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PREFACE 

During the week of July 1-7,1999, the Fourth International Conference on 
Curves and Surfaces was held in Saint-Malo (France). It was organized by the 
Association Frangaise d'Approximation, (A.F.A.). The organizing committee 
consisted of L. Amodei (Toulouse), J.-L. Bauchat (Metz), A. Cohen (Paris), 
J.-C. Fiorot (Valenciennes), J. Gaches (Toulouse), G.-P. Bonneau (Grenoble), 
Y. Lafranche (Rennes), P.-J. Laurent (Grenoble), M.-L. Mazure (Grenoble), 
J.-L. Merrien (Rennes), C. Potier (Paris), C. Rabut (Toulouse), P. Sablonniere 
(Rennes), L.L. Schumaker (Nashville), C. Vercken (Paris). 

The conference was attended by 275 mathematicians from 37 different 
countries, and the program included 10 invited one-hour lectures and 190 
half-hour research talks or poster presentations. A number of research talks 
were presented in eight minisymposia organized by W. Dahmen, R. DeVore, 
D. Donoho, J. Hoschek, B. Lacolle, H. Pottmann, M. Sabin, and J. Stöckler. 

The proceedings of this conference consists of this volume (containing 43 
papers), and the companion volume Curve and Surface Design: Saint-Malo 

1999 (containing 45 papers). 
We would like to thank the following institutions for their financial or 

technical support and their contribution to the success of this conference: 
Ministere de l'Education Nationale, de la Recherche et de la Technologie; 
European Office of Aerospace Research and Development (Air Force Office 
of Scientific Research, United States Air Force Research Laboratory); Insti- 
tut National des Sciences Appliquees de Rennes; Institut d'Informatique et 
de Mathematiques Appliquees de Grenoble; Conseil Regional de Bretagne; 
Ministere de la Defense (contrat No 9960014, Direction des Systemes de 
Forces et de la Prospective, Service de la Recherche et des Etudes Amont, 
Sous-direction Scientifique, Bureau de la Prospective Scientifique, Delegation 
Generale pour l'Armement); Universite Pierre et Marie Curie (Paris); Labo- 
ratoire de Moderation et Calcul de Grenoble; Institut National des Sciences 
Appliquees de Toulouse; Universite Joseph Fourier (Grenoble); Vanderbilt 
University (Nashville); Ministere des Affaires Etrangeres; Matra Datavision; 
Ecole Nationale Superieure des Arts et Metiers de Metz; France Telecom; 
Ecole Nationale Superieure des Telecommunications (Paris); Ecole Centrale 

de Nantes. 
Finally, we would like to thank Gerda Schumaker for her assistance with 

the preparation of the proceedings. 

Nashville, Tennessee April 5, 2000 
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Extending Lawson's Algorithm to Include 
the Huber M-Estimator 

Iain J. Anderson, John C. Mason, 
and Colin Ross 

Abstract. When fitting a curve to experimental data, there is no 
guarantee that the data obtained are as accurate as might be expected. 
The effect of outside influences may cause the data set to contain outliers. 
These outliers can have a significant effect on any curve which is fitted 
to such data. The c^-norm, which is particularly appropriate for fitting 
data with uniformly distributed errors, is extremely sensitive to such out- 
liers, since it minimises the maximum error from the data to the curve. 
Therefore, a technique which approximates a data set using the ^oo-norm, 
without being adversely affected by outliers, would be a useful addition to 
the array of tools available. We present numerical examples to illustrate 
the use of such a technique and also some practical applications to justify 
its use. 

§1. Introduction 

It is widely accepted that the ^-norm is the most appropriate measure of 
the error when approximating data which are very accurate or have errors 
sampled from a uniform distribution. Unfortunately, because the £«, norm is 
extremely sensitive to outliers, it is not suitable for use in fitting experimental 
data containing such points. Nevertheless, it may be the case that the 4Q- 

norm is the most appropriate error measure for the non-outlying data, and so 
we present an algorithm for finding an ex fit to the non-outliers of a data set. 

The algorithm itself is based on a combination of the Huber M-estimator 
[6] and Lawson's algorithm [7]. There is considerable literature on both tech- 
niques as separate subjects, and we mention here only a selection. Lawson's 
algorithm was first analysed by Lawson [7] in 1961, and was later studied 
by Rice and Usow [11], Cline [2] and Ellacott [4]. Similarly, the Huber M- 
estimator was developed by Huber [6] in 1964 and has received considerable 
attention in the form of algorithms for its solution as well as analyses of its 
behaviour. Papers by Clark and Osborne [1], Ekblom [3], Madsen and Nielsen 

Curve and Surface Fitting: Saint-Malo 1999 \ 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp.  1-8. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
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[9], Michelot and Bougeard [10] and Li [8] all look at the Huber M-estimator 
either in its own right or as one of a class of robust estimators. 

In this paper, we consider the problem of fitting a function of the linear 

form f(x) = Y,"=i CjMx) t0 a set of data {te.vOK^i. where the {4>j} are a 
set of basis functions. To this end, we minimise the residuals r, = yt - f(xi). 
What our algorithm achieves in practice is to obtain an 4o fit for those rt such 
that |rj| is less than the Huber parameter 7, say, and effectively to ignore the 

remaining data. 
The circumstances that require such an algorithm occur in practice, par- 

ticularly in metrology where extremely accurate readings can be obtained (by, 
for example, a CD reader) but are subject to the occasional outlier (due, for 
example, to optical effects). These outliers usually only appear in groups of 
one or two, so they are isolated, which leads to an easier problem than if they 
appeared in larger groups. Another metrological situation where this algo- 
rithm can be applied is in the measurement of a cylinder in an automotive 
engine where there is approximately 95% very accurate data, and 5% outliers. 
Naturally, these problems might require a slightly different fitting technique, 
but this algorithm is a useful starting point from which more general fitting 
procedures may be developed in future work. 

§2. Background 

In this section, we discuss some aspects of both Huber estimation and Lawson's 
algorithm. In the next section we describe how to combine the two techniques 
to create a new algorithm which satisfies our requirements. 

The Huber M-estimator 

The Huber M-estimator is based on the Huber function 

«\      I*72' if|i|-1' (1) P{t) = 11*| -1/2,    if|t|>l, (1) 

introduced by Huber [6] in 1964, and is defined in the following straightforward 

way: 
m 

£ = £p(fi/7), (2) 
i=i 

where rt is the residual in the ith datum, and 7 is the Huber threshold defining 
the distinction between "accurate" and "inaccurate" data. 

There are several algorithms to solve the problem of minimising (2) with 
respect to c, several of which are described by Li [8]. However in this paper, 
we limit ourselves to the Newton method. This involves solving [8] 

±ATDAp = -ATv 
7 7 

at each iteration, where A is the design matrix with entries Aij = <Pj{xi), D 
is a diagonal matrix with entries DH = 1 if |r;| < 7 and Da = 0 if \n\ > 7, 
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and v has entries vt = p'(r«/7)- Solving this system gives an update vector 
p which should provide a better estimate c + p of the solution parameters 
c*. In order to ensure convergence, we also incorporate a line search which 
involves finding a scalar a which is the solution to the equation 

,r , fr + aAp\ 
(Ap)V^-^j=0. 

Having found a, we then obtain a new estimate of c* by setting c := c + ap. 
We repeat this procedure, updating D and v as necessary, until we have 
obtained c* to sufficient accuracy. 

Weighting 

We choose to generalise (2) by introducing weights to obtain a weighted Huber 
M-estimator of the form F = J2T=i wiP{nh), where 7 is the Huber threshold, 
Wi is the weight associated with the ith datum, and n is the residual associated 
with the ith datum. It may be necessary to introduce weights in this way in 
order to deal with non-identically distributed errors in the data, in which case 
the weights may be chosen to be the reciprocals of the standard deviations of 
the underlying probability distributions. 

Many algorithms exist to find unweighted Huber fits, and in general, 
adapting them to find a weighted Huber fit is a straightforward task. As an 
example, we show how to adapt a Newton-like method. 

Weighted Huber algorithm. 

1) Calculate Vi = WtP'C^i/l)- 

2) If ±ATDwAp = -ATv is consistent, define p := -±(ATD„A)+ATv, 

Otherwise, define p := -^P~1ATv, where P is a positive definite 
matrix. 

3) Find a steplength a > 0 such that (v4p)TZ>wp'((r + aAp)/y) = 0. 

4) Set c := c + ap. 

Here, A is the m x n matrix representing the underlying linear model, Dw is 
a diagonal matrix with entries 

,„,     fw*>  ifh/7l<i, 
I 0,     if in/71 > 1. 

P is usually the identity matrix, / and Y+ denotes the pseudo-inverse of a 
matrix Y, defined so that Y+ is that matrix X of the same dimensions as YT 

such that YXY = Y, XYX = X and YX and XY are symmetric. 
We note here that there are many other algorithms for finding a Huber 

fit, and that most, if not all, can be adapted just as easily. 
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Lawson's algorithm 

This algorithm, analysed by Lawson [7] in 1961, enables an £TO fit to be ob- 
tained by repeated weighted t2 fits. The algorithm itself is very straightfor- 
ward, and involves updating the weights at each iteration according to 

w 
Er=i^G(ri0) 

('+1) :=       w^lr.   I (3) 

where G{t) = |*|. The denominator is a normalisation term to ensure that the 
weights sum to unity. The numerator has the effect of weighting data with 
large residuals more heavily, with the result that, in the limit, only those data 
with a maximal residual will have any weight attached to them. 

Lawson's algorithm finds the points of extreme oscillation and weights 
these accordingly to obtain the best £<*, approximation. The other weights 
are not important, and in fact converge to zero. 

Initial values for the weights are usually chosen to be w{ = 1/m, as 
this treats all the data equally and satisfies the condition that the sum of the 
weights must be unity. Proofs of convergence require that the {<t>i(x)} form 
a Chebyshev set, but experimental results (see, for example, [4]) suggest that 
the algorithm is more generally applicable. 

A summary of Lawson's algorithm. 

1) Set all weights equal (with the sum of weights equal to unity). 

2) Perform a weighted least-squares fit. 

3) Calculate the residuals from the weighted least-squares fit. 

4) Update the weights according to Lawson's formula (3). 

5) Return to Step 2 until convergence is obtained. 

§3. The Algorithm 

We are concerned with the solution of the problem 

min     max     |rj|, 
c    {rv:|n|<l} 

where n is the residual for the datum {xuyi), and 7 is the Huber threshold 
value. In order to solve this problem, we reformulate it as 

m 

minV'wip(ri/7), 
c     z—' 

t=l 

where p is defined as in equation (1), and we adopt an iterative procedure to 
find c by performing successive weighted Huber fits. The weights are updated 
after each iteration in a manner similar to Lawson's original algorithm. While 
Lawson's algorithm is concerned with finding a minimax fit via a sequence 
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of weighted least-squares fits, this new algorithm finds a minimax fit to the 
non-outlying data via a sequence of weighted Huber fits. 

Unfortunately, Lawson's rule for updating the weights cannot be used in 
this new algorithm since the rule would weight the outliers too heavily. As 
a result, the outliers would be fitted more accurately at the next iteration. 
The essential point of Lawson's update is to weight those datum points which 
correspond to the maximal errors of the minimax fit. To maintain this general 
trend, we need an update in which the function G in (3), rather than being 
monotonic, instead increases to a peak and then decays, with the peak corre- 
sponding to the residual with the largest magnitude which does not exceed 7. 
The latter is termed the "7-maximal residual" and denoted by JMR- 

The function we choose in place of |t| is a negative exponential of the 
form 

r(D(A-fW> , if|<l<7MÄ, 
G    {t) - \lMRe-^(W-™*\    if|t|>7MK, 

and we update the weights at each iteration according to (3). (Note that G"' 
changes with the iteration I.) 

For \t\ > 7MRI the ^MR factor in G^l\t) is needed to ensure continuity 

at \r\ I = 7Affi and the —7^^ term in the exponential is used so that the 
left and right derivatives of Gi(t) are continuous at JMR- The reason for this 
second condition is to ensure that points with residuals just over ^MR and 
those with residuals just less than JMR are treated similarly. 

§4. Convergence 

We have obtained favourable results with this algorithm, provided that certain 
conditions are met. Firstly, the form of the approximating model needs to be 
appropriate. For example, trying to approximate a set of data corresponding 
to a quadratic by a straight line will probably lead to problems, as it is likely 
that a considerable number of the data will be treated as outliers. Secondly, 
7 needs to be chosen carefully. If 7 is chosen to be too small, then there may 
be many solutions and it may not be possible to predict to which solution the 
algorithm will converge — if it converges at all. 

We therefore conclude that in order to use this algorithm effectively, we 
first need to have some details of the problem we are to tackle. If we are 
unsure as to what sort of model to fit to the data, then 7 should be chosen to 
be larger than we might initially require. If we are unsure what value of 7 to 
choose, then some sort of 7-reduction procedure may be effective for finding an 
appropriate value. An initial value of 7 may be chosen by use of the formula 
7 = 1.9906 x median(|rj — median(rj)|) (see, for example, Ross et al, [12]). 

The effect of using a Lawson-like update with a non-monotonic factor is to 
increase the weights at the extrema of the minimax approximation and reduce 
all other weights, including those of the outliers. In practice, the algorithm 
produces a minimax approximation to a subset of the data with the aim that 
this subset should be the non-outlying data. Unfortunately, we have been 
unable thus far to prove convergence for this algorithm. However, it should 
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be noted that the convergence rate would be expected to be similar to that of 
Lawson's original algorithm as they essentially do the same task. 

§5. Acceleration Schemes 

Although the algorithm as it stands is acceptable for small problems, it nev- 
ertheless takes a considerable length of time to achieve relaxed convergence 
conditions. This is no surprise as one of the shortcomings of Lawson's al- 
gorithm is its slowness to converge. More specifically, the convergence of 
Lawson's algorithm is linear with a ratio of T* [11], where 

T   = max 
max r* 

:r < 1 

with r* defined to be the vector of residuals from the optimal £<*, fit. In 
many situations, this ratio can be very close to one, leading to rather slow 
convergence. 

One technique to increase the rate of convergence is to use the fact 
that, upon convergence, the weights corresponding to non-extremal residu- 
als are zero. Specifically, after a set number of normal iterations to allow 
the weights to settle a little, we may set w{ = 0 if |ri| < CT

2
/||T-Z|]oo, where 

°~ = \j2T=i wifc)(rifc))2l ■ This latter technique is the one presented by Rice 

and Usow [10], although Ellacott [4] found that it could cause the algorithm 

to fail. 
Of course in the case of this new algorithm, these schemes cannot be 

applied directly. We need to compensate for those data which are being treated 
as outliers, thus this scheme is not valid. If it were possible to find some 
analogue of a for this new algorithm, then it may be possible to use that 
analogue in an acceleration scheme. 

§6. Numerical Results 

We have tested this algorithm extensively and now present some numerical 
results to illustrate it. In Figure 1, we show a synthesised data set consisting 
of 95 points lying close to the polynomial f(x) = 2x2 - 3x + 1 with 5 outliers. 
Figure 1 also shows the best fitting quadratic polynomial to the data obtained 
by a least-squares fit, by an £«, fit and by the new algorithm presented in this 
paper. The noise in the data is taken from a uniform distribution on [-0.1, 0.1] 
and we thus choose 7 = 0.1. Table 1 shows the results from the various fits 
performed. It is clear that both the £2 and £00 fits are unsuitable and are 
affected by the outliers. However, the new algorithm succeeds in identifying 
the outliers and successfully ignoring them. Comparing the results from the 
new algorithm with those from performing least-squares and minimax fits to 
the data without outliers, we see that they are much more in agreement. In 
fact, as we would expect, the new algorithm has generated an almost identical 
fit to the too fit on the accurate data. 
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Fig. 1. Various quadratic polynomial fits to a set of data with outliers. 

We also note that, while the new algorithm seems to be significantly 
faster in this example, this is not the case in general. In fact with stricter 
convergence criteria, Lawson's original algorithm applied to the non-outlying 
data converges in fewer iterations than the new algorithm. The reason that 
the minimax fit to the data containing outliers takes fewer iterations is due to 
the result in Section 5 involving r*, which, because of the outliers, is actually 
quite small (T* = 0.9497) compared to r* = 0.9894 for the case of the new 
algorithm. 

iz New t2 (NO) too (NO) 

CO +0.9499 +0.9839 +0.9958 +1.0059 +0.9971 
Cl -2.7868 -0.4571 -2.9951 -3.0007 -3.0001 
C2 +2.1568 +2.0492 +2.0057 +2.0050 +2.0035 

Iterations 1 46 39 1 140 

Tab. 1. Numerical results: fitting a quadratic (NO : No outliers). 

The convergence criterion was the same for both Lawson-like algorithms, 
namely that the magnitude of the four largest 7-maximal residuals should 
agree with a relative error of less than 10~2. In addition, no acceleration 
schemes were used since we needed to obtain a measure of how fast the algo- 
rithms were in their unaccelerated form. 

§7. Conclusions 

We have presented an algorithm for fitting a linear form to data containing uni- 
form noise, contaminated by outliers. Future work will concentrate on three 
main areas. Firstly, acceleration of the convergence of the algorithm. Sec- 
ondly, extension to non-linear forms. Thirdly, extension to general lp norms 
rather than solely to the ^oo-norm. 
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A Segmentation Method under Geometric 
Constraints after Pre-processing 

D. Apprato, J. B. Betbeder, C. Gout, and S. Vieira-Teste 

Abstract. For a geophysical image with homogeneous grey levels, we 
propose a method of segmentation that could be subdivided into two parts: 
the first one concerns a pre-processing of the image which provides an 
enhancement of some features present on the image. The originality of the 
method consists in using a scale transformation applied to the pixel values 
of the image. The second part presents a segmentation method using 
deformable surfaces. The originality of this segmentation method is that 
it considers the active contour model as a set of articulated curves, which 
corresponds to the interfaces between different layers and faults. Moreover, 
the a priori knowledge of well data allows us to make some geometric 
constraints on the model. The solution is obtained by minimization of a 
nonlinear functional under constraints in a suitable convex set. Solving the 
minimization problem consists in particular in a fc-order Taylor formula 
applied to linearize the nonlinear term. 

§1. Segmentation Pre-processing 

Image segmentation is one of the most important steps leading to the analysis 
of processed image data. Its main goal is to divide an image into parts that 
have strong correlation with objects or areas of the real world contained in the 
image. The image is divided into separate regions that are homogeneous with 
respect to a chosen property such as brightness, color, reflectivity, context, etc. 
However, in certain cases, the grey levels of an image could be homogeneous 
and make the segmentation more difficult to realize. This is particularly true 
in the case of geophysical and medical images (cf. [14,15]). In the first part of 
this work, we propose a method to solve this problem using families of scale 
transformations. The use of scale transformations is common in imaging. The 
aim of this pre-processing is an improvement of the image function data that 
suppresses unwilling distortions, or enhances some image features important 
for further processing. It provides improvement of the contrasts, and it rep- 
resents a tool to pre-process images used in most computer algorithms today. 

Curve and Surface Fitting: Saint-Malo 1999 9 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 9-18. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
All rights of reproduction in any form reserved. 
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According to Sonka, Haclav and Boyle [15], the pre-processing of images may 
be classified into four categories (pixel brightness transformations, geometric 
transformations, pre-processing methods that use a local neighborhood of the 
processed pixel, and image restoration that requires knowledge about the en- 
tire image) according to the size of the pixel neighborhood that is used for the 
calculation of a new pixel brightness. The transformation of the brightness 
and of the contrast of an image allows us to focus on phenomena that are hard 
to see in the plain image. 

For a given image, we are going to consider the pixel values as a topo- 
graphic map: the brightness value of each pixel is the height of the (hyper-) 
surface at that point. For a data set of pixels (xi,yi,Zi,A(xi,yi,Zi))i, we 
apply the following functions: 

. Cd: Aixuyi,^ C [0,255] —» [0,255], 
• Td(<pdo(<doA))eHm{n,JR,), 
• ipd (Td (<Pd ° (QO^))) converges to ( o A when d converges to 0, 

where A is an attribute function introduced in Section 2.1, c,d (resp. tpj and 
Vv) are scale transformations converging to <r (resp. ip and ip), and Td is a 
Dm spline operator (see Arcangeli [2]). 

The scale transformation qd converges to a usual brightness transforma- 
tions <j (see Apprato and Gout [1]): for instance, C could be a scale transfor- 
mation which enhances the image contrast between brightness values pi and 

P2- 
Let us consider the subdivision {«i,«2, ••-,«!, •••IWp(d)}i=1 ,d) of the 

interval [0,255] satisfying (,(A{xi,yi,Zi)) = u,-, p{d) being the number of 
different pixel values of the image (< 255 for a grey scale image). The function 
Cd is defined, for any x G [A(xi,yi,zt) = wt, A(xi+x,y,+x, zi+i) = w!+i], and 
for an integer 1 < i < p(d) — 1, by 

Cd{x) = Uiqlm [{x - Wi) I {wi+l - Wi)) + ui+lqlm \{x - w{) / {wi+l - wt)} 

+ <xx (wt) (wi+1 - Wi) qlm {{x - Wi) I (wi+1 - w{)} 

+ ax (u>i+i) (u>i+i ~ ^) q\m [{x - wt) / (wi+1 - wt)], 

where the g'm, for I = 0,1, and j = 1, ...,m, are the Hermite finite element 

basis functions, and where ax (w;) = («i+i — w;)/ (ua+x — Wi) and ax (wp(d)) = 

(wp(d) - Wp(d)-i) / {up(d) - Mp(d)-i)- Then> G°ut [9] showed that for any d € 
D, for an integer i, l<i< p(d) - 1, Cd (w*) = Ui  and Cd 6 Cm([0, 255]). 

Likewise, in order to recover a finer image, it is useful to apply the "large 
variations" algorithm introduced in [9]. In fact, after having applied the func- 
tion Cd to improve the contrast of the image (and thus increasing the variations 
of the corresponding pixel values), it is very useful to use a method that takes 
into account these rapidly varying data. Let us note that even without using 
the scale transformations Cd, an image often has large variations (this occurs 
for example when a dark zone is near a brighter one). That is why we propose 
to use the "Large variations" algorithm. This algorithm uses two-scale trans- 
formations, namely <pa for the pre-processing, and V>d for the post-processing. 
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The first one, ipd, is used to suppress the oscillations of the data. The pre- 
processing function (fj. is such that the data do not present large variations, 
and therefore a usual spline operator Td (e.g. [2]) can subsequently be applied 
without generating significant oscillations. The second scale transformation 
ipd is then applied to the approximated values to map them back and obtain 
the initial approximated pixel values. It is important to underline that the 
proposed scale transformations do not create parasitic oscillations. Moreover, 
this method is applied without any particular knowledge of the location of the 
large variations in the dataset. 

So, for pre-processing, we propose two algorithms: in the first one, we just 
apply a scale transformations Q as a brightness transformation for contrast 
enhancement, in the second one, we also apply the "large variations" algorithm 
in order to obtain a finer represention of the image which represents the main 
advantage of this approach. 

The reader is referred to [1,8,10] for a complete study of this method, 
including its convergence and numerical results. Let us note that this method 
is also efficient for noise removal as shown in [1]. 

§2. Segmentation Method 

We use deformable models (external forces, evolution term, see Kass, Witkin 
and Terzopoulos [16,17]) and classical approximation techniques such as spline 
theory (see de Boor [3], Laurent [12], Schumaker [13]) and the finite element 
method [4]. 

We propose an analytic approach which uses deformable models instead 
of a geometrical one as done for instance in Sethian [14]. We recall that the 
principle of the deformable model method lies in attracting the representation 
towards the structure using forces: 

• Internal forces describing properties of elasticity and rigidity of the rep- 
resentation, connected to its derivatives (e.g., the energy of thin plates); 

• External forces coming from potentials which characterize the elements 
of the structure with respect to the attributes data. 

Geometrical constraints are associated with well interpolation conditions 
(case of geophysical images with well data). Deformable models provide a way 
of interactively acting on the representation by adding a dynamic term in the 
minimization problem (see for instance Cohen and Cohen [5], Cohen, Cohen 
and Ayache [6], and Cohen, Bardinet and Ayache [7]), that permits upgrading 
the models to the solution of the minimization problem introduced. 

In this section, we first give the geophysical data and then the minimiza- 
tion problem is studied. The nonlinear problem and its discretization are 
given in the subsequent sections. 

2.1. The data on the structure 

Two types of data are available: attribute data and well data. For each at- 
tribute A, the attribute data are (xi,yi,Zi,A (xi,yi, Zi)), where (XJ, ?/;, zi) are 
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the coordinates of the barycentre of a voxel, and A (xi,yi, zt) is the attribute 
value A in this voxel. The well data are depth data: 
(xj,yj,Zj) .=1 N = dj where N is the number of interpolation points. This 
model allows'a'conceptual representation of the structure by identification 
of its various elements, and permits topological connections between those 
elements. This model induces the parameterization of the structure. Each 
element of the structure (layer, fault, etc.) is identified with a connection of 
four points with a label E. Furthermore, each quadruplet is connected by two 
points (which can be thought as a common side of a "quadrilateral" repre- 
sented by the four points) with another quadruplet. Practically, the a priori 
model can be constructed by introducing a 3D block and a regular grid of this 
block. The aim is to find a space of admissible representations consistent with 
the a priori model and the criteria connected with the data. Therefore, it is 
necessary to choose a space of functions characterized by a domain of defini- 
tion connected with the a priori model and regularity conditions connected 
to the data. The idea is to transform the a priori model into a normalized 
model called the model of reference (denoted by M'). For example, we can 
choose M' C n = [0,1] x [0,1] x [0,1]. The model M' is then the image by 
transformations of the set of vertical and horizontal closed sides of the a priori 
model as done in [18]. Let 7 be the union of the common edges of any two 
sides of M', we define by M the interior of M' \ 7. All the functional spaces 
needed in this work are given in Vieira-Teste [18]. 

2.2. Minimization criterion 

2.2.1. Internal forces: The criterion associated with the internal forces 
is a classical one. Modelling this criterion bring us to the following energy 
functional: for any v € V = H2 (M,H3) n C° (M',IR3), 

Ei (v) = [v)\iM + [v\\M , 

where 

and 

11,M 
SCM JM (S> + 

öu\S 

dsdr 

1/2 

J2,M £•<[<£>:♦<&>:♦<£>; VCCM 

dsdr ) 

1/2 

with Si (E) > 0, Vi = 1,2, VE € M. The term [v\lM corresponds to an 
approximation of the elastic deformation of the model while the term [v]2 M 

corresponds to an approximation of the rigid deformation of the model (cf. 
Cohen, Cohen and Ayache [6]). 
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2.2.2. External forces: External forces are issued from potentials connected 
with attributes. We introduce the following energy, for any v G V, 

E2{v)= J2   I Ps(v/s(s,r))dsdr, 

where Pj is the potential associated with the element parameterized by S. 
The modelling we propose consists in minimizing the previous energies E\ 

and E2 as we will see in subsection 2.2.4. In the case of the velocity attribute, 
we use the following potential to define the layers: 

P(x,y,z) = -a vl{x,y,z) a>0 

where A is the attribute "velocity of propagation of the seismic wave". 

2.2.3. Interpolation data: If we suppose some parameterization (sj,rj) G 
M of each interpolating point a,- = (xj,yj,Zj) is known, then we require that 
v G V satisfies v (sj,rj) = a,j for any j = 1,..., N. 

2.2.4. Minimization criterion: Using the notation and definitions intro- 
duced above, we consider the functional E defined on V by 

SCMJs 

for any v G V. We consider the set K associated with the interpolation 
constraints, and defined by 

K = {veV,    Vj = 1,..., N,    v (sj,rj) = a.,} . 

This set is convex and closed in V. We also introduce the following linear 
mapping (continuous on V with the norm ||-||2 M) 

Po : v € V t-> p0v = (v (sj,rj))j=1>   tN G (H3)    . 

We consider the following minimization problem: find a G K satisfying 

VvGiT,    E(a)<E(v). 

We note that this problem is nonlinear on the convex set K with respect 
to a. There are two techniques to treat this problem. The first one consists in 
linearizing the nonlinear term (linked to the potentials) in the functional E. 
The second one consists in using the deformable models technique as done in 
the following subsection: we suppose that the solution is a function of time, 
which leads to a new evolution problem that will be discretized both in time 
and space. 
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2.3. The nonlinear problem 

In this subsection, we give the nonlinear minimization problem and its dis- 
cretization. Let us recall that the deformable models technique consists in 
assuming that <r depends on time, and so consists in adding a dynamic term 
to the functional E (a) 

19 
2dtJM 

/   e(M)cr2 (t,s,r)dsdr, 
JM 

where (e (M))/E = e (E) > 0. This term allows the control at each time of the 
deformation of the surfaces. 

2.3.1. Evolution problem: Let T > 0. We note 

H/(0,T,K) = {»a2(]0,T],V),|eL2(]0,T],n}- 

We then consider the following evolution problem defined on [0,T]. For any 
t G ]0,T] and any u G W(0,T,V), find a G W(0,T,V),a {t) G K, satisfying 

(Pt): 

E(o) + -%- I £(M)a2(t,s,r)dsdr<E(Lj) + -1r- f e(M)to2 (t,s,r)dsdr, 
2dt JM tot JM 

with 
<T(0) = <TOGL

2
(M,IR

3
). 

We are currently studying existence and uniqueness of (Pt) using a Lipschitz 
approximation of the sign function. 

Likewise, for any t G ]0, T], we consider the term 

L«(t) (V) = -Y1  I Ps (u/s(s'r)) dsdr- 
T.t-M JE T.CM 

The variational formulation of the problem (Pt) with Kuhn and Tucker's 
relation is, taking as test function v on the stationary space V (necessary 
condition without uniqueness), for any t G ]0,T] and anyj; G V, find (<r,A) G 

W(0,T,V) x C° ([0,71, (R3)N) ,<r{t)e K, satisfying (P): 

I £ (M) flg^a'r^(a, r)dsdr + a{a{t),v) + (A {t), Pov}N3 = La(t) (v) 

under conditions 
a(0) = a0eL2(Wi3) 

and N 
A(0) = A0G(1R

3
)    , 
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where 

^a(u,v) = [v]ltM + [v]liM. 

2.3.2. Discretization in time: In this subsection, we discretize (P) both 
in time and space. The originality of this discretization consists in using a 
k-order Taylor development which allows us to take into account many more 
voxels and so to improve the convergence of the method (see Vieira-Teste [18] 
for more details). We cut the interval ]0,T] into sub intervals with length At. 
Consider 

tm = m At,    m = 1,...,Z> j...,. jT. 

We use the following approximation of the time derivative: 

da_,.   x      g (tm) - <? (tm-l) 
dt (m) ~ At 

Assuming that am = tr(tm) and Am = \(tm), we approximate the 
variational problem as follows: For any m = 1,...,DT and any v € V, find 
(am, \m)£Vx (M3)N , am € K, satisfying (Pm): 

/ e (M) amvdsdr + At \a(am,v) + (\m,p0v)« 
JM <• 

= / e(M)am-1vdsdr + AtL(rm{v) 
JM 

with cr° = a0 € L2 (M,R3) and A0 = A0 € (IR3)^. 

The previous problem is implicit and nonlinear with respect to the so- 
lution am. We propose to replace LCTm (v) = La>v (tm) by a Taylor series 
expansion of order k > 0 about the time tm. We suppose that a is in 
Ck ([0, T], L2 (M, H3)). We have 

LCTm  (v)  = Lg-^v (tm) 

and La>v (tm) ~ L„tV (tm_i) + &tDL„,v (<ra_i) + ^-D2L^V (tm-i) +■■■ + 

^jf-DkL^v (tm_i). We note that the problem (Pm) is linear and explicit 
with respect to am. The following result is based on the Lax-Milgram Lemma. 

Theorem.  The problem (Pm) has a unique solution (crm, Xm). 

2.3.3. Discretization in space: Let H be a nonempty bounded subset in 
1R+ for which 0 is an accumulation point. For any h E H, we solve the min- 
imization problem (Pm) in the finite element space (V/,)3 C V. The generic 
finite element are the Hermite finite element of class C1 for snakes and the 
Bogner-Fox-Schmit finite element rectangle of class C1 (see [4]) for deformable 
surfaces. To have (Vh)   C V, it is necessary to have a C° connection on 7. To 
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do that, it is sufficient to divide some degrees of liberty connected to deriva- 

tives as done in [18]. 
We denote by (af, -,aMh) the coordinates of am in the basis of Vh and 

by (Af,..., A$) the coordinates of Am {Mh = dim{Vh)). If am is a solution 

of the discretized problem (Pm) in (14)3, we can write am in the basis of 

(Vh)
3:\fm=l,...,DT,    Vg = 1,2,3, 

Mh 

with (aj-y G K. and where the (</>j)J=1:..|Af/i> are the basis functions of Vh. 

In the following, we miss out q and h. Taking v = ipi in (P), we have 

to solve (for q = 1,2,3, in the linear problem (P)) a system of (Mh + N) 
equations with (Mh + N) unknowns. We easily show that this system has a 
unique solution, and that the matrix R = [C, B,1 B, 0] (first line : C, B; second 
line : tB, 0) of the system is symmetrical and sparse with 

Bjti = At • tpj (si,ri),        j = l,...,Mh,    i = l,..., AT, 

where for any u, v € (Vh)   , 

K^loAf = /   £(M)-u(s,r)-v{s,r)dsdr, 
JM 

and where T = (aj1, ...,a^, Ai,..., \N) is the unknown vector. We obtain a 
linear system RT = L, where the lines of L are 

/  e{M)am-1iPldsdr + AtLam{<fi1), 
JM 

/   e(M)am  1ipMhdsdr + AtLcrm((pMh.), 
JM 

Atai, 

This method has been implemented in fortran, C and C++.  Numerical ex- 
amples on real data are given in [11,18]. 
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Building Adaptive Multiresolution Schemes 
within Harten's Framework 

Francesc Arändiga and Rosa Donat 

Abstract. We consider the cell-average framework described by 
A. Harten in [5], and build the prediction operator using two nonlinear 
interpolation techniques. We test the resulting nonlinear, adaptive, mul- 
tiresolution scheme, and compare it with a linear scheme of the same 
accuracy. The nonlinear prediction processes we develop can also be used 
in the context of iterative refinement. Numerical tests show that this is 
also a viable alternative for piecewise smooth data. 

§1. Introduction 

The goal of a multi-scale decomposition of a discrete set of data is a "re- 
arrangement" of its information content in such a way that the new discrete 
representation, exactly equivalent to the old one, is more "manageable" in 
some respects. Some of the best known applications of multi-scale decomposi- 
tions derive from their compression capabilities: a multiresolution representa- 
tion of a function, i.e., of a discrete set which represents the function in some 
sense, can be highly compressed with minimal loss of information content. 
Precisely because of this potential, multi-scale techniques have an emergent 
role in numerical analysis, where the multi-scale idea has been used success- 
fully over the years, from multigrid techniques to hierarchical bases in finite 
element spaces or subdivision schemes in Computer-Aided Design (CAD). 

In the late 80's and early 90's, ideas from all these fields, together with 
a wide experience in the numerical solution of Hyperbolic Conservation Laws 
(HCL) lead Ami Harten to develop a General Framework for multiresolu- 
tion representation of discrete data. The building blocks of a multiresolution 
scheme d la Harten are two operators which connect discrete and continuous 
data: The discretization operator obtains discrete information from a given 
signal (belonging to a particular function space) at a given resolution level; 
the reconstruction operator produces an approximation to that signal (in the 
same function space) from its discretized values. 
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Harten's point of view is that the way in which the discrete data is gener- 
ated, i.e., the discretization process, determines its nature and should provide 
an adequate setting for a multiresolution analysis. Once the setting is spec- 
ified, the choice of an appropriate reconstruction operator provides the key 
step to the construction of a multiresolution scheme. 

The reconstruction process lies at the very heart of a multiresolution 
scheme built ä la Harten, and adaptivity can be introduced in the multires- 
olution scheme at this level. A nonlinear, adaptive reconstruction technique 
which fits the approximation to the local nature of the data will lead to a 
nonlinear adaptive multiresolution algorithm with improved compression ca- 
pabilities. 

The aim of this study is to examine a particular class of nonlinear adaptive 
multiresolution schemes, those using the Essentially Non Oscillatory (ENO) 
interpolatory techniques of [6] in the reconstruction step. Numerical experi- 
ments [1,2] show that ENO-MR schemes have larger compression rates than 
linear ones when the original signal or image is composed of smooth parts 
joined together by singularities. ENO techniques can be used to construct 
very accurate interpolants, which in turn lead to multiresolution schemes with 
high compression capabilities. When the original signal is geometric, nonlin- 
ear schemes can be used as loss-less compression techniques, and we show 
some application of this in the last section of this paper. 

The nonlinear prediction process can be used also in the context of sub- 
division refinement. This amounts to setting to zero all scale coefficients and 
using the prediction operator to proceed by dyadic refinement. Preliminary 
tests show that these nonlinear subdivision schemes lead to non-oscillatory 
limiting functions when applied to piecewise smooth data with jumps, and 
open up an interesting alternative for iterative refinement of piecewise smooth 
data. 

§2. Cell Average Multiresolution Analysis 

When dealing with discrete data coming from a piecewise smooth function, 
the simplest discretization process, that of considering the point-values of the 
function, might not be well defined, especially at jump discontinuities. On 
the other hand, the discretization by cell-averages procedure acts naturally 
on the space of integrable functions, and it provides a more adequate setting 
to deal with piecewise smooth signals. Because of this, we shall carry out our 
numerical study within the cell-average framework. 

Images are considered here as two-dimensional signals, and we use the 
usual tensor-product approach to design our two-dimensional algorithms. 
Thus, we only describe the essential features of the one-dimensional setting 
for the sake of completeness. The interested reader can find the missing details 
in this section in [2] or [5]. 

Let us consider a set of nested dyadic grids in [0,1]: 

Xk = {zi}?Jo>    ^=ihk,    hk = 2-k/N0,    Nk = 2kN0,    k = L,...,0, 
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where iVo is some integer. The discretization by cell average operator is defined 
as follows: 

Vk : LMO, 1] —» Vk,    ft = (Vkf)i = ±- (X'  f(x)dx,    l<i<Nk,    (1) 
ft* yxj!_1 

where L^O, 1] is the space of absolutely integrable functions in [0,1] and Vk 

is the space of sequences with Nk components. 
Due to the relation 

fc-i fc 

fT1 = ^- f'  /(*)<*= = ^r I " M** = «(/l-i + /£), 
hk-l Jxlzl 2hk Jxk

2i_2 
l 

it is easy to see that {fk}^x, k = L -1,..., 0, can be evaluated directly from 
{/flilfi without using explicitly (1) (i.e., without knowledge of the original 
function f(x)). 

To define an appropriate reconstruction operator for this setting (in fact, 
a whole family of them), we consider the sequence {Fk} on the fc-th grid 
defined from the cell values {fk} as follows: 

i *xk 

Ft=hkJ2fs= I     /(*)<** = F(xk)    =>    fk 
Fk _ Fk_x 

(2) 

The function F(x) (s C[0,1]) is, in fact, a primitive of the original function 
/(x), and the sequence {Fk} represents a point value discretization of F(x) 
on the fc-th grid (with FQ = 0). Notice that (2) establishes a one-to-one 
correspondence between {fk}i=0 and {Fj1}^. 

Let us denote by X{x;Fk~1) an interpolatory reconstruction of the set 
{Fk~1} on the grid Xk~\ i.e., J(xk'1;Fk-1) = F?'1. Then, we obtain an 
approximation , /*, to fk using (2) as follows: 

/? = {l(xk,Fk-1) -I«,,!*-1))/^. (3) 

Since F& = F{xk
2i) = F(s?-1) = Fk~\ we obtain 

/li-i = 1^(1(4-!.-F*-1)-^--!1)    and   /^^(i?-1-!^-!,**-1))- 
Ilk n>k 

(4) 
Let us define the prediction errors as ek := fk - fk. Using (2) and (4), we 

easily obtain 

fli-l ~ /2i-l = — W2i — fli)- 

Thus, we can simply store only the prediction errors with odd indexes; these 
are the scale coefficients, dk = e*j_i, of the multiresolution transform. 
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The multiscale decomposition of the original data fL is described by the 
encoding algorithm: 

{Do       k = L,...,l 
fi-l = W2i-i+Ik2i) l<i<Nk_,       (5) 
4 = /£_i - (l(xk

2i_i;F
k-1) - F^)lhk     1 < i < Nk-!. 

We recover the original data with the decoding algorithm: 

!Do       k_=l,...,L 
fli-i = (I(4-il Fk~i) - F^l)/hk + dk       \<i< Nk-t      (6) 

fli = Vt1 ~ fli-i 1 < i < Nk-i. 

In our study we consider only local interpolation techniques with La- 
grangian polynomials, i.e., 

l(x;Fk) = qi(x;Fk)       xe[xk_uxk}, 

where qi(x; Fk) is a polynomial of degree r satisfying qi(xk_1; Fk) = Fk_x and 
gi(x

k;Fk) = Fk. 
When the stencil of points used to construct qi{x) is symmetric around 

the ith interval (i.e., r = 2s — 1, <S = {xk_s, ■ ■ ■ ,a;f+s_1}), we obtain a centered 
interpolation technique. Centered interpolation techniques are very often 
used in approximation theory because they minimize the interpolation error, 
thus leading to very accurate reconstructions of smooth signals. It turns out 
that the multiresolution schemes obtained from (5) and (6) with Lagrangian 
piecewise polynomial centered interpolation techniques are equivalent to the 
Biorthogonal Wavelet (BOW) schemes of [4] (with the box function as the 
scaling function). 

The compression properties of BOW schemes have been widely analyzed 
in the literature, but from an approximation theory standpoint, it is very 
easy to study the behavior of the coefficients in terms of the smoothness of 
the underlying signal and the accuracy of the interpolation technique. Notice 
that the scale coefficients dk are related to interpolation errors at the odd 
points of the k-th grid. In fact, 

d! = {F*i_1-I{xk
2i_1;Fk-1))/hk. 

Thus, if f(x) is sufficiently smooth at [x*Z\ ixi ], we have dk = 0(/i^_!). 
However, the presence of an isolated singularity x^ 6 [xi-i>xi~ ] induces a 
loss of accuracy in the polynomial pieces whose stencils cross the singularity. 
The accuracy loss is related to the strength of the singularity as follows [2]: if 
[fW]Xd = f{p){xd+) - fip)(xd+) = 0(1) (p < r), and / is smooth everywhere 
else, we have 

,k      )     0([/(p)])fcJ-i,    l = i-s,...,i + s-l, 
dk = { w     " "-1' '      ' (7) 

^(^fc-i)' otherwise. 
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Thus, centered interpolation techniques lead to relatively large regions of 
poor accuracy around singularities, and therefore to large detail coefficients 
at those locations where the accuracy loss takes place. The consequence is a 
loss in efficiency for the multiresolution-based compression scheme. 

It seems reasonable to improve the efficiency of the multiresolution-based 
compression scheme by improving the accuracy of the interpolatory technique 
used in the reconstruction step. Notice that when the convex hull of the sten- 
cil used to construct a polynomial interpolant is contained within a region of 
smoothness of the underlying signal, the interpolation error (and the corre- 
sponding detail coefficient) becomes small. Thus, it is clear that the key point 
is the construction of polynomial pieces that avoid the singularity. 

In the literature related to the numerical solution of conservation laws, 
where discontinuities can spontaneously develop, we find an interpolation pro- 
cedure with all the features we need: Essentially Non Oscillatory (ENO) in- 
terpolatory techniques [6] (it is not surprising that Harten was one of the 
developers of these techniques). 

ENO interpolatory techniques lead to piecewise polynomial interpolants 
that are fully accurate except in those intervals that contain singularities. 
The essential feature of ENO interpolatory techniques is a stencil selection 
procedure that attempts to choose each stencil Si within the same region of 
smoothness of F(x). The stencil selection process uses the divided differences 
of the discrete set to be interpolated as smoothness indicators: Large divided 
differences indicate a possible loss of smoothness. The selection process is 
such that it tends to look away from large gradients, when this is feasible. 

ENO interpolatory techniques are nonlinear, because the stencil used 
to construct each polynomial piece depends on the function being interpo- 
lated. When the singularities are sufficiently well separated (this means that 
there are at least r + 1 points in each smoothness region), ENO techniques 
lead to stencils such that (assuming the singularity is located at the ith cell) 
Si-i n<Sj+i = 0. Hence, the detail coefficients satisfy 

»J oamu, ir<. (8) 
I     0(hr

k_^), otherwise. 

Thus ENO interpolants have a nearly optimal high accuracy region, which 
should in turn improve the efficiency of the corresponding multiresolution- 
based compression algorithms. 

The case of a corner of / (i.e., a jump in /') is especially interesting 
because it is possible to construct an even better (in terms of local accuracy) 
interpolant: the ENO-SR interpolant. 

The Subcell Resolution (SR) technique (also due originally to Harten [3]) 
allows us to obtain an approximation to the location of an isolated corner in a 
continuous function up to the order of the truncation error. The approximated 
value is then used to modify locally (in the interval where the discontinuity 
lies) the definition of the piecewise polynomial interpolant in such a way that 
the interpolation error is small except for an 0(hr+1) band around the corner. 
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Fig. 1.   Left original, right coarse version. 

1111 I'I I'I MB" 

Fig. 2. Left linear, right ENO. 

Recall that in the cell-average setting, the interpolation process is applied 
to the primitive function. Since jumps in f(x) become corners in F(x), using 
an ENO-SR interpolant in the reconstruction step lead to detail coefficients 
satisfying 

df = 0{hr
k_x),    except when x2l- Xd- (9) 

The SR technique is, thus, appropriate to increase the efficiency of mul- 
tiresolution-based compression algorithm for piecewise continuous functions 
with jumps. 

§3. Numerical Experiments 

Let us consider a purely geometric image as shown in Figure 1 (left), and 
apply to it the tensor-product version of algorithm (5). We consider piecewise 
polynomial interpolants of degree 4, thus the accuracy of the reconstruction in 
the cell-average framework is 3. In Figure 2 we display the location of non-zero 
scale coefficients in the multiresolution representation of the signal. When 
using the ENO-SR technique, and because all discontinuities are "aligned 
with the (tensor-product) grid", all scale coefficients are zero. This is a direct 
consequence of the fact that the ENO-SR reconstruction commits no error at 
the odd points in each one of the resolution levels considered (L = 4 in this 
example). In the case of the ENO scheme, the scale coefficients at the highest 
resolution level are all zero. This is a consequence of the nature of the data 
(the point-values of the signal at the highest resolution level), which locates 
all discontinuities at the cell end-points.   The ENO technique is perfectly 
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Fig. 3. Id Linear, ENO, ENO-SR. 

Fig. 4. Reconstruction from the coarse: linear, ENO, ENO-SR. 

accurate when the discontinuity is located at a grid point. The technique is 
fully accurate at all the lower resolution levels except at the interval where 
the discontinuity is located. Thus, there is only one scale coefficient, located 
at the point which is closest to the singularity. This should be compared 
with the 3 scale coefficients per singularity obtained with the linear scheme 
(the lines showing the location of non-zero scale coefficients are thicker for 
the linear scheme). For the sake of comparison, the number of non-zero scale 
coefficients in each case is: Linear 8554, ENO 1688, ENO-SR 0. 

We turn next to the nonlinear subdivision scheme obtained by considering 
the ENO and ENO-SR in the prediction process. In Figure 3 we show a 
univariate process. Starting from the the cell-averages of a piecewise smooth 
function at a very coarse level (16 points), we proceed by dyadic refinement 
until we obtain 1024 data. The numerical results clearly indicate that no 
overshoots or undershoots are obtained with the non-linear techniques. Again, 
the excellent properties of the ENO-SR technique in terms of approximation 
lead to the best results. 

In Figure 4 we show a simple multivariate test, the reconstruction of the 
geometric figure considered before from a very coarse representation (right in 
Figure 1). The Gibbs-like oscillations typical of linear schemes in the presence 
of discontinuities lead to the blurring of the edges observed in Figure 4 (left). 
There is no blurring in the reconstructed image obtained with the nonlinear 
techniques. Again, the ENO-SR scheme leads, in this simple case, to the 
exact original image. One dimensional cuts of the reconstructed figures are 
displayed in Figure 5. 
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Fig. 5. Horizontal cuts linear, ENO, ENO-SR. 
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A Recursive Approach to the Construction of 
k-Balanced Biorthogonal Multifilters 

Silvia Bacchelli, Mariantonia Cotronei, 
and Damiana Lazzaro 

Abstract. In this paper we discuss some numerical aspects of a par- 
ticular construction of balanced biorthogonal multifilters by means of the 
lifting scheme. This construction allows, by simply solving linear equa- 
tions, to obtain multifilters which do not need prefiltering, and for which 
the discrete versions of polynomial preservation/annihilation properties, 
are respectively, satisfied by their low and high-pass branches. In par- 
ticular, we conduct experiments on how a parameter which appears in 
our recursive definition of balancing can be chosen to suitably influence 
the spectral behaviour of the multifilter low-pass branch, making it more 
effective in image compression problems. 

§1. Introduction 

Multiwavelets are a new addition to the classical scalar wavelet theory, and 
have been extensively studied in the last six years [5,9,11,17]. The main mo- 
tivation for multiwavelets is that, unlike the scalar wavelet case, they can 
simultaneously possess desirable properties which are found to be useful for 
image compression applications, such as orthogonality and symmetry, short 
support, linear phase, a high approximation order, a high number of vanish- 
ing moments, etc. This combination would not be possible in any real-valued 
scalar wavelet. In fact, all real-valued scalar wavelets, with only one scaling 
function and one mother wavelet, can never possess all the above properties 
at the same time. This flexibility of vector-valued wavelet functions is due 
to the fact that multiwavelets satisfy conditions in which matrix rather than 
scalar coefficients are involved. 

However, multiwavelets lack some attributes that scalar wavelets possess, 
and this becomes apparent when one implements the discrete multiwavelet 
transform. In particular, in the scalar case, a scaling low-pass filter with an 
approximation order k refers to the ability of the low-pass filter to reproduce 
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discrete-time polynomials up to a degree k—1, while the corresponding wavelet 
high-pass filter annihilates discrete-time polynomials up to the same degree. 
This property, which is very important in many applications, does not hold 
in the multiwavelet case. In fact, the approximation power property does 
not assure the preservation and annihilation of discrete-time polynomials by 
the low-pass and the high-pass branch of a multiwavelet-based filter bank, 
respectively. 

Moreover, because the approximation order for multiwavelets is not ac- 
companied by the additional properties mentioned above, in applications using 
multiwavelets, a preprocessing or prefiltering step is necessary to obtain an 
efficient signal or image compression. A detailed investigation of prefiltering 
methods can be found in the literature [12,21,7]. 

Recently, to overcome these problems, Lebrun and Vetterli, and Selesnick 
[15,18] introduced the concept of balanced multiwavelets. They constructed 
orthogonal multiwavelet bases whose multifilter coefficients satisfy the discrete 
version of the approximation and zero-moments properties, and, at the same 
time, avoid the use of prefilters in implementing the discrete multiwavelet 
transform. This is a great advantage because the preprocessing step is a 
crucial point in multiwavelet-based algorithms. In fact, this initialization can 
sometimes destroy the very properties a multiwavelet basis is designed to 
have. Nevertheless, the above authors' construction of orthogonal balanced 
multifilters implies the resolution of non-linear equations that are solved by 
the Gröbner basis method. 

Following the previous authors' idea, in order to avoid the difficulties due 
to the above-mentioned non-linearity, in [2] we have given a simple algebraic 
construction of fc-balanced biorthogonal multifilters making use of the well- 
known tool called the lifting scheme. As shown in [19], the lifting scheme pro- 
vides a simple method for constructing new biorthogonal filters with requested 
properties, starting from an assigned set of biorthogonal analysis-synthesis fil- 
ters. In [2] we have extended the lifting scheme to the multifilter case, and in 
so doing, we have exploited the additional degrees of freedom left in the multi- 
filter construction after satisfying the perfect reconstruction condition in order 
to easily construct finite ^-balanced multifilters. Our results have been stated 
using the algebraic framework of banded block recursive matrices, exploiting 
this flexible mathematical tool to translate both the ft-balancing conditions 
and other desirable properties in terms of simple linear conditions on the 
multifilter coefficients. 

In this paper, we discuss some numerical aspects of the procedure for the 
construction of biorthogonal balanced multifilters given in [2], and analyze in 
particular the effect of the choice of the shift constant p which appears in 
our definition of fc-balancing on the compression capabilities of this kind of 
filters. In fact, shift constant p plays an important role, and it can be used as 
a further degree of freedom. 

Starting from Lazy multifilters, fc-balanced multifilters of order 2 and 4 
are constructed, and their effectiveness in image compression is tested on the 
Lena image. Using numerical experiments, we observe that the p parameter 
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influences the shape of the Fourier transform of the scalar filters associated 
with the low-pass matrix coefficients, and we determine the value of p in such 
a way that the spectral behaviour of the newly constructed low-pass filters is 
as close as possible to the optimal shape. With this selection of p, we obtain 
the best compression results. 

We remark that the aim of this paper is essentially to show the flexibility 
of our tool in building multifilters which do not need prefiltering and which 
are easily found by solving simple linear equations. 

§2. Balanced Biorthogonal Multifilters 

Let {H = Zi Hit\W = Zi Wit*} and {H = £< &&, W = £. Wt1*} be two 
pairs of block Laurent polynomials associated, respectively, with the analy- 
sis and the synthesis phase of a FIR multifilter bank, where {Hi}, {Wt}, 
{Hi}, {Wi} are finite sequences of r x r matrices. In the following section we 
will refer to {H, W}, {H, W} as analysis multifilters and synthesis multifilters, 
respectively, where we can think of them either as the sequences of matrix 
coefficients or as their associated block Laurent polynomials. 

Let R(t2,H),R{t2,W),R{t2,H),R(t2,W) bejhe block banded Hurwitz 
matrices whose generating functions are H, W, H, W, respectively. With these 
matrices, we can give an algebraic description of the; action of the analysis- 
synthesis system on a block Laurent polynomial a given as input, in the 
following way: 
Analysis: 

[*W] = R{t*,H)[<T] 

[o-W} = R(t2,W)[a] 

Synthesis: 
[a}=R(t2,H)T[aW} + R(t2,W)T[al% 

where <jr(°) and a^ represent the output of the analysis phase, while a repre- 
sents the output of the synthesis phase and therefore of the whole FIR system. 

Given any pair of multifilters {Ti, W}, define the 2-decimated matrix 

A(H,W) 
Wo    "Hi 
Wo   Wi 

whose elements are the 2-decimated block series related to H, W, that is 

Hk = J2H2i+kti, Wt = £)W2i+fct',    fc = 0,l. 

Definition 1. We say that the pairs {H, W}, {H,W} are biorthogonal mul- 
tifilters or duals to each other or, equivalently, that they satisfy the Perfect 
Reconstruction (PR) property it 

AS,W) X A(W.W) = A(«.W) x A^,W) = /. 
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In this case, if furthermore "H and H admit a convergent subdivision 
scheme, then it is possible to define corresponding multiscaling functions and 
multiwavelets from the well-known matrix two-scale relations: 

$(z) = V2R{t2,H)$(2x),    *(*) = y/2R(t2,H)$(2x), 

9{x) = V2R(t2,W)${2x),    9(x) = V2R(t2,W)*(2x), 

where *(a;), 9(x), $(x), *(x) represent the vector containing the translates of 
the r-vectors^ = [<t>0,... ,(f>T-i]

T, il> = [V'o, • ■ • :A-i]T< 4> = [4>o,-■ ■ ,<f>r-i]   , 
ij}= [ip0,...,4>r-i}

T. 
We now extend the concept of balancing order (introduced in [15]) to 

biorthogonal multifilters. We require that the multifilters associated with 
the analysis system must satisfy the discrete versions of both the polynomial 
preserving and zero moment properties. 

Definition 2. A pair of multifilters {H, W} reiated to the analysis phase of 
a FIR system is said to be balanced of order k (or k-balanced), if there exists 
at least one real number p such that the following relations hold: 

ß(t2,W)x[7rn] = V2 2"[(7r + p)„], 

R(t2,W)x[nn] = 0, 
n = 0,... ,fc — 1, (1) 

where [irn] and [(n+p)n} are bi-inßnite column vectors which can also be seen 
as r-block vectors associated with the formal block series 

*- = £ 
(ri)n 

(ri + l)n 

.(ri+r-l)n. 

t\       (T+P)"=E 

{ri + p)n 

(ri + 1 + p)n 

(ri + r - 1 + p)n. 

t'. 

In [2] an equivalent condition to (1) has been given which turns out to be 
more useful in practice: 

Theorem 3. A pair of FIR multifilters {%, W} is balanced of order k if and 
only if 

(2) 
h 

\       (rj)n 

(rj + 1)' i 
= V^2n 

"        Pn 

(P+1)B 

j=h 
.(rj + r-1)". .(p + r-1 

rri2 
r    {rj)n    - 

(rj + 1)" 
= 0, 

j=rm 

■ in + r-l)n. 

(3) 

for n = 0,... ,k — 1. 
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§3. Construction with the Lifting Scheme 

The lifting scheme (introduced by Sweldens [19]) is a flexible tool for the con- 
struction of biorthogonal bases. In [2] an extension to the multifilter setting 
has been given. In short, given a set {H,H,W,W} of biorthogonal multifil- 
ters, then the new multifilters 

r ~ new        ~ n  —-• 

\wnew = w-{s*Tot2)n, () 

where Sjs any block Laurent polynomial, gives rise to a new set {H,HneW, 
Wnew, W} of biorthogonal multifilters. 

Analogously, by simply changing the roles of the previous multifilters, 

nnew=H + (Sot2)W 
W      = W - (5    o t2)H y ' 

gives rise to a new set {Hnew, H, W, W™™} of biorthogonal multifilters. 
We call (4) and (5) respectively the lifting scheme and the dual lifting scheme. 

In [2] some useful conditions are given which allow the new multifilters 
to inherit symmetry/antisymmetry properties from the starting multifilters. 

We can take advantage of the previous scheme to construct new balanced 
biorthogonal multifilters. In fact, unlike the orthogonal case where the balanc- 
ing and the orthogonal conditions give rise to non-linear equations, which in 
[15,18], for example, are solved with a Gröbner basis approach, our balancing 
conditions (2) and (3) applied to the lifted (or dual lifted) multifilters give rise 
to linear conditions. The main steps of our approach are: 
1) Construct the new low-pass multifilter coefficients, using the dual lifting 

scheme; 

2) Apply the balancing condition (2), and solve the linear equations to find 
the coefficients of the unknown dual lifting matrix polynomial; 

3) Construct the new high-pass multifilter coefficients,  with the lifting 
scheme; 

4) Apply the balancing condition (3), and solve the linear equations to find 
the coefficients of the unknown lifting polynomial; 

5) Construct the corresponding dual low and high-pass multifilters. 

It is important to note that in applying the balancing condition (2), 
a value must be assigned to the shift parameter p. In our experiments, it 
turns out that p influences on the effectiveness of the multifilters in their 
applications. 
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Fig. 1. \h°\ + l^1! associated to the Lazy 2-balanced low-pass multifilter with a 
varying p: from left to right, p = -1,0.25,1. 

§4. Examples 

In the following example, we start from Lazy multifilters to obtain balanced 
biorthogonal multifilters of order 2 and 4, which, furthermore, are of the type 
symmetric/antisymmetric (see [2]). 

We restrict to the case r = 2, and define Lazy multifilters as follows: 

2H = H = y/2I,    W = 2W = V2It. 

In order to show the influence of p on the performance of the new multifilters, 

we introduce the notation 

l2k+n [H fcjm,n> k € 71, m,n = 0,1, 

which give the two low-pass scalar filters ft0 = {/i^jtezj,^1 = {hk}keiz ob- 
tained by reorganizing the set of 2 x 2 low-pass matrix multifilter {Hk}ke7Z, 

as a multichannel scalar filter bank. 

As shown in the following figures, the shift constant p influences the shape 
of the Fourier transforms of h°>new, h}>new, making them more or less suitable 

for application problems. 

In Figure 1, we show 3 graphs of the sum |/l
0."<:u'| + |/i1'new|, with p varying 

in {-1,1/4,1}. It can be seen that the choice p = 1/4 gives visually a better 
low-pass behaviour. In this case the new coefficients (except for a factor y/2) 

are 

H" t~l + o   i + 
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Fig. 2. \h \ + \h | associated to the Lazy 4-balanced low-pass multifilter with a 
varying p: from left to right, p = 0,0.4,0.8. 
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A second example (Fig. 2) shows the behaviour of the scalar low-pass 
filters associated to the Lazy 4-balanced multifilters, with different choices for 
the parameter p. In this case, the choice p = 0.4 provides the best behaviour 
of the low-pass filters. 

We have experimented with the above multifilters in an image compres- 
sion example (on the Lena image), by making use of a multiwavelet-based em- 
bedded coding [6]. Results obtained with the best choices of 2 and 4-balanced 
Lazy multifilters are compared, at same compression ratio 1:16, with those 
produced by Chui-Lian (CL) [5] and Geronimo-Hardin-Massopust (GHM) [9] 
multifilters. CL and GHM multifilter both have approximation order 2, but 
need prefiltering.   For comparison purposes, this prefiltering step has been 
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Fig. 3. Reconstructions of Lena compressed with different bases. From the top 
left corner: 2-balanced Lazy multifilter with p = 0.25; 4-balanced Lazy 
multifilter with p = 0.4; CL without prefiltering; GHM without prefilter- 
ing. 

C.R. 2-bal. Lazy 4-bal. Lazy CL without pref. GHM without pref. 

16 26.61 28.12 11.79 21.72 

Tab. 1. PSNR values (in dB) with different multifilters. 

omitted, in order to show how a prefiltering is absolutely necessary when 
dealing with non-balanced multifilters. 

These results are shown in Table 1. Figure 3 shows the reconstruction 
of Lena compressed with the above-mentioned bases. It can be seen from the 
table and the figure that 2-balanced Lazy multifilters behave better than CL 
and GHM. Better results are of course achieved by the 4-balanced multifilters. 

In the above experiments, we have not taken into account the orthonor- 
mal balanced multiwavelets of Lebrun-Vetterli [16] (which definitely give the 
best results, due to their good spectral properties), since our aim was not to 
construct the best possible filters, but to show the flexibility of our tool in 
building multifilters which do not need prefiltering and which are easily found 
by solving simple linear equations. One can obtain more effective filters with 
this procedure by extending the length of the lifting polynomials, and by using 
one of the many well-known good strategies for filter construction. 
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Fast Evaluation of Radial Basis Functions: 

A Multivariate Momentary Evaluation Scheme 

R. K. Beatson and E. Chacko 

Abstract. This paper presents a scheme for fast evaluation of splines, 
or "radial" basis functions, of the form s(-) = p(-) + $^j=1 A;$(- — %£)■ 
Here p is a low degree polynomial and $ : ]Rn —* 1R is a function that 
need not be radial. This multivariate momentary evaluation scheme is 
a generalization of the fast multipole method in which calculations with 
far field expansions are replaced by calculations involving moments of the 
data. The primary advantage of this new algorithm is that it is highly 
adaptive to changes in $. 

§1. Introduction 

This paper presents a scheme for fast evaluation of splines, or "radial" basis 
functions, of the form 

Here p is a low degree polynomial, and $ : Mn —> B, is a function that need not 
be radial. This multivariate momentary evaluation scheme is a generalization 
of the fast multipole method in which calculations with far field expansions 
are replaced by calculations involving moments of the data. The primary 
advantage of this new algorithm is that it is highly adaptive to changes in $. 
More precisely, changing to a new basic function $ only requires coding a one 
or two line function for the (slow) evaluation of $. In contrast, adapting a 
conventional fast multipole code to a different $ requires considerable analysis 
of appropriate expansions and transformation theorems, followed by writing 
a very specific code. The current algorithm reduces the incremental cost 
of a single extra evaluation from O(N) to 0(1) operations, and the cost of 
a matrix-vector product (that is, evaluation at all centres) from ö(./V2) to 

Curve and Surface Fitting: Saint-Malo 1999 ol 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 37-46. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
All rights of reproduction in any form reserved. 
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0(N log N) operations. The algorithm can be viewed as a spline fitter in 
that the approximation it produces is a piecewise polynomial supplemented 
by appropriate direct evaluations. The method described is a multivariate 
generalisation of the method of [4]. 

In outline the setup phase of method is as follows. Firstly, space is divided 
in a hierarchical manner. For example, in a 2-D setting an initial square 
could be divided into a quadtree. Then centres are associated with the panels 
they lie in. Next, proceeding up the tree level by level, the moments of the 
coefficients (the A;'s) about panel centres are calculated. Next working down 
the tree for each level, a number of approximations to $ are formed. Then for 
each panel within a level, polynomial approximations to that part of s due to 
far away centres are formed by combining moments and the approximations 
to <&. The evaluation phase first identifies the childless panel to which the 
evaluation point belongs. Then it approximates the far field by evaluating 
the polynomial associated with that panel, and adds to that approximation 
the directly calculated near field part of s(x). For reasons of space, we will 
not detail suitable methods for subdividing space, or the process of evaluation. 
These matters are well understood in the context of the fast multipole method, 
see for example [2]. 

The paper is organized as follows. The necessary mathematics for form- 
ing polynomial approximations to s from moments and approximations to $, 
and for translating moments is given in Secton 3 below. Section 4 contains 
symmetry results that can substantially reduce the amount of work required to 
form approximations to $ at each level. Section 5 contains numerical results 
obtained with a preliminary implementation of the method. 

§2. Notation 

We will need the following notation. A multi-index a = (ai,...,a„) is an 
n-tuple of nonegative integers. If x is an element of Rn, we will write its 
components as xi,X2,... ,xn. We will also need sequences of points in ]Rn. 
In an effort to make the meaning of all subscripted symbols transparent, we 
will write all such sequences of vectors as {zm}, and z will never be used 
unsubscripted to denote a single point in JR.™. 

If a and b are elements of It", then we will say a is less than or equal to 6, 
and write a < b, if a; < 6; for all 1 < i < n. We also define for x € Rn and a, ß 
multi-indices |a| = ai+a2-\ \-an, a! = ai!a2! •• -an\, xa = xc^x%'1 ■ ■ -x°n, 

and for 0 < ß < a take (aß J = (a"ßy.ß\- Tne (multivariate) Binomial 

Theorem then assumes the form 

O<0<a   VK/ \ H I 
0</3<Q 

for all multi-indices 0 < a G Zn and points x,t € ]Rn. We further define the 
normalized monomial 

Va(x)   =  xa/a\, (2) 
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and the a-th normalized moment about t of the data {(zm, Km)}£f=1 

M 

<7t,a    =    ^3 KmVa{t - Zm). (3) 
m=l 

Also define [a, b] to be the n dimensional box {a; € Hn : a < x <b}, and e to 
be the n-vector [1,1,..., 1]T. 

§3. Moment Expansions 

Lemma 1 below shows that we can form a polynomial approximation si to 
a spline s of the form (1) by combining moments of the weights A with the 
coefficients of a polynomial approximation q to $ on a "double width" panel. 

Lemma 1. Approximation via moments - correlations. Let c, d e ]Rn with 
c, d > 0. Let t £ K™ with \ti\ > c, + dt for 1 < i < n. Let e > 0 and $ be a 
function in C[t — (c + d), t + (c + d)]. Let 

l(X)   = ]C aaVa{x-t) 
{a:0<a<ke} 

be a polynomial of coordinate degree k such that 

11$ - g|U~[t-(c+d),t+(c+d)] <e ■ 

Given centres ZI,Z2,...ZM with zm € [—d,d] C H" for 1 < m < M, and 
weights «i, «2, • • •, «m € H, let the corresponding "radial" basis function 

M 
S(X)    =    Yl K™$(x - Zm), (4) 

be approximated by 

m=l 

M 

si(x)  =   ]P Kmq(x - zm) . (5) 
m=l 

Then 

Moreover, 

where 

\\s - SI||L~[I-C,*+C] < eIMIi • (6) 

si(x)  =        X)      bßVß(x-t), (7) 
{ß:0<ß<ke} 

bß   = 22 aaO-Q,a-0- (8) 
{a:ß<a<ke} 
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Remark: Often in our applications of this lemma, $ will be truly radial, i.e. 
of the form $(•) = <j>(\\ ■ H2), for some function <j> of one variable. 

Proof: If -c < x -1 < c, then for 1 < m < M we have 

-(c + d) < (x - zm) - t < c + d. 

This shows all but the expression for sx in terms of the moments of the data. 
To see the latter, write 

M 
si(a;)= E K™Q(X ~2m) 

m=l 
M 

= ^]/«m    E    aaVa{x~zm -t) 
m=l 0<a<fce 

= !>( E *?«*-')-*»)"} 
m=l I 0<«<i;e J 

= E-( E ^ E (;)(-*)"(--.)-"} 
m=l ^CKcKfce     ' 0</3<a   v^' ) 

-\-    I TT      sr (*-t)ß{-*m)°-ß\ 
- 2^Km\    2-;   a<*   2^       ß\       (a-ß)\        1 

m=l (0<a<ke       0</3<a       f v i-/ j 

=      E     ÖQ {     E    ^ ~~ fyO'O-ß \ 
0<a<ke (0<ß<a ) 

=      E      1      E     1aO-0,a-/3 > Vß(x - t).     D 
0</3<fce   ^0<a</se J 

An efficient way to form the approximation s\ is to use real FFTs to 
compute the correlation of equation (8). Nominally, such a process involves 
three FFTs per correlation. However, things may be arranged so that the 
transforms of moments of panels, and those of the required approximations 
to $, are computed once and used many times. Also sequences of coefficients 
can be summed in the transform domain rather than the function domain. 
This lowers the average number of FFTs per correlation dramatically. Thus, 
in 2 dimensions the work per correlation is reduced to approximately C(fc2) + 
bk2 log k operations, where 6 is small. 

A proof similar to that of Lemma 1 shows the following total degree 
version of the approximation via moments lemma. 
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Lemma 2. Let c,d £ E" with c,d > 0. Let t6l" with \U\ > a + bt, 1 < 
i < n. Let e > 0 and $ be a function in C[t - (c + d), t + (c + d)]. Let 

l(x)  = 2~2 aaVa(x-t), 
{a:0<a and |a|<k} 

be a polynomial of total degree k such that 

11$ - qh°°[t-(c+d),t+(c+d)] ^ e • 

Given centres zi,z2,---,zM with zm € [-d,d] for 1 < m < M and weigits 
Ki, K2) • • ■, «M € H, iet tie corresponding "radial" basis function 

M 

s(x) - ^2 K™®(X ~ z™)> 

be approximated by 

m=l 

M 
Sl(X)   =    5Z Kml(x ~ zm) 

m=l 

Then 

Moreover, 

where 

II* -Sl||L~[t-c,t+c] <e « i. 

{/3:0</3,  |/3|<fc} 

bj3   = 2-1 aoc°~0,a-ß ■ 
{a:ß<a,\a\<k} 

The next lemma shows that shifted moments can be expressed as a convo- 
lution of moments about a given point. This result will be used in generating 
the moments corresponding to a larger panel of centres indirectly from the 
moments corresponding to subpanels. The indirect process will be more effi- 
cient than direct formation when the number of centres is large because the 
operation count for the indirect shift depends on the order of the moments, 
not on the number of centres. 

Lemma 3. Indirect shifting of moments - convolutions. Let z\,..., ZM be given 
points in Hn and «i,..., KM be corresponding weights. Let aVt<x be the a-th 
normalized moment of the data defined in equation (3). Then for allv,u € R" 
and multi-integers a 

0-v,a   =      2^1    VP(V ~~ u)a*,<*-ß • (9) 
0<ß<a 
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Proof: 
1       M M 

<?v,a = —    22 Km(v - Zm) = —    y^ Km(v -U + U- Zm)° 
m=\ '   m=\ 

1       M /     \ 

'    m=l 0<,3<a  ^' 

M 

=  ^2Km    Yl    Vff(v ~ u)Va-ß(u - Zm) 
m=l        0<ß<a 

0</3<a 

In using Lemma 3 to translate moments we can reduce the operation 
count by using either FFT convolution or a tensor product approach. 

We discuss firstly the tensor product approach. The tensor product ap- 
proach may be viewed as making a shift from titow not in a single step, but 
as a series of shifts in the coordinate directions. For simplicity we will discuss 
only the 2-dimensional case. 

Consider the formula (9). If v — u = (x, 0), then we see immediately that 
Vß(v — u) is nonzero only when the second component of ß, ß2, is zero. Thus 
for v having the same second component as u, 

Ov,a    = X       Vßl(vi -WlVu.c-^.O)  • (10) 
0</3i<en 

Considering aun as an array indexed by 7 and the calculation of moments of 
degree not exceeding k, equation (10) above implies that each row of <jVtCt may 
be calculated in ö(fc2) flops. Thus if« and u have the same second component 
all moments of degree not exceeding k can be shifted in ö(k3) flops. Similar 
remarks apply to {awa} and {<rv>a} when w and v differ only in their second 
components. Thus, in the 2-dimensional case this tensor product strategy 
reduces the flop count for a single shift of all moments of degree not exceeding 
k from 0(kA) to 0(k3). 

An alternative is to use FFT convolution to compute the transformation 
of the moment shifting lemma, Lemma 3. The corresponding operation count 
is 0[k2 log k) in the 2-dimensional case. 

§4. Symmetry and Approximations to $ 

In this section we will show how symmetry considerations can greatly reduce 
the number of approximations to $ that need to be computed. In the 2- 
dimensional situation, with a quad tree subdivision of space, and without 
clumping, there are 40 different geometries of source and target for each level. 
The method requires approximations to $ on all the corresponding double 
rectangles. However, for most choices of $ the number of approximations 
that need to be computed from scratch is reduced to 7 by the symmetry 
relations of Lemma 4 below. Related symmetry considerations for the fast 
multipole method are discussed in Wang and LeSar [7]. 
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Lemma 4. Symmetries and approximations of "radial" functions. Let J\, ..., 
Jn, be subsets of R and 1 < p < oo, and let $ and q be functions in 
LP{Ji x---xjn). 

• Suppose $ is an even function of the k-th component ofx, xk. Define a 
function q by 

q(xu...,xk,---,xn) = q(xi,...,-xk,...,xn), (11) 

for all (xi,... ,xn) € J\ x ... x -Jk x ... x Jn. Then 

\\® - qhpinx-x-jkx-xjn) = \\$ - qhnjix-xjix-xj»)-     (12) 

• Suppose $(?/) is unchanged by permutation of the components yi,...,yn, 
ofy. Let 7T be any permutation of the integers {1,2,... ,n}, Jet 7r_:L be 
its inverse, and define q by 

9(2/1, • • ■ , Vn) = ?(2/i-i(l), • ■ • , 2/T-i(n)), (13) 

for aii y € J^i) x • • • x Jv{n). Then 

ll*-9lk"(^(i)X-Xl7,(n)) = II*-«IUI>(JIX-XJ-B)- (14) 

Proof: Let $, 9 and q be as in the statement of the first part of the lemma. 
Let x = (xi, ■ ■ ■, Xk, ■ ■ ■ xn) be a point in J\ x ... x -Jk x ... x Jn. Using the 
evenness of $ in the k-th. component of x, 

|$(:ci,...,£,(;,...,£„) - q(xi,...,xk,...,xn)\ 

= \$(xi,...,-xk,-..,xn) -q(xi,...,-xk,...,xn)\ 

= \^(xi,...,u,...,xn)-q(x1,...,u,...,xn)\ , 

where (x\, ■ ■ •, u, ■ ■ •, xn) is a point in J\ x ■ • • x Jn. The first part of the 
lemma follows by using this equality in the appropriate pth power integrals 
and essential supremum. 

We turn now to the second part of the lemma. Let $, q, and q be as 
in the statement of that part of the lemma. Let y = (j/i,..., yn) be a point 
in JTT{I) X • ■ ■ x i7,r(n). Using that $(2/) is unchanged by permutations of the 
components of y, and defining x = (xi,...,x„) = (^-i(i), • •■ ,3/jr-i(n))i 

I$(3/1,• • • ,Vn) -q(yi,-■ -,yn)\ = |$(j/i,• ■ •,j/n) - 9(2/x-i(l)'• • • >2/*-i(n))| 

= |$(a;i,...,a;n)-g(a;i,...,a;n)|, 

where (xi,..., xn) is a point in Ji x • • ■ x Jn. The result follows by using this 
equality in the appropriate pth power integrals and essential supremum.   D 

Remark: Suppose $(•) = </>(|| • ||p) for some function of one variable <f> and 
some p-norm for Rn, 1 < p < 00. Then $ is even in all the components of x, 
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Fig. 1. Symmetry in the 2D setting. 

and is also unchanged by permutations of the components of x. Hence, this 
lemma applies to all such generalized radial functions and allows us to use 
symmetry to obtain approximations to $ on new regions from those on old. 

Figure 1 shows the geometry of source panels to target panels in ]R 
when we use a quad tree subdivision of R2 without clumping. The solid 
black square is the target, or evaluation panel, and the possible source panels 
are numbered 0 through 39. Actually, the sources in the left-most column 
and bottom-most row would not be used for the illustrated position of the 
evaluation panel within its parent. However, they would be used for different 
positions of the target. If the source is [—d, d] and the target is [t — c, t+c], then 
Lemma 1 requires an approximation q to $ on the "double width" rectangle 
[t — (c + d), t + (c + d)]. If $ has all the symmetries of Lemma 4, then at each 
level only the seven approximations corresponding to source panels 0,..., 6 
need be calculated directly. The 33 other approximations are easily obtained 
by symmetry. The relevant symmetries to use on a previously calculated 
approximation are indicated in parentheses in panels 7 to 39. For example, 
the notation (2a;) in source panel 7 indicates that the approximation for source 
panel 7 is obtained from that for source panel 2 by symmetry in z. In the 
function domain this corresponds to negating the coefficients of odd powers of 
x. In the Fourier domain it corresponds to a block rearrangement of columns 
or rows, depending on which correspond to x. Similarly, the notation (It) 
in source panel 10 indicates that the approximation for source panel 10 can 
be obtained from that for source panel 1 by symmetry in x and y. This 
corresponds to a transpose operation on the coefficients in both the function 
and Fourier domains. 
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§5. Numerical Results 
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Some numerical results from a primitive implementation of the algorithm are 
given in Tables 1-4. In this implementation the core tensor product polyno- 
mial approximations q to $, employed as in Lemma 1, are formed by interpo- 
lation at shifted and scaled Chebyshev nodes followed by economisation. The 
moments, and the coefficients of the approximations to $, typically have a 
wide dynamic range when the polynomial degree is 15 or more. Consequently, 
some extra device is needed in order to make the algorithm stable, especially 
when the FFT is used. In the current code the method used is a scaling of 
moments and polynomial coefficients analogous to that suggested by Green- 
gard and Rokhlin [6] for the 2-D fast multipole method. The device may be 
viewed as scaling every panel at every level to be [—2,2]2. 

In the calculations reported, the centres are approximately uniformly 
distributed on [0, l]2. If the number of centres is N, then in Table 1 the 
number of evaluation points is the smallest perfect square bigger than JV, and 
in Table 2 the number of evaluation points is the smallest perfect square bigger 
than 10iV. In both cases $([z, y]) = y/c2 + x2 + y2, where c = 1/y/N, and 
all the coefficients nm of the spline (4) are 1. The piecewise tensor product 
bivariate polynomials used are of coordinate degree 7. 

Tab. 1. Moment based method versus direct evaluation. 

#of Ord. Alg. FFT Alg. Direct Ratio Abs. Rel. 
centres time time time error error 

4000 0.41 0.27 3.57 13.16 3.99E-04 1.30E-07 
8000 0.84 0.58 14.90 25.51 2.42E-03 3.95E-07 

16000 1.78 1.23 59.98 48.82 1.71E-03 1.40E-07 
32000 3.64 2.65 237.47 89.75 9.30E-03 3.79E-07 

Tab. 2. Moment based method versus direct evaluation. 

#of Ord. Alg. FFT Alg. Direct Ratio Abs. Rel. 
centres time time time error error 

4000 1.37 0.97 35.14 36.28 5.49E-04 1.79E-07 
8000 2.88 2.00 148.98 74.49 4.39E-03 7.16E-07 

16000 5.87 4.17 593.40 142.23 2.07E-03 1.69E-07 
32000 12.51 8.98 2356.92 262.33 1.82E-02 7.43E-07 

The timings in the tables are in seconds on an Intel pentium based ma- 
chine. Timings are given for direct evaluation and for the algorithm both with 
and without the speed benefits of FFT convolutions and correlations. Tables 3 
and 4 repeat the runs with polynomials of coordinate degree 15. 
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Tab. 3. Moment based method versus direct evaluation. 

#of Ord. Alg. FFT Alg. Direct Ratio Abs. Rel. 
centres time time time error error 

4000 1.19 0.81 3.57 4.42 3.47E-08 1.13E-11 
8000 2.97 1.70 14.90 8.74 1.74E-07 2.84E-11 

16000 5.93 3.55 59.98 16.88 1.35E-07 1.10E-11 
32000 13.19 7.74 237.54 30.69 6.17E-07 2.52E-11 

Tab. 4. Moment based method versus direct evaluation. 

#of Ord. Alg. FFT Alg. Direct Ratio Abs. Rel. 
centres time time time error error 

4000 4.20 2.19 35.14 16.06 2.49E-08 8.11E-12 
8000 9.32 4.51 148.37 32.89 1.09E-07 1.77E-11 

16000 19.16 9.32 593.40 63.65 8.48E-08 6.91E-12 
32000 39.70 19.52 2356.92 120.76 3.86E-07 1.57E-11 
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Polyharmonic Splines in Rd: 
Tools for Fast Evaluation 

R. K. Beatson, J. B. Cherrie, and David L. Ragozin 

§1. Introduction 

As is now well known, hierarchical and fast multipole-like methods can greatly 
reduce the storage and operation counts for fitting and evaluating radial basis 
functions. In particular, for spline functions of the form 

N 

s(x)=p(x) + ^2Xi4>{\x-Xi\), (1) 
i=l 

p a low degree polynomial, the cost of a single extra evaluation can be reduced 
from O(N) to 0(1) operations, and the cost of a matrix-vector product (that 
is, evaluation at all centers) can be decreased from 0(N2) to 0(N). 

This paper outlines some of the mathematics required to implement meth- 
ods of these types for polyharmonic splines in Rd, d even, that is for splines s 
corresponding to 0 chosen from the list 

nJ^+1-n l = 0,...,d/2-2, 
n{r)     jr^+^^logW,    £ = d/2-l,... . {> 

We carry out most of our work in the general Rd setting and then specialize 
to d — 4. We refer the reader to our more detailed work [1] which contains 
all the details of this special case. We are currently working on developing all 
the details for the general R   case. 

A key technique in our development is the exploitation of the rotation 
group invariance of radial basis functions. This means that we exploit the fact 
that any kernel k(x, y) = (f>(\x — y\) will be rotation invariant in the sense that 

k(gx,gy) = k(x,y),      for all orthogonal g € 0(d). (3) 

Invariance leads to many crucial simplifications and efficiencies in developing 
and manipulating the polyharmonic expansions which lie at the heart of the 
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hierarchical and fast multipole expansions. Related development of general 
spherical harmonic expansions based on these techniques can be found in [6, 

7,8]- 
We will not detail the basic framework of hierarchical and fast multipole 

methods within which this mathematics sits. However, we do recall that 
an essential component of the method is the grouping of approximations to 
summands like (1) into subsums, which are approximations to the influence 
of that part of (1) associated with centers in a single panel or cluster. The 
key steps to obtain them requires: 

• Finding explicit Taylor/Laurent expansions 

For each x,    4>{\x-x<\)=   ^T p^(x,x<),     |x<| < |z|,        (4) 

with p^ homogeneous polynomials of degree m in xK. 

• Finding an efficient separationotthe x, x< influence in p^, i.e., expanding 

pln(x,x<) = J2f!n(x)97l(x<), (5) 
i 

for some good choice of (basis) functions {//"(a;)} and {^(a;)}- 

These expansion and separation results provide the approximations to sub- 
sums which are the far and near field expansions. Other essential components 
are the tools to manipulate these expansions, namely error estimates, unique- 
ness theorems, and translation formulae. In this paper we concentrate on the 
algebraic tools and give some extensive general results on (4) (Theorem 6) 
and (5) ((20) in Section 3) and for R4 we give the appropriate far and near 
field expansions for the <j>t (Theorems 7 and 8), and a brief indication of the 
dual basis leading to (20). Analogous results for polyharmonic splines in 1R 
appear in [3]. The reader unfamiliar with the framework of the fast multipole 
method may wish to refer to the original paper of Greengard and Rokhlin [4], 
or to the introductory short course [2]. 

§2. Polyharmonic Functions and Homogeneous Polynomials 

First we record some detailed facts relating to the Laplacian A, and its actions 
on special homogeneous functions and the logarithm of the distance. In par- 
ticular, we show why our basic functions <fie in (2) are polyharmonic or more 
specifically (£+ l)-harmonic in the sense that Ae+1<f>e = 0. 

Lemma 1. Let \ • \ be the 2-norm on 1R , d even. 

i) If f : Hd \ {0} —> 1R is a non-trivial harmonic function that is homoge- 
neous of integral degree m, then 

A(| ■ \2ef) = 2e(d + 2e + 2m-2)\- I2«"1)/. (6) 
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Hence \ ■ \2if is polyharmonic of exact order 

(e+1, fore>0,m> -§ orm<l-£-f, 
\£ + m+f,    foil<ü,m>\-l-\. 

In »articular I • \2i is l^+ 1)-harmonic       {or £ ^ °> In particular |   |    is j ^ + d/2)-Aaraioiiic   for -d/2 < € < 0. 

ii) | • |2< log | ■ | is (^ + d/2)-harmonic for I > 0. More generaJJj, 

A| • |« log | • | = | • \2^e-1\2£(2£ + d - 2) log | ■ | + {U + d - 2)).      (7) 

Proof: For the first part of (i), just apply the product rule for the Laplacian, 

A(fg) = (Af)g + 2(V/) • (Vg) + f(Ag), 

and the Euler relation for a function / that is homogeneous of degree m, 

x-(Vf){x)=mf(x). 

Then observe how many applications of A are required to reduce one of the 
multipliers to 0. Specializing to the case / = 1 yields the last result of (i). 

The first part of (ii) follows from (7) in combination with (i) and its proof. 
(7) follows from (i), the product rule for the Laplacian, and the computation 
of V log | • | and A log | • | .   D 

From the detailed eigenvalue-like information on the Laplacian map in 
(6), we can get a decomposition theorem for II„, the homogeneous polynomials 
of degree n, in terms of the spherical harmonics of degree n: 

Hn = {p € n„ :  Ap = 0} = ker(A) n II„. 

This is useful in understanding the structure of the homogeneous polynomial 
terms in any Taylor/Laurent type series expansions for the (j>(\x — a;,|). In 
view of Lemma 1 the decomposition splits Tln into its harmonic, biharmonic, 
triharmonic, etc., parts. 

Lemma 2. II„ = ©££2J | • \2tMn-2e- In particular, H„ f~l | ■ |2n„_2 = {0}. 

Proof: Note that for n = 0,1, IIn = H„, so the base for an inductive proof 
is true. Assume the decomposition for n — 2, some n > 2, so for each p£ll„, 

L(n-2)/2J 
Ap =     ^2     | • \2eh„-2-2(, some hi € Hn_2_2<. 

1=0 

Then by (6), if 

'-2)/2j L(n-2)/2j 

K=p-     J2     ^+l)-1(d + 2n-2(e + 2))-1\-\2^+^hn. 
e=o 

then Ahn = 0. So hn e H„ and the decomposition of LTn is proved by induc- 
tion.   D 
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Some additional consequences of (6) come when we study what happens 
for negative i. Here we have noted that | • |2—2T

"—rfy js harmonic whenever / 
is m-homogeneous and harmonic. But bringing the factor of (| • |~2)m inside 
the m-homogeneous function / shows | ■ |2~d/(-/l • |2) is harmonic for any 
homogeneous harmonic function /. In fact this construction is independent 
of the homogeneity order of /. In general the Kelvin transform, defined by 
Kf(x) = \x\2~df(x/\x\2), which arises from inversion in the sphere followed 
by multiplication by |a:|2~d, maps harmonic functions to harmonic functions. 
On ITn Kf = | • |2-d-2n/. Associated with the Kelvin transform are the spaces 
of negative degree 2 — d — m 

oo oo 

0 I • \2tKMm+2e = 0 I • \2-"-^-2eMm+2t, (8) 
i=o e=o 

which are useful for analysing Laurent (far field) series. An application of 
Lemma 1 shows that Equation (8) displays the space under consideration 
split into its harmonic, biharmonic, triharmonic, etc., parts. 

§3. Rotation Invariance and Simplified Taylor Expansions 

The decompositions of polynomial spaces in the previous section already sim- 
plify the Taylor/Laurent type expansions (4) we need to determine. To make 
further progress, we want to exploit the rotation invariance of cfi(\x — x,|). 
When we come to combine subsums in (1), we will want to fix x and concen- 
trate on rotations (orthogonal matrices) which fix x. When we are given a pole 
p G 1R , we let Gp = {g : g € 0(d), gp = p} denote the rotations about the ray 
through p. So the function /^(a;<) = <j)(\x — x<|) satisfies f%(gxK) = /?(x<), 
for all g € Gx. We refer to any function / which is unchanged by rotations in 
Gp as a p-zonal function. In particular we have the p-zonal harmonics 

Wn = {heMn:  h{gy) = h{y) for all g e Gp}, (9) 

and the p-zonal homogeneous polynomials IIP. Now the Taylor/Laurent ex- 
pansion of /£ as in (4), will have ^(x^x^ = p^igx^x^ = p^(x,x<), for 
g G Gx since the homogeneous terms must remain unchanged under rotations 
(see Theorem 6). Thus these terms will be rr-zonal polynomials as a function 
of x<. What is the general stucture of Il£ and H£? 

Theorem 3. Fix a poJe x € Rd\{0} . Let xg(-) = 1, Xi(-) = 2(x,-). Then 
there exist a unique set of constants am, m > 1, such that the inductively 
defined sequence of homogeneous polynomials, 

XXm + l=XlXm-am+l\x\2\-\2XXm-U "I > 1, (10) 

consists of harmonic functions. Moreover, 
i) Xm IS an in-homogeneous x-zonal harmonic function, which is rotation 

invariant in the sense that Xm{9') — Xm(") *°r a^ 9 e 0(d). 
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ii) The constants am+i are independent ofx. Hence 

*£,(*<) = *£(*),        0^x,x<eHd
! (11) 

and the Xm(x<) are a^so homogeneous and harmonic as functions ofx. 

iii) Ifx?0,{\- \UXx
m-u(-)i l = 0,..., LW2J}, form a basis for II|.   In 

particular, xx JS tae unique (up to a scalar multiple) element of HJ. 

iv) For m, n nonnegative integers, the kernels 

kmM^<)=\A2l+m-KW\2l+n-Kxl-2t(x<),     K = min(m,n), 

m = n mod 2,    I = 0,..., [K/2\, 

form a basis for the space of all rotation invariant polynomial kernels, 
Pm,n(x, x<) which are homogeneous of degree m in x, and degree n in x<. 

Proof: The proof of the existence of am and (i), (ii), and (iii) is by induction. 
For m = 0 (i) and (iii) are trivially true. Let 0 ± ft. € H*. Then ft has the 
form h(-) = c{p, •). Since ft is x-zonal c(p, •} = c(p,g-) = c(g~lp,-), for all 
g e Gp. This implies p has the same direction as x. Hence ft. is a multiple of 
Xf and (i) and (iii) follow for m = 1. 

Now induction shows that (10) defines m-homogeneous i-zonal polyno- 
mials which are m-homogeneous in x, for any choice of am+\. Also they are 
rotation invariant. To complete the inductive step for (i) with a fixed x we 
need only show that there is a unique am+i that makes Xm+i(0 harmonic. 

From the homogeneity in x, we may assume \x\ = 1. Since XiXm is 

a homogenous polynomial of degree m + 1, Lemma 2 asserts that there ex- 
ist unique homogenous harmonic polynomials qm+i-2t such that XiXm = 
£L£m+i)/2J | . |Mgm+1_M. Since VXf = 2xT, the product rule for the Lapla- 

cian and the inductive assumption that Xm is harmonic show that 

A(Xlx£J=4zT■Vxx
m = ±dxx

x
m,    \x\ = l, (13) 

where dx denotes the directional derivative in the (fixed) direction x. Since 
AdxXm = dx^Xm = 0, it follows that XiXm is bi-harmonic and 

A(xxxx
m) = A(| • |29m-i) = 2(d + 2(m - l))gm_L 

Since A maps z-zonal functions to x-zonal functions it follows that qm-i £ 
JB.xn_1 and therefore by part (iii) of the inductive hypothesis qm-i is a multiple 
of Xm-i- Thus the existence and uniqueness of am+i making Xm+i harmonic 
is proved. 

We now turn to the inductive step in the proof of (ii). Using the rotation 
invariance part of the inductive hypothesis, Xm+i(ff-1-) *s 

xiürMxS.GT1-) - Gm+iN V1 ■ ?xx
m-Ag-1-) = (u) 

x{xx^-am+Agx?\-\2xZ-v 
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Since rotations and A commute, the left-hand side of the above is harmonic. 
Thus the right-hand side of (14) equals Xm+\ an<^ am+\ is independent of g. 
Using homogeneity it is also independent of |a;|. Hence am+\ is independent of 
x. The symmetry in x, xK of (10) then implies (11), and hence the homogeneity 
and harmonicity of Xm+i(x<) as a function of x. 

We now turn to the inductive step in the proof of (iii). Since Iim = Um 
and xT = °K

XK 
we may assume \x\ = 1. It suffices to show that dim ]!£,_,_! < 

|m/2j + 1 since, by Lemma 1, {| • \2lXm+\-2i> ^ = 0>---> Lm/2J} is an inde- 
pendent set in n^,+1. Since we can rotate ei to x by some orthogonal map, 
which will isomorphically map n^+1 to IIJ^+1, we prove our dimensionality 
statement for x — t\. To analyze the value f(y) of any ei-zonal function 
/, we choose orthogonal g± € Gei which transform y into the coordinate 
plane spanned by the first two basis vectors. The two possible values for the 
transformed y are 

9±V = (2/>ei)ei ± \/|z/|2 - (y,ei)2e2. 

Then f(y) = f(g±y) - f(yi,±^/\y\2 - yf,0,... ,0). In particular, / must be 
even in its second variable. If / € n^+1, 

L(m+1)/2J      21 

/(»)=      E     ctV?+1~2e[\l\y?-y\)    ,      for some c,. 

Hence the functions yT+1~2t(\y\2 ~ v\)1 span n^+1. 

For (iv) we just note that pm,n(x, ■) = \x\mpmin(x/\x\, ■) € Il„ 'x' by the 
homogeneity assumptions. Thus the basis facts from (iii) imply there are 
functions b„ti(x/\x\) with 

L»/2J 

Pm,»(s--)=   J2br>Ax/\x\)\x\m\-\2lXX
n
f!X2\. 

1=0 

The rotation invariance of pm,n and of the terms |a:|m| ■ |"_2£X2f      implies 
bn,e(gx/\gx\) = b„tt,(x/\x\) for all rotations g.   Rotating x/\x\ to e\ shows 
bn,e(x/\x\) = 6„,f(ei), i.e., the bn<i are constants. Moreover, the homogeneity 
in x of Xj shows 

L«/2J 

Pm,„(l, 0 =   E   Kl\A2l-{n-m)\ ■ \2iXXn-2f (15) 
1=0 

Since the left hand side is a polynomial of degree m in x, and the | ■ \2tXn-2e 

are independent, each \x\2l~(n~m'lXn-2e associated with a nonzero coefficient 
must be a polynomial of degree m in x. Hence, n — m = 2j must be even. 
Also, applying the second part of Lemma 2, 1{l — j) = 21 — (n — m) > 0. If 
m > n the proof of (iv) is done. If m < n, then reindexing the sum in terms 
of (t-j) yields (12).   D 

The following result is known [5], but is included for the sake of com- 
pleteness. 
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Theorem 4. Define a rotation invariant inner product (pairing) for functions 
on the unit ball B C Kd by 

[f,h] = cv [ f(y)h(y)dy,    cy1 =  voJ{|y| < 1}. (16) 

i) If f, h are homogeneous of degrees m,n, respectively with fh e ^{B), 
then [f,h] = 0 if and only if/{|y|=i} f{y)h(v)dA = °> Le-> the inteSral o{ 

fh over the sphere 5d-1 is zero. 

ii) Ifm ^ n, then \ ■ |2*H„ and | ■ \2jMm are orthogonal with respect to this 
inner product(pairing), provided m + n + 2(i + j) > —d. 

Proof: For (i) just introduce polar coordinates (r,y) e [0,1] x 5d_1. Then, 
by homogeneity and scaling properties of the area of {a;:  |x| = r}, 

[f,h]=cv f    rra+n+d-1 /      f(y)h{y)dAdr,        m + n + d > 0, 
Jr=0 JS*-1 

and the result follows. By (i) it suffices to prove (ii) when i = j — 0, since 
integrals of a product | • \2W>fh on 5d_1 do not depend on i,j. Let / € 
Hm and h G Hn. Then by Green's Theorem and the Euler relation for 
homogeneous functions 

0=  / (f(y)Ah(y)-h(y)Af(y))dy 
J{\y\<l}\ J 

= f (f(y)Vh(y) - h(y)Vf(y)) ■ ndA =  f (n - m) f (y)h(y)dA. 
J{\y\=i} V / ^{|y|=i} 

Thus /n ,=1| f(y)h(y)dA = 0, and the analogous relation holds for integration 
over the ball by part (i).   D 

An application of the above gives 

Lemma 5. The constants am, m > 2, in the 3-term recurrence (10) defining 
the x-zonal harmonics x„ of Theorem 3 are positive. 

Proof: By Theorem 4 and (10), 

0 = [Xm+l.Xm-ll = [xTXm>Xm-l] -«m+l[| • PXm-l-Xm-l] 

= [Xm,XlXm-l] "«Will • |2Xm-l,X™-l] 

= [Xm,Xm + am\ ■ |2Xm-2] ~ «m+l[| • fXm-nXm-l] 

= [Xm.Xml -Om+l[| " fXm-l, Xm-l]- 

Hence, am+1 = [X
x

m, X
x

m]l{\ ■ \2Xx
m-i,X

x
m-i] > 0.   □ 

Now part (iii) of Theorem 3 leads quite directly to the structure of near 
and far field expansions of general rotation invariant kernels ■0(x,a;<).  The 



54 R. K. Beatson, J. B. Cherrie, and D. L. Ragozin 

heuristic that a far field expansion of ■0(x,x<) with respect to x can be found 
from a Taylor expansion with respect to x<, has been known to us for some 
while. Theorem 6 below gives a proof that the underlying idea is correct 
inimportant special cases. In fact, we have the following result for such ip 
which are jointly homogeneous (■0(aa;,ox<) = a2nip(x,x<)) for some even 
integral power and are analytic about xK = 0, such as 

^„(i,x<) = \x - x<|2"(log(|x - X<\2) - log(|z|2)). (17) 

Theorem 6. Let ■0(K,X<), X,X< 6 It be rotation invariant, jointly homo- 
geneous of degree In and analytic in x,x<, for [cc^-1 < \x\. Then there exist 
constants cj^ e such that the Taylor expansion ofip about x< = 0 has the form 

oo    |m/2J 

#*,*<) = £ £ c,/H2(n+'-m)k<r^,-2/(^<)      (is) 
m=0   1=0 

oo    |m/2J 

= £ £ c>i2(n+'-m)Ki2Vmi2,(z).       (i9) 
m=0   (=0 

When tp is (k + 1)-harmonic in x<; the upper limit on £ in (18) or (19) is 
min{&, |m/2j}. Iftp(x, 0) = 0 then the lower limit on m in (18) or (19) is 1. 

Proof: The terms p^(x,xK) in (4), the Taylor series o{tp(x,x<) with respect 
to x<, are degree m homogeneous polynomials in x<. When any Taylor se- 
ries is grouped by homogeneity with respect to s<, each group is uniquely 
determined. Since only the term p^(px,pa;<) in the series for ^(gx,pa;<) has 
homogeneity m in x<, the rotation invariance implies that p^ is also rota- 
tion invariant. Similarly the joint homogeneity of ip yields p^(ax,aa;<) = 
a2nPm(x, £<)• Since for any x,x< there is a rotation g (or reflection if d = 2) 
which interchanges the rays through x and xK, i.e., g(x/\x\) = (x</\x<\) and 
g(x</\x<\) = (a;/|x|), it follows that 

M2(m-n&,*<) = \x\^m-n^(\x\xJ\X<\, \X<\x/\x\) 

\X    m  ~  ( „       (F<ll \ i       |2(m-n)~ / \ 

Since the final right side in this string of equalities is an m-homogeneous 
polynomial in x, we see that the terms in (4) have the form \x\2(n~m)pm(x, x<) 
with pm a rotation invariant m-homogeneous polynomial in each of x,x<. 
Hence (18) follows by Theorem 3.(iii).   D 

The separation properties in (5) can now be achieved by further use of 
rotation invariance. Each of the subspaces | ■ |2fHj, j + 2£ = n, which occur 
in the decomposition of ITn is rotation invariant. Hence it has a (unique) 
rotation invariant reproducing kernel 

dim Hj 

k(x,y) = \x\2t\y\2t   £   fiWfiiy), (20) 
i=0 
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where {| ■ \2efi} and {| ■ \Mfi} are any bases for this subspace which are bi- 
orthogonally dual with respect to some rotation invariant inner product, e.g. 
the inner product (16) (see [8].) But by (12) in Theorem 3.(iii), since k(x,y) 
is (exactly) (£+ l)-harmonic as a function of y, and is homogeneous of degree 
2£ + j in both x,y, 

k{x,y) = cJM
2l\y\2lxx

j{y\ (2i) 

for some Cjtt > 0. Equating (20) and (21) provides separation of the influence 
of x, x< in the expression for xXj{x<)- A consequence is separation of x, xK 

in the far and near field expansions given by Theorem 6, thus allowing the 
combination of the expansions for several centers x< = Xi,i = 1,..., N, into 
one expansion about 0. 

§4. Expansions in R4 

In this section we use the results of Section 3 in the R4 case to outline the 
explicit expansion formulae for the 4>i m (2) for d = 4. We start with the far 
field expansion of the potential function \x — a:<|~2. 

Theorem 7. For x,x< € R4 with \xK\ < \x\, 

oo 

|x-x<|-2=^|a!|-
2(,n+1)cmxS.<(x)l    cm = l. (22) 

m=0 

Proof: Since \x - x<|
-2 is harmonic in R4, an expansion of this form holds 

for some constants cm by Theorem 6. Using Xm (x) = Xm(a;<). multiplication 
by \x - a;<|2 = |x|2 + |a:<|

2 - Xi{x<) yields 

l- E (cm-cm_i)i*r2,nxs,(s<) 
m=0 

+ (cm_2 - cm_iOm)|x|-2(m-1)|a;<|
2x^_2(a;<), 

when the recurrence (10) is used and the geometrically convergent expansion 
is rearranged to group terms of common homogeneity in x<. Then equating 
coefficients using (iii) of Theorem 3 shows CQ = 1, cm = cm_i and cm_2 = 
Cm-io-m- These must be consistent so am = cm = 1 for all m.   D 

We now outline the expansion of V'n(x,a;<) from (17). This gives us the 
bulk of the far field expansion for cj)n+2- 

Theorem 8. 

oo   min{n+l,[m/2j} 

W,*<)=£ E cU*\2{t+n-m)\*<\n^t{z), (23) 
m=l 1=0 

where the non-zero coefficients c1^ £ are given by the formulae £ml = —^~m , 
and the recurrence c^+/ = cn

ml - cn
m_x<l - C_M_X + C_2^_r 

Proof: The form of all the expansions follow from (18), since tpn(x, 0) = 0. 
The explicit determination of the c^, t, the n = 0 case, is done in Lemma 4.4 
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of [1]. The recurrence for the c^n( follows as in Theorem 7 from (10) with 

am = 1 upon multiplication of the ipn case by |x - x<|2. The details are in 
Lemma 4.6 of [1].   D 

The explicit construction of bases for Mj (and dual bases) which are 
needed for the separation results can also be significantly simplified by use of 
the rotation invariance perspective. A detailed development in M4 is in our 
previously cited work. 
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Constructive Approximation by 
(V,f)-Reproducing Kernels 

Mohammed-Najib Benbourhim 

Abstract. In this paper we propose a constructive method to build 
reproducing kernels. We define the notion of (V, /^-reproducing kernel, 
and prove that every reproducing kernel is a (V, /1-reproducing kernel. 
We study the minimal approximation by these (V, /)-reproducing kernels 
for different choices of V and /. Examples to which our results apply 
include curve and surface fitting. 

§1. (V,f)-Reproducing Kernels 

For any set (respectively locally compact set) fi, we denote by B, (respectively 
Cm(ft)) the space of real-valued functions (respectively m-times continuously 
differentiable functions) defined on fi equipped with the topology of pointwise 
convergence (respectively uniform convergence on the compact subsets of fi). 
Let us recall some definitions. 

Definition 1.1. A real-valued function H defined on fi x Q, is a reproducing 
kernel onQxQ, if 

1) H is symmetric: H(t,s) = H(s,t) for all t, s € 0, 

2) H is of positive type: 

k,l=N 

Y, XkX,H(tk,ti)>0, 
k,l=l 

for any Rnite point set {tfc}^=i of£l and real numbers {^k}k=i- 

Definition 1.2. A vector subspace H ofBp is said to be a hilbertian subspace 
ofR? (respectively Cm(fl)) if 

1) "H is a Hilbert space, 

2) The natural injection from H into R." (respectively Cm(tt)) is continuous. 

We review some important results on reproducing kernels which are studied 
in [4]. 
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Theorem 1.1. 

1) A Hilbert space H (respectively a real-valued function H defined onQxCl) 
is a hilbertian subspace of Rn (respectively a reproducing kernel on tt x ft) 
if and only if there exists one and only one reproducing kernel H on Q, x Q, 
(respectively hilbertian subspace H of R ) such that 

u(t) = (u\H{-,t))n,       Vtett,    VueH. 

H is called the hilbertian subspace associated with H. 

2) For any hilbertian basis (fi)iei ofH: H(t,s) = ^fi{t)fi(s). 

3) If H is separately m-times continuously differentiable, then H is a hilber- 
tian subspace of Cra(fi). 

4) The vector space Ho =span{(#(-,£))} is dense in H. 

Let (V, (• | -)y) be a Hilbert space, fi be a set and / be a function from fi into 
V. 

Definition 1.3. For all f : tt —> V, we define a (V, /)-reproducing kernel Hf 
by 

Hf(t,s) = (f(t)\f(s))v,        V(M)6fixa (1.1) 

We have the following result: 

Theorem 1.2. Hf defined by (1.1) is a reproducing kernel on fi x fi and its 
associated hilbertian subspace Hf of 1R   is 

Hf = {w e nn | 3w e V :  w(t) = (u | f(t))v, Vi € «I. 

Proof: One can easily verify that Hf is a reproducing kernel. 
Let Hf : V —► Rn be defined by (Hfu)(t) = (u | f(t))v. The mapping Hs 

is linear, and the inequality 
\{Hfu){t)\<\u\v\f(t)\v=\u\v Hf(t,t)K 

for all t £ Q. and for all u € V implies that it is continuous. Let M. be the 
closure in V of the vector space span{(/(£))      }, and PM the orthogonal 

projector on M. We define on H; = Hf(V) the bilinear form 

(Hfu | Hfv)nf = {PMu | PMv)v 

It is easy to see that this form is a scalar product on Hf. Then the linear 
mapping Hf : M —> Hf is an isometry, and consequently (Hf, {■ | -)nf) is a 

Hilbert space. For all tefl, the function 
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Hf(t, •):«£$!-. Hf(t, a) = (f(t) | f{s))v, 

is an element of Tif, and satisfies the reproducing formula 

(Hfu)(t) = (Hfu | Hf(t, ■))«„        V« € V. 

Consequently (see Theorem 1.1), Hf is a hilbertian subspace of H   and admits 
Hf as reproducing kernel. D 

Theorem 1.3. Let w be a set and c a mapping from u> to fi. Then 

(Hc)f(y,z) = ^(cd,),^)) - {f{c{y)) \ f(c(z)))v 

is a reproducing kernel onu) x w. 

Proof: For all t/Gw, f{c(y)) is in V. The function (Hc)f is symmetric and 
is of positive type: 

k,t=N k=N k=N 

£ Xk\i(Hc)f(yk,m) = (^ Afc/(c(yfc)) I 5] A*/(c(W)))v   > 0. D 
k,l=l k=l k=l 

Example 1.1.  Let V = L2(a,b), tt a subset of 1R and f{t)(x) = exp(cxt) 
where c is a real constant. Then 
TT f (exp(c6(i + a)) - exp(co(t + s)))/(c(t + a)),    if (t + s)?0, 
Hf(t,s) = < 

lb — a, otherwise. 

Example 1.2. Let V = L2(1R+), and suppose n is a subset of Rn. 

For all functions c : fi —> (0, +oo), we have 

(i) If f(t)(x) = 4-exp-cWM2, then Hf(t,a) = \ • 
"' y/c(t) + c{s) 

(ii) If f(t){x) = exp_c(*)a:, then Hf(t,s) =    . .       . ., and in particular if 

-P(i) c(i) = —j-t- (with JP(£) and Q(t) polynomials), we obtain the rational repro- 

ducing kernel 
nit,)-       Q(*)Q(*) 
nf(ha)     P(t)Q(a) + P(a)Q(ty 

§2. (V,f )-Reproducing Kernels of Convolution Type 

We consider the case where 

1)V = L2(Kn) and Ü = Hn. 

2) f(t)(x) = f(t - x), with / in the familar Sobolev space Hm(TR,n). 

Then Hf(t,a) = /    f(t-x)f(a-x)dx. 
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Theorem 2.1.  We have the following properties: 

1) Hf(t,s) = hf(t - s) with h}(0 = (/ * /)(0 = T(\ Tf \2)(0, where 
f(x) = f(—x) and Tf is the Fourier transform of f. 

2) hf e C^(Bn) = \u G Cm(R") |   lim (Dau)(t) = 0,    0 <| a \< m\ . 
I |t|—»oo J 

3) The associated hilbertian subspace ofHf is 

Uf = f * L2(R")     ^ C™(Rn) (continuous embedding). 

4) In particular, if \ J7/ \ > 0, then 

nf = {u, e s' I Tw e LL(R"),   ^ e L2(HT)}, 

equipped with the scalar product 

f   Tw1(QTw2(QJf 

5) If f is radial, then hf is radial: Hf(t,s) = hf(\t — s \). 

6) For all distinct points {tk}$?=1 in R", the matrix H^ = {Hf{tk,ti))1<k 1<N 

is invertible (strictly positive definite). 

Proof: 
1) We have 

Hf(t, s) = (27r)-f /   e-*<«-l«> | ?f(0\2dt = H\ Tj |2)(t - a). 

2) / G Hm(TEC) => Dahf = (Daf) * / G C$(Rn) for 0 <| a |< m, (see [2]). 

3) is a consequence of Theorem 1.2 and the property given in 1). 

4) Since Hf •—> Q"(lRn) <—> <S , we have the equivalences: 

{w G Hf) «■ {3M G L2(Rn) : Tw = ^wJ-/} 

^{^^L(n^ei2(R")}- 

From Theorem 1.2, we have 

w(t) = (u | f(t - -))L»(R-) = (^M^ I /(* " -))L=(R") = CM« * /)(*)• 

Then .Fw = TPM uTf, and 

(wi | W2)H, = /     PJWWI(X)PA(U2W«II 
JR" 
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5) For any orthogonal matrix A, 

hf(At) = f   f{x)f(At - x)dx = f   f(Ax)f(A(t - x))dx 

= I   f{x)f(t-x)dx = hf(t), 

since f(Ax) = f(x) and | detA |= 1. 

6) We suppose that / ^ 0 in L2(R"). Since the matrix 

HN = I   /    f(tk — %)f(ti — x)dx) is a Gram matrix, it is invertible 
WR." /l<k,l<N 

if and only if the system {f(tk — -)}fcLi 's hneary independent in L2(Hn). If 
k=N 

Y^ c*/(** - x) = ° in L2(Rn), for ck £ R, 1 < k < N, then by the Fourier 

k-N 

transform we get ( ]T Cfte^'"1^)Tf(£) = 0 in L2(lRn). 
k=i 

k=N 

The Lebesgue measure of the set N = {£ S Hn | ^ c^e-^'*1^ = 0} is equal 

to zero.   Then Tj vanishes outside A/", i.e: Ff = 0 in L2(R") and by the 
inverse Fourier transform, / = 0 in L2(Rn), which complete the proof. D 

sin2(-) 
Example 2.1. Let u(x) = (1- | x |)+ and Tu — v. We have v(x) = £2±. 

(i) Taking f = T{\u |'), #,(*, s) = {l-\t-a |)+. 

(ii) Taking / = ^(|« |*), Hf{t,s) = 
sin2^) 
{t-sf 

Example 2.2.  ( Bessel reproducing kernels) For n € IN, a € 1R and a > n; 
consider Ga € L2(Rn) defined by T[GQ)(x) = (1 + | x |2)~f • 

(i) Taking / = T{\ Ga |*>» #,(*,») = (1+ 11 - s |2)-?. 

(ii) Taking / = jP(| TGn+1 |*), fl)(*,a) = ^fliry exp(-| * — a |) and 

W7 = H^ (RB) (Sobolev space). 

Example 2.3.    (i/-B-spline reproducing kernels) Let 

1) Yt(x) = ixV- 
2) v e £' (distributions with compact support) such that u(p) = 0, for all 

polynomial p in Vi(R). 
3) f = v*Yt. 

For such functions /, we give the following theorem without proof. 
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Theorem 2.2.  We have: 

1) / G L2(R). 

2) For a« u in F,+1(1R) = {v G L^W/ u('+1)  e L2(R)} (Beppo-Levi 

space} we have /  M^+1^(a;)/(< - x)dx = (v * w)(t). 
./R 

3) #/(*, s) = (-l)'(i> * v * ^2i+i)(< - s) and Hf = v * Vl+1(B,). 

In the particular case of divided differences, v is defined as the mth-iterated 

convolution v = ^fly1*™, and v = ^^f1"" ■ 

§3. Data Fitting by (V,f)-Reproducing Kernels 

Let {tk\k=\ a set of distinct points in Q, and define a linear operator AN from 

Hf into IT by AN{u) = («(**))I-C^AT 

Definition 3.1. For all zN e WiN  and e € [0,1) we deßne a spline to be any 
solution of the following minimal approximation problem: 

(pt{zN)y. mf ({l-e)(u\u)Hf+e\\ANU-zN\\l_N), 

where 

j AJ1
1
{ZN},    if e = 0 (Interpolation), 

£ _ \ Hf, ife €]0,1[ (Smoothing). 

The following theorem gives the spline in the case e ^ 0. 

Theorem 3.1. For all (e,zN) e]0, l[xlRN, the problem Pe(zN) (Smoothing) 
admits a unique solution 

where the coefficients tA.e = (X\,..., \C
N) G JR.N are the solution of the system 

(HN + INWN = zN, 

with HN - (Hf(tk,U))i<k,i<N and IN is the identity matrix. 

Proof: 1) From the continuous embedding: Hf ■-► Rn (see Theorem 1.2), 
we deduce that AN is continuous. 2) AN(Hf) is closed as a vector subspace 
of HN. Then from the general spline theory (see [1,3]) we get the theorem. D 
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Theorem 3.2.  The following two properties are equivalent: 

1) For all ZN € 1R.N, the problem PO(ZN) admits a unique solution. 
2) The system {f(tk)}%=1 is linearly independent in V. 

Proof: For all zN € IR^, the problem PQ(ZN) admits a unique solution if and 
only if the matrix HN = (Hf(tk,ti))1<kl<N is invertible (see [1,3]). Since the 

matrix HN = ({f(tk) | f(ti))v)1<kl<N is a Gram matrix, it is invertible if 
and only if the system {f(tk)}k=1 is lineary independent in V. D 

Furthermore, for the particular case V = L2(Hn) and / € #m(]Rn), 
Theorem 3.2 and the property (6) of Theorem 2.1 imply the following theorem. 

Theorem 3.3. For all f £ Hm(B.n) and zN e WLN, the problem P0(zN) 
(Interpolation) admits a unique solution 

k=N 

*°(t) = £ \°kHf(t,tk), 
k=l 

where the coefficients 'A0 = (A?,..., A^) € B,N are the solution of the system 

HNA-N 
= Z

N, 

with HN = (Hf(tk,U))i<k,i<N and IN is the identity matrix. 

§4. Data Fitting Preserving Polynomials 

Let Pd(]Rn) the vector space of polynomials of degree at most d. We suppose: 

(HI) For all p £ Pd(lELn) the subset {tk}%=1 of ]Rn is such that 

{p(h) = 0,     1 < k < N} <^=> p = 0. 

(H2) Hf nPd(]R") = {0}. 

We remark that in the case V = L2(Rn) and / € Hm(Rn), the hypothesis 
(H2) is satisfied because Hf C C^(Mn) (see Theorem 2.1(2)), and 

Co
m(Rn)nPd(lR

n) = {0}. 

Let U) be the Hilbert direct sum: Hf = Hf ©Pd(R"). We denote by Uf 

the orthogonal projector from Hf onto Hf, and we define on Hf the linear 
mapping AN(u) = («(ifc))^^ € RW.   For all (e,zN) e [0,1] x TRN, we 
consider the following minimal approximation problem in Hf: 

(PC(ZN)) : jtf ((1 - e)(Uf(u) \ Hf(u))Ht + e\\ANu - z„|&„), 

where 
{A'N'{ZN}, if e = 0 (Interpolation), 

Hf, if ee]0,l[ (Smoothing), 

7>d(lRn), if e = 1 (Least squares). 

The hypothesis (HI) implies that the problem PI(ZN) admits a unique solu- 
tion. In the case e €]0,1[ (Smoothing) we have the following theorem: 
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Theorem 4.1. For all (er, z/v)  e]0,l[xRN, the problem Pe{zN) admits a 
unique solution tr€. In the case e €]0,1[, the solution a€ is given by 

k=N i=nd 

>7l(t)=Y/^Hf(t,tk)+Y/blPl(t), 
k=\ t=l 

where the coefficients <Ae = (A|,..., \N) £ B.N and lB€ = (b\,..., be
nd) € IT" 

are the solution of the system 

lE 0 ) \Bl)      \ 0 

with 

1) HN = {Hf(tk,ti))1<kl<N and IN is the identity matrix, 

2) E = (^fc,t)l<*|^ with Ek,i = Pi(*fc) and {Pi)i<i<nd is a basis of Pd(R
n). 

In particular, if there exists p£ Vd^") such that {p{tk) = zNik,l <k<N}, 
then ae = p (preserving polynomials property). 

Proof: Theorem 4.1 is a consequence of general spline theory (see [1,3]): 
1) Apt is continuous since Hi is a hilbertian subspace of ]R  . 

2) 11/ is continuous and Uf(HJ) = Hj is closed since 11/ is an orthogonal 
projector. 

3) ker AN n kerll/ = {0}:  derives from the hypothesis (HI) and the fact 
that kerll/ =-pd(!Rn). 

4) ker AN + ker 11/ is closed since ker 11/ is a finite dimensional vector space. 
D 
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Adaptive Wavelet Galerkin Methods 
on Distorted Domains: 

Setup of the Algebraic System 

Stefano Berrone and Karsten Urban 

Abstract. We use the algorithm of Bertoluzza, Canuto and Urban [2] 
for computing integrals of products (of derivatives) of wavelets in order to 
solve elliptic PDEs on 2D distorted domains. We construct a variant of the 
original method which turns out to be more efficient. Several numerical 
results are presented. 

§1. Introduction 

Adaptive wavelet Galerkin schemes have quite recently been proven to offer 
great potential for numerically solving boundary value problems for partial 
differential equations. On the one hand, strong analytical properties such 
as convergence and optimal efficiency have been proven for elliptic operators 
[6,9]. On the other hand, first numerical tests also on non-tensor product 
domains indicate the applicability of such methods, [1]. 

However, the major obstacle so far is the efficient computation of the 
entries of the stiffness matrix and the right-hand side of the corresponding 
algebraic systems. In fact, it turns out that these entries are more expensive to 
compute than, e.g., in the case of adaptive Finite Element Methods. In [2], a 
method to adaptively approximate and compute these entries was introduced 
and analyzed; numerical results were given for a ID example. In this paper, 
we study the application of the algorithm in [2] for 2D 'distorted' domains, 
which are parametric images of the unit square. This allows the study of the 
influence of 'realistic' parametrizations of non-tensor product domains on the 
assembling of the algebraic system. We incorporate some improvements over 
the original method in [2] to increase efficiency, and present various numerical 
results. 

Curve and Surface Fitting: Saint-Malo 1999 65 
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§2. Adaptive Approximation of the Algebraic System 

Given a linear boundary value problem in a bounded Lipschitz domain fi C 
]Rn (n > 1), its numerical approximation by a variational method (Galerkin, 
Petrov-Galerkin, weighted residuals, ...) requires the computation of integrals 

of the form 

/ baß(x)Dau{x)Dßv{x)dx       or f fß{x)D0v(x)dx, (1) 
Jn    ' Jn 

0IMI 
where a,ß eF are suitable multi-indices, Da = ^-^ ^-57 with IMI := 

a\-\ \-a„, u and v are suitable trial and test functions belonging to ffHall(fi) 
and ff!!""(fl) respectively, baß e L°°(fi) and fß £ L2(fi). 

We consider a wavelet Galerkin method with trial and test spaces Syy = 
span *A generated by adaptively choosing a finite subset \?A = {ip\ : A € A} 
within a wavelet basis # = {ip\ : A e J} in L2(Q), i.e., A C J (see, e.g., 
[5,10]). The wavelets are assumed to have the appropriate regularity for the 
above integrals to be well defined. 

The construction of such wavelet bases on fairly general domains 0 is not a 
trivial task. However, quite recently significant progress has been made on this 
topic, see [3,4,8,12] and also [13] for a somewhat different approach. The main 
idea behind all the constructions in the first cited papers is domain decom- 
position and matching. The domain fi is subdivided into N non-overlapping 
subdomains fij. Each subdomain is mapped to the n-dimensional reference 
cube Cl := [0,1]" by means of smooth parametric mappings 

Fi-.Cl^üi,    Üi = Fi(Cl),    Gi~F-\ (2) 

Then, each ipx, \ & J, restricted to fij is the image through F{ of a linear 
combination of tensor product wavelets i>x on tt, i.e., if A = (j,k) (j =: |A| 
denoting the level and k the location in space as well as the type of wavelet), 

then 

Ä'eS(i.A) 

where S(i,\) is a suitable set of indices of the form A' = (j, k') with k' € 0. 
and 7£, i are suitable coefficients independent of; (see e.g. [3,4]). 

2.1. Reduction to univariate integrals 

We will only consider the calculation of the integral on the left-hand side of 
(1) which enters into the stiffness matrix. The entries for the right-hand side 
are treated analogously, [2]. Hence, replacing u by VA and v by Vv on tne 

left-hand side in (1) for some A, /x € A, we get 

aXlß :=  / ba,ß{x) DaM*) DßMx) dx = Y,     E Z)     7Ä',i7^'' 
'=1 o'6T(i,o),   Ä'€S(t,A), 

ß'£T(i,ß)    ii'eS(i,ß) 

x / baAFi{x))da\x)dß\x)\JFi{x)\Da'^^{x)^'^ß,{x)dx,{Z) 
Jn 
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where the sets T(i,a),T(i,ß) are defined by the chain rule, and da> and dß> 
are smooth functions depending on Gj and its derivatives. The integrals which 
appear on the right-hand side of (3) take the form 

k,a ~ I. £(z) D*fa{&) Dß4>fiW tä,   where  $k(x) = f[ ^ (xt)       (4) 

and i§^. are univariate scaling functions or wavelets on [0,1]. Now, we use 
the Two-Scale-Relation for the wavelets to express them in terms of scaling 
functions on the next higher level, i.e., 

faß) = Yl mx,xlP\(S:)' (5) 

where mk k are the refinement coefficients. Here, the index set A^ C Z\\\+i 1S 

determined by the Two-Scale-Relation and 2} denotes the set of all scaling 
function indices on a level j. Hence, d? - becomes 

A€AX AeAA 
Jn 

The computation of each integral on the right-hand side of (6) would 
be highly efficient if we could reduce it to a product of univariate integrals, 
but, in general, the function c is not a tensor product of univariate functions. 
However, we can expand it in an appropriate tensor product wavelet basis 

ö':={e;:e;(x) = n <^(*0. *e.7'}, (7) 

(where ,0?. are again univariate scaling functions and wavelets on [0,1], re- 
spectively, possibly different from i§0t) as follows 

c(x) = J2 ^0l(x). (8) 

Then, we approximate c locally on Sk „ := supp <pk n supp <pß by a finite 

sum QA* C, obtained by restricting the sum in (8) to a finite index set A* C J* 
(depending on c as well as on a, ß, X, ß, X and ß), whose precise definition 
will be given below. Correspondingly, dk - is approximated by 

4,A:=5Z   Yl m\,\mß,ß   - QK'c{x)b&<pk{x)b^p{x)dx,       (9) 
ÄeAs A£AA 

Jn 
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which is a finite linear combination of products of univariate integrals of the 
following form 

/ Jo 
&<&) i^ixJieWixJdxi,        i = l,...,n. (10) 

An algorithm for computing such integrals can be found in [2]. However, here 
we use biorthogonal B-spline wavelets [7,11] as trial and test functions. Due 
to their explicit representation, efficient direct formulas for the integrals (10) 
are available and have been used for the subsequent numerical experiments. 

Let us mention that the above strategy slightly differs from [2] since 
here we approximate c locally on S^ -, whereas in [2] this is done on the 

somewhat larger domain S^ß := supp ^ n supp ^. This new method ensures 
automatically that only non-zero integrals are computed, avoiding a wide 
number of checks, which explains why the present method is more efficient 
than the original one. 

2.2. Adaptive approximation of the stiffness matrix 

Now, we are going to describe the construction of the index set A* introduced 
above. To this end, we have to introduce some notation. Let us set 

I(A, A) := {v£J*- |supp9% nsupp<px n supp<pfi\ > 0}, (11) 

and j := min{|A|, \ß\} as well as J := max{|A|, |A|}- Let Ro be the number 
of zero moments of 9*P, [5,10]. Moreover, let 7^ and T0 be the largest integers 

such that <£x g WT^°°(h) and 0t g WT*'°°(h), respectively. Then, we set 

Ä:=min{Ä;,TA-H,T£-||/?||}. 

We make the following 

Assumption 1. The system 0* defined in (7) allows the characterization of 
the Besov space B°q(Q) for indices (a, q) in a certain range SQ- C 7R+ x (0,1], 
i.e., the Besov seminorm \ ■ |B„ ^) *as tae representation 

I^IBJ,(A) ~ ( E 2|C|" 2Wn{q,2-1) M'J     -        * € KoW-        (12) 
0€J" 

The following notation will be frequently used in the sequel. For £ = 
1,..., L, we consider (possibly different) wavelet bases t^f = {i^\t: *t € tJ}- 
Then, for \e £  i J, I - 1, • • •, L, we define 

.,. .   v      Jl,    if|aL=iSupp^At|>0, 
I(äI,...,AL) ■= S , 

I 0,    otherwise. 
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Now, we are in a position to define the set A*. Let us fix, once and for all, 
independently of A and ß, a non-increasing £1(JBV0)-sequence S = (6i)e€w0 

with strictly positive elements, whose ^1(W0)-norm is close to 1. Let c € 
Bq,q{^) for some (<7'9) € SQ>. For an index v £ J*, we define its relevance 
for the computation of c0 J^ Op{x) D&ip^(x) D^tp^(x) dx as 

pff\v) ■.=i(\,ß,v)2-W'">2-WnW2-V Icrf-o 

x   2-(R+n/2)(\C\-J) 2nJ/2 2IÄ|(||ä||-s) 2IAI(I|4||-»)Ä-1 
i IäI-IAH ■ 

Finally, for any e > 0, we define 

A* := {u e X(X, A) : pg£\*) > e/K,Ä™/i,A #^A #AA) or |j>| < J},   (13) 

which concludes the construction of an adaptive approximation d^    of d\t)x. 

Remark 2.  The construction of A* according to (13) seems to require the 
explicit knowledge of all the (inßnite) coefficients cp of c. However, one can 

estimate a priori a level JE such that p^f\v) < £/(m^ rrißtß #A^ #&ß), if 

\v\> Je. Following [2] it is easy to show that this is valid for 

JE:= 
R + <j + n{l-\) 

(14) 

where we have set 

Be := |log2e/(mkkmßtß_#Ax#AA)| + (R + n)J + |A|(|d| - a) 

+ IAKI/3I - s) + log2(|£|fl7(ft)«iT»i-iMii) + loS2 Const. 

Replacing d\^ in the computation of aAl/i in (3) by d*Xß results in an 
adaptive approximation oA/i of a\tfl. As already mentioned, one can construct 
an adaptive approximation fx for the entry of the right-hand side f\ := 
JQ fß{x) Dl3ipx(x) dx in the same way. 

2.3. Error estimates 

Let us assume that the boundary value problem we aim at approximating 
is elliptic of order 2s. Let H§(Q.) be the closed subspace of Hs(tt) which 
accounts for the given boundary conditions. The wavelet basis ^ intro- 
duced above is assumed to form a Riesz basis of this space. The wavelet 
Galerkin approximation of our problem is obtained by replacing H^(fl) by 
5A := span{V>A : A S A}, where again A is an adaptively chosen subset of J. 
The corresponding Galerkin solution will be denoted by UA := ^2xeAu^^- 
The vector UA := (MA)A€A is obtained by solving the linear algebraic system 
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Fig. 1. Physical domain (left) and exact solution (right) for the numerical tests. 

AAuA = fA, which is defined in a straightforward manner. Let the integrals 
which appear in the stiffness matrix as well as the right-hand side be com- 
puted in an approximate way, as described above. Denote the resulting matrix 
by AA and the resulting vector by f^; let uA be the solution of the modified 
linear system AAuA = fA and let u\ = £AeA «A^A- 

The following estimate on the effect of the described approximation of 
the stiffness matrix and the right-hand side has been established in [2]. It is 
readily seen that it also holds for our variant of the original method in [2]. 

Theorem 3.   Under the above and similar assumptions for computing the 
right-hand side, there exists e0 > 0 such that for all 0 < £ < e0: 

\UA-uA\s,n < £ 

\u\\s,n      ~ 
D (15) 

§3. Numerical Results 

In this section, we present our numerical results. We consider the Poisson 
problem with homogeneous Dirichlet boundary conditions on a domain ft 
which is the parametric image of ft under a suitable transformation. The 
domain is displayed in Figure 1, left. The boundary of ft consists of two 
straight lines and two curved parts. We computed the parametrization of the 
four parts of the boundary and then the parametric mapping F : ft -» ft is 
determined by transfinite interpolation, [14]. 

We constructed a solution u which satisfies the boundary conditions and 
which has a strong layer near the upper right corner of the domain. This 
function is shown on the right in Figure 1. Since we have an explicit formula 
for u, we determined the right-hand side / by using MAPLE V. 

The choice of these parameters allows us to test an interesting situation. 
Indeed, the parametric mapping is obviously far from being a tensor product. 
Hence, we can study the influence of a 'realistic' transformation. Even though 
this influence was studied in [2] in ID, we face here a non-tensor product 
situation for the first time. Moreover, for computing the right-hand side, two 
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1*1 = \tA = Jo, 1*1 =k, H= jo + l *l = M = io +1 
e Je 3 max #Int Je .7 max #Int Je jmax #Int 

0.5 5 3,4 16,80 8 5,6 108,1264 6 4,5 196,8150 
0.25 5 4 18,138 8 6 142,1603 7 5 224,13168 
0.125 5 4,5 26,196 8 6,7 184,2751 7 5,6 344,18052 
0.0625 7 4,5 35,260 10 7 281,3924 8 6 442,21924 
0.03125 8 5,6 44,454 11 7,8 396,8048 9 6,7 556,36600 
0.015625 8 6 61,656 11 8 716,12044 10 7 840,49916 
0.0078125 9 6,7 82,1318 12 8,9 1152,27708 11 7,8 1172,100464 

Tab. 1. Estimated and determined maximum level and number of integrals in A* 

kinds of effects are present, namely the parametric mapping and the layer near 
the corner. We stress that we do not intend to study any particular choice 
for the adaptive discretization, i.e., the choice of the set A. We are primarily 
interested in the behaviour of the adaptive approximation QA,c in a realistic 
situation. 

As trial and test functions we used the biorthogonal B-spline wavelets 
on the interval corresponding to the parameters d = d = 2 (i.e., piecewise 
linear primal functions and dual functions of lowest possible order) from [11] 
(see also [7] for the original construction on M). For the system 6*, we 
choose as in [2] piecewise linear interpolatory wavelets. This of course implies 
that the computation of the corresponding wavelet coefficients cp can easily 
be performed. Moreover, since piecewise linear interpolatory wavelets are 
nothing else than hierarchical B-splines, the integrals in (10) actually only 
contain scaling functions. 

We used the parameters a = 2, q = 3/4, 8k := (fc + l)"2 as well as the 
corresponding parameters r = 2, p = 3/4 and Sk := k'1 for the right-hand 
side, [2]. 

In the ID tests in [2], the parameter e was chosen as the error in the 
H -norm of a corresponding uniform discretization. From a practical point 
of view, this is of course unrealistic. First of all, the solution is in general 
not known. Moreover, the ultimate goal of an adaptive scheme is to avoid 
a (high level) uniform discretization but to use the degrees of freedom in a 
more economical way. Hence, we performed various tests on the choice of the 
parameter e. 

Our first test concerns Je in Remark 2 and the number of integrals needed 
for computing the elements of the stiffness matrix. Our computations are 
performed in this way: at first, we start from the minimum level (j0 = 3) for 
the used wavelet basis, where we fix a certain e, then we solve the problem 
with scaling functions and wavelets. In Table 1 we compare the theoretical 
estimate Je on the maximum level in A* with the values that were actually 
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determined by our indicators in (13). For different portions of the stiffness 
matrix, we display the predicted J£, the detected maximum levels by the 
indicator as well as the minimum and maximum number of integrals needed 

for computing non zero-entries. 

We see that the estimated Je is always larger than the effectively used 
maximum level. This is what we expected, but the efficiency of the algorithm 
may be reduced by an excessive over-estimate of Je. We also deduce that the 
efficiency of the method crucially depends on the choice of e since the number 
of integrals strongly grows for decreasing e. This is surely due to the low order 
of the interpolatory wavelets used. 

Next, we present in Table 2 the average number of integrals computed 
for the stiffness matrix and the right-hand side for the first two levels with 
the same e of Table 1. Here JA := max{|A| : A € A}. 

£ 0.5 0.25 0.125 0.0625 3.1e-2 1.6e - 2 7.8e - 3 

A 
JA = 3 4.04 5.47 8.57 11.05 16.99 24.15 41.62 

JA = 4 111.55 48.31 234.08 305.98 489.47 738.67 1336.59 

f 
JA = 3 9 9 11.49 17.98 31.27 55.69 95.10 

JA = 4 87.4 87.4 87.94 90.17 137.56 207.72 411.61 

Tab. 2. Average number of integrals per entry. 

We deduce that the choice of e not only influences the maximal and 
minimal number of integrals as shown in Table 1. Since the average number 
of integrals grows when e decreases, the choice of e effects the efficiency of the 
computation of the whole stiffness matrix. Moreover, the presence of the first 
wavelet level also increases the number of integrals. 

Finally, we consider the error in the i/^-norm and the relative error 

A ' Mi,n 

for different choices of the parameter e. In Table 3 and Figure 2 'rate' cor- 
responds to the rate of convergence w.r.t. the exact solution in the H -norm 
for the first two levels in A. We see that these quantities do not depend on e. 
At these levels the relative discretization error still exceeds the relative error 
(15). This explains why the rate of convergence is basically constant w.r.t. 

the choices of e. 

Hence, the choice of e matters only if this value is at least of the same 
order than the relative discretization error. We remark that also for increasing 
e all scaling functions on level J whose support overlap S^ belong to A*. 

This implies that the error due to the approximation of the entries of the 

linear system is bounded. 



Adaptive Wavelet Galerkin Methods 73 

£ rate rA 
0.5 1.9666 0.1335 
0.25 1.9633 0.1337 
0.125 1.9538 0.1344 
0.0625 1.9658 0.1338 
0.03125 1.9563 0.1343 
0.015625 1.9591 0.1342 
0.0078125 1.9568 0.1343 

Tab. 3. Relative error and rate of convergence in dependence of e. 

Fig. 2. Rate (left) and rf (right) of Table 3. 
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Scattered Data Near-Interpolation with 
Application to Discontinuous Surfaces 

Renata Besenghi and Giampietro Allasia 

Abstract. This paper discusses a particular type of function approxima- 
tion on scattered data in a general number of variables, and its application 
to surface representation with imposed conditions. If the given function 
values are subject to errors, it is not appropriate to interpolate the function 
at the data in the sense of exact matching. As a consequence, we formulate 
a weakened version of the classical scattered data interpolation problem, 
and give a simple and efficient procedure to obtain near-interpolation for- 
mulas. Near-interpolants enjoy many remarkable properties, which are 
very useful from both theoretical and practical points of view (shape pre- 
serving properties, operator positivity, subdivision techniques, parallel and 
multistage computation). Applications of near-interpolants to the rep- 
resentation of surfaces, in particular with faults, are discussed in detail 
(parameter values, localizing weights, etc.). 

§1. Introduction 

In many applications, the given function values are subject to errors; hence 
it is not appropriate to interpolate the function at the data in the sense of 
exact matching, but it seems more appropriate to approximate the function 
or, more precisely, to get a relaxed interpolation or near-interpolation. Data 
requiring near-interpolation by scattered data methods occur in virtually ev- 
ery field of science and engineering. Sources include both experimental results 
(experiments in chemistry, physics, engineering) and measured values of phys- 
ical quantities (meteorology, oceanography, optics, geodetics, mining, geology, 
geography, cartography), as well as computational values (e.g., output from 
finite element solutions of partial differential equations). 

As a consequence of this remark, we formulate a relaxed version of the 
classical multivariate interpolation problem at scattered data points. 
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Definition 1. Given a set of points Sn = {x{, i = l,...,n}, distinct and 
generally scattered, in a domain D C IIs, (s > 1), with associated values 
{fi, i = 1,... ,n}, and a linear space $(P) spanned by continuous real basis 
functions gj{x;r) with x € D, r > 0, and j = l,...,n, the multivariate 
near-interpolation problem at scattered data consists in finding a function 

F(x;r) e $(£>) such that 
n 

F(xi;r) = ^2ajgj(xi;r) = fi + €i(r),    i = l,...,n, (1) 

i=i 

and 
limci(r) = 0. (2) 
r—*0 

We observe that r works as a parameter, and the limit case of F(x; r) when r 
vanishes 

F(x) = F{x;0) = limF(z;r) 
r—+0 

is an interpolation operator. If F(x;r) is specified, then the £j(r) in (1) are 
known; these near-interpolation errors at the nodes must not be confused 
with the unknown errors which affect the corresponding function values fi. 
However, it is reasonable to get things so that the e;(r) and the errors on fi 
are quantities of the same order. 

In Section 2 we give a constructive procedure to obtain a wide class of 
near-interpolation formulas. These enjoy many interesting properties which 
are listed in Section 3. A crucial point in near-interpolation is the proper 
choice of the parameter r in (1) and, eventually, of other parameters; the 
matter is discussed in Section 4. Finally, Section 5 is devoted to the application 
of near-interpolation to modelling faults. 

§2. Construction of Near-Interpolants 

To solve the classical interpolation problem, one can consider basis functions 
which depend on the nodes and, moreover, are cardinal. The method of car- 
dinal basis functions involves selecting continuous cardinal functions gj : D —* 
H, (j = l,...,n), such that gj{x{) = 6(j , (i = l,...,n), where 6ij is the 
Kronecker delta operator, and setting up the interpolation operator F in the 
form 

n 

*"(*) = E fi Sj(x). 
i=i 

The corresponding near-interpolation problem considers basis functions 
gj(x;r), which are no longer cardinal, but gj{x;r) -» gj{x) for r —» 0. If such 
gj(x;r) are given, then 

n n 

F(x; r) = Yl fi 9ifr r) = F(x) + £ fi bifo r) " 9j(^)] (3) 

represents a solution of the near-interpolation problem. In this relation the 
terms 6j(r) = F(xi\r)-fi, (i = l,...,rc), are uniquely determined and satisfy 
(2). 
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As an example, let us consider the near-interpolant Shepard's formula in 
the product form 

where d(x,y) is the Euclidean distance between x and y, and /3 > 0, or in the 
equivalent barycentric form 

*'l = Pi»P' *'i0) = /" i = 1 -'" 
This formula no longer interpolates for r > 0, but fi(x; r) —> /x(:r) as r —► 0, 
where /x(a;) is the well-known Shepard's formula [8, 1]. 

Examining the structure and the basic idea of Shepard's operator suggests 
a simple and efficient procedure to obtain an interpolation formula [1]. The 
corresponding way to obtain a near-interpolation formula is contained in 

Definition 2. Let a(x,y;r), with x,y € D and r > 0, be a continuous 
positive real function such that 

lim a(x,y;r) = a(x,y), (6) 
i—>Q 

where a(x,y) > 0, ifx^y and a(x,y) = 0, if x = y for all x,y € D. Define 
now the functions gj(x;r) by the equations 

gix.r)=   nLwj^^) 
3  '      ELinLi,*^0^'2^7-)' 

and the near-interpolant F(x; r) by 

or equivaientiy by 

l/a(a;,xJ;r) 

**'>-p'£Si& F(l,i0) = /" . = l,...,n.     (9) 

Many choices are possible for the function a(x,y;r) in (6); there are no 
constraints engendered by the set Sn, that is, the distribution of the nodes 
is irrelevant. Nevertheless, experience suggests identifying a with a radial 
function 

a(x,y;r) = <j>(\\x - y\\2 + r), 
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where || • || is a convenient norm. As an example, choosing the Euclidean norm 

|| • ||2 and 
a(x,y-r) = (\\x-y\\l+r)<3,        ß > 0, (10) 

we obtain from (8) the near-interpolant Shepard's formula (4). 
It is often convenient to consider the function tp(t;r) : R>o —> H, as- 

sociated with <j>(\\x - y\\2 + r) and defined as <p(t;r) = <j)(t2 + r). We have 
just seen tp(t; r) = (t2 + r)ß in (10); another possible expression that works is 
<p(t; r) = (t2 + r)ß exp(7 t2), (7 > 0). Considering several functions <p can be 
useful in order to compare their behaviour and choose the most suitable for 

§3. Properties of Near-Interpolants 

Near-interpolants, as given in Definition 2, enjoy many interesting properties. 
We list some of them. 

A) The near-interpolant F(x; r) in (8) or (9) is a weighted arithmetic mean 
of the values /,-, (j = l,...,n), since 0 < gj{x;r) < 1 and YJj=\9j{x\r) = 
1. As a consequence F(x;r) satisfies the betweeness property min; ft < 
F(x; r) < maxj fa , and reproduces exactly any constant function f(x) = c, 
that is, if fc = c, (i = l,...,n), then F{x;r) = c. Moreover, F(x;r), 
considered as a functional on the set of functions / : D —> 1R, is linear and 
positive. 

B) If a(x, y; r) is infinitely differentiable with respect to the pth compo- 
nent of x = (a^1),...,^8') for all x,y e D and p = l,...,s, then F(x;r) is 
also infinitely differentiable with respect to the x(p\ For example, choosing 
a(x,y;r) as in (10), F(x;r) = p(x;r) in (4) can be differentiated as many 
times as desired. 

C) If a is a radial function, F(x; r) enjoys some properties of invariance with 
respect to affine transformations. In particular, with the Euclidean norm, we 
have that F(x; r) is invariant under translation and rotation, but not scalar 
invariant. 

D) Subdivision techniques can be applied to near-interpolants achieving re- 
markable results, very well suited for parallel computation [3]. Let us make a 
partition of the set Sn on the domain D into q subsets Snj, so that the jth 
subset, (j = 1,..., q), consists of the nodes Xj\,Xj2, ■■■, Xjnj, with n\ + «2 + 
 \-nq =n, and the values fjkj, (j = 1, -. ■, q; kj = 1,...,n,), correspond to 
the nodes Xj\... The indexing of the nodes in the subsets may not depend on 
the indexing in the set, provided the biunivocity is saved. 

Given Snj = {xji,xj2,..., xjnj}, (j = 1,..., q), let Sn = Sni U Sn2 U • • • U 
Sn and Snq fl 5„r = 0 for g/r, then F(x; r) in (9) can be rewritten in the 
form 

9 A "J 

FsAv,r) = Y/FSn.{x;r) 3       ,   where Aj = J] l/a(x,xjkj;r). (11) 
3=1 Lj=iAJ kj=1 
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E) As a consequence of (11) the following multistage procedure works very 
well. In the first stage, a given set of nodes Sni = {xi,i = 1, ...,n{) is 
considered, and the corresponding near-interpolant Fsni(x;r) is evaluated. 
In the second stage, it is required to enlarge the considered set 5ni, taking 
the union of it and another set of nodes Sn2 = {xj,j = 1,... ,712}. Now the 
near-interpolating function referred to the union set, i.e., Fs usn2 (x\ r)y with 
Sni l~l S„2 = 0, can be obtained simply by evaluating the near-interpolant 
Fsn (x;r), corresponding to the added set S„2, and using the relation 

,      ,      FSrti(x;r)A1+Fsn2(x;r)A2 
FSniUSn2(x;r) = —^ J^f ■ (12) 

where Ai = Y^i=i l/a(xixi'>r)> ^2 = Sj=i l/a(x,Xj-,r), and Ai is known. 
The procedure can be repeated as many times as required. 

F) Near-interpolants have the remarkable property that an additional node, 
say xn+i, can be added to the interpolation set Sn by simply combining an 
extra term with the original formula. The goal is achieved by using a particular 
case of (12), that is, the recurrence relation 

p      (     \ = 
Fsn (x'> r)An + /n+i l/a(a, xn+1; r) 

*s»^x'r> An + l/a(x,xn+1;r) 

where An = ££=1 l/a(x,xk;r). 

G) It is often convenient to extend (8), or better (9), in the following way: 

Fl{x;r) = ±fj       «Y'7)1U??''r)    W (13) 
JTi      22h=iT(x'xh\l) l/a(x, xh;r) 

where T(x,y\j), with x,y € D and 7 > 0, is a continuous positive real 
function. Choosing suitably T(x,y;j), one can modify the weights in (13) 
in order either to cancel a useless characteristic, or to introduce a new fea- 
ture. In particular, it is possible to localize the method considering a factor 
r(a;,2/;7) rapidly decreasing with distance [2]. The formulas obtained in this 
way maintain, in general, the analytical and computational properties of the 
corresponding original ones. 

The use of the exponential-type function 

r(x,y;-y)=exp(--Y\\x-y\\l) (14) 

is suggested by McLain [4] for Shepard's formula; he observes that much more 
accurate results can be obtained in this way. The use of exponential-type 
weights increases the computational effort, but generally this drawback can 
be tolerated. 

The value of the parameter in the mollifying function T(X, y; 7) may de- 
pend on the nodes, as happens in the popular case [4] 

r(x,xj;pj)=(l-t^ikY (15) 
\ Pi      / + 

where pj is the radius of the circle of support at the point Xj, and (u)+ > 0 
if «>0, («)+ =0 ifu<0. 
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H) The precision of the operator F(x; r) can be increased, considering the 
Taylor expansion for the function / in each node Xj instead of the function 
value fj. This leads to the following extension of (9). 

If / € Cm(D) and Tj(x) is the truncated Taylor expansion for / up to 
derivatives of order m evaluated at the point Xj and referred to the displace- 
ment hj = x — Xj, with hj C D, then the operator 

n 

F2(x;r) = ,£Tj(x)gj(x-r), (16) 
7 = 1 

near-interpolates to Tj(x) at x = Xj. In this form, F2{x\ r) reproduces exactly 
algebraic polynomials of degree < m. 

Combining the modifications in (13) and (16), we have 

r? i      \     -^mt\       T{x,xj;i)l/a(x,xj;r) . 
^^S^'S.^^Tll/^^r)' (1?) 

Obviously, the technique calls for additional derivative values that are not 
normally available as data. A more practical solution is discussed below. 

K) For simplicity, we refer here to an Euclidean radial function a(x, y; r) = 
4>{\[x — 2/lli + r)> because in this case the procedure is well established. The 
primary modifications required involve using T(X, y; 7) to localize the overall 
approximation, and replacing fj with a suitable "local approximation" to 
the surface. To carry out the approximation (17), a practical way is to get, 
in a first stage, local approximants Mj(x) to f(x) at the points Xj,(j = 
l,...,n), obtained by means of the moving weighted least-squares method 
using weight functions with reduced compact support. Then, in a second 
stage, the near-interpolating operator is expressed as a convex combination of 
the local approximants 

j? 1      \     ST  M ( \        T(x,xJ-,l) ll4>{\\x-Xj\\l + r) . 
F4(x;r) = E Mj(x)   ^^^^1^^ ■ («) 

In particular, by (18), (10), and (14), 

which extends (5). 
Very good performance is achieved by a version of (18) which uses quad- 

ratic approximations for Mj(x), and mollifying functions given by (15). This 
method has been developed by Franke and Nielson [4], and Renka [7] for 
Shepard's operator. 
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§4. Determining Parameter Values 

The near-interpolating operator (19) works very well in a large variety of 
cases. Our attention is here focused on finding values of the parameters r, ß 
and 7, which can be regarded as "optimal" from a practical viewpoint. The 
considerations which follow are mainly based on experiments. 

A relatively small increase of the parameter r in (19) in some right neigh- 
bourhood of zero has a considerable effect on the behaviour of fJ.\(x; r). In fact, 
if r is small, x fixed and near to the node x3■,*, then the value of gj» (x; r) equals 
nearly one; but, if r increases, gj*(x;r) decreases. Since Y^j=i9j{x\r) = 1> 
diminishing of gj*(x;r) makes the other weight values gj(x;r), j ^ j*, in- 
crease. Summing up, if the weight attributed to /j« in fii(x;r) decreases, 
then fii(xj*;r) = /,♦ + Cj.(r) diverges from fj*, namely £j«(r) increases and 
reduces the accuracy of JJ,\{XJ* ; r). 

Introducing the parameter r in (19), and in particular in (5), has the 
effect that, in general, the gradient of the rendered surface is not zero at the 
nodes. As a consequence, the surface is considerably smoother than for r = 0. 
However, if r is too small, the first derivatives of ni(x;r) are highly oscillating 
and their values are nearly zero. Clearly, the goal is to choose an "optimal" 
value of r, such that fii(x;r) does not exhibit the characteristic irregularities 
of the basic Shepard's formula, but at the same time, it maintains a sufficient 
computational accuracy, in particular at the nodes. 

The search for the optimal value of r can be done by many applications 
of (19) with different values of the parameter, and then by choosing that value 
which minimizes the global root mean square error. Although this is currently 
considered in the literature, the estimate of r is not a simple matter; in a 
sense, it can be compared with the analogous difficult problem of computing 
the optimal value of the parameter in multiquadric interpolants. 

The optimal value of the parameter ß has been determined with particular 
attention to computational accuracy. The performance analysis on some test 
functions proposed by Franke leads to prefer the value ß = 3/2. 

As for the optimal value of the parameter 7 in the strongly localizing 
function (14), McLain has proposed 7 = 1.62n/diam(D), where n is the num- 
ber of nodes and diam(D) is the diameter of D. However, this value is, in 
general, too large, whereas it is sufficient to consider for 7 a value of the order 
of tens. 

§5. Application to Modelling Faults 

Using the near-interpolating operator ßi(x; r) of (19), with a suitable value of 
the parameter r, instead of the corresponding interpolating operator [ii(x; 0), 
increases considerably the performance of the approximation in a rich variety 
of applications, because it permits consideration of supplementary information 
connected with the characteristics of the examined problem. A typical case 
occurs with surface discontinuities, in particular faults, which are frequently 
met when modelling geological surfaces. 
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Following Shepard [8], we observe that, if some physical barrier such as a 
fault separates the set of nodes, the relationship between nodes on the opposite 
sides of the barrier may be attenuated. Through the inclusion of barriers, a 
user may specify discontinuities in the metric space in which the distance 
between two points is calculated to simulate this attenuation. Suppose a 
"detour" of length b(x,Xk) were required to go over the barrier between x, 
the current near-interpolation point, and the node xk. The quantity b(x,xk) 
is considered the strength of the barrier, and an effective distance between x 
and Xk is given by 

d*(x,xk) = ^[d(x,xk)}2 + [b(x,xk)]2. 

This definition is general so that if no barrier separates x and xk, then 
b(x,xk) = 0 and d*(x,xk) = d(x,xk). Because of the discontinuity in effective 
distance as the near-interpolation point x crosses the barrier, the rendered 
surface will be discontinuous at the barrier. 

Since extensive tests [4] have shown that the modified quadratic Shepard's 
method performs very well for a variety of data sets, Franke and Nielson [5] 
have chosen it as a basis to investigate the problem of simulating faults. Our 
approach uses instead the near-interpolant (19), with significant differences in 
distance penalty, localizing functions, fault forms, etc., as compared to Franke 
and Nielson. 

The possibility of having to model faults can occur in different ways [5]; 
to save space, we limit our attention to the following case: there is a known 
fault line r C D C R , in a known location, with a known jump. More 
complicated situations (see, e.g., [5,6]) require extensive considerations that 
will be discussed in a further work. 

As a first step, it is convenient to focus on the basic situation in which 
the fault line F is a segment I and, moreover, the jump is constant along /. 
Then, a known polygonal curve can be considered as a fault line; in fact, the 
reduction to the case of a fault line segment is straightforward by using the 
subdivision procedure considered in Section 3. In principle, any curve can be 
considered as a fault line, provided it is well approximated by a polygonal. 
Another extension consists in considering a jump varying along the fault line. 
Also the reduction to the basic case is now possible, subdividing the fault line 
into a convenient number of segments, and using a mean value of the jump 
for each segment. 

To deal with the basic case, we modify the value of the parameter r in 
(19) in order to take the jump into account. Let x be the near-interpolation 
point, xk a node and /* the segment joining x and xk. Then for x,xk £ I we 
set 

ropt , if     I n i 

b(x,xk),    if     lDl*^< 

where the quantity ropt is the optimal value obtained for r in (19) on the 
opposite sides of the fault and b(x,xk) represents the "effort" required to go 
over the barrier, due to the discontinuity dividing the two points. If the jump 

(r0 
r = < u 
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Fig. 1. Function fi(x,y): near-interpolation and signed error surfaces. 

Fig. 2. Function f2{x,y): near-interpolation and signed error surfaces. 

is constant or almost constant along I, it is possible to simply set b(x, Xk) = h, 
where h is the jump size. 

Formula (19), after these adjustments in the parameter r, gives results 
quite good both for the appearance of the graphic representation and the accu- 
racy in computation. Comparing the rendered surface with the one obtained 
by the modified quadratic Shepard's formula shows that the introduction of 
the parameter r gives a smoother surface which is closer to the approximated 
function. 

Our procedure has been used to fit the test function proposed by Franke 
and Nielson [5] using their set of nodes. Numerous tests were also made on 
other surfaces. We present two examples of the rendered surfaces and the 
signed error surfaces for the functions 

h(x,y) 
( 0.3,    if 
\0.7,    if 

0 < x < 0.5, 
x > 0.5; 

y-x + 1, 
f2{x,y) = {0, 

.0.3, 

if 0 <x <0.5, 
if 0.5 < x < 0.6, 
if x > 0.6, 
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defined on the unit square (see Fig. 1 and Fig. 2). We used the parameter 
values r = 0.0036,/? = 1.5,7 = 24, and r = 0.0025,/? = 1.5,7 = 30 respec- 
tively, and once again the set of nodes of Franke and Nielson. The errors can 
be considerably reduced by adding more information on the faults; in fact, 
the employed set of nodes is not obviously an ad hoc choice. 
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On a Method of Numerical Differentiation 

Mira Bozzini and Milvia Rossini 

Abstract. In this paper we present a method for the numerical differen- 
tiation of two-dimensional functions when scattered data are given. The 
method is based on a regularization of the given sample. 

§1. Introduction 

In this paper we present a method for the numerical differentiation of two- 
dimensional functions when scattered data are given. The problem of numer- 
ical differentiation is very important when dealing with function approxima- 
tion. In fact, a satisfactory recovery of a function given in a sampled form 
needs some knowledge of the derivatives. 

It is also well known that this problem is ill-conditioned. Consider for 
instance, one-dimensional equispaced data with hi = 10' and hi — 2P. On a 
computer, because of the base change, numerical differentiation gives consid- 
erable errors in the first case, and a more accurate solution in the second case. 
Moreover, it is strongly influenced by the data position. 

The literature on scattered data, includes the papers [7,8,10], their im- 
provements [3,5], and some experiments on their use [9]. These papers provide 
the gradient approximation at the sampled points (see [7,10]) or the approxi- 
mation of the gradient function (see [8]). This is done by triangulation or local 
and global moving least square interpolation. In some of them, asymptotic 
bounds for the error are also supplied. 

Generally, these methods provide a satisfactory approximation inside the 
domain in which the data are given, but they may give large errors at the 
boundary (see Figs. 1-4 below). 

In this paper we present a method based on a regularization of the sample 
which gives an error with an uniform behaviour on the whole domain in which 
the data are assigned. The regularization is done by constructing a new set 
on a regular grid. Namely, taking into account the previous observations, we 
have considered dyadic grids. Obviously the construction of this new set will 
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generate errors that can be thought of as causal errors depending on the sam- 
ple. Then (see [4]), to smooth the data, we perform a wavelet decomposition 
of the signal. Using the smoothed data, we approximate the gradient at the 
grid points by the classical finite centered difference formulas, and finally we 
construct a smooth function approximating the unknown gradient. 

The paper is organised as follows. In §2 the method is described and 
the gradient estimator is constructed. In §3 the convergence properties are 
considered. Finally in §4 we discuss some questions related to the numerical 
aspects of the problem and we provide some numerical examples. 

§2. The Method 

Suppose we are given a set of scattered points in a domain QcE 

S = {P;(xi,yi)\P?eQ,i = l,...,N}, 

and the set of functional data 

F = W,f{Pn),i = l,...,N}, 

where f(x, y) is an unknown function defined on Q. Without loss of generality, 
we suppose Q = [0,1] x [0,1]. 

The first step of our method consists in generating, from F, a new set of 
functional values, say F, located on a dyadic lattice T of Q, 

T = {Pk, k = (kuk2)e7Z2, k=l,...,2"}, 

that is 
F = {(Pk,f(Pk)),   PkeT}. 

It is clear that the new values are affected by errors 

f(Pk) = f(Pk) + e(Pk). 

Therefore we need to construct F by an efficient computational method such 
that the error is less or of the same order as that generated by the derivative 
approximation we will use. A possible strategy is to interpolate the data by a 
local method of a suitable order m,m < a (for instance a moving least squares 
technique, [6, 8]) which gives a smooth interpolating function f(x, y) G Cm(Q) 
with an error e(x,y) = 0(hm), where ft, is a local parameter depending on the 
distribution of the points P? in Q (usually h = l/\fN). 

The new set F can be thought of as a sample coming from a stochastic 
process depending on the points P/ e S. Then we can use the method de- 
scribed in [4] for noisy data. In the next section, we will perform a wavelet 
decomposition in order to smooth the errors e, and we will define an estimator 
9j(n){x:V) °f tne underlying function f(x,y). Then we will approximate the 
unknown gradient using the function estimator gj^(x,y), and the classical 
approach of central finite differences. 
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In this paper we assume that 

i) f{x, y) belongs to an Holder space of order a > 2 on Q* D Q, say Ca(Q*). 
ii) We consider a multiresolution analysis of L2(H2) given by the tensor 

product of two one-dimensional s-regular multiresolution analysis such 
that the scaling function </> is a coiflet, that is a compactly supported 
orthonormal function such that the scaling function <f>{x) and the wavelet 
V'(x) have L — 1 and L, vanishing moments respectively. Moreover, we 
assume that L > [a] + 1 and s > a. 

2.1. The function estimator 

As mentioned above, for approximating the gradient of f(x,y), we will use 
the function <jj(ü)(x,y) defined as in [4]. In this section we briefly describe its 
definition and the motivations that lead to consider this function. 

It is known that when we perform a MRA using data given on a subset of 
H2, we need to take into account the problem of reducing the boundary errors. 
To this end, we consider a function g(x,y) 6 C"(1R2) compactly supported 
on Q* D Q such that 

g{x,y) = f(x,y),    V{x,y)eQ, 

and a new dyadic lattice T* on Q* of dimension 2™ x 2™, such that T* = 
{T U { points sampled in Q* \ Q}}. Moreover, the advantage of the nested 
structure of a MRA is that to provide an efficient tree-structure algorithm 
for the decomposition of functions in Vn for which the smoothing coefficients 
(g,$n,k) are given. 

In applications, a function is given in sampled form, and it is therefore 
necessary to approximate the projection Pyn on the space Vn, by some oper- 
ator n„, and to derive a reasonable estimator of II„ in terms of the sampled 
values. The choice of IIn and of its estimator is suggested by the following 
facts (see [1,4]). 

The set of nonzero coefficients (g, $n,/t) has cardinality equivalent to 
0(22n). Moreover, 

\(g,$n>k)-2-ng(Pk)\<C2-n2-na, (1) 

where C is a constant depending on the smoothing function $(x, y) and on 
g{x,y). 

As a consequence, we define 

(Ung)(x,y) = 2-n J2 ff(flc)*»,k(s,y). (2) 
pfc6r* 

Since we have data corrupted by the interpolation errors, we consider the 
estimator of II„ 

(M(*.0) = 2-B{£ M)*»,k(*.v)+    E    0(AO*»,k(*,y)}.    (3) 
Pk€T Pk€T*\T 
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This estimator may lead to an oscillatory solution bearing too much fidelity to 
the data. Since, for numerical differentiation, we need to correctly smooth the 
data, we have to associate to each sample of size 2" x 2" a resolution j(n) < n, 
and to consider the orthogonal projection of (Tlng)(x,y) onto Vj(fi), that is 

9j(n){x,y) = (-fVi(fl)n„s)(a:,j/). (4) 

The parameter j(n) governs the smoothness of our estimator, and it is 
important to choose it in the right way because it controls the tradeoff between 
the fidelity to the data and the smoothness of the resulting solution. From a 
theoretical point of view, the smoothing parameter must tend to infinity at 
the correct rate, as the amount of information in the data grows to infinity. 

2.2. The gradient estimator 

We now consider the construction of the gradient estimator. When dealing 
with gridded data, it is natural to approximate the gradient using the usual 
centered difference formulas. Let 

(gradf)(x,y)=(fl'\x,y),fM(x,yj), 

be the gradient of f(x, y), and let D*, D^ be the centered difference operators 
which use r equispaced points in the x or y direction respectively. If r < [a], 
we know that 

(Dlf)(Pk) = /W(ft) + 0(2-"(*-1)),    t = {x, y}. 

Then, at each point of the lattice T, we approximate (grad f)(Pk) by 

(gradf)(Pk) = {(D*rgm)(Pk), (i%(fi))(Pk)) • (5) 

Using the data (5), it is possible to define, at each point of Q, an estimator of 
f^(x,y), t = {x,y}, by the operator fln. Namely, we consider the function 
g(x,y), and we define 

(grädf)(x,y) = ((Un9{x)){x,y),(flngM)(x,yj) , (6) 

where 

(ilngW)(x,y) = 2-"{ £ (ö^(s))(Pk)$n,k(x,2/) 
Pk€T 

+       E      S(0(Wn,k(*,2/)}. 
Pk€T'\T 
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§3. Asymptotic Properties 

Under the assumptions of Section 2, and taking into account the properties 
of the projection Pv,, we know that 

\(PVlg)(x,y)-g(x,y)\ = 0(2-la),    V{x,y)&Q*. (7) 

Moreover, from (1) we have 

\(Ul9)(x,y)-(PVlg)(x,y)\ = 0(2-la)    V(s,y)eQ*, (8) 

then 
\(nig)(x,y)-f(x,y)\ = 0(2-'a)    V(i,»)e<?. (9) 

Using relations (7), (8), (9) and the results stated in [4], we have proved 

Proposition 1. If assumptions i) and ii) of Section 2 hold, we have 

&(«)(*,») - /(*,»)! = 0(2-™°) + 0(hm), 

for every (x, y) S Q. 

Remark 1. This result points out how the choice of j(n) depends on the 
sample dimension N and on m. In fact it has to be chosen so that 2-J'^a is 
less or of the same order ofhm. 

Proposition 2. If assumptions i), ii) of Section 2 hold, the approximation 
(6) of the gradient satisfies, asymptotically, the following bound 

\{nng^){x,y)-^\x,y)\=0{2-™a) + 0{2-<^) 

+0(/im) + 0(2_n(a-1))> 

for every (x, y) € Q. 

§4. Numerical Results 

In this section, we discuss some questions related to the computational costs 
and to the numerical implementation of the method we have studied. We also 
present some numerical results. 

4.1. Computational costs 

The computational costs are essentially given by the wavelet decomposition 
and by the construction of the gridded data set F of dimension 22n. For 
the wavelet decomposition, they are at the most of the same order of the 
sample dimension, that is 0(22n). For the construction of F, if we use a local 
method of order m <£ N, they are given by the solution of JV linear systems 
of dimension 2m + 1. Then the computational costs will be 0((2m

3
+1)3iV") + 

0(22n). 
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4.2. Numerical implementation 

In this section we discuss some questions related to the construction of 
9j(n)(x,y) and (fin9^){x,y) • Following the idea of §3.1, we need to extend 
the given signal to a suitable square Q* D Q 

Q* = [-2-nK, 1 + 2~nK] x [-2~nK, 1 + 2~nK], 

forcing it to be zero at the Q* boundary. This is necessary in order to avoid 
undesirable behaviour at the boundary. The extension can be done following 
a method proposed in [2]. Note that K is related to the number of points we 
consider outside Q. On one hand, it cannot be chosen too small, otherwise 
undesirable boundary oscillations could occur. On the other hand, it depends 
on the resolution level j(n). In fact, it has to be chosen so that the discrete 
wavelet decomposition can be performed. 

In the numerical examples we have used the coifiets with L = 6 vanishing 
moments. For the pointwise gradient approximation, we have used the central 
finite difference of order 4 (r = 5). 

4.3. Numerical examples 

In this paper we present the results achieved for the test functions 

/i(i, y) = 0.75exp[-((9i - 2)2 + (9y - 2)2)/4] 

+ 0.75exp[-((9x + l)2/49 + (9y + 1)2/10)] 

+ 0.5exp[-((9x - 7)2 + (9j/ - 3)2)/4] 

-0.2exp[-((9x-4)2 + (92/-7)2)], 

1 
f2(x,y) = 

y/{l + 2exp(-2^/l00a;2 + lOOy2 - 6.7) 

defined on the unit square [0,1] x [0,1]. We have considered TV scattered points 
on Q, and have constructed a new gridded data set F of size 2" x 2n using 
the modified quadratic Shepard method. The smoothing parameter j(n) has 
been chosen taking into account Remark 1 of Section 3. Therefore, having 
used the modified quadratic Shepard method with n = 5, a possible choice is 
j(n) =4. 

We now present our results, and compare them with those obtained with 
the method (L-method) proposed in [8] which, among those we find in the 
literature, we belive is preferable both for its theoretical aspects and numerical 
performance. 

The following examples show how the proposed method provides an ap- 
proximation which seems to have the same behaviour for the functions con- 
sidered, both for graphical results and for errors. For the sake of brevity, we 
show only the approximations of one gradient component, but give the relative 
errors for both of them. 
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Fig. 1. Example 1, N = 100. On the left-hand side, the result of our method. 
On the right-hand side, the result of the L-method. 

Fig. 2. Example 1. N = 300. On the left-hand side, the results of our method. 
On the right-hand side, the result of the L-method. 

Example 1. Consider TV = 100 and TV = 300 values of fi(x,y). In Figs. 1 
and 2 we present the ^-partial derivative approximations. The following table 
lists er:= relative error of our method and erL:= relative error of the L-method: 

/i       TV = 100 TV = 300 
er    erL er    erL 

fx     24%    55% 6%    12% 
fv    43%    226% 36%    36% 
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Fig. 3. Example 2. N = 100. On the left-hand side, the result of our method. 
On the right-hand side, the result of the L-method. 

Fig. 4. Example 2. N = 300. On the left-hand side, the result of our method. 
On the right-hand side, the result of the L-method. 

Example 2. Consider N = 100 and JV = 300 values of h(x,y). In Figs. 3 
and 4 we present the results achieved for the y-partial derivative, and in Fig. 5 
the error functions for JV = 300. The following table lists er:= relative error 
of our method, and erL:= relative error of the L-method: 

f2       JV = 100 N = 300 
er    erL er    erL 

fx    35%   400% 6%   54% 
p     27%   64% 6%    135% 
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Fig. 5. Example 2.  N = 300.  On the left-hand side, the error function of our 
method. On the right-hand side, the error function of L-method. 

Fig. 6. Example 2.   N - 300.   The approximation of f2{x,y).   The absolute 
maximum error is 0.015. 

Finally, as is usual in the literature, we consider an application to function 
recovery which shows the goodness of the gradient approximation. We recover 
fi{%,y) by Hermite interpolation at 16 x 16 nodes, where we interpolate the 
data coming from the estimator gj^{x, y) and from the approximated gradi- 
ent (Fig. 6). 
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Ridgelets and their Derivatives: 

Representation of Images with Edges 

Emmanuel J. Candes 

Abstract. This paper reviews the development of several recent tools 
from computational harmonic analysis. These new systems are presented 
under a coherent perspective, namely, the representation of bivariate func- 
tions that are singular along smooth curves (edges). First, the represen- 
tation of functions that are smooth away from straight edges is presented, 
and ridgelets will be shown to provide near optimal nonlinear approxi- 
mations to these objects. Motivated by the limitations of the ridgelet 
methodology, new representation systems, namely, monoscale ridgelets 
and curvelets - both of which use the ridgelet transform as a building 
block - will be introduced. Curvelets are shown to provide concrete and 
constructive optimal nonlinear approximations to smooth functions with 
twice differentiable singularities. In addition, these approximations are 
obtained simply by thresholding the curvelet series. 

§1. Introduction 

Throughout the sciences, sparse representations of classes of objects are of- 
ten sought because of the well-known applications of sparsity to problems 
ranging from data compression and statistical estimation to feature detec- 
tion. Indeed, finding sparse representations together with rapid algorithms to 
compute them is one of the main objectives of a rapidly growing field, com- 
putational harmonic analysis (CHA). In this paper, we will argue that CHA 
has not really addressed the problem of efficiently representing smooth mul- 
tivariate functions with sharp discontinuities, like smooth images with edges. 
Motivated by this gap in the literature, we present a collection of new rep- 
resentation tools that efficiently represent smooth functions that are singular 
along curves. Here, the tone is expository; details may be found in the cited 
references. In this paper, attention is restricted to the two-dimensional situa- 
tions although extensions to higher dimensions exist, or are anticipated. 

Curve and Surface Fitting: Saint-Malo 1999 95 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 95-104. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
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The wavelet miracle 

One of the most appealing features of wavelet systems is their ability to provide 
efficient representations of spatially inhomogeneous functions, i.e., functions 
that may be discontinuous, spiky, etc. In Mallat's words "bases of smooth 
wavelets are the best bases for representing objects composed of singularities, 
when there may be an arbitrary number of singularities, which may be located 
in all possible spatial positions" [8]. For instance, on the unit interval define 

f(t) = H(t-t0)g{t),    «6 [0,1], (1) 

where H is the Heavyside H(t) = l{«>o} and g is a smooth arbitrary function 
with compact support and finite Sobolev norm \\g\\w^ (see [1] for the classical 
definition of L2 Sobolev norms). Then, the number of Fourier coefficients of 
/ exceeding 1/n in absolute value is bounded below by c ■ n, regardless of 
the degree of smoothness of / away from the singular point t0. This means 
that a lot of different terms are needed to obtain good partial reconstructions; 
keeping the n largest terms in the Fourier series gives only an L2 error of ap- 
proximation of order n-1/2. (Throughout the paper, it will always be implicit 
that the error is measured in the L2 norm.) In contrast, the sparsity of the 
wavelet coefficient sequence of / is in some sense the same as if / were not sin- 
gular. In effect, the number of wavelet coefficients exceeding 1/n is bounded 
by Cn2/(2s+1) giving rates of approximation of order n~s corresponding to 
the nonlinear bandwidth of W2 Sobolev balls. This remarkable adaptivity 
property is what we call the "wavelet miracle." 

The curse 

Unfortunately, wavelets can deal with point-like singularities, but are seriously 
challenged by line-like singularities in dimension two. Let us for instance 
consider the object 

f(xi,x2) = H{xicos9o + x2sm8o-to)g(xi,x2),    (xi,x2) £ [0, l]2,     (2) 

where, again, g is a bivariate function taken from the Sobolev space W2\ f is 
singular on the line x\ cos0O + x2 sin60 = t0, but smooth otherwise. Then, the 
number of wavelet coefficients exceeding 1/n is now of the order n. Hence, 
partial n-term wavelet reconstructions will only converge at a rate n-1'2, 
regardless of the almost everywhere degree 5 of smoothness. The edge limits 
the speed of convergence. This result is intuitively not very surprising as 
wavelet bases are made of local isotropic oscillatory bumps at various scales, 
and are not adapted to represent long elongated structures like edges. 

This clearly raises an important question: in two dimensions (and, more 
generally, in arbitrary d dimensions) can we develop a representation enjoying 
the same adaptivity features as wavelets in dimension one? 
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§2. Ridgelets and Linear Singularities 

In [3], Candes introduced a new tiling of the frequency plane that led to the 
construction of ridgelet frames. We say that a collection (<pn) is a frame of a 
Hilbert space H if there exist two constants A, B > 0 such that for any element 
of H, we have 

A\\f\\2H<'£\{f,<Pn)H\2<B\\f\\*H. 
n 

When A = B, the frame is said to be tight. A collection (ipn) that verifies 
the frame property is of course complete and there is a very concrete way to 
reconstruct / from the datum of its coefficients ((/, <pn)u)■ Generalities about 
frames can be found in [11]. 

Let tj) be a univariate oscillatory function and •$»,*;(*) = 2^2ip(2H — k). 
The ridgelet frame V'j/.fc is a collection of ridge functions given by 

4«,*(0 = 4*(l W - 2*2-'*) + &,fc(-fc|)«(0 + 7T - 2*2-''0 

in the frequency domain [3] (S denotes the dirac distribution). 
Donoho [9] modified the ridgelet construction by essentially replacing the 

discretization of the angular variable with a periodic wavelet transform result- 
ing in an orthonormal basis. He called these new basis elements orthonormal 
ridgelets. In the remainder of this paper, we make the choice of the orthonor- 
mal ridgelets, although all the results and constructions that follow would 
hold true if one were to use 'pure ridgelets.' 

As stated in [9], such a system can be defined as follows: let (if>j,k(t))j,ke,z 
be an orthonormal basis of Meyer wavelets for L2(H) [12], and let (tw? l (9), £= 
0,..., 2'° — 1; wje(6), i > io, £ = 0,..., 2* — 1) be an orthonormal basis for 
L

2
[Q,2TT) made of periodized Lemarie scaling functions wfQ t at level io and 

periodized Meyer wavelets w\t at levels i > ?o-   (We suppose a particular 

normalization of these functions.) Let ^j,fc(w) denote the Fourier transform 
oitpj^it), and define ridgelets p\(x), X = (j,k;i,£,e) as functions of a; € R2 

using the frequency-domain definition 

PX (0 = l*rJ(4*(KIK<(*) + 4*(-KIK*(* + '0)/2-        (3) 

Here the indices run as follows: j, k € ZZ, £ = 0,... ,2S_1 — 1; i > io, i > j. 
Notice the restrictions on the range of £ and on i. Let A denote the set of all 
such indices A. It turns out that (px)xeA is a complete orthonormal system 
for L2(H ). Hence, we have a new decomposition of the form 

Ridgelets turn out to be optimal for representing functions with linear 
singularities. Indeed, let us consider the template (2). The following theorem 
is proved in [4]. 
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Theorem 1. Let g £ W^IR2) and f(x\,x2) = H(xicos60 + a^sinöo — 
to)g{xi,x2). Then the sequence (ce\ = (f,p\)) of orthonormal ridgelet coeffi- 
cients of f satisfies 

#{\ax\>l/n}<Cnl^+V\\g\\Wi 

for some constant C not depending on f. As a consequence, the n-term 
approximation /„ - obtained by keeping the terms corresponding to the n 
largest coefficients in the ridgelet expansion - satisfies 

\\f-fn\\<Cn-s/2\\g\\Ws. 

Hence, the theorem states that we obtain a rate of approximation as if 
the object were not singular, simply by thresholding the orthonormal ridgelet 
expansion. Whereas the singularity caused partial wavelet reconstructions to 
converge very slowly, its effect on the approximation rate of truncated ridgelet 
series is 'harmless.' 

§3. Ridgelets and Curved Edges. 

Theorem 1 considered linear singularities and it seems natural to ask whether 
similar results will hold if one replaces the singularity along a straight line 
with one along an arbitrary curve 7. To simplify our exposition, consider the 
simple case of a singular function defined on the unit square by 

f(xi,x2) = g(xi,x2)l{X2<1(Xl)}, (4) 

where g is a smooth function and 7 is smooth curve. Then the ridgelet coef- 
ficient sequence of such an object is in general not sparse: 

#{A,|aA|>l/n}>cn. 

Thus, the speed of convergence of the best n-term ridgelet approximation is 
only of order n-1/2. It is interesting to observe that the degree of approxima- 
tion of both wavelet and ridgelet partial reconstructions is the same, although 
they correspond to radically different systems of representation. Ridgelets are 
elongated and directional, whereas wavelets are isotropic and local. 

The limitations that we presented in this section motivate the refinements 
and new tools that we are about to introduce. 

§4. Monoscale Ridgelets 

The approach developed in this section builds on Theorem 1. The idea here 
is to take advantage of the optimal representation of linear singularities by 
localizing the ridgelets. A detailed exposition is provided in [5]. 

For an integer s > 0 and integers fci, k2, we let Q be the dyadic square 
defined by Q = [fc1/2s,(fc1 + 1)/2S) x [k2/2s,(k2 + 1)/2S).  The collection of 
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all dyadic squares at scale s will be denoted by Qs. The idea is to smoothly 
localize the function / we wish to represent near each of the dyadic squares 
of Qs. We choose an orthonormal partition of unity WQ; that is, a collection 
of windows such that WQ is a partition of unity 

E 
QeQ, 

w2n 

The following details a way of making up such an orthonormal partition: 
take a C°° univariate window v supported in [—3/4,3/4] such that v{t) — 1 
on [—1/2,1/2]; define VQ = z/(2s:ri — ki)v(2sx2 — k2); and renormalize the 
windows VQ with 

»Q = «9/(£«ä)1/a- 
QeQs 

It is then clear that the VJQ'S obey the desired condition. 
Define the rescaling operator TQ§ by 

TQg = 2sg(2sx1-k1,2
sx2-k2), 

which is an isometry of L2. Throughout this section, s is arbitrary but fixed. 
Monoscale ridgelets are defined as follows: let p\ be an orthonormal ridgelet 
basis and define 

■>PQ,X(XI,X2) = WQ(X1,X2)(TQPX)(X1,X2); 

the collection 
{^,QeSs,AsA} (5) 

is what we call the monoscale ridgelet dictionary. 
It is easy to check that the monoscale ridgelet dictionary is a tight frame 

of L2(H2) as we have a Parseval relationship 

= E E(/^Q,A)2. 
Q€Q„    A 

Standard arguments show that we then have the decomposition 

/= E E</>^>^ (6) 
QeQs  A 

with equality holding in an L2 sense. 
We add an "extra layer of coarse scale coefficients" to eliminate various 

artifacts. Consider a standard multiresolution analysis that is adapted to 
the unit square [7] so that the set of translates {2s (p(2s ■ — k)}, k = (ki,k2), 
ki = 0,1,..., 2s — 1 is orthonormal. Let PQ be the orthogonal projector onto 
Vs, the span of the <^s,fc's; i.e., 

Pof := ^2(f,fs,k)lfs,k ■= ^2ßS,kfs,k- 
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The following Pythagorean relationship holds: 

\\f\\l = \\Pof\\22 + \\(I-Po)f\\l (7) 

Finally, define the coefficients 

a.tll = (Rf,rl>Q,x)    M = (Q,A),    Q€Qs,AeA. (8) 

Definition 1. The monoscale ridgelet transform with base scale s is the map- 
ping from functions f G L2(Sl2) to the amalgamation of coefficients (ßs,k) and 

(as,M). 

Note that we again have a partial isometry 

H! = £lA.*l2 + £KX 

thanks to the Pythagorean relationship (7). 
Let us return now to the main theme of this paper, and study the ef- 

ficiency of monoscale ridgelets to represent objects that are singular along 
curves. Suppose that one is interested in constructing an n-term approxima- 
tion of the function / in (4). Without loss of generality, we will suppose that 
n is of the form n = 22J+1. We simply expand / in the monoscale ridgelet 
dictionary (5) with s = J as a choice of base scale; that is, we define the 
n-term approximation by 

/„ = P0f + Rn/2f, (9) 

where Rn/2f is the partial reconstruction of the residual Rf obtained by 
keeping the terms corresponding to the n/2 = 22J largest coefficients aJtll. 

It is interesting to observe that the choice of the base scale s of the 
monoscale dictionary depends on the number n of terms we wish to keep in 
the approximant. We have the following result [5]: 

Theorem 2. Let g € W|(1R2) and f(x) = g(x) l{i2<7(x1)}, with 7 beinS 
three times differentiable. Let fn be the n-term approximation defined by (9). 

Then, 
||/-/n||2<Cmax(n-*/2,n-3/4). 

This simple approximation scheme provides optimal rates of convergence 
as long ass < 3/2; that is, approximation bounds as if / were not singular. 
In some sense, one is allowed to say that unlike wavelets, ridgelets can be 
adapted to provide efficient representations of curved singularities. There is 
a critical value s = 3/2 of the smoothness parameter, however, beyond which 
the method saturates; as s increases, the approximation rate is blocked at 

n-3/4 Nevertheless, this represents already a substantial improvement over 
wavelet approximations whose convergence rates are blocked at n-1' . 
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Better results are theoretically possible.   For instance, let F{C) be a 
model of smooth images with twice differentiable edges defined as follows: 

?{C) = {/ : / satisfies (4) with \\g\\w* < C and ||7||d2 < C). 

The condition IHI^a < C states that the homogeneous Holder norm of order 
2 is bounded by C. In other words, 7 is differentiable and its first derivative 
satisfies the Lipschitz condition |7'(M) — 7'(«)| < C\u — v\. For this class 
of objects, it can be shown that there are reasonable ways of constructing 
approximations converging at the rate n_1logn. Monoscale ridgelets do not 
attain this optimal rate. 

§5. Curvelets and Curved Singularities 

The curvelet transform - introduced by Candes and Donoho in [6] - is the 
last of the representation tools that we will review. Whereas the monoscale 
ridgelet transform involved taking ridgelet coefficients with a fixed base scale 
s, the curvelet transform spans all possible scales s > 0. A useful slogan is that 
the curvelet transform is obtained by filtering and then applying a multiscale 
ridgelet transform. The multiscale ridgelet dictionary is the collection of the 
monoscale dictionaries at all possible scales s > 0; i.e., 

{V'/.:=V'Q,A,J»>0,Qee„AeA}. (10) 

The curvelet transform requires the use of a sequence of filters that we 
now describe. Let $0 and ^2s, s = 0,1,2,... satisfy the following properties: 

• $0 is a lowpass filter and is concentrated at frequencies |£| < 2; 

• ^2s is bandpass and concentrated at frequencies |£| € [22s_1,22s+3]; 
• the filters satisfy 

l*o(oi2 + £hMOl2 = i- 
s>0 

Existence and constructions of such filters are well-known. The last relation- 
ship implies that the transformation of / into a bank of functions 

/ ►-> (P0f = $0 */, A0/ = *0 */, Ai/ = *!*/,...,As/ = *2s */,...) 

is a partial isometry in the sense that 

11/112 = Will+ £>»*/111- 
s>0 

Equipped with both a multiscale ridgelet dictionary and a sequence of 
filters, define the curvelet coefficient aß of / by 

atl = (Asf,rjjQtX),    QeQs,\€A. (11) 
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Thus, the coefficient ccM is interpreted as the multiscale ridgelet coefficient of 
a piece of / containing information at frequencies near 22s. We would like to 
point out that there is a quadratic scaling relationship between the scale 2s of 
the multiscale ridgelet and the frequency content, localized around the corona 
of radius 22s, of the piece that is analyzed. This relationship is the key feature 

of the curvelet transform. 
We proceed a little bit differently for the piece of / containing information 

at low frequencies P0f. Recall the orthogonal collection of Lemarie-Meyer 
scaling functions Vk(xi,x2) = V{xx - h,x2 - k2), for k = {h,k2) G ZZ2. We 
make the choice of a base scale so that V0{0 = 1 for |£| < 4/3; and we make 
sure that the span of the translates Vk contains the range of the projector 
P0f. We define the coarse scale curvelet coefficients by 

ßk = (Pof,Vk)1    keTL2. 

It will be more convenient to use a single notation to index the set of 
curvelet coefficients; the notation M' will stand for the union of M and k G 

TL2. When \x G M' \ M, we let aM = ßk- 

Definition 2. The curvelet transform is the mapping that associates the co- 
efficients sequence aM, fi G M' to an arbitrary square integrable function f. 

We will call curvelets those elements <rM defined by 

ff„ = AWQ,A,     Q6SS,AGA, (12) 

with an obvious modification for the piece corresponding to the low frequen- 

cies, Oy, = P0Vk. 2 

The collection of curvelets is then a tight frame for L2(R ) 

11/111= £<W2, (13) 

and, of course, we have the decomposition 

/=£(/'ff„K (14) 

with equality in an L2 sense. 
Let /„ be the truncated n-term curvelet series 

/n =  X) a^l{l^l>l°l(")}°'''- ^15^ 
p£M' 

The following theorem is proved in [6]. 

Theorem 3. Let g G W|(1R2) and f(x) = g{x) l{Xi<^Xl)}, with 7 being two 
times differentiable. Let /„ be the n-term approximation (15). Then, 

\\f-fnh<Cn-\\ogn)ll2. 

Again, we have a very concrete procedure that achieves rates of approxi- 
mation that cannot be fundamentally improved. A detailed discussion about 
the optimality of this result is in [6]. 
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§6. Conclusion 

In this paper, we presented a connected set of ideas originating in the ridgelet 
transform and culminating in the curvelet transform. We have shown how 
these representations provide efficient representations of objects that are sin- 
gular along curves. These tools, however, may have several other potential 
applications. 

Because of space limitations, we set aside questions related to the prac- 
ticability of these new methods. We would like to point out that fast al- 
gorithms have been developed to implement the ridgelet, monoscale ridgelet 
and curvelet transform. We will report on the numerical aspects of these 
transforms in a separate paper. 
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Curvelets: A Surprisingly Effective Nonadaptive 
Representation for Objects with Edges 

Emmanuel J. Candes and David L. Donoho 

Abstract. It is widely believed that to efficiently represent an otherwise 
smooth object with discontinuities along edges, one must use an adaptive 
representation that in some sense 'tracks' the shape of the discontinuity 
set. This folk-belief — some would say folk-theorem — is incorrect. At 
the very least, the possible quantitative advantage of such adaptation is 
vastly smaller than commonly believed. We have recently constructed a 
tight frame of curvelets which provides stable, efficient, and near-optimal 
representation of otherwise smooth objects having discontinuities along 
smooth curves. By applying naive thresholding to the curvelet transform 
of such an object, one can form m-term approximations with rate of L 
approximation rivaling the rate obtainable by complex adaptive schemes 
which attempt to 'track' the discontinuity set. In this article we explain 
the basic issues of efficient m-term approximation, the construction of 
efficient adaptive representation, the construction of the curvelet frame, 
and a crude analysis of the performance of curvelet schemes. 

§1. Introduction 

In many important imaging applications, images exhibit edges - discontinu- 
ities across curves. In traditional photographic imaging, for example, this 
occurs whenever one object occludes another, causing the luminance to un- 
dergo step discontinuities at boundaries. In biological imagery, this occurs 
whenever two different organs or tissue structures meet. 

In image synthesis applications, such as CAD, there is no problem in deal- 
ing with such discontinuities, because one knows where they are and builds the 
discontinuities into the representation by specially adapting the representation 
— for example, inserting free knots, or adaptive refinement rules. 

In image analysis applications, the situation is different. When working 
with real rather than synthetic data, one of course doesn't 'know' where these 
edges are; one only has a digitized pixel array, with potential imperfections 
caused by noise, by blurring, and of course by the unnatural pixelization 
of the underlying continuous scene.   Hence the typical image analyst only 
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has recourse to representations which don't 'know' about the existence and 
geometry of the discontinuities in the image. 

The success of discontinuity-adapting methods in CAD and related image 
synthesis fields creates a temptation for an image analyst - a temptation to 
spend a great deal of time and effort importing such ideas into image analysis. 
Almost everyone we know has yielded to this temptation in some form, which 
creates a possibility for surprise. 

Oracles and ideally-adapted representation 

One could imagine an ideally-privileged image analyst who has recourse to 
an oracle able to reveal the positions of all the discontinuities underlying the 
image formation. It seems natural that this ideally-privileged analyst could 
do far better than the normally-endowed analyst who knows nothing about 
the position of the discontinuities in the image. 

To elaborate this distinction, we introduce terminology borrowed from 
fluid dynamics, where 'edges' arise in the form of fronts or shock fronts. 

A Lagrangian representation is constructed using full knowledge of the intrinsic 
structure of the object and adapting perfectly to that structure. 

• In fluid dynamics this means that the fluid flow pattern is known, and 
one constructs a coordinate system which 'flows along with the particles', 
with coordinates mimicking the shape of the flow streamlines. 

• In image representation this could mean that the edge curves are known, 
and one constructs an image representation adapted to the structure of 
the edge curves. For example, one might construct a basis with disconti- 
nuities exactly where the underlying object has discontinuities. 

An Eulerian representation is fixed, constructed once and for all. It is non- 
adaptive - having nothing to do with the known or hypothesized details of 
the underlying object. 

• In fluid dynamics, this would mean a usual euclidean coordinate system, 
one that does not depend in any way on the fluid motion. 

• In image representation, this could mean that the representation is some 
fixed coordinate representation, such as wavelets or sinusoids, which does 
not change depending on the positions of edges in the image. 

It is quite natural to suppose that the Lagrangian perspective, when it is 
available, is much more powerful that the Eulerian one. Having the privilege of 
'inside information' about the position of important geometric characteristics 
of the solution seems a priori rather valuable. In fact, this position has 
rather a large following. Much recent work in computational harmonic analysis 
(CHA) attempts to find bases which are optimally adapted to the specific 
object in question [7,10,11]; in this sense much of the ongoing work in CHA 
is based on the presumption that the Lagrangian viewpoint is best. 

In the setting of edges in images, there has, in fact, been considerable 
interest in the problem of developing representations which are adapted to 
the structure of discontinuities in the object being studied. The (equivalent) 



Curvelets 107 

concepts of probing and minimum entropy segmentation are old examples of this: 
wavelet systems which are specifically constructed to allow discontinuities in 
the basis elements at specific locations [8,9]. More recently, we are aware 
of much informal unpublished or preliminary work attempting to build 2D 
edge-adapted schemes; we give two examples. 

• Adaptive triangulation aims to represent a smooth function by partition- 
ing the plane into a sequence of triangular meshes, refining the meshes 
at one stage to create finer meshes at the next stage. One represents the 
underlying object using piecewise linear functions supported on individ- 
ual triangles. It is easy to see how, in an image synthesis setting, one 
can in principle develop a triangulation where the triangles are arranged 
to track a discontinuity very faithfully, with the bulk of refinement steps 
allocated to refinements near the discontinuity, and one obtains very ef- 
fective representation of the object. It is not easy to see how to do this 
in an image analysis setting, but one can easily be persuaded that the 
development of adaptive triangulation schemes for noisy, blurred data is 
an important and interesting project. 

• In an adaptively warped wavelet representation, one deforms the under- 
lying image so that the object being analyzed has all its discontinuities 
aligned purely horizontal or vertical. Then one analyzes the warped ob- 
ject in a basis of tensor-product wavelets where elements take the form 
ifij,k{%i) ' •0j',fe'(a;2)- This is very effective for objects which are smooth 
apart from purely horizontal and purely vertical discontinuities. Hence, 
the warping deforms the singularities to render the the tensor product 
scheme very effective. It is again not easy to see how adaptive warping 
could work in an image analysis setting, but one is easily persuaded that 
development of adaptively warped representations for noisy, blurred data 
is an important and interesting project. 

Activity to build such adaptive representations is based on an article of faith: 
namely, that Eulerian approaches are inferior, that oracle-driven Lagrangian 
approaches are ideal, and that one should, in an image analysis setting, mimic 
Lagrangian approaches, attempting empirically to estimate from noisy, blurred 
data the information that an oracle would supply, and build an adaptive rep- 
resentation based on that information. 

Quantifying rates of approximation 

In order to get away from articles of faith, we now quantify performance, using 
an asymptotic viewpoint. 

Suppose we have an object supported in [0, l]2 which has a discontinuity 
across a nice curve T, and which is otherwise smooth. Then using a standard 
Fourier representation, and approximating with f£ built from the best m 
nonzero Fourier terms, we have 

\\f-fZ\\l-rn-^,        m-oo. (1) 
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This rather slow rate of approximation is improved upon by wavelets. The 
approximant f^ built from the best m nonzero wavelet terms satisfies 

11/-/mil**™-1,        m-oo. (2) 

This is better than the rate of Fourier approximation, and, until now, is the 
best published rate for a fixed non-adaptive method (i.e. best published result 
for an 'Eulerian viewpoint'). 

On the other hand, we will discuss below a method which is adapted to 
the object at hand, and which achieves a much better approximation rate 
than previously known 'nonadaptive' or 'Eulerian' approaches. This adaptive 
method selects terms from an overcomplete dictionary and is able to achieve 

\\f-~f£\\l~m-\        m-oo. (3) 

Roughly speaking, the terms in this dictionary amount to triangular wedges, 
ideally fitted to approximate the shape of the discontinuity. 

Owing to the apparent trend indicated by (l)-(3) and the prevalence of 
the puritanical belief that 'you can't get something for nothing', one might 
suppose that inevitably would follow the 

Folk-Conjecture/[Folk-Theorem]. The result (3) for adaptive representa- 
tions far exceeds the rate of m-term approximation achievable by fixed non- 
adaptive representations. 

This conjecture appeals to a number of widespread beliefs: 

• the belief that adaptation is very powerful, 
• the belief that the way to represent discontinuities in image analysis is to 

mimic the approach in image synthesis, 
• the belief that wavelets give the best fixed nonadaptive representation. 

In private discussions with many respected researchers we have many 
times heard expressed views equivalent to the purported Folk-Theorem. 

The surprise 

It turns out that performance almost equivalent to (3) can be achieved by a 
nonadaptive scheme. In other words, the Folk-Theorem is effectively false. 

There is a tight frame, fixed once and for all nonadaptively, which we call 
a frame of curvelets, which competes surprisingly well with the ideal adaptive 
rate (3). A very simple m-term approximation - summing the m biggest terms 
in the curvelet frame expansion - can achieve 

H/-/£ll2<C-m-2(logm)3,        m^oo, (4) 

which is nearly as good as (3) as regards asymptotic order. In short, in a 
problem of considerable applied relevance, where one would have thought that 
adaptive representation was essentially more powerful than fixed nonadaptive 
representation, it turns out that a new fixed nonadaptive representation is es- 
sentially as good as adaptive representation, from the point of view of asymp- 
totic m-term approximation errors. As one might expect, the new nonadaptive 
representation has several very subtle and distinctive features. 



Curvelets 109 

Contents 

In this article, we would like to give the reader an idea of why (3) represents 
the ideal behavior of an adaptive representation, of how the curvelet frame is 
constructed, and of the key elements responsible for (4). We will also attempt 
to indicate why curvelets perform for singularities along curves the task that 
wavelets perform for singularities at points. 

§2. A Precedent: Wavelets and Point Singularities 

We mention an important precedent - a case where a nonadaptive scheme is 
roughly competitive with an ideal adaptive scheme. Suppose we have a piece- 
wise polynomial function / on the interval [0,1], with jump discontinuities at 
several points. 

An obvious adaptive representation is to fit a piecewise polynomial with 
breakpoints at the discontinuities. If there are P pieces and each polynomial 
is of degree < D, then we need only keep P ■ (D + 1) coefficients and P - 1 
breakpoints to exactly represent this function. Common sense tells us that 
this is the natural, and even, the ideal representation for such a function. 

To build this representation, we need to know locations of the discontinu- 
ities. If the measurements are noisy or blurred, and if we don't have recourse 
to an oracle, then we can't necessarily build this representation. 

A less obvious but much more robust representation is to take a nice 
wavelet transform of the object, and keep the few resulting nonzero wavelet 
coefficients. If we have an JV-point digital signal f(i/N), 1 < i < N, and 
we use Daubechies wavelets of compact support, then there are no more than 
C ■ log2(iV) • P • (D + 1) nonzero wavelet coefficients for the digital signal. 

In short, the nonadaptive representation needs only to keep a factor 
Clog2(N) more data to give an equally faithful representation. 

We claim that this phenomenon is at least partially responsible for the 
widespread success of wavelet methods in data compression settings. One can 
build a single fast transform and deal with a wide range of different /, with 
different discontinuity sets, without recourse to an oracle. 

In particular, since one almost never has access to an oracle, the nat- 
ural first impulse of one committed to the adaptive viewpoint would be to 
'estimate' the break points - i.e. to perform some sort of edge detection. Un- 
fortunately this is problematic when one is dealing with noisy blurred data. 
Edge detection is a whole topic in itself which has thousands of proposed so- 
lutions and (evidently, as one can see from the continuing rate of publication 
in this area) no convincing solution. 

In using wavelets, one does not need edge detectors or any other prob- 
lematic schemes, one simply extracts the big coefficients from the transform 
domain, and records their values and positions in an organized fashion. 

We can lend a useful perspective to this phenomenon by noticing that the 
discontinuities in the underlying / are point singularities, and we are saying 
that wavelets need in some sense at most log(n) coefficients to represent a 
point singularity out to scale 1/n. 
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It turns out that even in higher dimensions, wavelets have a near-ideal 
ability to represent objects with point singularities. 

The two-dimensional object fp(x1,x2) = l/((zi - 1/2)2 + (x2 - 1/2)2)" 
has, for ß < 1/2, a square-integrable singularity at the point (1/2,1/2) and is 
otherwise smooth. At each level of the 2D wavelet pyramid, there are effec- 
tively only a few wavelets which 'feel' the point singularity, other coefficients 
being effectively negligible. In approximation out to scale 1/n, only about 
0(log(n)) coefficients are required. 

Another approach to understanding the representation of singularities, 
which is not limited by scale, is to consider rates of decay of the countable 
coefficient sequence. Analysis of wavelet coefficients of fß shows that for any 
desired rate p, the iV-th largest coefficient can be bounded by CpN~p for all 
N. In short, the wavelet coefficients of such an object are very sparse. 

Thus we have a slogan: wavelets perform very well for objects with point 
singularities in dimensions 1 and 2. 

§3. Failure of Wavelets on Edges 

We now briefly sketch why wavelets, which worked surprisingly well in repre- 
senting point discontinuities in dimension 1, are less successful dealing with 
'edge' discontinuities in dimension 2. 

Suppose we have an object / on the square [0, l]2 and that / is smooth 
away from a discontinuity along a C2 curve T. Let's look at the number of 
substantial wavelet coefficients. 

A grid of squares of side 2_J' by 2--7 has order 2J squares intersecting T. 
At level j of the two-dimensional wavelet pyramid, each wavelet is localized 
near a corresponding square of side 2~-7 by 2"j. There are therefore 0(2J) 
wavelets which 'feel' the discontinuity along T. Such a wavelet coefficient is 
controlled by 

|{/,^I,fc2)l<ll/lloo-||^I,/t2||i<C-2^; 

and in effect no better control is available, since the object / is not smooth 
within the support of V'j'.fci.fca [14]• Therefore there are about 2J coefficients of 
size about 2~K In short, the iV-th largest wavelet coefficient is of size about 
1/N. The result (2) follows. 

We can summarize this by saying that in dimension 2, discontinuities 
across edges are spatially distributed; because of this they can interact rather 
extensively with many terms in the wavelet expansion, and so the wavelet 
representation is not sparse. 

In short, wavelets do well for point singularities, and not for singularities 
along curves. The success of wavelets in dimension 1 derived from the fact 
that all singularities in dimension 1 are point singularities, so wavelets have 
a certain universality there. In higher dimensions there are more types of 
singularities, and wavelets lose their universality. 

For balance, we need to say that wavelets do outperform classical meth- 
ods.  If we used sinusoids to represent an object of the above type, then we 
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have the result (1), which is far worse than that provided by wavelets. For 
completeness, we sketch the argument. Suppose we use for 'sinusoids' the 
complex exponentials on [—7r, 7r]2, and that the object / tends smoothly to 
zero at the boundary of the square [0, l]2, so that we may naturally extend 
it to a function living on [—w,IT}

2
. Now typically the Fourier coefficients of 

an otherwise smooth object with a discontinuity along a curve decay with 
wavenumber as |fc|~3/2 (the very well-known example is / = indicator of a 
disk, which has a Fourier transform described by Bessel functions). Thus 
there are about R2 coefficients of size > c • R~3/2, meaning that the iV-th 
largest is of size > c ■ iV~3/4, from which (1) follows. 

In short: neither wavelets nor sinusoids really sparsify two-dimensional 
objects with edges (although wavelets are better than sinusoids). 

§4. Ideal Representation of Objects with Edges 

We now consider the optimality result (3), which is really two assertions. On 
the one hand, no reasonable scheme can do better than this rate. On the 
other hand, there is a certain adaptive scheme, with intimate connections to 
adaptive triangulation, which achieves it. For more extensive discussion see 
[10,11,13]. 

In talking about adaptive representations, we need to define terms care- 
fully, for the following reason. For any /, there is always an adaptive repre- 
sentation of / that does very well: namely the orthobasis ty = {ipo,ipi, ■ ■■} 
with first element ipo = //H/H2! This is, in a certain conception, an 'ideal 
representation' where each object requires only one nonzero coefficient. In a 
certain sense it is a useless one, since all information about / has been hidden 
in the definition of representation, so actually we haven't learned anything. 
Most of our work in this section is in setting up a notion of adaptation that 
will free us from fear of being trapped at this level of triviality. 

Dictionaries of atoms 

Suppose we are interested in approximating a function in L2(T), and we have a 
countable collection V = {0} of atoms in L2(T); this could be a basis, a frame, 
a finite concatenation of bases or frames, or something even less structured. 

We consider the problem of m-term approximation from this dictionary, 
where we are allowed to select m terms cf>i,..., 4>m from V and we approximate 
/ from the L2-closest member of the subspace they span: 

fm = Proj{f\span(4>i,..., (f>m)}. 

We are interested in the behavior of the m-term approximation error 

em(f;V) = \\f-fm\\l 

where in this provisional definition, we assume fm is a best approximation of 
this form after optimizing over the selection of m terms from the dictionary. 
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However, to avoid a trivial result, we impose regularity on the selection 
process. Indeed, we allow rather arbitrary dictionaries, including ones which 
enumerate a dense subset of L2(T), so that in some sense the trivial result 
01 = //II/II2 £m = 0, Vm is always a lurking possibility. To avoid this 
possibility we forbid arbitrary selection rules. Following [10] we propose 

Definition. A sequence of selection rules {crm(-)) choosing m terms from a 
dictionary T>, 

<?m{f) = {<t>\T--i4>m), 

is said to implement polynomial depth search if there is a single fixed enumer- 
ation of the dictionary elements and a fixed polynomial ir(t) such that terms 
in crm(f) come from the ßrst 7r(m) elements in the dictionary. 

Under this definition, the trivial representation based on a countable 
dense dictionary is not generally available, since in any fixed enumeration, 
a decent 1-term approximation to typical / will typically be so deep in the 
enumeration as to be unavailable for polynomial-depth selection. (Of course, 
one can make this statement quantitative, using information-theoretic ideas). 

More fundamentally, our definition not only forbids trivialities, but it 
allows us to speak of optimal dictionaries and get meaningful results. Starting 
now, we think of dictionaries as ordered, having a first element, second element, 
etc., so that different enumerations of the same collection of functions are 
different dictionaries. We define the m-optimal approximation number for 
dictionary V and limit polynomial n as 

em(f;V;n) = \\f-fm\\l 

where fm is constructed by optimizing the choice of m atoms among the first 
7r(m) in the fixed enumeration. Note that we use squared error for comparison 
with (l)-(3) in the Introduction. 

Approximating classes of functions 

Suppose we now have a class T of functions whose members we wish to ap- 
proximate. Suppose we are given a countable dictionary V and polynomial 
depth search delimited by polynomial 7r(-). 

Define the error of approximation by this dictionary over this class by 

em{T\V,-K) = maxem(/;X>,7r). 

We may find, in certain examples, that we can establish bounds 

em{T\V^) = 0{m"p),        m-»oo, 

for all p < p*. At the same time, we may have available an argument showing 
that for every dictionary and every polynomial depth search rule delimited by 

em(J-~;U', 7r) > cm  p , m > m^ir). 

Then it seems natural to say that p* is the optimal rate of m-term approxi- 
mation from any dictionary when polynomial depth search delimited by 7r(). 
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Starshaped objects with C2 boundaries 

We define Star-Set2(C), a class of star-shaped sets with C2-smooth bound- 
aries, by imposing regularity on the boundaries using a kind of polar coor- 
dinate system. Let p(9) : [0,2ir) —» [0,1] be a radius function and b0 = 
(#1,0) £2,0) be an origin with respect to which the set of interest is star-shaped. 
With 6i(x) = Xi - xito, i = 1,2, define functions 6(xi,x2) and r{xi,x-z) by 

6 = arctan^/^);        r = (ft)2 + (52)
2)1/2- 

For a starshaped set, we have {xi,x2) € B iff 0 < r < p(6). Define the class 
Star-Set2 (C) of sets by 

{B:Bc[h'Tö]2' h-p{e)-l'   ^l0'2*)'   peC2,|p(0)|<C}, 
and consider the corresponding functional class 

Star2(C)  =  {/  =  1B :   Be Star-Set2(C)} . 

The following lower rate bound should be compared with (3). 

Lemma. Let the polynomial ir(-) be given. There is a constant c so that, for 
every dictionary V, 

em(Star2(C); V, n) > c—~-.—r^-,        m -> 00. 
m2log{m) 

This is proved in [10] by the technique of hypercube embedding. Inside 
the class Star2(C) one can embed very high-dimensional hypercubes, and the 
ability of a dictionary to represent all members of a hypercube of dimension n 
by selecting m Cn terms from a subdictionary of size 7r(m) is highly limited 
if 7r(m) grows only polynomially. 

For each /, a corresponding orthobasis is adaptively constructed in [13] 
which achieves the rate (3). It tracks the boundary of B at increasing accuracy 
using a sequence of polygons; in fact these are n-gons connecting equispaced 
points along the boundary of B, for n = 2j. The difference between n-gons 
for n = 2* and n = 2J+1 is a collection of thin triangular regions obeying 
width fa length2; taking the indicators of each region as a term in a basis, 
one gets an orthonormal basis whose terms at fine scales are thin triangular 
pieces. Estimating the coefficient sizes by simple geometric analysis leads to 
the result (3). In fact, [13] shows how to do this under the constraint of 
polynomial-depth selection, with polynomial Cm7. 

Although space constraints prohibit a full explanation, our polynomial- 
depth search formalism also makes perfect sense in discussing the warped 
wavelet representations of the Introduction. Consider the noncountable 'dic- 
tionary' of all wavelets in a given basis, with all continuum warpings applied. 
Notice that for wavelets at a given fixed scale, warpings can be quantized with 
a certain finite accuracy. Carefully specifying the quantization of the warping, 
one obtains a countable collection of warped wavelets, for which polynomial 
depth search constraints make sense, and which is as effective as adaptive 
triangulation, but not more so. Hence (3) applies to (properly interpreted) 
deformation methods as well. 
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§5. Curvelet Construction 

We now briefly describe the curvelet construction. It is based on combining 
several ideas, which we briefly review: 

• Ridgelets, a method of analysis suitable for objects with discontinuities 
across straight lines. 

• Multiscale Ridgelets, a pyramid of windowed ridgelets, renormalized and 
transported to a wide range of scales and locations. 

• Bandpass Filtering, a method of separating an object into a series of dis- 
joint scales. 

We briefly describe each idea in turn, and then their combination. 

Ridgelets 

The theory of ridgelets was developed in the Ph.D. Thesis of Emmanuel 
Candes (1998). In that work, Candes showed that one could develop a system 
of analysis based on ridge functions 

i>a,b,e(xi,X2) = a~l/2ip((xiCos(9) +x2sm(6) -b)/a). (5) 

He introduced a continuous ridgelet transform Rj{a, b, 6) = (V'a.fc,«^), /) with 
a reproducing formula and a Parseval relation. He also constructed frames, 
giving stable series expansions in terms of a special discrete collection of ridge 
functions. The approach was general, and gave ridgelet frames for functions 
in L2[0, l]d in all dimensions d > 2 - For further developments, see [3,5]. 

Donoho [12] showed that in two dimensions, by heeding the sampling pat- 
tern underlying the ridgelet frame, one could develop an orthonormal set for 
L2(H2) having the same applications as the original ridgelets. The orthonor- 
mal ridgelets are convenient to use for the curvelet construction, although it 
seems clear that the original ridgelet frames could also be used. The ortho- 
ridgelets are indexed using A = (j,k,i,£,e), where j indexes the ridge scale, k 
the ridge location, i the angular scale, and £ the angular location; e is a gender 
token. Roughly speaking, the ortho-ridgelets look like pieces of ridgelets (5) 
which are windowed to lie in discs of radius about 2'; Oi,i — £/2' is roughly 
the orientation parameter, and 2_J' is roughly the thickness. 

A formula for ortho-ridgelets can be given in the frequency domain 

PA(0 = \t\-HhMWtW) + 4*H£IK/(0 + *))/2 • 

Here the tpj^ are Meyer wavelets for R, w\ t are periodic wavelets for [—n, IT), 

and indices run as follows: j, k £ ZZ, £ = 0,..., 2'-1 — 1; i > 1, and, if e = 0, 
i = max(l, j), while if e = 1, i > max(l, j). We let A be the set of such A. 
The formula is an operationalization of the ridgelet sampling principle: 

• Divide the frequency domain in dyadic coronae |£| G [2-7, 2J+1]. 
• In the angular direction, sample the j-th corona at least 2J times. 
• In the radial frequency direction, sample behavior using local cosines. 
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The sampling principle can be motivated by the behavior of Fourier trans- 
forms of functions with singularities along lines. Such functions have Fourier 
transforms which decay slowly along associated lines through the origin in the 
frequency domain. As one traverses a constant radius arc in Fourier space, 
one encounters a 'Fourier ridge' when crossing the line of slow decay. The 
ridgelet sampling scheme tries to represent such Fourier transforms by using 
wavelets in the angular direction, so that the 'Fourier ridge' is captured neatly 
by one or a few wavelets. In the radial direction, the Fourier ridge is actu- 
ally oscillatory, and this is captured by local cosines. A precise quantitative 
treatment is given in [4]. 

Multiscale ridgelets 

Think of ortho-ridgelets as objects which have a "length" of about 1 and a 
"width" which can be arbitrarily fine. The multiscale ridgelet system renor- 
malizes and transports such objects, so that one has a system of elements at 
all lengths and all finer widths. 

In a light mood, we may describe the system impressionistically as "brush 
strokes" with a variety of lengths, thicknesses, orientations and locations. 

The construction employs a nonnegative, smooth partition of energy 
function w, obeying J2kltk3 ™2(xi ~ ki,x2 - k2) = 1. Define a transport 
operator, so that with index Q indicating a dyadic square Q = (s,ki,k2) 
of the form [Jfci/2',(fci + 1)/2S) x [k2/2s,(k2 + 1)/2S), by (TQf)(x1,x2) = 
f(2sxi - ki,23x2 - k2). The Multiscale Ridgelet with index fi = (Q, A) is then 

Vv=2s-TQ(wpA). 

In short, one transports the normalized, windowed ortho-ridgelet. 
Letting Qs denote the dyadic squares of side 2_s, we can define the 

subcollection of Monoscale Ridgelets at scale s: 

Ms = {{Q,\):QeQs,\&k}- 

Orthonormality of the ridgelets implies that each system of monoscale ridgelets 
makes a tight frame, in particular obeying the Parseval relation 

£Wv>/>2 = 11/111- 
HZMs 

It follows that the dictionary of multiscale ridgelets at all scales, indexed by 

M = l>s>iMs, 

is not frameable, as we have energy blow-up: 

£<VV>/>2 = co- (6) 
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The Multiscale Ridgelets dictionary is simply too massive to form a good ana- 
lyzing set. It lacks inter-scale orthogonality - ^(Q,A) is n°t typically orthogonal 
to ^(Q'.A') 'f Q an<i Q' are squares at different scales and overlapping loca- 
tions. In analyzing a function using this dictionary, the repeated interactions 
with all different scales causes energy blow-up (6). 

Our construction of curvelets solves (6) by disallowing the full richness of 
the Multiscale Ridgelets dictionary. Instead of allowing 'brushstrokes' of all 
different 'lengths' and 'widths', we allow only those where width « length2. 

Subband filtering 

Our solution to the 'energy blow-up' (6) is to decompose / into subbands using 
standard filterbank ideas. Then we assign one specific monoscale dictionary 
A1S to analyze one specific (and specially chosen) subband. 

We define coronae of frequencies |£| £ [22s, 22s+2], and subband filters As 

extracting components of / in the indicated subbands; a filter PQ deals with 
frequencies |£| < 1. The filters decompose the energy exactly into subbands: 

11/112 = Will+ £llA«/ll 

The construction of such operators is standard [15]; the coronization oriented 
around powers 22s is nonstandard - and essential for us. Explicitly, we build a 
sequence of filters $0 and $2s = 24stf (22s-), s = 0,1,2,... with the following 
properties: $o is a lowpass filter concentrated near frequencies |£| < 1; ^s is 
bandpass, concentrated near |£| € [22s,22s+2]; and we have 

s>0 

Hence, As is simply the convolution operator As/ = ^s * /. 

Definition of curvelet transform 

Assembling the above ingredients, we are able to sketch the definition of the 
Curvelet transform. We let M' consist of M merged with the collection of 
integral pairs (fci,^) indexing unit-side squares in the plane. 

The curvelet transform is a map L2(1R2) i—» £2(M'), yielding Curvelet 
coefficients (aM : \i € M'). These come in two types. At coarse scale we have 
wavelet scaling function coefficients 

<*» = (<l>k1,k2>pof),        n = {kuk2)eM'\M, 

where <f>ki,k2 is the Lemarie scaling function of the Meyer basis, while at fine 
scale we have Multiscale Ridgelets coefficients of the bandpass filtered object: 

CV = (AS/,W),        ^G Ms,s = 1,2,.... 
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Note well that each coefficient associated to scale 2~s derives from the subband 
filtered version of / - As/ - and not from /. Several properties are immediate: 

• Tight Frame: 

11/111= £ M2- 
pew 

• Existence of Coefficient Representers (Frame Elements): 

aß = (/,7M>- 

• L2 Reconstruction Formula: 

/=  $3 </»7M>7M- 

• Formula for Frame Elements: 

In short, the curvelets are obtained by bandpass filtering of Multiscale 
Ridgelets with passband is rigidly linked to the scale of spatial localization 

• Anisotropy Scaling Law: Linking the filter passband |£| « 22s to the 
spatial scale 2_s imposes that (1) most curvelets are negligible in norm 
(most multiscale ridgelets do not survive the bandpass filtering As); (2) 
the non-negligible curvelets obey length « 2_s while width « 2_2s. So 
the system obeys approximately the scaling relationship 

width Ps length2. 

It is here that the 22s coronization scheme comes into play. 

§6. Why Should This Work? 

The curvelet decomposition can be equivalently stated in the following form: 

• Subband Decomposition. The object / is filtered into subbands: 

/.-(Po/,Ai/,A2/,...). 

• Smooth Partitioning. Each subband is smoothly windowed into "squares" 
of an appropriate scale: 

A,/H-> (wQA3f)QeQa. 

• Renormalization. Each resulting square is renormalized to unit scale 

gQ = 2-s(TQ)-\wQAJ),        QeQs. 
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• Ridgelet Analysis. Each square is analyzed in the ortho-ridgelet system 

<*P = (9Q,P\),        /* = (<?>*)• 

We can now give a crude explanation of why the main result (4) holds. 
Effectively, the bandpass images As/ are almost vanishing at x far from the 
edges in /. Along edges, the bandpass images exhibit ridges of width « 2~2s 

- the width of the underlying bandpass filter. 
The partitioned bandpass images are broken into squares of side 2~s x2~s. 

The squares which do not intersect edges have effectively no energy, and we 
ignore them. The squares which do intersect edges result from taking a nearly- 
straight ridge and windowing it. Thus the squares which 'matter' exhibit 
tiny ridge fragments of aspect ratio 2~s by 2_2s. After renormalization, the 
resulting <?Q exhibits a ridge fragment of about unit length and of width 2~s. 
The ridge fragment is then analyzed in the ortho-ridgelet system, which should 
(we hope) yield only a few significant coefficients. 

In fact, simple arguments of size and order give an idea how the curvelet 
coefficients roughly behave. We give an extremely loose description. 

First, at scale 2~s, there are only about 0(2S) squares Q € Qs that 
interact with the edges. Calculating the energy in such a square using the size 
of the support and the height of the ridge leads to 

(length • width)1/2 • height « (2~s x 2"26)1/2 x 1. 

Indeed, the height of the ridge is bounded by 

HA./IU = ||*2. * /Hoc <  ll*2S||l||/||oo = ||*||l||/Hoc. 

Since we are interested in uniformly bounded functions /, the height is thus 
bounded by a constant C. The calculation of the norm HffQ^ ~ 2~3/2 follows 
immediately (because of the renormalization, the height of the ridge </Q is now 
2~s) . Now temporarily suppose that for some fixed K not depending on Q, 

each ridge fragment <?Q is a sum of at most K ortho-ridgelets.        (7) 

This would imply that at level s we have a total number of coefficients 

0(2") squares which 'matter'   x /fcoefficients/square, 

while the norm estimate for <?Q and the orthonormality of ridgelets give 

coefficient amplitude < C ■ 2" s' . 

The above assumptions imply that the iV-th largest curvelet coefficient is of 
size < C ■ iV~3/2. Letting |a|(Ar) denote the 7V-th coefficient amplitude, the 
tail sum of squares would obey 

J2HlN)<C-m-2. (8) 
N>m 
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This coefficient decay leads to (4) as follows. Let pi,...,\im enumerate 
indices of the m largest curvelet coefficients. Build the ra-term approximation 

m 

Im =  /  yaßi^/^i- 
i=l 

By the tight frame property, 
oo 

11/-/™l|2 <    E    Mw-^-m-2, 
N=m+1 

where the last step used (8). This of course would establish (4) - in fact 
something even stronger, something fully as good as (3). 

However, we have temporarily assumed (7) - which is not true. Each 
ridge fragment generates a countable number of nonzero ridgelet coefficients 
in general. The paper [6] gets (4) using much more subtle estimates. 

§7. Discussion 

Why call these things curvelets? 

The visual appearance of curvelets does not match the name we have given 
them. The curvelets waveforms look like brushstrokes; brush lets would have 
been an appropriate name, but it was taken already, by F. Meyer and R. 
Coifman, for an unrelated scheme (essentially, Gabor Analysis). 

Our point of view is simply that curvelets exemplify a certain curve scaling 
law, width = length2, which is naturally associated to curves. 

A deeper connection between curves and curvelets was alluded to in our 
talk at Curves and Surfaces '99. Think of a curve in the plane as a distribu- 
tion supported on the curve, in the same way that a point in the plane can 
be thought of as a Dirac distribution supported on that point. The curvelets 
scheme can be used to represent that distribution as a superposition of func- 
tions of various lengths and widths obeying the scaling law width = length2. 
In a certain sense this is a near-optimal representation of the distribution. 

The analogy and the surprise 

Sections 2 and 3 showed that wavelets do surprisingly well in representing 
point singularities. Without attempting an explicit representation of 'where 
the bad points are', wavelets do essentially as well as ideal adaptive schemes 
in representing the point singularities. 

Sections 4-6 showed that the non-adaptive curvelets representation can 
do nearly as well in representing objects with discontinuities along curves as 
adaptive methods that explicitly track the shape of the discontinuity and use 
a special adaptive representation dependent on that tracking. 

We find it surprising and stimulating that the curvelet representation 
can work so well despite the fact that it never constructs or depends on the 
existence of any 'map' of the discontinuity set. 

We also find it interesting that there is a system of analysis which plays 
the role for curvilinear singularities that wavelets play for point singularities. 
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Bases in Function Spaces on Compact Sets 

Zbigniew Ciesielski 

Abstract. This is a brief history, covering the twentieth century, of 
spline bases on cubes, and an exposition of constructing bases in classical 
function spaces over compact smooth finite dimensional manifolds. 

§1. Introduction 

The aim of this paper is to present an overview on some twentieth century 
developments in the theory of spline bases. We start by recalling some of the 
relevant notions on bases in Banach spaces (for more details see e.g. [1,30]). 
For simplicity we are going to stay within the real Banach spaces. An abstract 
Banach space X with the norm || • ||x is denoted as [X, || • ||x]. The sequence 
(xn, n = 0,1,...) in [X, \\ ■ \\x] is called a basis in X if to each x € X there is 
a unique sequence of scalars a = (an,n = 0,1,...) such that 

X=Y^anxn- C1) 
n=0 

There are unique linear functional (x*) C X* such that an = x*n(x). The 
system (x0,xi,...;xl,x\,...) is biorthogonal i.e. x*k(xi) = 8k,i- The basis 
(xn) is unconditional if for each x e X the series in the right hand side of (1) 
converges unconditionally. Now, denote by A the set of all a appearing in (1) 
while x is running through X. The linear space A becomes a Banach space 
linearly isomorphic to X with the norm 

sU supH^ajSillx- (2) 
»S°    i=0 

The Banach space [A, \\ ■ |U] is customarily called the coefficient space. Intro- 
ducing the basis constant, which by the Banach-Steinhaus theorem is finite, 

n 

ß=    sup   supllVVxillx-, (3) 
ll*llx<l»>°    S> 

Curve and Surface Fitting: Saint-Malo 1999 121 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 121-134. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
All rights of reproduction in any form reserved. 



122 Z. Ciesielski 

we obtain the equivalence of norms 

M\x<\\a\\A<ß\\x\\x- (4) 

Thus, every Banach space with a basis is linearly isomorphic to a sequence 
space. However, depending on the space X and on the particular basis, the 
corresponding sequence space may be of little use. Sometimes it helps to con- 
sider equivalent basis in X. Two basis (xn) C X and (x'n) C X' are said 
to be equivalent if A = A'. In case of equivalent bases we conclude that 
\\&\\A ~ II^IU' f°r «£ A Now, we may describe the program of the pa- 
per. For a given compact C°° finite dimensional manifold M and for given 
order of smoothness m, we are going to describe the construction of biorthog- 
onal system of functions of class Cm over M such that the system itself is a 
basis in VMO(M), HX{M) and and in the whole scale of Sobolev W]f(M), 
-m < k <m, and of Besov spaces B^q(M), -m < s < m, with 1 < p, q < oo. 
At the same time the dual system is going to be a basis in the same scale of 
function spaces with the corresponding spaces VMO,H\,W and B replaced 

O O 0 o 

by VMO, HI,W and B, respectively. The constructed system of functions (or 
its dual) is always an unconditional basis whenever the space admits an un- 
conditional basis. Moreover, for the constructed basis, we are able to describe 
the coefficient spaces in case of the BMO and Besov spaces. The duality 
questions will be treated at the same time. The main idea of the general 
construction was announced by T. Figiel and the author at the Gdansk 1979 
conference: Approximation and function spaces (cf. [14]), and then carried 
out in the subsequent papers [10,11,15,16,17]. 

The material is arranged as follows: Sections 2 presents historical remarks 
on the Haar, Faber-Schauder, Franklin and spline systems; Section 3 treats 
function spaces and bases with boundary conditions on the cube; Section 4 
describes the reduction of function spaces and bases from manifolds to the 
cubes with boundary conditions. 

It is encouraging, that in recent years, the ideas of the constructions from 
[16,17] stimulated works on modifications of the decomposition of the func- 
tion spaces on smooth compact manifolds into standard spaces, and also on 
constructing new bases in the standard spaces. The new investigations of 
W. Dahmen and R. Schneider as they were presented at this Saint Malo con- 
ference (see also [19]) are very promising as they show that these constructions 
can be applied to treat singular operators on manifolds both theoretically and 
numerically. 

§2. The History of Haar, Faber-Schauder, Franklin and Spline 
Systems 

At the very origin there is the construction of A. Haar (1909) [25] of a simple 
ONC (orthonormal and complete) system x = (Xn,n = 1,...) on I = [0,1]. 
The system % has the nice property that each continuous function has its 
Fourier-Haar series uniformly convergent on I.    Here and later on, unless 
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otherwise stated, the orthogonality is understood with respect to the Lebesgue 
measure. The orthonormal Haar functions over / can be defined by means of 
a single function h, where 

h(t) 

Define for j > 0, 1 < k < 2j and n = V + k 

9k — 1 
Xi = 1,    and   x»(t) = %,*(*) = 2i/2M2i(*--äJ+r)). (5) 

The Haar functions are piecewise constant and left continuous i.e.  they are 
splines of order r = 1 (of degree r — 1 = 0).   For later convenience for the 

2fc-l 
2JT~ 

1 for -- < t < 0 

-1 for 0 < t < -, 

0 otherwise. 

support of Xn we introduce the symbol (n) = [^s ^-] (and let t„ — 
denote the middle point). It was pointed out by J. Schauder (1927) [29] 
that the Haar system x is a basis in the Lebesgue space LP(I), 1 < p < oo, 
with the basis constant equal to 1. Much more involved was the proof of 
R.E.A.C. Paley (1932) [27] (see also J. Marcinkiewicz (1937) [26]) that the 
Haar system is an unconditional basis in each LP(I), 1 < p < oo. For a real 
variable proof of this property, we refer e.g. to Ch. Watari (1964) [31]. The 
unconditional basic constant for the Haar system in LP(I) appears to be equal 
to max(p,p') — 1 where 1/p + 1/p' = 1 (see e.e. D.L. Burkholder [5]). The 
extensively investigated martingale theory covers many results on the Haar 
system, but it is not very related to our subject, and will not be discussed 
here (see e.g. [23]). 

To construct the Faber-Schauder, Franklin and more general spline sys- 
tems, it is convenient to introduce the following operations on sequences of 
functions. For a given sequence V> = {ipn,n = 1,2,...) of integrable functions 
on /, we define 

G^=(l,GV'„,n = l,21...)    and    G0^ = (GV>„,n = 1,2,...), 

where G/(t) = /„ f(s) ds. If in addition, the functions in ^ are linearly 
independent, then the result of the Gram orthogonalization process applied 
to ip is denoted by O^. It is assumed in this definition that so obtained 
orthogonal set is normalized in L2(I). 

The Faber-Schauder system can now be obtained from the Haar system 
by the operation G 

^=(0n,n>O) = Gx- (6) 

The Faber-Schauder functions are continuous splines of order 2. It was proved 
by G. Faber (1910) [21] (see also J. Schauder (1927) [29]) that this system is 
a basis in the space of continuous functions [C(I), \\ ■ H«,].   In this case the 
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basis constant is again equal to 1 and the basis itself is interpolating at dyadic 
points of /. 

The orthonormal set constructed by Ph. Franklin (1928) [22] can now be 
denned as the result of application of the operation O to the Schauder system 

/=(/n,n = 0,l,...) = O£ (7) 

These functions are again continuous splines of order r = 2. Ph. Franklin 
proved in [22] that / is a basis in [C(I), || • ||oo]- For an elegant proof that the 
Franklin system is a basis in C(I) and in LP(I), 1 < p < oo, we refer to [6]. 
Using the same idea as in [31], S. V. Botchkarev (1974, 1975) [3, 4] proved 
the unconditionality of the Franklin system in each LP(I), 1 < p < oo. There 
is an extensive literature on the pointwise behavior of the Franklin series, but 
we mention only the expository article by G. G. Gevorkyan [24]. 

The operation G increases the order r of splines and the order of their 
smoothness by 1, and O preserves these orders. We may repeat this two step 
process starting now with the orthonormal Franklin system and then repeat 
it again and again. In general, for r > 1 we use the notation 

/(r) = (IP,™ > 1 - r)  and  ^ = (<f>^\n > -r) = G/<r> 

and 
/('+!) =O0(r'1). 

Consequently, we have for the order r > 1 the following inductive formula for 
the spline ONC system on / 

/(r+!) = O o G/(r)   with  /(1) = x. (8) 

In particular in this notation <£(1,1) = 0 and / = /(2). It was proved in [7] 

that 0(2ll) is a basis in [C(I), || • ||oo] and by J. Radecki (1970) [28] that /(3) 

is a basis in [C(I), || • ||oo] and in each LP{I), 1 < p < oo. The proof that /(r) 

for arbitrary r > 1 is a basis in C{I) and in LP(I) follows from the work of J. 
Domsta (1972) [20] (see also [12]). 

From the construction of the ONC system /M it follows that its first r 

elements f£}r, ■■■, fi^ are simply the orthonormal Legendre polynomials on 
/; the degree of f^ is i + r - 2. Now, with each r > 1 we associate a family 
of spline systems 

/<r-fc> = (/<•■■*>, n>|fc| + l-r)    with     -r<k<r, (9) 

where 

/^ = (Dfc/"r)    for0^<r' (10) 
lH-fc/nr)    for-r<fc<0, 
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and Df(t) = £f(t) and H/(t) = // f(s) ds. Since D is inverse to G and H is 
adjoint to G in L2(I), it follows that for |fc| < r, 

(ftlk)Jk'-k))=6n,m    for   n,m>|*| + l-r. (11) 

Equally important are spline ON systems denned by formula similar to (8) 
with G replaced by Go, i.e. 

£(r+i) = OoGo/l  with ffW =x- (12) 

Here again, with each r > 1 we associate a family of spline systems 
g(.r,k) = (5(r,fc))n > y    with    -r<k<r, (13) 

where 

pWO-/1^ *»0^*<". (14) 

I H-fcffir)    for -r < fc < 0; 
and as before we have for |fc| < r, 

{9(n'k\9l&-k)) = Km    for   n,m>l. (15) 

In what follows in this section we denote by F}^ either /^ or g(r). Since 
the family {F}r'k^, —r < k < r} of spline systems is the main ingredient in the 
construction presented in the next section, it is natural to recall now its basic 
properties. Notice that the elements of FJT'k^ are indexed by n > n(k, F), 
where n(k, f) = \k\ + 2 - r and n(k, g) = 1. 

For given r and k such that |fc| < r and for given n > n(k,F), we have 
the kernel corresponding to the partial sum operator with index n 

Ktk\s,t)=     Yl    Fir'-k){s)-4T'k)(t)    for   M€l- (16) 
u=n(k,F) 

The following exponential estimates (cf. [8,13,17]) play a fundamental role 
in our construction. There are two constants: C = CT < oo and q = qT, 
0 < q < 1, such that for |fc| < r we have 

|üf<r'fc>(a)t)|<C-(n + r)-^B+r)|-(|    for    s,t£l, (17) 

and 
\FiT'k){t)\ <C-{n + r)fc+3 • g(»+»-)l*-*»l    for   t £ /, (18) 

where t„ has been defined earlier as the middle point of (n). Now, the 
biorthogonality (11), (15) and (18) imply for 1 < p < oo, \k\ < r, and for 
any real sequence (a„,2J < n < 2-'+1), (j > 0), the equivalence 

ii   Y,  ^•■#,fc)iip~2,'(fc+§-*)-( E   MP
)"-    (19) 

2'<n<2i+'i 2J<n<2-'+1 

Moreover, it follows that 

||        £        «n-i^llpHI        E        K-^r'fc)IHp. (2°) 
2'<n<2i+1 2i<n<2i+1 

where the positive constants in the equivalences ~ in (19) and (20) depend 
on r only. 

Now, as one of the consequences of (17) and (18), we obtain 
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Theorem 1. For given r, k, \k\ < r and p, 1 < p < oo, the system F}r' ' 
is a basis in Lp(I). Moreover, for 1 < p < oo, each of the systems is an 
unconditional basis in Lp(I), and all of them are equivalent bases in this 

space. Moreover, F}T' ' is a basis in C(I) for each k, 0 < k < r — 2. 

§3. The Standard Spaces over Cubes 

We start with general setup which will be needed in the following sections. Let 
the dimension d be fixed, and let M be a compact C°° d-dimensional manifold 
(d-manifold). For simplicity, we assume here that M has no boundary. We 
denote by \i one of the measures which locally is of the form d/i = hdx where 
h is positive C°° function. A closed set Q C M is said to be a rf-cube if 
it is diffeomorphic to the standard cube [0, l]d. A compact set K C M or 
K C Rd is said to be proper if it can be viewed locally as an epigraph of a 
lipschitzian function of d - 1 variables (cf. Def. 3.1 in [16]). We are going 
to discuss function spaces F(K) over a proper subsets K, in particular the 
Sobolev spaces with T = W™ and the Besov spaces with T = B°q. In the 

Sobolev space W™{K), K C Rd, 1 < p < oo, m > 0, we shall use the norm 

\\f\\P
m\K) = E \\D°fUK)- (21) 

\a\<m 

Clearly, W°{K) = Lp(K) and we denote by W£(K) the space Cm(K). More- 
over, the space of equivalence classes of measurable functions over K equipped 
with the topology of convergence in measure is denoted by LQ(K). In order 

to define W£{K) for fc < 0, we introduce W™(K) for each m > 0 as the 

closure in the norm (21) of smooth functions / such that supp/ C intA". For 
1 < P < oo, k < 0 and for g € W°,(K) put 

\\g\\^(K) = sup {| I fgdx\ :   \\f\\p-
k)(K) < 1, / G W^iK)),        (22) 

where p' = p/(p— 1) for 1 < p < oo and 1' = oo, oo' = 1. Now, the completion 
of W°,(K) in the norm (22) defines the space W^,(K). 

Let now I = [0,1], Q = Id and let Z be a boundary set i.e. a set which is a 
union of (d — l)-dimensional faces of Q. To each pair {T(Q), Z} we associate 
a subspace of T(Q) of functions which are vanishing onZc dQ in the sense 
described below. To each Z there are unique Z, C dl, i = 1,..., d, such that 

Z = Q\(I\Z1)x...x(I\Zd). (23) 

Now, define for each Z the parallelepiped 

Qz=IZl x...xIZd, (24) 
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where 
C [0,1]       for Z = 0, 

7,J[-M1    i0TZ = {°}> (25) 
I [0,2]       forZ = {l}, 

.[-1,2]    for Z = {0,1}. 

If / S L0(Q), we denote by fz the element of Lo{Qz) such that JZ\Q = / 
and fz — 0 on Qz \ Q- 

Definition 2. For given integer k and 1 < p < oo, put 

\\f\\p
k)(Q)z = WfzCHQz). 

Now, ifk > 0, define 

W*(Q)z = {fe W${Q) : fz € W%(Qz)}, 

and ifk < 0 then introducing W0 = {/ € W°(Q) :  /z € Wp
fc(Qz)}, define 

Wp
fc(Q)z = completion of W0 in the norm ||/||^)(Q)z- 

The spaces [W^{Q)z, || • \\P\Q)Z] are called standard. 

Notice that for k > 0 the set {fz : f € W*(Q)z} is a closed subspace 
of Wp(Qz), and by Definition 2 the map / i-*- fz is an isometry. Now let 
fc < 0. In this case the map / i-> fz extends to an isometry of W£(Q)z 
into Wp {Qz)- Thus W£(Q)z is always complete, and the image of the map 
/ •-* fz is a closed subspace of W£(Qz)- We have constructed in [16], using 
the formulae (23) and (24) and the generalized Hestenes extension operators, 
a bounded projection onto this subspace. 

Proposition 3. Let m > 1 and the boundary set Z C dQ be given. Then 
there are a continuous linear operator P in LQ(QZ) and C < oo such that P 
projects L0(Qz) onto {/ : / = 0 a.e. on Qz \ Q} and tor 1 < p < oo we have 

\\PfWf\Qz) < C 11/11 p
k\Qz) forf € WfiQz), \k\ < m. (26) 

Thus, P projects W£(Qz) onto a subspace which is via the map f H-> fz 

linearly isomorphic to W£(Q)z- 

Now, for k < 0 and 1 < p < oo we define the bilinear form 

<?*(/) = / f9dx   for   g* e {w;,\Q)Z'T, g e W°p{Q). 
JQ 

Proposition 4. Let k < 0 and 1 < p < oo be given. Then the map 

9-5*^p0(Q)-(^(Q)z-r 

(27) 
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defined in (27) extends to a linear isomorphism ofWp(Q)z onto a subspace 
of(wpi

k(Q)z,y. 
Now suppose real s and 1 < p, q < oo are given. Moreover, let K be a 

proper set. Then for any integers k, I such that I < s < k, we have the real 
interpolation formula for the Besov space (with 6 = (s — 1)1 {k — I)) 

B;tq(K)=(Wl(K),Wp
k(K))gq. (28) 

For / € Bpq(K) the norm is denoted by ||/||p^(-£0- The Besov space over Q 
with I = 0 < s < k and corresponding to the boundary set Z C dQ is now 
defined by the formula 

Bs
p,q(Q)z = {/ G Wp°(Q) :  fz £ Bs

pJQz)}. (29) 

Moreover, let us define for / € Bpq(Q)z 

\\f\\{;tl(Q)z = WfzWftiQz). (30) 

The Besov space [B^q(Q)z, \\-\\p,q(Q)z] will be called standard as well. Notice, 
that Bpq(Q)z Q Bpq(Q), but it may be not a closed subset of Bs

pq(Q). 

Proposition 5.  Let the parameters I, k, 9, s, p, q be given as for (28), and let 

HQ)z = (MQ)z,ri(Q)z)e,q where T0 = Wl
p, Tx = W$.        (31) 

Then, T(Q)Z = B^q(Q)z fors>0 and for s < 0 the space T(Q)z is naturally 
identified with the closure ofW° in (B~,siq,(Q)Z')*. 

The proof is based on the existence of the projection P in Proposition 3, 
and on the general properties of the real interpolation spaces (see [2, 16]). 

Corollary 6. Suppose we are given real numbers s, 1 < p, q < oo, an integer 
k, and a boundary set Z C dQ of the cube Q. Then the standard spaces 
T(ff)z are well defined for T = Wp or B^q. Moreover, if I < s < k, then 
formula (31) takes place. 

In the last part of Section 3 we are going to present a construction of 
spline bases in the T(Q)z spaces. Actually, according to (31), it is sufficient 
to do it for the Sobolev spaces Wp(Q)z- 

We start with the case of dimension d = 1. To each Z C dl and for an 
integer m = r — 2>0a spline system is defined as follows: 

fi2T'r){t) ifZ = 0andn>2-r, 

fnr'~r\t) if Z = {0,1} andn>2-r, 

g{nr'T){t) ifZ = {0}andn>l, 

9{nT'~r\t) if Z = {1} and n > 1; 

FJT\t;Z) = (32) 
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where the pT'' and g(T,v> are given as in (10) and (14), respectively. Moreover, 
let 

(|fc| + 2-r    ifZ = 0, 

|*| + 2-r    ifZ = {0,l}, 
n(Z) = n(Z,0)    and   n(Z,k) ={'"'' " L~'~J' (33) 

U ifZ = {l}. 

For simplicity let us write F(m)(Z) = (F,lm)(- ;Z),n > n(Z)). Notice that 
n(Z, k) = n(Z', -k), and that the two systems F(m)(Z) and F(m)(Z'), where 
Z' = dl\ Z, are dual, i.e. they are biorthogonal in the L2(I) scalar product 

(F^\.;Z),FJm\-;Z')) = S{J  for i,j > n(Z). (34) 

Now, we introduce related family of biorthogonal systems indexed by k with 
\k\ < m. Namely, for j > n(Z,k), let 

(DkF$m){.;Z)      for0<fc<m, 
Fm'k\.;Z)=\        '    \ (35) 

[ H-*FJm)(- ; Z)    for -TO < Jb < 0; 

and the biorthogonality for \k\ < m is as follows 

(F<m<k\. ; Z), Fjm>~k\. ; Z')) = 6id  for i, j > n(Z, k). (36) 

Theorem 7. For each Zc9/,l<p<oo, the system F{m)(Z) is in W™(I)Z 

and it is a basis (an unconditional basis if 1 < p < ooj in each Wk(I)z 
for k = 0,..., m. This means that it is a simultaneous basis (simultaneous 
unconditional basis if 1 < p < co) in [W™(I)z, \\ ■ ||p   ]■ 

Proof: To see how the proof works, let 

Pnf(x;Z)=     £    (f,FJm)(.;Z'))FJm\x;Z)    for   / € LP(I).      (37) 
n(Z)<j<n 

Then we find that for 0 < k < TO, 

DkPn}{x-Z) = pW{Dkf){x-Z)    for    / € Wf>(/)z, (38) 

where for g £ W°(I) 

pW{g){x;Z) =    J2   (9,FJm'-k)(.;Z'))F$m'k\x;Z). (39) 
j=n(Z,k) 

Now, Theorem 7 follows immediately from Theorem 1 by (38) and (39). D 
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Now we consider the case of dimension d > 1, with Q = Id. Suppose we 
are given Z C dQ. Then according to (23) the Z{ C dl, for i = 1,..., d, are 
determined. We are ready now to construct the tensor product basis corre- 
sponding to the boundary set Z. Each function of the basis under construction 
is determined by an integer vector j = {j\,...,jd) satisfying the inequality 
j > n{Z) with n{Z) = (n(Zi),..., n{Zd)) i.e. jt > n{Z{) for i = 1,..., d. 

Given the order of smoothness m > 0, we now define the j's function as 
follows: 

jf">(*; Z) = 4m)(xi; Zi) x • • • x FJf(xd; Zd), (40) 

where x = (xi,..., a:<j). The indices j are ordered in the rectangular way (cf. 
[12], p. 221). 

Theorem 8. The system (FJm\- ; Z),j > n(Z)) in the rectangular ordering 
is a basis in W™(Q)z for 1 < p < oo, and in addition it is unconditional in 
these spaces if 1 < p < oo. 

Our next goal is to modify the basis (40) in such a way that the ele- 
ments of the new basis will be concentrated around the corresponding dyadic 
points in Q. To this end let us introduce in dimension one the following finite 
dimensional spline spaces: 

S?{Z) = span{FJm)(-; Z) : n{Z) <j< 2"}    where    n > 1. (41) 

Now, without going into details, we accept the Definition 10.17 of [17] of the 
new spline basis in S™(Z), i.e. of F^\-; Z) with n{Z) <j< 2». The new 
basic functions for the standard space W™(Q)z are now defined as follows. 
For convenience, let D = {l,...,d}, and let 

N0{Z) = {j :  n{Zi) <ji<l for i e D}, 

and for every e C D, e / 0, // > 1, let 

NeA
Z) = {J ■  2"~l < 3i ^ 2" for * G e' <Zi) ^ 3i < 2M_1 for * e D \ e}. 

We also introduce 
N,{Z)=    (J    Ne<,(Z). 

Definition 9. Let 

G<fl)(-;Z) = FJm)(-;Z)    for   j G N0(Z), 

and 

Gf\- ; Z) = 0 ^m)(.; Zt) ®  0 F^(-; Z{)    for   j e NCtfl(Z) 

for any eCJ),e/l, and /i > 1. 
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Any ordering -< of the set of indices {j : j > n(Z)} is said to be regular if 
j -< j' for any j G Nß and j' € Nßi whenever fi < \i! (cf. [10]). We also have 
the biorthogonality relation 

(G(fl)(-;Z),G{™)(-;Z')) = 6j,!J. (42) 

We can now state the result on 'universal basis' in standard spaces (cf. [10, 
16]) 

Theorem 10. Let m > 0 be a given order of smoothness. The system 
{Gj (■ ;Z),j > n(Z)) in the regular ordering is a basis in all the spaces 
Wp(Q)z for 0 < k < m, 1 < p < oo, and in addition it is unconditional if 
1 < p < oo. Moreover, for [i > 1, 1 < p < oo, we have 

|| £ aj (?«(. ;Z)\\P ~ 2^/2-i/p)d( £ top)1", (43) 

where the constants in the relation ~ depend only on d and m. 

Corollary 11. The system (Gj(- ; Z), j > n(Z)) in the regular ordering is 
a basis in all the spaces B^q{Q)z with 1 < p, q < oo, 0 < s < m. Moreover, 
for 

/(•)=   £   «,Gf >(•;*), 
3>n(Z) 

letting a = s/d + 1/2 — 1/p, we have 

1('W -,^-   . 

The constants in the relation ~ depend on m, s and on d. 

<ni/? 

For an arbitrary d-cube Q, the function space T(ff)z is defined as the 
image of T(Id)z under the linar mapping induced by the diffeomorphism 
between Q and Id. 

§4. Decomposition of Function Spaces over Smooth Manifolds 

Let us start with the decomposition of M without boundary (for M with 
boundary cf. [16]). We say that M admits decomposition into d-cubes if for 
some N there are d-cubes Qi,..., QN C M such that UJ<NQJ = M and if $j 
is a diffeomorphism of [0, l]d onto Qj, 1 < j < N, then the set $~1(Uj<jQi) 
is the union of some (d — l)-dimensional faces of [0, l]d. The decomposition 
Qi,... QN, is said to be proper if the sets Uj<jQ, are proper for j = 0,..., N. 
Now we have the following result whose proof depends very much on Morse 
theory (cf. Theorem 3.3 in [16]): 

Theorem 12. Let M be a compact d-manifold. Then M admits a proper 
decomposition. 
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For the Sobolev W*(M) and Besov Bpq(M) spaces, we have the real 
interpolation formula for any integers I, r, real s,l < s < r, and for 1 < p, q < 
oo (cf. [15]) 

Bi,(M)=(Wj(M)lW^(M))fli?, (44) 

where s = (1 - 6)1 + Or. We recall that for the standard Besov spaces, we 
have similar formula (cf. Proposition 5). Having a proper decomposition of 
M (Theorem 12), we would like to obtain a corresponding decomposition of 
F(M) into a direct sum of standard spaces T(Qj)zr Let L0{M) denote the 
space of all measurable functions (of equivalence classes) with the topology of 
convergence in measure. 

Proposition 13. Let QI,...,QN be a proper decomposition of M into d- 
cubes as in Theorem 12. Let u. be a smooth measure on M. Then, for any 
m > 1, one can construct continuous linear operators P\,...,PN in the space 
L0(M) with the following properties for f e L0(M): 

£*/ = /, (45) 
PiPjf = 0, ifl<t#j<JV, (46) 

XQfjf = PiXQi f,       if 1 < t < j < N, (47) 

there is C < oo such that for all spaces W£{M), 0 < k < m, 1 < p < oo , for 
all g £ Wp(M) and for 1 < i < N we have 

\\Pi9\\ikHM) < C|M|W(M), (48) 

the adjoint operators (in the Hilbert space L2(M, u.)) P^,...,P^ satisfy the 
analog of (48). 

Proposition 13 implies the main result on decomposing the function spa- 
ces F(M) (see [16]), i.e. 

Theorem 14. Let Q\,..., QN be a proper decomposition of M as in Theo- 
rem 12, and let PI,...,PN be the linear operators from Proposition 13. Then 
the formulae 

To/ = X) XQtPif,    V0f = X XQ<Pif 
i<N i<N 

define linear isomorphism of L0{M) onto itself, the inverse maps being, re- 
spectively, 

So/ = £ PiXQtf,  u0f = X P;XQJ. 
i<N i<N 

Moreover, if T denotes W£, 0 < k < m, 1 < p < oo, then T0, V0 induce linear 
topological isomorphism 

T : T(M) - 0 F{Qi)Zi,    V : T{M) -+ 0 T(Qi)z>, 
i<N i<N 

where Zj = Qi Uj<j Qj and Zi = Qi Uj>j Qj. 
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Corollary 15. The assertions of Theorem 14 remain true for T = W£, Bpq 

with \k\ < m, \s\ < m, 1 < p, q < oo. Moreover, there is now an obvious 
extension of Theorem 10 and Corollary 11 to T(M) for all these spaces. 
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A Note on Convolving 
Refinable Function Vectors 

C. Conti and K. Jetter 

Abstract. When convolving two refinable function vectors which give 
rise to convergent subdivision schemes, the convolved scheme is again con- 
vergent. Moreover, the conditions on the mask symbols which characterize 
the approximation order of the associated shift invariant spaces show that 
the order of the convolved space is, essentially, the sum of the order of the 
two spaces originating from the convolution factors. 

§1. Kronecker Convolved Function Vectors 

Our previous paper [3] deals with special subdivision schemes associated with 
a shift invariant space of bivariate spline functions, where the "generators" of 
the shift invariant space are produced through convolving lower order splines 
of small support. The present paper gives a more detailed and more systematic 
analysis of this convolution process. In this way it is possible to prove that 
(i) the convolution of convergent subdivision schemes yields a scheme which is 
convergent as well, and (ii) essentially, the approximation power of a convolved 
shift invariant space is at least the sum of the approximation powers of the 
two convolution factors. 

We recall that a vector <& = (<j>i, fc,..., 4>n)T of (continuous, compactly 
supported) d-variate functions is called refinable, if it satisfies a refinement 
equation 

*=  J2 Aa*{2--a). (1.1) 
a6Kd 

Here, the refinement matrix mask A = (Aa) ^d is a matrix sequence with 
each 'coefficient' Aa being a real (n x n)-matrix. We allow only masks of finite 
support, i.e., Aa =0 except for finitely many a € 7L . 
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Given another refinable function vector *  =  (0i, V>2, • • •, ipm)T of d- 
variate functions, satisfying the refinement equation 

* =  £ Bß *(2 • -/?) (1.2) 

with corresponding matrix mask B = (Bß)ß€7Zd, which is a matrix sequence of 
(mxm)-matrices Bß, we use the following Kronecker type notion of convolving 
the two vectors: 

02 * * 
0 := $* * := 

V </>n * * / 
Here, the convolution of a scalar function <fo with the vector function * 
is taken componentwise. This operation produces a vector function 0 = 
(01,02, • • •, Omn)T with mxn components of type 0(i_1)m+j := 4>i * ipj. It is 
not too hard to see that 0 is refinable again, 

0 =  £ C7 0(2 • -7) , (1-3) 

where the refinement mask C = (C7) E,,, which is a matrix sequence of 
(nm x nm)-matrices, is computed as follows: 

= Td E A«®Bi-* .   oe^d- (L4) C. '7-  2d 
QGKd 

Here, the symbol ® denotes the Kronecker product of matrices. 
For the definition and some properties of this Kronecker product, we 

refer to [4, Section 4.2]. It should be noted at least that neither the Kronecker 
product of matrices nor the Kronecker type convolution is commutative. 

§2. Convergence of the Convolved Subdivision Scheme 

Let us also recall that a refinable function vector gives rise to a vector-valued 
subdivision scheme as follows: In the situation of (1.1), the subdivision operator 
associated with the refinable function vector <& = (</>i, </>2, ■ • •, <t>n)T is defined as 

SA  :  {Z{7Ld)Y - {md)T , 

(SAA)a:=  Y,A°-WAß>    a€7Zd:' (2'1} 

ß€7Zd 

where £(7Zd) denotes the linear space of sequences indexed by 7Ld. The com- 
plete (stationary) subdivision scheme consists in the iterates of SA, namely: 

For a given initial vector sequence A G (£(ffi ))n 

Put A<°) := A and (2.2) 

Compute A(fc+1) := SA A«, k = 0,1,... 
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Hence, the iterate A^ = (A^)Q6E<I has components 

A« :=  £ (A^_2kßf A<°\    a e & , (2.3) 
ß£ZLd 

with the iterated matrices A<fc) = (A^)^^ defined by AW := A and 

A^ := £ A^Aa-tß ,    ae7Ld,    for fc > 1. (2.4) 
ß£TLd 

Following [2, Section 2.4] we say that the subdivision scheme converges 
for A = (A1,..., An)T € (f°(ZZd))n if there exists a continuous function fA : 
R,d -> R such that 

^ll/A(F)e_A(fc)|    = 0   f0r   e = (U-if- (2-5) Pu—'DO   II £j MOO ^V 

n 

Here, || • U,» denotes the sup-norm of the vector sequence A = (A1,..., A")T 

given by 

IIAI     :=   max   \\%x. 
II      loo l=l,...,n 

The symbol fA (^-) is short for the scalar-valued sequence (/A(p-))a Zd- It 
should be noted that, since for any convergent scheme the limit function fA 

is given by 
/A= £A£ *(■-«), 

a€Z,2 

we can recover the components fa, i = 1,... ,n, as follows: choose the initial 
sequence A = (A1,..., An)T in the following way that Ai is a delta sequence 
(i.e., Xl

a = 6a for a € 7Ld) while all other sequences AJ', j ^ i, are null 
sequences. This special initial vector sequence and its iterates will be denoted 
by E; and E\k\ k>0, respectively. It then turns out that 

lim |U(rj)e -ENI    =0   for   i = l,...,n. (2.6) 
ft—KX)  II £i || OO 

Theorem 2.1. Given two convergent subdivision schemes associated with the 
refinable {unction vectors * and *, the (Kronecker type) convolved scheme 
associated with 0 = 3> * * is again convergent. 

Proof: Let f := (1 1 ■•• 1)T, and let F^ denote the vector sequence (com- 
m 

posed by m sequences) with the delta sequence at position j and the null 
sequence at all other positions. If Ff\ k > 0, are the iterated vectors with 
respect to the ^-subdivision, we have 

£sJ^(i)f-p?)l   =0   for  i = i.■■■."». (2-7) K    »OO  II £i llOO 
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in addition to (2.6). In order to prove the theorem, we will show that 

lim ((^*V'i)(2fc))(e®f)-(Ei*Fi) 
(k) 

= 0 (2.8) 

for i = 1,..., n and j = 1,..., m.   Here, the convolution of two vector se- 
quences is defined by 

A*T:= 

(»\ 

w 
I1 \ 

\7m/ 

/\l*T\ 
A2*r 

VAn*r/ 

where the convolution of a scalar sequence A1 with the vector sequence T is 
taken componentwise, i.e., A' * T = (A* * 71, A' * 7

2,..., X * jm)T. We will 
also use the estimate 

llA^L^mindAlUlrL.llALIIrll,}, 

where IIAII   := maxi=iv..)n ||A'||i, with the usual 1-norm of scalar sequences. 

Now, the iterated matrices C^ for the ©-subdivision can be expressed 
by the iterated matrices A(fc) and B(fc) for the *- and ^-schemes as follows: 

^ = iE^®S^.     <*€&. (2.9) 

6£7Z,d 

Thus, taking E; * Fj as a starting vector for the ©-subdivision, the iterated 
vectors are given by 

v(fc) (*)**.(*) (2.10) 

whence 

((^*^)(2*))(e®f)-(Ei*Pi)
(*) 

= ((^*V'J)(2l))(e®f)-^(^(F)e)*(vj(F)f) 

-2^K,-^)e)*(^)f). 
We estimate the three vector sequences in the preceding three lines as 

follows: the first term is a vector sequence where each component of the 

vector consists of the sequence (eL  )o£a
d with 

e«:= />(*))  (*,(£-*)) ^-^E  (*(^))  (^(^))- 
6e?zd 
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This is the error of a tensor product rectangular rule applied to the convolution 
integral, and due to the continuity and the compact support of fa and ipj we 
get 

lim   sup |eW| =0. 

For the third term, 

^|(E«-^)e)*(^)f) <   1 
OO           1 

V?]-M¥)e 
1       1 

loo 2^ h%)f ) 
1 

and the bound tends to zero as k —> oo, since 

2^lh(2fc)fHi = 2^ E h'( J)| - jRd |V>i(*)|<fe 
a£7Ld 

Finally, for the second term 

(k) 

as k —> oo. This follows from 

Cfc :=-TTIIE^I   < -rrlUi(-:r)e||   + -rrll&(4-)e - E^K 

K        nrf.i. II    I    Hi- 2d'fc II       2k     111      2d'fc II       2fc 111 
r.W 

2d-fc| 

since the first term on the right-hand side converges to JR<J |<fo(a:)|diE, and the 
second term is bounded due to (2.6), the uniform continuity of the compactly 
supported function fa, and the fact that for some compact set K C Hd (in 
fact we can take the support of fa): 

(E<*>)a=0   tor^tK. 

This latter property is a consequence of the compact support of the matrix 
mask A, since we start the iteration with a 'delta'-sequence E;. In conclusion, 
(2.8) holds true.   D 

§3. Approximation Order 

Approximation orders of shift invariant spaces have been studied quite inten- 
sively in the past few years. Concerning definitions and notation we refer to 
the recent survey [5]. A characterization of approximation power in terms of 
the mask symbol is also given there. In case of the refinement equation (1.1), 
this mask symbol is defined by 

H*(0 := i E ^ e_w- (3.1) 
ae2Zd 
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The result is as follows: For given k e IN we say that H# satisfies condition 
(Zk) if there exists a row vector v = (TI, ... ,rn) of trigonometric polynomials 
such that 

v(0) #(0)^0,    v(0)H»(0)=v(0), (3.2.0.) 

and / •  M 
zWv(-)H#(-))     =0    for \n\ < k and ß e E'0, (3.2.6) 

\ £1     '  iß 

where E'0 is short for the set of corners of the cube [0, l]d with the origin 
removed. [5, Theorem 3.2.8.(i)] then asserts that condition (Zk) implies that 
5$ has I/2- approximation order k, for f € W^R )• 

Lemma 3.1. If the mask symbol H# satisfies condition (Z^) (with the row 
vector \) and the mask symbol H* satisfies condition (Z{) (with the row vec- 
tor w) then the mask symbol H© of the convolved function vector ©:=<&** 
satisfies condition Zk+e (with the row vector z := v ® wj. 

Proof: We apply the identity 

H0=H$® H* (3.3) 

several times. Condition (3.2.a) holds for the convolved function vector, since 

(v®w)(0) ($T*)(0) = v(0)*(0)w(0)¥(0) ^ 0, 

and by (3.3), 

z(0)H©(0) = (v(0)H»(0)) ® (w(0)H*(0)) = v(0) ® w(0) = z(0). 

In order to verify condition (3.2.6), 

zWz(-)H©(-))[   =0   for \ß\ < k + e and ß e E'0, 

we make use of the Leibniz-type formula 

Z?"((v®w)(.)(H*®H«)(^)) 

=     £     W^(v(.)H*(-))®D^(w(.)H*(-)) 
o<l7l<M V7/ 

at every point ß € E'0.   □ 

In order to derive an approximation order result from this lemma, we refer 
to the precise statement of [5, Theorem 3.2.8]. A sample result is as follows: 
If the shift invariant spaces associated with $ and *& have approximation 
orders k and I, respectively, and if the Gramians G$ and G* satisfy the 
regularity condition given in [5, Theorem 3.2.8.(ii)], then the 'convolved' shift 
invariant space has (at least) approximation order k + L However, in general 
the 'convolved' Gramian G© does not satisfy this regularity condition. 
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§4. An Example: Bivariate C1 Cubics on a 3-directional Mesh 

In [3], we have given an example of piecewise C1-cubics on the four-directional 
mesh. Following [1], we consider piecewise C1-cubics on the three-directional 
mesh generated by the lines x = k, y = I, with k, I € 2Z when adding the 
diagonals x—y = m,m £ Z. A basis of this space is given by the two functions 
0i = Bin*XT! and 02 = Bm*XT2, with Bm the linear three-directional box- 
spline (or "Courant" element), and XTI>XT2 the characteristic functions of the 
two triangles Ti,T2 obtained by cutting the unit square [0, l]2 by the 'north- 
east' diagonal. Thus, 0 = $ * * with $ := (Bin) and * := (XTI,XT2)

T
- 

Now, # = (Bin) satisfies a scalar refinement equation (1.1) with refine- 
ment mask 

/ 

A = (^c)aeZZ2 

0    0    0    0    0 

0    0    \    \   0 

0    h    1    i    0 

0    \    \    0    0 

0    0    0    0    0 

\ 

V / 

and * = (XTI , XTI)
T
 satisfies the refinement equation (1.2) with matrix mask 

/        :    : : : :        \ 

B = {Ba)ae7Z2 = 

0 0 

0 0 

0 0 

0 0 

0 

0 0 
1 1 

1    0 
0    1 

0 

0 

1   0 
0 1 

1 1 
0   0 

0 

V / 

Here, the indexing of the 'coefficients' is such that the boldface entry is at 
position a = (0,0). 

It follows that 0 = <&** satisfies the refinement equation (1.3), with the 
matrix mask C as displayed on the following page, and Theorem 2.1 provides 
the convergence property for the associated subdivision scheme. 

Concerning approximation order, Lemma 3.1 can be applied by putting 
k = 2, t = 1, and z := (1) ® (1 1). As a consequence, the approximation order 
for bivariate C1-cubics on the the three-directional mesh is at least 3, and this 
is the precise approximation order (as was proved in [1]). 
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C = 

'   : 
... o 0 0 0 0 0 

So o\ (\ o\ (\ o\ ... o 0 1 1 u 1 (8 1 0 
\8 8/ \8 4/ 8/ 

... o 
(? ?) (* ?) (* *) (i 0 0 
\8 8/ \4 2/ \8 2/ 8/ 
/1 

') 

/1 1 \ / 1 1 \ / i 1 \ 
... o 

(! (* I) (o l) 1 8 

\ 0 
8 1 0 / 

0 
V 8 4 / \ 8 2 / V " 4 / \ " / 
/I 

8 / 

/I IN /I I \ 
... o 

(§ (5 0 8 / (s §) 0 0 

... o 0 0 0 0 0 
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Interpolating Polynomial Macro-Elements 
with Tension Properties 

Paolo Costantini and Carla Manni 

Abstract. In this paper we present the construction of nine-parameter 
polynomial macro elements, based on the classical Powell-Sabin split, 
which can be connected to form a C1 surface. Variable degrees, which 
act as independent tension parameters, are associated with any vertex of 
the triangulation, i.e. to any interpolation point. 

§1. Introduction 

Among the several approaches for avoiding extraneous inflection points in 
interpolating functions, the so called tension methods are the oldest and prob- 
ably the most famous ones. Basically they consist of Ck, k > 1, piecewise 
functions depending on a set of parameters which are selected in a local or 
global way to control the shape of the interpolants, stretching their patches 
between data points. 

Piecewise polynomial splines with variable degrees have turned out to be a 
useful alternative to classical (exponential or rational) tension methods, and 
have been successfully applied both in free-form design and in constrained 
interpolation of spatial data [1]. On the other hand, a limited number of 
methods for constrained interpolation of bivariate scattered data are at present 
available, and very few of them offer the possibility of controlling the shape 
via tension parameters (see for example [2,3] and references quoted therein). 

Let a set of scattered points (xi,yi,fi), i = 0,1,---,JV, be given, and 
suppose they have been associated with a proper triangulation T. We are 
interested in local methods where the polynomial pieces of a spline are de- 
termined one triangle at time using only local data. Such methods are called 
macro-element methods. The aim of the paper is to describe a new class of 
variable degree polynomial triangular macro-elements, and to show their ten- 
sion properties. These polynomial patches, which are based on the classical 
Powell-Sabin split of a triangle, can be connected to form a C1 interpolating 
function. 

Curve and Surface Fitting: Saint-Malo 1999 143 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), PP- 143-152. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
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Typically, the main drawback of macro-element methods is in the strong 
influence of the triangulation on the shape of the interpolating surface, and, 
as far as we know, it is still not clear how to construct a "good" triangulation. 
Given that any interpolating scheme based on triangular macro-elements can- 
not be completely independent of the triangulation, we can nevertheless try 
to reduce this dependence. From this point of view, the main advantage over 
existing methods is in the fact that we have a variable degree associated to 
each vertex of the triangulation; therefore the modification in the shape of 
the interpolant is similar for all the patches around the same common vertex 
(see Fig. 8 right). In other words, although constructed over T, the tension 
parameters are more related to the interpolation points than to the edges of 
the adopted triangulation. 

It is worthwhile to anticipate that the possibly high degrees we use for our 
construction act only as tension parameters, and do not modify the basic struc- 
ture of the macro-element. In other words, we always use a nine-parameter 
macro-element, and the computational complexity is almost independent of 
the size of the degrees used. 

The scheme, being local, requires that the gradients are also known at the 
vertices of the triangulation. If this information is unavailable, gradients can 
be recovered from the data points. In the presented numerical test, gradients 
have been computed from the data according to the classical least square 
strategy. 

The paper is divided into six sections. In the next section we introduce 
some notations. Sections 3 and 4 are devoted to the construction of the control 
points defining the macro-element, whose properties are briefly discussed in 
Section 5. We end with Section 6 where a graphical example is presented. 

§2. Notation and Preliminaries 

In this section we introduce some notation. To aid in comprehension, we 
notice that points and vectors in B2 and in K3 have been denoted by bold- 
faced characters unless classical notations (as for gradients) have been used. 
As usual, we describe the polynomial macro-element in terms of its Bernstein- 
Bezier control points. Let Pr, r = 1,2,3, be three non-collinear points in ]R , 
and let T denote the triangle they form. An n-degree Bernstein polynomial 
has the form 

b(x,y;n) = b(u,v,w;n) :=     ^     -^r^ hjk u'vJwk, 
i+j+k=n 

where, setting P = [x, y)T € R2, u = u(x,y), v = v(x,y), w = w(x,y), are 
the barycentric coordinates of P with respect to the vertices of T, that is 

P = «Pi + VP2 + WP3;     U + V + W =1, 

and lijk, i + j + k = n, are the Bernstein ordinates of &(.,.,.; n). 
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Fig. 1. Powell-Sabin split of a triangle. 

Setting x = x(u,v,w), y = y(u,v,w), the points in H 

U' n ' n' 
LHk-=    2/(£>n>n)    '    hJ,k>0 , i+j + k = n, 

lijk 

are called control points [4]. 
We finally recall the so-called Powell-Sabin split ([5]) of a given triangle, 

T, which consists of dividing T := P1P2P3 into six mini-triangles (Fig. 1): 

T<1>0> := P2M1R, T(2'°) := P3M2R, T^ := P1M3R, 

T(i,i) := MiPsR, T^2'1) := M2PiR, T^3'1) := M3P2R, 

where 

R = /31P1+JÖ2P2+/93P3 , ßi + ßa+ßs = l, 

is a point internal to T and 

Mj = (1 - Qi)Pi+i + OJiPi+2,  0 < Qj < 1, 

is a point internal to the edge of T opposite to Pj. Here, and in the following, 
indices will be considered modulus 3. 

We will denote by Lyjj.  , Ly^'  the control points of Bernstein polynomi- 

als in the mini triangle T(p,?) (see below). Let the data 

(PiJi = /(P«),Vfi = V/(Pi)),Pi e R2,   i = 1,2,3, (1) 

be given. As mentioned in the introduction, our goal is to construct a C1 

polynomial macro-element on T interpolating the data and having tension 
properties. 

The macro-element will be obtained considering a Powell-Sabin split of 
T, and constructing in each mini triangle T^p'q^ a Bernstein polynomial via 

suitable control points, L^ . To obtain the final control points (FCP) L^ , 
we follow two basic steps: first we construct the basic control points (BCP) 

^iik > then we modify them to reach the required smoothness of the macro- 
element. 



146 P. Costantini and C. Manni 

§3. Defining the Basic Control Points 

For each vertex P;, let us consider an associated given degree 

ri; > 3,   ni€ IN. 

Let us now describe the construction of the BCP considering for the sake of 
simplicity only the mini triangle T^3'°\ See Fig. 2 for the role of indices. 

First of all we assume interpolation conditions (for the position and the 
gradient) at Pi (see "*" in Fig. 3 left) that is 

,(3,o)   ._ f (m,0,0 — /l i 

fu,o:=/l + i(V/i,P,M3), (2) 

ö^^/i + ^V/^PiR). 
' Til 

In order to define the BCP around M3, let us consider the univariate piecewise 
linear function, Z3, defined along the edge P1P2 having breakpoints at 

Pi,   Pi + —P1M3,   P2 M3P2,   P2, 
Til «2 

interpolating / and its derivatives at the extremes of the edge. We define (see 
"(g)" in Fig. 3 left) 

$£0 := Z3(M3), 

C-1.0 := '3 (M3 - ^PiM3) , (3) 

,(3,0) .   „ ,  *   .     1 

where 

Ci-1,1 := J3(M3) + -d3, 7il 

d3 := ((1 - a3)V/(Pi) + Q3V/(P2), M3R). 

Moreover, we require that L^J_2jl (see "0" in Fig. 3 left) belongs to the 
plane through 

T (3,0) T (3,0)       T (3,0) 
^l.ni-l.O'   -^O.ni.Oi   ^O.ni-l.l- 

Concerning the remaining control points, we assume that the not yet defined 
control points of the first two rows in the mini triangle parallel to P1P2 (see 
"o" in Fig. 3 left) belong to the straight lines through the above defined control 
points, that is 

T(3.°)        _ i ~ 1  T (3.0) ,   (Wl ~2)~(f - ^TCS.O) 
^i.rn-t.O-       _2

1J
"I-1>1.0 

+ 

(n-i 

Til -2 

- 2) - (i - 

■"l.ni-l.O   > 

"1)T(3,0) 

ni -2 ■L'l,n1-2,1   ' 
T(3,o) _ i - 1 T (3,0) (ni - 2) - (i - l)T(3,o) (4) 
Lji,n1-i-l,l ~        _9    "1-1.0,1 + 

i=ni -2, ...,2 . 
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T (2,0)  _ T (LI) 
^8,0,0 X "0,8,0 

(1.1) 
1,1,0 

T (LI)  _ T (1.0) 
."8,0,0 — "0,3,0 

(1.0) 
'2,1,0 

T (3,0)    T (3,0)     T (3,0)     T (3,0)    T (3,0)  T (3,0) _ T (3,1)     ■. (3,1) T (3,1)       ,(3,1) _ ,(1,0) 
^ii.O.O    "4,1,0     ^3,2,0     "2,3,0   ^1,4,0  "0,5,0 — ^3,0,0     "2,1,0 ^1,2,0       "0,3,0 — "3,0,0 

Fig. 2. The role of indices of the control points (projection onto the x,y plane) 
for the split of Figure 1 with ni = 5, «2 — 3, n^ = 8. 

Fig. 3. The construction of the BCP for the split of Figure 1 with n\ = 5, ni = 
3, ri3 = 8. Left: projection of LJVJ.' in the x, y plane; "*" are deter- 
mined via interpolation conditions (2); "®" by (3); "o" by (4) and "o" 

by coplanarity conditions. Right: LJj,fc > p = 1,2, 3, q = 0,1. Note the 
discontinuities across the edges  M;R. 

Moreover, we require that conditions for C1 continuity across the edge PiR 
hold [4]. Then, in particular, 

(2,1) (3,0) • (3,0) • (3,0) T (2>!) T t2'1) T ^'L> — T {°'"l T (°''J> T K°'"' Jjl,ni-2,l'lj0,ni-l,lilj0,ni-2,2 ~ ljni-2,0,2>   ^711-1,0,1)^711-2,1,1) 

lie onto the same plane. 
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Fig. 4. Left: the control points l>ij k after the first step, n = 8.   Right: The 
-(P.?) (P.?) final control points Li,j',fc after the second step. L. .V as in Fig. 3 

Finally, the central control points LJyt, fc > 2, (see 
are assumed to lie onto the plane through 

in Fig. 3 left) 

(3,0) (1.0) ■ (2,0) 
■"711-2,0,21   aJn2-2,0,2'   ±Jn3-2,0,2- 

Similarly we define the BCP in the other mini triangles. 
The above construction provides a polynomial macro-element which 

turns out to be of class C1 across the interior edges P,R. 
Moreover, we assume that the points M lying on the internal edges of the 

initial triangulation T also lie on the straight lines joining the R points of the 
triangles which those edges separate (see Fig. 8). This classical requirement, 
(2), (3), (4), and the geometry of the Powell-Sabin split ensure C1 continuity 
of two macro-elements across the boundary edge P,Pj+i (see Fig. 3 right). 

On the other hand, the BCP do not produce in general a continuous 
macro-element across the edges M;R unless the degrees rij are equal (see 
Fig. 3 right). In order to obtain a C1 macro-element without imposing any 
conditon on the degrees, we modify the constructed BCP. This will be de- 
scribed in the next section. 

§4. Obtaining a C1 Macro Element 

In this section we describe how to modify the BCP to obtain the final control 
points (FCP) producing a C1 macro-element.   The modified FCP will be 
basically obtained from the BCP via the  degree-raising process in two steps. 

As a first step, for each mini triangle T^'^ let us compute 

Li™k > h 3, k > 0 , i + j + k = n, 

the control points obtained from LJ^'^, i,j,k > 0 , i + j + k = np+q+\, by 
the degree-raising process ([4]) from the degree np+q+i (that is the degree 
associated with the mini triangle T^p''') to the degree n := max{ni, 112,713} 

(see Fig. 4 left). The control points L^'^ allow us to express the polynomial 

of degree np+q+i defined by TJ\
P

J
9

^ as a Bernstein polynomial of degree n. 
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We emphasize that, due to the geometry of the split, the control points 

Ejj'i, define a macro-element which is of class C1 across the interior edges 
MPR if and only if the control points 

r(P,0) r(P,0)      _ r(P,i)        r(P,i) jfc _ o ...  n - 1 

are collinear. Moreover, we notice that, due to the construction of the BCP 
around Mp and near R and to the properties of the degree-raising process, 
the control points 

r(p,0) r(P,0) _ r(p,l) r(p,l) L.,.1 

lie on the same plane, then they are collinear due to the geometry of the split 
(see Fig. 4 left). Then in order to obtain C1 continuity across the edge MpR, 
we simply consider a second step in which we modify 

Efc-fc,*- tn-lo,k, * = 2, • • •, n - 2, p = 1,2,3, (5) 

imposing that (see Fig. 4 right) they lie on the segment through 

Li?n-*-i,fc>Ln-fc-i,i,*i fc = 2,---,n-2, p= 1,2,3. 

§5. Properties of the Macro—Element 

In this section we analyze the interpolation, smoothness and tension properties 
of the macro-element defined by the FCP constructed in Section 4. First of all, 
we notice that the construction of the macro-element is completely local: it 
only depends on the data at the vertices of T and on the degrees n, associated 
with the vertices which are given input parameters. 

Theorem 1.  The polynomial macro-element defined by the control points 

L£J, p=l,2,3,g = 0,l, t,i,fc>0 , i + j + k = n, 

interpolates the data (1) and is of class C1^). Moreover, let T be a given 
triangulation equipped with a classical Powell-Sabin split, and with a ßxed 
degree associated with any vertex. Then the collection of the macro-elements 
corresponding to the triangles ofT produces an interpolating surface of class 
C1. 

Proof: The BCP defined in Section 3 produce an interpolating macro- 
element which is of class C1 across the interior edges PjR and the boundary 
edges PjPj+i. After the degree-raising process, only the control points in 
(5) are modified in order to obtain C1 continuity across M*R. Since the C1 

continuity across one edge only depends on the control points lying on the 
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"1 = "2 = "3 : ni = Ti2 = 3, 713 = 6 

"1 = 3, "2 = "3 = 6 «1 = "2 = «3 = 15 

Fig. 5. The local tension effect of the degrees: vertices are numbered counter- 
clockwise from the origin. 

first two rows parallel to that edge ([4]), the second step in Section 4 does not 
affect C1 continuity across P;R and P(Pj+i.   D 

As mentioned before, the degrees n_, are free input parameters. From 
the construction described in Section 3, it is clear that increasing their val- 
ues causes the BCP to approach the plane interpolating (Pi,fi), i = 1,2,3. 
Similarly, the FCP approach the same plane because they have been obtained 
via a degree-raising process, that is via a convex combination of the BCP. 
Therefore, the same property is shared by the macro-element, due to the con- 
vex hull property of the Bernstein representation. We summarize the tension 
properties of our macro-element with the following theorem. 

Theorem 2. If ni,ri2,n3 
fined by the control points 

+00, then the polynomial macro-element de- 

l,2,3,g = 0,l, t,j",fe>0 , i + j + k 

approaches the plane through (P,,/;), i = 1,2,3. 

We end this section by emphasizing that the degrees act as local tension 
parameters: each degree affects the shape of the interpolating surface only 
around the associated vertex (see Fig. 8 right), and, as previously said, this is 
the main feature of this method. The increase of a degree pushes the surface 
to the piecewise linear interpolant around the corresponding point, giving it 
a cuspidal appearance. This local tension effect is clearly shown in Fig. 5. 
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Fig. 6. Left: the Ritchie's Hill data.  Right: the interpolating surface with uni- 
form degrees nj =3. 

Fig. 7. Left: the interpolating surface with uniform degrees nj =9. Right: the 
interpolating surface with nonuniform degrees. 

Fig. 8. Left:  degrees ^ 3 depicted at the corresponding vertices.   Right:  the 
influence region of the increased degrees. 
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§6. Numerical Results 

In this section we present a classical graphical example to show the perfor- 
mances of the macro-element and the local tension effect of the degrees. 

The data (Fig. 6 left) are taken from [6] (see also Fig. 8 left for the consid- 
ered triangulation). The interpolating surfaces obtained by using the proposed 
macro-element with uniform degrees rij = 3 is depicted in Figure 6 right. Fig- 
ure 7 left shows the interpolating surfaces obtained by using uniform degrees 
Uj = 9. The tension effect due to the increased values of the degrees is evi- 
dent, but obviously uniformly distributed over all of the surface. On the other 
hand, the surface in Figure 7 right has been obtained considering all the de- 
grees equal to 3, except those associated with the five vertices as depicted in 
Figure 8 left. The local tension effect of the degrees is clear. The influence 
region of the increased degrees can be also seen in Figure 8 right. 
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Quantized Frame Decompositions 

M. Craizer, D. A. Fonini, Jr., and E. A. B. da Silva 

Abstract. In this paper, we consider a certain type of decomposition 
of vectors in frames, in which the coefficients are already quantized and 
thus are ready for coding. This decomposition is a generalization for vec- 
tors of the usual binary expansion of real numbers, and the algorithm for 
obtaining it can be seen as a quantized version of the matching pursuits al- 
gorithm. We show that, in several cases, applying this algorithm is better 
than first finding the frame coefficients and then quantizing them. 

§1. Introduction 

Let T = {ei, e2,..., ep} be a collection of unit vectors generating H . This 

means that every x G TR,N can be expressed as 

p 

i=l 

The vectors {ei, e?., • • •, ep} mav or mav n°t be linearly independent. In the 
case that they are linearly dependent, the set T is called a frame or an over- 
complete basis. In this paper, we shall call T a frame even if the vectors 
{d, e2,..., ep} are linearly independent. More on frame expansions can be 
found in [7]. 

Let q = 2p and, for 1 < i < p, let «j = e* and Vi+P = — ej. We shall call 
the set V = {«i,..., vq} a codebook or a dictionary. Let a be a real number 
in the interval (0,1). A representation of a vector x € HN in the form 

i=0 

1>ki 

with Vki € V, will be called an (a,£>)-expansion. When the dictionary being 
used is clear by the context, we shall call this representation simply an a- 
expansion. Observe that the (a, X>)-expansion of a vector x can be seen as a 
decomposition of x in the frame T. 
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Define the n— residual of a vector x by 

/ \ _ j ro(x) = x> if n = 0, 

Given x, the sequence (k0, fci,...) can be obtained recursively by the relation 

(rn(x),vkn) =max(r„(x),t;fe). 
k 

We shall call this algorithm the nearest point algorithm and it may be seen as 
a quantized version of the matching pursuits algorithm [4]. 

Denote by Aa = Aa(V) the set of points of TRN that can be represented 
as an a-expansion of vectors that belong to V, and by A° = A° (V) the subset 
of A„(2?) whose a-expansion can be obtained by the nearest point algorithm. 
In order for the a-expansion or the nearest point algorithm to be a suitable 
scheme for quantized frame decomposition, we must choose a such that AQ 

or A°, respectively, contain an open set of EN. In Section 2, we shall give 
conditions on a that guarantee these facts. 

At this point, a question arises: is it worthwhile to decompose a vector 
in a frame using the a-expansion, or is it better to decompose it in the usual 
way and then quantize the coefficients in a second step (see [6,9])? We shall 
answer this question by considering the rate-distortion characteristic of each 
scheme. We show in Section 3 that the first scheme is better, in an asymptotic 
sense, if and only if we can choose a satisfying 

logs(2p) 
i       l        "■ loS2S 

We shall also give examples where this inequality holds. 
Take x = (x%,... ,XN) € HN. We can quantize x by taking the n-term 

binary representation of each coordinate x,. This procedure can be considered 
as an n-term a-expansion using the dictionary BN whose code vectors are 
the corners of the hypercube [-1,1]N and a = \. So the a-expansion in an 
arbitrary dictionary V can be considered as a generalization of the usual binary 
expansion for vectors. The relevant question is whether there is any dictionary 
V that is better in some sense than BN- It is worthy of note that some special 
dictionaries, related to the sphere packing problem [2], have already been used 
for image coding, yielding better results than BN ([3,8]). 

§2. Theory of Alpha-Expansions 

General representation 

Let T> = {t>i,... ,vq} be a collection of vectors that generates all ft , and 
0 < a < 1 be a parameter. Denote by Aa the set of points x g R    that can 
be written as 

oo 

x = y^a'vki 

t=0 
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with Vki S T>. Let Pa be the convex hull of the vectors {j^j«fc}fc=i,...,g- 
Observe that any i 6 Aa is a linear combination of the vectors {vk}k=i,...,q 
with coefficients whose sum is not larger than jzr^, and therefore Aa C Pa. 

Define the contracting maps fk = fk,a by fk {x) = ax + Vk for k € 
{1,..., q}. We observe that fk is a homotety of center jz^vk, which implies 
that fk(Pa) C Pa- Therefore the set {/i,..., fq} forms an iterated function 
system (IFS) [1] on Pa. It is not difficult to show that the attractor of this 
system is exactly Aa, i.e., 

Aa = f| F
n(Pa), 

where F = Fa is the function of sets defined by 

F{A) = f1{A)\J-Ufq(A). 

Example 1. Let V = BN, the dictionary whose code vectors are the corners 
of the hypercube [—1,1]^. For any a > \, we have that F(Pa) = Pa and 
therefore Aa — Pa. 

We are interested in finding the smallest value of a such that Aa contains 
an open set.   In the above example, this occurs for a = \, when in fact 
Aa = ra. 

Remark 1. One can show that for any dictionary, if a > J^TJ, then Aa = Pa, 
which shows that the smallest value of a such that Aa contains an open set 
is smaller than jf^ ■ 

In Example 1, the smallest a such that Aa contains an open set satisfies 
also Aa — Pa- But this is not a general fact, as the following example shows. 

Example 2. Let V = B3 U {(1,0,0), (-1,0,0)}, where B3 is the dictionary 
whose code vectors are the corners of the cube [—1,1]3. If we consider a — 
|, then [—1,1]3 C A„, but Aa is strictly contained in Pa. This fact can 
be seen by observing that the centroid of the face of Pa whose vertices are 
(1,0,0), -TS(1, 1,1) and -75(1, li —1) afe not contained in F(Pa), which implies 
that F(Pa) ^ Pa, and thus Aa ^ Pa. 

In all examples that we have considered, we observe that if Aa contains 
an open set of IR^, then it also contains the convex hull of some of the points 
of the dictionary. We don't know whether this is always true, so we formulate 
it as a question: 

Question 1. If, for some 0 < a < 1, Aa(X>) contains an open set ofKlN, then 
will a subdictionary V\ C V always exist such that Aa(X>) D Pa(T>i)? 
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Basic algorithm 

How do we obtain the sequence of indexes (fco, fci,...) that represent a given 
vector x € Aa? In general, the representation of a vector x is not unique. In 
order to define which of the sequences representing the vector x we shall look 
for, we consider a choice function K : F(Pa) —> {1,... ,q} with the following 
properties: 

1) fk(Vk) C Vk, for any k e {1,... ,q}, where Vk = R-^k). 

2) If K(x) = k, then x € fk(Pa), for any x € F(Pa). 

It can be shown that such a function always exists. This choice function K 
determines a function g : F{Pa) —> Pa given by 

a 

It is not difficult to show that 

AQ = n~ l9-
n(Pa). 

This implies that if x € Aa, then g'(x) e Aa, for any i > 0. 
By the last paragraph, given i E A„, we can choose the sequence 

(k0,ki,...) by the relation fc* = K(g'(x)).   We shall call this the basic al- 
gorithm.  This algorithm always works, but it is computationally expensive. 
So we propose another algorithm, computationally feasible, called the nearest 
point algorithm. 

Nearest point algorithm 

The nearest point algorithm is used for obtaining a sequence (fc0, fci,...) repre- 
senting a vector x € Aa. It can be seen as a quantized version of the matching 
pursuits algorithm. 

It is determined by the choice function KQ defined by the property that 
Ko(x) is the code vector in V nearest to x. We denote by Vo,k the set KQl(k) 
and by go the function 

,   ,       x - VKo(X) 
5o(  ' = a ' 

This choice function certainly satisfies Property 1 above, but Property 2 can 
fail. It is not difficult to see that Property 2 holds if and only if Vb.fc C fk{Pa), 
for every k 6 {1,..., q}. 

Let A° (2?) = n~=l5o-n(PQ). We have that A° (V) C Aa(V), but they are 
not necessarily equal. One can verify that A°(2?) = Aa(T>) if and only if the 
choice function KQ satisfies Property 2 above. 

Example 3. Let V = {(1,0), (0,1), (-1,0)}. For any 0 < a < 1, the segment 
(0,8), 0 < 6 < 1 is not contained in f2{Pa)- Therefore #o(0,<5) is not in Pa, 
which implies that this segment is not in A° (V). On the other hand, ifa> 3, 
Aa(V) = Pa. 

We have also observed in examples that if A°(X>) contains an open set of 
IR^, then it must contain the convex hull of some code vectors. This prompts 
the following question: 
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Question 2. If, tor some 0 < a < 1, A° (V) contains an open set ofRN, then 
will there be a subdictionary VxCV such that A°a{V) D Pa(T>i)? 

§3. Comparison between Alpha-Expansions and the Decompose- 
Quantize Procedure 

In this section we shall compare the a-expansion in a frame with the 2- 
step procedure of first decomposing in the frame and then quantizing the 
coefficients so obtained in a second step. We shall do this by comparing the 
rate-distortion functions of each scheme. 

Let T = {ei, e2,..., ep} be a frame in 1RN, and take x € H with ||a;|| < 
M. We shall assume that the coefficients (oi, a2,..., ap) of the decomposition 
x in the frame T satisfy |aj| < C\M, for some constant C\ that depends only 
on T. We shall consider here the quantization of these coefficients by binary 
expansions. If each coefficient is represented by n bits, the total number of 
bits used is R = np, and the maximum square error per coefficient is given 

by ICiM (|)n_1|   • If we multiply this by p, we obtain the total maximum 
square distortion D. Therefore, we can write the rate-distortion relation 

„     p,       /4C?MS 

Ä=£log2'      * 2    DZ V     D 

Let us consider now the a-expansion procedure. If we approximate x € 
AQ, 11 a; 11 < M, by its n-term a-expansion (vi0,V{1,... ,Vj„_1), the maximum 
square distortion is given by D = [C2-Ma™]2, where C% is a constant that 
depends only on T. The number of bits necessary to code this sequence is 
R = nlog2(2p), and thus we have the rate-distortion relation 

log2(2p) ,      (CiM* 

We conclude that asymptotically, the a-expansion is better than the 
decompose-quantize procedure if we can choose a such that AQ contains an 
open set and 

log2 (2P) ^ „ m 
l0S2 (5) 

Example 4. Let F = {(^, |),(1,0),(-^, |)} and take a = \. Then 

Aa = Pa (which in this case is a hexagon) and 

log2(2p) 
.       1   = log2 6 < 3, 

which implies that in this case the a-expansion is better than the decompose- 
quantize procedure. 
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*- -x     nearest point algorithm 
• - - *     matching pursuits 

 :v.:v,..; ;  
•                           -''S. 

 * :" X   

\ 
"v                        * 

v               \ 

1                                                        1                                                        1                                                        1                                        "~    K 

1.5 2 
Rale in bits per source sample 

Fig. 1. The 8-dimensional hypercube as codebook. 

Remark 2. If for a given frame T', Aa contains an open set, then this remains 
true for any other frame T\ obtained from T by adding some more vectors. 
Hence, even if relation (1) does not hold for T, it will hold for highly redundant 
frames T\ containing T. 

Remark 3. By Remark 1, a > jM-[ implies that AQ = Pa. Therefore, if we 
consider frames satisfying 

10g^2^<log/Ar + 1 

P       ~    ~ \    N 

the ot-expansion scheme will be better than the decompose-quantize procedure. 

Experimental results 

In order to directly compare our method (the nearest point algorithm) with 
some established results, we look at some examples presented in [6] (3.4.2, pp. 
41-45). To this end, we used a similar source and the same codebook. 

A zero-mean gaussian AR source with correlation coefficient p = 0.9 was 
used to provide the data points. Vectors were formed by blocks of N samples. 
Rate was measured as the first order entropy of the index stream produced 
by the algorithm - similarly to [6]. 

In Fig. 1, we used the vertices of the 8-dimensional hypercube as the 

codebook. In this case, a was set to 0.501 and || v^ || = 1.4142 (that is ^). 
As can be seen from this data, our method does give some performance 

benefits on low bit-rates. 
Although our algorithm can be very expensive in terms of computational 

effort, so are other greedy algorithms like matching pursuits.   But there are 
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some well structured codebooks which lend themselves to fast calculation of 
the steps involved - like the one used in this example. 

§4. Conclusions 

In this paper we have further developed the theory of a-expansions and applied 
it in the context of quantized frame expansions. 

We have shown that a-expansions perform asymptotically better, in a 
rate-distortion sense, than the decompose-quantize method. In addition, pre- 
liminary experimental results indicate that this method also compares favor- 
ably to the decompose-quantize method in practical cases. This was verified 
by direct comparison between our method and quantized matching pursuits 
from [6]. 
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Cubic Spline Interpolation on 
Nested Polygon Triangulations 

Oleg Davydov, Günther Nürnberger, and Prank Zeilfelder 

Abstract. We develop an algorithm for constructing Lagrange and Her- 
mite interpolation sets for spaces of cubic C -splines on general classes of 
triangulations built up of nested polygons whose vertices are connected 
by line segments. Additional assumptions on the triangulation are signifi- 
cantly reduced compared to the special class given in [41. Simultaneously, 
we have to determine the dimension of these spaces, which is not known 
in general. We also discuss the numerical aspects of the method. 

§1. Introduction 

In contrast to univariate splines, it is a non-trivial problem to construct even 
one single set of interpolation points for bivariate spline spaces. Such interpo- 
lation sets for SJ(A), the space of splines of degree q and smoothness r, were 
constructed for crosscut-partitions A (see the survey [9] and the references 
therein). For general triangulations A, interpolation sets were constructed for 
5,1(A)lfl>4in[3]. 

The case q = 3 is much more complicated given that not even the dimen- 
sion of 53(A) is known for arbitrary triangulations A. It is an open question 
whether the dimension of S3 (A) is equal to Schumaker's lower bound [12]. The 
aim of this paper is to investigate interpolation by S3 (A) for general classes of 
triangulations A consisting of nested polygons whose vertices are connected 
by line segments. Following a general principle of locally choosing interpo- 
lation points for S3 (A) by passing from triangle to triangle, we describe an 
inductive method for constructing point sets that admit unique Lagrange (re- 
spectively Hermite) interpolation by S^(A) under certain assumptions on A. 
Moreover, we prove that the dimension of these spaces is equal to Schumaker's 
lower bound. 

In this way we obtain a class of triangulations A which is significantly 
larger than the special class described in [4]. Moreover, the methods of proof 
in this paper are different from those in [4].   It is important to note that 
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triangulations of this type can be constructed starting from any given points 
in the plane, see [11]. 

The numerical examples (with up to 100,000 interpolation points) show 
that in order to obtain good approximations, it is desirable to subdivide some 
of the triangles. Our method of constructing interpolation points also works 
for these modified triangulations. 

We note that our interpolation method can be used for the construction 
of smooth surfaces without involving any derivative data. For scattered data 
fitting, the needed Lagrange data are approximately computed by local meth- 
ods. In contrast to the finite element methods for cubic splines, we do not 
need to subdivide all triangles by a Clough-Tocher split or use derivatives. 

§2. Preliminaries 

Let A be a regular triangulation of a simply connected polygonal domain 
ft in It2. We denote by S^A) = {s € C^ft) : s\T € ILj, T G A} the 
space of bivariate splines of degree 3 and smoothness 1 (with respect to A). 
Here II3 = span {x"yti : v, p > 0, v + p < 3} denotes the space of bivariate 
polynomials of total degree 3. 

We investigate the following interpolation problem. Construct a set 
{21,..., ZN} in ft, where N = dim S3 = (A), such that for each function / G 
C(ft), a unique spline s G 53(A) exists such that s(z{) = f(zi), i = 1,...,N. 
Such a set {21,..., zjv} is called a Lagrange interpolation set for S^A). If also 
partial derivatives of / are involved, then we speak of a Hermite interpolation 
set for S3HA). 

In contrast to [4], we will use Bernstein-Bezier techniques [2,5]. Given a 
spline s G 53(A), we consider the following representation of the polynomial 
pieces p = S\T G II3 on the triangle T G A with vertices v\, t>2, t>3, 

p(x,y)=    £   a[%,a1$a*i(x,vW(x,vmx,v), (x,y)eT,     (1) 

where $; € IIi, I = 1,2,3, is uniquely defined by <S>t{vk) — 6k,i, k — 1,2,3. 
This representation of p is called the Bernstein-Bezier representation of p, 

the real numbers al^^ are called the Bernstein-Bezier coefficients of p, and 
$((x, y), I = 1,2,3, are the barycentric coordinates (w.r.t. T) of (x, y) € T. 

Definition 1. A set A C {(v,fj,,a,T) : v + p, + a = 3, T€ A} is called an 

admissible set for 53(A) it for every choice of coefficients a),^^^{v, p,, a, T) € A, 
a unique spline s € 5^ (A) exists with these coefficients in the above Bernstein- 
Bezier representation. 

The above Bernstein-Bezier form can be used to express smoothness con- 
ditions of polynomial pieces on adjacent triangles T\, T2 with vertices V\, V2, i>3, 
respectively vi,V2,f4 (cf. [2,5]). 

Theorem 2. Let s he a piecewise cubic polynomial function deßned on Ti U 

T2. Then a G Sl
3({Ti,T2}) iff a™0 = a™0, v + p = 3, and ag^ = 

«LT+LM,o*iM + aSn,o*2(»4) + «>Si*sN, u + p = 2. 
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For later use, we also mention here the following relations between the 
Bernstein-Bezier coefficients of a cubic polynomial p in the representation (1) 
and its partial derivatives at v\ in direction of a unit vector parallel to the 
edge e = [«i,i>2], denoted by ^. 

«3,0,0 = PM>   a2,i,o = w>i) + 3   de   \m ~ v2\\2, 

[T] ,   s . 2dp(vi)n ld2p{vi) 

Öp(»i) _ 3(0^,0 - ag3>0)      d
2p(vi) _ 6(«ilo ~ 2aü,o + al3,o) 

»1-«2||2. (2) 

de llvi — V2M2     '        öe2 IK-V2"2 
2 

§3. Main Results 

In this section, we state our main results on S3 (A), where A consists of 
nested polygons whose vertices are connected by line segments. We first define 
this class of triangulations. Then, we determine the dimension and construct 
interpolation sets for the corresponding spline space. Moreover, we show that 
this dimension is equal to Schumaker's lower bound [12]. Finally, we discuss 
a property of A which is essential for the local construction of interpolation 
points. 

First, we describe triangulations of nested polygons and decompose the 
domain into finitely many subsets needed in our construction of interpolation 
points. 

Triangulations of nested polygons. We consider the following general type 
of triangulation A. Let PQ , P\,..., Pk be a sequence of closed simple polygonal 
lines, and let fiM be the closed (not necessarily convex) bounded polygon with 
boundary P^. Suppose that the polygons fiM are nested, i.e., fiM_i C fiM, 
fi = 0,..., k. The vertices of A are the vertices of Pß, fi = 0,..., k, and 
one vertex inside Po- The edges of A are the edges of P^, p = 0,..., k, and 
additional line segments connecting the vertices of PM with the vertices of 
-fp+ii A6 = 0,..., fc — 1. The resulting triangulation A of Q := ftk does not 
have vertices in the interior of HM+i \ ftM, /i = 0,..., fc — 1, and does not have 
edges connecting two vertices of P^ other than the edges of Pß, see Figure 1. 
Decomposition of the domain. We decompose the domain fi into finitely 
many sets Vo C V\ C • ■ • C Vm = fi, where each set Vi, is the union of closed 
triangles of A, i = 0,..., m. Let Vo be an arbitrary closed triangle of A in 
fio- We define the sets V\ C • • • C Vm by induction. Assuming Vj_i is defined, 
we choose a vertex Vi of A such that there exists at least one triangle of A 
with vertex «; and a common edge with Vj_i. Let Titi,...,Ti>ni, n, > 1, 
be all such triangles. We set Vi = V*_i U T^i U • • • U T^ni, and denote by 
Ai = {T £ A :T cVi} the subtriangulation which corresponds to the set V*. 

The vertices Vi,i = l,...,m, are chosen as follows. After choosing VQ to 
be an arbitrary closed triangle of A in fio, we pass through the vertices of Po 
in clockwise order by applying the above rule. (It is clear that the choice of 
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Fig. 1. Triangulation of nested polygons. 

these vertices is unique after fixing the first vertex.) Now, we assume that we 
have passed through the vertices of Py,-\. We fix a vertex wß of P^ that is 
connected with at least two vertices of Pß+i. Then w.r.t. clockwise order, we 
choose the first vertex of FM greater than w^ which is connected with at least 
two vertices of -P^-i. Then we pass through the vertices of Pß in clockwise 
order until w~, and pass through the vertices of P^ in anticlockwise order 
until w+ by applying the above rule. (Here w£ denotes the vertex next to 
Wfj, in clockwise order and w~ denotes the vertex next to w^ in anticlockwise 
order.) Finally, we choose the vertex w^. (It is clear that after fixing wM, the 
choice of the vertices on PM is unique.) 

The construction of an admissible set for 5|(A) and the choice of inter- 
polation points depend on the following properties of the triangulation A. 

Definition 3. (1) An interior edge e with vertex v of the triangulation A is 
called degenerate at v if the edges with vertex v adjacent to e lie on a line. 
(2) An interior vertex v of A is called singular ifv is a vertex of exactly four 
edges and these edges lie on two lines. (3) An interior vertex v of A on the 
boundary of a given subtriangulation A' of A is called semi-singular of type 
l w.r.t. A' if exactly one edge with endpoint v is not contained in A' and 
this edge is degenerate at v. (4) An interior vertex v of A on the boundary 
of a given subtriangulation A' of A is called semi-singular of type 2 w.r.t. A' 
if exactly two edges with endpoint v are not contained in A' and these edges 
are degenerate at v. (5) A vertex v of A is called semi-singular w.r.t. A' ifv 
satisfies (3) or (4). 

In the following, we construct an admissible set and interpolation sets for 
53(A), where A is a nested-polygon triangulation. 

Construction of an admissible set. First, we choose Ao = {{v, ß,cr,Vo) : 
v+H+cr = 3} and then, proceeding by induction, we successively add admissi- 
ble points on Vi \ V*_i, i = 1,..., m. Assuming that an admissible set -4,_i on 
Vi-\ has been constructed, we choose admissible points on Vi\V;_i as follows. 
By the above decomposition of fi, V; \ Vi_i is the union of consecutive trian- 
gles Titi,... ,TitUi with vertex v, and common edges with Vi-\.  We denote 
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the consecutive endpoints of these edges by Viß,Viti,... ,Vi>ni, and the piece- 
wise polynomials in the representation (1) on Tij by pij € II3, j = l,...m, 
where the vertices of T,j are ordered as follows: v,, Vij, Vjj+i- Furthermore, 
we denote by Cij the edges [vtj, v,], j — 0,..., n,. 

We need the following properties of the subtriangulation A; = {T € A : 
T C Vi} at the vertices i^o, • • •, ViiHi: 

(a) eij is non-degenerate at vtj, 

(b) V{j is semi-singular w.r.t.  Aj.   (This latter property is only relevant if 
Vij lies on the boundary of Aj, i.e., for j S {0,7ij}.) 

For j € {1,..., n* — 1}, we set Cij = 1 if (a) holds, and Cij = 0 otherwise. For 
j € {0,rij}, we set C{j = 1 if both (a) and (b) hold, and Cij = 0 otherwise. 
Moreover, we set c, — £j=o c»>i' ano- assume Q < 3, i = 1,..., n. 

Now, we construct the following admissible points on V* \ Vj_i. If c, = 3, 
then no point is chosen. If c* = 2, then we choose (3,0,0,Ti,i). If c, = 1, then 
we choose (3,0,0,^^) and (2,0,1,1$^), where eij is an edge with Cij = 0. 
If Ci = 0, then we choose (3,0,0,Ti'i), (2,0,l,T-,i) and (2,1,0,^,1). The 
admissible set Ai on Vi is obtained by adding these points to At-i. 

Construction of interpolation sets. We choose interpolation points in Vo 
and then in Vi\ Vj_i, i = 1,...,m, successively. In the first step, we choose 10 
different points in Vo (respectively 10 Hermite interpolation conditions) which 
admit unique Lagrange interpolation (respectively Hermite interpolation) by 
the space II3. For example, for Lagrange interpolation, we may choose four 
parallel line segments lv in VQ and v different points on each lv,v = 1,2,3,4. 
Assuming that the interpolation points in Vj_i have already been chosen, we 
proceed to V, \ Vj_i as follows. 

For Lagrange interpolation, we choose the following points in Vi \ VJ_i. 
If Ci = 3, then no point is chosen. If c, = 2, then we choose Vj. If c, = 1, then 
we choose Vi and one further point on some edge aj with QJ = 0. If Cj = 0, 
then we choose v, and two further points on two different edges. 

For Hermite interpolation, we require the following interpolation condi- 
tions for s £ 5^(A) at the vertex «j. If c* = 3, then no interpolation condition 
is required at «,. If c< = 2, then we require s(u;) = f(vi). If Cj = 1, then 
we require s(vi) = /(«j) and -^-{vi) = g~{vi), where eij is some edge 

with Cij = 0. If Ci = 0, then we require s(vi) = f(vi), |f («i) = gf (vi) and 

MM = %&)• 
By the above construction, we obtain a set of points for Lagrange inter- 

polation respectively a set of Hermite interpolation conditions. 

Theorem 4. Let A be a triangulation of nested polygons. If for all i E 
{1,... ,m}, et < 3 and 110 vertex Vi is simultanously semi-singular (of type 
2) w.r.t A, and non-singuJar, then a unique spline in Si (A) exists which 
satisfies the above Lagrange (respectively Hermite) interpolation conditions. 
In particular, the total number of interpolation conditions is equal to the 
dimension of 53(A). 
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Proof: First, we prove that the set constructed above is an admissible set 
for ^(A). To this end, we show by induction that Ai is an admissible set for 
53(A)|AJ = {S|AJ : $ £ ^(A)}. This is clear for i = 0. Now, we assume that 
Ai-i is an admissible set for S^AJIAJ-I, where i € {1,... ,m}, and consider 
Vi. For simplicity, we omit here the index i for Vi,Vitj,eij,pij,Titj and n». 
It follows from the induction hypothesis and Theorem 2 that the coefficients 

ofi'ji-v-w cr = 0,. - -, 3 - 1/, v = 0,1, of pj e n3, j = 1,..., n, on Tj, are 
uniquely determined. Moreover, if Cij = 1 for some j € {1,... , n - 1}, then 

it follows from Theorem 2 that the coefficient 02,0,1 's uniquely determined. 
\T 1 

In the following, we show that if c^o = 1, then the coefficient a2jli0 's 

uniquely determined. Let us consider the case where v0 is semi-singular of 
type 2 w.r.t. A*. (The case that VQ is semi-singular of type 1 w.r.t. A; is 
analogous.) We denote by T; G A, / = 1,... ,3, the triangles with vertex v0 

not contained in A* in anticlockwise order, and by e~\ the common edge of T; 
and fj+i, Z = 1,2.  Since T3 has a common edge with Aj_i, it follows from 

Theorem 2 that the coefficient 5^ x of p3 € II3 on T3 is uniquely determined. 

Moreover, since e.2 and ei are degenerate at VQ, the coefficients ä[\\i of pi € II3 

on T;, I = 1,2, are uniquely determined. Since eo is non-degenerate at Vo, it 

follows from Theorem 2 that the coefficient a2 J|0 is uniquely determined. We 
note that since A is a nested-polygon triangulation, at least two triangles with 
vertex VQ not contained in A, exist. Therefore, if ctio = 0, then the coefficient 

a2 io 
ls no* ye^ determined. 

Analogously as above, it can be shown that the coefficient a2 Jj is uni- 
quely determined if c,>n = 1. Otherwise, this coefficient is not yet determined. 

Now, we consider the vertex v. The arguments below will show that we 
may assume that v is an interior point of A. We denote by Tn+; EA, ! = 
1,... ,r, r > 3, the triangles with vertex v not contained in A; in anticlock- 
wise order. Moreover, let the piecewise polynomials pn+i £ II3, / = 1,..., r, 
on Tn+i in the representation (1) be given such that the first barycentric co- 
ordinate always corresponds to v. The above arguments show that exactly 

C( < 3 coefficients of the set C\ = \&v
x£_v_a a : a = 0,... ,3 — v, v = 

2,3, I = 1,..., n + r} are uniquely determined. On the other hand, we con- 
struct 3 — Ci additional admissible points from C\ on VJ \ Vj_i. Now, it follows 
from the C1-property at v and Theorem 2 that all coefficients from C\ are 
uniquely determined. By our method of passing through the vertices of A, 
v is not semi-singular of type 1 w.r.t. A,. In particular, if v = wß for some 
/i £ {0, ...,k}. Moreover, by assumption v can be semi-singular of type 2 
w.r.t. A* only if v is singular. In this case, we have r = 3, and it follows 

from Theorem 3.3 in [13] that the coefficient a[J'x is uniquely determined. 
Otherwise, if r > 4, then for some / e {1,... ,r — 1} one common edge of 
Tn+i and Tn+i+\ is non-degenerate at v, and we can also proceed with our 
arguments. 

Since all relevant differentiability conditions at the edges with endpoint 
v, respectively Vj, were involved, the above shows that Ai is an admissible set 
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for ^(A)!^;. Thus, the set Am is an admissible set for S^A). 
Therefore, the cardinality of Am is equal to the dimension of S3 (A). By 

construction, it is evident that the number of Lagrange interpolation points, 
respectively the number of Hermite interpolation conditions coincides with 
this cardinality. 

By an inductive argument, it follows from (2) that the Hermite inter- 
polation conditions at v determine the Bernstein-Bezier coefficients of the 
admissible points chosen on V, \ Vi-\. Analogously, the Lagrange interpola- 
tion conditions uniquely determine the interpolating spline on the edges of 
Vi \ Vj_i. Therefore, the interpolating spline is uniquely determined on all of 
Vi \ Vi-i. This completes the proof of Theorem 4.   D 

For arbitrary triangulations, Schumaker [12] gave the following lower 
bound L(A) for the dimension of S3 (A), 

L(A) = 3VB(A) + 2Vf (A) + <r(A) + 1. (3) 

Here, Vg(A) is the number of boundary vertices of A, Vj(A) is the number 
of interior vertices of A and cr(A) is the number of singular vertices of A. For 
bounds on the dimension of bivariate spline spaces see also Manni [6]. 

Theorem 5. If a triangulation A of nested polygons satisßes the hypotheses 
of Theorem 4, then the dimension of S3 (A) is equal to L(A). 

Proof: We have to show that the cardinality of Am is equal to L(A). We 
prove this by induction. We set <S(Ao) = 0 and for i € {1,... m}, we denote 
by S(A{) the set of boundary vertices w of Aj such that w = vito and ciß = 1 
(respectively w = vitJll and Q,n, = 1) for some I € {1,...,?}. Moreover, let 
a; be the cardinality of <S(Aj) and a; be the cardinality of A4. We will show 
that 

L(Aj) = a, + <7j,        i = 0,...,m. (4) 

This is evident for i = 0. We assume that L(A,_i) = a*_i +<XJ_I for some i e 
{1, ...,m} and consider V{. We have ^(A,) = VB{Ai-i) -n{ + 2, Vj(Aj) = 
Vj(Aj_i) + Wj — 1, a(Aj) = <T(A;_I) + 7,, where 7^ is the number of singular 
vertices from the set {vitj : j = 1,... ,m - 1}. Since a* = a;_i + 3 - c;, 
it follows from the induction hypothesis and some elementary computations 
that 

L(Aj) = Oj + cr,_i + c{ + ji - n, + 1. 

By our method of passing through the vertices of A, it is evident that if 
««,0 = «t-i € <S(A,), then vii0 £ <S(Aj_i). In the following, we show that if 
Vi,m € <S(Aj), then vi}7li fi <S(A;_i). First, let us assume that vi>ni = V(]0 

for some I £ {1,... ,i — I}. If vitni is semi-singular of type 2 w.r.t. Aj, then 
at least three edges of A not contained in A; are attached to viß. Hence, 
C(]0 = 0. If vitTli is semi-singular of type 1 w.r.t. Aj, then the edge eijni is 
non-degenerate at Vii7li, since CitTli = 1. Therefore, vifi is not semi-singular of 
type 2 w.r.t. A;. Again, Q,O = 0 holds. The remaining case Wj>ni = Vi-i>ni_1, 
where n* = 1, follows by the same arguments. 
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Now, we show for j € {1,... ,n; - 1} that every non-singular vertex vtj 
such that e*j is degenerate at Vij lies in <S(A,_i). First, we consider the case 
j = 1. Set Vi1 — Viti and let eo be the edge that connects v^o and Vit\. We 
have to consider two cases. 

Case 1. (The vertices V{ti and Vj_2 are connected by an edge e.) If eo is 
non-degenerate at u^i then Cj_iinj_, = 1. (In this case Vj^i is semi-singular of 
type 1 w.r.t. A,_i.) Otherwise, since u^i is non-singular, e is non-degenerate 
at Vit\. Thus, C;_2,Tii_2 = 1- (In this case v^i is semi-singular of type 2 w.r.t. 
A;_2.) We note that Vit\ is not semi-singular w.r.t. AJJ+I, since at least three 
edges of A not contained in Aj1+i are attached to Vi^. 

Case 2. (The vertices v,,i and Uj_2 are not connected by an edge.) If eo is 
non-degenerate at Vj,i then we also have ci-itUi_1 = 1. (In this case viti is 
semi-singular of type 1 w.r.t. A;_i.) We note that v^i is not semi-singular 
w.r.t. Aj1+i, since eo is non-degenerate at v^i. Otherwise, let e be the edge 
that connects v^i with Vil+\. Since v^i is non-singular, e is non-degenerate 
at viti. Thus, C;1+i,o = 1- (In this case vity is semi-singular of type 2 w.r.t. 
Ajj+i.) We note that in this case i>;?i is semi-singular of type 1 w.r.t. A;_i, 
but Ci-i>ni_1 = 0. 

Now, we consider the remaining case j S {2,...,«.; — 1}. Set Vij = Vij 
and let e be the edge that connects Vij with i^+i. Since Vij is non-singular, 
it follows that Vij is not semi-singular of type 2 w.r.t. to A^ . Therefore, e is 
non-degenerate at Vij. Hence, c^.+^o = 1- (In this case Vij is semi-singular 
of type 1 w.r.t. A;;.+i.) We note that in the case j € {2, ...,n; — 1}, by 
our method of passing through the vertices of A, the value c^.-i^._, is not 

influenced by the geometrical properties of A at vi:j. 

The above proof now implies a; = CTJ_I + c; + 7* — n* + 1, and therefore, 
(4) holds. Since <rm = 0, we get L(A) = am. This proves the theorem. D 

In Theorem 4 we assume that for all i G {l,...,m}, no vertex V{ is 
simultaneously semi-singular (of type 2) w.r.t. Aj and non-singular. In the 
following, we show that this assumption is essential for the local construction 
of interpolation points. 

Example 6. Let v = v, = (0,0), v$ = v0 = vito = (7,0), 7 < 0, vy = «i,i = 
(T,mr), T < 0, m > 0, v2 = vit2 = (0,6), 6 < 0, and set v3 = (a,0), a > 
0, W4 = (0, ß), ß > 0. Let v be connected with V3 and v\ and V(_i be connected 
with vi, I = 1,..., 5. Then v is simultaneously semi-singular (of type 2) w.r.t. 
A, and non-singular. Furthermore, we denote by T; the triangle with vertices 
v, V[-i,vi and by pi € II3 the polynomial pieces on Tj, I = 1,... 5, in the rep- 

resentation (1). We consider the set Ci = {o-v^-v-0ia, a = 0,..., 3 — v, v = 
1,..., 3, I = 1,..., 5}. For C^-splines, it follows from Theorem 3.3 in [13] that 
each subset of C2 that uniquely determines all coefficients of C2 has cardinality 

8 and contains the coefficients a[ 0'2, Z = 3,4.   By the proof of Theorem 4, 
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the coefficients a^-^, °~ ~ 0,1,2, and a^-«^) ^ = I,2, are uniquely 

determined. If e^i is non-degenerate at vi, then in addition a^^ is uniquely 
determined. Otherwise, this coefficient is not determined. Hence, if e^i is non- 
degenerate at «i, then we have to choose exactly one additional coefficient to 
determine all coefficients of C2, and otherwise, we have to choose exactly two 
additional coefficients. We claim that in the latter case every choice of exactly 

two additional coefficients from the set {a30o> a2 10» a2 0i> a2 0i) ^a^s *° 
determine all coefficients of C2. 

FT1 1 
Proof: Suppose that e^i is degenerate at v± and choose, for example, a2 \ 0 

and «4 or For simplicity, we set 01 = <4 j'0> 0-2 = a3,o,0' a3 = a2,o,i> a4 = 
ai 111 °5 = a2 io> a6 = ai in an<i assume that the remaining coefficients in 
Ci are zero. By Theorem 2, 

a3 = ( ß + l)a2,     a4 = (1 )a3,      ai = (1 --)a2 +-a3, 
mr^ 7 p p 
,6^6 ,_     a. ,,     .,77i      1.       . T 

a6 = (1 - -3)05 + -ra4, a5 = (1 - -)a2, 0 = ((-r)(T + -) + l)ai + -a6. 
p p 7 0      a Q 

Eliminating a,-, j e {3,4,5}, yields a! = (1 + <5^)a2, a6 = (1 - ^)(1 + 

5^^)02. By some elementary computations, we obtain for the determinant 
D of the corresponding system 

D=(-l)(r(m1 + S)-Sjf 
mrSj2 

and it is easy to verify that D = 0 iff e^i is degenerate at v\. Other choices of 

exactly two additional coefficients from the set {a3]o,o, a2,i,o> a2,o,i> a2,o,i} 
can be examined in the same way, which proves our claim.   D 

Note that if e^i is non-degenerate at vi, then every choice of exactly one 

additional coefficient in the set {a3 g 0, a2 l0, a2 0,1} determines all coefficients 
inC2- 

We finally discuss some numerical aspects of our scheme. A method for 
constructing nested polygon triangulations A of given points in the plane 
which satisfy the conditions of Theorem 4 was developed in [11]. Our numer- 
ical tests show that in order to obtain good approximations, it is necessary to 
subdivide some of the triangles (for details see [10,11]). Meanwhile, we have 
computed such examples with a high number of interpolation conditions. We 
only mention here that, for example, Lagrange respectively Hermite interpo- 
lation of Franke's test function by cubic C^-splines with 118,822 interpolation 
conditions yields an error of 4.66902 * 10-6 in the uniform norm. 
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Stable Local Nodal Bases for Cl 

Bivariate Polynomial Splines 

Oleg Davydov and Larry L. Schumaker 

Abstract. We give a stable construction of local nodal bases for spaces 
of Cl bivariate polynomial splines of degree d > 5 defined on arbitrary tri- 
angulations. The bases given here differ from recently constructed locally 
linearly independent bases, and in fact we show that stability and local 
linear independence cannot be achieved simultaneously. 

§1. Introduction 

Given a regular triangulation A, let 

Sr
d(A) := {s € C""(ft) :  s|T € Vd  for all triangles T e A}, 

where Vd is the space of polynomials of degree d, and Q. is the union of the 
triangles in A. In this paper we focus on the case r = 1 and d > 5. The main 
result of the paper is a construction of a basis B := {-Sj}™=1 for «Sj(A) with 
the following properties: 

PI) The basis B is local in the sense that for each 1 < i < n, the support of 
Bi is contained in star(vj) (see the end of this section) for some vertex Vi, 

P2) The set B is stable in the sense that there exist constants K\ and Ki 
dependent only on the smallest angle 9& in A such that 

n 
#l||c||oo    <    Hl>B«ll<»    <    -M|c||oo (1) 

i=l 

for all choices of the coefficient vector c = (ci,..., cn). 

Bases for <S](A) satisfying property PI were constructed in [14] using nodal 
techniques, but they fail to satisfy property P2 for triangulations with near 
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singular vertices or near degenerate edges, even if the smallest angle in the 
triangulation is controlled. 

For convenience, we recall the definitions of some of the terminology used 
above. Suppose v is a vertex of a triangulation which is connected to vy, v2, v3 

in counter-clockwise order. Then the edge e := («,«2} is said to be near- 
degenerate at v (degenerate at v) provided that the edges (v,Vi) and (v,v3) 
are near-collinear (collinear). The vertex v is called near-singular (singular) 
if there are exactly four near-degenerate (degenerate) edges attached to it. 
Given a vertex v of A, star(v) = star1^) is the set of triangles sharing v, 
and star' (v) is defined recursively as the union of the stars of the vertices of 
star<_1(v). 

§2. Nodal Determining Sets and Nodal Bases 

Suppose s is a spline in <S](A), and that v is a point in ft. In this paper 
we are interested in certain linear functional defined on <S](A) in terms of 
values and derivatives of s at points v in ft. Such functional are called nodal 
functionals. There are three types of nodal functionals of interest here: 

1) the value s(v), 

2) the directional derivative D™s(v), where w is a given vector and m is a 
positive integer, 

3) the mixed derivative D™{D™2
2s(v) at a vertex v of A, where u>i and w2 

are two noncollinear vectors which point into a common triangle T of A. 

Definition 1. A collection M :- {A;}"=1 of nodal functionals is called a 
minimal nodal determining set for <S](A) provided they form a basis for the 
dual space (<S](A))*. If M is such a set, then there exist unique splines 
B := {Bi}f=1 in 5](A) such that 

\iBj=8ij,        i,j = l,...,n. (2) 

We call B a nodal basis for 5](A). 

In this paper we will concentrate on nodal functionals which involve 
derivatives De along edges e := (vi,v2) of the triangulation A, or perpen- 
dicular to such edges. Denoting the Cartesian coordinates of a point v by 
(vx,vy), we see that the derivative along the edge e is given by 

{v$-vl)Dxs{v) + {vv
2-vl)Dys{v) 

eS[v)'      vtä-*f)2 + w-*ir    ' 
while the derivative perpendicular to the edge e is given by 

{vv
2-v\)Dxs{v)-{vx

2-vl)Dys{v) 
e±s[v)'      v(vx2-vf)2 + (vv2-vir    ' 

Note that 

D{vuv2)s(v) = -D(V2,Vl)s{v),        D{vuV2)±s(v) = -D{v2<Vl)±s(v). 



Stable Local Nodal Bases 173 

§3. Smoothness Conditions Between Polynomial Pieces 

It is well-known how to describe smoothness between polynomials defined on 
adjoining triangles in terms of the Bernstein-Bezier coefficients of the two 
polynomials. Here we need similar conditions in terms of nodal information. 
Suppose T = {vi,V2,vs) and T = (vi, 1)2,^3) are two adjacent triangles with a 
common edge e = («i,«2)- We set 9\ = LV3V1V2, 02 = Lv^v^vi, $i = /-v^v\V2, 
62 — LvzV2V\. Suppose 

~    e,0    ~ e,0      , 
V\<V{    < ■■■ vd'_5 < V2 

(3) 
.    e.l e.l      , w 

Vi<V{    <■■■ vd'_A < V2 

are given points lying in the interior of the edge e. 

Lemma 2. Letj>,p be polynomials of degree d > 5 defined on adjoining 
triangles T and T as above. Then p and p join together with smoothness C1 

across the edge e := {«1,^2) if and only if the difference g = p — p satisfies 

g{vi) = Deg(vi) = De±g(vi) = D2
eg(Vi) = 0,,    t = 1,2, (4) 

fl,K'0) = °.    » = l,...,d-5, 
De±g{v?1) = 0,    t = l d-4, 

and 

*2-Df„2,0l)P(«2) = °2D{v2,Vl)D{v2tV3)p(v2) + <T2D{v2,Vl)D{v2j3)p(v2), 

(5) 

(6) 

where U{ := sinöj, <j{ := sinöj, &i := sin(0; + 9j), i = 1,2. 

Proof: We follow the method of proof of the main result in [14]. Concerning 
necessity, we first observe that if p and p join with C1 continuity across e, 
then 

g(v) = Dwg(v) = 0,        for all v € e, (7) 

where w is any unit vector noncollinear with the edge e. This implies (5) 
and the conditions on g, Deg and De±g in (4). The conditions on the second 
derivatives are easily obtained by differentiating the identities (7) along the 
edge e and using the fact that 

a±D(vi,v2)P{vi) = äiD(VliV3)p(vi) + o-iD{viiS3)p(vi), 

^2D{v2tVl)p(v2) = ä2D(v2iV3)p(v2) +a2D{v2ii3)p{v2). 

To prove sufficiency, suppose that p and p satisfy (4)-(6). Then the 
univariate polynomial g\e is of degree at most d and satisfies d + 1 homoge- 
neous Hermite interpolation conditions on e. Therefore g(v) = 0 for v £ e. 
This shows that p and p join continuously. We now consider the cross- 
derivative q := De±g\e which is a univariate polynomial of degree at most 
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d—1. By (4)-(5), q has d-2 zeros vi,«''1, • -• ,ve
d'\,V2 on e. Moreover, by (6), 

Deq(vi) = Deq{v2) = 0, as is easy to check by expressing DeDe±p(vi) as a lin- 
ear combination of Dlp{v\) and DeD(Vl<V3)p(vi) and expressing DeDe±p(vi) 
in terms of D\p{v{) and DeD^1)53)p(t;i), and similarly for v2- Therefore, 
q = 0, and we have shown that p and p join with C^-smoothness.   n 

For a different set of nodal smoothness conditions, see [5]. 

§4. Construction of a Stable Local Nodal Basis for <Sj(A) 

In this section we begin by defining a spanning set A/A of nodal functionals 
for (<S](A))*. Then we choose an appropriate linearly independent subset 
M which forms a basis for {S\(A))*. This will involve analysing the linear 
dependencies between elements of A/A («-e-, the smoothness conditions). The 
corresponding nodal basis determined by the duality conditions (2) will be the 
desired stable local basis for <Sj(A). Given a triangle T := (vi,V2,v3), let 

ivy +jv2 + kv3 ■ ,   ■ , u     J 
Vijk-= -j ,        i + j + k = d. 

Given an edge e of A, let v,e'° and v*'1 be the points defined in (3). We define 

CT := {\Jjks = s{vfjk) :  i + j + k = d,   2<i,j,k), 

S(e)~{\fs = s(vf):  t = l,...,d-5} 

U{\e
i'

1s = \e\De±s(ve
i<

1):  i = 1,..., d - 4}, 

where |e| denotes the length of e. 
Given a vertex v in A, suppose the vertices connected to v are Vi,..., vn in 

counterclockwise order (with V\ a boundary vertex if v lies on the boundary), 
and let T® = (v,Vi,vi+i), e* = (v,Vi), 6t = Ze;ei+1, where if v is an interior 
vertex, we identify ve+n = ve, e(+n = et. Denote by |star(v)| the diameter of 
star(u). Let 

2M«) := Wj3 = \sta,r {v)\i+jD^Dlsiv) :  0 < i +j < 1} 

K2(v) := {Xlps = sineiLe,_Mar(v)\2Dls(v) :  i = l,...,n} 

u {XUS = de:\star (v)\2De,De^s{v) :  i = 1,... ,n} 

if w is an interior vertex, and 

U {AVps = |star (v)\2D2
eis{v) :  i = l,n} 

u {A?,ms = drMar (v)\2DetDei+1s(v) ■ t = 1,... ,n - 1} 

if v is a boundary vertex. Let 

A/A :=  (J CTU |J 5(e) U |J [Pi(«)URs(i»)]. 
TeA e£A u£A 

The Markov inequality implies that for all s € <Sj(A) and all A € AA, 

|Aa| < A-Hoo, (8) 

for some constant depending only on d and the smallest angle 6>A in A. 
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Lemma 3. The set A/A is a spanning set for (Sj(A))*. Moreover, the only 
linear dependencies between elements of A/A are given by 

\im + \U,m = MOi + Oi-lKp (9) 

for every vertex v and every interior edge e* attached to v. 

Proof: Let s £ <S](A). If As = 0 for all A e A/A, then on each triangle T £ A 
there are exactly ( ^ ) homogeneous Hermite interpolation conditions on s, 
and it is easy to see that they force s to be zero. It follows that A/A is a 
spanning set for (<Sj(A))*. The second statement follows immediately from 
Lemma 2.   D 

Algorithm 4. (Construction of a stable local nodal basis for <S^(A).J Let 
{B{}f=l be the set of splines determined by the duality conditions (2) corre- 
sponding to the following set M. := {A;}™=1 of nodal functionals: 

1) For each triangle T, choose the (d^i) nodal functionals \J,k in CT. 

2) For each edge e = (wi,i>2), choose the 2d — 9 nodal functionals A^'   and 
A*'1 in 5(e). 

3) For each vertex v, choose the three nodal functionals A",- in T>i(v). 

4) For each vertex v, choose the following nodal functionals in 7^2 (i>)-' 
a) one of the functionals A?TO corresponding to the first mixed derivative 

at v, and 
b) alf functionals A^p corresponding to the pure second derivatives at 

v, with one exception: ifv is a nonsingular interior vertex, the func- 
tional A"o    is omitted, where io is chosen such that 

|sin(0io+0io_i)| > Isin^i + fli-i)!,      for all i = 1,... ,n.     (10) 

Theorem 5. The set M. of Algorithm 4 is a minimal nodal determining set 
for <S](A), and the nodal basis {Si,..., B^} for <Sj(A) defined in (2) is local 
and stable, i.e., it satisfies both conditions PI and P2. 

Proof: The fact that M is a basis for (<Sj(A))* follows easily from Lemma 3. 
To construct a typical basis spline Bj, we set \Bj = Sij for alH = 1,... ,n. 
Then the remaining nodal values XBj, A € A/A \ M are computed from the 
smoothness conditions (9). It is easy to see that the support of the resulting 
spline is at most the star of a vertex. This shows that PI is satisfied. 

It remains to show that the Bj form a stable basis. This follows from (8) 
by a standard argument [12], provided we can show that 

WBJWOO^K,        l<j<n, (11) 

where if is a constant depending only on d and the smallest angle 0A in A. 
This clearly holds if 

\XBj\ <K,     for all AGA/A, 
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for a similar constant K. By construction, \\Bj\ < 1 for all A € M- Since 
•A/A \ M. C \JV 1Z2{v), let us take an arbitrary vertex v of A and notice that 
if A € 1Z2{v), then XBj can be nonzero only if the corresponding \j lies in 
%2{v)- Therefore, it will be sufficient to show that \XBj\ < K for all j such 
that \j e Tl2(v) and all A e 7^2 (v) \ M. We distinguish four cases. 

Case 1:   (v is a boundary vertex.)   In this case, 7^2(v) \ A4  = {A?m  : 
z = 1,..., n — 1, i ^ ii}, where A" m is the functional included in M in step 
4a) of Algorithm 4.  Without loss of generality we assume that i\ = 1.   For 
any s £ <S^(A), (9) implies 

^2,m* =    -Al,mS + ^2\V2,pS 

X3,ms =   Xl,ms - ^2,PS + (T3^3,ps 

K-i,m* = (-irA^+D-i)"*-1^,,,«, 
i=2 

where we set 
at := sin(öi +öj_i). 

If we take s to be the basis spline Bj corresponding to a Xj € 72^ (^), then 
all but one of the values on the right-hand side of the expression for Xv

imBj 
vanishes, and thus 

|AVmB,-|< 1*^1 = 1,        t = 2,...,n-l, 

which proves the assertion. 

Case 2: (v is an interior vertex with n / 4.) In this case, 72.2(«) \ M = 
{AVm : i = l,...,n, t 9^ ti} U {AV0iJ,}. For AVm«, i = 1,... ,n, i / iu the 
same calculation as in Case 1 applies: we start from A" ms and calculate AJ"ms 
consecutively counterclockwise until A" 1 ms, and then also clockwise until 
AV0ima. For AVopS, we have by (9), 

K,PS = <(Xl,mS + K-l,mS)- (12) 

Therefore, our claim will be established if we show that 

\ar1\ = \8m-1(0io+eio.1)\<K3       if n ^ 4, (13) 

where K3 is a constant dependent only on 6A- This is obvious for n = 3. 
Assuming n > 5, we have |#i + 62 + O3 + 64 — 27r| > #A- Hence, 

|öio + eio-i - H > max{|ö1 + 02 - TT|, |03 + 04 - TT|} > 0A/2, 

and (13) follows. 
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Case 3: (v is a singular vertex.) In this case, TZ2(v)\M = {A"m : i = 2,3,4} 
(where we assume for simplicity that ii = 1). Since a\ = ■ ■ ■ = o~i = 0 for a 
singular vertex, (9) now reduces to 

A?,m
s + A"-i,™s = °>        » = 1,2,3,4. 

Therefore, 
A^> = (-l)i+1AY,mS,        i = 2,3,4, 

and the assertion follows. 

Case 4: (v is a nonsingular interior vertex with n = 4.) We proceed as in 
Case 2, but calculate A"0 ps differently. At first glance it may seem that (10) 
does not guarantee stability since |<Xi0| may be arbitrary small (in the case 
of near-singularity), while A" s is to be computed from (12). However, the 
complete system of equations (9) for 72-2 («) is 

<nK,Ps = Km» + A?_i,m«,    * = 1» 2,3,4. 

Taking the sum with alternating signs, we get 

4 

£(-I)VA;> = O, 

and hence 

IVI^E»!^1 

for every s = ßj, with Aj € 7^2(f). This completes the proof of (11), and the 
theorem has been established.   D 

§5. Stability vs. LLI 

We recall (cf. [2,4,6,8,9]) that a set B of basis splines in <S^(A) is called locally 
linearly independent (LLI) provided that for every T 6 A, the splines {Bi : i € 
Ex} are linearly independent on T, where 

ET :={i:  TCsuppBj}. (14) 

A star-supported LLI nodal basis was constructed for <Sj(A) in [4]. We now 
establish the following surprising result. 

Theorem 6. For d>5, it is impossible to construct a basis for <S^(A) which 
satisßes both conditions P2 and (14) simultaneously. 

Proof: Suppose {B\,..., Bn} is a locally linearly independent basis for <Sj (A) 
on a triangulation A which contains an interior near-singular vertex. Suppose 
v is connected to v\,..., uj in counterclockwise order, and let e; be the edge 
(v,Vi), Ti the triangle (vi,Vi+i,v), and 0* the angle between e, and ej+i. 
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Suppose that none of e, is degenerate at v. For each 1 < j < 4, let Sj be the 
unique spline in S^ (A) such that 

Kms3=Sij> *»J = 1,2,3,4, 

XSJ = 0,        for all A e AfA \ Tl2{v) 

Clearly, 
suppSj = Tj-i U Tj U Tj+i, 

and we can write (see [2,9]) 

iei} 

where Ij := {i :  suppS, C suppSj}. We now consider the spline 

S = _ai + S2 - 53 + s4 = - x: c!11^ + £ c|21ßt - J2c!31^ + E ci41ß- 
i£li i€l2 i£^3 '€/4 

53        OiBi. 
iG/iU/2U/3U/4 

Using the smoothness conditions (9), it is easy to see that 

*?,„* = 0,    AVma = (-l)',        » = 1,2,3,4, 

As = 0,        for all A e A/A \ H2{v). 

and thus ||s||oo < 7Q, where A4 depends only on d. If the basis {Bi,...,B„} 
satisfies P2, we get 

Nioo^r'Piioo^iv^i- 
Moreover, since A2mB, ^ 0 only if Ti U T2 U T3 C supp 5;, we have 

1 = A3,ma = Ea'A2,mß- ^ ^HalU max lA^fiil, 

with 72 := {i : supp B; = Tx U T2 U T3}. Clearly, #72 < 3(d+2), and hence 

there exists IQ € 72 such that 

|A^,mßio|>7f5>0, 

where K5 depends only on 6&. However, \\^mBia = 0, so that by (9) we have 

|A^ßio1 = Isin^+Ö,)!1^^1 " |sin(01+02)r 

which is unbounded as 9\ + 02 —> ■K. In view of the Markov inequality, it 
follows that HBjJIoo is unbounded. But then the basis {7?i,... ,Bn} cannot 
be stable.   D 
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§6. Remarks 

Remark 1. Stable local bases are important for both theoretical and practical 
purposes. For example, it can be shown (see [12]) that if a spline space has 
such a basis, then it has full approximation power. Applications where stable 
bases are useful include data fitting and the numerical solution of boundary- 
value problems. 

Remark 2. For d > 5, stable local bases for certain superspline subspaces of 
5j(A), can be constructed using classical finite elements, see [15]. However, 
it is also important to have such bases for the full spaces <S](A), since in 
contrast to supersplines, they are nested, i.e., <Sj(Ai) C <S](A2) whenever 
A2 is a refinement of Ai. This is important for multiresolution applications, 
see [3,13]. 

Remark 3. Algorithm 4 is a modification of the algorithm used in [14] to 
construct a star-supported basis for 5](A). The only change is in the choice 
of nodal functionals in step 4b) where i0 was taken to be any index such that 
eio is nondegenerate at v. To get stability, we have to choose i0 more carefully. 
The basis constructed in Algorithm 4 is not locally linearly independent. To 
get an LLI basis, step 4) has to be modified in a different way, see [4]. 

Remark 4. Star-supported bases were constructed for general spline spaces 
55(A) for d > 4r+l in [1], and for d > 3r+2 in [10,11]. The constructions were 
based on Bernstein-Bezier techniques, and are not stable for triangulations 
that contain near-degenerate edges and/or near-singular vertices. 

Remark 5. In [7] we use Bernstein-Bezier techniques to construct stable local 
bases for general spline spaces 5J(A) and their superspline subspaces for all 
d > 3r + 2. In a related work [6], we also used Bernstein-Bezier techniques 
to construct locally linearly independent bases for the same range of spline 
spaces and superspline spaces. For more on LLI spaces, including applications 
to almost interpolation, see [2,4,6,8,9]. 

Remark 6. Following the arguments in [7], it is easy to show that a natural 
renorming of our stable bases is Lp-stable for all p € [1,00]. 
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On Lacunary Multiresolution Methods 
of Approximation in Hubert Spaces 

Lubomir T. Dechevski and Wolfgang L. Wendland 

Abstract. We study lacunary multiresolution methods from the point 
of view of their analogy to the use of near-degenerate elements in finite 
and boundary element methods. The main results are characterization of 
the best N-term approximation of solutions of nonlinear operator equations 
and best N-term approximation by near-degenerate normal approximating 
families in Hubert spaces. 

§1. Introduction 

This communication is part of a sequence of papers exploring the use of near- 
degenerate elements in finite- and boundary-element methods (see also [5,6] 
and their wavelet-based analogues, lacunary multiresolution methods. The 
use of near-degenerate and lacunary methods for solving operator equations 
is of considerable practical significance because in many important problems 
arising in industry, engineering and natural sciences, the use of such methods 
leads to a dramatic reduction of execution time and/or computer resources. 
The theoretical justification for the use of such methods is, however, very 
challenging: it has been successfully carried out only in a number of special 
cases, by specific techniques which vary from case to case. The purpose of 
this sequence of papers is to develop a general approach to overcoming the 
challenges of the use of lacunary multiresolution and near-degenerate finite 
and boundary element methods. Because of the limited space available, we 
shall consider only multiresolution methods for operator equations in Hilbert 
spaces, with an outline of the main ideas of the proofs, which in the Hilbert- 
space case are simpler and relatively short. A much more technically involved 
and detailed discussion of both near-degenerate finite elements and lacunary 
multiresolution methods and the important parallel between them will be 
given for more general types of nonlinear operators in quasi-Banach spaces in 
a later paper. 

Curve and Surface Fitting: Saint-Malo 1999 181 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp.  181-190. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
All rights of reproduction in any form reserved. 



182 L. T. Dechevski and W. L. Wendland 

§2. Approximate Solutions of Nonlinear Operator Equations 

In this section we consider a general class of nonlinear operator equations, 
and study the numerical solutions of these equations obtained by iterative 
and projection methods. 

Let X, Y be real Hilbert spaces. The class of nonlinear operators to be 
considered is the space LH(X,Y) of all Lipschitz homeomorphisms F between 
X and Y, that is, 3 F"1 on Y and 3 C(F,X,Y) < oo : ||F(a;i) - F(X2)\\Y < 
C\\x\ — x2\\x, Vx\ix2 € X, and analogously for F_1. 

Let if be a Hilbert space, such that X n Y C H and X n Y is dense on 
H, and let Y be the dual of X pivotal to H, i.e., the dual with respect to the 
duality functional defined by the scalar product of H. We shall denote this 
dual by Y = X* = X*{H). 

Definition 1. Let Y = X*(H). The (generally nonlinear) operator F : X —> 
X* is called Lipschitz, if 

3C(F,X,H) < oo : \\F(Xl) - F(x2)\\x. < C\\Xl - x2\\x, (1) 

VxiVx2 £ X, and strongly monotone, if 

3c{F,X,H) > 0 : (F(Xl) - F(x2),Xl - x2)H > c\\Xl - x2\\2x, (2) 

Vxiix2 e X. The class LSM = LSM(X, H) consists of exactly those F : 
X -> X*(H) which satisfy (1,2). 

It can be shown that the constants C and c in (1,2) are related by c < C. 
It should be noted that the typical case here is X ^-> H <—* X* orl H 

H *-j X*, where, as usual, A <—> B or B <-^ A denotes continuous embedding: 
AcBand ||.||B<C||.|U. 

Theorem 1. (Generalization of Theorem 18.5 in [11] and strengthening of 
Theorem 18.5 in [15] for the case of Lipschitz operators in Hilbert spaces.) Let 
X and H be Hilbert spaces with the same cardinality. Then, LSM(X, H) C 
LH(X,X*(H)). 

Proof: (Outline.) By duality arguments, it can be shown that the cardi- 
nality of X*(H) is equal to that of X and H. Therefore, since all spaces 
are Hilbertian with the same cardinality, there exist linear invertible oper- 
ators R : H —> X and S : H -> X*(H) which are isometric together 
with their inverses. Hence, the equation F(x) = y, x e X, y € X*(H) is 
equivalent to the equation Av = w, v,w e H, where Av = S~lFR. Now, 
since F € LSM(X,H), it follows from WS^WX-^H = \\R\\H->X = 1, that 
A € LSM(H, H). Therefore, by Theorem A (see below), F is bijective from X 
to X*. By a condition of the theorem, F is Lipschitz; it remains to prove the 
same for F^1. Indeed, by the strong monotonicity of F, setting xi = F"1(yi), 
x2 = F~1(y2), V2/1V2/2 € X*, we get 

\\F-Hvi) - F-Hy2)\\x <\(vi- V2, F-1^) - F-\y2))H 

<\\\Vi-V2\\x.\\F-\vi)-F-\y2)\\x, 

which completes the proof.   D 
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Theorem A. (See [11], Theorem 18.5). Assume that X = X* = H. Then, 
LSM(H, H) C LH{H, H) and the operator T£iV(x) = x-e[F(x) -y], xeH, 
is contractive in H for 0 < e < g§, uniformly in y £ H, where C and c are 
defined in (1,2). The best contraction factor is 1 - c2/C2 and is achieved for 
e = c/C2. 

Following the idea of the proof of Theorem 1, Theorem A can be modified 
for the case when X ^ H. We omit the details. 

In the remaining part of this section we shall consider methods for ap- 
proximate solution of the equation F(x) = y, x € X, y eY, where X, Y are 
Hilbert spaces. 

Definition 2. (See [12]). Let X be a Hilbert space. G C X is called an 
existence set for X, ifix € X 3gx € G : \\x - gx\\x = minseG \\x - g\\x = 
EG(X)X- (The best approximation gx need not be necessarily unique.) The 
sequence {GN}N=1' GN C X is called a normal approximating family in X, if 
for any N G IN, GN is an existence set, with GN C GN+I and GN — GN-I C 
G2N- 

Obviously, an existence set in X is closed in X (typical example: any 
finite-dimensional subspace of X). 

Definition 3. Let X be a Hilbert space. The sequence {GN}M=I '■ GN C X 
is said to have the strong approximation property (SAP, for short) ir"Ujv=i GN 

is dense on X in the inner-product topology of X. 

Let us consider now the Galerkin-Petrov projection methods. Let PN ■ 
X —> X, QN '■ X -> X be projectors with dim PN{X) = dim QN(X) = N, 
and PNPN+I = PN+IPN = PN, QNQN+I = QN+IQN = QN- 

Example 1. (Galerkin-Petrov method for monotone operators.) For a Hilbert 
space X, let Y = X*(H). The equation F(x) = y, x € X, yeX*,is replaced 
by QNF(PNx) = QNy, where Q*N : X* -► X*,dim Q*N(X*) = N, is the 
Banach adjoint of QN- The N x N nonlinear system is determined by 

(QNF(PNx), QNh)H = {Q*Ny, QNh)H. (3) 

By Lemma 23.1 in [15], it follows that if F € LMS(X, H), where X and 
H are separable, then (3) has a unique solution for N large enough. 

In the case X = X* = H, if N is large enough, so that Q*NF(PNH) = 
Q*NH holds, then, by Theorem A, (3) can be computed by quickly converging 
contractive iterations. For small JV, the condition Q*NF(PNH) = Q*NH may 
fail even if F is linear and PN = QN (see [2], Theorem 10.1.1). 

If F is twice Gateau-differentiable, then Newton's method can be used 
where the inverse matrix involved in each iteration is usually sparse. In gen- 
eral, this method needs an appropriate initial approximation XQ to the solution 
of F(a;) = y, but if F is strongly monotone and potential, that is, if there exists 
a real functional / : X -> 1R such that F = grad /, then, by Theorem 5.1 in 
[15], / is strictly convex and the solution of (3) is equivalent to minimizing the 
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three times Gateau-differentiable functional /. Hence, Newton's method con- 
verges to the solution of (3) for any XQ £ X, the rate of convergence depending 
on the constant c in (2). This technique is still numerically efficient if F is only 
Lipschitz, and Newton's method or its various modifications be replaced by 
the respective variants of the more general F. Clarke's subdifferential method. 
In the case of potential F, the Bubnov-Galerkin method (P^ = QN) coincides 
with the Ritz method for minimization of /. 

For projection methods (see Example 1), the strong approximation prop- 
erty can be written as lini/v-.oo \\{Ix ~ PN)X\\X = 0. A typical example 
when GJV = PNX forms a NAF having the SAP is when PN is obtained by 
multiresolution. 

By Theorem 23.3 in [15], if X is separable, then GN — PNX, as defined 
in Example 1, has the SAP; by Lemma 23.1 in [15] and in view of F £ 
LMS(X,H), the solution's^ of (3) exists for N large enough and ||a;jv — 
^llx —> 0, where x is the solution of F(x) = y, y £ X*. 

Theorem B. (Cea's lemma for nonlinear operators (see [13], Lemma 2.8; 
[11], Theorems 4.1 and 18.8.) Under the assumptions of Example 1, for F £ 
LSM(X,H), let x = F"1^) £ X be the solution of F(x) =y<E X*{H), and 
xn £ X be the solution of (3). Then, 

3C(F,X,H) < oo : E^F-^y^x < WF^y) - xN\\x < CEN{F-\y))x. 

This result shows that Galerkin-Petrov methods (of any type - finite el- 
ement or wavelet) achieves the best approximation rates up to a constant 
factor. 

§3. Best iV-term Approximation 

For the general paradigm of best iV-term approximation (BNTAP) we refer 
to [12], section 3.5, and [8]. 

Definition 4. Let Xj, Yj, j = 0,1 be Hilbert spaces, X\ «—► XQ, Y\ •—► Yo, 
and let F £ LH(X0,Y0) D LH{XUYX). The NAF {GN}%=1 : GN C Xu is 
called near-degenerate of order (A; a,/?), A > 0, a > 0, ß > 0, if it satisfies a 
direct inequality of the type 

3C<oc: EviF-^y)^ < Cl|F~^)l|Xl,        Vy £ Yl: (4) 

where C = C(N), with C x Na; and an inverse inequality of the type 

3D<oo:  \\x\\Xl < DNx\\x\\Xo, x £ GN, (5) 

where D = D(N), with D x N13. The partial case a = ß = 0 corresponds to 
a non-degenerate (regular) JVAF. 
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Consider the approximation space 

As
q(Xo) := {feX0: \\f\\A.(Xo) = {\\f\\Xo 

OO 

+Ei2' ,E2i(f)Xo]q jl/9 < 00} 

and the real interpolation space 

3=0 

(6) 

(ycH)«,, :={/€*„:   ll/ll(yo,*ik. = 
OO 

di/iixo+Et2^2" 
j=0 

-jJ;Y0, Y1)]")1,v < oo}, (7)) 

where K(t,f;Y0,Yi) is Peetre's K-functional (see [2,12]), 0 < t < 00, s > 
0, 0 < 0 < 1, 0 < g < 00 (with the usual sup-modification in (6,7) for 
q = 00). (Recall that X\ <—* Xo, which explains the presence of the saturation 
term \\f\\Xo in (6,7).) 

Theorem 2. (Characterization of the best N-term approximation of solu- 
tions of nonlinear operator equations by near-degenerate NAF in Hilbert 
spaces). Assume that the conditions of Definition 4 hold. Let 0 < q < 00. 
Then, 

(i) if 0 < a < X and s : 0 < s < X — a, then, 3Ci < 00 : 

WF-HVWAUXO) < Ciüli^WII* + IMI(Y„,YI)äJ; (8) 

(ii) if ß > 0 and 0 < s < X + ß, then 3C2 < co : 

IMlM)^,, < GiUTOH* + \\F-\y)\\A.{Xo)]. (9) 

Proof: (Outline.) By a standard technique, typical for BNTAP (see [12], 
Theorem 3.16 and Corollary 3.7), we prove 

WF-HvyU-iXo) < cill^Mllc*,,*)^,,, (10) 

l|J,-1(y)ll(Xo,x1)Tfei,<C2||i!'-1(»)|U;(Xo)- (ii) 

By obtaining appropriate upper bounds for the K-functionals in the definition 
of (X0, Xi)gtq and (Yo,Yi)s,q, 0 < 9 < 1, and using the embeddings Xi ■-> .Xo, 
Yi <—► Yo, it can be shown that, for Lipschitz operators F, F^1, 

llf-'MIU,*)^, < ^(WF-HO)^ + Hfc,*)^ J,        (12) 

\\F(x)\\{YoiYl)^^ < c4(|in0)|ln + \\x\\lXo,Xl)^J (13) 

hold. Combining (10) with (12) and (13) with (11), we arrive at (8) and (9), 
respectively.   D 
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Corollary 1. Under the conditions of Theorem 2, let 0 < s < A — a, and 
assume that F(0) = 0Yl, F_1(0) = 0Xl- Then, 

(KoTi)^,, ^ A'q(X0) - (yo.^i)^,,- (14) 

In particular, ifct = ß = 0, then 

(y0,n)f,g = ^(x0) (is) 
(isomorphism of the spaces, equivalence of the Hilbert norms). 

Note that this special case corresponds to sublinear operators. 

Remark. If the dependence of C in (4) and/or D in (5) on TV is weaker than 
polynomial, e.g., logarithmic, then the left-hand and/or right-hand embedding 
in (14) can be sharpened by setting a = 0 and/or ß = 0 and modifying the 
index q. We omit the details. 

Multiresolution Galerkin-Petrov methods for monotone operators (Ex- 
ample 1) are included as partial cases in Theorem 2 and Corollary 1. For 
monotone operators, we have YQ = XQ(HQ), Y\ = X{{H\), where HQ, HI 

are Hilbert spaces with Ho <—' H\ which are sufficiently far away from each 
other so that XQ <-3 X\ and XQ{HQ) <-^ Xl(Hi) hold simultaneously. Here 
X\ n Y\ is assumed to be dense in Ho and H\. The projectors Pjv and QN 

in Example 1 are assumed generated by multiresolution, which ensures that 

GN — GN-1 C Ö2AT- 
In the rest of this section and in the next section we shall discuss how 

to reduce the rates a and ß in Theorem 2 and Corollary 1 to zero in the 
presence of near-degeneracy. To this end, we shall study the analogue of 
the phenomenon of near-degeneracy with multiresolution methods based on 
biorthogonal wavelets. 

One equivalent norm in the inhomogeneous potential spaces Hs (cf., e.g., 
[14,4] for p = q = 2) is given by 

oo 2"-l 

II/HH. * {E N*I
2
 + £

22J
'
S
 £ E i0Sia}1/2.       (i6) 

k£7Zn j=0 k£7Z.n   1=1 

with 0 < s < r, where in [8] r is the Lipschitz regularity of the compactly 
supported scaling functions ip £ HT, <p S Hr and wavelets V>''' € Hr, ■$" G 
Hr of the biorthonormal wavelet bases, with respect to which f € Hs can be 
expanded as follows: 

oo 2"-l 

fix) = E wo*(z)+E E E ßMlW' a-e- ^    (1?) 
fcez2n j=oke7z.n i=i 

where aok = (f,<fiok)L2> ßjl = {f^jl)h2- Each hypercube in the Calderon- 
Zygmund decomposition of Hn and Stein's construction of Whitney-type 
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extension operators corresponds to 2n — 1 basis functions m'k, tjrA, I = 
1,..., 2" — 1, in each of the two biorthonormal bases. The convergence in 
(17) is in the norm topology of Hs, but also Lebesgue a.e. on the domain ft 
of the functions, ft may be Hn, hyperrectangle, correspond to the periodic 
case, or even general Lipschitz-graph domain. We refer to the currently most 
advanced work on this topic [3], as well as to the extensive account [4] (for the 
case of homogeneous potential spaces, see [7], in the special case p = q = 2). 

Definition 5. Let j\ € IN. A non-degenerate wavelet-based projector (NWP) 
is denoted by Pj1 and defined by 

ji-l 2"-l 

PhK*) = E w*(z) + E E E /Mo*), x G n,    (is) 
k j=0    k     1=1 

cf. (17). A near-degenerate wavelet-based projector (NDWP) is denoted by Pjx 

and deGned by 

J(ji,k)-l2n-l 

4/(*) = Ea°^o*(z)+E E  EMw- iefl.    (19) 
k k j=0        1=1 

VkJ{J!,k) > J(h-l,k), J{ji,k)>ji;   3kh : J{ji,kh) = ji. (20) 

In other words, for a NWP J{ji,k) = j\ = const, uniformly in k. Thus, 
NDWP's are a specific partial case of lacunary wavelet-based projectors (see 
the concluding remarks in [4], subsection 6.2), lacunarity being with respect 
to the NWP corresponding to 3\ := max/t J(ji, k). 

Example 2. One example when near-degenerate FEM or lacunary wavelet- 
based projectors of NDWP type are needed is in the error analysis of numerical 
solutions in the immediate neighbourhood of the boundary dil (see, e.g., [11], 
Fig. 3.14, 3.15, 6.14, 6.15, 8.12). Then it is desirable to ensure that the local 
approximation rates near and on 9ft do not deteriorate compared to the local 
approximation rates in the interior of ft. Indeed, assume that 9ft is regular 
enough (Lipschitz or smoother). Then, by the trace theorem (see, e.g., [1,9]), 
if / G üF(ft), ft C Mn, then the restriction of / on 9ft is less regular, namely, 
/|an £ i?s_1^2(9ft) holds. Then, the local approximation rate achieved via 
NWP, given in (18), is 0(2-^s) in the interior of ft and only 0(2-J1(s-1/2)) 
near 9ft. To achieve the desired uniform distribution of the error in the interior 
and near the boundary when / is smooth enough (s > 1/2), NDWP given in 
(19,20) should be employed, with J(ji,k) « ji for k corresponding to the 
interior of ft, and with J(ji,k) x C\j\ + Ci otherwise, where 

C2>0,        C1 = 1 + ^IM>1. (21) 

In the context of Theorem 2 and Corollary 1, if Xj = HSj, j = 0,1, with 
So < si so that X\ '—*■ XQ is fulfilled, then it can be verified that for NWP 
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both the direct inequality ||/ — Pji/||x0 < Ci2_-,lA||/||x1 and the inverse 
inequality H-P^/Hx! < C22-'"lA||i'J-1/|[jCo hold, with A = sx - s0 and with 
Ci, C2 independent of j\. Hence, in Definition 4 a = ß = 0 is attained. On 
the contrary, for NDWP satisfying (21) the constants C\ and Ci depend on 
ji and a > 0, ß > 0 holds. 

In the case of NDWP, is it possible to somehow reduce a and ß to zero, 
thereby achieving isomorphism in (14)? It turns out that the answer is posi- 
tive, and below we shall propose a general method how to achieve this. 

Our approach will be consider more general spaces Xo, X\ than Hs, so 
that, for the new XQ and X\, a = ß = 0 holds. Consider the Hubert space 
Hs'w with norm 

00 2"-l 

U/H*..- x(X>0fc|
2 + ££2W>* £ l/jglY/a. 

k j=0    k 1=1 

The spaces from this scale still admit atomic decomposition via the same 
Riesz bases of biorthonormal wavelets as Hs. The weight w(j,k) is positive, 
monotonously increasing function in j for each fixed k, and depends on the 
choice of J(ji,k) in (20). The definition of w(j, k) is 

v>(J(ji,k),k)=Ju (22) 

™(i,fc) = h -1, 3 = J0"i -1.fc)> ^0'i -1,fe) +1, • • •, J(j'i.*) -1.  (23) 

ViieiNVfcezz". 
Now, take Xj = Hs>'w, j = 0,1, with s0 < «i- It can be seen that 

Xi c-» Xo holds, and we can consider this pair of spaces in the context of 
Theorem 2 and Corollary 1. 

Corollary 2. Under the conditions of Corollary 1, assume that Xj = HSj'w, 
j = 0,1, where w = w(j, k) is the left inverse (see (22,23)) of J(j, k) as defined 
in (20). Assume a7so that N = 2jl and GN = PixX0, where the NDWP Pjl 

is defined in (19), with the same J(j, k) in (20). Let s : 0 < s < A = si — So- 
Then (15) holds. 

Proof:  (Outline.) It can be verified that the bounds 

00 

\\f - PJJWH^ < (j:      £      2MW.0 £1^12)1/», (24) 
j=ji k:w[j,k)>ji I 

II4/II^-<(£I«O*I
2
 + £   £   2^^J2\ß^f\   (25) 

fc j=0 k:w{j,k)<ji I 

hold. (Recall that ji = min^ J(ji,k), J\ = max* J(j\,k).) After some com- 
putations, (24) and (25) imply 

11/ - PjJ\\x0 < Ci2-^A||/||Xl,  V/ e Xlt (26) 
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114/11* < <?22^||4/||Xo,  V/ e X0, (27) 
with A = si — so, and the constants C\ and C2 in (26,27) do not depend on 
ji, i.e., for this choice of the spaces Xo, X\ in Definition 4 a = ß = 0 holds. 
The result now follows from Corollary 1.   D 

Thus, we have solved the problem of characterizing the best approxima- 
tion spaces induced by NDWP defined in (19) and (20). In this approach we 
remained entirely within the classical BNTAP. There is also another approach 
which goes beyond the general BNTAP, by abandoning the use of the real 
interpolation functor. This approach leads to atomic decomposition of Wiener 
amalgam spaces and will be considered elsewhere. 
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Interpolation with Curvature Constraints 

Hafsa Deddi, Hazel Everett, and Sylvain Lazard 

Abstract. We address the problem of controlling the curvature of a 
Bezier curve interpolating a given set of data. More precisely, given two 
points M and N, two directions ü and v, and a constant fc, we would 
like to find two quadratic Bezier curves Ti and T2 joined with continuity 
G , and interpolating the two points M and N, such that the tangent 
vectors at M and N have directions u and v respectively, the curvature is 
everywhere upper bounded by fc, and some evaluating function, the length 
of the resulting curve for example, is minimized. In order to solve this 
problem, we first need to determine the maximum curvature of quadratic 
Bezier curves. This problem was solved by Sapidis and Prey in 1992. Here 
we present a simpler formula that has an elegant geometric interpretation 
in terms of distances and areas determined by the control points. We 
then use this formula to solve the variant of the curvature control problem 
in which T\ and T2 are joined with continuity C1, where the length a 
between the first two control points of Fj is equal to the length between 
the last two control points of 1?2, and where a is the evaluating function 
to be minimized. 

§1. Introduction 

An important problem in CAGD is the construction of curves interpolating 
given sets of data that also satisfy constraints on their curvature. Such curves 
are visually pleasing and are said to be "fair" [1,2]. Fair curves are also impor- 
tant in the design of highways, railways and trajectories of mobile robots (see 
[9] and [6]). In these applications, curvature continuous curves with bounded 
curvature are desirable. Constructing fair curves has been the subject of recent 
research; see, for example, [4,5,7] for results about constraining the curvature 
at the endpoints, and [3,8] for results about monotonicity of curvature. 

In this paper we consider the problem of controlling the curvature along 
the whole length of a Bezier curve interpolating a given set of data. More 
precisely, given two points M and N, two directions u and v, and a constant 
k, we want to find two quadratic Bezier curves Ti and T% joined with continuity 
G1, and interpolating the two points M and N, such that the tangent vectors 
at M and N have directions Ü and v respectively, the curvature is everywhere 
upper bounded by k, and some evaluating function, the length of the resulting 
curve for example, is minimized. We call this the curvature control problem. 
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In order to solve this problem, we first need to determine the maximum 
curvature of quadratic Bezier curves, that is, to find an exact formula in 
terms of the control points. Note that, for our problem, it is not sufficient to 
compute the maximum curvature of a particular Bezier curve using numerical 
methods. Note also that a quadratic Bezier curve is a parabola and, although 
it presents no special difficulties to compute the maximum curvature of a 
parabola in terms of the coefficients of its implicit equation, what we require 
is a formula in terms of the control points. 

In [8], Sapidis and Frey give a formula for finding the maximum curvature 
for quadratic Bezier curves. In Section 2, we recall these results and present 
a simpler formula that has an elegant geometric interpretation in terms of 
distances and areas determined by the control points. We then use this formula 
to solve variants of the curvature control problem. Definitions and motivations 
for these variants are presented in Section 3.1. We solve in Section 3.2 the 
version of the curvature control problem where Ti and T2 are joined with 
continuity C1, where the length a between the two first control points of Ti 
is equal to the length between the two last control points of T2, and where a 
is the evaluating function to be minimized. In Section 3.3, we prove that if we 
require in the previous variant a continuity G2 instead of C1 at the junction 
point, then there exist non-degenerate data for which there is no solution to 
the curvature control problem. However, if a solution exists, we show how it 
can be computed. 

Throughout the paper, curvature refers to non-signed curvature, unless 
otherwise indicated. We denote by ||pg|| the distance between points p and q, 
and by " x " and " •" the outer and inner products, respectively, between two 

vectors. 

§2. Maximum Curvature of Quadratic Bezier Curves 

Let T be a quadratic Bezier curve with control points p0, Pi and p2 (see 
Figure 1). Recall that T is defined for every t in [0,1] by T(t) = (1 - t)2p0 + 
2t(l - t)pi + t2p2. Let A be the area of the control triangle P0P1P2 and m 
be the midpoint of the segment p0p2- We assume that T does not degenerate 
into a line segment, i.e., po, pi and p2 are not collinear. 

Theorem 1. The maximum curvature of a quadratic Bezier T is either equal 
to ||pim||3/.42 if pi lies strictly outside the two disks of diameter p0m and 
rnp2, or is equal to max{K0,Ki} where n0 = -4/||poPi||3 and «i = -4/||pip2||

3 

are the curvature ofT(t) at the endpoints T(0) and T(l). 

Before proving Theorem 1, we recall the result by Sapidis and Frey [8] 
characterizing quadratic Bezier curves with monotone curvature. 

Theorem 2 [8]. The quadratic Bezier curve T has monotone curvature if 
and only if one of the angles Z(p0pim) and L{mpip2) is equal to or larger 
than f. In other words, T has monotone curvature if and only ifpi lies on or 
inside one of the two circles having as diameter p0m and mp2 (see Figure 1). 
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Fig. 1. The quadratic Bezier curve T has non-monotone curvature because p\ 
lies strictly outside the two circles. 

Sapidis and Frey also present in [8] the following expressions for the max- 
imum curvature of quadratic Bezier curves. When the curvature is not mono- 
tone along T, then its maximum curvature is 4aZ/||p0-S||3, where (see Figure 1), 
a is the distance between po and p2, I is the distance between pi and the line 
joining p0 and p2, and ||po-5|| is the distance between po and the line passing 

through p2 and directed by plpo + Pipl- When the curvature is monotone 
along T, its maximum is reached at one endpoint po or p2 of the curve, and is 
ec*ual to wtkF or 5raP resPectively. 

We are now ready to prove Theorem 1. Note that the area A of the 
control triangle P0P1P2 is equal to al/2. Thus, in order to prove Theorem 1, 
based on the results by Sapidis and Frey, it suffices to prove that 8.4/||po.B||3 = 
||pim||3/.A2 or 2A = ||pim||.||p0.B||. For completeness, we show how our result 
is derived from Theorem 2. 

We assume first that pi lies strictly outside the two disks of diameter pom 
and mp2. Thus, the curvature K(£), t € [0,1], of the quadratic Bezier curve T 
is not monotone by Theorem 2. It follows that the maximum curvature of T 
is obtained when the derivative of n(t) is zero. 

The first and second derivatives of the Bezier curve T are 

r'(f) = 2((i-t)(p1-p0) + t(p2-p1)) 
= 2(pi - po) + 2*(p2 - 2p! + po), 

r"(i) = 2(p2-2p1+p0). 

The curvature of F at T(t) is thus, for any t € [0,1], 

= \T'(t) x r"(Q| = |4(p1-po)x(p2-p1)l 

ran3 ireii3 

(i) 
(2) 

giving 

«(*) 
8.4 

lir'WH 3' (3) 
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where A = |(pi - Po) x (P2 - Pi)|/2 is the area of the control triangle poPiP2- 
The derivative of n(t) is 

= -244(||r(t)||)> = -12A(\\T'(t)\\2y 
K[)       \\r(t)\\4 \\r(t)\\5 

Since we assumed that the Bezier curve T is not degenerate, p0, Pi and p2 are 
not collinear and thus A ± 0. Thus, n'{t) = 0 if and only if (||r(t)||2)' = 0, 
or alternatively, T'(t) ■ T"(t) = 0. Using (1) and (2), we get 

r'(i) • r"(<) = 4[(p2 - 2pi + Po)t + (pi - po)] • b2 - 2pi + Po] = 4(a< - ß), 

where a = ||p2 - 2pi + Po||2 and ß = -(pi - p0) ■ (P2 - 2pi + p0). 
Thus, the derivative of the curvature n(t) vanishes if and only if t = r = 

ß/a. Note that T is in (0,1) because the curvature of T is not monotone by 
assumption. Therefore, the maximum curvature along T is obtained for t = T. 

Lemma 3.  ||r'(r)|| = T^-ii. ||pim|| 

Proof: By (1), the square of the first derivative of T(t) at r is 

||r'(r)||2 = 4[(p2 - 2Pl + po)r + (Pl - p0)}2 = 4(ar2 - 2rß + ||poPi||2) 

= 4(a^ - 2^/3 + llpoPiH2) = -(«IIPoPill2 - ß2), 

where, as before, a = ||p2 - 2pi +po\\ and ß = -(pi - po) ■ (P2 - 2pi + 

po). Since p2 - 2pi + p0 = plpo + P1P2 = 2plrn, we get a = 4||p1m||2, 

ß = — 2poPi • Pi"i, and thus 

lir'WII2 = ^-W(4||PI^II
2

IIPOPI||
2
 - 4(P5PJ -PI^)

2
). 

||pim||2 

It follows from the canonical equation (U x V)2 + {U ■ V)2 = U2V2, for any 
two vectors U, V, that 

iirv Ml2     4(P^ x Pi^)2 

"r(r)l1   = ||Plm||»       • 

Now, |pöpixplm| is equal to A, the area of the control triangle poPiP2- Indeed, 

Pirri = {pTpo + PiP2)/2 and thus |pop? x plm| = |popl x pTp2*|/2 = A. Thus, 
||r'(r)||2 = 4.A2/||pim||2 which yields the result.   D 

The expression of Kmax = K(T) now follows easily. By Lemma 3, ||r'(T)||3 

is equal to 8.A3/||pim||3. Thus, (3) gives 

That ends the proof of Theorem 1 when pi lies strictly outside the two disks 

of diameter pom and mp2- 
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When pi lies inside one of these disks, Sapidis and Prey (see Theorem 2) 
proved that the curvature of the quadratic Bezier curve T is monotone. The 
maximum curvature is thus the curvature at one endpoint T(0) or T(l). Equa- 
tion (1) gives r'(0) = 2(pi-po) and T'(l) = 2(p2-Pi)- It then follows from (3) 
that 

*(0) = »   and  K(1) = «P 

§3. Controlling the Curvature of Piecewise Quadratic Bezier Curves 

3.1. Preliminaries 

Let Ti and r2 denote two quadratic Bezier curves with control points (po,Pi, 
P2) and (<7oi9i,92) respectively, and let T denote the concatenation of Ti and 
r2. The general curvature control problem we address is: 

Given two points M and TV, two unit vectors u and v, and a constant 
k, we would like to find two quadratic Bezier curves Ti and T2 joined 
with continuity G1 (at p2 = go), interpolating the two points M and 
TV (at po and g2 respectively), such that the tangent vectors at M and 
TV have directions u and v, respectively, the curvature is everywhere 
upper bounded by k, and some evaluating function is minimized. 

We consider without loss of generality k = 1; for any k ^ 0, we can obtain an 
equivalent problem where k = 1 by scaling the plane. 

The curves Ti and T2 are connected (at p2 = go) with continuity G1 if 
and only if there exists p, € (0,1) such that p2 = go = Wi + (1 — ß)gi- The 
curve r interpolates M and TV, such that the tangent vectors at M and iV 
have directions u and v, respectively, if and only if po = M, g2 = TV and there 
exists a and ß positive real numbers such that pi — po = M and g2 — qi = ßv 
(see Figure 2). One way to solve the general curvature control problem is to 

1) find the set of (a, ß, p,) € (0, +00)2 x (0,1) on which the curvature of T 
is everywhere smaller or equal to 1, and then, 

2) find a value (a, ß, /x) in that set for which the evaluating function is 
minimized. 

In general, this is a non-linear optimization problem with non-linear con- 
straints, and thus, cannot necessarily be solved quickly and accurately. 
Clearly, the difficulty depends on the complexity of the set of feasible solutions 
and on the evaluating function that is to be minimized. Here we consider sim- 
plifying assumptions. First, we require a continuity C1 at the junction point 
between the two curves Ti and T2. This fixes p. to 1/2 and reduces the num- 
ber of variables to two. To bring the number of variables down to one, we 
arbitrarily consider a = ß. We then choose as evaluating function the length 
a. By minimizing a, we ensure that all the control points pi, p2 = go and 
gi remain close to the the points M and TV we want to interpolate; in other 
words, by minimizing a, we expect that the length of the resulting curve Y 
will not be too far from its minimum.   With these further assumptions, we 
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po = M 

,r2 \\ f> = a 

,;v 

Fig. 2. Curvature control problem with continuity C   and a = ß. 

solve (in Section 3.2) the given interpolation and minimization problem, ex- 
cept for the degenerate case when u and v are parallel, for which we prove 
that a solution does not necessarily exist. 

In Section 3.3, we also consider a = ß, but we require a continuity G2 

(instead of C1) at the junction point between the two curves Ti and IY In 
other words, we require the signed curvature to be continuous on T. The 
variables are then reduced to (a,ß), but the constraint that the continuity is 
G2 links these two variables, and thus the problem is actually one-dimensional. 
We prove in Section 3.3 that this set of additional constraints is too restrictive 
in the sense that there exists non-degenerate data (M, TV, u, v) that cannot be 
interpolated. However, if a solution exists, we show how it can be computed. 

3.2. Curvature control problem with C1 continuity 

We consider here the following variant of the curvature control problem: 

Given two points M and N, and two unit vectors u and v, we want 
to find two quadratic Bezier curves Ti and F2 joined with continuity 
C1 (at P2 = <7o), interpolating the two points M and N (at po and qi 
respectively), such that the tangent vectors at M and N have direc- 
tions ü and v respectively, the maximum curvature of the two curves 
is smaller or equal to 1, the distances a = ||poPi|| and ß = ||<Zi<?2|| 
are equal, and such that a is minimized. 

See Figure 2. 
We show in this section how to solve this problem for non-degenerate 

data, that is when u and v are not collinear. When u and v are collinear, we 
show that there is not necessarily a solution. 

As we said in Section 3.1, this problem is equivalent to finding the smallest 
a £ (0, +oo) such that the curvature of Ti and T2 is everywhere smaller or 
equal to 1, where p0 = M, q2 - N, p\ = po + aü, q\ = 92 - av and 

Pi = 9o = (Pi +9i)/2. 
We show how we compute the smallest a £ (0, +00) such that the cur- 

vature of rx is everywhere smaller or equal to 1.   Computing the smallest 
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a e (0, +00) for T2 can be done similarly. We then return the curve T defined 
by the biggest of those two a. 

First, for any value a € (0, +00), we need to determine an expression for 
the maximum curvature of Tj. By Theorem 1, it remains to determine whether 
the maximum curvature of Ti is given by the maximum curvature Kmax(ri) 
of the parabola supporting Ti, or by K0(TI) or Ki(ri), the curvature of Ti at 
its endpoints Ti(0) or r1(l), respectively. Thus, for any value a € (0,+00), 
we want to decide whether pi belongs to one of the disks of diameter pom 
and mp2, where m is the midpoint of p0p2 (see Figure 2). Let c and c' be the 
respective centers of these disks and R be their radius. In order to determine 
whether pi belongs to one of these disks, we compute and compare R2 with 
the distances ||pic||2 and ||pic'||2. 

Since px and qi are linear in a, and p2 = (pi + qi)/2, m = (p0 + p2)/2, 
c = (Po + m)/2, and c' = (m + p2)/2, we have that (c - p0)

2, (c - pi)2 

and (c' - Pl)
2 are of degree 2 in a.  Thus, R2 < \\Plc\\2 and R2 < ||plC'||2 

are inequalities of degree at most 2 in a (namely a >  /^i^i^s and 

a2[(5u + Zv)2 - (ü - v)2] - 2a(16u + 8v) ■ p^q2 + 8||pog2||
2 > 0). By solving 

these equations, we get a partition of (0, +00) into two sets of intervals T and 
1' such that the maximum curvature of Ti is given by Kmax(Ti) for any a €l, 
and by max(K0(ri), «i(ri)) for any a € I'. 

With .A(poPiP2) denoting the area of the control triangle P0P1P2, we get 
by Theorem 1, when p0, pi and p2, are not collinear, 

(r)2 _     \\Pim\\6 ,    ,2 _ AP0P1P2)2      ,     ,„ ,2 _ A(poPlp2)
2 

AP0P1P2F \\PoPi\\6 \\P1P2W6 

A straightforward computation gives 

p^H = _ , popi = au  and pip2 = _v i 

Thus, .4(poPiP2) = IPOPI x pIpt|/2 = \au x p^q% - a2u x u|/4 and 

,    ,2 _ {a2{Su + v)2 - 2a(3u + v) ■ p^2 + [[pigf)3 

™max\i 1)    — ~   ~^ ^— , 
16{a2u xv — au x po<72)4 

,, /r N2      (a2u x v - au x p^qt)2                       2      A(a2it x v - au x p^fe)2 

«0(1 ij   - —-g   and Ki(ii)   = — : . 
16Q6 (a(tr+«)-pSS)6 

Thus, Kmax{T{)2 < 1, «o(ri)2 < 1 and Ki(rx)
2 < 1 reduce to inequalities 

in a of degree at most 8, 6 and 6 respectively. Finding the intervals of 1 
and X' on which those inequalities are satisfied can therefore simply be done 
by computing the roots of the corresponding equations. More precisely, the 
smallest of (i) the smallest root of Kmax(Ti)2 = 1 in 1, and (ii) the smallest 
root of «o(ri)2 = 1 and «i(ri)2 = 1 in T, is the smallest a for which the 
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Fig. 3. Case where po, pi and p2 are collinear and consecutive. 

maximum curvature of Ti is smaller or equal to 1. Such a solution exists when 
ix«/0 because the maximum curvature of Ti goes from +oo to 0 since 
KmM(ri)2, K0(ri)

2 and Ki(ri)2 tend to +oo when a tends to 0, and tend to 
0 when a tends to +oo. 

We have shown that, when u x v ± 0, the smallest a € (0, +oo) such 
that the curvature of I\ is everywhere smaller or equal to 1, and such that 
the control points p0, Pi and p2 are not collinear, exists and we can compute 
it. Suppose now that there exists ä £ (0, +oo) such that p0, pi and p2 are 
collinear (see Figure 3). Assume furthermore that p\ lies in between p0 and 
p2; otherwise, Tx is not smooth and does not satisfy the constraint on the 
curvature. Since p2 is the midpoint of pi?i, it follows that po, Pi, p2 and qx 

are, in this order, on the line L passing through p0 and directed by u (the 
line is necessarily directed by u because pi ± po belongs to that line). With 
uxv^0,q2 does not belong to L. Thus, for a < ä, the triangle P0P1P2 is 
not fiat but tends to a flat triangle, with fiat vertex at pi, as a tends to ä. 
Therefore, when a tends from below to <5, Ti tends to a straight line segment, 
and the maximum curvature of i\ tends to 0. Thus, there exists a < ä such 
that the maximum curvature of i\ is smaller than 1. It follows that ä is bigger 
than the smallest solution a we found previously. Therefore, when u x v ^ 0, 
there is always an optimal solution with p0, pi and p2 not all collinear. 

We now show that, when u x v = 0, there may not exist a solution. 
Assume for example that ptffc is not parallel to u and v, and that u + v = 0. 
Then, when a tends to 0, K0(TI), K^TI) and Kmai(ri) tend respectively to 
+00, 0 and +00. Similarly, when a tends to +00, they tend respectively to 
0, +00 and +00. It follows that max(K0(ri),Ki(ri)) and Kmax(ri) tend to 
+00 when a tends to 0 and +00. In addition, Ko(ri), Ki(ri) and Kmax(ri) 
are never equal to 0 because then ||pim|| = 0 or A{poP\p2) = 0 which would 
imply that p0, Pi and p2 are collinear, which is impossible since the two 
rays starting at p0 and q2 with direction u and -v do not intersect. Thus, 
max(K0(ri), Ki(ri)) and Kmo:r(ri) are strictly greater than a positive constant 
for any a € (0, +00), and, by scaling the plane, this constant can be scaled to 
a value greater than 1. 

Fig. 4. Example where * > 0 for any a > 0 (pöqi x ü > 0, p0q2 xv>0 and 
u x v < 0). 
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3.3. Curvature control problem with G2 continuity 

We consider here the following variant of the curvature control problem: 

Given two points M and N, and two unit vectors u and v, we want 
to find two quadratic Bezier curves Tj and T2 joined with continuity 
G2 (at p2 = qo), interpolating the two points M and N (at po and 92 
respectively), such that the tangent vectors at M and N have direc- 
tions u and v respectively, the maximum curvature of the two curves 
is smaller or equal to 1, the distances a = ||poPi|| and ß = \\q1q2W 
are equal, and such that a is minimized. 

As we said in Section 3.1, the problem is equivalent to finding the smallest 
a £ (0,+00) such that Tj and I^ are connected G2 and their curvature is 
everywhere smaller or equal to 1, where po = M, q2 = N, pi = p0 + au, 
Qi = 92 — &v, and there exists p, S (0,1) such that p2 = qo = ppi + (1 — p)q\. 

The curves Ti and T2 are connected G2 if and only if the two signed 
curvatures of Ti and 1^ at p2 are equal, that is, by Theorem 1, 

PÖPi XP1P2 _ qöqj Xglgl 
2|biP2||3    "    2||g0?i||3   ' 

when the triplets of points (po,pi,P2) and (qo,qi,q2) are not collinear. We 
easily get that plp| = (1 - p)plq~i, 9o9i = ßPiÖi, P1Ö1 = Poqt - a{u + v), 
P0P1 = au and qxq~2 = av. Thus, we get that T is G2 if and only if 

au x (1 - fJ,)(poq2 - a(u + v)) _ ß{ppq2 - a(u + v)) x av 

(l-M)3||PM7i||3 " M3lbi9i||3 <=^ 

w x Pol2 — au x v     PÖ92 x v — aü x v 

(1-M)2 ß2 

M2-2/^ + * = 0  where  9 = ^°j* * ~ "* * *  (if p^ x (u + v) 56 0). 
p0q2 x(u + v) 

Standard calculations yield that the equation p? — 2p^ + * = 0 admits 
a root in (0,1) if and only if * € (—1/3,0). We can easily choose po,q2,u 
and v such that * 0 (—1/3,0). Indeed (see Figure 4), $ > 0 for any u, v 
that are on the same side of po<?2 (i.e., po92 x u and po<72 x v have the same 
sign) and such that v lies in the small wedge defined by po<72 and u {i.e., ü x v 
and PÖQ2 x v have opposite signs). We thus proved that there is no solution 
to our curvature control problem for a set of non-degenerate choices of the 
parameters M, N, u and v. 

However, when a solution exists, it can be computed as in the previous 
section. Indeed, the curvature Kmax(Ti) can be expressed as a ratio of poly- 
nomials in a and p, and the inequality Kmax(Ti) < 1 reduces to a polynomial 
inequality of degree 28 in a. Similar remarks hold for Ko(Ti) and Ki(r,). 



200 H. Deddi, H. Everett, and S. hazard 

§4. Concluding Remarks 

It remains open to solve the curvature control problem when the length of the 
curve is to be minimized. Another interesting approach would be to determine 
how much longer than optimal our curves are. Also, we would like to consider 
the case when the data consist of more than two control points. Note also 
that, because of the high degree of the equations, it is not clear that the 
solutions presented in Sections 3.2 and 3.3 are usable in an interactive curve 
design context. This should be tested with an implementation. 
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A B-spline Tensor for Vectorial 
Quasi-Interpolant 

Fabrice Dodu 

Abstract. The aim of this paper is to introduce new techniques and 
new tools for vector field approximation. We do so by building the equiva- 
lent of B-splines, which are now tensor B-splines, as shown below, and by 
appling to the discretization based on a regular grid of a differential op- 
erator a fundamental solution of it, as done for polynomial B-splines and 
polyharmonic B-splines (see [5,6]). We thus obtain quasi-interpolants in 
the vectorial case whose properties generalize the properties of the quasi- 
interpolants generated by using B-splines. All this is done in the case 
when the data lie on a regular infinite grid. 

§1. Introduction 

Fluid mechanics, meteorology and more and more other applications need 
approximate functions from R3 to R3. Given some discrete vectorial data, 
we want to get a function interpolating or approximating the data. At first 
glance, we may think of doing this with three independent approximations 
of the data (one for each component of the data). Of course this can be 
done, but it usually gives poor results since there is no connection between 
the various components of the approximation function, while the applications 
may require, for example, a divergence-free (or a rotational-free) function. In 
order to take into account this kind of connection, we want to determine the 
function interpolating the data and minimizing a seminorm over all vectorial 
functions interpolating the data. The seminorm which is minimized is based on 
the Helmholtz decomposition of vector fields into a rotational and a gradient 
part (p ||div-1|2 + ||rot-1|2). This will be presented in detail in the forthcoming 
thesis [2]. The weight p is introduced to allow the rotational part of the field 
to dominate the gradient part and so in the so obtained function [2]. 

In order to determine the interpolating vector, we need to solve a linear 
system which is usually large (three times the number of data) and badly 
conditioned.   This is why in this paper we do not propose to interpolate, 
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but instead approximate the data by building a quasi-interpolant based on 
S-splines. Note that if (z{)"=1 are vectors and if we want to get a vectorial 
function S such that S(x) = ^ Bi(x) Z{ (as we do in the scalar case with B- 
splines £?,), we need that the functions B* are matrix and not scalar functions 
as in the case of scalar approximation in R or R . This is why the tools we 
build are tensors. 

Now, in order to build this "B-spline Tensor", we will use the same strat- 
egy as for polynomial and polyharmonic B-splines: we will discretize the 
differential operator PmiP (D) defined in [2] and apply to this discretization a 
fundamental solution of PmiP (D), thus obtaining a kind of approximation of 
the Dirac tensor 613. All this is done on a cardinal grid (i.e. a regular infinite 
grid). 

For our three-dimensional problem [2], we choose the 3x3 differential 
matrix defined by 

Pm,P (D) = (-1)™ A"1"1 [pVdiv • -rot (rot-)], 

where div is the divergence operator, V is the gradient operator, rot is the 
rotational operator and p is an arbitrary positive parameter. 

We remark that if p = 1, then PmA (D) = (-l)m Am J3, where I3 is the 
identity matrix of R3, so we obtain three independent operators (one for each 
component), each one being as in ([5]). 

In the first part of this paper we give the construction of a discretization 
of Pm,p (D). In the second part, we define polyharmonic B-spline tensors and 
give the main properties. In the last part, we study the associated vector 
quasi-interpolants, and in particular prove their ^-reproduction. 

Notation: Let m be a integer with m > 2. Pn denotes the set of polynomial 
with variable in R3 of total degree at most n and Vn = P„ x Pn x Pn. D 
denotes the set of distribution of R3 and T> = £>' x D' X D'. Let / : R3 i—► R 
be a scalar function of a three dimensional variable. Let 

/92/3-ö3/2\ 
rot/ =     dsfi - Si/3 

\dJ2-d2f1J 

be the rotational operator, and let div/ = <9i/i +92/2+ #3/3 ^e tne divergence 

operator.   Let Am =  \Y%=1df)   .   T'(g) is the Fourier transform of the 

function (or distribution) g. For all (eE3, sin (C) denotes the vector defined 
by VI < i < 3,  sin(C), = sin(£).   (5 denotes the Dirac distribution.   Let 

vm+i be the function such that : vm+i = 22i+I^/21| • ||2m_1. All tensors 
will be denoted with bold capital letters (i.e. X,...). Let h > 0, and 1 be 
such that : I2 = —1. (e,)3=1 denotes the canonical basis of R3. For k G IN 
and i = 1,2, or 3, 6^t denotes the kth divided difference of step h defined 

by (*£,« /) (*) = f(x+ |e0 -f{x- |e0- 6k
h>i = Sfc» o 6^. We use 

standard multi-index notations.   If a G IN3 and \a\ = ot\ + a<i + a3, then 
r>q _      9°' 8°2 9°3        ro_T«i.dr«! 
u    — (9xi)°i (öia)"2 (dx3)a3> X     _     1      2   x3   ■ 
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§2. Discretization of PmiP(D) 

The goal of this section is to define an approximation of Pm,p (D) which should 
reproduce polynomials of largest possible degree (in the sense defined below). 
We now introduce the P^-exactness of an operator, and a Pfc-exact approxi- 
mation of Da. 

Definition 1. An operator E' is said to be a Pfc-exact (resp. Vk-exact) ap- 
proximation of an operator E iff for any function f,E'fisa linear combination 
of translates of f and for any p € P/b (resp. p € Vk), E' p = Ep. 

Remark. hrxd\ t is a P2-exact approximation of ^7. 

Definition 2 . Let D\ i N be the operator defined by 

nl _ V^ (-1) (ftp (cl       „c2H 
Vh,i,N - 2^    2h    (2fc + l)! l 2M     h'i}' 

For any a £ IN3, we define an approximation of step h and level N of Da to be 
the operator defined by 

In the same way, Pm,p {Dh,N) denotes the approximation of Pm,p (D)- 

Proposition 3. Let a € IN3 and Dfi N be defined as above.   Then, for all 

mappings f from R3 to R, there exists real constants (c7) such that 

T (Dz»f) = \w\    E   c^ (sin w)7) T (/) • 
\ |7|=(2JV+l)|a| / 

Proof: For every 1 < i < 3, 

?Kif) (0 = (exp(«rfcC0 -exp(-mhCi))-T(f)(0 = 2isin(fc0r.F(/) (C) 

By applying the Fourier's transform to the (2N + 1) \a\ centered differences 
of Dl N, we obtain the result.   D 

Proposition 4. Let a?K3. Then 
i) DfiN is a P|a|+2jv+i-exact approximation of Da. 

ii) Pm,p (Dh,N) is an approximation of Pm<p (D) which is V2m+2N+i-exact. 

Proof: We prove by induction on \a\ that for all / £ C2N+2+^, there exist 
c7 real constants such that 

DlNf = D«f+        J2        C7-D7/(C7)- 
|7|=2JV+2+|a| 
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In the following, for any 7 £ IN3, d7, e7 are real constants. The proof for 
\a\ = 1 is due to Steffensen in ([7]). Suppose that it is true for |a| = m. Let 
\a\ = m+l, f e C2N+2+m+1 and let us choose i such that a{ ^ 0. Then 

DZNf = DiitN(DZj?f) 

= Dli,N[D"-e'f+       J2       C7Ö-7(C7) 
\ \-f\=2N+2+m ) 

\j\=2N+3 |7|=2iV+3+m 

= Daf+       Y,       ^/(W- 
|7|=2Af+3+m 

Thus, we get the result if we note that PmtP (D) is a differential operator of 
degree 2m.   D 

§3. U-spline Tensors Associated with Pmp(D) 

Lemma 5. Let vm+l be such that (-l)m+1 Am+1£m+i = S in D'. Let 

x = izlT V2~m+i 
p 

(#2,2 + ö3,3) «m+1 -dj^Vm+l -dii3Vm+l \ 

-9?i2Üm+l (Ö!2,! + 9|i3) «rn+1 -02,3^ + 1 
-Ö?,3Vm+i -9|>3Üm+l (Ö2,! + Ö|_2) Vm+1 , 

Definition 6. Let X be a fundamental solution tensor ofPmiP (D)-X = 6-13. 
We define the level TV and step h S-spline tensor associated with the operator 
Pm,„ (D), to be the tensor B%N>p defined by B™ß = h3 Pm>p (Dh,N) X. 

Remarks. 
a) B™'£ is not a symmetrical tensor. 
b) Ifm is even, we can prove the existence of a differential matrix R^tP (D) 

of degree m such that : PmiP(D) = Ä»,P(D) RmzP(D) and we can 
construct a symmetrical tensor C^Np defined by 

C™$ = h3 Rf,p (DhiN) X Ä~ ,„ {DhiN). 

Lemma 7.  The elements of (B™'fi) are in the set of tempered dis- 

tributions on 1R . 
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Denoting by T (-8™$) *^e F°urier transform applied to each element of 

the tensor B™'£, we obtain the following theorem: 

Theorem 8.  With the above notation, 

i)jp(ß^)(0) = /l3-l3, 

ii) V7 € N3, |7| < 2N + 1 ; WT (B™% (0)) - 0, 

iü) Vl<i,I<3, ta) (t) = 0(|t|-^-8), 

iv) Vfc € TLl, V7 € IN3, |7| < 2m - 1 ; WF (B™#) (f) = 0, 

Proof: For i)-ii), we use Definition 2 and Proposition 3. By the Taylor 

expansion of sin, near 0 we obtain T \B™'jA (£) = h3 I3 + Q (C), where Q (C) 
is such that for all i and j such that 1 < i,j < 3, there exist real coefficients 

<#  such that Qij (C)  = E|a|>2JV+2m+4C,aJp^P^-    ThUS' Wö °btail1 thö 

results. 
We prove iii).  By using the above expression of Q, D^T (B™'£)     are 

integrable near 0 if and only if 2JV + 2 - |7| > -3. Using Proposition 3 
and Lemma 5, there exist real coefficients d'J'k and for all i and j such that 
l<t,j'<3 

r{B^)     (O-l^f^        Z.        d«     ||27rC||2m+2 QkQj' 
'3 fc=l |a|=2m(2JV+l) "      S" 

As a consequence, the elements of T (B™£) are bounded at infinity by ratio- 

nal fractions of degree -2m. D1 T (B™'^) are integrable near infinity if and 

only if -2m - |7| < -3. Then, D^T (B™$) are integrable in R3 iff 2N + 

2 - |7| > -3 and -2m - |7| < -3. Thus, B^T (B™'&)        =    o (|*|-2JV-4), 
V       '    / j,l |t|-*+oo 

for all 1 < j, I < 3. Using [4], the last expression may be strengthened to 

DT(BZ%)        =    0{\t\-2N~5),        l<j,l<3. 
V       '    / j,l \t\—»+oo 

We now establish iv). For all j in ZZ3, 7 in IN3 and positive h, we have 

DT (ß™#) (j) = 0 iff D^T{Pm,p (Dh,N)) (0) = 0. Now by using Proposi- 

tion 3, we have, for all tensors Y and all 7 in IN3 such that |7| < 2N + 2m +1: 

z>7 (r{Pm,p (Dh,N) YJ) (o) = jy (r{pm,P (D) ){O)-F (Y) (O) ). 
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Furthermore, F{Pm,p (D)) is a polynomial matrix of degree 2m so V|7| < 
2m - 1 , D*iF{PmJ(D)) (0) = 0. This gives iv). 

Finally, we prove v). According to the Fourier transform's properties, v) 
is equivalent to 

^ {KN) (0 = F {B?ß il)) (0 = h3-r (B?ß) (ft • C),        VC e K.3. 

Now, from the definition of B™'fi, we derive for any £ in R3, 

T (B£#) (ft • 0 = ^ (PmiP (J?I,N) *) (ft • C) 

= T{pm,p (DhN)) (ft • C) • T (Pm>p) (h-Q-1. 

Using Proposition 3, we have 

T(Pm,P (DI,N)) (ft • C) = h2mT(Pm<p (DhiN)) (C), 

^(Pm,„ (D))-1 (ft • C) = h-2mT{Pm,P (D))-1 (C), 

and thus VC € R3, 

jr (B™#) (ft . C) = ^(Pm,p (£>„,„)) (C) • .F(i>m,„ (z?))-1 (0 

= ft-3-^(ß^)(0-   Ü 

Remarks. 
a) These polyharmonic B-spline tensors may be considered as a regularisa- 

tion of the Dirac distribution tensor 613. 

b) We obtain the same properties with C™'£- 

§4. Associated Vector Quasi-Interpolant 

Given vectorial data (ZJ) EZ53, in this section we define a vector field S ap- 
proximating the data {jh,Zj)j£?z3 (i.e. such that S(jh) ~ Zj for all j in 
ZZ3), by using the above defined tensor jB-splines. This vector generalizes the 
polyharmonic P-spline quasi-interpolant (see [5,6]). 

Definition 9. Let B™'£ be the level TV and step ft B-spline tensor associated 
with Pm<p{D). For all j € 7Z,3, let Zj £ R3, and let z = (zj)j€^3- Then 
the vector quasi-interpolant of step ft and level TV associated with the operator 
Pm,p (D) and the (jh, Zj) £7z3 data, is the vector function defined by 
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Theorem 10. Let I = inf {2JV + 1,2m - 1}, and suppose there exists p &Vi 
such that for all j in ZZ3, Zj = p{jh). Then, S™'fi.z = p. We say that the 
vector quasi-interpolant of step h and level N reproduces Vi- As a particular 
case, 5™^_1 reproduces Vim-\- 

Proof: The proof is based mainly on Poisson's egality and Theorem 8. It 
follows along the same lines as the proof in [3] in the scalar case.   □ 

Remarks. 
a) 2m — 1 is the maximal order of reproduction. 

b) We obtain the same properties if we define the vector quasi-interpolant 
using by the symmetrical tensor C™^. 

c) A similar problem is studied in K,2 in ([1]), where using another discretiza- 
tion of P2,p(D), the authors obtain a vector quasi-interpolant which is 

(Pi (it2)) -reproducing. 

Theorem 11. Let f be a vector function of C (it ) -dass and all partial 
derivatives of order k being bounded over It3. Let S™'fi.f be the above defined 

vector quasi-interpolant associated to the (jh,f(jh) ) data. Then 

fO(hk) ifk<2N+l, 

t^PlWi/(*)-/Wllfc=0 \O(^+2|ln(/0|)    ifk>2N + 2. 

Proof: The proof follows that of Theorems 4.11, 5.1 and 5.6 in [3].   D 
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Analysis of Scalar Datasets on 
Multi-Resolution Geometric Models 

Alexandre Gerussi and Georges-Pierre Bonneau 

Abstract. Recently, multi-resolution methods based on non-nested 
spaces were introduced to allow the visualization and approximation of 
functions defined on irregular triangulations [3,4,5]. This paper comes back 
to these methods and shows more precisely how the subdivision/prediction 
/correction scheme of ordinary wavelet-based multi-resolution analysis 
(MRA)is also present in that framework. As an illustration, it is demon- 
strated how it can be applied in two of the classical issues of MRA: com- 
pression and level-of-detail editing. We also show that the framework 
can be used for the analysis and approximation of scalar data defined on 
meshes with arbitrary topology, thus extending our previous results in the 
plane and the sphere. Here again, the link with the corresponding classical 
multi-resolution scheme of [6] as well as decimation methods is made. 

§1. Introduction 

In the last few years, the problem of simplifying huge 3D triangular meshes, 
for the purpose of e.g., visualization, transmission or storage, has received 
considerable attention. Among those works, two major approaches can be 
found. In the case of regular meshes, the use of a wavelet-based framework 
has proven to be a powerful solution [6,9,14]. On the other hand, when meshes 
are not regular, the approach has been to simplify the mesh by applying 
a sequence of elementary geometric simplification operations, such as vertex 
removals, edge collapses or triangle collapses, the order of removal being driven 
by a greedy algorithm [1,8,11]. We refer to this latter approach as a decimation 
approach. 

This paper is concerned with the simplification of data that is defined 
on a surface by means of a triangulation. This topic is closely related to 
surface simplification, since a triangular mesh can be seen, at least locally, as 
the graph of a piecewise linear function supported by a triangulation. Here 
again, when the surface is well-known, for example a plane square, a sphere, 
a cylinder, etc., several wavelet based approaches have been employed [9,14], 
with regular underlying meshes. 

Curve and Surface Fitting: Saint-Malo 1999 209 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 209-218. 
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In [3,4,5] the concept of non-nested MRA was introduced and applied 
to the approximation and progressive visualization of piecewise constant or 
linear functions defined on arbitrary planar or spherical meshes. In Section 2, 
we investigate the relationship between the non-nested framework and irreg- 
ular subdivision. Examples of compression and level-of-detail editing in that 
framework are given in Section 3. 

Section 4 focuses on the approximation and visualization of functions 
defined on triangular meshes with arbitrary topology. Here, an additional 
difficulty is that the surface which supports the function is also altered by the 
approximation process. Like in the case of surface simplification, a wavelet 
approach can successfully be applied when the original mesh has subdivision 
connectivity [6,12]. Otherwise, in an irregular setting, a decimation approach 
is usually employed, and the function is approximated during the simplifica- 
tion process [1,11]. We show how to apply our framework to functions defined 
on such general meshes. We will see that it makes the link between the 
wavelet-based approach available for subdivision surfaces and the decimation 
model. As in our previous papers, the function in its multi-resolution form 
is described by a coarse approximation defined on the simplified mesh, and 
a sequence of detail coefficients that are used for the reconstruction of the 
function on every LOD up to the original mesh. Our scheme is fully bijective: 
The function multi-resolution representation has the same size as the original 
one. The approximation process performs L^ approximation of the data, but 
other types of approximation are also possible. 

§2. Non-Nested Framework and Irregular Subdivision 

In Section 2.1 we briefly review the non-nested decomposition scheme de- 
scribed in [3,5]. Section 2.2 makes the link with the notion of irregular subdi- 
vision. 

2.1. Decomposition scheme 

For simplicity, every space is supposed to have finite dimension. Let Q. be a 
measurable domain and V, i = 0,..., N, a sequence of subspaces of L^Q). 
These spaces do not have to be nested but will in general be "growing" in the 
sense that A\m{Vl) < 6.\m{Vl+l). Now let / = fN be a function in the finest 
subspace V^. In classical MRA, the spaces are nested and the link between 
VN~X and VN is made by taking a complementary space WN~l of VN~l in 
VN, that is 

vN = vN-l®wN-\ 
Now if we write /JV = /jv-i + 5;v-i according to the space decomposition, 
/JV-I can be seen as an approximation of /JV in VN_1, and g^-x as the detail 
needed to recover the original function from its approximation. By repeating 
the decomposition, one obtains 

IN = /o + 5o -\ h ffiv-i 

which corresponds to the space decomposition VN  = V° ® ©^_1 W''■ 
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Notice that in this case ft = PVi(ft+i), where Pv< is the projector on V1 with 
direction W\ We return to the general case and suppose that a linear "pro- 
jector" P' : Vi+1 -> V' is given. To avoid technical details, these projectors 
are required to be surjective, but the results in this paragraph also hold if 
this is not the case. Let W{ be the kernel of P\ and V{ be a complementary 
space of Wi in Vi+1. We now observe that the restriction of P% to V1 is a 
bijective operator, having the same range as P\ Thus if ft = Pl(ft+i) and 

gi = Q^/i+i), where Q{ is the projector on W' (defined by the choice of V%), 
the following reconstruction formula holds: 

ft+i=lnv(P^)(ft) + 9i- (!) 

Again, by iterating this decomposition, we obtain a coarse approximation 
/0 = P° o • • • o PN'1(fN) and "detail" functions go,..., 9N-I- 

We now take a look at the reconstruction process. Denote by Sl the 
inverse of P.*-,, 5' : V' -> V{ C Vi+i. The complete coarse-to-fine reconstruc- 

tion formula is obtained by iterating the reconstruction formula (1): 

fN = SN-1o...oS0(f0) + SN-1o...oSl(go) + --- + SN-1(gN-2) + 9N-i. (2) 

2.2. Approximating spaces, subdivision spaces and scaling spaces 

We are going to see that the previous scheme can actually be considered in 
two different ways. Until now, it was implicitly assumed that the spaces 
V' were playing the role of the scaling spaces in classical MRA. Under this 
assumption, we conceptually have a really non-nested framework; if the spaces 
were nested, the operators S* would be the identity (formally injecting V1 in 
Vi+1). However, we will not call them scaling spaces but approximation spaces, 
and keep the term "scaling" for other spaces that are going to be defined below. 

In the non-nested framework, one loses the notion of subdivision (or cas- 
cade algorithm). However, looking at things slightly differently allows subdi- 
vision to fit into the non-nested scheme. To show this, consider the operators 
5' as subdivision operators, and call the spaces V1 subdivision spaces accord- 
ingly. This means that we start from a function /0 e V° and iteratively 
subdivide it into ft, ft,... fN using the formula ft+1 = S^ft). The notion 
of subdivision used here is very general. In that context, classical regular 
or semi-regular subdivision schemes would give rise to a nested sequence of 
subdivision spaces. But completely irregular schemes would require the non- 
nested framework to be fitted in. The use of non-nested MRA was introduced 
in [2], and was later applied to triangular schemes in [3,4,5]. Recently, another 
approach on general irregular schemes was proposed in the work of Sweldens 
and Guskov [10,13]. 

We now define the scaling spaces. Like in classical MRA, they are the 
spaces containing the limit functions resulting from the subdivision process. 
Since very little is known about the convergence of such schemes, we won't 
push the subdivision to infinity, but restrict ourselves to an integer N. This 
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makes sense since, when using such a framework, one usually starts from an 
initial triangulation 7}v which is coarsened to %. This contrasts with the 
traditional approach in subdivision where one starts from a base mesh and 
subdivides it according to a systematic rule. 

The scaling spaces, for i — 0,..., N, are defined as 

where fk'
N = 5i-Ar(/fc), and S{<N = S"'1 o ••• o 5*. This operator carries 

functions in V through N — i subdivision steps to functions in V'N. 
Notice that, for every i, V''N C VN and moreover, that Vl'N C Vi+1'N. 

Now fix a basis (ipl) for V and (tpl) for W*. If (a1) and (6|) denote the coor- 
dinates of fi € V1 and <?j £ W with respect to these basis, the reconstruction 
formula can be re-written as 

k i=j     k 

for any j = 0,...,N, which corresponds to the decomposition of /JV in 
yN,N _ yN (usmg the same notations as above:   ip^     = S^N((p3

k), and 

Although formally identical, considering the ^"s as approximation or 
subdivision spaces changes the aspect of several questions. For example, in 
the problem of error measure in the context of approximation spaces, we 
are interested in ||//v — /i||, whereas in the other context we are looking for 

WfN-f!'N\\- 

§3. Application to Data Compression and LOD Editing 

In this section we show how the framework can be used on functions defined 
over irregular triangulations to achieve data compression and LOD editing, 
which are both standard applications of MRA. The context here is the planar 
or spherical setting of [4,5], only the filters need to be changed. Indeed, the 
analysis operator used in those papers was the orthogonal projector (the goal 
being progressive visualization). However, for compression it is often useful to 
know in advance the error between the original function and its approximation, 
in terms of the wavelet coefficients that were used in the reconstruction. This 
will be achieved by designing new filters. 

3.1. Isometric subdivision 

In order for the detail coefficients to have the error measure property, the 
synthesis operator is required to be an isometry. Indeed, suppose that 

• 5s : V% —► Vt+1 is an isometric operator, Vz = 0,..., N — 1, 

• the complementary spaces V'' are chosen orthogonal to the W, Vi = 
0.....JV-1. 
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When the latter condition is fulfilled, we say that we are in a semi-orthogonal 
framework. If /jv denotes the original function, then, according to the global 
reconstruction formula (2), the quantity ||/JV - fo'N\\2 which measures the 
contribution of the correction steps in the reconstruction process is 

US*-1 o • • • o S\go) + ■■■ + S^fow-a) + 9N-if- 

Because of semi-orthogonality, it is equal to 

US"-1 o • • • oS\g0) + ■■■ + S"-W2)||2 + ll^-ill2, 

and because SN_1 is an isometric operator, we can factorize and remove it 
from the first term above, and then iterate the operation to get 

ii/*-/rna=i>iia- 
i=0 

Notice that even if the subdivision operators are not isometric, 

II/N - f°o'N\\2 < IISMl2 ■ ■ • IISTM2 + • ■ • + ll^-Tltor-all2 + U^-if 

still holds in the semi-orthogonal setting. Let /JV denote the partially re- 
constructed function, and suppose in addition that we are in an orthonormal 
framework, that is, the functions ip' form an orthonormal basis of Wl. Pro- 
ceeding as above leads to 

N-l 

n/w-/*ir = £Ee*(6*)2' 
t=0    k 

where the 6j.'s are the wavelet coefficients and e\ equals 1 whenever b\ is taken 
in the reconstruction and 0 otherwise. Consequently, in this setting we have 
an error measure in terms of wavelet coefficients. 

3.2. An isometric subdivision operator 

The idea behind this construction is that the corresponding analysis oper- 
ator should have reasonable approximation quality, which seems intuitively 
required to achieve compression. Accordingly, the projection operator used 
in [4,5] is taken as a starting point, the problem being to approximate it by 
means of an isometry. Let P* : Vi+1 -> V' be that operator. The first step 
is to find the matrix of P* with respect to some orthonormal basis (e'+1) and 
(e*) of Vi+1 and V\ Now let UDV be the singular value decomposition of 
that matrix. This decomposition admits the following interpretation: 

• V is the matrix of an isometric operator of V'+1 in the basis (e'+1) since 
it is unitary and the basis is orthonormal. 
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• D is a £ x c matrix (£ < c) whose diagonal coefficients are all non-negative 
and < 1. The diagonal matrix formed by the positive entries of D is the 
matrix of a bijective operator mapping V1 onto Ran(F'). 

• Like V, the matrix U is an isometric operator of V*. 

Let D be the matrix obtained by replacing every positive diagonal element of 
D by 1. This amounts to turning the bijective operator above into an isometric 
one, and thus UDV is the matrix of an operator P' whose corresponding 
subdivision operator S' is isometric. A few remarks can be made about this 
construction: 

• P* does not depend on a particular choice of orthonormal basis. 

• Pl is not the best isometric approximation of P' in terms of L2 norm 
of operators, but it can be shown that it is the best with respect to the 
Frobenius norm. 

• The diagonal coefficient of D are by definition the cosines of the angles 
between the spaces V1 and Vl+1 (see, e.g., [7] Chapter 1). In the nested 
case, they would all be equal to 1, and the corresponding subdivision 
operator would be the identity. 

• This method could be used to approximate operators by means of simi- 
larities, by replacing the entries of D by an appropriate scalar a instead 
of 1. Although better in terms of approximation quality, this leads to bad 
visual results since the resulting subdivision operator doesn't reproduce 
constants if a ^ 1. 

Notice that in the context of [4,5], this approximation is always computed 
locally, leading to a global algorithm in linear time. 

3.3. Examples 

As it is mentioned in the beginning of this section, these examples were created 
using the setting described in [3,4,5]; the reader is invited to look there for 
details. The initial triangulation is completely irregular, generated by random 
vertex insertion. In Figure 1, a piecewise linear setting is used for LOD editing. 
The function is edited at a coarse resolution, by pulling values up (—> white) 
at some vertices, and then adding detail coefficients back. Figure 2 shows an 
example of data compression when the approximation spaces are spaces of 
piecewise constant functions over triangulations generated from the original 
one by homogeneous decimation. This last setting is the full generalization of 
Haar wavelets to irregular grids, as it would lead to them in the regular case. 

§4. Scalar Datasets on Irregular Meshes with Arbitrary Topology 

In this section we describe how the non-nested framework can be used to 
handle scalar attributes defined on meshes with any topology. As a starting 
point, we take a multi-resolution decimation model, based on the vertex- 
removal (VR) operation to simplify the geometry. This means we assume 
that an initial fine mesh is given along with its associated sequence of VR's 
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iii. 50 points edited iv. Reconstruction 

Fig. 1. Picture design using level-of-detail editing. 

Original: 50000 triangles Compressed to 5%, 6% error 

Fig. 2. Compression of a piece-wise constant function. 

that can be progressively applied to decimate the mesh down to a base mesh. 
In addition, we suppose that the scalar attributes are defined by means of 
piecewise constant and/or linear functions parameterized on the initial mesh. 
In what follows, PI(V) denotes the polygon of influence of a vertex V; it is the 
polygonal area delimited by the 1-neighbours of V. In order to apply the non- 
nested framework, approximation spaces and approximation operators need 
to be defined. 

4.1. Local mapping 

Let M', i = No,..., N, denote the triangular mesh consisting of« vertices (the 
original mesh after N — i VR operations). Let T{Ml) be the space of real- 
valued functions defined on Ml, and Cl (resp. £') be the subspace of functions 
of T(Ml) that are piecewise constant (resp. linear) on each triangle of M*. We 
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refer to these spaces as the upper approximation spaces. Each VR alters locally 
the surface, thus functions of T{Ml+l) and T{Ml) are defined on different 
domains. To define an approximation problem, a common parameterization 
for these functions is required. To that end, we assume that for every VR of 
vertex Vj, a local one to one projection IP of PI(Vj) onto a plane is also known. 
The reader can refer to [8] for a study of the existence and determination of 
such a projection. We use II' to consider the change of parameterization 
Hl :Mi -> Mi+1 as the mapping defined by IF o W = IP over PI(Vi) and by 
the identity outside. 

4.2. Scaling spaces and data decomposition 

Let K stand for C or C. To a function / € K,' we associate the function 
/M-i = foH1-1, and let Ä?'i_1 C ^(AP"1) be the space of all these functions. 
This can be iterated: The local mappings also define a global mapping from 
the base mesh to the mesh Mi by HNoti = H*'1 o • • • o HN°, for each i = 
NQ + 1,..., N. This allows to define the approximation spaces K,' from the 
upper approximation spaces as 

JC = {f o H"0' | /e *?}C T{MN°). 

The second step is to define the operators P1 : A?+1 —> Kl. Fortunately, 
working directly in the approximation spaces is not required: Because they are 
isomorphic (by construction) to the upper approximation spaces, it suffices to 
define some operators Pl : fCl+1'' —* K.1, and for the purpose of visualization, 
the least-square projection operators will be used. The operator Pl is thus 
defined by 

P( : fi+i = fi+i o ffJV"''+1 .—> P'ifi+l') o HN°<\ 

fi+i € A?+1 defines fl+i'1 to which we apply one decomposition step to get 
an approximation /; € A? and detail coefficients (1 in the linear case, and 2 
in the constant case). The entire operation is then repeatedly applied to /;, 
fi-i, etc. Consequently, in practice, everything happens in the upper approx- 
imation spaces which have a much simpler structure than the corresponding 
approximation spaces. 

4.3. Results and remarks 

The output of this algorithm is a coarse function /AT0 defined on the base 
mesh and a list of detail coefficients that allow the exact reconstruction of 
the original function through the hierarchy of LODs. Figure 3 shows some re- 
sults in the linear setting. In these examples, the geometric criterion guiding 
the decimation priority-queue is simply the distance from the 1-neighbours of 
a candidate vertex to their least-square approximation plane. On the upper 
right snapshot, we see the drawback of a geometric-only driven priority queue: 
Some quasi-planar areas on the object have been severely decimated, leading 



Analysis of Scalar Datasets 217 

Original: 32000 vertices Geometric criterion: 3000 v. 

Geom. k data criterion: 3000 v. Same without vertices 

Fig. 3. Bracket: linear approximation examples. 

to a quite coarse approximation of the function. The lower snapshots show 
the result using the geometric(|) and data(|) based criterion. The resulting 
approximations are better, but the geometry presents some visible deforma- 
tions (this is also partially due to our simple geometric criterion). Finding a 
compromise in an automated way seems to be a difficult task. Moreover, if the 
simplification is just a process prior to other computations, such as can be the 
case, e.g. in mechanics, then a high accuracy in the approximated function 
might be the primary interest. Thus, it seems better to let the weights depend 
on the application, under user control. 

4.4. Comparison to classical MRA 

In [6], a MRA for subdivision surfaces is used to handle both the geometry 
and the scalar attributes of a mesh. The presentation given above makes 
the link between these methods and the decimation approach. Indeed, from 
the "upper" point of view — the decomposition using the operators P' — it 
compares to decimation in many respects, whereas it is also a decimation step 
corresponding to the approximation spaces, which is exactly what is done is 
[6] in the nested case. However, parameterizations are then obtained without 
a local projection hypothesis, thanks to the particular l-to-4 splitting strategy 
that is performed on the base mesh. 

Acknowledgments. We would like to thank Jean-Claude Leon from the 
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Biorthogonal Refinable Spline Functions 

Tim N. T. Goodman 

Abstract. We give a construction for refinable spline functions of degree 
n with compact support and simple knots in \7L which are biorthogonal 
to uniform B-splines of degree n with simple knots at \TL. 

§1. Introduction 

A function is refinable if it is a linear combination of dilates of integer translates 
of itself. Such functions are central to multiresolution methods, in particular 
in the construction of wavelets. In general, refinable functions can be defined 
implicitly from the refinement equation which they satisfy, but explicit con- 
structions of refinable functions are restricted mainly to spline functions, i.e. 
piecewise polynomials. If we require the natural condition that the integer 
translates of the univariate refinable spline function <f> with compact support 
form a Riesz basis, then <j> can only be a uniform B-spline with simple knots 
[4]. However there is more flexibility if we replace the single function <j> by 
a refinable vector of spline functions (<j>i,..., cj>r). For a survey on refinable 
spline functions, see [2]. 

In multiresolution methods, orthogonality plays an important role. In [1], 
constructions are given for refinable functions whose integer translates are 
biorthogonal to a given refinable function <£, in particular when <j) is a uniform 
B-spline with simple knots. However these dual functions are not defined 
explicitly. We give, in Section 3, constructions for refinable spline functions 
of compact support which are biorthogonal to uniform B-splines with simple 
knots. This requires refinable vectors of three functions: the uniform B-splines 
have knots in |Z, while the dual functions have the same degree and simple 
knots m\7L. The construction is based on a general result in Section 2 giving 
necessary and sufficient conditions for biorthogonality of certain vectors of 
(not necessarily refinable) functions in terms of a Grammian matrix. 
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§2. Biorthogonal Basic Sets 

Let fa,..., fa be compactly supported real-valued functions in L2(]R). We 
say {<f>i,... ,fa} is a basic set for a space V if V comprises all real, finite, 
linear combinations of integer translates of fa,..., 4>r. 

We say basic sets {fa,.. .,fa} and {^1, ■ • • ,Vv} are biorthogonal (or the 
basic set {^1,... ,4>r} is dual to {fa,... ,fa}) if 

J — c 
faipj(. -k) = SijSok,    i,j = l,...,r,        k€7Z. 

A basic set {fa,..., fa} is said to be stable if {fa(. — j) : i = 1,..., r, j e 
7L} forms a Riesz basis, i.e. for some A, B > 0, 

r        oo ( i^v *»0O ' ^^ ' ^^ 

^E E 4</ C E a(-f<^ E 4 
i=l j=—oo °° i=l j = — oo i=l j = —oo 

for any ay € R, i = 1,..., r, j € ZZ. 
It is shown in [3] that {fa, ...,fa} is stable if and only if for each u in 

H, there are integers ki,...,kr with 

det \fa(u + 2TTkj)} /0. (1) 

We shall say a matrix M(z) = [M(z)y]!" -=1 of Laurent polynomials is 
invertible if it has an inverse which is a matrix of Laurent polynomials, i.e. 

detM(z) = azl,    some o / 0,    I € TL. 

Lemma 1. If {fa,... ,fa} is a stable basic set for V, then {ipi,..., tps} in V 
also forms a stable basic set for V if and only ifs = r and 

T OO 

^ = E  E  Mi(k)fa{.-k),    i = \,...,r, (2) 
j = l fc = — OO 

where the matrix of Laurent polynomials 

A(z) := E A^k)z" 
,k= — oo i,j = l 

is invertible. 

Before proving this lemma, it will be useful to introduce the following 
vector notation. For a basic set {fa,... ,fa}, we let cf> denote the column 
vector (fa,... ,fa)T. Then we can write (2) as 

oo 

1>=   J2  Akfa.-k), (3) 
k= — oo 
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where Ak is the matrix [/ly (&)][;=!• Taking Fourier transforms then gives 

tftu) = A{z)fa), (4) 

where z = e~lu. 
Proof of Lemma 1: Suppose that (2) holds, where A(z) is invertible. From 
(4) we have 

4>{u) = A(z)~li>(u). 

Since A(z)~l is a matrix of Laurent polynomials, it follows that <j>i,...,4>r 

are finite linear combinations of integer translates of V'l, ■ ■ ■, Vv ■ Since V 
comprises all finite linear combinations of integer translates of <j>\,..., <pr, it 
follows that {V>i,..., ipr} is a basic set for V. 

Also for any u in R, we may choose integers k\,...,kr so that (1) holds, 
and thus from (4), 

det[i>i(u + 2Trkj)]lJ=1 = det A(z) det[&(u + 2irkj)]lj=1 ^ 0. 

So {^i,..., Vv} is stable. 
Conversely suppose that {ipi,...,ips} is a stable basic set for V. Then 

there exist an s x r matrix A{z) and anrxs matrix B(z) of Laurent polyno- 
mials such that for z = e~*u, 

$(u) = A{z)$(u) 

and 
4>(u) = B(z)i>{u) = B(z)A(z)4>(u). 

For any u € R we may choose integers k\,...,kr so that (1) holds. Since 

[4>t (u + 2nkj )}riJ=1 =B(z)A(z) [fc (u + 2irkj)] r j=1, 

it follows that B(z)A(z) = Ir, the r x r identity matrix. Similarly V>(w) = 
A(z)B(z)ij>(u) and since {V>i,...,ips} is stable, we can deduce as above that 
A{z)B{z) = Is. Thus s = r and A(z) is invertible. O 

Theorem 2. Suppose that {<f>i,..., <f>r} and {V>i, • • •, Vv} are stable basic sets 
for V and W respectively. For k e7L, i,j = 1,... ,r, we deßne 

/oo 

M>j(- - *), (5) 
■oo 

and let M denote the r x r matrix of Laurent polynomials given by 

M(z) := 
_fc = —OO 

(6) 
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Then there exist biorthogonal basic sets for V and W if and only if M is 
invertible. Moreover in this case, for any stable basic set for V there is a 
unique dual stable basic set for W. 

Proof: Let {</>i,.. •, <M and {ipi,..., 4>r} be any stable basic sets for V and 
W respectively. Then by Lemma 2.1 we have 

oo oo 

i= Y, ^(--fc)' ^= E ^(--fe)> (7) 
k=-oo k=-oo 

where Ak, Bk are r x r matrices such that 

oo oo 

A(z):=   £   Akz
k,    B(z):=   £   Bkz

k, (8) 
fc=-oo k=-<x> 

are invertible. 
For k e 7L, i, j = 1,..., r, define 

/oo 

4>dj(- - k), (9) 
-oo 

and let M denote the r x r matrix of Laurent polynomials given by 

M(z) := E ^(fc)2* 
.k=— oo 

(10) 

»,J = 1 

Then from (2.5)-(2.10) we have for z = e-*", 

M(z) = A(z)M(z)B(z)*, (11) 

where B{z)* = ß(z)   = B{z-})T. 
Now by (2.9) and (2.10), 4> and V» are biorthogonal if and only if M{z) = I. 

If this holds, then by (11), M must be invertible. Conversely, if M is invertible, 
then for any choice of A(z) we can define B(z) uniquely by 

B(z) = {M{z)-'A{z)-lY 

so that (11) holds with M{z) = I. Thus if M is invertible, then for any stable 
basic set </> for V, there is a unique dual basic set iß for W. □ 

We remark that from the definition, any biorthogonal basic sets must 
have linearly independent integer translates. Thus if M as in Theorem 2.1 is 
invertible, any basic set for V or W which is stable must in fact have linearly 
independent integer translates. 

Now for m € 7L, m > 2, we say a space V of functions on E, is m-refinable 
if 

fev^f(-)&v. 
m 
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If (^ is a basic set for an m-refinable space V, then </>(—) is in V, and so 

oo 

^~)= £ Ck4>(.-k) 
711 

K — — 0O 

for some finite set of matrices Cfc. Thus, <j> satisfies the refinement equation 

oo 

<i> =   £   Ck^im. - k). 
k=—oo 

In this paper we shall, for simplicity, consider only the case m = 2. 

§3. Biorthogonal Refinable Splines 

For any integer n > 1 we let Nn denote the uniform B-spline of degree n with 
simple knots at 0,1,..., n + 1. We now fix n, and define 

4>i{x) = Wn(3a:),    fa{x) = Nn(3x - 1),    fa{x) = Nn(3x - 2). 

Then {4>i,4>2, $3} is a stable basic set for the space V of all spline functions 
of degree n with compact support and simple knots at \TL. Clearly V is 
refinable. We wish to find a refinable space W of spline functions of compact 
support which has a basic set which is dual to {<fii, <j>2,<f>z}. From Theorem 2 
we see that this is equivalent to finding a basic set {ipi,ip2-i^z] for W such 
that the matrix M in (6) is invertible. 

We shall choose 

V>i(a:) = Nn(2x),    fo(x) = Nn(2x - 1), 

and V>3 to be a spline function of degree n with knots in jTL and support in 
[|, 2n — j]. Thus W is a space of spline functions of degree n and simple knots 
in ^7L, which contains all spline functions of degree n with compact support 
and simple knots in |2Z. For any function / in W, f(^) has knots in |K and 
so lies in W. Thus W is refinable. 

Theorem 3. We can choose ip^ as above so that there are biorthogonal basic 
sets for V and W, or equivalently that there is a unique basic set for W dual 
to the basic set {</>i,</>2)<^3}- 

Proof: The space Wo of spline functions of degree n with simple knots in |2Z 
and support in [0,2n] has dimension 3n, while the space W\ of spline functions 
of degree n with simple knots in |ZZ and support in [0,2n] has dimension In. 
Thus we may choose linearly independent functions /i,...,/4„ in W\ with 
support in [|, 2n — |] which together with Wo span W\. We write 

An 

V"3 = ^O-kfk 
Jfc=l 
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It remains to choose ai,...,04n so that M in (6) is invertible. Now 
Mjj(k) = 0 except in the following cases: Mn(k), -f < k < |; M12(fc), 
_s±l < * < a=i; M13(k), -2n + l < fc < f; M21(fc), -f < fc < 2±1; 
M22(k), -^ < * < f; Af23(fc), -2n + 1 < k < a±l; M3i(fc), - V < * < 
a±2; M32(fc), -f < fc < =±i; M33(k), -2n + l<k<^. Then 

detM(z) =     E     bkz k 
>k* 

fc=-3n+l 

for some numbers bk, —3n + 1 < k < n, which are linear functions of 
ai,---,a4n- The condition detM(z) = 1 then gives 4n linear equations in 
4n unknowns a\,..., a,4n and we shall show that this system is non-singular. 

Suppose, to the contrary, that the system is singular. Then we may 
choose oil,..., a,4n, not all zero, so that det M(z) = 0. Then the columns of 
M are linearly dependent in the sense that there are Laurent polynomials pi, 
P2) P3, not all zero, so that 

3 

Y,M(z)ijPj(z)=0,    i = 1,2,3. 
3 = 1 

Writing 

Pj{z)=   JT  Cj(k)zk,    J = 1,2,3, 
fc= — oo 

this becomes 

E E M'3(k)zk E cii¥ = ^ < = 1,2,3, 
j = l k— — oo /= —oo 

3        oo 

E E M« (0<v(* -0 = 0,   i = 1,2,3,   k e zz, 

which on recalling (5) gives 

/oo 

&(.-k)/ = 0,    t = 1,2,3,    fceZZ, 
-oo 

where 
3       oo 

j = l I= —oo 

Thus / is orthogonal to V. Note that since the integer translates of 
■01, ^2, 1P3 are linearly independent, / is not identically zero. Since only a 
finite number of coefficients Cj(—l), j = 1,2,3, I € ZZ, are non-zero, / has 
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compact support. Suppose that the support is [a,ß + 2n], a, ß e?L, but not 
in [a + 1, ß + 2n] or [a, ß + 2n - 1]. It is easily seen that a < ß and 

ß 

where ca ^ 0 ^ Cß and p has support in [a, ß + 2n] and lies in the space of 
splines of degree n with knots in |ZZ, which we shall denote by Z. 

We first note that for some h\ in Z with support in [ß + ^ — 1, ß + 2n], 

Vi ~ cpip3(. -ß) + h1 

is orthogonal to those elements of V with support in [ß + 2n — 1, oo). Now 

1 ^_1 

is orthogonal to those elements of V with support in [ß + 2n — 2, oo) and on 
this interval coincides with a function 

V2 ■= Cßip3(. -ß) + h2, 

where h2 is in Z with support in [ß + —■ - 2,ß + 2n]. Continuing in this way 
we recursively construct 

Vj := Cßfo(- -ß) + hj,    j = l,...,An, 

which is orthogonal to those elements of V with support in [ß + 2n — j, oo), 
where hj is in Z with support in [ß + ^ - j,ß + 2n]. In particular, r)4n has 
support in [ß - ^,ß + 2n] and is orthogonal to those elements of V with 
support in [ß — 2n, oo). 

Choose F with i?,(n+1) = r)in and with support in (-oo,/3 + 2n]. Now for 
j = 0,..., 12n — 1, let Bj be the B-spline of degree n with knots ß — 2n+ |, 
/3-2n+i±i,...,/3-2n+i±|±i. Then since Bj is in F, 

/CXD /»OO 

5^4„ =  /      Bii^B+1 

-OO J — OO 

= [/J-2n+i1/3-an+i±l,...1/3-an + i±|±l]F. 

Thus F vanishes at /3 - 2n + |, j = 0,..., 12n - 1. Now F coincides on 
[ß-2n, ß+2n] with a spline G of degree 2n+l with support [ß-3n-1, ß+2n] 
with knots at 



226 T. N. T. Goodman 

It then follows from the Schoenberg-Whitney Theorem [5] that G vanishes 
identically on [ß — 2n,ß + 2n] and hence so does rnn. So 7?4n has support in 
[ß — ^,ß — 2n] with knots in \TL, and so j\\n vanishes identically, which is 
a contradiction. Thus the linear system is non-singular, which completes the 
proof.   D 

Finally we note that if ^3 is as in Theorem 3 and M is given by (6), then 
the basic set for W dual to {01,02,03} is {^1,^2,^3} given by 

00 

k = — OO 

where 

00 

J2  Ckz
k = {M{z)-lY = (adj M(z)Y = (adj M{Z-

1))T. 
/e= —oo 
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Fitting Parametric Curves to 
Dense and Noisy Points 

A. Ardeshir Goshtasby 

Abstract. Given a large set of irregularly spaced points in the plane, an 
algorithm for partitioning the points into subsets and fitting a parametric 
curve to each subset is described. The points could be measurements from 
a physical phenomenon, and the objective in this process could be to find 
patterns among the points and describe the phenomenon analytically. The 
points could be measurements from a geometric model, and the objective 
could be to reconstruct the model by a combination of parametric curves. 
The algorithm proposed here can be used in various applications, especially 
where given points are dense and noisy. 

§1. Introduction 

In many science and engineering problems there is a need to fit a curve or 
curves to an irregularly spaced set of points. Curve fitting has been studied 
extensively in Approximation Theory and Geometric Modeling, and there are 
numerous books on the subject [1,5,6,12,23]. Existing techniques typically 
find a single curve segment that approximates or interpolates the given points. 
Many techniques assume that the points are ordered and fit a curve to them 
by minimizing an error criterion [3,7,8,14,16,22,27,29,31,34]. If the points 
are ordered, piecewise polynomial curves can also be fitted to them [19,30]. 
Difficulties arise when the points are not ordered. 

To fit curves to an irregularly spaced set of points, 1) the set should be 
partitioned into subsets, 2) the points in each subset should be ordered, and 
3) a curve should be fitted to points in each subset. This paper will provide 
solutions to the first two problems; that is, partitioning a point set into subsets 
and ordering the points in each subset. Once the points in each subset are 
ordered, existing techniques can be used to find the curves. 

Given a large set of irregularly spaced points in the plane, {p; = (xi,yi) : 
i = 1,...,N}, we would like to fit one or more parametric curves to the 
points, with the number of the curves to depend on the organization of the 
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points and the resolution of the representation. When fitting a parametric 
curve to an irregularly spaced set of points, the main problem is to find the 
nodes of the curve. The nodes of a parametric curve determine the adjacency 
relation between the points and order them. The curve will then approximate 
the points in the order specified. Methods to order sparse points [11,17,24] 
as well as dense points [25,26,32] have been developed. Existing methods, 
however, fit a single curve segment to an entire data set. Sometimes it is not 
desirable to fit a single curve segment to a large and complex point set, and 
it is necessary to represent the geometric structure present in the point set 
by many curve segments. In this paper it will be shown how to partition a 
point set into subsets and how to fit a parametric curve to each subset. A 
new method to order a set of dense and noisy points for curve fitting will also 
be presented. 

In the proposed model, a radial field is centered at each point such that 
the strength of the field monotonically decreases as one moves away from the 
point. The sum of the fields has the averaging effect and reduces the effect 
of noise, and local maxima of the sum of the fields has the effect of tracing 
the spine of the points. Therefore, we will use the local maxima of the sum 
of the fields (the ridges of the obtained field surface) as an approximation to 
the curves to be determined. Based on the organization of the points, disjoint 
ridges may be obtained, each suggesting a curve. The ridges will be used 
to partition the points into subsets and fit a curve to each subset. In the 
following, the steps of this process are described in detail. 

§2. Approach 

A desirable property of an approximating curve is for it to pass as close as 
possible to the given points while providing a certain smoothness appearance. 
For a dense point set, the curve cannot pass close to all the points, so it is 
desired that the curve trace the spine of the points. In the model proposed 
here, an initial estimation to a curve is obtained by taking points in the xy 
plane whose sum of inverse distances to the given points is locally maximum. 
That is, if the sum of inverse distances of point (x,y) to given points {(XJ,2/J) : 
i = 1,...,N} is larger than the sum of inverse distances of points in the 
neighborhood of (x, y) to the given points, then point (x, y) is considered an 
initial estimation to a point on the curve. Therefore, by tracing points in the 
xy plane that locally maximize 

N 

f(x,y) = £[(*- Xif + (y-yi)
2 + lp, (1) 

i=i 

we find an approximation to the curves we want to find. 
The function / can also be interpreted as follows: Suppose a radial field 

of strength 1 is centered at point (x;, j/*), i = 1,..., N, such that the strength 
of the field decreases with inverse distance as one moves away from the point. 

Then, the strength of the field at point (x, y) will be [(x - x*)2 + (y - j/,-)2]   2, 
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and the curves to be found can be considered points in the xy plane whose 
sum of field values are locally maximum. 

Once a set of points is given, the function / becomes fixed, and the 
obtained ridges will have a fixed shape. In order to have control over the 
shape or smoothness of obtained ridges, we revise formula (1) as follows. If 

instead of inverse distances defined by [{x — x{)2 + (y — yi)2 + l]   2, we use 

[(*-*i)
2 + (2/-2/02+'T§ (2) 

in equation (1), we obtain 

gix^^JTKx-xtf + iy-ytf + r2]-*. (3) 
i=l 

The basis functions defined by (2) are known as inverse multiquadrics [13]. 
The parameter r of the basis functions can be varied to generate different 
surfaces [21]. Figure lb shows the field surface obtained when using the points 
of Fig. la and inverse multiquadric basis functions with r = 5. 

Instead of inverse multiquadric basis functions, other radial basis func- 
tions [2,4,10,28,33,35] also can be used to define function g. The choice of the 
basis functions influences the shape of the obtained field surface, the shape of 
the obtained ridges, and, consequently, the shape of the obtained curves. 

By tracing the local maxima of the field surface g in the xy plane, we will 
obtain an approximation to the curves. Parameter r changes the shape of the 
basis functions and affects the shape of the field surface. 

Local maxima of surface g can result in structures that contain branches 
and loops. The proposed model, therefore, can recover very complex patterns 
in dense and noisy point sets. Note also that the proposed method does 
not require any knowledge about the adjacency relation between the points. 
This method, in fact, provides the means to determine the adjacency relation 
between the points. 

§3. Implementation 

Derivation of an analytic formula that represents the local maxima of the 
surface g may not be possible. Digital approximation to the local maxima, 
however, is possible. This approximation is found in the form of digital con- 
tours and is used to partition the points into subsets. To digitally trace surface 
ridges, the surface is digitized into a digital image. The digitization process 
involves starting from x = xmi„ and y = ymin and incrementing x and y by 
some small increment 8 until reaching x = xmax and y = ymax- For each 
discrete (x, y), the value for g(x, y) is then found from formula (3). xmin and 
Xmax could be the smallest and largest x coordinates, and ymi„ and ymax could 
be the smallest and largest y coordinates of the given points. The parameter 
8 is used as the increment for both x and y because radially symmetric basis 
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functions are used to define g. This parameter determines the resolution of 
the obtained image. For a finer resolution, this parameter should be reduced, 
while for a coarser resolution this parameter should be increased. If this pa- 
rameter is to be chosen automatically, it should be selected such that most 
given points map to unique pixels in the obtained image. 

Digitizing the surface g in this manner will result in a digital image whose 
pixel values show uniform samples from surface g. Figure lb shows digitization 
of a field surface into an image of 256 x 256 pixels. To find the image ridges, 
pixels with locally maximum intensities are located. To find locally maximum 
image intensities, the gradient magnitude and the gradient direction [20] of 
the image at each pixel are determined. The gradient direction at a pixel 
is the direction at which change in intensity at the pixel is maximum, and 
gradient magnitude is the magnitude of the intensity change in the gradient 
direction at the pixel. 

To find the ridges, we find each pixel A in the image where two pixels B 
and C that are adjacent to it and are at its opposite sides have intensities that 
are smaller than that at A. Assuming that the image obtained after digitizing 
surface g is represented by I, we mark the pixel at (i,j) as A if one of the 

following is true: 

I(i-l,j)<I(i,j) & I(i + l,j)<I(iJ); (4) 

I(i,j-l)<I(i,j) & I(i,j + l)<I(i,j); (5) 

I(i-l,j-l)<I(i,j) k I{i + l,j + l)<I{i,j); (6) 

I(i-l,j + l)<I{i,j) & I(i + l,j-l)<I(i,j). (7) 

Using the image of Fig. lb, we find that pixels in the contours shown in 
Fig. lc are marked as A. We will call the contours obtained in this manner 
the minor ridges of the image. Next, we find each pixel D whose value is not 
only larger than those of B and C adjacent to it and at its opposite sides, but 
which also has a gradient direction that is the same as the direction obtained 
by connecting pixels B and C. The gradient direction at a pixel is quantized 
with 45-degree steps to ensure that only directions that are possible to obtain 
when connecting pixels B and C in an image are obtained. The pixels marked 
as D are shown in Fig. Id. We will call these contours the major ridges of the 
image. As can be observed, major ridges are a subset of minor ridges. We 
also see that major ridge points do not fall on small and noisy branches of 
the minor ridges but rather fall on contours that represent the spines of the 
points. If the minor ridges are cut at the branch points, and branches that 
do not contain a major ridge point are removed, and the remaining contours 
are thinned, we obtain Fig. le. The obtained contours will be called the 
local-maxima contours, or simply the contours. These contours will be taken 
as approximations to the curves to be found. We will use them not only to 
partition the points into subsets but also to order the points in the subsets. 
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(a) (b) 

: '      \ 

\            '■ 

\                      \ 

\ \ 
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\ 

(d) 

Fig. 1. (a) An irregularly spaced set of points, (b) A digitized field surface, (c) 
Contours representing the minor ridges, (d) Contours representing the 
major ridges, (e) Local-maxima contours, (f) RaG curves with a = 0.04 
approximating points shown in (a). 

§4. Node Estimation 

The method outlined in the preceding section determines contours that are 
approximations to the curves to be found. These contours will be used to 
partition a point set into subsets and order the points in each subset. 

Suppose a point set has produced m contours; then, a point is assigned to 
contour j (1 < j < m) if it is closest to a pixel in contour j than to a pixel in 
any other contour. In this manner, a point is assigned to one of m contours. 
This process, when completed, will partition a point set into m subsets by 
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(b) 

Fig. 2. (a), (b) Two point subsets obtained from the point set of Fig. la. 

assigning the points into one of m contours. Figures 2a and 2b show the point 
subsets obtained in this manner from the point set of Fig. la. 

To order points {q* : i = 1,..., n} in subset j, for each point q* a point 
in contour j that is closest to it is determined. We call the obtained contour 
point the projection of point q*. After determining projections of all points in 
the subset to the contour, the contour is traced from one end to the other, 
and in the order the projections are visited, the associated points are ordered. 

Since the contours are approximations to the curves to be found, the 
contour length from a projection to the start of the contour is divided by the 
length of the contour to obtain an arc-length estimation to the node of the 
point. If the contour is closed, an arbitrary point on the contour is taken as 
the start point. If the contour is open, one of the end points is taken as the 
start point. 

The size of the image obtained by digitizing surface g determines the 
accuracy of the obtained nodes. If the surface g is very coarsely digitized, the 
obtained contours will be very short, and numerous points may produce the 
same node, especially when given points are dense. To provide a more accurate 
node estimation, the surface g should be digitized into an image large enough 
to produce unique nodes. 

Once the coordinates of given points and the associated nodes are known, 
a parametric curve can be fitted to the points by one of the existing methods 
[9,11,16,18,30]. Fitting rational Gaussian (RaG) curves [9] to the points shown 
in Fig. la with nodes as determined above, we obtain the curves shown in 
Fig. If. The curves are overlaid with the original points to show the quality 
of the curve fitting. Note that these curves were obtained using the points in 
Fig. la and not the contour points in Fig. le. The contour points were used 
only to partition a point set into subsets and to determine the nodes of the 
points. 

§5. Observations 

To observe the behavior of the proposed curve-fitting method, results on three 
additional point sets are shown in Fig. 3. Figure 3a shows noisy points along 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 3. A few curve-fitting examples. 

an open contour, Fig. 3c shows a dense and noisy point set along the silhouette 
of a coffee mug, Fig. 3e shows irregularly spaced points along the silhouette 
of a model plane and one of its wings. We can see the geometric structures 
in these point sets and, if asked, can trace the structures manually without 
any difficulty. The algorithm proposed here is intended to do the same. The 
curves obtained are shown in Figs. 3b, 3d, and 3f. 

The point sets shown in Fig. 3 did not contain geometric structures with 
branches and loops. If a point set contains branches and loops, the local- 
maxima contours will also contain branches and loops. A single curve segment, 
however, cannot represent branching structures. The solution we propose is 
to segment a complex contour into simple ones by cutting it at the branch 
points and fitting a curve to each branch. 
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§6. Summary and Conclusions 

A large number of techniques for fitting parametric curves to irregularly spaced 
points have been developed. These techniques fit a single curve to the given 
points and often require that the points be ordered. In science and engineering 
problems that deal with measurement data, the given points may not be 
ordered and they may contain noise. Moreover, it may not be appropriate 
to fit a single curve segment to all the points. In this paper, a method to 
partition a point set into subsets and fit a parametric curve to each subset 
was described. The proposed method has the ability to take into consideration 
the noisiness and denseness of a point set when obtaining the curves. 

Also introduced was a method to determine the nodes of a parametric 
curve that approximates a set of dense and noisy points. The proposed method 
provides the means to fit any parametric curve, including B-Splines and Non- 
Uniform Rational B-Splines, to irregularly spaced points. Although in this 
paper only inverse multiquadrics were used as basis functions to obtain a field 
surface, from which the curve segments were determined, other radial basis 
functions [33] can be used in the same manner. Depending on the parametric 
curve formulation and the radial basis functions used, the number and the 
shapes of the curves fitting to a set of points may vary. 
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Smooth Irregular Mesh Interpolation 

Stefanie Hahmann, Georges-Pierre Bonneau, 
and Riadh Taleb 

Abstract. The construction of a smooth surface from an irregular mesh 
in space is considered. The mesh vertices can either be interpolated or 
approximated as a control net. A collection of triangular Bezier patches 
results from a local, affine invariant and visually smooth interpolation 
scheme that can represent surfaces of arbitrary topological type. It is 
based on a domain 4-split. Beside the surface construction scheme, the 
optimal employment of the numerous degrees of freedom is crucial for an 
overall pleasing shape. Different local minimum norm criteria are tested 
to see if they produce satisfactory shapes. 

§1. Introduction 

The general problem of constructing a parametric triangular G1 continuous 
surface interpolating an irregular mesh in space has been considered by many 
authors. In [5] a survey of such schemes is given, and it is concluded that 
local polynomial interpolants have similar shape defects due to the absence of 
an optimization strategy for using the free parameters (a special solution has 
been proposed in [6] for one of these schemes). 

A different method has been developed by Loop [4] producing a collec- 
tion of patches that meet each other with G1 continuity. The vertex enclo- 
sure problem, which occurs when joining with G1 continuity an even number 
of polynomial patches around a vertex, is solved by first constructing C2- 
consistent boundary curves and cross-boundary tangents and then filling in 
the patches. In one-to-one correspondence to the mesh faces, sextic triangular 
Bezier patches are constructed, which lead to a very small number of degrees 
of freedom. One scalar value per vertex controls the length of the tangents 
of the boundary curves at the end points and one control point per patch is 
free. This is not enough for sufficient control of the shape of a sextic patch. In 
[5], it was stated that well-shaped boundary curves are a necessary condition. 
Loop's scheme doesn't provide any influence on the second derivatives of the 
boundary curves, which can lead to undulations. It was therefore proposed to 
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relax the interpolation condition, which leads to an extra free parameter per 
vertex controlling the distance from the patch vertices to their corresponding 
mesh vertices. This is clearly improving the shape. 

Recently, another triangular interpolation scheme has been developed 
[3]. A regular domain 4-split leads to the construction of four quintic Bezier 
patches which form a macro-patch in one-to-one correspondence to a mesh face. 
They have one polynomial degree less than Loop's scheme, but one degree 
more than Piper's or Shirman-Sequin's method [8,9]. The domain 4-split is 
a new approach in triangular mesh interpolation, and has several obvious 
advantages: the boundary curves and cross-boundary tangents are piecewise 
polynomial. They can therefore be of low degree and simultaneously separate 
first and second derivatives of the boundary curves of the macro-patch corners 
from the neighbours. The scheme is completely local. Furthermore, the 4-split 
leads to four patches per macro-patch which leaves enough control points free 
for inner shape control. Finally this scheme offers two parameters per vertex 
for controlling first and second derivatives of the boundary curves, and six 
free control points inside the macro-patch. Additionally, the interpolation 
condition can also be relaxed to gain one more free parameter per vertex. 

The present paper investigates the problem of how the free parameters 
and control points of the 4-split domain method can be employed optimally. 
The challenge is to get an overall satisfactory shape, which is a global re- 
quirement, while maintaining the locality property of the scheme. Various 
geometric and variational criteria are proposed and compared. 

§2. Triangular G1 Interpolation by 4-splitting Domain Triangles 

2.1 Notations 

The surface mesh M is input, and consists of a list of vertices and edges de- 
scribing a 2-manifold triangulated mesh in R3. The surface S which interpo- 
lates the vertices of M is composed of triangular macro-patches M' which are 
in one-to-one correspondence with the mesh facets. It is therefore convenient 
for the construction of S to choose a parameterization of the macro-patches 
M' around a common vertex, sharing pairwise a common boundary as illus- 
trated in Fig. 1. All subscripts i = 1,... ,n are taken modulo n, where n is 
the order of the mesh vertex corresponding to M*'(0,0). The parameter u{ lies 

in the interval [0,1]. 
The fundamental idea of the present triangular interpolation scheme is to 

subdivide the domain triangle into four subtriangles by joining the edge mid- 
points together, see Fig. 1. Each macro-patch M* will therefore be a piecewise 
polynomial image of the unit triangle in R2, composed of four quintic Bezier 
triangles [2] each. The macro-patches will join together with G1 continuity. 
The resulting surface S will also be G1. 

The G1 conditions which are used in this paper are subject to some simpli- 
fying assumption in order to keep the interpolation scheme of low degree. Two 
adjacent patches M*

-1
(UJ_I,UJ) and AP(u,-,tii+i) join at a common boundary 
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Fig. 1. Parameterization and domain 4-split. 

with G1 continuity if there exists a scalar function $j such that 

*i(ui) ««i.O) = \ <+1(«i,0) + \ Mt-_\(0,Ui) (1) 

where n is the order of the vertex corresponding to «; =0. M* 
partial derivative of M1 with respect to «;. 

denotes the 

The algorithm for constructing the spline surface consists of three steps 

• constructing boundary curves, 

• constructing cross-boundary tangents, 

• filling in the patches, 

which will be briefly presented in the following three subsections. For more 
details and complete explanations of this method, the reader is referred to [3]. 

It is important to keep all these functions of the lowest degree possible. 
The main contribution to this comes from the domain 4-split. It allows for 
piecewise polynomial functions of low degree while simultaneously fulfilling all 
other requirements, such as continuity and localness. 

2.2. Boundary curves and vertex consistency 

First the boundary curves of the macro-patches are constructed in correspon- 
dence to the edges of M by interpolating the mesh vertices at the end points 
by satisfying the G1 conditions at the vertices and by keeping the surface 
scheme local. They are called (Inconsistent. 

Each boundary curve between two adjacent patches is a piecewise (2 
pieces) cubic Bezier curve parameterized on {0, |, 1}. Around each vertex of 
M, the control points b*0, b\, bl

2, i = 1,...,n, of all incident boundary curves 
are constructed independently from the joining curve piece of the opposite ver- 
tices. The "midpoints" b'3 are then constructed in order to have C1 boundary 
curves. See Fig. 2 for the notation. 
At a vertex v the «^-functions which are defined on the incident edges to 
v are first determined by calculating $;(0) and $i(l) from system (1) by 
solving it for «; = 0 and u, = 1 resp., which gives $° = $;(0) = cos(^) 
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»Pi 

/'■V tangent plane Pj_-| 

Fig. 2. Control points of the boundary curves at vertex v. 

and $i(l) = 1 — cos(|^). The domain 4-split now enables to seperate vertex 
derivatives, and to take the $j-function to be piecewise linear: 

{cos^(l-2Mi) + «i, foru;G[0, §], 

(2) 
(1 - m) + (1 - cos £)(2«i - 1),    for m e [±, 1]. 

Let us now adopt a matrix notation for the boundary curve control points 
between v and pt, i = 1,...,n: 

6n:= 

where p is referred to as the vertex neighborhood of v. 
The following choice for the boundary curve Bezier points near the vertex 

v enables us to find a solution to system (1) which at the same time solves 
the vertex consistency problem [3,4]: 

-«$- 
,    6i:= 

*>}- 
,     b2:= 

bY 
, p~ 

~PI~ 

,     v:= 
~v~ 

kJ kJ kJ Pn. .v. 

6o = av + B°p, 

bi = av + Blp, 

72 i 
(3) 

l>2= [(lo + -Yi)a+Y)v + B2p, 

where i?0,./?1,!?2 are n x n matrices defined as 

0 l-O! 
J n 
! _l-a + ßcos(^pi) 

Bij = 

Bf.  + 72 < 1/3   if 3 = i, 
(0        otherwise. 

(4) 
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The free parameters 0,(9,71,72 control the interpolation and the first and 
second derivatives. In Section 3 it will be shown how they can be set optimally. 
The control points of the joining curves pieces bQ,b1, b2 and 63 = b\ are found 
by applying the formulas (3) and (4) to the neighbouring mesh points pt of v. 
k is the index of v relative to the neighborhood of v. 

This curve network construction is local in that changes of one mesh 
vertex only affect the boundary curve pieces relative to the neighbourhood of 
that vertex. 

2.3. Cross-boundary tangents 

The cross-boundary tangents are subject to the G1 conditions (1), the vertex 
consistency constraints, and the curve network of Sect. 2.2, and are set to be 
equal 

Mii+1{uuQ) = $i{ui)Mii{uuQ) + yi{ui)Vi{ui), 
(5) 

M'u-\(0,Ui) = ^(«OK.te.O) - **(«i)V5(tü). 

The scalar function ^>i and the vector function V* are built of minimal degree 
so as to interpolate the values of the cross-derivatives and the twists at the 
vertices p and pt: 

T   /     \ .     27T . . .     27T . . 
Wj(uj) = sin —(1 — Ui) + sin —«,, (linear) 

n 71; 
n j 

Vi{ui) = y^«fJ5|(2«j)    Ui S [0, -],        (piecewise quadratic) 
(6) 

where 
v0 = V°p,    v1 = Vlp,    v2 = i»! + ±v™. (7) 

The n x n matrices V° and V1 are given by 

l$ = -^sin(—^ '-),    *,j = l,...,n, J      n       v      n      ' 

v« = ^ W - 48^°+24^ tanO - 6^1 {sin(?^)  (8) 

4       0/l      if j = i + l, 
+ ^  (-I   if j = i-l, 

where $° = $,(0), $1 = $J(0) and *£ = *<(0) are known from (2) and (6). 

2.4. Filling-in the macro-patches 

Each macro-patch is composed of four C1 quintic triangular Bezier patches. 
The boundary curves of the macro-patch are the twice degree elevated curves 
of Section 2.2. The cross-boundary tangents of Sect. 2.3 determine the first 
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Fig. 5. Four steps for filling in the macro-patch M with C -continuity. 

inner row of control points after one degree elevation [3]. The remaining 
15 inner control points, which are highlighted in Fig. 5a, are now computed 
by joining the four inner patches with C1 continuity. The necessary and 
sufficient C^-continuity conditions between two internal Bezier patches inside 
one macro-patch are shown in Fig. 3: all pairs of adjacent triangles must form 
a parallelogram. In [3] it was shown that the first and last pairs of adjacent 
triangles in Fig. 3 already form parallelograms. 
It remains to compute the free Bezier points such that the other three pairs 
of triangles along each edge inside the macro-patch also form parallelograms. 
This is done in four steps: 

• choose the three twists points of the internal Bezier patch arbitrarily; 
these are free shape parameters (see Fig. 5a), 

• compute the third and fourth Bezier points along each internal curve 
joining two Bezier patches using the second and fourth parallelogram 
conditions (see Fig. 5b), 

• choose the remaining three unknown Bezier points of the central patch 
arbitrarily; these are free shape parameters (see Fig. 5c), 

• compute the three remaining unknown Bezier points of the outer patches 
using the third parallelogram condition along each edge (see Fig. 5d). 

§3. Local Optimization of the Boundary Curves 

The present triangular interpolation method offers several degrees of freedom 
for shape control. They can be set manually or by using simple heuristics. An 
interactive design system can allow for manually adjusting these parameters 
in order to improve the shape. This procedure seems not to be sufficient if the 
given triangulated point set is very large, or if the data points are irregularly 
distributed. 

Our goal is to investigate some optimization techniques. Two groups of 
degrees of freedom have to be distinguished. First there are 4 scalar parame- 
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ters per vertex controlling the curve network, then 6 free inner Bezier control 
points are available for each macro-patch. Let us first concentrate on the curve 
network. It was stated in [5] that triangular interpolants often suffer from un- 
dulating curve networks. It can be confirmed here that a "well shaped" curve 
network is not sufficient, but is necessary for the construction of a pleasing 
shape. As pointed out in Sect. 2, the 4-split method is local. This property 
should not be altered by an optimization procedure. Local optimization cri- 
teria are therefore needed. This localness requirement conflicts in some sense 
with the global requirement of a "well shaped" surface. Every local scheme has 
to accept this conflict, otherwise it loses its localness property. Nevertheless, 
it will be shown that good results can be obtained. 

In detail, four curve parameters per vertex are available, see (3) and 
(4). a is not really free. It allows us to switch between interpolation and 
approximation of the surface mesh. At first, we only consider the interpolation 
problem and set a = 1.0. ß affects the length of the tangent vectors of the 
boundary curves at the vertex v = 6Q. The control points b\ are obtained by 
a first order Fourier approximation of the neighbourhood pi,i = l,...,nofv. 
In other words, the b\ are an affine image of a regular n-gon whose centroid is 
b'0. Too short tangent vectors lead to sharp corners at the patch vertices, while 
too long tangent vectors can lead to unwanted undulations. 71,72 control the 
second derivatives of the vertices. The control points 62 depend linearly on 
them. But they don't depend linearly on /J, 71,72 • 

Due to the previous observations, the optimization of ß, 71,72 should 
mainly avoid undulations and allow for more or less bent or stretched curves. 
If for computation-time reasons one wants to perform only linear optimization 
in a least-squares sense, as we do, it should be done in two steps separating ß 
from 71,72. 

In the following, the computation of optimal ß, 71,72 is separated into 
two steps. Otherwise, the problem would become non-linear. Each boundary 
curve consists of two cubic pieces joining with C1 continuity. For locality 
reasons of the whole scheme, the pieces have to be constructed independently 
one another. In a first step the points b\ of the boundary curves incident in 
v, Fig. 2, are determined. Each boundary curve corresponds to an edge of 
the surface mesh. In this case we are looking at the edge connecting v and 
Pj. In order to reproduce the shape inherent to the underlying surface mesh, 
geometrical considerations imply that b\ would optimally lie in the plane 
spanned by this edge and a vector between VQ and the orthogonal projection 
of p; on the tangent plane in tf0, as Piper does in [8]. We call these points 

6* = [b\ , •■•,6™*]r. The tangent planes should be estimated first. The 
constraints on the boundary curves in the present method don't allow for 
setting 61 equal b1, this is why these points are approximated in a least- 
squares sense. The key point here is that the locality of the equations (3) 
and (7) enables us to replace the true neighbourhood points pt of v in these 
equations by new "virtual" neighbourhood points p* that are only used in 
these equations, i.e. to compute the boundary curves, and the cross-boundary 
tangents.   Therefore, we are able to solve the following linear least-square 



244 S. Hahmann, G.-P. Bonntau, and R. Taleb 

problem in order to compute the "virtual" points p*: 

Eu&r-b,1!!2—min- (g) 
t=i 

The new, optimal, control points are now given by 
joptimal = af} + ßl pt (10) 

In a second step, b2 has to be determined, p := p* and ß are already fixed. 
Two parameters per vertex, 71,72 are left free for optimization. 63 is then 
fixed as the midpoint between b\ of the two curve pieces. The requirements 
on 62 are twofold: avoid undulations and bend the curve on request. The 
second requirement concerns the whole boundary curve between v and p{, 
and depends on the choice of b2. The idea is to cope with that problem by 
introducing a target point t for each boundary curve. The control points 62 °f 

each curve piece are then determined so that 63 = \{b\ + b2) approaches the 
target point by minimizing an appropriate energy functional on each curve 
piece locally. The introduction of the target point allows for global control of 
the boundary curves, while still keeping the scheme local. 

The target point is fixed by a subdivision rule in terms of b'0, b[ and 60, bx 

of the joining curve piece, such as 

t=l(_6o + 96i+9Si-öo). (11) 
lo 

62, which depends linearly on the free parameters 71,72, is now determined 
by minimizing the linearized version of the bending energy combined with a 
curve length component [1] 

Eu=  C\\X"{t)\\2dt + uj j   \\X'(t)\\2dt ,    W>0. (12) 
Jo Jo 

The solution of a linear 2x2 system gives the optimal values for 71,72 for b2. 
Different ways for finding an optimal, i.e. well shaped, curve network 

have been studied. Within the local schemes, the concept of target points 
can be replaced by target tangent vectors. This leads to a 2n x 2n linear 
system of equations per vertex, ß, 71,72 can also be determined by a non- 
linear optimization method in only one step. When relaxing the localness 
requirement of the scheme, plenty of curve network schemes are possible, like 
a variant of Nielson's MNN [7] or the integration of given curvature values or 
second fundamental forms at the mesh vertices in the optimization process. 
This is not a subject of the present paper. 

§4. Minimum Norm Criteria for Macro-patches 

Once the curve network and the cross-boundary tangents are constructed, 15 
inner Bezier control points remain for each macro-patch. They are related to 
each other by the C1 continuity conditions which are imposed between the 
four quintic sub-patches. Six of them are completely free. They are drawn as 
full black dots in Figs. 5a and 5b. The remaining 9 points depend linearly on 
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Pig. 6. Left: manually fixed free parameters, Middle: optimized boundary curves, 
Right: optimized boundary curves and patches. 

them.   It is therefore possible to use one of the two quadratic functionals 
Ek(X,X), where k = 2,3 and 

W,y) = //S-K + S-Ä + ?4-ÄW^ 
\ duk    duk 

jfcy        Qky     f)k-\ 

dvk      dwk    dwk) 

The free points s are determined by minimizing 

3 3 

Y,Ek(Si,Si) = Y,{Mj8 + ai)
TA(Mjä + aj),    * = 2,3,        (13) 

j=0 3=0 

where Sj = J^ia=5biBf(u,v,v}) denote the four quintic Bezier sub-patches, 
and s = [s°13, sj31, s%lu s522, «°12> s22i]* denotes the vector of the 6 unknown 
control points of the middle patch (see Figs. 4 and 3). The (21 x 6) matrices 
Mj and the vectors a,- contain the linear relations between control points of 
the 4 sub-patches and the 6 unknown points. The (21 x 21) matrix A is given 
by4j = £fc(Bi,.Bj)for|i| = 5, |j| = 5. 

§5. Results 

Fig. 6 shows the interpolation of a tetrahedron by our method. This very 
simple example was chosen because it illustrates clearly the influence of the 
free parameters and control points. The upper row shows three surfaces with 
the boundary curves of the macro-patches, while the lower row shows their 
iso-parametric lines. The left surface is obtained by manually setting a = 1.0, 
ß = 0.15, 7o = —1.0, 7i = 2.0, 72 = 0.0. These values are identical for all 
vertices due to the regularity of the surface mesh. The free inner control points 
are set by a rule combining the mesh face normal, cross-boundary tangents 
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and the boundary curves. The middle surface has optimized boundary curves, 
(9)-(12). Optimal "virtual" neighbour points are calculated, and the optimal 
parameters are 70 = -1.598, 71 = 2.393, 72 = 0.205. Face energy without 
minimization is equal to 732.2. The right surface has the same boundary 
curves as the previous example, but the free inner control points of the macro- 
patches are obtained by minimizing the face energy (13) with k = 3. The 
energy decreases to 309.0. The connections between the macro-patches are 
sharper for the manual setting. An overall more smooth surface results from 
the optimized parameter setting of this paper. The distribution of the iso- 
parametric lines shows a positive side-effect: it is more regular at the patch 
vertices for the optimized surfaces. 
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Multi-Level Approximation to Scattered 
Data Using Inverse Multiquadrics 

S. J. Hales and J. Levesley 

Abstract. A method of finding local approximations is used to thin 
data before a hierarchical iterative refinement scheme is employed in con- 
junction with domain decomposition. The interpolation problem on each 
sub-domain is solved by using the same stored inverse. The approxima- 
tion power of the inverse multiquadric is exploited whilst overcoming the 
computational difficulties associated with globally supported basis func- 
tions. 

§1. Introduction 

Radial basis functions have been widely used for multivariate interpolation of 
scattered data, see [4] for a summary. An interpolant is generated by a linear 
combination of basis functions cj) at distinct centres xt, i = 1,..., N; 

N 

«(s) = $>^(||s-Si||), (1) 
t=i 

constrained by s(xi) = ft , i = 1,... ,N, where T : Rd ^ H and ft = 
F(xi). The interpolation matrix 4 £ Ew x l" is given by ^i<i,j<jv = 
<j>(\\xi — Xj\\), and A satisfies 

A\ = f, (2) 

where A = [Ai • • ■ A^]T    and    / = [ft ■ ■ -/AT]
T

- 

Common choices for <j> in this setting are given in [6], 

<^(||x-Xi||) =exp(-c2||x-Xi||2), Gaussian, 
<j){ix - Xi\\) = (c2 + ||a; - Kill2)-1/2, Inverse multiquadric, 

where c is a constant shape parameter. With a small modification to the 
scheme, the thin plate spline and multiquadric are also used. 

Curve and Surface Fitting: Saint-Malo 1999 247 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 247-254. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
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The above parameter-dependent functions are good at approximating 
data for certain values of c, but these cause inherent ill-conditioning in A. 
Schaback [7] explains this phenomenon by means of an "Uncertainty Relation" 
between upper bounds on errors for interpolants of the form (1), and lower 
bounds on the smallest eigenvalue of A. Iterative techniques for solving such 
badly conditioned systems often suffer from poor rates of convergence, and 
therefore computationally expensive direct methods have to be employed. 

In the inverse multiquadric case, large values of c achieve good initial ap- 
proximations to smooth data, whilst smaller values produce functions capable 
of resolving fine detail. Ideally, such properties could be exploited without 
having to solve (2) directly. 

Since s is evaluated at points y ^ x* where an approximation is required, 
a global solution incorporating all N centres may be inappropriate. Further, 
it is unnecessary to find A such that ||/ - AX\\oo < \F(y) - s(y)\, since the 
accuracy of s(y) is limited by the approximating power of <j>. Rather than 
searching for a complete global solution, this suggests that attention may be 
focussed on small regions around evaluation points. Moreover, the aim is 
to obtain a solution such that the residual and approximation accuracy are 
comparable, for little is to be gained by having a small residual, while the 
approximation power of the basis functions limits the final accuracy. 

In Section 2, local approximations are used to convert irregular data to 
a regular mesh of approximate function values. Whilst the method can be 
generalised to R , the description and examples are given in M2. The system 
of equations associated with the gridded data is inverted and used to solve 
subsequent systems. 

Floater & Iske [1] demonstrate the benefits of a multi-level approach 
to approximation, and the theoretical foundation is provided by Narcowich, 
Schaback & Ward [5]. Section 3 describes the present hierarchical iterative 
refinement algorithm, and explains the computational advantages of domain 
decomposition and the use of a stored inverse. 

§2. Local Solutions and Gridding Data 

If the function T is not arbitrary, but arises from a physical system, then some 
degree of smoothness can be assumed. A smooth data set can be significantly 
thinned whilst retaining general information about its behaviour. Floater & 
Iske [1] demonstrate that Delaunay triangulation can be used to optimise the 
uniformity of data, and provide a good thinning algorithm. Such triangulation 
and assembling of data is computationally expensive for excessively large TV. 
An O(N) method of finding uniform approximate data is presented. 

An approximation to T at a point y G E.d is achieved by solving a small 
interpolation problem centred on y. The closest q points in X to y are inter- 
polated by inverse multiquadrics with shape parameter c;oca;, and evaluated 
at y. Since q can be as low as 20 ~ 30, Ciocai can be relatively large be- 
fore the matrix ill-conditioning becomes unacceptable, thus yielding a good 
approximation. 
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This method is highly parallelizable, and large data-sets can be dealt 
with without the need of assembling or storing the matrix A. 

Finding the optimum shape parameter on regular or scattered data re- 
mains an open problem, as shown in [3]. There is no obvious correlation 
between point spacing and a good choice of c;ocaj. The best shape parameter 
is generally found by increasing the value of C|ocaj until just prior to machine 
precision breakdown. 

Let Y = {yi,...,yni}be the set of points on the nxn regular unit grid. 
If the previous local approximation technique is applied to each j/j, then the 
irregular data can be transformed to a regular grid with approximate function 
values fi. The aim is to find a global approximation using the new data at 
the grid points. 

After converting scattered data to a regular grid, certain approximation 
techniques become available which would otherwise have been difficult to im- 
plement. Polynomial tensor product splines can be efficiently employed to 
approximate a solution from the given gridded data. To find such an approxi- 
mation at a point z, z must lie inside a (d+1) x (d+1) subgrid of the regular 
points, where d is the degree of the Lagrange polynomials to be used,. Let 
the points of such a subgrid be labelled £y and have function values /y for 
i,j = 1,..., d + 1. The univariate Lagrange polynomials Li(x) and Lß{y) are 
constructed such that 

£*(&.) = *?    and    U(U)=6kj- 

The polynomial tensor product spline fcj is defined to be 

<f>ij(z) = Li(z).Lj(z). 

The approximation at z is given by 

d+l d+1 

»=1 j=l 

Alternatively, a thinned global interpolant of the form (1) can be achieved by 
solving 

Bß = f, (3) 

where B1<ij<n = <f>(\\vi - y, ||) , fi= [m ■ ■ ■ (J.„}T    and    / = [A • • ■f„]T. 
This amounts to finding an interpolant s to a thinned approximation of 

the initial data. The local approximation errors |/(jfc) — f(yi)\ limit the final 
accuracy of s. 

The inverse of B need only be computed once, and then stored for future 
use. All scattered data problems can then be scaled and transformed to the 
regular grid Y, whereupon /x is given by the matrix-vector product fi = i?-1/■ 
Only half of the entries of JB

_1
 need to be stored since B"1 — (B~1)T. 
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Approximation Accuracy 
Residual 

Shape paramelB' 

Fig. 1. An example of approximation vs. residual. 

Too large a matrix B causes storage problems, and difficulties in calculat- 
ing the inverse. As c increases, the approximation improves, but the residual 
||/ — 5/^Hoo grows. A value for c is chosen before the approximation begins to 
deteriorate due to the rise in the residual. As an example, the function T = 1 
is approximated on the unit square using inverse multiquadrics by interpolat- 
ing /, = T{yi), i = 1,... ,400 using (3). The approximation is evaluated at 
1000 random points. The results in Figure 1 are typical for smooth functions, 
but the consequent choice of c is only a guide, and does not guarantee success 
for all T. 

§3. Hierarchical Iterative Refinement 

The hierarchical method uses increasingly dense subsets of X to refine the 
current approximation; see [5]. Let \k = {xi, ■ • • ,%Nk} Q X, such that 
Nk+i > Nk- Let Sfc be the current approximation, and r^ be the full global 
residual at the kth level, 

n(xi) - f(xi) - sk(xi). 

Let ffc be the kth residual over the points in \k- This thinned global 
residual is interpolated by 

Nk 

tk{x) = J2^k{\\x-Xi\\), (4) 

where <pk(\\x-Xi\\) = (c2
k + \\x-Xi\\2)  l'2 , and tk(xi) = ffc(x,-) ,1 = 1,...,^. 

The initial interpolant s\ = 0 is updated by 

Sfc + l = sk +tk. (5) 
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The technique of gridding data in Section 2 is used to find an approximate 
function value for every point in Yp. Therefore, (5) is replaced by Sk+i = 
Sk+tk, where Sk is the current approximation to regular approximate data, 
si =0. 

The value c\ can be relatively large to give a good initial approximation. 
As Nk increases, Ck has to be reduced to ensure computational solvability. The 
decrease in Ck introduces tighter basis functions which improve the resolution 
of the approximation. 

A method of data thinning is required to determine the points in Xk- The 
dense systems arising from (4) have to be solved directly, but this is imprac- 
tical for large Nk- To overcome such complications, domain decomposition is 
applied to each Xk- 

The levels of the hierarchy have to be computed sequentially, but by 
using domain decomposition each sub-domain can be dealt with in parallel. 
Moreover, each such solution only requires a single matrix-vector product. 

To put this in the current context, each Xk is constructed from overlapping 
square grids Yp , where p = 1,... ,mfc. These square grids need not be the 
same size or of similar orientation, but must contain an equal number of points. 
Each sub-domain Yp consists of an inner region, where the approximation is 
finally evaluated, and an overlap. Special attention has to be given to sub- 
domains whose edges coincide with the boundary of X. 

At the kth level, mk sub-domain interpolation problems need to be solved. 
Since B is invariant under shifts and rotations of the centres yt, the stored 
B~l can be invoked. If the centres are scaled yi \-> ayi, this amounts to a 
change in the shape parameter. 

Recall that Bi<ij<„ = 4>{hi ~ VjII),    where   Vi € [°>*] x 1°, !]• Now, 

4>(\\y-yi\\) = (c2 + \\y-yi\\2r1/2 

= a(a2c2 + \\ay-ayi\\2)-1'2. 

Let wt = ayi and define i/)(\\w - IUJ||) = a(a2c2 + \\w - Wi||2)_1/2- Then 
Bi<ij<n = <t>(hi-yj\\) = V>(IK-wJ) where w{ £ [0,a]x[0,a]. Therefore 
by using the matrix B, a new inverse multiquadric is created at scaled points 
with shape parameter ac. 

Each of the thinned global interpolation problems (4) can be decomposed 
and solved by multiple applications of the stored inverse S-1. Continued use 
of the same inverse naturally introduces tighter basis functions suitable for 
approximating typical residuals. 

§4. Numerical Results 

We give an example where the above scheme is used to approximate Franke's 
function [2] over 10000 scattered points in the unit square in R : 

T(u, v) =   o.75e-°-25(9u~2)2~0-25(9t,~2)2 + o.75e-(9"-2)2/49-(9l,~2)2/10 

+ o.5e_0-25(9u~7)2_0-25(9,'_3)2 - o.2e-(9u-4)2~(9"~7)2- 
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Level 

No. of 

domains 

mk 

Shape 

parameter 

Ck 

Overlap 

Max. error in 

gridded data 

Wh-UWoo 

Max. error in 

solution 

ll-F- Sfclloo 
1 

2 

3 

1 

4 

16 

0.25 

0.138 

0.0688 

0 

1/36 

1/72 

8.241 x 10~5 

2.424 x 10"6 

3.189 x 10-6 

1.371 x 10~4 

1.838 x 10-5 

3.189 x 10-6 

Tab. 1. Error for Franke's function. 

The localised interpolation problems are solved directly using Gauss Elim- 
ination, with q = 20 and c;ocaj = 0.2. It is the error function at each level 
which is approximated locally, and not the original function T. The square 
sub-domain grids Yp are comprised of 21 x 21 equally spaced points. For ease 
of implementation, the sub-domains used for a particular level are of equal 
size. The overlaps between sub-domains therefore consist of one or two mesh 
points, depending on position. The key interpolation matrix B is constructed 
from inverse multiquadrics with y* € [0, l]2, c = 0.25, and B~l is generated us- 
ing Matlab. The domain decomposition is straightforward on the unit square 
with rrik = 4fc_1. The thinned global interpolants Sk are evaluated at points 
U € [0, l]2. Table 1 shows the error in the approximated data at the regular 

grid points \f{yi) — f(yi)\, and the error in the approximation \T{ti) — s~k{ti)\- 
Figures 2 and 3 show the approximation error for each level. 

The error function from Level 1 clearly demonstrates the ability of the in- 
verse multiquadric to approximate smooth data. The error near the boundary 
is scaled by an order of magnitude at each level, but has the same general be- 
haviour. The final iteration leaves error near the boundary, aggravated by test 
points being outside the original scattered data set. Such evaluation points 
ought to be included since, although they require the extrapolation of Sk to 
evaluate, the experiment was specified to be conducted on the unit square. 
The original aim of finding a solution where the residual is comparable to the 
approximation accuracy is fulfilled at Level 3. 

Example I is repeated as far as the regularization of data, and then poly- 
nomial tensor product splines are used to find the final approximation, as 
described in Section 2. Such splines cannot replace the inverse multiquadric 
approximation on the regular grid without an increase in error. Such an er- 
ror is then propagated to the next level where the discrepancy is amplified. 
However, if the hierarchical refinement procedure is abandoned, then these 
basis functions efficiently yield a good approximation. Table 2 shows the 
approximation accuracy for such splines of different polynomial degree with- 
out iterative refinement. The grid sizes are comparable to those used in the 
original example. 
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Grid Size Linear Quadratic Cubic 

21 x 21 2.2 x 10-2 6.4 x 10-3 3.5 x 10-3 
41 x 41 5.3 x 10-3 9 x 1(T4 2.6 x lfT4 

81 x 81 1.4 x IQ"3 1 x 1(T4 5.7 x 1CT5 

Tab. 2. Approximation error for the various splines. 

Fig. 2. Approximation Error for Levels 1 and 2. 

Fig. 3. Approximation Error for Level 3. 

§5. Conclusion 

A global solution to an interpolation problem involving a large number of 
data points is too expensive to compute directly if inverse multiquadrics are 
to be used effectively. However, if the aim is to generate approximations to a 
function, then such a solution is unnecessary, and an alternative method has 
been presented. 

The underlying idea is to transform given scattered data /; at points X{ to 
regular approximate data fi at yi, which is easier to solve for. The aim is then 
no longer to interpolate the initial data, but to find a good approximation to 
it. The final solution s is an approximation to /, which is close to /. Success 
relies on minimising the local approximation errors \f(yi) — f(yi)\- 

The algorithm is Ö(N) since the only work related to the number of initial 
points is the search for the q closest points to each j/j. Such a search can be 
improved by making assumptions as to which x; are unlikely to qualify. 
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The time required to solve each sub-domain problem is reduced due to 
the use of the stored n x n key inverse matrix. Solving directly would be 
0(n3), but the required matrix-vector product is ö(n2). 

The hierarchical iterative refinement strategy produces good approxima- 
tions, and is the only sequential aspect of the method. The search for ap- 
proximate regular data, and the solutions for each decomposed sub-domain 
are parallelizable operations, although this has yet to be implemented. These 
features mean that large data sets can be dealt with in acceptable computing 
time. 
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Best Approximation Algorithms: 

A Unified Approach 

V. V. Kovtunets 

Abstract. A generalization of the Remez algorithm is proposed. The 
new approach uses differential properties of the best approximation opera- 
tor. The method was developed for polynomial approximation of complex- 
value functions. In this paper the convergence of algorithm is proved for 
Banach spaces. 

§1. Introduction 

Let us consider the best approximation operator 

P : B -► P„, 

where B is a Banach space (complex in general), P„ an n-dimensional sub- 
space. Suppose that Pn is univalent and one-side differentiable in any direc- 
tion [1]. This assumption is valid when: 

i) B = C(Q, R) Q-compact, and P„ is a Chebyshev subspace (in particular, 
when Pn is the subspace of algebraic polynomials of degree less or equal 
to n - 1 [2,9]); 

ii) B = C(Q,C),Q is finite set, and Pn is an n-dimensional Chebyshev 
subspace [3]; 

iii) B = Lp, p > 1, and Pn is an n-dimensional subspace (R. Holmes and 
B. Kripke). 

Originally the differential properties of the best approximation operator were 
applied to the development of algorithms in [4,5]. The goal was to generalize 
the Remez algorithm for complex-valued functions. In [6] the new best approx- 
imation algorithm was applied to the approximation of conformal mappings 
by polynomials. In [7] it was shown that for real polynomial approximation, 
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such an approach generates exactly the Remez algorithm, and a stronger con- 
vergence theorem was proven using differentiation technique. In [8,1], the 
new approach was applied successfully to nonlinear approximation, including 
rational and generalized rational uniform approximations. 

Here we show that the method is applicable to the best approximation 
from a finite-dimensional subspace in the arbitrary Banach space if the best 
approximation operator is one-sided differentiable. 

§2. Description of the Algorithm 

Suppose that the i-th step of the algorithm is performed to find the best 
approximation of the element / G B, and that the element Pj € Pn is found. 
If ||/ — Pj|| = E(f), then the process is finished. Otherwise the inequality 

\\f-Pi\\>E(f) 

holds, and the next step should be performed. 
In order to construct the next approximation P;+i, we construct an aux- 

iliary element <7; € B such that the equality 

II/ + Ä--Pill = 11/-fill (1) 

holds. Suppose the following assumptions are true: 

Assumption 1. The mapping G = G{f) : P„ —> B, which defines the auxil- 
iary element gi = G{f,Pi) is continuous. 

Assumption 2. For all functional x € B* with properties \x(f — P;)| = 
||/ — Pj||, ||a;||ß. = 1, equality x(gi) = 0 holds. Moreover, for every such 
extremal functional x, a weak neighbourhood V(x) C B* exists such that 

Rey(f - Pi)y{gi) > 0,    Vt/ e V(x) n {z € B\ \\z\\ = 1}. 

Assumption 3.  For given fixed f the mapping D = D(f) : B —> Pn, which 
defines the derivative D; = D(f,gi), is continuous. 

These assumptions may be satisfied easily for real and complex uniform 
approximations [4,5,7]. When the derivative 

D=dP(f + (l-t)ai) 
dt t=+o 

is calculated (usually as the solution of system of linear algebraic equations), 
the next element Pj+i is computed as 

Pi+i = Pi+tiDi, (2) 

where   CT{ < t, < T*, 0 < c = const < 1, and Ty is the minimal value of t, for 
which 

Eiin) = min{Ei(t) = \\f - P, - tDi\\,0 <*<!}. 
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§3. Main Theorem 

Theorem 1. For given f € B\Pn, tie sequence {Pi}i±0 constructed accord- 
ing to the general scheme (see the previous section) converges to the element 
P(f) of best approximation of f € B. 

Proof: Let us write 
Ei = \\f-Pi\\, 

Ei(t) = \\f + (l-t)gi-P(f + (l-t)gi)\\, 

Ei(t) = \\f + (l-t)gi-Pi-tDi\\, (3) 

Ei{t) = \\f-Pi-tDi\\, 

ai = EK+0), 

El = mm{Ei(t),0 < t < 1} = E^),        i > 0. 

The convexity of the function Ei(t) implies 

EK+0) < Ei(l) - Ei(0) = E(f) - E(f + 9i) = E(f) - \\f - fl|| < 0. 

Since 

\Ei(t) - Ei(t)\ < ||P(/ + (1 - t)9i) -Pi- WiW = o(t), t - +0, 

the equality 
EK+0) = EX+0) 

holds. Therefore, 
A'(+0) < E(f) -E<0. (4) 

Now we show that there exists e > 0 such that 

for all 0 < t < e. Suppose that the last statement is invalid. Then there is a 
sequence {ti},    ti —► +0,     / —> oo, such that 

||/ - Pi - t,A|| > 11/ + (1 - t,)gi -P- t,Di\\ + Ä,    l > i. 
11/        "ill 

Choosing a subsequence if necessary, we may consider the weakly conver- 
gent sequence of functionals {x{\ C B*,    V7 ||x{|| = 1, such that 

\Xl(f -P- t,Di)\ > ||/ + (1 - tfoi -Pi- UDi)\\ + jff^,    i > i.  (6) 

Let XQ = limj-.oo x\. Then inequality (6) implies 

\xo(f-Pi)\>\\f + 9i-Pi\\ = \\(f-Pi)l 
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and since ||xo|| = 1, we finally have 

\zo(f-Pi)\ = \\(f-Pi)l 

Hence in accordance with Assumption 2 

x0(gi) = 0. (7) 

Since ||Z(||B* = 1; it follows from (6) that 

m (f-Pi- ttDi)\ > \x,{f + (1 - U)9i -P- t,Di))\ + 2tyl}Dp^l  ■    (6') 

for I > 1. 
Now we temporarily write 

a = x,{f-Pi-tiDi), 

b = (l-ti)xi(gi), 

2f?|x,(A)|2 ^ n 

11/-Pill 

Using this notation, the inequality (6') may be rewritten in the form 

\a\ > \a + b\ + s, 

which implies |a| > \a + b\. Consequently, 

\a\2 >\a + b\2 + 2|o + b\s > \a + 6|2 + 2|a|«. 

Thus, 
\a\2 + \b\2 + 2Reab < \a\2 - 2\a\s, 

and 
2Reä6 < -|6|2 - 2\a\s. (8) 

Now we substitute the values of a, b, s in (8) and obtain 

2Rez,(/ -Pi- tiDi)xi{gi){l - U) 

< -(1 - t«)2|*i(Si)l2 - 4|*«(/ -P- tiDiY^g—p. 
t2\Xl{Di)\2 

Since tt -> +0,    xi{f -Pi- tiDt) -> ||/ - Fi||, when I -> oo, there exists 
number IQ such that inequalities 
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2Rexl{f-Pi)xi{gi) 

< -(1 - tt)\xi(gi)\2 + 2tlRex,(Di)x,(gi) - 
Htfaif-Pi-UDJWxtDi)]* 

(l-t|)||/-P*|| 

< -M|i^ + 2tlRexl(Di)xl(gi) - 2i?|z((A)|2 

= -\\xi(gi) + 2xl{Di)\2<0 

are valid for all I >IQ. Therefore, 

Rext{f - Pi)xi(gi) < 0,        Vl>l0. 

But taking into consideration (7), we see that this inequality contradicts As- 
sumption 2, so (5) is proven. 

Since £f(0) = £;(0) = £^(0), (5) implies 

^(+0)1 < E'ii+0) < E(f) - Et. (4') 

Therefore, in accordance with (2), 

Ei(n) = min{\\f - Pi - tDi\\,0 < t < 1} < E{  and  n > 0. 

So 
Ei+i < Ei. 

Hence the sequence {Ei}^l0 converges to some value E* > E{f), i.e., 

MmEi = Et. (9) 

From (2), (4') and convexity of Ei(t), it follows that 

Ei+1 <Et- Ei-E*(T*)U <Ei- c{Ei - Ei{n)). 
Ti 

Consequently, 
AEt = Ei+1 -Ei> c{Ei - Eiin)). 

Since AEi —> 0, also Ei — £^(TJ) —» 0, and 

lim Ei (n) = lim Ei = E*. (9') 

To complete the proof we must show that 

E* = E(f). 
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Suppose that this statement isn't valid, i.e., 

Et > E(f). (10) 

Since the subspace P„ is finite-dimensional and Assumptions 1 and 3 hold, the 
subsequence {Pik} = {Pfc} may be chosen so that the following limits exist: 

i) lim Pfc = P„; 

ii) \imgik = gt; 

iii) lima;fc = a»; 

iv) lim Tik = rt. 

From Assumption 3 it follows that also 

lim Diifc = £, 

exists, and 
lim ||/ - Pik - Wik\\ = ||/ -P.- tD.\\ (11) 

uniformly for t e [0,1]. Equalities (9) and (9') imply that at least one of 
following statements 

a» = limafcj = 0; (12) 

or 
T» =111117*, =0 (13) 

is valid. 
Using the assumption (10) and the scheme of the algorithm, we construct 

the auxiliary element g ^ 0 for the approximation P,. Due to Assumption 1, 
we have 

5» =9- 

For the following two convex functions 

E*{t) = ||/ + (1 - t)fl, - P(/ + (1 - t)g.)\\, 

E.{t) = \\f-p*-tD*l 
where 

dP(/ + (l-tfl.) 
D* =  dt  |(=+0' 

analogously to (4'), we obtain inequalities 

El(+0) = E't(+0)<E{f)-E,<0 (14) 

and f > 0, where r is a minimal value of t, for which 

Et(f) = mm{Et(t), 0 < t < 1}. 
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From (11), it follows that r, = f and therefore (13) is impossible. So (12) is 
true. But (14) implies that there is an integer fco such, that for every k, k > ko, 
the inequality 

E(f) -E. 
aik <  2  

is valid, and therefore 
a» <0. 

This inequality contradicts (12). Hence assumption (10) is invalid. The theo- 
rem is proven.   D 

§3. Applications 

As was mentioned above, the proposed algorithm may be considered as 
a wide generalization of the classical Remez algorithm. Applied to polyno- 
mial approximations of complex-valued functions, the method generates an 
algorithm which possesses in general a linear convergence as numerical exper- 
iments show (see also [6]). For finite sets, the convergence of the algorithm is 
quadratical. 

When applied to real polynomial approximations, the method generates 
exactly the Remez algorithm [7]. But even in this case an approach which 
uses differential properties of the best approximation operator allows better 
estimations of convergence. 

Theorem 2. ([7]). Let Pn be a n-dimensional Chebyshev subspace in C[a, b], 
and let A£(«, x) be the second difference of the function u at the point x with 
step h. If the function f € C[a, 6]\P„ has the best approximation P(/) € Pn 

such that the difference f — P(/) possesses exactly n + 1 extremal points 
xo, xi,..., xn and the inequality 

|A|(/-P(/))a;j)|>7/i2, 7 = const,   j = 0,l,...,n 

holds in points Xj, then the Remez algorithm for f converges quadratically. 

In [7] a modified Remez algorithm for twice continuously differentiable 
functions is proposed. A procedure for extremal points calculation, using 
differential properties, is developed to reduce the complexity of the most com- 
plicated part of the Remez algorithm. 

This method may be applied to the best polynomial Lp— approximation. 
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On Curve Interpolation in R( 

Jernej Kozak and Emil Zagar 

Abstract. In this paper the interpolation by G1 continuous spline curves 
of degree n in ]R is studied. There are r interior and two boundary data 
points interpolated on each segment of the spline curve. The general form 
of the spline curve, as well as the denning system of nonlinear equations 
are derived. The asymptotic existence of the solution, and the approxi- 
mation order are studied for the polynomial case only. It is shown that 
the optimal approximation order is achieved, and asymptotic existence is 
established provided the relation r = n — 2 is satisfied. These conclusions 
hold independently of d. It is also pointed out that the underlying analysis 
could not be carried over to the case r = n — 1. 

§1. Introduction 

The interpolation problem considered is the following. Let the points 

T0,TU. ..,TNeWLd,    Tj ± Tj+1, all j, d>2, (1) 

and the tangent directions 
do, d^ (2) 

at the boundary points be given. Find a G2 continuous spline curve Bn of 
degree n which interpolates the prescribed data. 

The problem appeared first as a particular limit case in [2], and was 
further generalized in several papers, among them in [3-5,6,9-10]. A general 
approach to the approximation order achieved can be found in [8]. 

Here, the general setup is tackled. The interpolating spline curve in the 
Lagrange form is established and the defining system of nonlinear equations 
is derived in general. However, the asymptotic existence of the solution (i.e. 
the existence of the solution when given points are sampled densely enough) 
and the approximation order turned out too comprehensive to be studied here 
in a general framework. The positive conclusions for the single segment case 
when r = n — 2 are established.   It is possible to extend these results to 
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the m-segment spline curve, but the proofs are not short, and will appear 
elsewhere. On the contrary, as one could guess from [8], the case r = n — 1 is 
not encouraging. 

Why would one use the G2-continuous splines as interpolating curves? 
Quite clearly, the derivative continuity at the breakpoints becomes in this 
way independent of the local parametrisation. Also, these curves could be 
seen as a generalization of the odd order spline function interpolation at knots, 
applied so successfully in many cases. The order of G-continuity 2 is pinned 
down by the human eye, sometimes quite important in CAGD: it can detect 
the continuity, the continuity of the tangent direction and the curvature, but 
hardly higher order geometric quantities. 

Throughout the paper bold faced letters will stand for vectors, and or- 
dinary ones for scalars. The dot product on Rd will be denoted by • and its 
implied norm by ||-||. Derivatives with respect to the global (or local) pa- 
rameter will be denoted by" (or d/dQ, and those with respect to the natural 
parameter by '. 

Now let Bn be a continuous spline curve of degree n with m segments 

B := Bn: [Co. Cm] —* 1R- 

corresponding to the breakpoints 

Co<Cl <-..<Cm- 

We suppose that the pieces are locally parametrized on [0,1] as 

AC/-i 

Suppose B interpolates the data (1), and (2). If r interior and two boundary 
points are to be met on each segment, then N = m(r + 1). Further, on the 
£-th segment the interpolation conditions read 

Bt{ttj) = Tt,j:=T(t.1Kr+i)+j,    j = 0,l,...,r + l,    l=l,2,...,m,   (3) 

where 
0 =: tifi < ti:i < •■■ < </,r+i := 1, 

and (t(ij)j=1 are the unknown parameters to be determined. Let IAJH 

(xii/j — XjDi)i<j denote the 2-wedge product. The geometric continuity of B 
requires the tangent direction 

-4-B (4) 
11*11 

as well as the curvature 

-i-BAB (5) 
IIBII3 
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Fig. 1. An interpolating spline curve with three segments . 

to be continuous at the breakpoints. Additionally, at the boundary points the 
tangent directions do and djv have to be interpolated too, i.e., 

do A B(Co) = B(Cm) A dN = 0. (6) 

Fig. 1 gives an example of such an interpolating spline curve for r = 1, n = 3, 
and d = 3. A brief look at the conditions (3)-(6) reveals that the number of in- 
dependent equations would be equal to the number of independent unknowns 
if 

dn-{d-l)r = 3d-2. (7) 

As already observed in [5], for fixed d this Diophantine equation always has 
an infinite number of nonnegative solutions. The following lemma gives its 
general solution. 

Lemma 1. The possible choices of pairs r and n that satisfy (7) for fixed d 
are given by 

r = d-2 + dk,   n = d+(d-l)k,    fc = 0,l,.... (8) 

Proof: The relation (7) can be rewritten as 

d(n -d)-(d- l)(r - d + 2) = 0. 

Since d > 2, the numbers d and d — 1 are relatively prime. So d must divide 
r — d + 2, and d — 1 must divide n — d, i.e., 

r — d + 2      n — d 
d        = d-1 = 

for an integer k. But r = d — 2 + dk > 0 implies k > \ — 1 > —1, and the 
conclusion follows.   D 
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§2. The Defining Equations 

Several approaches were used to simplify the conditions (3)-(6) for particular 
choices of d, n, and r. Here we show that this can be done in general, which 
will provide an opportunity to unify the computer programs. Let us consider 
a single segment first. In this case, the data to be interpolated are the points 
To,Ti,...,Tr+i, Tj ^ Tj+\, as well as tangent directions do, dr+\ at the 
boundary points. Suppose r and n are given by (8). Consider the case n = r+2 
first, i.e., k = 0. The interpolating polynomial curve can be written explicitly 
in Lagrange form as 

r+l 
B — bu + ^TjCj 

j=o 

with 

tj := tij, and the values (ij)j=n to be determined. Here b € R denotes the 
unknown leading coefficient vector. If k > 1, one has 

r + 2 = d(k + 1) > d(k + 1) - k - n, 

and B is of degree at most r + l, i.e., 

r+l 
B = -£Tj£j. 

In particular, this imposes additional conditions 

r+l 
degree ^TjCj <n (10) 

i=o 

for k > 1. An easy way to meet the tangent direction conditions (6) is to 
introduce two additional (strictly positive) real unknowns, oto and ar+\, and 
require 

B(t0) = a0d0,    B(tr+i) = ar+idr+1. (11) 

Let 

T_1=T0:=£O,     i~j :=tj, j = 1,2,... ,r,   rr+2 = rr+i := tr+1. (12) 

Since B is a polynomial of degree < n, the divided difference, based upon 

n+2=r+4-fc 

points maps it to zero. So the conditions (11) and (10) can be written in a 
compact form as 

[Tj_l,Tj,...,Tj+T+2-k}B = 0,  j = 0, 1, ...,fc, (13) 
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which is a system of d(k + 1) nonlinear equations for r + 2 = d(k + 1) scalar 
unknowns 

a0,ti,t2,...,tr,aT+i. (14) 

In the case n = r + 2, one has to determine additionally the coefficient vector 
6, for example as 

b = [<0J*OJ*1> • • • ,tr,U+l]B = [<0»*1J • ■ -,tr,tr+l,tr+l}B- (15) 

Now, for an m-segment spline curve, the directions di, £ = 1,2,..., m — 1, are 
unknown, as well as 

ott,o,tt,i,tt,2,---,tt,r,aitr+i,    £ = l,2,...,m. (16) 

But one can still write the interpolation conditions on the ^-th segment as 

[Ti,j-i,ntj,...,Tttj+r+2-k]Be = 0,    j = 0,l,...,fc, (17) 

where T^J are defined as in (12), but this time for the composite case. In 
addition, the missing (d — l)(m — 1) equations are supplied by the continuity 
conditions of the curvature (5). 

§3. Asymptotic Existence and Approximation Order 

The system of equations based on (17) and continuity of curvature (5) is non- 
linear, and one of the approaches to study it is to assume that the data (1) and 
(2) are based upon a smooth underlying regular parametric curve / : I —> 1R , 
parametrized by the arclength s. The local expansion of the curve /, and the 
data Tij (sampled densely enough), give rise to an asymptotic analysis of the 
nonlinear system. The simplest way to obtain the local expansion is to use the 
Frenet frame as the local coordinate system, and the Frenet-Serret formulae 
to obtain this expansion. Let (ej(s))f=1 denote the Frenet frame, with 

/' = «i. (18) 

The Frenet-Serret formulae read 

e'i(s) = Ki(s)e2(s), 

e-(s) =-Ki_i(s)ej_i(s) + Ki(s)ei+i(s),    i = 2,3,... ,d - 1,       (19) 
e'd(s) = -Kd-i{s)ed-i{s), 

where K< are first d — 1 principal curvatures of /, expanded as 

Ki(s) = Ki0 + —^KaS +—Ki2s
2 + ■ ■ ■ (20) 

Since / is a regular curve, KJO > const > 0, i = 1,2,..., d — 2. We will 
additionally assume that K^Q > const > 0.  Beginning with (18), the higher 
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derivatives of/ can be computed by (19) and (20). This produces the required 
expansion 

f(s) = f(0) + f'(0)s + ±f"(0)s2 + --- 

= /(0) + (s-^4oS3 + '--)ei(0) (21) 0 
11 1 

+ {^h0s2 + g«i,i«3 + • ■ 0^2(0) + (-KI,O«2,OS
3
 + • • -)e3(0) + • • ■ 

Let us now consider the single segment case of the interpolation problem 
with data based on a smooth / : [0, h] —► H , 

do = f'{voh),    Tj=f{rjjh), j = 0,l,...,r + 1,    dr+1 = /'for+i/i), 

with points separated independently of h, i.e., 

0 =: T)o < Vi < ■ ■ ■ < Vr < Vr+i ■= 1- 

Since translation and rotation do not influence the asymptotic analysis, we 
may assume /(0) = 0, and 

e*(0) = (<M;=i,    « = l,2,...,d. (22) 

Then, with the help of (21), one obtains 

/ '—1 \   ^ 

fivjh) = (^ti II «,,o + 0(hi+1))      , (23) 

and a similar expression for f'(h). Since the divided difference is a linear 
functional, we can normalize the system (13) by multiplying the data values 
by D"1, with 

(l    i_1    \ 
D := diag I - h' JJ K9,O 1 

\ 9=1        A=i 

Let /(s) := (s*)f=i denote the leading part of the normalized /. Then 

[to, to.*i> • • •) tr,tr+i,tr+i}D~1B = [t0, t0, ti,..., tr, tr+i, tr+l]B + O(h), 
(24) 

and B is a polynomial of degree < n = r + 2 that satisfies the interpolation 
conditions _ 

B(tj) = ajf'(r]j),    i = 0,r + l, 

B{tj) = J{vj),    j = 0,l,...)r,r + l) 

where 
ao «r+i 
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Note that all the components of / are polynomials of degree < d = r + 2. This 
implies that _ 

[VO,V0,Vl, ■ ■ ■ ,Vr,Vr+l,Vr+l)f = 0, (25) 

and the solution of (24) in the limit h —> 0 now reads as 

«•:=(afs,t;lt5)...,t;)ö?+1) = (iIiji>fft,...)ijr>i). (26) 

To prove the existence of the solution for h small enough, it is sufficient to 
show that the Jacobian of the system (24) is nonsingular at the limit (26). 
The Jacobian will be determined with the help of the following fact: if Xj is 
different from all the other points a;*, and if a function g is smooth enough, 
one has 

*' (27) 
-r     x.x.     ]q K*i) -[...,x3^...\g     U{x._x.y 

Consider now B — (B — /) +/. Since B—f = 0 at t*, all its partial derivatives 
with respect to tj vanish, and this difference contributes to the Jacobian at 
the limit point t* only in the first and last column, i.e., 

-—[to,to,ti,...,tr,tr+i,tr+i](B - f)\      =-. r^-.—r/(%), 
OOJO '|t* (j/o-J?r+lK(77o) 

^— [t0>*o,*i,. • • ,tr,tr+1,tr+1}(B - ~f)y = (jfr+i _ Vo)~l{r1r+i)~f\vr+r), 

(28) 
where w is given by (9), and 

It* 
The polynomial curve / does not depend on 5o, 5r+i, and from (27) and (25) 
one obtains the columns 2,3,..., r + 1 with j = 1,2,..., r as 

( ä^[*0!*0)*l) ■ • • ,tr,tr+i,tr+i]     /L* = r-  / (T]J). 

It is now straightforward to see that the Jacobian at t* is the Vandermonde 
matrix V(TJO,f?i> • • • i Vr+i), multiplied by £>i := diag(i)f=1 from the left, and 
by 

D2 ■= diag (~ 1  _ 1 l__\ 

from the right. This prepares the proof of the following theorem. 
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Theorem 2. Tie system (13) has a unique solution for h small enough. The 
approximation order of the resulting interpolating polynomial curve Bn is 

optimal, i.e., r + 4 = n + 2. 

Proof: Since the matrices V(r/o,»?i, • • • ,Vr+i), D\ and D2 are nonsingular, 
the Jacobian at the limit point t* is nonsingular, too, and the existence of a 
unique solution for h small enough is established. Furthermore, the unknown 
parameters are of the form 

a0 = ar+1 =h + ö(h2),    tj = rjj + 0(h),    j = 1,2,..., r. (29) 

Since there are r + 2 points, as well as two directions interpolated, the optimal 
approximation order is quite clearly < r + 4. The proof will now follow the 
approach applied in [2], and extended in [5]. It is based on a reparametrisation 
that transforms the direction interpolation to the derivative interpolation, and 
gives an estimate of the parametric approximation order as defined in [7]. 
Recall (22), and the fact that interpolation conditions are satisfied. By [2] 
and [5], it is now enough to confirm that all the components of / and B can 
be reparametrized by the ordinate of the first component of both curves. As 
to /, for h small enough this fact is obvious. The first component behaves 
by (21) as s + 0(s3), and the others at least as 0(s2). To establish the same 
conclusion for B, it is enough to show that 

B = ch(6u)U + 0(h2), c^O. (30) 

Further, the optimal approximation order proof depends on the additional 
relations 

Bi9)=0(h"),    q = 2,3,...,r + 2. (31) 

The result required then follows from the standard error estimate of interpo- 
lation, and the fact that the (r + 4)-th derivative of B with respect to the new 
parameter is bounded independently of h. Let us verify the relations (30) and 
(31). Recall first 

i^E^W,    9 = 0,1 r + 1,    tr+2 =u(t) +X>;+%- (0-     (32) 
j=0 3=0 

The divided difference [t0,t0,ti,... ,tr,tr+i] maps polynomials of degree < 
r + l = d— lto zero, and depends continuously on its arguments if applied to 
a smooth function. Thus b by (15) and (23) near the limit point t* behaves 
like 

b = (0(hd), 0(hd),..., 0(hd), xd hd + 0(hd+1))   , 

where Xi = lX=o Kifi > 0- On the otner nand> (29) and (32) imPlv tnat 

j=0 3=0 

= {xiht,...,xd-ihd-Hd-\xdhd{td-u>(t)))T{i + 0{h)). 
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But 
r+l 

B<»>(i) = M*)(9)+£ZVCj(<)(9).    q=l,2,...,r + 2, 
j=o 

and (31) follows. The proof is complete.   D 

There is no hope that this approach could be used for all k. In fact, it 
fails already for k = 1, as we will show now. By (13), the equation (24) is 
replaced by 

[to,to,ti, . . . ,tr,tr+i]D~ B = [*0>*0>*1> ■ - - ,tr:tr+l]B + 0(h), 

[to,ti,... ,tr,tr+i,tT+i]D~ B = [to,h,... ,tr,tr+i,tr+i]B + 0(h). 

Further, as in the proof of Theorem 2, the first column of the Jacobian is 
determined from 

 [to,*Oi*l,---i*r,*r+l](-B- /)|      = =77—\f i.Vo), 

— [to,ti,...,tr,tr+i,tr+i](B — f)\  „  = 0, 
oao \t 

the last column from 

 [fo,*0>*l)--->*r,*r+l](-B-/)|   „  =0, tfO-r+l If* 
a            -I  . 

a [*0i*l.--- ,tr,tT+l,tT+l]{B - f)\       = ^77 zf (Vr+l), 
oaT+x It*      u'iVr+i) 

and the other columns from 

^[*0,t0,*l,...,tr,<r+l]J f\t* = -(rij-VoWitj/M' 

^[t0,tl,..-,*r,*r+l,*r+l]J 7|f* = " (??. _ ^^.) / ^j)- 

After normalizing the Jacobian from the left by öj"1, and by D^1 from the 
right one obtains the matrix A := (ay)?j-=1 with 

a»,i = &i,i, i = 1,2,...,2d, 

o-ifld = 0, a,i+d,2d = 1, i = l,2,...,d, 

and 

aitj = Vj-i ~ Vj-v ai+d,j = Vj-u  « = 1,2,..., d, j = 2,3,..., 2d - 1. 

A simple rank preserving transformation 

a.{j H-> Ojj — aj_ij, i = 2d, 2d — 1,..., d + 1, j = 1,2,..., 2d, 

transforms yl to a matrix with row i equal to row i + d for i = 2,3,..., d. It 
is now easy to see that the rank of the matrix A is d + 1, and consequently 
dim ker A = d — 1. Thus, since the Jacobian is singular, some other approach 
such as [1], pp. 154-155, should be applied to carry out the asymptotic anal- 
ysis. 
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Interpolating Involute Curves 

Mitsuru Kuroda and Shinji Mukai 

Abstract. We propose a straightforward method for designing an in- 
terpolating involute curve whose radius of curvature is piecewise linear or 
quadratic with respect to winding angle. Designers can specify and con- 
trol the curvature radius profile to a certain extent. End radii of a circle 
involute are solved in terms of end tangent angles, and a G involute curve 
is derived by the Hermite interpolation. For G2 and G3 involute curves, 
relevant nonlinear equations are solved by the Newton-Raphson method. 
NC machines with an involute generator can draw the resulting curves 
with "reduced data". 

§1. Introduction 

We present a new method for designing two kinds of smooth interpolating 
curves, smooth in the sense of consisting of less segments with continuous 
monotone curvature radius plot. In the method, we derive a G2 (curvature 
continuous) involute of circular arcs or a G3 involute of circle involute arcs 
through describing its radius of curvature that is piecewise linear or quadratic 
with respect to winding angle. 

"The most important curve in engineering is arguably the circle involute 
... it has played key historical roles in a variety of scientific and technological 
applications" [3]. This curve has excellent shape properties which make it 
interesting for CAGD (Computer Aided Geometric Design). One can draw the 
involute curve manually with simple equipment if necessary. NC (Numerical 
Control) machines with an involute generator are available [1,5]. 

In our straightforward design method, designers can specify tangents and 
curvatures at junction points, and control the curvature profile directly to a 
certain extent. End radii of a circle involute are solved in terms of the end 
tangent angles, and so an interpolating G1 involute curve is derived span by 
span by the two-point Hermite interpolation. For G2 and G3 involute curves, 
continuity conditions and other requirements lead to a system of nonlinear 
equations. We solve this equation system by the Newton-Raphson method, 
using initial values from the conventional C2 cubic spline curve. We obtain 
examples of the curves satisfying additional requirements, and illustrate the 
properties of the newly developed curves. 

Curve and Surface Fitting: Saint-Malo 1999 273 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 273-280. 
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circle involute 

circular arc 

Fig. 1. Circle involute and its evolute. 

§2. Circle Involute Arc 

A planar curve r(s) is expressed as 

r(s)=Po+l   lC°ne)ds'    -°°<e<00> (!) 

where s is arclength from the starting point p0 and 0 is a winding angle (the 
angle between tangent vector and the direction of the x axis). The following 
relations hold among the curve r, unit tangent vector t, unit normal vector n 
and radius of curvature p: 

dV _ dt _ d£    _ 1 . . 

ds2      ds      ds p 

The radius of curvature of circle involute is proportional with respect to 9: 

dt 
P=% = Pa + ß(e-e0), (3) 

Pb- Pa . fi = ——— = const., 
Atfo 

P(0o) = Pa,      p{8\) = Pb, 

where /i is the radius of circular arc that is the evolute of r, and A is the 
forward difference operator defined by AZJ = zi+i-Zj. We change the variable 
of the expression (1) from s to 6 by the relation (3) and integrate it: 

/•Si 

Apo =  /     P*^ = P"no + M(*I - *o) - Pbfli 
Je0 

(4) 

r(Oo)=Po,    t(0o)=t0,    n{e0) = n0, 

r(öi)=p1)    t(fli)=ti,    11(00 = 71!. 

The vector equation (4) is understood easily as in Fig. 1. 



(5) 
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The expression (4) is a system of equations with respect to unknowns pa and 
pb. We can solve this as follows: 

™ \ sin 0o 

_ Aflp cos(fl;L - (j>o) + sin(fl0 - <ft0) - sin(0i - <j)0) 
Pa~              -2 + 2 cos A0O + A6»0 sin A6»0 °' 

_ Aflp cos(ö0 - </>0) + sin(0Q - <f>0) - sin(fli - <fo) 
Pb~              -2 + 2 cos A0O + A6»0 sin A0O °' 

Since the involute arc is given in terms of start and end points as well as cor- 
responding tangent vectors by the expression (5), we can obtain a G1 involute 
curve by the Hermite interpolation which satisfies the equations 

r{0i)=Pi,    t = 0,l,...,n. (6) 

Radii of segments of the evolute of r are rewritten as 

COs(0j —4>i)— COS(0;+1 - fa) 

-2 + 2 cos A0j + A0j sin &9t 
Li,    i = 0, 1, ...,n- 1. 

§3. Interpolating G2 Involute Curve 

We can also derive an interpolating G2 involute curve of circular arcs. Using 
the equation (5), we can solve the following nonlinear equation system (7) 
with respect to unknowns 6Q, 6i,...,0„by the Newton-Raphson method: 

Pi = p(-0i) = p(+6i),    i = 1, 2, ..., n - 1. (7) 

However, the Jacobian matrix necssary for the method makes a programming 
code long and convergence relatively slow. Therefore, from the practical point 
of view, we prefer to solve the following equations (8) based on the equation (4) 
directly. Adding unknowns p0, pi,..., pn to the previous ones 90, 0i,...,0n, 
we get 

PiUi + ßiAti - pi+itii+i = Li f gin ,l J ,    i = 0, l,...,7i- 1,       (8) 

APi        ■      n    i 1 Pi = ^7,     * = 0,  l,...,n-l. 

Fig. 2 shows an example of interpolating G2 involute curves and its profile 
of curvature and radius of curvature. Initial values were from the conventional 
C2 cubic splines. The Newton-Raphson method converged after three itera- 
tions. In spite of the unpleasant configuration of data points, the curve derived 
is quite smooth. Its evolute curve (circular arcs) is G1 continuous except for 
two cusp points that correspond to extremal points of the radius of curvature. 
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(b) 1/p — s profile 

Fig. 2. Interpolating G   involute curve. 

§4. Interpolating G3 Involute Curve 

Expressing p as a quadratic B-spline function of variable 6, we extend the 
interpolating G2 involute curve in the previous section. The radius p(6) is C1 

continuous. The arclength s is cubic with respect to 9, since p = ds/dO and 
p{8) is quadratic. In this case, we get the indefinite integral 

/ 
r =  / ptdB = — pn + pt + un, 

dp d2p 

(9) 

Using (9) span by span, we derive the continuity conditions 

pin~pi+ini+i-piti+fj,i+iti+1-i'ini+i'ini+i = Ap{, i = 0, 1, ...,n-l, (10) 

dp\ 
Pi = P(0i),     V-i 

d2p\ 

,    i = 0, l,...,n, 

Vi = d05\8=9i'   « = °- L-.""1- 
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Based on these conditions, we are going to derive a set of equations with 
unknown parameters of p{9) and solve. We use the following notation in p-9 
space: 

1) Knots: 9-i, 0o, ■ • •, 0n+i) where the end knots are of multiplicity 2. 

6-i = 9Q,    9n+i — 9n. 

2) de Boor ordinates [2]:   d0,  di,...,  d„+i, where d{ corresponds to the 
Greville abscissa (0j_i + 0j)/2. 

3) Bezier ordinates [2]: 60, h,..., b2n. 
For easy manipulation, we break down the non-uniform B-spline function 

p(9) into the following quadratic Bezier functions with local parameter t: 

p{9) = (1 - t)H2i + 2(1 - t)tb2i+1 + t2b2i+2, (11) 

°^t=^TFi^1'    * = 0,l,...,n-l. 

dj+xMj-x + djA9j      . 

b2i+i = di+i, i = 0, l,...,n- 1. 

From (11), we obtain 

Pi = 02i,    Pi =   Afl   ,    i = 0, l,...,n, 

We solve the equations (10) with unknowns 90,9i,..., 6n,do,di,...,dn+i by 
the Newton-Raphson method, using initial values from the conventional C2 

cubic splines. The number of equations is 2n, while the number of unknowns 
is 2n + 3. Accordingly we can give 3 more additional requirements. Since the 
radius of curvature p(8) determines a unique curve shape, we can specify and 
control an interpolating curve by the control polygon (Greville abscissae and 
de Boor ordinates) of p(9). Therefore the curve includes circular arc, circle 
involute and involute of the circle involute because p{9) is a quadratic B-spline 
function. 

Fig. 3 shows an example of an interpolating G3 involute curve with the 
same data points and the same end tangents as in Fig. 2. The computation 
converged after four iterations. The evolute of this curve has cusp points 
within segments, since the radius of curvature is quadratic, while the evolute 
in Fig. 2 has cusp points only at junction points. The evolute of the evo- 
lute (circular arcs) has three cusp points. The curvature profile shows the 
smoothness of this G3 involute curve. 
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(b) \jp — s profile 

Fig. 3. Interpolating G   involute curve. 

§5. Some More Numerical Results 

To illustrate the properties of the newly developed curve, we show some more 
examples of the curves. The same data points are used in Figs. 1 to 5. 

The G2 involute curve is practically more important than the G1 and 
G3 ones. Accordingly, in Fig. 4 the G2 involute in Fig. 2 is compared with 
other curves: (a) the G3 involute curve with the same end tangents in Fig. 3, 
(b) the conventional G2 cubic spline curve which is used as an initial curve 
by the Newton-Raphson method, and (c) a G1 biarc curve derived by mini- 
mum difference between curvatures of two arcs [4]. The labels "(^'Y'G3" or 
"G2" in Fig. 4 point out which side the corresponding curve passes through. 
Small circles in Fig. 4(c) are centers of circular arcs.   It is understood from 
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(a) with a G3 involute   (b) with a C2 cubic curve (c) with aG'biarc curve 

Fig. 4. G2 involute and comparison with other curves. 

(a) a circular arc p0p1 (b) a circular arc pxp2 

Fig. 5. G2 involute including a circular arc. 

observation that the involute curves are quite smooth. 
Fig. 5 illustrates a G2 involute curve with additional requirements, which 

includes (a) a circular arc p0p1 and (b) a circular arc PiP2- 
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§6. Concluding Remarks 

We proposed the design method of up to G3 interpolating curve as an involute 
of circular arcs or an involute of the circle involute arcs. This straightforward 
approach provides a tool for the construction of planar curves consisting of 
segments with monotone curvature radius plots of constant sign. Available 
NC machines with an involute generator are able to draw the objective curves 
with reduced data. 
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Interpolation from Lagrange to Holberg 

Michel Leger 

Abstract. As the order 2n tends to infinity, Lagrange interpolators of 
periodically sampled ID functions converge to the sine function modulated 
by two exponentials. One is related to instabilities and the other to Gaus- 
sian apodizing. The Hermite interpolation of Lagrange interpolators gives 
convolutive Cfc+1-differentiable Lagrange-Hermite interpolators. Whereas 
their support has width of order 2n + 2, the active part of their impulse 
response is width of order y/2n, instead of In for Holberg interpolators, 
which are optimal combinations of Lagrange-Hermite interpolators, and 
therefore much more efficient. Efficient filters can be derived from these 
differentiable interpolators, as well as numerical schemes of derivatives at 
any abscissa. 

§1. Introduction 

Some applications require very large 2D or 3D regular grids, such as finite- 
difference modeling of seismic waves, for instance. The processing of these 
grids involves the computing of numerical schemes of first or second deriva- 
tives, and also interpolators and filters. These quantities need to be evaluated 
very efficiently because the requirements in terms of computation time and 
memory use are critical. 

Numerical schemes, interpolators and filters are interrelated issues, and 
I choose to study them from the viewpoint of interpolation, which is the 
most general. For sake of simplicity, I assume ID interpolation of periodically 
sampled functions, with unit-sampling rate and even orders. 

§2. Lagrange Interpolators 

Definition 1. For some function f with known values fi at abscissae xt = i, 
i € [-n,n], the Lagrange interpolator ([9,6,2,3]) of order 2n is 

3„({AK=-»,*) = £ fi ft 7T7 = £ fi <i{x)-        (1) 
J = -n 
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It can be shifted and centered at any integral abscissa i: 

4n({A}lt="-„>*)=    E   ft+jplnJ(x-i). 
j=-n 

Proposition 2. As In —> oo, Lagrange polynomials converge to the sine 
function modulated by two exponentials: 

A.*) = =^exp(^)exp,^r)(l + 0(„-»)).       (2) 

Proof: Simple changes in (1) give 

VL    (x) (-l)2-'(n!)2x       A ** 

Since n^iC1 " p) = 5^. ™e have 

sin(7ra;) nc4)=^?/na4)- «> 
j=l ^ J=n+1 ^ 

Sincelnn~n+1(l-^) = -a;
2Er+i(F+0Ü'"4))'andsinceF = °(i"4) + 

//^i/2   ^> we obtain 

x2, x2 

II  (l-^)=exp(-^T + 0(n-3)). (5) 

Moreover, by using Stirling formula n! = nn exp(—n) \/27rn(l + jj- + 28gn2 + 
0(n-3)), and noting that ln(l+Tir + 28§^+0(n-3)) = ^+0{n^) and that 

ife (2 - ST7 - Ä) = 0(n~% we obtain In (^g-yr = -(« + *+*) ln(l + 
i) - (n - i + i) ln(l - i) + 0(n-3). Since ln(l + x) = x-**. + **+ 0{x4), 
we have ln (n+l)"?n-0l = JJ+J + 0(n-3) and hence 

(»+^-<)i"a'p(^l + 0(""'))- <6) 

Noting that (—l)'sin7ra; = sin7r(a: - i) and inserting (4), (5) and (6) in (3) 
concludes the proof.   D 

According to the first term of (2), Lagrange polynomials converge to the 
perfect interpolator sine function (Fig. 1). Away from the center of the interval 
of the data points, the first exponential explains the well-known instabilities 
(a small change in the data results in a large change in the interpolation), and 
the second one corresponds to Gaussian apodizing (see apodization in [10]), 
that is, the vanishing effect of the non-centered data points. Note that these 
two exponentials compensate one another as x —> i. 
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amplitude/T 

283 

Fig. 1. Lagrange polynomials of order 14 divided by the two exponentials of (2), 
for i = 0,2,4,6. Related sine functions in dotted lines. 

§3. Stationary Lagrange Interpolators 

Since a Lagrange interpolator is stable only near the middle of the interval of 
the contributing data points, a natural idea is to change it for each interval 
between two successive points, in such a way that the interpolator is always 
used at its best. 

Definition 3. The stationary Lagrange interpolator of order 2n uses at ab- 
scissa x the Lagrange interpolator of order In centered at ix, with x = ix + dx, 
ix € IN, dx € [0, 1[: 

£2n({/fc}fc65Z,a;)=   Yl  fix+j pL,jid*) = C2n(x)- (7) 
j=-n 

Remark 4. Any interpolator such that I{{fk}ke2Z, x) = X^=a f*x+j Pj(dx), 
with a, b and pj independent of ix, is convolutive, that is, there exists a 
continuous function X(x) such that T{{fk}k£7L, x) = A(f)*X(x), with A(/) = 
Y2i£7z fi Ö(x ~~ *) being tfle "Dirac comb" modulated by function f. 

This is obvious by considering the impulse response A(x) = T({Sko}ke7Z, x) = 
P-ix(dx), with 6ko the Kronecker's symbol. 

As a particular consequence, stationary Lagrange interpolators are con- 
volutive with impulse responses \2n(x) — p\n,-•„('k)- Moreover, they are 
also subject to Gaussian apodizing since, as 2n —> oo, 

Mn{x) exP(—rr)- n + (8) 

It is clear from Fig. 2 that these impulse responses vanish very rapidly as 
compared to the sine function. 

Remark 5.  SinceVk, k € [1, 2n], f*™xk\2„(x)dx = 0, then, with T denot- 

ing the Fourier transform, Vfc, k £ [1, 2n], (F(x2n){u))^l0 = 0 ([1]). 

Hence, stationary Lagrange interpolators are good at low frequencies. 
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6 abscissa 

Fig. 2. Impulse responses of stationary Lagrange interpolators for orders 2 to 
14 (the last one is truncated), sine function in dotted lines. 

§4. Hermite Interpolators 

In a general way, Hermite interpolators are consistent with the values of a 
function and its k (or kt, 1 < i < I) first derivatives at I distinct points [4,2,3]. 
Here, I consider convolutive interpolators for any k and I = 2. 

Definition 6.  The Ck piecewise polynomial Hermite interpolator is 

Hk(f) = A(/) *Vk0 + ...+ A(/0>) * Vkj + ■ ■ ■ + A(/<*>) * Vkk, 

where r]kj(x) are [—1, +l]-supported basis functions such that Vra, m € [0, k], 

riffi-V = 0 = i?g°(+l), and „g»(0) = Smj. 

From now on, I consider nko(x) functions only. 

Proposition 7.   The polynomial expression of Hermite interpolators r]ko is 

j=2k 

l-mo(x) = (2k + l)C*kJ2 
j=k 

i-iY-'cT xJ+i 
3 + 1 

(9) 

forx e [0, 1], and r)k0{x) = T]k0(-x) for x G [-1, 0]. Moreover, asymptotically, 

limr)ko{x) ~ nl(x) * 2\  - exp(-4kx2),     when    k -* oo, (10) 
V   7T 

with nb
a(x) = 1 ifx e [a - §, a + §] and f]b

a(x) = 0 otherwise. 

Proof: ForxG [0, 1], it is clear from Def. 6 that (l-77fc0(z))(1) = axk(l-x)k. 
Since %o(0) = 1 and r]k0(l) = 0, we have 

-=  f (l-Vk0{x))Wdx. 
a     Jo 

(11) 
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abscissa 

Fig. 3. Right part of impulse responses of Hermite interpolators according to 
(9), their asymptotic form according (10) in dotted lines. 

Let us define Ikj = /0 x
k(l — x)ldx. Integrating by parts gives Ikj = 

i^j-Ifc+i.j-i, that is, htk = $H$hk,o = C$kI2k,o by recurrence. Since 

i^o = 2FPT1 we obtain a = (2k + l)Ck
k, and therefore, from (11), 

(1 - W*))(1) = (2* + 1) C\k x
k(l - x)k. (12) 

The binomial theorem and a simple integration concludes the proof of (9). 

Moreover, by the change of variable x = \ +u in (12), we have — n^'(| +u) = 
(2k + 1) Ck

k 4
_fc (1 — 4u2)fc. For any abscissa u\ > 0 we may define uk = ^ 

and we have exp(-4fcu2.) = exp(-4u2) and (1 - 4u\)k = (1 - 4^-)fc. Since 

limfc_00(l - 4^)fc = exp(-4«2), then (1 - 4u2)fc ~ exp(-4fcu2) as k —> oo. 

Moreover, by using Ck
k =  mw and Stirling formula, we obtain, as k —> 

oo, (2* + l)C&4-fc ~ 2^/J, and then -^(s) ~ 2^ß exp(-4fc(z - ±)2). 

Symmetrically, we have %J(x) ~ 2w£ exp(-4fc(x + |)2) for x € [-1,0]. 

Therefore, »?j.0 (a;) ~ 2</£ exp(—4fcx2)* (5(a:-t-|) —<5(a: —|)), which concludes 

the proof of (10) since nj(1)(x) = Kx + 2) ~ S(x ~ %)■   D 

Note that Lagrange and Hermite interpolators could be considered as 
Fourier pairs since the right members of (8) and (10) are mutual Fourier 
transforms if 7r2n = 4k. 

§5. Lagrange-Hermite Interpolators 

Since stationary Lagrange interpolators are good at low frequencies and since 
Hermite interpolators are differentiable, hence good at high frequencies, com- 
bining them is a natural idea. 

Definition 8. For k>0, the Lagrange-Hermite interpolator of order 2n is the 
smooth Hermite interpolation of two successive Lagrange interpolators, that 
is, 

Mk
2t\x) = mo(x-ix) £&{x) + (1 - r,kQ(x-ix))£2*n

+1(x). 
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2 abscissa 0 

Fig. 4. Right part of the impulse responses of C -differentiable Lagrange-Hermite 
interpolators (a), sine in dotted lines. Their left part divided by the sine 

_  2 
(b), as compared to Gaussian curves exp(     * ,2), in dotted lines. 

Proposition 9. For k > 0, Lagrange-Hermite interpolators M2„l are Ck+1- 
differentiable. 

Proof: Since it is piecewise polynomial, M\^1 is C°°-differentiable for all 
non-integral abscissas x. Moreover, M2*1 is convolutive, and thus it is 
sufficient to examine it around x = 0.   From Def. 8, for x > 0, we have 

T}k0 Cln+{\-r]k0) C\n. From (12), we have nk0(x) = l-0(xk+1), and Mit1   h.      _  
then M\+ (?) = C°2n(x) + 0(xk+1) (C\n - C°2n). Since the interpolators C°2n 

and C\n are continuous, C\n - C°2n = 0(x) and thus M2+1 = C°2n + 0{xk+2). 

Therefore, for any j e [1, k + 1], A^2^1Ü)(0+) = C°^(0+). The same argu- 

ment with M\tl = Vko C2n + (1 - Vko) £°n for x < 0 leads to M^1 Ü)((T) = 

C2„(0~), which concludes the proof since C2n(x) is a polynomial.   D 

The Fourier transform of Lagrange-Hermite impulse responses (which I 
call fi2n for interpolator M2n) are very similar to those of stationary Lagrange 
interpolators below the sampling frequency. Beyond the sampling frequency, 
for the orders 2 to 14, the rejection in dB of the greatest secondary lobe is 
27, 30, 32, 33, 34, 35 and 35 in the C° case, 42, 47, 51, 53, 55, 57 and 58 in 
the C1 case, 33, 36, 37, 38, 39, 40 and 41 in the C2 case, and slowly decreases 
for higher differentiabilities. From this viewpoint, the C1 Lagrange-Hermite 
interpolators are the best choice. 

§6. Holberg Interpolators 

Lagrange-Hermite interpolators are good at low and high frequencies, but 
unsatisfactory inbetween. Indeed, Gaussian apodizing makes \2n as well as 
ßk

n gradually ineffective, since their cost, which is proportional to the length 
of their support, increases like n, whereas their active part widens like y/n. 
Faced with the same problem in terms of numerical schemes, Holberg ([5]) had 
the idea of combining several orders and optimizing the passband for given 
tolerance and maximal order. Holberg interpolators just proceed from the 
same idea. 
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frequency 

frequency   1.0 

Fig. 5. Impulse responses of C -differentiable and 0.1%-precise Holberg interpo- 
lators (a) (Lagrange-Hermite in grey, sine in dotted lines). Their Fourier 
transform (b) and an enlargement of them (c). The passband-ws-order 
diagram (d) showing the linear behaviour of Holberg interpolators and 
the parabolic behaviour of the Lagrange-Hermite interpolators. 

Definition 10. The 2n-hybrid order, Ck-differentiable and e-precise Hol- 
berg interpolator is the linear combination M2'n = Si=i ßi-M-2i sucn that 
J2i ßf = 1 and sucn that the following passband is maximized, 

B(ßt, ■ ■ • ,#-i) = suP({v; V£ < u; | £/3f.FO&)(0 - 1|  < e}). 

Clearly, these Holberg interpolators are convolutive, with impulse responses 

Fig. 5 illustrates the case of e = 0.1% and k = 1 ((^-differentiability). 
Fig. 5a shows that the impulse responses of Holberg interpolators decrease 
much slower than the Lagrange-Hermite interpolators. The sum of the ßf is 
one, but their absolute sum may be far from one, for instance about 4300 in 
the case of the 14th order. In the Fourier domain, Fig. 5b, together with its 
enlargement Fig. 5c, shows that the passband is increased a lot from Lagrange- 
Hermite to Holberg. 

For tolerances 1% and 0.1%, Fig. 5d shows the parabolic behaviour around 
infinite order of the passbands of the Lagrange-Hermite interpolators (grey 
arrows are parabolas with vertical tangent at the corner). This is due to 
Gaussian apodizing, since the Fourier transform of (8) gives the convolution 
of a box function with a Gaussian function that narrows like -4- asn-too. 
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'' abscissa 

Fig. 6. Right part of the impulse responses of the 10th-order Lagrange-Hermite 
(in grey) and Holberg interpolators of first (a) and second (b) deriva- 
tives. Perfect (but truncated) interpolators for derivatives are displayed 
in dotted lines. 

On the contrary, the passbands of the Holberg interpolators have a linear 
behaviour (black arrows are straight), which is the best possible one because 
the active part of the impulse response of the interpolator cannot expand faster 
than its support. The passbands are referred to the sampling frequency. 

The optimization of passband B in the ß\ space is difficult because B 
is discontinuous along n — 1 hypersurfaces (related to tangencies at 1 ± e) 
which intersect at the optimum. To overcome this difficulty, I used a method 
consisting of the following steps: 

1) choose a strictly increasing sequence of frequencies Vi in ]0, 0.5[, with 
1 <i <n-l, 

2) set at 1 + e the value of the combination at frequency i/n_i, 1 — e at vn~2, 
1 + e at vn_3, and so on until u\, and finally 1 at frequency VQ = 0, 

3) solve the linear system for the ßf, 
4) detect the frequencies at which the combination is extremal, 
5) if these frequencies are close to the Vi, then stop, else update the Vi and 

come back to step 2. 

A priori, the feasability of steps 3 and 4 and the convergence are not 
guaranteed. In practice however, this method works simply well, with less 
than ten iterations. See also [7,8] on optimal filtering. 

§7. Applications 

The main application of Holberg interpolators are Holberg numerical schemes 
([5]) because they are cost-effective in the field of numerical simulation of 
acoustic wave propagation. Especially in 3D, this effectiveness is of consider- 
able importance because of the huge amount of computing time needed. 

From a 2n-order Cfc-differentiable Lagrange-Hermite or Holberg interpola- 
tor, 2n-order Cfc-m-differentiable interpolators of the mth derivative (m < A;) 
can be easily derived, as well as numerical schemes of these derivatives at any 
abscissa. Fig. 6 shows the responses of the 10th-order Lagrange-Hermite and 
Holberg (e = 0.1%) interpolators of first (a) and second (b) derivatives. The 
values at integral abscissas give standard numerical schemes. In a similar way, 
the integration of these impulse responses could result in Newton-Cotes-like 
Holberg formulas (see Newton-Cotes Formulas in [10]). 
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Fig. 7. A seismic section (a) has been horizontally filtered (b) for antialiasing, 
threefold undersampled (c), and finally interpolated (d). 

Holberg interpolators, and numerical filters that can be generated from 
them, are also interesting for their efficiency. For instance, the response of 
a 1%-precise, 6th-order, C1 Holberg interpolator has been fourfold oversam- 
pled and used to filter horizontally Fig. 7a into Fig. 7b for antialiasing. The 
threefold undersampling of Fig. 7b gives Fig. 7c. The 1%-precise, 6th-order, 
C1 threefold Holberg interpolation of Fig. 7c gives Fig. 7d. The similarity of 
(b) and (d) measures the quality of the filtering and of the interpolation. 

§8. Conclusions 

In the case of periodic data points, Lagrange interpolators converge to a sine 
function multiplied by two exponentials. The first one explains the well- 
known instabilities of Lagrange polynomials, which only vanish at the center 
of the interval of the data points. The second exponential explains the van- 
ishing influence of non-centered data points (Gaussian apodizing). Station- 
ary Lagrange interpolators are stable and convolutive. Hermite interpolators 
are as differentiable as desired and convolutive and their impulse response 
converges to the convolution of a box function with a Gaussian function. 
Lagrange-Hermite interpolators combine the advantages of unlimited order 
and differentiability. Because of Gaussian apodizing, these interpolators be- 
come ineffective at high orders. On the other hand, Holberg interpolators 
have a much better quality/cost ratio since they are optimal combinations of 
Lagrange-Hermite interpolators. From Holberg interpolators, efficient numer- 



290 M. Leger 

ical schemes of derivatives can be evaluated at any abscissa, and oversampling 
their impulse response gives short but efficient filters. 
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Local Approximation on Manifolds Using 

Radial Functions and Polynomials 

Jeremy Levesley and David L. Ragozin 

Abstract. The main focus of this paper is to give error estimates for 
interpolation on compact homogeneous manifolds, the sphere being an ex- 
ample of such a manifold. The notion of a radial function on the sphere is 
generalised to that of a spherical kernel on a compact homogeneous man- 
ifold. Reproducing kernel Hilbert space techniques are used to generate 
a pointwise error estimate for spherical kernel interpolation using a posi- 
tive definite kernel. By exploiting the nice scaling properties of Lagrange 
polynomials in the tangent space, the error estimate is bounded above by 
a power of the point separation, recovering, in particular, the convergence 
rates for radial approximation on spheres. 

§1. Introduction 

There is currently significant interest in approximation on spheres, related 
to many interesting geophysical problems. There are a number of different 
approximation methods currently available on spheres, including wavelets [3], 
splines [1], and the subject of this paper, radial functions (sometimes called 
spherical splines) [3,6]. Error estimates and convergence rates for radial ap- 
proximation on spheres, of an optimal nature, are recent in vintage [5,4], and 
rely on some technically demanding mathematics. In this paper we build on 
an idea of Bos and de Marchi [2] in order to provide convergence rates for ra- 
dial interpolation on a much wider class of manifolds: the reflexive, compact 
homogeneous spaces. We will conclude the paper by proving a local spherical 
harmonic polynomial approximation result on spheres. 

Let Md be a d-dimensional compact manifold with a metric d(-, •) which 
possesses a transitive group G of isometries. The group acts transitively in 
that for every x,y e Md, there exists g S G such that gx = y. If, further- 
more, there exists g S G such that gx = y and gy = x, then Md is termed 
reflexive (for more details see [11]). Such a manifold is a reflexive, compact, 
metric, homogeneous space. We comment that we can always embed Md in 
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some higher dimensional Euclidean space Hd+r, the group G being a compact 
subgroup of the isometries of E,d+r. We assume that the metric d(-, •) on Md 

is inherited from some Euclidean embedding. 
We will be interested in interpolation on Md using continuous zonal ker- 

nels k(-, •) which have the property that k{gx,gy) = k(x,y) for all x,y € Md 

and g € G. Such kernels are natural generalisations of radial functions, 
which are functions only of distance, which is itself G-invariant. Given a 
set {xi,..., xjv} C Md and data /1,...,/ÄeR,we seek a function of the 
form 

N 
sk(x) = ^2aik(x,Xi) 

1=1 

such that Sk(xj) = /*, i = 1,..., N. 
Given the data /* = /(ZJ), i = 1,..., iV, we wish to bound the pointwise 

error between Sfc and / at x £ Md. We make no assumption on the data 
points except that they satisfy a point separation criteria in some subset of 
Md (see Section 3). 

In Section 2 we will introduce some necessary harmonic analysis on Md, 
discuss the notion of positive definiteness on Md in brief, and give a standard 
error estimate, which we will use in Section 3 to obtain convergence rates. In 
Section 4 we prove a Whitney type error estimate for local spherical harmonic 
approximation on the sphere. 

§2. Harmonic Analysis and Error Estimates 

For a more complete version of the brief description we give here, see [10,11]. 
Let nd+r be the degree n polynomials in ]Rd+r, the space in which Md is 
homogeneously embedded. Then, let Vn (the spherical polynomials of de- 
gree n) be the restriction of these polynomials to Md. Furthermore, let 
Hn := Vn n?^_!, where the orthogonality is with respect to rf/x, the unique 
normalised G-invariant measure on Md: 

JA 
fgdfi. 

Md 

Then, we can uniquely decompose Hn into irreducible G-invariant sub- 
spaces Enj, each of dimension dnj, j = 1,..., hn, resulting in the G-invariant 
decomposition 

L2{M
d) = ®^0@h

illZnj. 

Let Xnj be the orthogonal projection onto Enj, n — 0,1,..., and j = 
l,...,hn, and %nj(-,-) be the kernel of this projection. We will consider 
interpolation using strictly positive definite kernels of the form 

Hx>y) = ^^O-njKnjix^), 
n=0.;'=l 



Approximation on Manifolds 293 

where anj > 0, n = 0,1,..., j = 1,..., hn, and 

oo    dn 

2j2jrfnjani < OO. (1) 
n=0,j'=l 

We will approximate functions from the Hubert space 

oo    d„ 

W = {/ e i2(M
d) : ll/f := Y, £ H^/lll/o»i < °°}> 

n=0j=l 

where || • 112 denotes the Li{Md) norm. The associated inner product in W is 

00    d„ 

if, 9) := ££[*nj/)<Vnj0]/ary- 
n=0 j=l 

The condition (1) ensures that point evaluation is a continuous linear 
functional in W. It is straightforward to show that k is the reproducing kernel 
for the W: f(x) = (/, &(x, •)),/ € W,x € Md. An immediate consequence of 
the reproducing kernel property is that s/t is the interpolant of minimum W 
norm. For, if g is another interpolant, 

N N 

(sk-g,sk) = £«.(/ -sk,Hxi,-)) = £ai(/(a;i) ~ sk(xi)) = °- 
t=i t=i 

Therefore, 

(9,9) = {g-sk + sk,g- Sk + Sk) = (g - sk,g - sk) + 2(g - Sk,sk) + {sk,Sk) 

= (g-Sk,g-Sk) + (sk,sk), (2) 

and the norm minimisation property is established. Now, following the stan- 
dard arguments, see e.g. [8,9], we have, using the fact that Sk interpolates / 
Oil)  X\ j • • • } Xjv j 

|/(x) - sk(x)\ = |(/ - Sk,k(x, -)| 
N 

= \(f - sk,k(x,-) + J2ßMxir)\ 
«=1 

N 

<||/-«*|||W*.-) + £Ä*te.-)ll 
»=1 

N 

<ll/llll*(*. ■) + £/**(**. Oil 
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for arbitrary ßi, i = 1,... ,N, where we have used (2) in the final step. Our 
final error estimate follows from the fact that 

N N N 

\\k(x, •) + J2ßMxi,-)\\ = {k{x, •) + Y, PMxi, •). k& ') + X>*fc> ■))* 
t=l t=l i = l 

N AT 

= (k{x,x) - 2^2ßik(x,Xi) + Y^ ßißjKxi^Xj))*. 
t=l t,J=l 

Defining 

AT TV 

P(a;,a;i)...,a;w):=     mf   #,i)-2Vftl(i,ij)+ Vftft%,i,))i 
ft ^^ fei ij=i 

we sum these results up in 

Theorem 1. Let Sk be the k-spline interpolant atx\,...,XN € Md to f € W. 
Then, for every x € Md, 

\f{x)-sk{x)\<\\f\\P(x,xu...,xN). 

§3. Convergence Rates for Radial Kernels 

In this section we shall give pointwise error estimates in terms of the point 
separation 

p := max   min   d(y,Xi), 
yeV i=l,...,N 

where V C Md contains x, the point at which we are measuring the error. As 
we shall see later in this section, producing a pointwise convergence rate from 
the error estimate of Theorem 1 requires us to bound Lagrange polynomials 
related to a subset of the interpolation points. Efforts to produce convergence 
rates on the sphere foundered because it is difficult to bound the Lagrange 
polynomials for spherical harmonic interpolation as the interpolation set, with 
a fixed number of points, scale towards x. The early error estimates of [3], 
of O(p), were the best known until recently, and only required bounding of 
the constant Lagrange polynomial for a single point. Light and v. Golitschek 
[4] proved boundedness for all polynomials on Sd, d > 2, and consequently 
achieved 0(pr) approximation for radial kernels with 1r continuous derivatives 
on the sphere. 

A very simple proof of the result of Light and v. Golitschek was given by 
Bos and de Marchi in [2]. What we will do is introduce an analytic coordinate 
transformation, and construct Lagrange polynomials in the tangent space, 
which is a d-dimensional Euclidean space. We will quote a result which uses 
scaling arguments in Euclidean space which are easy to perform, observing 
that distance on the manifold and in the tangent are comparable. 
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Fig. 1. Coordinate chart at x. 

Let x € V C M. We shall assume the existence of a C°°-chart (UQ,ijj) 
with an open subset U C U0 satisfying the following (see Figure 1): 

1) V(Z7) = V with V(0) = x, 

2) U0 = {y - z : y,z e U}. 

These conditions ensure the validity of Taylor series arguments which follow. 
Also, since U is precompact, ip is bi-differentiable and the metric d is assumed 
boundedly equivalent to the Euclidean distance on Rd+r, 

ci||y — «|| <d(il>(y),il>(z)) <c2\\y-z\\,    y,z£U. 

Let vi,... ,VQ = V n X be the interpolation points in V, and redefine 
P~swpveVmini=i,...,Qd(v,vQ). Let u{ = ip-1^), i = l,...,Q. Then, from 
the previous equation we have 

T) := sup   min   ||u ■«ill  <P/Cl. (3) 

It is shown in [7] that provided p and hence rj are sufficiently small to 
guarantee that Q > t, we can make a selection of interpolation points vi,...,vt 

(assuming a convenient ordering of the points), where t = dim(nfr_1), such 
that the Lagrange polynomials plt... ,pt for m,... ,ut are bounded at the 
origin: 

Pi(0)<CL,        t = l,...,i, (4) 

where CL is independent of i and p. Furthermore, m,... ,ut are all contained 
in nBb := {qw : \\w\\ < b}. We are now ready to prove the main theorem of 
this paper: 
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Theorem 2. Let <j> : H -> H and fc(v) = (f>(d(-,-)) be strictly positive 
definite, and 2r-times continuously differentiate in each variable. Let x € 
S C M. Suppose that the interpolation points x\,...,xn satisfy 

sup   min   d(y,Xi) = p. 
yeSi=l,...,n 

Then for all sufficiently small p, if sk is the k-spline interpolant to f € W, 

\f(x)-sk(x)\<C\\f\\pr, 

where C is independent of p. 

Proof: First we now choose the coefficients ßi,...,ßn (appearing in the 
statement of Theorem 1) as follows. Let ß{ = p_,(0) if x{ = ^(UJ) for some 
j = 1,... ,t. Set ßi = 0 otherwise. This choice of coefficients is made since 

$>(<))«(«,•) = 9(0), (5) 
i=i 

for all q € n^_x. Then, 

t 

P(x,xu...,xN)< [^W0)^(0)))-2^i(0)W#),^))) 
i=i 

X)p<(°)Pi(°)*w(u*).^(«i)))J 
(6) 

' -1/2 
+ 

»,7=1 

Since <f>{d(-, ■)) is 2r times continuously differentiable in each variable, for 
fixed w G U we may expand 

*ww,*w))= £ ^(z-wr + Ä^w, »ei/,      (7) 
|a|<2r 

where K%r is a Taylor series remainder satisfying 

R%r{z)<CR\\z-w\\2r, (8) 

for some constant CR independent of z and w. Putting z = w in the above 
expansion we see that 

tf = 0(0). (9) 

Putting (7) into (6) gives 

P(x,*!,...,ZJV) < [<X0) - 25>(0)( Y, C°KT + <(";)) 
7=1 |a|<2r 

+  ^ft (°)P7 (0) (    E   C« ("> - Ui )Q + R2r (^ )) J        • 
i,j = l |a|<2r 
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Using the polynomial reproduction (5), we get 

t 

P(x,xu.. .,**)<[- 4>{0) - 2^Pj(0)i&(^) 

+I>(°)( E #(-«0°)       (io) 
»=1 |a|<2r 

+ Eft(°)Pi(°)^(ui)]1/2 

where we have used (6) and (9) in the above argument. 
Now, since the distance function is symmetric, for any u,w € Kd, 

0(d(v>(«),vw))= E c™(u-wr+R%r(u) 
\a\<2r 

=   5]  <£(«,-«)« + *&.(«,). 
|a|<2r 

In particular, with w = 0 we get 

E <(-«)a= E ci(ur+R°2r(u)-Ri(o). 
\a\<2r |a|<2r 

Substituting the last equation into (10) and again using (5) gives 

t 

P(x,xu ... ,xN) < [ - 0(0) - 2£pj(0)Ä§r(uJ-) 
i=i 

+ X>(°)(   E   4(«*)a + ^r(«)-^(0)) 
s=l |a|<2r 

+ E K(0)P*(<W(«i)J 

* 

* 11/2 
+ J2 ä(0)P,-(0)ä£(«,-)] 

«>J=I 

i 

< C«(. max   {|h-«J-||,|K||})r E 1^(0)112 + ^(0)1 
i,j=l 

<c>r, 
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using (3), (4) and (8), recalling that u\,...,ut are contained in an n < p/c\ 
scaled ball of radius 6. Substituting this result in Theorem 1 concludes the 
proof.   D 

§4. Whitney-type Estimates 

We will now use the coordinate system suggested by Bos and de Marchi [2] 
to prove Whitney type estimates for approximation using spherical harmonics 
on E,d. This result answers a question posed by L. L. Schumaker during the 
conference for which these are the proceedings. For x = (x2,. -., xj+i) € R , 

define 0 : ]Rd -+ Sd by 0(x2,... ,xd+1) = ((1 - £?=2 x}fl2,x2,... ,xd+1). 
This is a smooth parametrisation of a neighbourhood of ei = (1,0,...,0) € S . 

As long as J2i=2 x1 < sm2 P> t^ien d{ei,Q{x)) < p. 
Without loss of generality, we shall consider the approximation of a func- 

tion / € Ck(Sd), using spherical polynomials, in any spherical neighbourhood 
Xp of ei, where maxy€xp d(ei,y) = p < ir/2. In fact, we will prove 

Theorem 3. Let f € Ck(Sd). Then, there exists a degree k harmonic poly- 
nomial pk~i such that, for every ir/2 > p > 0, 

max\f(x)-pk-i(x)\<C{f)pk, 
xexp 

where the constant C(f) does not depend on p. 

Proof: The crucial element of this proof is that the coordinate mapping 0 
maps polynomials of degree k in Rd, the tangent plane at e\ coordinatised 
by X2, ■ ■ ■ i^n+i) to polynomials of degree k on the sphere. Since / o 0 £ 
Ck(Q~1Xp), we can perform the multivariate Taylor series expansion 

foO{x)= ^2 cax
a + Rk{f,x), /X1^ 

\a\<k 

where Rk(f,x) is the remainder satisfying 

Rk(f,x)<C(f)(m&x\e-1(y)\)k. (i2) 

Letting 6 = Q(x), and defining the degree k - 1 spherical polynomial 

Pfc-xW :=  J2 c«(0-1(ö))a =  £ c"x°' 
\a\<k \a\<r 

equations (11) and (12) tell us that 

max |/(0) -pfc-xWI^CC/Xmaxie-1^)!)*. 
v&Xp ytAp 

The result follows because maxyexp |©   xC^/)I < P-   D 
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Characterizations of Native Spaces 

Lin-Tian Luh 

Abstract. In the theory of radial basis functions, linear combinations 
of the translates of a single function $ are used as interpolants. The space 
spanned by all of these linear combinations carries an inner product denned 
via $ itself. It can be completed and becomes a Hubert space, called the 
native space for $, which is of great importance for further investigation 
of radial basis functions. The native space will contain abstract elements 
which are not linear combinations of radial basis functions, and require 
some work to be recognized as functions. This paper provides some char- 
acterizations of native spaces and relates some of the different approaches 
used to define them. Finally, embedding results for native spaces into 
Sobolev spaces are proven. 

§1. Introduction 

Our goal is to describe properties of the set of functions 

N 

^Cj$(x,Xj),   x € ft,   Cj € C, (1) 

i=i 

where ft is a subset of Kd and $ is a real-valued symmetric function on 
ft x ft. These functions depend on sets X = {xi,..., xN} C ft of N pairwise 
distinct points called "centers", while the number N of centers and their 
placement within ft are arbitrary. Functions of the form (1) arise naturally as 
tools for multivariate approximation, especially if $ is a radial basis function 
$(x,y) := ^(||x — 2/H2) with a real-valued function <f> on [0,00). We shall study 
the closure of the linear span of functions (1) under a natural topology that 
comes from $ itself, provided that $ has a crucial property: 

Definition 1. A {unction $ € C(ft x ft) is called conditionally positive definite 
(abbreviated as c.p.d.) of order m on ft it the quadratic form 

N 
]T  CjCk^(Xj,Xk) 

j,k=l 
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is positive for all sets X = {xi,..., xN} C fi of N pairwise distinct points 
and all vectors c = (ci,..., cN)T G CN \ {0} satisfying 

Y,ciP(xt) = 0forallP€Pt (2) 
i=l 

where P^ is the space of d-variate complex-valued polynomials of order not 
exceeding m. 

There are various possibilities to proceed from here. Already in their early 
pioneering papers, Madych and Nelson already took two different approaches, 
via finitely supported functionals [3] and via a specific version of generalized 
Fourier transforms [4] in the spirit of Gelfand-Shilov. The latter requires 
measure-theoretic arguments at certain places, and is rather complicated to 
deal with. The dissertation of Iske [1] used variational inequalities, while 
Weinrich [6] proceeded via regularized distributions in the sense of Schwartz. 
Our goal here is to show, as far as possible, the equivalence of the cited 
approaches. Since the access via generalized Fourier transforms has problems 
in dealing with arbitrary domains ti C Rd, we proceed as in [5] in order to 
start with the most general approach known so far. 

§2. Construction via Finitely Supported Functionals 

Consider the space 

(^m)n := {£ <***«! ^ G C, ^ G fi for  1 < i < N with (2)1 

of all functionals that are finitely supported in Ü and vanish on the polynomials 
in P£. Starting with a c.p.d. function $ of order m in Q, we define 

N    M 

(A,A0$ := 5^]T Aj/ij^Xj.j/j) 
i=l j=i 

for \,fi G (-Pm)n with A = £iLiAi<^> V = Ejii A«Aj to get an inner 

product (•, •)$ which induces a ^-dependent norm in the ^-independent space 
(^m)n- To relate functionals with functions, we use the map 

R*  ■  (On - C-(fi), R*(\) == A*$(x, ■) =: A * $, 

where \x stands for the action of A with respect to the variable x. By standard 
Hubert space arguments, the fundamental identity 

KR*W) = (A>/*)* for a11 A>H G (pm)n (3) 
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proves that (P„)n and its image under P$ form a dual pair. Furthermore, 
this equation carries over to the Hubert space closures P$:n of (P^Q 

and 
F$,n of Ä$((P*)£), respectively. 

This construction is simple, but it leads to rather abstract elements in- 
stead of classical functionals and functions. To overcome this problem, one 
assumes that P^ and Si allow a Lagrange-type basis h,...,lm' with m! = 
dimP^ and points x\,.. .,xmi € SI such that k(xj) = 5y for 1 < i,j < ml. 

Then the functional <5(x) := Sx - Y^TLi k(x)SXi lies in (Pm)rji an(^ tne maP ^ 
with 

S$(fi)(x) := (M,<$(X))S = <5(X)-R$(M) = /i(Ä$(5(x))) for all // € P$,n,x € fi 

uses (3) to define a classical function 5$(/x) for each abstract element fi € Pj>,n. 
The space G$,n := S^((P^)ji) now is a much more concrete space. The first 
of our results can be found in [2] with full proofs. 

Theorem 2. The spaces F$]n := R$(P&,n) and G$,n := S$(P$,n) are iso- 
metiically isomorphic via the mapping 5$ oE^1 and the inner product it 
introduces on G$,n- Furthermore, 

/*(5*(A)) = (A,/i)*=/i(Ä»(A)) (4) 

hoids for all functionals in (P™)Q 
anc^lte c^osure P$,n- 

It is not straightforwardly possible to associate classical function values 
to the elements P$(A). But (4) indicates that Puj>(A) and ^(A) should agree 
up to a polynomial from P^ on Si. The function S$(\), however, vanishes on 
the points we used for the Lagrange interpolation in P^, and thus realizes a 
very special assignment of function values modulo P^. Thus, we can interpret 
P$(A) as an equivalence class of functions mod P^ on SI, one representer of 
which is 5$(A). Thus we should add P^ to the spaces we dealt with so far. 

Definition 3. Let $ be c.p.d. of order m > 0 in SI. Then the direct sum 

N*{Sl) := I* (SI) © G$,Q 

is called the native space of$. 

The above construction allows us to define a semi-inner product (.,.)$ on 
this space such that the nullspace is P^. Theorem 2 now implies the isometric 
isomorphisms JV$(fi) = P„(fi) © P$,n and N^(Sl) 2i P„(ft) © P$,n as two 
characterizations of the native space. We add two others, with proofs in [2] 
dating partially back to [3]: 

Theorem 4. Assume Si is a subset ofMd and m > 0. Then N$(Sl) is the 
unique subspace ofC(Si) with a semi-inner product (■, ■)$ satisfying 

(a) the null-space of the semi-norm is P^(f2), 

(b) N^{Sl)/P^(Sl) is a Hubert space, 

(c) if ft e (P£)ci, then fi * $ € N9{Sl) and [fi * $,/)$ = fi{J) for all / <E 
TV* (ft). 
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Theorem 5. Fix m > 0 and a c.p.d. function $ of order m in fi. Then a 
complex-valued function f on Q. is in N$(ti) iff there is a constant c(f) such 
that 

Hf)\ < c(f)M* 
for all fj, in (Pjfyn- The smallest possible constant for such f is the seminorm 

11/11*- 
The following sections will proceed gradually from here to other char- 

acterizations of native spaces. The main guideline is the various forms that 
functionals can take, starting from finitely supported functionals used in this 
section. We proceed via measures (finitely or compactly supported) to distri- 
butions, and we refer the reader to [2] for full proofs. 

§3. Construction via Measures 

Definition 6. The family of all Gnitely supported measures on Q, is denoted 
by M(fi). 

Theorem 7. Let m be a nonnegative integer. Assume $ is positive definite 
in fl with the following property: for all A £ M(fl) and e > 0, there exists ßE 
in (pm)n satisfying 

W/Jie - A||$ <£. 

Then (P„)Q is contained in M(fi), and M(ft) is isometrically isomorphic to 

a dense subset of {P^Q- Furthermore, we have 

iv$(n)^p^(fi)©M(n), 

where the closure is induced by $. The inner product on M(£l) is defined as 

(A,M)$ := A(JU*$). 

Now we introduce a new space {{Pm)n) consisting of all compactly sup- 
ported measures fi on il with vanishing moments for P^, i.e., all integrals of 
polynomials from P^ with respect to u. are zero. If we assume 

/   / §{x,y)dv{y)dß{x) = /   / ${x,y)dn{x)dv{y) 

for all n, v in ({P^}, and   

v{v * $) > 0 

for all nonzero v, it is easily checked that 

forms an inner product on ((-Pm)fi)- Then we have the following theorem: 
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Theorem 8.   Under the above assumptions, {(P&)Q) is isometrically iso- 
morphic to (P£)n-   furthermore, the native space TV* (ft) is equivalent to 

The proof of Theorem 8 in [2] is quite hard. It involves weak* topology 
and the Krein-Milman theorem. So far, Theorem 8 is the best result concern- 
ing interpretation of the dual of the native space as a space of measures. 

§4. Construction via Tempered Test Functions 

Starting from [4] there is an approach to native spaces via generalized Fourier 
transforms in the sense of Gelfand and Shilov. Here, we want to avoid distribu- 
tions and generalized Fourier transforms as far as possible. The key point is to 
use variational equations on spaces of tempered test functions as a convenient 
substitute for generalized Fourier transforms. 

Let <S(ft) denote the space of tempered test functions in the sense of 
Laurent Schwartz with supports contained in ft, and define 5^(ft) as the 
space of tempered test functions with support in ft and vanishing moments 
up to order m. For all v,w € <Sm(ft) 

{v,w)^:= /   / ${x,y)v{x)w{y)dxdy 

is a bilinear form, and we would like to base a second construction of the 
native space on it. To this end, it would be a reasonable possibility to define a 
property like "tempered conditional positive definiteness" to require that this 
form is positive definite on S^(ft). The result would be a different theory, 
but we want to blend this approach into our previous setting. Thus we look 
at conditions that allow to relate this bilinear form to the earlier one. 

Following [1], we assume a continuous positive function <p : M \{0} —► ft 
exists such that 

(v,w)<s, = (27r)~d /    tp(x)v(x)w(x)dx (5) 
jRd 

for all v,w g S^(ft). Here 

v(w) := f e-ixTwv(x)dx 
Jn 

denotes the classical Fourier transform of v. By approximation of functionals 
from (Pm)n bY regular distributions generated by functions from S^(ft), Iske 
[1] proved that this assumption is slightly stronger than c.p.d. of $ on 1R , 
and that (v,w)$ = (v,w}9 holds for all v, w € <S^(ft). 
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Definition 9. If a function $ of difference form $(x,y) = <f>{x — y) with 
a continuous and even function cj> on Hd satisfies (5), we call $ variationally 
positive definite (v.p.d) of order m > 0 on Rd. 

Definition 10. Let $ be v.p.d. of order m > 0 on HL . A complex-valued 
function f is in the space Cj>)Tn(fi) if and only if f £ C(ft) and there exists a 
constant c(f) such that 

| / /(a:)i>(a:)da;| < c(/){ /  / ^{x,y)v{x)^y)dxdy}ll2 for allv € «S^(fi). 
Jo. JQ Jn 

Theorem 11. Let fi be open and $ be v.p.d. of order m > 0 in ]R . Then 

A^$(0) = C$jm(fi). Furthermore, S^(il) is isometrically isomorphic to (Pm)n- 

Theorem 11 provides a nice unification of the theories of Weinrich [6] and 
Iske [1]. Their work is based on (P„)Q and 5^(fi), respectively. The proof of 
Theorem 11 is rather involved [2]. 

§5. Embedding Theorems 

We now construct continuous embeddings of native spaces into well-known 
spaces. Madych and Nelson's discovery that iV$(]R ) C C(R ) can be re- 
garded as the first step towards embedding theorems, but it was just an in- 
clusion result. In this paper, all the embedding theorems concern continuous 
embeddings with respect to the topologies of the spaces. Even the embeddings 
of native spaces into L2 spaces can be nontrivial, provided that the underlying 
domains are unbounded (see [5] for the bounded case). 

In this section we first assume $ to be v.p.d. of order 0 on Hld with a 
positive classical Fourier transform <p € Li(]R ) of <j> with $(x,y) = (f>(x — y). 
All functions / of the form (1) have a classical Fourier transform 

N 

J=I 

and there is an isometry B : i?$((Pg)n) "~> L2(M,d), f 1—► f/y/if mapping 

these functions into L2(TR, )■ It is now easy to see that the equation / = 
y/tp- B{f) holds for all functions in R${{Po)n) and its closure F$,n which can 
be identified with the native space of <&. 

Theorem 12. For variationally positive definite functions on HI of order 
zero with a positive L\ Fourier transform ip, the functions in the native space 
of$ have Fourier transforms of the form ^fip ■ g with an L2 function g. The 

native space for $ can be continuously embedded [2] into Z/2(lRd). 

The last statement was generalized in [2] to 



Native Spaces 307 

Theorem 13. Let $ be symmetric and translation-invariant on Q, x fi and 
c.p.d. of order m > 0 on a domain Q, C ]Rd containing points £I,...,£JV 

wiich uniqueiy determine polynomials of ^(ft)- If there exists a positive 
continuous g G L1(fi) which decays exponentiaiiy at infinity and satisfies 

/  |p(x)^>(a;)|p(a;)da; < oo 
./n 

for aJJ p(x) € Pm(^)> tnen ^*,n can *>e continuousiy embedded in L2(fi). 

Theorem 12 characterizes native spaces as spaces of functions whose 
Fourier transforms lie in a weighted L2 space. The same holds for Sobolev 
spaces on !Rd, and this similarity can be used to derive theorems for embed- 
ding of native spaces into global Sobolev spaces on Rd. For embeddings of 
local native spaces on domains fl C Rd, we refer the reader to the fact (proven 
in [2] and [5]) that functions in native spaces always have an extension to the 
largest domain where $ has the c.p.d. property. This yields embeddings of 
local native spaces into spaces of restrictions of global Sobolev spaces for glob- 
ally defined functions $, but the case of purely locally defined $ is unsolved. 

If $ is v.p.d.of positive order m on Hd, the function ip of (5) will have a 
singularity at zero, and thus the notion of Fourier transforms needs generaliza- 
tion. We simply view (5) as a variational property satisfied by the generalized 
Fourier transform tp of $, and we want to prove 

Theorem 14. For v.p.d. functions $ on Rd of order m > 0 the functions f 
in the native space of $ have generalized Fourier transforms f = y/ip ■ g with 
an Li function g, where the generalized Fourier transform of f is defined via 
the variational property 

f f-w = (27r)-d ff-w for all w € <S^(fi). 

Proof: We take two functions v, w £ S^(ü) and form the function /„ := $*v. 
Then (5) yields 

/ w fv = {2n)~d / tpwv 

= (27r)-d fw^p^v (6) 

= (27r)-d fw^p-B{fv), 

if we define B(fv) := ^ftßv € L2(]Rd). This maps isometrically into L2(lRd), 
because the canonical inner product of such functions is 

(fu,fv)* = (2ir)-d j VW- 

Now (6) carries over to the closure, i.e.  the native space, and it yields the 
desired result. D 
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Review of Some Approximation Operators for 
the Numerical Analysis of Spectral Methods 

Yvon Maday 

Abstract. This paper reviews some operators that are used in the nu- 
merical analysis of spectral and spectral element methods. We motivate 
the introduction of these different operators and sketch their approxima- 
tion properties. Finally, we apply them to derive optimal error estimates 
for spectral type approximations of the solution of elliptic partial differen- 
tial equations. 

§1. Introduction 

Spectral type methods are high order discretizations that allow to compute 
approximate solutions of partial differential equations. The recent version of 
spectral approximations is based on the Galerkin approach where the varia- 
tional statement (equivalent to the strong formulation of the PDE) is set on 
discrete spaces of test and trial functions. For instance, let us consider the 
problem: find u € X such that 

o(«,«) = (/,«>,   %ex, (l) 

where X is some Hubert space, and a is a continuous bilinear form over X. 
The general Galerkin approximation of this problem first requires the choice 
of a family of discrete spaces XN C X, where JV is a parameter that tends to 
infinity and is related to the dimension of the discrete space XN- The discrete 
problem is then stated as follows: find ujv € XN such that 

a(uN,vN) = (f,vN),    VvNeXN. (2) 

The basic general hypothesis that makes problem (1) well-posed is that a is 
continuous and «-elliptic over X (i.e. 3 a > 0 such that a(u,u) > a\\u\\x for 
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all u € X. These properties remain true over each X^ (since X/v C X); thus 
(2) is also well-posed for each N. In addition, the solution u^ satisfies 

\\u-uN\\x<c   inf    \\u-vN\\x. (3) 

The constant c that appears in (3) is the quotient of the continuity constant 
of a with the ellipticipty constant a and is thus independent of Xjy. 

Going back to spectral methods, the definition of XN involves polyno- 
mials, and in the most simple cases (we shall see more general examples in 
Section 5) we have XN = X f) PJV, where Pjv represents the set of all poly- 
nomials of (partial) degree less than or equal to N. Here N is the parameter 
responsible for the convergence of the method. Due to (3), one ingredient in 
the numerical analysis of the spectral method is the approximation properties 
of the space of polynomials for given functions. The classical analysis of the 
approximation properties of polynomials is done in terms of L°°-norms. This 
is not completely appropriate for our purpose since most often X is a Hilbert 
space (generally L2 or H1 spaces), and the approximation properties have to 
be measured with these norms. If a rate of convergence (with respect to N) 
on the best fit miVN^xN ||« ~ fjv||x is sought after, some regularity has to be 
assumed over u. In Section 2, we give a survey of these best approximation 
results depending on the regularity of the function we want to approximate. 
We first analyze the L2-best fit and then the .ff^-best fit. The main ingredient 
in this analysis relies on the Legendre basis that is composed of the orthogo- 
nal polynomials for the standard Lebesgue mesure over the interval (—1, +1). 
These polynomials, denoted as (Ln)n, are defined by: degree(Ln) = n, 

/: 

Mi) = i. (4) 
1 Ln(QLm(QdC =^f~y (5) 

They satisfy some standard properties (actually valid for most families of 
orthogonal polynomials) 

A(Ln) = -±((1 - C2)^ = n(n + l)Ln, (6) 

that one can translate by saying that the Legendre polynomials are the eigen- 
vectors of the (Sturm-Liouville) operator A. Since this is a possible basis set 
for the implementation of problem (2), this gives the name of spectral to the 
methods we shall consider hereafter, and that have been first analyzed in [10]. 
We refer also to [6] and [3] for more recent surveys on the numerical analysis 
of these methods. In Section 3, we introduce the notion of numerical integra- 
tion and the interpolation operator, two notions that are naturally quite close 
and that allow to transform the "theoretical" approximation method into a 
"applicable" one. In Section 4, motivated by the analysis of the Stokes prob- 
lem, we introduce a new operator, that, in opposition to the previous ones, is 
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uniformly stable (in N) both in the L2-norm and the i?1-norm and possess 
optimal approximation properties. It has to be said, beforehand, that in the 
precise analysis of these spectral (or polynomial) approximation, the Bern- 
stein inequality runs counter to most standard tools that generally allow for 
deriving approximation results for a new operator from an already analyzed 
one. This Bernstein inequality tells about the equivalence of norms on the 
finite dimensional linear space of polynomials. It is well known that, for any 
function in H1, the L2 norm is smaller than the F1-norm; of course this is 
true in particular on polynomials: 

V^GPJV,       H^JVIU» < \\<f>N\\m- 

Since all norms are equivalent on Pjv, there exists a constant (obviously de- 
pending on N) such that 

v^ePjv,      \\4>N\\W<C(N)\\<I>N\\L*. 

The behaviour of this constant is made precise by the Bernstein inequality 

\/<j)N G PJV,        \\4>N\\IP < cN2\\c/)N\\L2, 

where c no longer depends on N. This estimate is optimal (in the sense that 
there exists a sequence of polynomials such that the ratio of the ü1-norm over 
the L2-norm scales like 0(N2)), but is bad as regards the ratio of convergence 
rate between the Habest fit and the L2-best fit that scales like OiN"1), as 
we shall see below. 

In the first three sections, the domains where the functions live will be 
very simple, actually too simple to tackle real life problems; indeed these are 
bricks equal to (—1, l)d where d = 1,2 or 3. The generalization of spectral 
methods to more complex geometries is done by combining two key ingredi- 
ents: the mapping of bricks onto curved bricks through regular mappings, and 
domain decomposition. We give some hints about this generalization in §5. 

§2. Hubert Type Projection Operators 

Let us start with the one-dimensional case. In L2(-l, 1), we consider the set 
PJV(-1,1) of all polynomials of degree < N. From the Weierstrass density 
theorem, we know that any element <f> in L2(—1, l) can be written as 

oo 

<£(C) = ££nMC), (7) 
n=0 

where the convergence of the series holds in L2. The coefficients 0n can be 
derived from <j> thanks to the orthogonality of the Legendre basis as follows: 

?" = ^//(C)MCK- 
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Next, from (6) we derive that 

2n + l   f1 

2     y_j        n(n + l) 

noticing that A is symmetric, and assuming cf> regular enough, we derive that 

2n + l   f1 

f-^J. «<*<>£%«■ 
If we iterate this argument p times, we obtain 

Tn      2n + 1 
/'^'«O^;«. 

so that, the following simple relation holds between the Legendre coefficients 
of (j> and of Ap((!>): 

0" =    , 1 ^ M4>)n- nP(n + 1)P      
KYJ 

Next, let TTN denote the L2(-l, l)-projection over P^(-l, 1). Going back to 
(6), we deduce from (7) and (5) that 

N 

nN(4,) = Y,rLn(C), (8) 
n=0 

so that 

oo oo 1 

n=N+l n=N+in  ^    +    -1 

and, by Parseval 

oo 1   _ 

ii*-^wiii.(-M,= E [^Vii?]2wn2^rT 
, oo 2 

LiVJ       ^   L     VYV J  2n + l 
n=AT+l 

1 °° 9 1 

* t]v]4pB-Wn22^TT = [^ll^Wlli'c-i.i)- 
n=0 

We have thus proven that, for any <f> in the domain V[AP] of .4P, 

It is easy to check that i72p(-l, 1) c V[AP}; hence the following theorem (due 
to Canuto and Quarteroni [7]), proven here for even values of r, holds for any 
r thanks to an argument of interpolation between Sobolev spaces: 
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Theorem 1. For any real number r > 0, there exists a constant c > 0, 
depending only on r such that, for any function 0 G Hr(-1,1), 

||0 - *N{4>)\\L*I-I,I) < cJV-r|Mli*'(-i,i). (9) 

Let us denote now by UN the L2((-l, l)d) orthogonal projection operator 
over the set PAr((-l,l)d) of all polynomials of degree < N with respect 
to each variable. By Fubini's theorem, II JV = KN ® TTJV, in 2D and II AT = 
7Tjv ® OTTJV ® °KN, hi 3D. By tensorizing (9) we derive 

Theorem 2. For any real number r > 0, there exists a constant c > 0, 
depending oniy on r such that, for any function <j> G iF((-l, 1) ), 

||0 - lM0)||La((_i,i)*) < cAr—"l|0||^((_i.i)-). 

We are now in a position to tackle the approximation in the H1 norms. 
First, we consider a function </> G H%{-1, l)nffr(-l, 1), with r > 1. It is quite 
immediate to check that the polynomial <f>N(() = /f x TTAT-I^ (0^ belongs 
to PJV(-1, 1), vanishes at C = -1, and satisfies 

= />«« = />* 
= 0(1) - 0(-l) = 0, 

and hence is an element of PJV(-1, 1) n H%(-1,1). Finally it is a good ap- 
proximation of 0, since from Poincarre's inequality and Theorem 1, 

d<j>     d<j>N.. 
||0 - ^ATIIHM-1,1) ^ cll^ ~ -^-IUa(-i.i) 

..dd) /^0MI 
<c||--TjV-i(^)|Ua(-M) 

Let us introduce now the orthogonal projection operator 7r^ from H0(-l, 1) 
onto Piv(-1,1) n H%(-1,1), we can state the following result (due to Maday 
and Quarteroni [15]): 

Theorem 3. For any real number r > 1 and any real number 0 < s < 1, 
there exists a constant c > 0, depending only on r and s such that for any 
function <j> G H%{-1,1) n Hr{-1,1), 

110 - ^°(0)HH.(-I.I) ^ ciVs-H|0||^(-i,i). (10) 

Proof: The theorem has been obtained for s = 1. For s = 0 it is obtained 
through a standard Aubin-Nitsche duality argument, and then for any s by 
interpolation between Sobolev spaces. D 
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Remark. At this point it has to be said that the L2 projection operator 7T/v 
does not have optimal approximation properties in the ff1-norm, the only 
(non-improvable) property that can be obtained is 

110 - TAr(^)||ffi(-i,i) < cNi-r\\<t>\\Hr(_hl). 

We refer to [3] for details and counter-examples. 

Remark. It may also be interesting to note that, despite their definition, the 
previous operators have stability properties in various norms. First for the 
L2-operator, we have 

IKN0||H1(-1,1) < CJV5||</>||H1(_I,I), 

which is related to what we have indicated in the previous remark, but also 

lkJv°^IU»{-i,D < cJViH^IU^-!,!,, 

which is rather suprising since, from this (non-uniform) stability property, the 
Hi -projection operator can be extended to (irregular) functions of L2!! 

Again by tensorization of the results of the one dimensional Theorem 3, 
we exhibit a polynomial that approximates regular functions in HQ((—1, l)d) 
well, from which we derive approximation properties on the multidimensional 
projection operator U.]f from H%((-1, l)d) over Pjv((-1, l)d) f~l H%((-1, l)d) 
both in /f1-norm and in L2-norm (derived by duality): 

Theorem 4. For any real number r > 1 and any real number 0 < s < 1, 
there exists a constant c > 0, depending only on r and s such that, for any 
function <f> e ^((-1, l)d) n Hr((-1, l)d), 

U - n^°(0)||ff.((_i,i)d) < cN-r\\4>\\Hrl(_lim. (11) 

These results can be completed in order to derive a whole scale of ap- 
proximation projectors in higher order norms. These are required, e.g. for 
the analysis of the approximation of fourth-order problems. The general re- 
sult, concerning the orthogonal projection operator n^CT

0 from Hp((-1, l)d n 

Hg((-1, l)d onto PJV((-1, l)d) n Hg((-1, l)d) is given'in the following theo- 
rem (due to Maday [11] in ID, see also [3] for the extension to 2 and 3D): 

Theorem 5. For any real number 0 < a < p and any 0 < s < p < r, there 
exists a constant c > 0, depending only on r, s, p, cr such that, for any function 
<£eF0

CT((-i,i)d)nir((-i,i)d), 

110 - WNAWWH-«-!.!)') < cNS-rU\\Hr{i_hl)dy 
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Remark. A final remark on these operators is that improved-approximation 
results in negative norms are also true, and can be obtained in a classical way, 
by further refering to the Aubin-Nitsche duality argument. Hence, Theorem 
5 is also valid for negative values of s. 

These results allow us to prove that the approximation of most elliptic 
variational problems by spectral methods is optimal. As an example, let us 
consider the (non-constant) Laplace problem on a cube Q = (—1,1)3: given 
a 3 x 3 matrix, symmetric and uniformly positive definite, we consider the 
problem of finding u £ HQ(Q) such that 

-divL4grad]w = /. (12) 

The approximation then consists in finding an element UN in X/v = Pjv(fi) H 
H^(Ct) such that 

/ AVUNVVN = \ fvN,    VWJV € XN. (13) 
Jn Jn 

Assuming that u S Hr(Q), we deduce from (3) and (11) that 

\\u - Uiv||tfi(n) < ciV1_r|H|Hr-(n). 

As hinted in the introduction, this problem is numerically intractable; 
indeed the implementation of (13) requires the computation of the two in- 
tegrals appearing on the left- and the right-hand sides of this equation. The 
exact computation is most often impossible, and certainly numerically not fast 
enough. The use of numerical integration rules is the cure to this problem, 
but in order to combine efficiency and precision, following Gottlieb [9] and 
Mercier [17], we refer to the use of Gauss type quadrature rule. Indeed, they 
are well known to be well suited for the integration of polynomials. 

§3. Interpolation Operators 

Between the different numerical quadrature rules over (—1,1), well suited for 
polynomial integration, we shall quote here the Legendre-Gauss and Legendre- 
Gauss-Lobatto ones. We refer to [2] for more details. For the sake of com- 
pleteness, we recall the definition of these formulae: 

Theorem 6. (Gauss formula) For any real number n, there exists a unique 
set of points — 1 < Cf < (? < ""' < Q < 1> an^ a unique set of positive 
weights w™ such that for any polynomial <j> € P2n-i(—1,1), the following 
equality holds: 

f <KCR = i>(CnK- 
*'-1 i=l 
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Theorem 7. (Gauss-Lobatto formula) For any real number n, there exists 
a unique set of points -1 = ££ < £" < •• • < ££ = 1, and a unique set 
of positive weights pf such that for any polynomial <f> £ P2n-i(—1,1), the 
following equality holds: 

/ «i*c=y>(ffK- ü 
From now on, we shall assume that the degree of the polynomials for the 

approximation is fixed to be N, and we shall use N + 1 points either of Gauss 
or Gauss-Lobatto type. For the sake of simplicity, these points will be denoted 
with no superscript, i.e. in all of what follows, we set C; = C; + and d — £?■ 
We recall that these points are the roots (resp. the extrema) of the Legendre 
polynomials; more precisely, we have 

Vi,   W(C0 = o.   (resP- (! - tf )JW6) = o). 
After tensorization, these one dimensional quadrature rules easily provide 
quadrature rules on the square and on the cube defined as follows (e.g. in 
2D for the Gauss Lobatto formula): 

N     N 

Yl $ - J2 Y^ $& - £> )WiWJ • 
GL        *=o i=° 

The problem that is actually implemented is then the following: find an ele- 
ment UN in XN such that 

J2 AVuN VvN = J2fvN'    VvNeXN. (14) 
GL GL 

Even in the case where A is constant, at least in more than one dimension, 
the left-hand side is not exactly computed. The problem is no longer of the 
form (1), and the abstract theory has to be generalized in order to handle this 
problem as well. 

Here is not the place to detail this generalization (see [3], where the 
complete analysis is performed) but it is natural that the a-ellipticity of the 
bilinear form on the left-hand side of (14) is again one of the key ingredients 
and has to be satisfied. This follows from the property, proven in [7] 

ePwC-i.i),   5>"^/ ^(CK- V<t>N 
GL 

From this property it can be easily derived that the solution u^ to (14) exists 
and is unique. 

The approximation properties of the polynomial interpolation operator 
over the Gauss-Lobatto nodes is of great importance in the error bounds. Let 
IN denote this operator in one dimension: 

V^GC°([-1,1]), iN{4>)eTN(-l,l)andWi,0<i<N, iN{4>)(ti) = 4{Zi) 

and let us tensorize it in order to get a two (resp. a three) dimensional operator 
IN = in ® in (resp. IN = in®in®in)- The properties of this operator have 
been established in [12] and [2], and read as follows: 
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Theorem 8. For any real numbers s and r satisfying r > (d + s)/2 and 
0 < s < 1, there exists a positive constant c depending only on r such that 
for any <j> in Hr((—1, l)d) tie following estimate holds 

\\<f> - INWWH-H-I,!)') < cNs-r\\<t>\\Hra_lim. (15) 

It has to be noticed that this operator requires more regularity than the 
L2 projection operator, but it is optimal both in the I? and the H1 norms. 
It has also to be recalled that in the classical approximation properties in the 
L°° norm, the Lebesgue constant appears as a pollution of the approximation 
properties of the interpolation operator as regards the optimality provided 
by the corresponding best fit. This is not the case in the L2-norm. In this 
direction what we have more precisely is that, for any function <f> in HQ{—1,1), 

||ijv0IU=>(-i,i) < c(|M|i,2(-i,i) + -^H^TIIL2(-I,I)), 

and for any function <j> in Hl(—1,1), 

||w£||ffi(-l,l) < CH0||HI(_I,I). 

Another nice property of this operator, that has some importance for nonlinear 
PDE's, is the following result: for any polynomial <J>M € PM(-1, 1), 

M 
[|«JV«^Af ||i2(-l,l) < c(l + "jy )||0Af||z,2(-l,l)- 

Here no duality argument allows us to derive from the previous theorem 
improved approximation properties in negative norms. It is an open problem 
to derive such results. 

The numerical analysis of problem (13) then continues by noticing that 

YlfVN = ^2TN(f)vN, 
GL GL 

which is one of the ingredients that allows to prove (see [2]): 

Theorem 9. Assume that the solution u of (12) belongs to Hr(Q), that the 
coefficients in A are very regular, and that the data f belongs to HP(Q,). Then 
the solution u^ to (13) satisfies 

\\u - uwllffipi) < c(N1-r\\u\\Hrm + N-»\\f\\H„m). 

The case where A is not so regular can be handled with the same type 
of arguments, but more technical tools are involved; we refer to [16] for more 
details. It is interesting also to note at this level that, taking into account non- 
homogeneous Dirichlet boundary condition is very simple thanks to the nice 
properties of the interpolation operator. Indeed, assume that the solution to 
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our problem (12) has to satisfy (instead of zero Dirichlet boundary conditions) 
the following condition: U^Q = g where g is a given function on the boundary 
of fl. Then, naturally, for the approximation, we look for a polynomial UN in 
PAT(JI) such that (12) holds, and in addition 

UN\an = IN9, 

where 2jv 1S the operator of interpolation defined edge by edge (respectively 
face by face) from iff (resp. from Iff). Since the interpolation operator is 
optimal both in L2 and in H1, it results by an argument of interpolation 
between Sobolev spaces that it is also optimal with respect to the H1'2(dfl)- 
norm. This fractional order norm is the natural one for the treatment of the 
boundary terms. It has also to be stressed that neither the L2-projection 
operator nor the i71-projection operator allow such an optimality nor such 
ease in the implementation. 

Next, associated with the Gauss quadrature formula, we can also define an 
interpolation operator, denoted as jff and defined as follows: V0 S C°([—1,1]), 

JNW G PJV+I(-1, 1) and V», 1 < t < N + 1,    jN(<t>){0) = 0(G)- 

The L2(—1, l)-approximation properties of this second interpolation operator 
are also optimal. Unfortunately, in the H 1-norm it is not optimal; for instance 
it is readily checked that JN{LN+I — L^-i) = Lff-i- Recalling that 

Vn,    Ln+1-Ln_1 = --^-^(l_C2)£l1, 

it is then easily proven that ||£jv+i -£;v-i||//i(-i,i) scales like 0{N1/2) while 
||i»iv—I||ä"

1
(—i,i) scales like O(N); jff is thus not stable in the H1 norm. 

For similar reasons, the interpolation operator iff on the Gauss-Lobatto 
nodes does not have optimal approximation properties in the H2(—l, l)-norm. 
In order to achieve such a property, we have to refer to generalized Gauss- 
Lobatto rules as is done e.g.in [1]. 

§4. An "Ideal" Operator 

At this stage there is no operator from L2(-l, 1) onto the set of polynomials 
that has optimal approximation properties and is stable both in the L2 and 
the H1 norm. Such an operator is useful, as will be explained below, in the 
analysis of the Stokes problem. In order to define this "ideal" operator, we 
fix a positive real number A and a cut-off function \ of class C1 on H such 
that x is equal to 1 on [0,1 — A], decreases from 1 to 0 on [1 — A, 1] and 
vanishes on [l,oo]. Next, with each positive integer TV, we associate as in [18] 
an operator 7rN with values in P^v(—1,1) fl HQ(—1, 1) as follows: since each 

function <f> in HQ(—1,1) can be written as </> = J]n=1 4>n(Ln+\ — Ln_\), we set 

7i-x <^> = Yl^Li x(^)</,n(-^n+i — Ln-i). Note that the sum above is finite since 
X has a bounded support. It is proven in [4] that this operator is stable both 
in the HQ and the L2 norms: 
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Theorem 10. There exists a constant c, independent ofN such that for any 
function <j> 6 HQ(—1,1), 

K0||L'(-1,1) < C|M|£2(-1,1),     ||^^||HI(-I,I) < II0I|HI(-I,I). (16) 

It is an easy matter to verify that the operator ir^ leaves invariant all 
polynomials of PAJV(-1, *) n #o(_1>1). The previous stability and the best 
fit estimates (9), (10) imply 

Theorem 11. For any positive real number r and any real number 0 < s < r, 
there exists a constant c > 0, depending only on r and s such that, for any 
function <t> G #5(-l, 1) ifr < 1 and any function <f> G H%(-1,1) D Hr(-1,1) 
ifr > 1, 

||^-7r^||H.(-i,i)<^'"r|l*llH'(-i.i)- 

As an application of the previous result, we can consider the problem 
of finding compatible spaces for the approximation of the Stokes equation. 
Under variational formulation, this problem consists in finding a pair (u, p) in 
(.ffo(fi))d x LQ(CI) of velocity and pressure such that 

/ VuVv - j pdivv = [ fv,    Vu G (#o1(ft))d> (17) 
Jn Jn Jn 

f qdivu = 0,    Vq G L2
0{£1), (18) 

Jn 

where LQ(Q,) is the set of I? functions with zero average. It is well understood 
now that the spectral approximation of the Stokes problem based on polyno- 
mials of the same degree leads to instabilities. This is due to the fact that 
the pressure space is too rich in comparison to the velocity space. Indeed, 
there exist polynomials q^ in P;v((-1, l)d) such that JnqNdivvN = 0 for all 
vN in (PJV((-l,l)d)nif0

1((-l,l)d))<i (e.g. qN(x,y,z) = LN(x)LN(y)LN{z)). 
Of course such polynomials (called spurious modes) prevent the discrete prob- 
lem from being well-posed since it prevents the definition of a unique pres- 
sure. The cure is well known, and consists in depleting the pressure space 
for a given velocity space. In [14] the pair (PN((-1, l)d) n H%({-1, l)d))d x 
Pjv_2((-1, l)d)nZ/o((-l, l)d) has been proposed, and gets rid of the spurious 
modes. It is known as the Pw x Pjv-2-method. Actually, what is looked for 
is a pair XN x MN approximating (H0

1((-l,l)d))d x Lg((-1, l)d) well and 
such that not only Vgjv G MN,3VN, JnpdivvN / 0, but more precisely, in 
order to get a stable method, we require that 

Vgjv G Miv,3wjv,     / pdivwjv > /?||w^|ffi((-i,i)<')lkA/'IU2((-i,i)<J)> 
Jn 

where ß is known as the constant of the inf-sup condition. The behaviour 
of ß for the PJV x PAr-2-method scales as 0(N 2~) (see [2]), and it has 
been a long standing question whether there is a uniformly stable spectral 
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approximation of the Stokes problem. It has to be said that the nonuniform 
behaviour of the inf-sup constant pollutes the accuracy of the pressure, but 
also pollutes the convergence properties of some classical solvers for the Stokes 
problem (see [13]). The "ideal" operator introduced above allows us to prove 
that a compatible choice is the P^r x P^jv-method that proposes, for the 
same choice of velocity space, PAN((-1, l)d)n£o((-l, l)d) to be the pressure 
space. The following result is due to Bernardi and Maday [4]: 

Theorem 12. For any real number A, 0 < A < 1, there exists a positive 
constant ß independent of N such that, for any integer N > 2/(1 — A) and 

any qN € PAJV((-1, l)d) n Ljj((-1, l)d), 

(npdiwN 
SU

P Juri ^ ßWQNWL'a-hi)*)- 
«N6(P»((-l,l)'i)nHj((-l,l)'l))d \\VN\\H^(-I,I)") 

Proof: Let qN be any polynomial in PAAr((-l, l)
d) n L%((-1, l)d). It is a 

standard matter (see e.g. Corollary 2.4 in [8]) that, to qN, can be associated 
a (continuous) element v in [HQ{{-1, l)d)]d such that 

divu = qN and ||W||HI((-I,I)") < c\\<lN\\m(-\,\)*y 

The problem is that v is not a polynomial. We define vN = nN <g> KNV in 2D 
and VN = KN ®-KN (& irNv in 3D for which we derive thanks to (13) that 

\\
V

N\\HI((-I,I)<>) < C
I|9N||L2((-1,1)<1)- 

Due to the fact that 7r^ leaves invariant all polynomials of PAAT(—1,1) H 
HQ(—1, 1), we deduce that JQ gwdiv(wjv — v) = 0, and thus 

/ qNdivvN =  / g^divu =  / qN, 
Jo. Jo. Jü 

which concludes the proof with /? = £. D 

§5. Extension to Domain Decompositions 

In the spectral method history, the need to tackle more general domains was 
recognized early. In this direction, Patera has proposed in [19] the spectral 
element method that combines the accuracy of the spectral method with the 
flexibility of the domain decomposition methods. The idea is to introduce a 
partition of the domain fl as a union of nonoverlapping subdomains: 

n = u£=1lf,   n*nn' = 0. 

In addition, we assume that each subdomain $lk is associated with a regular 
one-to-one mapping Tk that maps the brick (—1,1 )d onto tik and, for the 
time being at least, we make the following assumptions: 
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Assumption 1. 

fi*nfi' = < 
' an entire common face (in 3D),    or 
an entire common edge, or 
a common vertex, or 

Assumption 2.    The two parametrizations of the previous intersection 
fi   n fi , resulting from T   and Tl, coincide. 

This allows us to define the discrete space 

XN = {vN G Hl(Q), vN]n* o Tk € Piv((-1, l)d)} 

and the discrete associated problem (2) (or its implementable version involving 
the Gauss-Lobatto quadrature rule over each fifc as in (13)). 

The main ingredient that allows us to prove that the previous scheme is 
again optimal lies in the definition of a element in XN that approximates well 
a given regular function u. This is done easily by considering the element DJV, 

defined locally over each subdomain as fjv|nfc °Fk= Xjv[u|n* oTk]. It results 
from Assumptions 1 and 2 that VN is actually continuous and vanishes over 
dfi. From (15) it is an optimal approximation of u in the sense that 

II« - «wlltfi(n) < ciV1-r||u||flT(n). (19) 

The best fit in ff^fi) is certainly as good as the proposed vjf, and the spectral 
element method can be proven to be an optimal approximation. We have only 
sketched the numerical analysis of this approximation, since the main purpose 
of this paper is to discuss projection operators. It is fundamental to have used 
here the interpolation operator to construct ujv, since it provides a globally 
continuous function. As an example, the use of the H1-projection operator 
would not have given rise to a continuous function since, for a given function 
(j> over the brick (—1, l)d, the value of II]^ (<£) over any face depends not only 
on the value of <f> on the given face, but depends on 4> inside the whole domain. 

We want to end this section by giving some hints on the "mortar spectral 
element method" due to Bernardi, Maday and Patera, that allows to relax 
assumptions 1 and 2 (and even, more generally, allows to combine spectral 
methods on some subdomains with different finite element methods on others 
see [5]). Due to lack of space, but also in order to better understand the 
main feature of the projection operators that is at the basis of the method, 
we shall consider a simple two dimensional domain fi = (—1,2) x (—1,1) 
decomposed into 3 subdomains fi1 = (-1,1) x (-1,1), fi2 = (1,2) x (-1,0) 
and fi3 = (1,2) x (0,1). This decomposition violates assumption 1 since the 

 1       2 
intersection fi n fi is not a common whole edge. We want nevertheless to 
propose a discrete method that will allow to provide an optimal approximation 
of the solution u of (12) (with A =Id for the sake of simplicity). The discrete 
space X^f that we propose is imbedded in 

YN = {vN G L2(n),vN\Qk G Piv,wjv|9n = O,^^ = u^s over fi  nfi } 
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but it is readily checked that imposing continuity at the level of the inter- 
face x = 1 will rigidify the approximation and, in the general case, will spoil 
the accuracy of the method. In order to relax this continuity condition (re- 
mind that it is inherited from the requirement that X^ C X), we resort to 
nonconforming approximations. We shall replace the continuity condition by 
requiring that, over the interface x = 1, we impose for each element in YN 

r   [v-(l,y)-v+{l,y)]i>N(y)dy = 0,    ^N € Pw-2(-l, 1),       (20) 
/; 

where v    = V\QI and 

't>|n2    for (x,y) £ ft2, 
«ins    for (x,y) € ft3. 

Since v~(l,y) has to vanish for y = ±1 (due to the homogeneous boundary 
conditions), it is entirely defined by the N — 1 conditions in (20); in particular 
choosing ip in Pjv(—1,1) would be much too stringent. The elements of Y}v 
that satisfy (20) constitute the space Xfr of approximation. The method is 
then: find u*N € X^ such that 

K K     . 

aN{u*N,
vN) = y2       Vu*NVvN = y2       fvN,    VvNeX*N. (21) 

Since X^ is no longer a subspace of X, the ellipticity of the bilinear form of 
this problem is not straightforward. Nevertheless, it is true (and here it is 
particularly obvious since dtik 0 9ft / 0). This argument allows us to check 
that there exists a unique solution u^ to (21). In order to derive the error 
bound we proceed as follows: for any WN € X^, 

a\\u*N -wN\\l < aN(u*N -wN,u*N -wN) 

*     f *     f 

K K 

= T/    -Au(u*N - wN) - V) /    VwNV(u*N - wN) 

K      . K      . 

= 5/    VuV(u*N - wN) -Y]       VwNV(u*N - wN) 
tiJ°k tlJnk 

~ -r^[{u*N   - WN)~   -   {U*N   - WN) + ], 

so that, from (20) we derive that for any ip € Pjv-2(—1,1) 

K 

a\\u*N-wN\\l <J2 I    X7(u-wN)S7(u*N-wN) 

L {fa-i>}[(u*N-wN)     - (U*N - WN) + ]. 
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It follows from the previous inequality that 

a\\u*N-WN\U<c\\u-WN\\* +   sup    /^itfe-flto-'fl'fr.       (22) 
vNeX'N \\

V
N\\* 

By choosing ij) equal to 7r/v-2§f > it results that 

sup      J«=lta» ^* ^-^<dV"r    tiflr(n). 
wex; IMI* 

It remains to choose a good approximation w^ of u in X^ to take into account 
the first term on the right hand side of (22). This is done by noticing that, for 
any <f> G HQ(-1, 1), the element <f>N of Pjv(-1,1) n HQ(-1, 1) that satisfies 

/. 

l 

[<t>N ~ 4>]1>N{v)dV = 0,    W>AT G PJV-2(-I, l), 

—   -TV1'0 is nothing other than ^>jv = "# W- Indeed, we remark that, for any \N G 
PJV(-1, 1) n ff£(-l, 1), then x'w G Pjv-a(-l, 1), thus 

/ [0JV - (f\xN(y)dy = -    y>N- 4>}'x'N(y)dy- 

The choice of a good element Wff is done as follows. We first set Wpf\nk = 
^v(w;v|r2*) that is an element of Yjv- We then set wN\Qk = W/vin* for k = 2,3, 

and build wjv|ni by adding to w^ the correction irrf (w^ — w]^)(y)( 2^, fi^' 
so that it satisfies (20). Due to the optimal approximation properties of the 
operator ir^ both in the I? and in the H 1-norms, we deduce that the mortar 
spectral approximation (21) is optimal in the sense that (19) still holds. 
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H-Bases I: The Foundation 

H. Michael Möller and Thomas Sauer 

Abstract. The H-basis concept allows an investigation of multivariate 
polynomial spaces degree by degree. In this paper, we mention its con- 
nection to the Gröbner basis concept, characterize H-bases, show how to 
construct them, and present a procedure for simplifying polynomials to 
their normal forms. Applications will be given in [8]. 

§1. Introduction 

We consider IT, the ring of polynomials in x\,..., xn with coefficients from an 
infinite field K, i.e. II = K[xi, ...,xn], and the subsets lid of all polynomials 
of degree at most d. In many applications, one is interested in getting a basis 
or a generating set for the linear vector space I nUd, where / C II is an 
ideal. Having an H-basis {/i,... ,/s} for /, then the set of all pi ■ fc with 
Pi € nd_deg(/i), i = 1,...,s, generates /nü^asa linear vector space. Thus 
the H-basis concept is a tool for transforming a non-linear problem in n into 
a problem in one (or in a series of) finite dimensional linear space(s) Hd- 

H-bases were introduced first by Macaulay [4]. His original motivation 
was the transformation of systems of polynomial equations into simpler ones. 
The power of this concept was not really understood, presumably because 
of the lack of facilities for symbolic computations. When Computer Algebra 
Systems came up, Gröbner bases (G-bases for short) were used instead of 
H-bases. These bases, originally invented by Buchberger [2] for computing 
multiplication tables for factor rings, are now also applied for simplifying 
some problems in Numerical Analysis, see [5]. 

The G-bases give generating systems not to I f) Hj, but to I (~) Ti, where 
Ti C n is a linear vector space of dimension i, and Ti C Fi+i for all i and 
n = Uj^o^i- This finer decomposition has some drawbacks. For instance if 
an ideal is invariant under an affine symmetry group, its G-bases are typically 
not invariant. Since the spaces nd are invariant under affine symmetry groups, 
H-bases do not destroy such symmetries. 

Many of the problems in applications which can be solved by Gröbner 
techniques can also be treated successfully with H-bases.  In [7] we gave an 
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overview of such problems. In the present paper, we describe briefly the 
underlying concept of grading rings, which leads to G- and H-bases, and 
present some properties characterizing H-bases. In contrast to [7], where we 
only gave a class of examples of H-bases, we present here the construction of 
an H-basis for zero-dimensional ideals /. A useful tool for our procedure is 
the so called normal form mapping NF, presented in Section 4, which projects 
n orthogonally to the ideal I provided an H-basis of/ is given. In [8] we show 
how these normal forms can be applied in numerical applications. 

§2. H-bases and G-bases 

In ring theory, rings can be graded by an ordered monoid, i.e. by an abelian 
semigroup T with addition + and total ordering -< satisfying 

7i ■< 72  => 7o + 7i -< 7o + 72,    V70,71,72 e T. 

There are two major examples for grading n by an ordered monoid  T: 

n = ©n(n,   « c ^ vM 6 r. 
7er 

The first one is the H-grading with r := 1N0, 

n^P := {p € n \ p homogeneous of order 7}. 

The ordering of T = 1N0 is the natural one. The second example for gradings 
is the G-grading, where T := IN" and 

ng 7B) :={«■? •■•*;?• |cGK}. 

r = IN™ is ordered by an admissible term ordering, 

0 ;< i, i ■< j =$> i + k -< j + k. 

Since the decomposition of n into the sets Wy ' is a direct sum, every / G n 
has a unique representation f = Ylfi- The maximal 7 with /7 ^ 0 is called 
the maximal part of / / 0, M^T\f) for short. It is also called the maximal form 
in the H-case, or leading monomial in the G-case. In the G-case, M^T'{f) = 
lc(f)lt(f), where lc(f) 6 K is the leading coefficient and lt(f) = x'^ ■ ■ ■ x]? 
the leading term. The maximal form of / 7^ 0 is also denoted by MH(f). 

Definition 1. {pi,---,pm} C / is called a basis of an ideal I C n, brießy 
I = (pi,...,pm), if\f pel 

m 

30i,...,gm SU   :  p = ~Y^9kPk- 
k=\ 
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It is also a G-basis or H-basis resp. ifgi,...,gm satisfy in addition 

max lt(gk)lt(pk) = lt(p)   (G — basis), 
k=l 

or max deg(gkpk) = deg(p)   (H - basis). 
k=l 

Theorem 1. Let I = (pi,.. .,pm). Then {pi,- ■■ ,pm} is an H-basis (G- 
basis resp.) if and only if the least ideal containing all Mff(f), 0 ^ / € I 
for all lt(f), 0 ± f € I resp.) is generated by MH(pi), ■ ■ .,MH(Pm) (or by 
lt(pi),...,lt(pm) resp.). 

This theorem, which holds mutatis mutandis for arbitrary graded rings, 
is proved for instance in [6]. An immediate consequence of it is that every 
ideal I ^ (0) has an H- and a G-basis. 

G-bases are now a standard tool in Computer Algebra. They are covered 
by nearly all textbooks, and are contained in almost all Computer Algebra 

Systems. The grading by one-dimensional linear spaces Ilij, ' often reduces the 
computation to solving a series of one-dimensional problems. On the other 
hand, the construction of G-bases is often difficult or even impossible because 
of the high complexity of Buchberger's algorithm for computing G-bases. In 
addition, in many applications the G-bases allows only little insight into the 
structure of a solution by the artificial ordering term by term. 

§3. Characterization of H-bases and Normal Forms 

Macaulay introduced H-bases using homogenizations and dehomogenizations 
of polynomials. The name H-basis originates from the first letter of homoge- 
nization. 

Definition 2. Let f £ K[xi,..., xn] have degree d, 

d 

f = yj/i,    fi homogeneous of degree i,    fd ^ 0. 
i=0 

Then introducing a new variable XQ, the homogen ization off is a homogeneous 
degree d polynomial in K[XQ, X\, ..., xn], 

*(/)== I>o~7*. 
i=0 

A homogeneous F € K[:co,xi,...,xn] can be dehomogenized to an f G II by 
x0 = 1. 

For more details on homogenizations and their connection to projective 
coordinates, we refer to [3]. 
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Theorem 2. (Macaulay [4]). Let I = (hi,..., hs). Then the following state- 
ments are equivalent 

1) The least ideal containing all $(/i), 0 ± h € /, is <$(/ii),..., $(hs)). 

2) x0F G ($(/n),..., $(/».))   => F e ($(/n),..., $(/»,)). 
3) {/ii,..., hs} is an H-basis of I. 

The power of the G-basis concept is mainly based on the possibility of 
reducing a polynomial to a simpler one by subtracting suitable multiples of 
elements of the G-basis. A consequent application of this reduction strategy 
gives the so called normal form, in a sense the simplest polynomial obtainable 
by the reductions. We translated this technique to H-bases in [7], and give 
here for consistency a short resume of the main results. 

Definition 3. We denote by Ud
H' the space of all homogeneous degree d 

polynomials for d 6 N„ and Ud
H) := {0} for d < 0. Let hlt..., hs e n. Then 

we define a unite dimensional linear subspace ofUK
d     by 

m,... A) := {i>MH(M I 5l € n^e9(hi)}. 

Analogously for an ideal I C II, 

Vd(I) := {MH(p) \pel, deg(p) = d} U {0}. 

We introduce an inner product ( . , . ) in II, for instance, by the inner 
product of the (weighted) coefficient vectors, or by a strictly positive linear 
functional J and (f,g) := J(f ■ g) if K C R or := J(fg) if K = C. Then we 
can define orthogonal complements Wd{h\,. ■., hs) and Wd(I) inUd '. Hence 

VifAi,...,hs) © Wd{hu. ..,hs) = Ud
H) and Vd{I) © Wd{I) = Ud

H). 

Let us consider a polynomial / of degree d. Then 

MH{f) € Vd{hu..., h.) © Wd(hu..., ht). 

Let wd denote its natural projection on Wd{h\,... ,hs). This homogeneous 
polynomial can be computed by solving a finite linear system of equations be- 
cause Ud has a finite dimension. Hence there are homogeneous polynomials 
gi,... ,gs such that 

8 

f = Wd + ^9ihi + fu  9i e n^^.), /1 e nd_i. 
i=l 

We say/ reduces to wd+fi modulo {hlt...,hs} and call/1 then the remainder 
of/. 
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In the reduction modulo {hi,..., hs} the degree of the remainder f\ is less 
than deg(f). Hence this reduction can be applied recursively reducing /j_i 
constructively to Wd+i-i + fi modulo {Ai,..., As} for i = 1,..., d +1 starting 
with / = /o S Hd and terminating with fd+i = 0, because the constant fa 
is either in Vo(Ai, ■ ■■ ,hs) or in Wo(hi,..., hs). Combining these reductions 
modulo {hi,..., hs}, one obtains for / 

d d      s 

j=0 i=0 j=l 

Then J2i=o wi *s uniquely determined by /, by {hi,..., hs}, and by the un- 
derlying inner product. 

Definition 4. Let hi,...,hs € II. We say / € 11^ reduces fully modulo 
{hi,...,hs} to J2i=owi if every Wj e Wi(hi,... ,hs) is constructed as de- 
scribed above.  X\_0 Wj is called the normal form of / modulo {hi,..., hs}, 
for short 

d 

j=o 

If {Ai,..., hg} is not an H-basis oi I := (hi,..., hs), then Mfj(f) is not 
necessarily contained in Vdeg(f)(hi,..., hs), although f £ I. This means, that 
eventually the first homogeneous polynomial w<z is not 0 if / € /. Hence at 
most if {Ai,..., hs} is an H-basis, then NF(/, {hi,..., hs}) = 0. In fact, as 
quoted in [7] but shown already in [9], {Ai,..., As} is an H-basis if and only 
if NF(/, {Ai,..., AJ) = 0 for every / e (Ai,.. .,hs). 

Another characterization of H-bases given in [7] is as follows. 

Theorem 3. Let I be an ideal and Ai,..., hs £ I. {hi,..., hs} is an H-basis 
of I if, and only if, for all d € IN, 

Vd{I) = Vd{h1,...,ht). 

§4. On the Construction of H-bases 

Macaulay proposed in [4] a procedure for computing H-bases of ideals given by 
a basis. However, his description was only by an example. He claimed " This 
procedure is a general one". But he needs in his example the computation of 
certain modules of syzygies. These can be constructed only in special cases 
or by computing first a G-basis and then applying techniques as in [1]. 

On the other hand, if an admissible term ordering -< is compatible with 
degrees, 

deg(x?---xl«)<degtf1---xfr)  =»  xf ■ ■ -x^ -< xf • • ■ xfr, 

then a G-basis with respect to -< is also an H-basis. Hence Buchberger's 
algorithm for computing G-bases also serves for computing H-bases. This 
seems a more direct access than via syzygies. However, if one wants to use 
H-bases instead of G-bases, this way is still a detour. 
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In case the number n of variables coincides with the number of given 
polynomials, then there is an easy test for H-bases as proved in [7]. 

Theorem 4. Let h\,...,hn ben polynomials such that their maximal forms 
MH(III), ..., Mnihn) have only the point (0,..., 0) as common zero. Then 
{hi,... ,hn} is an H-basis. 

For an arbitrary zero-dimensional ideal, i.e. for an ideal I such that the 
polynomials in I ( equivalently: the polynomials in an arbitrary basis of 7) 
have only a finite number of common zeros in K , K the algebraic closure of 
K, see [3], we present here a procedure which computes an H-basis from a 
given basis. 

Procedure for computing H-bases. 
In     : H0, a finite polynomial set generating a zero-dimensional ideal /. 
Out : H, an H-basis of I. 
Start: H := H0,  d = 0. 
Loop: Check the finite dimensional linear vector space 

Vi{H) := {£>MH(/0 | ghMH{h) e Ud
H)} 

hen 

for linear dependencies. If ^2henghMH(h) = 0, then compute p := 
^F(YlheHgflh:7i)). If p ± 0, then enlarge H by p, and modify con- 
sequently Vo{H),...,Vd-i(H). Lower d to the least k where Vk{H) is 
changed and go to Loop. If for no linear dependency such p is nonzero, 

then then enlarge d by 1. If now Vd(H) = Md 
nolds true' tnen return 

Tt otherwise go to Loop. 

This informal description can be extended easily to a correct algorithm. One 
has to observe that the checking of Vd{H) for linear dependencies needs a basis 
of the nullspace 

5 

{(9i,--.,9s) end
HJdeg{hi)x ...xnweg[ha) \ 5>MH(äO = O}, 

where H = {hi,... ,hs}. If for every basis element (gi,...,gs) the normal 
form of Yli=i 9'hi is 0i then it holds for every element of the nullspace, i.e. 
for every dependency. As a byproduct of the basis computation one obtains 

dirnVdCH). Then the test Vd{H) = n^H' reduces to a comparison of the 

dimensions because of Vd(H) CIIj '. 
For proving correctness and termination, we consider first / := Y^heH 9h^ 

with ghMH{h) € Ud
H) for all heH. If NF(/,7i) = 0, then especially MH{f) € 

Vk(Ti) for a k < d, and hence 

MH(f) e {MH(hi),..., MH(hs)), where Ti = {hu..., hs). 

In case p := W(f,H) ^ 0 either MH{f) ^ MH{P) holds, i.e. again 

MH(f)€(MH{hi),...,MH{hs)), 
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or MH{f) = MH(jp) holds, i.e. 

MH(f) e (Mnih),..., MH(fcs), MH(p)>. 

Therefore, if in the procedure d is increased by 1 (and H is updated), then for 
every 0 ^ J2hen 9hh € I, deg(gh) + deg{h) < d the relation 

MH{YJ9hh)£{MH{hl),...,MH{hs)) 
hen 

holds where again H =: {hi,..., hs}. This is our inductive hypothesis. 
The ideal I has an H-basis, say {ipi,..., ipm}. H is a basis of I. Hence 

every <pi has a representation <pi = Ylj=i9ijhj, 9ij € IT. If the inductive 
hypothesis holds for d, then one obtains at least for d > M :=maxijdeg(gijhj) 
that 

MH((fi)e {MH(hi),...,MH(hs)}, i = l,...,m. 

Hence for those d Vd{ipi,...,<pm) C Vd(H). But Vd{(fi,... ,<pm) = Vd(I), 
since {<pi,... ,<pm} is an H-basis of /. Therefore Vd{H) = Vd(I) for d > M. 
By the inductive hypothesis, also Vk{U) = Vk(I) holds for k < M. Hence H 
is an H-basis of I if we arrived at a d > M in the procedure. 

The ideal i" has dimension 0. Then there is a D such that Vd(I) = n^ 
for all d > D, see for instance [3, Ch 9.4,Prop.6] and [3, Ch 5.3,Thm.6]. 
Hence for d > max{D, M} one has Vd(H) = U.H). Thus in the course of the 
procedure, one arrives once, not knowing M, at a d0 with Vda{H) = ndo . 

Then also Vk{H) = nj;H) for all k > d0. Therefore, for every polynomial f e I 
with 

s 

t=l 

the assumption MH(f) <£ (MH(hi),..., MH{hs)) leads to deg{MH(f)) < do- 
But then the inductive hypothesis gives a contradiction. Therefore the proce- 
dure gives no new p ^ 0 enlarging the set H. This ensures termination. 

An implementation of an algorithm based on this procedure and a com- 
plexity analysis is still a work under progress. 
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H-Bases II: Applications 
to Numerical Problems 

H. Michael Möller and Thomas Sauer 

Abstract. We show how H-bases can be applied to polynomial interpo- 
lation and for the solution of systems of nonlinear equations. We will give 
an example of a system of polynomial equations where the H-basis leads 
to more stable computations than with the Gröbner basis. 

§1. Introduction 

In the preceding paper [12], we introduced the notion of H-bases for poly- 
nomial ideals, and showed how to construct H-bases in the numerically most 
interesting case of a zero dimensional ideal. In this paper we consider two prob- 
lems from Numerical Analysis, namely polynomial interpolation and solving 
systems of polynomial equations, and point out how H-bases can be applied 
to both. More precisely, in both cases the computation of normal forms with 
respect to an ideal plays a crucial role, and with the basic results from [12] 
available, H-bases yield a perfect replacement for the Gröbner bases which are 
normally and frequently used to do this job [8]. Finally, we will consider an 
example where a properly chosen H-basis leads to a significant stabilization 
of the computations in comparison with the use of Gröbner bases. 

§2. Interpolation 

A finite set 6 C II' of linearly independent functionals on n is said to define 
an ideal interpolation scheme if its kernel, ker© C n, is an ideal in n. Given 
an ideal interpolation scheme 0 and a polynomial f £ H, the interpolation 
problem consists of finding p € n such that 

e(p) = e(/),     i.e.,     0(p) = 0(/),   tfee. (i) 
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So far, we have put no restrictions on p; hence, there are infinitely many 
solutions to (1). More precisely, if p is any solution of (1), hence /-p£ ker 0, 
then the set of all solutions is the equivalence class 

[p] = p + ker 0 = / + ker 9 [/]. 

We denote the linear space of all equivalence classes by 11/ker 0, and remark 
that (dim 11/ker 0) = #0. Of course, in order to compute interpolation poly- 
nomials, we must find a way to choose a specific element from the equivalence 
class [/]. A "natural" choice is to take the normal form NF (/, Ti), where H 
is an H-basis for ker©. Since [/] = [g] implies that / — g £ (W), and since 
NF {-,Ti) is a linear operator, we have that 

[/] = [<?] =* NF(/)W) = NF(fl,W)+NF(/-ff)W)=NF(SlW). 

Hence, NF ([/] ,H) = NF (f,H), that is, the normal form is the same for any 
element of the same equivalence class. This algebraic approach also allows 
for interpolation of functionals which are only given implicitly, that is, by an 
ideal X C II: compute an H-basis H for I and the interpolation operator is the 
"remainder of division" NF {^Ti). It is worthwhile to remark that one of the 
oldest papers on multivariate interpolation, namely [6], starts with implicitly 
given interpolation nodes. 

Another approach is to look for a polynomial space V C II which allows 
for unique interpolation with respect to 0; to restrict the number of solutions 
to this problem, one usually demands the interpolation operator L-p :Ü-»P 
to be degree reducing [3], that is, 

degLp/<deg/,       fen. 

Such an interpolation space with a degree reducing interpolation operator 
is called a minimal degree interpolation space. The most prominent minimal 
degree interpolation spaces is the least interpolation space introduced by de 
Boor et al in [2], and is the unique degree reducing interpolation space which 
satisfies the additional condition 

P=    f|    kerq(D),        q(D) := q ( 
q£kerQ 

d d 

dxi'      ' dxn 

On the other hand, it is obvious that the operator NF (•, H) is degree reducing, 
linear and interpolating, hence all the spaces V = NF (II,H), for any H- 
basis 7i, are minimal degree interpolation spaces with interpolation operator 
L-p — NF (•, H). Moreover, it is even possible to recover known minimal degree 
interpolation spaces by this algebraic process. 

Theorem 1. [15] The least interpolation space is given as NF (TI,H), where 
H is an orthogonal H-basis with respect to the inner-product 

(p,q) = (p{D)q)(0), p,qeU. 
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§3. Polynomial System Solving 

Probably the best-known and most frequent use of Gröbner bases is for solv- 
ing polynomial systems of equations, where they form a core part of literally 
all available computer algebra systems. These systems of equations arise natu- 
rally in a geometric context, such as finding solutions of geometric constraints 
(for example, any Euclidean distance constraint yields a quadratic equation) 
or "simply" computing the intersection of algebraic curves/surfaces given in 
implicit form. So, given any finite set T € II one wants to find the associated 
algebraic variety X £ IK (some algebraic closure of our underlying field K) 
such that 

F{X) = 0, (2) 

that is, 
f(x) = 0,      iei,/ef. 

Note that the emphasis here is not on finding one solution (which could, at 
least in the case that #.F = n, be done by a Newton method), but on finding 
all solutions and obtaining structural information about the variety. It is easy 
to see that the variety is not a property of the specific set T, but of the ideal 
{T): 

T(X) = 0        <^>        (T) (X) = 0. 

Therefore, it may be helpful to find particular bases for (T) which allow for 
an efficient solution of (2). The "classical" implementation in most Computer 
Algebra systems relies on the computation of elimination ideals, which means 
the computation of a basis for the subideals 

(T)k = {T)n-K[Xl,...,xk],        k = l,...,n, 

where (T)n = (T). In fact, this corresponds to transforming the original 
problem T{X) = 0 into a triangular system 

5i(     *i ) = 0, 
52 (    xi,    x2 ) = 0, 

: (3) 

9m{    Xi,    x2,     ..., xn    ) = 0. 

Once such a triangular system is available, the solution strategy is obvious: 
determine the zeros of the univariate polynomial gi {x{) and substitute them 
into <?2 (•, x2) which is now, for for any such zero, again a univariate polynomial 
in £2, and go on with this procedure. Moreover, such a triangular basis can 
indeed be computed: Qiex, the reduced Gröbner basis for (J7) with respect to 
the lexicographical term order where x\ -i, x2 -< ■ ■ • -< xn has the property 
that 

ft = önK[n n]cWt 

is a Gröbner basis for {T)k (cf. [4, p. 114]). 
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However, as nice as this idea of successive elimination of variables sounds, 
there are numerous drawbacks: 

(i) The complexity of computing a lexicographical Gröbner basis is tremen- 
dous, and even relatively "simple" problems still exceed the limitations 
of existing computing facilities. 

(ii) There are often several polynomials in a certain number of variables, that 
is, the system is not as triangular as one would want it to be. 

(iii) The degree of the polynomial gi is usually very high. This makes it 
impossible to compute its zeros exactly. 

(iv) The tempting idea to find gi's zeros approximately and substitute these 
values will not lead very far since it is well-known that the zeros of a 
polynomial are usually quite ill-conditioned with respect to its coefficients 
(cf. [5,17]). 

So, the summary is fairly disappointing: elimination methods do not provide 
a good tool to tackle polynomial systems of equations. In particular, they rely 
too much on symbolic methods (with exact computations) to become a useful 
tool in numerical applications. 

A different approach has been proposed quite recently by Stetter [16] (see 
also [10]; in [7] this method is partly attributed to Stickelberger) which is based 
on transforming the nonlinear system of equations into an eigenvalue problem 
for which a huge library of powerful routines is available. For that purpose, 
let us assume that the set of solutions X is finite (that is, the associated ideal 
(T) is zero dimensional) and that all the common zeros are simple. The latter 
restriction is made to keep the presentation simple; details on how to handle 
multiplicities can be found in [10]. We first note that for any / e II, the 
mapping 

fn/(^)  -  iy <JO 
$/'l [p]   " [f-p] 

is a homomorphism on the #X-dimensional linear space 11/ {T). Now, sup- 
pose for a moment that we know X. Then there are polynomials px € II, 
x € X, defined by 

Px \X / == Ox,x'i X,X   t -A, 

which form a basis for 11/ {T), i.e., 

n/ (T) = span { \px] : x € X } . 

Obviously, for any x £ X, the polynomial gx = (/ - f(x))px satisfies gx(X) = 
0, and therefore 

[0] = [9x] = [ (/ - f{x))Px } = */ [p*l - /(*) [P«l • 

What we have proved with this simple argument is the following crucial the- 
orem. 
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Theorem 2. The polynomials px, x € X, are joint eigenvectors of all homo- 
morphisms $/, / S II, with respect to the eigenvalue f(x). 

This result again suggests a strategy to solve polynomial systems of equa- 
tions: compute a set of representers for 11/ (J7), that is, a finite set V C II of 
linearly independent polynomials such that 

n/ (T) = span { [p] : p £ T } , 

and compute the matrix Mf which describes the action of $/ with respect to 
the basis V. The eigenvalues of such matrices yield, when combined appro- 
priately, the solutions X. We remark that the (transpose of the) matrix Mf 
is called the multiplication table for / with respect to V, and that the original 
goal for Buchberger's doctoral thesis (supervised by Gröbner) was not the 
invention of Gröbner bases but the computation of multiplication tables. Of 
course, the most natural approach would be to compute the multiplication 
tables Mx., j = 1,... ,n, for the coordinate functions and thus compute the 
respective coordinates of the elements of X as the eigenvalues of the multipli- 
cation table. Note that the different components are finally "glued together" 
by the requirement that they must correspond to the same eigenvector. 

What we now have is the possibility of reducing the search for the solu- 
tions of a polynomial system of equations to an eigenvalue problem, provided 
that we are able to perform two operations: 

(i) Given a basis T for an ideal (T) compute a basis V of representers for 
n/(.F). 

(ii) Having this basis available and given any / € II, compute the multipli- 
cation table Mf with respect to V. 

Fortunately, this is where [12] enters - the answer are normal forms: if H is 
an H-basis for (J7), then any basis for NF (II, W) is exactly the desired V, and 
the action of $/ can be computed by expanding NF (/ • p, H) for all p S V, 
which yields the multiplication table Mf. The remaining question is "why H- 
bases?", and this question is justified since the computation of normal forms 
and thus of multiplication tables is perfectly possible with the help of Gröbner 
bases as well. To give a partial answer to this question, we look at an example. 

§4. When Two Ellipses Meet 

In this section we consider a simple example which will show that also the 
eigenvalue method can encounter serious obstacles, in particular when Gröbner 
bases are involved. The important thing here is simplicity, as it will not be 
too surprising if extremely complicated and difficult examples cause problems. 

We consider the two ellipses 

f{x,y) = ^x2 + -y2-l, 

9{x,y) = -x2 + -y2 -1. 
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Fig. 1. The two ellipses. 

Clearly, these two ellipses intersect in the four well-separated points (±1, ±1) 
as can be seen in Fig. 1. 

Now, we are going to perturb g a little bit and replace it by g<f,   = 
g (Aj,(x,y)), where A$ denotes the rotation 

A${x,y) = 
cos<f> 

— sind) 
smcp 
cosd) 

Note that we have in mind small values of <f>, so the intersections should still 
be close to (±1,±1) and the problem should still be well-conditioned. 

Recalling that lexicographic Gröbner bases are known as troublemakers, 
we first try some "better" Gröbner basis, namely the one which is based on 
the graded lexicographic term order with x -< y. Note that this ideal basis is 
not only a Gröbner basis, but also an H-basis. In this case the Gröbner bases 
G$ consists, for ii ^ 0, of the three polynomials 

4 sin d> xy + 3 cos d> x2 — 3 cos d>, 

x2 + 2y2 - 3, 

cos 4> (cos2 0 + 8) x3 - 3 cos d> (cos2 0 + 2) x + 12 sin d> (sin2 4> - l) y, 

while 
g0 = {x2-l,y2-l}. 

Here we already observe that some singularity must appear for d> = 0, since 
Qo is not just a limit d> —> 0 of 0$, although the basis changes continuously 
with respect to d>. The singularity becomes more apparent if we look at the 
normal forms, which are 

■p   = [ {l,z,2/,z2}    if 0^0, 
{l,x,y,xy}    if 0 = 0. 



Applications of H-bases 339 

Finally, the multiplication tables Mx^ for the multiplication by x take the 
form 

M, o = 

0 10 0 
10 0 0 
0 0 0 1 
0   0   10 

while the multiplication table 

MX:4,= 

n       ß 3cOS<ft 
U     U        4sin0 

1 0 

0 0 

0      1 

0 

0 
3cos0 
4sin0 

o 5 cos2 <ft—8 
0 cos2 tf>+8 

■t cj sin <j) cos ^ 
"1Z cos2 0+8 

0 

^o, 

provides us with difficulties. Not only does this matrix not converge to MX<Q 

for <f> —> 0, but some entries in this matrix even diverge to ±oo, respectively. 
Indeed, if one tries to compute the eigenvalues and eigenvectors of this matrix 
for small values of <fr, things become disastrous: A Maple computation with 
10 digits worked until about <f> ~ 10-5, where an error message reported that 
the QR algorithm did not work. For smaller values, like 4> ~ 10~6, Maple 
invented complex zeros with an imaginary part of the magnitude 0.5 x 10~5 

which by far exceeds any negligible machine number. On the other hand, 
Octave, a free Matlab clone whose Linear Algebra facilities are based on 
LAPACK [1], reproduced the eigenvalues correctly, but gave eigenvectors which 
were practically 0. 

Hence, we end up with some kind of paradox which is due to a singularity 
at 4> = 0: though the original problem of solving the polynomial system of 
equations is very well-conditioned, the graded lexicographical Gröbner basis 
is extremely sensitive to very small perturbations (\(f>\ < 10~5), but by far not 
so sensitive to relatively "large" (|(/>| > 10-5) perturbations. 

Similar problems appear when we replace the graded lexicographical 
Gröbner basis by a purely lexicographical one with x -< y which yields the 
normal forms 

n = I ^1, x, x ,; 
\{l,x,y,xi , xy}      if (f> = 0. 

Though the components of the multiplication table Mx^ at least are contin- 
uous functions in cf> and remain bounded in this case, the limit 4> —* 0 again is 
not MXfi. But the multiplication tables My^ with respect to the purely lexi- 
cographical Gröbner basis is even worse: its entries are either zero or diverge 
for <f> —► 0. 

The behavior of the Gröbner bases at <p = 0 raises the question of whether 
this singularity is systematic, that is, intrinsic to the problem, or if it is a repre- 
sentation singularity generated by the Gröbner bases. Systematic singularities 
appear, for example, if several zeros "collapse" into one multiple zero which 
leads to extremely intricate problems in the multivariate case [9]. Here, how- 
ever, the good separation of the zeros suggests the conjecture that we only 
face a representation singularity. 
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Indeed, since H-bases leave more degrees of freedom, we can try another 
one which is now based on orthogonalization. For this purpose, we use the 
inner-product 

(p,q) = (p(D)q)(0) 

and recall from [11, Theorem 5.3] that the set {/,£</,} is already an H-basis. 
Moreover, the normal form space, which is, according to Theorem 1, the least 
interpolation space, is spanned by 

V$ = {l,x,y,2smcf> x2 - 3cos0 xy - sin0 y2} 

and depends continuously on <j> with 

\imVl=Vo = {l,x,y,xy}. 
<p—*0 

Then one can compute the respective multiplication table as 

MU 

0 l + ei((f>)      e2(<f>) e3(4>) 
1 0 0 Si{4>) 

1 0                0 l + e5(4>) 

0 e6{4>) l + e7{4>)       e8{<f>) 

where Sj (■), j = 1,..., 8, are continuous functions which vanish at the origin. 
In particular, M* . —► Mxfi as x —» 0 and the computation of eigenvalues 
and eigenvectors of M* ^ can now be done with sufficient accuracy. However, 
we remark that the fact that the matrices M*^ and M*^ have two approxi- 
mately double eigenvalues ±1, requires some extra care when connecting these 
individual values in the final determination of the intersections. 

§5. Summary 

We have given examples of numerical applications which can be reduced to 
the computation of normal forms with respect to a certain polynomial ideal, 
an operation which is usually performed using a Gröbner basis. On the other 
hand, H-bases could as well be used for normal form computations, and their 
greater flexibility may yield stabilizing effects which are highly desired in nu- 
merical computations. 
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Dependence Structure of Random Wavelet 
Coefficients in Terms of Cumulants 

Philippe Naveau, Peter Brockwell, and Doug Nychka 

Abstract. When the Gaussian assumption for a times series no longer 
holds, second order moment properties such as the covariance and the 
spectrum are not necessarily sufficient to describe the dependence struc- 
ture. Although wavelet models have been proposed to de-correlate the 
signal, this strategy must be reexamined when applied to non-Gaussian 
processes. The process of interest is a continuous parameter, mean-squared 
continuous real-valued process that is not necessarily Gaussian or linear. 
To study the departures from linearity and Gaussianity, we consider joint 
cumulants, which are linear combinations of higher order moments, and 
their associated spectra. A specific objective is to obtain new expressions 
for cumulants of the random discrete wavelet coefficients instead of the 
second order moments, and to study their higher order polyspectra. Con- 
ditions on the polyspectrum to give null wavelet cumulants within and 
across wavelet coefficient levels are derived. Expressions of the original 
cumulants as a function of the wavelets cumulants are also given. 

§1. Introduction 

The covariance and spectral properties of the discrete wavelet coefficients for 
random continuous real-valued processes have been extensively studied in 
the past. Among others, Donoho et al. [4], Flandrin [6], Mallat et al. [13], 
Masry [14], and Walter [17] have investigated the correlation within and 
across wavelet coefficients. Focusing exclusively on the second order prop- 
erties of wavelet coefficients for a Gaussian process is a reasonable task since 
the dependence structure of Gaussian processes is entirely characterized by 
the covariance. When the normality assumption no longer holds, higher order 
cumulants are necessary. 

Exploring some of the links that exist between wavelets and cumulants 
is fairly new. Brillinger [1] studied a non-parametric regression problem with 
cumulants and wavelets. In geophysics and astrophysics, Lazear [11] and 
Ferreira et al. [5] applied wavelets and cumulants to seismic data sets and 
to the Cosmic Microwave Background problem.   The dependence structure 
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between wavelet packets and in particular wavelet coefficients has also been 
studied by D. Leporini and J.C. Pesquet [12]. In this paper, we derive new and 
general results about the dependence structure of random wavelet coefficients 
via its cumulants. 

The process of interest X(t), indexed by the real parameter t, is supposed 
to be a continuous real-valued process that is mean-square continuous, and 
such that moments of some order I > 2 exist, i.e., 

supE\X(t)\l <oo        and lim E\X{t + h) - X{t)\2 = 0. (1) 
( h—0 

§2. Cumulant Definition and Properties 

If some useful information of the signal is not contained in the second-order 
covariances (and the second order spectra), then one can still calculate some 
meaningful linear combination of higher order moments, called cumulants. 
Some early work on higher order cumulants and their Fourier transform was 
proposed by Hasselman et al. [8] for investigating nonlinear interaction of 
ocean waves, and Godfrey [7] used it for the analysis of economic time se- 
ries. Rosenblatt with Lii and Van Atta in a series of papers have described 
how higher cumulants could be used to study nonlinear transfer of energy in 
turbulence. 

The mth joint cumulant of the set of random variables {X(ti),..., X(tm)}, 
denoted by CUM(X(ti), ...,X(tm)), with m < /, is given by 

CUMiXih),...^^)) = £(-l)'(p- 1)!(£ II X(tr))...(E JJ X(tr)), 

where the summation extends over all partitions {vi,..., vp} of {1, ...,m} with 
p = l,...,m. From this definition, we can notice that the information con- 
tained in the first m cumulants is exactly the same as that contained in the 
first m moments. However, cumulants have some advantages over moments. 
For example, cumulants have useful linear properties, 

CUM(Z + X(h),...,X{tm)) = CUM(Z,...,X{tm)) + CUM{X(h), ...,X(tm)), 

CUM(aX(t1),...,X(tm)) = aCUM(X(ti),...,X(tm)), 

for any real o. Another important property of cumulants concerns the depen- 
dence structure of the process: if some subset of {X(ti), ...,X(tm)} is inde- 
pendent of the remainder, then CUM{X{t\), ...,X(tm)) is identically equal to 
zero. Hence, the cumulant, CUM(X(ti), ...,X(tm)) can be interpreted as a 
measure of dependence of {X(ti),..., X(tm)}. For the special case of Gaussian 
processes, cumulants of order higher than two are zero. 

In the remainder of this section, we suppose that the process {X(t)} is 
stationary up to order /, i.e., 

E(X{t0)X{t1)...X{ti)) = E{X(t0 + h)X{h + h)...X(t! + h)),        V/i. 
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Stationarity as just defined is frequently referred to in the literature as weak 
stationarity. For us however the term stationarity, without further qualifica- 
tion, will always refer to the above equality. 

Under stationarity, CUM(X(t),X(t + si),...,X{t + sm-i)) does not de- 
pend on t, and can be denoted by 7m(si,..., sm_i). With these notations, the 
second order cumulant 71 (u) is just the covariance function. The third order 
cumulant 72(u,v) is the same as the third-order central moment, 

E{(X(t) - fi)(X(t + u)- p)(X(t + v)- n)), 

where \i is the mean value of the process. 
From the covariance function, one may define the power spectrum, i.e., 

the Fourier transform of 71(f), /i(w) = / 71(f) exp(-iwf)df. A natural exten- 
sion is the mt,l-order polyspectrum defined by 

/m(wi,...,wm_i) =/•••/ 7m(*i,-.*m-i)exp(-i ^2 Ujtj)dt-i...dtm-i, 

assuming that the above Fourier transforms exist. An important property of 
the polyspectra is that all polyspectra of higher order than second order vanish 
when {X(t)} is a Gaussian process. Another characteristic of the polyspectra 
is that the ratio 

\f2(iüi,U2)\2 

/i(wi)/i(w2)/i(wi+a;2) 

is constant whenever the process {X(t)} is linear. Hence, the simplest higher 
order spectrum, called bispectrum, can be regarded as deviation measures from 
Gaussianity and linearity. Different statistical tests have been derived from it 
(see Subbua Rao and Gabr [9] and Hinich [16]). 

§3. Random Wavelet Coefficients 

Consider a discrete orthonormal wavelet decomposition of a stochastic process 
{X(t)} that satisfies condition (1). The corresponding wavelet coefficients 

WStk = Jx(t)il>jtk(t)dt (2) 

are random variables. Here the equality sign is to be understood in the mean- 
square sense, and ipj,k(t) = 2-'/2V>(2-'£ - k) is an orthonormal wavelet basis 
function with the mother wavelet ip. A rigorous framework concerning the 
construction for wavelet orthonormal basis can be found in Meyer [15] and 
Daubechies [3]. There exist many candidates for the mother wavelet. The 
simplest example of an orthonormal wavelet basis is provided by the Haar 
system for which 

'1,       if0<x<0.5, 

il>(x)= I -1,    if 0.5 < x < 1, 

k 0,      otherwise. 
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Our main interest is to understand the dependence structure between the 
different wavelet coefficients defined by (2). 

In this article, we will either use the Haar system as a simple example 
of compactly support wavelets, or a particular type of band-limited wavelets 
called Meyer-type wavelets (see Walter [17], Zayed and Walter [18]). Having 
a compact support in the frequency domain can facilitate the computation of 
wavelet cumulants. These Meyer-type wavelets have some additional attrac- 
tive features, such as being highly smooth (they can be made C°°) and having 
fast decay in the time domain. They are introduced as follows. 

Let F be any probability measure supported on [—e, e] for some e < TT/S. 

Then the mother wavelet ip{-) is defined by its Fourier transform 

•M- 
V>(w) = exp(-iw/2)[ / dF}1/2. (3) 

/.|W|-7T 

(w) = exp(-iw/2)[ / dF}11 

J\u/2]-ir 

From this definition, it is possible to check that the orthogonality and dila- 
tion conditions are satisfied for the wavelet basis generated from this mother 
wavelet. There is a large class of distributions that can be chosen in equality 
(3), and the edges of the support, [—e, e], can be made highly smooth. 

§4. Dependence Structure 

The dependence structure between wavelet coefficients is closely related to the 
dependence inside the original signal. Hence, our first problem is to explain 
how to obtain the joint cumulants of the wavelet coefficients from the joint 
cumulants of the process. The first proposition takes care of this problem. 

Because of space limitations, the proof of our propositions will not be in- 
cluded in this paper. However, complete details of the proofs can be requested 
from the authors. 

Proposition 1. Let {X(t)} be a stochastic process that satisfies condition 
(1). Suppose that the joint cumulants of order m < I of{X(t)} exist. Then 

CUM(Wjlkl,...,WjrnkJ = J... j CUM{,X{tx),...,X{tm)) fl ipjn,kn(tn)dtn. 

Proposition 1 is directly applicable to compactly supported wavelets, 
since the product 

m 

n=\ 

is null except at the intersection of the translated and dilated supports. For 
example, suppose that the wavelet basis corresponds to the Haar system. The 
expression of cumulants of the wavelet coefficients becomes 

CUM(Wjlkl,...,WjmkJ = J2(-l)'*'/2 /   C[/M(I(fl),.,I((m))Jt, (4) 
;=i JA> 
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The Ai are rectangular boxes defined by the tensor product 

Ai=    (g)   I„,c„„ 
n=l,..,m 

where the vectors c; = (cu,, ■■■,cmi) represent the set of all 2m possible con- 
figurations of {0, l/2}m, and the interval In,cn, is defined by 

/n,c„, = {tn ■ 2-j"(kn + cnl) <tm< 2-J"(fcn + c„, + 1/2), for n = 1, ..,m}. 

In order to apply (4) to a more specific example, we suppose that the process 
{X(t)} is a zero-mean stationary process with standard deviation o and covari- 
ance 7i(/i) = 6exp(—a\h\), and 7i(/ii,/i2) = cexp(—a\hi + h.2\), where a,b,c 
are constants that depends on the second and third moment and other param- 
eters describing the original process. Processes with such a cumulant function 
correspond to Continuous Auto-Regressive processes (CAR) (see Brockwell 
[2]) or equivalently solutions of particular stochastic differential equations with 
non-necessarly Gaussian noise. After some algebra, wavelet cumulants sim- 
plify to 

CUM(Wjlkl,Whk2) = -f'f'^A        £ Hh{Ula)Hh{u,a)l 
(«li«2)€{-l,l}2 

for 2~j2(k2 + 1) < 2--»'1fci and 

CUM(Wjlkl,Whk2,WJ3k3) = --        ^-0'i.*i)      ... 
nkl'    J2fc2'    33K3'        2a3Ka(j2,k2)Ka(h,k3) 

x [ £ Hh(uia)Hh(u2a)HJ3(u3a)] 
(ui,U2,«3)6{-l,l}3 

for 2-i*(k3 + 1) < min(2-^fc1,2--'2Jt2) with Ka(j,k) = exp(a(2^{k + 0.5))) 
and Hj(a) = 1 — exp(a2~J_1). The previous formulas can be easily extended 
to higher dimensions, and can be used to derive asymptotic behavior, e.g 
lii — J21 T °° and so on- 

Another possible application of Proposition 1 is to non-stationary pro- 
cesses. A large variety of models, such as the bilinear model, autoregressive 
models with random coefficients, and the threshold model, have been pro- 
posed to take into account of the non-stationarity. To illustrate the use of 
cumulants, we restrict attention to piecewise stationary processes, i.e. a sum 
of independent stationary processes: 

X{t) = V J(«j < t < «i+i)xW(t), where 1(A) = ( 1' 
i=i LU' 

ate A 
otherwise, 

and X'''(t) are independent stationary processes and the change-points are 
equal to —oo = UQ < u\ < ■ ■ ■ < ur < ur+i = oo. Because of linear properties 
of the cumulants, we have immediately that 

r     m 

CUM(X(h), ...,X(tm)) = E II J(W! ^ '» < «i+i)CUM(X<'>(i)), 
1=1 n=l 
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where CUM(X{1)(<)) = CUM{X^(ti),...,X^{tm)). Using Proposition 1, it 
follows that 

r       - m 

CUM(Wjk) = W Cl/M(X(,)(i)) I]X(U' Z*n< Ul+l)1>jn,kn{tn)dtn 
1=1 ^ n=l 

with CUM(Wjfc) = CDrM(Wj1jfe1,...,W^mfcm). The above expression shows 
that wavelet cumulants for piecewise stationary processes can be easily com- 
puted for compactly supported wavelets such as the Haar system, and when 
each process X^ has simple cumulant functions (e.g. the CARMA process). 

From the CAR example, we saw that wavelet cumulants are computable 
for the Haar system, but the resulting formula are not so easy to manipu- 
late. Another approach is to use band-limited wavelets. Simpler expression 
of the wavelet cumulants can be derived. To illustrate this point, we look 
at the Meyer-type wavelet in the next proposition. In this case, the Meyer- 
type wavelet gives null or small wavelet cumulants within and across wavelet 
coefficient levels under simple conditions. 

Proposition 2. Let {X(t)} be a stationary process that satisfies condition 
(1). Suppose that its mth-order polyspectrum fm is well defined, and the 
orthonormal basis {i>jk} is generated by a mother Meyer-type wavelet. If 
there exists some integer j* in {ji,...,jm} sucn inat ICJYJ* ^ — ^ 2> tnen 

CUM(Wjlkl,..., Wjm*m) = 0. In addition, if /m(w) and i>{u) are both in Cp, 
then the cumulant at a fixed resolution level satisfies 

CUM{Wjlkl,...,WjlkJ = 0(max J] \kr - ka\-"). 

Proposition 2 shows that the Meyer-type wavelet transform not only can 
remove the correlation inside the original signal, but in addition the higher- 
order cumulants are either null at distant scales or very small at a fixed scale. 
Walter's result [17] for the covariance is a special case of Proposition 2: 

CUM(Wjlkl,WJ2k2) = {°6{lki_k2rp):   £jj = -J2I > 1, 

It is interesting to note that the results stated in Proposition 2 hold for any 
choice of F in the definition of the Meyer-type wavelet. An open problem 
is to determine if there exist some distributions F which will significantly 
reduce cumulants between wavelet coefficients. In this direction, Zayed and 
Walter [18] minimized the covariance between wavelet coefficients by using a 
bi-orthonormal wavelet basis that is a function of the original covariance. 

In Propositions 1 and 2, different expressions of the wavelet cumulants 
were derived. A natural question is whether or not the cumulants of the 
original process can be expressed in terms of CUM{Wj1kli •■•> Wj'mfcm)- Thus, 
our next result is the converse of Proposition 1. 
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Proposition 3. Suppose that {Wjk} is a sequence of variables with all unite 
moments. If the process 

oo oo 

*(*) = E E WiMt) 
j=—oo fc=—oo 

is well deßned (in the mean-square sense), then we have 

oo oo m 

CUM(X(tl),...,X(tm))=     £     ...      J2      nVWMCUM(Wifc). 
ji,fci = -°o      jm,km=-oon=l 

§5. Conclusion and Future Work 

In this paper, different relationships between wavelets and cumulants have 
been presented. Results show that the wavelet transform is not only a good 
tool to de-correlate a Gaussian process, but it also gives small higher-order 
cumulants of a non-Gaussian signal. The Meyer-type wavelet is particularly 
well-adapted for stationary processes since they give null wavelet cumulants 
at distant scales. 

The combination of wavelets and cumulants has not yet been fully ex- 
ploited. The statistical study of estimators of the bispectrum based on 
wavelets is of particular interest for application with real data sets. Also in- 
vestigating the properties of non-linear and non-stationary times series models 
using bi-spectral methods and a wavelet decomposition approach needs further 
research. 
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Interpolating Functions on Lines in 3-Space 

Martin Peternell and Helmut Pottmann 

Abstract. Given straight lines Lj, i = 1,..., JV, in Euclidean 3-space 
with associated function values fa, we study the interpolation problem of 
constructing a smooth real valued function F which interpolates values fa 
at given data lines Lj. The function F shall be defined on the entire set 
of lines or at least on lines contained in a domain of interest in 3-space. 

§1. Introduction 

The problem of constructing an interpolating function F for data lines Li and 
corresponding function values fa is a scattered data interpolation problem in 
the set of lines C in Euclidean 3-space E3. 

A variety of solutions of scattered data interpolation problems for data 
points Xi e U with U = E." or U C Rn are known, see [3]. Extensions to 
spheres and other surfaces in H3 are described in [2] and references therein. 

Scattered data interpolation on lines is quite different, since the set of lines 
C is not a Euclidean space. It is a result of classical geometry that the set of 
lines C of projective extension P3 of Euclidean 3-space E3 is a 4-dimensional 
quadratic variety M| in projective P5. Thus, the general formulation of the 
problem is as follows: Construct a function F : M| —* ®- interpolating val- 
ues /, to corresponding data lines L*. For practical purposes it is sufficient 
to construct (or represent) functions on subsets of M% which correspond to 
domains of interest in E3, containing all data lines. 

The solution presented here will be the following. We restrict to specific 
four-dimensional subsets Co of M$. These subsets possess parametrizations 
H4 —» Co with the property that distances between lines in Co are induced 
by special positive quadratic forms in R . This fact allows us to apply well- 
known methods in K4 to solve interpolation (or also approximation) problems. 

Applications include light field rendering in computer graphics [4]. Con- 
sidering motion planning in robotics, the method applies to represent a dis- 
tance function of robot arms (lines) to obstacles. The first motivation for 
studying functions on lines came from five axis milling. There, the question 
occurs of how to represent axis positions (lines) of the cutting tool. 

Curve and Surface Fitting: Saint-Malo 1999 351 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 351-358. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
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§2. Lines in Space 

An oriented line L in Euclidean 3-space E3 is determined by a point p and a 
unit direction vector 1 (||1|| = 1). Together with the moment vector 

I = pxl, (1) 

we obtain a representation of L by a sixtuple 

L = (l]l) = {l1,l2,l3;h,kM (2) 

These k's are called normalized Pliicker coordinates of L. By (1), these coor- 
dinates are not independent, but satisfy the Plucker relation 

l-I=/i/4 + W5 + Me = 0. (3) 

Substituting 1 by —1 leads to coordinate vector —L which defines the same line 
but with opposite orientation. To get more information about the structure 
of lines in space, it is necessary to study the set of lines C in the projective 
extension P3 of E3. 

E3 is extended to P3 by adding points and lines at infinity. Using the 
analytical model M4, points in P3 are one dimensional subspaces of R . Thus, 
we will use the following notation for points in P3, 

(x0,xi,x2,x3)]R. := (\xo,---,Xx3),\ € R. 

Let üJ : xo = 0 be the plane at infinity. We write briefly (XQ, X)R, with x £ 1R 
for points in P3. The transition from homogeneous to Cartesian coordinates 
is given by 

Xl   x2   x3 
(X0,Xi,X2,X3)l-+ (—, —, —), 

xo   x0   x0 

which is obviously only possible for points not at infinity. 
A line L in P3 usually is spanned by two points (po,p)R and (g0,q)R- 

Homogeneous Plücker coordinates are obtained by 

L = (h,...,l6) = (Poq-9oP,pxq). (4) 

If we substitute (po>p) by A(po,p), we get AL such that the Z;'s are only 
determined up to a scalar multiple. This proves homogeneity of L. 

If L is not in w, the relation to definition (2) is obtained as follows. 
Let (po,p)lR- be a proper point on L such that we can switch to Cartesian 
coordinates p by letting p0 = 1. Further, let (go,q)lR. be the intersection 
point ufll which implies qo = 0. Inserting this into (4) gives (2) up to a 
normalization of the direction vector q = 1 of the line L. 

If L is in w, its Plücker coordinates are (o, a)]R with o = (0,0,0) and 
some not vanishing vector a. We can interprete L as the line at infinity of a 
pencil of parallel planes a • x = c, with cEE, All these planes possess a as 
normal vector. 
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Fig. 1. Stereographic projection of a hyperboloid Q. 

Since L and AL define the same line in P3, homogeneous Pliicker coordi- 
nates (4) define points LR in P5. But only those 6-tuples (xi,... , a^R- are 

Pliicker coordinates of a line X in P3, which satisfy 

X1X4 + X2X5 + X3XQ = 0. 

This quadratic variety is called the Klein quadric M$, where upper and lower 
indices denote dimension and degree of this variety. The maximal dimension 
of its subspaces is 2. It is a point model of the set of lines C of P3. The 
bijection 

7 :1 -> M2
4 

from lines L C P3 to points LH of M^ is called Klein mapping. 
The image points (o, a)]R of lines at infinity lie in the plane Ew : x\ = 

x2 = X3 = 0 which is entirely contained in M|. All lines passing through 
the origin O = (1,0,0,0)E, have Pliicker coordinates L = (1, o). This can be 
checked by letting p = (0,0,0) in formula (1). The corresponding image points 
in P5 lie in the plane E0 : X4 = X5 = x$ = 0. In general, all lines through an 
arbitrary point in P3 possess 7-images which lie in a 2-dimensional subspace 
of M-2 ■ The same holds for lines contained in an arbitrary plane in P3. Thus, 
M| contains two 3-parametric families of 2-dimensional subspaces. 

We emphasize that £ and C are not Euclidean, affine or projective spaces. 

Local coordinates of lines 

We have seen that C is isomorphic to M| — Eu, where Ew consists of 
image points of all lines at infinity. Let T be the tangent hyperplane of M| 
at a point Z and let r = M| fl T. It is known that r is the 7-image of all lines 
intersecting the line L = Zy~x. 

Lemma 1. M| — r = AA is an affine space. 

Proof: This lemma is a result of classical geometry, and is proved by stere- 
ographic projection. Let Q be a regular quadric in Pn. Let Z be a point in 
Q and T its tangent hyperplane, see Figure 1. Further, consider E to be 
a hyperplane in P", not incident with Z. The intersection r = Q D T is a 
quadratic cone with vertex Z.  The intersection e = E D T is a hyperplane 
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Fig. 2.   Local coordinates, distance function. 

in E. This says that E - e is an affine space. The stereographic projection 
a: Q-T->E-e with center Z is bijective and maps points P e Q - r to 
points P' in affine space E - e.   □ 

Figure 1 shows a low dimensional example. Q is a hyperboloid, and r is 
a pair of lines. Planes E and T are parallel such that e is at infinity. 

We come back to line geometry and the Klein quadric M4. Let Z = 
(0,0,0,0,0,1)R be the center of a stereographic projection. It is the 7-image 
of the line at infinity which is determined by horizontal planes z =const. with 
normal vector (0,0,1). The tangent hyperplane T at Z with respect to M| 
is given by the equation x3 = 0. The exceptional set r - M2

4 D T consists 
of 7-images {h,h,0;.. .)R of all horizontal lines. Lemma 1 says that all non- 
horizontal lines form an affine space A4. 

Consider two horizontal planes E0 : z = 0 and E\ : z = 1. The inter- 
section points go = (gi,32,0) and gi = (g3,ff4,l) of a line G and planes E{ 

(Figure 2) define a parametrization of all non-horizontal lines by 

E4 = E2xR2-^£ 

(91,92,93,94)"-+ G. 

Plücker coodinates of G are G = (93 -gi,g4 -92,1;#2, -gi,9\9i ■ 
stereographic projection with center Z onto XQ = 0 gives 

(5) 

-<?2<73)-The 

G' = (93 - 9\,9A -ff2,l;02,-ffiiO). 

This equals (5) up to a linear mapping. Hence, the mapping (5) from non- 
horizontal lines to points in R4 is geometrically equivalent to a stereographic 
projection of M| — T. 

Distance function of lines 

For practical purposes, it is sufficient to consider distances of lines within a 
domain of interest. To specify this domain, we will consider only lines which 
enclose an angle < cf>0 with a fixed unit vector z. The unit direction vector g 
of such a line G satisfies 

g • z > cos <f>o. 
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We have chosen a Cartesian coordinate system with z as third axis. Further, 
we will consider only segments of lines between two planes E0,Ei, bounding 
the domain of interest. This is motivated by the fact that we are interested in 
particular in distances between points lying between those planes. Let gj,h; 
be intersection points of lines G,H with Et, and consider points x,y on G 
and H, respectively, 

x(<) = (l-i)gö+*gi, 

y(t) = (l-*)ho+th1. 
() 

The square of a useful distance between lines G, H within the above domain 
of interest is defined by 

Jo (7) 
= (go - ho)2 + (gl - hj)2 + (go - h0) • (gi - hi). 

It measures horizontal distances between corresponding points x, y of G, H. 
We will not distinguish between a line X and its coordinate vector X = 
(zx, £2, £3,3:4) in M4 according to parametrization (5). Formula (7) is a posi- 
tive definite quadratic form in Ht4 with the following coordinate representation 

(X, X) = x\ + X% + X% + x\ + X1X3 + X2X4. 

Remark 2. These distances differ from orthogonal distances (from a point to 
a line G) only by a factor < cos <j>0. So, taking cß0 relatively small will control 
the difference between these distances and the Euclidean distances in E3. 

Summary 3. The restriction to specific subsets £0 of line space allows para- 
metrizations H4 —► £0. A positive definite quadratic form in 1R4 serves to 
define distances between lines in a useful manner. 

Choice of local coordinates 

Distance d is not invariant under motions in E3, but depends on the choice 
of z and planes EQ,Ei. Consider oriented lines Lt,i = 1,...,N with unit 
direction vectors 1,. Assume that 1,- • lfc < C. This expresses that the angle 
between any two lines is bounded by arccos(C). A good choice for the vector 
z can be computed as solution of a regression problem. Assuming ||lj|| = 1, 
we want to maximize 

B1^)2 (8) 
t=i 

over all unit vectors z. Maximizing the quadratic form (8) under the quadratic 
side condition z • z = 1 leads to an eigenvalue problem in R3. Thus, we 
found a possibility to construct z with respect to a set of lines Li. Planes 
E0, Ei perpendicular to z bounding the domain of interest have to be chosen 
depending on the problem. In this sense we can say that the coordinate system 
is connected with the problem in an invariant way. 
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Fig. 3.   Definition of domains. 

If direction vectors 1, of lines U are distributed over a whole hemisphere or 
more, we have to split the set of lines into subsets and perform the construction 
of coordinate systems for the subsets. Remark 2 gives information about the 
deviation of distances compared to usual distances in E3. 

§3. Representation of Functions on £ 

Given JV lines U with corresponding function values /;, we would like to 
compute a function F : C -> R with F(L{) = ft. This is a scattered data 
interpolation problem on C (or M2

4). With help of local parametrizations we 
obtain scattered data interpolation problems on R4. The given algorithm 

consists of three steps. 
1) Find a covering {Uj:j = 1,...,M} of £ with domains Uj which are 

parametrized over R4. Decide the membership of lines and domains. 

2) Compute partial solutions Fj of the interpolation problem for all domains 

Uj- 
3) Merge all partial solutions Fj in a global solution F with required conti- 

nuity. 
First of all we want to find a covering of lines U by domains Uj with 1 < 
j < M. We choose M unit vectors Zj and real numbers Rj which serve as 
centers and spherical radii of caps of the unit sphere S2. These caps determine 
domains Uj in the following way. A line L belongs to Uj if and only if 

lz ,j > cos Rj 

holds for its direction vector, see Figure 3. Clearly, L can be contained in more 
than one domain. We determine the membership of all lines L; for domains 

Uj- 
In a second step we compute partial solutions Fj of the interpolation 

problem for each domain Uj. This is done by letting 

Fj(X) = YiajkBk(X), 
k=l 
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where Nj shall be the number of lines L* belonging to domain Uj. X = 
{x\,X2,xs, Xi) SE is coordinate vector of a line X according to parametriza- 
tion (5). Bk(X) are (for instance) radial basis functions and depend only on 
the distance d(X, Lk). The coefficients a,jk are solutions of linear systems. The 
problem of regularity of such systems dependent on the type of basis function 
is solved in [5]. So we get partial solutions Fj valid in domains Uj. 

In the last step we have to merge all partial solutions to a unique one. 
This can be done by forming a weighted sum 

M 

F(X) = '£wj(X)Fj(X). 
3=1 

The weights can be chosen as 

=      (l-arccos(x-mj)/.RJ-)^ 

E;=i(! - arccos(x • mj)/Äj)+ ' 
where ia.j and Rj are center and radius of the spherical cap which defines Uj 
and x denotes the normalized direction vector of the line X.  The notation 
(g)!j_ expresses that Wj(X) is positive in the interior of Uj and is zero outside. 
This says that (q)r+ = qr for positive q, and (?)!j. = 0 otherwise. 

Weights Wj(X) are in the differentiability class C""-1. If partial solutions 
Fj possess the same smoothness, then also F is in C""-1. 

§4. Visualization of Functions on Lines 

Since the dimension of £ is four, visualization of function values is an advanced 
topic. In general, displaying functions on low dimensional subsets seems to be 
promising. We decided to choose several bundles of lines for evaluation and 
want to describe two methods of visualization. 

We choose an appropriate number of points Vj within the domain of 
interest, and evaluate F at sufficiently many lines passing through vertices 
Vj. Let Fmax be an (existing!) upper bound of the absolute function values. 
Consider lines Lij with function values F(Lij) = /y passing through vertex 
Vj. Assume that Ly are oriented lines. Displaying the star-shaped surfaces 

p« = vi + (l + -£i-)iij 
"max 

for all chosen vertices v, is one possibility to visualize function values. If 
function values for L and — L are equal, the p$ will be centrally symmetric 
surfaces. For functions on nonoriented lines, we will use both direction vectors 
ly and —lij for the definition of pj, and assign the same function value /y to 
them. Thus we always get centrally symmetric surfaces. Figure 4 shows an 
interpolant. The test function is a function of the distances between lines Lj 
and points (not displayed). 

For the second method we use spheres Si, centered at vertices v*. All 
lines L^ of the bundle v, with constant function values form a cone C with 
vertex v*. Intersecting these cones C(c;) for several constants Cj gives level 
curves on spheres Si (not displayed). 
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Fig. 4.   Visualization of functions on lines. 
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Numerical Techniques Based on 
Radial Basis Functions 

Robert Schaback and Holger Wendland 

Abstract. Radial basis functions are tools for reconstruction of mul- 
tivariate functions from scattered data. This includes, for instance, re- 
construction of surfaces from large sets of measurements, and solving par- 
tial differential equations by collocation. The resulting very large linear 
JV X N systems require efficient techniques for their solution, preferably 
of O(N) or 0(N log N) computational complexity. This contribution de- 
scribes some special lines of research towards this future goal. Theoretical 
results are accompanied by numerical examples, and various open prob- 
lems are pointed out. 

§1. Introduction 

Many problems of numerical analysis take the form of a generalized interpo- 
lation in spaces of multivariate functions [21]. Due to the Mairhuber-Curtis 
theorem [12], such spaces cannot be fixed beforehand, but must necessarily 
depend on the given data. For a plain multivariate interpolation problem on a 
finite set X = {xi,..., XJV} of pairwise different points in a domain fi C R , 
there is an easy possibility to generate a data-dependent space via linear com- 
binations of something that depends on a free variable x £ ft C R and the 
data locations Xj, namely 

Sx,$ ■= span {$(x,Xj) : 1 < j < N} (1) 

with a fixed function $ : Q x fi —> R. The numerical generation of the space 
can be simplified considerably in the special situations 

1) $(a;,y) = <p(x — y) with <j> : R.  —» R (translation invariance), 

2) $(x,y) = 4>(\\x - y||2) with <j> :  [0, oo) -> R (radiality), 

Curve and Surface Fitting: Saint-Malo 1999 359 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 359-374. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
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and this is how the notion of a radial basis function came up. To assure that 
the interpolation in the points of X = {xi,... ,XN} is uniquely defined, the 
matrix 

A*,jf :=($(!,■,ifc))!^^^ (2) 

must be nonsingular. By definition, positive definite functions $ even make 
this matrix symmetric and positive definite, and the positive definite radial 
functions 

</>(r) = exp(—r2) on E,   for all d (Gaussian), 

cj)(r) = (1 - r)4
+{l + Ar) onRd,d<3, see [25], 

are typical examples. See the review articles [4,15,18,16] for details. Though 
the above functions are scalar, the positive definiteness property of the second 
depends on the dimension d of the space containing x and y when forming the 
scalar argument r = \\x — y\\i. 

These two examples already show that the matrix A®^ in (2) can be 
sparse or have a strong off-diagonal decay. It will be very large if we consider 
real-world problems with many data, arising e.g. from inverse engineering or 
terrain modelling. If the data points are rather densely scattered over the 
domain fi, the approximation power of the space (1) will be very good, but 
the matrix in (2) will have lots of similar rows and columns, yielding a bad 
condition number. The connection between these phenomena is described in 
some detail in [17]. 

This paper concentrates on the numerical solution of large symmetric pos- 
itive definite systems with matrices of the form (2). There are some additional 
goals: 

1) O(N) complexity of solving the N x N system, 

2) 0(1) complexity of evaluating an element of (1) with N terms and 

3) getting away with n << N terms at a tolerable loss of accuracy, when 
interpolating N data. 

We shall describe greedy algorithms as recently studied by deVore [5] and 
Temlyakov [24], but we shall omit multiple scales as proposed by Floater and 
Iske [9] and continued later in [13] and [6]. The techniques will be partially 
based on Krylov subspaces as recently and independently studied by Faul and 
Powell [8]. 

§2. Splitting the Native Space Energy 

Dropping $ in the notation, we can write functions from (1) in the form 

N 

sc,x--=Y,ci®(->xj) (3) 
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with c G HW, X = {xi,..., XN} C Q C TRd and arbitrary N. Our main tool 
will be the natural inner-product 

\ i k / $        i    k 

(4) 
introduced by a positive definite function $ on the union of spaces (1) for 
arbitrary data sets X. We note in passing that one can form the corresponding 
Hubert space closure to get the native Hilbert space of $, but we refer the 
reader to [11] and [19] for details. If we fix the set X = {xi,... ,XM} and the 
corresponding positive definite matrix A^tx, we get an inner-product 

(c,d)A«,x :=cTj4$,xd (5) 

on 1R,N which is familiar from the theory of the conjugate gradient method 
based on Krylov subspaces. 

Note that the inner-product (4) is zero if the function sCix vanishes on Y 
or if Sd,y vanishes on X. If we assume Y C X and make sure that Sd,Y agrees 
with sCix on Y (e.g. by interpolation on Y), then 

(sd,Y,sc,x - «d,y)$ = 0 
n n2        II n2        II n2 ^   ' 
||Sd,r||$ + \\Sc,X ~ 8d,Y\h = llsc,X||$- 

The second identity can be viewed as a split of the energy of the function sCtx 
into the energy of its interpolant Sd,Y on a subset Y of X and the residual 
sCix — Sd,Y- We shall use this energy split over and over again. 

§3. Interpolation in Native Spaces 

At this point, we digress a little and study the interpolation of an arbitrary 
real-valued function / on a domain Q C H . On each fixed finite subset 
ICfiwe can interpolate the values of / by a function Sftx from (1). Due to 
(6), the energy ||s/,x|||. is a monotonic function of X with respect to addition 
of points, and it can be easily evaluated using (4). The energy is bounded 
independent of / if and only if [22] the function / lies in the native space of 
$, and in this case we have ||/||$ = supx ||s/,x||$. 

This observation has some consequences for applications. If the user does 
not have any a-priori information on /, the proper choice of $ is a problem. 
But if the behaviour of ||s/,x||$ with respect to X is monitored for larger and 
larger sets X, the user can switch to a less smooth $ if the energy values 
grow dramatically with X. By (6) the behaviour of ||s/,x||| is related to the 
energy ||/ — s/,x||| of the residual, and further study of this as a function of 
X is needed, especially for / with additional smoothness properties. Current 
starting points are in [20] and [10], and readers are encouraged to proceed 
from there. 
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§4. Iteration on Residuals 

We now fix a positive definite function $ and a function /o from the native 
space of $ or, at least, from some space of the form (1) for a rather large finite 
set X. Our goal is to reconstruct /o by an iterative process. Note that this 
solves a large system with the matrix from (2), if we start from /o := s/:x 
interpolating some given function / on X. In this case, we do not reconstruct 
/ but rather its interpolant. In both cases we need not worry about the 
existence of ||/o||*- 

If we pick some numerically manageable finite set YQ and interpolate /o 
on YQ, we can define f\ := /o — s/0,y0 and proceed iteratively by 

fi+i:=fj-sfjtYj,   YjCSl,  j = 0,l,... (7) 

using finite sets Yj that we shall have to deal with later. Anyway, the energy 
splitting (6) yields 

bfi,Yi\\l + \\fi-Sfi,Y1\\l = \\fj\\% 

and by summation we get the telescoping sum 

k k 

EfeHl = Elß -/H-III* = H/oli* - ll/'+iii* ^ »/oil*    (9) 
3=0 3=0 

which must necessarily converge for k —> oo even if the choice of Yj is bad, 
e.g. Yj = YQ for all j. By standard Hubert space argumentation via Cauchy 
sequences, the functions 

k k 

9k+\ ■■= E sfi>Yi= E^'~ ■^'+i)= ^° ~ ^+i 

3=0 j=0 

must converge in the norm ||.||$ to some element g in the native space, but 
we do not want to use this fact. Our goal is to prove that the residuals ff. 
converge to zero, and this would imply that the functions g^ converge to /o, 
yielding the desired reconstruction. 

Of course we shall need some additional assumptions on the sets Yj to 
be successful. Equations (8) and (9) suggest that we should let SfjtYj take 
up as much energy from fj as possible, and this will be our guideline for the 
convergence analysis in the following sections. 

§5. Conditions for Linear Convergence 

For simplicity, let us first assume that SfjtYj picks up at least a fixed percentage 
of the energy of fj, i.e. 

IK.yjUill/Jl (10) 
with some fixed 7 € (0,1]. This is a disguised hypothesis on the proper choice 
of Yj, and we have to prove later how to satisfy this assumption. From (8) and 
(10) we conclude linear convergence of fj to zero via ||/j+i||| < (1 — 7)||/j|||- 
This proves 
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Theorem 1. If the choice of sets Yj satisfies (10), the residual iteration (7) 
converges linearly in the native space norm, and there is an error bound 

||/o-S*||| = ||/fc|||<(l-7)*ll/o|||. 

Assumption (10) is not easy to handle, because the norm involves $ 
and the value of the right-hand side is not explicitly known. But in case of 
fQ := Sf,x for some large finite set X C fi C "R we can restrict ourselves to 
sets Yj C X, and all functions fj will stay in the finite-dimensional space (1). 
On this space, we can pick any norm ||.||x, for instance any discrete Lp norm 
of functions on X, and make use of the norm equivalence 

c\\s\\x < HI* < CIMIJC (11) 

for all functions s from the space (1), where the constants satisfy 0 < c < C. 
Then we can try to get away with 

W'wNxZWx (12) 

with some 8 S (0,1] instead of (10). But since this equation implies (10) with 
7 > Sc2/C2 > 0, we get 

Theorem 2. If the choice of sets Yj satisfies (12) for some norm \\.\\x of 
functions on X, the residual iteration (7) for reconstruction of /o := Sftx 
converges linearly in \\.\\x and there is an error bound 

fc/2 C ( r2 \   ' ||/-^IU<^1-^J       ll/IU- 

§6. Maximizing Energy of Interpolants 

Our argument at the end of Section 4 leads to the problem of finding a finite 
set Y such that the energy ||s/,y||| of the interpolant of some function (or 
residual) / is large. If fy € TR)Y' is the vector of values of / on Y, the 
interpolant Sfty solves a system with a matrix A^ty defined as in (2), and the 
energy is given by the quadratic form 

ll»/,y||| = fyA^,y-lfy > ||/r||2AmiB (^U.Y
-1

) = ||/r|||/Amo, (A*,Y) 

as a function of / and Y. The maximal eigenvalue \max (^$,Y) is nard to 
discuss in general (see Narcowich and Ward [14] for results), and we simply 
view this quantity as a factor that depends on the geometry of Y and the 
number \Y\ of points in Y. It is an interesting open problem to design some 
Remes-type algorithm based on exchanges of points to arrive at the best choice 
of a set Y with a prescribed number of points. 
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In the special case |V| = 1, Y = {y} things are easy. We get 

ll«/.rlll = /(2/)2*G/.2/) > /fa)2mm*(*.*) 

and the maximum of f2 will be the best choice, especially if $ is translation- 
invariant or radial. 

If we have Y C X for a large finite set X, we can invoke Courant's 
minimum-maximum principle to get Amal {A^ty) < ^max (^*,x) as an upper 
bound that does not depend on the choice of Y. A reasonable strategy for 
maximizing ||S/,Y||| then is to pick the \Y\ points of X where / takes its 
largest absolute values. 

In the general situation, we have to face the fact that coalescing points 
are not allowed. A reasonable strategy is to mimic the previous situation, i.e. 
to take some large set X of well-distributed points and pick the points of X 
where / is largest in absolute value. 

Another possible strategy is the iterative greedy collection of more and 
more points, forming a recursive Cholesky factorization. Since this possibility 
does not seem to be familiar to researchers in this area, we outline the process 
here. Assume that an interpolant to / on Y is available together with the 
inverse B of A$ty. We now want to add another point z € Cl \ Y to Y, 
thus enlarging the energy of the interpolant. A naive choice of z is via the 
maximum of the absolute value of / — Sfty, but since we have 

\\sf,Yu{,}\\l = ll»/,y||| + 2/(z) Y, fW{*,y) + /2(*)*(z>*), (13) 
y£Y 

the best choice of z for fixed Y is obtained by maximizing the right-hand side 
of this equation. Having found z, one has to update B in a suitable way. 
First, calculate the vector v e TEVY' with components $(z, y), y € Y and form 
w := Bv. The number 

1/a := $(2, z) - vTw = $(z, z) - vTBv 

can be shown to be positive, because $ is positive definite and z does not 
belong to Y. Then form u := -aw and C := B + uTu/a. The matrix 

C    u 
T u      a 

then is the inverse of j4$,yu{2} needed for the interpolation on Y U {z}. Un- 
fortunately, there is no numerical experience in this direction so far, especially 
for the maximization of (13). A more careful calculation of the numerical com- 
plexity reveals that we have nothing else here than a special formulation of 
the partial Cholesky algorithm with pivoting. The choice of pivots, however, 
is adapted to the setup of the problem as an interpolation. 

Altogether, this section was intended to motivate readers to look at the 
problem of finding good finite sets Y for improvement of interpolants. 
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§7. A Simple Greedy Algorithm 

Among other things, the previous section showed how to work on subsets 
Y consisting of a single point y each. The best possible choice is to take 
the point where / takes its maximum absolute value, and the interpolant is 
sf,{v} = f(v)®(y> O/^Ü/i v)- We now do this iteratively in the sense of (7) by 
picking Yj := {%•} with \fj(y,)\ = \\fj\\oo- In the "discrete" case /0 := sfiX we 
take the Chebyshev norm on X, while in the "continuous" case /o := / € C(Q) 
with Q being a compact subset of Rd, we take the Chebyshev norm on fi. 

Due to Theorem 2, the discrete case leads to linear convergence towards 
/o := Sf,x, because (12) is satisfied with 6 = 1. From a theoretical viewpoint, 
this is much better than the non-quantitative convergence result of Faul and 
Powell in [7]. On the other hand, there always is the conjugate gradient 
method as a competitor, and it has linear convergence, too. But it needs to 
form matrix-vector products, while our greedy algorithm does not even store 
the matrix. It simply needs two arrays of length \X\ for the residuals and the 
coefficients, and in each cycle it updates one cofficient and runs once over the 
residuals to update them and find the maximum for the next iteration. This 
extreme numerical simplicity must come at a price, and the price is very slow 
convergence after some good progress in the first few iterations. We report 
on numerical experiments and adaptive multiscale improvements in [23], but 
at this point we want to direct the reader's attention to extend the above 
strategy, e.g. via some suitable preconditioning. 

Before we look more closely at the greedy algorithm in the discrete case, 
let us digress a little into the continuous case. 

Theorem 3. If$ is a continuous translation-invariant positive definite func- 
tion on a compact domain fi C ]Rd, the greedy algorithm for interpolation of 
a function f from the native space of$ converges uniformly. 

Proof: We have 

\\sfi,Yj\\% = ff(yi)m = \\fi\\iom 

and (9) shows that the quantities \\fj\\lo are summable. Consequently, the 
residuals fj converge uniformly to zero on the compact set fi.   D 

Corollary 4. Under the assumptions on $ as in Theorem 3, the native space 
norm is expressible via a series 

j=o j=0 
J Moo' 

where 

/o == /, Mvi)\ = WfjWoo, fj+i ■■= fj - MM- - ViVW)- 

This result may look complicated at first sight, but it should be compared 
to other definitions of the native space norm, e.g. via Fourier transforms, by 
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abstract completion of a pre-Hilbert space, or by the supremum of the action 
of certain functionals. 

We do not want to go into details here (see [11], for instance), but prefer 
to give an illustrative example. If specialized to Sobolev space W^fi) with 

k > d/2, one has to take (f>(x) = ||z||2
- ' ■R'/fc-d^GMk) in order to recover 

Sobolev space as a native space for $(x,y) = <f>(\\x — 2/112)- Now by Corollary 
4 one gets the Sobolev norm of a function as a series containing just function 
values on the domain in a numerically accessible way, using neither derivatives 
nor integration (but, of course, maximization). It should be pointed out that 
this technique provides some means to assess the Sobolev smoothness of a 
given function numerically. Readers are encouraged to proceed from here. 

§8. Dual Techniques 

Another possible approach to solving a large TV x TV system with a large 
symmetric and positive definite coefficient matrix A$tx via smaller finite sub- 
problems is to define certain finite-dimensional subspaces Sj of the native 
space and to approximate the exact solution on X = {xi,..., x^} by approx- 
imation in the native space norm. More precisely, the iteration starts like in 
Section 4 with some function /0 and j := 0, and iterates like (7) according to 

H/j-SjH* := inf ||/j-s||* 
s6Sj (14) 

fj+i ■= fj ~ Sj. 

By standard arguments, this iteration also satisfies (8) and the rest of Section 
4, including the summability condition (9). Note that if a space Sj = Sy ,$ 
has the form (1) for some finite set Yj, then the best approximation solution 
Sj in (14) coincides with Sfjiyj and we are back to the method in Section 4. 
This observation follows from Theorem 7 in Section 9. 

But there are other possible choices for the spaces Sj. In particular, Faul 
and Powell [7] pick certain one-dimensional spaces Sj = span {UJ} for all j > 
0. Then Sj := ctjUj with a.j := (iij, fj)$/(uj,Uj)<j> solves the approximation 
problem, and we have the summability condition 

EMl = E Wl!*> = Biünr./;)! = ll/o111 ~ll/t+l111 - ll/o111' 
(15) 

§9. Cyclic and Greedy Dual Strategies 

In [7], Faul and Powell fix TV such functions Uj by a certain precalculation that 
we shall discuss later. These functions are used periodically, i.e. Uj is used in 
step j + kN for all k > 0. The periodic reuse has the advantage that one can 
precalculate and store the «,-, if their construction is somewhat involved. We 
start with a generalized and simplified version of the convergence result in [7]: 
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Theorem 5. If fo is in the span of the functions Uj for 1 < j < N, then the 
cyclic dual method of Faul and Powell converges to f0- 

Proof: Since everything takes place in a finite-dimensional space, and since 
the technique involves an energy split, the functions gj = /o - fj converge to 
some function g in the span of the Uj, and the fj converge to /0 - g. But as 
(15) implies 

lim (,,   \.   , /j+fcjv)$ = 0 = (,,   \.   , /o -ff)$ 

for all j, the functions /o and g must coincide. D 
There are lots of choices of Uj that satisfy the hypothesis of Theorem 5. 

Conjugate directions and Uj := $(•, Xj) would do the job. The latter strategy 
coincides with the greedy method, if the cyclic choice is given up in favour of 
picking the point where the residual is maximal in absolute value. A linear 
convergence result is possible, if such a modification is made in general: 

Theorem 6. If fo is in the span of the functions Uj for 1 < j < N, then the 
iteration (14) with 

(fj,ukj)% ■■= max(/j,ufc)| 

Sj := span {ukj} 

converges linearly to fo- 

Proof: We can proceed as in Section 5, using 

||M||^ := max(u,Uj)% 
j 

for all functions u in the span U of all Uj. The assumption (12) is satisfied for 
Sj instead of Sfj ^ due to 

Sj - -, -T-Uki 
{■ukj,ukj)is. 

and the rest follows easily. □ 

The inner-products in (16) can be evaluated explicitly, if we work in the 
space (1) and use (4) and (5) in the form 

(sc,x,Sd,x)s = ^ckSd,x{xk). (17) 

This is particularly efficient if the functions Uj have only a small number of 
nonzero coefficients in their representation of the form Uj = scjtx- Another 
possibility, exploiting the dual nature of the algorithm, is to store and update 
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the inner-products (fj,Uk)q> instead of the values fj(xk)- So far, there is no 
numerical experience with dual greedy algorithms, unfortunately. 

One has a lot of leeway for picking suitable functions Uj, especially when 
preconditioning arguments come into play. Faul and Powell use local Lagrange 
functions Uj based on relatively small subsets Yj of X that contain Xj. In 
particular, Uj £ 5y,,<i> is defined by the interpolation conditions 

«ite) = i. (18) 

Uj(xk) = 0 for all xjt € Y,-, k / j, 

and is expressible in the form Uj = scj y. = sjjx with at most \Yj\ nonzero 
coefficients. The precalculation involves the solution of TV systems with \Yj\ x 
\Yj\ matrices .A^y. ,and it can be kept at 0(N), if the values \Yj\ are bounded 
independent of TV. Our arguments in Section 10 will show how this technique 
can be interpreted as preconditioning the matrix A$tx- For a fixed accuracy 
to be obtained, and for their special choice of the sets Yj, Faul and Powell 
then observe that they need only a small fixed number of cycles of the dual 
algorithm. Each cycle has TV one-dimensional subproblems, but there are 
techniques to keep each subproblem at a reasonable complexity, provided that 
techniques like multipole expansions [1] or compactly supported radial basis 
functions [26, 25] are used. 

The selection of functions Uj is particularly good if there are orthogonality 
or conjugacy relations among them. Let us look at an inner-product {uj,Uk)$ 
in case of (18), using (17) and Uj = scjtx- We get 

m:xm€Yj 

and this quantity vanishes if Yj C Yjt \ {xk}. 
This can be seen as a motivation for choosing 

Xj £ Yj C {xj,xj+i,...,xN} (19) 

as done by Faul and Powell. Even if the functions Uj are in general not mutu- 
ally orthogonal they are at least linear independent as needed for Theorems 
5 and 6. To see this note that the matrix C = (c^) which describes the tran- 
sition from the basis ($(-,Xj),l < j < TV) to (UJ,1 < j < N) is an upper 
triangle matrix and thus invertible if c\ ^ 0 for 1 < i < TV. This is indeed the 
case because of 

0
THKII!=     Yl    c'mUi{xm) = C\. 

m:xm£Yj 

We finish this section by pointing out how to make optimal use of solving 
TV systems with \Yj\ x \Yj\ matrices j4$,y; for subsets Yj in a precalculation. 
If the full inverses of the A$:YJ are stored instead of the coefficients of Uj, 
one can use the cyclic dual algorithm with Sj := SY ,$■ The energy split at 
each step of the algorithm will then be better or equal to the split obtained 
by the dual cyclic algorithm using a single Uj € SY,,® like the one used by 
Faul and Powell. This is clear from (14), and the following theorem, which 
is well known since the advent of splines, shows that we end up with a cyclic 
interpolatory method of the form (7). 
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Theorem 7. ItY is a finite subset oftt, the approximation problem 

inf   ||/-a||* 

for any / in the native space of$ is solved by the interpolant s/,y. 

Proof: Equations (6) generalize via continuous transition to the Hubert space 
completion to 

(s/,y,/-s/,y)* = 0 

ll*/,r|li +11/-*/,y|l! = 11/111 
for all / in the native space, and the assertion follows. D 

Consequently, algorithms using interpolants on finite subsets make opti- 
mal use of the information contained in the space Sy,*. This links the dual 
techniques back to the interpolatory methods in Section 4. Numerical results 
concerning the above cyclic interpolatory method, e.g. using the sets Yj of 
Faul and Powell, are still missing. The progress must be better due to The- 
orem 7, but at the expense of much more storage. And, an incorporation 
of greedy selections using the good preconditioning power of the Faul-Powell 
approach seems worth investigating. 

§10. Quasi-Interpolation 

There is a hidden link between the Faul-Powell technique, preconditioning of 
A$tx, and certain quasi-interpolation methods using local Lagrange functions, 
as investigated by Beatson, Powell and their coworkers (see for example [2]). 
If we write the interpolant s/,x to some function / in Lagrange representation 

N 

*/,* = £/(*>; (2°) 
with N Lagrange basis functions Vk € Sx,$ satisfying Vj(xk) — Sjk, we can 
relax (20) to a quasi-interpolation formula 

N 

for any other choice of functions Uj that approximate the global Lagrange 
basis functions Vj. The choice (18) for certain subsets Yj is quite natural, 
because one can often [3] observe that local Lagrange functions based on a set 
Yj of neighbouring points to Xj € Yj decay quickly away from Xj. Assuming 
(18) (but not (19)) from now on, the representation (21) can be rewritten in 
terms of Uj = SCJX &nd (3) as 

N N 

sf,u,x = Y^f(xi) X} 4$(;xk) = Yl®(-'x^ 53 /foK- 
j=l k:xk€Yj k=l 3--*k£.Yj 
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The coefficients of the second representation can be evaluated locally, and 
the computational advantage is particularly evident in case of compactly sup- 
ported radial basis functions. 

We now want to look at the quality of such quasi-interpolants on the 
discrete set X itself. The operator that maps the vector 

flx:=(f(xl),...,f(xN))T€HN 

to SftU>x\ € 1R can be written as the matrix product Aq>tx • C, where 

C = (cj.) is the nonsymmetric TV x TV matrix with row index k and column 

index j containing the coefficients c?k of the Uj columnwise. The operator that 
generates the residuals on X then is EN — ^4$,x • C with the TV x TV identity 
matrix EN- In case of Yj = X for all j we have C = v4$x_1, and there 
are good reasons to expect that there are numerically interesting cases where 
some matrix norm of EN — A<f,tx • C is smaller than one. In such cases one 
can solve the problem on X by successive quasi-interpolation via a Neumann 
series. In terms of vectors /J and sJ containing the values of residuals fj and 
quasi-interpolants to fj on X, we have the linearly convergent iteration 

/■ 

f° 

j+i 

= fo\x 

= A*iX ■ CP 

= P - a* = (EN - A*,x ■ Cy+1f° 

calculating the interpolant to the data of fg on X as the sum over the s-7. Note 
that we cannot use the energy split here, because we have left the context of 
interpolation and approximation. Note further that C acts as a (nonsymmet- 
ric!) preconditioner or an approximate inverse to A^tx- 

§11. Experiments Concerning Quasi-interpolation 

To calculate the norm of EN — Aq>tx • C numerically, we observe that the 
matrix A$tx ■ C has the entries «7'(a;»), where i is the row index. Thus the 
entry at (i, j) of EN — A$tx • C vanishes for xt G Yj, and the column-sum 
norm of EN — A$tx ■ C can be written as 

max   Y^   \uJ(xi)l (22) 

Again it turns out that the decay of local Lagrange functions is essential. 
In case of data on the uniform grid (hTZ)2, a radial basis function <j>c 

with support in [0,c], and sets Yj := {y € (/iZZ)2 : \\XJ — T/||2 < R} of 
neighbours to XJ within a radius R, the norm in (22) can be evaluated by 
looking at the local Lagrange function UQ with respect to the origin and the 
set YQ := {y € (hTL)2 : ||y||2 < R} of local interpolation points. Since both 
YQ and the support of <f> are bounded, the function UQ is zero on integer grid 
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Fig. 1. C = 4, R = 6, norm = 0.48, and C = 5, R = 8, norm =0.29. 

N 5 9 13 21 25 29 37 45 49 57 61 

M0.9 5 5 5 9 29 49 69 81 97 145 145 
Mo.i 5 5 21 29 109 137 149 

Tab. 1. Point numbers Mp required for norm < p and N points in support of tj>. 

points outside the disk around zero with radius R + c. Omitting the value 
1 at the origin for scaling reasons, Figure 1 shows the behaviour of UQ on 
integer gridpoints around the origin. We picked two cases for the C2 function 
cj>c(r) := (1 — r/c)\{\ + 4r/c) from [25] where the norm of E^ — A$>tx ■ c is 
smaller than one, and the corresponding numbers of local interpolation points 
in y0 are 113 and 197, respectively. 

For applications, it is necessary to know how large R must be for fixed 
c and h in order to make the norm of E^ — A$,tx • c smaller than 0.9 or 
0.1, say. Since R and c scale with h, the numbers M and N of points in Yö 
and the support of <j> depend on R/h and C/h, respectively. Given a support 
radius c and a maximal meshwidth h such that the support of <j>c contains 
N = 1,5,9,13,... points, we provide in Table 1 the minimal number Mp of 
points in YQ that are necessary to keep the norm of EN — A^tx • c below p. 
Another way of reading Table 1 is that if the matrix A<s,tx for interpolation 
by $(a;,2/) := ^»cdl^ — 2/II2) on a regular grid has bandwidth N, then it has 
an approximate inverse with bandwidth Mp that leads to a residual matrix 
of norm p. The quasi-interpolant is to be calculated via subproblems with 
Mp x Mp matrices. It is an interesting challenge to provide sparse approximate 
inverses for sparse symmetric positive definite matrices, because normally the 
exact inverses will not be sparse. 
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§12. Conclusions 

At first sight, our results on linear convergence look promising, but they still 
are too weak to provide a convergence rate that is independent of N, since 
no preconditioning techniques are involved. Improvements should thus focus 
on preconditioning, e.g. along the lines of Faul and Powell. Greedy methods 
for fixed $ are limited to quick-and-dirty approximations with few nonzero 
coefficients and need extension to multiscale techniques. The adaptive greedy 
method in [23] is a first step, but the results shown there imply that it has to be 
stopped before it runs into scales that are too small. A possible continuation at 
small scales is provided by quasi-interpolation as outlined here. A combination 
of both techniques generates approximations which consist first of K « N 
global terms obtained by an adaptive greedy method, followed by N local 
terms constructed by quasi-interpolation. The overall complexity can thus be 
kept at O(N). 

Acknowledgments. The authors are grateful to Fabien Hinault for detecting 
an error in the first version of the paper. 
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Parametric Polynomial Curves of 
Local Approximation of Order 8 

K. Scherer 

Abstract. Parametric approximation of curves offers the possibility of 
increasing the order of approximation by using the additional parameters 
in the parametrization of the curve. This has been studied in several 
papers, see e.g. [1-8]. The resulting problems are highly nonlinear. Here 
the cases of approximation order <D(hs) are studied which need piecewise 
quartic curves in the plane and piecewise quintic curves in space. 

§1. Introduction 

A general conjecture concerning the local approximation order by polynomial 
curves can be formulated as follows (see e.g. M0rken-Scherer [6]): 

• For sufficiently small h > 0 and a sufficiently smooth curve f(t) : t € 

[0, h] —> /(£) € Rd, there exists a polynomial curve p{t) of degree n and 
a reparametrization ip of / on [a, b] such that 

sup  \\(fo<p)(t)-p(t)\\<C{f)hm, 
0<t<h     ~ - ~ 

where m := n + 1 + [*}5i]- 

The increased order m is explained in [6] by the principle of degree reducing. 
It comes from the idea of approximating with an interpolating polynomial 
curve p(t) of degree m — 1 such that 

P(*i) = (/°M<i),        l<i<m, (1) 

for points t, in [0, ft] (multiplicities allowed). The additional parameters oc- 
curing via the reparametrization <j> are used to reduce the degree m— 1 of p(t) 
by requiring 

[ti,-.-,*m-<](p) = [*!,...,<m-i](/o$ = 0,    t = 0,...,*-l, (2) 

Curve and Surface Fitting: Saint-Malo 1999 375 
Albert Cohen, Christophe Rabut, and Larry L. Schumaker (eds.), pp. 375-384. 
Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
ISBN 0-8265-1357-3. 
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with k as large as possible. Since we have to normalize 4> such that 0(0) = 
0,4>(h) = h, there are m — 2 parameters left at our disposal for this goal. Thus 
rn-1 can be reduced to n = m-l-fc, where k-d < m-2 or k < (n-l)/(d-l). 

Prom classical approximation theory it is then clear that a solution of 
(1),(2) yields a polynomial curve p(t) of degree m — 1 — k satisfying 

sup  \\(f o cf>)(t) - p(t)\\ < hm  sup  ||£m(W)(*)||. (3) 
0<t<h 0<t<h 

Thus conjecture (•) is true if one can guarantee in addition that the parame- 
ters 0(2)(O),... ,</>(m)(0) of a solution of (2) remain bounded for h -> 0. This 
question of stability is also discussed in [6]. Note also that in this case equa- 
tions (1) can be written as 

po<f>-1(si) = /(SJ),    l<i<m, 

where the nodes Si are defined by s* := <j>(U). 
The most interesting case of the conjecture is when (n — l)/{d - 1) is an 

integer k, i.e. m = n+l + k = kd + 2. In this case there are kd equations in 
(2), and the degree m - 1 is reduced by k. Then <j> is determined by 

[ii,...,iB+i+.-](/°0) = O,    i = l,...,k, (4) 

and p(t) by the first n + 1 equations in (1). 
So far the conjecture seems to be proved only in the case n = d or k = 1 

(see [5-6]) and for k = 2 = d (see [1,3]). Here we treat the next most difficult 
cases k = 3,d = 2 and k = 2,d = 3, which amount to six equations in (4), 
and will lead to quartic curves in the plane and quintic curves in space with 
approximation rates of order 8, respectively. 

§2. Reduction to 2 x 2 Systems 

In Morken -Scherer [6] equations (4) were studied in particular for the Taylor 
case 

£>"+i(/°</>) = 0,    i = l,...,k. 

The crucial point is then the formula of Faa di Bruno in the form given by 
T. Goodman. It reads (cf. [4]) 

i?l(/o*)(0) = Ea'jZÜ)(0)>        ß:=^(°(0), (5) 

where 

aU =        YJ 
h+...ij=l,l>i 

and 
"     / 

I 
ßh-'-ßh 

li\ ■ ■ -L!mi! • • -mr! 
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Here the integer r denotes the number of distinct integers among the l±,...,lj, 
where mi,... ,mT are the multiplicities of them. Specific examples are 

l'/2] fl\ 
ai,i =ßi,    0,1,2 = ^1 .]ßißi-i,        al}i=ß{. 

At first we consider the planar case d — 2 for k = 3. Then the equations (4) 
specialize to 

^(W)(0) = 0,    j = 5,6,7. (6) 

Under the normalization cf>(0) = 0, ßi := <f>'(0) = 1, this yields six equations 
for the unknowns 02,...,0r. In [8] this system has been reduced to a 2 x 2 
system for ß2,ßz- The basic idea was to simplify system (6) by determining a 
preliminary reparametrization tp with ip(Q) = 0, ^'(O) = 1 such that 

D2i+1(£oTp)(0) = 0,    « = 1,2,3. 

It can easily be shown that this system is uniquely solvable in the unknowns 
72i ■■■ilii where jj := ip^'(0) provided 

span(/'(0),/"(0)) = ]R2. (7) 

Thus one can assume that I>3/(0) = I>5/(0) = L>7/(0) in (6). Denoting ditj 

as the cross product of f^ and /W in R2, i.e. 

Further straightforward computation (cf. [9] ) leads to 

Lemma 1. Under the assumption (7) and the normalization </>(0) = 0, ßi := 
<£'(0) = 1, the vector ßi, ■••,/?7 is a solution of the equations (7) iff ß2,ßz is a 
solution of the 2x2 system 

0 = 4,i + 20d4,iAj + 10d2,i/?3 

+ 60/32d4,2 + 15(4,i - 2d2,iß3)ßl 

and 

0 = 15/3f4,i + 75/3|d4)2 + (3d6,i - lOd^iM.i)/^ + 4,2 

+ 10(2d4,2 + fodi,i)fo - I0d2,iß2ßl 

(8) 

(9) 

The elimination of the variable ßz in this system along the lines of the 
resultant method yields an equation of degree 9 in ß2. However, it was over- 
looked in [8] that the constant term in this equation vanishes, so that it is in 
essence of degree 8 . Thus, existence of a (real) solution of (8)-(9) cannot be 
derived in this way. We will close this gap in the next section. 



378 K- Scherer 

In the space case d = 3 we have to find a reparametrization 4> such that 

!>'( W)(0) = 0,    i = 6,7. (10) 

We simplify this again by determining a reparametrization ip with V'(O) = 0, 

V>'(0) = 1, V(i)(°):=7i and 

DJ'(/o^)(0)=0,    j=4,7. 

This is possible since by (5), in the three equations forming I>4(/ o^)(0) = 0 
the coefficients of/',/" and /'" are linear in the unknowns 72,73,74, and in 
the latter three are linear with respect to the 75, 76, 77- Therefore, these 
equations are uniquely solvable under the assumption 

span(/'(0),/"(0),/"'(0))=lR3, (11) 

and we can consider (10) without loss under the assumption D4(/)(0) = 
£)7(/)(0) = 0. This yields (with 0i = 1) the equations 

0 = ß6f + (605 + 150204 + 10/?!)/" (12) 

+ (1504 + 6O0203 + 15$)/'" + 1502/
(5) + /(6), 

0 = 07/' + (706 + 210205 + 350304)/" + (105/3| + 3503)/
(5) 

+ (21/% + 1O50204 + 70$ + 1O502
203)/'" + 2102/

(6). 

The next step is to take in (12) the scalar product with cross products /' x 
/",/' x /'" and /" x /'", respectively. We obtain the equivalent equations 

0 = (1504 + 60y32/53 + 15/02)^1,2,3 + 15024,i,2 + 4,1,2 (14) 

0 = (605 + 150204 + 10^|)d2,l,3 + 15^4,1,3 + 4,1,3 (15) 

0 = 064,2,3 + 15/32^5,2,3 + 4,2,3, (16) 

where 
(/(il) x L{h)dU)) ■■= det (/<'»>,/H/0'*) := 4,W- 

These equations serve for eliminating the variables /?4,/35 and /36 since they 
appear linearly. Before doing this, we transform (13) into three equivalent 
scalar equations analogously to (12). We obtain the three equations 

0 = /37di,2,3 + (105/82 + 35/33)4,2,3 + 21024,2,3, (17) 

0 = (06 + 30205 + 503/04)4,1,3 + (15$ + 503)4,1,3 + 3024,1,3, (18) 

0 = (305 + 150204 + lO03
! + 1502

203)4,l,2 + (1502+503)4,l,2 + 3024,l,2.   (19) 
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Equation (17) determines ßq directly in terms of 02,03-   Now we eliminate 
05,/36 in (18) via (15),(16). This gives at first 

0 = -(30205 + 50304)4,1,3 + (15/3| + 5yS3)dB,l,3 + 302(4,1,3 + 54,2,3) + 4,2,3 

and then 

15 5 
0 = y0|4,2,3 + 5034,i,3 + 2^2(4,1,3 + 64,2,3) + 4,2,3 

15 
+ (y02

204 + 5/33
2&)4,2,3 - 503044,2,3- 

Now we eliminate the variable /?4 by (14). The result is the equation 

0 = &(&) + 9~i (02)03 + Uß*)ßl (20) 

where 

q0(ß2) :=       (15/2)4,2,3/32
5 - (15/2)4,2,5/91 + [(15/2)4,3,5 - (l/2)4,2,6]/?22 

+ (154,3,5 - (5/2)di,3,6)& + 4,3,6, 

?i(A) := (1/3)4,2,6 + 54,3,5 + 54,2,502 - 254,2,301, 
Ö2(|02) := -254,2,302- 

Analogously we reduce equation (19) to an equation in /32, 03 by eliminating 
05 and then ß^. Using (15), we obtain 

0 = (503
2 + 15/31^)4,2,3 + (15/32

2 + 5/33)4,i,2 

+ 3/32(4,l,2 + 24,1,3) + -^ + y 02044,2,3, 

and then by (14) 

0 = 4,2,3(-15/32
4 + 30/33/32

2 + 10/33
2) + 4,i,2(15022 + 10/33) 

+ 02(154,1,3 + 54,1,2) + 4,1,3- 
(21) 

In order to get rid of the term with /32 in (21), we make a final substitution 

03 := 03 + aßl        a := (3/2) + 715/2. 

Then 
-150| - 3O03022 + 1O032 = [-3O022 + 2Oa/32]03 + 1O03

2, 

and (21) simplifies to 

0 = Po(ßs) + Pi (03)02 + P2(03)0|, (22) 
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p0(ß3) := 10d1]2,3Ä32 + 10^1,2,503 + di,3,6, 

Pi(Ä):=5di,2,6 + 15di,3,5, (23) 

p2(03) := 10\/l5di,2,3Ä + (15 + 10a)di,2,5. 

With the new variable ß3, (20) transforms into 

0 = goGfc) + qMßs + 92(/?2)Ä2, (24) 

with . , 0    , „ „ 
9o(02) := 9o(02) - 25a2di,2,3/32

5 + a029i(02), 

gi(02):=gi(Ä)-5Odi,2,3a023- 

92(02) := 92(02) = -25di,2,302, 

and the 9,(02) defined as above. We summarize all this in 

Lemma 2.  Under the assumption dh2,3 ^ 0, i.e. assumption (11), and the 
normalization 0(0) = O,0i := <£'(0) = 1, the vector ß2,..-,ß7 is a solution of 
the equations (22), (24) iffß2,ß3 is a solution of the 2x2 system (22), (24). 

Remark: The systems (8)-(9) in the planar case, and (22)-(24) in the space 
case possess a similar structure. In (8) and (22) the coefficients of ß2 are 
polynomials of the same degree in ß3 and ß2, respectively. The same is true for 
(9) and (24), except that the corresponding polymials have different degrees. 

§3. Existence Theorems 

In view of the last remark, we treat in detail only the planar case. 

Theorem 1.  The system (8)-(9) has at least one and at most 5 (real) solution 

pairs /?2,03 outside the line ß3 = d^i/2d2t\. 

Proof: Let us write for shortness x := ß2 and y := ß3 as well as 

A(y) := Po(y),    2B:=pi(2/) = 60d4,2,    C{y) := p2{y) = 15d4,i - 30d2,iy. 

Then (8) reads 0 = A(y) + 2Bx + C(y)x2. Formal solution for x gives 

x = V±(») :=  oft) - —W)        . (25) 

with the cubic polynomial 

R{y) = 15[20d|l2/3 + 30d4,id2,iy
2 + (2d6,id4,i - 20dl,!)» + 240(^,2 - rf4,id6,i]. 

Then write (9) as 0 = £?=o a{x
{ + b0y + bxxy + b2xy2, and insert (25), since 

by assumption C{y) ^ 0. After multiplication with C(y)3, we obtain 

0 = £>(-B ± y/RWYCtv)3-' + boyC(y)3 

i=0 
(26) 

+ h(-B ± V^))C(y)2 + b2y
2(-B ± ^R{y^)C(y)2. 
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Now observe that 

(-B ± JW)? = B2 + R(y) ± 2B^y), 
(-B ± jR^jf = -B3 ± w2JW)- zBR(y) ± R(y)Vim, 

and sort all terms with and without y/R(y), respectively. Then (26) can be 
written as 

U(y) = ±V(i,)v/Äfo), (27) 

where U(y) is a polynomial with leading term —11 • 15 • ■ 9000 (£4,2 d\ x j/
4 and 

V(y) also of degree 4 with leading term 9000^ I V4- 
Hence under the above assumption, ß2,ß3 is a solution of the system 

(8)-(9) iff y = /?3 is a solution of (27) with sign either + or - on the right 
hand side. Suppose that n\ and n2 are the numbers of solutions of these two 
equations (including multiplicities). Then the squared equation 

U2(y) = V2(y).R(y) 

is of degree 11, and has 2(ni + 712) solutions. Hence we conclude n\ + n2 < 5. 
To prove existence, write (9) as 

H(ß2,ß3) = 0, (28) 

where H is of degree 3 in ß2 and with —10ß2ß^d2,i as leading term in ß3. Then 
introduce y* as the largest zero of R(y), so that in view of Ä(+oo) = +00 

R(y*) = 0,        R(y) > 0   fory* < y < 00. 

Now insert both functions y>±(y) in (28), and obtain the functions 

H±(y) := H(<p±(y),y). 

In order to guarantee existence of a solution of (8)-(9), it suffices therefore to 
show that the ranges of H+ satisfy 

ff+1/, 00) U #_[»*, 00) = R. (29) 

For this, observe at first the properties 

¥>+(»*) = -B/C{y*) = 2d4,2/(d4.i - 22/* d2]1) := y* 

and 
y+(2/)«±l||1/2sign(d2ii),    j/->oo. 

Then we distinguish the cases (assume without loss t^j.i > 0): 

i)   y* > y ~ ditl/2d2,i,       ii)   y* < y. 
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In case i), we consider the ranges of tp+ for (y*, oo), and have 

<p+[y*,oo) = (-oo,<p*},        <p-[y*,oo) = [ipt,oo). (30) 

Since both tp+ are well defined and continuous on (y*, oo), so are the functions 
H+(y), and furthermore 

H±(y*) = H(<p*,y*). 

In combination with 

H+{y) « 10|d2,i||»|V+(ff),    »-oo. (31) 

it follows that 

H+[y*,oo) = (-oo.fffa*,»*)],        Ä-[j/*,oo) = [#(¥>*,»*), oo), 

and hence the desired assertion (29) in case i). 

In case ii), the function (f-(y) has a singularity at y which lies in (?/*, oo). 
However, we can restrict its domain to [y*,y) and still have (rf2,i > 0) 

V-[»*,») = b*.~)- (32) 
On the other hand the function <p+ (y) remains continuous on the whole inter- 
val (y*, oo) since 

Mv) = My)/(B + VB
2
 - A(y)C(y)). 

Hence we have 

<p+[y*>°°) = (-°°.v*]> 

so that together with (32) we have the same situation as in (30) and can 
proceed further exactly as before in order to prove (29).   D 

It remains to discuss whether there exist solutions of (8)-(9) if ßa = 
di,i/2d2,i := jr. In this case, (8) gives ß2 = A{y)/B if B ± 0, and (9) 
can have a solution only under some additional constraint on the parameters 
^2,11 ^4,1, ^4,2, ^6,1, ^6,2- We omit it here, as well as the one which results from 
(8) if in addition B = 60d4,2 = 0. 

Further, we remark that there can indeed exist 5 solutions of (8)-(9). To 
this end, one can consider the case d4)1 = 0, where these equations simplify 
in such a way that solving (8) for z := ß3 - (3/2)/3f gives 

3    2       2rf4,2/?2~"1        rf6,l/?2~      ,   n(o-4\ ±z-2ß2-^T-^d2J + 0{ß2 y 

Inserting this into (9) with sign +, it follows that 

0 = -90d2Aßl + 255d4,2/?2
2 + 5d6ilß2 + d6,2 + 0{l/ß2). 

Here the polynomial of degree 5 dominates for large ß2, and it is clear that the 
4 parameters ^2,1,^4,2,^6,2,^6,1 can be chosen such that there exist 5 zeros 
outside some bounded interval containing 0. The situation for the system 
(22)-(24) in the space case is similar. 
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Theorem 2.  The system (22)-(24) has at least one and at most 7 (real) 
solution pairs ß2,ßz if ß3 ^ -(6 + \/l5)di,2,5/5\/l5dii2,3- 

Proof: Concerning existence, the argument is the same as in Theorem 1. We 
define x := ß2,y := ß3 and A(y) := p0(y),B := pi(y),C(y) := p2(y). Then 
R(y) in (25) has the form 

R(y) = 50VT5d?i2]3?/3 + 50\/l5di,2,5i/2 + linear term. 

Again define y := -(6 + \/l5)di,2,5/5\/l5d1]2,3 as the zero of C(y) and y* as 
the largest zero of R{y), and let <p±(y) := (B ± y/R(y))/C(y). Its asymptotic 
behaviour is described by 

VifoJwsgndi.a.sAl172,    2/^oo. (33) 

Now we distinguish as in Theorem 1 the cases i) and ii) and conclude that 
either (30) holds or (31), respectively. 

Next write (24) similarly as in (28) as 

H(ß2J3) = 0 
and define H±(y) := H(ip±(y),y). Its asymptotic behaviour is somewhat 
more complicated to determine than in (31), since by the definition of the 
9t(j/)i * = 0,1,2, in (24), the leading term of H(ß2, ß3) now has the form 

(y - 25a2)d1,2,3/?2
5 + 25adli2,3/32

5 + (25di,2l3 - 50adi,2,3)/?3/3! - 2SdlxzßÄ2. 

Inserting (33) with ß3 = y, one derives from this 

H±{y) « const. \y\5/2,    y -> oo. 
Hence we obtain the same property (29) for H± as for H± in Theorem 1, and 
existence of a (real) solution pair of (22), (24) follows. 

In order to show the bound on the number of solutions, we proceed again 
as in Theorem 1. We solve (22) for x = ß2 as in (25) and insert it into (24) 
written as 

5 3 

0 = y~^ ajx% + y y^ bjX1 + cxy2, 
i=0 i=0 

with constants a,, 6; and c. This gives after multiplication with C(y)5 

5 

0 = J2"i(-B±VRV))iC(y)5-i 

i=0 
3 

+ y J2 U-B ± y/RfäyCiy)5-' + cy\-B ± y/^))C{y)\ 

Then sort by terms with and without ±^jR(y) . The result is an equation 
of type (27), this time with polynomials U(y) of degree 7 and V(y) of degree 
6. Therefore we conclude by the same argument as in Theorem 1 that the 
system (22), (24) has at most 7 solutions .   D 

The discussion of the degenerate case ß3 ^ —(6 + \/l5)di>2j5/5\/l5di,2,3 
is omitted. It can be done similarly as for Theorem 1. 
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§4. Final remarks 

We have shown that local approximation order 8 can be achieved with para- 
metric polynomial curves of degree 4 in the planar case, and degree 5 in the 
space case. The method for this consists in determining a suitable reparame- 
trization <p, and then the Taylor-polynomial with respect to f_ocj>. For practical 
purposes, however, it is important to consider also Lagrange or Hermite inter- 
polation in the sense of the equations (1). This has been done in case k — 2 
for d = 2 in [1,3,6] and for d = 3, in [5], but results for higher k do not seem to 
be available so far. In this respect another interesting open question is which 
order of geometric continuity can be preserved when a piecewise polynomial 
curve is constructed by pieces of such local aproximations. 
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A B-Spline Approach to Hermite Subdivision 

U. Schwanecke and B. Jüttler 

Abstract. We present a new approach to Hermite subdivision schemes. 
It is based on the observation that a sequence of second order Hermite 
data define a unique interpolating cubic C spline. The B-Spline form of 
this interpolating spline leads to a stationary binary subdivision scheme 
with 4 different subdivision rules for the control points. We construct a 
generalized 4-point scheme which leads to a new family of C Hermite 
subdivision schemes. 

§1. Introduction 

Starting from an initial sequence {h\ }jgzs of second order Hermite elements 
(i.e. vectors containing function values and associated first derivatives), a Her- 
mite subdivision scheme (cf. [4,5,6,7]) of order two recursively generates finer 

sequences {h\ }ie?z, of Hermite elements associated with the dyadic points 

{t\ ' = i2~k}i£E,. The refinement is based on two rules, 

m m 

*£+1) = E4fc)fc*(8. C=E5r^. * = o,i,2    (i) 
j=0 j=0 

where the matrix masks A« = {A{
0
k\ ..., A$}, B« = {B^,..., B%]} of 

the scheme consist of real 2x2 matrices Aj , B ■ ' depending on the subdivi- 
sion level k. Merrien [7] considered Hermite-type 2-point-schemes (i.e. with 
m = 1), generating C1 functions. By introducing an auxiliary point subdivi- 
sion scheme, Dyn and Levin [4,5] analyzed stationary Hermite-interpolatory 
subdivision schemes of arbitrary order. Using this approach, Kuijt [6] con- 
structed several C2 Hermite interpolatory subdivision schemes of order two. 
Kuijt derived the refinement rules by considering the polynomials interpolat- 
ing neighboring Hermite elements, and sampling Hermite data from them. 

By considering the interpolating splines associated with the Hermite ele- 
ments, this paper introduces a new approach to Hermite subdivision. We ana- 
lyze the smoothness of the limit function, and present a family of C2 Hermite 
subdivision schemes generalizing the 4-point scheme [3]. This spline-based 
approach can be generalized to Hermite elements of arbitrary order. 

Curve and Surface Fitting: Saint-Malo 1999 385 
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Copyright ©2000 by Vanderbilt University Press, Nashville, TN. 
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§2. Spline Subdivision Schemes 

At each subdivision level k, the Hermite data {h\k'}ie7z define a unique in- 
terpolating cubic C1 spline, having the B-spline representation 

X<*>(i) = £><*>W,4(t) with knots TW4.,^M--).     (2) 
1 2x 2x 

The control points p^ € R. are associated with the Greville-abscissas (see 

e.g. [8]) $ = t\k) - 3V and ^}t = t\k) + ^, forming a nonuniform 
sequence. Control points and Hermite elements are related by the transfer- 

mations (p<*\p<*>.X)
T = H^h™ and h™ = (^"^Mli^ where 

^=(!      if)'        ^fc))_1=(-3 2-    3 2^-0- (3) 

Clearly, the spline function X^ can be represented with respect to the refined 
knot vector T^k+l\ Knot insertion leads to the following 4 refinement rules 
for the B-Spline control points: 

Ak + l) _  3_(*0   ,    ljfc) d^ + 1) _  lj*)   ,    5   (k)       ,    2   (fc) 
P4i - iP2i   + 4P2i+H      P4i+2    - &P2i   + 8**2i + l + 8^21+2' ,^ 
~(*+l)        1   (*)   ,   3   (k) -(*+l) 2j*)      ,   5_(fc)      i   l„(fc) 
P4.+1    = 4?2i   + 4P2i+l.      P4i+3    = g^i+l + gP2i+2 + g^i+S- 

The affine combinations (4) describe a 4-rule stationary binary subdivi- 
sion scheme for the (nonuniformly parametrized) B-spline control points. This 
scheme generalizes the splitting step of a binary uniform subdivision scheme. 
The sequence of control polygons converges to the C1 limit function X^°>. 
Generalizing (4) leads to the notion of a spline subdivision scheme: 

Definition 1. A spline subdivision scheme 5(a°,a1,a2,a3) with the coeffi- 
cient masks ah = (a§,... ,02m+i)> generating a sequence of cubic C1 spline 

functions X^k\t), is given by the four subdivision rules 

2m+l 

P%th  =  E °Ä .    h = 0,1,2,3,        k = 0,1,2,.... (5) 
j=0 

With the help of the transformations (3), the matrix masks of Hermite sub- 
division schemes (1) can be transformed into the coefficient masks of spline 
subdivision scheme (5), thus motivating the following definition. 

Definition 2. A Hermite scheme is said to be stationary if the matrices Aj := 

H(k+i) A(k) (tfCO)-1, Bj := tf(fc+1> B(k) (ffO)"1, are constant for all k (j = 

0,... ,m). Tie coefficients ah of the associated spline subdivision scheme are 
obtained from 

Aj=(
a\ °H. Wl* aH- 3   Wj a2i+i/ V4 4+1/ 

Consequently, every stationary Hermite subdivision scheme 5(A'*',BW) is 

equivalent to a spline subdivision scheme 5(a°,a1,a2,a3). Note that a spline 
subdivision scheme can also be seen as a special matrix subdivision scheme 
(see [1]) acting on vectors of 2 consecutive control points. 
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§3. Convergence Analysis 

In the sequel we generalize the approach introduced by Dyn, Gregory and 
Levin [2] to the spline subdivision case. Consider a spline subdivision scheme 
5(a°,a1,a2,a3) on the finite domain [0,n] € It. The scheme is well defined 
on this domain, for all k > 0, if the associated Hermite elements at stage k 

are defined on the set {t\ '\i € Zk}, where 

Zk = {0,l,...,2kn + m},    m = 2m -1 
2m-2 

A„ 

Arr, 

7^0 
= 0. 

The spline function (2) has the knots 

T(k)_(Ak)  Ak)  Ak)  Ak)   (k) .(fc) Ak) Ak) , 
' ' u2kn+m ' t2tn+ni' u2kn+m+l) 

„(*h and the control points (p\ 0i=o,...,2(2*n+m)+i- 

Consider an interval l\ ' = [t\ ,^+1] at the fc-th subdivision step. The 
control points which govern the future behavior of the process in this interval 

are gathered in the vector pik = (p$,... ,24(i+ni+i)+i)T' 
The control point vectors P2i,fc+i, P2i+i,fc+i at the subdivision level fe +1, 

associated with the subintervals I2i and i^t+i > are obtained from p^fc by 
two linear transformations, 

P2i,/t+i = Go Pi.fc    and   P2i+i,*+i = Gi pj,fc (6) 

with G0 = G(\::™zl) and Gi = G(^;^_2), where (?(£:"£) is the matrix 
comprised of the elements of G, at rows i\ < ■ ■ ■ < ip and columns ji <■ ■ ■< jp. 
These linear transformations are expressed as submatrices of the M x M 
generator matrix G, where M = 2(ni + 3). If Am ^ 0, then M = 4(m + 1), 
and we get the generator matrix 

G = 

Mo ■A-m 0 °\ B0 Bm 0 0 
0 ^0 Am 0 0 
0 So Bm 0 0 

0 0 Ao ■A-m 0 U 0 B0 Bm 0/ 

(7) 

Otherwise, if Am = 0, M = Am + 2 and the generator matrix is as above but 
with the last two rows and columns deleted. 

3.1. Continuity 

The following necessary condition is analogous to [2, Prop. 2.3]. Alternatively 
it can be formulated using the eigenstructure of the masks of the associated 
matrix subdivision scheme, cf. [1]. 
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Proposition 3 (Affine invariance). A necessary condition for the uniform 
convergence of the spline subdivision process to a continuous nonzero limit 
function on [0,n], for arbitrary initial data, is that Ylj=o aJ = 1 f°r a^ 
h = 0,1,2,3. 

In order to analyze the convergence to a continuous limit function, we exam- 

ine the difference scheme AS,(a°,a1,a2,a3) generating the differences A,' = 

p(*^ - p{k\ If the necessary condition of Proposition 3 is satisfied, then this 
process can again be described with the help of another generator matrix 

C = JBMG(BM)-1Q;;;JJ:J), (8) 

which is obtained using the upper triangular matrices EM = (-f>i,j + f>i+i,j) 

and (EM)'
1
 = (-EÜL^^+fcj). cf- I2> Pr0P- M- The M~3 differences 

governing the future behavior of the process in the interval l\ are again 

collected in a vector Ai<k = [A2*\..., A^+ni+1)]T. The analogues of the 

transformation (6) are 

A2i,fc+i = CoA^jt    and    A2i+i,fc+i = CiAiik, (9) 

where C0 = C(\\:\^Zl) and Cx = C(l^Zl)■ Note that the row and column 
ranges of the sub-matrices C0, C\ are different from those in [2], as we analyze 
a difference process with 4 (rather than 2) rules. We get (cf. [2, Theorem 3.1]) 

Theorem 4. Let the spline subdivision process satisfy the necessary conver- 
gence condition of Proposition 3. Then the following are equivalent: 
(i) The spline subdivision process 5(a°, a1, a2, a3) converges uniformly to a 

continuous limit function on [0, n] for arbitrary initial data, 
(ii) The difference process A5(a°,a1,a2,a3) is contracting, i.e. it converges 

uniformly to zero on [0, n] for arbitrary initial data, 
{iii)  There exists an integer L > 0 and a reai number 0 < Q < 1 such that 

\\Ch ■■■CiL||oo < a, V ij e {0,1} and j = 1,...,L. 

In the sequel we have to analyze other point processes with four different 
refinement rules. The continuity of the limit function can then be analyzed in 
an analogous way, where the generator matrix is obtained as in (8). 

3.2. Derivative process 

In order to investigate the differentiability of the limit function /, we analyze 
the first derivative of the cubic C1 splines (2). Clearly, we obtain a sequence of 
quadratic C° splines with knots T^k\ see Figure 1. If the necessary condition 
of Prop. 3 is satisfied, then the quadratic splines are generated by another 
spline subdivision scheme, again with four different rules for the control points. 
This scheme will be called the derivative scheme 95(a°,a1,a2,a3). 
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cubic C  B-spline 

JM _*) 

first derivative 
(quadratic C° B-spline) 

V   Greville-abscissa 

A   knot 

inscribed polygon 

_Z 2 , 2 2_ Y      v      Y      v      Y H h 

Fig. 1. Derivative scheme and inscribed polygon process. 

Proposition 5. If the derivative process dS(a°,a1,a2,a3) converges uni- 
formly to d £ C[0, n], then the spline subdivision scheme 5(a°,a1,a2,a3) 
converges uniformly to f € C^O,«], and f = d. 

Using similar techniques as in Section 3.1, we define control point vectors and 
a generator matrix V. We omit the details, giving only the main result: 

Proposition 6. The derivative scheme 95(a°,a1,a2,a3) has the (M - 1) x 
(M — 1) generator matrix 

V = 2E\tG(E\i)-
in-M-iS 

-,i). 
J...M-1, 

with EX
M = diag(l, 2,1,..., 2) EM and (J5&)-1 = (£M)_1 diag(l, |, 1,.. 

The continuity of the limit function generated by the derivative scheme 
can now easily be analyzed as in Section 3.1 by discussing the associated 
difference scheme A95(a°,a1,a2,a3). This leads to criteria for C1 continuity 
of Hermite subdivision schemes. 

3.3. Ck convergence analysis via inscribed polygons 

In order to examine higher order continuity, we inscribe a polygon into the 
quadratic C° spline and analyze the resulting subdivision scheme, called the 
inscribed polygon process P95(a°,a1,a2,a3). More precisely, at the subdi- 
vision level k, we consider the piecewise linear function with the vertices 

(t|fc+1),Ä'(*)(t|*+1))), see Figure 1. 

Proposition 7. The inscribed polygon process P95(a°,a1,a2,a3) of the 

derivative scheme has the generator matrix P = LM-I V (LM-I)
_1
 which is 

obtained using the (M — 1) X (M — 1) auxiliary matrices 

4 

->M-1Z 

\ 

1 

1/ 

/   1 

I (ijlf-l) 
-1 

2   -i Z        2 
1   / 
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The derivative and the inscribed polygon processes are equivalent: 

Lemma 8. The derivative process dS(a°, a1, a2, a3) converges uniformly to a 
continuous limit function f on [0, n] if and only if the inscribed polygon process 
PdS(aP,a1,a2,a3) converges uniformly to a continuous function g £ C[0,n}. 
Moreover, f = g. 

Proof: This equivalence is due to the convex hull property of B-splines, and 
to approximation properties of interpolating quadratic C° splines.   □ 

Using the inscribed polygon process, we are now able to discuss the con- 
vergence of the spline subdivision scheme to limit functions with higher or- 
der differentiability, by the same analysis as in the non-Hermite case (point 
schemes). We simply have to analyze the divided difference processes 
£'I/Pö5(a0,a1,a2,a3) (see [2, Theorem 4.2]) of the inscribed polygons, as 
follows. 

Theorem 9. If the l-th order divided difference scheme of the inscribed poly- 
gon process PdS(a°, a1, a2, a3) exists and converges uniformly to /; € C[0, n], 
then also the divided difference processes DvPdS(a°,a1,a2,a3) exist and 

converge uniformly to /„ S C'~"[0,n] for v = 0,1,...,/, and /Q = fv 
Hence, the spline subdivision scheme 5(a°,a1,a2,a3) converges uniformly to 
<?eC"+1[0,n] withglv+1)=fv. 

For instance, in order to prove that the limit function generated by the spline 
subdivision scheme is C2, the difference process ADPdS(a°,a1, a2, a3) of the 
divided difference scheme has to be shown to be contractive, analogously to 
Section 3.1. The divided difference scheme J5P95(a°,a1,a2,a3) has the gen- 

erator matrix D = 2EM-I P (EM-I)
-1

 ({'"M-D■ ^TOm ^s matrix we get the 

generator matrix C* = EM-2D{EM-2)~
1
(\'"M-D °f tne associated differ- 

ence scheme ADPdS(a°, a1, a2, a3). In order to guarantee a C2 limit function, 
the matrix norms ||Ct* • • • C,* ||oo, V ij € {0,1} and j = 1,..., L have to be 

less than 1 for some L, where Q = C*(j;;;^), and C[ = Cr*(3;;;^I3). 

§4. A Generalized 4-Point Scheme 

Based on a geometric construction, Dyn, Gregory, and Levin [3] derived a 
family of interpolating 4-point schemes. This family can also be obtained 
from an optimization-based approach, as follows. Let the subdivision scheme 

generate a sequence of piecewise linear functions Y^ with knots t] and 

control points q\ '. In order to derive the refinement rules, we replace one 
segment of Y^ with two new ones (shown as dashed lines in Figure 2, left), 

subject to C° boundary conditions. The new vertex g^i+i 's placed by min- 
imizing the jumps of the first derivatives between new and old polygons. In 
fact, minimizing the weighted linear combination 

r W2.+1   ) - T~ I1- \l2i+l  )~x+ \l2i + \  )\ 

+ 2W[yifc)(fV^fc+1)(f))]2 + 2^[^+1\C)-^fc)(4+i)]2 
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(k) 
• P, 

(k+1) 
OP, 

Optimization 
\      (1-4(0)      , 

2(0       \   H~.—-     2(0 

Optimization 

Fig. 2. Weights of objective functions in the point (left) and spline (right) case. 

of squared differences of derivatives produces exactly the refinement rules of 
the interpolating 4-point scheme. 

This approach can be generalized to the spline case. In order to derive the 
refinement rules, we replace one segment of X^ with two new ones (shown 
with dashed control polygons in Figure 2, right), subject to C1 boundary con- 

ditions. The inner new control points pii+2 , Pu+3 are placed by minimizing 
the jumps of the second derivatives between new and old splines. Minimizing 
the weighted linear combination 

* U>4.+2  >Pu+3  ) - ~8~ LA-        1*2.-1-1  ) ~ A+        Khi+l  )\ 

+ 8üj[xik)(t^)-X{++1)(t^) ? + 8W [#+1)(4+\)-4fc)(4+)i) ]2 

of the squared differences of the second derivatives gives the refinement masks 

(0,0, |, |,0,0,0,0), (0,0,|,|,0,0,0,0), 

a2 = (0, § + u, -| - 2w, f + 3w, § - 3w, -1 + 2w, | - w,0), 

(0,| ■i + 2w, § - 3w, f + 3w, -| - 2w, § + w, 0), 

see (5). In order to analyze C2 continuity of the limit function, we compute 
the generator matrix of the difference process A£>P95(a°,a1,a2,a3), which 
has to be contractive. Using the techniques of Section 3.1, we estimate the 
C2 convergence range of the parameter u>, see Figure 3. 

matrix norms obtained 
by considering the composition 
of 6 steps, i.e.  L= 6 

_ C convergence range (marked in grey) 

-0.01      0.00     0.01     0 02     0.03  '" 0 04     0.05 w 

Fig. 3. Estimating the C   convergence range of the generalized 4 point scheme. 
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Fig. 4. Interpolatory limit functions (left) and derivatives (right). 

Two limit functions interpolating three given Hermite elements have been 
drawn in Figure 4 (left). The functions have been generated with the help 
of Merrien's C1 scheme (a = 0.2, dashed curve, cf. [4,7]), and using the 
generalized 4-point scheme (u> = 0.015, solid curve). As can clearly be seen 
from the associated first derivatives (right), the generalized 4-point scheme 
produces a C2 limit function. 
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An Interpolation Method with Weights and 
Relaxation Parameters 

Chiew-Lan Tai, Brian A. Barsky, and Kia-Fock Loe 

Abstract. This paper presents a new interpolation method that is based 
on blending a nonuniform rational B-spline (NURB) curve with a singu- 
larly reparametrized (SR) linear spline. The resulting curve is called the 
a-spline. It has weights and relaxation parameters. Given the data points 
to be interpolated, a NURB curve is obtained by using these data points 
as its control points. The SR linear spline is then determined by imposing 
constraints on the a-spline to interpolate the data points. The a-spline is 
parametrically continuous. It involves only simple computation, and does 
not require solving linear systems. This approach is extended to produce 
interpolatory surfaces, and can be used as a modeling tool for deforming 
polygonal shapes into smooth spline surface models. 

§1. Introduction 

Cubic interpolating splines are known to exhibit undesirable oscillations due 
to "extraneous" inflection points. This undesirable property motivated the 
introduction of tension applied to interpolating splines. Barsky analyzed two 
well-known approaches for applying tension to interpolating curves [1]. The 
first approach is the exponential-based spline in tension [12]; the second is the 
more efficient polynomial alternative, the z/-spline [11]. The tension parame- 
ters are associated with data points in these splines. 

Tension has also been introduced as a shape parameter to non-interpo- 
lating splines. The Beta-spline [2] incorporates bias and tension parameters, 
based on the theory of geometric continuity. Another spline technique that 
has bias and tension parameters (and also a "continuity" parameter) was 
proposed by Kochanek and Bartels [8]. Unlike those in the Beta-spline, these 
parameters control only the first derivatives, and the resulting curve is C1 and 
interpolatory. The weighted splines by Foley [6] provide tension control on 
curve segments between interpolation points, rather than at the interpolation 
points. 
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In addition to spline methods that allow the user to modify the shape pa- 
rameters, a related research area is the automatic determination of shape pa- 
rameters to produce curves and surfaces that satisfy certain shape-preserving 
criteria [5,7]. Another more subjective criterion used is fairness, or "visual 
appeal". 

NURBS are also often used to solve interpolation problems. However, us- 
ing the NURB as a surface interpolant requires performing 0(mn) operations 
to solve the 0{m + n) linear systems for a dataset ofmxn points. Although 
these systems are tridiagonal, they still incur substantial computations. More- 
over, the interpolation method is global; thus, changes to any data point will 
require solving again all the linear systems. 

The idea of using singular blending to solve the interpolation problem, with 
tension control, was proposed by Loe and Tai [10]. In this paper, we use this 
idea to propose another interpolation method that has weights and relaxation 
parameters. A high relaxation value has the effect of reducing tautness. The 
method is based on blending a NURB curve with a sequence of line segments, 
or a linear spline, that is reparametrized such that each of the line segments 
has zero derivatives at both ends. 

This work is closely related to some earlier work of Coons [4]. He used 
this blending technique to modify any given piecewise curve by letting the line 
segments be those connecting the joints of the given curve, and proved that if 
the given curve is Ck, then the blending function only has to be Ck~l for the 
resulting curve to retain the continuity of the original curve. More precisely, 
Coons' aim was not to solve the interpolation problem: for the new curve to 
be interpolatory, the original curve has to be interpolatory. 

§2. Singular Blending 

Given a smooth piecewise curve C(u), a tension control can be introduced by 
blending the smooth curve with a linear spline that approximates the curve 
[4,9]. This linear spline can simply be obtained by connecting the joints of the 
smooth curve, but in general it need not interpolate the smooth curve. Let 
L(u) denotes a linear spline. The blending then gives 

Q(u) = (l-a)C(u) + aL(u),        ue[u0,un], 0 < a < 1.        (1) 

It is easy to see that as a increases, the contribution of L(u) to Q(u) increases; 
thus, the resulting curve is more taut, simulating a higher tension. 

Assuming that the smooth curve C(u) is C2 (generalization to higher 
order curves is straightforward), then for Q(u) to retain this continuity, in 
general L(u) must be at least C2. We define L(u) as 

L{u) = (l-s{t))Vj + s(t)Vj+1,        ue[u,-,ui+1), (2) 

where t = ~_„.; Vj, j = 0, ...,n, are the vertices of the linear spline, and 

s(t) is a monotonically increasing function yet to be defined. Since L(u) must 
be C2, it must satisfy the following conditions: 

L'(UJ) = L'(uj+i) = 0       and       L"(UJ) = L"(UJ+I) = 0. 
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These conditions can be satisfied by letting s(t) be the quintic Hermite polyno- 
mial 10t3 - 15t4 + 6t5 [3]. We call a linear spline that satisfies these conditions 
a singularly reparametrized (SR) linear spline. 

For the technique to be useful, it should have local tension control; that 
is, the a in (1) must be a function of w, 

Q(u) = (1 - a{u))C{u) + a(u)L(u),        u € [u0, «„]. (3) 

The a(u) function must satisfy three criteria: (1) interpolate the local parame- 
ters a*., j = 0,..., n; (2) employ a local interpolation method so that modifying 
a particular a*, will affect only the neighboring curve segments; (3) be at least 

C2 so that the blended curve is also C2 (Coons [4] showed that if the SR line 
segments are restricted to those connecting the joints of the given curve, then 
a(u) only need to be C1). We observe that s(t) can be used to define a(u), 
with all three criteria satisfied; hence, we define 

a{u) = (1 - s{t))a* + s(t)a*j+1,        u e [uh uj+1), (4) 

where t = „"""'„.- We then have a'(uj)=a'(uj+i) = a"(uj)=a"(uj+1) = 0. 

A drawback of this definition of a(u) is that drastic changes in adjacent a] 
values can cause the curve to undulate. An alternate method is to estimate 
the first and second derivatives at the joints by some approximation method, 
and obtain a(u) by Hermite interpolation. 

This idea of singular blending can be applied to many combinations of 
curves and SR linear splines. Since NURBS are prevalent in industry, we 
let the smooth curve C(u) be a NURB curve and call the resulting curve 
the a-spline. If the SR linear spline is the control polygon of the NURBS 
curve, then the resulting a-spline is non-interpolatory. The non-interpolatory 
a-spline includes the NURB as a special case; when all tension parameters 
are zero, the a-spline reduces to a NURB. Some other geometric properties 
inherited from NURB include convex hull, affine and projective invariance, 
and local control. 

§3. The Interpolating a-spline Curve 

The a-spline is non-interpolatory when the SR linear spline is the control 
polygon of the NURB curve. However, there is no reason to restrict the SR 
linear spline to be the control polygon. In this paper, given a NURB curve, 
we will determine a new SR linear spline such that when they are blended, 
the resulting a-spline interpolates a given set of data points. 

Let the data points be Pj,j = 0, ...,n. The cubic NURB curve must 
somehow approximate the data points. A simple way to achieve this is by 
letting the given data points serve as the control points. Next, we must 
introduce two new control points so that the number of NURB curve segments 
is n, where each curve segment corresponds to an interval between two data 
points. Since we want the NURB curve to interpolate the endpoints P0 and 
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Pn, we let the new points be coincident with the two endpoints, and set the 
first four and last four end knot values to be equal; that is, 

P_! = P0       and       Pn+1 = Pn, 

and u_3=u_2='u_i=uo, and un=un+i=un+2=un+3 in E/ = {M_3, ...,un+3}. 
The interior knot values «Oi---,«n are computed using methods such as the 
chord-length or centripetal method. All the examples in this paper use the 
centripetal parametrization. The cubic NURB curve sequence is given by 

n+l 
C(u) =   X^  RjAU)P}> U e [u0,«n], 

j = -l 

where Rjy4(u) are the cubic rational B-spline basis functions defined over the 
knot vector U. 

To determine the unknown vertices Vj, j = 0,...,n, of the SR linear 
spline, we impose constraints on the resulting a-spline Q(u) to interpolate all 
the data points: Pj = Q(uj),j = 0, ...,n. Substituting Q(UJ) from (3), 

Pj = (1 - a(uj))C(uj) + a(uj)L{uj) = (1 - a*)C(uj) + a*Vj. 

a'P 
Solving for Vj, then adding Pj and subtracting >a,' yields equations that 

require only simple computations: 

1-a* 
Defining pj =   a,' yields 

Vj = Pj + Pj (Pj - C(UJ)),        j = 0,.... n. (5) 

We call pj the relaxation parameters. The geometric interpretation of (5) 
is that C(UJ), Pj, and Vj are collinear, and the distance between C(UJ) and 
Pj, and between Pj and Vj are in the ratio 1 : pj. We know that pj > 0, 
because a*j < 1. From empirical study, we have found 0 < pj < 4 to be a 
useful range. The midpoint value pj = 2 yields visually appealing shapes for 
most datasets; thus, we use that value as the default relaxation value. The 
effect of pj can be interpreted from noting that a*, = jhj and observing 

the role of a in (3). The value pj = 0 corresponds to the maximum tension 
a*- = 1; when all pj = 0, only the SR linear spline contributes to the a-spline 
and we have a linear interpolant. When the relaxation value pj increases, 
OLj decreases, and the contribution of the SR linear spline to the a-spline 
decreases; thus, the resulting curve is being relaxed locally. By using different 
relaxation values, we can easily obtain rounder or sharper corners without 
specifying multiple knots or multiple control points. Fig. 1 shows the effect of 
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Fig. 1. Effect of global relaxation: (left) 1, (right) 2. 

Fig. 2. Effect of varying ps: 1, 4; the other pj are 2. 

Fig. 3. Effect of varying W5: 2, 0.5; the other WJ are unity. All pj are 2. 

applying the relaxation globally. It can be observed that while the SR linear 
spline found is dependent on the global relaxation value specified, the cubic 
NURB curve remains fixed. Fig. 2 shows the effect of varying the relaxation 
locally (while the other part of the curve has the default relaxation value). 
Note that the effect of each pj is very localized; only the nearest two curve 
segments are affected. 

The effect of the weight is less obvious. Each Wj affects four neighboring 
segments, i.e., [UJ-2,UJ+2\- When Wj decreases, C{UJ) moves further from Pj 
(assuming pj is fixed); thus, from (5), Vj found is further from Pj. Since 
the weights are relative in nature, decreasing WJ also causes C(uj_i) and 
C(uj+\) to move closer to the edge Pj_2-Pj_i and Pj+\Pj+2, respectively, 
and to be on that edge when Wj=0. Hence, when Wj = 0, from (5) again, 
Pj-2, C(uj-i), Pj-i, and Vj-i are all collinear, and so are Pj+2, C(UJ+I), 
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Pj+i, and Vj+i. This effect on the SR linear spline is depicted in Fig.3; 
only W5 is varied here. To summarize, decreasing Wj causes the interpolating 
a-spline to be rounder near Pj, but causes its segments between Pj^2Pj-i 
and Pj+iPj+2 to be more taut near the points Pj-i and Pj+\- 

The a-spline Q(u) is clearly C2 continuous since a(u), L(u), and C{u) 
are all C2. The first and second derivatives at the knots are as follows: 

Q'(Uj) = (1 - a*)C'(Uj) + <*'(«,-)(£(«,■) - C(uj)), 

Q"(Uj) = (1 - a*)C"(Uj) - 2a'{uj)C'{uj) + a"(Uj)(L(Uj) - C(uj)). 

If a(u) is defined as in (4), then Q'(UJ) = (1 — Q.^)C'{UJ) and Q"(UJ) = 

(1 — a*j)C (UJ). That is, the derivatives at the joints of the blended curve 
Q(u) are in the same directions as their counterparts of C(u). 

§4. The Interpolating a-spline Surface 

Analogous to the blending of a NURB curve with an SR linear spline, we 
can blend a NURB surface with a network of singularly reparametrized (SR) 
bilinear patches. An SR bilinear patch is defined as follows: 

L(u,v) =(1 - a(r))(l - s(t))Vij + (1 - s(r))a(t)Vij+i 

+ a(r)(l - s{t))Vi+hj + s(r)s{t)Vi+i,j+u (6) 

where« € [ui,ui+1),v € [vj,vj+1),r = u"+~"'u., t = „^"1^ , and the functions 

s(-) are the Hermite polynomials given earlier. That is, it is parametrized such 
that its first and second order partial derivatives go to zero at the boundaries: 

duL(ui,v) = duL(ui+i,v) = dvL(u,Vj) = dvL(u,Vj+i) = 0, 

dlL(uuv) = d2
uL(ui+l,v) = d2

vL{u,Vj) = d2
vL{u,vj+1) = 0, 

dlvL{uuv) = dlvL(ui+uv) = dlvL{u,Vj) = dlvL(u,vj+l) = 0. 

The a-spline surface is then given by 

Q(u, v) = (1 - a(u, v))S(u, v) + a(u, v)L(u, v),        u e [u0, um}; v G [v0,vn], 

where a(u, v) is the blending function that interpolates the local tension pa- 
rameters a*j, defined by an equation similar to (6). 

To find an a-spline surface interpolating a given network of data points 
Pij,i = 0, ...,m, j = 0, ...,n, we must first find a NURB surface, then deter- 
mine a network of SR bilinear patches to be blended with the NURB surface. 
The NURB surface is defined by simply letting the data points be the control 
points. As in the case of curves, we repeat the boundary vertices and let 
the first and last four knot values be equal. Repeating the boundary vertices 
along the j-index, then repeating those along the i-index, we obtain 

P-i,j = Po,j        and       Pm+ij = Pm,j,        j = 0, ...,n, 

Pi-1= Piß        and        Pi,n+i = Pi,n,        i =-l,...,m +1. 
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Setting the end knot values to be equal in the knot vectors E7={M_3, ..., um+3} 
and V = {v-3,...,vn+3}, 

M-3 = M-2 = «-1 = MO, Um = Um+i = Um+2 = Um+3, 

V-3 = V-2 = «_l = Uo, vn = Vn+i = Vn+2 = V„+3- 

The interior knot values can be determined using any good parametrization 
method. The NURB surface is then denned by 

m+l   n+1 

S(u,v) = ]P ^T Ri,t(u)RiAv)pij>      u e [uo,«m]; v e [v0,vn], 

where Ri^(u) and Rj,4(v) are cubic rational B-spline basis functions defined 
over U and V. 

To determine the vertices Vjj's that define the SR bilinear patches, we 
impose constraints on the a-spline surface to interpolate the data points: 

= 0,...,m; j = 0, ...,n. 
Pi,, = Q{u i,Vj) 

= (1- a<,;)S(ui,Wj) +< 
Solving for Vj, ,-, we obtain 

* i>3 ==      *J 

1 
; + - 

<i 

nefinine' n: -■ — —rr^1- vields 

{Pi,j - S{ui,Vj)). 

viJ = pi,j + Pi,j(pi,j ~ S{ui,Vj)),        i = 0, ...,m; j = 0, ...,n. 

This enables the direct evaluation of V,,j, and avoids the necessity of solving 
linear systems required by interpolation with NURB surface. 

§5. Smoothing Polygonal Shapes 

In addition to fitting a smooth surface over a dataset, the proposed interpo- 
lation method can also be viewed as an interactive modeling tool for deform- 
ing polygonal shapes (with an underlying rectangular topology) into smooth 
objects. The vertices of the polygonal shape are the data points to be in- 
terpolated by a smooth surface. With this modeling tool, the user only has 
to specify the polygonal vertices, which are fewer than the number of control 
points of most spline schemes. Manipulating polygonal shapes is also simple 
and easy for novice designers. 

Figures 4 and 5 show some modeling examples, all of which are obtained 
from the same input polygonal shape, shown in the top left corner of Fig. 4. 
In Fig. 4, the relaxation parameters are varied: globally in the top row, and 
locally in the bottom row (the third row of vertices have their relaxation 
parameters varied while the other vertices have fixed pitj = 1). In Fig. 5, the 
weights of the third row of vertices are varied, while the other weights are 
fixed at unity, and the global relaxation is set at pttj = 1 for all i, j. 
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Fig. 4. Effect of global (top) and local (bottom) relaxation: 0, 0.25, 0.67, 1.5, 2.3. 

Fig. 5. Effect of local weight (third-row vertices): 2.5, 1, 0.5, 0.25, 0. 

§6. Homogeneous Representation of or-spline 

It is well known that the rational B-spline can be viewed as the projection 
of a polynomial B-spline in homogeneous space. This property is important 
because it implies that all the algorithms for the polynomial B-spline can also 
be applied to the rational B-spline. The rational B-spline is given by 

C(u) = Y,RjAu)Ps, (7) 

where P,  = (x,-,2/,-,z,) are the control points and R; A(U)  =   r^!,4,"i'   , 

Wj > 0, are the weights, and Njt4(u) denotes the cubic B-spline basis func- 
tions. The polynomial B-spline curve in the homogeneous space, C (u), whose 
projection yields the rational B-spline C(u) is given by 

Ch(u) = J2N^)Pl, (8) 

where P^WjX^Wjy^WjZ^Wj), since C{u) = (§t^y, ^y, §t$), and the 

x, y, z and w subscripts denote the respective components of Ch(u). 
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We can show that this property is also true for the a-spline. Substituting 
C(u) from (7) into the alpha-spline equation in (3), and rewriting it as a 
rational function, yields 

,      (1 - a{u)) Y, NjA(u)v>jPj + a{u)C*{u)L{u) 
Q{u) ~ <7£(«) 

The denominator can be expressed as (1 — a(u))C^(u) + a(u)C!^(u); hence, 
the polynomial form of the a-spline in homogeneous space is 

Qh{u) = (1 - a{u))Ch{u) + a{u)Lh{u),        u G [u0, «„], 

where Ch(u) is given in (8), and Lh{u) is given by 

Lh(u) = C£(u)((l - s{t))V) + -(t)^+1),        u G [Uj,uj+1), 

where Vj = {x'^y'^z'^l) is obtained from Vj = (x,j,y'i,z'j). 

§7. Conclusion 

We have proposed a new interpolation scheme based on blending a non- 
interpolatory NURB curve (surface) with an SR linear spline (SR bilinear 
patches). The resulting interpolating a-spline inherits the continuity, and 
the affine and projective invariant properties of the NURB. The method pro- 
vides weight and relaxation control, involves only simple computations, and 
supports the modeling paradigm of deforming polygonal shapes into smooth 
spline surfaces. 

Several issues have yet to be investigated for the a-spline. One example 
is knot insertion which is useful for shape refinement and rendering. Another 
issue is the automatic determination of the parameters to satisfy certain shape- 
preserving conditions. 
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On Properties of Contours of 
Trilinear Scalar Fields 

Holger Theisel 

Abstract. We study properties of contour surfaces of trilinear scalar 
fields, and give a classification based on how many unconnected surface 
parts they consist of. Furthermore, we introduce the concept of the seg- 
ment number of a voxel. The segment number is a threshold-independent 
measure which estimates how complicated the contours inside the voxel 
are expected to be. Finally, we give necessary and sufficient conditions for 
a voxel to have a segment number of 1. These conditions are applied to 
analyze a computer tomography data set. 

§1. Introduction 

Contours (isosurfaces) of trilinear scalar fields are treated in a variety of appli- 
cations. For instance, the data used in volume visualization usually consists 
of a number of scalars defined at certain grid points; between the grid points 
a piecewise trilinear interpolation of the scalar field is applied. 

Given a voxel V = [0, l]3, the trilinear scalar field is defined by setting 
the values Cijk(i,j, k € {0,1}) of the field at the corners of V. Then the scalar 
field is defined as 

s(u, v, w) = (1 - u) ■ (1 - v) ■ (1 - w) ■ cooo + {l-u) -(l-v)-w ■ c0oi 

+ (1 - u) ■ v ■ (1 - w) • coio + (1 - u) ■ v ■ w ■ con ,.., 

+ u ■ (1 - v) ■ (1 - w) ■ cioo +u-(l — v)-w- cioi 

+ u ■ v • (1 — w) ■ cno + U-V-W- cm. 

Figure la illustrates this. A contour of V is defined by s(u,v, w) = r =const 
for a certain threshold r. Figure lb shows an example of a contour of (1). 

There are a number of algorithms to produce a triangular approximation 
of a contour of (1). Of these, the Marching Cubes (MC) method ([3] and [4]) 
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Fig. 1. a) Voxel V; b) a contour in V; c) result of MC. 

is the most popular. Figure lc shows the resulting triangular approximation 
of the contour shown in Figure lb using the Marching Cubes method. 

The Marching Cubes algorithm distinguishes several cases where some of 
them are harder to treat than others. In this paper we introduce a measure 
of how costly in terms of computing time the MC algorithm inside a certain 
voxel is expected to be. This characterization of a voxel - called segment 
number - is independent of a particular threshold. It estimates the costs of a 
Marching Cubes algorithm for varying thresholds. 

As already stated in [2], the contour of (1) is a rational cubic surface. In 
[2] this surface is approximated by a collection of rational quadratic triangular 
patches. 

Section 2 of this paper studies the contours of (1) in the domain R. . 
We give a classification based on how many unconnected surface parts the 
contours consist of. Sections 3 and 4 focus on contours of (1) inside a certain 
voxel. Section 3 introduces the concept of segment number as a measure of 
how simply a voxel can be treated by an MC algorithm. In Section 4, necessary 
and sufficient geometric conditions for a voxel to have a segment number of 
1 are shown. In Section 5, the number of voxels with a segment number of 1 
are computed for a real volume data set. 

§2. Classification of the Contour in R3 

In this section we consider the contour of (1) not in a particular voxel but in 
the domain R3. In general, the contour consists of a number of surface parts 
which are not connected to each other. Before we classify the contours of (1) 
by the number of unconnected surface parts, we apply a translation of the 
coordinate system as shown in Figure 2. Choosing 

P = cooi + coio + cioo + cm - cooo — con — cioi - cuo 

/ CQOO + con — CQOI — Coio \ 
1 

p 
cooo + ClOI — Cooi - - cioo 

\CQOO + cuo — coio - - cioo / 

we obtain for (1) 

s = a-u + b-v + c-w + d-u-v-w + e (2) 
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Fig. 2. Translating the coordinate system of a voxel. 

(cm - - Coil) • (cioo - - cooo) - (ciio - - coio) ■ (cioi - Cooi) 

b -(cm" 
- Cioi) • (coio - 

V 

- cooo) - (ciio - _ Cioo) • (con — Cooi) 

(cm - - ciio) • (cooi - 

p 

- cooo) - (cioi - - cioo) • (con — CQIO) 

(3) 
r—a-u — b-v 

d = p, 

where e is a certain constant. Thus, we only have to analyze 

s(u, v,w) = a ■ u + b ■ v + c ■ w + d ■ u • v ■ w = r = const 

in H . A classification of (3) can be achieved by rewriting (3) as w = c+d.u.v 

and comparing the zeros of the numerator and denominator function. The 
zeros of the numerator function form a line in the u — v—plane, whereas the 
zeros of the denominator function give a hyperbola. Studying their interplay 
gives the following classification: 

case 1: abed < 0, d ^ 0 : 

case 1.1: r2 > — ^p: (3) gives 3 unconnected surface parts 

case 1.2: r2 < — ^p: (3) gives 2 unconnected surface parts 

case 2: abed < 0: (3) consists of 1 connected part 

case 3: abed = 0, d ^ 0: 

case 3.1: r ^ 0 : 

case 3.1.1: ab / 0,c = 0: (3) gives 2 unconnected surface parts 

case 3.1.2: a jt 0,6 = c = 0: (3) gives 3 unconnected surface parts 

case 3.1.3: a = 6 = c = 0: (3) gives 4 unconnected surface parts 

case 3.2: r = 0 : 

case 3.2.1: ab ^ 0, c = 0: (3) gives 3 unconnected surface parts 

case 3.2.2: a ^ 0,6 = c = 0: (3) gives 3 parts intersecting each other 

case 3.2.3: a = b = c = 0: (3) gives 3 perpendicular planes. 

Figure 3 illustrates these cases. 
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Fig. 3. Classification of the contours of (3) in IR   . 

§3. Segment Number of a Voxel 

We now study the contour of (3) in a particular voxel V = [u0,u0 + 1] x 
[v0,vo + 1] x [u>o,wo + 1]. Unfortunately, the results of Section 2 are not 
directly applicable here because one connected surface part may intersect V 

more than once. 
Varying the threshold r in (3), the contours change. So does the number 

of unconnected surface parts of the contour. 

Definition 1. Given the trilinear scalar Held s(u, v,w) = a-u + b-v+ c-w + 
d-u-v-w in the domain of the voxelV = [u0,u0 + l] x [v0,«o + l] x [wo,w0 + l], 
the segment number S(V) ofV is the maximal number of unconnected surface 
parts of the contour s(u, v,w) = r =const in V for any threshold r. 

Figure 4 gives an example of a voxel V with S(V) = 1. Increasing the 
value of r, the isosurface "moves" through the voxel. It consists of at most 
one connected part for any r. Figure 5 shows a voxel with S(V) = 4. Here 
the contours consist of up to 4 unconnected parts. 

The segment number is a threshold-independent characterization of a 
voxel V. For any V we get S(V) € {1,2,3,4}. For visualization purposes, 
voxels with a segment number 1 are of particular interest. As shown in the 
example of Figure 4, they have a nice behavior while varying r. In fact, for 
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r=0.1 

Fig. 4. Contours of a voxel with S(V) = 1. 

¥r\fo 
r=0.3 

r=0.6 r=0.7 

Fig. 5. Contours of a voxel with S(V) = 4. 

any r the contour consists of only one connected surface part inside V. Thus, 
accelerated Marching Cubes methods may apply to them. Moreover, adjacent 
voxels with S(V) = 1 may be merged to form one bigger voxel before applying 
Marching Cubes methods. So it makes sense to search for geometric conditions 
for a voxel V to have S(V) — 1. 

§4. Geometric Conditions for S(V) = 1 

In this section we give necessary and sufficient geometric conditions for a 
voxel to have S(V) = 1. Again, we consider the contour of (3) in the voxel 
V = [u0,u0 + 1] x [v0,v0 + 1] x [w0,w0 + 1]. 

To formulate the conditions for S(V) = 1, we need to introduce the 
concept of characteristic hyperbolas. The first characteristic hyperbola h\ in 
]R is defined by the condition svw(u, v,w) = 0 in (3). hi can be written as a 
rational quadratic Bezier curve described by two control vectors b0, b2 and a 
control point 6X (see [1]). For hi we obtain 

'{-4bc)/d\ 

*S = b\ = b\ w\ 



408 H. Theisel 

Fig. 6. Location of characteristic hyperbolas; a),b): abed < 0; c),d): abed > 0. 

where w\ is the weight of bv Then we obtain 

fci(0 
b\Bl(t) + w{b\Bl(t)+b\Bl{t) 

w\B!(t) 

In a similar way we define the characteristic hyperbola ft2 by suw(u, v, w) = 0, 
and /i3 by suv(u,v,w) — 0. The Bezier point 6X with the corresponding weight 
w\ and the control vectors b0,b2 describing ft2 are 

bl = [ (-4oc)/d 

A3 is described by 

1,2 6i «? 

A3 60 = 

/ 

\(-4a6)/d, 
6? 6^ = «,? 

If a • b ■ c ■ d < 0 then h\, hi, A3 intersect in two common points. Figures 6a 
and 6b illustrate this situation from two different viewpoints. If a ■ b ■ c • d > 0, 
then hi,h2,hs do not have any intersections. Figures 6c and 6d show this 
from different viewpoints. The degenerate case a ■ b ■ c ■ d = 0 is omitted here. 

To formulate conditions for S(V) = 1, we have to classify the faces of V. 
Given the voxel V = [uo,u0 + l}x[vo,v0 + l]x[w0,w0 + l}, let fx - {(u,v,w) e 
V : u = «o V u = «o + 1}, /2 = {(«, v, w) € V : v = v0 V v = v0 + 1}, and 
/3 = {(«, v, w) € V : w = wo V w = w0 + 1}. See Figure 7 for an illustration 
of the faces. 

Theorem 1. Let V = [u0,u0 + 1] x [v0,v0 + 1] x [w0,w0 + 1] be a voxel in 
the scalar fieJd deßned by (3). Then the condition S(V) = 1 is equivalent to 
the three conditions hi n fx = 0 and ft2 n /2 = 0 and A3 D /3 = 0. 

Figure 8 illustrates the idea of the proof.   Suppose /i3 intersects /3 as 
shown in Figure 8a.   Figure 8b is a magnification of the voxel and /13 in 
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Fig. 7. The faces /j, /2, /3 of a voxel. 

Fig. 8. Proof idea of Theorem 1. 

Figure 8a. We compute the intersection point of A3 and /3, and consider 
the contour passing through this point. As shown in Figure 8a, this contour 
consists of at least two surface parts. 

For the proof of the converse statement of Theorem 1, we assume that for 
a certain threshold r the contour consists of at least two unconnected surface 
parts. Then we can find a face of V which has two intersection curves with the 
contour. (In the worst case we have to vary r to find such a face). (Figure 8c 
shows two surface parts of the contour which produce two intersection curves 
in the upper face of /3). Then we can find a point on this face which is the 
intersection point with the corresponding characteristic hyperbola. (In Figure 
8c, the marked point on the upper part of /3 is the intersection with A3). 

§5. Results and Future Work 

We have tested the voxels of a CT test data set for the property S(V) = 1. 
The data set consists of 255 x 255 x 108 = 7,022,700 voxels. Figure 9 shows 
a slice through the data set. 

In the raw data we found 1,978,711 voxels with S(V) = 1 (28 %). After 
some noise reducing filter operations on the data, we detected 4,833,063 voxels 
with S(V) = 1 (69 %). This shows that there is a reasonable number of voxels 
with S(V) = 1 to pay special attention to them. 

In the future we plan to develop algorithms to merge voxels with S(V) = 1 
to form bigger voxels before starting the Marching Cubes algorithm. 
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Fig. 9. Slice through the test data set. 
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Non-Stationary Subdivision for Inhomogeneous 
Order Differential Equations 

Joe Warren and Henrik Weimer 

Abstract. This paper provides a methodology for the systematic deriva- 
tion of subdivision schemes that model solutions to inhomogeneous order 
linear differential equations. In previous work, we showed that subdivi- 
sion can be used to capture very efficiently the solutions of homogeneous 
order, linear differential equations. The resulting subdivision masks are 
stationary and can be precomputed, allowing for very simple and fast ap- 
plication of these schemes. In this paper, we show that this method can 
be extended to express solutions of systems of inhomogeneous order, lin- 
ear differential equations. Even though the resulting subdivision masks 
may be non-stationary, the masks can again be precomputed. Thus, the 
resulting subdivision schemes capture very efficiently solutions of inhomo- 
geneous order, linear partial differential equations. 

§1. Subdivision for the Modeling of Shapes 

Subdivision is a popular and efficient method for modeling shapes. In par- 
ticular, subdivision describes a continuous shape p as the limit of a sequence 
Pki k > 0 of discrete shapes, 

lim pk = p. 
K—*00 

The beauty of subdivision lies in the fact that these discrete shapes pk 
are linked by a simple linear transformation S which is based on splitting and 
averaging, 

Pk = Sk-lPk-l- 

Figure 1 shows an example of a subdivision scheme. Starting from the 
coarse shape p0 on the left, application of the subdivision matrix S0 yields the 
denser shape pi. As we continue the process, the sequence of discrete shapes 
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Po Pi P2 

Fig. 1. Subdivision models a shape as the limit of a sequence of discrete shapes. 

converges rapidly to a continuous shape p that follows the original coarsest 
shape po and whose properties are determined by the subdivision matrix. 

Subdivision's popularity for the modeling of curves is due to the algo- 
rithms by Chaikin [9], and Lane and Riesenfeld [6]. The breakthrough for the 
modeling of surfaces via subdivision was marked by the papers by Catmull 
and Clark [2] and by Doo and Sabin [3]. A popular subdivision scheme for 
modeling with triangular meshes has been proposed by Loop [7], which was 

also used for creating Figure 1. 

§2. Shape Modeling through Differential Equations 

Alternatively, shapes can be characterized as solutions to partial differential 
equations. For example, any polynomial spline p[x] of degree m satisfies the 
differential equation p^m+^[x] = 0, requiring the (m + l)st derivative of the 
spline to be zero everywhere except at a fixed number of knots [1]. Other ex- 
amples of shapes based on partial differential equations are the polyharmonic 
surfaces, including Thin Plate Splines, as well as many different classes of fluid 

flows. 
When modeling with differential equations, we determine a continuous 

shape p that is a solution to a set of partial differential equations 

Dp = b, (1) 

where D denotes a continuous differential operator and b encodes the bound- 
ary conditions for the problem. For the example of natural cubic splines, we 
have D = -^ and 6 = 0 almost everywhere. If all differential operators in 
D are of the same, fixed order, we call the differential equation homogeneous 
order. Otherwise, the equation is called inhomogeneous order. 

To handle such problems in a computational environment, one commonly 
discretizes the continuous problem. To this end, a domain grid Tk is chosen 
and all entities of the continuous partial differential equation (1) are discretized 
over this domain grid. The result is a system of linear equations 

DkPk = h, (2) 
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where pk denotes an approximation of the continuous solution p over the grid 
Tk, fefc denotes a discretization of the boundary conditions, and Dk is a discrete 
approximation of the continuous differential operators D on the domain grid 
Tk. 

Relying on the theory for finite elements or finite differences [11], the 
discrete solutions pk can be formally guaranteed to converge to the continuous 
solution p of the original continuous problem (1) if the discretizations Tfc are 
chosen carefully and the discrete representations Dk and bk are well chosen. 

At this point, the problem of finding the continuous solution p of the 
system of continuous partial differential equations (1) has been reduced to the 
problem of solving denser an denser systems of linear equations (2). 

The links between mesh modeling and differential equations were previ- 
ously investigated by Mallet [8], Täubin [12], and Kobbelt [5]. The method 
presented here is new because subdivision schemes that model solutions of in- 
homogeneous order differential equations are precomputed entirely, enabling 
very efficient modeling of shapes guided by inhomogeneous order differential 
equations. In particular, the actual application of the subdivision schemes 
does not require any computational solving whatsoever. 

§3. Subdivision for Homogeneous Order Differential Equations 

In our previous work [13,14] we characterized subdivision schemes for the 
solutions of homogeneous order linear partial differential equations. In this 
framework, the subdivision matrix Sk-i is determined as the solution to the 
system of linear equations 

DkSk-i = 2dUk-iDk^, (3) 

where d is the dimension of the domain. Recall that the differencing operator 
Dk is the discrete approximation of the continuous differential operator D of 
the original, continuous problem (1) on the level k grid Tfc. Further, Uk-i 
denotes a very simple linear transformation, called replication or upsampling, 
that carries coefficients over the grid Tk-\ into coefficients over the next denser 
grid Tfc. The action of Uk-i is very simple: Coefficients centered over knots in 
Tfc_x are replicated over the same knots in the denser grid Tk while coefficients 
centered over the remaining knots Tfc - Tfc_i are set to zero. Thus, Uk-i is a 
matrix whose rows are either zero or a standard unit vector, and Uk-i can be 
constructed easily and efficiently. 

We visualize the meaning of equation (3) in Figure 2: The subdivision 
matrix is determined so that a certain commutativity relationship holds be- 
tween subdivision, upsampling and differencing. Differencing coefficients on 
the coarse grid and upsampling those differences to the finer grid by inserting 
zero for all new grid points (Uk-iDk~i, the right hand side of equation (3)) 
should yield the same result as subdividing the coefficients using the subdi- 
vision scheme and then differencing on the finer grid (DkSk-i, the left hand 
side of equation (3)). 
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Pk-l 
difference 

sk-l Pk-l 
difference 

Ek-1 Pk-l 

UkEk.,   Pk-l 

Fig. 2. The subdivision scheme is determined such that this commutativity re- 
lationship holds. 

The subdivision matrices Sk are the only unknowns of equation (3), and 
we can use linear algebra to systematically solve for these subdivision matri- 
ces. In our previous work [13] we showed that solutions produced by these 
subdivision matrices are related to solutions produced by an interpolating fi- 
nite element solver using a simple, fixed change of basis. Therefore, if the finite 
element solver converges, then the subdivision solution is also well defined. 

As a side note, in our previous work [13] we establish that the right-hand 
side of the system, as solved by the subdivision scheme from relation (3), is 
DkPk = Uk-iUk-2---U0D0p0 where pk = Sk-iPk-i and p0 is a user-given 
set of initial control coefficients. In other words, the subdivision scheme leads 
to a specific combination of the integer shifts of the Green function of the 
differential operator. 

Further, computation of the subdivision matrix 5jt_i based on relation 
(3) requires the inversion of the differencing operator Dk- Consequently, the 
computational work required for finding the subdivision matrix is at least 
the same as inverting the finite difference system. However, later we will see 
that the subdivision matrices can be precomputed. Thus, in contrast to a 
conventional finite difference solver, new shapes can be generated extremely 
efficiently. 

As an example, we briefly derive subdivision schemes for piecewise poly- 
nomial splines. Recall from deBoor [1] that the piecewise polynomial spline 

p[x] of degree m satisfies the differential equation D[i]m+1p[ar] = 0 where 
D[x] denotes the first derivative in the variable a;. 

We employ generating functions [4] for concise and convenient encoding 
of discrete coefficient sequences. To this end, we choose the domain grids for 
our analysis as the dilates ^ZZ of the integer grid 2Z. A generating function 
Pk [x] is a power series that associates the ith coefficient of the discrete shape 
Pk as the coefficient of xx. For example, the coefficient sequence {1,2,3,4,5} 
is represented by 1 + 2a; + 3x2 + 4z3 + 5x4. 

Recall the definition of the first derivative operator, 

D[x]p[x] = lim 
p[x] - p[x + t] 
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Substituting t = ^ yields 

nr l  r l       i-     P[
X
]~P[

X
+W] D[x\p[x\ = hm f *-*-. 

Thus, for x € -^TL, the approximation of the first derivative is given by the 
difference between two adjacent discretizations, normalized by the grid spac- 
ing. In terms of generating functions, this differencing operation is represented 
by the Laurent polynomial 

Dk[x] = 2kl~X 
1/2 ■ 

Higher order derivatives and differences are obtained by repeated application 
of the respective continuous or discrete operator. 

In terms of generating functions, the action of the upsampling operator 
Uk can be captured very concisely: The expression p [x2] represents the up- 
sampled coefficient sequence of p[x] as a generating function. Thus, in our 
example of polynomial splines, the generating function sk[x] for the subdivi- 
sion scheme satisfies 

Dk[x]m+18k[x] = 2Dk-1[x*]m+1, 

which can be simplified to 

Fortunately, 
Djfe_i[x2] _ll|i 

Dk[x] 2   x1'2 ' 
i.e. the generating functions for the differencing operations on the level k — 1 
and level k grids divide out yielding a simple expression independent of A;. As 
a result, the subdivision mask for the degree m polynomial splines are exactly 
the coefficients of 

■l + x\m+1 

JxWj 

Remarkably, these are precisely the known subdivision schemes for piece- 
wise linear functions (m = 1), Chaikin's algorithm [9] (m = 2) and the 
Lane/Riesenfeld algorithm [6] (m = 3). 

Previously we applied this strategy to derive subdivision schemes model- 
ing solutions of homogeneous order linear differential equations yielding local, 
stationary subdivision masks [13,14]. In this paper, we show that largely the 
same strategy can be used to determine subdivision schemes for inhomoge- 
neous order linear partial differential equations. As we will see, in this case 
the actual subdivision masks may depend on the particular level of subdivi- 
sion, i.e. are non-stationary. However, the masks can still be precomputed as 
a closed form algebraic expression in the level of subdivision, which can then 
be evaluated very efficiently during the actual application of the scheme. 
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§4. Subdivision for Inhomogeneous Order Differential Equations 

In this section we extend our systematic construction of subdivision schemes to 
handle inhomogeneous order linear partial differential equations. We consider 
the simple yet interesting problem of splines in tension [10]. The continuous 
spline in tension p[x] for tension parameter a satisfies the differential equation 

(i>[s]4 - a2 D[xf) p[x] = 0, (4) 

where D[x] again represents the continuous first derivative operator with re- 
spect to the variable x. Note that equation (4) incorporates both second and 
fourth derivatives of p[x], i.e. is inhomogeneous order. 

Following the same strategy as in the derivations for polynomial splines, 
we use generating functions to encode the discrete approximation pk of the 
spline in tension on grid Tk as well as for the representation of the differencing 
operation Dk[x] = 2fcA^f. Next, we apply equation (3) to characterize the 
subdivision scheme sk [x] as the solution to 

[DM" - <*2Dk[x}2) sk^[x] = 2 (/>*_! [x2]4 - c?Dk.l [x2]2) ,      (5) 

which can be simplified to 

2(ßfc_1[z2]4-a2
JDfc_1[x

2]2) 

Sk~M = Dk[x?-a>Dk{x? ■ (6) 

However, at this point we note that there is no simple closed-form ex- 
2|2 

pression for the quotient Dk p^jO^'/* ' (unless a = 0). In other words, 

there is no finitely-supported subdivision scheme sjt-i[a;] for splines in ten- 
sion. Moreover, the coefficients of the Laurent series expansion of the quotient 
Sfc_i[a:] depend on the level of subdivision k, i.e. the subdivision scheme has 
to be non-stationary. 

Fortunately, due to the structure of equation (3) the coefficients of this 
expansion decrease very rapidly away from the origin. Thus, we can approxi- 
mate the infinite Laurent expansion of the subdivision mask well by a locally 
supported scheme. To this end, we construct the generating function s/t_i[a;] 
of desired support symbolically with the actual coefficients s\_1 as unknowns, 

sk- -iN = Y, s*-ix' 

for a user-defined support n. We then construct a generating function for the 
residual of equation (5), 

rk[x] = (DM" - c?Dk\x?) sk-M - 2 (£>*_! [x2]4 - a2Dk^ [x2]2) 

^ (7) 
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Using linear algebra, we can now solve for the unknowns sk_1 of (7) sym- 
bolically by minimizing the least squares residual of the coefficients r'k. The 
motivation behind our strategy is to construct a best solution for the charac- 
teristic equation (3) of given support. The results of this process are actual, 
symbolic coefficients for the local subdivision scheme Sfc_i[x], depending on 
the tension parameter a as well as on the level k. As an example, the ap- 
proximation to (6) with the same support as the Lane-Riesenfeld algorithm 
(n = 2) has 

22k (69321+10>;+89141+4k q2+352564* a"+39941+2k q6+3334* q8+26a10) 
8 (693 21+" fc+8914J+5 k a2+3861 256fc a4+273 23+6 * a6+675 16fc a8+27 41+fc a10+7 a12) 

as the coefficient for x±2, 

(41+*+a2)(6931024t+1714fca8+2a2(891256t+21941+3*q2+39916ta4+7a8)) 
4(69321+12*+89141+5t a2+3861256* a4+273 23+6fc a6+675 16* a8+2741+* a10+7a12) 

as the coefficient for x±l, and finally 

207941+6*;+6039 41+5t q2 + 1755 161+2i; a4+8265 21+6li q6+5235 16fe a8+213 41+t q10+56q12 

8 (693 2!+12 fc+891 4!+5 k a2+3861 256" a4+273 23+6 k a6+675 16fc a8+27 41+fc a10+7a12) 

as the coefficient associated with x°. Note that for a = 0 these coefficients 
exactly reduce to the subdivision scheme for natural cubic splines based on 
the Lane-Riesenfeld algorithm. 

During an actual application of the subdivision scheme, the user-defined 
tension parameter a and the current level of subdivision k are substituted 
into the symbolic solution Sfc_i[a;], yielding a simple generating function in 
only the variable x. The coefficients of this generating function encode the 
subdivision masks for the spline in tension for the given tension parameter a 
at the current level k. Again, application of this subdivision scheme is very 
efficient. For example, given a = 0, the above expression simplifies to the 
generating function for natural cubic spline subdivision, independent of k. 

k = 1 0.11063 0.55261 0.88274 0.55261 0.11063 
k = 2 0.12345 0.52441 0.80178 0.52441 0.12345 
k = 3 0.12489 0.50733 0.76487 0.50733 0.12489 
k = 4 0.12499 0.50192 0.75386 0.50192 0.12499 
k = 5 0.125 0.50049 0.75097 0.50049 0.125 
k = 6 0.125 0.50012 0.75024 0.50012 0.125 
k = 7 0.125 0.50003 0.75006 0.50003 0.125 
k = 8 0.125 0.50001 0.75002 0.50001 0.125 
k = 9 0.125 0.5 0.75 0.5 0.125 
k = 10 0.125 0.5 0.75 0.5 0.125 
k = 11 0.125 0.5 0.75 0.5 0.125 

Fig. 3. Subdivision masks for a = 1, k = 0. 
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Fig. 4. Splines in tension for varying a. 

Figure 3 shows the actual coefficients of a locally supported generating 
function (n = 2) for a = 1 and k = 1,..., 11. Coefficients were rounded to 
five significant digits. Note that the coefficient sequence rapidly converges to 
the subdivision scheme for natural cubic splines. Indeed, after a few rounds 
of subdivision, a spline in tension behaves like a natural cubic spline over a 
denser initial grid with its initial control coefficients determined by the first 
few rounds of subdivision. 

Figure 4 depicts application of four rounds of the local subdivision scheme 
(support n = 4) for a ranging from 0 to 5. The initial control polygon is shown 
as a thin line, while the subdivided curve is shown in solid. Note that as a 
is increased, the curve follows the control polygon more closely. In the limit, 
a —> oo, the curve is actually the piecewise linear interpolant of the initial 
control points. 

Figure 5 shows the least squares residuals J2i(rl)2 of approximations of 
different sizes for a = 1 and k = 0 (the residual is largest for k = 0) on a 
logarithmic scale. Note that for the approximation of size n = 4 the residual 
is already very small. 

At a higher level, we follow these steps in the derivation of non-stationary 
subdivision schemes for inhomogeneous order linear partial differential equa- 
tions: 

Starting from the continuous, inhomogeneous order, linear partial dif- 
ferential equations we discretize the continuous differential operators to yield 
appropriate differencing operators over the respective subdivision grids T^. We 
then characterize the subdivision scheme sjt-i as the only unknown of equation 
(3) using these differencing operators as well as simple replication/upsampling. 
Next, we construct a representation of the subdivision scheme Sk-i in terms 
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Fig. 5. Residuals of local approximations with varying support. 

of unknowns and symbolically build a residual expression representing the dif- 
ference between left-hand side and right-hand side of equation (3). Finally, 
we use linear algebra to solve symbolically for the unknowns of the subdivi- 
sion scheme Sk-i, which may depend on the level of subdivision and possible 
parameters to the original partial differential equations. As a result, applica- 
tion of the subdivision scheme only involves instantiation of these constants, 
yielding a locally supported, approximating subdivision scheme for solutions 
of the original inhomogeneous order partial differential equations. 

§5. Summary and Conclusion 

In this paper, we showed that subdivision can be used to model solutions 
of inhomogeneous order differential equations. Using the characterization of 
the subdivision scheme based on the commutativity relationship (3), we can 
systematically solve for these schemes. Even though the exact subdivision 
schemes may be globally supported, locally supported schemes approximate 
the solution well enough for practical purposes. Non-stationary schemes can 
be handled using the same methodology by allowing the locally supported sub- 
division masks to change between levels. Because these subdivision schemes 
can be precomputed, the modeling of solutions of inhomogeneous order linear 
partial differential equations can be handled very efficiently. 

The proposed method for modeling solutions to inhomogeneous order lin- 
ear differential equations is quite general and promises to be useful in a variety 
of applications. First of all, approximations based on local subdivision schemes 
are often sufficient for modeling applications. Indeed, the approximate solu- 
tions are qualitatively indistinguishable from the exact solution. Second, if the 
accuracy of the subdivision solution is not satisfactory, the subdivision scheme 
can be used to produce very good initial estimates for more traditional solu- 
tion methods. Third, the results of traditional solution methods often need to 
be refined locally for visualization and analysis. A local subdivision scheme 
can be used to refine solutions to any desired accuracy and provide better 
accuracy than traditional polynomial fits. 
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