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(4) INTRODUCTION 
The "Breast Cancer Screening Using Photonic Technology" research project is devoted to 

developing techniques for obtaining direct two-dimensional (2-D), and tomographic three- 
dimensional (3-D) images of cancerous lesions of human breast that make using noninvasive 
near-infrared (NIR) light. The imaging method involves illuminating the specimen with 
ultrashort NIR pulses of laser light and construction of images using two approaches. The direct 
or the shadowgram method utilizes the image bearing component of the forward-transmitted 
light, while the inverse reconstruction method makes use of the measured transmitted, 
forward-scattered or backscattered light intensity profiles, known or estimated optical properties 
of the sample, a model for light propagation through turbid media and a sophisticated computer 
algorithm to construct images of the interior structure of the specimen. 

Significant advances in developing both of these approaches were made during the current 
reporting period. Correlating the results with that obtained from available methods assesses 
efficacy of the methods so developed. We have initiated correlating the results of optical 
measurements with that obtained from nuclear magnetic resonance (NMR) on the same samples. 

(5) BODY 
The tasks performed and the progress made during the current reporting period may be 

broadly grouped as follows: 
5.1 Time-sliced and spectroscopic in vitro imaging of human breast tissues, 
5.2 Correlation with NMR results, 
5.3 Analytical solutions of photon transport equation, and 
5.4 Development of the inverse image reconstruction method. 
We will briefly outline our accomplishments in each of these areas, and refer to appended 

publications (Appendices 1-4) for detailed description where applicable. 

5.1 Time-sliced and Spectroscopic in vitro Imaging of Human Breast Tissues 
We pursued the time-sliced and spectroscopic direct 2-D imaging of in vitro normal and 

cancerous human breast tissues (TO 5-7, Tasks 12-15) using the experimental arrangements 
developed and improved during the earlier reporting periods. The time-sliced imaging 
arrangement uses -150 fs, 1 kHz, 800 nm pulses from a Ti:sapphire laser and amplifier system 
for sample illumination and an ultrafast gated intensified camera system (UGICS) for recording 
2-D images using different temporal slices of the transmitted light pulse. 

We now routinely use UGICS for recording time-sliced images after a comparison (TO 3, 
Task 7) of the UGICS and optical Kerr gate (OKG) revealed that the UGICS is better suited for 
the task. OKG provides gate width limited by the response time of the Kerr medium or the pulse 
width and could attain time resolution of a few picoseconds, compared to the -80 ps gate width 
provided by the UGICS. The UGICS is easier to operate, does not need the demanding overlap 
of the gating and signal beams as required in an OKG, and the 80-ps gate-width is reasonable 
compromise for the present application. 

The spectroscopic imaging arrangement uses the 1210-1300 nm output of a modelocked 
Cr4+:forsterite laser for sample illumination, a Fourier gate for rejecting multiple scattered light, 
and an InGaAs near-infrared area camera for recording 2-D images, as detailed in the two earlier 
annual reports. 

Measurements were extended to more breast tissue specimens with infiltrating ductal 
carcinoma, and infiltrating lobular carcinoma from patients of different ages.   Samples were 



obtained from our collaborators at the Memorial Sloan Kettering Cancer Center and National 
Disease Research Interchange under an IRB approval at the City College of New York. ^ 

The results of time-sliced 2-D imaging experiments are consistent with our earlier results1' 
that images recorded with light in the earlier time slices highlight the cancerous tissues, while 
those obtained with light in the later time slices highlight the normal tissues. Time-sliced 
imaging can thus separate out normal and cancerous tissues in excised specimens. Some of these 
results are also presented in Appendix 1. A sequence of these 2-D images can be used for 3-D 
image reconstruction. 

We are pursuing multi-wavelength differential imaging on normal and cancerous breast 
tissues (TO 5-7, Task 15) to verify and build statistics on our observation of wavelength- 
dependent difference in light transmission through the cancerous and normal tissues that was 
first reported in the last Annual Report. The pattern repeats in a majority of the samples we 
investigated. We are working on defining a wavelength-dependent parameter whose values 
would be indicative of the state of tissue as normal or cancerous. 

5.2 Correlation with NMR Results 
One of the objectives of the project was to correlate the results of optical measurements with 

those obtained from other commonly used methods (TO 5-7, Task 17), such as, pathology, x- 
ray, and NMR. We routinely correlate our optical measurements on excised breast tissue 
samples with pathological evaluation, which is not suitable for in vivo measurements. NMR can 
provide an in vivo assessment. So we have initiated measurements on the same excised breast 
tissue specimens using both optical and NMR techniques to investigate how the results correlate. 
NMR measurements were carried out at the Memorial Sloan Kettering Cancer Center by our 
collaborator Dr. Jason Koutcher. Figures 1 (a)-1(f) present a photograph of the sample, a NMR 
image, time-sliced optical images at delay times of 100 ps, and 300 ps, as well as, corresponding 
spatial intensity distributions. The 100-ps image highlights the cancerous tissue, which is in 
good qualitative correlation with the NMR results displayed in Fig. 1(b). We will pursue these 
measurements further on other samples to obtain quantitative correlation. 

5.3 Analytical Solutions of Photon Transport Equation 
Development of inverse image reconstruction methods requires a theoretical model that 

provides an accurate description of photon transport through highly scattering turbid media. We 
have built on the earlier successes3'4 of our theoretical endeavor (TO 4, Task 10; TO 8, task 18), 
and extended those in two very important ways. First, we have developed an analytical solution 
of the polarized photon transport equation in an infinite uniform medium using Cumulant 
Expansion {Appendix 2) that can take into account the vector nature of electromagnetic radiation 
and can handle the polarization property of light.5 This is a highly significant advance over our 
Cumulant Solution of Elastic Scalar Boltzmann Transport Equation in an infinite uniform 
isotropic medium,3'4 which in itself was a major advance over the commonly used diffusion 
approximation that fails to adequately account for ballistic and snake photons. 

Second, our Cumulant Solution3'4 of the scalar equation has been extended to semi-infinite 
and slab geometries (Appendix 3)? This extension makes the solution more suited for practical 
application which always involve finite geometries. 
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Fig. 1(a) Photograph of the specimen showing the normal fibrous and cancerous (invasive ductal carcinoma) tissues 
in the specimen. The pink dots represent orientation markings made on the sample for histology following optical 
and NMR measurements, (b) A T, weighted NMR image of the specimen showing the normal and cancerous parts, 
(c) A time-sliced optical image recorded for a delay time of 100 ps, and the corresponding spatial intensity 
distribution (d) integrated over the horizontal region denoted by the dashed box. Cancerous region is highlighted in 
this early-light image, (e) Another time-sliced optical image recorded for a delay time of 300 ps, and the 
corresponding spatial intensity distribution (f) integrated over the same horizontal region as in (c). Transmitted 
intensity is higher in the later-light image. The zero time is taken to be the time of arrival of light through the glass 
cell containing clear water instead of the tissue. 



5.4 Development of Inverse Image Reconstruction Methods 
We have completed the development of a time-resolved Fourier optical diffuse tomography 

approach8 for inverse image reconstruction (TO 4, Tasks 8,9; TO 8, Task 18) that we presented 
in the last Annual Report and attach here as Appendix 4. The approach allows use of both 
transmitted and backscattered photons from the scattering medium to obtain 3-D images of 
embedded absorbing and scattering inhomogeneities. It introduces the concept of propagation of 
spatial Fourier component of the scattered wave field inside the scattering medium, and then 
develops a new optical diffuse imaging methodology based on that theory. A test run using 
simulated data was able to reconstruct images of four inhomogeneities located up to 2 cm below 
the surface of a human tissue-like semi-infinite scattering medium using backscattered photons. 
We are pursuing testing of this and other methods developed in this project for inverse 
reconstruction of objects using experimental data. An important issue is a choice of reference 
medium (TO 4, Task 10) and we have used Intralipid suspension of different concentration, and 
suspension of Ti02 particles of different size in water. We are also searching for matching 
reference materials for breast tissue. 

We are building forward model and inversion algorithms based on our cumulant solutions of 
the scalar radiative transport equation. Models using the first two cumulants has been built and 
tested using simulated data. The model describes long-time behavior well. Higher-order 
cumulants will be needed to account for early-time behaviors, and is being actively pursued. 

(6) KEY RESEARCH ACCOMPLISHMENTS 
• Verified earlier inferences that time-sliced 2-D transillumination images recorded 

with earlier temporal slices of transmitted light highlight cancerous tissues while 
those recorded with later slices accentuated normal fibrous tissues by extending 
measurements to more breast tissue specimens. 

• Initial results show good qualitative correlation between results of time-sliced and 
NMR imaging methods. 

• Carried out spectroscopic imaging experiments on more breast tissue specimens and 
trying to verify if the ratio R of light intensity transmitted through the cancerous 
tissue to that through the corresponding normal tissue as a function of wavelength 
could be used as a useful parameter for cancer identification. 

• Developed analytical solutions of the polarized photon transport equation that enable 
description of the polarization properties of light transmitting through a highly- 
scattering medium. 

• Extended Cumulant Solution of scalar transport equation to semi-infinite and slab 
geometries making it more suited for practical application that involves finite 
boundaries. 

• Developed a forward model and computer algorithm for inverse image reconstruction 
scheme that can use both forward transmitted and backscattered light to provides fast, 
noise-resistant 3-D images of scattering and absorptive inhomogeneities at various 
depths inside a scattering medium. 

(7) REPORTABLE OUTCOMES 
Articles 

1.   S. K. Gayen, M. Alrubaiee, M. E. Zevallos and R. R. Alfano, "Temporally and spectrally 
resolved optical imaging of normal and cancerous human breast tissues," in the Proceedings 



of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, Amir Gandjbakhche, 
ed. (Optical Society of America, Washington, DC, 2000), pp. 142-147. 

2. W. Cai, M. Lax, R. R. Alfano, "Analytical solution of the polarized photon transport 
equation in an infinite uniform medium using cumulant expansion," Phys. Rev. E 63, 
016606-1(2001). 

3. M. Xu, M. Lax, R. R. Alfano, "Time-resolved Fourier optical diffuse tomography," J. Opt. 
Soc. Am. A 18,1535 (2001). 

4. A. Carpenter, W. Cai, M. Lax, R. R. Alfano, "Cumulant approximation of the radiative 
transfer equation for photon density in semi-infinite and slab geometries," J. Opt. Soc. Am. A 
(submitted). 

(8) CONCLUSIONS 
The work carried out during this reporting period builds on and affirms some of our earlier 

inferences and leads to some new conclusions. First, time-sliced 2-D transillumination images 
recorded with earlier temporal slices of transmitted light highlighted cancerous tissues while 
those recorded with later slices accentuated normal fibrous tissues. Second, results of time-sliced 
measurement are in good agreement with NMR results on same samples. Third, wavelength 
dependence of a ratio, R of light intensity transmitted through the cancerous tissue shows the 
potential to be used as a useful parameter for cancer identification. Fourth, analytical solutions 
of the polarized photon transport equation using Cumulant Expansion that we obtained enables 
description of polarization characteristics of light emerging from a scattering medium and will be 
useful for reconstruction of polarization gated images. Fifth, the theoretical formalism and 
computer algorithm for inverse image reconstruction scheme using both forward and 
backscattered light shows (with simulated data) the potential to provide fast 3-D images of 
scattering and absorbing objects at various depths inside a scattering medium. 

We plan to build on these developments and pursue in vivo breast imaging on volunteers 
following testing of the techniques on model breast structures made from excised tissues, and 
have submitted a proposal to USAMRMC seeking support for the work. 

"So What Section" 
The implication of the first conclusion is that time-sliced imaging offers the possibility of 

highlighting cancerous lesions in human breast. The second conclusion points to the 
complementary nature of optical and NMR imaging, and the possibility of using them together 
for better specificity. The third conclusion indicates the diagnostic potential of optical imaging 
based upon multi-spectral measurements. X-ray mammography, most often used method, 
cannot diagnose cancer. The fourth and fifth conclusions together present the possibility of 
developing robust 3-D inverse image reconstruction formalisms, that in addition to being 
applicable for optical mammography, will be useful for imaging tumors in other body organs, 
such as, prostate and thyroid glands, as well as, objects inside other types of scattering media, 
such as, cloud, fog, smoke, and murky water. 
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Appendix  1 

Temporally and spectrally resolved optical imaging of normal and cancerous 
human breast tissues 

S. K. Gayen, M. Alrubaiee, M. E. Zevallos* and R. R. Alfano 
Institute for Ultrafast Spectroscopy and Lasers, New York State Center for Photonic Materials and Applications, 

Departments of Physics and Electrical Engineering, The City College of the City University of New York 
138th Street at Convent Avenue, New York, NY 10031 

gaven(a)scisun.sci.ccnv.cunv.edu, alfano(a)scisun.sci.ccny.cuny.edu 

Abstract: Time-sliced and spectroscopic imaging approaches were used to obtain two- 
dimensional (2-D) transillumination images of a composite in vitro human breast tissue 
sample comprising cancerous and normal fibrous tissues, adipose tissues, and a lymph 
node. Time-sliced imaging approach used 800-nm, approximately 130-fs duration, 1 kHz 
repetition-rate pulses from a Ti:sapphire laser system to illuminate the sample, and a 
gated imaging system that provided a variable-position, -80 ps-duration electronic gate to 
record time-sliced 2-D images. Images recorded with earlier temporal slices 
(approximately, first 100 ps) of the transmitted light highlighted the lymph node and 
cancerous tissues, while the later slices (later than 300 ps) accentuated the adipose and 
normal tissues. Spectroscopic imaging arrangement made use of 1225 - 1300 nm light 
from a chromium-doped forsterite laser for sample illumination, a Fourier space gate and 
a polarization gate to sort out a fraction of the image-bearing photons, and an InGaAs 
area camera for recording 2-D images. Marked enhancement of image contrast between 
the adipose tissue and other tissues in the specimen was observed when the wavelength of 
imaging light was near resonant with the 1203-nm optical absorption resonance of the 
adipose tissue. Wavelength-dependent differences in relative light transmission through 
the normal and cancerous tissues were observed. 
OCIS codes: (170.3880) Medical and biological imaging; (170.6920) time-resolved imaging; (290.7050) 
scattering, turbid media; (170.6510) spectroscopy, tissue diagnostics; (170.3660) light propagation in 
tissues; (999.999) Optical mammography; (999.999) near-infrared absorption spectroscopy of tissues; 
(999.999) spectroscopic imaging; (999.999) time-sliced imaging. 

Introduction 

Optical mammography, imaging of the interior structure of human breast with light, is an active area of 
optical biomedical imaging research.[1-4] Development of optical breast imaging modalities is of 
interest for several reasons. Optical imaging methods are noninvasive as no ionizing radiation is 
involved. Use of different wavelengths of light has the potential to provide diagnostic information. In 
contrast with x-ray mammography, light-based methods are as apt to image dense breast of a younger 
patient as that of an older patient. What is even more important, inverse image reconstruction methods 
using time-resolved or frequency-domain optical measurements may provide three-dimensional (3-D) 
tomographic breast images.[5-7] The ability to generate ultrashort pulses and colors are two major 
attributes of light that may be exploited to develop an imaging modality with diagnostic ability. 

In this article, we present the results of time-sliced[7] and spectroscopic[8] 2-D transillumination 
imaging measurements on excised human female breast tissue specimens comprising normal and 
cancerous tissues. Time-sliced imaging makes use of different temporal slices of the transmitted light to 
form 2-D images following the illumination of the sample with ultrashort near-infrared (NIR) pulses of 
light. The thrust of the spectroscopic imaging experiment is to examine if a spectroscopic difference 
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may be used to enhance image contrast, distinguish between different types of tissues in a specimen, and 
obtain diagnostic information. 

Methods and Materials 

The time-sliced imaging arrangement used 800-nm, approximately 130-fs duration, 1 kHz repetition-rate 
pulses from a Ti:sapphire laser and amplifier system[9] for sample illumination, and an ultrafast gated 
intensified camera system (UGICS) for recording two-dimensional images using picosecond-duration 
slices of light transmitted through the sample. The UGICS comprised a compact time-gated image 
intensifier unit fiber-optically coupled to a charge-coupled device (CCD) camera. It provided a 
minimum gate width of approximately 80 ps whose temporal position could be varied in 25-ps steps 
over a 20-ns range. The average beam power used in the experiment was approximately 200 mW. The 
beam was expanded by a beam expander, and a 3-cm diameter central part of it was selected out using 
an aperture to illuminate the sample. The time-sliced image was recorded by the CCD camera and 
displayed on a computer. 

The experimental arrangement for near-infrared (NIR) spectroscopic imaging made use of 1210- 
1300 nm continuous-wave mode-locked output of a CH+rforsterite laser to illuminate the sample. A 
Fourier space gate[10] in conjunction with a polarization gate[ll] selected out a fraction of the less- 
scattered image-bearing photons from the strong background of the image-blurring diffuse photons. A 
50 mm focal-length camera lens placed on the optical axis at a distance of 50 mm from the aperture in 
the Fourier gate collected and collimated the low-spatial-frequency light filtered by the aperture and 
directed it to the 128x128 pixels sensing element of an InGaAs NIR area camera. The average optical 
power of the incident beam was maintained at approximately 35 mW for all the wavelengths used in the 
imaging experiment using appropriate neutral density filters. The laser beam was linearly polarized 
along the horizontal direction. 

The composite excised breast tissue sample used in the experiments reported in this article was 
assembled from tissues obtained following the modified radical mastectomy of a 30-year-old patient. It 
comprised a lymph node (LN) with surrounding tissues, a piece of adipose (A) tissue, and a piece with 
normal (N) and cancerous (C) fibrous tissue. Each of the pieces was approximately 5 mm thick, and 
was pressed into a 5-mm thick quartz cell to ensure uniform sample thickness and good optical contact 
between the adjacent pieces. According to an accompanying surgical pathology report, the cancer was a 
poorly differentiated carcinoma, grade III with sarcomatoid features. Figure 1(a) shows a photograph of 
the exit face of the composite sample wherein the locations of different types of tissues are tentatively 
outlined and labeled. The tissues were made available to us by National Disease Research Interchange 
under an IRB approval from the City College of New York. 

Results 

Time-sliced Imaging 
Time-sliced transillumination images of the sample for gate positions of 100 ps and 350 ps are displayed 
in Figs. 1(b) and 1(c), respectively. The zero position was taken to be the time of arrival of the light 
pulse through a 5-mm thick quartz cell filled with water. The spatial intensity profiles of the images in 
Fig. 1(b) and Fig. 1(c) integrated over two 6-pixel wide horizontal areas around the white dashed lines 
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Fig. l.(a) A photograph of the exit face (the side that faces the camera in the experimental arrangements) of the composite 
breast tissue sample. LN, lymph node; A, adipose tissue; N, normal fibrous tissue; C, cancerous tissue. Time-sliced 
transillumination images of the sample for gate delays of (b) 100 ps, and (c) 350 ps. Spatial profile of the integrated 
intensity distribution along a horizontal area of 6 pixel vertical width around the dashed white line that passes through the 
normal fibrous tissue (dashed line), or the cancerous tissue (solid line) for a gate delay of (d) 100 ps, and (e) 350 ps. 

are presented in Figs. 1(d) and 1(e), respectively. The two areas were chosen such that one included the 
normal fibrous tissue in the upper right part of the sample while the other included the cancerous tissue 
in the lower right part to enable close comparison. The time-sliced 100-ps gated image clearly 
highlights the lymph node, adipose, normal fibrous, and cancerous tissue regions. The contrast is the 
highest between the lymph node that appears the brightest and the adipose tissue that appears dark in the 
image. The spatial intensity distributions of the 100-ps image, displayed in Fig. 1(d), show the highest 
peak in intensity values in the lymph-node region and a marked trough in the adipose tissue region 
indicating much higher light transmission through the lymph node and much lower transmission through 
the adipose tissue region at early time. More interesting is the contrast between the cancerous and 
normal tissues in the 100-ps image. As seen in the right side of the image and the spatial intensity 
profiles of Fig. 1(d), light transmission through the cancerous tissue is significantly higher than that 
through the normal tissue. 

A markedly different situation is observed in the 350-ps gated image of Fig. 1(c) and the 
corresponding spatial intensity profiles of Fig. 1(e). The adipose tissue region appears the brightest, and 
the spatial intensity profile peaks in the adipose tissue region indicating much higher light transmission 
through the adipose tissue compared to transmission through other tissues in the sample at this later 
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time. What is even more noteworthy, the difference in light transmission through the normal and 
cancerous regions that appeared so prominent in the profiles of Fig. 1(d) is not appreciable at this late 
time. It is reflected by the close overlapping of the two profiles in the regions of the normal and 
cancerous tissues in the profiles of Fig. 1(e). At intermediate times (not shown in figures) relative light 
transmission through the lymph node and cancerous tissues decreased while that through adipose and 
normal fibrous tissues increased with time. Summarizing the time-dependent transit of light, we find 
that the light transits fastest through the lymph node, followed by that through cancerous fibrous tissue, 
normal fibrous tissue, and the adipose tissue. Lower scattering or/and higher absorption of light by a 
particular type of tissue may make its temporal profile peak at an earlier time. Since there is no known 
absorption of 800-nm light by breast tissues, we attribute the observed time-dependent differences in the 
relative light transmission to the differences in the light scattering characteristics of these tissues. Our 
results suggest that lymph node scatters the least, followed by cancerous tissue, normal fibrous tissue, 
and the adipose tissue. 

These results demonstrate that time-sliced imaging can highlight different types of tissues in a 
sample. What is even more important, it can highlight normal fibrous tissues from poorly differentiated 
carcinoma (grade III) with sarcomatoid features. It should be noted that more pronounced difference in 
light scattering characteristics between normal fibrous tissues and infiltrating ductal carcinoma was 
observed[12] than that observed in this study between normal fibrous tissues and poorly differentiated 
carcinoma (grade III) with sarcomatoid features. While both types of tumors scatter less than normal 
fibrous tissue, ductal carcinoma tumor is even less scattering than the poorly differentiated carcinoma 
(grade III) with sarcomatoid features. Experiments with different types of tumors at different stages of 
development are needed to generate quantitative data on light scattering characteristics of tumors. 

Spectroscopic Imaging 
A spectroscopic difference between different types of tissues in a specimen is expected to provide some 
distinguishable signature in a transillumination image. In order to test if this signature may be realized in 
practice, we obtained images of the sample with 1225-nm light that is near-resonant with the adipose 
tissue optical absorption resonance around 1203 nm,[13] as well as, with light of wavelengths away 
from the resonance. Figures 2(a) and 2(b) show a 'near-resonant image' recorded with 1225-nm light, 
and a typical 'nonresonant image' recorded with 1300-nm light, respectively. Figures 2(c) and 2(d) 
display the corresponding spatial intensity profiles. The solid line in each of these figures shows the 
profile integrated over a 6-pixel wide area around the long dashed line that runs the entire length of the 
corresponding image and includes the cancerous tissue region in the lower right part of the image. The 
dashed curve superimposed on the solid curve shows the profile integrated over a 6-pixel wide normal 
fibrous tissue area around the upper smaller dashed line in the corresponding image. The solid and the 
dashed curves in the right side of the profiles thus enable comparison of light transport characteristics 
through normal and cancerous tissues in the specimen. 

The salient features of the spectroscopic images and corresponding profiles are: (a) the adipose 
tissues appear much darker (less light transmission) than other tissues in the near-resonant 1225-nm 
image as compared to that in the off-resonance 1300-nm image; (b) cancerous tissues appear brighter 
(higher light transmission) than the normal tissues in both the images; (c) while the overall light 
transmission through the normal region remains approximately at the same level, that through the 
cancerous region is significantly higher at 1225 nm than at 1300 nm; (d) transmission through the lymph 
node exhibits a wavelength-dependent variation as well, being higher at 1300 nm than at 1225 nm. The 
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Figure 2. Spectroscopic 2-D transillumination image of the breast tissue sample described in the text for light of wavelength (a) 1225 nm, 
and (b) 1300 nm. Corresponding spatial profiles are shown in (c) and (d), respectively. Spatial profiles are the integrated intensity 
distribution along a 6-pixel widehorizontal area around the white dashed line covering the entire length of the sample including the 
cancerous tissue "region (solid line in the profiles) and that around the small dashed line denoting the normal tissue region (broken line in 
the profiles). 

change in image contrast was the maximum for the adipose tissue as the wavelength of imaging light 
was changed from 1225 to 1300 nm. Adipose tissue region appeared as a much deeper trough in the 
spatial intensity profile of the 1225-nm image compared to that for the 1300-nm image. For a more 
quantitative description of the observed behavior, we monitored the image contrast, C(X) = (IF -IAWF 

+IA), where IA(X) is the optimal intensity value at wavelength X on the spatial profile of the image at the 
adipose tissue location, and IrfX) is the corresponding intensity in the immediate fibrous tissue region. 
Value of contrast at 1225 nm is 0.27 and 0.10 at 1300 nm. As the laser output was tuned away from 
1225 nm to off-resonance wavelengths, the contrast between the adipose and fibrous regions in the 
images decreased from that maximum value of 0.27 towards 0.10. These results clearly demonstrate 
that an appreciable spectroscopic difference may significantly enhance the contrast between different 
types of breast tissues in a transillumination image, and is consistent with our previous results with 
adipose and fibrous human breast tissues.[8] 

Even more promising and interesting is the wavelength-dependent difference in light 
transmission through the cancerous and normal tissues. As a measure of this difference we may monitor 
the ratio, R of light intensity transmitted through the cancerous tissue to that through the corresponding 
normal tissue. Taking the averaged intensity values[14] around the middle of the normal and cancerous 
tissues (Pixel # 110 marked by vertical dashed line in figures 2(c) and 2(d)), we obtain the value of/? to 
be 1.5 for 1225 nm and 1.2 for 1300 nm, a significant difference. We observed similar wavelength- 
dependent variation in R for ductal carcinoma and normal breast tissue samples as well. More 
measurements involving normal tissues and tissues with different types and stages of cancer are needed 
to examine if/? can be a parameter whose values would be indicative of cancer. 
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In summary, the spectroscopic and time-sliced imaging approaches show tissue selectivity.   A 
combined spectroscopic and time-sliced imaging approach along with inverse image reconstruction 
method has the potential to provide more information even than the x-ray techniques. 
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An analytical solution for time-dependent polarized photon transport equation in an infinite uniform isotro- 
pic medium is studied using a circular representation of the polarized light and expansion in the generalized 
spherical functions. We extend our cumulant approach for solving the scalar (unpolarized) photon transport 
equation to the vector (polarized) case. As before, an exact angular distribution is obtained and a cumulant 
expansion is derived for the polarized photon distribution function. By a cutoff at the second cumulant order, 
a Gaussian analytical approximate expression of the polarized photon spatial distribution is obtained as a 
function of the direction of light and time, whose average center position and half-width are always exact. The 
central limit theorem claims that this spatial distribution approaches accuracy in detail when the number of 
collisions or time becomes large. The analytical expression of cumulants up to an arbitrary high order is also 
derived, which can be used for calculating a more accurate polarized photon distribution through a numerical 
Fourier transform. Contrary to what occurs in other approximation techniques, truncation of the cumulant 
expansion at order n is exact at that order and cumulants up to and including order n remain unchanged when 
higher orders are added, at least as applied in our photon transport equation. 

DOI: 10.1103/PhysRevE.63.016606 PACS number(s): 42.25.Fx, 42.25Ja, 42.25.Dd, 42.68.Ay 

I. INTRODUCTION 

Study of the polarized photon transport has lasted for 
many years since the polarized photon transport equation 
(PPTE) was formulated by Gans [1] and by Chandrasekhar 
[2]. Recently, polarization analysis of light migrating in a 
multiple-scattering medium has been applied to broad fields, 
such as diagnostics of biological tissues [3-5], atmosphere 
monitoring [6], and communications. One goal is to develop 
optical tomography with polarization analysis to enhance 
ability in image reconstruction of objects inside scattering 
media. Because of the depolarization effect in a highly scat- 
tering medium, scattered photons maintaining polarization 
are those near ballistic and snake like, which suffer less mul- 
tiple scattering. Therefore, a tomographic approach using po- 
larized photons will automatically exclude multiple-scattered 
diffusive photons which blur images. In order to build a 
proper forward model for tomography using a polarization 
analysis, a theoretical study of the propagation of polarized 
light in scattering media becomes practically important. 

In polarized photon transport, the intensity of polarized 
light scattered from a scatterer along a certain direction is 
determined by many scattering processes at different scatter- 
ing planes consisting in a ray scattered from the scatterer and 
rays incident to the scatterer from different directions. In 
order to properly describe this process, Kuscer and Ribaric 
[7] employed a circular representation of the polarized com- 
ponents of light and an expansion by generalized spherical 
functions [8] (or rotation matrices in angular momentum 
theory [9,10]). The phase matrix, hence, can be analytically 
expressed by the angular parameters of the incident and scat- 
tered rays in fixed coordinates. Based on this formalism, 
Herman and Lenoble [11] studied the asymptotic behavior of 

the polarized radiation field at great depths. Domke [12] con- 
structed a system of singular eigenfunctions of the PPTE, for 
which an integral equation and then a recurrence relation 
were derived. However, to our knowledge, an explicit ana- 
lytical expression of the solution of the PPTE has not been 
obtained. Numerical methods, mainly, Monte Carlo simula- 
tions, are the main tools in recent theoretical investigations 
of light polarization in multiple-scattering media [5,13]. 

In this paper we derive an analytical solution of the time- 
dependent PPTE in an infinite uniform medium. Based on 
our results, inverse image reconstruction of objects inside a 
scattering medium using polarized light can be developed. 
The 4X4 phase matrix is assumed to depend only on 
the scattering angle © in the scattering plane: P(s,So) 
=P(s-So) = P(cos€>). Under this assumption an arbitrary 
phase matrix can be handled. By use of the circular repre- 
sentation of polarized light and an expansion in the general- 
ized spherical function [7,9], we extend our approach in 
solving the scalar (unpolarized) photon transport equation 
[14,15] using a cumulant expansion to the vector (polarized) 
case. Terminating at second order, an approximate Gaussian 
polarized photon spatial distribution is obtained for a given 
light direction s as a function of time t. Our solution for the 
distribution in angle is exact, as are the first and second 
cumulants in space at any angle and time, which guarantees 
the correct central position and the correct half-width of the 
spatial distribution. After many scattering events have taken 
place, the central limit theorem claims that the spatial Gauss- 
ian distribution calculated will become accurate in detail, 
since all cumulants higher than the second approach small 
values relative to the appropriate power of the second cumu- 
lant. At early times, the spatial distribution is narrow: hence, 
a distribution function, the mean position and half-width of 
which are exact, may provide an adequate description of a 
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polarized beam in the presence of noise and finite instrument 
resolution. An analytical expression of cumulants up to an 
arbitrary high order is also derived. Using these higher-order 
cumulants, through a numerical Fourier transform, a more 
accurate solution of the PPTE can be calculated. 

The paper is organized as follows. Section II provides the 
preliminary formula of the PPTE, the circular representation 
of polarized light and the generalized spherical function, 
which have been published in previous literature. In Sec. HI, 
an exact solution of the angular distribution of the polarized 
light is derived and an expression in the cumulant expansion 
of the polarized photon distribution is presented In Sec. IV, 
by terminating the cumulant expansion at second order a 
Gaussian approximate spatial distribution as a function of 
light direction s and time t is obtained, and the exact expres- 
sions of the first and second cumulants are derived. In Sec. 
V, an expression of cumulants up to an arbitrary high order 
is derived. A brief discussion and summary then follows in 
Sec. VI. In Appendix A, the expressions for coefficients 
[Bl

mn ],- in Eq. (15) are presented. In Appendix B, analytical 

formulas for evaluating integrals in Eq. (42) are derived. 

DL CIRCULAR REPRESENTATION AND GENERALIZED 
SPHERICAL FUNCTIONS 

In this section, we summarize the description of polarized 
light propagation in a scattering medium discussed in the 
previous literature. 

Considering a light beam traveling along a direction s, we 
choose a reference plane through the direction of propaga- 
tion. Two complex components of the electric field E, such 
as E^aiexpiiSj), the component parallel to the reference 
plane, and E± =az exp(i^), the component perpendicular to 
the reference plane, can be used to describe a single coherent 
beam. Four real components were introduced by Stokes [16], 
each with the dimension of the square of a field or, more 
precisely, an intensity. The four Stokes parameters are col- 
lected into a four-element array lsp=[I,QM,V] [17]. The 
component / is the total intensity: 

E*=2- 1/2/IT -r (E^iEJ. 

/=<a?) + (^) = <|£ll|
2 + |Exl2)- 

The component Q describes a linear polarization: 

0 = <^>-<02> = <|£u|2-K|2>. 

(la) 

(lb) 

The component U describes a linear polarization 45° relative 
to the reference plane: 

£/=<2aia2cos<5>=<|£(45°)|2-|£(-45°)|2>,    (lc) 

where 

£(±45°) = 2-1/2(£'||±£±). 

The last component V is the difference between the intensi- 
ties of right- and left-circularly polarized light: 

V=(2aia2smS) = (\ER\2-\EL\2), (Id) 

where the right- and left-circular components of field are 

In Eq. (1), 8= Sx-S2; the angular brackets mean the aver- 
age over many waves with independent phases in a light 
beam. 

To give further physical meaning to the symbols, we note 
that the use of the Cauchy-Schwarz inequality leads to the 
inequality 

I27s>Q2+U2+V2 (2) 

For a coherent beam, which requires no averages in Eqs. 
1(a)-1(d), the equality is automatically obeyed. The opposite 
extreme case is unpolarized light for which 

Q = U=V=0, 

and the total intensity I is totally incoherent. More generally, 
the difference between the left- and right-hand sides of the 
inequality, Eq. (2), constitutes the incoherent part of the total 
intensity. 

The kinetic equation for a polarized photon distribution 
function I(r,s,f) as a function of time t, position r, and di- 
rection s, in an infinite uniform medium, from a point pulse 
polarized light source, I<0)<S(i—r0)<5(s-So) S(t-O), is 
given by [2] 

dl(r,s,t)/dt+cs- V,I(r,s,r)+fiaI(r,s,t) 

=/*, j P(s,S')[I(r,s',t)-I(r,s,t)]ds' 

+I<0><5(i-r0)<5(s-so).5(f-0). (3) 

The quantities in the Stokes parameter (SP) representation 
will be marked by adding a superindex, for example, Is1*. 
With a rotation of the reference plane through an angle a 
5=0 (in the counterclockwise direction, when looking in the 
direction of propagation) around the light propagation direc- 
tion, I varies as I'=L(a)I. In the SP representation, the 
relation is given by 

Q' 
U' 
V 

1 0             0 0 

0 cos 2a sin 2a 0 

0 — sin2a cos2a 0 

0 0              0 1 

(4) 

Usually, a meridian plane containing the z axis and the light 
direction s is used as the reference plane for the description 
of the polarization state [2,9] as shown in Fig. 1. In Eq. (3), 
c is the light speed in the medium, fis is the scattering rate 
(per unit time), fia is the absorption rate, and P(s,s') is a 
4X4 phase matrix. The following form of the 4X4 phase 
matrix [9] is used: 

P(S,s') = L(1r-Ar)P(cos0)L(-Ar'), (5) 

where © is the angle between light rays before and after 
scattering, and the matrices L(-*') and L(ir-x) are those 
required to rotate meridian planes before and after scattering 
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FIG. 1. Geometry of the scattering plane and the reference 
planes related to the incident ray, s'(0',<£'). and the scattered ray, 
s(6,<f>). The dark plane is the scattering plane. # is the angle be- 
tween the meridian plane (s^) and the scattering plane, x' is me 

angle between the meridian plane (s',z) and the scattering plane. 

onto or from a local scattering plane, as shown in Fig. 1. The 
intrinsic property of scattering mechanism is described by 
the 4X4 scattering function P(cos@), which involves 
cos@=s-s'. 

It is convenient to use a representation of the polarized 
light in which L(a) is diagonal, rather than Eq. (4). A cir- 
cular parameter representation (CP) was first proposed by 
Kuscer and Ribaric [7]. Later, a more precise definition of 
the CP, which matches with the initial definition of polarized 
light in the SP representation by Chandrasekhar [2], was pre- 
sented by Hovenier and van der Mee [9]. Hereafter we use 
the definition of the CP in Ref. [9], which is given by i"* 
= [/2,/0,/-o,/-2]. where /„=(/+V)/2, /_„=(/-V)/2, /2 

= (Q + iU)/2, and /_2=(ß-il/)/2, or ICP=TISP, with 

T=2 

0 1 

1 0 

1    0 

i o 

0 1 

0     -1 

0    1    -i     o 

(6) 

In the CP, a rotation of the reference plane through an angle 
a around the light direction causes Im to be multiplied by 
exp(-i'ma). Notice that /0 and /_0 actually have the same 
rotational property. For the phase matrix, the transform Pcp 

_ jpSPj-1 js gjven between two representations. 
In the CP, it is convenient to expand the phase matrix P^ 

using generalized spherical functions (GSF's). The general- 
ized spherical functions, which are related to irreducible rep- 
resentations of the rotation group on three nonzero Euler's 
angles, are defined as follows [8]. 

For /s=sup(|«i|,|«|) and /u.=cos 0, 

Pl.»=Al,„(l-/i)-<"-m"2(l+/t)-
<"+m)'2 

dl-n 

X dp1 -[(l-yu)'-m(l+A0'+m], (7) 

with 

A'    = 
(-i)'-"(0 

2'(/-m)! 
(/-«)!(/+»)! 
(/+IB)!(Z-B)! 

1/2 

This function is directly related [9] to the rotation matrix 
d'm„(0) in angular momentum theory [10] by dmn(0) 
= (i)"~mPl

mn(cos 0). Some symmetry properties of P'm,n(p) 
are Pl

mJß) = Pl
n^) = PLm,-„(fi)- "H* orthogonality re- 

lation for Pl
m<n{fi) is given by [8,9] 

(~ 1)m+n/V«-"(At)p^(/iM/a= 27+T ^ (8) 

The phase matrix in the CP can be expressed using the gen- 
eralized spherical functions [7,9]. For notational simplicity, 
in the following the quantities without a superindex are un- 
derstood to be in the CP. Denoting s=(fi,<f>) and s' 
= (/*',<£'), the addition theorem of GSF's [9] is given by 
(see Fig. 1) 

exp(/m^)P^n(cos0)exp(/n^') 

s=—l 

X exp[-i.s(<£-<£')]• (9) 

Using this addition theorem of GSF's, the variables x> x'■< 
and © in Eq. (5) can be eliminated, and the components of 
the phase matrix in the CP can be expressed using the angu- 
lar parameters of the incident and scattered ray in fixed co- 
ordinates. If we expand elements of the CP phase matrix in 
the scattering plane, Pmn(cos©), by GSF's, 

Pmn(cos©)=—E PL<«(COSO), 

then, using Eq. (9), the 4X4 phase matrix in fixed coordi- 
nates can be written as 

47T    / s=-l 

Xe\f{-is(<f>- <£')], (10) 

with indices m, « = 2,0,-0,-2 and /5=sup(|m|,|«|). 
The coefficients pl

mn provide an intrinsic description of 
the scattering mechanism. In most useful cases, the coeffi- 
cients pl

mn have the properties [7,9] that (i) pl
mm and pm_m 

are real, (ii) p'mn=p'nm=plm-n, and (in) />20=[/>2-o]* (^ 
asterisk means complex conjugate). Therefore, for each / 
s=2, there are six independent real elements p^, pl

22, />o-0' 
p'2_2, Re[>20], H>20]. For 1 = 0 or 1, only pl

w and p'0_0 

are nonzero. These numerical coefficients were calculated 
using Mie theory for some examples by De Rooij and van 
der Stap [18]. These p'mn, together with /JLS and fia, are 
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parameters that describe the nature of the scattering process 
and are treated as known in our solution of the transport 
equation. 

DL DERIVATION 

Having the above knowledge, we analytically solve Eq. 
(3) in an infinite uniform isotropic medium. Using a proce- 
dure similar to that discussed in Refs. [14] and [15], we first 
study the dynamics of the photon distribution in the light 
direction space in the CP, F(s,SQ,f), which is a vector of 
four components, on a spherical surface for s of radius 1. The 
kinetic equation for F(s,So,0 can be obtained by integrating 
Eq. (3) over whole space r. The spatial independence of fis, 
/xa, and P(s,s') retains translation invariance. Thus the in- 
tegral of Eq. (3) obeys 

<9F(s,So ,t )ldt + AtaF(s,So ,t) 

PHYSICAL REVIEW E 63 016606 

+ /*, F(s,so,0- J P(s,s')F(s',So,f)<*s' 

= I<0)<5(s-So)<5(r-0). (ID 

Since the integral of the gradient term over all space van- 
ishes, as shown in Ref. [14], if we expand F(S,SQ,0 in 
GSF's, its / components should not be coupled to each other. 
The mth component of F(s,So ,t), with the initial polarization 
in unit n0 state, can be expanded in GSF's in the following 
form: 

u I " s 

Xexp[-is(0-0o)]exp(-AiaO> (I2) 

with m, no=2A-0,-2, /s*sup(|m|,|«|). When SQ is set 
along the z direction and the initial reference plane is set as 
the x-o-z plane, Eq. (12) specializes to 

Fm„o(s,z,f) = 2 F'mno(t)P
l

m_no{v)exp( - i«o*)exp(-fij). 

(13) 

Substituting Eq. (12) [or Eq. (13)] into Eq. (11), using the 
expression, Eq. (10), of the phase matrix, and the orthogo- 
nality relation of GSF's, Eq. (8), an analytically solvable 
equation for Fl

mn (?) for each / is obtained: 

dF'(t)/dt=^ nL^Lw. (14a) 

with n'mn = fis[Sm^-pl
mn/(2l+l)]. The initial condition 

Fm(s,s0,/ = 0) = <5m,no<5(s-So) and the orthogonality rela- 
tion, Eq. (8), lead to 

pi    (t=0) = Sm,n(2l+l)/4ir. (14b) 

The solution of Eq. (14) can be expanded in terms of eigen- 
states: 

2/+1 
FL0(') = ^E [*l0Lexp(-XJO,    /-1A3A 

(15) 

with the eigenvalues given by 

X=(l/2) (nao+n^2±n0_0±n/
2_2) 

(n(x,-n22±n0_o*n2_2)2 

+ 16 
+Re(n20) 
-im(n20) 

211/21 

(16) 

for i = l,2, and for i=3,4, the sign+before square brackets 
in Eq. (16) is replaced by -. The constant coefficients 
[B'mti ]i" can be analytically determined using standard linear 
algebra from the initial condition, Eq. (14b). A detailed ex- 
pression for [B'm„o]i is presented in Appendix A. 

Equation (12) [or Eq. (13)], combined with Eqs. (15) and 
(16) and the coefficients [BJ^, ],-in Appendix A, provides an 

exact CP solution in the light direction space. In the SP rep- 
resentation, we have        - - 

FSP(s,s0,/)=T-1F(s,s0,/)T. (17) 

It can be proved that all components of F^s,!^,*) are real 
numbers. The mth component [m=I,Q,U,V] of the angular 
distribution function in the SP representation, with the initial 
polarized state ISP(0), is obtained by 

l^(Mb.0-[**(Mb.»)ISP(0)L (18) 

Equation (17) serves as the exact Green's function of polar- 
ized light propagation in the light direction space. Since in an 
infinite uniform medium this function is independent of the 
source position r0, requirements for a Green's function are 
satisfied: especially, the Chapman-Kolmogorov condition is 
obeyed: fds' FSP(s",s',?-r')Fsp(s',s,f'-r0)=FSP(s",s,r 
-t0). In fact, in an infinite uniform medium, this propagator 
determines all time evolution of polarized light, including its 
spatial distribution, because displacement is an integration of 
velocity, cs(f), over time. The mth component [m 
=I,Q,U,V~\ of the photon distribution function in the SP 
representation, /^p(r,s,f), with the source located at r0=0, 
the initial direction SQ, and the initial polarization ISP(0), is 
given by 

r-c \s(t')dt' 
Jo 

SP 
S(s(t)-s))    ,   (19) /^(r,s,0 = Mr 

where (•••)„P means the mth component of the ensemble 
average in the light direction space in the SP representation. 
The first S function ensures that the displacement r-0 is 
given by a path integral. The second S function assures the 
correct final value of the direction. Equation (19) is a for- 
mally exact solution, but cannot be evaluated directly. We 
make a Fourier transform for the first S function in Eq. (19), 
then   make   a   cumulant   expansion   [19],   and   obtain 
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If f v-<   ( — 'c)*v-<       x-< 

(20). 

where T denotes time-ordered multiplication [20] and FsJ(s,SQ,t) is given by Eq. (18). In Eq. (20) the index c denotes a 
cumulant, which is defined in textbooks of statistics [21] and statistical physics [19]. As for an arbitrary random variable A, we 
have (A)C=(A), (A2)C=(A2)-(A){A), and a general expression relating (A') and (A')c, which is given by 

Hence, if (A'), /= 1,2,... ,k, have been calculated, (A')c, i= 1,2,... ,k, can be recursively obtained and conversely [19]. 
The itth moment (the term without index c) which, according to the cumulant expansion theorem, is related to 
fdrr: •••/•: 7^p(r,s,r). This moment can be evaluated using a standard time-dependent Green's function approach, which is 

given by 

ft ft \ 1SP 

]odtk---JodtlT[sjk(tky~Sji(ti)] 

>»(«.»<>.0 

XFsP(sW>sa-o5^_,i_l)^:a..Fsp(s(2),s(i)^2_/l)s(i)Fsp(s(i),So,,1_o)iSP(o) + (perm.)   ,       (22) 

where the abbreviation "perm" means all k\ -1 terms ob- 
tained by permutation of {/,}, /=1,... ,k, from the first 
term. 

In Eq. (22), Fsp(s(,'),s<'-1),f,-r,_1) is given by Eq. (17). 
Since Eq. (22) is obtained using a Green's function approach 
without making any approximation and Eq. (17) is an exact 
expression of the angular Green's function, Eq. (22) provides 
an exact formula for the kth moment. If we are able to ex- 
actly evaluate Eq. (22) up to kth order, through Eq. (21), we 
can obtain the exact cumulants of the distribution up to the 
fcth order. 

IV. GAUSSIAN APPROXIMATION 
OF THE DISTRIBUTION 

Terminating Eq. (20) at second order of the cumulant and 
setting s in Cartesian coordinates, integration over q in Eq. 
(20) can be analytically performed, which leads to the fol- 
lowing Gaussian approximation expression of the polarized 
photon distribution. When the initial SQ is set along z, it is 
given by 

C(r,s,/) = 
F^(s,z,t) 1 

T37T (4TT)
J
"   [detD^] 5PTi72exP 

1 

4^ -j\.(Ds:rlu 

with m=l,Q,U,V and a, ß=x,y,z. In Eq. (23), (Ra)^ rep- 
resents the position of the average center of the distribution, 
and [D^]aß is related to the half-width of the spread of the 
distribution, which is given by 

[ö2nB/I-[<Ä^r-<Ä.>?w*iÄ.   (24) 

(Ra)s* in Eq. (23) and (RaRß)S* in Eq. (24) can be evalu- 
ated using, separately, the first order and the second order of 
Eq. (22): 

(Ra)s*=ctj'odt'sa(t'))SV 

> ' m 

= FSP,C-J \'dt' f ds'FSP(s,S>,t-t'K 
Fm(s,z,t)[Jo      J 

XFsp(s',z,f')ISP(0) (25) 

X(ra-(Ra)%)(rß-(Rß)%) (23)      and 
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fdt'\o dt"\*'/^^<w^'-'')'^i'y•''"^I^('A0^iM
+(U!•)}, (26) 

where (t.c.) means that the second term is obtained by ex- 
changing the indices a and ß in the first term. As discussed 
at end of last section, Eqs. (25) and (26) provide exact ex- 
pressions for evaluation of the first and the second moments. 

In evaluation of Eqs. (25) and (26), it is convenient to use 
the components of s in a spherical harmonic basis: 

=[-2-1/2sin^+,^cosÖ, + 2-1/2sinöe-^],    (27) 

and first calculate the corresponding quantities in the CP. 
Hence we write Eq. (25) as 

<*0>mP=7F3F Fs:(sxt) 
2 £/a,T-,<Ä;>TTSP<0> ,   (28) 

with a=x,y,z and ; = 1,0,-1, the indices of the spherical 
harmonic basis. U is a matrix for the transform from a 
spherical harmonic basis to a Cartesian basis, sa=UajSj, 
given by 

U= 

-2 -1/2 0    2 

2~mi    0   2 

-1/2 

-1/2; (29) 

0        1       0 

<R> in Eq. (28) is defined in the CP as 

(p.) m_«c|V f <fe'2 Fmn{s,s\t-t')s]Fmnü{s'Af), 
'        ° JO J n 

(30) 

where Fm„(s2,s,,r2-fi) is the exact angular Green's func- 
tion in the CP, Eq. (12). Similarly, Eq. (26) is written as 

(R<£ß)™-F™{sXt) 
2 2 (uajußj2 
ji   n 

+ UajUßh)T-l(RjRjl)'n
sm 

where (R, R, ) is defined in the CP as 

<v*>^J0W.M"J'*r 

x2 Fmn2(s,s',t-t')s'h 

,   (3D 

X^Fn2ni(s',s",t'-t")s'jFnino(S",i,n, 
"i 

(32) 

where/i andy2 are spherical components, 1,0, — 1. 
In the evaluation of Eqs. (30) and (32), a recurrence rela- 

tion of GSP's is used, which is directly derived from angular 
momentum theory [10]. Defining sj=iije''4', with y=l,0, 
-1, we have 

fiiPl
m „(cos 6) = yj*2 </,l,ffi,0|/+Ä,m> 

J       ' h 

X(l,U,±j\l + h,n±j)Pl^±j(cosd), 

j,h= +1,0,-1, (33) 

with yTi = ;i and y0=l> and (li,l2^i,m2\L,M) are the 
Clebsch-Gordan coefficients in angular momentum theory 
[10], given by 

(l-h,l,m,-j\l,m-j) = 

(l-m)(l-m + l) 
(2/-1)2/ 

(l-m)(l + m) 

in (l + m)(l-m+\j 11/2 

2/(/+l) 

(l+m)(l+m+l) 1/2       -1 

1/2 

(2/-1)/ 

(l + m)(l + m+l) 

m 2     11/2 

(2/-1)2/ 

1/2 

/(/+1) 
(/-m)(/ + m+l)]1/2 

(2/ + 2)(2/ + 3) 

(/ + m+l)(/-m+l) 

21(1+1) 

(/+l)(2/ + 3) 

(/-wi)(/-m+l) 

1/2 

(2/ + 2)(2/ + 3) 

1/2 

(34) 

with the row index (from above) ;= 1,0,- 1 and the column index (from left) h= 1,0,-1. These recurrence relations of GSFs 
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were ..„_ provided in Ref. [8] with some misprints. Substituting Eqs. (12) and (13) into Eq. (30), and using Eq. (33) and the 
orthogonality relation of GSF's, Eq. (8), integrations over ds' and dt' in Eq. (30) can be analytically performed. When the 
final direction s=(0,(f>), we have 

n      h 

with n = 2,0,-0,-2,A= +1,0,-1 and 

xE 2 ■^^-oiifc»»ll(0</-A,M,o|/,«></-A,i^o.-y'l'.»o-;>. 
„       h 47T '  ' ° 

D^W-S [OcO 
exp(-\p*)-exp(-\;-0 

x"F^ exp(-/iar),    i,y = l,2,3,4. 

Similarly, integrations in Eq. (32) can also be analytically performed. We have 

„_,_,_,   2(l-h2-hi)+l 
(R R  )     =c2"S P'       ■    • (cos0)e~''(no_-'2~;i)'*y,-,y,12, Z, Z, Z,  ~A  

XEi,h2h      (t)(l-h2,l*2J0\l,nd(l-h2,Uo-Ji>-J2\l>«o-Ji-J2) 

X(l-h2-hl,ljil,0\l-h2,nl)(l-h2-hl,lsio,-Ji\l-h2,n0-jl), 

withn,, «2=2,0,-0,-2, hlfh2- +1,0-1, and 

(35) 

(36) 

(37) 

^;*U<'>-? ^MC^C2"*^ y/ 

exp(-XJT*2~N)-exp(-XJr) exp(-XJ S)-exp(-X{f) 

(x;.-"2-\}-/,2-',i)(x|-\;_',2"ni) (\; 7^; exp(-/ta0- (38) 

Up to now, algebraic analytical expressions for the first 
cumulant (the average center of the distribution) and the sec- 
ond cumulant (the half-width of spread) have been derived. 
Equations (36) and (38) involve the related scattering param- 
eters: fis and lllmn [defined after Eq. (14)], through XJ in 
Eq. (16) and [Bl

mn ],- in Appendix A, and the absorption 

parameter, fia. Thus they determine the time evolution dy- 
namics. The final light direction s appears as an argument of 
the generalized spherical harmonics in Eqs. (35) and (37). 
Substituting Eqs. (18), (35), and (37) into Eqs. (28), (31), 
and then Eq. (24), the first and second cumulants in the SP 
representation are obtained as functions of s and t. The dis- 
tribution function of polarized light is then expressed by Eq. 
(23), with Eq. (28) for the average center position and Eq. 
(24) for the width of the spread. Equation (23) produces the 
mth Stokes component of polarized light at position r, with 
light direction s, as a function of time /, initialed by r0=0, 
So=z, and polarized state ISP(0) in an infinite uniform me- 
dium. 

It is easy to reduce the above solution to the scalar (un- 
polarized) case by considering only the /0 component. Be- 
cause </,l,0,0|/,0> = 0 in Eq. (34), Eqs. (35) and (37) can be 
greatly simplified. Also, Eq. (15) is reduced to (2/+l)exp 

(—nj0f)/4'7r in the scalar case. Notice that the associated 
Legendre function P(

i
m\ß) = (i)m[(l+m)U(l 

—m)\]i/2Pl
0jn{fi); our formula reduces to that given in Ref. 

[14] in the scalar case. 

V. DISTRIBUTION FUNCTION ACCURATE UP TO AN 
ARBITRARY HIGH-ORDER CUMULANT 

In order to calculate the polarized photon distribution 
function with accuracy up to an arbitrary high order, it is 
more convenient to set all spatial and angular vectors in the 
spherical harmonics basis, similar to Eq. (27), and to evalu- 
ate Eq. (22) via the CP: 

jdtk- • ■ Jdti T[sjlc(tk)- • •sh(h)'] 
SP 

F*F(s,s0,r) 
[T-,G0-t,...Ji,0,nSP(0)]m, 

(39) 

with7!,...,jk= 1,0,-1 andG(7ft,...,7i,f) given by 
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xF(Sls(^r-y5j;'F(S<*»s<i-i)frft.1)4;;;)-"F(s(2',s<i»,fr/1)^^^^^ - 

(40) 

where Fmn(s
(0,s('_1),f,— *,-_,) is given by Eq. (12). Using the GSF recurrence relation, Eq. (33), and the orthogonality 

relation of GSF's, Eq. (8), the integrals over ds(k)- • -ds(l) in Eq. (40) can be analytically performed. We obtain, when the initial 
So is along z and the final s—(9,<f>), that 

4ir 

x'ÄÜS^WJS ('"2 *w+i.^*-.+i^> 

X( /—2  Ajfc-/+l»l>"0—ir, Jf'~Jk-g+l 
f-1 ' /-I 

with ^=2,0,-0,-2 and A/= 1,0,-1, /= 1,2,... ,fc, with 

'-2 hk-f+i,no~ 2J in +perm, (41) 

X [dtk fV-i- f'2dr1exp[-\!t+i(r-r,)]exp[-\'-N^-rt_1)]-exp[-\;-2/=,',^+I(^-0)]. 
Jo      Jo Jo *+! t l 

(42) 

Note that all ensemble averages have been performed. Equa- 
tion (42) involves integrals of exponential functions, which 
can be analytically performed. An explicit expression for 
evaluating integrals in Eq. (42) is presented in the Appendix 
B. Equation (42) involves all related scattering and absorp- 
tion parameters and determines the time evolution dynamics. 
The final direction of light, s, appears as an argument of 
GSF's in Eq. (41). Substituting Eq. (42) into Eq. (41), 
through Eq. (39), which transfers to the SP representation 
and introduces the initial polarized condition, and using a 
standard cumulant procedure, the cumulants as functions of 
angle s and time t up to an arbitrary kth order in the SP 
representation can be recursively obtained. The final position 
r appears in Eq. (20), and its components can be expressed 
on a spherical harmonics basis, similar to Eq. (27). Then, 
performing a numerical three-dimensional inverse Fourier 
transform over q, an approximate distribution function 
I„(r,s,t) in the SP representation, accurate up to kth cumu- 
lant, can be calculated. 

VI. DISCUSSION 

In Sec. Ill, we derived an explicit expression of the po- 
larized photon distribution function, which guarantees the 
exact average central position (the first cumulant) and the 
exact width of spread (the second cumulant). Moreover, with 

an increase of collision events or time, the distribution ap- 
proaches accuracy in detail since the higher cumulants be- 
come relatively small compared to the appropriate power of 
the second cumulant. If we examine the spatial displacement 
after each collision event as an independent random variable 
Ar,-, the total displacement is 2Ar,- (/= 1,... ,N), with N 
the number collision events, which can be estimated by 
t/fts. If we define Y=(N)~mltAri, the central limit theo- 
rem claims that if AT is a large number, then (Y")C/(Y2)C 

~Nl~"n, «5=3. Therefore, the sum of N variables will have 
an essentially Gaussian distribution. At early times, the pho- 
ton's spread is narrow: hence, in many applications the de- 
tailed shape is less important than the correct position and 
correct narrow width of the beam, because of the finite reso- 
lution of detection devices. In case a more accurate distribu- 
tion at early times is needed, Sec. IV provides formulas for 
analytically calculating the higher cumulants up to an arbi- 
trary ifcth order. Then, performing a numerical three- 
dimensional Fourier transform, the distribution function ac- 
curate up to the kth order cumulant approximation can be 
obtained. 

In summary, we present an analytical solution of the time- 
dependent polarized radiative transport equation in an infi- 
nite uniform isotropic medium. The Green's function for the 
angular part is exact. Using a cumulant expansion, we can 
analytically calculate the spatial cumulants up to an arbitrary 
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high order. By terminating at the second order, we have de- 
rived an explicit expression of the polarized light distribution 
function. This expression is quantitatively accurate up to the 
second order cumulant approximation. Namely, the center 
position and the half-width are always exact and not modi- 
fied when higher-order cumulants are added. The central 
limit theorem claims that after enough collision events, all 
cumulants higher than second approach small values, and the 
Gaussian spatial distribution calculated approaches accuracy 
in detail. Our results are given in terms of a distribution with 
coefficients that can be calculated algebraically, with moder- 
ate effort at the second cumulant level and additional effort 
to induce the third- and higher-order cumulants. This analyti- 
cal solution provides a background distribution function for 
further study of optical tomography using polarized light. 
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APPENDIX A 

In this appendix we calculate {Bl
mn^i in Eq. (15). Substi- 

tuting Eq. (15) into Eq. (14), we obtain a set of linear homo- 
geneous equations 

2J  l"mn0ii     "m,n0> (A2) 

2 [K.n-^mj[B'nnoi=o, (Al) 

where eigenvalues \J (/= 1,2,3,4) are given by Eq. (16). 
These equations, however, are not linearly independent. 
Adding the initial condition, Eq. (14b), given by 

the unique solution of [Bl
mn^i then can be obtained. For 

given «o and /, 16 components of [Bl
mn^ construct a column 

vector in the space of the direct product of / X m. Combining 
Eqs. (Al) and (A2) in iXm space, we obtain the following 
matrix equation: 

AB=C. (A3) 

A is a 16X16 matrix: 

AiXm,jxn=[nL3i,j-*lAjSm,n+ SmJ.        (A4) 

B and C are 16X1 column vectors: BjXn=[Bl
nnQ]j and 

ClXm= <?m,r> • Here A and C are given, while B is unknown. 
Equation (A3) is a standard form of a group of 16 linear 
equations. The solution is given by 

Ä,xm=A,xm/det(A), (A5) 

with A,Xm is obtained by replacing the (iXm)th column in 
the determinant of A by the column vector C. 

APPENDIX B 

In this appendix, we derive an analytical expression for 
Eq. (42) to feth order. By defining 

bW'-^f^d-x?-**+V/-],   ,-1,... ,*, 
(Bl) 

Eq. (42) can be written as 

4 4 

k 1   u 'k+l~l 'l~l 

with 

F(k\t)= \'dtke
b^ fV.,«'»-'*-!- frff! «*>'». 

Jo Jo Jo 

It is easy to directly calculate Eq. (B3) for a few low k 
orders: 

,(bl+b1)t b2t 

F(2)(r)      bl(b1 + b2)      bXb2 
+{bl + b2)b2        (B4b) 

(B3) g(*i+&2 + *3>' e(b2 + b^)t 

F°){t)   bl(bl+b2)(bl+b2+b3)   bib2[b2+b3) 

+ eb* 1 

(bl+b2)b2b3   {b^b2+b3){.b2+b3)b3 

(B4c) 

ebi'     1 (B4a)      In eacn steP of integrati00'the difficulty is in determining the 
constant term. In the following we prove that this term is 
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given   by   (-l)k/[bkibk+bk-i)—{bk+bk-l + —+bl)]. 
Equation (B3) can be written as 

F<k\t)= ('dt'eb*'Fk-1(t'). (B5) 
Jo 

Using integration by parts to Eq. (B5), we obtain 

PHYSICAL REVIEW E 63 016606 

F<*>(0=- Jo 

Recursively applying Eq. (B6), we obtain 

(B6) 

»V »(** + **-!)' ^.^.-„^-f-—-^--« 

+ ... + (_!)/. e(bk+l>k-l+-+bk-f)' 

bk{bk+bk-l)-~{bk+bk-l + -~+bk-f) 

e(bk+bk-l+-+bl)'-l 

bk(bk+bk_ly--(bk+bk_l+---+bl) 

rF*_/-I(0 

(B7) 

Equation (B7) provides a formula to recursively evaluate Eq. (40) up to fcth order. Also, Eq. (B7) produces the above- 
mentioned constant term. An explicit expression of Eq. (42) can then be written as 

*    (-l)Sexp[S*Z^-/+1f] 
XexP(-X,i+ir)2,o jjj-^pj , 

with bk+i=0, and 

where bg is defined in Eq. (Bl). 

g i 
M?)=2 bf,   j^g,    or   L<*>=  2    ft/,   y>g, 

(B8) 

(B9) 
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Abstract 

The cumulant analytical solution of the Boltzmann radiative transfer is extended for semi- 

infinite and slab geometries to provide a more accurate picture for the transition time from the 

ballistic to the diffusive regime. For the scattering structures, the method of adding image 

sources used in the conventional diffusion approximation for boundary-based media is modified 

and applied to the cumulant transport model. Numerical comparisons between the cumulant 

model and the standard and the center-moved diffusion models are presented. The cumulant 

model, which reduces to the center-moved diffusion model at later times, gives a better 

prediction of photon migration at early times than the other models. This work is useful for 

photon migration in several applications: human tissues, clouds, fog, and seawater. Our 

calculations were specifically aimed at clouds and optical wireless communications. 

OCIS codes: (030.5620) radiative transfer,  (290.1990) diffusion, (290.7050) turbid media, and 

(170.5280) photon migration, (010.1310) atmospspheric scattering. 
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I.        Introduction 

Understanding time-dependent photon migration is important for numerous light-based 

applications in medical, military, space, and atmospheric fields.1"4 When a light pulse enters a 

scattering medium, it divides into ballistic, snake-like, and diffusive components.17 The ballistic 

component describes photons that travel virtually undistributed through the scattering medium. 

The snake-like photons endure only a few scattering events and have only slight deviations from 

a straight-line path through the media. The diffuse component, which dominants at later times, 

represents photons that have undergone multiple scattering events. 

The Boltzmann radiative transfer equation describes the photon migration through a 

scattering medium. Due to its difficulty in obtaining a solution, scientists utilize approximations; 

in particular, the standard diffusion approximation is used to describe the transport of photons. 

This approximation is based on the assumption that photons are isotropically diffuse from a fixed 

source with a constant diffusion coefficient in a uniform medium. This is not the case as shown 

by Zevallos.18 The diffusion approximation is valid only when the propagation distance is much 

greater than the transport mean free path, /,, such as L > 67,, where L is the distance from the 

source to the detector.5 The diffusion approximation cannot accurately determine the distribution 

of early-arriving photons or when the source-detector distance is small. One suggested model 

for bypassing the distance issue is to allow the photons to be diffused from an initial point 

located one transport mean length from the source position along the incident direction.6 This is 

referred to as the center-moved diffusion approximation. While the center-moved approximation 

results are better than the standard approximation at later times, the migration of the early 

photons cannot correctly be described because photon movement before \lt is neglected. Other 



A3-3 

models, such as the non-Euclidean diffusion model, have been introduced to bridge the gap 

between the nondiffusive and diffusive regime with limited success.7 

Most recently, cumulant analytical expressions for the photon distribution function and 

the photon density as solutions to the Boltzmann radiative transfer equation have been derived by 

Cai and co-workers for an infinite uniform medium.8'9 In the infinite environment, the cumulant 

approximation displays an accurate picture of the photon propagation in the early time or 

nondiffusive regimes. For most practical applications, the photons propagate through a limited 

region as oppose to an infinite one. The effects of a boundary need to be considered. 

In this paper, the cumulant analytical expressions are extended to describe photon 

migration in structures of semi-infinite and slab geometries. We focus on photons traveling in 

clouds with /, =100m. Previously, the standard and center-moved diffusion approximations 

have been used to study photon migration in the semi-infinite and slab media with various 

boundary conditions.10' " The results from the cumulant transport approximation were compared 

with the outcome from the diffusion approximations. In contrast to the diffusion approximation, 

the cumulant expressions give a more accurate picture of the photon migration, including the 

ballistic and snake-like phases. The boundary effects are viewed through amplitude and decay 

pattern variations in the time-resolved profile as the distance from the source increases. At 

longer times, the cumulant results approach those of the center-moved diffusion approximation. 

Our work will be important for imaging and propagation of optical coded information through 

clouds in optical wireless systems. 
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II.       Photon density in an infinite, uniform medium 

This section describes the cumulant solution for an infinite uniform medium. The photon 

distribution function, l(r,s,t), or the photon density function,N(r, t), which is defined as 

N(r, t)=\dsl(r,s, t), can be used to describe the temporal and spatial profiles of scattered 

photons inside a turbid medium. For an infinite uniform medium with a short pulse originating 

from a point source located at r = 0, the temporal profile of the photon density at position r 

from the source for the standard diffusion model (sDM) and the center-moved diffusion model 

(cmDM) is given by 

~   (r-ljj N{r,t)=NR{r,t)= exp 
{AnDctf2 exp[-/v] (1) 

ADct 

with L - 0 for sDM and /„ = /, for cmDM, where, sn is the unit vector for the incident m m t ' '       o 

direction,  D  is the diffusion coefficient and is given by <D = 1/3[(l — g)ßs]>,   g   is the 

anisotropy factor or mean cosine of the scattering angle, ßa is the absorption rate (nsec-1 ),ns is 

the scattering rate (nsec-1), and c is the speed of light (m/nsec). 

The photon distribution function and the photon density in an infinite, uniform medium 

have been derived by Cai et al using an analytical solution of the radiative transport equation 

using cumulant expansion.8' 9 A Gaussian distribution with the exact first-order cumulant, which 

provides the average center of the distribution, and the exact second-order cumulant, which 

provides the time-dependent diffusion coefficients, presents a more accurate picture of the 

photon migration, especially at early times.19 Photon migration is viewed as a photon cloud 

spreading anisotropically from a moving center with a time-dependent diffusion coefficient. 
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Based on the cumulant expansion,14,15 the photon density, N(r,t), in an infinite, uniform medium 

with the source located at rs = 0 and an incident direction along s0 = z is given by 

N(r,t) 
(47tDzzct)1/2 ^Dxxct 

exp iz-Rzr 
AD^ct 

exp 
(x2+y2) 
Wjcxct 

exp(-ßat)     (2) 

where, the moving center of the photon, Rz, is given by 

Rz=clz^tiA 
8 (3) 

The time-dependent diffusion coefficients are 

Dzz=üJ_L + . 3s>-S2 
3'U>     gfigi-gi) 

[l - exp(- git)] + —. r [l - exp(- g2t)] - —- [l - exp(- glt)f 
8i(gi -gi) 2*. 

n   =D   =£. J. + .       *> 
xx yy 3'Ui    gi2{gi-gi) 

[l - exp(- glt)]+ —, r [l - exp(- g2t)]\ 
g2{gl-g2) J 

(4) 

(5) 

These equations are independent of absorption. They show time is real and time to build up the 

diffusion coefficient. 

The coefficient g, is defined as 

8,=», 
a, 

(21 +1)_ 
(6) 

where,  al   is the Legendre coefficient of the phase function, P(cos0), which is given by 

P(cos0)= (l/^^^P^cosö) and cos0 = J • s0. Two special values for g, are g0 = 0, which 
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follows from the normalization of the phase function and gx = c/l, , where the transport mean 

free path is defined as /, = c/\pis (l - cos 9 )\ with anisotropy factor cos 6. 

Our analysis focuses on clouds as the test media. Figure 1 shows the normalized moving 

center(Rjl,) and normalized diffusion coefficients (D^/l, andD^/l,) for a cloud of water 

droplets with a refractive index of 1.33 uniformly distributed in air with the droplet's radius 

equal to the incident light's wavelength. From Mie's theory for light scattering, g,and g2are 

~ 0.16^. and ~ 0.27 fis, respectively. 

Near time t = 0, the diffusion coefficients (D„, DU ) are approximately equal to zero and 

the moving center is moving at the speed of light. This corresponds to the ballistic stage for the 

photon. As time increases, the moving center slows and the diffusion coefficient increases from 

zero. This region represents the snake-like phase of photon migration. In the diffusive regime, 

the moving center stops at 1/,, while the diffusion coefficients approach lt/3. 

The two diffusion models have the fixed values for Rjl, at all times (Rjl, - 0 for the 

sDM and Rz /I, = 1 for the cmDM) and a fixed diffusion coefficient, D = lt /3, as indicated in 

Figure 1. The results from our model approach the cmDM results at later times, while giving a 

more precise view at early times. 

Based on the cumulant analytical expressions, we developed the cumulant transport 

model (cTM) for structures. We first examine the difference between the cTM and the diffusion 

models by computing the temporal profiles for the photon density for each model using the 

infinite geometry as a point of reference. For all three models, the scattering parameters are the 

same as that for Figure 1. 
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As displayed in Figure 2a, the photon density peak for an infinite medium occurs sooner 

for both the sDM and cmDM than for the cTM with a source-detector separation, zsd = 21,. For 

the cmDM, the peak arrives much faster than the speed of light. This occurs because of the initial 

placement of the source one /, inside the medium. The peak from the cTM is much stronger than 

that of the sDM due to the exact cumulants used in our model. Decreasing zsd  below 21, yields 

unrealistic peaks for both the sDM and cmDM. For the cTM, the long turn-on time for the 

photon density is consistent with the concept that no light arrives before the ballistic time. 

As zsd is increased, as shown in Figure 2b with zsd -11,, the peaks from the cTM and cmDM 

become similar in intensity with the cTM still displaying a longer turn-on time than the cmDM. 

As shown in Figure 2c for  zsd =10/,, once we are outside of the limits for diffusion 

approximation [zsd > 7 /, j, no discernible differences exist between the cTM and the cmDM. 

III.      Photon density in uniform, semi-infinite and slab media 

In this section, we extend the cumulant solution for an infinite uniform medium to that in 

semi-infinite and slab uniform media with vacuum (or completely absorbing) boundaries. A 

previously used approximate approach for extending to a semi-infinite medium is to place an 

image source above the surface to offset the real source.10' u This image source creates a 

boundary condition N(r,t)\g =0at the extrapolated boundary B : at a distance, ze outside the 

medium. The approximate value of ze is given by10 

2fl + rA 
z. 

Kl~'.J 

I,. (7) 
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where, re is the effective reflection coefficient at the physical boundary. In our case for 

completely absorbing boundaries, re = 0. The value of ze reduces to 2/3/, (=0.7/,). The 

extrapolation length can be adjusted to compensate for a mismatch in the index of refraction at 

the surface. 

The photon density in a semi-infinite medium is given by 

N(r,t)=NK(r,t)-N,(r,t). (8) 

The form of the photon density for the image term, N, (r,t), is the same as NR (r,t), except the 

location of the real source is replaced by the image source position. 

In Figure 3a, an example of the fixed locations for the real source (rs) located at (0,0,0) 

and image sources (ri) for the sDM and cmDM are given.  In the case of the cTM, an image 

source is placed at z, = - 2(l + a)lt, as shown in Figure 3b. At early times, the distance from a 

point at the boundary B : to the center of NR(r,t) is not equal to the center of Nt(r,t), so the 

boundary condition N(r,t)\B =0 at the extrapolated surface is not satisfied. This is not critical 

at early times because the photons move ballistically along in the forward direction and the 

diffusion coefficients are near zero. Hence, the photon density at the boundary and the boundary 

effect are negligible.  After a short period, t > 21,/c, the center of NR(r,t) has relocated from 

z = o to z -1,, as shown in Figure 1, and the center of N, (r,t) moves to z, = - (l + a)t,. Then, 

the extrapolated boundary condition is satisfied. 

The extrapolated boundary condition for a slab of thickness, L, assumed that N(z,t)- 0 

at two extrapolated surfaces outside of the slab.11'n This condition cannot be met with the 
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addition of a single image source. To satisfy the extrapolated boundary conditions N(r,t)|    = 0 

and N(r,t)\B  = 0 with Bt: z = -cclt and B2: z = L + alt, an infinite series of images dipole 

sources are added. The solution now becomes 

N(r,t)=NR(r,t)+    £ N^,t)- £ tfM(r,0 (9) 

where, A^(F,?) and N^(f,t) represent the photon density for the positive and negative image 

terms, respectively. N^(r,t) and N^m\r,t) are similar to NR(r,t), except the location of the 

real source is replaced by either a positive or negative image source located at (o, 0, z,m). The 

number of dipole sources that are necessary for an accurate calculation depends on the optical 

properties of the slab and the maximum allowed time for the measurement. 

For the sDM and cmDM, the fixed locations for the image dipoles with m = 0 and m = 1 

are given in Figure 4a. Using the sDM, the locations of the positive and negative image sources 

for m<0and m>lare z,m = 2ra(L + 2a/,)for positive sources and z,m =2m(L + 2a/,)-2a/, 

for negative sources. For the cmDM, the locations for infinite dipole sources are similar to those 

for the sDM. However, to determine the source position for the cmDM, one /, must be added to 

the positive source location of the sDM, while one /, must be deducted from its negative source 

location.   For the cTM, in order compensate NR(r,t) by     J iVJT^F,/)- ^N^irj) , the 

locations of the positive and negative image sources now depend on whether they are located 

above or below the slab, as shown in Figure 4b. As with the semi-infinite geometry, the centers 
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of NR(r,t) and N^l{r,t) for the slab do not offset each other during the early time. Thus, 

neither of the extrapolated boundary conditions,  N(r,t)\B  = 0  orN(r,t)\B   =0 are initially 

satisfied. 

The     initial     positions     are      z™ = 2m(L + 2a/, )for     positive     sources     and 

z™ = 2m(L + 2a/,) - 2/, (a +1) for negative sources located above the slab (m < 0). While for 

dipole pairs located below the upper physical surface of the slab (m > 0), the starting locations 

are z™ - 2m(L + 2alt) + 2/, for positive sources and z™ = 2m{h + 2alt)- 2lta for negative 

sources. In both cases, the movement of the image dipole pairs during the early time is towards 

the two extrapolated boundaries B1 : z = -ccll  and B2: z = L + alr    After a short period, 

t > 21,/c, the centers of NR(r,t) and   ^NJm)(r,f)are the same are those of the cmDM for all 

m. The extrapolated boundary conditions are now achieved. 

The results for a uniform semi-infinite and the slab media for zsdo = 7.0/, are shown in 

Figures 5a and 5b, respectively. In all the slab geometries, the thickness, L, of each slab is equal 

to zsdo. For the semi-infinite and slab media, the early time results are the same as those for the 

infinite medium because the effects from the flat surfaces are negligible for zsdo < 2/,. For small 

source-detector separations within either geometries, the cmDM again fails to yield a real peak 

and the peak from the sDM is clearly too weak for any reasonable experimental measurements. 

For small zsd , the physical boundary effects can only be viewed far into the diffusive regime. As 

zsd increases, the cTM and the cmDM yield nearly the same amplitude. Because of the 
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anisotropic effects that are retained by the cTM, the photon density from the cTM is time-delayed 

from that of the cmDM. 

The photon density generated by the cTM for all three geometries can be viewed for the 

nondiffusive [zsd = 2.01,) and diffusive \zsdo = 7.0/,) regimes in Figures 6a and 6b, respectively. 

The non-diffusive regime is the same for each geometric configuration. More importantly, the 

cTM shows a long turn-on time and does not give a fake peak even when zsdo is small.  The 

general pulse shape is the same for each configuration, however, the exponential decay does vary 

depending on the media. The slab exhibits a faster exponential decay, while both the semi- 

infinite and slab media have broader peak with a slower decay. As zsdo is increased, the damping 

effect from reflections at the surfaces is evident. From a semi-infinite medium to a slab medium, 

the effective diffusion coefficient is reduced as the number of physical boundaries increases.13 

Relevant non-diffusive information about photon migration is present during the early times for 

all three geometric configurations. Our model, unlike the other diffusion models, does not 

neglect or distort the non-diffusive regime for either the semi-infinite or slab media even when 

the zsd is small. 

We   used   the   extrapolated   boundary   condition   with   a   non-reflecting   physical 

boundary (re = o) at z = 0.  A cloud layer satisfied the physical boundary condition with water 

droplets located inside air as the scatters. Our solution can easily be modified to include 

reflecting boundaries \re * 0) by changing the location of the extrapolated boundaries. Using a 

modified a created by multiplying the original a (for re = 0) by a factor (l + re)/(l-re), we 

can determine the new position of each image source. Paasschens and 't Hooft have another 



A3-12 

formula for reflecting boundaries with re * 0 which adds both a mirror point source and a mirror 

line source to satisfy the extrapolated boundary condition.16 In the case of re = 0, their result is 

in agreement with our results. Using our method, corresponding mirror sources can also be 

defined for the cumulant approximation. 

In conclusion, we are able to track the transport of photons from the near ballistic to the 

final diffusive stage for both semi-infinite and slab geometries using the cTM. Unlike the sDM 

and cmDM, we can obtain an accurate picture for the photon migration for L < 7/,, as well as for 

L>llt. For t»lt /c, the results from the cTM match those obtained using the cmDM.  The 

effects of the physical boundaries can be viewed by the variations in the amplitude and the long- 

tail decay for zsd ^ 11, ■ When zsd is small, the cTM provides a time-resolved profile that can be 

reasonably compared with experimental measurements for photon pulse propagation in clouds 

and seawater. 

This work is supported in part by Lockheed Martin, USAMRMC (Award DAMD17-98- 

1-8147) DARPA, NYSTAR, and NASA IRA. 
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List of Figures 

Figure 1. The moving center of the photon density function Rz and the diffusion coefficients 

Dzz and D^ (= Dyy) as a function of time t. For t» /, /c , Rz stops at a new 

position located exactly /, from the original position. 

Figure 2. Photon density for an infinite medium with the distance between the source and 

detector, zsllo, is given by (a) zsdo = 2.0/,; (b) zsdo = 7.0/,; and (c) zSflo = 10.0/, using 

/, = 100m, n = 1.33, and/ia = 0. 

Figure 3. For semi-infinite geometry, locations of the real and image sources,  z^and z,-, 

respectively,  for (a)  the CMDM and SDM configurations  and (b) the CTM 

configuration if the real source is located at z = 0. For the CTM configuration, the 

subscripts i and / associated with zs and z, represent the initial and final locations 

of each source. An extrapolated boundary, B, is located at a distance z = cxl, from the 

physical boundary of the semi-infinite medium. 

Figure 4. For slab geometry, (a) the CMDM and SDM configurations and (b) the CTM 

configuration if the real source is located z = 0. Extrapolated boundaries, Bi and B2, 

are located at distances z = cclt from the physical boundaries of slab. For the CTM 

configuration, the subscripts / and / associated with zs and z,- represent the initial 

and final locations of each source. 

Figure 5. For the SDM, CMDM, and CTM, the photon density for the (a) semi-infinite and (b) 

one-layer uniform slab media with zsd =7.0/, for /, =100m, n = 1.33, and/ifl =0. 

The thickness of the slab, L, is equal to zsdo for each uniform slab media.   The 

results for zsd = 2.0/, are the same as those for the infinite medium during early time. 
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List of Figures cont'd 

Figure 6.  Using the CTM, the photon density for the infinite, semi-infinite, and slab media 

using (a) zsdo =2.01, and (b) zsdo =1.01, for I, = 100m, n = 1.33, and^fl =0. The 

thickness  of  the   slab,   L,  is  equal   to   zsd    for  each   uniform  slab  media. 

A. V. Carpenter et. al. 
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Time-resolved Fourier optical diffuse tomography is a novel approach for imaging of objects in a highly scat- 
tering turbid medium with use of an incident (near) plane wave. The theory of the propagation of spatial 
Fourier components of the scattered wave field is presented, along with a fast algorithm for three-dimensional 
reconstruction in a parallel planar geometry. Examples of successful reconstructions of simulated hidden ab- 
sorptive or scattering objects embedded inside a human-tissue-like semi-infinite turbid medium are provided. 
© 2001 Optical Society of America 

OCIS codes: 170.6960, 290.7050, 290.1350. 

1.   INTRODUCTION 
Research on the use of near-infrared diffusive light for 
biomedical imaging and diagnosis has advanced over the 
past decade because of the potential of the technique to be 
a safe, noninvasive, affordable, and superior diagnostics 
tool.1"3 In the search for a methodology that provides 
fast data acquisition and reconstruction to perform imag- 
ing with high resolution in real time, a variety of tech- 
niques have been explored including the use of time- 
resolved picosecond pulses, continuous waves, and diffuse 
photon-density waves. Most methods reconstruct three- 
dimensional (3D) optical property maps (OPMs) by matrix 
inversion, by iterative techniques, or by 3D rendering of 
two-dimensional (2D) projection images.4"8 The degree 
of difficulty of inverting the whole 3D map at one time is 
usually time prohibitive when the number of volume ele- 
ments involved increases, and 3D rendering of two- 
dimensional projection images requires extra depth infor- 
mation of inhomogeneities inside turbid media to behave 
well, and it has other limitations.7'9 

In this paper, we first introduce the theory of propaga- 
tion of the spatial Fourier component of the scattered 
wave field inside a turbid medium. We then develop a 
new optical diffuse imaging methodology based on this 
theory, using the two-dimensional Fourier transform of 
photon intensity on a plane to detect inhomogeneities in a 
highly scattering turbid medium when the medium is il- 
luminated by a picosecond (near-) plane-wave pulse. In 
such a spatial Fourier space, the picture of photon migra- 
tion is much simplified in the sense that different spatial 
frequency components of the OPM (2D Fourier transform 
on the xy plane) are decoupled from one another and de- 
pend only on the corresponding spatial frequency compo- 
nent of the photon intensity on the detector plane. On 
the basis of this observation, we obtain a super-fast recon- 
struction of a 3D OPM by matrix inversion of each spatial 
component independently. The effect of noise is explic- 
itly handled by controlling the set of spatial frequency 
components and the regularization parameters used in 
the matrix inversion;    After a rigorous account of the 

theory and a brief description of the algorithm, examples 
of reconstruction, by using backscattered photons, of ab- 
sorptive and scattering inhomogeneities located up to 2 
cm below the surface of a human-tissue-like semi-infinite 
turbid medium are presented. 

2.   THEORY 
The propagation of photon density <£(r, t) at position r 
and time fina highly scattering turbid medium can be 
described by the diffusion equation 

— 4>{r,t) - cV • D(r)V4>(r,t) + c/j.a(r)4>(r,t) 
dt 

= S(r,t).    (1) 

The absorption coefficient fj,a (per unit length), and the 
diffusion coefficient D = U(3(i's), where /LL'S is the reduced 
scattering coefficient, may depend on the position in the 
medium; c is the speed of light inside the medium, and S 
is the source term describing the density of photons gen- 
erated per second. 

For the case of a uniform medium and an incident 
source S(r, t) (S = 0 when t < 0), the incident wave 
field is &(r, t) = Jd8r'J{,d*'S(r', t')G(r, r',t - t') 
where G(r, r', t) is the Green's function for the diffusion 
equation in a uniform turbid medium. When some weak 
inhomogeneities (objects such as tumors) are embedded in 
the medium, we write 

Ma,obj(r) = Pa + Sßa(r), 

/<obj(r) = fi's + Sß'.(r), (2) 

where fia and fi's are the constant absorption and reduced 
scattering coefficients of the otherwise homogeneous me- 
dium and /*a,obj(r) and Msj0bj(r) are the absorption and re- 
duced scattering coefficients of the embedded inhomoge- 
neity that are spatially dependent.   Plugging Eq. (2) into 

n7An.3232/9nM /071535-08ftl5.00 © 2001 Optical Society of America 
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Eq. (1) and noting the diffusion parameter of the inhomo- 
geneity Dobj(r) = D + SD(r) = 1/(3^) - S/i'a(r)/ 
(3^2), we have 

dt 
4>(T, t) - DcV2<ß(r, t) + /Mac<f>(r, t) 

= S(r,t) + cV • SD(r)V(f>(r,t) - c8ßa(r)if>(r,t).    (3) 

The complete right-hand side of Eq. (3) now acts as the 
source term, of which S(r, t) contributes to the unper- 
turbed wave field <f>0 = <£,(r, t) and the rest of the terms 
contribute to the scattered wave field, 

4>s(r, t) 

= <j>{r, t) - cf>0(r, t) 

=  j dV j dt'G(r,r',t - t' 

X [cVr, • 8D(r')Vr,<fr(r',t') 

-c8ßa(r')<f>(r',t')] 

= -JdVjdt'G(r,r',t - t')8ßa(r')c<t>(r',t') 

f ft      Sfi's(r')c 
+     dV     dt'    n    .    Vr,G(r,r',t- t') 

J Jo 3p'2 

t      8ß^(r')c 

■Vr,<f>(r',t'), (4) 

after integration by parts. 
To first order in the variation of optical absorption and 

reduced scattering coefficients, we can just replace 
<f>(r',t') in Eq. (4) with fa, i.e., the total wave field is a 
superposition of the incident wave field <f>i and the singly 
scattered wave field (f>e. This is the well-known Born ap- 
proximation. 

Now consider the configuration of the frequently stud- 
ied parallel planar geometry (slab or semi-infinite) with 
its boundaries at z = 0 and z = d (d = +°° for semi- 
infinite geometry).   The exact Green's function is10 

1            /    Ip-Pf 
G(r,r',t) = ——— exp 7^ iiact 

4irDct^\      4Dct 

xGz(z,z',t),       (t>0), (5) 

where p = (x,y), p' = (x',y'). Gz(z,z',t) is chosen 
according to the boundary condition of the parallel planar 
geometry and depends only on time t and the z coordi- 
nates of the source position r and the target position r'. 
Its two-dimensional Fourier transform on p is 

G(q,z,p',z',t) =   I d2pG(p,z,p',z',t)exp(-iq ■ p) 

= exp(-iq ■ p' - Dctq2 

- (iact)Gz(z,z',t) 

= G(q,z,z',t')exp(-iq ■ p'). (6) 

For simplicity, we restrict ourselves first to the case of 
a pure absorptive perturbation {Sfia # 0 and S/M'S = 0) 

Xu et al. 

and of an incident pulse S(r,t) = S{p)S(z - zs)S(t). 
The scattered wave field on a plane 0 < z < d is thus 

= - f dV f d2
P"jtdt'G(r,r',t - t')8fia(r') 

x cS(p")G(r',P",zs,t') (7) 

from Eq. (4) after <f> is replaced by 4>i- Inside Eq. (7), ex- 
pand the source term S(p") and the Green's functions 
G(r, r',t - t') and G(r', p", zs,t') into integrals of their 
Fourier components; thus we find 

X      d2qG(q,z,z',t - t') 

X exp[iq ■ (p - p')] 

X 8fia(p',z')c J d2q"S(q")exp(iq" • p") 

X j d2q'G(q',z',zs,t') 

X exp[iq' ■ (p' - p")] 

-u^l *>/*''/MM*' 
X exp(jq • p)G(q,z,z',t - t') 

xS(q")G(q',z',zs,t') 

X   I d2p'^a(p'.z')exp[ - ip' 

•(q-q')]Jd2p"exp[ip"-(q"-q')] 

X exp(iq • p)G(q,z,z',t - t') 

(8) 

X 8fia(q- q',z')S(q')G(q',z',zs,t'), 

where 

S(q) = S(q,zs) = J  d2pS(p,2s)exp(-iq • p), 

8ßa(q,z) =   I d2p<^ta(p,z)exp(-iq • p) 

are 2D Fourier transforms of the source on the z — zs 

plane and of the perturbation of the absorption coefficient 
over the z = z plane, respectively. Finally, we recognize 
the 2D Fourier transform of the scattered wave field 
(f>s{p,z, t) on a plane z for the case of a pure absorptive 
perturbation: 
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')S(q',zs) .*.') = -TS f d2q'<k'«5Aa(q-q'^') 
4ir   J 

X   |  dt'G(q,z,z',t - t')G(q',z',zs,t'). 
Jo 

(9) 

In a similar fashion, for the case of a pure scattering 
perturbation (8/xa = 0 and Sfi's * 0), the 2D Fourier 
transform of the scattered wave field is 

&(q,z,f) 

= T7T1T72 f ^q'dz'8jl's{q - q',z')S(q\ 
12ir>s   J 

X   |   <fc' 
Jo 

zs) 

q    q'G(q,z,z',i - *')G(q',z', zs , t') 

3G(q,z,z',t - t') dG(q',z',zs,t') 

dz' dz' 
(10) 

The general Fourier scattered wave field is the sum of 
Eq. (9) and Eq. (10).   Denoting the convolutions 

wa(q,q',z,t;z') =      dt'G(q,z,z',t 
Jo 

-t')G(q',z',zs,t'), 

ft      dG(q,z,z',t - t') 
ws(q,q',z,t;z') =      dt'— 

Jo dz' 

dG(q',z',zs,t') 

dz' 
(11) 

which are the weight functions involved in the propaga- 
tion of spatial Fourier components of the scattered wave 
field, we have 

<£s(q,z,t) 

= -^pr f d2q'rfz'<SAa(q-q'>z') 

X S(q',zs)wa(q,q',z,t;z') +  12TJ.2   »2 

X   \ d2q'dz'Sß's(q- q',z')S{q',zs) I 
X [q • q'wa(q,q',z,t;z') + ws(q, q',z, t;z')]. 

(12) 

For the simple case in which the incident wave is a 
plane-wave pulse (see Appendix A for justification), i.e., 
S(r,t) = SS(z - zs)S(t) where S is a constant, such 
thatS(q,zs) = 4i72S<5(q), Eq. (12) simplifies to 
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<Ps{q,z,t) = Sc     dz' 
\ 

S{ia(q,z')wa{q,0,z,t;z') 

8{i's(q,z') 
——Ö—ws(q,0,z,t;z ) 

3/xs 

(13) 

The most salient feature of the above result [Eq. (13)] is 
that different spatial frequency components of 8{ia and 
8ß's are decoupled from one another, and the q component 
of the optical parameters depends only on the correspond- 
ing spatial frequency component of the scattered wave 
field 4>s(q,z,t). Thus the dimension of the inverse prob- 
lem to be solved below is greatly reduced, as is the com- 
putation time. 

If we approximate the integration over z' by a summa- 
tion and fix z = zd at the detection plane (omitting z here- 
after), the Fourier scattered wave field on the detection 
plane is 

4>s(q,t) = ScAzS 
.7 = 1 

-8jxa(q, Zj)wa(q,0,t;zj) 

Sß'M'Zj) 

3(i /2 -w s(q,0,t;zj) (14) 

where Az is the discretized step size, Nz is the total num- 
ber of slices (layers) in the z direction between the source 
plane and the detection plane, and Zj is the z coordinate of 
the central position of layer j. 

If we set q= 0 in Eq. (14), 

4,s(0,t) = ScAzS 
.7 = 1 

-8fia(0,Zj)wa(0,0,t;Zj) 

+ 
Sfc(0,zj) 

3M. 
/2 w.{0,0,t;zj) (15) 

the zero spatial frequency components S/la{0,Zj) and 
8ß's(0,zß can be readily solved without the need for a 
complete reconstruction. Owing to the nature of Fourier 
transform, they just provide the profile of the amount of 
total perturbation of absorption and reduced scattering 
coefficients per slice, i.e., the depth profile of the inhomo- 
geneities. 

The whole 3D map of absorption and reduced scatter- 
ing coefficients is thus constructed through an inverse 
Fourier transform from all the q components of 8jxa and 
8fi's at different depths, each of which is solved indepen- 
dently from a series of time-resolved scattered wave field 

4>s by Eq. (14). 
A schematic diagram of the procedure of image recon- 

struction is shown in Fig. 1. The maximum spatial fre- 
quency (cutoff frequency) of the components used in the 
inversion is determined through a signal-to-noise-ratio 
analysis in which the Fourier components whose magni- 
tudes fall below a threshold (comparable to the noise 
level) are discarded. The regularization parameter in 
the matrix inversion is obtained by the robust L-curve 
method.11 The L-corner finder, which locates the corner 
by maximum curvature,12 is implemented and is used to 
obtain the regularization parameter.   Neither visual es- 



A4-4 

1538       J. Opt. Soc. Am. A/Vol. 18, No. 7/July 2001 . Xu et al. 

Select time 
slices 

Apply 2D FFT 
to snapshots 

Discard 
noisy component!: 

Ill-posedness 
Control 

Regularized inv 
each component 

Noise 
Control 

Inverse 2D FFT 
to get tunor 

Reconstructed 
Image 

Fig. 1. Schematic diagram of image reconstruction. 
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Fig. 2. Geometry for time-resolved Fourier optical diffuse to- 
mography with use of backscattered photons. The source is a pi- 
cosecond (near-) plane-wave pulse and a series of snapshots of a 
10 X 10 cm2 area on the surface are computed as the input to im- 
age reconstruction. Absorptive objects A (—2.5, —1.875, -0.75) 
cm, B (-1.25, -0.31, -0.75) cm, C (0.94, 1.56, -1.95) cm, and D 
(0.94, -0.625, -1.95) cm or scattering objects E (-2.5, -1.875, 
-0.75) cm, F (-1.25, -0.31, -0.75) cm, G (0.94, 1.56, -1.35) cm, 
and H (0.94, —0.625, —1.35) cm are used in the simulation. 

timate nor prior information is required for this proce- 
dure. L curves are different for each spatial frequency q. 
The regularization parameter is determined from the re- 
construction of depth profile (where an inversion for q 
= 0 is performed). The same value is then used in the 
full 3D reconstruction (layer reconstructions, where in- 
version includes q i= 0). 

Both transmission and backscattering image recon- 
struction configurations can easily be made by using Eqs. 
(13) and (14). 

3.   SIMULATION 
For demonstration purposes, consider a semi-infinite tur- 
bid medium (z < 0) with its surface at z = 0 (Fig. 2), 
whose absorption coefficient fia = 0.0033 mm-1 and re- 
duced scattering coefficient fi's = 1.0 mm-1. 

A. Absorptive Inhomogeneity 
Four absorbing objects A, B, C, and D, each 6.25 mm 
X 6.25 mm X 3 mm and with absorption coefficient 
A'a.obj = 0.02 mm"1 and reduced scattering coefficient 
equal to that of the background, are placed at depth 7.5, 
7.5, 19.5, and 19.5 mm below the surface, and their xy co- 
ordinates are (-25, -18.75), (-12.5, -3.1), (9.4, 15.6), 
and (9.4, 6.25) mm, respectively. The medium is illumi- 
nated by an incident pulse of a Gaussian shape of 
exp(-p2/2o-2) with a = 50mm inside an aperture of ra- 
dius 50 mm, propagating along the negative z axis at time 
t = 0. 

These parameters are potentially applicable to optical 
mammography of the compressed-breast-toward-chest 
setup with use of backscattered photons. A series of 
simulated measurements (total Nt = 15 snapshots from 
300 to 2400 ps) of an area 100 mm X 100 mm on the sur- 
face plane z = 0 are generated by using a direct calcula- 
tion for the Gaussian pulse in r space. The simulated 
data are used as input for inversion after adding a 1%, 
5%, or 10% Gaussian noise. 

In the reconstruction part, the near-surface region 
of the turbid medium of depth up to 3 cm is sliced into 
Nz = 10 layers, i.e., Az - 0.3 cm, and objects A and B are 
then located on layer 3, and C and D are located on layer 
7. The detection plane of an area of 10 X 10 cm2 is di- 
vided uniformly into a NxNy = 32 X 32 grid.   Objects A, 
B, C, and D all take 2x2 elements by this grid. The 
results of reconstruction are shown below. 

0.60 

oi    0.30 

1.2       1.8       2.4 
z (cm) 

to (b) (c) 

Fig. 3.   Absorption depth profile for (a) with 1% noise, (b) 5% noise, and (c) 10% noise. 
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1. Depth Profile 
The absorption depth profile, i.e., the total absorption per- 
turbation per layer fd2p8ßa(p, z) versus depth z is shown 
in Fig. 3 with different noise levels for cases (a) 1% noise, 
(b) 5% noise, and (c) 10% noise. In Fig. 3(a) there is one 
peak at depth z = 0.75 cm (layer 3) where objects A and B 
are embedded, and another peak at z = 1.95 cm (layer 7) 
where objects C and D are embedded. The width of the 
first peak at half-height is 0.34 cm, approximately the 
thickness of one layer (0.3 cm), which means that the 
depth of objects A and B is resolved very well. The sec- 
ond peak of objects C and D spans two and a half layers 
with its width of peak at half-height 0.74 cm, but its peak 
position is still correct. 

When the level of noise increases, the peak values of 
both peaks decrease, and the half-widths increase. The 
effect on the second peak at z = 1.95 cm is much more 
significant than that on the first one at z = 0.75 cm. 

2. Layer Reconstruction 
The full 3D OPM is reconstructed. The reconstructed ab- 
sorption coefficients of the layers at the two peak posi- 
tions are shown in Figs. 4-6 for the three noise levels. 

Figure 4 shows that objects A and B are clearly resolved 
as two objects centered at their original positions with 
negligible expansion; and objects C and D at depth z 
= 1.95 cm are also detected at the correct central posi- 
tions, but the resolved images are expanded on the xy 
plane. With an increase in noise level, the shape of ob- 
jects A and B blurs from Figs. 4(a) to 5(a) and 6(a), and 
the blur is even worse for objects C and D under the same 
condition [from Figs. 4(b) to 5(b) and 6(b)]. 

At noise level of 1%, the reconstructed absorption pa- 
rameter for objects A and B is 0.0071 mm-1 approxi- 
mately 36% of the original value 0.02 mm-1 of the absorp- 
tive inhomogeneity. In other words, the object appears 
larger in space with a weakened absorption parameter. 
As the noise level increases, the effect is accentuated with 
a further reduction in the resolved absorption parameter. 

B.   Scattering Inhomogeneity 
For another example, four scattering objects E, F, G, and 
H, each 6.25 mm X 6.25 mm X 3 mm and with reduced 
scattering coefficient /JL'S|0bj = 0.5 mm-1 and absorption co- 
efficient equal to that of the background, are placed at 
depth 7.5, 7.5, 13.5, and 13.5 mm below the surface, and 

-0.006 

-0.004    g0 

0.002 

(a) (b) 

Fig. 4. Layer reconstruction at a noise level of 1%: (a) resolved objects A (left) and B (right) at z = 0.75 cm (layer 3); (b) resolved 
objects C (upper) and D (lower) atz = 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units 
of inverse millimeters. 
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Fig. 5. Layer reconstruction at a noise level of 5%: (a) resolved objects A (left) and B (right) at z = 0.75 cm (layer 3); (b) resolved 
objects C (upper) and D (lower) at z = 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units 
of inverse millimeters. 
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0.0002 

w (b) 

Fig. 6. Layer reconstruction at a noise level of 10%: (a) resolved objects A (left) and B (right) at z = 0.75 cm (layer 3); (b) resolved 
objects C (upper) and D (lower) at z = 1.95 cm (layer 7). The darkness of the pixel represents the resolved absorption coefficient in units 
of inverse millimeters. 
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Fig. 7.   Scattering depth profiles for (a) with 1% noise, (b) 5% noise, and (c) 10% noise. 

0.0      0.6      1.2       1.8      2.4      3.0 

L-J-o 

(a) (b) 

Fig. 8. Layer reconstruction at a noise level of 1%: (a) resolved objects E (left) and F (right) at z = 0.75 cm (layer 3); (b) resolved objects 
G (upper) and H (lower) at z = 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient in 
units of inverse millimeters. 

their xy coordinates are (-25, —18.75), (—12.5, —3.1), 
(9.4, 15.6), and (9.4, 6.25) mm, respectively. Objects E 
and F are now located on layer 3, and G and H are located 
on layer 5. The same source and inversion procedure 
used in the previous example are used here. The results 
of reconstruction are shown below. 

1.   Depth Profile 
The scattering depth profile is shown in Fig. 7 with differ- 
ent noise levels for cases (a) 1% noise, (b) 5% noise, and (c) 
10% noise. Two peaks are correctly revealed with the 
first at depth z = 0.75 cm (layer 3) and another at z 
=   1.35 cm (layer 5), where objects E and F, G and H are 
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embedded, respectively. In Fig. 7(a), the width of the 
first peak at half-height is 0.3 cm and that of the second 
peak is 0.42 cm. This means that the depth of these ob- 
jects is resolved quite well. 

With an increase in noise level, we observe the same 
behavior of decreasing quality of depth resolution as in 
the absorptive case. 

2.   Layer Reconstruction 
The reconstructed scattering coefficients of the layers at 
the two peak positions (layer 3 and layer 5) are shown in 
Figs. 8-10 for the three noise levels. 

We observe a result similar to that for the absorptive 
case. Objects E and F are better resolved than objects G 
and H, which are deeper into the turbid medium, and the 
noise has a more adverse effect on objects G and H than 
on objects E and F. The reconstructed reduced scattering 
coefficient of objects E and F is 0.27 mm-1, approximately 
54% of the original value of the embedded scattering in- 
homogeneity, at a noise level of 1%. 

4.   DISCUSSION 
A fast time-resolved Fourier optical diffuse tomography 
based on decoupled propagation of spatial Fourier compo- 
nents of the scattered wave field when the medium is il- 
luminated by a plane wave is presented. For a wave not 
strictly plane but whose zero-frequency component domi- 
nates, this approximation is still valid as long as the ra- 
dial dimensions of the volume where inhomogeneities ex- 
ist are much smaller than the effective width of the 
Gaussian beam (see Appendix A). 

The image-reconstruction method provided is efficient. 
The optical parameters at NxNyN2 different voxels are re- 
constructed from a set of Nt measurements by Nj times of 
inversions of N, X Nz matrices, where N2

k < NxNy is the 
total number of Fourier components with the noisy ones 
discarded. Our procedure is much more efficient than a 
direct reconstruction, where an inversion of NxNyNz 

X NxNyNz matrix is involved. The speedup is approxi- 
mately 0(NxNy) times faster. The time this algorithm 
takes to perform a complete 3D reconstruction in the 

0.01 

-4-2 0 2 
X(em) 

(a) (b) 

Fig. 9.   Layer reconstruction at a noise level of 5%: (a) resolved objects E (left) and F (right) at z = 0.75 cm (layer 3); (b) resolved objects 
G (upper) and H (lower) at z = 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient m 
units of inverse millimeters. 

o.oos 

o 2 
X(cm) 

(a) (b) 

Fig 10 Layer reconstruction at a noise level of 10%: (a) resolved objects E (left) and F (right) at z = 0.75 cm (layer 3); (b) resolved 
objects G (upper) and H (lower) at z = 1.35 cm (layer 5). The darkness of the pixel represents the resolved reduced scattering coefficient 
in units of inverse millimeters. 
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above examples (of 32 X 32 X 10 volume elements) is less 
than half a minute with use of the scripting language Py- 
thon on one 180-Mhz CPU of an Origin 200 computer 
from Silicon Graphic Inc. This algorithm scales only lin- 
early with the number of elements in the xy grid, so it can 
be used to handle much larger data sets in real time with 
little difficulty. 

This approach does not limit the number or the thick- 
ness of the inhomogeneities. It allows multiple inhomo- 
geneities, and one inhomogeneity may span several lay- 
ers. 

With little effort, a depth profile (the sum of the pertur- 
bation of the optical parameter versus depth) of the inho- 
mogeneities inside a highly scattering turbid medium can 
be obtained. This information itself may be very useful 
in some cases. When the inhomogeneity is found to exist 
only in one layer from the depth profile, the summation in 
Eq. (14) no longer exists. A direct inverse Fourier trans- 
form can thus be used to resolve the inhomogeneity when 
it is a solely absorptive or scattering perturbation. 

Xu et al. 

tive width R2 = a2l2 + Dct' > a2l2. When the inho- 
mogeneities exist inside a region of radial dimension L 
around the origin of the xy coordinate system that satis- 
fies L < R, we can approximate exp(-4p'2/ß2) by 1, 
which is equivalent to letting q' —> 0, the case of an inci- 
dent plane wave. The error made by such an approxima- 
tion is of second order in LIR. 

The same analysis can be applied to the second term of 
Eq. (12). 
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APPENDIX A 
Equation (12) is the exact formula for calculating the 
scattered wave field. For a pulse S(r, t) = S(p) 
S(z - zs)S(t) with Gaussian shape S(p) 
= S0exp(-p2/2o-2), we have S(q) = 2TTO-

2
S0 

X  exp(-o-V/2) and the first term of Eq. (12), 

<r2S0c  f 
A = -—      d2q'd2'<?Aa(q- q',*') 

2ir    J 

X exp(-a2q'2/2)wa(q,q',z,t;z') 

a2S0c ■S0c  f 
      d2q'dz'd2p'S/xa(p',z' 
W    J 

X exp[-i(q - q') • p' - <r2q'2/2] 

X wa(q,q',z,t;z') 

<r2S0c  f 
= -—      d2p'dz'Sßa(p',z')exp(-iq- p') 

2TT    J 

X      dt'G(q,z,z',t - t') 
Jo 

X Gz(z',zs,t')exp(-/j,act') 

X   | d2q' exp(-o-y2/2 - Dct' + iq' ■ p') 

(16) 

after plugging in Eq. (11) and Eq. (6). 
The last integral of Eq. (16) can be performed exactly 

and turns out to be TTR~
2
 exp(-4p'2/R2), where the effec- 
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