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0.0 Program Introduction 
This final report summarizes progress toward accomplishment of contractual 

objectives during the 42-month period covering 01 July 1998 through 31 December 2001. 
While somewhat arbitrary, it is convenient to break the contract into two periods of 
performance. We refer to the first period of performance as the Base Program. It covered 
33 months from 01 July 1998 to 31 March 2001 and had a funding level of $2,400,000. 
The Base Program concentrated on radar signal processing and had an objective of using 
advanced mathematics to improve radar adaptive array processing (AAP). We refer to the 
second period of performance as the Option Program. It covered 9 months from 01 April 
2001 to 31 December 2001 and had a funding level of $640,000. The Option Program 
concentrated on optical signal processing and had an objective of applying advanced 
mathematics algorithms developed by various contractors under DARPA DSO ACMP to 
uncooled IR (UCIR) sensors. 

We believe that overall this has been a highly successful program. We have 
developed and/or evaluated a number of algorithms for both radar and infrared signal 
processing. These include: 
• Base Program 

- Multiresolution Space Time Adaptive Processing 
- Fast Covariance Matrix Formation 
- Fast Matrix-Vector Multiplication 
- Range-Doppler Phase Detection 
- Duke University Channel Equalization 

• Option Program 
- Local Singular Value Decomposition 
- Anisotropie Image Diffusion 
- Best Basis Template Matching 
- Multiresolution Anisotropie Image Diffusion 
- Duke University improve lents to the Local Singular Value Decomposition 

In addition, we have had two significant program transitions and have a very high 
probability of achieving a third. 
• Fast Channel Equalization algorithm transitioned to AMRAAM Phase 3 
• Fast Range-Doppler Map generation algorithm transitioned to Raytheon's Air-to-Air 

6 Degree of Freedom simulation 
• Probable transition of the Local Singular Value Decomposition algorithm to the 

NetFires program 

We believe that we have managed the program well. While our staffing levels have 
fluctuated throughout the program, we have managed to remain on schedule and within 
budget. Moreover, we have been able to maintain a core technical team, which has been 
quite challenging given the staffing shortages Raytheon has experience over the last few 
years. We have managed to get and keep subcontracts in place with a number of 
universities. We have supported Drs. Healy and Cochran by responding to all technical 
and programmatic requests in a timely manner. 
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1.0 RF Adaptive Array Processing 
1.1 Introduction and Background 

Received signals may contain components due to target, receiver noise, and 
unwanted interference (clutter, jamming, or both). Nonadaptive processing is the typical 
mode for processing these signals; however, when a threat is encountered that requires 
interference nulling or spectrum estimation, adaptive processing will be required. The 
adaptive processing mode is assumed to be ABF to cancel interference when the 
interference is separable from the target in range or Poppler, and SSE when the signal 
and the target are inseparable in range or Doppler. Figure la illustrates a tactical scenario 
requiring AAP, while Figure lb illustrates the antenna beam patterns for ABF and SSE. 

SOJ 

ADAPTIVE BEAM FORMING 
(CANC as MAINLOBE INTERFERENCE) 

SPATIAL SPECTRUM ESTIMATION 
(RESOLVES CLOSaY SPACED SOURCES) 

CONVENTIONAL 
NONADAPTIVE BEAM 

ADAPTIVE PATTERN 

CONVENTIONAL 
NONADAPTIVE BEAM 

SPATIAL SPECTRUM 
ESTIMATOR (SSE) 

Ti     T2 

Figure 1: (a) Tactical AAP Scenario; (b) Adaptive Processing - ABF and SSE 

Broadly speaking, the Terrain Scattered Interference (TSI) environments 
important to the radar processing problem are narrowband clutter and a wideband, 
jamming environment. While the narrowband clutter is a significant problem in target 
detection, the jamming environment is what drives the high throughput requirement. We 
will use a community accepted MIT Lincoln Labs Airborne Seeker Testbed (ASTB) 
Model to model the TSI. This model has been developed from flight test data taken from 
an airborne platform employing jamming techniques. In Figure 2, we show a typical 
TSI Clutter Isorange/IsoDoppler Map, which reveals strong non-stationary components. 
It is this highly non-stationary environment that necessitates either high dimensional 
Coherent Processing Interval (CPI) rate processing or fast update, lower dimension Pulse 
Repetition Interval (PRI) rate processing. 
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Figure 2: TSI Non-Stationary Interference 

Space Time Adaptive Array Processing (STAP) is a digital processing technique 
that attempts to exploit the information present in the available degrees of freedom 
(DOF). The usual challenge for adaptive array processing in air-to-air missile radar 
seekers is the detection and radar-parameter estimation of a nonradiating, low Signal-to- 
Noise Ratio (SNR) target return (reflection of seeker illumination waveform) in the 
presence of much higher Jammer-to-Noise Ratio (JNR), wide-band-noise interference. 
The most demanding Electronic Countermeasure (ECM) scenario is associated with low 
altitude targets and on-board or off-board ECM that produce, deliberately or 
inadvertently, terrain-scattered interference (TSI). The ability to sup^ess this 
interference to sufficiently low levels for achieving the required Signal-to-Interference 
Noise Ratio (SINR), is embodied in the estimated spatio-temporal covariance matrix. 

Adaptive processing attempts to remove the interference to extract obscured 
targets. STAP works by estimating the covariance matrices from sample data that does 
not contain the target. As shown in Figure 3, a set of weight vectors, wn, is found from 
the sample covariance matrix, A, in addition to a set of steering vectors, s„. Specifically, 
we need to solve the matrix equation w„ = A_1sn and it is this numerically intensive 
process that drives the STAP throughput requirements. In practice, STAP calculations are 
often performed in the data (voltage) domain. 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLLN No. 0001AA: Final Report for F49620-98-C-0034 

Filter Bank 

Sensor 
Target + Interference 

Interference 
Data 

A"1*! 

Tap Weights, W„= A xs„ 

_^. Multiple 
jt"   Hypothesis 

Testing 

interference« 
Covariance - 
Estimation 

Steering Vectors, S„ 
Cueing 
System 

Superresolution 
Techniques 

Figure 3: Adaptive Processing Schematic 

Figure 4 shows the overall functional architecture considered for this research 
study. This adaptive processing architecture forms the basis for throughput estimation, as 
well as identifying those areas that may benefit the most by new processing techniques. 
From this figure, we can identify the critical adaptive processing functions: (i) channel 
equalization; (ii) covariance matrix and data matrix operations; and (iii) adaptive array 
processing, such as ABF and SSE. 
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Figure 4: Adaptive Processing Architecture 

1.2 Fast Channel Equalization Algorithm 
Future Air-to-Air and Surface-to-Air missiles are expected to require RF Adaptive 

Array Processing (AAP) for Adaptive Beam Forming (interference nulling) or Spatial 

10 
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Spectrum Estimation (superresolution) to counter advanced Electronic Counter Measures. 
Critical to the performance of these adaptive processing algorithms is interchannel 
equalization, since adaptive processing null depth is limited by the equalization filter 
performance. In addition, as RF bandwidth increases to accommodate improved range 
resolution, the number of filter taps required to achieve a given level of equalization 
performance grows. 

In this section, we describe a new channel equalization algorithm, the Fast 
Channel Equalization (FCE) algorithm, for interchannel equalization and RF AAP that is 
significantly faster than conventional methods. As an example, FCE is five times faster 
for a sixteen-tap FIR filter. For future threats, which may require up to 128 tap filters, 
FCE is more than ten times faster. FCE was developed by Professor Gregory Beylkin of 
the University of Colorado and was funded under the current contract. Several other 
development programs are considering the FCM algorithm for RF AAP. 

1.2.1 Algorithm Description 
As we mentioned earlier, the problem that we need to solve is /lwn = X^Sn. Here 

A=XHX where X is the data matrix and the superscript H indicates the complex conjugate 
transpose. This problem is conveniently partitioned into four pieces: (i) formation of 
A; (ii) matrix-vector multiplication X"sn\ (iii) Cholesky decomposition; and (iv) two 
back solves. For missile systems, the general dimensions of the problem are that A is 
about 16x16 and X is about 80x16. The relatively small matrix sizes involved mean that 
asymptotic approaches are unlikely to yield significant computational savings. In fact, for 
a sixteen-tap FIR filter, the formation of the covariance matrix is by far the dominant 
factor, followed by the matrix-vector multiplication. 

The Fast Covariance Matrix (FCM) algorithm for matrix formation and 
multiplication is based on the identification of a Hankel symmetry present in the data 
matrix. X, that is used to construct the covariance matrix. While the Hankel symmetry is 
evident by looking at the form of the data matrix illustrated in Figure 5, calculating the 
displacement rank of the covariance matrix originally identified it. Most previous 
approaches had looked for symmetries present in the covariance matrix. While the 
covariance matrix is approximately Toeplitz, the symmetry is not exact. A forcing the 
Toeplitz symmetry on the covariance matrix by zero-padding the data matrix, for 
example, leads to an unacceptable ~3 dB loss in performance. 

11 
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Figure 5: Structure of Data and Covariance Matrices 

Based on the form of the covariance matrix, it is clear that one needs to form only 
the first row in its entirety. The fact that the covariance matrix is normal means that only 
the upper triangular portion needs to be calculated. The Hankel symmetry allows most of 
An+i, p+i to be calculated from the An, p. These properties can be summarized as: 

M 

m=\ 

Apn=A*np    n = l,-,N-l;   p = n + l,-,N. 

An+iP+1=Anp-v;yp + y;+Mvp+M;   n = l,-,iV-l;   p = n,-,N-l 

The matrix-vector multiplication X"sn can be carried out more efficiently by manipulating 
the standard fast algorithm for multiplying a square Toeplitz matrix by a vector. We reffer 
to this algorithm as the Fast Matrix-Vector Multiplication (FMVM) algorithm. It is clear 
that the product of a Toeplitz matrix and a vector is trivially related to the product of a 

Hankel matrix and a vector: 

-i. Mu = Nv;   N = Ms;   v = s  u; s = 

0 0 . 0 1" 

0 0 0 1 0 

0 1 0 0 0 

1 0 0 0 0 

1.2.2 Timing Results 
Because of the relative simplicity of the FCE algorithm, it is possible to directly 

calculate the number of floating point operations required and compare this to the 
standard approach. As shown in Figure 6, the computational saving are impressive, 
especially for the small size of the matrices involved. The largest computational 
component, the covariance matrix formation, has been reduced by a factor of eight, while 
the overall computational load has been reduced by a factor of five. 

12 
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Figure 6: Computational Breakdown for 16 Tap FIR Filter 

Future RF missiles are expected to require up to 128 tap FIR filters. The computational 
gains for the FCE are even more impressive here; these are shown in Figure 7. 
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Figure 7: Processing Gains for Future RF Systems 
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1.2.3 Duke University Channel Equalization (PUCE) Algorithm 

This section describes a channel equalization algorithm developed by Professor 
Xiaobai Sun from Duke University. While the work was not funded under the current 
contract, it is directly related to our program and was motivated by results we presented at 
ACMP PI meetings. We start again with the data and covariance matrices: 

X, 

x = 
M-2 

M-l 

X 

X, 

M 

M-l 

M 

M+l 

xA 

M 

X M+l 

M+2 

N-2 

N-l 

X, 

X M+N-5 

LM+Af-4 

X M+N-3 

N-l 

■ N+l 

■ M+N-4 

M+N-3 

M+N-2 

Af+1 

■ N+2 

M+N-3 

'M+N-2 

■M+N-l 

A = XWX 

We note that each member of the set {XN XN+l • • • XM^ XM }contributes to every element 

of the covariance matrix. The remaining elements are the sequences 
Xw = {X, X2-X„_2 X^JandX""' = {XM+1 XM+2-Xu+N_2 Xu+N_, }. The      DUCE 

algorithm forms the Cholesky factorization of the covariance matrix A = LLW . L is a 
lower triangular matrix and requires as input only the first column of the covariance 
matrix and Xhead, X""'. The desired N by N lower triangular matrix L is first set to all 
zeros and then the first column is defined in the usual way: 

Ai --\jAi 
A,i Lnl =—— ; n = 2,3,...,N . 
Ai 

In addition, we define 

f A,       0 

F = 

1 21 

An 
A. 

22 

32 

42 

^N-\ 1    **AM 2 

0 

23 

33 

43 

0 

A4 

A4 

A4 

^N-l 3    *V-1 4 

N 1 N 2 N 3 N 4 

Ai 0 0 0 

A. xx A. ^M+l 

A, x2 Ai XM+2 

Ai x3 A, XM+3 

"N-ll XN-2 Av-ii X M+N-2 

-"NX 'N-l ■"NX X M+N-l 

Note that the first column is initially the same as the first column of L. The third column 
of F is also initially the same as the first column of L, except that the first element of 
the latter is 0.   The 2nd through N m elements of the second and fourth columns are 
respectively identical to the sequences X e   and X r tail 
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The algorithm to evaluate L that will be described below involves looping N -1 
times for k = 2,...,N . Each such loop results in the evaluation of the elements in a new 
column of L. After having completed loop k -1, L and F have the form 

0 

L = 

hi 

hi 

hi 

h :-21 

'-'N-l 1 

h l 

0 

hi 
hi 

uk-21 

h-12 

UN-12 

0 

0 

hi 

h-n 
h-ii 

^AM3 

Liu I 

0 

0 
0 

uk-l *-2 

uN-l k-l 

0 
0 

0 

0 

h-\ *-i 

hk-l 

h k-l 

0 

0 
0 

0 
0 

0 

0 
0 

0 0^ 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

F = 

Fn 

**-2 1 

p 

FM1 

0 
0 

0 

0 

^2 

rN-12 

0 

0 
0 

0 
0 

^3 

r*+l 3 

fV,3 

*tf 3 

0 

0 
0 

0 

0 

^4 

The first k-2 elements of the first column are equal to the first k-2 diagonal elements 
of L and the remaining elements of that column are equal to the non-zero elements of 
column k-l of L. The non-zero elements in the last three columns of F are other 
combinations of the elements of the original F. At the start of loop k each of the last 
N-k + l elements of F is replaced by the numerical value in the element above it (a 
downward shift of elements) and the other elements of F remain the same. 

The next step in loop k is to define parameters 

A=VWH^7; ^2=VrF»l2+lF*«l 

A = 
*1 

Fk2      o      Fki      „,      Fk4 

A Pi Pi 

The matrices formed from these parameters are unitary and represent complex-two 
dimensional rotations. 

U = 
^ 

;   V = 
( 72 I;   (VH =V'l;\H =Vl) 

Yi      Pi 

The last N-k + l elements of the first two columns of F are now transformed with U 
and the last N-k + l elements of the last two columns of F with V as follows: 
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f   Fkl       Fk2 

^t+l 1    ***+l 2 

^*+2 1   **ft+2 2 

^N-i 1   **tf-l 2 

^1      **tf 2 

<— 

'* 1       ^4 2 

^t+1 1    rM 2 

***+2 1   ^t+2 2 

^N-i 1   *V-1 2 

^1      **N 2 

ßi'-Yi 
Y?   A 

^ F       F    "\     f F 
* 3 

■f'i+l 3    ***+l 4 

■***+2 3   ***+2 4 

■**Af-l 3   *V-1 4 

*tf3       *V 4 

<- 

F        ^ t 3       rk 3 

t+1 3 

t+2 3 

rt+14 

F 1 *+2 4 

**AM 3   **W-1 4 

*JV 3      ^«4 

A*-r2 
x2* A 

It follows that under this transformation Fk, <- yOt;   Ft 2 <- 0;   Fk3<r-p2;   Fk 4 <- 0, 

and, at this point in loop k, F has the form 
f F„      0       0       0   "l 

F21      0       0       0 
F31      0       0       0 

F = 
FM1     0       0 0 
Ft_n     0       0 0 
Ftl      0 Ft3 0 

***+! 1 ***+l 2 ***+l 3 ***+! 4 

■Tw-l 1  'A,,, 2 r w_, 3 tN_x 4 

*W 1       *JV 2       ^3       ^N A 

Next in loop k the following parameters are calculated 

F3 ^3 

The matrix formed from these parameters is a hyperbolic rotation with the property: 

w = A Y3 

-Yi     A ft     A 

The last JV - it +1 elements of the first and third columns of F are now transformed with 
W as follows: 
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Fk 1 Fk 3 

**+l 1 **+l 3 

^Jt+2 1 **+2 3 

*V-11 **W-13 

* 1 rt 3 

**+l 1    **t+l 3 

^*+2 1   **+2 3 

*AT-1 1   *V-1 3 

FNl      *AT 3 

A* -r, 

It follows that under this transformation Ft, <- p3;   F4 3 <- 0. The form that F has at 

the end of loop k is 

' Fu      0       0       0   ^ 

F = 

21 0 0       0 
F31      0       0       0 

1 i-1 1 0 0 0 

*"*! 0 0 0 
1 fc+1 1 

F rk+l2 ^t+13 ***+14 

1 i+2 1 
F 1 k+2 2 Fk+2 3 

F rk+2 4 

FN-l 1   -*JV-1 2   **tf-l 3   **AM 4 

'i»4 N 1 N 2 N 3 

The first it -1 elements of the first column are equal to the first k-l diagonal elements 
of L and the remaining elements of that column are equal to the non-zero elements of 
column k of L. At the end of the loop k, L has the form: 

L = 

Lll 0 0    - 0 0 0- •0 0"| 

L21 ■^22 0    ••• 0 0 0 •• •00 

Z?1 ^32 L33   •■• 0 0 0" •00 

Lk-2\ Lk-22 H-23 0 0 0" •00 

At-U ^Jt-12 ^fc-13 ^k-X k-l 0 0- •00 

hi Lk2 ^» 3     ' * ' Lkk-\ Lkk 0- •00 

L'N-W LN-12 ^/Y-13 '"N-l k-l '-'N-lk 0- •00 

LN I LN2 ^3 LN k-i LN k 0- •00 I 
We have evaluated the performance of the DUCE algorithm on the sixteen-tap FIR filter 
problem. Timing studies indicate that the DUCE algorithm is approximately twice as fast 
as the FCM algorithm for the same system. Because the covariance matrix is never 

17 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLIN No. 0001AA: Final Report for F49620-98-C-0034 

calculated directly, we expect that this algorithm will perform even better on embedded 
code, where creating and populating a matrix can be a significant percentage of the 
overall time. 

1.2.4 Extension of FCM to Space Time Adaptive Processing (STAP) 

There is a straightforward extension of the covariance matrix formation of the FCM 
algorithm to STAP. In this case the data matrix possess a block Hankel structure and 
matrices replace the scalar matrix elements of the covariance matrix. This is illustrated in 
Figure 8. Here NT corresponds to the number of time taps and M = 5NT. We note that 

the computation reduction for covariance matrix formation is of the order of NT. This is 
the same as that achieved by enforcing a block Toeplitz structure on the covariance 
matrix but without the ~3 dB performance loss. 

A = 

x yi 
% % 
h    y* 

)W,-1      ^M, 

y>4.       3W.+1 

5W-1 y* 
y«r 5vr+i 

)Vi Äfr+2 

A« 

)W,+/Vr-4 yM^Nr-3 

3W|+fy-3 3W,+Wr-2 

yu,^NT-2 ^M,+Wr-1_ 

b"y    h"~yM Zyfyi+Hr-l 2X%"r-> 

£y£ lX+A(r-2 ^)i+l)i+Wr-l 

Zjyt+NT-iyi+NT-i  /\,yi+Nr-iyi+N„-\ 
M i-1 

zjyHN^y^Nj-i 2jyi*"T-iyi+NT-i 

Figure 8: Structure of Data and Covariance Matrices 

1.3 Efficient Algorithm for Range-Doppler Map Generation 
We have developed a highly efficient algorithm to generate range-Doppler maps. 

These maps are a critical component of Raytheon's high fidelity simulations and 6 
Degree-of-Freedom (6 DOF) models. The new algorithm is lOx faster than the current 
method and produces superior results - fewer artifacts due to quantization, better 
localization capability, etc. While the original motivation for developing this algorithm 
was to study the effect of correlated random scattering on adaptive processing 
performance, there is also significant program interest in this new algorithm. This 
program interest is driven by the government's request to evaluate several new flight 
trajectories that require the generation of significantly larger range-Doppler maps. The 
current algorithm is far too slow to be implemented in the 6-DOF. Current timing 
estimates verify that the elliptical approach provides a ten-fold reduction in computational 
run times. 

To illustrate the higher quality results of the elliptical integration approach, we 
generate a Range-Doppler map with the rectangular integration simulation. The purpose 
of this coarse grid run is to illustrate the "holes" in the range-Doppler map that result 
from the rectangular integration method. These holes are due to the fact that uniform 
sampling in down range and cross range results in a non-uniform sampling in the bounce- 
range plane. The plot of where the rectangular grid evaluation points are mapped into the 
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Range-Doppler plane illustrates the non-uniform sampling. The consequence of this 
effect is that finer sampling is required when using the rectangular integration method. 
Finer sampling, however, requires more simulation run time, and possibly multiple runs 
due to array size limitations. This is the reason that the baseline fine grid run with the 
rectangular integration method used to validate the elliptical integration method required 
eight runs to cover the same ground area as a single elliptical integration run. 

irii,» -n ii h* t*   i "JI.*IWI < i, i;; i *»*k* MI •»; 

Figure 9: Range-Doppler Map Generated with Rectangular Grid 

Completing the comparison, we display (in Figure 10) a range-Doppler map 
generated with the elliptical grid approach. Not only does it remove the shortcomings of 
the rectangular grid approach, the results achieved are obtained with only 10% of the 
computational effort. 

35 

30 

25 

20 

15- 

10 

Elliptical Integration: RDM for re part of m(1,1) (dB) 
■"       T                        ■ 

Elliptical Case 1 

^ni&r .-'^kL 

Hp;.^^r ■ ^^VIH 
«■'Si&Mfff*' ;_--'vM 

ifer ,A,r 

^(Iifaiv/C 
Bs-w" '^? 

0        500      1000     1500    2000    2500    3000    3500    4000 
Range - Relative to Specular Bounce (m) 

■ 10 

lo 

1-10 

I-20 

S^-30 

-40 

I -50 

1-60 

-70 

1-80 

-90 

1-100 

-110 

Figure 10: Range-Doppler Map Generated with an Elliptical Grid 
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The grid shapes for the rectangular and elliptical integration regions are illustrated 
in Figures 11(a) and 11(b), respectively. The evaluation points for the ground maps are at 
the intersections of the dotted lines. For the rectangular integration method, the evaluation 
points are at the intersections of constant downrange and crossrange lines. For the 
elliptical integration method, the evaluation points are at equal parametric-angle intervals 
on constant bounce range ellipses. 

(a) (b) 

—T—I 1—T 1 1—T—I 1—T 1 '—T—I 1  I  

—-I—J—!—4—!—!—-l—!—!—4-—*——4-—J—! Crossrange 
 i        i   i   i 

I        I        I        I        I        I I        I        I        I I        I        I I y-. 

•^ J -V" 

®andQ) Indicate Receiver and Jammer 4 Downrange 
Positions Projected into Ground Plane 

Figure 11: Grid Shapes for Rectangular & Elliptical Integration 

1.3.1 Elliptical Grid Integration 
The rationale behind using the new elliptical integration approach for computing 

the range-Doppler maps is multi-faceted and pragmatic: namely, it produces maps that are 
smoother and more accurate than the previously used rectangular integration approach— 
and it does this about 10 times more quickly. 

Assuming a flat earth scenario, it is readily shown that radar signal paths 
corresponding to a fixed distance single-bounce path (jammer-ground-receiver) trace out 
ellipses on the ground. If the ground bounce point is coincident with the specular point, 
then the total bounce path is minimal and the ellipse is degenerate, i.e., a single point. 
Single bounce paths of greater length trace out progressively larger ellipses on the 
ground. These ellipses are not concentric and they have varying degrees of eccentricity. 
But, given a known set of coordinates for the jammer and receiver, and a specified excess 
bounce path distance (amount above specular distance), the equations for these ground 
ellipses are all computable in closed form. In other words, the isorange contours on the 
earth's surface representing constant bounce range are analytically known, relatively 
simple functions (ellipses). 

The contours corresponding to lines of constant Doppler shift ("isodops"), 
however, are not represented as simply as the isorange ellipses. The equations which they 
satisfy are of the form: 

Doppler Shift =        (vR ■ rR) /1 rR • rR | + (Vj • rj) /1 rj • r; | 
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where vR and Vj are, respectively, the velocity vectors of the receiver and jammer, and rR 

and rj are, respectively, the location vectors of the receiver and jammer relative to a point 
(x,y) on the ground. Expanding this equation (using much algebra) to remove the square 
roots of the right-hand side denominators, one finally obtains an eighth-degree 
polynomial relating "x" and "y". The locus of (x,y) points for a given value of Doppler 
Shift is an "isodop" curve, i.e., a line of constant Doppler. Since the relationship between 
x and y is, in general, an 8th degree polynomial, there are no closed form solutions for x in 
terms of y, nor y in terms of x (unlike the situation arising in the case of the expressions 
for isor?r,ge contours). 

1.3.2 Approximations 
In setting up the bins for the range-Doppler maps, bin boundaries for range and 

Doppler are defined to lie along contours of constant range and Doppler. Each bin is 
bounded by an upper and lower isorange contour and by upper and lower isodops. The 
isorange contours are handled exactly (to machine precision) while the isodops are, of 
necessity, handled approximately. Regarding the isodops, the following steps and 
assumptions are followed. 

First, the basic region of integration on the ground is the "pseudo-triangular" 
region determined by a single point on the perimeter of one ellipse, connected to the two 
endpoints of an arc of a second ellipse (see Figure 12). The ellipses are isorange contours. 
As drawn, the integration region is convex; this is because the single point is located on 
the inner ellipse. If another example were drawn, one with the single point located on the 
outer ellipse and connected to two points on the inner ellipse, then the resulting 
integration region would be concave (with the concavity along the arc length of the inner 
ellipse). The two ellipses are isorange contours and the two straight lines are a way of 
breaking up the large isorange region into smaller pieces. 

Second, the Doppler shift is computed at each of the three vertices of the pseudo- 
triangular integration region, using the basic geometric and kinematic information 
describing the scenario. 

Third, to vastly simplify the placement of Doppler shift into bins, one introduces a 
planar approximation to the Doppler shift over the pseudo-triangular integration region. 
Using known Doppler shifts computed at the three vertices, coefficients e, f, and g in the 
equation below are determined: 

Doppler Shift( x, y) = e • x + f • y + g 
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Figure 12: Basic integration region, a "pseudo-triangular" pie slice 

Due to this planar approximation of the Doppler velocity, the isodop curves are 
simply equally spaced parallel lines (see Figure 13). The range-Doppler bin is the area 
bounded by the two parallel lines (isodops) and the two lines connecting the vertex on the 
inner ellipse to the two vertices on the outer ellipse. In Figure 13, region B denotes the 
range-Doppler bin. 

B 

Figure 13: An individual range-Doppler bin 

One final step brings the integration region B into an orientation where the double 
integration is performed more readily. The region is rotated so that the isodop lines are 
vertically oriented, with velof;ty increasing from left to right. The boundaries of region B 
then consist of, in general, straight lines and elliptical arcs. 

Now we address how the integrands are approximated in this numerical approach. 
All integrands are assumed to take the form of a second degree polynomial in x and y, 
namely: 

F( x, y) = ax2 + bxy + cy2 + dx + ey + f 

Functions of this form, when integrated over 2-D regions with boundaries 
comprised of lines or elliptical arcs, can be integrated in closed form. Equations 2.261 
and 2.262-1 through 2.262-3 of Gradshteyn & Ryzhik (1994, Tables of Integrals, Series 
and Products, Academic Press) are used for the integrations that arise when elliptical arc 
boundaries occur. Those equations are used, respectively, to integrate the following 
expressions in closed form: 

Jdx/R1' iR1/2dx JxR1/2dx Ix2R1/2dx, 
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where R = a + bx + cx2 

Looking at the left part of Figure 14 (region ABCD), the six small circles 
represent the six locations where the integrand function F(x, y) is evaluated along the two 
elliptical ring arcs. There are three points on each elliptical arc. Knowing the values of x 
and y at each of the 6 points, plus the values of F(x, y) at those points, a linear system is 
set up that may be solved for the fitting coefficients: a, b, c, d, e, and f. 

Figure 14: Integrand fitting technique and "opposite parity" accuracy test. 

To preserve numerical accuracy, the actual linear system of 6 equations and 6 
unknowns is a modified version that has offsets and scale factors applied to the variables 
x and y. Doing this greatly lowers the condition number of the matrix equation, and hence 
reduces errors. 

The coefficients a, b, c, d, e, and f are then used to approximate the value of the 
integrand F(x, y ) over the entire region covered by subregions A, B, C, and D of Figure 
14. (Combined region ABCD is the approximation domain of the six fitting points.) 
Values of the Doppler velocity at the three vertices of each of the subregions A, B, C, and 
D are then used in a separate approximation step to "dice up" the individual regions A, B, 
C, and D into many smaller pieces, delineated by equispaced isodop lines. It is the 
integrals over these smaller regions that correspond to and contribute to the ultimate 
result and purpose of the computation—summations of power terms into bins of the 
range-Doppler map. 

As the two parts of Figure 14 show, geometrically identical regions ABCD and 
EFGH may be subdivided in two different ways. Ideally, regions A and B should 
contribute to the range-Doppler map in the same way that regions E and F do. (The same 
statement also follows for regions C and D and regions G and H.) The reality, however, is 
that slightly different answers are obtained. This is because the isodop lines in the overlap 
region of A and E, for example, would be different, depending on whether the vertices of 
region A or the vertices of region E are used to generate the planar approximation to the 
Doppler velocity in their common region. The amount of disagreement between the 
range-Doppler maps produced by using the two different "parities" of regional boundaries 
is an indicator of how well the spacings between elliptical rings and the density of fitting 
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points along the rings represent variations in the Doppler velocity. Closer ring spacings 
and more points per elliptical ring will naturally tend to yield more accurate planar 
approximations to the Doppler velocity. 

Point selection and fitting procedures for the special case of the central ellipse 
region are different from the method portrayed in Figure 14. The special case situation is 
portrayed in Figure 15. The integrand function F(x, y) is fitted over a region consisting of 
two neighboring pie slices, regions A and B. The six fitting points are: (1) the specular 
point near the center of the ellipse, (2, 3, and 4) the points along the elliptical pre, and (5 
and 6) the points midway between the specular point and the elliptical arc endpoints. 

4 

Figure 15: Central ellipse and specular point fitting scenario 

Points along the elliptical rings representing constant range may be selected in one 
of two ways: the "parametric" angle method or the "physical" angle method. The 
parametric method will always be used for production runs of the software, since it 
produces more accurate results than the physical method. In the parametric method, the 
(x, y) points are determined by the equations: x - xc = a cos t, y = b sin t, where a and b 
are the semi-major and semi-minor axes of the ellipse, xc is the centroid location, and t 
runs over a set of equally spaced parametric angles ranging from 0 to 360 degrees. In the 
physical method, the (x, y) points are determined by the intersection points of the ellipse 
with a set of equi-angular rays spreading outward from the ellipse center. In both point 
selection methods, an even number of points must be selected for distribution around the 
ellipse perimeters. 

There is an exception to the above-described integrand-fitting approach that uses 6 
sampling points. If the second-degree polynomial in x and y varies too wildly or rapidly 
over the fitting region, then unphysical results may sometimes occur. For example, when 
fitting the diagonal elements of the covariance matrix (which must, theoretically, always 
have non-negative values), it was found that equation occasionally yielded solutions with 
negative values of F(x, y) within the fitting region, even though F(x, y) was positive at all 
six fitting points. To avoid this scenario, an arbitrary test was designed to check for this 
possibility, followed by imposition of an alternative method for approximating F(x, y), 
one that guaranteed physically sensible results. 
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The check for potential troubles was based on finding the critical point of F(x, y). 
If this critical point was located too close to the triangular region's centroid point, then 
the second degree polynomial approximation was dropped in favor of using a simple 
planar fit to F(x, y) at the region's 3 vertices. "Too close" was defined to be within a 
distance equal to the longest side of the triangle. The critical point of the function F(x, y) 
is the location of the solution of the pair of simultaneous equations: 

dF/dx = 0       and     dF/dy = 0 

1.3.3 Checks 
Given that a wide range of binning options is available via input quantity 

specifications (e.g., the number of elliptical rings, ring spacing, and number of points per 
ring), certain accuracy destroying configurations had to be avoided. For instance, if a line 
drawn from a point on an inner ellipse to a point on an outer ellipse intersects the inner 
ellipse, certain bookkeeping tasks regarding the region of integration are performed 
incorrectly. To avoid this possibility, a quick check is performed (before any integrations 
are started) to confirm that all points on the elliptical rings satisfy this "non-self- 
intersection" constraint. 

1.3.4 Tests 
Numerous diagnostic tests of the elliptical integration routine were performed. Cases 
with independently known, exact answer compared against the output generated by the 
elliptical integration routine. For example, numerical integrals corresponding to the areas 
of ellipses were checked; additional integrals corresponding to the centroids and moments 
of inertia of ellipses were also successfully checked. 

1.4 Range-Doppler Phase Detection Algorithm 
In conventional monopulse RF seekers, only the amplitudes of the complex- 

valued range/Doppler-filter outputs are used for target detection. The random-like phases 
of the range/Doppler-filter output values are seldom considered helpful for target 
detection. We show that we can achieve robust detection in the phase-domain even when 
a low-Doppler target has been totally obscured in the amplitude-domain by mainlobe 
clutter. We have developed several methods to extract phase-information signals for 
target detection using correlation and spectrum-analysis techniques. Moreover, the phase 
signals used for target detection can be used for target-direction estimation. Our methods 
have been tested using by high-fidelity simulation tools and real monostatic clutter data. 

The particular problem that we address was the detection of slowly moving or 
stationary targets in monostatic clutter. Some examples of these types of targets are 
surface vehicles, launchers and loitering UAVs. The root of the difficulty lies in the fact 
that conventional radar processing loses the ability to use the target's Doppler to 
discriminate it from the clutter. Indeed, the target need not even be nearly stationary for 
this to be a problem - even a rapidly moving target can exhibit low Doppler relative to 
mainlobe clutter if its velocity vector is nearly perpendicular to the velocity vector of the 
observation platform. 
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A representative case where the target signal is totally embedded in strong 
monostatic clutter was simulated. Nominal values of range-gate resolution and PRF were 
taken as 40 meters and 33 KHz, respectively. Within each PRI, there are 200 contiguous 
range samples with a range-sample interval of 20 meters, which represents one half of the 
range-filter resolution. Normal level electronic noise is also included. A point target is 
located 1.700 Km from the missile with a Doppler frequency of 2.38K Hz and a signal-to- 
clutter plus-noise-ratio (SCNR) of-10 dB. Since the interval between Doppler filters is 
258 Hz, the major energy of this point target is centered at the range-Doppler cell (85,9). 

1.4.1 Detecting Targets in range-Doppler Phase-Domain 
By plotting a cut at range bin 85, we note that the phase curve always has a n- 

jump at the location of the peak amplitude (d=9). The phase function of a point target in 
the Doppler-dimension contains strong low frequency components if we perform 
spectrum analysis of this function; on the other hand, the phase function of a monostatic 
clutter return generally contains high frequency components. Figure 16 shows the 
amplitude and phase of a clutter return cut at r=85 in the Doppler-dimension for the cases 
of monostatic clutter only and target buried in monostatic clutter. The presence of a target 
is clearly visible by comparing the phase plots. 
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Figure 16: Amplitude and Phase of Clutter Only and Clutter with Target 

The algorithm for detecting targets in phase-domain is as follows. The low 
frequency components are extracted by PSD measurements. Clutter returns and receiver 
noise are further suppressed by cross-correlation analysis between antenna channels. Two 
methods are now described for target detection. 

Method 1 for Target Detection 
For further suppressing clutter and receiver noise, we first cross-correlate the 

corresponding 1-D slices along the Doppler direction between two space-channels at the 
same range location: 
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AM 

I 
d=0 

T(r,j) = YjAr,d + j)T2(r,d) 

This operation will suppress clutter and receiver noise since the target signals in different 
channels have high correlation while the decorrelated clutter and the uncorrelated receiver 
noise in different channels have much lower correlation. The PSD of the correlated 
function is then measured. The first several low frequency components are averaged, 
which further suppresses clutter and receiver noise. 
Method 2 for Tarset Detection 

An alternative approach fs to calculate the PSDs for different space channels in 
the phase-domain and then the PSD functions are cross-correlated. A second PSD 
measurement is taken on the obtained cross-correlation function. The difference between 
the two methods is that, in one, the original phase functions are used for cross-correlation, 
while in other, the PSDs of the original phase functions are used for cross-correlation. We 
have found that the power of the target remains high from low PSD frequency to high 
PSD frequency, while the power of the clutter and receiver noise does not stretch to 
higher PSD frequency. Therefore, we can further suppress the clutter and receiver noise 
by averaging the power along the PSD frequency. 

We have also done some preliminary investigation with targets with multiple 
scatterers and multiple point targets. In this simulation, we used an extended target with 
two scatterers separated 10 meters along the range direction. The target intensity was 
centered at r=85 and r=86 with Doppier d=9. RF signals containing multiple point targets 
separated at nearby range-gates have also been simulated. Based on the previous 
simulation using a single point target located at r=85, we added another point target 
located at r=76. Both methods detected the targets for both of these scenarios. 

For target detection in the amplitude-domain, the optimal case is that the target 
Doppler frequency is centered at one of the Doppler filters. Otherwise, the target energy 
will be picked up by several vevby filters causing "leakage". However, this is not true for 
target detection in the phase-domain. In general, the optimal Doppler frequency for target 
detection in the phase-domain is the frequency located at the middle of two nearby 
Doppler filters. To always obtain reliable target detection in the phase-domain, we can 
use Doppler-shifiing to move the arbitrary target Doppler to the middle of the interval by 
applying a shift frequency to the received RF signal. However, Doppler-shifting will also 
increase FFT leakage caused by the clutter and receiver noise. A detrending technique has 
been developed to reduce the leakage caused by clutter but still keep strong low frequency 
components caused by targets. Finally, we note that we have applied these algorithms to 
the Close In Weapon Support (CIWS) radar and showed that we could detect a -5 dB 
SCNR target in mainlobe clutter. 

After detecting the target the next task will be to estimate the target direction. Target 
direction is measured by the elevation and azimuth angles, which are directly related to 
the phase differences between the antenna-quadrant spatial channels. Two methods, the 
direct method and the cross-correlation method, have been developed to estimate the 
detection angles. The first method uses the low frequency components directly measured 
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from each individual channel. The measured low frequency component values obtained 
by PSD operation are scaled back by: <pt = CdPt

05, where i=l,2,3,4; Q is a scale 
constant; and Pi is the measured low frequency component values. The second approach 
obtains the measured low frequency component values by first conduct cross-correlation 
then PSD operations. There are six pairs of distinct cross-correlation functions between 
the four antenna channels: P12, P13, PH. P23, P24, and P34. Similar to the direct method 
discussed above, the scaling equation is <py = CeP™, where Cc is a scale constant. We 
have evaluated this approach using the previous simulated data. The estimated direction 
angles were -10% for the first approach and -3% foivihe second approach. 

1.5 Spectral Analysis Codes 
We propose to investigate advance code waveforms to suppress clutter for 

situations where standard statistical techniques become unstable. This section discusses a 
novel class of multiscale waveforms that possess a number of properties that are 
applicable to the KASSPER problem. By using a completely new approach to the 
classical theory of Walsh functions, we have developed a series of mathematical 
algorithms for the design of coding sequences - Spectral Analysis Codes (SAC) - that 
can be utilized specifically to detect and resolve spectral characteristics of target returns 
buried in clutter and noise. SAC design techniques can be employed both as (1) signal 
processing tools at the receiver as well as (2) in the generation of modulating sequences 
for pulse-coded waveforms. 

1.5.1 Radar Processing via SACs 
In order to separate the target from clutter return we are capable of producing a 

family of SAC codes with spectral characteristics which can be customized respond 
"flatly" to the kind of clutter return determined by the application. Once the SAC family 
is determined it can be used as a frequency analysis filter: we identify the target by tracing 
any fluctuations from the statistically expected va'ue in the Power Spectral Density 
picture drawn by using our SAC family as a ba?r, tor the frequency transform. It is 
important to note that this "clutter-customized" power-spectrum estimation can be carried 
at several time-scales simultaneously. Furthermore, the approach suggested above is 
based on algorithms whose complexity does not exceed the one of classical Fourier-based 
peak-position estimation methods but with the additional advantage of being a more 
flexible scheme to adapt to different clutter/target characteristics. 

1.5.2 SAC-modulated Radar Waveforms 
SAC families of coding sequences can be modeled to suitably comply with a 

variety of time-frequency analysis requirements. Both their Frequency response and 
Power Spectral Density can be designed rather easily to be close to AWGN or highly 
coherent, depending on the requirements imposed by the application. In addition to that, 
the theoretical approach developed allows for the design of SAC code families that 
exhibit a prescribed auto-and cross- correlation pattern. This is a valuable characteristic, 
enabling the customization of coded waveforms to take advantage of the specific 
performance of the transmitter/receiver. The characteristics of the auto-correlation path of 
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the pulse-compressed signals are adjustable, e.g., to the specific constraints dictated by 
the antenna pattern under consideration. Furthermore, our techniques can be implemented 
in a scenario where our target is illuminated by two or more radar signals in order to 
optimize the cross-correlation performance. Another remarkable property of the new 
coded waveforms is their potential to be operated at different scales whenever the need 
arises to provide multiple resolution modes, e.g., in a ranging application. The availability 
of these coded waveforms affords the possibility of improved clutter suppression. 

1.5.3 Mathematical Strategy for SACs 
We first consider the recursive formula defining Walsh functions: 

WQ(x)    = 1 
W2n(x)   = Wn(2x) + W„(2x-l) 
W2n+l(x) = W„(2x)-Wn(2x-l) 

And observe that the rule allowing to move from one scale to the next is in fact just one 
out of the many possible unitary transformations that can be used to produce a family of 
orthogonal functions with the same time-frequency characteristics at each scale. In a more 
general approach we investigate a series of multi-scale transformations giving rise - by 
means of the very same iterative Walsh scheme - to a whole class of new codes that 
exhibit the same auto- and cross-correlation characteristics at each scale. 
The modified scheme can be described as: 

C0(x)    = v 
C2n(x)   =51(Cfl(2x)) + ri(Cn(2x-l)) 

C2n+1 (x) = S2 (C„ (2x)) - T2 (C„ (2x -1)) 

Where S's and T's are suitably "well-behaved" transformations and v is the Iritial vector 
possessing the desired characteristics. In this context we chose S and T among those 
transformations which will preserve the auto-correlation pattern. An example of this 
procedure is given by the so-called Rudin-Shapiro sequence: 

C.(x)    = 1 
C2„ (x)   = (1 - 0 Cn (2x) + (1 + 0 C„ (2x -1) 

C2n+I (x) = (1 + 0 C„ (2x) - (1 - 0 Cn (2x -1) 

It should be noted here that in the case of Walsh functions and Rudin-Shapiro 
sequences the transformations S and T are multiplications by a (real or complex) number 
of modulus one. This is not at all the only possible choice. The "good" choices for S and 
T can be efficiently described by making use of tools arising from Harmonic Analysis, so 
that the emphasis can be set on the space characteristics (auto- and cross-correlation, 
number of phases, etc.) or the frequency content of the resulting coded signals. The 
complexity of these algorithms is going to be directly proportional to N Log(N) times the 
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complexity of the transformations S and T. The described procedure is illustrated in 
Figure 17: the transformations S and T are "correlation-preserving" mappings, while the 
initial auto-correlation pattern is designed by computer. 

The case where we want to model our multi-scale SAC codes to have a pre- 
assigned frequency content is entirely similar. Our SAC family may for example be a 
DFT-like set with a fixed number of phases. By convolving the sampled return of a Radar 
receiver with an ad-hoc SAC sequence we can spot fluctuations in the Power Spectral 
Density of the signal, possibly due to the presence of a target. 

SAC Code: Miiscale Auto-Correlations 

■5000 

hiiimwrfl.  1*t*0fH I, mmui*! %«n*\ 
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Figure 17: Illustration of SAC Correlation Properties 
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1.6 Multiresolution STAP 
One line of investigation that appeared to have great initial promise was AAP in 

wavelet domain. We ultimately did not pursue this research in any significant way 
because of the overhead needed for the relatively small matrix sizes involved; this held 
true even for anticipated missile systems. Nonetheless, it is worth summarizing some of 
the more significant results. We concentrated on compressing the covariance matrix for 
broadband jamming. We selected an m-band wavelet filterbank, since this had been 
shown in the literature to lead to a banded (sparse) structure in the compressed domain. 
This is illustrated in Figure 18. 

Abs(Cov) 32x32-Single Pulse dtf Abs(Sparsened Cov) 32x32 - Single Putee 

r   f 

* 

1 
ft mm 

ft 

5     10    15    20    25    30 5     10    15    20    25    30 

Figure 18: Wavelet Transform of TSI Covariance Matrix 

We have also found that -90% of the wavelet coefficients could be discarded 
before there is any significant impact on the adaptive processing performance. We were 
also able to verify a very interesting result that had been reported in the literature - that 
for some streering vectors performance was actually enhanced in the compressed domain. 
These results are shown in Figure 19. While the performance improvement was 
significant, we were never able to achieve it in the robust and repeatable manner 
necessary to implement it in flight code. 

Figure 19: (a) SNR versus Compression; (b) Compression can Enhance SNR 
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2.0 Detection, Classification and Restoration for UCIR Imagery 
Infrared imaging sensors that operate without cryogenic cooling have the potential 

to provide the military user with exceptional night vision capabilities packaged in a 
device of extremely small size, weight, and power. This would significantly reduce the 
cost and accelerate the implementation of sensors for applications such as targeting, 
surveillance, and threat warning. However, the performance of UCIR sensors is still 
inferior to that of cooled sensors. This performance gap limits the number of applications 
and precludes the widespread use of UCIR sensors in military missions. While UCIR 
sensors are being considered as replacements for cooled sensors in some applications, 
perhaps more importantly, the unique characteristics of the uncooled sensors are 
spawning novel uses of the technology. Very small, low-power sensors with moderate 
levels of performance are possible with the UCIR technology. In addition, applications 
such as micro-vehicles and robotics demand an extremely lightweight imaging sensor. 

There is currently a great deal of interest in UCIR sensors within the Department 
of Defense community for Automatic Target Acquisition (ATA) for smart munitions. The 
obvious attraction of UCIR sensors over the more traditional cooled sensors is their low 
cost. This cost advantage should become even more pronounced with the economies-of- 
scale expected from commercial applications, particularly the automotive industry. The 
trade-off for achieving this greatly reduced cost is degradation in image quality that 
places a significantly greater burden on the ATA algorithms. There are a number of very 
exciting new approaches, such as multiplexed imaging, currently being investigated to 
improve the performance of UCIR sensors; however, they are not mature enough to be 
implemented in current generations of munitions. 

2.1 Description of Imagery 
For the processing described in the current paper, we use Raytheon's modeling 

environment - simulation technology image generation (STIG) - that was specifically 
developed for uncooled IR s^ene generation. STIG is a high fidelity modeling tool that 
uses a collection of measured backgrounds, a series of turntable target data, a detailed 
model of the IR sensor and a target facet model to generate realistic scenes of targets in 
clutter. This simulation allows the target-to-background contrast to be adjusted and 
permits the inclusion of a variety of discrete clutter types. A flow diagram for the STIG 
simulation is shown in Figure 20 below. 
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Figure 20: Simulated UCIR Image Generation 

In addition to the simulated imagery, we also had available for analysis data from 
two CFTs. One CFT was conducted in Yuma, Arizona. For this test, the clutter was 
dominated by large discretes - here ocotillo shrubs. The second CFT was conducted in 
Huntsville, Alabama. For this test, the clutter was more benign. Figure 21 shows some 
examples of uncooled IR imagery from both simulation and CFT, under a variety of 
conditions. Clearly, this imagery presents a very challenging ATA problem. In the next 
section, we discuss some of the processing results in more detail. 

Simulation - Yuma Clutter/Morning/IOOOm Simulation - Yuma Clutter/Afternoon/1000m 

Captive Flight Data - Yuma Captive Flight Data - Huntsville 

Figure 21: Example UCIR Imagery from Simulation and Flight 
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2.2 Local Singular Value Decomposition (LSVD) Algorithm 
The Local Singular Value Decomposition (LSVD) is evaluated as a detection 

algorithm for uncooled infrared (UCIR) imagery. LSVD uses local statistics to identify 
anomalous regions and is very good at identifying local texture differences. The LSVD 
appears to work quite well on UCIR imagery, which tends to be extremely low contrast 
and blurry. Results are presented for both simulation and captive flight test (CFT) data. 

2.2.1 Algorithm Description 
The LSVD algorithm was developed for background estimation and anomaly 

detection. The LSVD algorithm is based on local statistical analyses and is a two-pass 
algorithm. It is based on the concept that each pixel value in an image can be expanded 
into a basis that consists of the surrounding pixels with coefficients corresponding to then- 
values. This is shown schematically in Figure 22 for a pixel labeled by its eight nearest 
neighbors. In this way, it is possible to construct a distance metric from one pixel to 
another and, in particular, it is possible to introduce a distance from each pixel to a 
selected background region. Those pixels that are above a certain distance from the 
background are labeled as anomalies. Moreover, by selecting a background region, it is 
possible to estimate its local statistics and, in particular, to.construct a set of singular 
values and right/left singular vectors. The right singular vectors can be used to 'rotate' 
each pixel in the image into the background coordinate system. The hoped for advantage 
of using this new coordinate system is that there are only a very few significant singular 
values, thus lowering the complexity for isolating and identifying pixels that are 
significantly different from the local background. 

I. I2 h 
14 I< 
I7 u It 

-►.. 
1 0 0 
0 0 0 
0 0 0 

I4 

0 0 0 
1 0 0 
0 0 0 

I7 

0 0 0 
0 0 0 
1 0 0 

h 
0 1 0 
0 0 0 
0 0 0 

h 
0 0 0 
0 1 0 
0 0 0 

1. 

0 0 0 
0 0 0 
0 1 0 

I3 

0 0 1 
0 0 0 
0 0 0 

I« 
0,0 0 
0 0 1 
0 0 0 

It 

0 0 0 
0 0 0 
0 0 1 

Figure 22: Sample expansion of a given pixel 

The LSVD algorithm is summarized below and illustrated in Figure 23: 
> "Background" region in image or set of images chosen 
> Principal components (PC) found for set of all NxN blocks of pixels in 

"background" 
> Coordinates found for each pixel via canonical NxN block 
> Distance to average in PC system determines anomalies: 
> Image F with pixels p expressed as B' n A' 

■   A' = {p|d(p)<s2} 
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■   B' = {p|d(p)>s2} 
>  Process iterated to give "second anomalies" 

Image 

Image 

„ideate Basis 
Representation of 
"'entire image w/ 

sliding NxN Window 
A = 

Compute SVD and 
Retain Right 

Eigenvector Array 

Column: 
Vectorized 
NxN region 
about pixel 
(ij) 

Iterate process to find 
"anomaly of anomaly" 

regions 

Detection 
Image 

Figure 23: Flow Diagram for LSVD 

A sample output of the LSVD algorithm is shown in Figure 24. 

Figure 24: (a) Original Image; (b) First Anomalies; (c) Second Anomalies 

2.2.2 Results 
The STIG was used to generate a set of imagery with a clutter background 

collected from Yuma Proving Grounds. The data sets consisted of two different subsets 
from the morning and afternoon. For each of these cases, we generated images at two 
different acquisition ranges - 1000 m and 1500 m - and three different aspect angles - 0°, 
150 ° and 300 °. Within these image sets, the target-to-background contrast was selected 
randomly. There were also two slightly different clutter types used, although they both 
correspond to desert clutter. The results are presented in Table 1 for clutter type 1 and in 
Table 2 for clutter type 2. Table 3 presents the processing results for data collected from 
the recent Yuma CFT. 

35 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLIN No. 0001AA: Final Report for F49620-98-C-0034 

We need to say a few words about how the results were calculated. First our 
detection algorithm was run. For the results presented below, the detection algorithm was 
the LSVD but we have also investigated a number of other algorithms. The output of the 
LSVD algorithm is a series of anomalous regions. For each detected region, we calculated 
its centroid and checked to see if it fell within the target truth region. Multiple centroids 
on the target are only counted once. The centroids that did not fall within the target truth 
region were counted as false alarms. The to^J probability of detection was found by 
calculating the total number of detections divided by the total number of images. Rather 
calculate a false alarm rate, the NetFires program requested that we report the false 
alarms as an average number of false alarms per image. This was done in the obvious was 
- the total number of false alarms was calculated for the image set and that number was 
divided by the total number of images. 

# Images Processed 
# Targets Detected (PD) 

R = 600m 
Morning 

126 
126 (100) 

R = 600m 
Noon 

126 
126 (100) 

R= 1000m 
Morning 

126 
126(1.00) 

R= 1000m 
Noon 

126 
126(1.00) 

# Images Processed 
# Targets Detected (Pp) 

# False Alarms (FA/Image) 

R= 1500m      R= 1500m      R = 2000m      R = 2000m 
Morning 

126 
125 (.992) 
165 (.32) 

Noon 
126 

109 (.865) 
1532(12.16) 

Morning 
126 

121 (1.00) 
94 (.75) 

Noon 
126 

108 (.85) 
1815 (14.40) 

Table 1: Processing Results for Yuma 1 Simulation Data 

# Images Processed 
# Targets Detected (PD) 

R = 600m 
Morning 

60 
60(1.0) 

R = 600m 
Noon 

60 
60(1.0) 

R= 1000m 
Morning 

60 
60(1.0) 

R= 1000m 
Noon 

60 
59 (.983) 

# Images Processed 
# Targets Detected (PD) 

# False Alarms (FA/Image) 

R= 1500m 
Morning 

60 
60(1.0) 
7 (.12) 

R= 1500m 
Noon 

60 
50 (.833) 

740 (12.33) 

R = 2000m 
Morning 

60 
60 (100) 
25 (.43) 

R = 2000m 
Noon 

60 
47 (.783) 

2703 (45.1) 

Table 2: Processing Results for Yuma 2 Simulation Data 

We have also processed the imagery collected during the recent WSMR CFT. 
There were some difficulties with the Non-uniformity Compensation (NUC) algorithm as 
well as some timing difficulties and as a result only a limited amount of image data was 
available for processing. The results are presented in Table 3. An example Receiver 
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Operating Characteristic (ROC) curve for the WSMR CFT at 1500m is shown in Figure 
25. Because there are a very large number of parameters that can be varied for the LSVD 
algorithm, we restricted ourselves to the confidence limit for outlier determination and 
the tolerance level used to control convergence for the iteration to determine the second 
set of anomalies. Since there are a relatively small number of data points, the ROC curve 
tends to be somewhat 'jumpy.' 

# Images Processed 
# Targets Detected (PD) 

# False Alarms (FA/Image) 

R = 600m 
16 

16(1.0) 
51 (3.19) 

R=1000Ti 

32 
31 (0.968) 
314(9.81) 

R= 1500m 
31 

27 (.87) 
504 (16.26) 

Table 3: Processing Results for WSMR CFT Data 

ROC (1500m) - Vary Confidence and Tolerance for Anomaly2 

Figure 25: Example ROC for CFT Data Set 

2.2.3 LSVD Post-Processing Using the Borrowed Strength Algorithm 
We have been investigating a number of algorithms to post-process the anomalous 

regions identified by the LSVD algorithms. One approach in particular, the Borrowed 
Strength Algorithm (BSA) (described in section 2.7), shows a great deal of promise. It is 
used to significantly reduce the number of anomalies that the LSVD algorithm generates. 
The following image processing example illustrates this point. 
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Figure 26 shows an original image (a), together with its "textured" version (b). 
The textured image is computed as the local a/|i value for each pixel's 3 by 3 
neighborhood in the original image. (This neighborhood corresponds to choosing "s =1" 
in section 2.7; "s = 2" averages a 5 by 5 region.) The computed LSVD anomalies 
obtained from processing the image in Figure 26(a) are shown in Figure 27(a), a binary 
image. Note that of the 240 by 320 total pixels in Figure 27(a), some 2,533 pixels are 
selected as possible anomalies. 

Figure 26: (a) Example Target Image; (b) Textured Version 

Figure 27: (a) LSVD Anomaly Results; (b) with BSA Processing 

To augment the LSVD processing, the BSA works in the following way. First, a 
total of 2533 input values are chosen; they are the 2533 pixel values in the textured image 
26(b) that correspond to the nonzero (white) anomalous pixels of Figure 27(a). Second, 
these data points are treated as belonging to a PDF (probability distribution function) and 
fitted to a sum of Gaussian normal functions, specified by their means, variances, and 
weighting coefficients. The number of Gaussian functions to be fit was allowed to vary 
between 1 and 10. 

For this example case, the results of the various fits were quite robust. Although 
the best fit occurred when a total of 6 Gaussians were used, the "goodness of fit" was 
essentially unchanged when anywhere from 2 to 8 Gaussian normal functions were used 
to approximate the PDF of the 2533 data points. 
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The "winnowing" of the anomalous points (i.e., moving from Figure 27(a) with 
2533 points to Figure 27(b) with 55 points) comes from selecting only those pixels that 
are affiliated with the Gaussian normal function having the largest mean value. Following 
this "rule", the look of figure 27(b) remains quite unchanged when fits of 2, 3, 4, 5, or 6 
normal functions are used to fit the full PDF; they would produce, respectively, 66, 48, 
44,48, and 55 lit pixels in the figure. 

For this example, it is fortuitous that the special anomalous pixels can be 
separated so easily from the more common false alarms by merely selecting which 
Gaussian normal component they probably belong to. In more difficult cases, it is 
anticipated that the full machinery of the borrowed strength algorithm, e.g., similarity 
matrix evaluations and integrated square error computations (see section 2.7), will be 
required. Nevertheless, it is very encouraging that essentially only the first, most basic, 
processing step of the BSA is able to so successfully treat the anomaly reduction problem 
associated with the LSVD algorithm. 

2.2.4 Status of Program Transition and Algorithm Improvements 
The most promising near-term insertion for UCIR sensor technology is the 

NetFires Precision Attack Munition (PAM) program. Other possibilities are Tank 
Extended Round Munition (TERM) and a classified program. The current schedule of 
flight tests is shown in Figure 28. 

DESCRIPTION 
2001 

Q3Q4 

2002 
Q1 Q2 Q3 Q4 

2003 
Q1 Q2 Q3 Q4 

2004 
Q1Q2 

UCIR CAPTIVE FLIGHT TEST A 

PAM RISK REDUCTION FLIGHT TEST # 1 A 

RISK REDUCTION FLIGHT TEST #2 A ■ 

PAM SEEKER/GUIDANCE CFT A 
7 

LAM EM SEEKER CFT 

PAM FIELD TESTS 

LAM FIELD TESTS 

A 

PAM - PRECISION ATTACK MUNITION 
UM LOITERING ATTACK MUNITION 

Figure 28: Road Map for NetFires LAM/PAM Programs 

To make the next CFT for the NetFires PAM, the LSVD algorithm needs to be 
running near real time on flight hardware in the NetFires closed loop simulation by the 
middle of December 2001. That coincides with the end of our current program and is our 
final major goal for the program. 
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2.2.4.1 Program Transition Status 
The MATLAB version of LSVD has been converted to C-Code and handed off to 

a real-time programming group in Dallas, Texas. The C-Code code has been ported as 
embedded code on the NetFires closed loop simulation. The embedded code has been run 
on the simulation and has gone through initial validation and verification. 

Specific real time implementation steps performed to exploit current flight 
hardware architecture hxlude: 

• 2-D memory model converted to 1-D 
• Optimized merge regions loop 
• Eliminated redundant data movement 
• Hard coded some array dimensions to allow loops to be unrolled 
• Redesigned matrix multiplication routine to form subroutine capable of being 

implemented as AltiVec assembly code 
• Redesigned outlier routine to form subroutine capable of being implemented as 

AltiVec assembly code 

At this point, the processing times varied from 160-300 milliseconds. While this 
represented substantial progress, some final improvements were needed to reduce the 
overall run-time of the LSVD algorithm's implementation on the current flight hardware 
to the required 133 milliseconds. We note that all timing results are for a 350 MHz 
PowerPC G4 processor. 

The run time of the second anomaly detection algorithm, anomaly2, is driven 
primarily by the number of pixels passed to it from the first anomaly detection algorithm, 
anomaly 1. Because of this, the run time for anomaly2 is quite dynamic, a situation that is 
not acceptable for real time implementation. To address the problem of varying run times 
as well as to achieve the required overall run times, a routine was added to histogram the 
distance values generated in anomaly 1. Two approaches were then investigated. The first 
approach limited the number of pixels passed by anomalyl detection algorithm to 
anomaly2 such that the overall timing requirements were consistently met. The second 
approach eliminated the anomaly2 algorithm entirely by further limiting number of pixels 
kept from the out put of anomalyl. Since there were up to four processors available, tests 
were conducted of breaking the image up into a number of subimages and process each in 
parallel. It was found that approximately a 20-pixel overlap was required. The latest 
processing results are presented in Figure 29. 
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SVDRunLog                                                                                                                                                                    1 

SVD Source V4Main V4Main V4 Main V4Main V4Main V4M«n 

Range (meters) 1000 1000 1000 1000 1000 1000 

Region low/upper limits 8/600 8/600 8/600 8/600 8/600 12/500 

Image partitioning Whole Whole Whole Whole Whde Whole 

Image Normalization 
Matmul/Outiier Implementation 
Matrix Multiply Implementation 

New 
MatmJ /Outlier 

C 

New 
Matmul/Outiier 

C 

New 
Matmul/Outiier 

C 

New 
MatMulDistMap 

C 

New 
MatMulDistMap 

AlSVec Asm 

now 
MatMulDistMap 

AltiVecAsm 

Anomolyl Output Pixel Limit Unlimited 1000 400 250 250 250 

Anomo)y2 Output Pixel Limit Unlimited Unlimited 100 na na na 

Anomoly2 processing 
Closing processing 

Nun images processed 

Forced 
Enabled 

120 

Forced 
Enabled 

120 
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Figure 29: Real Time Processing Results Summary 

So, in summary, we expect to have the LSVD algorithm available for transition to 
the NetFires program for their next CFT. Currently, the LSVD algorithm has the best 
performance of any of the detection algorithms NetFires has evaluated. The performance 
advantage is particularly stunning for the 1500m and 2000m afternoon data. - the LSVD 
algorithm is out performing the next best algorithm by about 45 percentage points in 
detection (83% to 38% at 1500m and 78% to 32% at 2000m) with comparable false 
alarms per image. We are working closely with the NetFires Program Office to make this 
transition a reality. 

2.2.4.2 Possible LSVD Improvement 
This section describes improvements made to the LSVD algorithm developed by 

Professor Xiaobai Sun from Duke University. This work was not funded under the 
current contract and is derived from the LSVD code that is proprietary to FMAH. While 
we report these results here, the code is not considered a deliverable under the current 
contract. At the time the final report was being written, Professor Sun had made some 
significant improvements to the LSVD code. In particular, for the UCIR images provided, 
Professor Sun had achieved a 5x reduction in both memory requirement and arithmetic 
operations. Operational improvements such as singular value decomposition truncation 
by given numerical tolerance and an efficient update to enlarged neighbor size, are also 
being incorporated. These improvements will be quantified by processing the available 
image sets. We expect that this evaluation to be concluded before completion of the 
contract. We also believe that these improvements will have an even greater impact on 
target detection for SAR and hyperspectral imagery. 
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2.3 Anisotropie Image Diffusion 
The last decade has seen the advent and development of a highly successful new 

image processing paradigm; it is variously known as anisotropic diffusion or nonlinear 
diffusion filtering. In this approach, particular types of parabolic partial differential 
equations are developed for processing noisy images. Generally, they are of the form: 

— = div(D-Vu), 
dt r 

where u(x,t) represents the intensity level of pixel x in an image at pseudo-time t, D is the 
diffusion tensor, a positive definite symmetric matrix, and pixel JC represents a location in 
the 2-dimensional image region. The initial condition is u(x,0) =f(x), where f(x) is the 
starting image, i.e., the measured image that is to be sharpened or otherwise processed. 
Solutions of these PDEs (diffusive initial value problems) represent the evolution of raw 
images in "pseudo-time", as across-edge features are enhanced while, simultaneously, 
along-edge features are smoothed. During this process, reflective boundary conditions are 
applied along the image's boundary; these conditions act to guarantee a constant average 
intensity value over the whole image. The ultimate goal is to detect faint targets in noisy 
images. 

In practice, these diffusion equations have two additional complicating, but 
necessary, factors: a regularization parameter <xand a contrast parameter X. These help to, 
respectively, remove ill-posedness in the problem and enhance edges above a certain 
contrast level. A Gaussian smoothing function K(x) is parameterized by a. 

The scalar diffusivity function g is parameterized by X and is given by:      - • ■ • 

The orthonormal system of eigenvectors vy, V2 of the diffusion tensor D is 
constructed such that vy is parallel to Vua and v2 is perpendicular to Vu„ In order to 
prefer smoothing along the edge to smoothing across it, one can choose the corresponding 
eigenvalues X] and X2 (not to be confused with the contrast parameter X) as X2 = 1 and 

^=g(|VWJ2) 

The smoothed intensity field, um is the convolution with the Gaussian smoothing function 
K: 

Wtr(x)=fc*«Xx) 
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It should be emphasized that the diffusion equation shown here is only one 
example of using the anisotropic diffusion approach to solving image processing 
problems. The approach may be generalized in many ways, including using a sequence of 
real-time (not pseudo-time) images, using coincident multi-wavelength (colored) images 
or even adding another equation to perform temporal regularization: 

where r > 0 is some delay parameter and F(Vu) is basically a projection orthogonal to 
Vu, if | Vu\ is larger than some contrast parameter X. 

2.3.1 Diffusion Filter Types 
Several different types of finite difference stencils (filters) can approximate the 

solution of the diffusion equation. The filter types are defined by the structure of the 
diffusivity term in the diffusion equation and are conveniently broken into three classes 

Linear Diffusion Filters: The diffusivity term D is a constant over the entire image. The 
subsequent processing smoothes the image in all directions equally. This form is 
equivalent to filtering the image with a Gaussian kernel. The filter does not discriminate 
in what is processed and will smooth away the noise and the targets equally. 

Nonlinear Isotropie Diffusion Filters: The diffusivity term D is a scalar function of the 
magnitude of the local image gradient. This function is formed such that the image will 
be smoothed in relatively constant regions, and not smoothed in regions with large 
gradients that may represent object edges. Most of the literature on image diffusion 
processing is based on this type of filter. Unfortunately, this method does not perform 
well in eliminating impulse noise. The diffusion filter operates on a pixel by pixel basis 
and cannot take into account how this pixel differs from the local neighborhood. 

Nonlinear Anisotropic Diffusion Filters: The diffusivity term D is a tensor. This tensor is 
a function of the differential structure of the evolving image. The filter derived from this 
formulation can smooth away the noise in the image without smoothing away the target. 
This filter does not suffer from the deficiencies of the isotropic formulation. In addition, 
the tensor formulation allows for a whole new paradigm, Coherence Diffusion Filtering 
(CDF). CDF formulates the problem based on a priori geometric information. Solutions 
can be created to the diffusion equation that are not based on preserving edges, but on 
enhancing the coherence of flow like textures. 

2.3.2 Derivation of the Nonlinear Anisotropic Diffusion Filter 
The remainder of this section will be devoted to the development and the 

application of the nonlinear anisotropic diffusion filters. Referring back to the diffusion 
equation, we can write this equation out in more detail: 
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1 

— = V • (DVu) where D = 
dt 

V» 
a{x,y)   b(x,y) 
b{x,y)   c(x,y) 

dx 
du_ 

Py. 

a(x,y) b(x,y) 
b(x,y) c(x,y) 
\ 

d_ 

dx 
^^)|+^,^)+|(^y)| + c(,^)|; 

V 

If the PDE is discretized using a symmetric scheme for the first order derivatives, one 
obtains a 5x5 stencil. This can be reduced to a 3 x 3 stencil by allowing asymmetric 
schemes. The first order derivatives are calculated by alternately approximating the inner 
and outer derivatives with a Forward Euler method (+) followed by a Backward Euler 
method (-). By averaging the two asymmetric components, one obtains an overall 
symmetric scheme. 

cbcl     '    dx 
d+ 

dx 
vd u 

dx 
d~( 

a{*,y)-T- +-A a(x>y) dx{ dx 

The mixed derivative terms in the PDE are approximated with central differences. These 
calculations can then be factored into like terms and the expression simplifies to: 

— = A(u)u 
dt       K } 

A(u) = 

cij+i + cu 

4 2 

2 2 
bMj+bu+i CU-l+CU 

bi+\J+bi,j+l 

aM 

4 
j 

Kx 
2 

j+b, j-i 

The solution of the PDE is applied iteratively to the evolving image. For stability of the 
algorithm, the constant dt should always be less than 0.25. 

i    i 

♦J+XJ+J- 
JC=-1_K=-1 

for every ij in the image and where a00 corresponds to the center pixel of the stencil. 

2.3.3 The Diffusion Tensor 

In the diffusion literature, much of what is considered "filter design" consists of 
how you choose to construct the elements of the diffusion tensor D. In general, for the 
positive semi-definite matrix D, the eigenvectors should reflect the local edge orientation. 
The method used to calculate the eigenvalues is particular to the application. In order to 
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have the eigenvectors of D reflect the local edge orientation, it is necessary to calculate a 
geometry tensor (J0) for each pixel in the image. 

Jb(Vw) = 

d2u     du du 
dx dy 
d2u 

dx2 

du du 
dx dy     ry1 

J0 has an orthonormal basis of eigenvectors which are parallel (vi) and perpendicular (V2) 
to the gradient. Unfortunately, this calculation can be skewed by noisy pixels, and a better 
estimate of the local orientation can be found by convolving J0 component wise with a 
Gaussian to obtain an average of the local orientation. 

Most of the filters implemented in practice use the structure tensor Jp for a more 
robust local edge orientation estimate. The eigenvectors of Jp, are parallel (vi) and 
perpendicular (V2) to the averaged local edge orientation. The largest eigenvector of the 
tensor indicates the local orientation. The relation between the eigenvalues of Jp, )X\ and 
02, expresses the certainty of this statement. The larger |Xi is compared to U2 (or vice 
versa), the more certain the direction of the local edge orientation. 

D = 
a(x,y)   b(x,y) 

b(x,y)   c(x,y) 

D = 
VU      V21 

v12   v22i 

\    0 
0    ^ 

v„    v12 

V21      V22. 

tf = Vll2+V212;     b = VuVl2Al+V2{V32A2;     C = A,V12    +A2V22 

2.3.4 Filter Design 
The method you choose to calculate the eigenvalues for the diffusion tensor D 

determines the functionality of the diffusion algorithm. The first two methods shown 
below are a direct extension of the edge enhancing nonlinear isotropic methods. The main 
difference is that, for the isotropic case, the function used to choose how much you 
diffused in the direction perpendicular to the edge is a function of the magnitude of the 
local gradient. Below we have replaced this by making the g function dependent on |Xi, 
which is the first eigenvalue of your geometry tensor J0 or Jp. When using the non- 
averaged geometry tensor J0, the first eigenvalue of J0 is the magnitude of the local 
gradient and the expressions for the isotropic and anisotropic case are identical. These 
first two functions for X,i are both monotonically decreasing functions, which range 
between 0 and 1. Simply, when X\ is 1, you will diffuse in the direction perpendicular to 
your edge, and when X\ is 0, you will not diffuse at all. The purpose of the function g is to 
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allow the diffusion filter to not diffuse in the vicinity of targets, and to diffuse everywhere 
else. K is chosen to approximate the magnitude of the gradient that would exist due to the 
finite difference between a target to the background. The difference between the first two 
functions is obviously the rate of decay. The better your estimate of what K value is 
needed, the sharper you want the transition to be between X\= 1 and A-i=0. 

#1 

^=1 
1 

1+ 
K2 

#2 

gC"i) = l-exp -C 
f     \-»A 

KJ 

#3 

\ =a 

*2=g{(Mx-M2)2) 

g(s ) = l-exp 
<   s> 

l(K)2 

Filter design method number three can be used to enhance the coherence of flow like 
textures. This filter smoothes along the coherence direction V2 with a diffusivity, "kz, 
which increases with respect to the coherence (jui -u^). 

The initial hope for the diffusion algorithm was that it could be used for the 
detection stage of the ATA problem. Detection would be accomplished by successively 
applying the diffusion algorithm to the image to segment the background and the target. 
Figure 30 shows this process on UCIR imagery using filter method number 2. Generally 
it was found that the number of iterations required to perform this segmentation was 
extremely large, and the ability of the algorithm to perform this task was image 
dependent. In images where the largest contrast in the image was between the target and 
background, the segmentation could be performed. However, in the event that this was 
not the case, the segmentation would diffuse away the target. The diffused image shown 
in Figure 1 was processed through 200 iter?+iuns at 0.1 dt. The complete segmentation 
required near 20000 iterations at 0.1 dt. The computational cost of this algorithm, as 
well as the difficulty in determining the appropriate stopping point, appears to rule out the 
use if this algorithms for detection with UCIR imagery. We have begun some preliminary 
investigations into using anisotropic image diffusion for other sensor modalities, such as 
SAR and LADAR. We next discuss possible applications related to pre- and post- 
processing of UCIR imagery. 

Figure 30: (a) Original Image (b) Diffused Image 
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Consider the use of the diffusion algorithm for image enhancement and noise 
removal. Figure 31 shows and an example of a distorted UCIR image that was enhanced 
using filter number 2. The original image was distorted with Gaussian noise and 
recovered using three iterations of the diffusion algorithm at 0.1 dt. Similar results were 
obtained using filter number 1. 

Figure 31: (a) Original Image; (b) Noisy Image; (c) Recovered Image 

Filter design method number three can be used to enhance the coherence of flow 
like textures. This filter smoothes along the coherence direction v2 with a diffusivity, X2, 
that increases with respect to the coherence, (ui - U2). Here \iu 02 are the eigenvalues of 
the averaged geometry tensor. We have not as yet identified a compelling application of 
this filter to UCIR imagery. Perhaps one of the most intriguing aspects of the anisotropic 
image diffusion approach is the ability to incorporate external information into the 
potential term. This is very much in the spirit of the new DARPA DSO Integrated 
Sensing and Processing (ISP) program. 

2.4 Template matching using Radon/Fourier transforms and LSDB 
This section describes the first of two small investigative studies that were funded 

under this contract. These were not included in the original proposal but arose out of 
some very recent research published by students of Professor Gregory Beylkin and 
Professor Ronald Coifman. The objective of this first study was tc .extract robust object 
features from images for recognition and template matching us'sg best basis methods. 
Professor Naoki Saito of the University of California, Davis is leading this research 
effort. The objects of interest are imaged with different rotations, dilations, and 
translations (c.f, Figure 32) as well as local variations (e.g., shadows or other non- 
stationary noise). Initial research focused on rotations and dilations. The main idea is to 
compute the rotation and dilation invariant representation and then to characterize the 
features by the least statistically dependent basis (LSDB). 

Suppose all the objects are centered but rotated and isotropically dilated. Then, a 
slice of the Radon transform gives a ID function of the rotated angle. The key 
observation is that rotation and isotropic dilation of the object are equivalent to 
translation and amplitude scaling of this ID curve. Therefore, the normalized magnitude 
of the Fourier transform of this ID curve gives us the invariant signature of the object 
with respect to rotations and dilations. The inverse Fourier transform is applied to this 
curve to get spatial features invariant to rotations and dilations, which are more intuitive 
than the frequency features. The curves obtained from several rotated versions of the 
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same objects are now similar in appearance and the only differences are due to sensor 
noise and other local variations. This is illustrated in Figure 33. 

J#   ■"   W    "'    I 

|    ...   M   ...   ^r 
Figure 32: 2-D Image of Tank at different Aspect Angles 
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Figure 33: Removal of Rotation and Dilation Effects 
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Finally, the localized basis functions are computed using the LSDB algorithm 
and are then used to find features characterizing this object that are close to being 
statistically independent. The top 30 LSBD vectors are shown in Figure 34. 

Figure 34: Top 30 LSDB Feature Vectors 

2.5 Multiresolution Anisotropie Image Diffusion (MAID) 
This research topic was motivated by the results of processing LAD AR imagery 

with the LSVD algorithm after the imagery had been corrected for pixel dropouts. The 
difficulty arises because the LSVD algorithm is looking for differences in local statistics 
and most standard approaches to replacing pixel dropouts results in changes to the local 
statistics. The MAID algorithm was developed by FMAH and is based on the application 
of a diffusion filter and smoothing conjugate-gradient iteration recursively on multiple 
scales. The algorithm is fast and robust. A flow diagram for the MAID algorithm is given 
in Figure 35. 

Figure 35: MAID Algorithm Flow Chart 
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Because of the sensitivity of distributing LAD AR flight data, a mask was created 
from some especially badly corrupted flight data1. A simulated range image was created 
with IRMA and the mask was used to reproduce the pixel dropouts. The initial 
performance of the MAID algorithm can be evaluated visually in Figure 36. 

<-«* 

{ftfeifc&MES^Mv''            "<*«lBiBSÄtei^ä äSäiwÄÄSäfe**^'' * '"i'iim^H^H 

Figure 36: (a) IRMA Image; (b) Corrupted Image; (c) MAID Processed Image 

It is useful to study the behavior of the wavelet coefficients as the MAID algorithm 
progresses through it iterations. The results are shown in Figure 37, where the reduction 
in number of significant coefficients shows quantitative improvement in the data. 

value 
Coefficients of original data 
Coefficients of drop-out data 
Coefficients of extrapolated data 

100 

0.01 

1.X10-6 

1.x 10-10 

1.X10-14 

2500       5000       7500       10000      12500      15000 

Figure 37: Comparison of Wavelet Coefficients 

1 This data was obtained very early on in the flight program before the final flight 
hardware was available. The severe dropouts were not present in the CFT. 
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2.6 Multiresolution Image Processing 
Multiresolution image processing via the discrete wavelet transform (DWT) has 

been successfully applied to the areas of image compression, image denoising, and edge 
detection. The result of applying an m-level 2-D DWT to an image is a set of subimages 
LLp, LHp, HLp and HHp, where p=l,2,.., m. The LHp, HLp and HHp emphasize vertical, 
horizontal and diagonal edges respectively. The area of multiscale image processing is 
quite broad. What we report here are some of the results for two of the more promising 
algorithms for UCIR imagery: target detecticn-and edge detection. For our analysis, we 
have used Daubechies and spline wavelets. f 

2.6.1 Wavelet Subband Product fWASPI algorithm for Target Detection 
Subband products are evaluated as a detection algorithm for UCIR imagery. This 

algorithm uses the products of particular subbands of the 2-D DWT identify ROIs. We 
considered one and two level decompositions using the Daubechies and spline wavelet 
transforms. This algorithm works reasonably well on UCIR imagery, although its 
performance is clear inferior to the LSVD algorithm. This is an extremely efficient 
algorithm, however, and so might be considered for fusing with the LSVD. The best 
results were obtained using a two level decomposition with spline wavelets. In fact, this is 
the only instance that we have obtained where the choice of wavelet family made a 
significant difference. Results are presented for both simulation and CFT data. The 
WASP algorithm, which exploits the inherent rectangular structure of man made objects 
or vehicles and uses wavelet subbands to enhance horizontal and vertical edge 
information, is summarized below and illustrated in Figure 38 

• Reflect NxM input image to K x K image, where K = 2q 

• Wavelet decompose image and extract N/2 x M/2 regions from LH1 and HL1 
• Perform element-by-element multiplication, SubProdi, of LH1 and HL1 
• Wavelet decompose image and extract N/4 x M/4 regions from LH2 and HL2 
• Perform element-by-element multiplication,' SubProdi, of LH2 and HL2 
• Threshold SubProdi and SubProd2 to obtain detection maps 
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Image ►   Level 1 

Level2 

Level! Detection Image 

Level 2- 
Subband Product 

|Vertical-2|*|Horizontal-2| 
Threshold Detection Image 

Figure 38: Flow Diagram for Wavelet Subband Product 

Sample outputs of the WASP are shown in next four figures. Figure 39 and Figure 
40 illustrate detection results for one-level and two-level decompositions using spline 
wavelets. Figure 41 and Figure 42 illustrate detection results for one-level and two-level 
decompositions using Daubechies 4 wavelets. These results clearly indicate that the 
detection performance of the spline wavelets should be superior. 

d) e) 

Figure 39: (a) Image; (b) LH1; (c) HL1; (d) SubProdi (e) Detection Image 
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d) e) 

Figure 40: (a) Image; (b) LH2; (c) HL2; (d) SubProd2 (e) Detection Image 

d) e) 

Figure 41: (a) Image; (b) LH1; (c) HL1; (d) SubProdi (e) Detection Image 
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Figure 42: (a) Image; (b) LH2; (c) HL2; (d) SubProd2 (e) Detection Image 

The imagery sets used for evaluation have already been described in an earlier 
section. We present only the best performance results for the WASP algorithm. This 
corresponds to two level decomposition using spline wavelets. The results are 
summarized in Table 4-6. While the detection results are reasonable, the false alarms are 
rather high. These results may be improved by fusing the output of the WASP algorithm 
with that of the LSVD. 

# Images Processed 
# Targets Detected (PD) 

R = 600m 
Morning 

126 
122 (.968) 

R = 600m 
Noon 

126 
126(1.0) 

R= 1000m 
Morning 

126 
123 (.976) 

R= 1000m 
Noon 

126 
121 (.960) 

# False Alarms 

# Images Processed 
# Targets Detected (PD) 

R = 1500m 
Morning 
126 
125 (.992) 

R =  1500m 
Noon 
126 
116 (.921) 

R = 2000m 
Morning 
126 
102 (.810) 

R = 2000m 
Noon 
126 
87 (.690) 

# False Alarms (FA/Image) 1302 (10.33) 7643 (60.66) 1330 (10.56) 6206 (49.25) 

Table 4: Results for Yuma 1 Data for 2nd Level Spline Wavelet 

# Images Processed 
# Targets Detected (PD) 
# False Alarms (FA/Imaee 

R = 600m 
Morning 

60 
60(1.0) 

R = 600m 
Noon 

60 
60(1.0) 

R= 1000m 
Morning 

60 
57 (.950) 

R= 1000m 
Noon 

60 
55 (.917) 
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# Images Processed 
# Targets Detected (Pp) 
# False Alarms (FA/Image) 

R = 1500m 
Morning 
60 
60(1.0) 
79(1.32) 

R = 1500m 
Noon 
60 
37 (.617) 
4877(81.28) 

R = 2000m 
Morning 
60 
49 (.817) 
55 (0.92) 

R = 2000m 
Noon 
60 
24 (.400) 
4326 (72.10) 

Table 5: Results for Yuma 2 Data for 2nd Level Spline Wavelet 

# Images Processed 
# Targets Detected (PD) 
# False Alarms (FA/Image) 

R = 600m 
16 
16(1.0) 
113(7.06) 

R= 1000m 
32 
25 (.781) 
602(18.81) 

R= 1500m 
31 
22 (.710) 
595 (19.19) 

Table 6: Results for WSMR CFT Data for 2nd Level Spline Wavelet 

2.6.2 Spline Wavelet Edge Detection 
The effectiveness of the spline wavelet as an edge detector was noted during the 

analysis of WASP algorithm on the UCIR imagery. If an ATR system was established 
using the WASP algorithm, it became clear that the subbands could be processed to 
produce edge maps and used as an input to a model-based feature extraction and 
classification strategy. Further analysis was needed in order to determine the quality of 
edge detection given an image chip or region of interest. The final edge map produced 
from the first level Spline Wavelet decomposition subbands was formed as follows. 

• For a given an N x N input image chip, obtain LH1, HL1 and HH1 subimages. 
• Threshold LH1, HL1, and HH1 to produce binary edge maps VE1, HE1, and DEI. 
• Logically OR VE1, HE1, and DEI to produce final edge map FinalEdgel. 

Sample outputs fror1 the Yuma 2 simulation data are shown in Figure 43 for the morning 
time frame and Figur-; 44 for the noon time frame. 
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a) b) c) d) e) 

Figure 43: (a) Original Chip; (b) VE1; (c) HE1; (d) DEI (e) FinalEdgel 

a) b) c) d) e) 

Figure 44: (a) Original Chip; (b) VE1; (c) HE1; (d) DEI (e) FinalEdgel 

2.6.3 Multiscale Texture Analysis 
Image texture characterization has been a constant topic of research over the last 

30-plus years. One of the most common statistical approaches to texture characterization 
is to characterize the regions with gray level properties and the spatial relationship 
between them through a gray level co-occurrence matrix (GLCM). Feature calculated 
from the GLCM can be used to discriminate between different classes of textures. The 
goal of this research was to identify which GLCM features could discriminate between a 
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T72 and BMP and if that discrimination could be enhanced at different scales of 
resolution. The spline wavelet was used for this study and the following six features were 
calculated from the GLCM generated from the original signal level, first level subbands, 
and second level subbands: 

NG-\ NG-l 

Angular 2nd Moment Mean = mean( ]£ J] {p(i,j)} ) 
i=0    y=0 

2NG 

Sum Average Mean = mean(^ipx+y{i)) 
1=2 

2NG 

Sum Variance Mean = mean(^(i - sum entropy Ypx+y(i)) 
1=2 

2NG 2NG 

Sum Variance Spread = max( £ (/ - sum entropy )2 px+y (/')) - min( ]T (/' - sum entropy J2 px+y (/) 
/=2 1=2 

2NG . 2NG 

Sum Entropy Spread = max( - £ px+y (/)k>g \px+y (/)}) - min( - £ px+y (/)k)g \p„y (/)}) 
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Where 

NGANG-\ NG-lNG-l . . 

ro=-EEP(U)log{p(i,j)}        HXY2 = - £ J^KO)**W'KO)} 

and p(ij) is the i* row and j* column entry in the GLCM. 

2.7 Borrowed Strength Algorithm , 
The Borrowed Strength Algorithm (BSA) is one tool from statistical image 

processing that can be very useful and effective when applied to ATR. Basically, the BSA 
takes an input image and processes it, ultimately producing as output a segmented version 
of the image - one that hopefully contains the potential target(s) or ROIs (regions of 
interest) amongst the delineated segments. Additionally, certain segments of the image 
(based on their statistics or PDFs) may be highlighted as being more likely to be 
associated with the target. 

Based on pragmatic experience in many fields (e.g., medical imaging, pattern 
analysis, computer vision, etc.), some standard pre-processing steps must first be 
performed on the original (raw) image obtained from the sensor. Multiple options are 
available here, but a commonly used approach is described first; for each pixel in the raw 
image compute the mean \i and standard deviation a, averaged over a distance scale "s". 
From this, compute one measure of local texture, the scalar quantity ol\i, (the coefficient 
of variation) at each pixel. The resulting image is called the texture image T. Other pre- 
processing options to obtain the texture image include using tensor formulations, where 
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combined horizontal and vertical variations have the potential of revealing coherent 
structure information. (These more exotic options were not examined in our study.) 

The texture image T (input) is run through any preliminary or rudimentary 
segmentation algorithm to produce an initial estimate of a segmented image, called S. 
Several ways to generate S are: via watershed algorithms, other edge detectors, or even 
via Gaussian mixture models. Regardless of how it is obtained, the segmented image S 
will, in general, consist of R regions: r = 1....R, with each region r containing iv pixels, 
and with known pixel coordinates (xj,yj) and intensities Vj for each of the regional pixels: 
j=l,...,nr. 

The primary goal of the BSA is to improve upon the original segmentation of 
image S by using a statistical approach. Typically, a major problem with segmented 
image S is that it will contain an unacceptably large number of regions. Also, since many 
of the iir values may be small (e.g., for tiny targets), statistics of these regions are difficult 
to estimate accurately. The BSA addresses this problem by applying the concept that there 
is "strength in numbers". BSA applies statistics that are obtained from the entire texture 
image Tto the individual regions: r = 1, ...R, obtaining "borrowed strength" estimates for 
the statistics (i.e., probability distribution functions, PDFs) of each region. Then, using a 
similarity matrix built from the metric distances separating the regional PDFs, a 
clustering algorithm merges the regions of the initial segmented image S into a more 
useful, borrowed strength segmented image, S'. In this fashion the difficulties associated 
with poor statistics due to small sample sizes are hopefully circumvented. 

The similarity matrix mentioned above is described in more detail in the literature. 
A listing of the routine Bldsimjmtx is given in Appendix B. In the routine, sums of 
Gaussian normal functions are integrated with each other in closed form to evaluate 
integrated square error terms between PDFs. Appendix C contains the listing of the 
clustering algorithm, Cluster_alg. 

There are several additional assumptions implicit in the BSA, some of them quite 
strong. The main one is that the underlying local densities of the different regions are 
mixture models of normal (Gaussian) or t-component distributions. A stronger 
assumption is that the underlying mixture components can be considered invariant across 
class, with the probability density functions differing only in their mixing coefficients. 
Ultimately, all of these assumptions have been tested under real case studies, checking 
whether the second stage segmentations S' using the borrowed strength methodology are 
indeed better than using alternative ways (such as local statistics) to improve the 
simplistic segmentations S. 

2.8 Image Equalization - Local Gaussianization Algorithm 
Because the contrast in the UCIR imagery is so poor, we have investigated a 

number of different equalization techniques. Given the extremely tight spread in pixel 
values, standard histogram equalization methods should fail miserably and they do. 
Professor Nathan Intrator from Brown University was kind enough to furnish us with an 
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equalization algorithm that he developed for sonar signal processing. This algorithm is a 
local Gaussianization algorithm. We have used this algorithm for preprocessing our 
UCIR data sets. While the visual quality of the image can be improved (c./, Figure 38), 
the performance of our detection algorithms occasionally improved very marginally but 
was often degraded. Since the local Gaussianization algorithm contains a number of 
selectable parameters, we do not claim to have performance an exhaustive study. This 
was another time where we began our investigation near the end of the current contract 
and so have only been able to perform a preliminary investigation. We believe that the 
local Gaussianization algorithm has merit and should be pursued. 

YimiAZCFT (Original) 

Figure 45: Preprocessed UCIR Imagery using Local Gaussianization 

3.0 Detection and Classification for other Sensor Modalities 
In this section, we collect some miscellaneous results corresponding to small 

research studies for a few additional sensor types. In particular, we address target 
detection for Synthetic Aperture Radar and target discrimination for cooled long wave 
infrared sensors for Ballistic Missile Defense Applications. 

3.1 SAR Target Detection 
We have also conducted a preliminary study of the LSVD algorithm for the 

identification of regions of interest (ROI) for Synthetic Aperture Radar (SAR). Presented 
below are a few Global Hawk SAR images. Some results are presented in Figure 39. 
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Figure 46: LSVD ROI identification for Global Hawk SAR Image 

The images corresponding to the top four local singular vectors are shown in Figure 40. 

50  100  150  200  250  300  350  400  450 

Figure 47: Eigenimages for top four singular vectors 

3.2 BMD Target Discrimination 
We have investigated the Local Discriminant Bases (LDB) algorithm as a feature 

extraction and classification algorithm for Standard Missile Lightweight Exoatmospheric 
Projectile (LEAP). SM-3 LEAP is the Navy's envisioned for upper tier defense. LDB is a 
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powerful algorithmic framework that was originally developed by Coifman and Saito in 
1994 as a technique for analyzing object classification problems. The LDB method 
selects an orthogonal basis from a large collection of orthogonal bases based on relative 
entropy or a similar metric. In LDB the accumulated relative entropy is first used as a cost 
function for choosing the best oUscriminant bases and then the individual coefficients are 
ranked in the order of relative entropy values. 

The basis library consists of functions that are well localized in the time-frequency 
plane and includes discrete wavelet packet? and local trigonometric bases. The localized 
nature of these basis functions often results in a reduced set of features that is easier to 
interpret and more intuitive than conventional methods. The performance of the target 
classifier is usually enhanced, since the LDB method reduces the dimensionality of the 
problem without losing important information for classification. 

A large simulated database from the LEAP program was used to test different 
feature extraction and target classification algorithms. These simulated data sets are based 
on high fidelity models that have been developed by the SM-3 LEAP program. A 
confusion matrix for one of these data sets is shown in Figure 41. A quadratic classifier 
was used. While the performance illustrated here is nearly identical to that obtained using 
the current Fourier-based methodology, we expected to be able to demonstrate improved 
performance once additional threat types and countermeasures are included. 

N Features Daubechies 04 Coifman 06 
1 100.00 0.00 100.00 0.00 

39.86 60.14 39.86 60.14 

2 99.40 0.60 99.20 0.80 
23.19 76.81 23.79   _ 76.21 

3 100.00 0.00 10a. Ü0 0.00 
21.62 78.38 22.34 77.66 

4 99.80 0.20 100.00 0.00 
19.20 80.80 19.57 80.43 

5 97.80 2.20 100.00 0.00 
18.12 81.88 19.08 80.92 

RV Other 

RV 1   100.00 0.00 
Leakage 

Other I    19.08 
iFalse Alarm 

80.92 

(b) 

(a) 

Figure 48: (a) Confusion matrix for classification (b) Legend for confusion matrix 

3.3 HRR Classification 
In this section, we describe some very preliminary work that we are doing on target 

classification using high range resolution radar (HRR). At one time, HRR was considered 
a promising sensor modality for ATR but has pretty much been replaced as the radar 
sensor of choice by Synthetic Aperture Radar (SAR). In large part, this was because SAR 
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ATR was relatively easier and because SAR maps have a strong image-like quality that 
makes them attractive for applying image processing and pattern recognition techniques. 
Producing high-resolution SAR imagery is computationally intensive and thus extremely 
difficult to implement within the highly volume and power constrained world of 
munitions. The maturation of millimeter wave (MMW) HRR sensor technology has led to 
a revived interest in their use for ATR/C. An added benefit is the capability of MMW 
energy to penetrate rain, dust, fog and smoke. The narrow MMW beamwidth results in 
improved cross range resolution with the accompanying increase in the signal-to-clutter 
ratio (SCR). This increase in SCR is a significant characteristic due-4o-theJerrain- 
induced clutter present in air-to-ground scenarios. The SCR may be further improved by 
utilizing Doppler beam sharpening (DBS) techniques. DBS provides the capability to 
increase cross range resolution beyond that nominally available with standard real beam 
(RB) techniques. 

Whether using RB or DBS, the general ATR/C approach relies on identifying features 
constructed from the range profiles derived. Feature estimation involves developing a 
suite of discriminating signature features for the targets of interest that make full use of 
the characteristic differences present in different classes of objects. As it is often 
practiced, feature identification is somewhat of an art and relies heavily on the experience 
of the analyst. For example, Raytheon has identified over 30 potential features. An 
alternative approach is to use the best bases techniques discussed in Section 3.2. Training 
data for two targets of interest at 360° integer aspect angles was generated for RB and 
DBS by processing ISAR images (c.f, Figure 42). 

Scud Missile Up at 334 degree aspect angle RB range profile for KA/ScudUp 

Down Range in meters 

ZH.157 at 334 degree aspect angle 

Relative Range in meters 

RB range profile for KA/ZIL157 

-tea 

Down Range in meters 
n      n      m 

Relative Range in meters 

Figure 49: RB Profiles by processing ISAR images 
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As mentioned previously, we have identified approximately 30 relevant features 
for HRR sensors. Both DBS and RB data can be used as inputs to a feature estimation 
algorithm. Training data from all 360° aspect angles were data included. These 
preliminary results show feature separation between these two classes of targets. After a 
search though all available features, a scatter plot showing the best separation was 
generated and is shown in Figure 43a. The same data set was processed through LDB and 
a scatter plot for the top two LDB features is shown in Figure 43b. While the feature 
separations for the two approaches are comparable, LDB is an automated procedure. LDB 
also produces a related set of feature vector that can be interpreted. Since we have only 
just recently received the HRR data, we have not been able to perform any exhaustive 
studies; nonetheless, LDB appears to be a viable approach to this problem. 

Scatter plot of two features Command (red) vs. Zu (bkM) 

S 

Peak polarimetric cross-correlation 

Figure 50: (a) Selected Features; (b) Top two LDB Features 

We have also generated some very preliminary confusion matrices. In this analysis 
a simple quadratic classifier was employed and we generate confusion matrices pair-wise 
for our target set. The results are summarized in Table 4. Clearly, some of the 
performance results are not what we would desire. This is primarily due to the fact RL 
data is extremely aspect depend and so some preprocessing or partitioning of the data sets 
will be required. In addition a more powerful classifier, such as a neural network or SVM, 
should also improve results. Here MU is an SA12 with missile up, RDR is an SA12 
radar, CMND is an SA12 command module and ZiL is a ZiL131 Truck. 

Class/Truth 
(MM) 
ZIL 
( law'!"ruth 
Ml 
ZIL 
Class/Truth 
RDR 
ZIL 

(MM) ZIL (lass/I ruth (MM) ML                | 

1 0.9917 0.0083 CMND 0.1583 0.8417 

0.1028 0.8972 MU 0.0528 0.9472 

Ml ZiL (lass/Truth (MM) RDR 

1 0.9639 0.0361 CMND 0.8417 0.1583 

0.0861 0.9139 RDR 0.6444 0.3556 
RDR ZIL (lass/Truth Ml RDR 

1 0.2944 0.7056 MU 0.0528 0.9472 

1 0.0778 0.9222 RDR 0.0917 0.9083 

Table 7: Pair-Wise Target Confusion Matrices 
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4.0 Supporting Information 
4.1 Patent Applications 

We had one patent application submittal during the period of performance of the contract. 
1. PD-2000wTBD: "Detection and Direction Estimation of Near Stationary Targets 

in Mono-static Clutter from Phase Information using Correlation and Spectrum 
Analysis," H. A. Schmitt, H.-W. Chen, G. T. David and A. A. Samuel. 

4.2 Publications 
We had fifteen manuscripts published over the course of our research program. 
C (CONFERENCE PROCEEDINGS) 
CI (CONFERENCE PROCEEDINGS, INVITED) 

1. [C] "Wavelet Based Optimization of Space-Time Adaptive Processing," D. C. 
Braunreiter, H. A. Schmitt, H.-W. Chen and G. Beylkin, ASAP '98, Boston, MA, 
March 12-14,1998. 

2. [C] "Theoretical and Experimental Results on the Application of Wavelet 
Transforms to RF STAP and Real Time Optical Compensation,"  D. C. 
Braunreiter, H. A. Schmitt and H.-W. Chen, 3RD NATO-IRIS JOINT SYMPOSIUM: 
INNOVATION IN MILITARY AND SECURITY SENSING, Quebec City, Quebec, 
October 19-23,1998. 

3. [C] "Theoretical and Experimental Results on the Application of Wavelet 
Transforms to RF Space Time Adaptive Processing," H.A. Schmitt, L. J. Baig, H.- 
W. Chen and D. M. Healy, 1999 IRIS Specialty Group Meeting on Missile Defense 
Sensors, Environments and Algorithms, Monterey, CA January 26-28,1999. 

4. [C] "Adaptive Non-Uniformity Compensation Using Adaptive Feedforward 
Shunting and Wavelet Transforms", H.-W. Chen, H. A. Schmitt and D. M. Healy, 
1999 IRIS Passive Sensors Meeting, , Naval Postgraduate School, Monterey, CA, 
February 22-24,1999. 

5. [C] "A Multi-Resolution Approach to Object Classification Using Kinematic 
Features," H.-W. Chen, H. A. Schmitt, J. G. Riddle and S. K. Mashima, SPIE 
AeroSense, Orlando, FL, April 4-9,1999. 

6. [C] "On the Use of Space-Time Adaptive Processing and Multiresolution Data 
Representations for the Detection of Near-Stationary Targets in Monostatic 
Clutter," A. A. Samuel, H. A. Schmitt, G. T. David, H.-W. Chen and D. C. 
Braunreiter, Tri-Services Radar Conference, Monterey, CA, June 21-24,1999. 

7. [C] "Advanced Mathematical Algorithms for Real Time Channel Equalization in 
Space Time Adaptive Processing Applications," H. A. Schmitt, M. L. Cassabaum, 

64 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLIN No. 0001AA: Final Report for F49620-98-C-0034 

H.-W. Chen, D. M. Healy and D. C. Braunreiter, Tri-Services Radar Conference, 
Monterey, CA, June 21-24,1999. 

8. [C] "Applications of Local Discriminant Bases and Time-Frequency Analysis to 
Selected Problems in Missile Seeker Signal Processing," H. A. Schmitt, M L. 
Cassabaum and H.-W. Chen, Hyperspectral Multispectral Simulation Workshop, 
Huntsville, AL, September 7-9,1999. 

9. [C] "Detection af Near-Stationary Targets in Monostatic Clutter Using Time- 
Frequency Analysis and Local Discriminant Bases," A. A. Samuel, H. A. Schmitt, 
G. T. David, All Raytheon RF Symposium, November 1-4,1999. 

10. [C] "A Fast Direct Solver Algorithm for RF Channel Equalization based on 
Hankel Symmetry of the Data Matrix," H. A. Schmitt, R. D. Rosenwald, M. A. 
Woolf, and H.-W. Chen, All Raytheon RF Symposium, November 1-4,1999. 

11. [C] "Time Adaptable Continuous Wavelet Transform Analysis with Analog 
Signal Processing Devices," J. F. Scholl, D. L. Barker, H. A. Schmitt, A. A. Samuel 
and J. D. Langan, 2000 Processing Technology Exposition, Tucson, AZ, June 6-8, 
2000. 

12. [C] "Advanced Algorithms and Architecture for Automatic Target Recognition/ 
Classification," H. A. Schmitt, 2000 Processing Technology Exposition, Tucson, 
AZ, June 6-8,2000. 

13. [C] "Detection and Direction Estimation of Near-Stationary Targets in 
Monostatic Clutter Using RF Phase Information," H.-W. Chen, A. A. Samuel, H. 
A. Schmitt, G T. David and D. M. Healy, 46th Annual Tri-Service Radar 
Symposium, CoKirado Springs, CO, June 28-30,2000. 

14. [C] "Local Discriminant Bases and Time-Frequency Transforms as 
Discrimination Algorithms for Theater Missile Defense," M. L. Cassabaum, H. A. 
Schmitt, H.-W. Chen and J. G. Riddle, San Diego, CA, SPIE, July 2000. 

15. [CI] "On the Use of Space-Time Adaptive Processing and Time-Frequency Data 
Representations for the Detection of Near-Stationary Targets in Monostatic 
Clutter," D. C. Braunreiter, H.-W. Chen, M. L. Cassabaum, J. G. Riddle, A. A. 
Samuel, J. F. Scholl and H. A. Schmitt, 10th IEEE Workshop on Statistical Signal and 
Array Processing, Pocono, PA, August 14-16,2000. 

4.3 Key Program Personnel 
While Raytheon had formal subcontract control over non-Raytheon team 

members, we conducted the program under an IPT structure. This put in place a 
management structure that provided a clear delineation of responsibilities, ensured 
communication among team members, and provided a method for the resolution of 
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differences. Figure 44 shows the program organizational structure and illustrates a 
cumulative list of people that have been involved. 

Figure 51: Advanced Mathematics IPT Structure 

4.4 Program Transitions 
We have developed a very successful technology transfer approach under our 

current DARPA contract that was based on establishing a close working relationship with 
Program engineers. We have had two major transition successes. The Channel 
Equalization algorithm described in Section 1 has been implemented in flight hardware 
for AMPvAAM Phase 3. The fast binning algorithm for generating range-Doppler maps 
has been implemented in Raytheon's Tactic?l 6-DOF model for Air-to-Air missiles. We 
are currently in the process of optimizing ine LSVD code as embedded software and hope 
to get the timing reduced sufficiently that we can get one final program transition into the 
NetFires PAM. 

5. Acronyms 
AAP 
ABF 
ACMP 
ASTB 
ATA 
ATR/C 
BSA 
CDF 
CFT 
CIWS 
CPI 
DBS 

Adaptive Array Processing 
Adaptive Beam Forming 
Applied and Computational Mathematics Program 
Airborne Seeker Testbed 
Automatic Target Acquisition 
Automatic Target Recognition/Classification 
Borrowed Strength Algorithm 
Coherence Diffusion Filtering 
Captive Flight Test 
Close In Weapons Support 
Coherent Processing Interval 
Doppler Beam Sharpening 
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DOF 
DUCE 
DWT 
ECM 
FCE 
FCM 
FMAH 
FMVM 
GLCM 
IRMA 
JNR 
LAM 
LDB 
LEAP 
LSDB 
LSVD 
MAID 
MMW 
NUC 
PAM 
PC 
PDF 
PRI 
PSD 
RB 
ROC 
ROI 
SAC 
SAR 
SCNR 
SCR 
SM 
SNR 
SSE 
STAP 
STIG 
TERM 
TSI 
UAV 
UCIR 
WASP 
WSMR 

Degree of Freedom 
Duke University Channel Equalization 
Discrete Wavelet Transform 
Electronic Countermeasure 
Fast Channel Equalization 
Fast Covariance Matrix 
Fast Mathematical Algorithms and Hardware 
Fast Matrix Vector Multiplication 
Gray Level Co-occurrence Matrix 
Infrared Modeling Analysis 
Jammer to Noise Ratio 
Loitering Attack Munition 
Local Discriminant Bases 
Lightweight Exoatmospheric Kill Vehicle 
Least Statistically Dependent Bases 
Local Singular Value Decomposition 
Multiresolution Anisotropie Image Diffusion 
Millimeter Wave 
Non-uniformity Compensation 
Precision Attack Munition 
Principle Component 
Probability Distribution Function 
Pulse Repetition Interval 
Power Spectral Density 
Real Beam 
Receiver Operating Characteristic 
Region of Interest 
Spectral Analysis Codes 
Synthetic Aperture Radar 
Signal-to-Clutter+Noise-Ratio 
Signal-to-Clutter Ratio 
Standard Missile 
Signal to Noise Ratio 
Spatial Spectral Estimation 
Space Time Adaptive Processing 
Simulation Technology Image Generation 
Tank Extended Round Munition 
Terrain Scattered Interference 
Unmanned Aerial Vehicle 
Uncooled Infrared 
Wavelet Subband Product algorithm 
White Sands Missile Range 
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Appendix A: DUCE Algorithm C-Code 
/««»**»«**«««*««»»*»*««»*»**•»**»***««»»**»**♦»******«»»**** 

DISPLACEMENT RANK DECOMPOSITION ALGORITHM 

Verify Xiaobai's Cholesky Decomposition Algorithm using real data. 

Requires datajiewPNcode.c, FormCovFFT.c, DispRank.c, DispL02.c 
fft.c, new_approach.h, and the data files specified in data_newPNcode.c 

Matlab code: James Thornbrue, June 18,2001 
C code: David Zaugg, Nov 1,2001 
»«»««»«»»*«♦«»••«***♦»»♦**«******«»***«♦***«•♦***»»»•*******/ 

«include "new_approach.h" 

int main() 
{ 

struct COMPLEX *EQ_data; 
struct COMPLEX »ref, *y; 
long cols, rows; 
intP.M; 
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int n, i, channel; 
struct COMPLEX yhead[(N-l)]; 
struct COMPLEX ytail[(N-l)]; 
struct COMPLEX C[N]; 
struct COMPLEX B[N]; 
struct COMPLEX F[N][4]; 
int Sigma[4]; 
struct COMPLEX L[N][N]; 
FILE *handle_Lfile; 

//load the channel data into EQ_data (10 channels, length 999) 
//datajiewPNcode 
EQ_data = data_newPNcode("PNcodefilelist.txt", EQ_data, &cols, &rows); 

//ref=EQ_data(:,l); 
ref = (struct COMPLEX*)malloc(8*2*cols); 
for(n = 0; n < cols; n += 1) 
{ 

(ref[n]).real = (EQ_data[n]).real; 
(ref[n]).imag = (EQ_data[n]).imag; 

} 

II? = length(ref); 
P = cols; 
//N=16; 
//M = P-N+1; 
M = P-N+1; 

//channel = 2; 
channel = 2; 

//y = EQ_data(:,channel); 
y = (struct COMPLEX*)malloc(8*2*(cols+l)); 
for(n = 0; n < cols; n += 1) 
{ 

(y[n]).real = (EQ_data[n + cols*(channel - l)]).real; 
(y[n]).imag = (EQ_data[n + cols*(channel - l)]).imag; 

> 

//yhead = y(l:N-l); 
for(n = 0;n<(N-l);n+=l) 
{ 

(yhead[n]).real = (y[n]).real; 
(yhead[n]).imag = (y[n]).imag; 

} 

//ytail = y(M+l:P); 
for(n = 0; n < (P-M); n += 1) 
{ 

(ytail[n]).real = (y[n+M]).real; 
(ytail[n]).imag = (y[n+M]).imag; 

} 

//[C, B] = FormCovFFT(N, y, ref); 
FormCovFFT(cols, y, ref, C, B); 

//[F, Sigma] = DispRank(C, yhead, ytail); 
DispRank(C, yhead, ytail, F, Sigma); 

//L = DispL02(F, Sigma); 
DispL02(F, Sigma, L); 

//This section writes the matrix L to Lfile.txt 
handle_Lfile = fopen("Liile.txt", "w"); 
fprintf(handle_Lfile, "Channel %d\n\n", channel); 
for(n = 0;n<N;n4=2) 
{ 

fprintf(handle_Lfile, "\n\nColumns %d and %d\n\n", n+1, n+2); 

71 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLIN No. 0001AA: Final Report for F49620-98-C-0034 

for(i = 0;i<N;i+=l) 

rprintf(handle_Lfile, "%.14f %.14fi\t\t%.14f %.14fi\n", (L[i][n]).real, (L[i][n]).imag, 
(L[i][n+l]).real, (L[i][n+l]).imag); 

> 
} 
fclose(handle_Lfile); 

free(EQ_data); 
fiee(ref); 
free(y); 
return 0; 

} 
/I******************************************************* 

FormCovFFT.c 
Forms first column of covariance matrix using FFT 
David Zaugg 
Nov 1,2001 

Inputs: 
N size of covariance matrix 
len_y length of y 
y one of the columns of the data matrix depending on channel 

column vector 
ref first column of the data matrix 

rhs of LS system 

Outputs: 
a first column of covariance matrix A 
b not used, rhs of the covariance system 

Xiaobai Sun, April 20,2001 
»»****«***»»»*****»**»***************»**********»*******»/ 

# include "new_approach.h" 

void FormCovFFT(int len_y, struct COMPLEX* y, struct COMPLEX* c, struct COMPLEX a[], struct COMPLEX b[]) 

{ 
intm, i,j, k,l, q; 
struct COMPLEX p2[N], hl [N], h2[N], temp; 
double tempa[4*N], tempb[4*N], temph[4*N]; 
int n = N; 

//m = length(y)-n+l; 
m = len_y-n+ 1; 
//y(m+n) = 0; 
(y[m+n-l]).real = 0; 
(y[m+n-l]).imag = 0; 

//if(n < 11 m < 2*n) 
// errorCFormCovFFT: n or m is too small:1); 
//end 
if(n<l||m<2*n) 
{ 

printfCError in FormCovFFTNn"); 
printf("FormCovFFT: n or m is too smalhta"); 
exit(l); 

} 

//a = zeros(n,l); 
//b = zeros(n,l); 
//p2 = zeros(n,l); 
for(i = 0;i<n;i+=l) 
{ 

(a[i]).real = 0; 
(a[i]).imag = 0; 
(b[i]).real = 0; 
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(b[i]).imag = 0; 
(p2[i]).real = 0; 
(p2[i]).imag = 0; 

} 

//k = floor(m/n); 
k = (int)floor((double)(m/n)); //number of segments of length n 
//l = m - n*k; 
1 = m - n*k; //the remainder 

// use FFT on k full segments 

//index = l:n; 
//hi = y(index); 
for(i = 0; i < n; i += 1) 
{ 

(hl[i]).real = (y[i]).real; 
(hl[i]).imag = (y[i]).imag; 

> 

//fori=l:k 
for(i = 0; i < k; i += 1) 
{ 

//h2 = y(i*n +index); 
q = 0; 
forO = (i + l)*n; j <= ((i + l)*n + n -1); j += 1) 
{ 

(h2[q]).real = (y[j]).real; 
(h2[q]).imag = (y[j]).imag; 
q+=l; 

} 
//[hi; h2]*n*2 
q = 0; 
for(j = 0;j<4*n;j+=2) 

if(j<2*n) 

temph[j] = (hltq]).real*n*2; 
temph[j+l] = (hl[q]).imag*n*2; 

> 
else 
{ 

temph[j] = (h2[q-n]).real*n*2; 
temphD+1] = (h2[q-n]).imag*n*2; 

} 
q+=l; 

} 
//temph = fft([hl;h2]*n*2); 
fourl(temph -1,2*n, 1); //fft when 3rd arg = 1 
//[conj(hl); p2] 
q = 0; 
for(j = 0;j<4*n;j+=2) 
{ 

ifÖ < 2*n) 

} 
else 
{ 

tempa[j] = (hl[q]).real; 
tempa[j+l] = -(hl[q]).imag; 

tempaD] = (p2[q-n]).real; 
tempa[j+l] = (p2[q-n]).imag; 

} 
q+=l; 

} 
//ifft([conj(hl); p2]) 
fourl(tempa - 1,2*n, -1); //ifft with 3rd arg = -1 
//must multiply by 1/N for ifft 
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for(j = 0;j<4*n;j+=l) 
tempatj] = tempa[j]*(double)1.0/((double)2.0*(double)n); 

//ifft([conj(hl); p2]).*temph 
forö = 0;j<4*n;j+=2) 
{ 

temp.real = tempaD]*temph[j] - tempa[j+l]*temph[j+l]; 
temp.imag = tempajj]*temph[j+l] + tempaD+l]*temph[j]; 
tempa[j] = temp.real; 
tempaU+1] = temp.imag; 

} 
//tempa = ifft(ifft([conj(hl); p2]).*temph); 
fourl(tempa - 1,2*n, -1); 
//must multiply by 1/N for ifft 
for(j = 0;j<4*n;j+=l) 

tempa[j] = tempa[j]*(double)1.0/((double)2.0*(double)n); 
//a = a + tempa(index); 
q = 0; 
for(j = 0;j<2*n;j+=2) 
{ 

(a[q]).real = (a[q]).real + tempa[j]; 
(a[q]).imag = (a[q]).imag + tempa[j+l]; 
q+=l; 

} 
//conj(c((i-l)*n+index)) 
q = 0; 
for(j = i*n; j <= i*n + n -1; j += 1) 
{ 

tempb[q] = (c[j]).real; 
tempb[q+l] = -{c[j]).imag; 
q+=2; 

} 
//[eonj(c((i-l)*n+index));p2] 
q = 0; 
for(j = 2*n;j<4*n;j+=2) 
{ 

tempb[j] = (p2[q]).real; 
tempb[j+l] = (p2[q]).imag; 
q+=l; 

} 
//ifft([conj(c((i-l)*n+index));p2]); 

. fourl(tempb -1,2*n, -1); 
. //must multiply by 1/N for ifft 
for0 = 0;j<4*n;j+=l) 

tempbD] = tempbD]*(double)1.0/((double)2.0*(double)n); 
//ifft([conj(c((i-l)*n+index));p2]).*temph; 
forü = 0;j<4*n;j+=2) //.* 
{ 

temp.real = tempb[j]*temph[j] - tempb|j+l]*temph[j+l]; 
temp.imag = tempbjj]*temphjj+l] + tempb[j+l]*temphD]; 
tempbjj] = temp.real; 
tempb[j+l] = temp.imag; 

} 
//ifft(ifft([conj(c((i-l)*n+index));p2]).*temph); 
fourl(tempb-l,2*n,-l); 
//must multiply by 1/N for ifft 
for(j = 0;j<4»n;j+=l) 

tempb[j] = tempbü]*(double)1.0/((double)2.0*(double)n); 
/lb = b + tempb(index); 
q = 0; 
for(j = 0;j<2*n;j-f=2) 

{ 
(b[q]).real = (b[q]).real + tempbD]; 
(b[q]).imag = (b[q]).imag + tempb[j+l]; 
q+=l; 

} 
//hl=h2; 
foro = 0;j<n;j+=l) 
{ 
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(hl[j]).real = (h2[j]).real; 
(hl[j]).imag = (h2[j]).imag; 

} 

//if(l-=0) 
if{l!=0) 
{ 

//direct computation of the partial segment 
//index = (n*k+l):m; 
//fori=l:n 
for(i = 0; i < n; i += 1) 

//y(index)'*y(i-1 +Liüex); 
temp.real = 0; 
temp.imag = 0; 
for(j = n*k;j<m;j+=l) 

temp.real = temp.real + (y[j]).real*(y[j+i]).real + (yü]).imag*(y[j+i]).imag; 
temp.imag = temp.imag + (y[j]).real*(y|j+i]).imag - (yD]).imag*(yD+i]).real; 

) 
//a(i) = a(i) + y(index)'*y(i-l+index); 
(a[i]).real = (a[i]).real + temp.real; 
(a[i]).imag = (a[i]).imag + temp.imag; 
//y(index)'*c(i-l+index); 
temp.real = 0; 
temp.imag = 0; 
for(j = n*k;j<m;j+= 1) 

temp.real = temp.real + (y[j]).real*(c[j+i]).real + (y[j]).imag*(cD+i]).imag; 
temp.imag = temp.imag + (y[j]).rea!*(c[j+i]).imag - (y[j])-imag*(cD+i]).real; 

} 
//b(i) = b(i) + y(index)'*c(i-l+index); 
(b[i]).real = (b[i]).real + temp.real; 
(b[i]).imag = (b[i]).imag + temp.imag; 

} 

//a = conj(a); 
for(i = 0;i<n;i+=l) 

(a[i]).imag = -<a[i]).imag; 

//a(l) = real(a(l)); 
(a[0]).imag = 0;        //diagonal element, numerical reason 

lib = conj(b); 
for(i = 0; i < n; i += 1) 

(b[i]).imag = -(b[i]).imag; 

return; 
} 
/**»»»***♦***«****»««******««*•*»****»*********************** 

DispRank.c 
Form the displacement structure 
David Zaugg 
Nov 1,2001 

Inputs: 
fcol first column/row of (»variance matrix 
yhead and ytail from the parts of the data matrix that do not contribute 

to every member of the (»variance matrix 
the first and last n-1 elements of the data vector 

outputs: 
F displacement columns 

used by DispL02 to form the Cholesky of the covariance matrix 
Sigma displacement structure 

used by DispL02 to form the Cholesky of the covariance matrix 
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A = ZAZ' + F/SigmaP; 

Xiaobai Sun 04/20/01 
*♦»»«*»»«**********«»««*♦*»*«»*****»«************»*****«****/ 

# include "new_approach.h" 

void DispRank(struct COMPLEX fcolQ, struct COMPLEX yhead[], struct COMPLEX ytail[], struct COMPLEX FQtQ], int SigmaO) 

{ 
intij; 
struct COMPLEX alpha; 

//F = zeros(n,4); 
for(i = 0;i<N;i+=l) ~ 
{ 

for(j = 0;j<4;j+=l) 
{ 

(F[i]D]).real = 0.0; 
(F[i][j]).imag = 0.0; 

} 
} 

//alpha = sqrt(fcol(l)); 
alpha-real = sqrt(sqrt((fcol[0]).real*(fcol[0]).real + 

(fcol[0]).imag^f«)l[0])jmag))*(X)s(0.5*ataIÜ((fcol[0]).imag,(fcol[0]).real)); 
alpha.imag = sqrt(sqrt((fcol[0]).real*(fcol[0]).real + 

(fi»l[0])Jmag*(fcol[0]).imag))*sin(0.5*atan2((fcol[0]).imag,(fcoI[0]).real)); 

//F(:,l) = fcol/alpha; 
//F(:,2) = F(:,1); 
for(i = 0;i<N;i+=l) 
{ 

(F[i][0]).real = ((fcol[i]).real*alpha.real + (fcol[i]).imag*alpha.imag)/(alpha.real*alpha.real + 
alpha.imag*alpha.imag); 

(F[i][0]).imag = ((fcol[i]).imag*alpha.real - (fcol[i]).real*alpha.imag)/(alpha.real*alpha.real + 
alpha. imag*alpha. imag); 

(F[i][l]).real = (F[i][0]).real; 
(F[i][l]).imag = (F[i][0]).imag; 

} 
//F(l,2) = 0; 
(F[0]fl]).real = 0.0; 
(F[0][l]).imag = 0.0; 

//F(2:n,3) = conj(ytail); 
//F(2:n,4) = conj(yhead); 
for(i=l;i<N;i+=l) 
{ 

(F[i][2]).real = (ytail[i-l]).real; 
(F[i][2]).imag = -<ytail[i-l]).imag; 
(F[i][3]).real = (yhead[i-l]).real; 
(F[i][3]).imag = -(yhead[i-l]).imag; 

} 

//Sigma =[ 1,-1,1,-1]; 
Sigma[0] = 1; 
Sigma[l] = -1; 
Sigma[2] = l; 
Sigma[3] = -1; 

return; 
} 
ft*************************************************************** 
DispL02.c 
Derive the Cholesky L from the displacement structure (F, Sigma) 
David Zaugg 
Nov 1,2001 
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Inputs: 
F displacement columns 

used by DispL02 to form the Cholesky of the covariance matrix 
Sigma displacement structure 

used by DispL02 to form the Cholesky of the covariance matrix 

Outputs: 
L Cholesky decomposition 

Arithmetic complexity: 
6n(n-l)    complex multiplications 
3n(n-l)    complex additions 
3(n-l)     square roots 

In comparison to the dense Cholesky decomposition 
(nA3-n)/6  complex multiplications 
(nA3-n)/6  complex additions 
n square roots 

Xiaobai Sun % 04/20/01 
»«»»»*«»*****««*»«************»*******»**************»**********/ 

^include "new_approach.h" 

void DispL02(struct COMPLEX FQ[Q], int SigmaQ, struct COMPLEX L[][N]) 

{ 
struct COMPLEX temp[N][4]; 
int index[4]= {-1,-1,-1,-1}; 
inti,j,k,q,p; 
struct COMPLEX cl, si, c2, s2, c, s, r; 
double rl, r2; 
struct COMPLEX matrix[2][4]; 

/* 
for(i = 0;i<N;i+=l) 
{ 

for(j = 0;j<4;j+=l) 
{ 

(F[i][j]).real = (H[i]D])real; 
(F[i]ü])imag = (H[i]D])imag; 

} 

for(i = 0;i<N;i+=l) 
{ 

for(j = 0;j<4;j+=l) 

(temp[i]|j]).real = 0; 
(temp[i][j]).imag = 0; 

//[n,q] = size(F); 
//N, Q defined in new_approach.h 

//if(q>4) 
// error('DispL : displacement rank > 4 ?'); 
//end 
ifl!Q>4) 
{ 

printf("Error in DispL02\n"); 
printf("DispL: displacement rank > 4 ?\n"); 
exit(l); 

//index = find(Sigma = 1); 
q = 0; 
for(i = 0;i<4;i+=l) 
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if(Sigma[i] = 1) 
{ 

index[q] = i; 
q+=l; 

} 
} 

//p = length(index); 
P = 0; 
for(i = 0; i < 4; i += 1) 
{ 

if(index[i]!=-l) 
p+=l; 

} 

//if(p = q) 
// error('DispL : displacement signature is definite ?'); 
//end 
i«P = Q) 
( 

printfCError in DispL02\n"); 
prinrf("DispL: displacement signature is definite ?\n"); 
exit(l); 

> 

//L = zeros(n); 
for(i = 0;i<N;i+=l) 
{ 

for(j = 0;j<N;j+=l) 
{ 

(L[i]D]).real = 0.0; 
(L[i][j]).imag = 0.0; 

//index = [index find(Sigma = -1)]; 
q = 0; 
while(index[q] != -1) 

q+=l; 
for(i = 0;i<4;i+=l) 
{ 

if(Sigma[i] = -l) 
{ 

index[q] = i; 
q+=l; 

} 
} 

//F = F(:,index); 
for(i = 0; i < Q; i += 1) //permutation 
{ 

for(j = 0;j<N;j+=l) 
{ 

(temp[j][i]).reat = (F[j][index[i]]).real; 
(tempDJ[i]).imag = (F[j][index[i]]).imag; 

} 
} 
for(i = 0; i < q; i += 1) //the first column of L 
{ 

for(j = 0;j<N;j+=l) 
{ 

(F[j][i]).real = (temp[j][i]).real; 
(F[j][i]).imag = (tempD][i]).imag; 

} 
} 

//LC,1) = F(:,1); 
for(i = 0;i<N;i+=l) 
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{ 
(L[i][0]).real = (F[i][0]).reaI; 
(L[i][0]).imag = (F[i][0]).imag; 

} 

//forj=2:n 
for(j = l;j<N;j4-l) 
{ 

//index = j:n; 
//F(index,l) = F(index-l,l); 
for(i =N - 1; i >=j; i -= 1) //Shift down in the first column 
{ 

(F[i][0]).real = (F[i-l][0]).real; 
(F[i][0]).imag = (F[i-l][0]).imag; 

} 

//... positive definite transform 

//cl=F(j,l); 
cl.real = (F[j][0]).real; 
cl .imag = (F[j][0]).imag; 
//sl=Fö,2); 
sl.real = (F[j]tl]).real; 
si.imag = (F[j][l]).imag; 
//rl = sqrt(abs(cl)A2 + abs(sl)A2); 
rl = sqrt(cl.real*cl.real + cl.imag*cl.imag + sl.real*sl.real + sl.imag*sl.imag); 

//cl=cl/rl; 
//sl=sl/rl; 
cl.real = cl.real/rl; 
cl.imag = cl.imag/rl; 
sl.real = sl.real/rl; 
sl.imag = sl.imag/rl; 

//F(index,l:2) = F(index,l:2)»[cl', -si; si', cl]; 
(matrix[0][0]).real = cl.real; 
(matrixio][0]).imag = -cl.imag; 
(matrix[0][l]).real = -sl.real; 
(matrix[0][l]).imag = -sl.imag; 
(matrix[l][0]).real = sl.real; 
(matrix[lj[0]).imag = -sl.imag; 

"(matrix[l][l]).real = cl.real; 
(matrix[l][l]).imag = cl.imag; 
for(i=j;i<N;i+=l) 
{ 

for(k = 0;k<2;k+=l) 
{ 

(temp[i][k]).real = (F[i][0]).real*(matrix[0][k]).real - (F[i][0]).imag*(matrix[0][k]).imag 
+ (F[i][l]).real*(matrix[l][k]).real - (F[i][l]).imag*(matrix[l][k]).imag; 

(temp[i][k]).imag = (F[i][0]).imag*(matrix[0][k]).real + 
(F[i][0]).real*(matrix[0][k]).imag + (F[i]tl]).imag*(matrix[l][k]).real + (F[i][l]).real*(matrix[l][k]).imag; 

} 
} 
for(i=j;i<N;i+=l) 
{ 

for(k = 0;k<2;k+=l) 
{ 

(F[i][k]).real = (temp[i][k]).real; 
(F[i][k]).imag = (temp[i][k]).imag; 

} 

//... negative definite transform 

//c2 = F(j,3); 
c2.real = (FD][2]).real; 
c2.imag = (F[j][2]).imag; 
//s2 = F(j,4); 
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s2.real = (F[j][3]).reaI; 
s2.imag = (FJj][3]).imag; 
//r2 = sqrt(abs(c2A2 + abs(s2)A2)); 
r2 = sqrt(c2.real*e2.real + c2.imag*e2.imag + s2.real*s2.real + s2.imag*s2.imag); 

//c2 = c2/r2; 
//s2 = s2/r2; 
c2.real = c2.real/r2; 
c2.imag = c2.imag/r2; 
s2.real = s2.real/r2; 
s2.imag = s2.imag/r2; 

//F(index,3:4) = F(index,3:4)*[c2', -s2; s2', c2]; 
(raatrix[0][2]).real = c2.rw'; 
(matrix[0][2]).imag = -c2.imag; 
(matrix[0][3]).real = -s2.real; 
(matrix[0][3]).imag = -s2.imag; 
(matrix[l][2]).real = s2.real; 
(matrix[li[2]).imag = -s2.imag; 
(matrix[l][3]).real = c2.real; 
(matrix[l][3]).imag = c2.imag; 
for(i=j;i<N;i+=l) 
{ 

for(k = 2;k<4;k+=l) 

(temp[i][k]).real = (F[i][2]).real*(matrix[0][k]).real - (F[i][2]).imag*(matrix[0][k]).imag 
+ (F[i][3]).real*(matrix[l][k]).real - (F[i][3]).imag*(matrix[l][k]).imag; 

(temp[i][k]).imag = (F[i][2]).imag*(matrix[0][k]).real + 
(F[i][2]).rea!*(matrix[0][k]).imag + (F[i][3]).imag*(matrix[l][k]).real + (F[i][3]).real*(matrix[l][k]).imag; 

//temp[i][k] = F[i][2]*matrix[0][k] - F[i+l][2]*matrix[l][k] + F[i][3]*matrix[2][k] - 
F[i+l][3]*matrix[3][k]; 

//temp[i+l][k] = F[i+l][2]»matrix[0][k] + F[i][2]*matrix[l][k] + F[i+l][3]*matrix[2][k] 
+ F[i][3]*matrix[3][k]; 

} 
> 
for(i=j;i<N;i+=l) 
{ 

for(k = 2;k<4;k-H=l) 
{ 

(F[i][k]).real = (temp[i][k]).real; 
(F[i][k]).imag = (temp[i][k]).imag; 

//... hyperbolic transform 

llx = sqrt(rl + r2)*sqrt(rl - r2); 
if(rl < r2) 
{ 

r.real = 0; 
r.imag = sqrt(rl + r2)*sqrt(r2 - rl); 

} 
else 
{ 

r.real = sqrt(rl + r2)*sqrt(rl - r2); 
r.imag = 0; 

} 

//c = rl/r; 
//s = r2/r; 
c.real = rl*r.real/(r.real*r.real + r.imag*r.imag); 
c.imag = -rl*r.imag/(r.real*r.real + r.imag*r.imag); 
s.real = r2*r.real/(r.real*r.real + r.imag*r.imag); 
s.imag = -r2*r.imag/(r.real*r.real + r.imag*r.imag); 

//F(index,[; 3) = F(index,[l 3])*[C, -s; s', c]; 
(matrix[0j[0]).real = c.real; 
(matrix[0][0]).imag = -c.imag; 

80 



Advanced Mathematics for Optimizing Missile Seeker Signal Processing 
CLDS^No. 0001AA: Final Report for F49620-98-C-0034 

(matrix[0][2]).real = -s.real; 
(matrix[0][2]).imag = -s.imag; 
(matrix[l][0]).real = -s.real; 
(matrix[l][0]).imag = s.imag; 
(matrix[l][2]).real = e.real; 
(matrix[l][2]).imag = c.imag; 
for(i=j;i<N;i+=l) 
{ 

for(k = 0;k<3;k+=2) 

(temp[i][k]).real = (F[i][0]).real*(matrix[0][k]).real - (F[i][0]).imag*(matrix[0][k]).imag 
+ (F[i][2]).real*(matrix[l][k]).real - (F[i][2]).imag*(matrix[l][k]).imag; 

(temp[i][k]).imag = (F[i][0]).imag*(matrix[0][k]).real + 
(F[i][0]).real*(matrix[0][k]).imag + (F[i][2]).imag*(matrix[l][k]).real + (F[i][2]).real*(r.iatrix[l][k]).imag; 

//temp[i][k] = F[i][0]*matrix[0][k] - F[i+l][0]*matrix[l][k] + F[i][2]*matrix[2][k] - 
F[i+l][2]*matrix[3][k]; 

//temp[i+l][k] = F[i+l][0]*matrix[0][k] + F[i][0]*matrix[l][k] + F[i+l][2]*matrix[2][k] 
+ F[i][2]*matrix[3][k]; 

} 
} 
for(i=j;i<N;i+=l) 
{ 

for(k = 0;k<3;k+=2) 
{ 

(F[i][k]).real = (temp[i][k]).real; 
(F[i][k]).imag = (temp[i][k]).imag; 

} 
} 

//L(indexj) = F(index,l); % the j-th column of L 
for(i=j;i<N;i-H=l) 
{ 

(L[i]u]).real = (F[i][0]).real; 
(L[i]D]).imag = (F[i][0]).imag; 

} 

//L(jj) = r; 
(L[j]Dj).real = r.real; 
(L[j][j]).imag = r.imag; 

} 
return; 

} 
/»*»»«»*»»«*»**»»»«»*«*****»*♦********»»***«****»******»******* 

data_newPNcode.c 
ADAPTIVE EQUALIZATION 
Matlab code: James Thornbrue, June 6,2001 
C code: David Zaugg, Nov 1,2001 

Loads 10 channels into variable EQ_data 
Channel data is length 999 
Data provided by Mary Cassabaum 
Requires files PNcodefilelisttxt, data_newPNcodel.bin, data_newPNcode2.bin 
data_newPNcode3.bin, data_newPNcode4.bin, data_newPNcode5.bin 
data_newPNcode6.bin, data_newPNcode7.bin, data_newPNcode8.bin 
data_newPNcode9.bin, data_newPNcode 10.bin 
The data is written in binary (double) format in these files. 
The data is preceded by four longs: 
cols 
rows 
frames 
bpp 
real(data(l)) 
imag(data(l)) 
real(data(2)) 
imag(data(2)) 

real(data(end)) 
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imag(data(end)) 
cols is 999, rows is 1, frames is 1, and bpp is 64 bits (double) 
***»»«*»««»»***»»««»*«***«»*♦**»*»*»«****»♦»«•*»•**»*»«*»*»♦•**»/ 

# include "new_approach.h" 
«define LINELEN 80 

struct COMPLEX* data_newPNcode(char inputfileQ, struct COMPLEX* data, long *matrix_columns, long *matrix_rows) 

{ 
FILE *fid_filenames; 
FILE *fid_datafile; 
char filename[LINELEN]; * 
intN_files = 0; 
int NN, n, i; 
long cols = 0; 
long rows = 0; 
long frames = 0; 
long bpp = 0; 
int bytes; 

//open file with names of data files 
//each file contains a column of the 
//data matrix 
fid_filenames = fopen(inputfile, V); 
iftfidjilenames = NULL) 

{ 
printfC'Error opening file with filenames."); 
exit(l); 

} 

//find out how many files there are (this is the 
//number of columns in the data matrix 
while(fgets(filename, LINELEN, fid_filenames) != NULL) 

N_files+=1; 
fseek(fid_filenames, 0, SEEKJSET); 

//find out number of cols and rows in one file 
//(one row in this case) 
fgets(filename, LINELEN, fid_filenames); 
NN = strlen(filename); 
for(n = 0;n<NN;n+=l) 

{ 
if(filename[n] = V || filename[n] == V) 

filename[n] = NULL; 

} 
fid_datafile = fopen(filename, "rb"); 
fread(&cols, 4,1, fid_datafile); 
fread(&rows, 4,1, fid_datafile); 
fread(&frames, 4,1, fid_datafile); 
fread(&bpp, 4,1, fid_datafile); 

//allocate space for the data matrix 
data = (struct COMPLEX*)malloc(bpp/8*2*cols*rows*Nfiles); 
if(data = NULL) 

{ 
printf("Error: malloc failed to allocate memory for data matrix"); 
exit(l); 

} 
fseek(fid_filenames, 0, SEEK_SET); 

//read data from files into data matrix 
for(i = 0;i<N_files;i+=l) 

{ 
fgets(filename, LINELEN, fid_filenames); 
NN = strlen(filename); 
for(n = 0;n<NN;n+=l) 

{ 
i£(filename[n] = V || filename[n] = V) 
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filename[n] = NULL; 

> 
fid_datafile = fopen(filename, "rb"); 
fseek(fid_datafile, 16, SEEK_SET); 
for(n = 0; n< cols; n += 1) 
{ 

bytes = fread(&((data[n + cols*i]).real), bpp/8,1, fid_datafile); 
bytes = fread(&((data[n + cols*i]).imag), bpp/8,1, fid_datafile); 
//conjugate 
(data[n + cols*i]).imag = -1.0*(data[n + cols*i]).imag; 
//origin + (0 for real, 1 for imag) + row index + column index 
«(bytes != 1) 

printf("didn1 read 8 bytes"); 
} 
fclose(fid_datafile); 

} 
fclose(fid_filenames); 
*matrix_columns = cols; 
*matrix_rows = N_files; 
return data; 

} 
/»*»*»*»****««««**♦»«♦***«*»*»»»»«*»»«*****♦»»»«*******»»»**** 

new_approach.h 
HEADER FILE FOR NEW_APPROACH C PROGRAM 
David Zaugg 
Nov 1,2001 

Verify Xiaobai's Cholesky Decomposition Algorithm using real data 
Matlab code: James Thornbrue, June 18,2001 
C code: David Zaugg, Nov 1,2001 
******************•***************************•**************/ 

//include <stdio.h> 
//include <string.h> 
//include <stdlib.h> 
//include <math.h> 

//used in the fit 
//define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr 

//N is size of (»variance matrix, it must be 2*n long 
#defmeN16 
//number of columns in F 
//define Q 4 

struct COMPLEX 
{ 

double real, imag; 
} typedef; 

//Does the FFT or IFFT in place 
//FFT:isign=l; 
//IFFT: isign = -1, divide by nn. 
// 
//Inputs: 
//data data vector 
//nn length of the complex vector of the form 
// {real[0], imag[0], real[l], imag[l],..., 
// real[nn-l], imag[nn-l]} 
// data is really 2*nn long 
//isign indicates FFT or IFFT, 1 or -1 respectively 
void fourl (double dataQ, unsigned long nn, int isign); 

//Reads data from files and stores in EQ_data 
// 
//Inputs: 
//filename file containing names of files with data 
//data column scanned data matrix, all values are conjugated 
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// when loaded from files 
// each file contains a column of the data matrix 
//cols number of columns 
//rows number of rows 
//format is data = {conj(filel), conj(file2),..., conj(filelO)} 
struct COMPLEX* data_newPNcode(char filename[], struct COMPLEX* data, long *cols, long *rows); 

//Forms first column of covariance matrix using FFT 
// 
//N size of covariance matrix 
//len_y length of y 
//y one of the columns of the data matrix depending on channel 
// column vector 
//ref first column of the data matrix 
// rhs of LS system 
// 
//Outputs: 
//a first column of covariance matrix A 
//b not used, rhs of the covariance system 
void FormCovFFT(int len_y, struct COMPLEX* y, struct COMPLEX* c, struct COMPLEX arj, struct COMPLEX b[]); 

//Form the displacement structure 
// 
//fcol first column/row of covariance matrix 
//yhead and ytail        from the parts of the data matrix that do not contribute 
// to every member of the covariance matrix 
// the first and last n-1 elements of the data vector 
//outputs: 
II? displacement columns 
// used by DispL02 to form the Cholesky of the covariance matrix 
//Sigma displacement structure 
// used by DispL02 to form the Cholesky of the covariance matrix 
//A = ZAZ' + F/SigmaF'; 
void DispRank(struct COMPLEX fcol[], struct COMPLEX yhead[], struct COMPLEX ytail[], struct COMPLEX F[][Q], int 
SigmaD); 

//Derive the cholesky decomposition L from the displacement structure 
// 
//F displacement columns 
// used by DispL02 to form the Cholesky of the covariance matrix 
//Sigma displacement structure 
// ,.■■■■• used by DispL02 to form the Cholesky of the covariance matrix 
11 

//Outputs: 
//L Cholesky decomposition 
void DispL02(struct COMPLEX F[][Q], int SigmaQ, struct COMPLEX L[][N]); 

Appendix B: BSA Algorithm, Bld_sim_mtx routine, FTN-Code 
subroutine bld_sim_mtx (n_mix, 

& n_reg, 
& avg, 
& sig, 
& var, 
& wgt, 
& simjntx) 
implicit none 
integer*4    n_mix      ! currently, allowed to be up to 100 
integer*4    n_reg      ! currently, allowed to be up to 200 
real*8       avg( 100) 
real*8       sig( 100) 
real*8       var( 100) 
real*8       wgt(100,200) 
real*8       sim_mtx( 200,200) 
real*8      var_sum 
real*8      aux( 100,100) 
real*8      recip_root_two_pi 
parameter  (reeip_root_two_pi = 0.39894 22804 01432 67794 dO) 
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real*8      sum 
real*8      tol 
parameter (tol = 1.0 d-07) 
integer*4    ind_i 
integer*4    indj 
integer*4    ind_m 
integer*4    ind_n 

P**»**»»**»***»«»*****«»**************»**************«»»»*»«»»**»*************»* 

C 
C    Perform a series of input argument checks. 
C 

if( n_mix.lt. 1 )then 
write (11,101 )n_mix - 

101 format (/, 
&        ' ERROR 101 in routine "bld_sim_mtx":', /, 
&        ' n_mix =', i5, /, 
&        ' but it must be POSITIVE.', /, 
&        'CALL EXIT now.', /) 

call exit 
endif 

if(n_mix.gt. 100) then 
write (11,102)n_mix 

102 format (/, 
&       ' ERROR 102 in routine "bld_sim_mtx":', /, 
&       ' n_mix =', i5, /, 
&        ' but it must not exceed 100.',        /, 
&        'CALL EXIT now.', /) 

call exit 
endif 

p»*«*»»**«*»»»*»******»**»******«*»»»********»*****»**************»***»»»»****** 

if( n_reg.lt. l)then 
write (11,103) n_reg 

103 format (/, 
&        ' ERROR 103 in routine "bld_sim_mtx":', /, 
&        ' n_reg =', i5, /, 
&        ' but it must be POSITIVE.', /, 
&        'CALL EXIT now.', /) 

call exit 
endif 

£»♦«»«««*«»»»««»«»»**«•»»»»**»***«•**•****! <y*i»»**«»***»*****»»»»**»****«»»***»* 

if(n_reg.gt. 200) then .    ...    . 
write (11,104 ) n_reg 

104 format (/, 
&        ' ERROR 104 in routine "bld_sim_mtx":', /, 
&       ' n_reg =', i5, /, 
&        ' but it must not exceed 200.',       /, 
&        • CALL EXIT now.', /) 

call exit 
endif 

doind_i= l,n_mix 
if (sig(ind_i) .le. O.OdO ) then 

write (11,105) ind_i, sig(ind_i) 
105 format (/, 

& ' ERROR 105 in routine "bld_sim_mtx":', /, 
& 'sigC,i5,') = ', lpd20.13,        /, 
& 'but it must be POSITIVE.', /, 
& ' CALL EXIT now.', /) 

call exit 
endif 

enddo 

doind_i= l,n_reg 
do indj = 1, n_mix 
if ( wgt(indj,ind_i) .It. O.OdO) then 

write ( 11,106) indj, ind_i, wgt(indj.indj) 
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106 format (/, 
& ' ERROR 106 in routine "bld_sim_mtx":',     /, 
& ' wgt for mixture', i5,' and region', i5, 
& .' = ',lpd20.13, /, 
& 'butitmustbeNON-NEGATTVE.', /, 
& ' CALL EXIT now.', /) 

call exit 
endif 

enddo 
enddo 

do ind_i = 1, n_reg 
sum = O.OdO .. 
do indj = 1, n_mix 

sum = sum + wgt(indj,ind_i) 
enddo 
if (abs( sum - l.OdO) .gt. tol) then 

write (11,107) indj, tol 
107 format (/, 

& ' ERROR 107 in routine "bld_sim_mtx":',        /, 
& ' sum of wgt values for region', i5, /, 
& ' differs from unity by more than: ', lpd20.13, /, 
& 'CALL EXIT now.', /) 

call exit 
endif 

enddo 
(-I******************************************************************************* 

C 
C    compute variance values from sigma values 
C 

do ind_i= l,n_mix 
var(ind_i) = sig(ind_i)**2 

enddo 
C******************************************************************************* 

c 
C    compute common factor of wgt i interacting with wgt j 
C 

doind_i= l,n_mix 
do indj = 1, n_mix 

var_sum = var(ind_i) + var(indj) 
aux( ind_i, indj ) = recip_root_two_pi 

& / sqrt( var_sum) 
& * exp( -0.5d0 * (avg(ind_i) - avg(indj) )**2 
& / var_sum) 

enddo 
enddo 

Q»»**»**»*«»**«*»»»»»»*****»»**»»*»********»»**«*****»»*******«*********»******* 

C 
C    compute the entries for the similarity matrix, 
C    using the 1SE (integrated square error) approach 
C 
et*»*****»****«»*«»»*****»****»***********»«*»**»****»»*******»*****»»*«*****»** 

doind_m= l,n_reg 
do ind_n = 1, n_reg 

sum = O.OdO 
doind_i= l,n_mix 

do indj = 1, n_mix 
sum = sum + (wgt( indj, ind_m) * wgt( indj, ind_m) 

& + wgt( indj, ind_n) * wgt( indj, ind_n) 
& - 2.0d0 * wgt( indj, ind_m) * wgt( indj, ind_n)) 
& * aux( indj, indj) 

enddo 
enddo 
sim_mtx( ind_m, ind_n ) = sum 

enddo 
enddo 
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return 
end 

Appendix C: BSA Algorithm, Clusterjdg, FTN-Code 

Subroutine Cluster_alg (Delta, 
& Rjilde, 
& D_matrix, 
& K_rho, 
& Gam, 
& mat_siz_max) 
Implicit none 
integer*4 mat_siz_max 
real* 8 D_matrix( mat_siz_max, mat_siz_max) 
logical* 1 K_rho  (mat_siz_max, mat_siz_max) 
logical*l T_rho  (100,100) 
logical*l J_rho (100,100) 
logical* 1 Tjau (100,100) 
integer*4 Card( 100) 
real*8 Delta 
integer*4 Rjilde 
integer*4 Rho 
integer*4 Rhojwime 
integer*4 I_row 
integer*4 I_col 
integer*4 I_card 
integer*4 Locjnax 
integer*4 Val_max 
integer*4 Loc_count 
integer*4 Gam 
integer*4 Tau 
integer*4 Tau_prime 
logical* 1 Duplicate 
logical* 1 Aux_same 
logical* 1    Empty 

^»«»»«♦************************************************************************* 

C 
C    Perform a series of input argument checks. 
C 
/-.»*»«»*»»«»*»******«**♦»***********»**«♦************»*«************************* 

If( Delta .le.0.0d0) then 
Write (11,101) Delta 

101 Format (/, 
&        ' ERROR 101 in routine "Cluster_alg":', /, 
&        '06118 = ', lpd20.13, /, 
&       'but it must be POSITIVE.', /, 
&        'CALL EXIT now.', /) 

Call exit 
Endif 

p»»***»»»*«»*******#************************************************************ 

If (Rjilde .It. 1) then 
Write (11,102) Rjilde 

102 Format (/, 
&        ' ERROR 102 in routine "Clusterjdg":', /, 
&        ' Rjilde =',i5, /, 
&        'but it must be POSITIVE.', /, 
&        'CALL EXIT now.', /) 

Call exit 
Endif 

Q»»»»******»***«****»««******«******»*******«»»*******«*****»******************* 

If (Rjilde .gt. mat_siz_max ) then 
Write (11,103 ) Rjilde, mat_siz_max 

103 Format (/, 
& ' ERROR 103 in routine "Cluster_alg":',      /, 
& 'Rjilde    =',i5, /, 
& ' mat_siz_max -, i5, /, 
& ' but the former must not exceed the latter.', /, 
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&        ' CALL EXIT now.', /) 
Call exit 

Endif 
^♦»»«♦****»«*»«»**»«»*«*****»**»*»«»*»****»***»***»***********»***********»***** 

DoI_row=l,R_tilde 
Do I_col = 1, RJilde 
If (Ijow .It. I_col) then 
If (D_matrix(I_row,I_col) .ne. D_matrix(I_eol,I_row)) then 

Write (11,104 ) I_row, I_col, D_matrix(I_row,I_col), 
& I_col, I_row, D_matrix(I_col,I_row) 

104 Format (/, 
& 'ERROR 104 in routine "Clusterjdg":',      /, 
& • DmatrixC, i5,',', i5,') =', lpd20.13, /, 
& ' D_matrix(', i5, V, i5,') =', lpd20.13, /, 
& 'but the matrix must be SYMMETRIC,       /, 
& 'CALL EXIT now.', /) 

Call exit 
Endif 

Endif 
Enddo 

Enddo 

Do I_row=l, RJilde 
If (D_matrix(I_row,I_row) .ne. O.OdO) then 

Write (11,105 ) I_row, I_row, D_matrix(I_row,I_row) 
105 Format (/, 

& ' ERROR 105 in routine "Cluster_algn:'s     /, 
& ' D_matrix(\ i5,',', i5,') =', lpd20.13, /, 
& ' but the diagonal elements must be ZERO.', /, 
& 'CALL EXIT now.', /) 

Call exit 
Endif 

Enddo 
et****************************************************************************** 

Do I_row=l, RJilde 
Do I_col = 1, RJilde 
If( I_row.lt. I_col)then 
If (D_matrix(I_row,I_col) .le. O.OdO) then 

Write (11,106) Ijow, I_col, D_matrix0_row,I_col) 
106 Format (/, 

& ' ERROR 106 in routine "Clusterjdg":',     /, 
& ' DjnatrixC, i5, V, i5,') =', lpd20.13, /, 
& 'but off-diagonal terms must be POSITIVE.',/, 
& 'CALL EXIT now.', /) 

Call exit 
Endif 

Endif 
Enddo 

Enddo 

c 
C    Done with the series of input argument checks. 
C 

Do Tau = 1, RJilde 
Do Tau_prime = 1, RJilde 
TJau( Tau, Tau_prime) = 

&     D_matrix( Tau, Tau_prime) .It. Delta 
write ( 11,999) Tau, Tau_prime, Tjau(Tau,Tau_prime) 

999      format (' Tau, Tau_prime, Tjau(Tau,Tau_prime) =', 
& 2i5,4x, LI) 

Enddo 
Enddo 

c    call exit 
(-•»»»»»»*♦»»***»»«»»«****♦»*»«»»«******»*«******»********»»********»************* 

Rho_prime = 1 
Do I_col = 1, R tilde 

T_rho( 1,1_cof) = Tjau( 1,1_col) 
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Enddo 
DoTau = 2,R_tilde 

Duplicate = .FALSE. 
Do Rho = 1, Rho_prime 
If (.not. Duplicate) then 

Aux_same = .TRUE. 
DoI_col=l,R_tilde 
If ( T_tau( Tau, I_col) .ne. T_rho( Rho, I_col)) then 

Aux_same = .FALSE. 
Endif 

Enddo 
If(Aux_*»4me)then 

Duplicate - .TRUE. 
Endif 

Endif 
Enddo 
If (.not. Duplicate) then 
Rhojrime = Rhojwime + 1 
Do I_col = 1, Rjilde 

T_rho( Rhojrime, I_col) = T_tau( Tau, I_col) 
Enddo 

Endif 
Enddo 
write (11,998) Rhojwime 

998  format (/,' Rho_prime =', i5 ) 
c    call exit 
et«»«*»»*«*»»**»»***««*****«*****»****«******»********»»*«********»**»»*»**»**** 

Do Rho = 1, Rho_prime 
Icard = 0 
DoI_col=l,R_tilde 

If (T_rho( Rho, I_col)) then 
I card = I_card + 1 

Endif 
Enddo 
Card(Rho) = I_card 

Enddo 

Do Rho = 1, Rho_prime 
Do I_coI = 1, Rjilde 

J_rho( Rho, I_col) = .FALSE. 
Enddo 

Enddo 
Q***tt*t***f: ******************************************************************** 

Do Tau "• L, Rjilde 
Loc_max = 0 
Val_max = 0 
Do Rho = 1, Rhojrime 
If (T_rho( Rho, Tau)) then 
If (Card(Rho) .gt. Val_max) then 

Val_max = Card(Rho) 
Loc_max = Rho 

Endif 
Endif 

Enddo 
If (Loc_max .It. 1 ) then 

Write (11,107) Tau, Locjnax 
107 Format (/, 

&        ' ERROR 107 in routine "Clusterjdg":', /, 
&        'Tau    =',i5, /, 
&        ' Locjnax =', i5, /, 
&        ' but Ixcjnax must be POSITIVE.',      /, 
&       'CALL EXIT now.', /) 

Call exit 
Endif 
If (Loc_max .gt. Rhojrime) then 

Write (11,108) Tau, Rhojrime, Locjnax 
108 Format (/, 

&        ' ERROR 108 in routine "Cluster_alg":',   /, 
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&        'Tau      ^.iS, /, 
&        ' Rho_prime -, i5, /, 
&        'Loc_max -, i5, /, 
&        ' but Loc_max must not exceed Rho_prime.', /, 
&        'CALL EXIT now.', /) 

Call exit 
Endif 
J_rho( Loc_max, Tau) = .TRUE. 

Enddo 
CM***************************************************************************** 

Do Tau = 1, Rjilde 
Loc_eount = 0 
Do Rho = 1, Rho_prime 
If ( J_rho( Rho, Tau)) then 

Loc count = Loc_count + 1 
Endif 

Enddo 
If (Loc_count .ne. 1) then 

Write (11,109) Tau, Loc_count 
109    Format (/, 

&        ' ERROR 109 in routine "Cluster_arg":', /, 
&        'Tau      =',i5, /, 
&        ' Loc_count =', i5, /, 
&        ' but Loc_count must equal ONE.',      /, 
&        'CALL EXIT now.', /) 

Call exit 
Endif 

Enddo 
et****************************************************************************** 

Gam = 0 
Do Rho = 1, Rhojjrime 

Empty = .TRUE. 
Do Tau =1, Rjilde 
If( Empty) then 
If (J_rho( Rho, Tau)) then 

Empty = .FALSE. 
Endif 

Endif 
Enddo 
If( .not. Empty) then 

Gam = Gam + 1 
Do Tau =1, Rjilde 

K_rho( Gam, Tau) = J_rho( Rho, Tau) 
Enddo 

Endif 
Enddo 

DoI_row= l.Gam 
Write (11,201 )I_row 

201 Format (/, 
&        ' Segment Region Number:', i5, /) 

Do I_col=l,R tilde 
If (K rho( I_row, I_col)) then 

Write (11,202 )I_col 
202 Format ('   contains subregion:', iS ) 

Endif 
Enddo 

Enddo 
et****************************************************************************** 

Return 
End 
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