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ABSTRACT 

As a first approximation, a helicopter rotor blade may be modelled as a 
cantilever beam. Given the initial deformation of this beam, and using either 
strain or acceleration at one location along the beam, we can determine the 
load distribution along the entire beam. We consider load distributions that 
can vary spatially, but are constant in time (except for the initial step input). 
In the solution we neglect the effects of both aerodynamic and mechanical 
damping. The separation of variables technique leads to a solution in terms of 
the beam's natural modes. The loading distribution is decomposed in terms 
of these modes. A finite element simulation of the beam's response to a cubic 
load distribution verifies that this load prediction is possible. We demonstrate 
that the higher modes of the load prediction are unstable when noise is present 
in the measurements, but that the lower modes are robust. If the initial beam 
deformation is unknown, then additional (strain or vibration) measurement 
locations may be substituted for the unknown initial deformation. 
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Determining Beam Bending Distribution Using 
Dynamic Information 

EXECUTIVE SUMMARY 

In service, helicopter rotor blades undergo a load distribution that is currently not 
measured; yet this loading distribution determines the fatigue life of a blade. Given 
that the rotor blades are critical components in helicopters, this lack of information has 
safety implications. Currently, to maintain a conservative safety factor rotor blades are 
necessarily retired well before their usage life has been consumed. Accurately predicting 
the load distribution on a helicopter rotor blade has the potential to both increase safety 
and reduce operating costs. In this report, we use the vibration of the rotor blade to 
determine the loading distribution along the blade. 

The rotor blade is modelled as a simple cantilever beam (although more general end 
constraints are possible), and both aerodynamic and mechanical damping are ignored. We 
begin our load determination analysis with the beam already vibrating due to a previous 
excitation. Hence, when we begin our analysis the beam already has both an initial 
deformation and velocity. The unknown load distribution is then applied as a step function, 
and remains temporally constant after its application. In order to determine the loading 
distribution, we require the beam's vibration response to this step load. Either strains 
or accelerations may be used as the beam's vibration response. We show that given the 
beam's initial deformation and vibration response at only one location, it is possible to 
predict the load distribution along the entire blade. 

We use the separation of variables method to write the solution in terms of the blade's 
natural modes. We then solve for the load distribution in terms of these natural modes. 
It is not possible to determine both the initial deformation and loading distribution given 
only the vibration response at one location. 

A finite element (FE) model of the beam's response to a step load is used to simulate 
the strain near the fixed end of the cantilever beam. We use these simulated strain data to 
predict the load distribution along the FE beam. The simulations verify the load prediction 
capability outlined, but demonstrate the prediction's susceptibility to measurement noise 
(especially in predicting higher frequency modes). 

If the initial beam deformation is unknown, then additional (strain or vibration) mea- 
surement locations may be substituted for knowledge of the initial deformation. 
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Roman Symbols 

a Fourier cosine coefficient 
A constant from fourth order differential equation 
Aj constant from jih second order differential equation 
b Fourier sine coefficient 
B constant from fourth order differential equation 
Bj constant from j'th second order differential equation 
C constant from fourth order differential equation 
D constant from fourth order differential equation 
At time step between temporal samples 
E Young's modulus 
F axial load on a beam 
/ distributed force acting along beam 
h hat function (sum of two step functions) 
i dummy variable (sometimes used as count for discrete load) 
i dummy variable (sometimes used as count for Fourier series) 
j dummy variable (sometimes used as count for series expansion) 
/ beam's cross-sectional area moment of inertia 
K number of load segments 
I beam length 
m beam mass 
n number of mode shapes in approximating solution 
P loading period 
t temporal variable 
ti counting variable (for the evaluation of relative errors) 
ifln final count (number of time evaluations) 
T temporal variable in separation of variables technique 
v transverse velocity of beam 
x horizontal spatial variable (distance along beam) 
y transverse deformation of beam 
Y transverse deformation variable in separation of variables 

efinitic 

(p. 14) 
(p. 5) 

(p. 10) 
(p. 14) 
(p. 5) 

(P- io) 
(p. 5) 
(p. 5) 

(p. 18) 
(p. 3) 

(p. 27) 
(p. 3) 

(p. 12) 
(p. 9) 

(p. 14) 
(p. 8) 
(p. 3) 
(p. 9) 
(p. 3) 
(p. 3) 

(p. 15) 
(p. 13) 
(p. 3) 

(p. 18) 

(P- 18) 
(p. 5) 
(P-4) 
(p. 3) 
(p. 3) 
(p. 5) 

notation continued on next page ... 
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... notation continued from, previous page 

Greek Symbols 

a hyperbolic constant: function of ß 
ß separation constant: from the separation of variables 
7 represents series from beam acceleration 
Ö delta (or Kronecker delta) function 
<j) coefficient for series expansion of discrete load 
$ magnitude of discrete load 
%l> coefficient of series expansion of vertical deformation 
a initial beam deformation decomposed into modes 
r initial beam velocity decomposed into modes 
£ location of discrete load 
£* accelerometer or strain gauge location along beam 
u) loading frequency 

Miscellaneous Symbols 
(in the following notation a is a dummy variable) 

a,j denotes the jth solution of the separation of variables 
0,0 initial condition 
a dimensional variable 
a' derivative of a with respect to space, if a = a(x) then a' = da/dx 
ä derivative of a with respect to time, if a = a(t) then ä = da/dt 
a(n) nth derivative of a, if a = a(x) then a(n) = dna/dxn 

O(on) of order a" 
a approximation of a 

Definition 

(p. 5) 
(p. 5) 

(p. 11) 
(p. 9) 
(p. 8) 
(p. 9) 
(p. 8) 

(p. 14) 
(p. 14) 
(p. 9) 

(p. 11) 
(p. 14) 

(p. 5) 
(P-4) 
(p. 3) 
(p. 5) 
(p. 5) 
(p. 5) 
(P-7) 
(P-7) 
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1    Introduction 

Helicopter rotor blades are considered critical components; yet the loading these blades 
undergo in actual service is largely unknown. Determining the loading distribution history 
of a helicopter rotor blade has the potential to lead to increased safety. Additionally, 
because rotor blades are currently retired at a specified component retirement time, these 
blades may very well have a significant amount of life (at an acceptable level of reliability) 
remaining. The accurate determination of the in-flight loading distribution on a rotor 
blade therefore has the potential to save the helicopter operator unnecessary replacement 
costs. 

The approach we use is analogous to determining the load around the rim of a glass 
given the vibration response of the glass. The glass will ring differently depending on the 
loading distribution around the rim. For a rotor blade this "ringing" is unique. 

In this report we develop a method to determine the load distribution on a cantilever 
beam (a first order approximation of a helicopter rotor blade). We determine this load 
distribution using either strain or acceleration measurements at only one location along 
the beam. 

Unfortunately we can only determine this loading distribution if we're given the beam's 
initial deformation. Although we model a rotor blade only as a cantilever beam, a similar 
analysis may be applied to more generalised end conditions (for example, an end constraint 
that is a combination of a spring and pin joint). 

In the remainder of this introduction (§ 1.1) we will review the literature for similar 
problems. In § 2 we develop the partial differential equation (PDE) governing the vibration 
of a cantilever beam. In § 3 we solve this PDE using the well known separation of variables 
technique. In § 4 we develop the vibration solution for different loading distributions, which 
include impulse loads, step loads, and a distributed load in terms of the beam's natural 
modes. In § 5 we perform a simulation, which verifies the theoretical solutions we develop. 
We then discuss some of the assumptions and findings in § 6 before concluding the report 
in § 7. 

1.1    Review of Beam Vibration 

Barcilon [3] determined the elastic properties (that is, stiffness and mass distribution) 
of a vibrating body using measurement data. As an example a discretised beam was 
analysed, one end was free and the other end was either free, supported, clamped, or 
constrained in a non-standard way (we term this end the "constrained" end). An impulse 
force was applied to the stationary beam at the free end, and the resulting deformation 
and slope of the constrained end measured. Knowing these deformations and slopes is 
equivalent to knowing three sets of natural frequencies, which are necessary to infer the 
elastic properties of the beam. Barcilon refers to these trio of spectra as "sympathetic" 
spectra. Given these three sympathetic spectra, the solution of the inverse problem, if it 
exists, is unique. In a later paper, Barcilon [4] investigated an apparent paradox between 
this uniqueness result and a paper by Boley and Golub [6], who find a multiplicity of 
solutions when constructing a symmetric pentadiagonal matrix from its spectra. Barcilon 
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states that beam vibration problems lead to pentadiagonal systems when recast as finite 
difference problems, and hence the apparent paradox. This apparent paradox is resolved 
when Barcilon shows that Boley and Golub chose their three spectra without regard for 
"sympathy" between the spectra. 

Gladwell [8] modelled a beam using rigid rods joined together by rotational springs, 
with lumped masses at the joints. One end of the beam was clamped, while the other 
end met one of four conditions: free, pinned, sliding, or clamped. Gladwell establishes 
necessary and sufficient conditions for the existence of a discrete model having a given 
spectrum, and sets up a procedure to find the model. In a later paper Gladwell [9] reviewed 
the literature for solutions to inverse vibration problems. Essentially that review looked 
at the problem of determining the system's properties (for example, mass and stiffness) 
from vibration measurements. 

Berman [5] investigated the problem of system identification using data obtained from 
dynamic tests of the structure. The structure was modelled by a linear mass, damping, 
and stiffness matrix. Berman concludes that the most promising approach to modelling is 
to use test data to minimally modify a realistic analytic model (subject to a set of physical 

constraints). 

Öry, Glaser, and Holzdeppe [22] reconstructed external and internal forces based on 
measured structural responses. They assumed a priori knowledge of the mass distribution 
and dynamic behaviour of the system, and a linear elastic system with proportional viscous 
damping. The number of dynamic response measuring locations should be higher than 
the number of significant modes. They gave an example of a discretised cantilever beam 
that had several measurement locations along the beam. This work was extended in later 
papers by one of the above authors [23, 24]. 

Arosio, Panizzi, and Paoli [2] proved the well-posedness of a Timoshenko beam1 with 
axially varying physical properties and sliding ends. They state that the equation cannot 
be studied using an iteration of the Fourier series, and instead used a variational approach 
developed by Washizu. 

The dynamics of the Timoshenko beam were recast by Gopalakrishnan, Martin, and 
Doyle [11] so that the description only requires information at the end points. The re- 
sulting dynamic stiffness relations were assembled (akin to finite elements) allowing exact 
frequency dependent response for the Timoshenko beam irrespective of element length. 

Using a boundary integral equation Tanaka and Bercin [26] developed the solution 
for the free vibration of a Timoshenko beam. A general Timonshenko beam of open 
cross-section with non-coincident shear centre and centroid was modelled. They showed 
that unacceptably large errors result from the simpler Bernoulli-Euler beam theory model 
(especially for higher order modes). Lee and Lin [18] developed an approximate solution 
for the transverse vibration of a non-uniform Bernoulli-Euler beam with time-dependent 
elastic boundary conditions. 

The vibration characteristics of blades with multiple-load-paths (at the root) were 
determined by Lauzon and Murthy [17]. They developed a modified Galerkin's method 
to model a non-rotating beam undergoing coupled flapwise bending, chordwise bending, 

1 Timoshenko beam theory corrects for the rotary inertia and shear in classical beam theory [26]. 
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twisting, and extensional motions. The derived natural frequencies of a simulated rotor 
compared well with both experimental results and a finite element approach. 

A thorough survey and comparison of engineering beam theories for helicopter rotor 
blades was undertaken by Kunz [16]. The characteristics and differences amongst the 
various formulations were reviewed, and the results presented in a historical context. 

D'Cruz [7] determined the location of forces on a plate. First the magnitude and 
location of a static point load on an infinite, and then semi-infinite, rectangular plate 
were determined. This procedure was then extended to harmonic point loads. These load 
magnitudes and locations were determined using arrays of discrete points on the plate. The 
solution involved the least-squares minimisation of an objective function, which was linear 
in the force magnitude. This load determination problem was found to be ill-conditioned 
near boundaries. 

2    Equations Governing the Vibration of a 
Cantilever Beam 

In this section we develop the PDE governing the transverse vibration of a beam. 

Figure 2.1: A cantilever beam with a non-uniform loading distribution 
f, which varies with space and time. The beam has length I, mass per 
unit length m, and stiffness EI. 

We begin by considering a cantilever beam of length I with load per unit length f(x, t) 
that varies both spatially and temporally (see Figure 2.1). The spatial dimensions x and y 
define the distance along the beam and the beam's transverse deflection respectively. The 
temporal dimension is denoted by i. Non-dimensionalising these quantities we obtain the 
non-dimensional variables 

x 

7' y 

t = t 
EI 

and 

V 
V 

I3 - 

where m, E, and I are the beam's mass per unit length, Young's modulus, and second 
moment of area (or cross-sectional area moment of inertia) respectively. For simplicity we 
assume the mass m and stiffness EI are constant along the beam. 
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We see from Figure 2.1 that the boundary conditions at the fixed end (x = 0) are 

= 0. (2.i; 2/(0, *) = 0        and g 
x=0 

These two conditions, termed "geometric" boundary conditions, impose zero deflection 
and zero slope at the fixed end of the beam. Similarly we see that the free end has the 
boundary conditions 

d2y 
dx2 

d y 
= 0        and -TT^T 

j oxö = 0. (2.2) 
x=l 

These two conditions, termed "natural" boundary conditions, impose zero bending mo- 
ment and zero shear at the free end of the beam. This last statement follows from the fact 
that (perpendicular to the beam) the bending moment and shear are respectively given by 
EId2y/dx2 and EId3y/dx3. For further details on the relation between bending moment 
or shear and derivatives of beam deflection see, for example, Young [30] or Timoshenko 

and Gere [27]. 

We denote the initial conditions as 

= v0(x), (2.3) y(x,0) = yo{x)        and — 
i=0 

that is, s/o and VQ denote the initial deformation and velocity respectively. 

Using Meirovitch [20, Eq. (5.43)] we know that the PDE governing the transverse 
vibration of a beam with constant mass and stiffness is given by 

EIU + mW = f{*^ 0<x<l, 

or in non-dimensional variables 

g + |? = /(M), 0<,<1. (2.4) 

The following assumptions were made in developing the PDE shown above: 

• The rotation of the differential elements is insignificant (simple beam theory). 

• The shear deformation is small in relation to the bending deformation (simple beam 
theory). 

• The ratio between the beam's length and height is relatively large (say more than 10). 

• The beam does not become too "wrinkled" in flexure. 

Higher modes obtained by using Equation (2.4) are inaccurate because both the simple 
beam and the "wrinkling" assumptions are violated. One way to determine higher mode 
solutions would be to numerically solve the exact PDE governing beam vibration (that is, 
without the above assumptions). 



y(4). r + Yf = 0, 

y(4) 
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f 
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3    Separation of Variables Solution 

In this section we solve the PDE of a vibrating cantilever beam, developed in the 
previous section, using the separation of variables technique. For an explanation of this 
technique see, for example, O'Neil [21]. We follow a similar analysis by Meirovitch [20] 
(specifically pages 223-227 and 235-238), who determines the modal response of a hinged 
beam. (A hinged beam is one that has pin joints at either end and no joints along the 
beam.) 

We assume the solution may be partitioned into a space dependent function Y = Y(x) 
and a time dependent function T = T(t), that is 

y{x,t) = Y(x)T(t). 

Substituting the above expression into the homogeneous form (that is, / = 0) of the 
vibration PDE (Equation (2.4)) gives 

and hence 

where ß is a constant from the separation of variables technique. The over-dot denotes 
differentiation with respect time (for example, f = d2T/dt2); while the dash and bracketed 
superscript denote differentiation with respect to space (for example, Y" = d?Y/dx2 and 
y(4) = d4Y/dx4). The constant of separation ß is related to the natural frequency of the 
dimensional beam ß2^/EI/(ml4) (see, for example, Meirovitch [20, p. 226]). 

The solution of the fourth order differential equation Y^ — ßA Y = 0 is given by 
Tuma [28, p. 181] as 

Y(x) = Acosh(ßx) + Bsmh(ßx) + Ccos(ßx) + Dsin(ßx), 

where A, B, C, and D are constants to be determined from the boundary conditions. 
Using the boundary conditions given by Equations (2.1) and (2.2) we have that 

y(0) = o, y'(o) = o, (3.1) 

y"(i) = o,     and     y(3)(i) = o. 

Solving for the four constants using the above boundary conditions yields 

Yj(x) = Aj [(cosh ßjX — cos ßjx) — ay (sinh ßjX — sin ßjx)], (3.2) 

where ßj is the jth positive root of the equation 

a        i  a i A cosh/3j+cos/3j 
cos p,-cosh p,- = — 1,        and       a,- =   . ,   , :—-f- 1.6.6) n        n ■> o      smh ß. + sm ß. \     i 

is a constant, which we term the hyperbolic constant. In the above solution we have 
ignored all answers leading to the trivial solution Y(x) = 0 (such as Aj = 0). Note that 
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all the solutions Yj are orthogonal, that is, J^ Yi(x)Yj(x)dx = 0 if i # j. Kelly [14, p. 478] 
and Meirovitch [19, p. 163] give the same expression for the solution of a cantilever beam 
under free vibration as Equation (3.2). 

We want to select Aj so that the solutions Yn are not only orthogonal but are in fact 
orthonormal, that is, 

'0    if i?j, 
Yi(x)Yj(x)dx = . 

o 1     lfl=J. 
(3.4) 

Using Mathematica [29] (a computer program that can perform symbolic manipulation) 
the constants Aj that satisfy this orthonormal condition were determined. Some tedious 
algebraic manipulation (using Mathematica and Abramowitz and Stegun [1]) then led to 
the solution 

2 ßj (sinhßj + sinßj)  
3   ~~ ßj (sinh ßj + sin ßj)2 + 3 (1 + cos ßj cosh ßj) (cos ßj sinh ßj - cosh ßj sin ßj) 

Using the first part of Equation (3.3) the constants Aj simplify to 

A3 = 1. 

Thus Equation (3.2) becomes 

Yj(x) = (cosh/^-x - cosßjx) - aj (smhßjX - sinßjx) . 

The first four modes (using the above equation) are shown in Figure 3.1. 

(3.5) 

(3.6) 

y    o 

-2 L 

.-*- 

/ tO < 

n    / '    □ .*        N   H 

D 

** 

\ ,'D 

A 

0 0.2 0.4 0.6 
x 

0.8 

Yi(x) 

— ■© - - Y2(x) 
_-^_. - Y3(x) 

■      D- Y4(x) 

Figure 3.1:  The first four vibration (or natural) modes of a cantilever 
beam (that is, Yj(x) for j = 1,2,3,4,). 

Before concluding this section let's investigate the solutions of the equation governing 
the separation constant (the first part of Equation (3.3)). Re-arranging this equation gives 

cos^-c^br0' 
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and we now clearly see that for ßj S> 1 this equation is well approximated by cosßj — 0. 

Expanding the above displayed equation in a Taylor's series about ßj = ir(j — 5), 

ignoring all terms of ö [ßj - ir(j — ^)] and above, and solving for ßj yields the excellent 
approximation 

ßj = K(j-12) + 2(-iysech[n(j-±)] 

«7r(j-i)-2(-iyexp[-7r(j-i)] 

~ 7r(j - 5). 

where the hat notation "~" denotes an approximation, that is, ßj ss ßj. 

(3.7) 

(3.8) 

(3.9) 

The second approximation for the constant ßj shown above comes from considering 
the hyperbolic function "sech" in exponential form. The symbols Ö defines the order, so 
for example if f(x) = ö(x2) then \f(x)/x2\ is bounded. 

Table 3.1 shows the accuracy of these three approximations for ßj to six significant 
figures. For each approximation both the value and relative error of the solution are shown, 
where the relative error is defined as (ßj — ßj)/ßj- 

3 ßj ß*       \ßj-ßj\/ßj ß]        \ßj-ß]\/ßi ßj        \ßi-ß}\/ßi 

1 1.87510 

2 4.69409 

3 7.85476 

4 10.9955 

5 14.1372 

1.96933 5.03 xlO"2 

4.69442 7.09 xlO"5 

7.85476   7.66 xl0~8 

1.98656 5.94 xlO"2 

4.69440 7.06 xl0~5 

7.85476   7.67 xl0~8 

1.57080 1.62 xlO"1 

4.71239 3.90 xl0~3 

7.85398   9.88 xlO"5 

10.9955     1.02 xl0~10      10.9955     1.02 xlO"10      10.9956     3.05 x 10~6 

14.1372     1.49xl0~13      14.1372     1.49X10"13      14.1372     1.03xlQ-7 

Table 3.1: Values and errors of three approximations for the separation 
constant ßj. The superscripts "*", "\", and '%" represent the approxi- 
mations given by Equations (3.7), (3.8), and (3.9) respectively. 

Using a similar approach for the constant otj yields the excellent approximation 

-  = 1  ,       2(-ipsech[7r(j-i)] 
Gj      tanh [TTÜ - £)] - (-l)^'sech [n(j - I)]      {(_i)i + sinh [^j - i)] }2 

«l + 2(-iy'exp[-7rC?-i)] (3.11) 

w 1. (3.12) 

In Equation (3.10) we have made use of the approximation for the separation constant ßj 
given by Equation (3.7). Table 3.2 shows the values and relative errors, [o.j — aj)/atj, of 
these three approximations to six significant figures. 
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j aJ s; \aj~Sj\/a3 3 
\aj  — OiAJOLj 

3 
OLj - aj /aj 

1 0.73410 0.68692 6.43 xl0~2 0.58424 2.04X10"1 1.00000 3.62 xlO"1 

2 1.01850 1.01850 5.76 xlO"6 1.01800 4.92 xlO"4 1.00000 1.81 xl0~2 

3 0.99922 0.99922 4.68 xlO"10 0.99922 9.03 xl0~7 1.00000 7.76 xl0~4 

4 1.00000 1.00000 3.77xl0"14 1.00000 1.69 xlO"9 1.00000 3.36 xlO-5 

5 1.00000 1.00000 3.05 xl0~18 1.00000 3.15xl0-12 1.00000 1.45 xlO"6 

Table 3.2: Values and errors of three approximations for the hyperbolic 
constant a j. The superscripts "*", "\", and '%" represent the approxi- 
mations given by Equations (3.10), (3.11), and (3.12) respectively. 

As can be seen from Tables 3.1 and 3.2 the approximations for the separation and 
hyperbolic constants are excellent (especially for j > 2). 

4    Solution in terms of Different 
Loading Distributions 

We now consider several different loading conditions. We will begin by looking at the 
simplest loading (impulse loading in § 4.1), then investigate the solution under a slightly 
more complex loading pattern (step loading in § 4.2). Finally, in § 4.3, we develop the 
solution in a more intrinsic way by making use of the beam's natural modes. 

Let us consider the non-homogeneous solution to the vibrating beam problem. Using an 
approach analogous to Fourier series decomposition (or any orthogonal decomposition), 
we may represent the vibration solution as a series expansion of orthogonal functions. 
Using the homogeneous (and orthogonal) solutions given by Equation (3.6) we can write 
the vibration solution as oo 

2/(M) = X>(*)>j-(aO, (4-1) 
3=1 

where ipj are the coefficients in the series expansion of the solution in terms of vibra- 
tional modes. We term the coefficients ijjj the solution coefficients. Similarly the loading 
distribution has the series expansion 

oo 

/(M) = J>;(*)>i(s). (4-2) 

where <j)j(t) is the coefficient for the jth homogeneous solution. We term the coefficients 
<j)j the loading coefficients. Note that non-zero derivatives at the fixed end, that is 

07 
dxl ^0, fort = 0,1, 2,..., 

x=0 
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are not efficiently represented by the formulation of Equation (4.2) (see Figure 3.1). In 
other words, even simple functions such as cos x would need a large number of modes to 
be well approximated. 

If we substitute the vibration solution given by Equation (4.1) and the loading dis- 
tribution given by Equation (4.2) into the PDE governing beam vibration (2.4) we have 
that 

oo oo oo 

j=l j=\ j=l 

Since the fourth derivative of the jth mode is a multiple of the mode itself (that is, 
Yjw = ßfYj), we have that 

oo 

The modes Yj are orthogonal, however, so we must have that 

^■(*) + #^(*) = ^-(*), (4-3) 

for all j. Solving this second order differential equation (DE) for the solution coefficients 
ipj determines the vibration response of the cantilever beam. 

4.1    Non-Uniform Impulse Loading Along the Beam 

Consider the discrete loading distribution shown in Figure 4.1. This loading configu- 
ration may be represented mathematically as a set of spatial-impulse loads, that is, 

K 

f(x,t) = Y,S(x-Zi)*i(t), (4.4) 
2=1 

where <&j and & are the magnitude and location of the ith discrete load respectively, K is 
the number of discrete spatial-impulse loads, and 5(a) is the delta (or impulse) function 
defined by J^ S(x - a)f(x)dx = f(a) for any e > 0. Note that both the loadings <&j and 
locations £j have been appropriately non-dimensionalised (see page 3), and that the load 
magnitudes 3>j vary temporally. Figure 4.1 shows these new definitions superimposed on 
our cantilever beam. Finally, note that Equation (4.4) is composed of a set of impulse 
functions S(x — &) only in space and not in time. 

Multiplying both sides of Equation (4.2) by Yjt(x) and integrating with respect to x 
over the length of the beam gives that 

»i  oo »i 

/   Tcf>j(t)Yj(x)Yk(x)dx= /   f(x,t)Yk(x)dx, 
Jo ~[ Jo 

where we have switched the left and right hand sides as compared to Equation (4.2). 
Assuming the series given by Equation (4.2) is "well behaved" we can change the order of 



DSTO-RR-0226 

I 

i *i 

$a 

* $4 

$5 

Figure J^.l: A cantilever beam with spatial-impulse loading $j. 

summation and integration. (For a more detailed discussion on the integration of series 
see Knopp [15, p. 341].) Furthermore, using Equation (4.4) in the right hand side yields 

Yhit)       Yj{x)Yk{x)dx =       Yö(xl-Hi)$i(t)Yk(x)dx 
P, Jo Jo  i=i 

oo K ~i 

Y, ^'(*) SJk = J2 **(*) /   6fa - & Yk(x)dx, 
i i J u 

where <5jfc is the Kronecker delta function, and by definition 5kk = 1 and öjk = 0 if j ^ k. 
In the left hand side of the above equations we have made use of the orthonormal property 
of the homogeneous solution (see Equation (3.4)) to get from the first line to the second 
line. We can change the order of integration and summation, on the right hand side, since 
both operations are finite. Using the definition of the delta, generalised function we have 
that 

K 

Thus our spatial-impulse loading (4.4) can be written as the sum of the beam's vibrational 
modes. 

The analysis in the remainder of this subsection can be greatly simplified if we assume 
the loading is constant in time; we will later explain the need for this restriction. By 
"constant in time" we mean that the loading is applied as a step load, so that the loading 
is constant both before and after its application. 

Under a constant temporal loading assumption, substituting Equation (4.5) into Equa- 
tion (4.3), and solving for the resulting second order DE gives the solution 

1    K 

n i=i 

where Aj and Bj are the constants from the solution of the DE. 

10 
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Using the initial conditions ipj(0) = 0 and 4>j(0) = 0 (that is, zero initial deformation 
and velocity) we have that 

i K 

^■W = ^[i-coS(42t)]^^yite). 

Hence the vertical deformation of a vibrating beam with zero initial conditions and spatial- 
impulse loading is given by 

oo     1 K 

v& *) = E 7H [i - «*(/? *)] E ** yifö) Yii?)- (4-6) 
i=i p-? i=i 

We can now begin to see that having vibration information at one point on the beam 
(say from an accelerometer) would allow us to determine the loading distribution along 
the beam. To see this more clearly differentiate the solution given by Equation (4.6) twice 
with respect to time, which gives the acceleration of the beam as 

K 

y(x,t) = J> Ecos(42*)y^)y;&)- 
i=i       j=\ 

Changing the order of summation in the above expression may be technically incorrect 
(using classical definitions of convergence), since it is not at all clear that the series is 
convergent. In fact (using classical definitions of convergence) the series may prove to be 
divergent, since for j large we have that Yj(x) « sin[7r(j — ^)x] — cos[7r(j — \)x\. (For 
an interesting discussion on divergent series see Hardy [13], who states that depending on 
definitions some "classically" divergent series are in fact convergent.) As an aside note 
that this "non-convergence" result is not unexpected, remember that an impulse function 
excites all frequencies of a Fourier series equally. The fact that the impulse function is a 
generalised function (see for example Greenberg [12]) should alert us to these apparently 
unusual results. 

If (for the sake of the argument) we assume the series to be convergent on physical 
considerations, then the above re-arrangement is permissible and the equation displayed 
above can be re-written in the form 

where 

K 

y\x.t) = J^7z(M)$i, 

oo 

(4.7) 

An example will crystalise the idea of determining the magnitude of the loads $j. Let's 
take K samples of acceleration, at times t = t\, £2, • • •, tK, from an accelerometer located 
at x = £* along the beam. As an example let K = 3, then from Equation (4.7) we have 
the linear system of K equations 

y\i*M) 
y{£*,h). 

7i(£*>*i)   72(6», <i)   73(£*, ii)' 
n{£*M)   72(6,*2)  73(6^2) 
7l(£*,*3)     72(£*,*3)     73(£*,*3). $3 

11 
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Since the vector of accelerations on the left and the matrix of constants on the right are 
both known, the above linear system can easily be solved for the vector of unknown load 
magnitudes <£>; on the right. 

If the location of the applied loads were also unknown then Equation (4.7) would yield 
a non-linear system of equations in terms of $j and &. As can be seen this non-linear 
system of equations would require 2K acceleration samples to solve for the magnitude and 
location of the unknown loads. Moreover, because the system is non-linear there is no 
guarantee that the solution would be unique. 

Consider the following thought experiment. First uniformly space the loading locations 
along the beam, and let the number of these locations K tend to infinity. Secondly, using 
an accelerometer record the vibration at one point along the beam. We can then determine 
the loading distribution along the entire beam using vibration information from only one 
point on the beam! This thought experiment assumes we can record all frequencies (that 
is, an infinite number of natural frequencies). In reality we would be restricted by the 
bandwidth capability of our measuring system, which would in turn restrict the accuracy 
of our load reconstruction capability. Remember also that we have made the assumption 
that the beam doesn't become too "wrinkled", and hence we could not accurately model 
higher modes. 

4.2    Non-Uniform Step Loading Along the Beam 

Consider the discrete loading distribution shown in Figure 4.2. This loading configu- 
ration may be represented mathematically as a set of hat loads, that is, 

K 

/(^^/i^^+i)^*), (4i 
i=0 

where & < £j+i for alH = 0,1,..., K, and 

h(x;a.b) = < 

0 if x < a, 

1 if a < x < b, (4.9) 

0    if x > b, 

is the hat function. The hat function loading representation given by Equation (4.8) uses 
the two spatial locations £o and £K+I , which we define as x = 0 and x = 1 (the fixed and 
free ends) respectively. Again both the load magnitudes $j and locations & have been 
appropriately non-dimensionalised. 

Following a procedure that is analogous to the one used in the previous subsection we 
arrive at the solution for a hat loaded beam. For zero initial deformation and velocity 
(y0 = vo = 0) the vertical deformation of a cantilever beam is given by 

oo     . K 

y(x, t) = ]T i [1 - cos(/3/
21)] ]T *, Yij Y3{x), (4.10) 

j=i n i=o 

12 
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Figure J^.2: A cantilever beam with step loading $j. 

where 

J- 7.1 

/"Si + 1 

= /       Yj(x)dx 
hi 

= — [ (sinh /3,-a; — sin ßjx) — ctj (cosh /3,-x + cos fax) ] J 

is the integral of the jth natural mode over the ith beam segment. 

4.3    Solution in Terms of Natural Modes 

The problem of choosing beam segmentations & may be alleviated by deriving beam 
loading results in terms of the beam's natural frequencies. In this subsection we reconstruct 
the loading along a beam in terms of the beam's modes. (We will see that this type of 
construction leads to a more natural solution.) Figure 4.3 shows an example of this natural 
mode loading for the distribution 1.67Yi(a:) + 0.190Y2(x) + 0.0889y3(z) + 0.390Y4(x). The 
complete load is shown as the dark grey region, while the individual decomposed modes 
are shown as dashed lines. 

In an analogous way to the previous two subsections we can express the loading coeffi- 
cients <pj in terms of the loading function f(x, t). Multiplying both sides of Equation (4.2) 
by a natural mode and integrating over the length of the beam gives the jth loading 
coefficient as 

i>j(t)= I f{x,t)Yj(x)da 
Jo 

(4.11) 

Assume the loading is periodic in time with period P, that is, f(x,t + P) = f(x,t). 
The loading coefficient (f>j may then be expanded in a Fourier series 

f>j{t) = aoj + ^2 \aij cos(uJit) + bij sm(iüit)] (4.12) 
i=i 

13 



DSTO-RR-0226 

.... «Öl 

..--*" 
..-"' 

 ...— 
,^«jL-**öBi=&f '.t -,a03 

v~ fl02 
a04 

Figure 4.3: A cantilever beam, with the loading decomposed into the 
beam,'s natural modes. The dashed lines represent the individual de- 
composed modes, while the dark grey region represent the sum of these 
modes (that is, the total loading). 

where a^ and kj are the Fourier coefficients for the cosine and sine expansions respectively 
and Lüi = {2-KI)/P is the ith loading frequency. 

The solution to the second order differential equation given by Equation (4.3) with the 
above equation substituted for the loading coefficient is given by 

(4.13) 
o                  ,  o ,      aoi     v-> O'U cos(iüit) + ha sin(wji) 

^(t) = A, cos(/f t) + Bj sin($ t) + jl + J2 -*  (ßLuj) 

(see. for example, Tuma [28, p. 180]). 

Once again using the orthonormal property of the normal modes we have from Equa- 
tion (4.1) that 

V; i(t) = /   y(x,t)Yj(x)dx. 
Jo 

Hence for the initial condition (t = 0) we have equating the above expression with Equa- 
tion (4.13) 

oo 

^ = ^ - T! - Yl 
1 

#   £«-<■*) ,2\ v and * = ? y-E 
LÜ4 

few-«?) ,2\UV 

where 

aj -   /   y(x,0)Yj(x)dx        and        TJ =  /   y(x,0)Yj(x)da 

are respectively the coefficients of the beam's initial deformation and velocity decomposed 
into the beam's natural modes. Substituting the above expressions for the constants Aj 
and Bj into Equation (4.13) gives the final form of the series expansion coefficients 

7Pj(t) cos{ßf t) 

oo 

On  + ■jjsMtft) 

i=i 

cos(cuit) - cos(ß?t) 

Ti + 

an + 

-L{l-cos(/f*)} 
A 

a0j 

'sm{uit) - {ui/ßj)sm{ßft) 

(ßl-<4) 
bij}.    (4.14) 

14 
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We want to determine how the accelerations at one location along the beam relate to 
the beam loading. Differentiate Equation (4.1) twice with respect to time to yields 

y(x,t) = J2^(t)Yj(x) 

which shows that the acceleration of the beam is related to the acceleration of the solu- 
tion coefficients ipj. Differentiating Equation (4.14) twice with respect to time gives the 
acceleration of the solution coefficients as 

^•(i) = [-/?/ cos{ß2t)] CTJ + [-ßfsm{ß2t)} TJ + [cos(ß2t)] a0j 

i=l 

' ßf COs(ß?t) - LJ? COsfat)' 
an + 

Wißj SUl{ßft) - Lüf Sm(Lüit) 
(4.15) 

In the above expression all the quantities in square brackets are known. At first it would 
appear we can reconstruct the loading along the beam if we're given a set of acceleration 
measurements at one location on the beam. Unfortunately, the constant loading (that 
is, the coefficients aoj) and the initial deformation (<jj) are entangled, and using a single 
measurement location these unknowns cannot be disentangled. 

The simplest way to see this entanglement between the initial deformation Oj and the 
constant force üQJ is to apply two substitutions. Making the substitutions 

a-, + ACT and a0j + ß*Aa 

for (Tj and aoj respectively in Equation (4.15) and simplifying returns exactly the same 
expression (namely, Equation (4.15)) regardless of the value of ACT. The fact that two 
different initial-deformation and temporally-constant-loading combinations give the same 
acceleration for the solution coefficient, means that these two unknowns (OJ and aoj) 
cannot be disentangled without additional information. 

Would using strain instead of acceleration improve this entangled situation? Yes—but 
only mildly, since we have only gained one piece of additional information instead of the 
n pieces of information we require to approximate the loading using the first n modes. 

We know that the strain is proportional to the bending moment, and hence strains are 
also proportional to d2y/dx2. (The constant of proportionality between strain and this 
second derivative is the distance, measured in the bending plane, from the beam's neutral 
axis to the desired strain location.) Differentiating Equation (4.1) twice with respect to 
the horizontal distance along the beam we have that 

d2y 
^ = ^>Wy/(,), 
dx2 (4.16) 

3=1 

and from Equation (3.6) the second derivative of the jth natural mode is 

Yj"{x) = ß2A [cosh {ßjx) - cos {ßjx)} - ctj [sinh (ßjX) - sin (ßjX)] }. 

15 
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If we use strain instead of acceleration to determine the loading, then we would use 
the solution coefficients themselves (Equation (4.14)) instead of their accelerations (Equa- 
tion (4.15)). As already mentioned above, using strain instead of acceleration improves the 
situation slightly (it gives us one additional piece of information). To see that the initial 
deformation and temporally-constant force are still entangled we will again use substitu- 
tions, but this time use multiple modes instead of just one. Making the substitutions 

ri"(WA„      ^     „_._*L£ 34, 
o\ + Atr, a0i + A Acr> aj ~ y."(g )Aa' and        a°j ~ Y"(L)^j ^ 

for CTI, a0\, (Tj, and a0j (for j > 2) respectively in Equation (4.16) and simplifying returns 
exactly the same expression (namely, Equation (4.16)) regardless of the value of ACT. AS 

defined earlier, the spatial position £* represents the location of the measurement device 
(in this case a strain gauge). 

Near the fixed end of the beam, from an implementation point of view, strain mea- 
surements would be preferable to acceleration measurements, since strains would tend to 
be high in this region while accelerations would be low.2 

In a similar way we can show that the Fourier coefficients ay and bij are entangled 
with the initial deformation coefficient <7j and initial velocity coefficient TJ respectively. 

In summary, we have shown that using acceleration or strain at one location alone is 
not enough to simultaneously determine the initial conditions and loading distribution. 
In fact, we cannot determine loading distributions that vary with time—even if we know 
the initial conditions. We can, however, determine the temporally-constant loading dis- 
tribution along the beam provided we know the initial deformation (note that we do not 
require the initial velocity to determine this loading distribution). 

5    Simulation 

In this section we report on a simulation of load prediction on a simple cantilever beam. 
The transient response of a finite element (FE) cantilever model is used to determine the 
beam's strain at one location. To test the load prediction technique developed in § 4.3, 
we predict the load distribution given the transient strain response at one location along 
the FE model. 

The beam arbitrarily chosen to verify this load prediction capability was a tube 
1000 mm in length, with a wall thickness of 10 mm and a square cross-section of 50 mm 
by 50 mm (outer dimensions). The Young's modulus and density of this tube were 
72.40 x 109 N/m2 and 2.768 x 103 kg/m3 respectively. (The Poisson's ratio and the 
shear modulus were 0.3 and 27.94 x 10° N/m2 respectively. However, these two properties 
were not necessary for the vibration response solution.) The constant load x2(l — x) was 
applied as a step function, where x is the distance (in metres) along the tube from the 
fixed end. This load represents a cubic distribution with zero load at both ends and zero 
slope at the fixed end of the tube. This step load was instantaneously applied at t = 0, 

2Thanks to Shane Dunn (a colleague at AMRL) for making me aware of this point. 
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(5.1) 

that is, the load may be represented as 

x2(l-x)h(t, 0,oo), 

where h(t,0, oo) is the hat function defined in Equation (4.9). 

For simplicity we set the initial conditions to zero, that is, the beam initially had zero 
deformation and zero velocity. 

We will first describe how we derived the so called "exact" solution for this verification 
problem in § 5.1. We then describe how the FE solution was obtained in § 5.2. Finally, we 
describe how successful the load prediction technique was, and also discuss some practical 
problems in § 5.3. 

5.1    The Exact Solution 

The exact solution of a cantilever beam's response to the step load given by Equa- 
tion (5.1) was found using the solution procedures developed in § 4.3. The magnitudes of 
the first twenty load coefficients (a0j in Equation (4.12)) of the exact solution are shown 
in Figure 5.1. 

10-1 
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•  |coef.| 

0 rel. diff. io-2 • 

■ 

i(r3 
■ 

:                                                                    • ■ 

0                       •   . 

10~4 0                                  #   •   . 
                                     ■■:■::■:.. -:■_.: 1 L:.::::-'.::...'.:::.:::':.:::: 
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                  '   'A  
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Figure 5.1: The magnitude of the exact solution's coefficients (denoted 
by •) plotted against the mode number. The relative difference (denoted 
by ()) between using the corresponding number of modes as compared to 
the 20 mode solution. 

These load coefficients were calculated using one-hundred digit arithmetics. This high 
accuracy was required because of the precision loss for the higher order modes was signif- 
icant. For example, in calculating the load coefficient for the twentieth mode at least 26 
digits of accuracy were lost.  The loss of accuracy is due to the subtraction of numbers 
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with almost identical values, which we see when we re-write Equation (3.6) (the expression 
for the beam modes) as 

Yj(x) = (1 - atj) sinh ßjx + (sin ßjX - cos ßjx) +   e~ß'x - (1 - oy) sin ßjX  . 

Despite the fact that (1 - a,) « 2(-iy+1e~n^-1/2\ see Equation (3.11), the first term 
in the above equation is not necessarily small for j large. For example, setting x = I and 
using the approximations given by Equations (3.9) and (3.11) gives the approximation 
(1 - aj) srnh/^T « (-l)j+1[l - e-^2j~% which is of order unity for j large. This sort of 
cancellation leads to the large accuracy losses in calculations involving higher modes. 

Also shown in the log-linear plot of Figure 5.1 is the relative difference between using 
only the first n modes as compared to using the first twenty modes. This relative difference 
was calculated as 

relative difference = 

1 r I 
■"XTS h/2o(£*,*t At)-y„(£*,<) 

u=o 

K -^r^M^tiAt)]1 

(5.2) 

where tßn is the number of temporal samples taken for the evaluation of the relative 
error y<x){x,t), and y„.(x,t) are the solutions with 20 modes and n modes respectively, 
and At is the time step between temporal samples. (In our case tßn = 1600 and the 
non-dimensional time step was At = y/El/(ml4)/'1600, see § 5.2 for an explanation of 
these value.) The relative difference defined by Equation (5.2) is merely the standard 
deviation of the difference between the twenty mode and the n mode solutions, relative to 
the standard deviation of the twenty mode solution. (This measure can also be thought 
of as a root mean squared or 2-norm measure.) In Figure 5.1 the relative difference of 
using fewer than twenty modes was plotted only up to ten modes, which was the number 
of modes used in the exact solution. In other words, in the following sections what we 
term the "exact" solution contains only the first ten modes. 

5.2    The Finite Element (FE) Solution 

The FE package "Nastran" was used to solve for the vibration response of our square 
tubular beam.3 The final FE model used 1600 beam elements (of type "Bar2"), and the 
beam's response was calculated with time steps of l/1600th of a second. The FE model 
was fixed both from moving in translation and rotation at one end of the beam, and was 
free to move at the other end. 

The loading was applied as point loads at the nodes joining the beam elements, and 
hence the actual loading distribution along the beam can be represented by a sum of 
spatial-impulse loads. In other words, the load may be written as 

K 

YJx\l-x)5(x-^i)/K, 
i=0 

3Thanks to Soon-Aik Gan (a colleague at AMRL) for developing the Nastran model. 
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where & is the distance (in metres) from the fixed end to the ith node and K + 1 is 
the number of nodes (K = 1600 in our case). The factor of \/K is required in this load 
distribution so that the overall force on the beam is the same as its continuous counterpart 
Jo x2(l - x)dx. By integrating the above node loading over the beam we see that the error 
in the discretised node loading is l/(12K2), and hence for our 1600 element FE model the 
total load on the beam has a relative error of 3.5 x 10-7. 

The final time step and number of elements were decided upon after comparing sever;, 
solutions with varying time steps and beam elements. The relative differences between 
the solution with 1600 beam elements (and 1600 time steps) and several other solutions 
are shown in Table 5.1. These relative differences were calculated as the standard devia- 
tion of the difference divided by the standard deviation of the 1600 element solution, see 
Equation (5.2). 

NUMBER OF ELEMENTS 100 200 400 800 

TIME STEPS (SEC) 1/100 1/200 1/400      .     1/800 

RELATIVE DIFFERENCE     9.4 X 10~4     9.3 X 10"4      2.3 X 10"4     2.9 X 10~5 

Table 5.1: The relative difference between several different FE solutions, 
as compared to the FE solution with 1600 elements and a time step of 
1/1600th of a second. 

In order to simulate data from a strain gauge, the stress on the upper side of the beam, 
50 mm along the horizontal from the fixed end, was extracted from the FE results. The 
stress was then scaled to the non-dimensional strain result given by the exact solution. 
Figure 5.2 shows, at x — 0.05, the strain response to the applied load. The exact solution 
is shown as the thick black line, while the FE solution is shown as the thick grey line. The 
difference between these two solutions—that is, the error in the FE solution—is shown as 
the thin black line. 

As was expected, the FE solution diverges more from the exact solution as time pro- 
gresses. The initial cycles (up to approximately 1.8 non-dimensional time units) has a 
comparatively small error, and hence we use this portion of the transient strain response 
to predict the load on the FE beam. Incidently the period of this first cycle is approxi- 
mately the period of the first mode, which demonstrates the dominance of the first mode. 

5.3    Simulation Results of Load Prediction 

The results are mainly shown in two forms: (i) plots of the predicted load coefficients 
versus mode number and (ii) comparison plots of the predicted load and applied load along 
the beam. 

The load coefficients (that is, the aoj in Equation (4.12)) were determined using the 
technique developed in § 4.3 and the strains derived from the transient FE solution. To 
reduce the error introduced by the discretisation within the FE package Nastran (see 
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Figure 5.2: The strain response at x — 0.05 to a constant load x2(l - x) 
applied as a step function at time t = 0. The exact and FE solutions 
are shown as the thick black and thick grey lines respectively, while the 
error in the FE solution is shown as a thin black line. 

Figure 5.2), the simulated strain measurements were taken exclusively from within the 
first period (that is, £ ^ 1.8). 

Figure 5.3 shows a comparison between the predicted and the exact load coefficients. 
As can be seen, the error is larger in the higher modes than the lower modes. The first forty- 
nine simulated strain measurements were used to determine the load coefficients shown 
in Figure 5.3. This number of strain measurements was chosen because it minimised the 
prediction error. We will see later that the number of strain measurements used to predict 
the load coefficient has a strong effect on the resulting prediction error. 

Trying to predict the first ten load coefficients with forty-nine strain measurement 
resulted in an over-determined system of equations. We solved this over-determined system 
using singular value decomposition, which is equivalent to using least squares (see, for 
example, Golub and van Loan [10, p. 242]). 

Figure 5.4 shows a plot of the predicted load distribution on the FE beam model. 
Notice the relatively high frequency oscillation of the predicted load (broken grey line) 
about the exact solution (solid black line). This oscillation is predicted by the larger 
errors of the higher modes shown in Figure 5.3. 

In order to measure how well our load prediction technique works, we define a nor- 
malised error in terms of the coefficients of the load's modes 

normalised error = 
kYlj=i(aQj -QQj)' N 

\    w EjLi (aoj 
(5.3) 
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Figure 5.3: Comparison of the exact load coefficients (denoted by Q) 
and the predicted load coefficients from the FE derived strains (denoted 
byM). 

where N is the number of modes in our exact solution (for us N = 10), aoj are the 
coefficients of the exact solution's load modes (see Equation (4.12)), and aoj are our 
predictions of üQJ. The summation in the numerator goes up to N, so if we are only- 
predicting the first n modes of the load (in Figure 5.5, for example, n is either three, six, 
or nine), then CLQJ = 0 for j = n + 1, n + 2,..., N. 

The definition of normalised error given in Equation (5.3) is in fact closely related to 
the error in terms of absolute areas. This statement shouldn't come as a surprise given 
that the form of this normalised error resembles Parseval's identity for the Fourier series 
(see, for example, Spiegel [25]). In other words, the normalised error is approximately 
equal to the area between the predicted and exact load distributions divided by the area 
under the exact load distribution (refer to Figure 5.4). 

We now justify the above statement. Substituting Equation (4.2) for the load distri- 
bution we have that 

2 

\J{x,t)?dx f 
Jo 

-f Jo 

N 

J2<f>j(t)Yj(x)     dx 

' N N-l     N 

j=l 3=1 k=j+l 

N-l     N 

dx 

= E^W/V(z)^ + 2E   E  HUM*) f1 Yj{x)Yk(x)<k 
j=l 7° 3=lk=j+l J° 

(5.4) 

where we have made use of Equation (3.4) (that is, the orthonormality of the beam modes) 
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Figure 5.4: Plot of predicted load distribution using the transient strain 
response of the FE model. The load applied to the FE model is shown 
as the solid black line, while the predicted load is shown as a broken grey 
line. The horizontal axis is the non-dimensional distance from the fixed 
end of the beam. 

in going from the second last line to the last line. In the first line of the above expressions 
the left and right hand sides are approximately equal, instead of exactly equal, because 
the number of modes in the "exact" solution is finite. Using Equation (5.4) and Holder's 
inequality for integrals (see, for example, Spiegel [25]) we have that 

jl\f{x,t)\dx<^   [f(x,t)}2dx} 

The above inequality shows the relation between the area under the load and the coeffi- 
cients of the load's modes. 

As we've already noted the error in predicting the load was sensitive to the number 
of strain measurements used. In addition, the load prediction error was also sensitive to 
the number of load modes we were trying to predict. Figure 5.5 shows how error varies 
with these two parameters. The black, dark grey, and light grey lines represent the load 
prediction of the first three, the first six, and the first nine modes respectively. The 
horizontal axis shows the number of strain measurements used to predict the load, while 
the vertical axis shows the normalised error of the resulting prediction. 

In order to use Figure 5.5 to determine how well our prediction technique works, we 
need to know the quality of the FE results from which we are deriving the measured strains. 
The relative error in the FE solution's strain response was calculated as: the root mean 
square (RMS) of the difference between the exact and FE solution divided by the RMS of 
the exact solution. For the first fifty strain measurements, the normalised error in the FE 
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Figure 5.5: The normalised error of the load prediction (vertical axis) for 
several different configurations. The horizontal axis shows the number 
of strain measurements used to predict the load. The number of modes 
used to predict the load varied from three o, through six x, to nine A 

modes. 

response was approximately 0.03, that is, about 3% error. From Figure 5.5, we see that 
only the first three modes could be predicted to within about 10% error, which is larger 
than the error in the measurements. The error in predicting a high number of modes, 
nine for example, resulted in excessively large errors (as shown in Figure 5.4, which was a 
prediction example with the least possible error). These preliminary results suggest that 
the load prediction technique is sensitive to noise, and as we show below, this is indeed 
the case for higher mode predictions. 

Before leaving Figure 5.5, note the strong relation between the error and the number 
of strain measurements used to predict the load. In most cases, the optimal solution is 
an order of magnitude more accurate than most other solutions (in fact, several orders of 
magnitude better than an ill chosen number of measurements). We also see that the error, 
after an initial jump, starts decreasing to its optimal value, after which time the error rises 
with the number of measurements used in the prediction. We can easily explain the rise 
in errors with increasing measurements by referring back to Figure 5.2, where we see that 
the errors in the FE solution rise with increasing time. 

Without knowing the exact solution a priori it's hard to determine the optimal num- 
ber of measurements to use in load prediction. As we see from Figure 5.5 if we choose too 
few measurements the results could be meaningless, while choosing too many measure- 
ments leads us away from the optimal solution. Although it's better to choose too many 
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measurements than too few, it's best to get it right. One way to achieve a near optimal 
solution would be to plot the RMS of the difference between successive predictions of load 
coefficients versus the number of measurements used for the prediction. We should see a 
minimum near the optimal solution. In other words, the coefficients are relatively stable 
near the optimal solution (see the error of the three mode solution in Figure 5.5). A plot 
of RMS difference between successive solutions would also alert the user to unstable solu- 
tions, which are probably erroneous (for example see the errors of the nine mode solutions 
in Figure 5.5). 

We now return to the issue of load prediction sensitivity to noise. In order to determine 
the effects of noise on load prediction, we will add 1% random white noise to the exact 
strain response. We will then predict the load distribution of this contaminated signal. 

Figure 5.6 shows what happens when we try to predict the higher load modes of the 
exact strain response with 1% white noise added. Figure 5.7 shows the predicted load 
response. As can be seen from these plots it only takes a small amount of error to destroy 
the higher mode signal. Twenty-five strain measurements were used to derive the load 
prediction results shown in Figure 5.6 and 5.7; this number of measurements resulted in 
the best possible approximation. Using either more or fewer strain measurements led to 
load prediction results with significantly larger errors. 

0.20 

2 0.15 

| 0.10 

Ü 0-05 
cö 
O 

-0.05 

0 

0 exact 

IE1 approx. 

0 0 0 0 0 0 

6 

mode number 

10 

Figure 5.6: Comparison of the exact load coefficients (denoted by Q) 
and the predicted load coefficients for the exact strain response with 1% 
white noise added (denoted by M). 

In contrast, the low mode signals are quite robust as illustrated in Figure 5.8, which 
shows the prediction of only the lower load modes. Forty-five strain measurements were 
used to derive the load prediction results shown in Figure 5.8, which resulted in a load 
prediction with the lowest error.   Due to the stability of the solution, choosing a larger 
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Figure 5.7: Plot of predicted load distribution along the beam using the 
transient exact strain response with 1% white noise added. The exact 
applied load is shown as the solid black line, while the predicted load is 
shown as a broken grey line. The horizontal axis is the non-dimensional 
distance from the fixed end of the beam. 

number of strain measurements led to only marginally poorer load predictions. 
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Figure 5.8: Plot of predicted load distribution (lower modes only) using 
the transient exact strain response with 1% white noise added. The exact 
applied load is shown as the solid black line, while the predicted load is 
shown as a broken grey line. The horizontal axis is the non-dimensional 
distance from the fixed end of the beam. 
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6    Discussion 

Let us now consider the assumptions we have made; we will order these assumptions 
from most restrictive to least restrictive. Future directions for load determination are then 
outlined. 

The most restrictive assumption (in fact a requirement) is that we know the initial 
deformation to determine the loading distribution (which is constant in time). (We later 
show how to overcome the restriction of a loading distribution that is constant in time.) 
In reality, for continuous monitoring of rotor blades we would not have this information. 
As such this requirement of knowing the initial deformation places a severe restriction on 
using this approach to determine the rotor blade loading distribution. 

The second most restrictive assumption (which was an implicit one) is the form of the 
PDE governing vibration in the beam. The implicit assumption made in using the PDE 
given by Equation (2.4) is that the beam's vibration is not damped. In reality, we would 
expect the aerodynamic damping to play some role, and this may cause coupling between 

the modes. 

Likewise we have ignored chordwise effects without knowing their influence (if any). 
Quite clearly if the rotor blades twist, then the stiffness properties would change resulting 
in a different vibration response (stiffness variation is further discussed below). 

The formulation we have undertaken has assumed that all natural frequencies (an 
infinite number of them) are measured. In reality all the infinite summations developed 
in this report would be truncated to finite summations, which would lead to an aliasing 
effect. We stated earlier (see page 5) that the natural frequencies of a cantilever beam are 
given by ß2

v
/EI/(ml4). Using Equation (3.9) we then have that the natural frequencies 

are 

^■-Wl^0^)- 
That is, the natural frequencies go up quadratically with mode number, and hence it 
becomes increasingly harder to capture higher natural frequencies. We would expect that 
the high frequency modes would have small amplitudes, and so the aliasing effects would 
be of second order as compared to the low frequency mode amplitudes. This expectation 
was borne out by the simulations in § 5. 

The location of the accelerometer would also be crucial under some circumstances. 
It would be imprudent to place the accelerometer at one of the lower mode's stationary 
nodes. For example, placing the accelerometer at x « 0.358 would almost certainly reduce, 
if not completely eliminate, the vibration signal from the fourth mode (see Figure 3.1). 
Fortunately, only the higher modes of a cantilever beam have nodes near the fixed end. 
For example, placing the accelerometer at x « 0.05 (that is, 5% along the beam from 
the fixed end) would only a ffect modes equal to or higher than the twenty-fifth mode. 
In general, higher modes will have their first stationary node at x « 5/(4j - 2), where j 
is the mode number. This approximation, of the first root of the jth mode, comes from 
Equation (3.6) and makes use of the relation cosh 6 - sinh 6 = e~e and the approximations 
given by Equations (3.9) and (3.12). 

Using the same principles, we can extend this load determination technique (using 
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vibration at a single point) to non-constant mass and stiffness problems. However, we 
would then be forced to solve the governing PDE numerically, which would add an extra 
degree of difficulty. We have already mentioned that a twisting blade would have varying 
stiffness. Similarly centrifugal effects would add considerable stiffness to a rotor blade; that 
is, different rotational speeds would produce different blade stiffnesses. The differential 
equation (DE) governing the vibration response of a beam subject to an axial load F is 
given by Kelly [14, p. 502] as 

Notice the only difference between the above equation and the DE we used (Equation (2.4)) 
is the term Fd2y/dx2. The above expression is derived by Meirovitch [19, p. 440-3] from 
first principles. 

We have only briefly touched on the effects of noise, especially the sensitivity of the 
solution with respect to noise. Intuitively we would expect that noise would only be a 
problem for higher frequency modes (namely the modes we have truncated), and so noise 
may not be a cause for concern. However, the results shown in Figure 5.6 (and associated 
simulations of § 5) cast doubt on this intuition. 

On a helicopter we probably couldn't easily attach an accelerometer or a strain gauge 
to a rotor blade, and hence would have to place it on some adjacent structure. This 
adjacent structure may be subject to damping and vibration itself, which may act as noise 
on the rotor blade's vibration signal. A similar but more severe problem would arise 
from the vibration of the non-measured rotor blades. All the blades would have almost 
identical vibration responses, and hence it would be hard (if not impossible) to distinguish 
the vibration signal from the desired blade (especially if measurements were undertaken 
on some adjacent structure). 

In § 4.3 (the most promising approach) we assume the loading could be decomposed 
into the shape of the natural modes (see Equation (4.11)). From the boundary condi- 
tions (Equations (3.1)) and Figure 3.1 we see that all the natural modes have both zero 
deformation and zero slope at the fixed end of the beam (x = 0). Hence we cannot 
model a non-zero load at the fixed end. In fact, non-zero loads close to the fixed end will 
necessarily involve high frequency mode shapes in their representation (due to the Gibbs 
phenomenon). 

Superficially, the assumption of temporally-constant loading distribution appears very 
severe. However, there is nothing to stop us partitioning the rotation of a helicopter 
blade into several time segments, and considering the loading constant over each of these 
segments. Given that the rotation frequency of the main rotor on helicopters is relatively 
low (4.3 Hz for the Black Hawk) as compared to strain recording capabilities, we could 
easily carry out this segmentation approach to reconstruct a temporally-varying loading 
distribution. Figure 6.1 shows an example of how we can approximate a temporally- 
varying load by discretising the load into several steps. We see in Figure 6.1 that the load 
is constant over each time interval, and changes in steps between time intervals. 

27 



DSTO-RR-0226 

/(*) 

F^\ 

s/ /ST 

K^jS 

t 

Figure 6.1: An example of how a continuous time-varying load f(t) 
(black curve) can be discretised into steps (grey curve), thus allowing 
the use of the assumption of a "constant" loading distribution over each 

time interval. 

7    Conclusion 

After developing the non-dimensional partial differential equation governing the vi- 
bration of a cantilever beam, we solved the homogeneous form using the separation of 
variables technique. 

In the main section of this report (§ 4), we showed that under certain circumstances 
we could predict the load distribution along a cantilever beam. For this load prediction we 
needed the initial deformation of the beam and either the strain response or the vibration 
response at one location along the beam. The reason we needed to know the initial 
deformation was that it and the strain (or vibration) response were related, and could not 
be separated without additional information. The need to know the initial deformation 
places a severe restriction on the practical implementation of the load prediction technique 
outlined in this report. 

Using a finite element simulation we were able to verify our load prediction technique. 
As was expected, this simulation also demonstrated the effect noise might have on load 
prediction. Namely, noise corrupted the necessary information for the higher load mode 
determination. In contrast, the low load modes were seen to be robust. 

Using a single measurement location to determine the load distribution along an entire 
beam, knowledge of the initial beam deformation was shown to be the most restrictive as- 
sumption. In operating conditions, the initial deformation of a helicopter rotor blade would 
be unknown, making the implementation of this load determination technique problematic. 
As such, it is suggested that no further consideration be given to this load determination 
approach using a single measurement location. Under normal operating conditions, multi- 
ple measurement locations would be required to determine the loading distribution along 
a rotor blade. 
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periodic loading ~, 14 
separable solution ~, 5 
shear deformation ~, 4 
simple beam ~, 4 
sparse wrinkling ~, 4 
stiffness constant ~, 3 
temporally constant load ~, 11 

beam 
distributed load, 3 
length, 3 
mass, 3 
verification ~, 17 

bending moment, 3 
boundary condition 

for 4th order DE, 5 
geometric ~, 3 
natural ~, 3 

coefficient 
loading ~, 9 
solution ~, 9 

constant 
4th order DE ~, 5 
hyperbolic ~, 5 
second order DE ~, 11 
separation of variables ~, 5 

DE, see differential equation 
differential equation, 5 
discrete 

load, 10 
location, 10 
number of ~s, 10 

error 
normalised 21 

FE, see finite element 
finite element, 19 
function 

delta ~, 10 
generalised ~, 12 
hat, 13 
impulse, see function, delta 

initial 
displacement, 15 
velocity, 15 

initial condition 
displacement ~, 4 
velocity ~, 4 

load 
axial ~, 28 

moment 
of inertia, see second moment of area 
second ~ of area, 3 
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natural frequency, 5 

order, 7 
orthogonal, 5 

functions, 9 
orthonormal, 6 

Parseval's identity, 22 
partial differential equation, 1 
PDE, see partial differential equation 
precision 

loss of ~, 17 

relative difference, 18 
RMS, see root mean square 
root mean square, 18, 24 

separation of variables, 5 
series, 7 
shear force, 3 
simulated 

strain, 20 
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be substituted for the unknown initial deformation. 
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