can also
be used for remeshing the triangulated data points in order to get a mesh
with regular connectivity, so that multiresolution analysis and subdivision
techniques can be applied [3,10].

We only address the case of triangulated point sets that are topologically
disk-like (i.e., having a boundary and no holes) and thus can be parametrized
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over a simply connected planar domain Q C R2. In Section 2 a summary of
the previous work dedicated to this problem is given and the limitations of
the existing methods are outlined. Our method to overcome these limitations
will be explained in detail in Section 3. In Section 4 we show the advantages
of the presented approach, giving some examples of surface approximation
and remeshing with the new parametrizations. The paper concludes with a
discussion of the drawbacks of the proposed technique, and suggestions for
future investigations.

§2. Previous Work

While it is quite clear how to solve the local problem, i.e., parametrizing a
set of points surrounding a reference point R, which can be done e.g. by an
exponential mapping or by projection into an adequate tangent plane at R,
the global problem is more complicated and has been addressed in several
earlier papers.

Bennis et al. [1] propose a method based on differential geometry: they
map isoparametric curves of the surface onto curves in the parameter domain
such that the geodesic curvature at each point is preserved. The parametriza-
tion is then extended to both sides of that initial curve until some distortion
threshold is reached. But this method as well as the one presented in [13] by
Maillot et al. require the surface to be split into several independent regions,
and therefore cannot be seen as a solution to the global problem.

Ma and Kruth [12] project the data points Pi onto a parametric base sur-
face S : q --_ R3, and the parameter values of the projected points are taken
as pi. The approaches in [3,5,8,14] have the following strategy in common:

1) find a parametrization for the boundary points,
2) minimize an edge-based energy function

12E 1= 2 c2j Ip,- pjH (1)

{iiJ}EEdges

to determine the parametrization for the inner points.

The edge coefficients cij can be chosen in different ways. While Floater
chooses them so that the geometric shape of the surface is preserved [5],
Greiner and Hormann set cij = 1pi Pill, for some r > 0, as they want to min-

imize the energy of a network of springs [8]. Both methods are generalizations
of well-known results for the parametrization of curves [4,6,11]. Furthermore,
Taubin used the energy function (1) for smoothing polyhedral surfaces [14]
and found r = 1 to produce good results.

A different method is introduced by Pinkall and Polthier in [14], and by
Eck et al. in [3], where the Dirichlet energy of the piecewise linear function F-1
that maps the surface triangles Tj to the corresponding parameter triangles tj
is considered. It can be expressed as in (1) with cij = 1(cot a + cot ,3), where

a and /3 are the angles opposite to the edge PiPj in the two adjacent surface
triangles.
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Fig. 1. A pyramid cannot be parametrized without distortions.

In all cases, minimizing (1) is equivalent to solving a non-singular sparse
positive definite matrix system, that is (apart from Floater's method) even
symmetric. Though this is a comparatively fast way to find a parametriza-
tion, it suffers from the fact that it is not clear how to choose the initial
parametrization of the boundary points. Floater maps them to the boundary
of the unit square using chord length parametrization, Greiner and Hormann
project them into the plane that fits all boundary points best in the least
square sense, and Eck et al. use parameter values lying on a circle. Note the
importance of choosing a convex configuration for the boundary points, since
triangle flipping may occur otherwise. Triangle flipping can also be caused by
negative weights eij, which may happen with the method of [3,14] at sharp
peaks.

These techniques seem to be rather arbitrary and do not take the geome-
try of the boundary points into account. In the next section we will introduce
a parametrization method that yields parameter values not only for the inner
points, but also for the boundary points. Since this method also generates
parametrizations that are "as isometric as possible" (i.e., having minimal dis-
tortion), we will call them: Most Isometric ParametrizationS (MIPS).

§3. MIPS-Most Isometric Parametrizations

Let us briefly review the situation: we are given a set of triangulated data
points Pi e ]R3 with a boundary and no holes, and want to find a parametriza-
tion, i.e., a set of parameter values pi E R 2 so that the topology is preserved.
In order to define the quality of a parametrization, we consider the piecewise
linear interpolation function f : 1R3 -4 1R2 that maps the data points to the
corresponding parameter values, i.e., f(Pi) = pi.

As the triangulated surface may be geometrically complex, this function
will inevitably cause some deformation to the shape of the triangles. Con-
sider e.g. the configuration in Fig. 1, which can only be parametrized without
any deformations if the angles 6i add up to 27r. In general, only for de-
velopable surfaces (e.g. planes, cylindrical and conical surfaces) an isometric
parametrization without any distortion can be found. To keep the distortion
as small as possible, we must somehow measure this deformation so that the
best parametrization can be found in a minimization process.
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Fig. 2. An atomic linear map between surface and parameter triangle.

Clearly, f can be decomposed into atomic linear maps f, (see Fig. 2) that
map a surface triangle Tj = A(Pio, Pil, Pj 2) to the corresponding parameter
triangle tj = A(pI 0 ,plI,pjP). Thus it is sufficient to measure the distortion of
linear maps: if E were such a deformation functional, the best parametrization
could simply be found by minimizing ZJ E(fj).

While Pinkall and Polthier in [14] and Eck et al. in [3] consider the Dirich-
let energy ED(f) = 1 f JjVf 12 as a measure of deformation, Maillot et al.
propose the Green-Lagrange deformation tensor 111f - Md112 that describes the
distance of the first fundamental form of f, If = Vf t • Vf, to the identity
matrix in some 2 x 2-matrix norm [13].

An energy functional that measures the deformation of a linear function
should have the following properties: it should be

1) unaffected by translations,
2) unaffected by orthogonal transformations,
3) unaffected by scalings,

since the shape of triangles is not changed by these operations. Furthermore,
it is desirable to avoid degeneracies, so we need

4) a functional that punishes collapsing triangles very badly.

Notice that the Dirichlet energy meets the first and second condition

but favors small parameter triangles, contradicting the other two conditions.
Indeed, if the parameter values of the boundary points are not fixed, the min-
imum of that functional is the singular parametrization where all parameter
values pi collapse to one point. The Green-Lagrange deformation tensor also
fails to meet the third and fourth condition and the second one is only fulfilled
if the chosen matrix norm is invariant to orthogonal transformations.

Now, let g(x) = Ax + b be an atomic linear map that maps a surface tri-
angle T to a parameter triangle t. Note that by introducing a local coordinate
system at T, this function can be seen as a mapping from R 2 __ R2.

Because of the first condition, the constant part b of the function g should
not be taken into account by the desired deformation functional. Remember-
ing the singular value decomposition of a matrix U'AV = E = (0" J, where
oal _ a2 are the singular values of A and U and V are orthogonal matrices,
the functional should further depend only on al and a 2, thus fulfilling the
second condition. As the singular values are the lengths of the semi-axes of
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Fig. 3. Decomposition of a linear map g.

the ellipse {Ax : X 11•2 = 1}, the ratio al/0a2 seems to be a good measure of the
deformation of g that also fulfills the third and fourth condition by punishing
vanishing triangles with cc. From Linear Algebra it is known [7] that this
ratio is the 2-norm condition number of the matrix:

-2(A) = IAI1211A-111 2 = o-2

Since the 2-norm condition number of even a 2 x 2-matrix is rather costly in
numerical computations, we decided to use the condition number based on
the Frobenius Norm I1 -ie instead, which still meets the four conditions and
is much easier to handle:

2+ ,2 V•(1 )2 + (L2
aF(A) = IIAJIIFPA- 1IF = -1)2 + (a2

012 +o2 1r1 . - -. + 0'2 = K2(A) + (20 10"2  "2 o-- 2(A- )

trace(At A) (3)
det A

From (2) we can see how close KF and r- 2 are related and that it is no major
difference whether we minimize the one or the other in order to get linear
mappings with low distortion. We will now use (3) to get a representation of
KF that is suitable for numerical computations.

If we decompose the linear function g according to Fig. 3, where {ei, e2}
is the canonical basis in ]R2 , we have g = poV- 1 . Further, we have A = Og =

OV8ýp-1 and a little calculation (see [14]) yields

trace(A'A) _ trace(Og'ag) 4ED(g) (4)
f(g) :=IF(A)= -- det A det 08 det Oo-1- det 84)

cot aJaI2 + cot 131b12 + cot -yJC 2

det O4'

From (4) and the observation that det ft is twice the area of the parameter
triangle t, we can interpret the deformation energy KF as the Dirichiet energy
per parameter area.
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3D Data Set

Most Isometric Parametrization Discrete Harmonic Parametrization

Fig. 4. Data set and gray-coded Dirichlet energy of different parametrizat ions.

Now, by minimizing the deformation functional r, = Ej KF(fj), we will

get a set of parameter values pi e JR2 that defines a parametrization with
minimal distortion. Note that, as K meets the four conditions from above,
the minimum will only be unique up to movements and scalings. Anyway,
this is not a drawback and can be fixed by retaining two arbitrarily chosen
parameter values.

The main advantage of the proposed approach is that it is no longer
necessary to fix the parameter values of the boundary points in advance.
Instead, the boundary of the parametrization will develop most naturally in
such a way that the deformation energy K is minimized.

§4. Examples

We now illustrate the advantages of our new approach by showing some ex-
amples of surface approximation and texture mapping with different para-
metrizations.

In Fig. 4, a triangulated surface with 476 data points and 864 triangles
can be seen. This data set has been parametrized with our new method and
by minimizing the Dirichlet energy according to [3,14] which produced the
best results of all the approaches mentioned in Sec. 2. Since the minimization
of the Dirichlet energy can also be interpreted as a discrete harmonic mapping
(see [3]), we will call the result Discrete Harmonic Parametrization.
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Most Isometric Parametrization Discrete Harmonic Parametrization

Fig. 5. Gray-coded r. deformation energy of different parametrizations.

We have encoded the amount of Dirichlet energy per triangle as gray
tones (white color signifies low and black color denotes high energy). One can
clearly see that the second method generates great deformations especially
near the border of the parametrization which is due to the arbitrarily chosen
parameter values for the boundary points. This effect is even more distinct if
we look at the r, deformation energy per triangle, which has been gray-coded
in Fig. 5.

Fig. 6 shows how the deformations of these parametrizations affect an ap-
proximating surface. We have gray-coded the mean curvature of the surfaces
in order to emphasize the fact that strong deformations in the parametrization
of the data points cause the surface to wrinkle in these areas (dark color refers
to high absolute values of the mean curvature).

Finally, Fig. 7 shows an example of remeshing. A base mesh of 4 triangles
has been split six times by a regular 1-to-4-split, generating a triangle mesh
with 16,384 triangles and regular connectivity, i.e., all vertices have valence
6 except for the one that refers to the central vertex of the base mesh and
the boundary vertices. The Hoppe mannequin head has been remeshed with
this semi-regular mesh using different parametrizations. The Chord Length
Parametrization, used in the example to the right, refers to (1) with cij =

1 (see [8] for details).

§5. Conclusion

We have presented a new method for constructing parametrizations of tri-
angulated surfaces with a boundary. This parametrization can be used for
surface approximation, texture mapping, and remeshing of the original mesh.
The main advantage of our approach is that, in contrast to existing methods,
the parametrization of the boundary data points is done in the same way as
the parametrization of the inner points. Therefore we think that our approach
is more natural than the other methods which set the parameter values at the
boundary heuristically.

Often, the problem of parametrizing triangulated surfaces with holes oc-
curs. So far, we have tacitly ignored this problem, but the proposed method
is capable of dealing with these situations, in principle. Nevertheless, it might
happen that overlapping parameter triangles will be generated at holes, which
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Most Isometric Parametrization

Discrete Harmonic Parametrization

Fig. 6. Curvature plot of approximating surfaces with different parametrizations.
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Most Isometric Parametrization Chord Length Parametrization

I I
Fig. 7. Remeshing with different parametrizations.

can be fixed by triangulating the hole in a preprocessing step and removing
the additional triangles afterwards.

The main drawback of our approach is that it requires the minimization
of a rational quadratic function, while the other parametrization techniques
only need to minimize a quadratic term which can be done by solving a sparse
linear system of equations.

Our future work will therefore be concentrated on developing hierarchi-
cal methods for efficiently solving the problem. The concept of progressive
meshes, introduced by Hoppe in [9] seems to be a good basis for such investi-
gations.

Acknowledgments. This work was partly supported by the Deutsche For-
schungsgemeinschaft through the Sonderforschungsbereich 603 Modellbasierte
Analyse und Visualisierung komplexer Sensordaten.
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Comparison of Different Multisided Patches

Using Algebraic Geometry

K~stutis Kardiauskas and Rimvydas Krasauskas

Abstract. Different constructions of multisided surface patches (due to
Sabin, Hosaka-Kimura, Warren, Loop-DeRose, etc.) are studied via con-
sidering base points of their parametrizations. This analysis shows hidden
interrelations between various cases and enables to find new efficient con-
trol point schemes in more general situations. In particular, toric patches
are introduced.

§1. Introduction

The problem of smooth filling of m-sided holes arises in many modeling sit-
uations. It is solved using various methods: recursive subdivision, surface
splitting, data blending and control point schemes. We consider here only
the case when a m-sided patch is defined via control points as a single piece
bounded by B6zier curves of degree n. M. Sabin [11] introduced 3- and 5-sided
patches bounded by conics (n = 2) and suitable for an inclusion in B-spline
surface. Hosaka and Kimura [2] proposed the same type of patches with n = 3.
Zheng and Ball [15] extended the previous constructions to arbitrary degree
n. In the same fashion, 6-sided patches were constructed (see [2,12,15]). Un-
fortunately, these 6-sided patches seems to be nonrational. Loop and DeRose
[9] introduced rational S-patches, and used them in [10] for building Sabin
and Hosaka-Kimura-like patches (n = 2, 3) with arbitrary number of sides m.
As far as we know, Warren was the first to introduce the method of blowing
up base points (well-known in algebraic geometry) to the CAGD community.
He used it in [14] for creating 5-, 6-sided patches. Analysis of mentioned ap-
proaches and the convex combination method (cf. Gregory [1]) shows that
m-sided patches for m > 4 should be rational. Hence it is natural to use
theoretical results from algebraic geometry concerning rational surfaces. The
method of base points enabled Kar~iauskas [3] to build well structured ratio-
nal 5-sided patch with actually the same properties as the original Warren
hexagon. In [4] these patches are used for creating 5- and 6-sided Sabin and
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Hosaka-Kimura-like surface patches with boundary curves of arbitrary degree
n. Similar patches over a regular m-gon for any m (except 4) and for arbi-
trary n are obtained in [5] also using the base point method. The patches in
[4, 5] have lower degree parametrization than previous ones. We call them
T-patches. Moreover, the base points method is good for building bridges
between various approaches, especially in pentagonal case. In 6-sided case
the relations are more complicated. On the other hand, it appeared that this
hexagonal patch belongs to a special class of so-called toric surfaces, which
were studied in detail in algebraic geometry. First applications of toric vari-
eties in CAGD were demonstrated by Warren [14] and Krasauskas [7].

In this paper we describe initially hidden interrelations between pentago-
nal Sabin, Hosaka-Kimura and Loop-DeRose patches via the T-patch concept.
Six-sided patches are considered using both base points and toric methods.
Five- and six-sided cases are actually most important (beside triangular and
rectangular patches) in geometric modeling and at the same time most conve-
nient from the algebraic geometry point of view. Here we only outline results.
Full proofs can be found in papers [4, 5, 8] of the authors. Relations between
triangular Sabin, Hosaka-Kimura and Loop-DeRose patches are described in
[5]. Algebraic version of convex combination patches is presented in [6].

§2. Notations and Definitions

In order to consider several variants of multisided patches defined via control
points, we recall the most general concept of a rational patch.

Definition 1. A rational surface patch is a mapping F : D -+ IRk defined on
a domain D C R2 by the formula

F(t) = EI-I Wqpqfq(t)
EqE1ZWqfq(t) (1)

where polynomial functions fq labeled by some set I are called basis functions,
the points Pq E Rk are control points, and the numbers wq are their weights.

The Sabin and Hosaka-Kimura-like patches (see [2,4,5,10,11,15]) behave
like tensor product surfaces along their boundaries, and can be connected
smoothly with surrounding rectangular patches. We denote a patch of this
type by SHKn, where m is a number of boundary curves and n is their degree.

Let wo,wj,... ,wm.- be the vertices of a regular m-gon with a center
w and let n be a fixed natural number. For each triangle with the vertices
w, w,,w,+,, 0 < s < m - 1, the points

w,. =iw+ ws+ n-i-itws, i,jŽ0, ij+ _n, (2)n n n

linked together form a triangulation of an m-gon (see Fig. 1). The set of all its
vertices is denoted by Cn . It is convenient to enumerate them by the triples

(s,ij), 0<s<m-1, 0<i<n, O<j:<n-i,
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m=5, n=2 m=6, n=3

Fig. 1. Control point schemes of T-patches.

where triples (s, i, n-i) and (s+l, i, 0) are identified (the first index s is treated
in a cyclic fashion). Indices s, i, j correspond to labeling in the formula (2).
The graphs £C define a combinatorial structure on the control point nets of
T-patches.

The domain of some patches is a regular m-gon. In this case we assume
linear functions have inward-oriented normal vectors. For 0 < s < m - 1, we
write is for the function defining a line ,w-w+1. An intersection of the lines
w,-l8 w and tosws+2 is denoted by b,. By l, we denote a function defining
a line b,-lb,.

Using the blowing up method (see [3,13]) a 5-sided patch is defined via ba-
sis functions vanishing simultaneously at the two vertices vi, v2 of the domain
triangle Avov 1v 2. A 6-sided patch is defined via basis functions vanishing si-
multaneously at all three vertices. In these cases we denote by 10, 11, 12 the
barycentric coordinates of a point with respect to the triple v0 , v 1 , v2 . The
infinite points corresponding to the lines Voy 1 and Vov 2 are denoted by el, e 2

respectively.

Definition 2. A function f has a zero of multiplicity Y at a point p if it
vanishes at p together with all partial derivatives up to the order ft - 1. A
point p is a base point of multiplicity p' of a rational map (1) if all basis
functions fq have a zero of multiplicity pt at p.

For a set of planar points X - {PO, . . . ,p.}, we denote by P(k, A, X) the
linear space of polynomials of degree k which have zero of multiplicity A at
all points Po, . . . , p,

§3. T-patches

Defining 5- and 6-sided T-patches, we set I = Q• and I = Q respectively.
Various type of basis functions for 5- and 6-sided patches are defined using
the following scheme. Assume there are m + 1 functions ho, hi,..., hm-1, h
(m = 5,6) and positive numbers k., 0 < i < n, 0 < j • n - i, satisfying the
symmetry conditions j= , For q - (s, i, j) E C' , the functions fq
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are defined by the formula

fq = V.jh 'n-,- hs+lh' (3)

Now we specify the functions h8, h.

Definition 3. Five-sided T•n-patch and six-sided Tfn-patch are defined over
a triangle via the formulas

f hf = l, h1 =1011(lo + 1), h 2 = 1112, h3  27
5: h4 = 1012(10 + 12), h = 101112, (4)

h0 = 11 hi - o h 2 = 12112, h3 = 1112

h 4 = I02, h 5 = 1212, h = lolll2.

A five-sided Tvn-patch and six-sided Ti-patch are defined over a regular pen-
tagon and hexagon, respectively, via

4

T : h,=,+l+2l+3ls S 1=0,1,... ,4, h=IJJ, (5)

s=0

5

S: hs = ',++2Ps+Js+4, s=o,1,. .,5, hz i-s.

If V = (), the boundary curves are B6zier curves of degree n. So the
boundary curves are integral if their weights are equal to 1, though the patches
are rational for any choice of the other weights.

From the designers point of view, it is convenient when a cyclic change
of the input data does not change a patch as an image in 1R3 . The Ti-

and T6-patches are symmetric by definition. The T5- and Tv-patches are
also symmetric (see [4, 5]). Their cyclic reparametrizations are given by the
birational transformations of the domain triangle (Cremona transformations)
of order 5 and 6 respectively.

Remark 4. It is shown in [4] that Ti'- and T6-patches give the same class

of the surfaces as T5- and T6-patches. So we actually have two kinds of

parametrizations of 5- and 6-sided surfaces. The T5- and T6-patches can be
easier handled using standard methods, since they are defined over traditional
symmetric domain. The Tr7- and Tv-patches are more convenient from the
algebraic geometry point of view. For example, the latter approach gives the
third type of parametrization of T-patches, which is suitable for an efficient
plotting: T'-patch can be represented as a collection of three B6zier patches
of bidegree (2n, 2n); T•n -patch can be represented as a collection of six B6zier
patches of the same bidegree.

The principles of blowing up and plotting To-patches are shown in Fig. 2.
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Fig. 2. Blowing up and plotting T•n-patches.

Lemma 5. The basis functions of all T-patches are linearly independent.
Moreover, the spaces P(3n, n, {v 1 , v 2 , el, e 2}), P(3n, n, {v 0 , vj, v2 }), P(5n,
2n, {bs, s = 0,..., 4}) are generated by the basis functions of the T5n-, Tn-

and Tv-patches respectively.

Lemma 5 enables us to establish algebraic relations between different
surfaces.

§4. Interrelations Between Pentagonal Patches

We denote by U5 a surface in R 5 defined via equations x, - 1 + x5 +2x,+ 3 =

0, s = 1,.. . , 5 (the index s is treated in a cyclic fashion). This surface
was introduced by Sabin [11]. A domain D for the pentagonal patches from
[2,11,15] is a region in U5 with x, > 0, s = 1,..., 5.

The interrelation mappings are defined via formula (1), assuming that 1 =
V, kl 0 = 1 and all weights are equal to 1. We set for simplicity p. = Poo, P =
Pooo, and denote r0 = (0, 1, 1, 1, 0), r? = (0, 0,1,1, 1),..., r4 = (1, 1, 1, 0, 0),
r = (2/3,...,2/3) (r, are the corner points of the Sabin domain). By c is
denoted a barycenter of the triangle AvovIv 2.

Definition 6. Define rational mappings H5, 115 :R 2 _' JR2 and G5 , G5
R2 

-R 51 as follows. H5 and G5 are defined fixing basis functions (4) with
k10 = 5(v¶ - 1)/2 and taking control points p. = w,, p = w and p. = rs,

p = r respectively. H15 and G5 are defined fixing functions (5) with k'o =

3(V5- + 1)/2 and taking control points po = vo, P, = VI, P2 = v1, P3 = V2,
P4 = v2, p = C and p. = rs, p = r respectively.

Theorem 7. The mappings G5 and d 5 define parametrizations of the surface
U5. They map triangular and regular pentagonal domains respectively onto
the Sabin domain. Moreover, G5 o H15 = G5 , H5 o H5 = id, H5 o H 5 = id.
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Corollary 8. Five-sided Sabin [11] and Hosaka-Kimura [2] patches can be
represented as T53- and T4-patches respectively.

Proof: The basis functions of the Sabin and Hosaka-Kimura patches are
special polynomials of degree 12 and 20 respectively, which sum to 1 on U5.
Calculations (with MAPLE) give that their compositions with G5 have the
form Ag, and Bgp respectively, where A, B are some rational functions, g, G
P(9,3, {Vl, v 2, el, e 2}), gp E P(12,4, {vl, v2, el, e 2}). Now the proof follows
from Lemma 5. El

Notice, SHK'-patches in [4] can be represented as Tv-patches. Let 1 =

{1, 2,3,4,5}, f. = lsls+lls+2, s E -", Pi = (1,0,0,0,0),..., P5 (0,0,0,0,1).

If all weights are equal to 1, the formula (1) defines a map L ] R2 , R5.
An image of the map L is denoted by U5. The surface U5 is used in [9] for
a definition of 5-sided S-patches. A domain of 5-sided S-patch is a regular
pentagon.

Proposition 9. A five-sided S-patch of depth n over regular pentagon can
be represented as Tv-patch.

Proof: The basis functions of an S-patch of depth n (see [9]) are the compo-
sitions of the map L with the homogeneous polynomials of degree n. They are
polynomials in P(3n, n, {b,, s = 0,..., 4}). Multiplication of the basis func-
tions by C', where C = 0 defines a circle going through the points b,, does
not change the patch. New polynomials are in P (5n,2n, {bs,s = 0,...

Hence the original S-patch can be represented as Tv-patch. Li

We have seen, that Sabin and Hosaka-Kimura patches can be considered
as the patches over a regular domain or over the Sabin domain in U5 . Simi-
larly, an S-patch can be considered over the domain in U5 with nonnegative
coordinates. We call it a Loop-DeRose domain.

Proposition 10. There exists a mapping p : U5 -* U5, which maps the Sabin

domain onto the Loop-DeRose domain and L = p o G5 .

Proof: Define p as a composition of the projective transformation

Yi= xi + Xi+ + Xi+4 - a(xi+i + xi+3 ) + a -2 i= 1,..., 5,

YO = (3- 2a)(xi + x 2 + X3 + X4 + x 5 + 2a).

(a = (v-h+ 1)/2) with the projection from a point on U5 : p: (yo,. .. ,Y5)

(yl/yo,...,y5/yo). EL

From the algebraic geometry point of view, the surface U5 is more univer-
sal in the algebraic constructions than U5. As a confirmation of this property,
we have that SHK5- and SHK5-patches in [10] can be represented only as T55-
and T6-patches, respectively.
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/ L H5
H5

Fig. 3. Interrelations of 5-sided patches.

Remark 11. The surface U5 plays a key role in the theory of 5-sided patches.
It would be interesting to investigate deeper geometric properties of U5. Here
are two of them: 1) as a surface in pRp5 it contains 10 lines; 2) exactly 5
conics go through a generic point of U5 .

A schematic of the interrelations between 5-sided patches is shown in
Fig. 3.

§5. Toric Patches

Here we present several results about toric patches obtained in [8]. Some
details can be found also in [16].

Consider a lattice &Z2 of points with integer coordinates in the real affine
plane JR2 . We call a convex polygon A C R 2 a lattice polygon if its vertices
are in the lattice 2Z2 . Edges 5i of A define lines hi(t) = (ni,t) + ai = 0, with
inward oriented normal vectors ni, i = 1,... , r. We choose ni to be primitive
lattice vectors, i.e. the shortest vectors with integer coordinates in the given
direction.

Denote by A = A n Zk a set of lattice points of the polygon A. It is easy
to see that hi(m) is a non-negative integer for all i = 1,... , r and m E A.

Definition 12. A toric patch associated with a lattice polygon A is a rational
patch TA with a domain D = A and basis functions

Schhi(m)hh2(m) ... hhr(I) (6)

indexed by lattice points m E A. Here cm > 0 are some coefficients which
may vary from case to case.
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Fig. 4. Examples of lattice polygons.

Example 13. B1zier surfaces and the Warren hexagon [13] are toric:
1) If A is a triangle with vertices (0,0), (d, 0) and (0, d), then TA with

c(ij) = d!/(i!j!(d - i - j)!) is exactly a rational B36zier triangle of degree
d, which parameter domain is scaled d times.

2) If A is a rectangle with four vertices (0,0), (di,0), (di,d 2) and (0, d 2),
then TA with coefficients c(ij) = (1,) (.2) is a tensor product surface of

bidegree (d1 , d2) with a scaled parameter domain [0, di] x [0, d2].
3) Let A be a hexagon A6 (see Fig. 4) then TA with appropriate coefficients

cm is the Warren 6-sided patch denoted by T• in Section 3.

Toric patches have similar properties as B6zier surfaces. They are affine
invariant, and have convex hull property. Every edge bi of the lattice polygon
A corresponds to a boundary rational B1zier curve with control points m C
bi = Zi n 2Z. In particular, its degree is equal to an 'integer length' of the edge
Si.

The following property is in some sense similar to the affine invariance of
the domain for B16zier surfaces.

Lemma 14. (Unimodular invariance of the domain.) Let two lattice poly-
gons be related via some affine unimodular transformation L(A) = A' (i.e. L
preserves the lattice 7Z2 ). Then toric patches TA and TA, with the same con-
trol points and weights are just reparametrizations of each other: TA = TA, oL.

In Fig. 4 we see a lattice hexagon A6 and an octagon A8 . Since they have
6- and 4-sided symmetry, corresponding toric patches TA for A = A6 , As have
the same symmetry.

Corollary 15. For m = 3,... ,8, the only symmetric (in the sense of Sec-
tion 3) toric patches may be 3-, 4- and 6-sided, for example, B6zier triangles,
tensor product surfaces of degree (d, d) and the Warren hexagon TA6 = T6.
In particular, the 5-sided Ti-patch cannot be toric.

Proof: These numbers correspond to cyclic subgroups in the group SL 2(2Z)
of unimodular linear transformations of the lattice 2Z. D]
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It is clear that an affine unimodular transformation L preserves area,
since det L = :1. It is convenient to use so-called normalized area which is
twice as large as the usual area in 1R2, since then area(A) is always integer for
lattice polygons A. The following result is well-known in the theory of toric
varieties (see [14] for an elementary proof).

Theorem 16. The implicit degree degTA of a toric patch TA does not exceed
area(A). It is equal to area(A) when the control points are in general position.

For example, deg TA6 = 6 and deg TA,- = 14 (see Fig. 4). Consider now
the more general parametrization of a toric patch F' : R_0 --ý ]Rk defined as
in (1) via basis functions

f1.(UU2,• U2 , Ur) = cmlh(m)uh2(m)...uhr(m), m•C A.

Definition 12 is obtained substituting variables ui by affine forms hi. Although
the domain R1_0 has dimension r, the image of F' is 2-dimensional in all cases
(cf. [8]). Hence, using various substitutions, one can get different interesting
parametrizations of the same patch. The simplest piecewise substitution

(•i(u,v)= F'(1 1u v, 1,..1), i= 1,...,r-1

4)r(u,v)=F'(v,1,...,1,u), 0<u,v_< 1,

defines a subdivision of the toric patch into r tensor product pieces. This
directly generalizes the Warren hexagon subdivision [13].
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N-sided Surface Generation from

Arbitrary Boundary Edges

Kiyotaka Kato

Abstract. This paper discusses a general theory and an implementation
method for generating a surface patch with concave edges, holes, ridges
and valleys in CAD/CAM applications. The surface generation method,
which has been proposed to create an N-sided patch with holes, is first
reviewed. Such surfaces are generally classified as transfinite surfaces, in
which a surface is interpolated to span given curves. In the proposed
method, each boundary edge defined in a 2-dimensional domain has an
appropriate blending function. The function is defined so that the deriva-
tives are 0 on the edges, and the function values are 1 on one edge and 0
on the other edges, and each edge in the 3-dimensional space is blended
smoothly. A revised method is also introduced in this paper. The pre-
viously proposed method has some problems in that a surface may not
be generated appropriately for concave edges, and the surface has to be
manipulated manually if it has holes. This causes distortion and overlap
in mapping from a 2D domain into 3D space. In the new method, the
blending function is revised, and the boundary edges in the 2D domain
are obtained from the edges in the 3D space beforehand. Thus, it is shown
that an N-sided patch with concave edges, holes, ridges and valleys can be
suitably generated.

§1. Overview

It seemed that the study of surface generation was almost complete after the
development of the NURBS (Non-Uniform Rational B-Spline) surface, and
many commercial CAD system used the NURBS surface as a unified surface
in their systems. However, it is now being recognized that the NURBS surface
has some limitations, and is not suitable for some actual cases. In one such
case, there is a problem with the generation of an n-sided surface patch. It is
rather hard to generate a surface patch for arbitrary topology with the NURBS
surface. Besides the development of 4-sided patches, n-sided surfaces have also
been studied. The methods developed can be classified into three classes: the
recursive subdivision method using polyhedrons, the multiple patch method in
which a surface is represented by plural 4-sided patches, and the single surface
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patch method in which a surface patch is represented as just one patch [1].
This paper refers to the single patch method.

A single patch method has been proposed which generates a surface patch
from an arbitrary shape and a number of edges together with holes [2]. It was
suggested that some relations are needed between the shape of the boundary
edges and the shape of the 2D-definition boundary. The method of surface
generation is a generalized one, but it was found that a surface cannot be
generated well in some cases. An illegal surface is generated when the bound-
ary has a concave shape and the surface has a hole. Distortion or overlap is
caused in mapping from a 2D definition space into the 3D space.

Sabin calls the method of surface generation from boundary edges a
"transfinite surface" in contrast with the one which is characterized by a
finite number of control points. He argued a general theory, and proposed a
two sided surface patch and a surface with holes [3-5]. The two sided surface
interpolates two given Bezier curves in a 2D definition space so that it forms
a smooth surface without singularity. He also tried to resolve this problem
from 3D into 2D by using a dynamic model with some constraints to generate
a surface patch with holes.

For this same purpose, this paper proposes a method of surface generation
which is flexibile in generating a surface from such boundary edges so as
not to cause twists and overlaps. The second section of this paper reviews
the theory about pre-proposed surface generation. In the third section, the
problems of the conventional method are discussed. After that, a new method
of resolving these problems is described. After showing some examples of
surface generation, the results are evaluated and conclusions are drawn.

§2. Surface Generation from Boundary Edges

2.1 General theory of surface generation

The fundamental idea is that a surface is created so that the interpolated
point of a surface is obtained using rational blending functions for positional
vectors and tangential vectors. Thus, the surface is a transfinite surface in
consideration of the boundary positions and cross-boundary derivatives on
the given boundary edges. It is a parametric surface created in mapping from
a definition domain to 3D space JR2 

-* ]R3 . Let us call the definition domain
Ql and the boundary of the domain F. Using points a E Q,,3 E F, B(O3) is a
positional vector and D(O3) is a cross boundary derivative of a given boundary
edge. These vectors specify the boundary conditions and have to be given as
follows. A surface is represented as in (2) using blending functions at a point
P:

B(O3) = lim S(a), D(/3) = lim OS(a)/&n, (1)

S(a) = j D(a)(B(3) + Ia -/31D(/3))). (2)
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Outer Boundary Inner Boundary

LU

Fig. 1. Definition of the outer and inner boundaries.

2.2 Implementation method

Here the actual implementation method of N-sided surface-patch generation
is described. Consider the normalized regular N-sided polygon in 2D space
shown in Fig. 1 so that the foot length from an arbitrary point to each side is
less than 1. This polygon is called "the outer boundary". Next, assume that
one or more regular N-sided polygons are located within the outer boundary
so that none of these polygons intersect with another. These polygons are
called "inner boundaries". The closed domain D is defined as the area inside
the outer boundary and outside the inner boundaries and is mapped to an N-
sided surface patch in 3D space. Next prepare a pair of a boundary parameter
and a distance parameter as follows.

(1) The distance parameter dij becomes 0 on side i, j, and varies from 0 to
1 according to the distance between point P and the side.

(2) The boundary parameter bij varies from 0 to 1 on side i,j of the given
point P, and bij is given as the ratio of the adjacent distance parameters
so that

bij= dij-1/(dij-1 + di~j+). (3)

Here i is the index of the outer boundary when i = 0, and the index of
an inner boundary when i 5 0. Here j is the index of a side of each
boundary.

The values of u and v determine an arbitrary point P(u, v) in the closed
domain D. The pair of a distance parameter dij and a boundary parameter
bij also determines the same point P. The blending function 41,m for a side
m of a boundary 1 is defined in the closed domain D as follows:

(1 -d2 .)/1d2-M .,Z , (4)-ýJ,m (u, V) = H Mp 4
•-••-•1-2 2Z:(1 - dp,q)/dpz,q

p=O q=1

Here the indices p and q relate to a side q of a boundary p. The boundary
is the outer boundary when p = 0. Here H is the number of holes, and Mp
is the number of sides of the boundary p. Also qL,m is a function of u, v
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Fig. 2. Distance parameter for the Fig. 3. Distance parameter and bound-
outer boundary. ary parameter for an inner boundary.

Fig. 4. Difference in surface generation according to definition domain.

and can also be a function of the pair of independent variables bij and dij,
because dl,m and bi,m are functions of bij and dij. As shown in Fig. 2, the
3D boundary condition for a side j of a boundary i is given by a positional
vector, Bj,m(bj,m) and a tangential vector, Di,m(bj,m), where each vector is

parameterized by the boundary parameter bl,m. By giving the values of u and
v, the variables bp,q and dp,q for side q of the boundary p are obtained, and
Bp,q(bp,q) and Dp,q(bp,q) can be determined. The N-sided patch is given by
the equation

H Mp

S(u, v) = 1 1 p,q(Bp,q(bp,q) + dp,qDp,q(bp,q)). (5)
p=O q=l

§3. Problems with Conventional Surfaces

The previously proposed method removes the restrictions of a 4-sided patch
[2]. This method enables a surface to be generated from the given boundary
conditions (position, tangent vector), and is able to represent holes on the
surface. However, it sometimes needs a manual transaction to generate a sur-
face. For example, a generated surface sometimes becomes twisted or illegal
when generating a surface with holes like the one shown in Fig. 4, although the
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(a) 2 sided patch (b)Transfinite patch
with holes

Fig. 5. Sabin's parametric domain.

surface satisfies the given boundary condition. Therefore, the earlier method
must be revised in order to create a surface freely from arbitrary edges. It
seems that the boundary in the 2D domain has to be similar to the 3D bound-
ary in the 3D space. From such a point of view, Sabin proposed a surface patch
using the definition space shown in Fig. 5. He also proposed a surface using
dynamics from the same point of view with some restrictions from the same
idea [5].

§4. Surface Generation from Boundary Edges by Reverse Mapping

In order to create a surface patch with concave edges and holes, the interpola-
tion method has to be able to interpolate boundary edges on a plane at least
without overlaps and protrusions. A transfinite surface blends sample points
on the given boundary edges in an appropriate ratio. Therefore, the point to
be interpolated exists in the convex hull of the sample points. Thus, it can be
said that it is essentially difficult for a transfinite surface to generate a surface
with a concave edge. Fig. 6a shows the boundary edges with a concave part on
a plane in 3D space. It is desirable that point P is given as the point obtained
by blending the sample points A1-A5 on each boundary edge. The point is in
the convex hull of points A1-A5 because the blending functions have a value
between 0 and 1.

Now consider the domain of Fig. 6b and Fig. 6c in UV-space. In case of
Fig. 6b, the corresponding sample points bl-b5 are obtained for a point p(u, v)
and the sample points in 3D space become the points B1-B5 shown in Fig. 6d.
It is thus possible that the blended point Q will be placed outside the boundary
edges. In the case of Fig. 6c, sample points cl-c5 for point p will be obtained,
and the corresponding points will be points C1-C5. Points C1 and C5 are
affected strongly near the boundary, and point Q becomes an interpolated
point and gives the good interpolated result shown in Fig. 6e. From the reasons
outlined above, it can be said that the sample points are obtained near a
point in the domain by using the definition boundary which resembles the
given boundary edge. Since the sample points in 3D space for the point are
given in appropriate ratios, a better interpolation can be realized compared
with the conventional method in which a domain is a regular polygon. It can
be also said that cross-boundary derivatives are helpful in avoiding a web in
the concave part. The second term of (5) gives an effect of cross-tangential
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Fig. 6. Difference in sample points according to domain definition.

vectors to the surface. This term makes the surface point move according to
the product of the distance parameter and the cross-boundary vector from the
boundary.

4.1 Reverse mapping algorithm

In the previous section, it was stated that the boundary in a 2D definition
space has to be similar to the shape of the 3D boundary edges. The following
should be observed in constructing the domain boundary:

(1) The scale of 3D edges should reflect one of the domain edges.

(2) The topology of 3D edges should be the same as one of the domain edges.

(3) The angle of adjacent edges should reflect one of the domain edges.

Let us now consider a reverse mapping which satisfies these properties.
Imagine a rubber surface spread over wires. By leaving it free, the wires
will be straight. It would be ideal to use something like these wires as a
2D domain boundary. However this ideal mapping would be disadvantageous
when considering the computational cost, so we selected a simple method
of reverse mapping. Fig. 7 shows the algorithm. Each edge is connected at
point Pk. Let the foot from the point to a plane be point Qk. The plane
can be obtained simply by solving the equation EN 1 (Pk - Pk)2 so that it
is minimized using the least square method. After obtaining the foot Qk of
the point to the plane, define the polygon which is constructed by Qk as a 2D
domain boundary.

4.2 Implementation method

In Section 2, the distance parameters and boundary parameters were defined
in the normalized regular polygon of Fig. 2. The revised version of surface
generation uses the same parameters, but uses non-normalized and irregular
polygons with convex and concave parts. In order to define the distance
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parameters for such polygons, we applied the previous calculation method used
for the inner boundary to both the outer boundary and the inner boundaries.
The boundary parameters are obtained by (3). Also the blending functions
have to be revised because (4) is defined for the domain of a regular polygon.
Next (7) is substituted for (5) in order to represent the concave figures shown
in the next section:

- 1/d•'m(6

(u,muV) - HM (6)

p=O q=1

H Mp

S(u, v) = E 4 Op,q(U, v)(Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q)). (7)
p=O q=1

4.3 Theorems

Some characteristics of the blending function and the surface patch defined
in the previous section are now discussed. The following theorems can be
obtained from (6) and (7). Select a pair of independent variables bij and dij.

Theorem 1. lim 4i,j(u,v) = 1, lim CJ (u,v) = 0 when (l,m) :A (i,j).
dj--.- d,m--O

Theorem 2. Oa.im(U,v) = 0 and 19t,m(U,v) = 0.abi~j adij

Theorem 3. lim S(u,v) = Bi~j(bij), and
dlij -- 0

lim OS(u,v) OBij(bij) lim aS(u,v)_ lim Divj(bi)j,dij)
dij-- ibi~j Obij dlij-- =dij dim '0

Proof:

lim aS(u, v) = lim H -P'q (Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q))+
dij--0 abi~j di,j"-Op Y'E =

p-O q=1

SD OB(bp,q) + Dpq(bpq, dpq) + dpq aD(bp,q,dpq)
P~t• + Dp,q _p__dp_)_+_p____'_

abijB~b abj)b

1im 4j( aB(bi j) +di J D ( -i+ diOD(bij, dij) ) _B(b,)
=dlj----oli abij( O b• i~~ij~jij , abij abi~j

H Mp

lim s(uv) = lim H MZ[P (Bp,q(bp,q) + dp,qDp,q(bp,q, dp,q))+dlij--0 adi~j dij"-•Oz-o 1 d= E~ [ Wij

pq OB(bp q) + Od, Dpq pD(bp,q, dp,q)

_____ 9d9Ddz,7
a.B(bi) OD(bij, dj,

--lim 4),j( J+ D + OdijdI"J)) = D. (bij, dij).
iZ
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Fig. 7. Inverse mapping from 3D Fig. 8. Cross-boundary derivative.
space into 2D domain.

§5. Boundary Condition and Surface Connection

5.1 Setting boundary conditions

A Coons patch must satisfy a compatibility condition. A Coons patch, which
is constructed u~ing a two surface patch in principle, does not guarantee the
boundary condition without a compatibility condition. Gregory used a ra-
tional blending method, and invented a method of setting cross boundary
derivatives freely so as to remove the inconvenience. A Gregory patch needs
a compatibility condition for a positional boundary, and the twist vectors are
discontinuous at the corners. In Little's patch the boundary conditions can
be freely set for both position and tangent vector. The proposed surface does
not cause the problems of the so-called compatibility condition. However, it
is desirable that the tangent vector and the twist vector are continuous at the
corners. Here, the method of setting cross-boundary derivatives at the cor-
ners is introduced. As shown in Fig. 8, two normal unit vectors no, n1 are first
calculated from the boundary derivatives io,jo, il, and j1 , Here, the normal
vector at a concave corner should be reversed. Define the two vectors c0 , cl
obtained at the tips of the edge as c0 = j0 x no, cl = J, x nl. The vectors
n(t), c(t) are from interpolating no, n, and co, cl respectively. Thus the cross
boundary derivatives D(t) are given as D(t) = n(t) x c(t).

In order to satisfy the compatibility condition for a tangent vector in a
corner, the magnitude of a cross boundary vector has to been properly given.
Since the boundary parameter bij for the edge(i, j) is defined as being between
0 and 1, the following reference has to be applied:

bi-11 ' Obi~~
_d IIi_ _ = 1- 1 di j-___ ,__ II 1 di__0 j =00 (8)

lj 5.J0 d bd~j=O i id j= dij+2  b h =,1

5.2 Boundary condition at concave corners and holes

A special transaction must be done in the cases of concave corners and holes
so that the tangent vectors coincide with each other. As shown in Fig. 9, an
edge is connected to the adjacent edges at concave and concave corners. Also
an edge is connected to the adjacent edges at convex and concave corners in
Fig. 10. For these cases, the cross boundary derivative has to be given as in
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Fig. 9. Cross-boundary derivative Fig. 10. Cross-boundary derivative
in the concave-concave case. in the convex-concave case.

these figures. Therefore, the derivative is given as a rational function. Giving
the coefficients of (8) as kO and k1 respectively, the tip vectors co, cl are given
by (9). c00 and cll are auxiliary vectors given to form the cross boundary
vector. This is the reason why (5) is replaced with (7). For a surface patch
with an isolated edge, the cross-boundary derivative can be set freely along
the edge, because there is no adjacent surface around the isolated edge. Such
a boundary edge is intended partially to trim a base patch:

_ bcoo + dkoco (1 - b)c11 + dkicl

b + dko ' (1-b)+dk1  (9)

§6. Example of Surface Generation

Figures 11 to 14 show examples of surface generation. Reverse mapping al-
gorithms are applied to all of the surface generation. Compared with the old
algorithm, it is unnecessary to modify the inner boundaries manually in a
domain space. Fig. 11 shows an example with multiple holes. Fig. 12 shows
an example with a ridge. The surface in Fig. 13 differs from the one in Fig. 14
in the shape of the hole, but both surfaces are generated in a desirable way.

§7. Conclusions

In this paper, a method of generating an N-sided patch with holes has been re-
viewed, and a revised method has been introduced. The following conclusions
were obtained:
(1) The previous method has problems in generating a surface patch from

boundary edges with concave parts and holes, because a transfinite sur-
face essentially interpolates the sample points of given boundary edges.

(2) However, by using a reverse mapping from 3D space to 2D space, the
shape of boundary edges becomes similar to the one in the 2D-space.
This method relieves the above problems, and a surface can span arbitrary
edges with holes and concave parts.

(3) In addition, this method can also represent isolated edges like ridges and
valleys.

Acknowledgment. The author would like to thank Dr. M. A. Sabin of
DAMPT, the University of Cambridge for his useful suggestions.
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Fig. 11. Surface generation with Fig. 12. Surface generation with a
two holes and a concave edge. ridge.

Fig. 13. Surface generation with Fig. 14. The surface after the hole
concave parts and a hole. is rotated.
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Advantages of Topological Tools
in Localization Methods

Mohammed Khachan and Patrick Chenin

Abstract. Let C = {X E 1n / f (X) = 0a, n E {2, 3}, where f is a poly-
nomial function. We want to approximate C by subdividing the parameter
space. Most of the usual algorithms raise two problems: data structure
management, and the choice of subdivision level which respects the geom-
etry of C. This paper gives a method based on a topological approach.
In this work, we specify the local criteria that preserve the topological co-
herence between the model (the set C) and its volumetric approximation
(the set of voxels that contains C). In addition, we determine the local
criteria that give the digital analog of (n - 1) dimensional manifolds in
1n. In this way, we determine locally how the set of voxels in digital
space may be spread out to describe analogous properties of Euclidean
manifolds. This gives efficient criteria for controlling the distribution of
voxels and the depth of subdivision. We then obtain an approximation
that conserves the topological properties of C. The process of localization
based on these criteria is generated by an iterative mesh subdivision and
skeleton.

§1. Introduction

In recent years, there has been a growing interest in using implicit surfaces
for geometric modelling. Especially, the problem of constructing a polygo-
nal approximation of implicit surfaces has received a great deal of attention.
The basic idea of all methods for creating a polyhedral approximation of an
object is an appropriate subdivision of the relevant space. Polygonalization
algorithms typically query the implicit surface through spatial sampling. No
preliminary information about the topology of the object is required, and
only characterisation coordinates of points are used in the reconstruction. An
early polygonalization algorithm for implicit surfaces is described in [2]. It
samples the equation of the implicit surface over a three-dimensional rectan-
gular grid of points and linearly interpolates polygons in regions where the
function values change signs.

Hall-Warren in [4] and Dessarce-Chenin in [3] presented algorithms based
on space subdivision in conjunction with a Bernstein-Bdzier representation.
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The B1zier representation is used to exclude regions which cannot contain
parts of a surface. Therefore, the algorithms are able to detect also small

components which may be not detected by a simple sampling of the defining
polynomial on grid points. Furthermore, due to the sampling, the class of
algorithms may create new components and merge components.

We say that a polygonalization algorithm does not preserve topology if
connected components are not preserved. Finally, we have to propose a nice
definition for topological invariance.

In this paper we develop a topological approach related to digital topology
theory. It is based on sampling in conjunction with the B1zier representation
and a thinning process. The mesh evolution is controlled locally from topo-
logical criteria. As far as we know, no author has explored the use of digital
topology to control the mesh subdivision for approximating an iso-surface.

The basic idea of our method can be expressed as follows: determination
of local criteria for which the voxel set that localizes a given surface has the
same geometry as this surface with topology preservation. The geometry is
related to manifold properties. For a given subdivision level, if the set of voxels
that localize the surface verifies these criteria, we say that the subdivision level
reflects the geometric properties of the surface and it's over. Otherwise, we
adopt an iterative process coupling two phases (subdivision phase and thinning
phase) until the set of voxels represents a digital surface or the upper bound
of the subdivision level is reached.

In Section 2, we develop our motivation to use digital topology in lo-
calization methods. Section 3 provides some useful definitions and notations
related to 3D-digital topology. In Section 4, we establish the link between Dig-
ital and Euclidean topology from the concept of continuous analogous. This
enables us to translate properties of polyhedral manifold to digital space. We
obtain an efficient and local criterion to determine if a set of voxels is a digital
surface. In Section 5, we give criteria for topology preservation and describe
the thinning process, provide a brief description of the global algorithm and
present some experimental results in 2D and 3D.

§2. Mesh Generation

An implicit surface is given by
nk

f(x,y,z) Z E ai1 ,i2 ,i3xI"y12z?3 = 0, where k C {1,2,3} and ai ,i2,i, E R.
ik=O

The surface consists of all real points (x, y, z) that verify the above equation.
A geometric object is considered as a closed subset of R 3 with the definition
f(x, y, z) < 0, and is called a solid. The boundary of such object is a so-called
implicit surface. There is a classification of points in R 3 with respect to the
solid. Let p (X1 y, z) a point of 1R3 . Then

* f(p) < 0, if p is inside the solid,
* f(p) = 0, if p is on the boundary of the solid,
* f(p) > 0, if p is outside the solid.
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(a) (b) (c) (d)

Fig. 1. The topology or the geometry of the initial surface is not preserved.

The classical approach consists of sampling the surface over the three
dimensional rectangular grid, called voxels. The decision of whether a voxel
is intersected by the surface is made by looking at the function values f(p)
at the eight vertices of the voxel. The surface intersects the voxel if not all
signs of these values are equal. Thus, the combination of voxels intersecting
the boundary of the solid provides an approximation of the whole original
surface. Due to the sampling, this approximation cannot always have the
same topology as the original surface (see Figure 1 (a,b)). The sign grid points
criterion may miss information (see Figure 1 (c,d)): a voxel with all vertices
of the same sign can intersect the original surface, but the criterion excludes
this voxel class. Hence in order to preserve information, the criterion must
keep all voxels that intersect the surface. The Bernstein-Bdzier representation
allows us to reach this objective.

First, we describe the implicit surface in the Bernstein-Bdzier basis. Let
V =[al, b1] x [a2, b2] x [aa, 53] be a voxel of the space subdivision. The poly-

nomial f(x, y, z) = • air&i'xi.yt2.zi with (x, y, z) E V, can be written in
ik O

Bernstein-Bdzier basis form as

f(x, y, Z) = • bQi2i Bi' (u).Bi2 (v).Si3 (w),

with (u~,v,w) E [0,1]3, and B'•(x) = Cj1.(1 - x)n-1 .x1 . The coefficients bi,J,.k
in JR are the Bernstein-Bdzier ordinates. There is a unique set of Bernstein-
Bdzier ordinates associated with each voxel V; we denote it by P.C(V).

Initially, we have one voxel containing the iso-surface. When we subdi-
vide the voxel in the three directions (x, y, z), the associated Bernstein-Bdzier
ordinates set is also subdivided (de-Casteljau subdivision) according to the
three directions and we relate each new control-polygon with its associate
voxel.

Let V be a voxel of the space subdivision. If all the elements of P.C(V)
have the same sign, then by the convex-hull property of the Bernstein-B~zier
polynomial, f has the same sign over the entire voxel V. Three types of voxels
can be found:

1) Outside voxels with Vp G P.C(V), p > 0.
2) Boundary voxels with Bp, q e P.C(V), p.q <_ 0.
3) Inside voxels with Vp e P.C(V), p < 0.
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From this partition, we can generate two classes of voxels with respect to the
solid, as follows:

"* 1-voxel, which corresponds to a boundary voxel,

"* 0-voxel, which corresponds to outside or inside voxel.

The convex-hull property of the Bernstein-B1zier polynomial implies that a 0-
voxel cannot intersect the surface, but does not assert that a 1-voxel intersects
the surface. So, the approximation cannot always have the same topology as
the original surface (we can create components that do not exist in the original
surface and merge components).

In order to overcome this problem, we develop a topological approach
related to digital topology theory. It consists of representing the space subdi-
vision by a binary three dimensional digital image. The 0-voxel represents a
voxel of the background, and the 1-voxel a voxel of the image object. In order
to avoid having to consider the boundary of the 3-digital image, we assume
that the digital image is unbounded in all directions.

Let A be a centroid-map which associates to each voxel a its barycentre
A(o). A is an one-to-one map between the set of all voxels in R 3 and its
associate digital grid 7Z3 . Points of 2Z3 associated with 1-voxels are called
black points, and those associated with 0-voxel are called white points. The
set of black points normally corresponds to an object in the digital grid.

In the next section we recall the definition of a binary three-dimensional
digital grid.

§3. Basic Notions in 3D-digital Grids

A significant concept in the study of a digital grid is that of neighborhood.
By means of the neighborhood we are able to define "topology" in the digital
space. A point p C 2Z3 is defined by (xi(p))ýi with xj(p) E ZZ. We consider
two types of neighbors of p in the 3D-Digital Grids

3
"* The 6-neighbors: JAV6(p) = {q c 7Z3 : E Ixi(p) - xi(q)l = 1},

i=1
"* The 26-neighbors: AK26(p) = {q c 2Z3 : max (Ixi(p) - xi(q)J) = 1}.

1<i<3

Let /3 c {6, 26} and T C 2Z3 . We say that q is /3-adjacent to p if and only if
q E A/p(p). p is said to be /3-adjacent to T if p is /3-adjacent to some point in
T. Two sets T and W are said to be /3-adjacent to each other if some point
in T is /3-adjacent to some point in W.

A/3-path of length m, m > 0, from p to q in T means a sequence of distinct
points p =P, ... ,Pmo = q of T such that pi is/3-adjacent to Pi+1, 1 < i < m.
Two points p, q E T are /3-connected in T if and only if there exists a /3-path
from p to q in T. The equivalence classes of T under /3-connectivity are called
/3-components of T. A set of points T is called /3-connected if and only if every
two points p, q in T are /3-connected in T.

"• .•fT(p) denotes the set Kr(p) n T.
"* Arf,3,T(p) denotes the set of elements in T that are /3-adjacents to p,
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* T' denotes the complement of T in 2Z3; Tc = 2Z
3 

- T.

We let AK(p) denote the 27 points in the (3,3,3) neighborhood of p. A point
p in T such that AK(p) C T is called an interior point, otherwise p is called
a border point [10].

In this paper, our neighborhood structure corresponds to the (6,26)-
adjacency relation: 6-adjacency for the object and (26)-adjacency for its com-
plement in the digital image.

§4. Continuous Analogs and 2-digital Manifold in 2Z
3

The notion of continuous analogs was introduced in [9] to establish general
properties of binary three dimensional images and used in [8] to give a natural
proof of a theorem on simple surface points.

Generally, this tool permits us to relate digital topology to polyhedral
topology. In [7] we generalize the concept of continuous analogs in all dimen-
sion n, in the context of (2n, 3' - 1)-adjacency, and establish the link between
digital and Euclidean topology.

In the following, we recall some results in three dimension space given
in [7] for all dimension space. Let T be a subset of 2Z3 . We will construct a
polyhedral complex C(T) of T as follows:

"• A 0-cell of C(T) is an element of T,
"* A 1-cell of C(T) is an unit segment whose vertices belong to T,
"* A 2-cell of C(T) is an unit square whose vertices belong to T,
"* A 3-cell of C(T) is an unit cube whose vertices belong to T.

C(T) is a complex, it is called the cubical-complex of T. The underlying
space IC(T)I is called the continuous analog of T in 1R3 . Note that [5] gives
a general method for generating polyhedra from a set of lattice points in 7Z3.
The following theorem expresses the fundamental properties of continuous
analogs. The proof is given in [7].

Theorem 1. Let T be a subset of WZi
3

.

1) IC(T)l n 2Z3 = T,
2) Two elements of T are in the same 6-component of T if and only if they

are in the same component of IC(T)I,
3) Two elements of TC are in the same 26-component of Tc if and only if

they are in the same component of 1R3 
- IC(T)I.

The remainder of this section deals with the relation between a 2D-digital
surface, a 2D-polyhedral manifold and the Jordan-Brouwer Theorem. In 3D
Euclidean space, a simple closed surface is well defined: the neighborhood
of each point in the surface is homeomorphic to an Euclidean disc. The
analog property in digital space consists of caracterizing a 'surface' in 72Z3

by considering its associate continuous analog set.

Morgenthaler and Rosenfeld in [12] have introduced the notion of simple
closed digital surface in order to establish a nontrivial 3D-analog of the 2D-
Jordan curve theorem. They characterized a simple closed digital surface as a
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connected collection of orientable simple surface points. In [8] T.Y. Kong and
A.W. Roscoe reveal what simple surface points 'look like'. In [6], we establish
in all dimensions the relation between n-dimensional digital manifold and n-
dimensional Euclidean manifold. Here, we give only properties related to the
caracterisation of a digital surface. General results and proof are given in [6].

Definition 2. Let T be a subset of 2Z3 and p E T. p is called a simple surface
point of T if

"* .AT (p) admits exactly two 26-components, denoted by Int(p) and Ext(p),
"* Vq E Af6,T(p), q is 6-adjacent to Int(p) and Ext(p).

Definition 3. Let T be a subset ofTZ3 and p E T. T is called a digital surface
if p E T, p is a simple surface point of T.

Theorem 4. Let T be a subset of TZ3.
"• T is a digital surface if and only if IC(T)I is a simple and closed surface

in Ip3.
"• if T is a digital surface, then TC has exactly two 26-components (Int(T)

and Ext(T)), and every element of T is 26-adjacent to these components.

Let T be the set of black points in the digital grid. The notion of simple
surface point gives an efficient and local criterion to determine if T is a digital
surface. This criterion requires only a small number of local operation per
point of T. By translating this characterisation in the voxel space, we obtain
an efficient criterion to determine if a set of voxels represent a digital surface.

§5. Algorithm and Results

For a given subdivision level, the above criterion allows us to test if the set
of 1-voxels represents a digital surface. If it is true, we say that the current
subdivision level reflects the geometric properties of the original surface and
it's over, otherwise our approach consists of two phases.

During the first phase, we subdivide the set of 1-voxels in the three di-
rections and label the new voxels (1-voxel and 0-voxel). During the second
phase, we use a thinning process (remove 0-voxels with topology preservation).
We adopt a sequential thinning process: the border voxels with 0 values are
'peeled off' layer-by-layer with topology preservation. The remaining digi-
tal set, called the skeleton, contains all 1-voxels of the current level and will
contain 0-voxels whose deletion would destroy the current topology.

The second phase permits us to control the topology evolution. We can
merge components of the skeleton's complementary set or create a hole in the
digital image, by removing a specific 0-voxel (if there exists) from the skeleton.
The end step of this phase is to label all the voxels of the skelton to 1 (1-voxel).

Topological thinning is a widely used approach for generating skeletons
from binary objects. It has been shown (see [10,1]) that the topology in a
digital grid will be preserved by a thinning process if the border points that
are removed during each step are simple points. The notion of simple point
is related to topology preservation. A border point is a simple point if and
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only if the Euler number and the number of connected components in its
neighborhood does not change after its removal [10,6,11].

The body of our method, called the treatment phase, is organised in an
iterative way, each step consists of the two phases described above, until the
skeleton represents a digital surface or the upper bound of the subdivision
level is reached.

Input
"* Equation of the Implicit Surface, f(x, y, z),

"* Cuboid containing the surface.

Ouput
9 A set of voxels that localizes the surface with topology and geometry

preservation.

We begin by tranforming f in the Bernstein-B6zier basis related to the Cuboid.
Our algorithm consists of two phases: initialization phase and treatment phase.

During the initialization phase, we extract the components of the ob-
ject and its complement (Interior and Exterior components).

During the treatment phase, we apply iteratively the thinning and
subdivision process until the skeleton represents a digital surface or
the upper bound of the subdivision level is reached.

The subdivision process consists of combining the voxel space subdivision with

control polygon subdivision. The thinning phase proceeds in an iterative way

"* Update the border component of the object,
"* For each border component, remove sequentially 0-voxels that correspond

to a simple point.

We note that this work remains valid for any notion of digital surface satisfying
the Jordan-Brouwer theorem.

5.1 Illustration in 2D case

We consider the following function written in terms of the Bernstein-B6zier
basis:

f(x, y) = 4700 - 40670x - 5000y + 160965x 2 + 5000y 2 - 264750x 3 + 155584x 4

2 4

= ~pijB(x)B4(y).
i=0 j=O

This example illustrates the concept of our approach. If the surface has
no-singularity, our method gives the subdivision level for which the set of 1-
voxels corresponds to a digital surface. The following example illustrates the
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Fig. 2. Initialization phase.

Fig. 3. Treatment phase.

Fig. 4. Initialization and first step of treatment phase.

Fig. 5. Final result.

case where the initial object admits a singularity. Let

f(x, y) = 4 - 32x + 128x 2 - 256x 3 + 288x 4 - 192x 5 + 64x 6

+ 128xy - 320x 2y - 320xy 2 + 384x 3y + 512x 2y 2 + 384xy 3

- 192x 4 y - 384x 3 y 2 - 384x 2 y 3 - 192xy 5 - 32y

+ 128y 2 - 256y 3 + 288y 4 - 192y 5 + 64y 6 .
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Fig. 6. A digital sphere.

5.2 Illustration in 3D case

Figure 6 illustrates the algorithm's application to a sphere given by an implicit
equation. It shows external and internal sights.

§6. Conclusion

In this paper we use a digital topology approach to preserve the topological
coherence between the model (original surface) and its volumetric approxima-
tion. Our method is based on subdivision and a thinning process. We use
local and efficient criteria to determine the nature of the approximation and
to preserve the current topology.

Acknowledgments. The authors would like to thank Hafsa Deddi and Rdmi
Dessarce for their help in the writing of this paper and for their numerous
remarks and suggestions.

References

1. Bertrand, G., Simple points, topological numbers and geodesic neighbor-
hoods in cubic grids, Pattern Rec. Letters 15 (1994), 1003-1011.

2. Bradshaw, C. B., Surfaces of functions of three variables, Master's thesis,
Department of Civil Engineering, Brigham Young University, 1982.

3. Dessarce, R., Calculs par lancer de rayons, Thesis, Universitd Joseph
Fourier, Grenoble-France, 1996.

4. Hal and Warren, Adaptative polygonalization of implicitly defined sur-
faces, IEEE Computer Graphics and Applications 10 (1990), 33-42.



192 M. Khachan and P. Chenin

5. Kenmochi, Y., A. Imiya, and N. Ezquerra, Polyhedra generation from
lattice points, Sixth International workshop, D.G.C.I., Lectures Notes in
C.S. 1176, Springer, 1996, 127-138.

6. Khachan, M., Etude topologique pour la localisation et la reconstruc-
tion d'objets g~om~triques, Thesis, Universit6 Joseph Fourier, Grenoble,
France, 1998.

7. Khachan, M., P. Chenin, and H. Deddi, Continuous analog concept and
adjacency graph in n-digital image, Comput. Vision Graphics Image Pro-
cess, submitted.

8. Kong, T. Y., and A.W. Roscoe, Continuous analog of axiomatized digital
surfaces, Computer Vision, Graphics, and Image Processing 29 (1985),
60-86.

9. Kong, T. Y., and A. W. Roscoe, A theory of binary digital pictures,
Computer Vision, and Image Processing 32 (1985), 221-243.

10. Kong, T. Y., and A. Rosenfeld, Survey digital topology: Introduction
and survey, Computer Vision, Graphics, and Image Processing 48 (1989),
357-393.

11. Lee, C., T., Poston, and A. Rosenfeld, Winding and Euler numbers for
2D and 3D digital images CVGIP 53 (1991), 522-537.

12. Morgenthaler, D. G., and A. Rosenfeld, Surfaces in three-dimensional
digital images, Information and Control 26 (1974), 24-33.

13. Rosenfeld, A. Three-dimensional digital topology, Information and Con-
trol 50 (1981), 119-127.

Mohammed Khachan
L.E.R.I (Laboratoire d'Etudes et de Recherches Informatique)
IUT-Leonard de Vinci, 51.059 Reims, France
khachanQ1eri .univ-re ims. fr

Patrick Chenin
LMC-IMAG. Universit6 Joseph Fourier
BP 53, 38.041 Grenoble, cedex 9, France
pchenincimag .fr



Fast Voronoi Diagrams and Offsets
on Triangulated Surfaces

Ron Kimmel and James A. Sethian

Abstract. We apply the Fast Marching Method on triangulated domains
to efficiently compute Voronoi diagrams and offset curves on triangulated
manifolds. The computational complexity of the proposed algorithm is
optimal, O(M log M), where M is the number of vertices. The algorithm
also applies to weighted domains in which a different cost is assigned to
each surface point.

§1. Introduction

Voronoi diagrams play important roles in many research fields such as robotic
navigation and control, image processing, computer graphics, computational
geometry, pattern recognition, and computer vision. Its Euclidean version,
for which there is an efficient implementation, is a building block in many
applications.

The Voronoi diagram sets boundaries between a given set of source points,
and splits the domain into regions such that each region corresponds to the
closest neighborhood of a source point from the given set. Let our domain
be D, let the set of given n points be {pj E D,j E 0,..,n - 1}, and the
distance between two points p, q E D be d(p, q). Then the Voronoi region Gi
corresponds to the set of points p E D such that d(p, pi) < d(p, pj),Vj : i.

Offsets computation is often used in approximation and singularity theo-
ries, and comes into practice in computer aided design (CAD) and numerical
control (NC machines). Given a curve and its embedding space, an offset
curve is defined by a set of points with a given fixed distance from the original
curve.

There are some numerical and topological difficulties, even in the com-
putation of offsets for curves in the 2D Euclidean plane, e.g. the formation
of singularities in the curvature, self intersection of the offsetting curve, and
the fact that an offset of a polynomial parametrized curve is not necessarily
polynomial. Some of the numerical difficulties were addressed in [9], where
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the Osher-Sethian level set method [16,20], which grew out of Sethian's ear-
lier work on curve evolution, see [21], was used to overcome the topological
changes.

Efficient construction of distance maps, minimal geodesics, Voronoi dia-
grams, and offset curves for non-flat and weighted domains is a challenging
problem, see e.g. [15,13,8,12,6,10]. The core of our approach is Sethian's Fast
Marching Method, [22,19,20] which solves the Eikonal equation on a rectan-
gular orthogonal mesh in O(M log M) steps, where M is the total number of
grid points. Contingent upon the triangulated upwind and monotonic update
schemes given by Barth and Sethian [1], this technique was extended to trian-
gulated surfaces by Kimmel and Sethian in [11]. The triangulated version of
the Fast Marching Method has the same computational complexity, and solves
the Eikonal equation on triangulated domains in O(M log M) steps, where M
is the number of vertices. Using this technique, one can compute distances on
curved manifolds with local weights. For other applications which rely on the
Fast Marching Method, see [14,4].

Here we apply our method to compute Voronoi diagrams of a given set of
points (or regions), and to find offsets from curves and points on triangulated
manifolds. The computational complexity of the proposed algorithm is opti-
mal O(M log M), its implementation is simple, and it also applies to weighted
domains in which a different cost is assigned to each surface point.

The key idea is based on upwind finite difference operators as numerically
consistent approximation to the differential operators in the Eikonal equation.
Such an approximation selects the correct viscosity solution. The upwind
operators allow us to construct a solution to the Eikonal equation by optimally
sorting the updated points using a heap structure.

The outline of this paper is as follows. The key for fast computation of
offsets and Voronoi diagrams is a fast algorithm for computing the distance.
Hence, we first comment on the connection between the Eikonal equation and
distance maps on weighted domains. We refer the reader to Sethian's Fast
Marching Method for solving the Eikonal equation and for computing dis-
tance maps on orthogonal grids, and to [11] for details on our extension for
computing the solution on triangulated domains. We then apply the method
for the computation of fast Voronoi diagrams and offsets on triangulated man-
ifolds.

§2. Fast Marching Method and the Eikonal Equation

We first explore some aspects of distance computation on weighted domains.
In order to compute the distance between two points, we need to define a
measure of length. A definition of an arclength allows us to measure distance
by integrating the arclength along a curve connecting two points. The distance
between the points corresponds to the length of the shortest curve connecting
them.

Given a 2D weighted fiat domain, or in other words an isotropic nonhomo-
geneous domain, the distance may be defined via the arclength definition. For
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example, the arclength may be written as a function of the x and y Cartesian
coordinates of the planar domain

ds 2 = F(x, y) 2(dx 2 + dy 2),

where .F(x, y) : R 2 -* R+ is a function that defines a weight for each point in
the domain.

The distance map T(x, y) from a given point Po assigns a scalar value
to each point in the domain that corresponds to its distance from Po. It is
easy to show, see e.g. [2], that the gradient magnitude of the distance map is
proportional to the weight function at each point

IVT(x,y)l = 97(x, y),

where IVTI T- + TY. This equation is known as the Eikonal equation.
The 'viscosity' solution to the Eikonal equation coupled with the boundary
condition T(po) = 0 results in the desired distance map.

Our first goal is to solve the Eikonal equation. The key is to construct
a numerical approximation to the gradient magnitude that selects an appro-
priate 'weak solution'. Consider the following upwind approximation to the
gradient, given by

(max(D-xT, _D+xT, 0)2 + max(D•YT, -D+YT, 0)2)1/2 = Fij,

where for example D-xT 'j-T`,j is the standard backwards derivative
approximation, and Tij - T(iAx, jay). The use of upwind schemes in hyper-
bolic equations is well known, see for example, Godunov's paper from 1959
[7]. For Hamilton-Jacobi equations, see e.g. [17,3].

The solution T can be systematically constructed in an upwind fashion.
The upwind difference approximation of the above equation means that infor-
mation propagates one way from smaller values of T to larger values. The Fast
Marching Method exploits this order of events. A point gets updated only by
points with smaller values. This 'monotone property' allows us to keep a front
of candidate points that tracks the flow of information, ordered in a heap tree
structure in which the root is always the smallest value. An update of an
element in the heap tree is done in O(log M) operations. Thereby, the total
computational complexity is O(M log M). We refer to [22,19,20] for further
details on the Fast Marching Method.

One could recognize similarity to Dijkstra's method [5,18] that computes
minimum costs of paths on networks. Dijkstra algorithm would obviously
fail to consistently solve our geometric problems. Actually, any graph-search-
based algorithm induces the artificial metric imposed by the graph network,
and would be inconsistent with the continuous case, and thus fail to converge
as the graph resolution is refined.

The Fast Marching Method that works for orthogonal grids may be viewed
as a selection for the update of one of the four right angle triangles that share
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the same vertex. The extension to triangulated domains is motivated by this
observation, by the geometric interpretation of the update step, and by an
additional special treatment of obtuse angles. We refer to [11] for details on
the extension of the fast marching method to triangulated domains. It is also
based on a finite difference approximation to the Eikonal equation, this time
on the surface, monotone by construction, consistent, upwind, and converges
to the viscosity solution.

§3. Offsets and Voronoi Diagrams

We have an algorithm to compute distances on triangulated manifolds, and
hence construct offset curves. First, we solve the Eikonal equation with speed
F"- = 1 on the triangulated surface to compute the distance from a source
point or a region that defines an initial curve. We then find the equal geodesic
distance curves on the surface by interpolating the intersection with a constant
threshold using a 'marching triangle' procedure, again an O(M) operation.
The offsets on the triangulated surface, or the equi-geodesic-distance curves,
are shown in Figure 1. The black curve is the original curve, and the white
curves are the offsets.

Figure 2 presents Voronoi diagrams on several beads and a synthetic head.
We first compute the distance from each of the initial given source points
simultaneously using a single heap structure, and allow one vertex overlap
between distance maps form different sources. The complexity for the distance
computation is still O(M log M). Next, we 'march' along the triangles, and
for each triangle linearly interpolate the intersection curve between the two
different distance maps, again an O(M) operation.

The algorithm complexity remains the same as we add weights to the
surface. In Figures 3 and 4 a different cost is assigned to each vertex. The
cost, or weight function, is texture mapped onto the triangulated surface. The
weighted offsets, or weighted equal geodesic distance contours are shown in
Figure 3, while weighted geodesic Voronoi diagrams for several surfaces are
presented in Figure 4. In both examples, dark intensity mapped onto the
surface indicates a low cost, and the brighter the intensity the higher the cost.
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Fig. 1. Offsets on four beads and a Synthetic Head.
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Fig. 2. Voronoi diagrams of five points on four beads and a Synthetic Head.
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Fig. 3. Weighted offsets on four beads and a Synthetic Head.
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Fig. 4. Weighted Voronoi diagrams of five points on four beads and a Synthetic Head.
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On the Geometry of Texture

Ron Kimmel, Nir A. Sochen, and Ravi Malladi

Abstract. We consider texture images as a composition of manifolds in
the feature-space. This geometrical interpretation leads to a natural way
for texture enhancement. A flow, based on manifold volume minimiza-
tion, yields a natural enhancement procedure for texture images. The 2D
Gabor-Morlet transform is first used to decompose the image into sub-
band images, where each sub-image corresponds to a different scale. Each
sub-band image may be considered as a 3D manifold in a 5D space from
which the original image can be reconstructed in a numerically stable way.
Following our previous results, we then invoke Polyakov action from String
Theory, and develop a minimization process through a geometric flow that
efficiently enhances each sub-band image in a spatial-orientation feature
space. Finally, the enhanced sub-band images are composed back into an
enhanced texture image.

§1. Introduction

Texture plays an important role in the understanding process of many im-
ages. Therefore, it became an important research subject in the fields of
psychophysics and computer vision. The study of texture starts from the pre-
image that describes the physics and optics that transforms the 3D world into
an image, through human perception that starts from the image formation
on the retina and tracks its interpretation at the first perception steps in the
brain.

The psychophysical research of these first steps focuses on the way the
brain cells are activated under the stimulus of a given image. Such experi-
ments combined with recent developments in the field of signal representation
led to relatively simple mathematical models that simulate the first steps
in the way our brain represents images. One such model is based on the
2D Gabor/Morlet-wavelet transform of the image. Some nice mathematical
properties and the relation of this transform to the physiological behavior were
studied in [6,10]. This model was used for the segmentation, interpretation
and analysis of texture [2,7], for texture based browsing [8], etc.
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In this paper we use the same space to represent texture images. Then,
we search for a geometrical way to improve and enhance texture based im-
ages. The geometrical feature enhancement procedure we introduce may serve
as a step towards segmentation. This procedure is based on a flow in the
transformed space in which the transform coefficients are treated as higher
dimensional manifolds. A special minimization process preserves domains of
constant/homogeneous texture, enhances the texture in each domain, and
thereby sharpens the boundaries between neighboring domains with different
textures.

The remainder of this paper is organized as follows: Section 2 briefly
reviews our previous results: the definition of arclength, the consideration of
images as surfaces, and the minimization of Polyakov action that leads to a
geometric flow we named the Beltrami flow. Next, Section 3 describes the
relevant feature space to the texture case. It gives the basics for constructing
the 2D Gabor-Morlet wavelet decomposition, and a simple way for composing
the image back. Section 4 presents experimental results of the Beltrami flow
in the decomposition feature space, for simple gray level texture.

§2. Images as Embedded Maps that Flow Toward Harmonic Maps

In [11] we consider images as 2D surfaces in higher dimensional spaces. We
construct enhancement and segmentation procedures for color images as 2D
surfaces in 5D (x, y, r, g, b) space. As shown in [4], the idea of images as curved
spaces is not limited to 2D surfaces, so that movies and volumetric images can
be considered as 3D hypersurfaces (manifolds) in 4D (x, y, z, I(x, y, z)) space.

Our geometric framework finds a seamless link between the L1 norm,
used in the Osher-Rudin TV image enhancement and its variants, and the L 2
norms, used in Mumford-Shah image segmentation and its variants. TV (To-
tal Variation) schemes are based on minimizing the L1 norm, namely f [VIl,
while the L 2 norm minimizes f 1VJ12 . Our framework is based on the ge-
ometry of the image and its interpretation as a surface. The aspect ratio
between the gray level and the xy image plane, is the switch between the two
commonly used norms. This observation made it possible to show that our
multi-channel (color) enhancement procedure may be considered as a gener-
alization of the powerful TV scheme that is now commonly used in the high
tech image processing industry. This procedure yield very promising results
for color image enhancement [11]. In this work, we propose a flow in a rich
feature space which is different from the image spatial-intensity space.

Representation and Riemannian structure

We represent an image and other local features as embedding maps of a Rie-
mannian manifold in a higher dimensional space. The simplest example is
the image itself which is represented as a 2D surface embedded in R 3 . We
denote the map by X R -• ] 3, where E is a two-dimensional surface, and we
denote the local coordinates on it by (a1, o 2). The map X is given in general
by (X'(alo2),X

2
(U

1
oU

2
),X

3
(o

1
',a

2
)). In our example we represent it as
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(X 1 = a1, X 2 
= U2, X3 = I(71, o 2 )). We choose a Riemannian structure on

this surface, namely, a metric. The metric is a positive definite and symmetric
2-tensor that may be defined through the local distance measurements:

ds 2 
= g9,,,doaAd' =_ g1j(dal)2 + 2g12dul do"2 + g22(do.2) 2, (1)

where we used Einstein summation convention in the second equality. We
denote the inverse of the metric by gIv.

Polyakov action: a measure on the space of embedding maps

Let us briefly review our general framework for non-linear diffusion in
computer vision. We will use this framework in Section 4 to diffuse a tex-
tured image in the transformed domain. The equations will be derived by
a minimization problem from an action functional. The functional in ques-
tion depends on both the image manifold and the embedding space. Denote
by (E, g) the image manifold and its metric, and by (M, h) the space-feature
manifold and its metric. Then the functional S[X] attaches a real number to
a map X : E -- M:

S[Xi, g~v, hij] = JdV(VXt, VXj)ghij, (2)

where dV is a volume element and (VR, VG)Q = gA'aARt9,G. This functional,
for m = 2, was first proposed by Polyakov [9] in the context of high energy
physics, and the theory is known as string theory.

Using standard methods in the calculus of variations (see [11]), the Euler-
Lagrange equations with respect to the embedding are

-- Sh -_ (V/g1vXz). (3)

Since (g,,) is positive definite, g - det(g,,) > 0 for all ao'. This factor is
the simplest one that doesn't change the minimization solution while giving
a reparameterization-invariant expression. The operator that is acting on X'
is the natural generalization of the Laplacian from flat spaces to manifolds
and is called the second order differential parameter of Beltrami [5], or for short
Beltrami operator, and we will denote it by A9 .

For a surface E embedded in 3 dimensional Euclidean space, we get a
minimal surface as the solution to the minimization problem. In order to
see this and to connect to the usual representation of the minimal surface
equation, we notice that the solution of the minimization problem with respect
to the metric is

gpv = aXiOaXý. (4)

Plugging this induced metric in the first Euler-Lagrange equation (3), we get
the steepest decent flow

i X- =HN, (5)
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where H is the mean curvature, and N is the normal to the surface given by

(1 + I)I" - 2IxIuI~ (1 + I2)Ijx

H= 3
g2 

(6)Ng (-y,-_Ix, 1)T,

and g = 1+ IX2 + 12. We see that this choice gives us the mean curvature flow!
This should not be a surprise, since the action functional for the above choice
of metric g,, is

S dArea = du\. Jd~ ýdet(OXX10,X), (7)

which is the Euler functional that describes the area of the surface, also known
in high energy physics as the Nambu action.

In general, for any manifold E and M, the map X : E --+ M that min-
imizes the action S with respect to the embedding is called a harmonic map.
The harmonic map is the natural generalization of the geodesic curve and the
minimal surface to higher dimensional manifolds.

§3. Gabor/Morlet-wavelets: A Natural Space for Texture Images

In [6] Lee argues that the 2D Gabor/Morlet wavelet transform with specific
coefficients is an appropriate mathematical description for images. He based
his findings on neurophysiological evidence based on experiments on the visual
cortex of mammalian brains. These experiments indicate that the best model
for the filter response of simple cells are self-similar 2D Gabor/Morlet wavelets.

Following Lee [6], let us briefly describe the 2D Gabor/Morlet wavelets
that model the simple cells. The 2D wavelet transform on an image I(x, y) is
defined as

(TwavI)(xo,yo,9,a) = 1all' J dxdyI(x,y)Oo (x ,X I YO), (8)

where a is a dilation parameter, xo and yo are the spatial translations, and 0
is the wavelet orientation parameter. Here

O(x, y,xo, yo, 0, a) = _- x0, - Y0), (9)
a a

is the 2D elementary wavelet function rotated by 0. Based on neurophysiolog-
ical experiments, a specific Gabor elementary function is used as the mother
wavelet to generate the 2D Gabor/Morlet wavelet family by convolving the
image with

1 e-(4x2 +y2 )(eikx -(V)(X, Y) ='-7 ( e- (10)
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and Oo(x, y) = , is defined by rotation of (x, y) via

cos 0 sinO x (11)

- sin 0Cs0 y
The discretization of (8), i.e (T•av,,mI), is denoted by Wp,q,i,m and is

given 
by

WPq,,m = a- m f f dxdyI(x,y)blto(a-'(x- pAx),a- m (y -qAx)), (12)

where Ax is the basic sampling interval, AO = 27r/L, and the angles are given
by lA0, where 1 = 0, ... , L - 1, and L is the total number of orientations.
p, q and m are integers determining the position and scaling. Note that as
m increases, the sample intervals get larger forming a pyramidal structure.
Equation (12) can be read as a projection onto a discrete set of basis functions

Wp,q,l,m = (I,7 p,q,l,m). (13)

The real number k determines the frequency bandwidth of the filters in
octaves via the approximation

k = aO + 1 2v/•-2, (14)
aO - 1

where 0 is the bandwidth in octaves, e.g. for a = 2 and € = 1.5 we get
k • 2.5. In the above approximation the DC normalization term e-k 2

/2 that
is required to make a wavelet basis out of the Gabor basis is ignored, and
we consider a = k/wo. So the peaks of the scaled mother wavelets in the
frequency domain are (approximately) at the locations a-mwo.

For our application we have chosen to work with a frame. The concept
of frames was introduced in [3]. A family of functions (Oj) is a frame if there
exist A > 0, B < co that are called frame bounds so that for every f we have

All 112 < I I(f, Oj)l 2 < BIIf l2, (15)

where Ilfl = f f 2 . One could recognize this as a generalization of Parseval's
theorem. A discrete family of wavelets that forms a frame provides a complete
representation of any function. In some cases it is possible to recover a function
with good approximation by the inversion formula

2

f 2 E(0 f )j. (16)
3

The ratio B/A measures the tightness of the frame. When A = B, the frame
is tight and the reconstruction by summation is exact. Thus, as B/A ap-
proaches 1, we may still use the above reconstruction equation as a good
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Fig. 1. The wavelet basis functions (up to translations). The basis functions
are presented in a gray level array, real (symmetric) and imaginary (a-
symmetric) for the 8 angles [0, r] and 5 scales.

Fig. 2. The half peak contours in the frequency domain of the wavelet basis
functions in the previous figure, (5 scales 16 orientations).

approximation. That is, we treat our discrete wavelets as an orthonormal
basis.

We denote the 2D Gabor/Morlet-wavelet transform as W(x, y, 9, a), such
that R = Real(W) and J = Imag(W), where for the discrete case a = a' and
0 = lAO. The response of a simple cell is then modeled by the projection of
the image onto a specific Gabor/Morlet wavelet.

Motivated by the arrangement of simple cells in our brain, with as tight
a frame as possible, we consider 5 spatial frequency octaves, and 16 angles
that discretize the [0, 27r] angular interval. Practically, we used the symmetry
properties of the 2D Gabor/Morlet-wavelet transform: W(x, y, 0 + r, a) =
W(x, y, 0, a). Thus, only 8 angles are needed to represent the discretization
of the full [0, 27r] angular interval into 16. We choose a = 2 and Ax = 1. This
selection results in a frame bounds A = 271.95, B = 233.69, with ratio of
B/A = 1.19. The fact that this ratio is close to 1 means that we have a tight
frame that allows simple summation reconstruction. Figs. 1 and 2 show the
basis functions we used. Periodic boundary conditions are used for the real
(symmetric) part, and negative periodicity for the imaginary part, forming
a 'Klein bottle' coordinate system in (x, y, 0). This enables us to reduce the
memory complexity by a factor of 2.
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Fig. 3. A schematic diagram of Gabor/Morlet wavelet decomposition of the orig-
inal image (at the top) into the (x, y, 0, W, (x, y, 0)) and the images that
are the result of reconstruction by summation for each scale a separately
(bottom). The last row presents the reconstruction result after 70 iter-
ation of the Beltrami flow at each scale. In all the examples we use
L = 16, a = 2, k = 2.5, and m E {0, .., 4}.

For practical implementation that avoids the special numerical treatment
needed along the pyramidal discrete a scale axis, we consider each scale as a
separate space. The induced metric for each scale is then given by

1 I+R2+Jx RxRy+Jx4 RxRo+JxJo\

(gt)= | RxRy,+JxJ 1+R• +J RyRo+JyJoI. (17)
\R.Ro+JxJo RyRoe+yJVJIO 1 +R2
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This result can be understood from the arclength definition in this spatial-
orientation complex space, namely

ds 2 = dx 2 + dy 2 + d02 + dJ 2 + dR 2. (18)

Applying the chain rule on dR = Rxdx+Rydy+RedO, and similarly for dJ, we
obtain the desired bilinear structure that describes the above induced metric
for this case.

The gradient descent equations for the Polyakov action read

Rt = A 9R, Jt = AgJ, (19)

where AgX is given in (3) with the metric (17).

§4. Experimental Results

Let us start with a simple example. In Fig. 3 we first decompose an image via
the wavelet transform into 4 separate sub-scale channels. The decomposition
and the result of applying the Beltrami flow on each sub-scale are shown.

Let us gain more motivation on the advantage of the wavelet decomposi-
tion. Fig. 4 shows the result of composing the image back from just the first
2, and then the first 3 sub-scale channels. The cancellation of the shadowing
can also be realized by a very simple high pass filter. However, as a byproduct
of the wavelet decomposition, at each scale o, we now have the complex func-
tion W,(x, y, 0). It defines a surface in the 5D space (3 real and one complex
dimensions) (x, y, 9, W,). The extra coordinate 9 that describes the behavior
of the image along a specific direction enables us to smooth the image while
keeping the meaningful orientation structure of the texture. Moreover, we
have the freedom to apply different filters to the different scales. This enables
us to preserve the nature of texture images by processing them only at signif-
icant scales. In other words, we are able to sharpen a specific scale without
effecting the rest of the sub-band images. Fig. 5 is the original image and
the result of applying the Beltrami flow to filter out non-oriented structures.
More examples are shown in Fig. 6.

§5. Concluding Remarks

We proposed to combine a psychophysically supported texture space, the 2D
Gabor/Morlet-wavelet transform, with a geometrical flow to enhance texture
images. The texture was considered as a manifold in its natural space. The
flow was realized by invoking Polyakov action, and the result was the Beltrami
flow in the feature space. The result is a variational-geometric technique that
enhances texture images in their appropriate decomposition space.
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Fig. 4. Reconstruction by summation, of only 2, 3, and all layers of the different
scales: the low frequency scale contribute the shadowing, thus summing
only over the first 3 scales cancels this effect (a simple high pass effect).

Fig. 5. Left: Original image 128 x 128, Right: Result of Beltrami flow for 70
numerical iterations in each sub-scale.

Fig. 6. Example of 2 snapshots from the evolution for different texture images
Left: Original image 64 x 64.
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Optimization of a Curve Approximation
Based on NURBS interpolation

JRr6me Lpine, Franqois Guibault,
Marie-Gabrielle Vallet, and Jean-Yves Tr6panier

Abstract. In this paper, an approach is presented whereby optimal
spatial positions and weights of a fixed number of NURBS control points
are determined using a quasi-Newton optimization algorithm in order to
approximate a general planar target curve. A method for constructing an
adequate initial solution and a valid cost function based on interpolation
error are introduced. Convergence of the iterative process is assessed,
and the final interpolation error is related to prescribed manufacturing or
analysis tolerances. The efficiency of the approach is demonstrated for
actual wing profiles.

§1. Introduction

The problem of constructing a cost effective approximation of a general target
curve is of great relevance in many engineering disciplines. This problem has
been addressed quite thoroughly in the context of polynomial interpolation
[1], but far less work has been published on rational approximation. Indeed,
weights introduce another level of difficulty in the theoretical analysis of the
approximation error. From a practical standpoint though, non-uniform ra-
tional B-Splines [4] (NURBS) provide more degrees of freedom for a given
number of control points, which leads naturally to smoother curves.

The work presented here introduces a robust numerical approach for the
determination of control point positions and weights of a NURBS curve; it
can be used to construct an approximation to a general target planar curve.
In the context of wing profile design, where this approach has been applied
[2,3], very significant reductions in terms of data size and noise level have been
observed.

In this paper, the approximation problem is first presented, and the
method of computation of the approximation error discussed. Next, the op-
timization method itself is presented, including the choice of initial solutions.
Finally, the performance of the method is evaluated for practical test cases,
and conclusions are drawn.
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§2. Approximation Problem

A NURBS curve is defined such that

nA(u) = : Ri,p (U)Pi (1)

i=O

with

Ri,p(u) =-= p(U)w ' (2)

where Pi are the control point coordinates, wi their respective weights, Ni,p
the p-th degree B-spline basis functions and A(u) the position of a point on
the curve. The basis functions are obtained through a knot vector, which
defines the functions' break points, of the form

1O, . .. 1 0, UP+ I .. . , Ur..P+i, 1 .. . Ill.

P P

Using these interpolation functions, the problem of approximating a general
planar curve C(t) can be stated as follows: find the set of control points Pi
and weights wi such that 11 A(u) - C(t) 11 is minimized in a suitable norm.

Analytically, the L 2 norm would be a natural choice; numerically, though,
for a completely general taget curve, this norm can only be approximated
through discretization. Numerical experiments have thus been carried out to
develop and validate a robust computational approach for the determination
of the appoximation error. Consideration has been given to both the mean
and maximum error, as well as to the level of continuity of the target curve.
Three classes of target curves have been considered: curves only given as a
set of points, piecewise linear curves, and C' or more continuous curves. In
all cases, the mean error

Emea = d (3)
k=1

is determined by summing the distance (dk) of a set of points chosen on the
target curve to their respective projection on the approximation curve, and
the maximum error

CEmax =maxl<k<ndk (4)

gives the largest of these distances.
As a sample of these experiments, Fig. 1 illustrates the behaviour of the

approximation error between two typical target curves, a piecewise linear (a)
and a quadratically interpolated B-Spline curve (b), and their approximation
constructed using a NURBS curve with 13 control points. Both target curves
were specified using 143 control points. As can be observed from the graphs of
Fig. 2, a very large number of evenly spaced discretisation points must be used
to accurately compute both the mean and maximum approximation errors for
the piecewise linear case. The behaviour for quadratic test cases and higher
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vu ••

Fig. 1. Approximation error for piecewise linear (left) and quadratic (right)
curve (magnified IOOX).
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Fig. 2. Maximum (left) and mean(right) error as a function of the number of
integration points for the piecewise linear target.

degree of continuity examples (not shown) are extremely similar. The same
graphs of Fig. 2 also show, as a straight line, the error computed using only
the definition control points of the target curve.

In light of these experiments, it was determined that the error computed
using the control points constitutes an adequate bound on both the mean and
maximum error of approximation, and it can be computed at a fraction of the
cost of using evenly spaced discretization points. This method of computing
the error also has the property that it includes naturally the case of target
curves given as a discrete set of points, which is not a rare case in many
practical applications.

§3. Optimization Method

Using these definitions and computational method of the approximation er-
ror, the optimization problem can be further specified by introducing a cost
function of the form

F(X) = 2 X Emea + Emax,

where X is the vector of design variables, in this case the position and weights
of the approximation curve: X = {x1, Y1, w1, x2,.. 7 Xn, Yn, Wn}. This choice
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of a cost function significantly accelerates convergence of the optimization
process by including both the maximum error, which controls the quality of
the final approximation, and the mean error, which globally compares the
quality of different solutions.

Clearly, this is a non-linear optimization problem, and we will now ex-
amine the chosen solution process, including the choice of an initial solution.

Solution method

The primary solution method used was the second-order quasi-Newton me-
thod, which, given a reasonably close initial solution X0, will iteratively con-
verge towards an optimal solution using the relation

Xk+1 = Xk + ak Sk,

where Sk = -Hk • VF(Xk) is the direction of descent vector, and ak the
distance of descent in direction Sk. The descent vector is computed using the
BFGS [6] algorithm, based on a second order approximation of the gradient
of F(X):

VF(X) ý_ VF(Xk) + H(Xk) . 6X,

where 6X = X - Xk is used as the direction of descent vector (Sk). Here
H, the approximate Hessian matrix, is initially set to identity and iteratively
updated using the relation

Hk+1 = Hk+Yk ®Yk (Hk'Sk) ® (Hk.Sk)

Yk • Sk Sk • Hk • Sk

with Yk = VF(Xk+l) - VF(Xk). The distance of descent is computed using
Armijo's rule [5], where ak (½)m and m is the smallest integer such that
the relationship

F(Xk + ak Sk) • F(Xk) + uakVF(Xk). Sk

with a the sufficient descent criterion, which must be chosen between 0 and
1 (usually set to 10-4).

Initial solution

In most cases, the optimization method described above will find a solu-
tion, but in the case of highly non-linear cost functions such as the one used in
this problem, it is impossible to determine whether the minimum found is the
global minimum or only a local one. The only way to circumvent this difficulty
is to proceed with many optimizations, and select the best minimum as the
solution. While this approach could be unaffordable if no clue were available
about the solution, it can be implemented relatively cheaply in the context of
curve approximation, where many good initial guesses can be constructed.

Specifically, a set of initial solutions is constructed by discretizing the
target curve using a fixed number of points and by varying the concentration of
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Fig. 3. Optimal Approximation error for various shifting constant values.

points along the curve. Basically, points are gathered closer together in regions

of high curvature, and a shifting constant is introduced to construct various
concentration laws. For target curves of continuity less than C2, curvature is
approximated using centered differencing. The concentration law is evaluated
using

.F(u) Q • Cv) + D dr,

where C(v) is the true or approximated curvature of the target curve, and D
the shifting constant.

When the shifting constant becomes large, the concentration law becomes
almost uniform. In practice, sets of 8 to 10 initial solutions are constructed
by varying D typically between 1.0 and 10, and each initial solution is then
optimized. Fig. 3 shows the final approximation error for a run where D took
the values {0.5,1.0,2.5,3.0,3.5,4.5, 5.0,6.0, 7.0}. The target curve for this
problem is a standard NACA 2412 wing profile, and 9 control points are used

for the approximation, which leads to a 21 parameter optimization problem
(the two endpoints are fixed). Initial weights are all set to 1.0.

Fig. 3 vividly illustrates the high non-linearity of the problem, where small
variations in the initial solution lead to completely different optimal solutions,
as expressed, for example, by the steep variation in final error for D = 4.5
and D = 5.0.

§4. Application

We will now look at how this approximation method performs in the context
of a practical application, both in terms of data reduction and approximation



218 J. Ldpine, F. Guibault, M. G. Vallet, and J. Y. Tr6panier

C9

E

.R

CO

E
E

1l e -0 5 i 6 , 7 , 9 ' 1 0 1 1 1 2 1 3 1 '4 1 ,5

Number of control points

Fig. 4. Precision of the approximation as the number of control points increases.

characteristics. Two aspects of the approximation are of particular interest:
precision and noise level.

The application consists in approximating wing profiles, specified either
as analytical functions or experimental sets of points. In this context, study
[3] of the combined precision levels dictated by both manufacturing tolerances
and precision for analysis purposes indicates that a precision of the order of
8 x 10-5 is sufficient.

Precision

Fig. 4 illustrates the evolution of ema, as the number of control points of
the approximation curve is increased. Again the target curve is the NACA
2412 profile. As can be observed, the increase in precision of the approximation
is very regular when 8 control points or more are used. In this case, the
required precision of 8 x 10-' is obtained with only 9 control points. Extensive
experiments [3] involving numerous types of wing profiles have shown that the
required level of precision can almost always be attained with 13 control points
or less. These numbers have to be compared with the number of points needed
to discretely represent a profile with the same precision, which can be shown
to be of the order of 150. The approximation method thus offers excellent
control over the precision of the resulting curve, while reducing by more than
an order of magnitude the amount of data used for representation.

Experiments have also been carried out in order to determine whether
the introduction of weights in the formulation had an impact on precision.
Similar precision tests carried out using B-Splines instead of NURBS have
shown that exactly 1.5 more control points were required for B-Splines to
obtain comparable levels of precision. This increase in the number of control
points, however, has a significant impact on noise level.

Noise

For many engineering applications, such as airplane wing design, noise
level is often a bigger concern than absolute precision level. In that respect,
the NURBS approximation method performs remarkably well, mainly because
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Fig. 5. Curvature of the Boeing A8 profile and of its approximation near the
leading edge.

of the small number of control points needed. Noise appears as small fluctua-
tions in the curvature of a curve, particularly when control points are gathered
closely together in regions of high curvature. As shown in Fig. 5, the proposed
approximation method can significantly reduce noise in cases where the target
curve presents important fluctuations. Of course, this reduction of the noise
level can only be accomplished as a tr~tde-off to the precision of the approx-
imation. For example, the precision of the 13 control point approximation
of the Boeing A8 profile of Fig. 5 is 9.2 x 10-, which is slightly above the
usual tolerance level for this application; better precision could be obtained
by including a few more control points, but this would inevitably introduce
more noise.

§5. Conclusion

We have presented a method of approximation for a general planar curve that
permits a significant reduction in the size of data and garantees a desired level
of precision. The main advantages of this approach are

"* generality,

"* full automation,

"• low noise.

By varying a single parameter, the shifting constant in the construction of
the concentration law, as many initial solutions as needed are generated for
a given number of points. Each solution is optimized independently, and the
solution with minimum error is kept. Because of the typically small number
of control points required - of the order of 10 to 15 - very smooth curves
are obtained, which is a very important characteristic for many engineering
applications.

Because of the significant reduction in the number of free parameters
used to represent a curve, the approximation method is now being used as
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a first step in a shape optimization procedure of wing profiles. This work is
also currently being extended to three dimensional cases, where the method
is now used to approximate wing surfaces.
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Filling N-sided Holes Using

Combined Subdivision Schemes

Adi Levin

Abstract. A new method is presented for calculating N-sided surface
patches. The algorithm generates a subdivision surface which satisfies
arbitrary C' boundary conditions. The proposed subdivision scheme is
based on a Catmull-Clark type subdivision scheme that operates in the
surface interior. Near the boundary we introduce new subdivision rules
that involve the given boundary conditions. The generated subdivision
surface is C 2-continuous except at one extraordinary point. In the neigh-
borhood of this point the surface curvature is bounded.

§1. Background

The problem of constructing N-sided surface patches occurs frequently in
computer-aided geometric design. The N-sided patch is required to connect
smoothly to given surfaces surrounding a polygonal hole, as shown in Fig. 1.

Referring to [10,25,26], N-sided patches can be generated basically in
two ways. Either the polygonal domain, which is to be mapped into 3D, is
subdivided in the parametric plane, or one uniform equation is used to repre-
sent the entire patch. In the former case, triangular or rectangular elements
are put together [2,6,12,20,23] or recursive subdivision methods are applied
[5,8,24]. In the latter case, either the known control-point based methods are
generalized, or a weighted sum of 3D interpolants gives the surface equation
[1,3,4,22].

The method presented in this paper is a recursive subdivision scheme
specially designed to consider arbitrary boundary conditions. Subdivision
schemes provide efficient algorithms for the design, representation and pro-
cessing of smooth surfaces of arbitrary topological type. Their simplicity and
their multiresolution structure make them attractive for applications in 3D
surface modeling, and in computer graphics [7,9,11,13,19,27,28].

The subdivision scheme presented in this paper falls into the category
of combined subdivision schemes [14,15,17,18], where the underlying surface is
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Fig. 1. A 5-sided and a 3-sided surface patch.

represented not only by a control net, but also by the given boundary con-
ditions. The scheme repeatedly applies a subdivision operator to the control
net, which becomes more and more dense. In the limit, the vertices of the
control net converge to a smooth surface. Samples of the boundary conditions
participate in every iteration of the subdivision, and as a result the limit sur-
face satisfies the given conditions, regardless of their representation. Thus,
our scheme performs so-called transfinite interpolation.

The motivation behind the specific subdivision rules, and the smoothness
analysis of the scheme are presented in [16]. In the following sections, we
describe Catmull-Clark's scheme, and we present the details of our scheme.

§2. Catmull-Clark Subdivision

A net E = (V, E) consists of a set of vertices V and the topological information
of the net E, in terms of edges and faces. A net is closed when each edge is
shared by exactly two faces.

Camull-Clark's subdivision scheme is defined over closed nets of arbitrary
topology, as an extension of the tensor product bi-cubic B-spline subdivision
scheme [5,8]. Variants of the original scheme were analyzed by Ball and Storry
[24]. Our algorithm employs a variant of Catmull-Clark's scheme due to Sabin
[21], which generates limit surfaces that are C 2-continuous everywhere except
at a finite number of irregular points. In the neighborhood of those points
the surface curvature is bounded. The irregular points come from vertices of
the original control net that have valency other than 4, and from faces of the
original control net that are not quadrilateral.

Given a net E, the vertices V' of the new net E' = (V', E') are calculated
by applying the following rules on E (see Fig. 2):

1) For each old face f, make a new face-vertex v(f) as the weighted
average of the old vertices of f, with weights Wm that depend on the valency
m of each vertex.

2) For each old edge e, make a new edge-vertex v(e) as the weighted
average of the old vertices of e and the new face vertices associated with the
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Fig. 2. Catmull-Clark's scheme.

two faces originally sharing e. The weights Wm (which are the same as the
weights used in rule 1) depend on the valency m of each vertex.

3) For each old vertex v, make a new vertex-vertex v(v) at the point given
by the following linear combination, whose coefficients am, Pm, -'yi depend on
the valency m of v:

am- (the centroid of the new edge vertices of the edges meeting at v) +
/3 m. (the centroid of the new face vertices of the faces sharing those edges) +
-Ym " V.

The topology E' of the new net is calculated by the following rule: for
each old face f and for each vertex v of f, make a new quadrilateral face
whose edges join v(f) and v(v) to the edge vertices of the edges of f sharing
v (see Fig. 2).

We present the procedure for calculating the weights mentioned above,
as formulated by Sabin in [21]: Let m > 2 denote a vertex valency. Let
k := cos(r/m). Let x be the unique real root of

x3 + (4k - 3)x- 2k = 0,

satisfying x > 1. Then

W,•=X 2 +2kx-3, cm-=l,

kx + 2k 2 _ 1
"x2(kx + 1) m

The weights Wm and "/m for m = 3,..., 7 are given by

W3 = 1.23606797749979... y3 = 0.06524758424985...

W4 = 1.00000000000000000 74 = 0.25000000000000000

W5 = 0.71850240323974... -5 = 0.40198344690335...

W6 = 0.52233339335931... 'y6 = 0.52342327689253...

W7 = 0.39184256502794... 77 = 0.61703187134796...

Remark: The original paper by Sabin [21] contains a mistake: the formulas
for the parameters a, 0 and -y that appear in §4 there are 0 := 1, -y := -a.
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Fig. 3. The input data (left) and the initial control net (right).

§3. The Boundary Conditions

The input to our scheme consists of N smooth curves given in a parametric
representation cj : [0, 2] __ R 3 over the parameter interval [0, 2], and corre-
sponding cross-boundary derivative functions dj : [0, 2] -+ 1R3 (see Fig. 3).
We say that the boundary conditions are CO-compatible at the j-th corner if

cj(2) = cj+i(O).

We say that the boundary conditions are C'-compatible if

dj(O) = -cj_1(2),

dj(2) =

We say that the boundary conditions are C 2-compatible if the curves cj have
H6lder continuous second derivatives, the functions dj have Holder continuous
derivatives, and the following twist compatibility condition is satisfied:

d'(2) = -dj+ 1 (0). (1)

The requirement of H6lder continuity is used in [16] for the proof of C2_
continuity in case the boundary conditions are C 2-compatible.

§4. The Algorithm

In this section we describe our algorithm for the design of an N-sided patch
satisfying the boundary conditions described in §3. The key ingredients of the
algorithm are two formulas for calculating the boundary vertices of the net.
These formulas are given in §4.3 and §4.4.
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Fig. 4. The stencils for the smooth boundary rule (left) and the corner rule
(right).

4.1. Constructing an initial control net

The algorithm starts by constructing an initial control net whose faces are all
quadrilateral with 2N boundary vertices and one middle vertex, as shown in
Fig. 3. The boundary vertices are placed at the parameter values 0, 1, 2 on
the given curves. The middle vertex can be arbitrarily chosen by the designer,
and controls the shape of the resulting surface.

4.2. A single iteration of subdivision

We denote by n the iteration number, where n = 0 corresponds to the first
iteration. In the n-th iteration we perform three steps: First, we relocate the
boundary vertices according to the rules given below in §4.3 - §4.4. Then,
we apply Sabin's variant of Catmull-Clark's scheme to calculate the new net
topology and the position of the new internal vertices. For the purpose of
choosing appropriate weights in the averaging process, we consider the bound-
ary vertices as if they all have valency 4. This makes up for the fact that the
net is not closed. In the third and final step, we sample the boundary ver-
tices from the given curves at uniformly spaced parameter values with interval
length 2-(n+,).

4.3. A smooth boundary rule

Let v denote a boundary vertex corresponding to the parameter 0 < u < 2 on
the curve cj. Let w denote the unique internal vertex which shares an edge
with v (see Fig. 4 (left)). In the first step of the n-th iteration we calculate
the position of the v by the formula

v = 2cj(u) - 1- (cj (u + 2-n) + c3 (u - 2-n))

-2 i2(j( + 2 -n)+dj (u 2-n)) +2 j()



226 Adi Levin

4.4. A corner rule

Let v denote a boundary vertex corresponding to the point cj_1(2) = cj(O).
Let w be the unique internal vertex sharing a face with v (see Fig. 4 (right)).
In the first step of the n-th iteration we calculate the position of v by the
formula

v = 5cj(0) + 1w- (cj(2-") + cj_,(2 - 2-")) + 1 ej(21 -n)2-c_( 4 8ln 2

+ 1c ( - 21n) + 2-n (dj(O) + dj_1 (2)) - ldj(2-n)

- 2 -n1 dj-l(2 - 2-n) - -n 1 (dj(2l-n) + dj- 1 (2 - 21-1))

§5. Properties of our Scheme

In [16] we prove that the vertices generated by the above procedure converge to
a surface which is C 2-continuous almost everywhere, provided that the bound-
ary conditions are C 2-compatible (as defined in §3). The only point where the
surface is not C 2-continuous is a middle-point (corresponding to the middle
vertex, which has valency N), where the surface is only G'-continuous. In the
neighborhood of this extraordinary point, the surface curvature is bounded.

The limit surface interpolates the given curves, for C°-compatible bound-
ary conditions. For Cl-compatible boundary conditions, the tangent plane of
the limit surface at the point cj (u) is spanned by the vectors c (u) and dj (u),
thus the surface satisfies Cl-boundary conditions. Furthermore, due to the
locality of this scheme, the limit surface is C2 near the boundaries except at
points where the C 2-compatibility condition is not satisfied.

The surfaces in Fig. 5 demonstrate that the limit surface behaves mod-
erately even in the presence of wavy boundary conditions. The limit surfaces
are C 2-continuous near the boundary except at corners where the twist com-
patibility condition (1) is not satisfied.

Fig. 5. A 5-sided and a 3-sided surface patch with wavy boundary curves.
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Dealing with Topological Singularities in
Volumetric Reconstruction

H. Lopes, L. G. Nonato, S. Pesco, and G. Tavares

Abstract. In this work we introduce a new representation for 3-dimen-
sional stratified manifolds based on Morse theory. This representation,
which we call Handle-Strata, includes a new data structure and a set of
operators. Applications of this representation on the volumetric recon-
struction from planar sections are presented.

§1. Introduction

Given a set of planar sections of an object, by definition a smooth 3-dimen-
sional stratified manifold, the volumetric reconstruction problem consists in
building a geometric model that is an approximation for this object. In this
paper we work with piecewise-linear approximations.

There are several strategies for solving the 3-dimensional reconstruction
problem, such as: heuristic, voxel, implicit, parametrical and optimal. Some
of these techniques build the surfaces, which are the boundary of the solid
object, while others generate a 3-dimensional cell decomposition of the object
volume. Two of the main softwares in this area are the 1) Nuages software
[8], developed by the PRISME project at INRIA Sophie Antipolis based on
surface reconstruction and Volvis [11], and 2) software developed by the VolVis
project at the Visualization Lab, Computer Science Department, SUNY at
Stone Brook based on voxel reconstruction.

Three problems are intrinsic to the reconstruction process, namely: cor-
respondence, tiling and branching. Correspondence consists in defining the
connected components of the model. Tiling means to triangulate the strip
between two adjacent slices with respect to some criteria. The branching
problem is related to the identification of the object's singularities.

Boissonnat introduced an important heuristic technique based on com-
putational geometry concepts of proximity [1]. This technique makes use of
the 3-dimensional Delaunay Triangulation and Voronoi Diagram to generate
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the geometric model. For a definition of Voronoi Diagram and Delaunay Tri-
angulation of a discrete set of different points in ]R3 see [3].

The advantages of using the Delaunay triangulation in reconstruction
problems are: regions which are geometrically well positioned, with respect
to some proximity measure can be found through topological tests; a volu-
metric triangulation connecting the regions is automatically generated; the
volumetric triangulation is appropriated for applications in simulations.

However, without a suitable object representation, the advantages above
cannot be fully realized. One of the main reasons is that the representation has
to deal with the topological singularities that may appear during the process of
reconstruction or even in post-processing applications, e.g., in applying finite
element methods to deform the objects.

The main purpose of this work is to introduce a new representation (data
structure and its operators) for the cell decomposition of an object. This
representation is called Handle-Strata (HS-Rep for short). A second goal is
to discuss the applications for this new representation in the reconstruction
process.

The paper is organized as follows. Section 2 introduces the Handle-Strata
representation. Section 3 discusses one reconstruction method based on De-
launay Triangulation, and identifies the role of singularities in the reconstruc-
tion process. Section 4 shows the applications of this new representation to
volumetric reconstruction. Finally, in Section 5 we show images of some re-
constructed objects.

§2. Handle-Strata Representation: Data Structure and Operators

In [2], Castelo, Lopes and Tavares introduced a representation for surfaces with
boundary based on Morse theory [4]. Lopes and Tavares in [6] extended it to
deal with 3-manifolds with boundary. In [9], Pesco devised a representation
for stratified surfaces also on Morse theory.

The representation we introduce in this paper is for the 3-dimensional
cellular decomposition of an object in 1R3. The HS-Rep is an extension of [9]
to deal with stratified 3-manifolds. A 3-dimensional cellular decomposition of
a subset KC in ]R3 is a collection C of i-dimensional cells (i = 0, 1, 2, 3) in iR 3

under the following conditions:

1) K = U{o E C},

2) If a and T E C then a n T- E C, where this intersection is either empty or
a sub-cell of both a and T,

3) Any compact subset of C intersects only a finite number of cells.

A subset M C R 3 is said to be an n-dimensional combinatorial mani-
fold with boundary (n=0,1,2,3) if it has an n-cell decomposition in which the
neighborhood of each point is homeomorphic either to an n-sphere or to an
n-semi-sphere. The 0,1,2 and 3 dimensional manifold will be called, respec-
tively, point, curve, surface and volume. A combinatorial stratification of a set
K C R 3 is a chosen finite collection of combinatorial submanifolds with bound-
ary such that their union is K and the intersection of two of its elements



Volumetric Reconstruction 231

Sold 2

Cu I

S /Cbl w__ w 560

Fig. 1. Global Elements.

belongs to the cellular decomposition. Each manifold in this combinatorial
stratification is called a stratum. A stratum could be a point, a curve with or
without boundary, a surface with or without boundary or a 3-manifold with
boundary.

In this paper, an object is defined as a set 0 C R 3 endowed with a 3-
dimensional combinatorial stratification.

Now we describe the data structure behind the HS-Rep for the cell de-
composition and the stratification of an object. The data structure nodes are
classified in three types: strata, local cells and global cells.

"* Strata nodes (Point, Curve, Surface and Volume) describe the manifold

components of the object stratification.

"* Local cell nodes represent the cells of a stratum. For instance, a curve
has two types of local cell elements, the curve-vertex and the curve-edge.
A surface has three types of local cell nodes: surface-vertex, surface-edge
and surface-face. Also, there are three kinds of local elements for volumes:
volume-vertex, volume-edge and volume-face.

"* Global cell nodes (Global Vertex, Global Edge and Global Face) are used
to represent the cellular decomposition of the object. Also, global cell are
used to identify the local cells of different strata. A global cell is said to
be singular if it has more than one local cell associated with it. Thus, on
this data structure the singularities are explicitly represented.

In Figure 1 some examples of the use of the global vertex, global edge and
global face cells are shown. In Figure 2 we have the hierarchy scheme of the
data structure associated with the HS-Rep.

The main characteristic of this new data structure is the explicit repre-
sentation of the object stratification. The stratification allows the represen-
tation of singular objects and manifolds of different dimensions in the same
environment. Those manifolds are linked together through the global cells.
One advantage of using objects as defined in this paper is that it keeps to a
minimum the redundant information stored in each cell.

The representations introduced by Weiler [12] and Gursoz [5] also deal
with singular objects (non-manifolds), but they don't identify manifold com-
ponents.
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A set of operators to build and unbuild an object on this representation,
called Morse operators, will now be described. These operators are validated by
the Piecewise-Linear Handlebody Theory [10] and they correspond to gluing
handles on manifolds with boundary. Morse operators are divided in two
groups: local and global operators. Local operators build and unbuild strata.
Global operators perform the union of strata.

The local building operators are used to identify two boundary rn-cells
(m = 0, 1, 2) of a respective regular (m + 1)-dimensional manifold. The local
building operators for curves create an interior vertex by the identification of
two boundary vertices, which can be both on the same curve component, or
on different connected components.

There are five situations where two boundary edges of surfaces can be
identified. For each one a local building operator is defined. These five cases
are distinguished by the following criteria: 1) the two boundary edges don't
have vertices in common but they are on different surface components; 2) the
two boundary edges don't have vertices in common but they are on different
boundary curve components of a surface (on this situation, a genus is created
on a surface); 3) the two boundary edges don't have vertices in common but
they are on the same boundary curve; 4) the two boundary edges have only one
vertex in common and, finally, 5) the two boundary edges have two vertices
in common. More details on those operators on surfaces can be found in [2].

For 3-manifolds, there are also five situations where two boundary faces
can be identified. Each case defines a local building operator for 3-manifolds.
These cases are distinguished according to the following criteria: 1) the two
boundary faces are on the same connected component of the manifold; 2) the
two boundary faces are on the same boundary surface component; the two
boundary faces have or have not edges in common. A detailed discussion of
these operators for 3-Manifolds can be found in [6].
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Fig. 3. Edges of T on a planar section.

The global operators identify m-dimensional global cells (m = 0, 1, 2).
Those operators make the union of different strata through the use of the
global elements on the data structure.

§3. Volumetric Reconstruction from Planar Sections

In this section a heuristic based on the Delaunay Triangulation for the volu-
metric reconstruction is discussed. This heuristic was introduced in [7] and is
now rediscussed in terms of the representation introduced in this paper.

Here the reconstruction process will be restricted to two consecutive pla-
nar sections. The object is built from contours in the planar sections by
applying the appropriate heuristic to the Delaunay triangulation. These con-
tours are simple polygons that bounds the planar regions to be connected,
and can be oriented coherently.

The first phase of the reconstruction process generates a 3-dimensional
Delaunay triangulation that contains all edges of the contours on two consecu-
tive slices. This triangulation will be called the restricted Delaunay triangulation
of the slices, and will be denoted by T. To obtain such a triangulation, the
following algorithm has been devised:

1) Build a 3-dimensional Delaunay triangulation V using the vertices of all
contours,

2) Mark the edges of the contours that are not contained on 5,

3) Subdivide all marked edges, inserting new vertices on the contours,

4) Make local modifications on D to obtain a new Delaunay triangulation
that includes those new vertices,

5) Repeat these steps until the triangulation contains all contour edges.

Boissonnat [1] shows that the missing edge subdivision strategy, used in the
above algorithm, obtains a Delaunay Triangulation that includes all contour
edges.

The second phase of the reconstruction process classifies the edges of T
contained in the planar sections as internal, external or contour edges accord-
ing whether they are internal, external or on the contours. Figure 3 shows a
set of contours and the external, internal and contour edges of T that are on
a planar section.

To generate a model, which satisfy the resampling condition, i.e. whose
intersection with the given planes corresponds exactly to the same given con-
tours, it is necessary to identify the connected components and modify the
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Fig. 4. Singular edge coming from a reverse tetrahedron elimination.

Fig. 5. Tetrahedron subdivision avoiding singular edge creation.

triangulation. For this we will introduce the concept of reverse tetrahedra
and geometrically well positioned contours.

A tetrahedron of the triangulation T is called a reverse tetrahedron if
they have edges on different slices which are not contour edges. Two contours
on consecutive slices are said to be geometrically well positioned if they are
connected by a reverse tetrahedron in T.

Intuitively, it is appropriate to maintain on the same connected compo-
nent contours based on distinct slices which are geometrically well positioned.
In the heuristic introduced in [7], reverse tetrahedra play an essential role on
the 3-manifold components definition because they identify when two contours
are connected to each other.

A singular edge on T is defined as an edge whose associated link is not
homeomorphic either to a sphere or to a semi-sphere on the corresponding
3-dimensional manifold.

Next we can use the representation introduced above to deal with the
branching problem. We propose a heuristic using singular edges which at the
end generates a triangulated manifold between the slices:

1) Remove all tetrahedra with at least one external edge. The removal of
one tetrahedron may generate a singular edge, see Figure 4.

2) Identify singular edges.

a. If the singular edge is interior to the contour, reinsert the corre-
sponding reverse tetrahedron, subdivide its external edge and push
the new vertex to a position in between the slices, see Figure 5. The
role of this translation is to guarantee the resampling condition.

b. If the singular edge is on a contour, split the connected components
as in Figure 6.

Finally, the whole object is reconstructed by putting together the objects built
between consecutive slices.



Volumetric Reconstruction 235

Fig. 6. Avoiding edge singularity on a contour edge.

§4. HS-Rep Applications to Volumetric Reconstruction

The algorithm of Nonato and Tavares [7] has no explicit data structure deal-
ing with edge singularities. Thus, the main contribution of this section is
to present several instances where the HS-Rep representation simplifies the
reconstruction process.

Initially, all contours are created on the data structure using the building
operators for curves. The vertices of these contours are used to build the initial
3-dimensional Delaunay triangulation 2D. After that, the contour vertices are
identified with the vertices of D through the global vertex operator.

To verify that a contour edge is on the triangulation 2D, one has to look at
the star of each global vertex and check for incidence to verify if this contour
edge is on the boundary surface of the volume. If the contour edge is on
the boundary surface then it is associated with the corresponding contour
edge on the slice curve by using a global-edge building operator. Otherwise,
the contour edge must be subdivided and the Delaunay triangulation will be
locally modified to include this new point. This process will continue until
the triangulation §T, which contains all contour edges, is obtained. The non-
contour edges whose vertices are on the same slice can be classified either as
internal or external traversing the list of edges of the boundary surface of T,
which is then explicitly represented on the data structure.

Section 3 points out that the first step in the identification of the con-
nected components is the elimination of the tetrahedra with at least one exter-
nal edge. To remove a tetrahedron, split its internal faces into boundary faces
using the local Morse operators for 3-manifolds. To reconstruct it as a man-
ifold, singular edges have to be detected. Global singular edges are detected
by performing a counting on the number of incident 3-manifold strata.

Now local building operators for 3-manifolds are used to insert tetrahedra
and subdivide its edges. The new vertices added in this subdivision are trans-
lated to a position inbetween the slices. When the singularity is a contour
edge, a global operator is used to split the manifold components.

Finally, the objects obtained on consecutive slices are glued together. The
process of gluing those objects consists in applying local building operators to
all boundary faces on the contour interior.

The Handle-Strata computational environment is suitable for dealing with
either the strategy given by Nuages [8] or Nonato and Tavares [7]. Moreover,
this representation is well suited for4 integrating different techniques under the
same common topological kernel. Issues like graphics interface, visualization,
objects physical properties, deformations, and so on, can now be addressed as
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Fig. 7. Reconstruction of the bitorus' slices using Nonato and Tavares heuristic.

Fig. 8. Reconstruction of bitorus' slices using Nuages.

Fig. 9. Reconstruction using, respectively, Handle-Strata and Nuages.

attributes or applications of the Handle-Strata representation.
The examples below come from three slices of a bitorus, in which the

bottom and the top slice have two curves and the intermediate slice has only
one curve. For these images, only the boundary faces not on the slices are
visualized. In Figures 7 and 8 we show the input slices and two views of the
models reconstructed using, respectively, the proposed algorithm and that of
Nuages.

Nuage's reconstruction inserts edge singularities at an intermediate level.
The reconstruction using Handle-Strata avoided that singularity through
tetrahedra insertion and subdivision.

The second example take two slices of a torus, in which the one on the
top has two contours that are geometrically well positioned with the unique
contour on the bottom slice. The three pictures of Figure 9 show, the slices,
our reconstructed model, and Nuage's result, respectively.

The intersection of the bottom plane with the model created with that
of Nuages is not the original curve, i.e, it does not satisfy the resampling
condition. The new heuristic creates a saddle in order to avoid this singularity.
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Fig. 10. Spine Vertebra Reconstruction.

Fig. 11. Lung Reconstruction.

Fig. 12. Sugar Loaf Reconstruction.

The execution time and the number of tetrahedra in the final objects for
both algorithms are essentially the same.

§6. Examples

Figure 10 shows the reconstruction of a Spine Vertebra. Figure 11 shows the
reconstruction of a lung. Figure 12 shows an example of a terrain reconstruc-
tion given by its contour levels.
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Linear Envelopes for
Uniform B-spline Curves

David Lutterkort and Jdrg Peters

Abstract. We derive an efficiently computable, tight bound on the
distance between a uniform spline and its B-Spline control polygon in
terms of the second differences of the control points. The bound yields
a piecewise linear envelope enclosing the spline and its control polygon.
For quadratic and cubic splines the envelope has minimal possible width
at the break points, and for all degrees the maximal width shrinks by a
factor of 4 under uniform refinement. We extend the construction to tight
envelopes for parametric curves.

§1. Motivation and Overview

The central feature that allows reasoning about nonlinear piecewise polynomi-
als is the fact that a spline is closely outlined by its B-spline control polygon.
The efficiency of many applications depends crucially on a good estimate of
the distance separating spline and control polygon. For rendering, a refined
control polygon is rendered instead of the curve itself. For curve-intersection

an efficient and robust technique is to recursively refine and intersect control
polygons [2]. Assessing the exactness of these operations requires a uniform,
linear bound on the distance of the curve and its (refined B-spline) control
polygon. The efficiency is improved if the effect of the refinement can be pre-
dicted rather than just measured. Of the two classical bounding contructs,
axis-aligned min-max coefficient boxes and the convex hull, the first yields
only a loose envelope and neither yields a priori estimates.

This paper introduces quantitative bounds that can be computed more
efficiently than convex hulls, and yield a simple piecewise linear envelope en-
closing spline and control polygon (see Figure 1) whose maximal width con-
tracts to 1/4th when the knot spacing is halved. The computation of the
envelope of a degree d spline consists of computing the second differences of
its control points and looking up or calculating d - 1 constants, the values
of a fixed set of splines. The sum of the constants, (d + 1)/24, provides a
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Fig. 1. A cubic curve (black) and its control points (black squares). The enve-
lope (grey) is constructed with the bound from Theorem 2.

second, even simpler, but generally much coarser bound (Figure 2). Both
bounds are piecewise linear with breaks at the corners of the control polygon
and are sharp for quadratic and cubic splines in the sense that at every corner
of the control polygon the distance between the spline and polygon is matched
exactly.

This paper derives these bounds for functions and establishes the conver-
gence of the bound under uniform refinement; the bounds are then applied to
curves to obtain localized envelopes.

§2. Notation

A scalar-valued piecewise polynomial p of degree d is a uniform B-spline if it
can be represented as

p= bkNk, bkC]R, Nk=N(.-k),
kE2Z

where N is the B-spline of degree d supported on the interval [0, d + 1) and
with the uniform knot sequence 2Z (c.f. [2]). For simplicity, we assume that
both the control point sequence and the knot sequence are biinfinite.

The control polygon f of p is the piecewise linear interpolant of the control
points bk at the Greville abscissae

kt' = k+(d +l)/2.

Over the interval [t*, t*+l], the control polygon is e(t) = Lk(t; bk k+1) where
we denote the line segment from (t*, a,) to (tk+la2) by

Lk(t;al, a2) = al(t*k+l -- t) +a2(t-- t'k).

The linear interpolant of a function f over this interval will be abbreviated
as Lk (f) = Lk(' ; f(t*), f(tk*+1 )). The (centered) second differences of b are
defined as

A2bt = b-1 - 2b + b'+'.

The first and the last basis function that are supported on [t•,t•+ 1] are N-

and Nk with
k = k+ 1- [d/2J, k= k- 1+ [d/2J.
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Fig. 2. A cubic curve (black) and its control points (black squares). On top
the envelope (grey) is constructed with the bound from Theorem 3, on
the bottom from the tighter bounds of Theorem 2.

§3. Uniform B-splines Bounds

The key observation for deriving the bounds is that the difference between a
uniform B-spline p and its control polygon can be factored into two parts: the
second differences of the control polygon and splines P3 ki, which are indepen-
dent of p.

Theorem 1. Over the interval [t*,t•+1 ], the difference between a uniform
B-spline p and its control polygon f is given by

p - f A~b'3ki, ki = Ej=-,,.(i - j)g i < k
IE-=i(j - i)Nj i > k.

The functions Oki are non-negative and convex on the interval [t*, t*+l] and

Oki(t*k) > 0 if and only if i E [k,k].
Proof: We write p - f over [t*,t•+1 ] as

b' aki = Eb' (N'(t) - Lk(t;hik, i,k+l)) ,
i=k_ i=k

where 6ik = 1 if i = k and 0 otherwise. We show that aki = A2fki: the
partition of unity -i N' = 1 implies that i aki -= 0 and the linear precision
of B-Splines, -i t*Nz(t) = t implies on the interval [t*, t*+1] that Ei iaki = 0.
Hence, for any i, Zj(j - i)akj = 0.

For i> k,

Oki = E( - i)Ng - E( - i)akj = E(i- .j)ak
j=i j=k j=k
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so that fOki = j=k(i - j)ckj for any i. It is now straightforward to verify
that A2fki aki and summation by parts yields

P - fk E 'ki E Sb A2/3ki = 5 A2 b' O~ki
i=k i=k i=k

The functions fOki are non-negative since their B-spline coefficients are non-
negative. The convexity of the f/ki over [t*, t*,+] follows from the convexity of

their B-spline control polygons: for i > k, the part of the control polygon of

fOki that influences fOki over [ti, tk+1] lies on the function max{. - t*, 0} while
for i < k it lies on max{t* - ., 0}. In both cases, the control polygon of O

3
ki,

and hence f/ki, is non-negative and convex. [1
Theorem 1 immediately gives us a piecewise linear envelope on p - f:

Theorem 2. Over the interval [t•,t•+ 1 ], the difference between a uniform
B-spline p and its control polygon e is bounded by

Lk (1: -bki) p (1- L,

where A+b? = max{A 2b, 0} and A-bi = min{A 2b, 0}.

Proof: We have from Theorem 1

p.= A2b?,Oki Z +bzI3ki+ZA-bipki-
i i

The positivity of the fOki implies that the first sum on the right-hand side is
positive and the second is negative and therefore

i A/bi3 5 -f< A~b'I3ki.

Since the fOki are convex over [t*, t*+1 ], they can be bounded linearly to yield
the bound of Theorem 2. []

An even simpler envelope can be derived by bounding the sum of the f/ki
at t* by the constant (d + 1)/24.

Theorem 3. Over the interval [t*,tk+i], the difference between a uniform
B-spline p and its control polygon e is bounded by

lP - fl : d24-- Lk(' IIA2bjI&, IIA2bIjk+1),

where IIA2bIjk = max{IA 2bi : i E [k,k]}. If d = 2 or d = 3 the relation holds
with equality at the tk*.

Proof: By Theorem 1 and the convexity of the Oki over [t*, t*+1 ], we have

P- -• < IA 2bI Oi i<(5 Lk IA 2 bi/3ki)

_< Lk(. ; A2bjjk Ifki(t*), IIA2bllk+l Y,1hi(t*+l)).
i i
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Fig. 3. A self-intersecting quartic curve (black) and its control points (black
squares). The envelopes (grey) are constructed with the bound from
Theorem 2. The envelope converges rapidly to the curve as the com-
parison of the original envelope, top, and the envelope after one step of
uniform refinement, bottom, shows.

The theorem follows if we can show that -'3i Oki _ (d + 1)/24:

T i T k -j

O fki E >j (i - j) akj 1: E (i - j) akj ak E i
i i-k_ jk j=k i=j j i=O

( ak ( akj-h(J k)Nj- :z.
3 3 3

Regardless of the degree of p, z is the quadratic polynomial

z(t) - *k + t 1+ t + - t + 
2 d - 2

Since z is a positive and convex function, z attains its maximum over [t*, t*+1 ]

at one of the endpoints of the interval. Its values there are

z(t*) = z(t*k+) = 24

and hence z(t) = O /3 ki •- (d + 1)/24 for all t E [t*, t*+].
The number of /

3ki that are nonzero at t* is d - 1 for d even and d - 2
for d odd, i.e. only fOkk is nonzero at tk if p is quadratic or cubic. But then all
inequalities of equation (1) become equalities as claimed. El

Computing the bounds

To compute the bounds for quadratics or cubics no B-spline evaluation is
required, since only Okk(tk*) = (d + 1)/24 is nonzero. For d > 3, it suffices to
look up tabulated values /Oki(t*) for - [d/2J < i < [d/2j. Forming the inner
products of Theorem 2 and Theorem 3 at t* is straightforward.
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§4. Uniform Refinement

An important operation on B-splines is the refinement of the knot sequence
or knot insertion. Knot insertion changes the representation of the piecewise
polynomial p over the original knot sequence to one over a larger knot sequence
and reduces the distance between spline and control polygon (c.f. Figure 3).

After halving the distance between knots the new control points bk in
p(t) = Ek bkNk (t) = -k bkNk(2t) are given by

Fd/21 d2+ + [d/2 d1 \
2i= 2-d E biJ 2i+1 = 2(-dd) b'. (2)

j=0 2 E (2j+1l

Theorem 4. The second differences A 2 6i of the relined control polygon are
bounded by the second differences A 2b/ of the original control polygon

max iJAYJ = -mxJA 1max A~7 ~max IA2buI.

Proof: The second derivative p" of p is given by

p"(t) = EA 2 bk-lN 2 (t) = EA 2 bk-N 2k(2t),
k k

which means that the A 2bi can be obtained from the A 2b' via (2) as

2 d A2 b2i d -. ( 11A 2b-', 2dA 2 b
2
i+l = E. (d- 1)A 2b:i-

(2j -2 3 2

The proof follows from -j (d) -= 2d-1 and 2i (2j 1 -) 2 Z, (%) -

Theorem 4 yields the following a priori estimate on the number of subdi-
visions a needed to bring spline and control polygon within a given distance e:

a(p,A) = flog 4 (d + 1)l2A4 bl.
24E

Examples: For quadratic B-Splines, uniform refinement is called Chaikin's
algorithm, and

b2i = 2-2(3b'- 1 + bi), b2i+1 = 2-2(b'- 1 + 3b').

This yields
Ab 2  A22i-1 = A2b-1,

4
i.e. every second difference is guaranteed to decrease by a factor of four. Sim-
ilarly, for cubic B-Splines we have

b2i = 2- 3 (bi- 2 + 6bi-' + b'), b2i+1 = 2-3(4b'- 1 + 4bi),

and
A 12i -1 A2i+1 1 A2b'-' + A2 b'

4 Ab A 2
44 2
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bsk+l1

kSk

u1

Fig. 4. Constructing the envelope of a curve from the bounding rectangles Sk
and Sk+l: only the outer line segments Ulk and uk are part of the convex
hull of Sk U Sk+1 and the envelope.

§5. Curve Envelopes

A parametric curve p is in uniform B-spline form if p = -j V Nj where the

bj E R' are the control points of p and the uniform B-spline basis Nj is
defined as in Section 2. The curve p is closed if the control point sequence
(V9) is periodic.

The functional bounds are applied componentwise to parametric curves.
Then each control point and the curve point corresponding to its Greville
abscissa lie in a box whose width in the ith component is the bound in the
ith component. It is now convenient to restate the bounds from Theorems 2
and 3 more abstractly as

f (t) < p(t) - f(t) < j(t) for t E [tk,t k+]. (3)

For curves p, the bound in the i-th component is denoted by fi :_ pi - fi < -_i.
By (3), p(t*) is located in the axis-aligned box Sk,

Sk = {x I __(t*) _< xi -bý _<•j(t*) for alli = 1,...,n}.

Each point of the curve segment p(t), t E [t*,t•+1 ], lies in a box S(t),
that by the linearity of e and i is a convex combination of Sk and Sk+1:

S(t) = Lk(t;Sk, Sk+1).

The curve segment is therefore contained in the union of all S(t), t E [t•, tk+1],
which is the convex hull Hk of the corners of Sk and Sk+1. To be specific, we
discuss the case of planar curves.

Enveloping planar curves

Let vý, i = 1, ... , 4, be the line segments connecting corresponding corners of
Sk and Sk+l; that means v, connects the lower left corner of Sk to the lower
left corner of Sk+1, vk connects the lower right corner of Sk to the lower right
corner of Sk+1 etc. as in Figure 4.

Hk consists of parts of the boundaries of Sk and Sk+1 and exactly two
additional line segments Ul and uk chosen from the vý. Since Uk and uk are



246 D. Lutterkort and J. Peters

part of the convex hull Hk, they do not intersect the interiors of Sk and Sk+l.
We do not need to actually compute intersections of the vi and Sk, Sk+ to
select 24 and uk: since Sk and Sk+l are axis-aligned it suffices to look at the
signs of the slopes of the vi. The ui are separated by the line from bk to

we call the one lying to the left of this line ul and the one lying to the
right of this line u2.

The sets Ui = {uk} are not yet polylines: consecutive line segments uk
and uý+l may intersect or not touch at all. But note that the line extending2 k-1 W banaprprplln
u' always intersects the one extending u We obtain a proper polyline
Wi with exactly one line segment for each control point of p by taking this
intersection as starting point and the intersection with the line through u<
as the end point of Wi. The polylines W1 and W2 then form a local envelope
of p: the curve-piece p([tk,+t1+]) lies in the quadrangle spanned by the k-th
pieces of W1 and W2 .
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n-sided Surfaces: a Survey

Pierre Malraison

Abstract. The paper surveys techniques for filling in n-sided regions,
where n > 4. The two major classes of methods examined are: 1) to fill in
the hole with 4 and/or 3 sided patches, 2) to create a single surface. The
multi-patch approaches differ in terms of the degree of the patches and the
cross-patch continuity. The single surface approaches are either rational
surfaces (which can be expressed in terms of base points) or non-rational,
both cases having a number of variants.

§1. Introduction

The problem being considered is:

Given n curves C 1,..., Cn whose endpoints match, i.e (if we say
Co = Cn) the end of Ci- 1 is the start of Ci, fill in the hole bounded
by the Ci, possibly satisfying some additional boundary conditions.

For example, in blending, the Ci are the edges of faces, and the filling surface
or surfaces must be smooth across the edges.

I will be looking at the case n > 4. The problem with no boundary
conditions arises in the cover command in the ACIS [1] software libraries.
ACIS also supports vertex blends using Charrot [6].

This paper extends the survey Malraison [38]. Other surveys include:
Nasri [40], Cavaretta [4], Sederberg [57] and Dyn [9] for general overviews
of subdivision, Dyn [10] for a review of John Gregory's contributions to the
field, Varady [65] is a review of n-sided patches, Gregory [13] and Gregory [16]
are surveys on n-sided patches by Gregory and others, Varady [60] specific to
vertex blends and Vida [66] discusses blends in general with a section on n-
sided issues.

§2. Subdivision

Subdivision is a much broader topic than I can cover here. The basic pro-
cess is to generate a surface by starting with a polygonal approximation P0
and having a process which from Pi creates Pi+,. The n-sided problem arises
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in this context when the individual polygons formed by the subdivision process
are not 4-sided. Hermann [21] and Ball [2] use subdivision to explicitly fill
in n-sided holes, while Wang [69,68] uses a single patch method of Varady
[65,64] to fill in an n-sided hole arising in the course of subdivision. Levin
[31,32] applies a combined subdivision scheme to solve the n-sided problem
with cross-tangency constraints. Nasri [41-44] uses subdivision to provide
both a source of and solution for n-sided problems.

§3. Multiple Patches

One solution to the problem is to take the n-sided region and subdivide it once
into triangular or 4-sided regions, and then fill those with standard surface
types. The main difficulty with this approach is ensuring the internal smooth-
ness of the resulting network of patches. Peters [45] discusses the problems for
doing a CK join, Varardy [62] looks at curvature matching, and Hall [20,19]
looks at the situation when the pieces are Gregory patches. Some of the other
approaches are summarized in Table 1.

Boundary Degree Continuity Reference
Mesh points Bicubic C 1  [47]

Planes Biquintic C 1  [72]
Polygon Cubic C1 [8,3]
Quartic Bicubic C1 [48-50]
Cubic Quartic G1 [52]
Cubic Quartic triangular C1 [36,37]

Quintic Quintic GC 2  [74]
Quintic 2k 2 + 3k + 1 GCk [76]
Quintic Biquintic GC2 [17]

Tab. 1. Multiple patches.

Bangert [3], and Peters [48,49,50] are triangle-based spline methods. Pe-
ters [51] adds a hierarchical structure which supports interactive modeling.
Some other multi-patch approaches do not fit into the above table. Sone
[58,59] subdivides an n-sided hole into quadrilaterals and uses Gregory
patches. Hsu [24] uses a blend between two edges to fill in a triangular sub-
set of the n-sided hole, then continues to subdivide the remaining pieces so
that the entire hole is filled in with multiple blend surfaces. This approach is
different from the usual multiple patch approach as it may require multiple
subdivisions to arrive at regions suitable for blending. Varady [65,64] uses
multiple patches for setback blends.

§4. Single Patches

Filling in an n-sided hole with a single patch is an easier approach in a solid
modeling environment since only one face need be constructed. The issue
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here is unusual (i.e., non-rectangular) parametric domains and internal shape
control. Hall [20] discusses the control of Gregory patches [13].

For the case where the surface is rational ( i.e., f(u, v) = '"})', Warren

[71] shows that several different methods are all variants of rational surfaces
with base points ( p(u, v) = q(u, v) = 0). Since base points are singularities,
they may occur either on the boundary of the domain or outside. S-patches
go from a polygon through an n-simplex : PL•E-R 3 . Those variants are
summarized in Table 2.

Basepoints Variant Reference
Boundary

2n [64]
up to 8 sides [70]

manifold charts [12]
5,6 sides [54]

includes holes [29,30]
External

S-Patches: domain is n-simplex
original [35,34]

modifies B [33]
modifies L [25,26]

Gregory-like: Polygonal domain
pentagon [5]

arbitrary n [6]

Tab. 2. Single patch.

Gregory [15] starts with a larger problem: interpolating an arbitrary
mesh. The solution is to interpolate the "edges" by rational splines to create
polygonal curved regions, then extend the splines into strips, and blend the
strips into the interior using the same technique as Charrot [5].

The other principal method is to generate a rational surface using a
Bezier-like approach by constructing non-rectangular control nets. The
boundaries are considered as the edges of Bezier surface patches so higher
cross boundary smoothness can be obtained by having the internal control
net reflect the adjacent surface control net.

Sabin [53] uses quadratic functions to fill in three-sided and five-sided
patches. In Sabin [56] the same technique is applied to a 2-sided patch. Hosaka
[23] does the same thing using quadratics and cubics for three-sided, five-
sided and six-sided patches. Their solution is described in the general n-sided
setting. Zheng [73] extends those two approaches by using higher degrees for
higher numbers of sides.

Kar~iauskas [27,28] and Zube [77,78] provide a unifying approach similar
to Warren [71] for these rational cases by looking at toric varieties.
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§5. Other n-sided Things

Two papers address a problem which arises in a more global setting from a
classical result in topology.

Theorem. [39]. If M is a compact connected 2-manifold, M is a 2-sphere
with h handles and m cross caps.

This theorem implies M can be represented by a polygon with edges
identified: e.g. a torus is ABA- 1B- 1. Ferguson [11] applies this result to
model objects with a single surface. Wallner [67] applies the same idea to
orbifolds: surfaces defined as images of group actions. These techniques fall
into the scope of this paper insofar as the marked polygon defining the surface
is an n-sided object in parameter space.

§6. Conclusions

For single surface patches, Warren [71], Kar~iauskas [28], and Zube [78] show
that the approaches used so far are variations on two main themes. For multi-
patch and subdivision methods no such unifying concept has been presented,
although the basic notion of subdivision is arguably the unfiying theme of that
approach.

Acknowledgments. I would like to thank Malcolm Sabin for inviting me to
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Approximated Planes in Parallel Coordinates

Tanya Matskewich, Alfred Inselberg and Michel Bercovier

Abstract. For the visualization of multivariate problems, a multidimen-
sional system of Parallel coordinates is used which provides a one-to-one
mapping between subsets of N-space and subsets of 2-space. A rigorous
methodology for doing and seeing N-dimensional geometry emerges as well
as several applications. Here an application to Error Tolerancing involv-
ing the visualization and characterization of "approximate coplanarity" is
presented. The exact description of the neighborhood of an N-dimensional
hyperplane in a parallel coordinate system is given.

§1. Introduction

The parallel coordinate system serves as a tool for visualization of multi-
dimensional objects and multivariate relations. It was shown ([1,2]) that this
representation gives a simple and constructive geometrical description for sub-
sets of points which are strictly coplanar (i.e. belong to a common p-flat in
N-dimensional case). This allows the visualization of coplanar points and
the existence of linear dependencies between variables. It leads to numerous
applications in different fields, and also practical applications involving finite
error tolerancing. Here exact descriptions of approximated hyperplanes in
the parallel coordinate system are given, providing a methodology for their
visualization.

In the next section a brief review of previous results is given. It is followed
in Section [3] by an exact mathematical formulation of the problem in the
general case. Sections [4] and [5] contain some auxiliary lemmas which make
the main result more intuitive, as well as the main result itself.

Although we have a complete and precise proof of the main result in the
general case of "approximated" p-flats in N-dimensional space, lack of space
prevents us from presenting it here.
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Fig. 1. Three collinear points in 2D (left) and 3D (right).

§2. Representation of Affine Subspaces in Parallel Coordinates

The parallel coordinate system is constructed in the following way: in the
Euclidean plane IR2 (or more precisely in the 2D projective plane P 2 ) with
xy-Cartesian coordinates, N copies of the axis y labeled X1,... , XN are placed
equidistant (usually the distance between adjacent axes is taken as 1) and
perpendicular to the x-axis. They are the axis of the Parallel Coordinate
system.

A point with Euclidean coordinates (Pl,..., PN) is represented by a polyg-
onal line with N vertices ýfi = (i- 1,pi), one on each axis. In this way, a 1 - -1
correspondence between points in RN and planar polygonal lines with vertices
on the parallel axes is established.

In 2D, a point is represented by a line (usually just the segment between
the axes is shown). It can be easily proved that the lines representing points
of a line C1 X1 + c2x2 = cO (for c1 + c2 $ 0) intersect at the point j1 2 with

xy-coordinates (C-+C C___ 2), or more generally at the point

(dic + d 2 c 2  c 07'12 C1 e + C2 ' cl + C2)1

where d, and d2 are distances between axis y and X 1 , X 2 , respectively. (Lines
with slope 1 are mapped onto the ideal points of projective plane, but in what
follows we will not consider any "degenerate" cases). Hence a fundamental
point +-+ line duality is induced (see Fig. 1).

In 3D, a line can be fully described by any pair from its three projec-
tions on coordinate planes. Each such projection is a line in 2D-space of the
corresponding coordinates, and so can be represented in parallel coordinates

exactly as was described above. Hence, if cfij xi + cl3 jl xj - clj} - projection
of the line on XiXj Euclidean plane (i, j E {1, 2, 3}), then it is represented in
the parallel coordinate system by the point iij whose coordinates may be com-
puted from equation (1), and can be found geometrically as the intersection
of corresponding lines. The three points T12, ir23 and #T13 are always collinear
as a consequence of Desargue's Theorem, and any two of them represent the
line in parallel coordinates. We denote by L the line on which the three points
lie (see Fig. 1).
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I / \"x'\.~ I

Fig. 2. Randomly sampled set of coplanar points in 3D and intersection of lines
L showing coplanarity.

Let us now consider a plane cIx 1 + c2x 2 + c3x3 = co. Every pair of points
belonging to this plane define a line L in parallel coordinates (which can be
constructed geometrically from the representation of points themselves). It
can be shown by direct computation that all such lines intersect at the common
point with coordinates

"C1 + C2 + C3 C1 + C2 + c 3

This condition can be used to characterize coplanarity. Note, that one point
is not sufficient in order to specify the plane. The solution is to introduce
an additional axis X. placed after X 3 and at a unit distance from it, and
consider the representation of points also in axes (X 2 , X 3, X'). This leads to

the additional point jf2 3 1' - (i+c2+c3l -, co+ (
CI+C 2 +C 3 ' Cl+C 2 +C3) (eFi.2).

This generalizes nicely to the N-dimensional case, and it can be shown
that a representation of a hyperplane in parallel coordinates also can be re-
cursively constructed by a simple geometric procedure, using affine subspaces
of lower dimensions. A hyperplane is represented by N - 1 indexed points;
the "first" one has coordinates

(c2+2c3+...+(N--1)CN cO
C• 2 +... + CN C l+ C2 +•-. CN (3)

and the others have very similar formulas.
A p-flat in N-dimensional case can be described by N - p linearly inde-

pendent equations, where each of them has the form ck-1 Xjk = co, and
so corresponds to a hyperplane in axes (Xl, XI2,.... Xi,+,). It follows that
a p-flat is represented by p(N - p) indexed points. The ensuing discussion is
restricted to "approximated" hyperplanes. It is easy to show that the general
case of an "approximate" p-flat in N-dimensional space can be reduced to the
study of some "approximate" hyperplane.
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0,2 Ila*

-1 "1 03 11 01 0 0

Fig. 3. Sampled proximate line ax + by 1, a E [a-,a+], b E [b-,b+] in
orthogonal and parallel coordinates.

§3. Exact Problem Definition

We will use the following definition of "similarity":

Definition 1. Proximate flats are defined here as fiats with proximate equa-
tions. An approximate hyperplane is defined as a set of hyperplanes given by
equations

C1 X1 + C2 X2 + ... + CNXN = CO, (4)

where every coefficient can vary: ci E [c7, c+], i = 0,..., N.

Such a slab of hyperplanes is extremely difficult to visualize in orthogonal
coordinates, even for 3D. Another problem is that even in the 2D case, line
neighborhoods are unbounded in orthogonal coordinates, so neighborhoods for
different lines always overlap. Fig. 3 shows that samples of proximate lines (in
2D) form a cloud in the form of a very simple and nice convex quadrilateral.

In the N-dimensional case, a hyperplane is described by N - 1 points
which means that in the approximated case, we will get N - 1 "clouds" of
indexed points in parallel coordinates. In order to make things simpler, we
will use the following

Assumption 2. Free coefficients of equations are not allowed to vary, and
are supposed to be identically equal to 1.

(We have a complete analogue of the main result for the case when this as-
sumption is not applied.)

Lemma 3. It is sufficient to study only the range of the first indexed point
of a hyperplane. That is, the following mathematical problem should be con-
sidered: find the range of the function f : RN _ ]R2 such that

c . (ZY=(J--)ci 1 ) (5)

when cj E [c,c] (c- < c-, j = 1,...,N).
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Fig. 4. Possible place for domain Q depending on the signs of CoeffMin k and
CoeffMax k.

The notations used are:

• x(cl, ... , Cg) and y(cl,..., cN) - the first and the second coordinates of
fN(cl,... , CN) in R2 respectively;

* B -- [c-, c+] x ... x [c-, c+j - box in the space of coefficients;

e Q = f(B) - image of B in the parallel coordinate system.

We now show why Lemma 3 holds in the 3D case. Here studying the range
of fr123 (equation (2)) is sufficient because fr231, can be rewritten in the form

c 3 + 2c, 1
7r231' = (1, 0) + ±,C1+C2+C3 C1+C2+C3

This implies that the equation of fr231, can be obtained from the one of 7t1 2 3

by shift and cyclical change of parameters cl -+ c2 , C2 --+ C3, c3 -+ C1.
For the general case, this "reduction" lemma can be proved using simple

combinatorics, and it can be shown that in order to describe the range of one
of the indexed points corresponding to a p-flat in N-dimensional space, it is
always sufficient to consider f2N with some coefficients identically equal to
zero.

§4. Some Notes on the Domain Q2

To get an intuitive feel about the structure of the domain 0, we consider the
possible location of Q2 and what it looks like. Note that for every k - 1, . . . , N
the following representation takes place:

N •

X(C1,..,CN) = k-i1 + Ej=1 (i - k)c - 1 + Coeffk y(Cl,... , CN), (6)ENj=1 ei
(j k)cj +E

where Coeffk = (j - k)1c3 + -=k+l (j - k) cj does not depend on ck.

<0 >0
If only ck varies, while the other coefficients are fixed, then (x, y) lie on the

straight line which passes through the point (k - 1, 0) and has slope 1/Coeffk.
Here CoeffMink ! Coeffk(Cl,.. .,Ckl,k+1,... ,CN) !5 CoeffMaXk
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Fig. 5. Important vertices and edges in the space of parameters.

for every choice of (ci,.... ck-1, ck+1,.. ., cN), where

CoeffMink = Coeffk(C+,... •Cl•ck+l,. ••)1 -) k+ .N,c+ (7)
CoeflMaxk = Coeffk(c . ... , %-1, (7+),"

The domain Q lies between lines with maximal and minimal slopes. More
precisely

Lemma 4. Q2 lies above the line corresponding to CoeflMaxk iff

CoeflMaxk > 0 (otherwise it lies below the line). Q) lies above the line corre-
sponding to CoeffMin k iff CoeffMin k < 0 (see Fig. 4).

Let us now introduce the following notations for some important vertices
and edges of box B. There are 2N (among 2 N) important vertices:

Ak = (c+ .12 , k-lkCk+l N)(8)-k = C ,C ... _ 1 +' + +. )( )
# k : ( 1 C 2 k -'' , Ck_ !7C. ...! ,

for k 1, ... , N and 2N important edges connecting these vertices (see Fig. 5):

ak(Ck) = (C,..., -1, Ck, C +[,...+ (9)

= ... ,c ,ck,Ck+l,.. .,IC), ck C [c•,ck .

Edge ak connects vertices Ak and Ak+l, edge /3k - vertices Ilk and #k+1. (Here
AN+1 = pi and ILN+l = Al).

We also introduce the notation

sum(cl,... ,CN) = c1 + + CN (10)

which will be useful in what follows.
As explained above, it is clear that ak is mapped onto the boundary line

of Q2 corresponding to CoeftMaxk, and A3 is mapped onto the boundary line
corresponding to CoeffMin k. More precisely, we have

Lemma 5. The image of ak is the segment between fN(Ak) and fN(Ak+l) if
1/sUm(a(Ck)) does not change sign while ck E [c+, C], and the comple-

ment of the straight line to this segment otherwise. In other words, fN(ak )
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, k• / , k k)1
f~fN(Xk)

/-k-1-1

Fig. 6. Image of ak depending on the signs of y(Ak) and Y(Ak+l).

is a segment if plane cl + c2 + "". + CN = 0 does not intersect edge ak of box
B, and a complement of the segment otherwise (see Fig. 6).

Of course, the analogous statement holds for the image of 3ik. In what
follows, we will usually formulate only statements for Ak and ak, and omit the
analogous ones for iik and 13k.

Conclusion 6. fN(Ak) and fN(Ak+l) are connected by segment iff they lie
in the same (upper or lower) half-plane, i.e. if y(Ak) and y(Ak+X) have the
same signs.

Note further, that every one of the points fN(Ak) (fN(ltk)) is a point of
the concatenation of two boundary segments corresponding to
CoeffMaxk_ and CoeffMaxk (CoeffMintk_ and CoeffMink, respectively).

In order to make this precise and to assure that all boundary can be
described in this manner, the following theorem was proved.

Theorem 7. fN (cl, ... ,CN) belongs to the boundary of domain f2 iff there
exists k = 1,..., N such that (Cl,..., CN) = ak(Ck) or (Cl,.. .,CN) = (Ck)
for ck E [c, c+].

Again the proof (which is relatively long) is omitted the proof uses the
"topological" notion of point neighborhood, boundary etc.

Conclusion 8. In order to describe the boundary of the domain Q, it suffices
to move along the following contour in the space of coefficients

/ A2  -- A3  -• ... - AN \
A,1  14 (11)

\ AN - N- ... -- -2 /

Note that independently of the specific values of c- and ct (j = 1,..., N),

always only 2N (among 2 N) definite vertices and edges of B and in definite
order participate in the boundary of domain Q.

It remains to "fill in" the boundary of •2 with Q2 itself. Before we formulate
the main result, let us study an additional property of domain Q2 and its
boundary.
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Fig. 7. Convexity of vertex fN((Ak).

Lemma 9. The domain Q has only convex boundary vertices.

Indeed, it was shown above that a boundary vertex of Q of the form
fN(Ak) is the intersection of the lines with slopes 1/Coeffmvaxk- 1 and
1/CoeffMaxk and passing through points (k- 2, 0) and (k- 1, 0) respectively.
Note that the following equation holds:

CoefIMaxkl - CoeflMaxk= sum(Ak) = 1/y(Ak) (12)

Assume for example that fN(Ak) lies in upper half-plane, i.e., that y(Ak) > 0
(the analogous consideration can be done for the lower hyperplane). Then
CoeflMaxk-l > CoeflMaxk, and using Lemma 4 we get that in any one of
three possible cases (see Fig. 7) this vertex is convex.

§5. The Main Result - Description of the Domain fl

Theorem 10. The domain 9 has one of two possible forms depending on
whether sum(Al) = c+ + c+ +". +Nc and sum(i) = c-- c+... + c- has

the same sign or not.

Note that this condition is equivalent to the condition that the plane
C1 + c2 + - • + CN = 0 intersects the box B in the space of coefficients.

Case 1. If sum(A1) and sum(pi) have the same sign, then Q is a convex
bounded polygon inside the contour (11), (see Fig. 8 and 9 - left parts. In the
figures we will write Ak instead of fN(Ak) in order to make the figures clearer
and more compact).

Indeed, let us assume that sum(yji) > 0. Then y(Ak) > 0 and Y(Ak) > 0
for every k = 1,... , N (all vertices ofQ lie in the upper half-plane). According
to Conclusion 6, the boundary of Q in this case consists of segments which
form a convex (Lemma 9) bounded polygon.

Case 2. If sum(tIl) < 0 and sum(Al) > 0, then sum() changes its sign exactly
once when upper or lower chain of the contour (11) is traversed, say at the
segment ak = [Ak, Ak+l] at the upper chain and segment f3p = [jup,,,p+j] at
the lower chain. Then the domain Ql is a union of two convex unbounded
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0 1 k-1 N-i

Fig. 8. The domain Q2 in the general case.

kX 2 3 SP-eeOf X, 2

iii coeifick-n

Parallel cewdInatar ParaJkeI cew&atm~C1

Fig. 9. An example of the domain Q in the 3D case.

polygons. The first is inside the part of the contour that belongs to the upper
half-plane, and the second is inside the part of the contour that belongs to
the lower half-plane.

Upper and lower parts are bounded by infinite rays with the same slopes
(corresponding to CoeflMaxk and CoetfMinp), i.e. it is a convex bounded
polygon in the projective plane (see Fig. 8 and 9 - right parts).

§6. Example of an Affine Subspace of Lower Dimension

We now show how the general result can be applied to the construction of
p-flats of lower dimensions, for the "approximate" line in 3D case. For ex-
ample, if we would like to describe the range of the indexed point j'13 -

( 2C31
3

} f1311 ) which enters in the representation of the line, then
{13)3 ,representation line

c 1 -I-c 3  C1 -+C 3

we can reduce it to the consideration of f3 by putting c2 E [0, 0]. We get "void"
connections instead of edges a2 and /2, and finally get a convex quadrilateral
instead of convex hexagon (see Fig. 10).
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,:2

Fig. 10. Range of jt 12 - the first indexed point corresponding to line in 3D case.
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Applications of Sphere Geometry

in Canal Surface Design

Christoph Maurer

Abstract. Classical models of sphere geometry facilitate an efficient
description of canal surfaces. Using the cyclographic model of Laguerre
geometry, an elementary characterization of continuity, bisectors, control
point-, control sphere- and implicit representations of canal surfaces is
presented. In addition, canal surfaces generated with the aid of Minkowski
Pythagorean hodograph curves are investigated.

§1. Introduction

A canal surface C in R 3 is defined as the envelope surface of a moving sphere
S(t) with center m(t):= (mI(t), m2(t), m 3 (t)) and radius function r(t). The
moving sphere can be described with the implicit equation

F(x, t) = 1lx - m(t)112 
- r 2 (t) = 0. (1)

The envelope condition

aFOt_ - [Ix - m(t)]. viz + r(t)÷(t) = 0 (2)

describes a moving plane, which intersects S(t) in the characteristic circles of
the canal surface. It is a natural approach to use models of classical sphere
geometry to study canal surfaces. Well-known models have been investigated
in M6bius geometry, Laguerre geometry and Lie geometry. For an overview
on sphere geometry, the reader may consult [2]. Papers which handle sphere
geometry in the CAGD context are [7,8,10,11,12].

Curve and Surface Design: Saint-Malo 1999 267
Pierre-Jean Laurent, Paul Sablonnikre, and Larry L. Schumaker (eds.), pp. 267-276.
Copyright 0 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.
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ý©
Fig. 1. Hyperbolic, parabolic and elliptic sphere families.

§2. Fundamentals of Laguerre Geometry

In the cyclographic model R3, 1 of Laguerre geometry, a sphere S with center
m = (ml, m 2, m 3 ) and radius r is described as a point s = (ml, m 2, m 3 , r) T ER3,1. It is an intuitive model, since the space of points (spheres with vanishing

radius) is embedded in the cyclographic model as the hyperplane x4 = 0. The
absolute quadric Q, which reads in homogeneous coordinates (ji/xo :-- xi) as

X : x 2 + X2 + X2 - X =0 plays an important role. It defines a pseudo
Euclidean (pe) metric in R3, 1 via the scalar product

(a, bp := alb, + a 2b2 + a 3b3 - a 4b4. (3)

The pe distance Ila - bllpe := /a - b, a - b)p, of two points a, b E R3,1
measures the tangential distance of two spheres A,B. First we study the
most simple family of spheres described as a line L with direction vector a
in R3,1. There are three cases: If (a, a)p, > 0, then L is called a hyperbolic
line corresponding to a family of spheres whose envelope surface is a right
circular cone (Fig. 2, left). If (a,a)p, = 0, then L is called a parabolic or
isotropic line belonging to spheres in oriented contact. If (a, a)p, < 0, then L
is called a elliptic line and two arbitrary spheres of such a family do not have
a common tangent plane. These three cases of sphere families are plotted
in Fig. 1 (but to simplify matters in R 2 instead of R 3 ). A canal surface
is completely determined by the set of its tangent cones. They belong to
hyperbolic tangent vectors of a curve c(t) G R3,1. Vice versa, the set of
hyperbolic tangent vectors of c(t) corresponds to the set of tangent cones of a
canal surface along the characteristic circles. For elliptic tangent vectors, there
does not exist a real tangent cone. Therefore, that case has to be avoided in
the specification of canal surfaces. Discrete parameter values to with parabolic
tangent vectors (116(to)llpe = 0) are tolerated. At these parameter values, the
canal surface is closed (Fig. 2 right).

Corollary 1. Any real G'-continuous canal surface C in R3 can be described
as a G1 -continuous curve c(t) E R3, 1 with hyperbolic tangent vectors.

A Laguerre transformation 7- in R3, 1 is an affine mapping x ý- AAx + b,
0 < A G JR which preserves Q. It turns out that this condition is fulfilled iff
A is an orthogonal matrix with respect to the pe metric, i.e.

ATEpeA = Epe := diag(l, 1, 1, -1). (4)
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10 S 2

Fig. 2. Left: Tangent cone of two spheres; right: Effect of parabolic tangent vector.

Therefore, Laguerre transformations are pe similarities in R3, 1. Since the
Euclidean space R 3 is embedded in R 3,1 , any Euclidean translation or rotation
is a Laguerre transformation. The offset operation with offset distance d is
described as a translation Td in the x 4-direction (A = 1, A = E, b = (0, 0, 0, d)).
A further example is the pe rotation around a fixed 2-plane. If the x2 , x3-plane
is fixed, the pe rotation is represented by

(x, ) _ (cosh a sinha x 1 (5)
Tr: X4 J \sinha cosha] x4 (5)

Any Laguerre transformation with A = 1 preserves the tangential distance.
The following examples show how Laguerre transformations act on simple
curves of 1R3,1.

Example 1. Consider a straight line L E R3. The image line under the offset
mapping Td describes a cylinder. An additional pe rotation rr o Td(L) yields a
hyperbolic line corresponding to a right circular cone. Vice versa, any hyper-
bolic line in 13,1 can be mapped via an appropriate Laguerre transformation
to L.

The line in Example 1 does not change its type under the mappings r, and
Trd. Since the sign of (a, a)pe is not modified by any Laguerre transformation,
we obtain:

Corollary 2. The type (hyperbolic, parabolic, elliptic) of straight lines in
the cyclographic model R ' is invariant under Laguerre transformations.

Example 2. Consider a Euclidean circle K E W3. Its image rd(K) describes
a torus, and the pe circle r o Td(K) corresponds to a Dupin cyclide. Any
Dupin cyclide can be interpreted as a circle in R3,1 with respect to the pseudo
Euclidean metric. For more details and a proof of this fact, see [7].

The pe circles might be utilized to describe G2-continuity between canal
surfaces: The osculating pe circle of a curve c(t) E R3,1 belongs to the oscu-
lating cyclide of a canal surface C, which specifies the curvature behaviour of
C. A technique to compute osculating circles of space curves in the Euclidean
and non-Euclidean space is given in [1].
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§3. Isotropic Hypersurfaces

Definition 1. Let C C JR3 be an oriented C 1 -continuous canal surface, which

belongs to the curve c E JR3,1. The isotropic hypersurface 17(c) C R 3"1 is the
union of all points in JR3'1 corresponding to all oriented tangent spheres of C.

For a fixed surface point of C, all oriented tangent spheres are represented
as isotropic lines in ]R3'1 . Therefore, 17(c) is formed by a two-parametric
family of isotropic lines. Applying Corollary 2 to the definition of isotropic
hypersurfaces, we obtain:

Proposition 1. Isotropic hypersurfaces are invariant under Laguerre trans-
formations T(F(c)) = F(r(c)).

The simplest example is the isotropic hypersurface of a sphere S specified
by a point s E JR3 '1 . It is a hypercone F(s) = (x - s,x - s), = 0. Now

consider a canal surface C characterized by a curve c(t) e R 3'1 with hyperbolic
tangent vector 6(t). As shown in [7], its isotropic hypersurface can be achieved
in a two-step procedure: First intersect the pe polar plane *pJ-(t) with the

absolute quadric Q (the pe polar plane ale of a vector a E R 3,1 is defined as± T

(a1 : aEpx = 0). Then join the resulting family of conics k(t, s) and the
curve points c(t) with straight lines. Or as a formula:

r(c) = Ut c(t) * f{'J-(t) n Q},

where A * B denotes all straight lines joining A and B.
Isotropic hypersurfaces have several properties which can be applied in

the context of geometric design:

Proposition 2.

1) The intersection of the isotropic hypersurface F(c) with JR3 generates the
canal surface C itself. 1(c) n R 3 = C.

2) The intersection of rd(F(c)) with JR3 gives the offset surface of C.

3) Consider two canal surfaces C1, C2 E JR3 with corresponding curves
Ci(t), c 2(t) E JR3 "1. These canal surfaces touch each other if c2 is lying on
r(cl) (resp. if c, is lying on r(c 2 )).

4) The bisector surface of C, and C 2 is formed by the orthogonal projection
of {F(cl) N F(c 2)} to R 3.

Proof: 1) The tangent spheres with radius zero of a canal surface are pre-

cisely its surface points. They are contained in the hyperplane JR3 of the
cyclographic model. 2) follows from the offset property of Td and Proposition
1. 3) follows immediately from Definition 1. To prove 4), note that the bisec-

tor is characterized as the center of spheres which have oriented contact to C,
and C2. In JR3'1 these spheres are characterized by {F(cl) N F(c 2)}. El

We complete this section with few examples which make use of Laguerre
transformations and isotropic hypersurfaces.



Applications of Sphere Geometry 271

Fig. 3. Bisector of 2 spheres, resp. of sphere and canal surface.

Example 3. Using the previous proposition and Example 2, implicit and
parametric representation of cyclides C can be derived easily. With a Laguerre
transformation r, the corresponding pe circle can be mapped to a simple
normal form _ = = x• +x• - = 0 of a image cyclide C. Its isotropic
hypersurface reads in implicit form as

r(a): (_0 +x +_ X + •2•_ X2) 2 24_( + ) = 0,

and in parametric form as

(Xýo(•, V, ), -1(•, V, •), •2(u, , ), •-ý3(U, V, ), •-4(U, V, ))=
([1 - wJ[1 + v 2] + w[1 - u 2], [1 - w][1 - v2], 2[1 - w]v, 2wu, - w[1 + u 2]).

The implicit and parametric representation of the original cyclide C can be
obtained from {r- 1 (F(E)))}nR 3 . The intersection procedure is straightforward,
since r is a linear mapping. In the parametric case, the parameter w can be
eliminated easily, because it occurs linearly in the parameter representation.

Example 4. Consider two spheres S1, S2 specified by points 81, 82 E R
The intersection F(sl) n F(S 2) of their isotropic hypersurfaces is contained in
the hyperplane H 12 : (x - (S1 + 82)/2, S2 - 8I)pe = 0. Thus, the bisector of S1
and S2 is the orthogonal projection of H12 n F(s1 ) onto 1R3.Since r(s8) is a
hypercone, the bisector surface is a quadric surface. Fig. 3 shows two spheres
and a part of their bisector surface (hyperboloid of two sheets).

Example 5. A similar technique allows the computation of the bisector of a
sphere S and a canal surface C (specified by s and c(t) E R3,1). Now, H12 (t) :
(x - (s + c(t))/2, c(t) - s)p = 0 depends on t. The bisector surface is obtained
by the orthogonal projection of H1 2 nl r(c) onto R3. For a rational canal
surface, 1(c) is a rational ruled hypersurface with parameter representation
g(t, u, v) in 1R13,1 which is linear in v. After the intersection and projection
operation, we obtain a rational bisector surface b(t, u). Fig. 3 depicts the
bisector b(t, u) of a sphere and a canal surface c(t, u) with cubic spine curve
and rational parametric degree (7,2). b(t, u) has parametric degree (10,2).

Rational bisectors of spheres and PN surfaces are studied in [3]. Fur-
ther applications of the concept of isotropic hypersurfaces can be found in [8]
(tangent plane property) and [12] (offset property).



272 C. Mdurer

Fig. 4. Cyclide and cubic canal surface with control spheres.

§4. Control Sphere Representation
Consider a B1zier curve

n

X(t) = SkBk(t) (6)
k=0

of degree n in the cyclographic model with control points sk E R3,1. They
correspond to control spheres of the canal surface C described by x(t). Well-
known properties of the Bernstein-B zier technique can be applied directly to
the Laguerre geometric approach (this idea was introduced in [12]):

Proposition 3.

1) The de Casteljau algorithm enables a stable computation of the moving

spheres of a canal surface and can be used to subdivide it into two parts.
2) The control spheres So and S1 (S, and Sn-x) generate the tangent cone

of the canal surface at t = 0 (t = 1).
3) A (rational) canal surface (with positive weights) lies in the convex hull

of its control spheres.

The control structure is useful from the designers point of view because
the influence of moving the control spheres or changing their radius or weights
is analogous to the well-known curve case. For example, Fig. 5 views the
influence of modifying one weight of a canal surface with cubic spine curve:

The weight 31 is increased from 1 (left) to 10 (right). All other weights satisfy

3i= 1.
We have seen some advantages of using the control sphere representation

of canal surfaces. However, often it is necessary to know a (rational) tensor-
product representation. Therefore, one has to analyze the correlation between
control spheres and classical control points of a canal surface. For the cyclide
case there exists a simple geometric relation, which is described in [8]. In
the case of an arbitrary canal surface, the problem was solved by Pottmann

and Peternell [11]. They proved the surprising result that any canal surface
with rational spine curve m(t) and rational radius function r(t) is rational.
Furthermore, they proved that the problem of finding the rational tensor-
product representation can be reduced to the problem of finding two rational
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Fig. 5. Influence of different weights.

functions pl(t) and p2 (t) which satisfy

2 2 = + := + + r - (7)

Although the existence of solutions of (7) can be proved via factorization over
the complex field, it is not trivial to find the (non-unique) solutions. There
are two different options to perform the conversion from control spheres to
control points:

1) Use arbitrary rational curves x(t) E R3,1 to describe canal surfaces. Then
it is impossible to solve (7) exactly and numerical methods are required
to compute the control points from the control spheres of the dedicated
canal surface.

2) Use rational curves x(t) E R3,1 which have the property that p(t) is
a square in the polynomial ring IR[t]. Then an exact conversion from
control spheres to control points can be realized using the algorithm of
Pottmann and Peternell [11].

In this paper we will follow the second option. It results in the concept
of Minkowski Pythagorean Hodograph curves.

§5. Minkowski Pythagorean Hodograph Curves in R 3,1

Planar and spatial Pythagorean hodograph curves have been introduced by
Farouki and Sakkalis [4,5]. Recently Moon [9] has generalized this class of
curves and investigated the Minkowski Pythagorean hodograph (MPH) curves
of R 2,1. Here we need a further generalization: the MPH curves of R 3,:

Definition 2. A polynomial (rational) curve x(t) = (xl(t), x 2 (t), x3(t), x 4 (t))
in R3,1 is a Minkowski Pythagorean hodograph (MPH) curve if there exists a

real polynomial (rational function) u(t) which satisfies

ýbl(t) + •ý(t) + •2(t) _ ý2(t) = U2(t). (8)

As described before, for canal surfaces described via MPH curves of R 3,1

an exact conversion from control spheres to control points can be realized. We
now present some additional important properties of MPH curves.



274 C. Mdiurer

Proposition 4.

1) The tangent vector of a MPH curve is hyperbolic except a finite number of
parabolic tangent vectors, i.e., the corresponding canal surface is always
real.

2) The MPH property is invariant under Laguerre transformations.
3) PH space curves are exactly those MPH curves, which hold X4 = 0

Pe circles are examples for rational MPH curves of degree 2. In order to
create polynomial MPH curves, equation (8) could be solved in a polynomial
ring R[t]. A possible solution (determined via stereographic projection) is

(@i(t), d•2(t), d•3(t), dx4(t), u(t)) =(9

(2uou-, 2uoU2, - +U + U 2 _2, 2uOU3, U2 + U2+ U2 2) (9)020•l 1••2 2U U3_ 02 1• 22 3*

The polynomials u(t) := (uO(t), u1 (t), u 2 (t), u 3(t)) of degree n are mapped via
(9) to polynomials of degree 2n. Taking account of xi(t) = fýi(t) dt + C
with i =1,..., 4, we obtain a polynomial MPH curve of degree 2n + 1. Due
to space limitations, we postpone a more detailed description. However, the
basic principles of the analytic construction are the same as for MPH curves
of R2,1, which are inspected by Moon [9] in detail.

An alternative approach is to construct MPH curves as Laguerre images
of PH curves. For example, one could make use of well-known properties
on spatial PH cubics [5,6,14] for building MPH cubics. Consider a cubic
MPH B~zier curve x(t) with control points bo,b l ,b 2,b 3 E ]3,1R. bo and bl
resp. b2 and b3 define two hyperbolic tangent vectors tl and t 2 , which span a
three-dimensional plane H3. If there exits a Laguerre transformation 7 with
T(H 3 ) = R 3, then x(t) = T-r(y(t)) is a Laguerre image of a (spatial) PH
cubic y(t) E R 3 (that fact comes from properties 2) and 3) of proposition 4
in combination with the convex hull property of Bdzier curves).

Proposition 5. Consider a hyperplane H3 C R3, 1 spanned by two skew
hyperbolic lines t1 and t2 . There exists a Laguerre transformation T with
T(Hi3 ) = -R 3 iff all lines joining tl and t 2 are hyperbolic.

Proof: All straight lines in R3 are hyperbolic. Because of Corollary 2, it
is necessary for the existence of T, that any line of the linear congruence
tl * t 2 is hyperbolic, too. The sufficiency is proved by construction: With a
pe rotation r, one hyperbolic line t, can be mapped to ]R3. Ti(ti) and the
point p := •i(t 2 ) n R 3 span a 2-dimensional plane H2 C J 3 . An appropriate
Euclidean motion r2 maps H2 onto the x2 ,x 3-plane. Let q = (ql,0,0, q4)
be the intersection point of T2 o -T(t 2 ) with the x 1 ,x 4-plane. Case 1) 1ql <
q41: the pe rotation (5) with a =arctanh(-ql/q 4) maps T2 o T-1(H 3 ) onto
the hyperplane x, = 0. Since it contains elliptic lines, this contradicts the
assumption that tl * t2 is hyperbolic. Case 2) Iql = 1q4J : T2 0 TI(rH

3
) is

the hyperplane x, = X4. Since it contains parabolic lines, we also get a
contradiction. It remains to consider Case 3) Iq1l > Jq41: the pe rotation (5)
with a =arctanh(-q 4/ql) maps r2 o r 1 (113) onto R 3 . E]
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Fig. 6. Interpolation of spheres with cyclide spline.

§6. Interpolation with Canal Surfaces

Finally we briefly discuss simple interpolation problems concerning canal sur-
faces. The construction of canal surfaces which interpolate given spheres or
tangent cones is reduced in the cyclographic model to finding an interpolating
curve in R3,1. Therefore, standard algorithms can be generalized from IR3

to R3,1 in order to solve the problem. Indeed, one has to take into account
that these methods could generate curves with elliptic tangent vectors, which
does not comply with real canal surfaces! This problem can be avoided using
algorithms which deal with MPH curves.

Example 6. n + 1 spheres Pi (i = 0,...,n) can be interpolated with a G1-
continuous cyclide spline (Fig. 6). Each piece is characterized by a pe circle
segment with control points bk,i E W 3,1 and weights fOk,i E R, k = 0, 1, 2.
Per given tangent vector ti-1 at Ps-i the segment is determined uniquely.
Thus with any starting vector to, the pe circular spline curve can be produced
successively. To perform the computation, one can generalize an ordinary
circular spline algorithm. The formulas (10) are cited from [13], just replacing
the Euclidean metric by the pe metric:

bo,i = p i b- , = , i-1+ 2(Api,ti-1)pI e b2,i = P i,

(Api,t--l)pe

Ooi = 1, , = II pII -Ip ' 2, = 1.

The only condition on the input data is II Api lp := I1p -p 11 > 0, i.e., the
spheres Pi-1 and Pi cannot lie inside each other.

Example 7. A piecewise Hermite interpolant can be realized with a cu-
bic MPH canal surface. Consider two spheres Pi-1, Pi (specified by points
Pi-1, pi in R 3 '1) and tangent cones Ti-1, Ti (described as hyperbolic lines
t ,-l,t C JR3, 1 spanning a hyperplane I3 C JR3, 1). If this input data satisfy
the condition of Proposition 5, then there exists a Laguerre transformation



276 C. Miurer

7- which maps H3 to ]R 3, and a well-known Hermite interpolation algorithm
[6,14] produces a cubic PH Hermite interpolant c(t) E R 3 . Its Laguerre image
T1-(c(t)) is a cubic MPH curve and interpolates the original input data.
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Geometric Computing with CGAL and LEDA

Kurt Mehlhorn and Stefan Schirra

Abstract. LEDA and CGAL are platforms for combinatorial and geo-
metric computing. We discuss the use of LEDA and CGAL for geometric
computing and show that they provide a unique framework for exact, ef-
ficient and convenient geometric computing.

§1. Introduction

LEDA (Library of Efficient Data Structures and Algorithms) [16,171 and CGAL
(Computational Geometry Algorithms Library) [8,26] are platforms for com-
binatorial and geometric computing developed in the ESPRIT-projects AL-
COM II, ALCOM-IT, CGAL, and GALIA. Concerning geometric computing,
the systems provide number types, geometry kernels, geometric algorithms,
and visualization. They by now provide a significant fraction of the algorithms
and data structures described in the computational geometry literature, where
in this context computational geometry subsumes the field covered by the an-
nual ACM Symposia on Computational Geometry. The systems are designed
such that it is easy to build programs on top of them. The computations
in LEDA and CGAL are exact, i.e., behave according to their mathematical
specifications. This is a strong point of both systems, distinguishing them
form many other geometric software products.

Based on the insight that algorithm design must include implementa-
tion to have maximal impact, Kurt Mehlhorn and Stefan NMiher started the
development of the LEDA software library of efficient data structures and al-
gorithms in Saarbriicken in '89 using C++ as programming language. LEDA
is now developed at Max-Planck-Institut ffir Informatik, Saarbriicken (Ger-
many), and Martin-Luther-Universit~it Halle-Wittenberg (Germany). The
idea of CGAL was conceived in fall of '94, inspired by the success of LEDA and
in order to bundle forces previously put into predecessors of CGAL [2,11,20].
Development of CGAL was started in fall '96 in the CGAL-project and is

Curve and Surface Design: Saint-Malo 1999 277
Pierre-Jean Laurent, Paul Sablonnibre, and Larry L. Schumaker (eds.), pp. 277-286.
Copyright 02000 by Vanderbilt University Press, Nashville, TN.
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now continued in the GALIA-project. GALIA is carried out by Max-Planck-
Institut fuir Informatik, Saarbriicken, ETH ZMrich (Switzerland), Freie Uni-
versitdt Berlin (Germany), INRIA Sophia-Antipolis (France), Martin-Luther-
Universitat Halle-Wittenberg, Tel-Aviv University (Israel), and Utrecht Uni-
versity (The Netherlands). The goal is to make the most important of the so-
lutions and methods developed in computational geometry available to users
in industry and academia in a C++ library.

§2. The Need for a Geometry Software Library

Reusing code that already exists and is used and thereby tested rather than
implementing everything from scratch saves development time and hence re-
duces cost [5]. It also eases maintenance of code. Software libraries also ease
the transfer of state-of-the-art algorithmic knowledge into application areas.
Since geometric computing is a wide area, many application areas can bene-
fit from the availability of the re-usable code of a geometry software library.
The importance of libraries of software components in subject area domains
is clearly stated in a recent report of the information technology advisory
committee of the president of the US [22].

In geometric computing, software libraries consisting of reliable compo-
nents are particularly useful, since implementors of geometric algorithms are
faced with notoriously difficult problems [18], especially the problems of ro-
bustness and degeneracies.

Robustness

Theory usually assumes exact computation with arbitrary real numbers, while
the standard substitution for real numbers in scientific computing in practice,
floating-point arithmetic, is inherently imprecise. In practice, implementa-
tions of geometric algorithms compute garbage or completely fail more or less
occasionally, because rounding errors lead to wrong and contradictory deci-
sions, see [14,25,27]. With floating-point arithmetic, basic laws of arithmetic,
on which the correctness proof of geometric algorithms is based, of course,
don't hold anymore. We invite the reader to carry out the following simple
experiment: Compute the point of intersection of the two lines with built-in
floating point arithmetic. Then, again using built-in floating point arithmetic,
check whether the computed intersection point lies on the intersecting lines.

Figure 1 shows an incorrect result of a computation due to rounding
errors. The task is to compute the extreme points of intersection points of a
set of line segments, where a point is called extreme with respect to a set of
points if its removal from the set changes the convex hull of the point set. The
line segments have randomly chosen endpoints lying on a circle. In a first step
the intersection points of the line segments are computed, then a convex hull
algorithm is run on the points computed in the first step. With floating-point
arithmetic, some collinearities are not detected and too many extreme points
are reported. Extreme points are shown as small disks in Figure 1. The points
surrounded by a circle are actually not extreme. In the problem considered
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Fig. 1. Extreme points among intersection points of 30 line segments.

here, the computed output might still be useful; for many other geometric
problems, however, failures of pure floating-point based implementations are
much more drastically. They just crash.

Adding epsilons by trial and error to equality tests used to be common
practice in implementations of geometric algorithms, but it in no way leads
to a reliable correct implementations. Two main approaches to solving the
precision-caused robustness problem can be identified. The first is re-designing
algorithms such that they can deal with imprecision, e.g. compute a good ap-
proximate solution, but never crash. So far, this approach has been applied
successfully to only very few basic problems in computational geometry, see
[14,25,27]. The second approach is exact geometric computation [28], which
means computing with such a precision that an implementation behaves like
its theoretical counterpart, and therefore according to its mathematical speci-
fication. This is possible for many geometric problems, at least, theoretically.
Note that in practice, the input does not involve arbitrary real numbers. Of
course, exact geometric computation slows down computation, but thanks to
clever adaptive computation using floating-point arithmetic whenever known
to produce the correct result [10,15], it is now much closer to the speed of
floating-point computation than it used to be a decade ago. Since libraries
must be reliable in order to be usable in general, the exact geometric compu-
tation approach is taken in LEDA and in CGAL.

Degeneracies

Robustness problems caused by rounding errors are closely related to degen-
eracies, i.e. "exceptional" input configurations. Theory often neglects degen-
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eracies for the sake of a cleaner exposition of an algorithm, and also because
they are rare from a theoretical point of view: they have measure zero in the
set of all possible inputs over the real numbers. In practice, however, they
occur frequently. Since theory papers often leave handling degenerate cases as
an exercise to the reader, implementors are often left alone with the burden
of investigating the details of handling degeneracies. Furthermore, this leads
to treating degeneracies as an afterthought, which is, according to our expe-
rience [3], not the most suitable way to think about them, since it leads to
unnecessarily complicated and blown-up code. Considering degeneracies right
from the beginning seems to be a much better approach.

Symbolic perturbation schemes have been proposed as a general approach
to removing degeneracies, for an overview see [24]. With this approach, the
input is perturbed symbolically such that no degeneracies arise anymore. The
perturbed input can then be processed by an algorithm assuming general
position. The computed output, however, does not correspond to the actual
input, but to the perturbed input. Therefore, the complexity of the output
might be much larger than the output for the actual input [3]. For some
problems, the symbolic perturbation approach works out fine; for others, a
postprocessing step is required to deduce the actual output from the output
computed for the perturbed input. In many cases, this is a non-trivial task,
as hard as dealing with degeneracies directly.

Algorithms and data structures in CGAL and LEDA handle all possi-
ble degenerate case by default. So a user need not to worry about all the
degenerate cases. If an algorithm or data structure should not handle a de-
generate case, this is clearly stated in the documentation and this precondition
is checked in the implementation. However, mainly to support rapid proto-
typing, CGAL also provides tools for symbolic perturbation. A general ran-
domized symbolic perturbation scheme is available for the CGAL kernels [6].
A new promising approach that has been started within the CGAL project,
is controlled perturbation [23]. Here the input is perturbed numerically, such
that general position is guaranteed.

§3. Number Types

The lowest level in geometric computing is the arithmetic level. LEDA and
CGAL provide various number types to support exact geometric computation.
LEDA provides leda-integer, a number type for arbitrary precision integer
arithmetic and leda-rational, a number type for arbitrary precision rational
arithmetic, based on leda-integer. Furthermore, it provides leda-bigfloat,
a number type for floating point arithmetic with extended precision. A user
can choose the mantissa length of the leda-bigfloats or let the number type
increase the mantissa length on demand. The most sophisticated number type
in LEDA is the type leda-real [4]. This number types models a subset of
algebraic numbers: All integers are leda-reals and leda-reals are closed
under the operations +, -, -, /, and ./-. leda-reals record the computa-
tion history in an expression dag, and use adaptive evaluation to guarantee
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that all comparison operations give the correct results. They use bigfloats
internally. LEDA and CGAL also provide interval arithmetic. Furthermore,
CGAL provides some fixed point arithmetic based on built-in floats, as well
as wrappers for the gnu multiple precision integer arithmetic [12] and the
number types provided by CLN [13].

§4. Geometry Kernels

The kernel of a geometry library contains the basic geometric objects and
basic operations on them like points, lines, planes, sideness test, intersection
and distance computations.

LEDA provides an exact geometry kernel for rational computations. In-
ternally, it uses floating-point filters [10,15] to speed up exact computation.
With floating-point filters, an expression whose sign has to be computed is
first evaluated using floating-point arithmetic. Moreover, an upper bound on
the error of the floating-point computation is computed as well. By compari-
son of the absolute computed floating-point value with this error bound, it is
checked whether the floating-point computation is guaranteed to be reliable.
If the sign cannot be deduced with floating-point arithmetic, the expression is
re-evaluated with a more reliable arithmetic. In case of the rational geometry
kernel in LEDA, arbitrary precision integer arithmetic is used. The rational
geometry kernel of LEDA uses homogeneous coordinates and is coupled to the
number types leda-rational and leda-integer.

CGAL provides two families of geometry kernels, one based on Cartesian
coordinates and one based on homogeneous coordinates [9]. Both kernels are
parameterized by a number type. All number types fulfilling a very small
list of requirements can be used with the CGAL kernels. For example, the
user might choose the Cartesian kernel with rational arithmetic or the ho-
mogeneous kernel with integer arithmetic. In particular, for computations
involving k-th root operations, the number type leda-real can be used with
the CGAL kernels. There are also number types that use floating-point filter
techniques using interval arithmetic to speed up exact computation. These
number types assume that the data passed to a test function are exact. Hence,
this technique is not suited for cascaded computations. The parameterization
allows a user to choose the arithmetic according to the actual needs. Using
a CGAL kernel with leda-real is certainly the most convenient way to get
reliable computation.

LEDA also provides a kernel that uses double precision floating-point
arithmetic internally. Similarly, the CGAL kernels can be used with built-
in floating point number types as well. This might be sufficient for some
problems, but since correctness can not be guaranteed, the use of these kernels
is not recommended in general.

§5. Geometric Algorithms and Data Structures

CGAL and LEDA by now provide a significant fraction of the algorithms and
data structures described in the computational geometry literature. They pro-
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vide several algorithms to compute convex hulls in low and higher dimensions.
They provide algorithms and data structures for triangulations, constrained
triangulations, Delaunay triangulations, regular triangulations, and Voronoi
diagrams in two-dimensional space and Delaunay triangulations and regular
triangulations in three-dimensional space. Furthermore they provide several
algorithms for line segment intersection and regularizing Boolean operations
on polygons. CGAL and LEDA also provide a number of query data struc-
tures. For example, there are range- and segment trees, kd-trees, as well as
a data structure for range and nearest neighbor queries based on Delaunay
triangulations. CGAL provides data structures for polyhedral surfaces based
on a half-edge data structure, it provides a topological map data type and
a planar map data structure, and a data structure for arrangements. The
libraries also contain algorithms for curve reconstruction in the plane.

CGAL and LEDA provide algorithms for a number of geometric opti-
mization problems. There are algorithms computing smallest enclosing circles,
smallest enclosing ellipses, and smallest enclosing spheres, the latter in any
dimension. Furthermore, there are a number of algorithms based on matrix
search like computing extremal polygons and rectangular p-centers. LEDA
also contains algorithms for computing smallest enclosing annuli with respect
to area and width, and algorithms to compute minimum spanning trees for a
set of points.

The geometric algorithms of LEDA come in two versions, one using the
exact rational geometry kernel and one using the unreliable floating-point
kernel. CGAL's algorithms and data structures are even more flexible with
respect to the geometry kernel used. All algorithms and data structures of
CGAL are parameterized by a template parameter called traits class. This
traits class provides an algorithm or data structure with all the type infor-
mation it needs. It tells the algorithm on which types it should operate and
which types it should use to do that.

The parameterization and the resulting genericity of CGAL's algorithms
and data structures is best illustrated by a simple, but instructive example.
Computing the convex hull of a set of points in the plane is an intensively
studied problems in computational geometry. The input is a set of points
in the plane, the output is the counterclockwise sequence of extreme points.
Andrew's variant [1] of the Graham scan algorithm can be formulated in such
a way that it needs only two primitive operations on the points, namely a
primitive to compare two points in order to sort the points lexicographically by
their Cartesian coordinates, and a primitive to check the order type of a triple
of points, more precisely, to check whether a sequence of three points forms a
left turn. The CGAL implementation of Andrew's algorithm is parameterized
by a point type and the two required primitive operations. The latter two
are passed as function object types and need to correspond to the point type.
We call the parameter types of an algorithm or data structure the traits types.
To avoid long lists of template parameters, the traits types are collected in
the traits class. Note that the parameterization is on the level of data types,
not on the level of objects. In order to use the CGAL implementation of
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Andrew's algorithm with a point type from a CGAL kernel, no traits class
needs to be specified. CGAL adds an appropriate one. If a user wants to
run the algorithm on a different point type, for example, a point type from
some other C++ library or system, for example from LEDA or from some
Geographical Information System, an appropriate traits class for this point
type must be passed to the function in order to tell it which operations it
should use. That's it. Given such a traits class, the algorithm now works
with non-CGAL types as well. CGAL provides traits classes for both LEDA
kernels.

The parameterization by a traits class can be used to avoid explicit trans-
formation of the data. Assume that we have points in three dimensional space.
Using a traits class that provides a comparison primitive and an order type
predicate that both operate on x and y coordinates of the points only, the
CGAL implementation of Andrew's algorithm can be used to compute the se-
quence of three-dimensional points whose projections onto the xy-plane form
the convex hull of the projections of all points onto that plane. There is no
need to explicitly transform the points into two-dimensional points. With
an appropriate traits class, the algorithm can directly operate on the three-
dimensional points. This saves time and space.

This feature is most likely even more interesting for Delaunay triangula-
tions. Assume we have a triangulated irregular network (TIN), and we want
to make a TIN with the same set of vertices without long and skinny triangles.
This is usually accomplished by computing the two-dimensional Delaunay tri-
angulation of the projections of the vertices of the TIN and lifting the vertices
and triangles again. CGAL allows you to do this without explicit projection
using an appropriate traits class. There are further examples where traits
classes can be used nicely in the context of geometric transformations.

§6. Visualization

In LEDA, there is a data type leda-window which provides an interface for
graphical input and output of basic geometric objects for both the Xll sys-
tem on Unix platforms and Microsoft's Windows systems. This data type
works with the basic geometric objects of both CGAL and LEDA. CGAL also
provides preliminary support for graphical output via OpenGL and geomview.

A recent addition to CGAL and LEDA is the data type GeoWin. It
provides an interface for the visualization of the result and progression of
geometric algorithms using the window data type of LEDA. A GeoWin is an
editor for sets of geometric objects. GeoWin manages the geometric objects in
so called scenes. A scene contains a container storing geometric objects (the
contents of the scene) and provides all operations that GeoWin needs to edit it.
A geo-scene maintains a container with geometric objects. The GeoWin data
type can be used for the construction and display of geometric objects and
data structures, the visualization of geometric algorithms, writing interactive
demos for geometric algorithms and debugging geometric algorithms.
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§7. Conclusions

Reliability means that software behaves as specified. Unfortunately, there are
many exceptions to this rule for geometric software, mainly due to the issues
discussed in Section 2. Correctness and reliability are even more important
for the components of a software library. You might be willing to accept
shortcomings of a program designed for a special purpose, if problematic input
instances never arise in your context. Since library component need to be
generally applicable, any such shortcomings are not acceptable. CGAL (if
used with a number type for exact geometric computation) and LEDA (with
the rational kernel) provide geometric software that behaves according to its
mathematical specification. That makes it easy to combine components form
these libraries, and to build larger entities out of these components.

The use of exact computation alone cannot guarantee correctness. CGAL
and LEDA also use program checking [19] to increase reliability of its compo-
nents. A program checker need not compute the output for a given input. It
already gets both input and output, and then has to verify that the output
is the correct output for the given input. While a program gets x and has to
compute f(x), a checker gets x and y and must only check whether y = f(x).
The latter step should be computationally simpler, such that it is less likely
that its implementation is buggy.

At present, LEDA and CGAL consists of more than 100,000 lines of C++
code each. Neither library provides class libraries in the sense of Smalltalk, but
both provide fairly small class hierarchies if any. CGAL uses the generic pro-
gramming paradigm that became known with the Standard Template Library
(STL), which is now part of Standard C++. This makes CGAL very flexible,
more flexible than LEDA. On the other hand, LEDA is a more complete,
closed programming framework that also contains very useful components for
combinatorial computing. Due to its generic design, CGAL is more open. It
often relies on other sources for basic non-geometric data structures, mainly
on the STL. Due to its generic design, it works well together with LEDA.
Since CGAL has a more modern design and is developed by a larger group
of people, the future will certainly be with CGAL. However, LEDA's com-
ponents for geometric computing will continue to be useful, especially within
CGAL. For more information and to download LEDA, see

http ://www. mpi-sb .mpg. de/LEDA

For more information and to download CGAL, see

http://www.cs.uu.nl/CGAL
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A Geometric Approach for Knot Selection in
Convexity-Preserving Spline Approximation

R. Morandi, D. Scaramelli, and A. Sestini

Abstract. A geometric approach is proposed for selecting the knots used
in a parametric convexity-preserving B-spline approximation scheme. The
approach automatically gives the necessary information about the shape
suggested by the data which may be exact or not.

§1. Introduction

In many different fields such as medicine, physics, engineering and computer
graphics the amount of data obtained through experimental and/or statistical
surveys is very large. Consequently, the selection of a suitable small set of
knots becomes an indispensable step within any efficient spline approximation
scheme.

In this paper, large sets of exact and non-exact data points are approxi-
mated by means of a spline approximation scheme. So a knot selection strat-
egy is necessary and this is provided by a geometric approach. In detail, the
proposed approach is based on some weights suitably associated to the data
points and directly computed from them. In addition, the method automati-
cally defines the shape suggested by the data, here assumed planar and exact
or not. Furthermore, the shape constraints for the approximating curve can
be obtained in order to reproduce the desired behaviour.

Several other approaches have been studied, such as the knot removal
methods [5,6], to reduce the number of parameters involved in an approxima-
tion problem. Interesting results are already available even for constrained
approximation [1]. However, the approach introduced here differs from those
because it does not reduce an initial large set of knots, but directly computes a
suitable set. Furthermore, it does not require the starting approximation with
many knots used in [1,5,6] for the weight definition (solving a minimization
problem for each weight).

The proposed strategy has been tested on several examples for open and
closed curves, and for exact and non-exact data points. The approximating
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curve is obtained by means of a convexity-preserving B-spline approximation
scheme. The goodness of fit of the approximation has been estimated mea-
suring the mean square distance of the data points from the resulting curve.

The outline of the paper is as follows. The problem and the method
are presented in the next section. The strategies used to define the shape
suggested by the data and to select the knots are introduced in Section 3,
and they are given in more detail in the Appendix. Finally, in Section 4 the
numerical results obtained for four sets of data points are given.

§2. The Problem and the Method

Let Pi E R 2, i = 0,... , n, be exact or non-exact data points, with n very large,
and let T = {ti C R, i = 0, ... ,n} be an assigned set of associated strictly
increasing parameter values. For non-exact data, let d be a positive assigned
quantity so that IIPi - PII2 :- d,i = 0,.. .,n, where P' is the (unknown)
exact data point corresponding to Pi. We observe that, for simplicity's sake,
the same maximum error value is assumed for all the data points.

It is well known that, if the data sets are very large and in particular the
data are non-exact, the use of an approximation scheme is the only reasonable
approach to construct a curve with the desired behaviour. Thus, here the aim
is to first define the convexity constraints suggested by the data, and then to
give a strategy for selecting a suitable small number of knots to construct a
convexity-preserving least-square B-spline approximating curve.

Let Njk(t),j = 1 - k,... ,nr - 1, be the usual B-splines of order k [4] de-
fined with an extended knot vector E* = {T1-k, . .. , TO,. .. , ,Tr,. ... ,Tnr+k-1}.

Thus, we can introduce the B-spline representation of a spline curve

nr-1

C(t)= E QyNjk(t), t E [70, Tnr], (1)
j=l-k

where Qj,j = 1 - k,... ,nr - 1 are de Boor control points.
The problem can be divided into three sub-problems. The definition of

the shape suggested by the data (that is the determination of the convex-
ity changes required to the approximating curve), the selection of the knots,
and finally the construction of the convexity-preserving least-square B-spline
approximating curve.

In particular, the shape suggested by the data is obtained through the
procedure called "Shape Determination" (SD) described in the Appendix. SD
uses some coefficients ui,i = 0,...,n, suitably associated with the data to
establish in which parameter values zero curvature is required, and to deter-
mine the curvature sign in the interval [T0 , TT]. As the planar case is here

considered, the curvature is defined as the function p(t) = C@)xG(t) where
IIC(t)II32

V X z = vI • Z2 - V2 • Z1, Vv, z E ]R2 ). Thus, the procedure "Knots Selection"
(KS) described in the Appendix selects the knot vector E = {TO, ... , n,•I} by
using the weights wi = luihi = 0,... ,n. 0* is defined as the corresponding
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extended knot vector, taking into account whether the approximating curve
is open or closed.

Finally, the last step is realized through the solution of a constrained para-
metric least-squares problem as a general constrained optimization problem.
In fact, as the general parametric case is considered, the objective function

Zi=0 IlPi - C(t = E) =0 - IIPi - ET='i-k QjNjk(ti)II2 is quadratic in the
unknowns Q j, j = 1-k,..., nr-1, but the convexity constraints are nonlinear.

§3. Data Shape Determination and Knot Selection Strategy

The SD procedure defines the shape suggested by the data, and KS selects
the knots for constructing the B-spline curve. They are presented in the Ap-
pendix, but are commented upon here. Concerning the shape determination,
SD computes the set U = {uO,... ,un} whose sign variations are the cur-
vature sign variations required for the approximating curve. If exact data
are considered, Juil is the reciprocal of the radius of the circle which passes
through the points Pi-1, Pi, Pi+,, and its sign is that of Ai = ½det(Li, Li+,),
where Li = Pi - Pi- 1 . On the other hand, the sign of Ai is a reliable geo-
metric information in the case of non-exact data only if the condition (2) of
the theorem given in this section holds. Thus, the definition of U is suitably
modified for non-exact data, using an input tolerance told and considering the
result given in the theorem below. In this case ui is defined using the circle
through the points P4 , Pi and Pri, where P1, and Pr, are suitably selected

points. In detail, li <_ i - 1, ri >_ i + 1, Ek=l, I Pk+1 - Pk[12 < told. Lp and
-•- 1 [iPk+l _ Pkl2 < told- Lp, where Lp is the length of the polygonal

Ek=-i' J 1-P 2<tl

joining the data points. SD computes the set 0 s = fr, ... r, I} C T and
the set E = {U0,... ,ons- 1 }, where 6s is such that Tr = to,Tr,• = tn and
zero curvature is required at each 7Ti, i = 1,..., ns - 1. The desired curvature
sign between ril and 7-i+1 is given by oi equal to -1 or 0 or 1. We observe
that, for d 5 0, in the procedure ui 5 0 is assumed to imply the existence of
ki E {i - 2, i - 1,i} such that ukj " Ui > O, Uk+1 " ui > 0 and Uk-+2*"ui u> 0.
This hypothesis seems to be quite reasonable as n is considered very large.

Theorem 1. Let Pi E 1R2 for i = 0,. . . , n be assigned non-exact data points,
and let d be a small positive assigned quantity such that IIPi - PsI12 _< d,i =
0, ... , n, where Pý is the (unknown) exact data point corresponding to Pi. If
d < ½ mini=l.. [Li 2 with Li = Pi - Pi-I and the condition

IIN I!2 1IIL Ji[2 + 11L+1112 > 4 d, i z1,...,n-1, (2)

holds, then
Ný .Ni >0, i=l1,...,n -1,

where N, Li LA Li, Ný = A L'+1 , L' = Pe - P 1 and the symbols

"A" and " denote the usual vector and scalar product, respectively.

Proof: We can write Pý = Pi + eivi with 0 < ei _< d and IIViii2 = 1. Then
we have Lý = Li +eivi -ei-jvi-1 and Ný = Ni +zi, where zi = Eivi ALi+i -
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e•ivli-- A L+i + -ci+lLi A vti+1 + C-Ci+lvi A vi+l - ei-lei+lvi-1 A vi+1 -

EiLi A vi + Ei-EiVij 1 A vi. Thus, we can write Ný = (I + f(Ei-1,ei, Ei+I))Ni,

where f(e-i..ceii+.) As a consequence, the assertion holds if

(1 + f(iEi-,si+j))llNijl2 > 0, that is if f(Ei-i,ei,ei+i) > -1. Now with
some algebra the following inequality can be easily obtained:

f(Ei-,ei, Ei+a) Ž - d-- [2(IIL II2 + IILi+1112) + 3d]. (3)

So, as d < I min L . 112. , d < !ILiI2+!ILi!2 . Then, the inequality (3)
and the hypothesis (2) imply that f(-l,ee ) d ((Li2 +

Li+1112)) > -1, thus proving the theorem. 0

Concerning the knot selection, in the KS procedure the knot vector e9 c T
is initialized with Es. Then, for each interval [TV._l,rj],j = 1,... , ns, it is
checked if other parameters must be inserted in the knot vector using weights
wi = IuIi = 0,... ,n. More precisely, a parameter value t1 E Tn (Trl,rj-) is
inserted in 0 if one of the following conditions holds: either the corresponding
weight wj is big enough and P1 is far enough from all the other data related to
the parameters previously introduced between T.-- 1 and T-], or the correspond-
ing weight w, is not big enough but P, is too far from them. For choosing
reasonable values for the tolerances used in the previous consideration, de-
noted as to4w, told1 and tOld2, it is assumed that the distances are relative to
an approximated curve length and the weights are relative to the maximum
weight. The parameter values between -. _1 and rj are ordered according to
a decreasing order of the corresponding weights.

§4. Numerical Results

Four numerical tests are presented to analyze the performance of the approach.
For all the considered tests the parameter values ti, i = 0,. . . , n, have been
computed with the chord-length approach and a scaling such that 0 = to <
tl < ... < tn- 1 < tn = 1. The approximated curve length L required as input
by the KS procedure has been computed as the length of the piecewise linear
interpolant of all the data points if d = 0 and of a suitably selected subset of
them if d > 0.

A sequential quadratic programming method [2] is used to construct the
approximating curve by means of the routine CONSTR of the Optimization
toolbox of the Matlab package [3]. The set of control points used to start is
chosen as the set of data points corresponding to the selected knots. Con-
cerning the constraints, as k = 4 has been used in the experiments, four
consecutive control points are required to generate a convex polygon if con-
vexity is looked for in the corresponding curve segment. In addition three
sequential collinear control points are required if zero curvature is asked at
the corresponding knot.
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For each test, a figure is given showing the corresponding approximating
curve on the left, and the related curvature plot on the right. In all the
figures the data points PO, ... , Pn are denoted with the symbol " • ", the points
associated with the knots with the symbol "o ", and the points corresponding
to the knots belonging to Es with the symbol " 0 "
The results are summarized in Table 1, where n + 1 is the number of data
points, told is the input tolerance used in the procedure SD, tol,, tOldl and
tOld2 are the input tolerances used in the procedure KS and nr + 1 is the
cardinality of the knot vector e. The symbol % denotes the percentage ratio
(nr + 1)/(n + 1). To estimate the goodness of fit of the approximation, the
Mean Square Distance (MSD) of the data points Pi,i = 0,..., n, from the
approximating curve is also given in the table.

Test 1 Test 2 Test 3 Test 4

n + 1 285 257 126 244

told - 0.2 0.2 0.5

tol" 0.11 0.20 0.10 0.50

tOld1 0.015 0.018 0.018 0.037

tOld2 0.05 0.80 0.50 0.90

nr + 1 36 30 22 8

_ 12.6 11.7 17.5 3.3

MSD 1.08e-06 1.80e-03 2.19e-04 1.06e-01

Tab. 1. Results of the tests.

In the first test, data are considered exact (d = 0), while in the other
tests they are non-exact.

Test 1 relates to a set of 285 exact data points that represent the alpha-
bet capital letter " D ". In this case only a curvature sign variation to the
approximating curve is required, as the curvature plot shows.

In Test 2, 257 non-exact data points are considered. They have been
obtained by introducing a simulated random perturbation with d = 0.4 on the
ordinates of the points (X4, y), i = 0,..., 256 defined as Z = -8+dx.i, yý =

12 , i = 0,..., 256, where Ri = sqrt(2(x) 2 ) + eps, with eps denoting
the round-off error and dx = 0.0625. We can observe that the simulated error
does not preserve the symmetry of the data, and therefore the selected knots
are not symmetric.
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Fig. 1. Test 1: On the left the approximating curve, and on the right the related
curvature plot.
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Fig. 2. Test 2: On the left the approximating curve, and on the right the related
curvature plot.

In Test 3 the error in the 126 data is obtained by introducing a simulated
random perturbation with d = 0.12 on both the coordinates of the points
(xý, yf ), i 0,..., 125 defined as xf in4 -d-i)yf=cs2 t-ii

0,.. 125, where dt = 0.008. In this case, among the data there are sequences
of quasi-collinear points, and we can observe that the approximating curve
has corresponding almost straight line segments.

An application to an engineering problem is presented in Test 4. The 244
data points are derived from measurements effected in the Power Station lo-
cated in Seraing (Belgium). The measurements are related to the active power
of the alternator in the Central, observed on 03/01/1997 between 6:30:00 and
7:00:00. In this case the maximum value of the error is d = 1.

It should be noted that, the user needs to work in an interactive way for
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Fig. 3. Test 3: On the left the approximating curve, and on the right the related
curvature plot.
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Fig. 4. Test 4: On the left the approximating curve, and on the right the related
curvature plot.

selecting suitable values of the input tolerances. Obviously, a previous check
of the data shape and of the data distribution is of great help.

§5. Appendix

SD Procedure (Shape Determination)

Input: P = {Po,...,P,}, d, told, T= {to,...,t- }
* Define two auxiliary suitable data points P- 1 and P,+,
if d = 0

for i=0,...,n
Oui = 4Ai

IjLj 112.1lLj+j 112.11 V i l2
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with Li = Pi - Pi- 1, Vi = Pi+1 - Pi-1, Ai = ldet(Li,Li+j)
end

else . Lp = En-1
L k=1 [IPk+i - PkJ12

for i = O, ... , n
olevr. = maxj=i+l.......+l f I IlP'+i -- P&H2 < told. Lp}

lev = m =-,..1 {j : IjPk+1 - PkII2 < told. Lp}
end
for i=O,...,n

e determine the biggest 1i e {-1, .. ,i - 1} and the
smallest ri E {i + 1, ... , n + 1} such that (2) holds

replacing Pj+l with Pr, and Pi-1 with P1,
if 1i < levj, or ri > lev,

oui = 0

else
111 11--iid2.11 Li+1 112.1 I'Vr 12

where Li = Pi - P, I L±i+ = Pr, - Pi, Vi = Pr, Pli,

&i = ldet(Li, Li+I)

end
end

end
0i = 1

*Oes = {to}
while i < - 1

if ui = 0

•Os = s u {ti-1}

* determine 0 < id < n - i - 1 such that

Ui = ... = Ui+id = 0 and

ui+id+1 5 0 or id = n - i - 1
E = Os U {t[ 2 +idj}

E = Os U {ti+id+l }

i= i + id + 2
elseif ui • ui+l < 0

if ui I < Ui+lI
Os = es u {ti}
Oi= i +1

else
OOS = OS U {ti+l}

9i= i + 2
end

else
0i 2+1

end
end
O = Os U {tn} {'I,...,s}
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for j = O,..., ns
es(j) = i where 7j = h

end
for j = 0,...,ns- 1

if s(j + 1) = s(j) + 1
9oj = 0

else
00j = sgn(us(j)+1 )

end
end
Output: U = {uo,... ,u}, U OS = ,... ,T{s}, 1` = 0,... ,Uns-1}.

KS Procedure (Knot Selection)

Input:

P = {Po,..,P}, ,T ={t07,...,Ttn},U = {,uo,...,, ,,}, es OS {% ... , Tn} ,
L, tol,,, t~ldl, told2 (tOldl << told2)

ewi = juil, i =0.,n
E) = O~s

OWmax = max{wo,... ,Wn}

for j = 0,...,ns
*s(j) = i where Tr = tj

end
for j = 1,...,ns

.sj =s(j)-s(j-1) +l1
* let {il,... i3, } be the index permutation of {s(j - 1),... s(j)}
such that the weights wil, ... ,wisj are in decreasing order

90i = {ts(j-1)),ts(j)}
"OPRj = {Ps(j-1), Ps(j)}
for k= l,...,sj

if Wk > tol, and VPr E PR3 IIPIL-P,12L > tOldl

*PRj PRj U {1Pik}

elseif wjk < tol, and VP, c PRj L > told2W-na. -- L

oej = oQ u {ti}
°PRj = 'PR3 U {Pi}

end
end
*0 = 0 U j

end
Output: O = fTo,..., Tnr}
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Convergence of Approximations for
Arrangements of Curves

Manuela Neagu and Bernard Lacolle

Abstract. Arrangements of planar objects represent one of the main
topics of computational geometry. We propose an approach that allows
reliable computations on arrangements of curves. This approach is based
on the use of polygonal approximations for the curves composing the ar-
rangement, and the questions to be answered concern the topological and
geometric properties of the approximating arrangement of polygonal lines.

§1. Introduction

Problems on arrangements represent one of the most important topics in com-
putational geometry. Arrangements find numerous applications, ranging from
the design of 2D drawing tools [9] to motion planning, point location, and
visibility problems [5].

Arrangements of hyperplanes, especially arrangements of lines in the
plane, have been widely studied. Satisfactory theoretical results (e.g. the
zone theorem [7]) and algorithmical results have been found. The interest is
now focused on arrangements in higher dimensions, or on planar arrangements
of objects other than lines: segments and (Jordan) curves, to give only a few
examples. Dealing with arrangements of segments is more difficult than deal-
ing with arrangements of lines because of the larger topological complexity
of the cells. The case of curves raises also the fundamental problem of the
computation with curves.

Most of the authors that have dealt with curve arrangements have
adopted an approach based on the use of a small number of oracles. These
oracles provide solutions for elementary geometric operations on curves and
are considered acurately feasible in constant time. Examples of elementary
operations solved by the oracles are the computation of the intersection of two
curves (generally, of cardinality greater than 1), the computation of the ver-
tical tangents to a curve, etc. This approach is adopted in papers presenting
theoretical results rather than implemented algorithms and numerical results
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[6,14,15]. Some papers presenting a more application-oriented approach can
also be found in the literature [9,12].

In this paper, we present a new approach to the problems of arrangements
of curves. We work in a strictly geometric framework, in which the only legal
computations are those performed on linear objects. For this purpose, we
shall use polygonal approximations of the curves defining the arrangement.
Two important questions arise when such an approach is adopted. On the
one hand, what kind of information can we obtain on the given arrangement
of curves if we avoid algebraic equations? On the other hand, which are the
restrictions we must impose on the arrangement of curves in order to assure
that the required information can be provided by the arrangement of polygonal
approximations?

On an arrangement, there are two different types of results. Firstly, there
are topological (or combinatorial) characteristics expressed by the incidence
graph. For example, this graph can be used to find the topological closure of
a given cell or all its neighbours. Secondly, it can be useful to have geometric
information on the faces of the arrangement. That would allow to make a
decision for questions such as the point location problem. This paper briefly
presents results for both aspects of curve arrangements.

We remark that if we want to compute the incidence graph of an ar-
rangement of curves avoiding algebraic equations, then degenerate cases can
not be treated. Indeed, if three curves have a common point, it generally
cannot be found via polygonal approximations of the curves. Similarly, if two
curves are tangent in a common point, algebraic equations must be generally
used to detect the tangency. But on the other hand, our approach provides
a robust algorithm for nondegenerate arrangements. Moreover, the method
we propose detects the "almost" degenerate positions of the curves. If such a
situation occurs, symbolic methods can be employed to obtain the exact local
configuration of the arrangement.

The construction of the polygonal approximations is theoretically possible
for Jordan curves as general as we want. Practically, the input of an algorithm
should be more precise. We have thus chosen to deal with composite B~zier
curves. A subject similar to the one of our paper, but concerning only mutually
nonintersecting composite B~zier curves, has been treated in [2].

Every curve will be approximated by two polygonal lines: the control
polygon and the carrier polygon. Our approach is thus similar to the one
presented in [3,4].

The outline of our paper is the following. In Section 2, we introduce the
polycurve, a composite B~zier curve satisfying certain conditions. This is the
object we shall deal with throughout the paper. We also define the control
and the carrier polygons of a polycurve.

In Section 3, we give basic definitions and notations concerning the simple
arrangements of polycurves and control and carrier polygons. In Section 4,
we deal with the equivalence of arrangements, for which the definition and
sufficient conditions are given. We state the existence of an arrangement of
control polygons equivalent to the one of polycurves.
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In Section 5, we present our results on the convergence in terms of Haus-
dorff distance of the cells of the polygonal arrangements to the cells of the
curve arrangement. In Section 6, we give a relation of inclusion between the
faces of the three arrangements that allows a reliable approach for the point
location problem. Finally, Section 7 concludes the paper.

§2. Polycurves

As we can see in the literature [6,12,14,15], the problems on arrangements
can be addressed for curves which are subject to very few constraints. But
the use of general curves makes the theoretical results unsuitable for direct
implementation. This is one of the reasons why we restrict our study to
piecewise completely convex B~zier curves:

Definition 1. We say that a B6zier curve is completely convex if its control
polygon is convex.

We recall that a curve (or a polygonal chain) is called convex if it is simple
and included in the boundary of its convex hull. A completely convex B~zier
curve is obviously convex.

Definition 2. A polycurve is a simple curve that can be written as a (finite)
union of completely convex B1zier curves.

An example of polycurve is presented in Figure 1. Let B = U2= 1Bi
be a polycurve, where the control polygon of the B6zier curve Bi is Pi =
p(i)p(i) . P .

0 1 in.

Definition 3. To any polycurve B we associate two polygonal chains:
1) P = U[L=lPi will be called the bounding polygon of B;

2) S = Un [P0()PM(i) will be called the carrier polygon of B.

The bounding and carrier polygons are rough polygonal approximations
of the corresponding polycurve. To refine these approximations, we shall
apply successive de Casteljau subdivisions to the composing B6zier curves.
The subdivision parameter is fixed and equal to 1/2. On the one hand, this
value assures optimal (quadratic) convergence of the control polygon to the
associate B6zier curve. On the other hand, the computations are easier and
more accurate in this case. Indeed, if the subdivision parameter is equal to
1/2, then the only arithmetic operations required for the computation of the
new control polygons are additions and divisions by 2.

Let us suppose that we subdivide the curve Bi, obtaining the B6zier curves
B• and Bi'. Then

Bi = (P('),..., P(Q;[0, 1])

= B, (PI),""", P'(); [0, 1]) U Bn(P"IT), " . ., P"$(i; [0, 11) = B U BI'.

Thus, U=IBn and (Uj=Bj) U B1 U Bi' U (UU 2i+lBj ) represent the same poly-
curve. The control and respectively carrier polygons of the two expressions
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Fig. 1. A polycurve at two different levels of subdivision; the control and carrier
polygons are different.

are different: the two polygons associated with a polycurve are not unique,
and they change every time one of the composing B~zier curves is subdivided.
Figure 1 shows an example of a polycurve with its associate control and car-
rier polygons before and after the subdivision of some of the composing B6zier
curves.

§3. Arrangements of Curves

Let r = {Ci} 1 <i<• be a set of Jordan curves. In this section we give the main
definitions related to the arrangement of the curves Ci.

3.1. Arrangement and incidence graph

Definition 4. The arrangement A(F) is the planar subdivision induced by
the curves of r; that is, A(F) is a planar map whose vertices are the pairwise
intersection points of the curves of F, whose edges are maximal (open) con-
nected portions of the Ci 's that do not contain a vertex, and whose faces are
the connected components of R 2 \ r.

The vertices, edges, and faces of an arrangement represent its cells of
dimension 0, 1, and 2, respectively.

Definition 5. Let f and g be two cells of A(F). If the dimension off is the
dimension of g plus 1 and g is on the boundary off, we say that g is a subcell
of f (and f is a supercell of g). We also say that f and g define an incidence,
or are incident to one another.

Using the previous definition, we can present a useful representation of
an arrangement, its incidence graph.

Definition 6. The incidence graph of the arrangement A(F) is a graph G
(V, E) where there is a node in V for every cell of A(F), and an arc between
two nodes if the corresponding cells are incident.



Approximations for Arrangements of Curves 301

3.2. Simple arrangements

General arrangements of curves can present degeneracies making their study
rather tricky. If three curves have a common point, this situation is more
difficult to handle than the similar one in the case of arrangements of lines, due
to the complexity of the description of the curves. Moreover, two curves can
have a common point without crossing at that point (impossible for straight
lines). The arrangement is then sensitive to small perturbations.

These are the reasons why, as most of the authors who have studied
problems involving arrangements have also done, that we deal exclusively
with simple arrangements.

Definition 7. The arrangement A(C) is called simple if

1) the intersection of any three distinct curves Ci, Cj, and Ck is empty;

2) if two distinct curves Ci and Cj have common points, they cross trans-
versely in each of these points;

3) the set Uýl 1 Cj is connected.

§4. Topological Approximation

The first question that we answer is: Can we compute the incidence graph of an
arrangement of polycurves dealing solely with the polygonal approximations
of the polycurves? We have proven that if the arrangement of polycurves is
simple, then the answer to this question is yes.

4.1. Equivalence of arrangements

Definition 8 (Griinbaum). Let A 1 and A2 be two arrangements. We say
that they are equivalent if there exists a bijection ýo : A,1 ) A 2 such that
if f and g define an incidence in A 1 , then W(f) and W(g) define an incidence
in A 2.

It is obvious that two arrangements are equivalent if and only if they have
the same incidence graph. On the other hand, we remark that if A 1 is simple
and A2 is equivalent to it, this does not imply that A 2 is simple. Property 2
of Definition 7 is not preserved by the equivalence of arrangements.

Let B = {Bj}j<_j<_, be a set of polycurves. The polycurve Bi is composed
by ni completely convex B1zier curves Bi1j, Bi = U7',Bi,j. Bij has degree

mij,, and its control polygon will be denoted by Pj = P(iJ)P(p(J) ... P(iJ)
We are thus interested in the equivalence of A(B), A(P), and A(S).

Theorem 9. Let us suppose that A(B) is simple.
1) We can obtain by de Casteljau subdivision a set P of control polygons

and a set S of carrier polygons of the polycurves of B such that A(P) and
A(S) are simple and they remain simple after any further subdivision of
the B1zier curves composing the polycurves.
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2) We can obtain by de Casteljau subdivision a set P of control polygons
and a set S of carrier polygons of the polycurves of 1 such that A(P)
and A(S) are equivalent to A(B) and they remain so after any further
subdivision of the B1zier curves composing the polycurves.

We do not present the proof of this theorem here. It is lengthy and
presents no technical difficulty. It uses the geometric properties of B6zier
curves, namely the variation diminishing property, the inclusion of the curves
in the convex hull of its control polygon, and the convergence of the control
(and carrier) polygon to the curve by de Casteijau subdivision.

4.2. Polygonal criteria of equivalence

Theorem 9 assures that we can obtain by de Casteljau subdivision arrange-
ments of control, respectively carrier, polygons providing the incidence graph
of the corresponding simple arrangement of polycurves. Once these two polyg-
onal arrangements are obtained, the computation of the incidence graph of
A(B) can be done by working solely with polygonal objects. We address now
the problem of deciding whether the polygonal arrangements are equivalent to
the curve arrangement by performing operations uniquely on linear objects.

Theorem 10. If the number and the order of all the vertices of A(7P) (re-
spectively A(S)) lying on Pi (respectively S) are the same as the number and
the order of all the vertices of A(B) lying on Bi, for all i C {1,... ,n}, then
A(P) (respectively A(S)) and A(B3) are equivalent.

Thanks to the geometric properties of B1zier curves, this theorem is a
direct consequence of a result given by Vo Phi [15].

Lemma 11. We can decide whether the hypotheses of Theorem 10 are ful-
filled by dealing solely with the control and the carrier polygons of the poly-
curves.

We have established sufficient conditions of equivalence on the two polyg-
onal arrangements. We do not present them here, and just mention that there
are two conditions. The first one assures that card(Bi1,jl n Bi,,j) = 1 when
card(P•1,j, ni P 2,J2) = card(Si1 ,jl nSi 2,h2) = 1, for all il 7# i 2 c {1,... ,n} and

Ak C {1,... ,nik } , k = 1,2. This implies the equality of the numbers of ver-
tices respectively lying on Pi, Bi and ,i in the corresponding arrangements,
for all i C {1,... ,n}. The second condition assures the good ordering of the
vertices in the three arrangements.

§5. Approximation in Terms of Distance

Let 13 = {13i}l<i<n be a set of polycurves, and let us suppose that A(13), A(P),
and A(S) are equivalent. We remark that the problem of the convergence in
terms of distance can be addressed also if the three arrangements are not
topologically identical, but the discussion is more complex in this case and we
do not present it in this paper.



Approximations for Arrangements of Curves 303

B1  ....

Fig. 2. Different angles between B1 and B2 at their intersection point.

5.1. Convergence of vertices

The proof of the following lemma is straightforward.

Lemma 12. Any vertex of A(7P) (respectively A(S)) converges by subdivi-
sion to the corresponding vertex of A(B).

We cannot give bounds on the distance between the corresponding ver-
tices of A(B) and A(P) (respectively A(S)) depending solely on the Hausdorff
distance between the B6zier curves and their control (respectively carrier)
polygons. Indeed, it is easy to see that the distance between the intersec-
tion point of the curves and the intersection point of the control (respectively
carrier) polygons depends on the angle between the curves. An example is
presented in Figure 2.

5.2. Convergence of edges

The proof of the following lemma is also straightforward.

Lemma 13. Let eB and ep be corresponding edges of A(B) and A(P), and
let v3, v3 and vp, v.r, be their corresponding endpoints. There exists i E

{1,... ,n} and ji, f E {1,.. ,mi}, ji < f, such that eB C U11 B() Then

6H(eB, ep) < max {d(vB, vp), d(vL3 , vp), m'x6H ( ),(') 7i) }.

It is obvious that a similar relation holds for the edges of the arrange-
ment of carrier polygons. Lemmas 12 and 13 immediately imply the following
statement:

Corollary 14. Any edge of A(P) (respectively A(S)) converges by subdivi-
sion to the corresponding edge of A(B).
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5.3. Convergence of faces

The proof of the following lemma is straightforward.

Lemma 15. Let cp and cB be corresponding faces of A(P) and A(B). Then

6H(Cp, cB) < 6H(6(Cp),6(Ca)),

where b(A) denotes the boundary of the set A.

As a matter of fact, this is a more general result, holding for any two

compact sets in the plane. Thus, this property is fulfilled also by the faces of
the arangement A(S).

The convergence of faces is an immediate consequence of Lemma 12,

Corollary 14, and Lemma 15.

Corollary 16. Any face of A(P) (respectively A(S)) converges by subdivi-

sion to the corresponding face of A(B).

5.4. Polygonal criteria for the convergence in terms of distance

As in Theorem 9 on toplogical convergence of the polygonal arrangements to

the curve arrangement, the results we have presented so far in this section
imply computations with curves. We give here two results which allow us to
estimate the Hausdorff distance between the corresponding cells of A(B) and
A(B) (respectively A(S)) by performing computations uniquely on polygonal
lines. The proofs of the following lemmas are straightforward.

Lemma 17. If B is a completely convex Bizier curve and P = PoP 1 ... P"
is its control polygon, then

6 H(p, B) _< 6H (p, [PoPm]), 6 H ([PoPm], B) _< 6 H (p, [PoPm])•

Lemma 18. Let B1 and B2 be two completely convex Bizier curves and

P. = p(i)P(i) p(') i 1, 2, be respectively their control polygons. We

suppose that

card (P1 n i 2 ) = card (B1 n B 2) = card ([P7)P0 ]n [p(2)p(2))• = 1.

Then

d (P1 n P 2, B1 n 132) _ d 0i'2 , [P)P(1] , [p()p0 ])

and

d([P(l)P()] n [0[(2)p(2)]B, B1n B,2) _• d 0(P nh2, [p(oi)p(1l)] [n [2)p(2)]
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Fig. 3. cL is not included in cp nl cs.

§6. Inclusion of Faces

The results given in Section 5 can be very useful for solving the point location
problem in the case of curve arrangements. In this section, we present a
result that shows how the convergence in terms of distance of the faces of
A(P) and respectively A4(S) to the faces of A4(B) is applied to the mentioned
problem. We use for the set of polycurves B the notations of Section 4, that
is, B = {Bj}i<_<., where Bi = U•f 1 Bjj with Bij completely convex Bdzier
curves for all i and j.

Lemma 19. Let cB be a face of A(B), and cp, cs be the faces that correspond
to cB in A(P), respectively A(S). Let vl,... ,vp be all the vertices of A4(3)
lying on the boundary of c13. There exist ik $ i' E {1,...,n} and Ak E
{1,...,ni}, jk E {1,... ,i,), for all k E {1,...,p}, such that vk = Bik,jk n

i,kj,. Then

p

c~pnl cS c cj~ cp u cs u U (reg(pikjk) n reg(Pi,,j))
k=1

where reg(Pi2 ,) denotes the bounded region enclosed by the polygon Pi,.

This property is illustrated in Figure 3. We remark that in fact the terms
reg(PikJk) n reg(Pi,,j,) are not all necessary. When the B6zier curves BikJk
and B2 •,j, both have their "convex side" oriented either to the interior of the
face c1 or to the exterior of this face, we do not have to add reg(Pik,ik) n
reg(Pi,,j,) to the union above.

§7. Conclusion

In this paper, we briefly present results concerning the use of polygonal ap-
proximations for solving important computational geometry problems on ar-
rangements of curves. We have dealt with two different types of problems,
topological and geometric. For both kinds of problems, the polygonal ap-
proximations represent a suitable tool, providing solutions that do not require
solving algebraic equations.
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The (2-5-2) Spline Function

Jae H. Park and Leonard A. Ferrari

Abstract. Splines have been used extensively in the interpolation of mul-
tidimensional data sets. Linear interpolation utilizes second order splines
(first degree piecewise polynomials) and has widespread popularity be-
cause of its ease of implementation. Cubic splines are often used when
higher degrees of smoothness are required of the interpolation process.
Linear interpolation has the advantages of not requiring the solution of
an inverse problem (the data points are themselves the coefficients of the
triangular basis functions) and extremely efficient generation of the output
sample points. Unfortunately, the linear-interpolating function has only
Co continuity (the function is continuous but its derivatives are discontin-
uous) and therefore lacks the required smoothness for many applications.
We provide a new algorithm in this paper based on the efficient derivative
summation approach to spline rendering. Cubic B-spline interpolation for
uniformly spaced data points provides C2 continuity. The interpolation
function can be rendered quite efficiently from the basis coefficients and
the basis function, using a cascade of four running average filters. Unser
et al. have shown a digital filter solution for the inverse problem of ob-
taining the spline coefficients from the data points. A matrix inversion
solution is also commonly used. Both solutions require the use of floating
point multiplication and addition, while the forward problem can be im-
plemented utilizing only fixed-point additions. In this paper, we develop
a class of spline basis functions which solve the interpolation problem us-
ing only simple arithmetic shifts and fixed point additions for solutions to
both the forward and inverse problems. The system impulse response for
the new interpolators appears to be closer to the ideal interpolator than
the B-spline interpolator. We refer to the new splines as (2-5-2) splines

§1. Introduction

Splines are well-accepted in Computer Graphics[1,2,3,4]. The high compu-

tational requirements of cubic splines and the large amounts of data make

them difficult to use in multi-dimensional applications. In many applications,

bilinear interpolation is used instead of cubic splines because of its simplicity

in implementation. However, bilinear interpolation cannot produce images

of sufficient quality for many application because of its CO continuity. The
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(2-5-2) spline approach can be computed at nearly the same efficiency as the
bilinear interpolator, but provides much higher quality results.

In general, spline computation can be divided into two parts. The first
part requires the solution of an inverse problem to obtain the coefficients
(vertices) of the basis functions, and the second part is a forward computation
to generate the interpolating spline from its coefficients.

§2. Inverse Problem

Assume we are given (m - r + 3) data values Pi, i = r -1,..., m + 1. Further
assume that we wish to find a continuous spline curve such that on a specified
set of equally spaced points, iii i = r - 1, ... , m + 1, the curve attains the
values Pi. Let Bi,,(ii) denote an rth order set of basis splines defined on the
knot set i = 0, ... , m. Then, for the case of a curve in one-dimension we can
write

m
Q(up) =E VjBi,r(UP) = Pp, p = k - 1,. . ., m + 1 1

i=0

This represents m - r + 3 equations in m + 1 unknowns. In the case of a
cubic spline, r = 4 and we are short two equations. We are free to augment
the data set Pi at both ends with additional data values. However, these
augmented data values effect the shape of the interpolating function Q(ii)
non-locally.

In matrix form, we obtain

B 0,r(-i2r-) ... Bm,r(r12 ) Vl Pr-

(2)

Bo,r(ftm+2) ... Bm,r(fim+2)J /Vm Pm+m2J
or

BV = P,

where V denotes the vector of unknown coefficients, B represents the matrix of
basis spline values at the knot locations and P represents the given set of data
points including the augmented values. The solution to (2) exists whenever
the matrix B has an inverse. The solution to (2) is efficient whenever B-1P
or its equivalent is easy to compute.

For the cubic B-spline defined on uniform knots, it is easy to show that
the interpolation problem utilizing simple, uniform knot B-splines leads to the
inversion problem

4 1 0 0- VO P2
1410 0

1 0 1 4 1 0 (3)

0.01 0 1 4 1/
O.0 . 0 1 41 Vj P+2J
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In this case the matrix B can be inverted using forward elimination and
backwards substitution as in [1]. While the B-spline matrix is banded and can
therefore be inverted reasonably efficiently, the process requires full floating
point multiplication and addition. Even after the matrix inversion, to obtain
the vertices, full floating point multiplication and addition must be used.

The first attempt at reducing the number of the calculations was made
by Unser, et al with a digital filtering solution to the problem by noting that
the inverse of the FIR filter given by B(z) = z + 4 + z-1 is the filter with
impulse response [3]

-6a Inl
b- 1 (n ) .2 a (4)

where, a = Vr - 2 is the smallest root in absolute value of the polynomial
z 2 +4z+1.

As they implemented it, the above IIR filter should be split into causal
and non-causal parts, and applied twice to obtain the vertices: the non-causal
sequences and anti-causal sequences. Since b-1 (n) becomes smaller as nl gets
larger, we can assume the filter has only several non-zero elements from the
center of the filter sequences. Thus, we can approximate the filter with an
FIR filter as below, and call it the Inversion FIR filter:

b-'(n) = ( 2 aln, if mln; m, (5)
. 0, otherwise.

Even with the Inversion FIR filter, we still need full floating point multi-
plication and addition to get the vertices. The (1-4-1) spline does not provide
a simple solution to the coefficient inverse problem because its characteristic
polynomial, z2 + 4z + 1, has irrational roots. The polynomials 2z 2 + 5z + 2 has
roots which are negative powers of two. We refer to these splines as (2-5-2)
splines which have roots which are of similar magnitude to the roots of the
(1-4-1) spline.

We assume the spline is defined on the uniform set {-2, -1,0,1, 2}, and
that it takes on the set of values {0, ,, 2, 1, 0} at the knots. In Sect. 6, we set
up sixteen equations to solve for the 16 polynomial coefficients defining the
(2-5-2) spline. We note that it has C 2 continuity at knots 1, 2 and 3 and C'
continuity at the knots at 0 and 4 (from the polynomials). Hence, the (2-5-2)
spline is a multiple knot spline defined on seven knots with the knots at 0
and 4 having multiplicity two. We also note that the normalization property
holds, that is -:=0 Pj(u) = 1, for u E [0, 1].

If, as in [3], we assume periodic boundary conditions, equation (2) takes
the following circulant form:
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2A

z. P z- P - F- I *1P

a Z & . Z-1 Z* Z*

A : # of bits in the fixed point number

Vn: Vertices

P.: Sampled data

Fig. 1. The inverse filter for a (2-5-2) spline: a = -1/2.

-52 0 .. 0 2- ~V0  P2
2 5 2 0 . 0

1 0 2 5 2 0 0 . (6)

L2 0 . . 0 2 5J LVm. L +2 -

or

-B5 V =P (7)

With the approach Unser, et al applied to (1-4-1) splines, and the FIR
filter approximation, we can obtain a Inversion FIR filter for (2-5-2) splines
and the FIR filter will be

b-1(n)= 3 3(-1)In', if In mn,
I0, otherwise. (8)

The filter can be implemented as shown in Fig. 1 with delays, mulipliers
and adders. Although the filter shown in Fig. 1 can be used for a (1-4-1)
spline with change of ce = V3- - 2, the FIR filter for a (2-5-2) spline can be
implemented with an integer processer because all its coefficients are powers
of 1/2, and the power of two multiplication can be realized with shifts.

§3. Forward Problem

Ferrari, et al., provided an efficient algorithm (the Fast Spline Transform,
(FST)) for computing a spline by Derivative/Summation [5]. Once we obtain
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h•

Sr4h h3 : the 3rd order impulse scaling (1,41)

h,: the 4th order impulse scaling (1,4, 1)

S.: the interpolated sequence

r r hr1 Sn V\ : the vertices sequence

- _.4 1 .ý % .J Vi':thevertices with zero padding
Z ' Z" Z" Z1

I st sum 2nd sum 3rd sum 4th sum

Fig. 2. The FST filter for (2-5-2) spline calculation.

the vertices, the spline is calculated by the FST with appropriate Impulse
Scaling. The FST is as follows, where r is the order of the basis function and
m is the interpolation ratio:

Algorithm FST

1) Find the Dirac functions corresponding to all orders of the rth order
spline's derivatives (r, r - 1,..., 1) [4].

2) Create an array of zeros with m - 1 elements between the knot locations;
initialize k = r.

3) Scale the appropriate Dirac functions by amplitude V, and sum the
resulting sequence into the array at the knot locations corresponding to
the Dirac functions(requires shift and add for the (2-5-2) spline).

4) "Integrate" the resulting sequence once using repeated summation. Set
k = k-1.

5) Return to step 3. Until k = 0.

6) The array contains the values of the spline at the specified locations.

The FST algorithm can be implemented as a digital filter for any spline.
However, to implement this with only fixed point shifts and additions, every
Impulse Scaling element(coefficient) of the spline must be powers of two. The
suggested filter (the FST filter) for the (2-5-2) spline is shown in Fig. 2. Be-
cause the (2-5-2) spline has double knots, both 4th and 3rd order impulse sets
exist. h4 and h 3 in Fig. 2 correspond to 4th order impulse scaling and 3rd
order impulse scaling. Fig. 2 shows clearly that the forward computation of
the spline is computed at the input data rate.

§4. Cosine Examples

Since the Impulse Scaling approach for the forward problem always generates
any (2-5-2) spline curves on the defined grids, the Impulse Scaling will not
effect the accuracy of the generated curves by each Inverse Problem scheme
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o . 1.0.Coo 0.C.o 4o 24-2 0 d o C4 2l3o 300 ~50.00I7411

0s 0s

2- 3. 4. .5 0 15?054.5001 .- .. 000 14.41 1

Fig. 3. The cosine interpolated examples: Top Left: True Cosine Curve, Top
Right: by Matrix Inversion, Bottom Left: by Unser's Inversion and by
FIR inversion.

(i.e., Matrix Inversion, Unser's hIR Filter Inversion and FIR Filter Inversion).
The inversion schemes affect it. Unser's IIR filter Inversion and FIR filter
Inversion can be considered as an approximation operation of matrix inversion.
As shown in Fig. 3, the cosine curve generated by matrix inversion is closest to
the actual cosine curves because (2) guarantees that the (2-5-2) spline curve
passes through every data point (Pa's). Although the two filter approaches
are not guaranteed to pass through every data point, they all produce fairly
accurate curves in the middle section. For the (2-5-2) spline, they can be
implemented with an integer process because the Filter coefficients of IIR
filter and FIR filter's are powers of two. It appears that FIR filter inversion
generates more accurate cosine than Unser's IIR filter Invesion in Fig. 3, while
the FIR filter is nothing but the approximation of the IIR filter. The initial
value estimation for the anti-causal realization of the IIR filter results in less
accuracy. It can be confirmed that significant distortion appears at the right
end portion of the IIR filter inversion cosine interpolated curve in Fig. 3.

§5. Discussion

With either FIR Filter Inversion or IIR Filter Inversion, the (2-5-2) spline
interpolation will generates more accurate curves or surfaces than the (1-4-1)
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Fig. 4. The impulse responses of a (1-4-1) spline(the dotted line), a (2-5-2)
spline(the dashed line) and an ideal interpolator(the solid line).

spline interpolation does. This can be easily confirmed by the fact that the
(2-5-2) spline's impulse response is much closer to the sinc function than that
of the (1-4-1) spline (refer to Fig. 4). Because the sinc function is the base of
the perfect interpolation by the sampling therom, the (2-5-2) spline produces
more accurate interpolated results than the B-spline. In addition, the (2-5-2)
can be implemented with only fixed point shifts and additions. Therefore, the
(2-5-2) spline is at least as accurate as the B-spline, and can be computed
much more efficiently.

§6. Polynomial Coefficients for the (2-5-2) Spline

The spline is defined on five uniformly spaced knots {uo, i1l, 92, u3, u14}. For
each interval, we define u E [0, 1] as the polynomial variable. Then for each
interval, the coefficients {ai, bi, ci, di} represent the polynomial ai+biu+ciu 2 +
diu 3 . We denote the four polynomials by PO (u), Pl (u), P2 (u), and P3 (u).

We impose the following sixteen constraints:

i. Po(0) = 0

ii. P3(1) = a 3 + b3 + c 3 + d4 = 0

iii. P•(0) = bo = 0

iv. P3(0) = b3 + 2c 3 + 3d3 = 0

v. Po(1) = ao + bo + co + do =

vi. Pi(0) = al = 2

vii. P2(1) = a2 + b2 + C2 + d2 =

2viii. P3(0) = a3 =9



314 J. H. Park and L. A. Ferrari

ix. Pi(1) = al + bi + el + d =5

x. P2(0) = a 2 = 9

xi. PO(1) = b0 + 2c0 + 3d 0 = Pj'(0) = bi

xii. P•(1) = b1 + 2c, + 3d1 = P2(0) = b2

xiii. P2(1) = b2 + 2c 2 + 3d2 = P3(0) = b3
xiv. Po'(1) = 2c 0 + 6d0 = Pf'(0) = 2c 1

xv. P'"(1) = 2c1 + 6d, = P2'(0) = 2c2

xvi. P2'(1) = 2c2 + 6d 2 = P3'(0) = 2c 3
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Error Analysis of Algorithms for Evaluating

Bernstein- B6zier-Type Multivariate Polynomials

J. M. Pefia

Abstract. In Computer Aided Geometric Design, the Bernstein-B6zier
form is the usual way to store a polynomial defined on a triangle. We per-
form backward and forward error analysis of the de Casteljau algorithm
and of the algorithm proposed by Schumaker and Volk for evaluating such
polynomials. The obtained results are also compared with the correspond-
ing results for the bivariate Horner algorithm.

§1. Introduction

In Computer Aided Geometric Design, multivariate polynomials defined on a
triangle are usually stored in the Bernstein-Bdzier form, and can be evaluated
by the de Casteljau algorithm. In [8] a modified Bernstein-B6zier representa-
tion of polynomials was introduced, along with an algorithm for its evaluation,
which was called the VS algorithm. This algorithm for the evaluation of mul-
tivariate polynomials is expressed in terms of nested multiplications, and is
more efficient than the de Casteljau algorithm.

Error analysis of the de Casteljau algorithm for univariate polynomials
was considered in [2] and [4]. This paper is devoted to backward and forward
error analysis of the de Casteljau and VS algorithms for bivariate polynomi-
als. On the other hand, the error analysis of the Horner algorithm for the
evaluation of univariate polynomials has been extensively studied in the liter-
ature. In fact, backward and forward error analysis of (univariate) Horner's
rule was already performed by Wilkinson in [11], pp. 36-37 and 49-50. Other
approaches to this problem can be found in [5,9,10,12] (see more references in
[3]). An error analysis of the multivariate Horner algorithm has been given in
[7]. We also compare our results with those corresponding to the multivariate
Horner algorithm.

The paper is organized as follows. Section 2 introduces basic concepts,
notation, and auxiliary results. In Section 3 we carry out the mentioned
error analysis of the algorithms. Finally, we summarize in Section 4 the main
conclusions and the advantages of VS algorithm in this context, taking into
account computational cost and forward error analysis.
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§2. Basic Notations and Auxiliary Results

Let us now introduce some standard notation in error analysis. Given a C R,
the computed element in floating point arithmetic will be denoted by either
fl(a) or by &. As usual, to investigate the effect of rounding errors when
working with floating point arithmetic, we use the model

fl(aopb)=(aopb)(l+6), 161<u, (1)

with u the unit roundoff and op any of the elementary operations +, -, x, /
(see [3, p. 44] for more details). Given k E No such that ku < 1, let us define

ku
'Yk : =(2)"1 - ku"

In our error analysis we shall deal with quantities such that their absolute
value is bounded above by -Yk. Following [3], we denote such quantities by
Ok and take into account that by Lemmas 3.3 and 3.1 of [3], the following
properties hold:

(1 + Ok)(1 + Oj) = 1 + Ok+j, (3)

and ifpi = ±1, 16i] 1 :u (i = 1,...,k) then

k

IJ(l + 6i)P = 1 + Ok. (4)
i=1

In considering the computed solution of a problem, one can try to find the
data for which this computed solution is the exact solution. Backward error
analysis measures how far these data are from the original data of the prob-
lem. So, backward error analysis interprets rounding errors as perturbations
in the data. In contrast, forward error analysis measures how far the computed
solution is from the exact solution. Therefore, in our evaluation problem, if
f(x) = EnO Zo uii(x) is the computed evaluation (instead of the exact evalua-
tion f(x) = ]%o ciui (x)), we say that the relative backward error is bounded
above by E if

1ci, <E, n.

Then we can bound the forward error by

If(x) - f(x)I _• E E Z CiUi(X)I.
i=0

The number
n

C W):= E Ic ui(x), (5)
i=O

measures the stability in the evaluation of a function with respect to perturba-
tions of the coefficients, and is called the condition number for the evaluation of
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f(x) with the basis u (see [1,2,4,6,7]). Let us observe that Cu(f(x)) depends
on the basis u, on the function f, and on the point x. If we assume that the
basis is formed by nonnegative functions, (5) can be written as

n

C M(f(x)) = E Ici ui(x). (6)
i=O

In conclusion, we can bound the forward error by

If(x) - f(x)I _• EUc(f(x)), (7)

which is a particular case of the classical formula (Forward error) < (Backward
error) x (Condition number).

If we assume that f(x) 5 0 we can also define the relative condition
number by

C (f(x))c. (f W))= If(X)[

The following relative forward error bound, analogous to (7), can be derived:

If(x) - f(x)l < Cc (f W)
If(x)I

The following result (which was obtained for polynomials in [1]) allows
us to compare the condition number of two bases of nonnegative functions in
a space when they are related by a nonnegative matrix:

Lemma 1. Let U be a finite dimensional vector space of functions defined on
Q C R'. Let u = (uO,... ,U.), v = (vo,... ,vn) be two bases of nonnegative
functions of U such that

(v o , .. .,v n ) = (U 0 , . . ., u n )A ,

where A = (aj)o<_i,j:<n is a nonnegative matrix. Then C"(f(x)) • C" (f(x))

for each function f E U evaluated at every x e 92.

Proof: Given f E U, it can be written as

n

f(x) = Ecqvq(x) = cqaiq uj(X). (8)
q=O i=0 =

Then, by (8) and the nonnegativity of u, v and A, we deduce that

n n

C.(f(x)) = E I E(cqaiq)lIui(t)I
i=O q=O

n n

< 1EIcqlaiqui(x) = q I E aiqui(X) (9)
i=0 q=0 q=0 =

= Icql IVq(X)I = C q(((()))

q=0

for each function f E U evaluated at every x E Q. 0
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§3. Backward and Forward Error Analysis of the Algorithms

Given a triangle T with vertices P, Q, R in the plane and a point X E T, let
(r, s, t) be the barycentric coordinates of X:

X=rP+sQ+tR, r+s+t=l.

Let lid(T) space of polynomials of total degree d defined on T. Then any
polynomial p C lld(T) can be written as

d i d

p(r, s, t) = bd-i,i-J,j Bdi,iJJ(r s, t), (10)
i=O j=O

where

Bj,k (r, s,) t rjtk, i +j + k = d (11)2, ) = -!3!k!

are the Bernstein polynomials. Then (10) is called the Bernstein-B~zier repre-
sentation of p.

Let us now recall the algorithm of de Casteljau to evaluate the polynomial
p at a given (r, s, t). We denote by b9Jk : for all i + j + k = d.

Algorithm of de Casteljau

for k = 1 to d
for i = 0 to d- k

for j = 0 to i =k k - _ a k - 1
bd_--k,i-j,j= r'bd i-k+l,i-j,j +s'b-•i-k,i-j+l,j +t.bd-i-k,i-j,j+l

end j
end i

end k

The previous algorithm leads to the evaluation p(r, s, t) = bd, 0,0. It re-
quires d(d + 1)(d + 2)/2 multiplications.

The following result provides backward error analysis of the de Casteljau
algorithm for the evaluation of bivariate polynomials.

Theorem 2. Let us consider the algorithm of de Casteljau in (10) and let
us assume that 3du < 1. Then the computed value P(r, s, t) = fi(p(r, s, t))
satisfies

d i -d

P(r, s, t) = bd-i,i-jjBd-i,i-J(r' s, t), (12)
i=0 j=0

where
lbi,j,k - bi,j,kI < 7t3d. (13)

Ibi,j,kI -



Evaluating Multivariate Polynomials 319

Proof: By (1), for each k E 1,...,d}

-•[lrk k~~~ij k-I k-1
S[fi(rbd&+1,i..j÷j) + fl(sbd-i'k,i-j+l,j + tbd-i-k,i jj+1)] (1 + 60)

k--1
+ fl(tbd-_k,ikj.j+l))(1 + 62)] (1 + 60)

= [(rb&_i.k+1si.j,j)(1 + 61) + ((SbLd-ik,ij+1,j)(1 + 63)

+ (t b ki-jj+1)(1 + 64))(1 + 62)] (1 + 60),

where 16i, i = 0,..., 4, are numbers less than or equal to the unit roundoff u.
Then by (4) we can write

d-i-k,ij,j -= (rbd i-k+l,i-jj)(1 + 02) + (sbdzik,ij+l,j)(1 + 03)

+ (tb:d-ik,i-jj+l)(1 + 03).

Iterating the previous argument for k = d, d - 1, ... , 1 and comparing the
final expression with (10), we deduce (12) and (13). El

By applying the previous result together with formula (7), which relates
backward and forward error, we can derive the following corollary on the
forward error of the de Casteljau algorithm.

Corollary 3. Suppose the hypotheses of Theorem 2 hold. Then the com-
puted value 3(r, s, t) = fi(p(r, s, t)) given by the de Casteljau algorithm satis-
fies

jp(r, s, t) - P(r, s, t)I • 73dCB(p(r, s, t)), (14)

where B is the Bernstein basis.

A modified Bernstein-B~zier representation of the polynomial p of (10)
was considered in [8],

d i

p(r, s, t) = E Cd-i,_jjrd-isi-jtj, (15)
i=O j=O

where the new coefficients are related with those of (10) by

Cd-i,i-j,j 0<j,i<d.
S(d - i)!(i - j)!j!b-

The following algorithm (which will be called the VS algorithm) was in-
troduced in [8] by Schumaker and Volk to evaluate a polynomial p in the
modified Bernstein-B6zier form (15). In contrast with de Casteljau algorithm,
this algorithm is expressed in terms of nested multiplications. This version of
the algorithm will use the quotients r/t or s/t, assuming that t is bigger than
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r and s, in order to avoid divisions by zero or by near-zero values. If r or s is

the biggest, it is recommended to adapt the algorithm appropriately.

VS algorithm

A := Cd,o,o

for i = 1 to d
B Cd-ii,0

for j = 1 to i
B := B. (sit) + Cd-i,i-j,j

end j
A:= A. (r/t) + B

end i
p(r,s,t) = A. td.

The previous algorithm requires (d2 + 5d)/2 multiplications and two di-
visions, and so is significantly faster than the de Casteljau algorithm. A
backward error analysis of the VS algorithm is performed in the following
result.

Theorem 4. Consider the VS algorithm in (15), and assume that 4du < 1.

Then the computed value fi(x) = fi(p(x)) satisfies

d i

P(x) = E E Cd-i,jj,jrd-isi-iti, (16)
i=0 j=0

where
Ici,j,k - Ci,j,kl < 74d. (17)

ICij,kl

Proof: The VS algorithm consists of a Horner type algorithm which calculates

Sand a last step which multiplies by td. From (15) we can write

p(r, s, t) d i

i=0 j=0

with fd-i,,- -= `I-aii . Since by (1) fl(r/t) = (r/t)(1 + 01) and fl(s/t) =

(s/t)(1 + 01), we can apply Theorem 3.1 of [7] to the Horner type part of the
VS-algorithm, and get

d i

f t -P Z 1tfd-ii-j,jd-isi-t

i=0 5=0

where

fd-i,i-j,j = fd-i,i-j,j(1 + 03d+1). (18)
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Finally, in the last step we have to multiply by td, and then by apply-
ing d - 1 times (1), we can obtain (16) with 6d-i,i-jj = fl(tdld-i,-jj)
td1d-i,i-j,j(1 + Od-1). Thus by (18) and (3)

d-i,i-j~j -= tdfd-i,i-j,j(l + 03d+l)(1 + Od-1) = tdfd-i,i-j,j(1 + 04d)

= Cd-i,i-j,j(1 + 04d). El

As a consequence of Theorem 4, and applying again formula (7), we can
perform a forward error analysis of the VS algorithm:

Corollary 5. Under the assumptions of Theorem 4, the computed value
(r, s, t) = fl(p(r, s, t)) of the VS algorithm satisfies

Ip(r, s, t) - P(r, s, t) I ! 4dCA (p(r, s, t)), (19)

where D is the basis used in the modified Bernstein-B1zier representation.

Although in Computer Aided Geometric Design, a bivariate polynomial
is usually stored in its Bernstein Bdzier form (10) (very close to the modified
Bernstein-B~zier representation (15)) we shall compare our error bounds with
those obtained by evaluating the polynomial in Taylor form by the bivariate
Homer algorithm. Given the triangle T and the polynomial p of total degree
d defined on T, let u = x - xj, v = y - yl, where (xi,yI) are the cartesian
coordinates of a point of T. The Taylor form of p is given by

d d-i

p(u, v) = E aijuvi. (20)
i=0 j=0

Bivariate Horner algorithm

p := ao,d

for i = 1 to d
A := ai,d-i

for j = 1 to i
A := A. u + ai-j,d-i

end j
end i
p = A. v + A.

We observe that the bivariate Horner algorithm requires (d2 + 3d)/2 mul-
tiplications.

The following result, which is a consequence of Corollary 3.2 of [7] for the
backward error bound and of formula (7) of the present paper for the forward
error bound, provides backward and forward error bounds of the bivariate
Horner algorithm.



322 J. M. Pefia

Theorem 6. Consider the bivariate Horner algorithm in (20), and assume
that (2d + 1)u < 1. Then the computed value P(u, v) = fi(p(u, v)) satisfies

d d-i

3(u, v) = Y Z aijuiv', (21)
i=0 j=O

where
Idi,j,k - ai,j,kl < "Y2d+I, (22)Ila ,i,jkl I

and satisfies

Ip(u, v) - A(u, v)j < Y2d+lCM(p(U, V)). (23)

§4. Conclusions

As mentioned, in the context of Computer Aided Geometric Design, polyno-
mials are usually stored in the Bernstein-B6zier form (10), which is used by
the de Casteljau algorithm. Let us observe that the coefficients of the modified
Bernstein-B~zier form (15) used by the VS algorithm are related with those
of (10) by

Cd-i'i-j'J= d l bd-ii-j,j, 0 < j, i < d. (24)
(d - i)! (i - !j

The conversion from the Bernstein-B~zier form into the modified Bernstein-
B6zier form can be done in (d2 +3d-4)/2 multiplications. In [8] the algorithm
composed of the conversion from the Bernstein-B~zier form into the modified
Bernstein-B6zier form followed by the VS algorithm was called the VSC al-
gorithm. The number of multiplications and divisions required by the VSC
algorithm is d2 + 4d.

We have seen that the VS algorithm is considerably more efficient than the
de Casteljau algorithm. On the other hand, the bivariate Horner algorithm is
also very efficient and has the lowest backward error bound, as one can deduce
from the results in the previous section. However the behaviour with respect
to the forward errors is different as we shall now show.

Given the bivariate Bernstein basis B defined on a triangle (see (11)),
since the barycentric coordinates satisfy r + s + t = 1 we can change the
variables in the form (r, s,t) = (u, v, 1 - u - v) and obtain the following
expression of the functions in B:

Bdu)v= ( id)ui 1_(l u--v)d-i-j, u,v C [0,1],

where

ilj := (d - i-j)!i!j!'
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With the same change of variables, the functions of the basis B (used in
the modified Bernstein form) can be written as

Z'j (u,v)=uiv'(1--u-v)d-i-, u, v E [0, 1].

Thus, these functions are related with those of B by

Bý(v j) (i.) j(U, V).

We see that the basis functions of B are obtained from those of B by a positive
scaling. Then, using the condition number of (5), it is easy to prove that

C9(p(u,v)) = CB(p(u,v)), Vp, Vu, v E [0,1]. (25)

On the other hand, the Taylor form uses the power basis M formed by
the functions uivi, 0 < i < d, 0 < i < d - i, u, v E [0, 1]. By formula (100) of
[2], the functions of the power basis M can be expressed as

= f-j n-k ( k)I -j= d)-E ki,
k=i l=j Gi~j

Since the coefficients are positive and the basis functions are nonnegative, we
can deduce from Lemma 1 that CB(p(u, v)) • CM(p(u, v)). Therefore, by
(25), we conclude for every polynomial p(u, v),

C•(p(u,v)) = CB(p(u,v)) _ CM(p(u,v)), u,v C [0,1]. (26)

In consequence, although the bivariate Horner algorithm provided lower back-
ward error bounds than de Casteljau and VS algorithms, formula (26) shows
that these algorithms use better conditioned bases, and this fact reduces their
corresponding forward error bounds.

In conclusion, the VS algorithm has more advantages than de Casteljau
or Horner algorithms in this context due to the following properties. First, it
uses a basis very close to the Bernstein basis, which is more appropriate in the
field of Computer Aided Geometric Design than the power basis. Secondly,
the bases used by de Casteljau algorithm and the VS algorithm are also better
conditioned than the power basis in the considered domain, this last property
being convenient from the point of view of forward error analysis. Finally, the
VS algorithm has a higher efficiency than the de Casteljau algorithm.

Acknowledgments. This research has been partially supported by the span-
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A Basis for Homogeneous Polynomial Solutions

to Homogeneous Constant Coefficient PDE's:

An Algorithmic Approach through Apolarity

Michel Pocchiola and Gert Vegter

Abstract. Some recent methods of Computer Aided Geometric Design
are related to the apolar bilinear form, an inner product on the space of
homogeneous multivariate polynomials of a fixed degree, already known in
19th century invariant theory. A generalized version of this inner product
was introduced in [81 to derive in a straightforward way some of the recent
results in CAGD. Here we extend this work by applying it to compute
solution spaces of homogeneous constant coefficient PDE's.

§1. The Homogeneous Apolar Bilinear Form

1.1. Review

In [8] we introduced a generalization of the apolar bilinear form defined on
the space of homogeneous polynomials (of a certain degree, and with a fixed
number of variables). This bilinear form, used extensively in the symbolic
method of the classical theory of invariants, has been revitalized by Rota and
his co-workers, cf [2] and [4]. In CAGD, a similar binary form on the space of
univariate polynomials of a fixed degree has been studied by Goldman [3]. It
is related to the blossoming approach introduced by Ramshaw [7].

In this section we review some of the properties of the apolar bilinear
form. Then we extend [8] by studying constant coefficient partial differential
equations of the form p(O)f = 0, where p is a fixed multivariate homoge-
neous polynomial. In particular, we derive an algorithm computing a basis
for solution spaces consisting of homogeneous polynomials of a fixed degree.
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1.2 Vector spaces of forms

Let el,... ,e, be the standard basis vectors on Rs and let x = (xI,...,x")
be the standard coordinates on R'. The standard inner product on R' is
denoted by (., .), i.e., (u, v) = uivl +... + usvs, for u, v G R'.

A central object in this paper is the space of real homogeneous poly-
nomials of degree n on R', denoted by 7-i,(]R). A polynomial in 7-/(IR3 )
is the sum of monomials of the form cax"1 x", where co E IR and a
(al,... ,a,) E 2Z_0 is a multi-index of weight lal = a1 + + a,. For con-
venience the monomial x"' ... x"ý is denoted by x". Linear homogeneous
polynomials on R' are of the form f(x) = (u, x), for some u C R'. We denote
f by (u, .).

For multi-indices a = (a,,... ,as) and/3 = (/30,... ,/3s) in ZZ' 0 we define
a /3 if ai K /3i for i = 1,..., s. The relation I is a partial order on 2Z•0.
Note that a /3 iff there is a A E 2ZZ0 such that /3 = a + A. We shall write
a0-/3 if it is not the case that a 0/3. A monomial order is a linear ordering
-mon on 2Z>_o such that (i) if a<mon/3 and y C 2ZCo, then a + 7--mon/3 + -,
and (ii) •mon is a well-ordering on 2ZZ0, i.e., every non-empty subset of 2Z•0
has a smallest element with respect to <mon. We use the notation a<monO3
in case a0mon/3 and a /3. Furthermore, we use the property that a<mon/3
whenever a /3. Well known examples are the graded (reverse) lexicographic
orders, defined by a<mon/3 if la < 1/31, or lal = 1/31 and in a - /3 the left-
most (right-most) non-zero entry is negative (positive). Monomial orders play
a paramount role in algorithms for multivariate polynomials, especially with
regard to termination conditions; See e.g. [1].

The set of multi-indices in 2Z•0 of weight n, denoted by F,n, is a finite
set with #F,,n = (n+s-1) elements. For a E Fr,, the factorial function is
defined by a! = a,! ... a,!, and the multinomial coefficient (') is defined by

(n) n!
With a polynomial f(x) = c•. x', we associate the homogeneous
differential operator f(O) = - m c,, 0", where a' = 0" . . . Here
0 = ((a.. . , Os), with Oi = 6/Oxi. The directional derivative D,, : H (]W)
K,_ 1 (IR) with respect to u C R' is the differential operator (u,0), i.e.,
D = ul01 + ... + u., 9.. Note that 0i = (er, 0) = De,. Considering ei as a
multi-index of weight one, we also have 0i = ae•

1.3. Apolar pairing

This subsection is concerned with a straightforward generalization of the
rather well-known apolar inner product [f, g] = f(a)g, defined on the space
of homogeneous polynomials 7-4n(1R). The main result concerns a character-
ization of this inner product in terms of three simple properties that will be
the basis for the construction of special bases of "H-4(1') in later sections.
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Definition 1. For fixed integers m and n, with 0 < m < n, the apolar pairing

is the map
[., .].,,n : '. R ) x 8nR ) -* n, nR )

associating to the homogeneous polynomials f E 7Hn(IRS) and g E 4n(1R 8)

the homogeneous polynomial [ f, g ]m,n of degree n - m, defined by

[f, g.,n- =(n-m)! f'0)g.
n!

Note that we have in fact a family of pairings, one for each pair of integers

m and n with 0 < m < n. In this paper, the term pairing refers to the whole

family of bilinear maps. From now on we shall drop the subscripts m and n,

since they are implicitly known as the degree of the first and second argument

of the pairing operator.

Theorem 2. The apolar pairing is the unique bilinear pairing with the fol-

lowing properties:

1) (Apolar pairing with constants). For f c 1in(IR):

[1,f]=f,

where 1 C 1io(R 8) is the constant homogeneous polynomial of degree 0.

2) (Apolar pairing with linear forms). For f E Hin(IRS) and u E 1R':

1
[(u,.), f] = -Duf.

n

3) (Transposition of a homogeneous factor). For fi E 1-imj(1R), f2 E

H11m2(R'), and g E -n((R'), with mi + m2 < n:

[ flf, i] --- [ fl, [ f2, g]]

It is obvious that apolar pairing is a bilinear operator, satisfying these

properties. For the proof of uniqueness, we refer to [8]. Identifying the space

of zero degree polynomials with R, we see that for n = m, apolar pairing

corresponds to a real bilinear form on the space of homogeneous polynomials

of degree m. The next result states that this bilinear form is even an inner

product. Again, the proof is contained in [8].

Proposition 3. The apolar bilinear form [., • ] : H"m(]') x 7-,m(R 5 ) --* R is

an inner product on the space of homogeneous polynomials of degree m.
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1.3. Dual bases

First we recall the definition of a dual basis pair with respect to the apolar
inner product [., on 7"Hin(Rs).

Definition 4. The dual basis of a basis {f a E Fs,m} of 7"m(Rs) is a
collection {go a E rs,m} of polynomials in W-,m(]R') such that, for a, 13 C

[f, g1] =

It is easy to prove the standard fact from linear algebra that a dual basis
is indeed a basis. Given a dual basis pair, a polynomial f E 7im(Rs) can be
expressed with respect to either basis in terms of coefficients depending on
the other one:

f= [g , f If.= If [, f Ig•. (1)

aErý,m aEr,,-

Example. (Dual of homogeneous Bernstein-B6zier basis). Let {x', ... , x'} be
a basis of R', and denote by u1(x), .... , u,(x) the coordinates of any x E R'
in this basis. The polynomials

B,,(x) = (n) U1 (X)a1. ,()ý

where a E Fr,,, form the homogeneous Bernstein-B1zier basis of 7-(n(]')
with respect to the basis .x1,...,x8} of R'. Its dual basis consists of the
polynomials

10(y) = (x1,Y)' .. W,

i.e., [Be, lp] = , For the proof, see [8].

§2. Solving Homogeneous Constant Coefficient PDE's

We now show how dual bases can be used for the efficient computation of
a basis for the solution space of a homogeneous partial differential equation
with constant coefficients, i.e., the space

{f C 2•4(RS) I p(O)f = 0}. (2)

Here p E H-m(Rs) is a polynomial, p 54 0, that will be fixed throughout

the paper. Furthermore, m and n denote fixed integers such that 0 < m <
n. Our approach is both an alternative and an algorithmic counterpart of
Pedersen's work [5,6]. These papers deal with algebraic properties of the space
of solutions. We continue Pedersen's work by presenting an optimal algorithm
for the computation of a basis for the solution space. Our techniques are new,
since they are based on properties of dual bases, together with some recursive
properties of the apolar bilinear form introduced in [8].
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2.1. Characterizing a basis for the space of solutions

From now on we consider a family of functions {fa I a E 2Zs_0 } such that
(i) f." fo = f.+0, and (ii) for all n > 0, the set {f,, I a E rF,n} is a basis
of 7-i.('s). The dual basis of the latter set is denoted by {g. I a E rF,n}.
An example of such a pair of bases is formed by the Bernstein-B6zier basis,
together with the lineal polynomials introduced in the example at the end of
the preceding section.

Lemma 5. For a,/3 E 2Z'_o with lal < 131:

go,'if a 1

Proof: Let m = lal and n = 1/31, and let f = [fa, go] E 4n-im(,RS).

Consider the apolar inner product [f7 , f ], for -y E rs,n-m. Since f. • fy
fa+y, transposition of a factor (See Theorem 2, part 3) fa yields: [Jf', f ]
[fa+r, g,] = + First consider the case a+/3. Then a + y # /3, and
hence [f.e, f] = 0, for all 7 E Fs,n-m. Since the apolar pairing is an inner
product and {.& I y E Fs,n-m} is a basis Of J-nnm(' 8 ), it follows that f = 0
in this case. If a 13 the previous derivation shows that [fy, f] = ,-n , so
identity (1) implies f = --yEr ,.. I[f, fy]g Y = 0-" [E

In the following, our fixed polynomial p in (2) is given in the form

p 5Z ca fa, where c, = [p, ga].

The following result characterizing the kernel of a polynomial differential op-
erator is the key ingredient for the algorithm developed in the next section.

With p we associate the linear map Dp : ?in(Is) --+ 7-,nm(]') defined
by Dp(f) = [p, f], and the map Tp : -,n-m(1') - ?--,H(1R) is multiplication
by p, i.e., Tp (f) = p f. Given an integer k, and a subspace U C 2-ik(R•R),
we denote by U' the orthogonal complement of U with respect to the apolar
inner product [., .] on 7-k(IRs).

Proposition 6.
1) KerDp = (ImT,)'±.
2) The map Dp is onto.

Proof: Theorem 2, part 3, implies that Tp and Dp are adjoint operators,
i.e., [Tp (f), g] = [f, Dp (g)1, for f E "n-,m(n(R) and g E 7-n(R'). The first
claim follows from this identity. Now since T7 is injective, the result of the
first part implies that dim KerDp = dim 7-, (R) - dim 7in-m (R•). Therefore,
dim ImDp = dim Rn-,m(]'), and hence Dp is onto. El

As a special case, consider the polynomial p = fao for some a 0 E F,,m.
According to Lemma 5, KerDp contains g,3 whenever 13 E rs,n such that
ao0+3. Since a 0 13 iff 3 is of the form13 = a 0 + A for some A E Fs,n-m, it
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follows that #{i3 C F8 ,, I ao-•+0} = #Fs,n - #Fs,n-m = dim KerDp. The last
equality follows from Proposition 6, part 1. Therefore, a basis for the solution
space KerDp is the collection {go 1] E Fs,n and ao+1f}. The following result
generalizes this special case.

Theorem 7. (Basis for solution space of PDE). Let <mo be a monomial order
on 7ZAo and ao E Fs,m be defined by ao = min<mon{a E rs,m I [p, g] o 0}.
Furthermore, for any A C Fs,n-m, let PA E7in-m(1R8 ) be the polynomial
defined by pA = [p, g 0o+A ]. Then

1) The set Pn-m {PA I A C Fs,n-m} is a basis of -Ln~ m(]RS).

2) Let Qn-m = {qA I A E Fs ... } be the dual of the basis Pn-m,, of
W.-,.m(]R), i.e., [PA , q, ] = t5 ,,. A basis for the solution space KerDp=
{f C 7-n(1,") I p(O)f = 0} is the set

{ I 13 C rF,, with ao-+1-, (3)

where - C 7-n(1Rs) is defined by

Remark. The first claim of Theorem 7 is not necessarily true for other choices
of ao. Consider e.g. the polynomial p(x) = 2x2 + 2x 1X2 + x2, and let a0
(1, 1) E r 2,2 . Here we take the monomial basis for the space of polynomials of
degree n on R 2 , i.e., we take fo(x) = xO, for x C R 2 and 131 = 01 + 2 = n.
The dual basis consists of the functions go, where go(x) = (n)xo. For A c F 2,2

we have go+A(x) = (o+A)1•+1x•2+1. Take q(x) = 2x1 - 2x 1x 2 + x2, then

p(x). q(x) 1 4x4 + x2, and hence, for all A E F 2,2:

[PA, q] = [[p, ga+A1], q] = [p'q,g o+] +A= 0,

yet q : 0. Hence the functions PA, where A ranges over F 2,2 , do not constitute
a basis for 72 2(R2).

To prove Theorem 7 we need the following two lemmas.

Lemma 8. For A, IL E Fs,n-m we have

[PA, Coo+A_,2 ifyi[ao+A,

[' = , otherwise.

Proof: The proof consists of a straightforward calculation:

[PA, f = f., [p, g :+,] = [p, [f,, g. 0 ± I]
= [P, gaý+-A-, , if P I ao +A,

10, otherwise.

The last identity is justified by applying Lemma 5. El
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Lemma 9. Let Ao E Fs,n-m. For f E kin-m(I•R), the following statements
are equivalent:

1) [gA, f] O, for al A<monAo,

2) [pA, f]= 0, for all A)_.mon0Ao.

Proof: It follows from (1) that

[pA, f] = Z [p•,f/][g/, f]. (4)

Consider /. E Fs,n-m such that A<mon/I, then a0 + A - lI<mona,0. Therefore,
the definition of a 0 implies cO+A-,, = 0. In view of Lemma 8, we know that
[pA, fl ] is equal either to co+\-, or to 0, so in any case we have [pA, f/I] = 0.
This observation allows us to write (4) as

[Ak, f] =C•0[gA, f]I + E [PA,fM][91.,,f]. (5)

This identity shows that the first statement implies the second one. So assume
that statement 2 holds. We may assume that f 5 0, otherwise there is nothing
to prove. Let A1 be the least multi-index with respect to the monomial order

-•mon such that [g\, , f] $ 0. Then (5) implies [pA, , f] = co[g\ , f] is
nonzero. Hence Ao<monA,. Consequently [gA, f] = 0 for all A<_monA0, which
is statement 1. El

Proof of Theorem 7: Let U C -n-,m(1Rs) be the space spanned by the
pA, A E Fs,n-m. Since #rs,n-m = dimh-n-m(RS), it is sufficient to prove
that U = 7-4-m(IRs), or, equivalently, that U- = {0}. Thus, if f E U',
then [f, p,] = 0, for all A E rsn.-m. According to Lemma 9 this implies
[f, pA] = 0, for all A E Fr,,-m, so f = 0. This proves 1). Now in view
of Proposition 6, the space KerDl is of dimension #rs,n - #PS,n-m, i.e., of
dimension #{fO E FIn I ao+--f}. On the other hand, it is straightforward to
see that the polynomials gp, 3 E Fr,,, with a 0 0-p3, are linearly independent.
Therefore, in order to prove that they form a basis of KerDP we just have to
prove that they belong to KerDp. Taking Proposition 6, part 1, into account,
we actually have to check that [p.q/I, y] = 0, for all f c r,,,, with ao0/3.
Since

p ' *q . = [ p -q A , g y f -,
"-YErs,n

E [[P,go+]0 ],qf]fo,+r+a [P'q F wgt]fh 3
,\Er.,n-- •r~

ýjEra,n

it follows that [p.q,,, gp•] = 0, for all f3 E rs, with a0+01. 1:1
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2.2. Computing a basis for the space of solutions

We now present a simple, efficient algorithm for computing the dual basis
Qn-rn, as well as an example showing how the algorithm works. Recall that
for a = (a1,.. . ,as) s,m, the number cQ is equal to [p, g0 ]. We extend
this definition to a E 2Z by putting c, = 0 in case at least one of the entries
a 1 ,. . . , a, is negative.

Corollary 10.
1) The dual basis Qn-m = {q, I iP E Fs...} of Pn-m is defined recursively

by 1

q=, (fA - c3°+_-tq,)"
cao

P <mon1V

2) For/3 0 F,,n, with ao-+0, the basis function go E -,n (WR), is of the form

gol = gol - E at, o ga0+,,.

IIJEr,n-m

where the coefficients a,,,3 are defined recursively, for IL E Fs,n-m, by

a143= 1(c- - >3 c0 0+v~avoj).

/r<monv

Proof: Recall that we are looking for a set of functions Qn-m = 1%, E

rs,n-m}, such that [pv, q%,] = 6,,p . In particular, according to Lemma 9 the
functions q. satisfy [g,, qp,] = 0, for v<moo.... Therefore, q,. E Span{f, I v E
rs,n-m and /W<monv}, or, equivalently:

qj, E Span({q, I V E Fs,n-m and /1<monv/} U {h}). (6)

Assume we have determined q, for v E Fs,n-m with I<monv. To compute
q,, satisfying (6), we have to determine constants d.,, for pi, V G Fs,n-m with
/rmonnv, such that

qA = dpfp + d. dq\.

Since Pn-m and Qn-m are dual bases, the constants d,. are uniquely deter-
mined by the condition [pv, q 1] = b,,J. Combining the last two identities we
see that

[p, qj ] dyj[Pv I fp I + E dl'•5b•,v"

From this identity, which holds for all v E Ps,n-m with /1:_monv, we derive

1

d'I = C1o-+, for mo

c"0
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which proves the first part. Now put a, - [p qM, gp ] in (3). Then, according
to part 1,

A<monv

Since [p. f, go [p, [fp, g] [p, gg-_•], the proof is complete. El

The algorithm for computing a basis for the solution space of the partial
differential equation p(O)f = 0 is now simple:

Algorithm (for computing a basis for KerDp).

forall A E rs,n-m in decreasing <mon-order do
forall 13 E r 8,, with ao+•3 do

Example. Consider on R 3 the homogeneous constant coefficient PDE

02f 0 2f 02 f
0x 10x 2  OX2 + OX0X3

corresponding to the homogeneous polynomial p(x) = 1x 2 - X2 + X2X3. In
particular, the setting of this example corresponds to s = 3 and m = 2.
We determine a basis for the solution space in 7-H3(]3), i.e., we take n = 3.
To this end, consider the graded reverse lexicographical order on 7Z3_0. Let

fp(x) = xO, and let go(x) = (n)x', where n = 1,31. In this example we denote

functions indexed by a = (i,j, k) E 7Z_, like f>, by fijk.
The sets {ff 1)3 E r.,,} and {jg 13• E T8,n} are dual bases, and moreover

fa • f3 = fa+p, so the conditions for applying Theorem 7 and the algorithm
from this section are satisfied. In the notation of Theorem 7, we have a 0 =

(1,1,0). Note that p = fo10 - f02O +f01l, so c110 = 1, c020 = -1 and
c0ll = 1, whereas all other coefficients cijk, with i + j + k = 2, are zero. Now
the coefficients az are computed according to the algorithm above, in other
words we successively determine the rows in the following table (computing
for each row the entries in arbitrary order):

ag, 13 = 300 201 102 030 021 012 003

p = 001 0 0 0 0 -1 1 0
010 0 0 0 -1 1 0 0
100 0 0 0 -1 2 -1 0

This table corresponds to the following seven basis functions of KerDP: g300,

9201, 9102, g030 + 9120 + 9210, 9021 + gll - 9120 - 29210, 9012 - g111 + 9210, and

9003.
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These functions can be turned into monomial form by straightforward substi-
tion, yielding the following explicit basis for the solution subspace of H33 (R3):
X1, 3x1x 3 , 3xx3, 3x x 2 + 3xX2 2x3, -6x x 2 - 3x, 2 + 6xlX2X 3 + 3x2X3 ,
3x1x 2  6xlX2X3 + 3x 2x, x33•

Acknowledgments. We are greatful to the anonymous referee for corrections
and suggestions for improvement.
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Triangular G2-Splines

Hartmut Prautzsch and Georg Umlauf

Abstract. We introduce curvature continuous regular free-form surfaces
with triangular control nets. These surfaces are composed of quartic box
spline surfaces, and are piecewise polynomial multisided patches of total
degree 8 which minimize some energy integral. The B6zier nets can be
computed efficiently from the spline control net by some fixed masks, i.e.
matrix multiplications.

§1. Introduction

Most methods known for building Gk-free-form surfaces need polynomials of
relatively high degree, namely 0(k2 ), see for example [2,3]. Only recently in
1995 this high degree was beaten by two methods giving Gk-free-form surfaces
of bidegree 2k + 2 with singular [6] and regular [4] parametrizations, respec-
tively. These low degree surfaces can be represented by a control net [4] or a
quasi control net [6], and can be designed so as to allow for subdivision.

In this paper we will transfer the method given in [4] to triangular box
splines. Here we restrict ourselves to G2-surfaces which are the most important
for practical applications besides Gl-surfaces. Further details and the general
case are presented in [5,7].

This paper is organized as follows. In Section 2 we introduce n-sided
G2-patches. These patches are used together with generalized C 2-box spline
surfaces to build surfaces of arbitrary topology. How the free parameters in
the construction can be used to generate G2 -splines that minimize certain
energy functionals and how these G 2-splines can be generated efficiently will
be discussed in Section 3.

§2. p-Patches

The simplest C 2-box splines are those over the three-directional grid of total
polynomial degree four. In this paper we consider only these box splines. A
quartic box spline surfaces has a regular triangular control net and each of its

Curve and Surface Design: Saint-Malo 1999 335
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Fig. 1. Schematic illustration of a quartic box spline patch (gray) and its control
net.

polynomial patches is determined by 12 vertices (called control points) which
are arranged as in Fig. 1.

Furthermore, we can identify in any triangular net regular subnets of the
form of Fig. 1. These subnets determine patches forming a generalized box
spline surface. A generalized box spline surface has holes corresponding to
the irregular vertices in the net. An example is shown in Fig. 2: The control
net (left) contains an irregular vertex of valence 8 and the generalized box
spline surface (right) has an 8-sided hole.

Fig. 2. A triangular net with a vertex of valence 8 (left) and the corresponding
generalized quartic box spline surface with an 8-sided hole (right).

If every irregular vertex is surrounded by at least three rings of regular
vertices, every irregular vertex corresponds to exactly one hole in the general-
ized quartic box spline surface. In this case an n-sided hole is surrounded by
a complete surface ring consisting of 3n patches.

We now describe how to fill such holes with regular G2-surfaces:

First: for any n > 3, n 0 6, we define a special generalized box spline surface
that lies in the xy-plane and has the control net shown in Fig. 3 (left) for
n = 5. Its control points are the points

Cijk :=: j ci + [k Ci+ l
L8 iJ I Ji1
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for i = 1,...,n and j = 0,...,3 and k = 0,...,3- j, where ci = cos(2ii-i/n)
and si = sin(21ri/n). Thus this surface consists of 3n patches, say xn+l, ... ,
x4 n, which are shown schematically in Fig. 3 (right).

X2 n+ 2

X~n 2Xý +2 X~n+1

Xl,...X ,xX rghn
xn~l...,x~nseeFig.3 (rght) Le

C412 S ~
OC 421  X3 n

C430

Fig. 3. The control net Of Xn+1, .. X4n (left) and the 4n planar patches
X1, -. - ,X4n (right).

Second: we construct n patches X1,.., x,1 filling the hole left by the patches
Xn1..7X. see Fig. 3 (right). Let

xl(u,v,w) = E bYjkBtjk(u,v,w)

be the quartic B~zier representation of the patch xL, where u, v, w are barycen-
tric coordinates with respect to some reference triangle, i.e. u > 0, v > 0, w > 0
and u + v + w = 1. The B4zier points of xj are determined such that x, has
C 2-contact with xn+l. This fixes, say bWjk, for i = 0, 1,2. Further, we set
bo400 = 0 and b'Jk = b2,2j, 2 k/2. Fig. 4 shows these B1zier points for n = 5.
Note that the scaling differs from Fig. 3.

00

b, 4

* 013

b 40

Fig. 4. The BWzier points of Xl,... ,Xn for n = 5.

Lemma 1. The patches xl,..., X4n are regular and form a surface without
self intersections.
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0 G-points

* B-points

El R-points

Fig. 5. The BWzier points of a p-patch for n = 5.

A proof of this Lemma can be found in [5].

Third: for any polynomial p : R2 _ R3 we call the union of all patches

pi(u,v,w)=p(xi(u,v,w)), i= 1,...,4n,

a p-patch. In the sequel we only consider p-patches of degree (4 or) 8 deter-
mined by a (linear or) quadratic polynomial p. The B1zier points of such a
p-patch are illustrated schematically in Fig. 5 for n = 5.

Since for i = n + 1,... ,2n the patch xi has C 2-contacts with xi, Xi+n
and Xi+2n the patch pi also has C 2 -contacts with Pi-n, Pi+n and Pi+2n. Sim-
ilarly, P2n+i and P3n+i+l have C 2-contact for i = 1,...,n, where P4n+1 =

P3n+.1 Moreover, since a p-patch is part of a polynomial surface each pi, i =
1,... ,n, has G 2-contact with Pi-1, where P0 := Pn.

The B~zier points that define the G 2-conditions between the patches
P1,... , Pn are marked by the underlying dark area in Fig. 5. We call them
the G-points of the p-patch. Leaving these points fixed and changing the
other B6zier points arbitrarily such that all C 2-joints between adjacent pi
are preserved, we obtain a modified p-patch. In general, it does not lie on a
polynomial surface, but we will still call such a modified p-patch a p-patch.

Theorem 2. Any n-sided hole of a generalized box spline surface can be filled
by a p-patch having a C 2-joint with the generalized box spline surface.

Proof: The boundary and the cross boundary derivatives up to order two of
an n-sided p-patch are determined by 45n B6zier points. We call these the
B-points of the p-patch. In Fig. 5 they are marked by the grey area.

The B-points can be changed such that the p-patch fits into an n-sided
hole of a generalized box spline surface with a C 2-contact. The remaining
points without the G-points, here called R-points, can then be adjusted such
that any patch Pn+l, .. , P4n of the p-patch has C 2 -contact with all its neigh-
bours. Namely, all C 2-conditions involving R-points form a linear system



Triangular G2 -Splines 339

o A-points

o B-points

Fig. 6. A possible arrangement of the A-, B-, D- and G-points of pi U Pi+n U
Pi+2n U Pi+3n, i •,..., n.

for the R-points. The matrix of this system is square if we add enough zero
rows. After an appropriate permutation of its columns it is even a block-cyclic
matrix. This system has an 18n parametric solution. Hence there are 18n
R-points that can be chosen arbitrarily. We call them A-points. The other R-
points are then determined by the A-,B- and G-points via the C 2 -constraints.
We call these the D-points.

Fig. 6 shows a possible choice for the A- and D-points. Note that this
choice is not unique. El

§3. Fair p-Patches

The construction of a p-patch that fills a hole of a generalized box spline
surface in Theorem 2 is such that different coordinates do not interfere with
each other. So, without loss of generality, we restrict ourselves to scalar valued
p-patches in the sequel. Thus a point is no longer a point in R3 , but in JR1 .

The G-points of a p-patch are certain B~zier points of a reparametrized
quadratic, say

2 2-i

q(x, y) = E Eqij xtyi.
i=0 j=0

Hence the G-points depend linearly on the six coefficients qij, which we call
the Q-points.

Further, as explained in the proof of Theorem 2, the D-points depend
linearly on the A-, B- and G-points. Thus, if we consider the B-points fixed,
all other B~zier points of the p-patch depend linearly on the six values qij and
the 18n A-points.

To obtain good looking surfaces we determine these 6 + 18n free parame-
ters such that the p-patch minimizes a quadratic fairness functional. We tried
several functionals including the thin plate energy [1]. Judging the visual ap-
pearance of the surfaces by their isophotes we got the best results with the
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Fig. 7. An initial control net (left), parameter lines of the resulting G2-surface
(middle), top-view of the surface showing isophotes (right).

functional

F= 4n t 3 Pi) + (93 pi) + &fi P 2) du ddvdw.

The D-points of the p-patch depend linearly on the A-, B- and Q-points.
So we can view F as a quadratic functional in the A-, B- and Q-points.

Since F is positive definite, it is minimal for fixed B-points if its deriva-
tives with respect to the A- and Q-points are zero. Differentiating F = 0 with
respect to the A- and Q-points leads to equations that are linear in the A-, B-
and Q-points. Solving for the A- and Q-points shows that the Bdzier points
of the p-patch minimizing F depend linearly on the B-points. In other words,
there is a matrix Mn depending only on F and n such that Mnb is the vector
of all B6zier points if b is the vector of all B-points.

Fig. 7 shows an example for the G2-p-patch construction. The initial
triangular control net has an irregular vertex of valence 5. The isophotes
confirm that the resulting surface is G 2.

Fig. 8 shows a similar example. The control net is the same as in Fig. 7.
However, here we used a p-patch consisting of 9n, n = 5, rather that 4n
patches to fill the n-sided hole of the generalized box spline surfaces.

Fig. 8. Parameter lines of the resulting G2-surface (left), top-view of the surface
showing isophotes (right).

A more complex example is shown in Fig. 9. This G2-surface was com-
puted by the same method as Fig. 7.
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Fig. 9. An initial control net (left), the generalized quartic box spline surface
with several holes (middle), the resulting surface where every hole is
filled with a p-patch (right).

Remark 3. The matrices M 3 , M4 , M5 , M 7 , M8 and M 9 can be found on the
website http://i33www. ira. uka. de.

Remark 4. The construction above can be generalized for generalized box
and half box spline surfaces of smoothness order 2k and 2k - 1, respectively,
see [5].
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On Calculating with Lower Order

Chebyshev Splines

Mladen Rogina and Tina Bosner

Abstract. We develop a technique to calculate with Chebyshev Splines
of orders 3 and 4, based on the known derivative formula for Chebyshev
splines and an Oslo type algorithm. We assume that splines in the reduced
system are simple enough to calculate. Local bases of Chebyshev splines of
order 3 and 4 can thus be evaluated as positive linear combinations of less
smooth Chebyshev B-splines. The coefficients in such linear combinations
are discrete Chebyshev splines, normalized so as to make a partition of
unity. There are a number of interesting special cases, such as Foley's
v-splines, Chebyshev polynomial splines (q-splines), and splines in tension
which can be calculated stably by such formulm.

§1. Introduction and Preliminaries

It is an important fact in the univariate polynomial spline theory that splines
can be represented as linear combinations of compactly supported basis func-
tions, which we can calculate in various ways by stable and fast numerical algo-
rithms. This can be extended to some other well-known spaces of splines, such
as trigonometric and hyperbolic splines, where nice three-term recurrences of
de Boor-Cox type exist; this also applies to a less interesting case of Chebyshev
splines with equal weights. These issues have been discussed in [12], where we
can also find a negative result concerning the existence of such three-term re-
currence relations in general. Polynomials, however, form an algebra, while in
other cases multiplicative properties are replaced by other algebraic formulae,
such as addition formulae for trigonometric/hyperbolic functions or similar
identities.

We shall say that an interval [a, b] is measurable with respect to the
measure vector do := (da 2, .. danf)w if it is measurable with respect to the
positive Lebesgue-Stieltjes measures dai, i = 2,... n. Then for x E [a, b] we
can define generalized powers (Chebyshev system) {1, u2 ,.. un}:

U2(X) = &d2(t 2);... ; U(x) = &d2(t 2) ... dcr(tn). (1)

Curve and Surface Design: Saint-Malo 1999 343
Pierre-Jean Laurent, Paul Sablonnitre, and Larry L. Schurnaker (eds.), pp. 343-352.
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If all of the measures dai are dominated by the Lebesgue measure, then they
possess densities 1, i = 2,... n; if pi are smooth, i.e.,l := di E Cn-+1l,
then {1, u 2,... Un} is called an Extended Complete Chebyshev System (ECC-
system), referred to as ECT system in [11]). Further, we shall assume that such
an integral representation has been found, and the measures for the Chebyshev
space determined in such a way that we know the generalized powers explicitly.
This may not always be easy, and the choice of measures may not be unique.
It is known that Chebyshev B-splines that make a partition of unity exist
in this general case, and even that abstract recurrences [5,1] resembling the
polynomial ones exist. Almost nothing can be said about their numerical
stability, at least not until we employ a special measure vector, whence the
abstract construction gets difficult.

Recently, other techniques based on blossoming have been found for the
Chebyshev splines [6], which are more promising so far as evaluation and
numerical stability is involved. In case of polynomial weights, one obtains
Chebyshev polynomial splines [7], though here again the underlying algebraic
properties of polynomials are implicitly used.

In Section 2 we give some formula for Chebyshev systems of orders 3 and
4 which express locally supported splines (being piecewise in these spaces)
as positive linear combinations of less smooth splines in the same space. We
will see that the coefficients are related to integrals of splines in the reduced
system, which is defined to be a Chebyshev system like (1) corresponding to
the reduced measure vector, that is, for each 6 C [a, b]

do(')(6) (doi+2 (6),... , do'n(6))T C ]n--(i+l), i = 1,....n - 2.

If S(n, du) := span{1,u2,... un}, then the generalized derivatives Lj,do:
Dj ... D1Do, where

Djf(x):= lim f(x+6)-f(x) j 1, (2)
6--o+ aj+1 (X + 6) -j+l W

are linear mappings S(n, da) -+ S(n-j, dg(j). For a partition A {i.k+l of
an interval [a, b], and a given multiplicity vector m = (nl,... , nk)T, (0 < ni <
n), we shall denote by {tl ... t 2 ,+k} [11] an extended partition in the usual way
(see Fig. 1 and Fig. 2):

tl = =tn = Xo,

tn+k+1 = t2n+k = Xkh-,

tn+l <_''<tn+k = XI),...,7Xl,...,iXk, ... ,iXk.

S(n, m, du, A) is the spline space spanned by functions being piecewise in
S(n, da) [11]. Chebyshev B-splines in S(n, m, der, A) have compact support
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[ti, ti+n], and we shall henceforth assume that these are unique such splines
such that

n+K T j x = 1; 0.. n - 2, (3)
i=1

where K : = ni. We aim to show that for lower order Chebyshev splines,
one can express Chebyshev B-splines as linear combinations with positive
coefficients of B-splines with multiple knots. Hopefully, these can be computed
efficiently by some interpolating formula or otherwise. In Section 3 we give
some examples of how the theory can be used to construct Chebyshev B-
splines in some known polynomial cases, like weighted splines and q-splines,
but also in the non-trivial case of some other useful Chebyshev splines. To
achieve this, we need some technical results. One is the derivative formula,
stating that for x E [a, b], and a multiplicity vector m whose components
satisfy ni < n - 1 (i = 1,... k), the derivative of a T-spline is

T -- Tn-1 1 x

Li,daTida(X) -- "Td-.'+1 (4))ldr1)
CL- 1 (i) Cn-1(i + 1)W (4)

where
C _j (i) T -11 d`2. (5)

For continuous a, the proof is similar to that in [9]; a somewhat longer proof
involving only determinant identities exists, and relies only on the fundamental
theorem of integral calculus [11]:

b
f(b) - f(a) = Ll,daf(t)da2(t), (6)

which holds under very weak hypothesis on the measures.
In certain cases one may construct splines defined on triplets of knots

(Lagrangian splines) by a generalized Taylor formula. We give a variant of the
Taylor formula, amenable to generalization, that can be useful for lower order
Chebyshev systems:

Lemma 1. Iff and dg = (do2 ,... ,da 5 )T are such that Lif :-- Li,daf exist
and are measurable with respect to dai+1 ,(i = 1, ... 4) on [a, b], then

f(x) =f(a) + Lif(a) d0r2(s2) + L2f(a) du 2(s2) j dOa3(s3)

"- L3f(a) d•d2 (s 2 ) do 3 (s 3 ) j8 d0 4 (s 4 )

"+ do 2(S2) f2da3(s3) J3 dO-4(s4) J8 L4f(s5)dOus(s 5).
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Proof. The hypothesis and (6) enable us to use standard arguments of math-
ematical analysis in developing a Taylor series expansion

f(x) =f(a) + (Llf(S2) - Llf(a) + Lf (a))dU2(s 2)

= f(a) + Lif(a) fd 2 (s 2) + etc. ri

Lemma 1 is in fact a way of writing a Taylor expansion for L-splines,
see [13], pp. 425-426.

§2. A Knot Insertion Algorithm

We shall henceforth assume that Chebyshev B-splines TI3,d01) can be evaluated

at the knots in a numericaly stable way. This is a sound hypothesis, since
by (4),

Ti~da(X) _~ ~ r1 dl' T? 1O
C2(i) /TS2,,(1)a C 2(i + 1) Ti +ildOr() "

If we suppose that the multiplicity vector m is such that V3 dG E C[a, b] (that
is, ni < 2), then we have

d(ti+) = C2(i) i t, do

and
r t +2 1d r [ tiJ'3 T? 1 O 2Tzdr(t+2 Ti~l'dar(I)°' - 2i ) i1dr(1)°2

Thda(ti+2) 1 C2 (i + 1) + C 2 (i+ 1) Jt+l (' 2

Since the construction of two-interval supported "linear" splines is easy, sta-
ble evaluation of Tdu(ti+l), TVdG(ti+2) amounts to finding an integration
formula, preferably of Gaussian type. The important thing is that in this
case we do not have any dangerous subtractions potentially leading to large
floating point errors, as in (4).

Theorem 2. Let Tj3,dG(,) E S(3,m, da(1),A) be a Chebyshev 3 rd order B-

spline associated with the multiplicity vector m = (1,... 1)T, and let us as-
sume that T7 3,dO.(1) E S(3, fn, d,()), A) are Chebyshev B-splines associated

with the multiplicity vector in = (2,... 2 )T (Fig. 1) on the same partition. If
{tl,... tk+ 6} and {tl,... t 2k+6} are the associated extended partitions, and r
an index such that tj =tr< +,, then for j = 1,... k + 3,

T 3 -T 3+ d)(tj+l)3 + 3 
+T )T 3j,d4a( -=~~ ~ r, T+1,da(,) + T•,d(1) (tJ+2)Tr+2,dar(')
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XO X1 X2 X3 X4 X5 X6
1 1 I I I I

ti {i t4 t5 t6 t7 t8 t9 i14

t2 2  i4 46  i ilO tl0o1 5

t3 T3  45  i 7  i9 ill i13 tilt 1 6

Fig. 1. Double knots.

Proof: Let T3 = T 3 daG(). Since T3 (tj) = T3(tj+3)- 0 and the same
holds for the first generalized derivatives, we conclude that two out of three
coefficients representing TV on each interval of its support are zero. For

x E (tj,tj+l) we have that T3(tj+l) - 65(r)T,3(tj+l). Since (3) applied to

S(3, in, da(1), A) implies that T,3(tj+l) = 1, it remains to show that the mid-
dle coefficient equals 1. For x E (tj, tj+l), property (3) again leads to

T3L(x) + T](x) + Tj=+l(x) = 1.

We expand Tj3, i E {j - 1,j,j + 1} in S(3, in, da(1),A), and rearrange the
terms to obtain

T3'(x)[Tl(tj+l) + T(tj+1 )] + 65(r + 1) -3+l(X)

+ T3+2 (x)[T (tj+2) + T+ 2(tj+2 )] =1.

The expressions in square brackets are equal to 1 by (3) applied at the knots
tj+l,tj+2. But the partition of unity property must also hold for Chebyshev
B-splines in S(3, fa, da(l), A), and, since the expansion of unity in this space
must be unique, we have b53(r + 1) = 1. 0

The more important "cubic" version follows from Theorem 2 and the
derivative formula (4):

Theorem 3. Let TV dOd e S(4, m, da, A), T.,4d E S(4, th, du, A), and let m, fa
be multiplicity vectors as in Theorem 2. Then there exist positive 6J4(i), de-
pendent on da3 , such that TdG 4 = where r = r satisfies tj-~d z=r 631(0)T2La, hr jstslst

tri < irj+l. If the the extended partition is {tl,... tk+s}, and {ti, ... !2k+8}

is the extended partition with double interior knots, then 64(i), i = r,... r + 3
are explicitly determined by

V,(d-T3(1 (tj+l)C(r)

STJ,d(1)(tj+l)C(r) + Q(r + 1) + ,da(!) (tj+2)0(r + 2)'

rTda(1) (tj+l)0(r) + 4(r + 3)
TVda(,) (tj+l)C(r) + C(r + 1) + Tda(M(tj+2)0(r + 2)'

r+2 T?,da )(tj+ 2 )C(r + 2) + C(r + 3) + T3.l,dO(1)(t 3 +3 )C(r + 4)'

r+ld gc, (tj+3)C(r + 4)
t4 (r + 3) = V32) + C(r ± 3) '.,+l,dta(1) (tj+2)C(r +t 2)+ r + 3) 1,dta(l) (tj+3)C(r + 4)'
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where as in (5),
q(i)= U 7

= J g,dGr(1)~2 7
support

Proof: We expand Tj4,a in terms of less smooth T4

r+6

T7 4dG(X) Z 4 -
i=r-2

and apply (4) to obtain

T73dad(x) _ T3+l,da(X) 64 (i) -- 4(i _ 1))

C3 (j) C3(j±1) + p c3(i)

We may then use Theorem 2 to expand T3dg, and write a linear system

for 64, which has the above explicit solution. Details are omitted since the
construction very much resembles the construction of v-splines in [10]. E]

It is not difficult to prove that 51 are discrete Chebyshev splines, that is,
they form a partition of unity, i.e., -,i 654(j) = 1 [10]; this also holds for general
order splines.

We also note that coalescence of the knots yields an expression for a
complete "Chebyshev cubic" spline on triple partitions.

§3. Examples

We investigate how much of the above theory can be applied to some known
spaces of Chebyshev splines, and what special properties must be used to
obtain the stability of the algorithm for the evaluation of Chebyshev B-splines.

Remark 4. Minimizing elastic energy of an inhomogenuous rod leads to a
minimization problem for the functional

(E(s)I(s)u" (8))2 ds -* min,

where E is Young's modulus of elasticity, and I is the moment of inertia of its
cross section. We think of the rod as being made of pieces of different material
(E piecewise constant), or different cross section (I is piecewise constant) on
intervals [xi, xi+l) that partition [a, b). In either case, the Euler equation is
L4,daU := (wU")" = 0, where du := (dx, da, dx)T ), and da is the measure
generated by the piecewise constant density w := 1/EI, wl[x,,x,+l] =: wi.

In CAGD such splines are known as v-splines, introduced by Foley [2].
It follows from the variational formulation that v-splines possess continuous
derivatives, and that jumps in second derivatives must be continuous:

wi+iu"(xi) - wiu"(Xi) = 0. (8)
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If the breakpoints for w are points of the partition A, it is not difficult to see (2)
that (8) is equivalent to the continuity of the second generalized derivatives
L2,do across the knots. We may evaluate T4 dG by scalar products of positive,
known quantities; for instance it follows (with the knots enumerated as in
Theorem'3), that

4 723(4) -4 + -y3(4) + y3(5) 34 + -3(7) + -3(8) -i34B + 2M &4,

where
3(4) = , (t4 - t 2 ), -y2(5) = t4 - t3,

do 3 ,,l,2 , 4 )

y23(7) = t5 - t4 , 2y•(8) = do-(t4, t 6)

-y3 -= 1y((i) for 1 = 2,3.

One should note that !4 are ordinary polynomial splines (by raising the mul-
tiplicity of the knots we avoid the second derivative condition), and thus are
readily calculated by the de Boor-Cox recurrence. This is an example of a
Chebyshev system which is not an ECC-system, since do is generated by a
non-continuous density.

Remark 5. If do, in Remark 4 is a Lebesgue measure, the standard knot
insertion formula for a "homogenuous rod" i.e., cubic splines appears:

Ba 4 t3 - t2B-4 Tt4 - t2 +4 t6 - t4 -4 t6 -t4  4
t5 t2 5 -t2  t6-t3  t6 -t3

Remark 6. In the last polynomial example, we consider the q-splines intro-
duced by Kulkarni and Laurent [3], which are piecewisely linear combinations
of the functions in the canonical system {1, u2 , U 3 , U4}:

u 2(x) = dt 2 ,

u 3(x) = dt2 q(t 3) dt 3 ,

" t2 ft 3
U4(X) = Za dt 2 ]a q(t 3)dt3 Ia dt 4 ,

where q is piecewise linear:

qi+1 - qj (X ti)

hi :=t+ - ti, and qi > 0. This may be thought of as an elastic rod with
elastic properties changing in a reciprocally linear way; the more physically
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X0 X1 X2 X3 X4 X5 X6
SI I I I I I

tli i t5 t 6  t 7  t8  t9  tl0 i20

t2 t2  t5 t8 1  t14  t1 7  t11 t 21

t3 i 3  i6 i9  i85  t12 '2

t4 t4  t'7  t0 t13  t16 tl9 t1 3 t2 3

Fig. 2. Triple knots.

sound model in which material properties are changing linearly does not lead
to "Chebyshev polynomial splines" [7], but involves logarithmic weights, and
does not seem to be very useful.

Some parts of the construction can be made more explicit, i.e., (7) can
be integrated to obtain

hi- 2q + 2 q+1 1
C3(r - 1) =4- +

4 2qi qj+1 qj + 2q~i J
[ ih qi+2hi+l q h t i÷ h~ t q + •i 2

C(13() =! + hih + h j+h +1 + q~h~
4 Lqi + 2qi+l 2qj+j + 'h±2

We can stably calculate "parabolic" B-splines required by Theorem 2 in two
important points via

Ti3(ti+) =- hi(qj + 2qi+i) 73 (ti+2 ) hi+ 2 (2qi+ 2 + qi+3)
6C 2 (i) 6C 2 (i + 1)

where

C 2(i) = B2(t)q(t) dt= [(qi + 2qi+l)hi + (2 qi+i + qi+ 2 )hi+l].

One can in fact express t'
4 dG in terms of B-splines on a triple net (Bernstein

polynomials). The enumeration of the knots is as in Fig. 2, with quadruple
knots at both ends and triple knots ii in the interior. If s is an index such
that t, = i,- 2 = it- 1 = t8 < i,+l, then

T.4 1 2qz hi j35  1 (hi + h+l

- 3 (r -1) 2q-+q-+l 4 -2 + 4

qi+2 hi+l )b 5  + 1 qi+2 hi+j h5+ 2qi+,+qi+2 4 + 0 3(r) 2 qi+l + qi+2 4 s,

and an analogous result holds for t,4.

Remark 7. Let us now see how the theory may be applied to the "real"

Chebyshev case by considering tension splines with uniform tension parameter
that are piecewise in the null-space of the differential operator D 2 (D 2

- p2),
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where p > 0 is the tension parameter; see [4] for some more recent references.
We may factor the differential operator as

D(D + ptanhpx)(D - ptanhpx)D = ( 1 D)(cosh 2 pxD)( 1pD)D,
cosh px cosh px

and identify the measure vector du = (ds2 , coshps 3ds 3, OS_'_ý7,)T. Other

measure vectors may be used, but this has the advantage that Ll,do =_ D
maps the tension spline space to the space of hyperbolic splines, where nice
recurrencies exist. To apply Theorem 3, we need B-splines in the reduced
system [14]:

sinh
2 

(p/2)(x-tj) x E
sinh (p/2)(tj+2-tj) sinh (p/2)(tj+l -tj )'

sinh' (p12)(x-tj) sinh2 (p/2)(tj+2-X) +•

Td( sinh (p/2)(tj+2-t) sinh (p/2)(tj+ 2 -tj+1)j~ d~ r( ) = C s in h 2 (p / 2 ) (t j + 3 - X ) s in h 2 (p / 2 ) ( x - t j+ l x ) x E ( t l , j 2)

sinh (p/2)(tj+3-tj+,) sinh (p/2)(tj+2 -tj+l)' XE (tj+l, tj+2),

sinh2 (p/2)(tj+ 3 -x) T x (tj+2, tj+3),
sinh (p/2)(tj+3 -tj+l) sinh (p/2)(tj+3-t,+2) (

where the normalisation constant C : = cosh P2(tj+2 - tj+l) ensures the parti-

tion of unity (3). The problem of how to calculate TVda remains. If we use
techniques like in Remark 6 to express tension splines on triple nets, we finally
arrive at the numericaly nasty formula for a T-spline with support [ti, ti+1],
(h : = i - ti), that is 7 ,d sjn---h r is given by

(sinhph - ph) (cosh p(x - ti) - 1) - (coshph - 1)(sinhp(x - ti) - p(x - ti))
2(sinh ph - ph) (ph/2 cosh ph/2 - sinh ph/2)

The above formula is a special case of the integrated version of the derivative
formula (4). Taylor expansions may be used to calculate the above expression
for a small p (approx. p < 0.5 in double precision, IEEE standard), and also
an asymptotic formula for the ultimate almost linear spline, ideas similar to
the ones used by Rentrop [8]. In the middle range it is best to utilize the gener-
alized Taylor expansion from Lemma 1 in the vicinity of the inflexion point of

which is defined as the solution of the equation L3,d& 
4d0 .(ainflex) = 0.

On the standard interval [0, 1], one obtains ainflex. = • log exp (p)-p-1 . both
limits never approach boundaries.

For h = 1 we can thus obtain an absolutely stable formula in the range
0.5 < p < 700 with very few arithmetic operations. Translation invariance
of splines in tension enables calculation on any interval. We also note that
in order to have a complete algorithm, one must have a kind of Gaussian
integration formula in closed form to calculate the normalisation constants (5).

Acknowledgments. This research was supported by Grant 037011, by the
Ministry of Science and Technology of the Republic of Croatia.
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A Declarative Modeler for B-Spline Curves

Vincent Rossignol and Marc Daniel

Abstract. Declarative modeling aims at producing scenes or objects
from the user's requirements, and be will briefly introduced. We will then
present MDC, a Declarative Modeler for Curves, and the different ways
for describing curves. We mainly focus on our internal model which allows
us to simply manipulate B-splines curves preserving their properties.

§1. Introduction

The current geometric modelers make it possible to construct complex shapes.
Nevertheless, the designer has to describe the studied objects by means of
lists of coordinates, values or geometric primitives. This way of working,
called imperative modeling, is often complex and tedious, even if the associated
mathematical models are powerful.

Our goal through declarative modeling is to permit the creation of shapes
by only providing a set of abstract specifications, generally based on geo-
metric, topological or physical properties. The role of the computer is then to
determine and/or explore the universe of shapes corresponding to the given de-
scription. This approach assumes that the description is not overconstrained.
Moreover, the time used to describe the shape must be less than the time
required to define it by manipulating control points. We are more interested
with a "draft" than a very accurate result. A first attempt at declarative
modeling of a B-spline curve, and preliminary concepts have been described
in [1]. It has led to the new approach proposed in this paper. The method
used for the initial description of the properties required by the designer is
not very important in the current context, but must be as easy as possible. It
can be found in [5]. Declarative modeling is made up of 3 stages:

(1) the description stage, where the user's description is transformed into an
internal description,

(2) the generation stage, where the universe of solution(s) is constructed or
sampled from the internal representation,

(3) the presentation stage, where solution(s) is (are) presented to the user.
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The first stage is very important but will not be detailed here. It will
be just introduced in the next section. References can be found in [4]. The
generation stage transfers properties of a virtual curve into geometrical prop-
erties applied to the data of our mathematical B-spline model. We finally
have to manage a set of control points and a set of geometrical constraints.
The constraints link control points to the properties. We chose to focus the
paper on the presentation of this model and explain how it is set up.

During the presentation stage, the user has the opportunity to browse
through different sets of solutions and to select one of them. Moreover, he/her
can interactively move the control points. But each control point can only be
moved within a restricted region in which the geometrical constraints are
checked.

§2. Curve Description

The description stage in our modeler can be done through 2 methods:

9 The natural description consists of describing the properties of the
curves via pseudo-natural language. For instance, a user can enter a descrip-
tion like: "My curve begins at the top bottom of my workspace", "it has a
linear part in the middle", "it has two inflection points"... The description will
be translated into a semantic graph that represents properties on the curves
which is itself translated into our model presented in next section.

* The visual description is another way to enter properties on the
curve. For handling properties on the curve, the user can visually insert
properties with the mouse on the curve. Then, the computer will ask him
for other information. For instance, suppose that we have a curve which
corresponds to the natural description seen above. If the user wants to insert
a cusp before the linear part, he just has to select this part and asks the
computer to insert a cusp there. Then the modeler will ask for the right and
the left tangencies. In this mode, work is directly achieved on the internal
model.

§3. Constrained B-spline Curves

In this section, we will introduce the internal model for representing and
manipulating the curves. It must have three properties:

(1) be as near as possible to the B-spline model,

(2) contain the constraints yielding the description,

(3) allow the user to manipulate the curve preserving the properties.

3.1 Preliminary definitions

Definition 1. Let P be a point of R 2. We can associate in a formal way a
function of constraint -p with P whose goal is to restrict any part Z of R 2

according to a property (P-p(Z) C Z).
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Let C be a B-spline curve with (n + 1) control points. We actually are
interested in functions of constraint for control points Pi. As these functions
often have a generic formulation, it is sometimes convenient to replace the no-
tation Fpp with F(., i). A function of constraint reduces the region associated
to each constrained point:

Definition 2. A constrained point (P) is a triplet (P, Z,Y) defined by:
P, a point of R2 ,
Z, a convex subset of R 2 ,
Y, a set of functions of constraint applied to P.

We can now consider a B-spline applying this notion of constrained point.
The control polygon is no longer a list of points, but a list of constrained points.
It is named a constrained control polygon (next definition). So, with these
assumptions, the functions of constraint are set up to ensure properties and
to simply manipulate them. An example is proposed in the next section.

Definition 3. Let C be a cubic B-spline. A constrained control polygon is a
sequence of constrained points

I' = (Pi)i( 0,1,...,n},

with
Vi E {0,1,...,n},Pi = (Pi,Zi,-Yj).

Definition 4. Let II be a constrained control polygon on a B-spline C. A
constrained point Pi is called a valid constrained point iff

VF E Y , Zi C (z , i), (i.e. Zi= FZi)),

and Zi 5 0 and PA E Zi. If all the constrained points of 11 are valid, H is also
said to be valid.

3.2 An example of functions of constraint

We choose a simple property "a linear part on the curve". We consider a
cubic B-spline curve with a uniform knot vector. We define 4 functions called:
Lleft, LmidG, LmidL and Lright. We apply these functions on 4 consecutive
points of a constrained control polygon. L1l1, will be defined by

LeLft(Zi, i) = Zi n [Pi+l, Pi+2Pi+l),

where [Pi+l, Pi+2 Pi+1 ) represents the ray defined by

{PIP'+-P = k.Pi+ 2Pi+l, k E R+}.

One can see in Figure 1 that LZeft has been set up to reduce the region as-
sociated with a constrained point. In the same way, we can define LmidG



356 V. Rossignol and M. Daniel
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Fig. 1. LTet (]R 2 , i), LmidG(IR2
,i) L,-•ht(R 2 , i).

and LmidL for the two middle points, and Lright symmetrically as -ft,
see Figure 2:

LmidG(Zi,i) = Zi n [Pi- 1Pi+1 [, Lm.idL(Zj,i) = Zjn]Pj-IPj+j],

Lright(Zi, i) = Z, n [Pi-1,Pi-2Pi-O)

We can now state the property for the "linear part"

Proposition 1 (Linear functions of constraint). Let C be a cubic B-spline
and II a constrained control polygon on C. Assume that there exists i E
{,1,.., n - 3} and

Lleft E _77i, LmidG E Ji+1, LmidL E .Fi+2, Lright E 'Fi+3.

We assume the knot vector to be uniform for the part of the curve associated
with {Pi,Pi+l,Pi+2 ,Pi+ 3}. Then if H is valid, the curve has a linear part
defined by the line segment [Pi+l, Pi+ 2].

Proof: The above assumptions imply that for a valid control polygon,

Zi =A 0,Pi E [Pi+l,Pi2i'), Zj+j 0 0, Pj+j E [PiPi+2[,

Zi+2 5 0, Pi+2 E]Pj+iPi+ 3], Zi+ 3 # 0, Pi+ 3 E [Pi+2,Pi+IPi+2),

so that points Pi, Pi+l, Pi+ 2, Pi+3 are aligned. We can also notice that this
sequence satisfies

------------"2

PjPi+j = k.Pi+l P+ 2 , Pi+ 2Pi+ 3 = k .Pi+lPi+2, (k, k') (R+)2

Finally, the uniform knot vector yields that the line segment [Pi+±Pi+ 2] is a
part of C. 0

This example is very convenient. But in the same way, we defined func-
tions of constraint for properties like "cusp", "tangencies" etc.. An introduc-
tion to these constraints is available in [6]. This example emphasizes that
an organisation for the functions of constraint exists as described in the next
section.
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3.3 Pieces of control polygon

For defining a linear part on a cubic B-spline, four points are required.
Four functions are defined and inserted into the sets of the constrained control
points. But these four points are not strongly linked. We introduce a structure
linking points: this structure is called Piece of control Polygon (PcP).

Definition 5. Let II be a constrained control polygon on a B-spline curve C.
A Piece of control Polygon is a triplet (I, m, BP) where

* I is the first subscript of the constrained control points associated with
the PcP,

* m is the number of points associated with the PcP,
* BP is a bounding polygon for all the points of the PcP.

We can now define "typed PcP". The type will depend on the property
that the PcP handles. For example, a "linear PcP" will define a linear part
on the curve. In such a case:

"* I is the subscript of the first point associated to the linear PcP,
"* m=4,
"* BP, a bounding polygon for the linear PcP.

Then, if we have

Lieft E -I, LmidG E .FI+1, LmidL E TI+2, Lright E -I+3,

the curve has a linear part located in bounding polygon BP. As discussed
for the linear PcP, different types of PcP can be defined. We have currently
implemented, among others, Inflection PcP (for inflection point), Convex PcP,
Break point PcP. The curve can now be considered as a sequence of PcP.

Property 1 (Partition of the constrained control polygon). Consider a con-
strained control polygon II on a B-spline C and a PcP sequence on this poly-
gon. The PcP sequence must partition K. In other words, each point is in-
cluded in only one PcP. For a sequence (PcPi)iE{o,1,...,nPP)}, we have 1 o = 0,
I + mj = Ij+l, for all j E {0,1,..., npp - 1}, and Invo, + mn,,, - 1 = n.

This property involves two statements. The first is that any point must
be in a PcP. A point not pertaining to a PcP does not define any property, and
is not required. The second is that a point belongs to only one PcP in order to
ensure that no system of constraints on a point will be overconstrained. This
approach does not lead to a theoretical minimum number of points defining a
B-spline curve. Finally, we can say that the shape of the control polygon on
the PcP is based on the shape preversing theorem stated in [2].

3.4 Convexity between two PcP

As the B-spline is defined on H and not only on each PcP, B-spline curve seg-
ments exist, defined by points belonging to different PcP. These pieces, called
"neutral parts", must not introduce unexpected properties. Each neutral part
is defined with a control polygon Qi of four points. In order to avoid unex-
pected properties in a neutral part, 4 functions of constraints, called joining
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functions, are added to preserve the convexity of polygons Qj. They work
similarly to the linear functions seen in Section 3.2. For any PcP, an orien-
tation of the curvature can be associated with each tip of the corresponding
curve segment (clockwise or underclockwise). For two consecutive PcP, the
orientation of the curvature, called signature (signature sig is 1 or -1), must
be the same for both neighbouring tips, so that there is no possible inflection
on a neutral part.

3.5 Constrained B-spline

Definition 6. A constrained B-spline C is defined by
"* k, its order (currently equal to 4 - i.e.,cubic B-splines),
"* n + 1, the number of its constrained control points,
"* T, its knot vector,
"* II, its constrained control polygon,
"* npcp, the number of PcP in H,
"* PcP, the sequence of the Pieces of control Polygon,
"* (sigi)iE{2...n.PP}, the signs for the curvature of the neutral parts.

The first three components correspond to the classical components of a
B-spline curve. The knot vector is considered uniform (t,+l = tn, + 1) except
when a cusp is required on C. In this case, we need to increase the multiplicity
of one knot up to 3. For example, if we need to increase the multiplicity at tp:

tp-1 = t= tp+l, tp- 2 = tp - 2, tp+ 2 = tp + 2.

Otherwise, relation t 1i+ = t, + 1 is preserved.

Definition 7. Given a constrained B-spline C, C is said to be valid if its
constrained control polygon is valid. This definition is very important. If a
constrained B-spline is valid, all the properties imposed through the functions
of constraints are checked. We will also see in the next section that a point is
allowed to move within its associated region, preserving these properties.

BP,

g sign_-i

Fig. 2. A complete example of a constrained B-spline.
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A complete example of a constrained B-spline curve is illustrated in Figure
2. Three properties are required (an "inflection point", a "linear part' and a
"break point"). Region Z5 is the region where point P5 can move. All locations
in this region preserve the inflection point and the linear part. These locations
also ensure that no inflection will be created between the second and the third
PcP. Notice that the first and the last PcP are just here to begin and to end
curve, and do not have exactly the same behavior as the others.

We defined a function 6 which allows us to compute all the regions of
the constrained control polygon. For all constrained points, this function
initializes the associated region to R2 and applies all the constrained functions
to the region. We can finally state:

Property 2 (Move a point within its region). Let V be a valid B-spline, and
i a subscript of a constrained control point (0 • i < n). For all the positions
of Pi in Zi, the properties associated with the functions of constraints are
checked.

This property is one of the most important in the model. When a point
is moved within its associated region, a new valid constrained B-spline can be
obtained by applying function 6 to this new B-spline.

§4. Choosing an Initial Curve

The model we introduced can obtain the different solutions to the designer's
problem. Nevertheless, a first curve has to be computed. This section intro-
duces the main steps of this construction algorithm. To solve the problem, we
assume that a sequence of PcP is given (this sequence has been constructed
during the description stage which is not presented here). Defining the first
curve consists in finding a position for all control points so that the appli-
cation of function 6 leads to a valid constrained B-spline. The construction
algorithm is divided into 3 stages:

1) Choice of the signature vector,
2) Initialization of the regions,
3) Pick of the control point locations.

4.1 Choice of the signature vector

The signature vector describes the curvature between each PcP. As described
in Section 3.4, it is composed of npcp - 1 values in the set {+1, -1}. All
the configurations are not correct. For choosing the values in the vector, we
use relations depending on the types of the PcP (see Figure 3). When all the
relations between the entries of the vector are defined, an instance of these
entries are looked for. The solution is generally not unique. In such a case,
different families of solutions have to be investigated (see Figure 4). It may
happen that the whole set of relations is inconsistent. This corresponds to an
inconsistent description of the curve (for example, "a closed curve with only
one inflection') and no curve can be computed.
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Fig. 4. Another solution than those proposed Figure 2.

4.2 Initialization of the regions
The initialization stage formally sets all the regions to ]R2 , and reduces them
to the bounding polygon of the corresponding PcP. The reduction is then ob-
tained by a geometric construction for each function of constraint, one function
at a time. It may happen that an empty region is produced: the description
of the curve is inconsistent.

4.3 Choice of the control point location

The method cannot be detailed here. It is divided in two stages:
1) The location of the external (i.e., the first and the last) points of each

PcP is determined,
2) The location of the internal points (i.e., all others) are computed.

The first stage is achieved with a specific algorithm. The locations of
the first two external points are choosen. An attempt to find the location of
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Fig. 5. The curve of Figure 2 defined with less control points.

the next point is made. If no valid location is found, backtracking is started.
After a given number of failures, we claim that no solution can be computed,
without determining if there is no solution or if we are unable to find it. But
generally, a result is produced when it exists. The locations of the internal
points are deduced from specific heuristics which never fail.

Once the location of all the control points are computed, applying func-
tion 6 provides the valid constrained B-spline which can be now manipulated.

§5. Curve Improvement

In order to produce more interesting curves, final improvements have to be
applied on the constrained curves. They mainly concern the quality of the
control polygon which takes into account the spatial distribution of points,
and the reduction of the number of control points.

The quality of the control polygon is defined through a measure of quality
(result in interval [0, 1]). An increase of the quality is obtained by moving the
contrained control points one by one.

As we already mentioned, the number of control points can be too large.
Decreasing this number is important while preversing the shape of the curve.
General results have been proposed in [3]. As the important properties on
the curve and the control points handling these properties are known, our
algorithm is easier: first remove non-critical points for the properties, then
optimize the distance between the first curve and the reduced one. An example
is shown in Figure 5.

§6. Conclusion

MDC validates the approach described in this paper. Improvements of the
program are still necessary, but it already provides interesting results. A
declarative modeler does not exclude a classical modeler but can provide a
way for the user to eliminate the most tedious part of the design process.
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The declarative approach has another application: the produced curve
can be considered as a classical B-spline. Its properties can be kept so that
semantic information is available (which is not so far from form features in
CAD). This information would be useful in applying other algorithms after-
wards to the curve.
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Diffuse Curvature Computation for
Surface Recognition

J. M. Savignat, 0. Stab, A. Rassineux, and P. Villon

Abstract. Diffuse approximation is a local approximation scheme based
on a moving least square fit. Derivatives are estimated by a pseudo-
derivation operator which (under certain conditions) converges towards
the function derivatives. For this reason, we use it to compute curvature
over triangular surfaces as an extention of the fitting algorithm. We also
take triangle normals into account, which leads to a high quality curva-
ture estimator. We develop a surface recognition algorithm for triangular
surfaces based on this curvature computation on the one hand, and on
the topology described by the mesh on the other hand. Its application al-
lows us to treat successfully some real CAD models, implying that diffuse
approximation is a powerful tool for surface modelling, and for derivative-
based computations.

§1. Diffuse Approximation

We shall focus in this part on the 1D case because the extension to higher
dimensions only involves notational difficulties. Given a set of points (xi)iEI
in Q C R an open interval, with measures (Ui)iEI, we build locally an approxi-
mation of the underlying function u via an estimation of the Taylor expansion
of the function u. It should be noted that for any function u E Cm+l, the
Taylor expansion of order m exists at each point y,

- , X (k)~ (X Y) k fX(ty
U\ =LY4 U / -v! + ] 5 ( )! it (t) dt,

k=O

and that the polynomial part is an approximation of u near the point y.
The estimate uses some weight functions wi associated with each point

xi and locally supported around xi. We define I(x) = {i E I, wi (x) : 0} as
the set of indices of data points whose weight function is non-null at x. The
computation procedes by minimisation at a point y of the functional

S= Zwt(y(i) -

iEI
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with fti(x) = E ak(y)pk(x) and (py(x)) = (1, (x - y),..., ,. .). The
k=O

approximation ii of u and its derivatives are the coefficients ak: fi(y) = ao(y),
(x (y) = al(y), This approximation method was first proposed in [10], and

efficient computation was dicussed in [2].
The diffuse approximation properties depend mainly on the weight func-

tions wi. Their usual form is wi(x) = wref,-( ix-), where Wref is a reference

bell function with support (-1, 1), and pi is the influence radius of point xi.
We shall suppose that these radii are chosen so that the approximation exists
at any point x (i.e. Vx E Q, Card(I(x)) _> m). [3] and [4] presented a few
techniques to calculate such radii. With these definitions, the main properties
of fi are the following:

" ii has the same smoothness as Wref (e.g. if Wref C C2 , ii C C 2 ).

"* The approximation reproduces polynomial functions up to degree m.

"* i2 and the pseudo-derivatives 6 (k < m) converge to u and its derivatives
when the number of data points increases (see [16]).

"* The diffuse approximation is linear, and the shape functions defined by
fi(x) = E Ni(x)ui are local, supp(Ni) = supp(wi).

iEI(x)

§2. Hermite Approximation Scheme

We propose to also take differential data into account in the criterion 4y to
build a Hermite approximation scheme. Let (xj)j~j denote the set of points
at which some differential data vj = Dj(u)(xj) are known. We associate a
weight function wj with each point xj. The modified criterion is

gyj} = E-,Y(j(, , + E Ajwj(y)Ill j i(X) _ vjll2.
iEI(y) jEJ(y)

It is not restrictive to suppose that all the differential operators corre-
spond to the same operator D = Dt}L•E[1,n]. Then the vector {ck} is a solution
of the system

A(y){•a(y)} = {b(y)},

with

A(y) = PT(y)W(y)P(y) + A pLt(y)Wd(y)Pl(y),
1=1

n
{b(y)} = pTW(y)U(y) + A P1T(Y)Wd(y)Vy(y)'

1=1

where W(y) and Wd(y) are the diagonal matrix of weights wi(y) and wj(y)
respecively, P(y) = [PY(xi)]icl(Y) ,pO(y) = [D1(pY)(xj)]jEl(y) and U(y)

{UiliE-i(y), V(y) = {Vj~jaj(Y).
The previous properties remain valid for this new formulation. A similar

approximation method was proposed in [7] for dealing with boundary condi-
tions in a Galerkin method for partial differential equation.
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§3. Curvature Computation

Curvature is mainly used in the treatment of range images (see [1]), and most
algorithms were developed for these kind of data. In the paper [9], the authors
distinguished four types of algorithms: finite difference methods, the facet
model, geometrical methods, and fitting methods. The first two categories
only apply to depth maps, whereas the last two are more general.

As the geometrical methods are ad hoc contructions, we shall not exam-
ine them in this paper. The facet model described in [5] uses a polynomial
fit to compute more accurate finite difference formulas. The same idea was
used in [8] for generalized finite differences. Therefore, the last three meth-
ods are mainly of the same kind, and a diffuse model gives some theoretical
background to them.

Except for geometrical methods, curvature computation at nodes (i.e.
data points) is composed of four steps:

1) Extraction of the node neighborhood,

2) Calculation of a coordinate system in which the surface is a Monge patch
(i.e. there exists a function W such that the surface has the form (x, y, z =

(x, y))),

3) Evaluation of partial derivatives of the surface at the node,

4) Computation of curvatures.

The finite difference and facet model-based methods precompute some
steps to obtain faster estimates. A more extensive bibliography can be found
in [9] and [13].

Meshed surface curvature estimation can be done in one of the following
three ways:

1) Forget the mesh, and treat a 3D point set,

2) Use the mesh as a purely topological attribute,

3) Use the mesh to interpolate the data.

The paper [15] uses the second strategy: it applies a multiresolution
fitting method where the neighborhood of a node is defined through the tri-
angular mesh. " Different layers of connectivities define different levels of
neighboring relationships, e.g., the first level neighbors are the point with di-
rect connection with the node, the second level ones have direct connection
with the first level neighbors, and so on ". The third solution is difficult be-
cause it needs high continuity elements which are difficult to build; but [12]
shows a solution based on G2 continuity which is not robust to element shape
[13]. Our method is of the second kind.

§4. Diffuse Curvature Computation

The diffuse curvature computation uses both the point positions and some
normals (e.g. triangle normals in this paper). We focus on the computation
at the nodes only, which will help in the definition of the parameters of the
diffuse algorithm. The polynomial basis is (1, x, y, x 2 , XY, y 2) which allows the
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Fig. 1. Neighborhood selection.

evaluation of second-order partial derivatives needed for curvature computa-
tion.

We shall follow the four steps described above to compute curvature at a
node xi. Neighborhood extraction is based on the following weight functions:
wi is such that wi(xi) = 1, wi(xi,) = ½ if node xi, is connected to xi and
wi(xi,) = 0 otherwise. The weight function of a normal is defined with the
dashed triangulation (Figure 1, right). For smoothness reasons, we add the
gray nodes to evaluate curvature at nodes on the border with only three edges
(Figure 1, center).

We then compute local coordinates using an algorithm based on principal
component analysis, and estimate the partial derivatives of the Monge patch
(i.e. of function v) defined by the data points with the pseudo-derivatives of
the diffuse approximation at point xi. Finally, principal curvatures k, and k2
are computed with their associated directions.

A numerical study of the proposed method is given in [13], and shows that
it gives at least as good results as the fitting method with smaller dependence
neighborhoods, which is an important factor for surface recognition. It shows,
moreover, that A has to be small.

§5. Surface Recognition

Surface recognition is the first step in reconstructing a CAD model from a
triangular mesh. We shall suppose in the following that the considered surface
satifies the following hypotheses:

Ho: The surface is composed of parts of planes, cylinders, spheres, cones and
torii (called patches).

Hj: Each patch contains at least one interior node.

H2: Patch intersection are contained in the mesh (i.e. they are described by
some edges chains).

Under these hypotheses, the above-mentioned diffuse curvature computation
always estimates the real surface curvature at nodes interior to a patch (H1
and 112), because data are taken from the right surface. This is not the case
with usual techniques (mainly the fitting method). This property is essential
to proving that the recognition algorithm correctly classifies each node of a
surface under the hypotheses HO, H, and H2 [14].
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The recognition algorithm is composed of four steps.
Firstly, an initial classification (based on hypothesis HO) is proposed with

the following rules applied sequentially:

"* If k, k2 = 0, the nodes is a PLANE node.

"• If k2 0 and k' = 1, the node is a SPHERE node.

"* If k2 # 0 and k 5 1, the node is a TORUS node.

The classification of non-classified nodes uses their comparison with connected
nodes:

"* If all connected nodes have the same k, and associated direction, the node
is a CYLINDER node.

"* If they have same k, and different directions, the node is a TORUS node.

"* The node is a CONE node otherwise.

Secondly, we check the consistency of the initial classification with hypotheses
H0 , H1 and H2 . For example, a cone-cylinder intersection node is classified
as a TORUS node. The basic idea of this consistency check is that classified
connected nodes must form some connected homogeneous sets (as a conse-
quence of 112). From the study of intersections between the five primitives, it
is possible to define three consistency rules (that are shown to be sufficient in
[14]):

"* For all connected nodes of different kinds: if one of them is a PLANE
node unclassify the other one, otherwise if one of them is a CYLINDER
node, unclassify the other one. Unclassify both nodes in other cases.

"* If two connected nodes are both TORUS nodes with different ki, unclas-
sify both nodes.

"* If two connected nodes are both SPHERE nodes with different k2, un-
classify both nodes.

At this stage, we obtain some germs that are homogeneous connected sets of
nodes. We shall grow these germs to classify the whole surface via a marching
algorithm.

Thirdly, we consider a classified node n and the patch P to which it
belongs. From hypothesis H2, for any triangle T = (n,m,p) we can claim
that

1) T and its edges nm and np belong to the interior of P,

2) Nodes m,p and edge mp belong to P.

Therefore, nodes m and p are either in the interior of the patch P or on
the intersection of P and another patch. This analysis forms the topological
operator of the marching algorithm.

The next step is then to check whether nodes m and p are interior nodes or
intersection nodes. This decision is based on two rules which use geometrical
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Fig. 2. (a) Initial classification (b) Consistent classification.

information. The first rule concerns connected triangles and their connecting
edge.

"* If one of the triangles is not classified, do nothing,.

"* If both triangles are of the same kind and a vertex of the common edge
belongs to an intersection, classify the other vertex as an intersection
node.

"* If the triangles are of a different kind, the vertices of the common edge
are intersection nodes.

The second rule is node-based. It looks at the classification of the con-
nected nodes: If this list is not homogeneous, then the node lies on an inter-
section. If it is homogeneous, some tests based on the same ideas as the initial
classification allow us to check whether the node belongs to a surface or to an
intersection of two surfaces of the same kind (this situation may happen after
some iterations of the marching algorithm). The iteration of the topological
operator and the two classification rules grows the germs of the consistent
initial classification.

Figure 2 shows that the initial consistency algorithm may kill all poten-
tial germs of some patches. Provided that hypothesis H1 is valid, some post

treatment can be applied to this situation. The basic ideas of these treatments
are the same as those being used in the main recognition algorithm. This is
the fourth and last step of the classification.

§6. Conclusion

Under the additional hypothesis that curvature computation is exact (113), the
recognition algorithm is successful i.e. If the Hypotheses Ho to H3 are valid,
the recognition algorithm classifies correctly all the nodes of a triangulated
surface. Triangles are classified except for those which are based on three
frontier nodes. These triangles can be classified in a subsequent model fitting
stage. The third hypothesis is restrictive, but numerical experiments showed
that the algorithm is succesfull as soon as the surface satisfies hypotheses H0 ,
HI and H2 .
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Fig. 3. Two real CAD meshed models.

Table 1 shows the relative number of correctly classified nodes after each
step of the algorithm. The first surface satisfies all three hypotheses H0 , H1
and H 2. The second surface does not satisfy hypotheses HO and H1 . As a
consequence, some nodes are not classified, and each unclassified node is link
to a hypothesis violation.

example 1 example 2

Initial classification 95 % 99.9 %

Consistency 87 % 80 %

Marching 98 % 88 %

Post treatment 100 % 88 %

Tab. 1. Relative number of classified nodes.

In conclusion, the use of the Hermite approximation scheme we proposed
in this paper allows us to build a simple but efficient recognition algorithm.
The numerical experiments showed that the Hermite Diffuse Approximation
is a powerful tool for surface analysis and partial derivatives estimation. The
curvature computation was also used in [11] in a remeshing scheme.

The quality of the curvature estimation on CAD models will help to en-
large the number of surfaces taken into account. Furthermore, [6] showed
that Moving Least Square approximation can be applied directly to surface
modeling. This approach may be useful for still better curvature estimation.
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Discrete Fairing of Curves and Surfaces
Based on Linear Curvature Distribution

R. Schneider and L. Kobbelt

Abstract. In the planar case, one possibility to create a high quality
curve that interpolates a given set of points is to use a clothoid spline,
which is a curvature continuous curve with linear curvature segments. In
the first part of the paper we develop an efficient fairing algorithm that
calculates the discrete analogon of a closed clothoid spline. In the second
part we show how this discrete linear curvature concept can be extended
to create a fairing scheme for the construction of a triangle mesh that
interpolates the vertices of a given closed polyhedron of arbitrary topology.

§1. Introduction

In many fields of computer-aided geometric design (CAGD) one is interested
in constructing curves and surfaces that satisfy aesthetic requirements. A
common method to create fair objects is to minimize fairness metrics, but since
high quality fairness functionals are usually based on geometric invariants, the
minimization algorithms can become computationally very expensive [10].

A popular technique to simplify this approach is to give up the parameter
independence by approximating the geometric invariants with higher order
derivatives. For some important fairness functionals this results in algorithms
that enable the construction of a solution by solving a linear equation system,
but such curves and surfaces are in most cases not as fair as those depending
on geometric invariants only.

An interesting approach to simplify the construction process without giv-
ing up the geometric intrinsics is to use variational calculus to derive differen-
tial equations characterizing the solution of a minimization problem. Mehlum
[8] used this idea to approximate a minimal energy curve (MEC), which min-
imizes the functional f W"(s) 2ds, with piecewise arc segments. In [1] Brunnet
and Kiefer exploited the property that a segment of a MEC between two in-
terpolation points satisfies the differential equation tr" ± =_ 0 to speed up

the construction process using lookup tables.
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The usage of such differential equations based on geometric invariants
can be seen as a reasonable approach to the fairing problem in its own right,
and it can be applied to curves as well as surfaces. For planar curves, one
of the simplest differential equations is K" = 0. Assuming arc length param-
eterization, this equation is only satisfied by lines, circles and clothoids. A
curvature continuous curve that consists of parts of such elements is called a
clothoid spline. Most algorithms for the construction of such curves are based
on techniques that construct the corresponding line, circle and clothoid seg-
ments of the spline [9]. This is possible for planar curves, but the idea does
not extend to surfaces.

In this paper we will first present a fast algorithm to construct an inter-
polating closed discrete clothoid spline (DCS) purely based on its characteristic
differential equation. Our algorithm uses discrete data, because this has been
proven to be especially well suited for the efficient construction of nonlinear
splines [7]. The efficiency of our construction process is largely based on an al-
gorithm called the indirect approach. This algorithm decouples the curvature
information from the actual geometry by exploiting the fact that the curvature
distribution itself is a discrete linear spline. Besides the speed of the planar
algorithm, it has another very important property: it directly extends to the
construction of surfaces!

In Section 2 we give a short review of related work. Section 3 will first
give an exact definition of a DCS and then address its efficient computation.
Section 4 shows how the planar algorithm extends to surfaces. We construct
fair surfaces interpolating the vertices of a given closed polyhedron of arbitrary
topology by assuming a piecewise linear mean curvature distribution with
respect to a natural parameterization.

§2. Related Work

A very interesting algorithm addressing the problem of constructing fair curves
and surfaces with interpolated constraints was presented by Moreton and Se-
quin. In [10] they minimized fairing functionals, whose fairness measure pun-
ishes the variation of the curvature. The quality of their minimal variational
splines is extraordinary good, but due to their extremely demanding con-
struction process, the computation time needed is enormous. Their curves
and surfaces consisted of polynomial patches.

In contrast to this approach, most fairing and nonlinear splines algo-
rithms are based on discrete data. Malcolm [7] extended the discrete linear
spline concept to efficiently calculate a discrete MEC for functional data. In
[13] Welch and Witkin presented a nonlinear fairing algorithm for meshes of
arbitrary connectivity, based on the strain energy of a thin elastic plate. Re-
cently, Desbrun et al. [3] used the mean curvature flow to derive a discrete
fairing algorithm for smoothing of arbitrary connected meshes.

In most fairing algorithms the original fairing functionals are approxi-
mated by simpler parameter dependent functionals. In recent years this idea
was combined with the concept of subdivision surfaces to create variational
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subdivision splines [12,6,4]. Especially [4] should be emphasized here, since
our local parameterization needed in Section 4 is largely based on ideas pre-
sented there.

Instead of minimizing a functional, Taubin [11] proposed a signal process-
ing approach to create a fast discrete fairing algorithm for arbitrary connec-
tivity meshes. Closely related but based on a different approach is the idea
presented by Kobbelt et al. [5], where a uniform discretization of the Laplace
operator is used for interactive mesh modeling. In [3] Desbrun et al. showed
that a more sophisticated discretization of the Laplace operator can lead to
improved results. The direct iteration approach presented later can be seen
as a nonlinear generalization of such schemes.

§3. Discrete Clothoid Splines

In this section we show how to interpolate a closed planar polygon using a
discretization of a clothoid spline. Although the algorithms extends to open
polygons with G1 boundary conditions in a straightforward manner, we only
consider closed curves, because that case directly extends to surfaces.

3.1 Notation and definitions

In the following we denote the vertices of the polygon that has to be inter-
polated with P = {P1,...,P.}. Let Q = {Q,,...,Qm} be the vertices of
a refined polygon with P C Q. The discrete curvature at a point Qi is de-
fined to be the reciprocal value of the circle radius interpolating the points
Qi-1, Qj, Qi+j or 0 if the points lie on a straight line, which leads to the well
known formula

det(Qi - Qi-i, Qi+1 - Qi)
M2 IQi - Qi-lII IIQi+1 - QiI1 IIQi+1 - Qi-lII (1)

Definition 1. A polygon Q with P C Q is called a discrete clothoid spline
(DCS), if the following conditions are satisfied:

1) The interior of each segment is arc length parameterized

IIQ-i- - QjI[ = IIQj - Qj+xII, whenever Qj 0 P,

2) The discrete curvature is piecewise linear:
A2-. = Ki-1 - 2,j + i-+1 = 0, whenever Qi V P.

We will construct a DCS using an iteration procedure Qk : Qk+1 until

the above conditions are sufficiently satisfied. The iteration starts with an
initial polygon Q0 that interpolates the Pi (Fig. 1).

3.2 Direct approach

In this approach the location of a vertex QOY+l only depends on the local
neighborhood Q0-,• • , Qi+ 2 of its predecessor Qk. To satisfy condition 1 in

Definition 1 locally, QI+l has to lie on the perpendicular bisector between
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Fig. 1. The left side shows the update steps for Qý in the direct and the indi-
rect iteration. The right side shows the initial polygon Q0 . We simply
subsampled the polygon P.

QZ- 1 and Qi+ 1 (Fig. 1), reducing the 2 variate problem to a univariate one.

Further we require Q-+l to satisfy A 2,•k+l = 0. Unfortunately this equation
is nonlinear in the coordinates of the vertices Qk+l, but since the update
Q ,. Qk+' in the k-th iteration step will be small, we can linearize the
equation by using the coordinates of Qk instead of Qk+1 in the denominator
of equation (1). This allows us to update every Qý solving a 2 x 2 linear
system for Qi +1 during one iteration step.

3.3 Indirect approach

If we decouple the curvature values r,"+l from the actual polygonal geome-
try and perform the direct iteration scheme only on the curvature values by
solving A2 nK+l = 0, the curvature plot would converge to a piecewise linear
function. The idea of the indirect approach is to use this property to cre-
ate a new iteration scheme. This is done by dividing each iteration step into
two sub-steps, in the first sub-step we estimate a continuous piecewise linear
curvature distribution, and in the second sub-step we use those as boundary
conditions to update the points Qk. We get the curvature distribution by esti-
mating the curvature of the polygon Qk at every point Pi, and interpolate this
curvature values linearly across the interior of the segments, assigning a cur-
vature estimation kk+1 to every vertex Qý. In the second step this curvature
information is used to update the points Qý, where the position of the new
point QýC+ is determined by Rk+

1 and the neighborhood Qý 1, Qýc Qk 1 of its
predecessor Qý (Fig. 1). Again one degree of freedom is reduced by restricting
-•+' to lie on the perpendicular bisector between the points Q 1 andQ

and further we require Qý+' to satisfy k+1 = Rk+1. Using an analogous
linearization technique as in the previous case, we can again update every Qý
solving a 2 x 2 linear system. It is very important to alternate both sub-steps
during each iteration. Since the &R,' are only estimates of the final DCS, an
iteration process that merely iterates the second sub-step might not converge.

Compared to the direct approach, the indirect iteration scheme has some
interesting advantages. The interpolation points imply forces everywhere dur-
ing one iteration step; there is no slow propagation as in the direct approach.
The direct approach acts due to its local formulation as a lowpass filter, here
because of its global strategy the indirect iteration is much better suited to
reduce the low frequency error. One iteration step is cheaper than one itera-
tion step of the direct approach. This fact will become much more important
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Fig. 2. a) A polygon P with 8 vertices. b) The DCS interpolating the vertices
of P. The structure of the polygon is equivalent to a 5 times subdivided
P. The calculation time was < 0.1 seconds. c) Periodic C 2 cubic spline
interpolation of P. d) Curvature plot of the DCS. e) Curvature plot of
the periodic cubic spline.

if we extend the algorithms to the surface case. Finally, since the estimated
curvatures are constructed by linear interpolation they are well bounded, a
fact that stabilizes the iteration procedure.

3.4 Details and remarks

Both schemes were implemented using a generic multigrid scheme, a technique
that has proven to be valuable when hierarchical structures are available [4].
We first constructed a solution on a coarse level, and used a prolongation of
this coarse solution as starting point for an iteration on a finer level. Apply-
ing this strategy across several levels of the hierarchy, the convergence of both
approaches are increased dramatically. On the coarsest hierarchy level the
initial polygon was constructed by linearly sampling the polygon P (Fig. 1).
The curvature values at the interpolation points Qi E P needed in the esti-
mation step were calculated by simply applying formula (1) on Qj. Without
the multigrid approach, such a simple strategy would not be reasonable, be-
cause for fine polygons the occurring curvature values could become too large.
Our final iteration scheme for the DCS is a combination of the two primary
multigrid iterations. Such an approach has the advantage that the estimated
curvatures are usually better, since the high frequency error near the inter-
polation points are smoothed out by the direct step. This multigrid hybrid
approach turned out to be a very reliable solver.

All examples throughout the paper were implemented in Java 1.2 for
Windows running on a PII with 400MHz. In Figure 2 we see that our al-
gorithm still produces a fair solution in cases where classical periodic cubic
spline interpolation using chord length parameterization fails completely. In
this example we can also see why it is not only comfortable to be able to start
with such a simple initial polygon Q0, but also can be very important in some
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Fig. 3. Wireframe of a mesh P and the solutions of a 2 times resp. 3 times
subdivided mesh. Iteration times: middle 0.2s, right z 0.4s.

cases. Our algorithm searches the solution next to the starting polygon, so
taking Q0 to be a a linearly sampled P will prefer solutions without loops.
A technique that would use the periodic cubic spline to initialize Q 0 in this
example would either fail because of the enourmous curvatures that turn up,
or produce a DCS with loops.

It is well known that clothoids can be parameterized using Fresnel Inte-
grals [9]. If such a continuous solution is preferred, the discrete solution could
be used to derive a closed form representation.

§4. Closed Surfaces of Arbitrary Topology

In this section we want to show how to extend the concept of planar clothoid
splines to closed surfaces of arbitrary topology. Given a closed polyhedron
P of arbitrary topology, we construct a discrete fair surface that interpolates
the vertices of P. To be able to extend the planar algorithms, we first have
to determine what curvature measure for surfaces has to be used. Accord-
ing to Bonnet's uniqueness problem, the mean curvature seems to be most
appropriate.

4.1 Notation and definitions

In the following, we denote the vertices of the polyhedron that has to be
interpolated by P = {P 1,...,PJ}. Let Q = {Q1,...,Q m} be the vertices
of a refined polyhedron with P C Q, where we require the topological mesh
structure of Q to be equivalent to a uniformly subdivided P (Fig. 3). Because
of this structure, we can partition the vertices of Q into three classes. Vertices
Qi E P are called interpolation vertices, Qi that can be assigned to an edge of P
are called edge vertices, and the remaining points are called inner vertices. Edge
and inner vertices Qi always have valence 6; for those points let Qi,, 1 1..6
be their adjacent vertices. For edge vertices we make the convention that the
adjacent vertices are arranged such that Qi,1 and Qi,4 are edge or interpolation
vertices. Let Hi resp. Hi,1 be the discrete mean curvature at Qi resp. Qil and
let ni be the discrete unit normal vector at Qi. Finally, let us define the
following operators:

1/6 E6_1 Qi,l, if Qi is an inner vertex,
gp(Qi)-- 1/2 (Qi,=i + Qi,4), if Qi is an edge vertex,



Discrete Fairing of Curves and Surfaces 377

Fig. 4. Left) Parameter domain for an inner vertex. Middle) Parameter domain
for an edge vertex. Right) The parameter domain for an interpolation
vertex of valence 5 is a subset of this domain.

gh(Hi) 1/6 E6=I Hi,1 , if Qi is an inner vertex,

1/2 (Hi,1 + H=,4), if Qj is an edge vertex.

We are now in the position to extend Definition 1 to the surface case.

Definition 2. The polyhedron Q will be called a solution to our discrete
fairing problem, if the following conditions are satisfied:

1) The vertices Qj are regularly distributed. For all edge and inner vertices,
there should be a ti E R such that Qj = gp(Qi) + tiii,

2) The curvature is linearly distributed over each face: gh(Hi) = Hi.

Condition 2 is straightforward, it states that the mean curvature is chang-
ing linearly with respect to the barycentric parameterization of the inner and
edge vertices. Condition 1 is more difficult to understand. It generalizes the
DCS property that vertices in the interior of a segment were on the perpen-
dicular bisector between its neighbors.

As in the planar case, we construct the surfaces using an iteration Qk

Qk+l, starting with an initial polyhedron Q0 .

4.2 Discretization of the geometric invariants

Our discretization technique is based on the well-known idea of constructing a
local quadratic least square approximation of the discrete data and estimating
the needed geometric invariants from the first and second fundamental forms.
For the mean curvature H, this means [2]

H eG - 2fF + gE

2 EG - F 2  (2)

where E, F, G are the coefficients of the first fundamental form, and e, f, g are
those of the second fundamental form of the least square approximation.

Instead of recalculating a local parameterization during each step in the
iteration, we exploit the fact that our meshes are well structured to determine
a local parameterization in advance, thus raising the speed of our algorithms
considerably. The decision, which local parameterization should be assigned to
a vertex Qj was influenced by three mayor constraints: simplicity, regularity
and uniqueness of the quadratic approximation. These constraints lead us
to the following local parameterization classes (Fig. 4). For inner vertices, the
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parameter domain is a regular hexagon, for edge vertices it is composed of two
regular hexagon halves. Calculating the matrices needed for a least square
approximation in both cases, it is easy to see that this parameterizations
always lead to a unique least square approximation. Only at the interpolation
vertices it is not always sufficient to use the 1-neighborhood. This is obvious if
the valence v of the vertex is 3 or 4, but even if the valence is higher, the least
square approximation can fail in the 1-neighborhood. Using parts of the 2-
neighborhood consisting of regular sectors solves that problem. For example,
the least square approximation is already unique by using the 1-neighborhood
and one complete sector of the 2-disc (marked with a,b,c in Fig. 4).

Since we are only interested in intrinsic values, we can use the fact that an
affine mapping of the parameter domain only changes the parameterization of
our quadratic approximation, but not geometric invariants. This fact allowed
us to chose one fixed equilateral hexagon to serve as parameter domain for all
inner vertices, and guaranteed a simple update step for such points.

At edge and interpolation vertices, we calculated the parameter domains
by applying the blending technique proposed in [4]. This algorithm constructs
a local parameterization that adapts to the underlying geometry defined by
P, thus approximating a local isometric parameterization. For a detailed
description of that algorithm we have to refer to that work.

4.3 Direct approach

When updating the vertex Qý in an iteration step, the new position is de-
termined by the two equations Q 1+' = gp(Qý) + tjilý and Hi+l = gh(Hi).
With analogous arguments as in the curve setting, we linearized the mean
curvature expression (2) for H2 +l by using the vertices of Qk to calculate the
coefficients of the first fundamental form E, F, G and by replacing the normal
nk+l by ni when calculating the coefficients of the second fundamental form.
Finally, the vertex Q 1+' is determined by solving a linear equation for ti.

4.4 Indirect approach

The planar indirect iteration scheme directly extends to the surface setting.
In the first sub-step we estimate the mean curvature of the polyhedron Qk at
the interpolation vertices and use simple linear interpolation to assign a mean
curvature value !lik+l to every edge and inner vertex Qý. This means the
estimated values satisfy = gh(Hkj). In the second sub-step we then_ý+l= ghft%+l)

use these estimated values to determine QI+1 using the formula Hik+l = ik+l

with the same linearization method as in the direct approach.

4.5 Details and remarks

Since the vertices are updated along the surface normals, the direct itera-
tion can be interpreted as some kind of curvature flow, where the speed is
determined by a local equation system. As was pointed out by Desbrun et
al. [3], flows depending only on local surface properties do not have to be
numerically stable for large steps during the iteration process. To allow larger
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Fig. 5. Left) Tetra Thing mesh. Right) Solution of the multigrid indirect itera-
tion after the Tetra Thing has been subdivided 5 times. The reflection
lines indicate that the surface is quasi G2 continuous. Iteration time:
; 4 seconds.

update steps, Desbrun et al. used the backward Euler method to develop an
algorithm called implicit integration for fairing of arbitrary meshes based on
Laplacian and on mean curvature flow. The idea behind this approach is to use
global surface information instead of considering the local neighborhood only.
The indirect approach follows that idea and exploits global surface properties
efficiently.

In the surface case the indirect approach shows its true power. The esti-
mation sub-step is mostly simple linear interpolation and using the estimated
curvature, we only need the 1-neighborhood of a vertex during its update
process. The update process for interior vertices is especially simple because
of the equilateral hexagon as parameter domain. For edge and interpolation
vertices, we calculated the least square matrices before the first iteration step
and cached the result. Our surface examples were created using a mutigrid
iteration scheme based on the indirect approach.

As mentioned earlier, the construction of our local parameterization is
based on the technique presented in [4J, where divided difference operators
to create discrete thin plate splines had to be derived. A comparison of our
results showed that the ideas presented in this paper allow the construction
of considerably improved meshes without increasing the computation time.
The improved quality is due to the fact that our discrete surfaces are based
on geometric invariants instead of second order partial derivatives, and thus
the error made by guessing an isometric local parameterization in advance has
less influence. Due to the fact that we estimated the local parameterization
once, we do not get an exact G2 continuity at the edges and interpolating
points, but as can be seen in Figure 5, our surfaces are good approximations
to G2 surfaces. To achieve true G2 continuity, one would have to increase the
effort for the handling of edge and interpolating vertices. Future work will
investigate if such efforts are worthwhile.
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§5. Conclusion

The quality of the resulting curves and surfaces is superior to approaches based
on quadratic functionals as the thin plate energy due to the more sophisticated
approximation of geometric invariants. Although our objects are nonlinear
splines, they can be calculated fast enough to be applicable in interactive
design. The presented ideas are optimally suited for the construction of curves
and surfaces with piecewise linear curvature distribution, but could also be
extended to higher order discrete fairing approaches.
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Triangulating Trimmed NURBS Surfaces

Chang Shu and Pierre Boulanger

Abstract. This paper describes techniques for the piecewise linear ap-
proximation of trimmed NURBS surfaces. The problem, called surface
triangulation, arises from many applications in CAD and graphics. The
new method generates triangular meshes that are adaptive to the local
surface curvature. We use efficient data structures for the handling of
trimming curves. We also generate Delaunay triangulation on the surface
to improve the quality of the meshes.

§1. Introduction

Tensor-product NURBS are widely used in today's CAD systems for describing
and exchanging surface geometry. For many applications, however, piecewise
linear approximations of smooth surfaces are required. Examples of these ap-
plications include finite element analysis, stereo-lithography, and visualization
of geometric models. In these applications, we need to generate a triangular
mesh that approximates the original surface within a given tolerance. We refer
to this problem as surface triangulation, stated in'the following definition.

Definition. Given a NURBS surface N(u, v), its trimming boundary, and
a real number E, the surface triangulation problem is to find a set of linearly
parameterized triangles {T2 } such that

1) Any triangle T, satisfies sup lITd(u, v) - N(u, v)II < E.
2) For any triangle edge not on the boundary, there is exactly one neighbor-

ing triangle sharing this edge.

The first condition is usually called chord height tolerance, which restricts
triangles to be close to the surface. The second condition requires the trian-
gular mesh to be topologically correct.

A good surface triangulation algorithm is expected to be efficient because
real world models tend to contain large numbers of surface patches. Further-
more, certain optimization factors are desirable. Two of the most important
ones are triangle shape and the number of triangles in the mesh. For exam-
ple, in finite element analysis, triangles with bad aspect ratio (one angle is
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significantly smaller or larger than the others) reduce the solution precision.
In all applications, a mesh with a small number of triangles saves computing
and transmission time as well as storage space.

Several authors [4,6,8,14] have approached the surface triangulation prob-
lem by computing a bound on the length of triangle edges in parametric space
so that if all triangles have their edge lengths smaller than the bound, the
resulting triangulation satisfies the chord height tolerance. Since the edge
length bound applies to the whole surface, the density of the triangulation
distributes uniformly across the surface and may lead to unnecessarily large
mesh size. Along another line of thought, Klein and Stral3er [5] considered
the problem of placing points based on the surface curvature. Recently, Piegl
and Tiller [11] used adaptive subdivision of the surface. Obviously, for a given
chord height tolerance, adaptive algorithms generate fewer triangles than the
uniform subdivision algorithms. But adaptive algorithms tend to be slower.

In this paper, we give a method that has the following features:

1) adaptive to the surface curvature,

2) efficient insertion of the trimming curves,

3) triangle shape improvement.

Our general strategy is that we first approximate the surface with hierar-
chical quadrilaterals without considering the trimming curves, then we insert
the trimming curves and triangulate the quadrilaterals. The result is a trian-
gulation that satisfies the chord height tolerance. We improve the efficiency
of trimming curve insertion by organizing the quadrilateral hierarchies in a
quadtree structure. Also, we improve the quality of the triangles by convert-
ing the initial triangulation to a Delaunay triangulation.

§2. Curve and Surface Subdivision

We begin by discretizing the surface and its trim curves independently. We
assume that the surfaces are trimmed in the parametric domain and the trim-
ming curves are represented as NURBS with consistent orientation. Our first
objective is to approximate the curves with connected line segments such that
they do not deviate from the surface more than the tolerance -. From well-
known results in B-Spline theory [7,10], a NURBS curve can be split into two
pieces without changing its shape by inserting new knots. The consequence
of this splitting is that we introduce new control points that are closer to the
curve than the control points of the original curve. If we keep dividing in this
way, the control polygon converges to the surface. When a sub-curve's control
polygon becomes "flat" enough, we can stop the dividing process. Accord-
ing to the convex hull property of NURBS, the maximum distance from any
point on the sub-curve to the line segment joining the two end control points
is bounded by the maximum distance between control points to the segment.
Therefore, we can use this bound to control the flatness of the sub-curves.

The surface can be approximated in the same way by quadrilaterals. At
this time, we ignore the trimming boundary. Here, we insert knots in both u
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Fig. 1. Full surface subdivision.

and v directions. The flatness test is a little more complex. We examine every
row and column of the control polygon and test their flatness. We also have
to consider the twist factor of a surface patch. Peterson [9] gives a subdivision
method, which we generally follow. Fig. 1 (left) shows a surface approximated
by quadrilaterals.

We use a quadtree data structure to keep track of the surface subdivision
process. A quadrilateral is divided if it does not satisfy the flatness test. Its
children are subject to the same test until at a certain level they are flat
enough. Therefore, more subdivisions are needed at places where surface
curvature is high.

§3. Trim Curve Insertion

We assume the trimming curves are given in the parametric space of the
surfaces which they delineate. They are first discretised into line segments
using the same tolerance for the surface. Then the trimming curve segments
are inserted into the quadtree cells by walking through the quadrilaterals using
adjacency information. The right-hand figure in Fig. 1 shows an example of
the insertion.

The insertion can be done completely in the parametric domain in which
the quadrilaterals correspond to rectangles in two dimensions. Starting with a
vertex of the trimming segments, we first find the rectangle in which this vertex
is contained. This can be done efficiently by traversing down the quadtree.
By following the trimming segments, we can find the segment that crosses one
of the edges of the rectangle. We insert a new vertex on the intersection point
and then start the insertion in the new rectangle.

For efficient insertion of the trimming segments, we make use of a data
structure that can quickly find the neighboring rectangle from the edge of a
rectangle. We store in each rectangle (quadrilateral) vertex the pointers of
the rectangles that use the vertex. Given an edge e = (p, q), we collect all
the rectangles that contain both p and q, Qe = Qp n Qq, where Qp and Qq
are the sets of rectangles associated with vertices p and q respectively. This
is a local operation. The number of elements in Qe should either be 1 or 2.
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Fig. 2. Trimming curve insertion.

In the case of two elements, one of them is the neighboring rectangle we look
for. When there is only one element in Qe, our rectangle does not have a
compatible neighbor. However, if we go up the quadtree, at some level there
must be a rectangle that is the compatible neighbor. Then coming down the
tree, we find the leaf rectangle that is partially neighboring our initial quad.
This is the rectangle that the trimming segment enters.

The time complexity of the insertion process is linear in the number of
quadrilaterals.

Fig. 2 shows the insertion of trimming curves into the rectangles in para-
metric domain. Fig. 3 shows the two cases that a trimming segment enters a
new rectangle: 1) entering from an edge; 2) entering from a vertex.

Fig. 3. Two entering cases.

§4. Initial Triangulation

After the insertion of the trimming segments, we have two kinds of rectangles:
those that are cut by the trimming segments and those that do not intersect
with any part of the trimming segments. For each rectangle being cut, we sort
the vertices of the trimming segments inside the rectangle in counter-clockwise
order to form boundaries of polygons. In general, there can be multiple poly-
gons and each polygon can have multiple boundary loops. Those cells that lie
inside the boundary are triangulated in parametric space. There is no short-
age of triangulation algorithms for 2-dimensional polygonal domains. Here
we adopt the algorithm from [13]. Note that most rectangles lie completely
in the interior of the trimming boundary; their triangulation can simply be
done by triangulating a rectangular domain [1]. If a rectangle is cut-free and
lies outside the trimming boundary, we can simply ignore it. This case can be
decided easily by testing if one of the vertices of the rectangle is in the interior
of the polygon formed by the trimming segments. For robustness reasons, we
choose the centroid of the rectangle for doing the test.
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Fig. 4. Initial triangulation in parametric space and in 3-space.

An initial triangulation in 3-space is obtained by evaluating the para-
metric triangulation. Fig. 4 gives an example of a surface triangulated in
the parametric domain (left) and the corresponding triangulation in 3-space
(right).

§5. Triangle Shape Improvement

As we mentioned in Section 1, there are good reasons to make triangles that
are well-shaped. In practice, it is undesirable to have triangles that are flat
or pointed. These are the triangles that have one small angle or one large
angle. It is well known that Delaunay triangulation for a set of points in
two dimensions is optimal in the sense that it maximizes the minimum angle
[2]. Delaunay triangulation that respect a set of boundary edges can be con-
structed. This kind of triangulation is called constrained Delaunay triangulation
(CDT) [12]. Chew [3] extended the definition of CDT to the curved surfaces
by replacing the empty circumcircle condition with the empty minimum cir-
cumsphere condition. Following Chew's approach, we improve the shape of
the triangles by edge flipping and inserting new nodes at the circumcenters of
the ill-shaped triangles.

Given a pair of triangles, if they form a convex quadrilateral, there are two
choices of the diagonals, one is better than the other in terms of the shapes
of the triangles. By examining each pair of adjacent triangles and flipping
their diagonals if necessary, we can improve the triangulation locally (see top
figures of Fig. 5). Chew [3] shows that the flipping process halts and it leads
to constrained Delaunay triangulation on a surface.

A CDT is the best possible triangulation without introducing new nodes.
To further improve the triangulation, we have to insert new points. Each
time we insert a new point, we do edge flipping again to maintain Delaunay
triangulation. New points are inserted at the circumcenters of the triangles
that violate the shape criteria. The reason of this is we could improve the
shape of several triangles by introducing one point. Fig. 5 illustrates the two
basic operations used repeatedly for improving the shape of the triangles.
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Fig. 5. Edge flipping and node insertion.

Fig. 6. Example 1.

As we flip edges, we want to preserve the error bound for the new trian-
gulation. Given a pair of triangles that are flippable, we check the minimum
distance between the current diagonal and the new diagonal. The distance
should be smaller than the specified approximation tolerance C. This does
not guarantee that the resulting triangulation still satisfies the approximation
tolerance. But since we are not moving any nodes on the surface and we in-
sert additional nodes into the triangulation, there are good reasons to assume
that most triangles will satisfy the tolerance. Finally, as a last step, we loop
through all triangles and check their chord heights. For those few triangles
that violate chord height tolerance, we subdivide them by adding points on
their edges. The checking is generally expensive, but we only do this once
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Fig. 7. Example 2.

for each triangle, and the process can be speeded up by making use of the
quadtree data structure.

Figs. 6 and 7 give two results of the algorithm before and after shape

improvements.

§6. Concluding Remarks

The main results of this work are:

1) a surface triangulation algorithm that guarantees correct mesh topology,

2) an efficient trimming curve insertion scheme,

3) triangle shape improvement by Delaunay triangulation.

We have only discussed the problem of triangulating a single surface. How-
ever, in real world problems, a model usually consists of many NURBS surface
patches. The triangulation between two neighboring surfaces have to be com-
patible. There should be a post-processing step that stitches the triangulation
of different surfaces. This can be done with a kd-tree data structure, which

facilities locating nearest nodes in 3-space quickly. Therefore, we can propa-
gate a node on the boundary of one surface to the boundary of its neighboring
surface.
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Surface Interpolation of Non-four-sided and
Concave Area by NURBS Boundary

Gregory Patches

Junji Sone, Kouichi Konno, and Hiroaki Chiyokura

Abstract. Subdivision methods are widely used for surface interpola-
tion of a non-four-sided area. Using this method, smooth surface shape
control of multiple surfaces is difficult. Therefore, we used the trim surface
for interpolation of a concave area, but shape control of the trim surface
was also difficult. In this research, the surface interpolation method of
non-four-sided (over 4 sided) area uses a single NBG (NURBS Boundary
Gregory) patch. Moreover we apply this method for concave areas and
study the ability of interpolation. Interpolation of one-sided and two-sided
concave shapes is also considered. As a result, one-sided concave area can
be interpolated smoothly for complex cases. Two-sided cases need further
study.

§1. Introduction

Catmull-Clark [1] and Doo-Sabin [5] subdivisions are widely used to inter-
polate a non-four-sided area. This method increases the number of surfaces.
Designers must modify the non-four-sided area, observing the contour curves,
silhouette pattern and highlight lines [13] when modeling the outer shape of
products. Surface shape control is more difficult for multiple surfaces, which
are generated by subdivision, because it corrects several surfaces at the same
time. Moreover, if we apply Catmull-Clark subdivision to concave areas, part
of the inner surface twists and protrudes from the boundary curves. Then,
the trimmed surface is commonly used for concave area interpolation. Bound-
ary curve of trimmed surface must coincide with inner surface shape. If we
modify the trimmed boundary curves, surface shape must follow the change
in boundary curves precisely. This modification is very difficult. The Ver-
tex Blending method [6,2] is proposed to interpolate the non-four-sided area
by a single patch. It is also difficult to apply this method for concave area
interpolation.
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In this paper, we propose the surface interpolation method using a single
NURBS boundary Gregory(NBG) [14,8] patch for non-four-sided areas and
concave areas. Applying this method to concave area interpolation, selection
of the four edges is important. Our basic idea is that smooth streamlines make
smooth surfaces. Smoothness of streamlines would be influenced by the con-
struction of four edges. Therefore, we propose the evaluation parameters to
evaluate the smoothness of streamlines. Then, we develop the edge construc-
tion method using evaluation parameters and apply this method to one and
two-sided of the concave area. As a result, single NBC patch can interpolate
non four-sided-area, including concave shapes, allowing the surface shape to
be modified flexibly.

§2. Surface Construction of NBG Patch for Non-four-sided Areas

2.1 Abstract of NURBS boundary Gregory patch

Boundary curves of the NBG patch are expressed as a NURBS [15] curve.
This patch is an extended general boundary Gregory patch [9], constructed
from three sub-patches and calculated by following equation:

S(uV) = Su(uV) + Sv(u, V) - Sc(U,v) (1)

S' is defined by the boundary curves S(0, v) and S(1, v) and their cross bound-
ary derivatives Su(0, v) and Su(1,v). The boundary curves and the cross
boundary derivatives are expressed by a NURBS. Similarly, Sv is represented
by boundary curves S(u, 0) and S(u, 1) and the cross boundary derivatives
Sv(u,0) and Sv(u, 1). Sc is called a common surface S' and S', which is a
cubic rational boundary Gregory patch [3]. Detailed surface construction is
described in the reference paper [14,8].

2.2 Abstract of surface interpolation of non-four-sided areas

In this subsection, a surface interpolation method using NBG patch for non-
four-sided (over 4 sided) areas is described. We explain the continuity correc-
tion method in the next section.

2.2.1 Sub-patch generation of Su

Fig. 1 shows an interpolation method of pentagonal area. Here the u-direction
order of S' and the v-direction order of S' are cubic. The subdivision method
of Su is described in this figure. First, the new point P 12 is generated by
dividing the edge at the same parameter point of CO vertex P11. Next, a
straight line is generated from P 1 1 to P 12. The vector V"1 is calculated by
multiplying 1/3 to the vector from P 11 to P 12 . The plane PL 1 is generated

from the tangent vector of boundary curves Vull and Vu2 1. V, 1 ' is derived
by projecting V"' to plane PL 1 . If continuity is more than G 1 at point P 12,

Vu17' is calculated by a weighted average of the tangent vector V, 14 and VU24

using the P 12 parameter value. Occasionally, the length of Vu 17 and V'l 8
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Fig. 1. Surface interpolation method for pentagonal area using a NBG patch.

are much different. In this case, the control polygon decided by PU, P 12,,
Vul, Vu17' is compensated as equal lengths and new points Vuls, Vul 7 are
generated. The cubic B6zier curve Cu3 is generated from the derived points
and Su is subdivided.

The sub-patch generation procedure is as follows. Firstly, the boundary
curves Cul and Cu2 are converted to NURBS curves. The order of Cul
and C, 2 are adjusted to the same value. Secondly, a quadratic B6zier form
derivative function is generated from the vectors Vul 3, Vuls and the average
of these vectors. This function is converted to NURBS, the degree is elevated
to the same order, and knots are inserted as the same knot vectors of boundary
curve Cul. Thirdly, Cull can be derived by adding this derivative function to
the boundary curve Cul. Similarly, Cu2

l can be computed from the vectors
Vul 4 ,Vul 7 and the average of these vectors. Finally, the NURBS surface
whose u-direction order is 4, is generated from four NURBS curves Cul,Cull,
Cu 21 and Cu2.

2.2.2 Continuity correction between sub-patches

Continuity of sub-patch Sul and Su2 must be contained in G' for construct-
ing GI continuity NBG patch. The quadratic derivative function is calculated
from the tangent vectors Vu1 l, Vu 1 6 of the boundary curve Sul and the av-
erage of the tangent vectors Cull and Cu21 . The inner control points of the
sub-patch Su2 are modified using the G' connection method [4]. Through
this procedure, the continuity of the sub-patches Sul and Su 2 can be made
G1 . Finally a single NURBS surface Su is generated by concatenating these
sub-patches.

2.3 G1 connection with surrounding surface

The non-four-sided surface is generated at the intersection area of three or
more fillets. This non-four-sided surface must be joined to the surrounding
surface with G1 continuity. Sarraga [11] shows the G1 continuity and twist
compatibility condition around the vertex where N surfaces are joined. This
research is limited to the pair of boundary curves that must be joined with
G1 continuity. However, in our case, the pair of boundary curves is not joined
G'. Therefore, we propose the blending method of twist vectors to satisfy
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Fig. 2. G1 connection with surround surface.

the twist compatibility conditions. The procedure to make the G' connection
with surrounding surface is described below.

2.3.1 Cubic boundary curve

Fig. 2 shows the continuity correction method around a CO vertex. We explain

that boundary curves are cubic NURBS and their weights are 1.0 which is the
same as the cubic Bdzier curve. The surface interpolation method for non-

four-sided area Sa is described as follows: Firstly, the continuity between Sa
and Sb is corrected to C1 using quadratic Bidzier cross boundary derivatives.
The basic G' connection equation is expressed as

DSal(U, 0) _ k(u)195 b(ut, 1) +hUOa(r0 2

Dv Dv°) (t

Here, k(u) =k0(1 -u) + ku, h(u) = h0(1 -u) +hlU.
The twist equation is generated by differentiating equation (2) with re-

spect to u as follows:

D2sai(u,0) , k,(,) sb(u,1) ,+ , 2 b( , )
Ov~u - Du)-v + VDU (3

DSi( ,0 Nowconrolpoit0a

h() Ou + h(u) 0D (3

The control point Pa12 can be regenerated using twist compatibility equa-

tion (3). Pal2 is calculated by applying the quadratic derivative function to

equation (3) as follows:

1_iVa3- nlvb(kl -- k°)Vb2  nbl(b--V)
Va2 [3a3 +flk(V2-V)

+ (h1 - h0)V• 2 + 2hi(Vc2 - Vci)], (4)

Pal2 = Va2 + Pa03.

Here, n2b is v-direction order of S m,

Va =Pl - PaoVbl = - Pb2i,Vci = aso(i+. ) Paoi. (5)
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Fig. 3 G' connection with Fig. 4 Shape control result of
surrounding surface. center area.

By the same procedure, continuity between Sa and 8d is corrected to G'
using quadratic Bdzier cross boundary derivatives. Pal4 is calculated by the
same method to satisfy the twist compatibility. Next, continuity between sub-
patches Sal and Sa2 are connected to G'. Generally, it is difficult to satisfy
twist compatibility conditions around the CO continuous vertex. Therefore, in
order to solve this problem, new control points are generated by knot insertion
and these control points are corrected to satisfy the twist compatibility. In this
method, boundary curves and cross boundary derivative curves are converted
NURBS. P'a02 is generated by knot insertion between Pa02 and Pa 03 . Knot
vectors are computed by the following procedure:

Case 1: (the number of control points and the order are the same).
If a knot of 0.5 is inserted, all the control points of the section will be
regenerated by uniform distance. Then, we used 0.5 for the knot vector
for both cases; generating a new control points at the start and end of
the boundary curve.

Case 2: (piecewise boundary curve). By the same considerations, the
knot is set to knotv[order]/2.0 for generating new control points at the
start of the boundary curve. At the end of the boundary curve, the knot
value is set to 1.0 - (1.0 - knotv[cnum - 1])/2.0. Here, knotvo is knot
vectors. cnum is the number of control points.

These knot values should be adjusted by designer requirements. By the
same procedure, Pal 2,Pa 22,Pa 32, Pa 0 4,Pa 1 4,Pa 24 and Pa34 can be derived.
The control points P'a 14 and P'a 24 are calculated by the equation (4) to satisfy
twist compatibility.

This method can be used to interpolate any number of non-four-sided
area (over 4 sided). The G1 continuity can be satisfied with the surrounding
surface, and the twist compatibility condition can also be satisfied.

The surface shape of the boundary area and the center area can be mod-
ified smoothly by using the NBG patch shape control method. Fig. 3 shows
a surface interpolation result for a pentagonal area. Continuity with neigh-
boring surface is corrected to G'. Contour curves of the surface are smooth.
The degree of S' is elevated to quartic and the center control point is moved

30 mm for surface normal direction at u = 0.5, v = 0.5. Fig. 4 shows the
interpolation result. The center area of the surface can be modified to obtain
G' continuity with the neighboring surfaces.
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2.3.2 Case of piecewise and rational boundary curves

The Konno method [7] is used to join G1 between piecewise Sal and piecewise
Sb. If the boundary curve is of rational form, the Chiyokura method [3] is
used. If the boundary curve is of rational form and the weights of Pa03 and

a02 are different, we should use the LIU method[10] to make a G1 connection
between Sal and Sa2.

§3. Concave Areas

In this section, the surface interpolation result is described for concave areas.
Firstly, we apply it to a one-sided concave area. Next, we consider a two-sided
concave area.

3.1 Basic idea

It is important to select the four side edges to interpolate the concave area.
Our basic idea is that smooth surface have a smooth streamlines. We selected
3 parameters to evaluate the smoothness of streamlines as follows:

1) Max difference of isoparametric line length : MDI

2) Max difference of variation of isoparametric line length : MDVI

3) Max difference of isoparametric line width : MDIW

Here, 1) and 2) evaluate the variation of streamline length and, 3) evalu-
ates the variation of the width of streamline. We believe that the surface can
be smooth if these parameters take a small value. Designing four-side edges
proceeds as follows:

1) Check concave area,

2) Decide the axis to make a symmetrical shape,

3) Surface edges are selected by symmetry, and concave area curves are
composed as one edge,

4) Interpolate by NURBS boundary Gregory patch,

5) Evaluate the surface shape by the evaluation parameter,

6) Make the best edge selection.

3.2 Interpolation for a one-sided concave area

The surface interpolation method is applied to a one-sided concave area.
Figs. 5-7 show the results of interpolation for a simple case. The concave
area is generated by difference boolean operation to cubic, which is cut by the
free form surface. Fig. 8 shows the evaluation results of the surface. Pattern 1
takes small parameter values and isoparametric lines and shading images are
smooth as shown in these figures.

Figure 9 shows 3 types of surface interpolation results for deep concave
areas which are modeled by the difference boolean operation for a cubic which
is cut by free form surfaces. Figure 10 shows the evaluation results using
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Fig. 7. Surface interpolation of one-sided concave area: pattern 3.
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Fig. 8. Surface evaluation result.
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Fig. 9. Surface interpolation of one side concave area: large case.

the previous parameters. Pattern 1 takes small parameter values, and the
isoparametric lines are smooth as shown in these figures.

Figure 11 a) shows surface isoparametric lines of complex concave area, b)
is the shaded image, and c) shows the control points of SU. The interpolated
surface is smooth as shown in this figure. From these results, smooth surfaces
can be generated by selecting the four-side edges to minimize the MDI, MDVI
and MDIW. We can get smooth surface for complex concave area.
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Fig. 10. Surface evaluation result.
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Fig. 12. Surface interpolation of two side concave area pattern 1.

Fig. 13. Surface interpolation of two side concave area pattern 2.

3.3 Two side of concave area

In the same manner, a simple two-sided concave area is modeled by the dif-
ference boolean operation for a cubic which is cut by a free form surface.
Figs. 12-14 show the surface interpolation results. Fig. 15 shows the evalua-
tion result for the generated surface. Although pattern 1 shows the lowest
strain of the surface from the shaded image, it still has a strain in the middle
area. In this case, MDI and MDIW are smaller for the low strain surface.
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Fig. 15. Surface evaluation result.

From these results, two-sided concave cases require further study.

§4. Conclusion

We propose a non-four-sided interpolation method using a single NBG patch
for a concave area. With this method, sub-patches are generated dividing
at CO continuous point, component surfaces S' and SV are constructed by
merging these sub-patches, which correct continuity.

We selected the 3 parameters to evaluate the smoothness of the surface
streamlines. Selecting the four edges to minimize these parameters can gener-
ate a smooth surface. A one-sided concave area can be interpolated smoothly
for complex cases. For two-sided concave case, evaluation parameter is effec-
tive, however, further research is necessary to improve the surface strain.
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Central Conics on Parabolic Dupin Cyclides

Kenji Ueda

Abstract. Hyperbolas, ellipses and degenerate conics on parabolic
Dupin cyclides are investigated. These central conics are obtained as the
intersections of parabolic cyclides and the planes perpendicular to the two
planes of symmetry of the cyclides. They are also the images of central
conics in the parametric space. Since the conics are planar curves, they
are transformed into planar or spherical curves on Dupin cyclides via in-
version. Lemniscates of Bernoulli on Dupin cyclides and Viviani's curves
on right-circular cylinders are included in the inverted conics. Two inter-
secting lines on a parabolic ring cyclide, which are degenerate conics, are
inverted into Villarceau circles on a ring cyclides.

§1. Introduction

It is known that any Dupin cyclide [1,2,5,6], which is a quartic surface is the
image under inversion of a torus, circular cylinder or circular cone. Parabolic
cyclides, which are cubic surfaces, are obtained as an inverse surface with its
inversion center at a point on the Dupin cyclides. While quartic cyclides are
closed surfaces, cubic cyclides are unbounded in extent.

Since both of them are expressed as biquadratic rational surfaces [4,5,6,7],
the image of a rational curve on the parameter space of a Dupin cyclide is a
rational curve on the cyclide. It is well known that the isoparametric curves
on a Dupin cyclide, which are lines of curvature of the cyclides, are circular.

In this paper, non-circular rational curves of lower degree on Dupin cy-
clides, especially central conics on parabolic cyclides, are investigated. The
other curves are derived from conics on cyclides via inversion.

§2. Conics on Parabolic Dupin Cyclides

Let the curves cl(u) and c2(v) be the focal parabolas given by

cl(u) = 2(p-0q)u , c2 (v)= 2(q v (1)
2 0O 2 2  2(q -p)vJ
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(1) q<0<p (2) q=0<p (3) 0<q<p (4) 0<q=p

Fig. 1. Parabolic cyclides and a sphere.

and the functions ri(u) and r 2 (v) be the radius functions given by

rj(u) = q - (p - q)u 2  ) p- (q - p)v2  (2)
2 2r2(v)- 2

Parabolic cyclides are parameterized with the parameters u and v and the
shape parameters p and q as [4,6]

(X) - rl(u)C2(v) - r2(V)Cl(U) _ 1 (pq)v 2 )u . (3)

rI(u) - r2(v) u2 + v2 + 1 u2)v

The isoparametric curves, which are circles, are the curvature lines of the
parametric surface. Since the radius functions rl(u) and r 2 (v) represent the
curvature radius, the principal curvatures K, and K2 are their reciprocals, i.e.,
K. = 1/rl(u) and K2 = 1/r2(v).

By eliminating the parameters u and v, we obtain the following implicit
form of the parabolic cyclide (3):

(x- q)y 2 + (x-p)z2 + x(x-p)(x- q) = 0. (4)

Equation (4) implies that the cross section between the surface and the plane
parallel to the yz-plane is a central conic.

From the x-value of (3), we obtain another central conic in the parameter
space of the surface:

(x-p)u2 + (x- q)v 2 + x = 0. (5)

The central conics of (4) on parabolic cyclides are the images of the central
conics of (5) in the parametric space.

The x-value of (3) is also transformed into

U2  v2 1
x = j -. 6+- v2 +V 1p + U+ v2 +lq + 2 + V2 + 10. (6)

Hence, the x-value is the convex combination of p, q and 0. From the sym-
metry of (3), we can restrict the domain of the shape parameters p and q
within 0 < p and q < p for the classification of the shape of the surface.
Since one of the principal curvatures is always positive, i.e., 0 < K2, un-
der this restriction, the Gaussian curvature K = K1K2 has the same sign
as that of another principal curvature rl. Since parabolic cyclides extend
to infinity, Figure 1 illustrates several shapes of the parabolic cyclide for
(u, v) C ([-cc, cc] x [-1, 1]) U ([-1, 1] x [-cc, cO]).
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2.1 Hyperbolas on parabolic ring cyclides (q < 0 < p)

x (y, z) (U, V)

x = q z = ±O +0 <0 v =±cx

z2 y2 v
2  

U
2

q<x< -x(x-q)- =1 X)<O - -- =1

r-- 
p--

x =0 z -ýq YK, <
0  v+ -U

Tp F-q-
y2 Z2 U

2  
V

2

x(p - x) x(x - q) 1  < x x -xq

x=p y =:0 K, =0 u=±o0

There are two straight lines at x = 0 on a parabolic ring cyclide.

2.2 Hyperbolas on thorn cyclides (q = 0 < p)

x (y,z) K1 (Uv)

x=0 z=±0 K,<<0 u=0orv=±oo
y2 z2 u2

< x < p x(p- x) x2- 1
p--x

x=p y = ±0 i1 <0 U=+00

There is a singular point at the origin on a thorn cyclide.

2.3 Ellipses and hyperbolas on parabolic horn cyclides (0 < q < p)

x (y, z) (u, v)

x=0 y=z=0 K,>0 u=v=0

y2 z2 v 2  U 2

O<x<q + q- hi>O +•=1
(p -X) X~q-) q-x p-x

x=q z=+0 K=cO 0 U= q

p-q

y2 z2 u2  v2

q<x<p x(p - x) x(x - q) <0 -- 1
P--x X--q

x=p y=± 0  
h i=

0  u=± o

There are two singular points (q, + V(p - q)q, 0) on a parabolic horn cyclide.
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(1) q<0<x< (2) q=0<p (3)0<q<p (4) 0<q=p

Fig. 2. Parameter space.

2.4 Circles on spheres (0 < q =p)

x=0 y z =0 2 U-:V :0

(<x<p 0 +z 2 =x(p (x) 0 -2 <2p 2= xX 0Y= =0K1 U = +V =0
Pp-x

x=p y=z=0 Ki 2 u = -oo or v = ±oo

The implicit form (4) of parabolic cyclides becomes the quadratic form of
y2 + z2 + x(x - p) = 0.

2.5 Central conics on parabolic cyclides

On cubic cyclides, there are hyperbolas on the region with negative Gaussian
curvature, and ellipses on the region with positive Gaussian curvature. Since
the central conics are the images of central conics in the parameter space,
the parameter space is subdivided by straight lines into regions corresponding
to the geometric properties of their images, as illustrated in Figure 2. The
preimages of the singular points are the straight lines parallel to the v-axis
in the parameter space. The shaded regions are the preimages of the surface
regions with positive Gaussian curvature.

For 0 < x < p, the centers of the central conics are at (x, 0, 0), the
vertices are at the points (x, ± i(p- x)x, 0), and the foci are at the points

(x, ±=(p - q)x, 0). The foci lie on the parabola y2 = (p - q)x.
The central conics at x = (p + q)/2 are rectangular hyperbolas

y2 _Z = q 2- U2 - V2 = (7)4 'p-q]

The mean curvature H = (tl+nr2)/2 is zero at any point along the rectangular
hyperbolas on parabolic cyclides.

§3. Inverse Surfaces of Parabolic Cyclides

The inverse surfaces of the parabolic cyclides with inversion radius 1 with re-
spect to a point (r, 0, 0), which is the center of the central conics, are expressed
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Fig. 3. Inversion of parabolic cyclides.
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Since the inversion center (r, 0, 0) is on both planes of symmetry, the xy-
and xz-planes, the inverse surfaces have the same planes of symmetry. The
inverse surfaces are illustrated in Figure 3 with the cross sections between the
surfaces and their planes of symmetry. The points are the inversion centers
and the dashed curves are the inversion spheres in the figure. Equation (8) is
a parameterization of Dupin cyclides with the shape parameters p, q and r.

The two intersecting lines on parabolic ring cyclides are inverted to two
circles on ring cyclides. Since the circles are called Villarceau circles, we may
call the two straight lines Villarceau lines.

While right circular cylinders are obtained as the inverse surfaces of thorn
cyclides with the inversion center at the origin, as illustrated in Figure 3, right
circular cones are obtained via inversion of parabolic horn cyclides in a circle
with the center at one of the pinch points (q, ± -(p - q)q, 0). The resultant
circular cones are obtained with a half-vertex angle of arctan V/q/(p - q).

Various cyclides are obtained via inversion by specifying various points
as the inversion center.

§4. Rational Curves on Dupin Cyclides

Special rational curves [3] on Dupin cyclides are shown in this section. Since
the curves are inverse curves of conics, they are planar or spherical. Figure 3
will be useful in imaging the rational curves. The rational curves include the
inverse curves of conics on right circular cones, because the inverse surfaces of
right circular cones are also Dupin cyclides.

4.1 Rational quartics on Dupin cyclides

The polar equation of a conic, of which the focus is at the pole, is given by
r = I/(1 + ecos 0), where e is the eccentricity and 1 is a constant. The conic
is a parabola (e = 1), an ellipse (0 < e < 1), a circle (0 = e), a hyperbola
(1 < e) or a rectangular hyperbola (e = v/-).

The inverse curve r = (1 + ecos 0)/1 is called a limaqon of Pascal, and
is expressed as a rational quartic. Hence, there are limaqons of Pascal on
Dupin cyclides as the inverse curves of a conic with the inversion center at
their foci. Some lima~ons of Pascal are illustrated in Figure 4 (1). In the case
of e = 1, a lima~on of Pascal is called a cardioid. There are cardioids on horn
cyclides inverted from a circular cone with its inversion center at the focus of
a parabola on the cone.

The inverse of rectangular hyperbolas x2 
- y2 = a 2 with respect to the

center are obtained as the curves a 2 (x 2 +y 2) 2 
= x2 _ y2 . The curves are called

lemniscates of Bernoulli, and are illustrated in Figure 4 (2). The lemniscates
are also rational quartic curves on Dupin cyclides.

The inverse surface of the thorn cyclide in the sphere x2 + Y 2 + Z2 = p2 is

the right circular cylinder (x -p/2) 2 + z2 = (p/2)2 , as illustrated in Figure 3.
The intersection of the sphere and the cylinder is called a Viviani's curve. As
the intersection is fixed under the inversion, the Viviani's curve is also on the
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Fig. 4. Rational quartics on Dupin cyclides.

thorn cyclide, and is expressed as

S(1- t2)2
P 2t(l+t 2 ) (9)(1 + t2)2 _ (9) t

which is the image of the curve in the parameter space
u2_ 1 1 , , 1 + t2_ 2t

(-- 1 (u, v) . (10)

Figure 4 (3) illustrates the Viviani's curve. The Viviani's curve is inverted
into a rectangular hyperbola with the inversion center at the knot of the curve.

4.2 Rational cubics on parabolic cyclides

The intersection between a parabolic cyclide and the plane y = p/2 is ex-
pressed as (x-p)z2+(x-q)(x-p/2)2 = 0 from (4). The curve is parameterized
with a rational cubic as

x(t) pt2 z(t)=(q - (1 - t2))(11)l~)=1+ t2 Zt 1l+ t2

The curve is obtained as the pedal curve [3] of the parabola z 2 = -2(x - q)
with respect to the point (x, z) = (p/2 , 0). A pedal curve is the locus of the
foot of the perpendicular from a fixed point to a variable tangent to a given
curve. The curve has an asymptote x = p and a singular point (node, cusp or
isolated point) at (p/2 , 0). The curve may be called a trisectrix of Maclaurin
(q = -p), a right strophoid (q = 0), or a cissoid of Diocles (q = p/2). Figure 5
illustrates the curve for various values of the shape parameter q.

The inverse curve in the circle (x - p/2)2 + z 2 = 1 becomes

X -x •1 Z -z t
2 - __ __ Z___ t/X _- )2 + z2 =q + (t2 _) /X- P)2+ Z2 =q + 2(t2 - 1)'

(12)
and is implicitized into the conic (p - 2q)X 2 + 2X - pZ 2 = 0. Therefore, the
cubic curve is an inverse curve of a conic on a Dupin cyclide.
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q=- i= q- q q=p q=

Fig. 5. Rational cubics on parabolic cyclides.

§5. Conclusion

It has been shown that there are central conics on parabolic Dupin cyclides.
The central conics are cross sections between parabolic cyclides and the plane
perpendicular to the two planes of symmetry of the cyclides. The preimage
curves in the parameter space are also central conics.

Special cubic or quartic curves, which have been investigated for a long
time, are also found on Dupin cyclides. They are planar or spherical rational
curves and the images of conics on Dupin cyclides under inversion.
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Adaptive Parameterization and Approximation
for CAD Data Reduction

G. Wahu, J. M. Brun, and A. Bouras

Abstract. Data reduction is frequently needed in curve and surface
model conversion, primarily for CAD data exchanges, but also to ease the
designer's work. Such data reduction corresponds globally to a number of
pole reductions. A previous analysis has shown that there are two main
criteria in this domain: the parametrization and the extremity conditions.
The possibility of defining an optimum optimorum solution for the ap-
proximations used in data reduction is noted. The relation between this
optimum optimorum and the existence of an optimal parametrization leads
to a new approach for curve and surface approximation. This approach
has the advantage of modifying the parameter settings in a transparent
way, while matching easily the extremity conditions. Finally, the extension
to surface data reduction of this scheme is presented.

§1. Introduction

Designers have to create shapes in highly constrained environments. Curves
and surfaces have to join precisely under tangency and curvature conditions;
they have to meet some points as precisely as possible while behaving "nicely"
between these points. All these conditions result into curves and surfaces ei-
ther over-segmented or of dangerously high degree, and eventually both. Such
curves and surfaces that are defined by a number of poles larger than neces-
sary, induce severe problems in further use. Data exchange with other systems
can be impossible if the degree exceeds what is allowed in the receiving sys-
tem, or untractable if the number of curves or surfaces generated is too large.
Data quality can be very poor. Curves and surfaces which are defined by an
extremely large number of poles have difficulties in behaving "nicely". One
knows also that the parametrization of curves and surfaces is crucial when
defining them by discrete points [7,9,10,12]. Strangely, it is generally consid-
ered that CAD data reduction must be done with the original parametrization.

One considers also that the quality of a data reduction is directly re-
lated to the distance between points of a same parameter value, doing so
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one mixes distances perpendicular to the original curve with tangential dis-
tances corresponding to different parametrizations. One must remark also that
some approaches cannot meet essential conditions such as end conditions. We
present here some results of our search for the optimal parametrization which
minimizes the amount of data needed to fit curves and surfaces to a given
precision.

§2. Previous Approaches

2.1 Degree reduction of B6zier curves

This problem was addressed early and is considered as the inverse problem
to degree elevation [3,4,5,6,7,11,14]. Degree elevation is obtained step by step
by a de Casteljau process of poles creation, which can be done either from
poles 7r0 to 7rn or trn to 7r0 which produces two different results depending on
the way it is processed. The idea of a blend between these two elementary
processes, with blending coefficients depending on the rank in each elementary
process, is a natural one. It was an important insight in this process that
enabled Eck [5,6] to find the optimal blending and to prove that it is the best
componentwise approximation. However, this optimal solution, aside from
its componentwise limitation, assumes that the curve parametrization stays
unchanged. Improvements over the Eck's solution can be expected from a
global optimization and parametrization modifications.

2.2 Reduction in the number of poles for B-splines

The reduction of the number of poles is a crucial problem when converting
from B-Splines to the B1zier form. B-Splines can be decomposed into B6zier
curves or patches of low degree (typically 3 with C2 continuity). Doing so
produces huge sets of low degree B1zier curves or patches, which are unman-
ageable on most B1zier based CAD systems.

2.3 Classical parametrization schemes

Classical parametrization schemes were presented by Farin [7]. His conclusions
are that it is good practice to test chordal parametrization first, then Lee's cen-
tripetal scheme and ultimately Foley's tangent variations. Such parametriza-
tions come from kinematic analogies where one travels on the curve at con-
stant speed or slows down on curves depending on centrifugal forces or the
speed of turning the steering wheel. These schemes, while grounded in com-
mon sense, were probably found too empiric by Hosheck [10], who proposed a
scheme relating parameter modifications to tangential errors. In this scheme,
for a given parametrization, a least square minimization produces a curve
minimizing both normal and tangential errors. Iterative modifications of the
parametrization using, at each step, the parametrization produced by the
preceding least square modifications would be extremely computer intensive.
Hosheck uses instead a projection of the errors on the curve tangents for
each parameter value, in order to optimize the parametrization. However, the
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process remains computer intensive since it still has to loop on least square
minimizations. Moreover the process can have convergency difficulties that
can stop the process far from it's goal. This goal is to reach a parametriza-
tion producing normal errors, called "intrinsic parametrization" by Hosheck.
The optimal parametrization sought here can be defined for the approxima-
tion of curves or surfaces known everywhere, or nearly everywhere. It is the
parametrization for which the maximum distances between each point on a
curve and the approximated curve is minimal, which implies that these dis-
tances are perpendicular to the curve.

§3. Proposed Approach

3.1 Early approaches to optimal parametrization

In his thesis, P. B~zier [1] considers implicitly that a parametrization pro-
portional to curvilinear abscissa is optimal, and that chordal parametrization
of sparse sets of points is an approximation that can be slightly improved
taking circles passing through points taken 3 by 3. At the same time (1975)
J. M. Brun, in a non published study, took the B~zier curve defined by the
sparse set of points, taken as poles of the curve, and used their projections
on this curve as parameters for the points. He found that improvements over
this parametrization are possible when an iterative modification of the curve
is made using normal errors to move poles and tangential errors to modify
the parametrization. The computing power available by that time imposed
to stop the process after a small number of iterations, and the scarce set of
points prevented to define what can be an optimal parametrization, since the
definition of a distance between curves was not possible.

3.2 Our search of an optimal parametrization

Following similar goals as Hosheck [10], we have tried to define intrinsic
parametrization of curves, related only to shape characteristics. The first char-
acteristic of a curve is it's length, corresponding to the curvilinear abscissa s
as an intrinsic parametrization of the curve. Then, any other parametrization
can be defined as a parametrization law: t = f(s). We found that a mathe-
matically sound strategy can be to approximate the optimal law t = f(s) by
a power series t = s(a + b * s + c * s2 

±...) [2]. The coefficients of this series
can be derived from geometric extremity conditions: end points produce t = S
(called a linear law), end tangents produce t = s(a + b * s) (called a parabolic
law) and adding curvatures produce t = s(a + b * s + c * s2) (called a cubic
law). Depending on the curve shapes, the law to use needs more or less com-
pletion, and the results are convincing up to curve shapes with one inflexion.
For curve shapes of higher complexity, higher degree series are needed, and
the cubic scheme was found complex enough to avoid going further. In such
cases, a segmentation of the curve allowing a piecewise approximation of the
t = f(s) law was envisioned.
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3.3 Are designer's skills inherently better than mathematics?

While experimenting with our mathematical approaches, either improving the
degree of t = f(s) or taking care of curvature extrema, it was found that an
experienced designer was always able to improve the result [13]. He just moves
poles interactively. The parametrization of the designer's curve produces a
curve significantly closer to the target curve than any mathematical approach.
It was thus considered of interest to analyze the designer's actions, and to
reproduce them by appropriate heuristics.

3.4 The designer's algorithm

The experienced designer knows the influence of a pole displacement and "in-
tegrates" the errors on the curve (perpendicular to the target curve) as "de-
mands" to modify each pole with "weights" implicitly given by the coefficients
B!'(tj), heavily influenced by his experience and adjusted by the feedback of
the curve response to his modifications. In this process of curve adjustment
by displacing poles, he simultaneously modifies the curve parametrization and
the curve shape until he obtains a global optimum for which any pole displace-
ment would increase normal errors at some places more than it would reduce
it at others. The experienced designer knows pretty well that a pole dis-
placement has no influence on the normal errors at places parallel to that
displacement. In doing so, he has the ability to reduce errors by parametriza-
tion improvements, even though he is generally unaware of it. This analysis
of the rationale behind the designer's heuristics produces an algorithm that
can be called the designer's algorithm:

Extract the sample points Pj from the original curve:
The number of points Pj has a direct influence on the performance of the
process. This sample of points can be refined to improve the precision of
the approximation and to obtain better convergence.

Construct an initialization curve.

Iterate while the process converges until the desired precision is reached:
1) For each point Pj, seek for the point C(tj) of the approximation curve

whose normal passes through Pj,
2) Check the precision of the approximation,
3) Find the maximum errors,
4) For each pole, calculate and apply a "displacement demand",
5) Study the convergence of the process.

The "displacement demand" on a pole is that 6tri = -j(Pj - C(tj))B!1(tj),
see Fig. 1.

3.5 The math behind the 'designer's algorithm'

When the designer's algorithm reaches it's goal, all the errors are normal to
the approximating curve, and the parametrization of the given curve is given
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Fig. 1. The designer's algorithm.

by the approximation curve C(t). With such a parametrization, the least
square approach minimizes the error function:

m

E = -(Pj - C(tj))
j=1

where Pj are again the sampling points, and the approximation is

nc(tj) = E ?rj R(tj).
i=O

The minimizing conditions E= 0 leads to

m nt

(Pj- -rk B n(tj))B.n(tJ) = 0;i E [0, n].
j=1 k=O

For Go conditions, 7r0 = P1 and rn = Pm are the curve's extremities. For
G1 conditions, r, and rn-1 are constrained to lay on the extremity tangents.
For convergence, we can identify the following least square conditions on the
designer's algorithm:

-- (Pj - C(tj))B (tj) = 0;i E [0, n].

After convergence, the designer's algorithm produces

* a parametrization where errors are normal to the curve,

* the least square solution for this parametrization.

The existence and uniqueness of this solution relies on the convergence of
the process and the uniqueness of the parametrization. Aside from proofs
of the convergence that mathematicians may provide, we can say that the
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convergence of the process is typically slow but regular. However, single it-
erations are much faster than the mean square resolutions used by Hosheck.
Globally, the performance can be compared favorably with Hosheck's intrinsic
parametrization, which has the same goal of normal errors but a convergence
that can be irregular.

Using a mastering of the process convergence [8], we were able to improve
considerably the convergence rate of a regular convergence such as for the de-
signer's algorithm. Depending on the initializing curve, the process can fall in
a "convergence trap". To get out such traps, one can envisage using simulated
annealing techniques. However, we have observed that our convergence mas-
tering techniques combine jumping over traps to process acceleration. The
uniqueness of the parametrization would be ensured by errors normal to the
given curve, but it can be questionable for errors normal to the approximating

curve. Aside from mathematical proofs, we remark that when the approxi-
mation is good, both normals are equivalent and so are the parametrizations.
Moreover, if one minimizes the maximum errors only, as with the Tchebychev
minimax approach, the normals at these points are common to both curves.
This corresponds to a real designer's actions who takes care of maximum errors

only, so the designer's algorithm has to use a "displacement demand":

bik , i E [0, n],

k=1

bik = maxk((Pj - C(tj))B(

The maxk function produces the maximum value on the interval k between
two crossings of Pj and C(tj). This displacement demand corresponds to a
curve's distance which is a mix of the least square distance and the mini-
max of Tchebychev. When using this distance, one speeds up the algorithm
and produces a better accuracy since the result is closer to an equioscillat-

ing approximation. An extension of the 'designer's algorithm' to B-Splines or
NURBS would be straight forward: one has just to replace the B.'(t) weight-
ing function by corresponding ones. However, node sequence modifications
are not done implicitly by such extensions, and an effective designer's algo-
rithm must include node sequence definition. The extension to surfaces is
also straight forward, but it has the additional advantage of working where
designers may have trouble moving poles interactively. This extension is the
following:

1) Reduce boundary curves complexity and adjust degree on opposite curves.

2) Use a Coons bilinear interpolant of the boundary curves as starting point.

3) Iterate on poles' displacements like for curves.

Pole displacements are modified by the use of errors normal to the approxi-

mating surface S(u, v) and weighting functions B,(u) B72(v) in place of C(t)
and BP(t). Then

n m

67ri- = E(Pki - S(uk,v1))B!(uk)BT(vL);i E [0, n],j E [0, m],
i=O j=O



Adaptive Parameterization 413

Fig. 2. (a) Go Hoschek, (b)-(c): Go and C1 designer's algorithm.

Fig. 3. (a) Go Hoschek, (b)-(c): Go and C1 designer's algorithm.

Fig. 4. (a) Go Hoschek, (b)-(c): Go and C' designer's algorithm.

where S(u, v) = E__ ZEo •rijBn(u)Bj-(v). The 'designer's algorithm' on
surfaces has the same behavior as for curves, but the computing time is obvi-
ously higher and the convergence mastering much more important. Replacing
the least square distance by the local maxima distance would speed up the
process quite efficiently like for curves.
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§4. Results

4.1 B~zier and B-spline curves

The first test uses a degree-10 B6zier curve, proposed by Bogacki [3]. The first
approximations are calculated by using the Hoschek's Go solution (Fig.2a).
The next curves are the GO (Fig.2b) and G1 (Fig.2c) approximations obtained
after application of the proposed 'designer's algorithm'. The precision are
respectively: 0.029, 0.024, 0.027. Note our process adapts nicely to the G1
condition.

The second test curve (Fig. 3) is a 'real' B6zier curve, found in CAD
data transfer. Designers feel comfortable in reducing from degree 7 to 4 at
the cost of the cancellation of a small inflexion close to the right extremity.
Here the smoothed inflexion degrades the designer's algorithm curve when

a G 1 condition is needed. These curves precision are respectively 0.018 for
Hoschek's GO curves, and 0.013, 0.084 for the Go and G 1 designer's algorithm
curves.

The last test curve (Fig. 4) is also a 'real' curve. It is a B-Spline curve
defined by 28 poles with a parametrization law more or less linear. This
curve has a somewhat chaotic curvature repartition that can be smoothed
vigorously with a degree 5 B6zier curve. The designer's algorithm process
again gives much better results than Hoschek's solution with the GO condition.
The precision obtained is 0.00138 for Hoschek's GO curve, and 0.00095 and
0.00097 for our Go and G1 curves, respectively. Since we share with Hosheck
the principal of searching a parametrization producing normal errors, our
better result is due to better and more regular convergence.

4.2 Surfaces

Surfaces are computationally much more expensive than curves, but the pos-
sible data reduction is also much higher. Consider for example a B-spline

surface defined by a network of 23 * 23 poles (Fig. 5a).

Fig. 5. Control polygons: Original (a) Coons/B~zier (b) 'Designer's Algorithm' (c).

Since it is a 3 * 3 degree B-spline surface, the number of poles would be
16 * 22 * 22, if converted to a set of 3 * 3 degree B1zier patches. It is possible to

convert it to a 5*5 degree B1zier surface of 36 poles only. We use the degree-5*5
Coons/B6zier surface (Fig. 5b) as initial surface. Figure (Fig. 6a) represents
the evolution of the error along the surface. At this stage of the process,
the approximation's relative error is 0.0475. Then the designer's algorithm is
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Fig. 6. Errors: Coons/B1zier (a) 'Designer's Algorithm' (b).

applied to the surface (Fig. 5b), and one obtains the surface (Fig. 5c) whose
relative error is only 0.00126.

§5. Conclusion

Reducing the number of poles is an important problem for converting curve
and surface models, and is needed in CAD data exchanges. Reducing step
by step the degree of a B~zier curve shows that the original parametrization
is less and less optimal. More generally, the approximation of a dense set of
points needs a parametrization adapted to the degree of the approximating
curve while related also to the curve shape. An optimal parametrization can
be called more adaptive than intrinsic since it has this combined dependency.

One can observe that designers, by moving interactively poles, have the
ability to improve easily over most of the mathematical approaches. Doing
so, they produce implicitly the needed adaptive parametrization. An analysis
of the designer's actions leads to the definition of an algorithm called "the
designer's algorithm". This algorithm produces a parametrization with errors
normal to the curve, which is adapted both to the curve shape and the degree
of the approximation. A simple mathematical analysis shows that depending
on the computation of the poles displacements in the designer's algorithm,
the result can minimize the least square distance or a local maxima distance
similar to the Tchebychev minimax. With the local maxima distance, the re-
sult is nearly equioscillating and improves over the least square distance. The
designer's algorithm takes into account easily the extremity conditions needed
for CAD data, and extends in a straight forward way to surface approximation.

Our algorithm seems to present practical advantages that can justify a
more elaborate mathematical analysis than presented here. Mathematicians
may find other and faster ways to produce the adaptive parametrization, and
they may also improve the computation of the displacements of poles to ac-
celerate the convergence or produce a real minimax approximation.
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On the Geometry of Sculptured
Surface Machining

Johannes Wallner and Helmut Pottmann

Abstract. We present geometric aspects of sculptured surface machin-
ing. Several possible configuration manifolds of tool positions relative to a
workpiece are investigated under different aspects: the degree of freedom
of the motion of the tool, the correspondence between the contact point
and the tool position, and the presence or absence of unwanted collisions
between tool and workpiece.

§1. Introduction

In the past decades, strong research efforts have been devoted to developing
the mathematical fundamentals and efficient algorithms for the representation
of free-form surfaces in CAD/CAM systems. However, just a few contributions
address manufacturing of sculptured surfaces, although there are appealing
and practically important open problems in this area.

Geometrical problems in this area include the following: If two surfaces
touch each other at a point, such as a milling-tool and a free-form surface
which is to be manufactured, does the curvature of the surfaces force them
to intersect arbitrarily near the contact point (= the local collision problem)?
Given a free-form surface and a milling tool, is the tool able to move such
that its envelope during the motion is the free-form surface? Is the tool able
to do this while moving only by translations (3-axis milling), or do we need
more flexibility (5-axis milling)? Which relative tool position achieves best
surface quality (=tool positioning)? How can we decompose the theoretically
two-parameter motion of the milling tool by a series of one-parameter motions
such that e.g. manufacturing time is minimal (=motion planning)?

A survey of mathematical fundamentals on NC machining of sculptured
surfaces is given in [1,14,19]. Tool selection, motion planning and local inter-
ference checking for 3-axis and 5-axis machining has been studied in [2,9,10,11,
12,13,25]. Three-axis machining (general offsets and Minkowski addition) are
considered by [15,21,23]. A configuration space has been defined in [3,24].
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Pierre-Jean Laurent, Paul Sablonnibre, and Larry L. Schumaker (eds.), pp. 417-432.
Copyright 0 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.



418 J. Wallner and H. Pottmann

There is a variety of contributions using Computer Graphics techniques
such as visibility algorithms [5,7,22]. There the cutter shaft is shrunk to its
axis, and simultaneously the design surface is replaced by an appropriate
offset surface. Collision checking is thus transformed to a visibility test (5-
axis machining requires a modification of the method).

This paper is organized as follows: In Section 2 we briefly show some
concepts of elementary differential geometry. Section 3 sums up some results
concerning the local contact situation. Section 4 investigates configuration
manifolds of motions constrained in several ways and describes the possible
infinitesimal motions of a milling-tool in a contact position. In Section 5 we
study the dependency of the contact point of the contact position. Finally
Section 6 features global statements about the absence of unwanted collisions
under certain circumstances.

§2. Differential Geometry

We first give a short description of some aspects of curvature theory of 2-
surfaces in Euclidean three-space (cf. [4,17,20]).

2.1. Oriented surfaces and their first and second fundamental forms

Consider a regular smooth surface given by the parametrization f = f(u),
where x = (xI,x 2 ,x 3 ) is a point in Euclidean R 3 and u = (Ul,U2) ranges
in some open planar domain D. We assume that f is twice continuously
differentiable in order to be able to define curvatures.

The differential df of f maps a tangent vector v = (V1, V2) attached to the
point u, to the vector duf(v) = d It=of(u+tv), which is computed by duf(v) =

x,I(u)vI + x,2(U)V2, where the symbols x,1 and x,2 mean differentiation with
respect to the first and second variable.

The function n = (x,1 x x,2)/IIx,1 x x,211 is the surface unit normal vector.
The symmetric bilinear forms gu(v,w) = duf(v) , df(w) and h,(v,w) =
-dn(v) • w are called the first and second fundamental forms of f. With gij =
x,i x,j and hij = -n,i x,j = n.x,ij we have g(v, w) = • gijviwj and h(v, w) =

S hijviwj.

2.2. The Dupin indicatrix and Meusnier's theorem

If f is the parametrization of a surface, and u = u(t) is a curve in its parameter
domain D, then c(t) = f(u(t)) is a curve contained in the surface f(D). The
curve's tangent 6(t) = df(i#(t)) is contained in the surface's tangent plane. Its
second derivative vector is split into three components:

S= 11611 (rnn + a6 + Kcb),

where n is the normal vector evaluated at u(t) and b is the curve's normal in
the tangent plane. The coefficients K9 and rin are the geodesic curvature and
normal curvature of the curve, respectively. The following theorem states the
perhaps unexpected fact that the normal curvature is dependent only on the
direction 6, and we can therefore speak of the normal curvature of a surface
tangent.
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Theorem 1. (Meusnier) The normal curvature of the curve c is computed
by ,- = r(i) = h(it, it)lg(iiit.

Evaluate the matrix product (gij)-lhij at (u1 ,U2), and compute its two lin-
early independent eigenvectors v', v" which correspond to eigenvalues r.1, r2.

Then df(v'), df(v") are orthogonal and define the two principal surface tangents
at u.

Theorem 2. (Euler) Assume that w', w" are unit vectors parallel to the
principal surface tangents at u. If df(v) = cos Ow' + sin ew", then r,(v) =
cos2 2". K, + sin2 

2. K2. The polar diagrams of 1//ll and 1/VP---- in the
tangent plane (the oriented Dupin indicatrices i+, i_) are possibly void or
singular conic sections centered in the origin.

Surface points are called elliptic, if tj1t2 > 0, hyperbolic if r-1it2 < 0, flat if
rl = r2 = 0, and parabolic in the remaining cases.

2.3. Euclidean displacements and infinitesimal motions

A Euclidean displacement g : x E R 3 
-+ g(x) C R 3 may be written in the

form x F-* M -x + v, where M is an orthogonal matrix of determinant 1. A
one-parameter family g(t) = (v(t), M(t)) of Euclidean displacements, (= a
path of Euclidean motions, or a smooth Euclidean motion) has in all of its
instants an infinitesimal motion, which is determined by the velocity vectors
d(g(t))(x)/dt = i'(t)+Ai'(t).x of all points. If an infinitesimal motion coincides
with the velocity field of a smooth rotation about an axis, it is called an
infinitesimal rotation. The definition of infinitesimal translation and infinitesimal
helical motion is analogous.

There is a linear space of infinitesimal motions. It is further well known
that all infinitesimal motions (i.e, all velocity fields of smooth motions) can
be written in the form

x = E + c X x.

The condition c. E = 0 characterizes infinitesimal rotations, c = 0 characterizes
infinitesimal translations, and c : 0, c. -E 0 characterizes infinitesimal helical
motions. We briefly write (c, E) e R 6 to denote an infinitesimal motion. An
infinitesimal rotation whose axis is a + [b] then has the form A(b, a x b) (the
symbol [b] denotes all multiples of the vector b). The translation Jý = 6 has the
form (0, e). If we have to consider the coordinates of c, E in some coordinate
system, we always write c = (cO1, c 0 2 , C0 3) and Z = (C23, C31, C12).

2.4. Ruled surfaces

If p(t), v(t) are two curves with v # 0, then f(ul,u2) = p(ul) + u2v(ul) is
a surface whose parameter lines ul = const are straight lines, which will be
denoted by l(ul). Such a surface is called a ruled surface.

We need the following well known results concerning the first order differ-
ential properties of ruled surfaces in Euclidean space: there is an orthonormal
frame (q; el, e2, e3 ), dependent on a parameter t, and a smooth function ul(t)
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such that q(t) is on the ruling l(ui(t)), el(t) is parallel to it, and e2(t) is
tangent to the surface at q(t), and which can be chosen such that its infinites-
imal motion at t = 0 is a helical motion (c, E) which can be computed by the
following formulae:

1

S_:= _ p S.-Px (det(p, 2,•)p+det(p, p) +(p.1)(p× ))

b- (XV)XV , =, c=bb, E=b-cxs(0).

The first order differential invariant b is called the distribution parameter of
the ruled surface, and the point s(t) is called its striction point.

2.5. Line congruences

A smooth line congruence IC is a smooth two-parameter family of straight
lines l(ul,u2) in Euclidean three-space. It may be parametrized by two 'sur-
faces' p(ul,u 2 ) and v(ul,u 2 ), where v(ul,u 2 ) # 0. The line l(ul,u 2) then is
p(ul,u2) + [v(ul,u 2 )]. The choice of a curve (ul(t),u 2 (t)) in the parameter
domain gives a ruled surface l(ui (t), u 2 (t)).

Definition. A line congruence K is regular at a line I if the six-tuples (p,pxv),

(P,IP x V,1 + RiX v), (P,2,P X V,2 +P,2 x v) are linearly independent.

The meaning of this definition is that the lines of the congruence actually
change infinitesimally if we move infinitesimally in the parameter domain.
We will always assume that K is regular.

It is well known that the infinitesimal properties of first order of a line
I within IC are like those of a linear line congruence K', which is called the
tangent to C. There are the following possibilities for K':

"* K' is the set of lines which intersect two lines kV, k" (= a hyperbolic linear
congruence with axes kV, k").

"* K' is the set of lines whose complex extensions intersect two conjugate
complex lines kV, k" (= an elliptic linear congruence). This set of lines
is the affine image of the set of lines which join the points (x, y, 0) and
(x cos 0 - y sin 0, x sin 0 + y cos 0, 1), 0 < 0 < 27r.

"* K' is the set of lines tangent to a ruled quadric in the points of one of its
rulings k. (= a parabolic linear congruence). The line k is also called the
axis of K'.

"* KV is a bundle of lines.

In all cases, lines at infinity are allowed (but in the elliptic case they do not
occur). These four types of lines 1 in a congruence are accordingly called
hyperbolic, elliptic, parabolic, and degenerate.

In the hyperbolic and parabolic case, the points of I contained in an axis
are called focal points, in the degerenate case the bundle vertex is also called
a focal point.
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There is also a connection between infinitesimal motions and linear line
congruences: a four-dimensional subspace of the space of infinitesimal mo-
tions always contains infinitesimal rotations or translations, whose axes form
a linear line congruence (here we assign to the infinitesimal translation x = E
the axis at infinity which is orthogonal to E).

2.5 Submanifolds

As the concepts listed here are essential only for the proofs of our results,
we give only a brief summary: We assume that the reader is familiar with
the concept of a smooth n-dimensional manifold N (an n-manifold). An em-
bedded smooth m-submanifold M of N is characterized by the existence, for
p E M, of a local diffeomorphism which transforms an N-neighbourhood U of
p to Rn and U n M to R m C In. An immersion is a smooth mapping whose
differential is one-to-one (but not necessarily onto). Then locally the immer-
sion is also one-to-one. An immersed k-submanifold is the image of a smooth
k-manifold under an immersion. The difference between embedded and im-
mersed submanifolds is therefore that the latter may have 'self-intersections',
but neither are allowed to have 'singularities'.

An embedded submanifold M1 and an immersed submanifold M 2 of N
are transverse (we write M 1 r M 2), if for all points p E Mi n M 2 the tangent
spaces TpM 1 , TpM 2 span TEN. Then M1 n M 2 is an immersed (dimMi +
dim M 2 - dim N)-dimensional submanifold of N, whose tangent space equals
TpM 1 n TpM 2 .

If a smooth mapping € of a smooth m-manifold M into a smooth n-
manifold N has constant rank r (i.e., at all points its differential's rank as of
a linear mapping equals r), then O(M) is a smooth immersed r-dimensional
submanifold of N.

§3. Local Contact Situation

If a body is bounded by a smooth surface f, this surface has an inside and
an outside. The unit surface normals can point to either side, depending on
the parametrization. If two bodies, which are bounded by smooth surfaces f',
f", touch each other, the curvatures of f', f" give information whether they
intersect locally or not.

It should be remarked that some methods proposed in the literature (cf.
[10,12]) for avoiding local intersections are only approximations, and one can
find surfaces where they won't work. Also it is important to note that the
presence or absence of local intersections is completely independent of the
actual motion of the two bodies.

Definition. The interior int(i) of a conic i centered in the origin is void if i
is void, and otherwise is the connected component of12 \ i which contains 0
and whose boundary is i. Its exterior ext(i) is the complement of int(i) U i.

We assume that f', f" are parametrized such that their unit normal vectors
in the common point coincide, and that this common normal vector points to
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the inside for f' and to the outside for f". We further assume that not all
four principal curvatures are zero. We consider the Dupin indicatrices il+, if-,
il_, and i_ for f' and f/I, respectively.

Theorem 3. Under these assumptions, the two bodies in question intersect
locally, if one of the intersections ifl n int(i/_), i"l n ext(i' ) is not void. They
do not intersect, if il n il, ill n int(il_), ill nfl ill next(if_) are void.

Proof. (Sketch) The theorem follows from the fact that a twice continuously
differentiable surface may be approximated of second order by the graph of
a quadratic function, whose contour lines are scaled versions of the Dupin
indicatrices. El

Note that the theorem says nothing about the cases that all principal
curvatures are zero, the indicatrices touch each other in two opposite points,
or even coincide (cf. Fig. 1, right). In that case, second derivatives are not
sufficient to decide if there are local intersections. In practice, this does not
matter very much because the only case that is likely to occur with nonzero
probability is that of a flat end mill shaping a planar surface, which does not
have self-intersections.

In [8,16,23] it is shown how to define indicatrices in the case of piecewise
curvature-continuous surfaces. The theorem is valid also in this more general
case.

§4. Configuration Manifolds and their Tangent Spaces

For many problems concerning the milling of free-form surfaces, it is important
to know the degree of freedom of a motion constrained in various ways. Typical
constraints are: Motion by translations such that a surface remains in contact
with another surface (3-axis milling), motion such that a surface remains in
contact with another surface (possible set of tool positions in 5-axis milling),
motion such that a milling tool remains in contact with a surface and its axis
is contained in some previously prescribed line congruence (a possible way to
do 5-axis milling). These topics will be discussed in Subsections 4.1-4.3.

4.1 Translational motions constrained by surface-surface contact

Consider two surfaces f', f/" which have a common point p = f'(u') = f"(U")
and share a common unit surface normal n' = n" there. Imagine the first
surface moving by translations such that it always touches the second surface
(i.e., at every instant t there are a translation vector a(t) and parameter values
u'(t) and u"(t) such that f'(u'(t))+a(t) = f"(u"(t))). One would expect that
this motion has two degrees of freedom, if we do not count intersections of the
surfaces.

If q(x1, x 2) = xi xj is a bivariate homogeneous quadratic polynomial
in the variables x 1 , x2 , we call the rank of the (2 x 2)-matrix aij the rank of q.
The zero set of q consists of the entire plane in the case of zero rank, of one
line if the rank is one, and of two real or two conjugate complex lines if the
rank is two.
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q'-q "=O0"=l

q'=1 qq'-q"=O

q' =1

Fig. 1. Indicatrices q' = 1, q" = 1 and zero set of q' - q". Left: rk(q' - q") = 2,
Right: rk(ql - q') = 1.

We have the following theorem (cf. [8,16,23]), which is valid for all contact
situations where at least one surface has no parabolic or flat point, or both
have parabolic points but the principal tangents do not coincide.

Theorem 4. Write the equation of the oriented Dupin indicatrices of f', f"
at the contact point in the form q'(x, x 2) = 1 and q"(xi, x 2 ) = 1, where x 1 , x 2
are Cartesian coordinates in the tangent plane, and q', q" are bivariate homo-
geneous quadratic polynomials in x 1 , x 2. If the condition stated immediately
before this theorem is satisfied, then the rank of q' - q" gives the infinitesimal
degree of freedom of translational motions constrained by the contact of f',
f" (see Fig. 1).

Proposition. If, under the assumptions of Th. 4, the infinitesimal degree of
freedom is two, then so is the local degree of freedom.

4.2 Motions constrained by surface-surface contact

Definition. The set of proper Euclidean motions which transforms a surface
f' such that it touches a surface f" is called the configuration space C =

C(f', f") of surface-surface contact.

Clearly, a position g E C is not determined by the contact points alone,
because we still may rotate f' about the contact normal. But if we prescribe
a unit tangent vector (p'; w') of f' and (p'; w") of f" (which means p' =

f'(u•,u'2) and w' = df'(v') with I1w'II = 1, and the same for (p",w")), then
there is a unique Euclidean motion g E C which maps not only the point p'
onto p", but also the tangent vector w' onto w". If we rotate both w', w"
about an angle €, this leads to the same g E C, so C is a smooth image of the
factor manifold C of such equivalence classes of unit tangent vectors, which is
five-dimensional.

This shows that we may expect five degrees of freedom, if f' moves under
the constraint that it touches f" in some point. The following theorem is
given in [18,24]:
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Theorem 5. In the notation of Th. 4, the motion of a surface under the
single constraint that it touches a second one, has five degrees of freedom if
q1 - q" has rank two. If that is the case for all possible contact points, then
the configuration space is an immersed five-dimensional submanifold of the
motion group.

Note that the theorem is valid without the additional assumption made in
Th. 4 in case some principal curvatures are zero. It is easy to describe the
tangent space TgC of the configuration manifold at a contact position g E
C C G (to be precise, the tangent space of the immersion described at the
beginning of Sect. 4.2). The proof of the following proposition can be found
in [18].

Proposition. The linear space TgC of infinitesimal motions which belong to
paths in C is five-dimensional, and the axes of its infinitesimal rotations are
the lines which intersect the contact normal.

In a Cartesian coordinate system whose origin is the contact point and whose
x 3-axis is the contact normal, TgC has the equation c03 = 0.

4.3. Motions constrained by congruences

Here we consider the motion of a rigid body E such that a line a of E is
contained in a congruence K. This subset of the group G of proper Eu-
clidean motions will be denoted by K. We assume that C is parametrized by
l(U1,U 2 ) = p(ul, U2 ) + [V(UlU 2)]

If g E K, then it is obvious that both r o g and p o g are in K, if r is a
translation parallel to g(a) and p is a rotation with axis g(a).

Lemma. Assume that K is a smooth line congruence which is regular at g(a).
Then K is a four-dimensional smooth submanifold of G in a neighbourhood
of g.

Proof: (Sketch) Let g E K be a position of E such that g(a) C K. We
compute K's tangent space T 9K of infinitesimal motions at g: Consider a
curve (ul(t),u 2 (t)) in V's parameter domain such that l(t) = l(ul(t),u2(t))
is a ruled surface within K with 1(0) = g(a). The helical motion described
in Sect. 2.4 is tangent to K. If we choose two such curves with linearly
independent tangent vectors, this gives two linearly independent infinitesimal
motions of TgK, if K is regular at g(a) (the proof of this is left as an exercise
to the reader).

Obviously all infinitesimal translations parallel to g(a) are in T9 K, and
so are the infinitesimal rotations with axis g(a). If g(a) is the line p+ [v], then
the former is described by the six-tuple (0, v) and the latter by (v,p x v). Now
TK is the linear span of these four infinitesimal motions. D

In case that g(a) is a hyperbolic line of K, there is a simple geometric
characterization of the infinitesimal rotations of T 9K:
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b\ b;

Fig. 2. Axes of infinitesimal rotations in K.

Proposition. If C' is a hyperbolic linear congruence tangent to C at the line
g(a) and has axes k', k", then the axes of infinitesimal rotations in TgK form
a hyperbolic linear congruence C, whose axes bY, b" are incident with g(a)f k",
g(a) n k', respecively, are orthogonal to g(a), and are such that k', b', g(a) as
well as Vk, V", g(a) are coplanar (see Fig. 2).

Proof: It is easy to see that the lines a', a", incident with k' n g(a), k" n
g(a) and orthogonal to kV, k", respectively, are axes of infinitesimal rotations
contained in T 9K. The axis of the infinitesimal translations along g(a) (which
is the line at infinity orthogonal to g(a)), g(a) itself, and a', a" intersect both
b', b". We already know that the set of axes is a linear congruence; because
of these four intersections the lines b', b" are necessarily the axes of L. 0

The following is used later:

Proposition. A point of g(a) which contains two different axes of infinitesi-
mal rotations of TgK must be a focal point of g(a).

Proof: At least one of the two axes is not g(a) itself, and the rotation about
this axis transforms g(a) into a line which intersects g(a). Looking at the list
of linear tangent congruences in Sect. 2.4 shows that this is only possible in a
focal point. D

4.4. Multiple constraints

Assume that a rigid body E, bounded by a smooth surface f', moves such
that f' remains in contact with a surface f", and that in addition a line a of
r is contained in a smooth line congruence C.

With C being the configuration space of surface-surface contact (see
Sect. 4.2) and K as in Sect. 4.3 the set of possible positions g of E is given
by the intersection C n K. The following theorem shows under what circum-
stances CNK is actually a smooth three-dimensional submanifold of positions,
as is to be expected when comparing dimensions:

Theorem 6. If T.K is not contained in TgC, then C n K is a three-dimensi-
onal immersed submanifold in a neighbourhood of g. This is always the case
if g(a) is not parallel to the contact tangent plane.

Proof: We have to show that C r K. Because dim TgC = 5, this is always
the case if TgK is not contained in T.C. If the contact tangent plane is not
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parallel to 1, then any small translation parallel to I leaves C and therefore in
this case C r K, and dim(C n K) = dim C + dim K - dim G = 3. El

If E has rotational symmetry, and the line g(a) which is forced to belong to
IC is its axis, then we can say more about the set CfK of admissible positions.
Clearly, any rotation about the axis does not change E, so g E C n K implies
that p o g E C n K whenever p is such a rotation.

We choose a reference point p on the axis, and look at the three-parameter
family of its positions, which is actually only a two-parameter family:

Proposition. If , has rotational symmetry, a reference point p in E 's axis a
traces out a regular two-surface while undergoing all transformations of CfK,
provided that p is never a focal point of g(a). This path surface is transverse
to I if I is not parallel to the contact tangent plane.

Proof: We consider the mapping 0 : g ý-f g(p) of C n K to R 3. All infinitesi-
mal rotations about g(a) assign zero velocity to p, which implies that the rank
of 0 is not greater than two. If p has zero velocity also for other infinitesimal
motions of T,(C n K), these must be infinitesimal rotations, and we can use
the proposition at the end of Sect. 4.3 to conclude that the rank of 0 is indeed
two, and its image a smooth 2-surface. If I and the contact tangent plane are
not parallel, then no infinitesimal translation parallel to 1 is in C n K, and the
path surface cannot be parallel to 1. C]

§5. Movement of the Contact Point

It is important to study the dependency of the contact point on the contact
positions. This will be done for two different types of constraints.

5.1. Motions constrained by surface contact

In Sect. 4.2 we stated that the configuration space C(f', f") of surface-surface
contact is an immersed image of C as described in Sect. 4.2, if the Dupin
indicatrices of f', f/" fulfill a certain condition (Th. 5).

If this is the case, then there is a local inverse C -- M, and so the contact
point depends on the positions g E C in a smooth way locally. This (local)
mapping will be denoted by b.

As dim C = 5 and the contact point varies in a 2-surface, there is a 3-
dimensional kernel subspace kerdV) C TgC of infinitesimal motions which
do not (infinitesimally) change the contact point. The following is an easy
exercise in differential geometry:

Lemma. If f', f" are two surfaces having contact at a point p, n is the unit
normal vector off', and wl, w2 are principal tangent vectors, corresponding
to curvatures ni, K2, then all infinitesimal rotations about the axes p + [n),
p + n/•1 + [w2], p + n/Vc2 + [wi] are contained in the tangent space TgC of the
configuration manifold, and do not (infinitesimally) change the contact point
on f".

If a principal curvature is zero, the corresponding axis will be at infinity.
Obviously rotations of these three types span ker d9 V.
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p+[n]

b" b"

pp+n/1c 1+[wl].

pedom cf. +p+nw 2+ [W

Fig. 3. Situation where the contact point has only one infinitesimal degree of

(Section 5.2): front view and lateral view.

5.2. Multiply constrained motion

Now we consider the configuration manifold C fl K of a motion constrained

by surface-surface contact and a line congruence K as described in Sect. 4.4.

The contact point still depends smoothly on g e C fl K. But does it have

nonzero velocity for all infinitesimal motions different from the rotations about

the contact normal? Obviously, that depends on the intersection ker d 9 b fl

Tg(C fl K). Because kerdg4¢ C T 9C, this intersection equals kerd 9 b fl T 9K.

Depending on its dimension, there are the following three possibilities:

* dim = 1: Only the infinitesimal rotations about the contact normal are in

ker d 9¢. The infinitesimal motion of the contact point is two-dimensional.

* dim = 2: The rank of ¢ is one, and the contact point varies infinitesimally

only in one direction.
F dim 3: rkS = 0 and the contact point does not move infinitesimally.

If the line g(a) belonging to the current position g e C n K is a hyperbolic line

of s, then the rank of n's restriction to CouK can be determined geometrically

(see Fig. 3):

Proposition. We use the notation of the propositions in Sect. 4.3 and of the

lemma in Sect. 5.1. If there are lines Sl, d2 such that se intersects both n, b",

si is incident with p+n/Ki (i = 1, 2), and sI C p+-[n]-+ [w2], 82 c p-+-[n]-+-[wl],

then rk)BC fl K < 1 otherwise rkblC C K = 2.

Proof: The lemma in Sect. 5.1 describes ker 9 e =: A and the first proposition

"in Sect. 4.2 does the same for TeK =: B. To compute A ct B we apply the

duality which assigns to a linear space A C ]R•6 the linear space A* of those
infinitesimal motions (a*, *) which fulfill at h + cn. a* = 0 for all (a, t) e A.

"Clearly, dimA* = 6 - dimA and (An B)* is the linear span of A*, B*.

If is well known that an infinitesimal rotation is in A* if and only if its axis

"intersects all the axes of the infinitesimal rotations of A. Thus, the rotation

axes in A* consist of two pencils with the same vertices as those of A, but

with orthogonal planes; and the rotation axes of B* are just the lines b', b".
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Rank < 1 means dim(A*-+-B*) < 4, or that the span of b' and A* contains
bV. It is easily seen that apart from even more special cases, this happens if
the axes of this span are a hyperbolic linear congruence with axes s1 , S2. El

§6. Collision Checking

It is possible that a milling tool has no local intersections with the finished
surface, but while in contact with the surface at one point, it cuts into another
part. Algorithms which test for this type of intersection of two bodies in space
are time consuming, and therefore we want to circumvent the general collision
test in some way. In some cases we are able to predict the total absence of
collisions based only on the curvatures of the boundaries of the two bodies
involved.

We say that a surface D is millable by a body E, if (a) there are no local
intersections, and (b) it is possible for E to move, within previously imposed
constraints, along the surface 1P such that it touches D during this motion,
but never actually intersects it.

6.1. 3-axis milling

3-axis milling means that a milling tool E rotates about its axis a and moves
such that a remains parallel to a fixed line, and E always touches the finished
surface. As the rotation about a is not important for geometric considerations,
we disregard it completely and consider a body which moves in a translational
manner.

We assume that E as well as the workpiece 4D are bounded by piecewise
twice continuously differentiable surfaces (convex edges are allowed). Then
the so-called general offset surface (defined below, see Fig. 4, right) of 4 with
respect to E shows in its singularities and self-intersections the singular posi-
tions of the motion and the collisions (cf. [15,16]).

Definition. Choose a reference point p attached to E. Consider the set of
translations r such that T(E) touches 4 (disregarding intersections). Then
the set of all points T(p) is called the general offset surface of 1 with respect
to E.

Theorem 7. If E is strictly convex with positive principal curvatures, and D
is connected, then the general offset surface of D with respect to E is smooth.
It is regular in all points which correspond to translationally regular contact
positions, and if it is both regular and free of self-intersections, then P is
globally millable by E.

Proof: (cf. [16,23]) For all points p E 4 there is a unique position g such that
g(E) touches 4 in p. The parametrization of the general offset which thus
is induced by the parametrization of 4 is easily seen to be smooth. There is
always a point P0 such that E n 4 consists of P0 only. If E touches 4 in p, and
thereby cuts into another part of D, then let E move such that the contact
point follows a curve which joins P0 with p. At the first time that the set



Sculptured Surface Machining 429

"fill[

Fig. 4. Left: Line congruence KC, finished workpiece P and cutter E. Right:
Workpiece 4, milling-tool E and general offset surface r.

E n i> consists of more than one point, E and $ touch each other in all points
of E nl 4, which leads to a multiple point of the general offset. 11

Thus, we have transformed the collision problem into the problem of
determining singularities and self-intersections of certain surfaces. If @ has
some additional properties then it is not difficult to guarantee total absence
of unwanted collisions provided that no local collisions occur:

"* if 4 is convex and E, 4 are oppositely oriented (i.e., the body bounded
by P is its inside); or

"* if P is convex and E, 4 are equally oriented (i.e., the body bounded by
4 is its outside and E is inside); or

* if 4> is star-shaped and bounds its inside; or

* if I) is star-shaped, bounds its outside, and E fits into the convex core of
4 (the convex core of a star-shaped set M is the set of points with respect
to which M is star-shaped - it is a convex subset of M); or

* if 4) is the graph surface of a function over a planar domain whose bound-
ary is millable by the 'top view' contour of E.

Proof. The proof of this can be found in [16], and generalizations actually
unimportant for applications are studied in [23]. The idea of the proof, which
is important also for the proof of Th. 8, is as follows: We assume that there
is a 'projection' of entire space onto I). If e.g. 4P is convex, just choose any
interior point o, and to project a point p, intersect the ray 3o- with C.

Then consider the following mapping whose domain is 4I: For a point
x E I), translate E such that it touches 4I there, and project a previously
chosen reference point of E onto C. This mapping is shown to be smooth
and orientation-preserving, and by scaling E with a factor A (1 > A > 0)
is deformed into the identity mapping. Differential topology allows now to
conclude the (D is one-to-one and onto, which means that no translate of E
can touch (D in more than one point. 0

6.2. 5-axis milling constrained by a line congruence

Here 5-axis milling means that the milling tool moves such that it touches the
finished surface, and its axis is always contained in a line congruence K1.
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Definition. A regularity domain of KI is an open domain M in R 3 such that
K defines a fibration of M (every point of M is contained in exactly one set
l n M, where 1 is a line of the congruence). A section of a regularity domain
M is a surface which intersects all sets 1 n M exactly once. The regularity

domain M is a tubular neighbourhood of its section D if it is diffeomorphic
to ' x R.

The domain M is a tubular neighbourhood of 4) if the sets I n M are open line
segments, the point p = fl nI n M is an interior point of this segment, and
the initial and end points of the segment depend smoothly on p.

We say that a convex body E with rotational symmetry is admissible for
a line congruence K and a connected closed surface 10 which is the boundary
of a subset of R 3 if the following is fulfilled:

* There is a regularity domain M for KI which is a tubular neighbourhood
of 4.

* E moves such that it is entirely contained in the regularity domain.

* In no position of C n K the contact tangent plane is parallel to the axis
of E.

e The contact point has two infinitesimal degrees of freedom for all scaled
versions AE, 0 < A < 1 (cf. Sect. 5.2).

These conditions are actually easy to fulfill in practice except for the last one,
which is difficult to detect in advance. In the special case of three-axis milling
(KC is a bundle of parallel lines), this requires that all contact points on E are
elliptic surface points.

Suppose that we are given a surface 4 and a milling-tool E, and we have
chosen a congruence K1, and have found, for all contact points on 4, a position
g(E) such that g(E)'s axis is in K. Suppose we have already tested for local
millability and the admissibility conditions described above. Then we have
the following

Theorem 8. Under the circumstances described above, the cutter does not
interfere with the surface E, i.e., D is globally millable by E.

Note that in many cases it will be sufficient to check the admissibility only for
the cutter head, because collisions of the cutter shaft with the workpiece will
be treated by different methods (see the introduction)
Proof: In Section 5 we have established that the contact point depends
smoothly on E's position g. Let a be E's axis, and let p be a rotation about
g(a). Clearly p o g is again a contact position with the same contact point as
g. If we choose a reference point p on E's axis and inside E, the path surface
of p also depends smoothly on g, and p o g(p) = g(p).

This means that the contact point depends smoothly on the position
g(p) of the reference point. The last admissibility condition ensures that also
g(p) depends smoothly on the contact point. Thus, we can define a smooth
mapping f : oD -- 4D as follows: A contact point q E 1 is mapped to the
corresponding point g(p), which is subsequently mapped to the intersection
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f(q) of g(a) with 4. If we scale E with a factor A (0 < A < 1), we get
mappings fA, where fo is the identity mapping of 4 onto itself, and fA (q)
depends continously on A. f\ is never singular since we are in a regularity
domain, fl = f is orientation-preserving because fo is, and the number of
pre-images of a point is the same for fo = id and f, = f. This shows that
f is one-to-one and onto. If g(E) touches 4 in one point and cuts into 4 in
another, there also is a position g(E) where E touches in two different points
(cf. the proof of Th. 7). These two points have the same f-image by definition
of f, which contradicts bijectivity of f. 0
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Extensions: Extrapolation Methods for CAD

Hans J. Wolters

Abstract. Many operations within a solid modeling application, notably
applying thickness (shelling) or blending edges (filleting), encounter diffi-
culties during topology resolution. In order to create a solid object, certain
faces have to be intersected but the geometry is such that no intersection
curve can be computed. The solution is to "extend" one or both faces.
This means that one has to extrapolate the underlying curves or surfaces.
This operation causes instability since extrapolation is inherently an un-
stable process. An additional difficulty is the selection of a strategy to
compute the extension amount. Furthermore, there are additional restric-
tions relating to continuity across the extension boundary. In this paper I
will illustrate by examples some modeling situations where extensions are
necessary. I present the methods currently used, and illustrate their ad-
vantages and disadvantages. Subsequently, I will demonstrate a solution
for primitives such as cylinders, cones, spheres and tori. I will conclude
by suggesting approaches which could avoid some of the current pitfalls.

§1. Introduction

At present almost all engineering design tasks are performed with the help of
a CAD system or - more generally - mechanical design automation (MDA)
software. Most all of the commercial modelling packages converged to certain
standard respresentations. The geometry is represented as NURBS curves
and surfaces, where truly rational representations are used only for primitives
such as circular and elliptic arcs, cylinders, cones, tori and spheres. Most
modelers also moved from strictly CSG representations to a hybrid model
where the topology is expressed as a BRep, and the sequence of operations is
stored in a CSG-like tree. As mentioned above, our focus is on solid modelling
applications where it is essential to maintain a valid topological solid after each
operation. We restrict ourselves here to the manifold setting.

In more technical terms we define a solid as a 3-manifold with a compact
boundary which is consistently oriented. This allows us to include objects with
finite surfaces without excluding objects with infinite volumes. The reader
who is unfamiliar with these concepts should consult a textbook on solid
modelling such as [2,3] or the excellent survey [4].
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Copyright @ 2000 by Vanderbilt University Press, Nashville, TN.
ISBN 0-8265-1356-5.
All rights of reproduction in any form reserved.
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Fig. 1. Offsetting outward results in free edges which need to be resolved.

The requirement that the validity of the solid be maintained after any
operation is a source for many of the robustness issues encountered in solid
modelling. For example, it is often difficult to find a crisp intersection between
surfaces even though the intersection curve is needed to close the solid. In
this article I will focus on the problem of extensions. In a nutshell, we often
need to extend surface patches in order to create intersections. This extension
operator is equivalent to performing extrapolation. Very little information
can be found in the literature regarding this topic; the notable exception is
[5]. This survey article is meant to fill the void.

The outline of this article is as follows. In Section 2, I will describe three
operations which almost always lead to the need for extending curves and
surfaces. Section 3 will present the approaches used in practice and discuss
their advantages and disadvantages. Furthermore, I will describe one mod-
ification which leads to significant improvements when extending quadratic
B~zier patches such as cylinders, cones, spheres and tori. In Section 4 we
will suggest alternative approaches to circumvent the need for extensions and
encourage some future work.

§2. Extensions in Solid Modeling

The need for extensions arises quite frequently when modeling parts. I will
explain the need for extensions when performing three of the most common
operations, namely

"* Shelling,

"* Blending,

"* Drafting.

These three operators are local operators, meaning that only a region of
the solid is modified. Shelling is the process of applying thickness to a part.
The steps to be performed are as follows: The intial step is to offset all the
surfaces with prescribed offset distance, the thickness. This distance can vary
considerably. The result is illustrated in Figure 1.
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Fig. 2. Blending with features present: The edge denoted by an arrow in the
left figure is filleted. The face denoted by the arrow in the right figure
needs to be extended.

In Step 2, surfaces need to be intersected to form edges. Here extensions
might be needed in order to compute crisp surface intersections. Trimming
back the surfaces in Step 3 yields the final result. The alert reader might
have noticed that the true offset is the Minkowski sum, and vertices should
really correspond to arcs. This would avoid computing extensions altogether.
However, this result is not desired in practice.

Blending or filleting is the process of rounding sharp edges. Hereby an
additional face is constructed which meets the adjoining faces with G1 con-
tinuity as illustrated in Figure 2. This surface is typically constructed as a
loft interpolating circular or elliptic cross sections. Extensions are needed for
vertex resolution when multiple filleted edges meet at a corner or for extend-
ing features when the blend face interferes with an existing feature. For more
information on blending, see the survey article by Varady et al. [6].

A draft operation in solid modeling consists of changing the solid such
that certain faces are slightly angled, see Figure 3. This is necessary for
plastic parts manufactured by injection molding. In order to be able to pull
the part out of the mold, there needs to be some room such that the faces
do not stick to the mold wall. Hence this operation is mandated purely for
manufacturability. Extensions are needed here as well as Figure 3 illustrates.

Fig. 3. Draft: The angled face replaces the front face and, hence the bottom
face needs to be extended.
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In conclusion, one can see that the success of these operations depends
on being able to produce the geometry which is required for the successful
resolution of the topology. Specifically, this means that one has to be able
to produce intersection curves. The vast majority of failures can be traced
to the failure of producing these curves due to bad geometry generated by
extensions.

§3. Extension Methods

In this section we will survey the extension methods which are typically em-
ployed in commercial systems, and we will evaluate their strengths and weak-
nesses. Additionally, we will present a modification which allows to extend
quadric surfaces while maintaining their current parametrization. Extensions
need to fulfill certain requirements to be useful. Special surfaces such as cylin-
ders, cones, spheres, tori should be maintained. Ideally the existing degree of
continuity across the extension boundary should be kept as well; however, this
requirement is mostly relaxed and only G1 continuity is required. The shape
of the resulting surface should be predictable, and the extensions should result
in well-defined surface intersections. Note that the requirements differ in one
crucial point: the first two requirements can be enforced, whereas the last two
can not when using extrapolation based methods. We will revisit this topic
in Section 4.

Subsequently, we assume as given a B-Spline surface s(u, v) of degree d
with control points 8ji,i = 1,... ,n,j = 1,... ,m and knot vectors u and v.
We assume the parameter domain of the surface to be [a,, bl] x [a2 , b2]. We
assume that we want to extend across the boundary u = b, such that the new
bound is fi.

Natural extension

The natural extension approach is the straightforward extrapolation approach
in a B-Spline or B~zier setting. Consider subdivision of a given B6zier curve
c(t) with t E [a, b]. It is known that the control points for any subcurve
d(t) with t E [a,s] are given by the intermediate points of the de Casteljau
algorithm:

di = c(s).

Of course the formula is still valid if s is lying outside the original parameter
interval, here [a, b]. Natural extension is performed by applying this formula
with a value 9 V [a, b]. This results in extrapolation. Furthermore, the control
points are not computed as convex combinations of the previous layer control
points as before; hence attributes like the convex hull property are lost. The
derivation presented here directly generalizes to the setting we are considering.
In the B-Spline case the control points are the intermediate points generated
by the de Boor algorithm with the new extension parameter ft. Pseudocode on
how to compute these intermediate points can be found in the book by Farin
[1]. We can easily extend this method to surfaces by repeatedly applying the
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Fig. 4. Construction of linear extensions.

curve algorithm to rows or columns of control points. It is worthwhile to point
out that this method is inherently very unstable. However, it is often used in
practice even though it should be avoided.

Linear extension

The simplest form of extension is using the derivatives across the extension
boundary to infer the new geometry, see Figure 4.

This method is known as linear extension. In our case we extend each row
of control points linearly in the direction given by

v)i ý dn,i -- dn-l,i.

Note that now one additional segment is being created, and hence we increase
the number of control points in each row. Typically, we have the freedom to
achieve C1 continuity by appropriate scaling. If we define

a U - Un+d+1

Un+d+i - Un+d

then by setting
dn+,,i = dn,i + avi,

we have achieved C1 continuity at u* = Un+d+l as can readily be verified. If
we denote as D+ the partial of s at u* computed from the (new) right segment
and with D- the corresponding partial computed from the left segment, we
derive:

D+ dn+l,i - dn,i Vi f - Un+d+l Vi D.
U - Un+d+l U^ - Un+d+l Un+d+l - Un+d Un+d+l - Un+d

The other control points are usually placed equidistantly on the tangent line.
Again rational surfaces are treated in homogeneous space, and it is possible
that negative weights are created. One can remedy this by inserting knots
appropriately.
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Fig. 5. Reflection of control points.

Reflection extension

This method has been introduced in [5]. The idea here is that more predictable
results can be obtained by just mirroring the existing geometry across the
normal plane. This is shown in Figure 5.

The basic operation of reflecting control points suffices when dealing with
nonrational surfaces. The basic reflection operation can be formalized as fol-
lows: We again define vi as in the case for linear extensions. Let us denote
by bi the normalized vector. Then we have

dn+j,i = dn-j,i - 2 < i)i,dn-j,i - dn,i > i)i, j = 1,... K,

where K is the number of new control points to be computed. It can be
easily seen that G 1 continuity is preserved across the boundary u = b. A
more subtle point to consider is continuity in v across a knot vi with full
multiplicity. If the original surface is C' continuous across vi, we would like to
ensure that the new part of the surface fulfills that condition as well. Control
points generated by the simple extension equation above will not inherit C'
continuity from the generating geometry. This is due to the fact that the
normalization introduces a nonlinearity into the reflection formula. Only if
we have the same reflection plane for the three rows affected is C1 continuity
across v, achievable. G1 continuity is achievable if one chooses the weight
functions in the continuity equations appropriately. In the case of rational
surfaces, more work is required in any case. The continuity conditions for
adjacent rational patches are somewhat complex: Suitable weights and scalar
values have to be computed by inserting the model space control points into
the equations for G1 continuity as stated in [5]. In addition, it is now not clear
that G' continuity across a knot vj with full multiplicity can be obtained. The
authors in [5] ignored the complications arising by this configuration. Note
that this problem is closely related to twist incompatibility issues when one is
computing the new corner points.

Extending special surfaces

In most CAD systems, rational surfaces are only used to represent surfaces
such as cones, cylinders, spheres and tori. In this case, one can create an
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extension surface which is again a special patch by solving a simple system
of equations without invoking the machinery of rational continuity conditions
across boundaries: We make use of the fact that we are dealing with quadratic
Bezier patches. So let us assume that we are given a biquadratic patch p(u, v)
which again shall be extended across u = b. Let us denote the new patch by q.
The boundary control points are generated by simple reflection in model space.
The weights are just copied, hence we guarantee positive weights. It remains
to generate the point q11.We make use of the fact that the two end derivatives
of the isoparametric curve formed by qo1 ,q11 , and q21 are the same up to a
scale factor as the corresponding derivatives of the curve denoted by Pol,Pl1,
and P21- Furthermore, the scale factor A is identical for both derivatives. This
gives rise to a simple system of 6 equations in 4 unknowns: Let

Op w01u4 - U1Do F= (uu( =av o
OWll 2

1 Op b,v) W21 U4 - U1

Then we obtain the equations

ADo - q11 = -q01,

AD1 + q11 = q21.

We know that a solution must exist, and by looking at the system, we can
readily determine A - for example by adding equation 4 to equation 1. Having
determined A, q11 follows trivially.

Hence we have presented an approach to compute the correct control
points in the circular direction of a special surface such as cone, cylinder,
sphere or torus.

Summary

We have presented the three commonly used extension methods. Let us sum-
marize the advantages and disadvantages of each: Starting with the natural
extension, its advantages are that maximal continuity is preserved and spe-
cial surfaces retain their characteristic. The disadvantages are that depending
on the original surface parameterization the results can be undesirable even
when only extending a relatively small amount. Furthermore, since extension
is performed in homogeneous space, weights can easily become negative even
for special surfaces.

Linear extension is the most predictable met1'od in that it resembles a
ruled segment that joins the original surface with '-f or C1 continuity. How-
ever special surfaces are not preserved, and again we might produce negative
weights when dealing with rational surfaces.

Reflection extensions yield positive weights for rational surfaces. The
resulting surface is related to the original surface in a predictable fashion, at
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least for a modest extension amount. It is possible to create G2 continuous
surfaces across the extension boundary. However, one might lose continuity
in the other direction when knots with full multiplicity are present.

The combination scheme derived above combines reflection extension with
a direct computation of inner B~zier points. This method has been developed
especially for the extension of rational quadratic B1zier patches, and hence it
preserves special surfaces without introducing negative weights.

Implementation issues

In order to implement a topology resolution system based on extensions, there
are some other complicating factors to consider. First, the amount of exten-
sion has to be determined. In general this amount is given in parameter
space. Depending on the parameterization, parameter space and model space
might not correspond well. As a consequence, it is difficult to even predict
the extension amount in model space without careful analysis of the given
parameterization. Usually one needs to perform extensions in a loop by ways
of callbacks. The process flow is as follows:

1 ) extend,

2 ) test for intersection,

3 ) if intersection found then process, else goto 1).

Of course, it is necessary to monitor this iteration. When finding an
intersection curve requires extensions of significant amount, it is likely that
the result is not acceptable. This is particularly true for shelling operations.
When dealing with trimmed surfaces, the desired result might differ: In some
cases it might be valid to extend the untrimmed surface; in other cases the
trimming information must be preserved.

§4. Alternatives

We have seen that extension approaches are the weak link in topology reso-
lution algorithms. Inherently, the problem of extrapolation is ill-defined. An
alternative solution worth exploring is to reverse the process and to establish
the desired intersection curve first. Given this intersection curve and option-
ally a tangent ribbon, one can construct a cubic B1zier patch blending between
the intersection curve and the extension boundary and tangents constructing
a G1 cont auous extension. Variations of this approach are possible as well:
one might even prescribe four boundary curves and construct the extension
patch by Coons blending techniques. If one needs to establish a vertex by per-
forming multiple intersections, one could again establish intersection curves
first, and then perform additional intersections to establish the vertex. To
the authors knowledge, such an approach is currently not implemented in any
commercial modeler.
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§5. Conclusion

This survey article presented the methods used for extending curves and sur-
faces. Since they are all based on extrapolation, the algorithms are unstable
and can lead to undesirable results. As a consequence, the topology cannot be
resolved, and a valid solid cannot be produced. This leads to the failure of the
entire local topology operation such as shelling, blending or drafting and loss
of productivity for the end user who typically has to perform time-consuming
steps to get the desired result. We have shown that all the algorithms have
inherent weaknesses, and we have put forward a suggestion for alternative ap-
proaches. It is the authors hope that this paper motivates some much-needed
further work in this area.
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