
Proceedings of

!„01 mis i>& 7° WORKSHOP

MULTIMEDIA
INFORMATION

SYSTEMS
DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

7-9 November 2001
Villa Orlandi - Capri - Italy

20020215 126
Edited by:

S. Adali, S. Tripathi

AO NUMBER DATE

1. REPORT IDENTIFYING INFORMATION

A. ORIGINATING AGENCY

B. REPORT TITLE ANO/OR NUMBER

C. MONITOR REPORT NUMBER

PREPARED UNDER CONTRACT NUMBER

2. DISTRIBUTION STATEMENT

APPROVED FOR PUBLIC DISTRIBUTION

_
DTK

DISTRIBUTION UNLIMITED

PROCEEDINGS

DTIC ACCESSION j

BEQUES"

1. Putyoun
onreversi

2. Complete

3. Attach for
mailed tc

4. Useuncli
informal

5. Do not or
forBtoi

DTIC:

1. Assign/

2. Return i

OCT 95" DITIONS ARE OBSOLETE

L

Proceedings of

7° WORKSHOP

MULTIMEDIA
INFORMATION

SYSTEMS

7-9 November 2001
Villa Orlandi - Capri - Italy

Edited by:
S. Adali, S. Tripathi

R&D 9206-EE-03
N681Ä71-01-M-6165 ^ j
Universita Degli Studi di Napoli Fedenco II, Italy
Proceedings

Under the auspices of:
Regione Campania
Provincia di Napoli
Comune di Napoli
Apt di Capri

With the contribution of:

Universitä degli Studi di Napoli "Federico II"
Polo delle Scienze e delle Tecnologie

Dipartimento di Informatica e Sistemistica

W&: „

ß: Universitä di Salerno

f Dipartimento di Ingegneria dell'Informazione ed Ingegneria Elettrica

»1

P
Ü Computer Associates'"

ANDERSEN

Liguori Editore

*&jSs

Workshop General Chairs:
Rama Chellappa, Univ. of Maryland
Lucio Sansone, Univ. di Napoli "Federico II"

Steering Committee:
V. S. Subrahmanian, Univ. of Maryland
Satish Tripathi, Univ. of California, Riverside
Dave Hislop, US Army Research Office

Organizing Committee:
Giuseppe Boccignone, Univ. di Salerno
Angelo Chianese, Univ. di Napoli "Federico II"
Antonio Picariello, Univ. di Napoli "Federico II'

Workshop Program Chairs:
Sibel Adali, Rensselaer Polytechnic Inst.
Satish Tripathi, Univ. of California Riverside

Program Committee
Susanne Boll
Corey Bufi
Selcuk Candan
Lei Chen
Chi-Nan Chiang
Hao-hua Chu
Isabel Cruz
Larry Davis
Derek Eager
Lee Giles
David Hislop
H. V. Jagadish
Wolfgang Klas
Brigitte Kerherve
Laks Lakshmanan
Baochun Li
Daniel Lopresti
Gultekin Ozsoyoglu
Tamer Ozsu
Antonio Picariello
Fausto Rabitti
Vijay Raghavan
Chinya Ravishankar
Kenneth Salem
Maria-Luisa Sapino
Guiseppe Serazzi
Debanjan Saha
Savitha Srinivasan
VS Subrahmanian
Utz Westermann
Haiwei Ye

Preface

We welcome you to MIS 2001, the 7th workshop on Multimedia Information Systems.
MIS 2001 is the seventh of a series of workshops that started in 1995 with the aim of

fostering interdisciplinary discussions and research in all aspects of multimedia information
systems, in all their diversity. MIS 2001 will be held in Capri (Italy), November 7-9, 2001.

MIS 2001 follows upon the success of the six workshops in this series that were held in
Arlington (VA), West Point (NY), Como (Italy), Istanbul (Turkey), Indian Wells (CA) and
Chicago(IL).

The aim of this workshop is to bring together experts in all aspects of multimedia
information systems, digital media content, multimedia database systems, networking, real-time
systems, graphics and visualization, artificial intelligence, and algorithms.

For this workshop we received about 50 papers submitted from about 10 countries around
the world. More then 20 reviewers were proposed by the members of the program committee.
Each paper was sent to three reviewers whose expertise matched the topic of the papers. It was
decided to accept 20 high quality research papers.

During MIS2001 we will have two invited talks by V.S. Subrahmanian and Maria-Luisa
Sapino, 6 research sessions on Image Retrieval, Query Processing and Indexing, Multimedia
Presentations, Multimedia Information Retrieval, Multimedia Networking and Streaming, Data
Models, and a panel session about the new trends in Multimedia Computing. We hope you will
find the technical program interesting and stimulating.

We would like to thank the Steering Committee, V. S. Subrahmanian, S. Tripathi and D.
Hislop for their leadership in organizing this workshop. We would also like to express our deep
gratitude to all the organizations which have given their financial support to this conference,
namely the Army Research Laboratories, European Army Research Offices, University of
Naples "Federico II", University of Salerno - Department of Information and Electric
Engineering, IBM Italia, IntelTec, Computer Associates, and Liguori Editore.

We hope you will enjoy your visit to wonderful Capri, and we hope to meet you again for
MIS 2002.

Rama Chellappa SibelAdali Angelo Chianese
Lucio Sansone Satish Tripathi Antonio Picariello

Workshop general chairs Program Chairs Organizing Committee

A Robust Technique to Recognize Objects in Images,
and the DB Problems it Raises

Laurent Amsaleg
IRISA-CNRS

Laurent.Amsaleg@irisa.fr

Patrick Gros
IRISA-CNRS

Patrick.Gros@irisa.fr

Sid-Ahmed Berrani*
IRISA-TMM

Sid-Ahmed.Berrani@irisa.fr

Abstract
Traditional content-based image retrieval systems
typically compute a single descriptor per image based
for example on color histograms. The result of a
query is in general the images from the database
whose descriptors are the closest to the descriptor of
the query image. Systems built this way are able to
return images that are globally similar to the query
image, but can not return images that contain some
of the objects that are in the query. As opposed to
this coarse-grain recognition scheme, recent advances
in image processing make fine-grain image recogni-
tion possible, notably by computing local descriptors
that can detect similar objects in different images.
Obviously powerful, fine-grain recognition in images
also changes the retrieval process: instead of submit-
ting a single query to retrieve similar images, multiple
queries must be submitted and their partial results
post-processed before delivering the answer. This pa-
per first presents a family of local descriptors that
support fine-grain image recognition. These descrip-
tors enforce robust recognition, despite image rota-
tions and translations, illumination variations, and
partial occlusions. Many multi-dimensional indexes
have been proposed to speed-up the retrieval process.
These indexes, however, have been mostly designed
for and evaluated against image databases where each
image is described by a single descriptor. While this
paper does not present any new indexing scheme, it
shows that the three most efficient indexing tech-
niques known today are still too slow to be used in
practice with local descriptors because of the changes
in the retrieval process.

1 Introduction
Image processing and database (DB) techniques are
together required to build large content-based re-
trieval systems. Image processing techniques are

* Sid-Ahmed Berrani is supported by a Fellowship from
Thomson Multimedia R&D France, 1 avenue Belle Fontaine,
BP 19, 35511, Cesson-Sevigne.

needed to extract descriptors encoding information
found in images. Descriptors are typically vectors of
real numbers defining points in a high-dimensional
space. The similarity of two images is assumed to
be proportional to the similarity of their descriptors,
which is measured as the distance between the points
defined by the descriptors. Similarity search is there-
fore implemented as a nearest-neighbor search or as
a e-range search within the feature space.

Traditional methods for computing descriptors in-
clude color histograms and correlograms [19, 13].
These schemes, used in QBIC [7], Virage, or Excal-
ibur, typically compute a single descriptor per image.
One descriptor therefore encodes information that is
global to one image. In this context, content-based
retrieval is performed at a coarse-grain level: the sys-
tem returns the images that are globally similar to
the query image. The system can not detect, how-
ever, that two images contain similar objects, but at
different locations, in front of different backgrounds,
from different viewpoints or differently illuminated.
To address this problem, modern image processing
techniques have recently focused on fine-grain image
recognition. Fine-grain -or object- recognition in im-
ages typically requires to compute many descriptors
per image. These descriptors are often called local de-
scriptors because one descriptor encodes information
that is local to a (small) area of an image.

The first contribution of this paper is the descrip-
tion of a method designed for fine-grain image recog-
nition that is very robust to changes in color images.
This method computes local descriptors that are well
suited for detecting similar objects in images despite
orientation changes (rotations), translations, illumi-
nation variations and partial occlusions.

In general, fine-grain image recognition impacts
the retrieval chain when searching for similar images.
First, it increases the size of the DB: Instead of stor-
ing one descriptor per image, many of them must be
stored for each image. The size of the DB is typi-
cally increased by two order of magnitude. Second,

it changes the way similar images are searched: In-
stead of searching the descriptors that are close to the
unique query descriptor (as it is the case with global
descriptors), the system starts by computing all the
descriptors that describe the query image and then
queries the DB many times, each time using a differ-
ent local query descriptor. Each (partial) answer is
kept around and once all query descriptors have been
used, answers are cross-checked and the set of similar
images is eventually returned to the user. For exam-
ple, in the context of our experiments, searching for
the images containing objects that are similar to the
ones in the query typically generates between 50 and
600 consecutive queries that search in a DB that is 50
to 600 times larger. This demanding process increases
the impact of the performance problems traditional
multi-dimensional index techniques suffer from.

The second contribution of this paper is an ini-
tial exploration of the consequences of using local
descriptors together with up-to-date database multi-
dimensional indexing strategies. While this paper
does not present any new indexing scheme, it experi-
mentally shows that the three most efficient indexing
techniques known today are still too slow to be used
in practice with local descriptors. Using today's DB
indexing techniques with local descriptors requires to
add-up the response time of each individual query,
which makes the global response time far above what
one might tolerate. We therefore list problems and
enumerate several potential solutions for building effi-
cient content-based retrieval systems supporting fine-
grain image recognition as suggested by modern im-
age processing techniques.

This paper is structured as follows. Section 2 de-
scribes the local descriptors. Section 3 overviews
multi-dimensional indexing techniques. Section 4
evaluates the performance of the three most efficient
indexing techniques known today on a large base of
high-dimensional data in the context of local descrip-
tors. Section 5 presents some open issues and an
initial set of solutions before concluding.

2 Local Descriptors for Robust
Object Recognition

The descriptors we use are an extension to color im-
ages of the fine-grain recognition scheme for grey-level
images originally proposed by [8] and extensively used
and evaluated by [17]. This scheme is highly robust
to grey-level image transformations: it detects simi-
lar elements in images despite rotations, translations,
scalings, partial occlusions, changes of backgrounds
or viewpoints,... Color increase their robustness to-

wards illumination variations. The main goal of this
section is to present the original recognition scheme
and our extension to color images.

2.1 Grey-Level Descriptors
Computing the grey local descriptors encoding infor-
mation about a single image is done in two steps.
First, specific points in the image, called interests
points, are determined such that it is very likely that
a point found in one image will also be found in an-
other image that slightly differs from the first one.
Schmid showed in [18] that the extractor by Har-
ris [10] had the best behavior. The number of points
in one image typically varies between 50 and 600,
depending on the shape of its signal. Second, the
signal around each interest point is convoluted with
a Gaussian function and its nine derivatives up to
the third order. These derivatives are mixed together
to enforce invariance properties and to make descrip-
tors robust to the changes mentioned above. Transla-
tional invariance is due to the fact that descriptors are
computed around each interest point, ignoring their
respective localization in images. The angle of rota-
tion of images can be algebraically eliminated from
the ten derivatives, providing nine resulting quanti-
ties invariant to rotations. Among them are the norm
of the gradient and the Laplacian of the signal.

It is possible to gain invariance towards illumina-
tion variations modeled by 1>->■ al + b. This model,
although simple, describes quite accurately what hap-
pens when the global intensity of the illumination
varies slightly. It is possible to withdraw parameters
a and b, resulting in 7 invariants.

Scale invariance can be achieved by adopting a
multi-scale approach [6]: the computation of the in-
terest points and their descriptors is repeated at var-
ious scales, and all the resulting values are used to
describe the image.

2.2 Extension to Color
Using color allows to cope with more realistic illumi-
nation variation models. Each pixel of a color image
is defined by 3 values which can be coded in many
ways. The RGB system was chosen because it facil-
itates the extension of the grey descriptors to color.
30 derivatives (10 per channel) are now used after
having extracted points to characterize the signal.

Rotational invariance is obtained by withdrawing
the angle of rotation. 9 invariants are obtained per
channel, and two other ones mix the three channels.
Photometric invariance is more complex because dif-
ferent illumination models can be considered. A gen-
eral model is (r', g', b')T = M(r, g, b)T+V where M is
a 3 x 3 matrix and V a vector. A very common model

Query Best Answer Query Best Answer

Figure 1: Two queries made with image fragments
and the most similar images found.

Queries

n ■

Answer

Figure 2: Three queries with cluttered complex
scenes and the retrieved image (on the right).

is obtained when M is diagonal. In this case, the de-
scriptors have 24 dimensions. Coping with spectral
variations of the light source requires a full rank ma-
trix M, but the corresponding invariants are known
only if no rotational invariance is needed.

2.3 Evaluating the Recognition Capa-
bilities of the Descriptors

Descriptors computed over all the images are inserted
into an index, off-line. The similarity retrieval first
extracts interest points from the query image and
then computes the corresponding local descriptors.
Each query descriptor is used to probe the index.
The index returns similar descriptors found in the
DB, from which it is possible to determine the id of
the associated image. It is therefore easy to count the
number of time each image id is returned by the in-
dex during the whole retrieval process. At the end of
this process, the counters allow to rank the candidate
images by decreasing similarity.

In general, evaluating the recognition capabilities
of descriptors is difficult. The results depend obvi-
ously on the intrinsic power of the descriptors, but
also on the content of the DB. For example, retrieving
sunshines is much easier with a DB containing only
sunshines and images of dark tropical forests than
with a DB containing sunshines and sunrises. The
impact of this subtle side-effect can be limited when
the DB stores images specifically chosen to stress a
particular aspect of the descriptors. For example, the
robustness to illumination variations of the descrip-
tors can be precisely evaluated if the DB includes a
series of identical images that differ only by their illu-
mination characteristics. The DB we used to evaluate
our color descriptors contains such images in addition
to other, real-life, non-specific images.

2.3.1 Evaluation with Grey-Level Images
Schmid's evaluations show the robustness of the de-
scriptors in the context of grey images. The DB used
for her experiments was made of about 1000 images:
200 pieces of art, 100 aerial images of the downtown
of Marseille (France), and 720 images of 3D objects.

The aerial images are the most challenging. They

all "look" similar (roofs do not differ so much) and
images are composed of 3D micro structures (chim-
neys, antennas, cars seen from above, etc.). In her
tests, the query images were not part of the DB. The
query images were taken during a subsequent pass
over the city. This changes the viewpoint (the fa-
cades of buildings become visible or disappear) and
the composition of images (some cars have moved).
The plane, however, took all the images in a short
time frame, making unchanged shadows.

To illustrate the recognition power of the descrip-
tors, two examples from Schmid's work are presented.
Figure 1 shows the best answer (i.e., the most simi-
lar image) when queried by a small image fragment.
Queries using fragments provide good results as long
as the size of the fragment stays above 10% of the
size of the original image. Smaller fragments degrade
the results rapidly.

Turning to Figure 2, several images of a dinosaur
seen from very different points of view were stored
in the DB. Three different query images were then
cooked-up using a complex background on which a
view (that is not in the DB) of the dinosaur was su-
perimposed. In addition, the left part of the third
query image was deleted (only the tail of the di-
nosaur remains visible). The best answer provided
by the system is the image of the dinosaur that is
on the right of the Figure (it is the point of view in
the DB that is the closest to the one in each query).
This result emphasizes the robustness of the method
caused by the locality of the descriptors and the by
the counting process.

2.3.2 Evaluation with Color Images
To evaluate the recognition power of the color de-
scriptors, we used a 40 Mb DB made of the 24 dimen-
sion descriptors derived from 1,816 real-life color im-
ages. 1,206 images come from 50 seconds of a video.
The remaining images come from a DB of still images
found on the web.1 The total number of descriptors
computed from these images is 413,412.

The still image DB is composed of sequences where
one or two parameters vary slowly in a controlled

1 http://www.inrialpes.fr/movi/pub/Images/index.html

In variance

Query A: main
light source mo-
tion

Query B: cam-
era motion

Query C: im-
age composition
variation

Query D: illumi-
nation variation

Query E: light
source spectral
variation

Query Image Answers and Scores

ICII .**,?>* Jg*0k >**$>* ,wT*

447

408

Figure 3: Illustrating 5 aspects of the robustness of the local descriptors extended to color.

manner: There are sequences with a variation of the
intensity of the light source, sequences taken by a
rotating or a translating camera, ... This allows to
specifically test the robustness of the descriptors and
of the retrieval method towards this or that parame-
ter. In Figure 3, the number of descriptors computed
for each query image is indicated below each query
image. In addition, the number of descriptors that
matched is indicated below each DB image returned
by the system. Note that the average noise level (i.e.,
the number of matches whatever the query is) is be-
tween 5 and 10. Due to space limitations, we present
here only a subset of the results showing the robust-
ness of our invariants and their increased recognition
power due to the extension to color. More results are
given in [2].

Query A: Invariance to Light Source Motion.
We first studied the robustness of our invariants to-
wards the motion of the light source (e.g., the sun
which moves during the day). Being robust to that
motion enables for example to query the system using
a morning image of a landscape and to get evening

images of that same landscape. The results in this
case mostly depend on the intensity of the shadows.
As far as the shadows are not too dark, there is still
enough information to compare light and dark ob-
jects. Some results are given by the first row of Fig-
ure 3.

Query B: Geometric Invariance. In this test,
the camera is moving with a very general motion.
The sequence has 20 images and we chose the eleventh
one as a query. 14 images of this sequence where
found as being the most similar to the query image,
as partially illustrated by Figure 3, second row.

Query C: Robustness to Changes in Image
Composition. In this test we used a sequence of
images in which various objects are added or re-
moved. Then, we picked one of these images to be
the query, and asked the system to return the most
similar images. An example is shown in Figure 3,
third row. Images with additional objects are pre-
ferred over images with missing objects because they
usually allow more matches between descriptors.

Query D: Robustness to Illumination Vari-
ations. Robustness towards intensity variation of
the main light source was tested using a sequence of
9 images. The first image of the sequence was used
as a query, and 7 of the other images were retrieved
as the most similar, as illustrated by Figure 3, fourth
row. The brightest image of the sequence is a false
negative: although it is very similar, it is quite satu-
rated and many descriptors were therefore unusable.

Query E: Robustness to Light Spectrum Vari-
ations. An interesting photometric variation oc-
curs when the spectrum of the light source varies.
Such variations are correctly handled by a model us-
ing a diagonal matrix while the variation remains
small. This can be seen on the results partially shown
on Figure 3, fifth row. For greater variations, a model
with a full rank matrix is needed.

3 Database Techniques for
Multi-Dimensional Indexing

The descriptors presented above are robust and well
suited to detect similar elements in color images. It is
therefore natural to integrate them in a large content-
based retrieval system. In this case, DB indexing
techniques are needed to speed-up similarity-based
searches. Therefore, we now present an overview
of the indexing techniques used in databases, tradi-
tional approaches first. We then focus on the two
strategies that provide today the most efficient sup-
port for multi-dimensional searches. We chose these
two strategies to built our own system. Their perfor-
mance, however, is far too slow to make the system
usable in practice, as detailed in the next section.

3.1 Traditional Approaches
Still images indexing techniques can be classified in
two families: data-partitioning index methods that di-
vide the data space according to the distribution of
data, and space-partitioning index methods that di-
vide the data space along predefined lines regardless
to the actual values of data and store each descriptors
in the appropriate cell.

Data-partitioning index methods all derive from
the seminal R-Tree [9], where bounding regions are
rectangles, spheres [21] or both [14]. There are many
strategies for merging or keeping separated regions
at each level of the tree [5]. [4] demonstrates that, in
the general case, using a 50%-quantile to split nodes
in overflow leads to the unexpected effect that, dur-
ing a high-dimensional search, the probability of ac-
cessing every page of the index gets close to 1. In
this case, the resulting access pattern to disk pages

severely hampers the search performance since it is
totally random.

Space-partitioning techniques like grid-file [15], K-
D-B-Tree [16], LSDh-Tree [11] typically divide the
data space along predetermined lines regardless of
data clusters. These techniques are known to become
inefficient when the dimension of data gets above 10
to 16 dimensions (see [1, 12]). They also face the
problem of indexing large volumes of empty space.

3.2 VA-File and Pyramid-Tree
All the techniques presented above generally work
well for low-dimensional spaces. Their performance,
however, is known to degrade as the number of dimen-
sions of the descriptors increase. This phenomenon is
known as the dimensional curse. In other words, nav-
igating within the index becomes more costly than a
simple sequential scan in high-dimension spaces when
searching nearest-neighbors.

Two innovative approaches, the Pyramid-Tree [4]
and the VA-File [20], however, have been recently
proposed to tackle head-on the dimensional curse
phenomenon: they have been designed specifically
such that their behavior does not dramatically de-
generate when the data dimension increases. These
two strategies provide today among the most efficient
support for multi-dimensional similarity search.

The VA-File approach comes from the observation
that the brute-force sequential scan proves to be com-
petitive in high-dimensions (it is often the fastest
search technique). Therefore, this approach tries to
boost the sequential search by eliminating many use-
less comparisons using rough approximations of de-
scriptors. This method manages two different sets of
data: a file storing all the descriptors, and another
file storing their geometrical approximations. The
performance of this method is at its best when this
latter file fits in main memory.

The geometrical approximations are computed us-
ing an irregular grid laid over the data space. To
build the grid, the method first splits each dimen-
sion di in 2bi slices (coded using bi bits), such that
all slices are equally full. All d dimensions are sliced
this way. The intersection of slices define 2b cells,
where b = Ylibi, numbered from 0 to 2b — 1. To
fill the index, all the descriptors are then read, and
the approximation of a descriptor is given by the cell
number into which it falls. The approximation file
is small since cell numbers are typically smaller than
descriptors. The VA-File is therefore a compression
technique.

During a search, the algorithm first uses the ap-
proximations to determine which cells can not be

part of the result (this filters out all the irrelevant
descriptors). The remaining cells are scanned in an
increasing order of distance. Starting from the closest
cell, the algorithm randomly fetches the associated
descriptors and performs distance calculations until
n nearest-neighbors are found. The filtering step re-
duces the number of records to fetch and the number
of comparisons and calculations to perform with re-
spect to the traditional sequential scan.

Berchtold et al. propose, with the Pyramid-
Tree [4], a method that divides a space [0, l]d in 2 x d
pyramids. The top of each pyramid is placed at the
center of the data space. The base of each pyramid
has a surface of d— 1 dimensions. Each pyramid is as-
signed a different number. Each pyramid is then cut
in slices that are parallel to its base. Partitioning the
data space this way has the interesting property to
create a number of cells that increases linearly (and
not exponentially) with the number of dimensions.

Sliced-pyramids enable to map any point of the
multi-dimensional space into a pair (pyramid num-
ber, slice number). Therefore, a B+-Tree index can
be used instead of a multi-dimensional index struc-
ture. B+-Trees are known to be very efficient for this
type of data and for range queries. In addition, they
nicely cope with concurrent updates and can be made
failure resistant. These two properties are very desir-
able and often lack to other solutions.

4 Performance Evaluations
The VA-File, the Pyramid-Tree and the sequential
scan proved to be efficient in the context of searches
with global descriptors. We therefore measured their
performance when used together with local descrip-
tors. The first experiment shows the performance of
the techniques when the dimension of the descriptors
increases. The second experiment shows the impact
of the size of the database on the response times.
Last, the third experiment shows the influence of the
(large) number of descriptors forming a single query
on the response times. We first describe our experi-
mental setup.

4.1 Experimental Environment and
Overview of the Database

We used the source code of the VA-File and of the
Pyramid-Tree provided by their respective authors
to perform our performance evaluations.2 We im-
plemented our own version of the sequential search.

2 We are grateful to Roger Weber who graciously gave us
his implementation of the VA-File. The source code of the
Pyramid-Tree is available on the Web page of Stefan Berchtold
(http://www.stb-gmbh.de/"berchtol/).

All the algorithms were ran on a SUN Ultra 5 work-
station running SunOS 5.7. Its CPU is a 333 MHz
UltraSPARC-Hi, with 384Mb of main memory and
8Gb of local secondary storage. All the response
times have been obtained using getrusage().

We analyzed the codes of the VA-File and of the
Pyramid-Tree to insert at the appropriate places
timer start and stop instructions. We slightly
changed the metric used by the Pyramid-Tree to
compute the distances between points in the data
space: it was Lx and we changed it to i2- With-
out this patch, the nearest-neighbors returned by the
Pyramid-Tree would not have been identical to the
ones returned both by the VA-file and by the sequen-
tial search. This patch seems to have no significant
impact of the response-time.

Our implementation of a sequential search strat-
egy assumes that all the query descriptors fit in main
memory.3 All query descriptors are read at once at
the beginning of the search. Then, each descriptor
stored in the DB is read sequentially and compared
against all the query descriptors. The sets of neigh-
bors for each query descriptor are maintained dynam-
ically. The result is delivered once the end of the DB
is reached. This implementation behaves somehow
like a join in which the smaller relation is fully fetched
before reading tuple after tuple the larger relation.

Two databases where created to perform the fol-
lowing performance measurements. The first DB, al-
ready described in Section 2.3.2, is made of 413,412
descriptors of 24 dimensions derived from 1,816 color
images. The descriptor distribution along each di-
mension is far from being uniform. For example, the
second component varies from about -20 to about 36,
and 99% of the values are between -1 and 1. Since
many performance evaluations published in the lit-
erature assume uniformity, we generated our second
DB in which the 24 x 413,412 values have been
picked between 0 and 1 using a random uniform gen-
erator. Queries use images and random vectors that
are different from those stored in the databases.

4.2 Varying Data Dimensionality
This first experiment shows the influence of the data
dimensionality on the performance of the three tech-
niques we study here. We first computed the 413,412
descriptors having 24 dimensions using real data from
the DB described above. These descriptors were then

3There are on average 150 descriptors per query. Storing
them in main memory requires less than 15K in the case of
24 dimensions. Furthermore, if we assume that 10 nearest-
neighbors are maintained for each query descriptor, then,
about 100K are required to store all these neighbors when 150
descriptors are in the query.

Real Data Uniform Data

7 10 15 20
Dimension of the descriptors

.£]

..X""-
...a'

Pyramid-Tree
Sequential

VA-File

24 50
Dimension of the descriptors

Figure 4: DB storing 413,412 desc, 150 desc. per query, increasing dimension of descriptors.

100

truncated to 2, 4, 7, 10, 15, 20 and 24 dimensions.
413,412 descriptors uniformly distributed have then
be randomly generated for the same dimensions, but
also for greater dimensions (up to 1,000). In the case
of 10 (resp. 24) dimensions, the resulting DB occu-
pies 16,536,480 (resp. 39,687,552) bytes.

Once the DB created, a query containing 150 de-
scriptors was computed using an image outside the
DB or new random numbers. We then truncated
them to the appropriate dimensions in order to create
the requests that will query the real and the synthetic
databases. The response times given by Figure 4 are
the cumulative response times of 150 consecutive re-
quests, each returning 10 nearest-neighbors.

The performance of the algorithms using real data
are illustrated by Figure 4 (left). In this case, the
performance of the Pyramid-Tree severely degrades
above 7 dimensions. Beyond, its response time gets
too big to remain competitive. The VA-File and the
sequential search exhibit better performance, and de-
grade less rapidly when the dimension increases. The
performance of the sequential search is linear with
the dimension, and searching 150 descriptors among
413,412 takes approximatively 66 seconds in the case
of 24 dimensions.

The performance of the VA-File and of the sequen-
tial search are rather similar, except when the num-
ber of dimensions is small. In this case, for 2 di-
mensions, a VA-File search takes about 24 seconds,
and about 52 seconds in 7 dimensions (25 seconds
are needed in 7 dimensions for the sequential search).
Few dimensions makes the filtering step poorly selec-
tive, and exploiting the approximations in addition
to computing many actual distances is part of the
observed overhead.

The performance corresponding to the experiments
that use uniform data are given by Figure 4 (right).

This Figure does not show any response time of
searches for data having more than 100 dimensions
since they become too high to remain significant. In
this Figure, the Pyramid-Tree is again the technique
having the worst response time. Below 15 dimen-
sions, the sequential search performs better than the
VA-File, for similar reasons as the ones mentioned
above. When data has 50 dimensions, the VA-File re-
turns its answer (recall that 150 consecutive queries
must be submitted before returning the answer) in
about 104 seconds while the sequential search needs
134 seconds. In this case, the VA-File strongly bene-
fits from the geometrical approximations and from its
filtering strategy. Above 50 dimensions, the sequen-
tial search becomes faster than the VA-File. With
100 dimensions, the sequential search needs 256 sec-
onds and the VA-file 336. These results are confirmed
by those given in the article presenting the VA-File,
because at this point, the approximation file becomes
too large to fit in main memory, increasing the num-
ber of I/Os and the overall response time.

Regardless of the nature of the data stored in the
DB (real or uniform), the response times needed to
search the 10 nearest-neighbors of 150 descriptors in a
rather small DB are big: around a minute for both the
sequential scan and the VA-File with 24 dimensions.
These response times are above what one might toler-
ate if these techniques were part of a real system. The
next experiment investigates further the influence of
the size of the DB on the response times.

4.3 Varying Database Size

Figure 5 shows the impact of the database size on the
response times of the 3 techniques. For this experi-
ment, we reused the 413,412 descriptors previously
computed with 24 dimensions, and generated new
databases by keeping only 100,000, 200,000, 300,000

Real Data Uniform Data

100000 200000 300000
of descriptors in the Database

400000 100000 300000 500000 750000
of descriptors in the Database

1e+06

Figure 5: 24 dimensions descriptors, 150 desc. per query, increasing the size of the DB.

and 400,000 of them. The requests are made of the
same 150 descriptors in 24 dimensions as above. We
could not easily create larger databases since the
amount of real data we could use was limited. It
is easy, however, to create uniform databases of ar-
bitrary sizes. We therefore created such databases,
and the larger we generated contains 1,000,000 de-
scriptors (96Mb), and this could correspond to more
than 6,500 images if we assume that an image is de-
scribed by 150 local descriptors on average.

Figure 5 (left) shows the case with real data. What
was observed in the previous experiment can be found
here again. That is, the Pyramid-Tree is more expen-
sive than other techniques, and that the VA-File is
slightly better than the sequential. Still, 15 seconds
are needed to perform a search of a DB made of only
100,000 descriptors.

Figure 5 (right) shows the case with uniform ran-
dom data. For a DB made of 1,000,000 descriptors
the response time for the sequential scan or for the
VA-File is of about 3 minutes (160 seconds). This
result clearly forbids the use of these techniques in a
real system indexing millions of images (and therefore
many more descriptors). Furthermore, our request
has only 150 descriptors, and they are, in the general
case, more numerous. The next experiment focuses
on this problem, and shows how the number of de-
scriptors per request influences the response times.

4.4 Varying Query Length
All the descriptors used in this experiment have 24
dimensions. To generate the queries used here, we
searched in our real DB images for which 100, 200,
300 and 400 descriptors were computed. We also
made-up an artificial query that has only one de-
scriptor since this is the typical case for which the
database techniques have been designed for. Forging

synthetic queries is trivial, and the largest one had
1,000 descriptors.

The results of this experiment given by Figure 6
show again that only the VA-file and the sequential
scan remain interesting. The response time, however,
rapidly grows with the number of descriptors in the
query. For example, 400 real descriptors cause the
response time to jump to 121 seconds for the VA-File
and to 185 for the sequential. With uniform data,
997 and 1,042 seconds are needed respectively for the
VA-File and the sequential with 1,000 descriptors.

The number of descriptors in each query is directly
related to the number of interest points detected in
the query image (see Section 2). This number can
clearly be very big depending on the image and on
the detection strategy. It is crucial that the cost of a
query having many descriptors does not increase so
fast, as illustrated by this experiment.

5 Conclusion and Perspectives
The dimensional curse phenomenon makes existing
multi-dimensional indexing techniques barely effi-
cient when content-based retrieval is performed on a
(traditional) global similarity criteria. Fine-grain im-
age recognition, supported by local descriptors, mag-
nify even more this phenomenon. While performance
problems are clearly seen in our experiments, worse
results are expected if the techniques were used in a
more realistic environment, where the size of the im-
age bank is far bigger than our database (up to several
Gb), where the descriptors have many more dimen-
sions (hundreds) or where the number of descriptors
used for one query is much greater (thousands).

To fully exploit the power of fine-grain image recog-
nition, it is therefore crucial to come-up with new in-
dexing techniques specifically designed to efficiently
support the use of local descriptors. We therefore list

Real Data Uniform Data

 E]

2500

2000

Pyramid-Tree
Sequential

VA-File

1500 -

o 1000 -

500

150 200 300
of descriptors in the Query

400

•-EJ

300 500 700
of descriptors in the Query

1000

Figure 6: DB storing 413,412x24d descriptors, increasing the number of descriptors in each query.

in the following several directions for future inves-
tigations aimed at tempering the above mentioned
effects.

Numerous local descriptors for a single
query creates redundancy. When local descrip-
tors are used, recognition is based on multiple
consecutive searches, each returning information
which, once accumulated and post-processed (cross-
checking), gives the final answer. Some images stored
in the database will belong to this final answer be-
cause several descriptors of the query matched with
several descriptors associated to these images. There
is therefore a certain form of redundancy in the infor-
mation used during the complete search process (be-
cause all these query descriptors are associated with a
single query image) and in the information returned
(because an image is found similar since many of its
descriptors match). It is possible to use this redun-
dancy in (at least) two ways.

First, the search process can be restricted such that
it checks only the descriptors that are in the same
cell (or page, ...) than the one in which each query
descriptor falls.4 This avoids the typical and manda-
tory lookup of all neighboring cells during nearest-
neighbors searches, which is known to be expensive
since many cells must be visited. If the search process
returns, for each query descriptor, only the nearest-
neighbors that are in the same query cell, and ignores
other potential neighbors that are in adjacent cells,
then the search cost would be reduced. The result of
each query, however, is clearly a rough approximation
of what would be returned if the normal search pro-
cess was enforced. The quality of this approximation
is improved as the time goes by since many query

4It is unlikely that all query descriptors fall in empty cells.
If too many empty cells are found, then the search can switch-
back to its regular behavior.

descriptors are used to get the images that are sim-
ilar to one image. This strategy has the interesting
property to trade accuracy (of the final result) for ef-
ficiency, yet, cross-checking what is returned by each
individual search is a natural way to consolidate the
final answer and fully uses the observed redundancy.

Another way is to stop the search before having
used all query descriptors. In this case, the search is
greedy, and each partial result returned by each in-
dividual query is immediately processed and updates
the (in-progress) final result. When this current (not
yet complete) final result has a high probability to
be the complete final answer, the search is stopped,
the remaining query descriptors are skipped, and the
result is returned to the user.

Both strategies can be combined to search only the
relevant cells (ignoring adjacent cells) using a limited
number of query descriptors.

Exploit the distribution of data to acceler-
ate the queries. Not all descriptors carry the same
amount of information: some are associated to many
images, some others are rare. Therefore, the match-
ing of two descriptors returns a more or less discrim-
inative information, making the associated database
image to be more or less likely part of the final re-
sult. In this case, a Bayesian formalism may help in
determining the probability for each match to help
converging towards the final result. In addition, it is
possible to sort the descriptors in the query such that
it starts with the descriptors that are the most infor-
mative. It is therefore possible to stop the search as
soon as the probability of having the final answer is
high enough, or as soon as the search starts using the
descriptors that do not help converging. This tech-
nique has the interesting property to refine the search
as the time goes by. In addition, the search accuracy
can easily be made controllable by the user.

Change the management of memory to
benefit from consecutive queries. Traditional
techniques assume that a single search within the
database is sufficient to return the final answer.
Therefore, what is fetch in memory during a search
benefits to the next query only by chance: if the sec-
ond query is lucky enough to use some of the data
brought in memory by the first query, then its re-
sponse time is enhanced because some data is already
cached. A better mechanism can be designed when
local descriptors are used. In this case, we know in
advance that a large amount of consecutive queries
will be submitted to the database. Therefore, it may
be interesting to pick the next query descriptor with
respect to what is already in the cache. That is, the
next descriptor used to query the database can be
the one which is the most likely to have its nearest
neighbors already in memory, brought in by previous
queries. Therefore, instead of consuming all the query
descriptors sequentially as the natural search process
does, descriptors are picked in a memory conscious
way. In addition, since all the query descriptors are
known before hand, prefetching might be used to re-
move cache misses from the critical path.

Use several low-dimension indexes instead
of a unique high-dimension index. It is known
that the cost of content-based retrieval grows fast
when the dimension of data increases. It is there-
fore potentially interesting to evaluate if querying
many low-dimension indexes instead of a unique high-
dimension index gives good results. These "small"
indexes must be constructed in such a way, and their
use must be such that the result they return is iden-
tical to what would return a regular index. A query
would then have to be transformed in multiple sub-
queries, each interrogating a given (small) index, pos-
sibly in parallel.

This scheme tries to limit the problem of dimen-
sionality curse by enforcing multiple interrogations
of low-dimension data for which efficient indexing
schemes exist. On the other hand, additional pro-
cessing steps are needed, especially in the case of a
nearest-neighbor search. [3] is an initial investigation
of this idea, limited to the case of range queries.

[3] S. Berchtold, C. Böhm, D. Keim, H. Kriegel, and X. Xu.
Optimal multidimensional query processing using tree
striping. In DaWaK, 2000.

[4] S. Berchtold, C. Böhm, and H. Kriegel. The Pyramid-
Tree: Breaking the curse of dimensionality. In ACM SIG-
MOD, 1998.

[5] S. Berchtold, D. Keim, and H. Kriegel. The X-tree :
An index structure for high-dimensional data. In VLDB,
1996.

[6] Y. Dufournaud, C. Schmid, and R. Horaud. Matching
images with different resolutions. In Proc. of the Conf.
on Computer Vision and Pattern Recognition, June 2000.

[7] C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equitz. Efficient and
effective querying by image content. Journal of Intelli-
gent Information Systems, 3, 1994.

[8] L. Florack, B. Romeny, J. Koenderink, and M. Viergever.
General intensity transformation and differential invari-
ants. Journal of Mathematical Imaqinq and Vision, 4(2),
1994. '

[9] A. Guttman. R-trees: A dynamic index structure for spa-
tial searching. In ACM SIGMOD, 1984.

[10] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey Vision Conference, 1988.

[11] A. Henrich. The LSDh-tree: An access structure for fea-
ture vectors. In ICDE, 1998.

[12] A. Hinneburg and D. Keim. Optimal grid-clustering:
Towards breaking the curse of dimensionality in high-
dimensional clustering. In VLDB, 1999.

[13] J. Huang, S. Kumar, M. Mitra, W. Zhu, and R. Zabih.
Image indexing using color correlograms. In Proc. of
the Conf. on Computer Vision and Pattern Recognition,
1997.

[14] N. Katayama and S. Satoh. The SR-tree: An index struc-
ture for high-dimensional nearest neighbor queries. In
ACM SIGMOD, 1997.

[15] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid
file: An adaptable, symmetric multikey file structure.
ACM TODS, 9(1), 1984.

[16] J. Robinson. The K-D-B-Tree: A search structure for
large multidimensional dynamic indexes. In ACM SIG-
MOD, 1981.

[17] C. Schmid and R. Mohr. Local grayvalue invariants for
image retrieval. IEEE Trans, on Pattern Analysis and Ma-
chine Intelligence, 19(5), 1997.

[18] C. Schmid, R. Mohr, and Ch. Bauckhage. Comparing and
evaluating interest points. In Proc. of the 6th Int. Conf.
on Computer Vision, IEEE Computer Society Press, 1998.

[19] M. Strieker and M. Swain. The capacity of color histogram
indexing. In Proc. of the Conf. on Computer Vision and
Pattern Recognition, 1994.

[20] R. Weber, H. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, 1998.

[21] D. White and R. Jain. Similarity indexing with the SS-
tree. In ICDE, 1996.

References
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data
for data mining applications. In ACM SIGMOD, 1998.

[2] L. Amsaleg and P. Gros. Content-based retrieval using lo-
cal descriptors: Problems and issues from a database per-
spective. Pattern Analysis and Applications, 4(2/3):108-
124, 2001.

10

A Semi-Automatic Object Extraction Tool for

Querying in Multimedia Databases*

Ediz §aykolt, Ugur Güdükbay and Özgür Ulusoy
Department of Computer Engineering, Bilkent University

06533 Bilkent, Ankara, Turkey

{ediz, gudukbay, oulusoy}@cs.bilkent.edu.tr

Abstract

Considering the complexity and huge volume of image and/or video data, efficient methods
need to be developed for querying multimedia databases. A well-known technique used
for querying multimedia data is query-by-feature (e.g. color, shape, texture, size) of the
objects residing in images and/or video frames. In this paper, we propose a tool for
extracting objects from images and/or video frames, called Object Extractor, as well as
the ways of coping with the object features within extracted objects. The tool is semi-
automatic in the sense that the user specifies the colors on the object by clicking the
mouse to make the tool capture object pixels. In order to extract objects, an improved
version of the Flood Fill algorithm for polygon filling is provided. The extraction algorithm
uses filtered images to perform better. Moreover, the experimental results obtained for
evaluating the performance of the tool in extracting objects are presented. It is shown
through these results that a few mouse clicks would suffice to extract objects effectively.

Keywords: Object extraction, flood filling, color median filtering, color space transfor-
mations, color quantization.

'This work is supported by Turkish Scientific and Technical Research Council (TÜBITAK) under the
grant number EEEAG-199E025.

t Author for Correspondence

11

1 Introduction

Advances in multimedia technology accelerate the amount of digitized information so as
the data stored as image and video content. Both of these data types require application-
dependent processing strategies and easy-to-handle storage methods when stored in a
database. As far as the querying process of image and video databases is concerned,
spatial (for both image and video data) and spatio-temporal (for video data only) as
well as semantic information are taken into account. Semantic querying requires more
sophisticated techniques that encode the semantic meaning of the image and/or video
content. Spatial and spatio-temporal querying necessitate a query pre-processing phase
in which the objects and their corresponding features (e.g. color, shape, texture, size)
are extracted. The motivation of the tool presented in this paper is to facilitate the
pre-processing phase of the query-by-feature sub-system of the video database querying
system being developed at Bilkent University [7].

There exist a considerable number of multimedia data querying systems in the liter-
ature [5, 9, 13, 18]. The pre-processing phase in most of these systems includes object
extraction in order to figure out the hidden object-based information from the image and
video data. Based on the type of user interaction in the pre-processing phase, the object
extraction methods can be grouped into three categories:

Fully Automatic Extraction Methods: In these methods, the extraction process for
image and/or video data is performed automatically. Since the whole process lacks
user interaction, not all types of images and video can be handled with this approach.
The QBIC system [9] employs a method based on Foreground/Background approach
for fully automatic object extraction. This method processes only images and video
frames having a separable background [1]. Jain and Vailaya employ edge-detection
algorithms for extracting object boundaries from images [11]. Their method for edge-
detection is the famous Canny Edge-Detection algorithm [3]. Chang et al. describe
automatic feature extraction methods for color, texture and shape features of images
in [4].

Semi-Automatic Extraction Methods: In these methods, the user assists the object
extraction process. One way of assistance is to facilitate the object extraction of
an image via clicking on the object pixels to visualize the object area. Flood Fill
algorithm for polygon filling [10] may be adopted to determine the pixels in the
object area for extraction process. Another semi-automatic method is based on
the snakes concept of computer vision [12]. In this method, the user specifies a
bounding polygonal region for an object and the object boundaries are determined
from this region automatically. The QBIC system uses these techniques for the
object extraction process [1]. The range of images and/or videos handled by these
types of methods is larger than that of fully automatic methods but there still exist
some types of data that need more user assistance for a proper object extraction.

12

Manual Extraction Methods: In these methods, the user-computer relation is more

than interaction, because the user manages all the extraction process. For example,

in order to encapsulate an object region with a (minimum) bounding polygon, the

drawings of the users will be used as is. Obviously, any type of image and video data

can be handled manually since any kind of data is perceptually comprehensible to

the user. However, the manual extraction is a very tedious process and cannot be

applied to very large datasets.

The, more the user participates in the extraction process, the less the image restric-

tions and requirements for proper object extraction are needed. The basic aim in object

extraction is to minimize the user interaction throughout the extraction process without

discarding any type of image or video data. Thus, a powerful extraction system should

include tools for each of the above extraction methods not only to extract objects but also

to extract the corresponding object features.

The Object Extractor tool proposed in this paper extracts objects in images and/or

videos semi-automatically. In order to increase the quality of the processed images and/or

video frames, color space transformations, quantization and color filtering are employed

before processing the input. The filtered input leads to an increase in the performance of

the object extraction algorithm. Flood Fill for Extraction (FFE) algorithm is employed for

extracting objects and as a result of the filtering steps, the tool provides an environment

for processing images and/or videos effectively.

The organization of the paper is as follows: Section 2 summarizes the techniques related

to the principles of our Object Extractor tool. Sections 3 explains the design of Object

Extractor, Section 4 describes the object extraction algorithm. Section 5 presents the

experimental results obtained for evaluating the performance of the tool. Finally, Section

6 concludes the paper.

2 Background Information

One of the most important features of objects in image and video data is color. Each pixel

in an image has a three-dimensional color vector and different color spaces encode color

information based on different approaches. The most famous color space model is the Red-

Green-Blue Model (RGB) where the color vector of a pixel p is the compound of red, green

and blue channels vp = (r,g,b). Another color space model is the Hue-Saturation-Value

Model (HSV) that is based on color descriptions rather than individual color components

and makes the model unique among other color space models vp = (h,s,v). The RGB

model has a major disadvantage: it is not perceptually uniform. Therefore, most of the

systems use color space models other than RGB, such as YIQ [10].

The color regions are perceptually distinguishable to some extent. The human eye

cannot detect some little color differences and may perceive these very similar colors as

13

the same color. This leads to the quantization of color, which means that some pre-
specified colors will be present on the image and each color is mapped to some of these
pre-specified colors. One obvious consequence of this is that each color space may require
different levels of quantized colors, which is nothing but a different quantization scheme.

In Figure 1, the effect of color quantization is illustrated. Figure 1 (a) is the original image
with RGB color space and (b) is the image produced after transformation into HSV color

space and quantization. A detailed explanation of color space transformations (from RGB
into HSV) and quantization can be found in [17].

Figure 1: Transformation, quantization and color median filtering of an image, (a) Orig-

inal image, (b) Image produced by applying RGB to HSV color transformation and
quantization, (c) Image produced after applying color median filtering.

Moreover, not all the colors in the image are dominant. Dominance is in the sense
that some of the colors may reside in a region relatively small than the others. The color
median filtering technique [14], a famous method for neighborhood ranking, eliminates
these non-dominant colors and produces a filtered image (Figure 1(c)). This technique
facilitates the object extraction process because it also eliminates the noise of the color
on the object boundaries to some extent.

3 Design of Object Extractor

3.1 Overall Architecture

The Object Extractor tool extracts objects from images and videos semi-automatically
with the help of the improved version of the flood fill algorithm. The overall architecture
of the tool is shown in Figure 2. Videos are segmented with Fact Extractor in the sys-
tem and keyframes of the videos are processed as images. An image is passed through
quantization and color median filtering steps and then the final image, where the object
is to be extracted, is produced. This filtered final image is processed with Flood Fill for

Extraction Algorithm to extract the objects along with their features. Since we deal with
realistic images and videos in the system, automatic extraction of objects and features
would be inadequate, so that the user intervention becomes inevitable. The last step in

the process is storing the features of the extracted objects in the object feature database.

14

Thus, Object Extractor is one of the basic tools that cooperate with the query-by-feature

sub-system of our video database and querying system [7].

IMAGE

VIDEO

Transformation
Quantization

Fact
Extractor

Color
Median
Filtering

keyframes

"}.

i extracted objects
Object feature j^

database \

Pre-processing Phase

Object Extraction Phase

Filtered Image

user clicks.

repainting

Flood Fill for
Extraction (FFE)

Algorithm

Figure 2: Overall architecture of Object Extractor

The image whose objects to be extracted passes through a color space conversion step
and the color vectors of all of the pixels are transformed from RGB color space into HSV
color space. Then, this data is used in the quantization step yielding 18 hue, 3 saturation,
3 value levels and 4 gray levels. The color quantization step employed here is very close
to the one proposed in VisualSEEk [18] and VideoQ [5]. After completing this step, the
median filtering algorithm is applied to eliminate the non-dominant color regions.

The Flood Fill for Extraction (FFE) algorithm, an improved version of the flood fill
algorithm, is designed to specify object regions. The color of the user-clicked pixel initiates
the process and it forks into four branches corresponding to the four neighboring pixels
(north, east, south and west). As soon as the difference between the processed pixel's
color and the initiative pixel's color exceeds a pre-specified threshold, the execution stops.
The user may continue to specify new initiative pixels as necessary to extract the object.

In the pre-processing phase of the Object Extractor, color space conversion and color
quantization are applied to the input, thus the FFE algorithm performs better. This
yields an increase in the effectiveness of the technique. Moreover, since the objects are
extracted separately, images containing more than one image are handled successfully. The
Object Extractor provides an environment where a wide range of images and/or videos are
handled effectively by the help of the adapted and improved techniques.

3.2 The User's Assistance

Due to the semi-automatic nature of Object Extractor, the user assists the extraction
process. The tasks of the user are the identification of the colors in the extracted object
and then labelling the object. An appropriate indexing scheme can be adopted for these
labelled objects and the indexed data can be queried for the extracted object features such

15

as color and shape. Faloutsos et al. propose an effective querying methodology that is

based on quadratic color histogram distance considering the perceptual similarity of colors

via cross-correlation [8].

Definition 1 (t-neighborhood) The t-neighborhood of a pixel p with respect to color is a

contiguous set of pixels tp, where the Euclidean distance between color vectors of p and

the pixels on the line segment ppi; such that pi e tp, is not greater than a color difference

threshold value t. It is obvious that p 6 tp. D

In the current implementation of our tool, the user clicks on a pixel pc on the image and the

FFE algorithm is initiated with the pixel pc and the current color difference threshold t.

During this execution, the pixels in tp are repainted for pc. However, if the object bounds

unprocessed pixels, the user may click onto another pixel for extracting other parts of the

object. Having satisfied with the extracted object region, the user labels the object.

lloaniill Aiiiuiiiliiii

US
Illllllllilllllllillillll

' | t03Kil<ft?ga \ Clear Bcna " &ji^föfäff$ 'j

: 'i

, 1 ä)r»shoia I* 8.42 :

Figure 3: The user interface of Object Extractor

3.3 The User Interface of Object Extractor

The user interface of Object Extractor has been developed in Java programming language

and it provides the following functionalities. First of all, since median filtering alleviates

color quantization on the image and filters out the non-dominant color regions, the user

can see the effects of the median filtering algorithm separately in the tool. This gives the

opportunity to the user to decide whether to use median filtering or not. Based on this

decision, the color transformation and quantization steps produce a better image. The

default color difference threshold is 0.4, which is determined by a reasonable number of

experiments. The user interface of the Object Extractor tool is shown in Figure 3.

Moreover, the main usage of this tool is to extract objects for the query-by-feature sub-

system of the rule-based video querying system that we develop [7]. As seen in Figure 3,

16

'run query' button activates this querying operation with the previously extracted objects.
The image to be queried is also segmented with this tool and the objects are extracted.
Since all of the extracted objects are handled with a proper indexing mechanism, the
extracted objects of the query image can be queried with the existing objects. The details

of the querying methods can be found in [16].

4 The Object Extraction Algorithm

The Object Extractor tool processes both images and/or video frames. The method it
employs for both types of data is very similar since each video frame can be treated as a

single image. The Fact Extractor tool inside the video database system handles video data
and produces video keyframes. Thus, videos can be processed in the Object Extractor tool

through their keyframes.

procedure FloodFillforExtraction(Pixel p)
// INPUT: a single pixel p
// the INITIATIVE_PIXEL is global to the method and
// it holds the user-clicked pixel

1. if (pixelProcessed(p))
2. return;
3. endi f
4. setProcessed(p);
5. if (thresholdPassed(p, INITIATIVE_PIXEL))
6 . paint(p);
7. FloodFillforExtraction(left(p));
8. FloodFillforExtraction(right(p)) ;
9. FloodFillforExtraction(up(p));
10. FloodFillforExtraction(down(p));
11. endif
endprocedure.

Figure 4: Flood fill for extraction (FFE) algorithm

As discussed above, Flood Fill for Extraction (FFE) algorithm works with a trans-
formed, quantized and median filtered image. When the algorithm halts, it repaints
some of the pixels on the image and the user may continue the extraction as many times
as he/she wants. The pseudo-code of the FFE algorithm is given in Figure 4. When
the user clicks on a pixel in order to initiate the algorithm, this pixel is stored in the
INITIATIVE.PIXEL and used globally in the procedure. Line 1 checks the stopping
condition and the lines 4—11 correspond to the recursive part. Each pixel is processed
only once due to the if-statement at the beginning. Since a pixel may be visited more
than once, this fastens the algorithm significantly. On the other hand, the test for the
threshold in line 5 is performed by evaluating the Euclidean distance between color vectors
of the two pixels, namely p and INITIATIVE-PIXEL. If the test succeeds, the pixel
p is repainted and the algorithm calls itself recursively for the neighboring four branches.
The whole process stops when there is no executing branch in the recursion tree.

17

^^^•JjÜ

tummuvsttttm ■* **&&***&*&. VCT i

jii-iatrcrart

EE33EC3SB ■ - I»!1

•■ »
IS."

|;p^M^t:§«*E8Sp

HefldhB Algorithm ■» ^-jfi^istwsftf *«

 jmse.'.'.'.

Claar

li^ililÄliiSlil ftodilftftAipWMiRi *r £%,WjtJws<5 res

ialrcrafl

;%ose

!;dd_bus

Sclock

Figure 5: Experimental snapshots for four images sampled in Object Extractor

5 Experimental Results

The experiments to evaluate the performance of the Object Extractor tool are conducted
with the images from Berkeley University Blobworld Project [2] and CoffeeCup Software
Photo Gallery [6]. In the experiments, color median filtering is enabled with 5x5 box
filters and applied three times to improve smoothing. The results are presented in Table 1
where each row shows the number of mouse clicks during extraction of an object with
different threshold values. A detailed analysis and evaluation of Object Extractor with
various median filters as well as comparisons with some of the existing object extraction
methods and photo editing tools using similar techniques in terms of effectiveness can be
found in [15].

The tool gives promising results when the objects are on a separable background in
the image. This restriction is inevitable but softened with quantization and color median
filtering. This lies in the observation that median filtering facilitates the separation of
background from the foreground of the objects. However, the tool performs better in
extracting objects containing noise or non-uniformity on the boundaries as well as objects
containing holes since it is usually agreed that automatic object extraction tools have
difficulty in extracting such objects. Moreover, most of the objects are extracted with a

few clicks in different color regions of an object and the semi-automatic nature of the tool

18

Table 1: Objects versus color difference threshold t. X means that the repainted region is

larger than the object region when extracted with the threshold.
Number of Clicks

Object t=0.21 t=0.42 t=0.56
Rose 3 1 X
Aircraft 5 2 X
DDeckerBus 7 3 1
AlarmClock 8 2 2
BlackGirl 8 2 X
WorldMap 9 2 X
Tiger 3 1 X

does not have a considerable effect on the speed of the extraction process.

6 Conclusion and Future Work

The Object Extractor tool is a semi-automatic tool used for extracting objects from image

and/or video data. In our video querying system, the queries that specify object features

is processed with the help of this tool. The extracted object features are basically the color

content and the shape information (in fact the boundary) of the objects. For the former,

the color content of the whole image can be stored in order to respond to image-based color

queries. For query-by-shape, the boundary information of the extracted objects can be

stored as well as some other shape features such as turning angles, area, center coordinates,

etc. The operations necessary for query-by-feature sub-system and the improvements on

object extraction tool are going to be performed in parallel. One possible improvement

in Object Extractor will be enabling the users to specify boundary polygon rather than

clicking onto the object pixels.

Along with the described work, we have also studied extracting objects automatically

not only from images but also from video frames. Since disabling user interaction through-

out the object extraction process requires the use of more automatic image processing

methods on the images and/or video frames, this is a relatively hard task to achieve.

Adopting appropriate indexing structures onto the extracted objects based on the fea-

tures that are stored in the object feature database is another ongoing project for our

rule-based video database and querying system.

References

[1] J. Ashley, R. Barber, M. Flickner, J. Hafner, D. Lee, W. Niblack, D. Petrovic. Automatic
and semi-automatic methods for image annotation and retrieval in QBIC. Proceedings of
SPIE-Storage and Retrieval for Image and Video Databases III, Vol. 2420, 24-35, 1995.

19

[2] Berkeley University Blobworld Project Start Images, Berkeley University,
http://elib.es.berkeley.edu/photos/blobworld/start.html.

[3] J. Canny. A Computational Approach to Edge-Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-8, 679-698, November 1986.

[4] S.F. Chang, J.R. Smith, H. Wang. Automatic Feature Extraction and Indexing for Content-
Based Visual Query. Technical Report CU/CTR 414-95-20, Columbia University, January
1995.

[5] S.F. Chang, W. Chen, H.J. Meng, H. Sundaram, D. Zhong. VideoQ: An Automated Content
Based Video Search System Using Visual Cues. ACM Multimedia'97 Conference Proceedings,
313-324, Seattle, WA USA, 1997.

[6] CoffeeCup Software Photo Gallery, http://www.coffeecup.com.

[7] M.E. Dönderler, Ö. Ulusoy, U. Güdükbay. A Rule-Based Approach to Represent Spatio-
Temporal Relation In Video Data. ADVIS'2000 Proceedings, LNCS Vol. 1909, T. Yakhno
(Ed.), 409-418, 2000, Springer-Verlag.

[8] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petrovic, R. Barber. Efficient and
Effective Querying by Image Content. Journal of Intelligent Information Systems, 3(3/4) :231-
262, 1994.

[9] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petrovic, D. Steele, P. Yanker. Query by Image and Video Content: The QBIC
System. IEEE Computer Magazine, 28(9), 23-32, September 1995.

[10] D. Hearn, M.P. Baker. Computer Graphics. Prentice Hall, Inc., New Jersey 1994.

[11] A.K. Jain, A. Vailaya. Image Retrieval using Color and Shape. Pattern Recognition, 29(8),
1233-1244, August 1996.

[12] M. Kass, A. Witkin, D. Terzopulos. Snakes: Active Contour Models. International Journal
of Computer Vision, 321-331, 1998.

[13] A. Pentland, R.W. Picard, S. Scarloff. Photobook: Tools for Content-Based Manipulation of
Image Databases. Proc. Storage and Retrieval for Image and Video Databases II, Vol. 2,185,
34-47, SPIE, Bellingham, Washington 1994.

[14] J. Russ. The Image Processing Handbook. CRC Press in cooperation with IEEE Press, 1999.

[15] E. §aykol, U. Güdükbay, Ö. Ulusoy. A Semi-Automatic Object Extraction Tool for Storage
and Retrieval in Multimedia Databases, journal paper in preparation, 2001.

[16] E. §aykol. Web-Based User Interface For Query Specification in a Video Database System,
M. Sc. Thesis, Bilkent University, September 2001.

[17] J.R. Smith, S.F. Chang. Tools and Techniques for Color Image Retrieval. IS&T/SPIE
Proceedings, Vol 2670, In: Sethi, I.K., Jain, R.C., eds., Storage&Retrieval for Image and
Video Databases IV, 426-437, February 1996.

[18] J.R. Smith, S.F. Chang. VisualSEEk: A Fully Automated Content-Based Image Query
System. ACM Multimediale Conference Proceedings, 87-98, NY 1996.

20

A Data Model for Querying Wavelet Features in Image
Databases

Simone Santini* Amarnath Gupta^

Abstract

Multimedia databases deal with storage and retrieval of complex descriptors of im-
age contents, called features. Traditional techniques consider features as "black boxes,"
often represented as vectors for which the only operation defined is distance compu-
tation. This "modus describendi" resulted in the widespread utilization of similarity
queries, which rest solely on the computation of distances between feature vectors.

The capacity to express queries more complex than simple similarity, however, rests
on the possibility of describing and manipulating the structure of the features. In order
to achieve this, features should be described as complex data types inside the database,
and opportune operators for manipulating these data types should be defined.

In this paper we try to demonstrate the efficacy and feasibility of such a program
by modeling a widely used image feature: the wavelet transform. We represent features
using a complex data type derived from arrays, and propose a basic algebra from which
operators can be derived to manipulate and query wavelet features.

1 Introduction

Several factors distinguish multimedia database systems from relational or complex object
databases. Specifically relevant to this paper is the following. Unlike a traditional database,
the tasks of storage and retrieval in a multimedia database are not performed on the original
"media objects", but on a set of derived objects called features, each produced by applying
a series of transformations to the media objects. Most often, regardless of the set of trans-
formations applied, a feature is modeled as a "vector", and the only way to use this vector is
through a distance function that compares two vectors and returns a distance [?, ?, ?]. The
choice of making vector comparison the sole mode of image retrieval has had mixed benefits.
On the one hand, it has led to the discovery of many effective features that work remarkably
well in retrieving images with specific characteristics. However, it has also has a negative ef-
fect on the data management aspect of the problem. Most of the database-oriented research
has been to develop improved query languages and index structures for similarity-search,
and for performing result ranking in the presence of feature-weights. A specific area that
has remained underexplored is that the database almost never utilizes the internal structure
of a feature. For example, while a histogram is a very popular class of feature (used in var-
ious forms such as color histograms, co-occurrence matrices, pattern spectra, image shape

*Praja, Inc. San Diego, CA, ssantini@praja.com
*San Diego Supercomputer Center, gupta@sdsc.edu

21

spectra etc.), a typical multimedia database would often treat a histogram as an opaque
object that can only be compared to another histogram, but would usually not interpret
it as an array on which patterns can be sought. Thus few image databases can address a
query like: "find other images having histograms that have a sharper peak in this range of
values, and a deeper valley in this other range" [?].

The ability to express queries other (and possibly more complex) than similarity queries
can be achieved when the data models for image database systems can capture the semantics
of the features (e.g., two histograms with different number of bins can be compared by
coarsening one), and are equipped with a larger set of operators to manipulate the feature
structures.

The purpose of this paper is to demonstrate the efficacy of such a data model using a
popular and complex feature—the wavelet transform [?]. The model assumes that a suitable
wavelet transform has already been computed on an image. It offers a method to represent
the resulting feature in a manner that enhances the ability to manipulate the model and
retrieve images by complex retrieval operations on this feature. This enables us not to
precompute all possible features when the images are inserted, but compute a primary set
of features (such as the wavelet coefficients at k levels), and compute a more targeted feature
to suit the query at run time. As an example, consider a query that attempts to retrieve
all images that have a texture pattern, and the feature database stores significant wavelet
coefficients at multiple bands. If the texture pattern of the query image is found to be most
dominant in a few of the LH wavelet bands and not in the others, it may be more efficient
to select out only the qualifying LH bands to perform the distance computation rather than
using a predefined feature over all bands. We illustrate however, that our model does not
preclude the precomputation of any feature—in fact, it can express any similarity query
based on wavelet features that have been defined in literature.

2 Preliminaries

Our data model for retrieval of wavelet features is based upon the concept of complex objects
developed extensively in database literature. A complex object model assumes that a piece
of data can be either an uninterpreted base type T such as integer and Boolean, or it can be
an instance of an abstract data type, created by type constructor functions. Typical type
constructors are sets, lists, and tuples, denoted respectively as {T}, [T] and XTJ, where T is
any base or derived type and the tuple operation creates a "record" data type where each
attribute ai may have a different data type U. Our data model extends an existing data
model developed by Libkin, Machlin and Wong for array objects (henceforth the "LMW"
model [?]) which is itself based on an extension of the Nested Relational Calculus. The
LMW model considers arrays as functions from a rectangular index set to a specific data
type (the data type of the array; arrays can be created from other arrays by specifying a
function based upon a minimal set of operators. Specifically, in addition to set and tuple
manipulation operators, the LMW model allows arithmetic operations on natural numbers
and four operations to generate and extract an element out of natural number indexed
fc-dimensional arrays \[T]\k. The array algebra of LMW is based on three operations:

• The array constructor |[e|ii < ei,... ,ik < ek]\, where J/,eN,eÄeN for all h, and e

22

is an expression generating values of type t. The constructor builds the array whose

value for indices i\ ■ • • ik is \e.i\ •••ik-

• The subscript function e[i], with i G Nfe, which computes the value of the array
function for a given index.

• The dimension function dirrik(e), which returns a list of all the dimensions of the
array, and the derived functions dim,k,i{e) which return the ith dimension of he array.

A fourth operation, for transforming an indexed set into an array, will not be used in
this paper. The model additionally allows any Boolean-valued predicate (of the form if
f(x) o g(y) then true else false), where /, g and o are defined on the base and constructed

types.
The LMW model also admits multiple values per cell. In this paper, we will not consider

this extension. However, we will allow the array to consist of another complex type. For
example, if Typecolor = red, green, blue is a defined data type and A is a 2D array of type
color, then A[i,j].red denotes the red value of the (i,j)th cell, and A.red is a shorthand to
construct an array only with the red component of all cells projected out. Given an array
A, we will also refer to the expression that generates that array as e^. The elements of teh
arrays will then be generated by the function ex[«] = XeA-i-

In this paper, we will extend this model by creating the models and operators for a
new type constructor called index-constrained set on multi-dimensional arrays to model
multi-band wavelet features, and by defining regions with arbitrary shapes on single and
constrained array-sets. Although we will follow closely the LMW model, all the examples
will be in rather standard ML [?], augmented with array operations written in a rather
straightforward notation. For the sake of clarity, we will avoid the complete (and rather
complex) notation of [?] which the reader is invited to consult anyway. The completion of
the examples and their casting in the complete notation should be straightforward.

We would like to reiterate that the primary rationale for adopting a complex object
model for multimedia features is that we believe the current approach treating features
as black boxes, severely restricts the expressiveness of retrieval operations that could be
applied on features, and exposing the internal structures of features through a well- defined
set of types and operations alleviates this limitation. At the same time, we do not profess
the use of a general-purpose programming language to perform arbitrary operations on
features, because that approach reduces the applicability of efficient search structures on
large sets of data.

3 Regions in Arrays

Dealing with images often requires defining regions with arbitrary shapes. For this reason,
we extend the array algebra with the concepts of region and shape. In order to do this, we
first introduce the "universal null value" cf>. The value <f> doesn't have a type, but variables
of any type can take the value <f>. Moreover, if o is an operator o : T x U —► V (that is,
an operator that takes values of types T and U and returns a result of type V), we assume
that 4> is identified with the neutral element of o.

23

Figure 1:

Definition 3.1. Given an expression e, a region S over A is a pair S(e) = (A,E), where
A = \[e\ii < ei,..., ik < ek }\, and E = {u\,..., un}, u, G Nfc is a collection of indices. The
values ei • ■ • e/j are the size of the shape.

Functionally, the region 5(e) is the array defined as

X(ifi G E then Xe.i else 4>).i (1)

The region of Figure ??, for instance, is defined as A = |[e|0 < i\ < 7,0 < i2 < 7]\,

£ = {(1,2), (1,3), (2,1), (2,2), (2,3), (3,2)}

The dimensions of the array A are the intrinsic dimensions of the shape and, when the
shape is applied to an array expression, they will be the dimensions of the resulting array.
A region can also be applied to an array. In this case, the effect will be the same of applying
the shape to the expression that generates the array, but the dimensions of the resulting
array will be those of the array to which the shape is applied. For instance, given a two-
dimensional array A of size 256 x 256, the expression S(eA) is a 9 x 9 array (the size of
the shape), while the expression S(A) is a 256 x 256 array containing the same shape and
padded with <f) values.

Formally, for a shape expression is still possible to define the function dimk which,
in this case, will return the dimension of the intrinsic size of the feature. Note that this
function depends on the shape only, and is different from the same function applied to an
array to which the shape function has been applied. For the shape above, for instance, it is
dim2(S) = [9,9], dim2(S(eA)) = [9,9], and dim2(A) = [256,256].

Unions and intersections of regions can be defined in the standard way.
Region can betransformed into "floating" shapes by adding a parameter that represents

their position in an array. If j G Nfc, then a shape is a function F(e) : Nfc -> |[r]| that,
for every instantiation of the location parameter j, generates a region with the upper-right
hand corner located in position j. In other words, F(e)(j) is the pair F(e)(j) = (A, E) with
A and E defined as before but where e generates the function

A(if i G E + j then Xe.i — j else (f>).i, (2)

where E.+ j = {i + j : i G E}. Note that, for correctness of notation, the shape is defined
as a curried function, although in general the more common notation F(e,j) will be used.

24

The usage of shapes outlined in this definition is analogous to the use of "masks" or
"sliding masks" in image processing. Nevertheless, formally, a shape is not an array, but a
mapping from array-defining expressions to arrays. A shape applied to an array-generating
expression, like s(e), is an array. A floating mask F(e), on the other hand, is a function
from indices to arrays, that is: F(e) : Nfc —> |[r|.

An operation often required when manipulating features is to determine whether a given
property is verified for a given shape in any position of the array. This can be done using the
sweep function, whose semantics can be defined for two dimensional arrays using monoid
comprehension [?] as

3(F(e), A,P) = or{P(F(e)(j),A)\j <- [0,0]... [dimx{A),dim2{A)}} (3)

The definition can be easily extended to n dimensional arrays. Other operations can be
defined in a similar way simply changing the target monoid. For instance, a selection
operation, which returns all the locations in an array where the condition P is met for a
shape can be defined as

a(F(e), A, P) = set{j\j <- [0,0]... [dimi(A), dim2(A)],P(F(e)(j), A)} (4)

and the operation that counts how many times the condition P is satisfied is defined as

S(F(e), A, P) = +{j\j <- [0,0]... [dimi(A), dim2(A)],P(F(e)(j), A)} (5)

Shapes allows one to start expressing queries involving complex regions of the image.

Example 1. Find all arrays that agree with array A on the (localized) shape S.

fun within t, a, b =>
let

fn norm a => summappCfn a, i => a[i]2);
in

if norm a-b > t then false else true
query close_in_region a, s =>

{ d | d in ArrayDb.arrayl and within t s(d) s(a) }

In this query, "ArrayDb" is the database, and "ArrayDb.arrayl" isolates a column that
has been declared of array type.

Example 2. Find all arrays of size (256,256) where shape pattern S(eA) (A being a
predefined array) occurs at least twice within the region (128,128), (255,255).

query shape_occur S t =>
let

fun P d t F =>
within (t, F, d);

in

{d I
dim(d, 1) = 256 and dim(d, 2) = 256 and
count(128, 128, d, S, P(d, t)) >= 2 }

25

4 From Arrays to Index Constrained Arrays

Structurally, many wavelet transforms can be described as sets of arrays in which certain
relations exists between elements of different arrays, namely, there are elements of different
arrays that represent the same "physical location" in the image.

In order to arrive to such definition, we begin with the concept of index constrained
arrays.

Definition 4.1. An array B index-constrains an array B through the function f, written

Ad^BifA: \[T]\k, B : \[M]\k, and f:Nk^Nk are such that

1. For all i, dirrik^Ä) < divrtk^B)

2. The function f is defined for all legal values of indices of A, and for all such indices
i, f(i) is a legal index for B.

A pair of arrays with the same size along all the dimensions are called iso-dimensional.
The trivial index constrained pair for two iso-dimensional arrays A and B is A =^> B, where
i is the identity transformation i: Nfc —► Nfe.

The inverse map /_1 maps elements of A into subsets of elements of B. The set of
elements /-1(«), i G Nfe is called the constraining set for the element A[i\. Similarly, given
a set of indices of A, Q = {iu.. .,im}, the set f~x(Q) is the constraining set of the set
{^[ii],...,^[im]}.

Note that the presence of the function / and its invertibility (in the set-of-indices sense
illustrated aove) places some constraints on the sizes of the arrays. For instance, if A and

B are two-dimensional arrays and A => B is an index constrained pair with f(i, j) =
(LV2J > L?V2J)> then if A has size nxn, B must have size 2n x In. In this sense, the presence
of the function / represents a structural constraint between pairs of arrays.

The definition of index constraint pair can be extended to sets of functions. Consider
a set # of functions Nk -» Nfc with the structure of a semi-group, that is i G $ and

/l, h € $ •*= h ° h € #■ A pair of arrays is index constrained by the set #, written A =?> B
if they are index constrained by any of the functions in #, that is,

AJkB=>3fe$:AJ=>B (6)

Constrainment by a semi-group $ is reflexive and transitive. It is reflexive since for
every array A it is trivially A =^> A (and, since £ is a semi-group, t£j), and reflexive

since A J±> B and B =*h C implies A ^ C.
Consider now a set of arrays P = {A1,..., AN} such that there are pairs of arrays Au,

Av in P such that Au => Av for a function / belonging to a predefined semigroup #. Such
a set is called an index constrained set of arrays, and will be denoted as (P, #).

The set of functions $ induces a structure in the set P. An array A € P is initial if

there is no array B eP such that B ==> A for some / G #. An array A E P is terminal if

there is no array B G P such that A =^> B for some / G #.

Definition 4.2. An index-constrained set of arrays P is linear if

26

1. There is one and only one terminal array A E P,

2. For any array AE P, if A => A then f is the identity.

The second point in the definition implies that, with the exception of the trivial corre-
spondence between iso-dimensional arrays, there are no "loops" in P that is, the structure
induced in P by the set 3" (again, discarding the trivial constraints) is a tree.

Given an index-constrained set C = (P, $), two arrays A and B, and and index j for A,
the function map(>l, B, j) returns the set of indices in the array B that are constrained to
the index j of A. In other words:

map(.4, B, f,j) = set {i\j <- [0,0],..., [dimi(A), dim2{A)],

*<- [0,0],... ,[dimi(B),dim2(B)},

j = f(i)Vi = f(j)} (7)

Similarly, the function vmap returns an array built with the values indexed by the indices
returned by map:

vm&p(A, B, f,j) = array{B[i}\i G map(A, B, f,j)} (8)

The definition can be generalized so that, instead of a single index j one consider a whole
region in the array A: the function map(C, B, f, R{A)), f G # returns the region on B
induced by the function / applied to the shape S(A):

map(C,B,/,Ä(A))= (J map(A,B,f,j) (9)
j€R(A)

Given a mapping / from A to B, in order to determine the ith element of the array
S'(B), one looks at all the elements of S(A) that map to that element: if at least half of them

are not null, then the value is B[i], otherwise it is <f>. If it is not the case that A => B, then
S'(B) is the null array. Similarly, it is possible define the function map(C, f~l,B, S(A))

In addition to the mapping function, several utility functions are defined. Given a list of
arrays, the function toList transforms it into a list of sets of iso-dimensional arrays in such
a way that the largest arrays come in first position, the second largest in second position,
and so on. The function first extracts the set of the largest arrays, while the function
rest extracts the rest of the list.

Also, given a set of arrays, the function maxSize extracts the subset of arrays with
maximal size, and the function minSize extracts the set of arrays with minimal size.

As an example of applications, we will consider the definition of a multiresolution shape.
Consider first a function fit that applies a shape expression to all arrays of a set:

fun flt(P, S) =
if \P\ = 0

null
else if \P\ = 1

S(P)

27

else
let A = randomElement(P);
in

S(A)\J±lt(P-{A})

The function splice is then defined as:

fun splice (P,/, S) =
if P=[]

[]
else

fit (first (P, S)) ++ splice(rest(P), /, 5o/);

5 Wavelet Features

We assume the readers to have a basic knowledge of wavelet functions and their properties
[?]. Specifically, we develop on the idea that a wavelet function transforms an original signal
into multiple frequency bands, including a low-pass band. Often, in an iterative process,
the low-pass band is transformed again into similar frequency bands. Sometimes, the range
of the signal of the ith iteration is reduced by half at the (i + l)th iteration. In this section
we describe how wavelet features computed on multidimensional signals is modeled using
the framework of index- constrained arrays developed in the previous section.

Let us define a labeled array as a tuple {A, A} such that the label A is assigned from
a domain A and A is an array. Let Ao be the base array representing the original signal
for which the wavelet transform is computed. A wavelet transform W(AQ) is the linear
index-constrained set of iso-dimensional sets of labeled arrays denoted as

W(A0) = ([A0, {(A?, A0,), (Xl A\),...}, {(A°, A°2), (A*, A\), ...}...],/> (10)

Each linear index-constrained set {(A°, A?), (Aj, ^4]),...} is an iso-dimensional set that
represents the frequency bands computed at any given resolution. The label of an array
serves to identify the position of the array within the resolution level. If W is a Haar
wavelet, then the label belongs to the domain {LH, HL, HH, LL}, on the other hand if
Wisa Gabor wavelet then its domain is a discrete set of angles ranging between 0 and
360. The index mapping function / is usually a transform that reduces an array of the
previous resolution by half in each of its k dimensions, that is, for two dimensional arrays
f(hj) = (L*/2)i/2j)- Additional constraints may be defined on the set depending on the
nature of the wavelet transform. For example, for Gabor wavelets, an array at the i-th. level
can constrain the index of an array at the (i + l)-th level only if their labels are the same.

The operations defined on wavelet features are the same as those defined on index-
constrained array, with the addition of the label selection operator er£ which, given a wavelet
returns an index-constrained array containing all the elements of the wavelet that satisfy
the condition P.

The previously defined operations on index-constrained set of array, in addition with
the usual set, list, and selection operations, allow us to express complex queries involving
wavelets.

28

Example 1. Find all images that agree with image / (represented as a wavelet transform)
in the region S at a coarse resolution.

fun b W,l,i =>
if i = l

W
else

b(rest(WO, I, i + 1)
fun isolate S, I, W =>

splice (b(W,Z,0), W.f, S);

query close_in_region W, 1, s, t =>
{ I I I in ImageDb.wavelet and

within it, isolate(5, l,W) , isolate(5,1,1) }

The function b takes the coarser resolution bands of the wavelet, while the function
isolate projects the region S onto these bands. The functions splice and within are
defined in the previous section.

Example 2. Find an image that agrees with image W in the shape Sl(io,jo) and in the
shape S2(io,jo), independently of the mutual positioning of the shapes. (This region based
query is an extension of similar queries defined in [?]; the query can be expanded by defining
functions that compare the relative positions of pairs of regions so that it can be imposed
that the two regions be in the same spatial relation.)

fun cmpl (W,I,F, i, j,t) =>
let
fun P t,W,I => within«, W,/)

in

sweep(0,0,J,S,P(S(Wr)(t,j)));
query two_regions W,F0,io,jo,Fi,k,ji=>

{ I I I in ImageDb.wavelet and

cmpl (W,I,F0,i0,jo) and cmpl (W,I,Fi,ii,ji) }

6 Conclusions

In this paper we have proposed a data model for the representation, manipulation and
query of wavelet features in multimedia databases. We argued that the representation of
features as complex data types and the possibility to manipulate their structure is important
for the design of powerful and efficient multimedia databases capable of transcending the
limitations of the query-by-example model.

The model we presented is based on an extension of the array data type to include sets of
arrays with certain structural relations. WE have showed that it is possible define wavelets
as data types within such a framework and that a minimal set of operations (namely the
array operations augmented with the map function) can be used to express complex queries
involving wavelets.

29

The formalization of the structure of features and the definition of an algebra for their
manipulation has two orders of advantages. First, the algebra is based on a limited number
of operations on sets of labelled index-constrained arrays. The index-constrained arrays
can be indexed using techniques that allow an efficient computation of these operation
for large amounts of data, therefore making the computation of the individual operations
efficient. Preliminary work carried out by us has indicated that efficient implementation of
array selection operations can be obtained both by specialized indices and by special array
representation in a relational database.

Second, by exposing the internal structure and the semantics of the operations, we create
numerous possibilities for query optimization. Techniques for program normalization and
query optimization based on the monoid comprehension calculus have been studied for quite
some time [?], and our wavelet feature definition fits nicely in this framework.

References

[1] Ingrid Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Math-
ematics, Philadelphia, 1992.

[2] Leonidas Fegaras and David Maier. Towards an effective calculus for object query
languages. In Proceedings of SIGMOD '95, San Jose, CA, pages 47-58, 1995.

[3] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang, By-
ron Dom, Monika Gorkani, Jim Hafner, Denis Lee, Dragutin Petkovic, David Steele, and
Peter Yanker. Query by image and video content: the QBIC system. IEEE Computer,
1995.

[4] Amarnath Gupta and Simone Santini. Towards feature algebras in visual databases:
The case for a histogram algebra. In Proceedings of the IFIP Working Conference on
Visual Databases (VDB5), Fukuoka (Japan), May 2000.

[5] Charles E. Jacobs, Adam Finkelstein, and Savid H. Salesin. Fast multiresolution image
querying. In Proceedings of SIGGRAPH 95, Los Angeles, CA. ACM SIGGRAPH, New
York, 1995.

[6] Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multidimen-
sional arrays: design, implementation and optimization techniques. In Proceedings of
SIGMOD '96, Montreal, Canada, pages 228-239, 1996.

[7] Apostol Natsev, Rajeev Rastogu, and Kyuseok Shim. WARLUS: A similarity retrieval
algorithm for image databases. In Proceedings of SIGMOD '99, Philadelphia, PA, pages
395-406, 1999.

[8] Arnold Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh
Jain. Image databases at the end of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(1), 2001.

[9] Jeffrey Ullman. Elements of ML Programming. Prentice Hall, 1994.

30

Query Optimization in the Presence of Top-A: Predicates

Lakshmi Priya Mahalingam and K. Selguk Candan
Computer Science and Engineering Department,

Arizona State University
Email: {priyam,candan}@asu.edu

Abstract

In this paper, we present novel techniques for performing query optimization in databases, such as multimedia and web
databases, which rely on top-A; predicates. We propose an optimization model that (1) takes into account different binding patterns
associated with query predicates and (2) considers the variations in the query result size (or coverage), depending on the execution
order. We address the additional complexity and the well-known NP-complete nature of the query optimization problem by adop-
tively reducing the granularity of the search space. For this purpose, unlike the data histograms which capture the data distribution,
we propose opt-histograms that capture the distribution of sub-query-plan values over many query optimization tasks.

1 Introduction
Multimedia database queries have different characteristics from queries in traditional databases. For instance, in traditional, such
as relational, databases, it is usually the case that the number of results of a query is independent of the query execution order,
but the execution cost depends on this order. In multimedia and web databases, however, due to the use of thresholds and top-fc
predicates and sub-queries [5, 11] the number of query results can also change depending on the query execution order. Due
to these inherent differences between traditional databases and multimedia and web databases, we need novel query processing
mechanisms. In particular, we need novel query optimization algorithms as the top-k natures of the query predicates render
existing query optimization algorithms dysfunctional.

1.1 Motivating Example

Let us consider an SQL-like multimedia query that retrieves surveillance images that contain an alert pattern:

select location, time, image
from images
where surveillance-scans(location, time, image) and

location = "entrance.gate" and
extract-pattern (image, pattern) and
match-pattern (pattern, "alert.gif") .

In this application, surveillance images are continuously fed from the cameras into a database and the above query is executed
repeatedly to identify the alert condition. Therefore, due to the nature of the application, it is essential that the query is evaluated
as quickly as possible. Furthermore, since pattern extraction and matching are fuzzy operations, it is essential that the results of
the query have associated confidence levels that can be used for deciding when to trigger the alert condition. Note that, in this
application, we would like to identify the best alert candidates in the shortest amount of time.

While processing a query, we need to consider the following three issues characteristic to multimedia databases. Note that
some of these, such as overloaded implementation of query predicates, are also seen in other database applications. However,
altogether, the following three issues define the characteristics of multimedia databases:
Overloaded implementations of query predicates. Media-related predicates can be implemented by various user-defined func-
tions or indexes corresponding to different ways the predicate can be invoked. For instance, the user defined predicate ex-
tract-pattern (image, pattern), can have three different overloaded implementations:

• given an image, one implementation extracts a predetermined number of patterns using a pattern recognition function,
• given a pair of an image and a pattern, another one checks for the presence of the pattern in the image using a neural-net

engine, and

31

• given a pattern, the last implementation retrieves all matching images using a cache of pre-extracted of pattern/image pairs
maintained in the form of a multi-dimensional index structure that maps all known patterns into a feature space for quick
access.

Each of these implementations can have drastically different behaviors in terms of the number of results returned. These are
discussed next.
Thresholds and "top-fc" predicates. The solution space in most media-related predicates is very large. For example, in the
above example, every given pattern matches every other one to some degree. Therefore, providing all answers to a query is neither
feasible nor desirable. Consequently, multimedia functions are usually implemented as thresholding or top-k retrieval functions.
This means that a sub-query or a user defined function returns only a small, but most relevant, portion of all possible results.
However, if two overloaded implementations of the same predicate define relevance differently, then they can return different
portions of the result space.

This may cause certain complications in query optimization. One complication is that a query can result in different numbers
of tuples depending on the execution plan chosen by the query optimizer. For example, let us assume that we can execute the
multimedia query described earlier in two different ways:

• Find all surveillance images scanned at the "entrance gate"; find the patterns in each image; and return those images that
contain a pattern which match "alert.gif'.

• Find all patterns that resemble "alert.gif" using an index structure; find all images which contain one of these patterns; and
return those images that are scanned at the "entrance gate".

In the last surveillance cycle, let us assume that the cameras scanned and fed into the system 100 images, 75 of which are coming
from the camera at the "entrance gate". The image processing engine extracts 10 patterns per image. Due to the overlaps in the
surveillance images, the number of unique patterns in all these images is 500, instead of 750 (75 x 10):

• Using the first execution plan, (al) 100 images are retrieved and out of them 75 are chosen. (a2) Then the patterns present in
these images are retrieved. If for this purpose, we are using a predicate which performs a top-5 retrieval, then 5 top patterns
of each image are extracted, and (a3) the resulting 375 patterns are checked to see if they match the given pattern.

• When the second query execution plan is used, however, (bl) all patterns that match "alert.gif (say 50 of them) are returned,
(b2) all images which contain any one of these patterns are returned using an index structure, and (b3) out of these images,
those that are located at the "entrance gate" are returned.

Note that there is no reason to expect that these two executions will return the same number of tuples. This difference is due
to the fact that, at the second step of the process, different overloaded implementations (or binding patterns) of the predicate
extract-pattern (Image, Pattern) use different retrieval policies: in (a2) the result space is pruned to the top-5 results,
whereas in (b2) all results are maintained.

The necessity of new optimization techniques was noted in [2], where authors provide a novel similarity-based algebra (with
new selection and join operators) and develop transformation that can be used in optimizing a query tree. We, on the other
hand, use a query model where both selections and joins are modeled as predicates and, consequently, are able to state the query
optimization problem as a join-ordering problem. We have studied semantics of various fuzzy conjunction, disjunction, and
negation operators in [1]. Note that once an appropriate join order, which obeys the binding patterns of the predicates, is found
some of the predicates will act as selections and others will act as join operators; implicitly achieving a rewritten query.

2 Optimization in the Presence of Top-fc Predicates

Multimedia queries are generally processed in two ways: (1) using regular query processing techniques within database man-
agement systems and (2) using special merge techniques that benefit from the fact that results returned by most multimedia
user-defined functions are ranked based on their scores [3, 6,10,11,14]. In this paper, we develop a model which can lend itself
to query optimization in the traditional sense instead of applying a merge strategy.

An optimization model assigns a value (to be minimized) to all partial or complete plans in the search space. It also determines
the output size of the data stream for every operator and predicate in the plan. This plan must respect the available binding patterns
of each query predicate. A binding pattern of a predicate specifies which attributes of a relation must be bound to access it. For
example, a predicate r(x, y), with two parameters can have four binding patterns:

• // (or, alternatively, 0) when both parameters are free,
• bf (or, alternatively, {x}) when x is bound and y is free,

32

• fb (or, alternatively, {y}) when x is free and y is bound, and
• bb (or, alternatively, {x, y}) when both parameters are bound.

Each binding pattern abstracts an overloaded implementation of a predicate in terms of an external function or an index structure.
Therefore, given a multimedia query predicate, each binding pattern of predicate has different cost, and size parameters associated
with it. This research aims at finding an optimal query execution plan, given a set of predicates, and the associated binding
patterns, each with different execution cost and size characteristics. Therefore, we need an optimization model which captures not
only the execution cost, but also the result size.

2.1 Query Execution Cost and Result Size (Fanout)

In this subsection, we introduce two parameters involved in the optimization model we propose, instead of the table scan cost and
selectivity parameters traditionally used for optimizing queries:

• cost and fanout.

These parameters have the following properties:

Property I: The cost and fanout parameters are denned per binding pattern. For example, given a predicate r i (x, y),

cosi6/(ri(a;,2/))

denotes the expected cost of accessing r i by binding the parameter a; to a constant and retrieving all matching values for y. Note
that this definition is similar to the cost of a limited access pattern as used in [13].

Property II: The cost parameter is defined as a function of the number of inputs to the bound parameters of the predicate. If a
predicate, say r2 (y, z) is executed after another one, say r i (x, y), during the processing of a join query

rx(x,y) Ar2{y,z),

then there will be a set, y, of y values that are already identified before r 2 is processed. Depending on the implementation of the
query predicate, either each y value can be processed separately by r 2 to identify the corresponding z values or the entire set of y
values can be passed into the corresponding media function at once to identify the corresponding {y, z) pairs. These two options
would require different cost calculations, each of which is a function of the number of y values. For example, let us consider the
two predicates introduced in the Introduction:

extract-pattern("imagel.gif",pattern) A match-pattern(pattern,"alert.gif").

This query can be processed, by finding all patterns in the given image and, then, either (1) by matching each pattern separately
with "alert.gif' or (2) by using a search structure, which contains all extracted patterns, for identifying those patterns that are close
to "alert.gif'. Note that the two above conditions are sometimes observed in traditional databases as well. For instance, the two
query execution options described above and the difference between the corresponding cost calculations is analogous to difference
between nested-loop and hash-joins. The next, and most significant, property however (at least currently) is more common in
multimedia and web applications and we are not aware of any attempt to address it within the realm of query optimization.

Property HI: The fanout parameter denotes the expected number of outputs as a function of the number of inputs to the bound
parameters of the predicate. This definition is inherently different from the definition of selectivities used in query optimization
literature [12,15]. For example,

fanoutbf(r1(x,y))

denotes the expected number of (x, y) pairs that the predicate returns per each bound value of a; (consequently, the fanout parameter
can be larger than 1.0). The reason why we have to define a new parameter called fanout, instead of using the standard concept
of selectivities is that,

• a top-A; retrieval predicate (which may either be a user defined function or a top-fc retrieval subquery) will have a predeter-
mined number of results (k) independent of the value of x or the size of the actual result space. For example the predicate
extract-pattern (inputimage, outputpattern) described in the Introduction extracts at most 5 patterns per
input image, independent of the complexity of the image.

33

• in general, since we are not referring to a table with a known number of tuples, the definition of selectivity does not apply.
For example the predicate extract-pattern (inputimage, outputpattern) does not perform a selection on a
table of {image, pattern) pairs. Instead, it extracts whatever patterns are available in a given image.

Note that, whenever they are already available, it is possible to map selectivities to fanouts. For example, if we are given a table
with schema t(x, y) which has num(t{x, y)) rows and selectivity selbf{t{x, y)), then we can calculate the corresponding fanout
as

fanoutbf(t(x,y)) = selbf(t(x,y)) x num(t(x,y)).

In other words, this table will return on average selbf(t(x,y)) x num{t(x,y)) pairs of (x,y) per each bound value of z. The
reverse of this, however, is not true; that is, given a fanout, it is not always possible to map it into a selectivity as we are not always
referring to a table with a known number of rows.

2.2 Modeling the Desirability of a Query Plan

The above semantics of predicate cost and fanout necessitate a corresponding model to evaluate the desirability * of a query plan.
In general, given

• a set of predicates V = pi,... pn,
• a set of attributes A = a\,... ,am,
• a join query

q(ai,. ■■,am)=p1(a1,...,am) A... Apn{ai,.. .,am),

• an input binding pattern, in-bound C A, which denotes the set of attributes that are bound in the beginning (in jree =
A — inJbound),

• an output binding pattern, out .bound C A, which denotes the set of attributes that are expected to be bound at the end of
the process (in-bound C out-bound and out Jree = A — out-bound), and

• for each predicate pi£V,a binding function

bindi : 2A -> {2A U ±}, such that given an input binding pattern, in, we have bindern) D in if the input
binding pattern is allowed for this predicate and bindern) = ± if it is not

which describes the input/output binding relationships acceptable for this predicate,

we can define the cost and the fanout of the query as

{ cost°utJ>°und(q) , fanout°utJ>^nd(q)) = best.of { (cost, fanout) suchthat

cost = join-Cost((costPati (Pl), fanoutPati {Pl)),..., (cosWat* (pn), fanoutPat*> (pn))) A
fanout = join-fanout(fanoutPati (pi)..., fanoutPat" (pn)) A

(A - pah) U(A- pat2) U ... U {A - patn) = in-free A
bindi(pati) U bind2(pat2) U ... U bind„(patn) = out-bound

where join-cost is the combined cost of the join as a function of the predicate costs and fanouts and join -fanout is the combined
fanout as a function of the input fanouts. The last two conditions guarantee that input/output binding constraints are observed.
Note that, we do not specify how the join .cost and join-fanout are computed, as these depend on the semantics of the join
operator. The following example describes one way to compute join nost and join .fanout assuming a nested-loop join.

Example 2.1 Using a nested loop join operator, the best way of computing q(x,y,z) = n (x, y) N r2(y, z) can be found by
selecting the best among the following three options:
.(costbbb(q(x,y,z)),fanoutbbb(q(x,y,z))) = best.of {

(costff(ri(x,y)) + fanoutff(ri(x,y)) x costbf(r2(y,z)), fanoutff (n(x,y)) x fanoutbf(r2(y,z))),

{costff(r2(y,z)) + fanoutff(r2(y,z)) x cosi/!,(ri(a;, j/)), fanout"(r2(y,z)) x fanout!b(n(x,y))),

(cost"(n(x,y)) + cost"(r2(y, z)) + fanout"(n(x,y)) x fanout"{r2(y,z)), fanout"(n(x,y)) x fanout"(r2(y,z))}.

^ere, we use the term desirability instead of optimality as, in the literature, optimality is generally used to mean minimal cost.

34

This formulation describes the three alternative ways to join the given predicates from an input binding pattern 0 (all attributes are
free) to an output binding pattern {x, y, z) (all attributes are bound). It further associates an execution cost (cost) and result size
(fanout) for each option:

• In the first case, x and y have been instantiated by calling r i with free variables, and then these values have been validated
by accessing r2 with y bound. The cost is the access cost of n when its attributes are free, plus the total access cost of r2

when the common attribute, y, is bound for different possible values obtained from r i. The size of the results is the product
of the expected result sizes associated with the corresponding binding patterns.

• The second case is similar to the first case, except that the orders of r i and r2 are exchanged.
• In the third case, both relations are independently accessed using both attributes free, and the results have been joined

together. n

The best_of function is used to choose the best query plan among all the alternatives. In traditional models, it is relatively
straightforward to choose the best plan among the alternative query processing plans. In the above example, traditional cost
models would recognize that there are different costs associated with different ways to join these two relations. However, all
possible executions would result in the same number of resulting tuples. Therefore, irrespective of the plan chosen, the final
size, fanout(ri (x, y) N r2(y, z)), for the above example would be the same and we could choose the best plan by identifying
the plan with the smallest cost. The proposed model, on the other hand, differs from the traditional models in that it has to
account for different result sizes for different execution orders, a characteristic of multimedia and web databases as discussed in
the Introduction. Hence, we can not choose the best plan in such a straight forward manner.

2.3 Alternative Ways to Define the Desirability of a Query Plan

In general, best_of will be a function of the cost and the fanout. We see three main alternative ways to define this measure in
multimedia and web database applications:
Alternative I: best_of = min.cost. When the goal is to process the query as quickly as possible, the minimum overall cost
(independent of the number of resulting tuples), we can define best .of as min xost. In this model, given a set of (cost, fanout)
pairs, we would choose the pair with the smallest cost.

This is similar to the cost-based optimization commonly used in databases. One major difference (and disadvantage) of this
formulation is that, the principle of optimality may not be preserved. In other words, optimal (in terms of cost) plans may not
have optimal (in terms of cost) subplans. This is due to the fact that logically equivalent sub-plans may have different fanouts, and
when the cost parameter is used to select among alternative subplans, we may not reach an optimal overall plan. Consequently, a
min.cost based model can not be applied recursively to sub-query plans and we can not use any recursively structured algorithm,
such as the popular dynamic programming which assumes that all alternative ways to execute a sub-plan will result in the same
number of tuples, to optimize queries.
Alternative II: best_of = min_unit_cost. When we are aiming to generate as many results as possible with the smallest cost, we
can define the best.of as min_unit_cost, where unit xost is defined as

cost
unit-cost =

fanout

When the number of results may change based on the way query is processed, unit cost may be a better performance indicator.
One desirable property of a unitxost-bascd model is that, under certain conditions, it may preserve the principle of optimality.
For instance, if the cost and fanout is defined as in Example 2.1, then the principle holds.

Note that the concept of unit-cost is, in a sense, similar to the concept of rank [7,12] used for dealing with expensive predicates.
A rank is associated with every predicate in a query and these predicate ranks are used as heuristics to improve query plans. In
the model we present, however, unit-costs are associated with alternative sub-plans, not with predicates themselves. Furthermore,
even when unit-costs are associated with sub-plans that consist of only one predicate, they are functions of the corresponding
binding patterns. In contrast, each predicate has one and only one rank associated with it [7,12].
Alternative HI: best.of = min Janout. When the user wants to find a plan which returns the minimum number of results, we
can define best-of as the plan with the smallest fanout. Note that, min Janout is especially important when there is an access
penalty associated with results (as it is the case when transmission of large media objects from a remote repository to a user is
required). The min Janout-based model, under certain conditions, may also preserve the principle of optimality. For instance, if
the fanout is defined in a multiplicative way as in Example 2.1, then the principle holds.

35

2.4 Query Optimization Algorithms based on Desirability

When the best.of measure is defined as min _unit cost since it shows a recursive structure, we can benefit from traditional query
processing algorithms, such as dynamic programming.

When the min.cost is required, however, we can no longer benefit from these algorithms. In this case, one solution is to use
the min.unit.cost as a heuristic to reduce the search space at every level of a dynamic programming algorithm 2. In other words,
given a dynamic-programming based optimization algorithm, at each level, we can (1) rank sub-plans based on their unit-costs,
(2) prune-away sub-plans with large unit-costs, and (3) consider only those plans with small unit-costs. The amount of pruning
can be controlled to achieve different levels of optimization speed and optimality. There are three main options:

• No pruning: This approach will result in the most optimal plan as it exhaustively searches the whole search space. However,
the drawback is that the search space is large and execution times are high.

• Prune to the maximum level: This essentially means that every stage the model prunes all the sub-plans except the one with
the lowest rank. Though the approach increases execution speed largely, the error introduced is potentially very high.

• Prune to a DBA-defined level: In this approach, for each sub-goal, the algorithm considers the best k ranked subplans for
further joins and others are neglected. These k sub-plans are used for further cost evaluations in the subsequent stages.

Since, min.cost is an important measure even in multimedia databases, it is important that the proposed heuristic works well and
efficiently. Therefore, in the experiments section, we will evaluate the effectiveness of this approach.

3 Opt-Histograms: Adaptive Reduction of Search Space Granularity

Optimization is an NP-complete problem. The problem is rendered more drastic by the fact that, as discussed in Section 2, when
we optimize for cost, we can not benefit from dynamic-programming based algorithms. As a solution, in Section 2, we proposed
a sub-plan-rank based pruning approach to reduce the search space largely. Still, when k is large, the savings achieved in search
space and execution time may not be very significant. Therefore, in addition to pruning the search space as described in Section
2, we propose to reduce the granularity of the search space to further bring down the complexity of query execution.

The number of sub-plans to be considered can be significantly reduced by approximating the costs of the sub-plans and
choosing only the best of them. The desired level of approximation needed is described as the granularity of the distribution.
If the granularity is small, there potentially is a considerable reduction in optimization time, but this introduces an error in the
optimization.

We divide the whole search space into buckets, whose sizes are determined by the granularity desired. All sub-plans that
belong to a particular interval of values are placed in the same bucket. In each step of query-optimization, instead of using all
sub-plans, only one sub-plan from every bucket is used. Due to this approximation, the search-space size is controlled.

Example 3.1 Let us have eight alternative sub-plans that we have to consider,each with the following associated costs:
Sub-plan 1 = 120, Sub-plan 2= 130, Sub-plan 3 = 240, Sub-plan 4 = 520,
Sub-plan 5 = 650, Sub-plan 6= 110, Sub-plan 7 = 1000, Sub-plan 8 = 620.

Let us also assume that we use a bucket width of 100 unit costs to reduce the granularity of the search space. Instead of maintaining
all eight alternatives, we need to maintain only five alternatives:

Sub-plan 6 =110, Sub-plan 3 = 240, Sub-plan 4 = 520, Sub-plan 8 = 620, Sub-plan 7 = 1000.
□

Note that in the above example, the buckets are placed uniformly across the search space starting from cost 0. However, in
general, identifying the boundaries and widths of the buckets is not trivial. First of all, since the execution cost is likely to increase
with the number of predicates in the query, at different levels of query optimization, different bucket boundaries may need to be
used. Secondly, since the search space has two dimensions, cost and size, we need to identify different bucketing strategies for
each dimension. In this section, we introduce opt-histograms that can be used for intelligently choosing the granularity (places
of bucket boundaries) of the search space. Opt-histograms describe the optimization statistics accumulated by observing similar
queries optimized over a period of time.

3.1 Opt-Histograms

An opt-histogram is generated by analyzing the query optimization history. Figure 1(a) shows an example opt-histogram generated
using a set of similar queries. The opt-histogram shows the distribution of the estimated costs of sub-plans that belong to different

2 Since dynamic programming-based query optimization algorithms are common and well-understood, we do not provide the pseudo-code of such an algorithm
in this paper

36

Histogram for Approximations

Execution time relative to the Opt,

D LeveB
M Level2
^ Level!

Mi-opt
BK-OP1

DK-HS1

Ql CKQ3Q4QsQ6Q7QBG|g QlO

Sample Query

(b)

Figure 1: (a) An example opt-histogram, which shows that the relevant space of costs varies with the query optimization stages,
(b) Average optimization time relative to the optimization time required by the optimal-cost algorithm

level of join ordering. This histogram was generated over 1000 optimization tasks using a 4-relation query. The levels in the
figure denote the 2-, 3-, 4- way join stages of the query optimization process. As shown in Figure 1(a), we observed a consistent
behavior of sub-plan execution costs in different query optimization stages. Note that, according to this figure, relevant regions of
the cost-space shifts at different stages of the query optimization process. Therefore, different bucket boundaries should be used
at different stages of query optimization.

Note that, one property of the opt-histograms that is special to the multimedia and web databases, is that sizes show different
characteristics than the cost. Sizes can be defined multiplicatively (unlike the additively defined cost). Therefore, they require
non-uniform granularity reductions of the space. In this paper, we do not discuss the details of the opt-histogram creation for size.

In Section 2, we mentioned that a dynamic-programming based algorithm can be implemented by selecting the best k ranked
sub-plans for every two-way join, when we are dealing with the best xost metric which does not preserve optimality for sub-plans.
We can further reduce the search space, by coalescing the sub-plans using a low granularity search space. All plans that fall into
a particular bucket are approximated as being equivalent and this reduces the search space further. The salient features of the
described approach are that it

• approximates the sub-plans by reducing the granularity of search space,
• uses an optimization histogram to reduce the granularity of the space adaptively, and
• generates this histogram by observing the behavior of the algorithm, for similar queries, at different levels of join ordering.

Next, we describe experiment results to justify that highlight the issues raised in this paper and that evaluate the effectiveness of
the proposed solutions.

4 Experimental Results
In order to evaluate the effectiveness of the techniques presented in this paper, we ran a set of experiments. In order to observe the
behavior of the proposed query optimization algorithm under very different conditions, we opted to use synthetically generated
data. For this purpose, we used a set of join-queries, each with different number of joins and joining attributes. In different runs,
each predicate got associated with randomly generated data that follow random cost and size patterns. These patterns are generated
keeping in mind the characteristics of multimedia and web predicates:

• Cost of predicates: The cost of predicates varied greatly. In fact, the cost of different binding patterns of individual pred-
icates also varied. There are expensive binding patterns which correspond to user-defined functions which require media
processing and there are cheaper binding patterns which correspond to use of appropriate index structures.

37

Cost vs. Optimal Cost

u

f »

a

lopi
■ PM
DI-OPI

□ KKSI

■ tfist^an 10)
M Ntist^anao)
B rtistaan 50)
13 KHstgaMOO)

i r i i i i i i r
Qisry Qieiy Qiery Qu*ry <iieiy ai*iy (^lsiy <äieiy (Äiei)1 <}!*-
I 2 3 45 67 8 9 lyl°

Sample Query

Figure 2: Relative optimality of various algorithms

• Size: The size factor of predicates and their binding patterns also varied to reflect the top-fc retrieval functions which return
a predetermined number of results for each input as well as thresholding functions which returns a portion of the database
determined by the threshold value as well as the inherent distribution of the data.

' We have varied these expected cost and size values of each predicate across different runs to observe the performance of the
proposed optimization algorithm under different input parameters. In order to compare the performances (in terms of time as well
as the closeness to optimality) of various approaches, we have implemented the following algorithms:

• Optimal: This algorithm performs an exhaustive search. It enumerates and expands all possible plans with no pruning or
approximations.

• Predicate migration: We have also implemented the predicate migration algorithm [12]. Note that predicate migration uses
only one rank per predicate. It is essentially a heuristic when applied to the model presented in this paper. Therefore, to
evaluate its performance conservatively, for each predicate we used the worst rank among all its binding patterns.

• 1-Optimal: This algorithm prunes the search space choosing only one best plan for each sub-goal.

• K-Optimal: This algorithm keeps k best plans for each sub-goal (3 in these experiments).

• K-Hist: This algorithm approximates the top k ranked sub-plans using a reduced granularity search space.

The following sections discuss how these algorithms perform with respect to cost and size factors.

4.1 Complexity

Figure 1(b) shows execution cost of various algorithms for different queries. Since the optimal algorithm performs an exhaustive
search, it requires the highest execution time. The predicate migration considers only one plan per level of join and hence the search
space is very small. Therefore, it performs the fastest optimization (not shown in the figure). 1-opt also performs optimization
quickly (in the same order of the predicate migration) when compared to others as it prunes the search space to the greatest level
possible and thus time for enumerating the entire search space is reduced. K-opt searches a larger search space and hence performs
slower than 1-opt and faster than optimal algorithms. The k-hist algorithm reduces the search space by reducing the granularity of
the search space and approximating the results at every stage. Thus, a considerable saving in execution times is achieved.

4.2 Degree of Optimality

Figure 2 shows the relative behavior of different algorithms in terms of finding the best query execution plan. The experiments
were performed for a small sample of queries with different predicate costs and sizes3. The x-axis shows a sample of queries
and y-axis shows the ratio of the cost of each resulting plan to the cost of the cheapest plan (found by the optimal algorithm).
According to this figure, 1-opt over-prunes the search space and the costs deviate from the optimal largely. The k-opt algorithm

3Since in this paper we do not concentrate on the question of whether different algorithms works better for different queries, we do not list the actual queries
used in this example. But, it is important to note that the relative patterns is more or less the same across different queries.

38

Error Ratios

16

PM

1-Opl

DK-Op1

□ K-rist

T I I I I I I i I I I r
O.I- 02- 03- 04- OS- OJS- 07- OS- 0.9- ID- I.I- 12.- I3-
02 03 04 OS 0J6 0.7 OB 0.9 1 JO I.I 12 13 14

Amount of error

Figure 3: Error distribution (error boundaries are selected in 0.1 increments (i.e., 0.0-to-O.l, 0.1-to-0.2, etc.)

performs relatively well and k-hist (shown with different granularities) approximates the results of k-opt well. Note that, as the
granularity increases, k-hist resembles the k-opt algorithm. Note that, since it is essentially a heuristic when applied to the novel
model, predicate migration behaves less predictably.

Note that although it shows the relative behavior of the different optimization algorithms, this small sample does not represent
the degree of optimality of these algorithms. A better way to observe the degree of optimality is to plot an histogram of their error
relative to the optimal result:

_ Cost — OptimaLcost
Error = ——: ; ,

Optimal-cost

over a large number of queries. The experimental results are plotted in Figure 3. In this figure, each bucket on the x-axis
corresponds to an error range of size 0.1 (that is intervals corresponds to the error ranges 0.0-0.1, 0.1-0.2 etc.) and the y-axis
corresponds to the number queries which falls in each bucket (or error range). Note that according to this figure, k-opt algorithm
has the highest number of correct estimations (error range within the 0.0-0.1 bucket). Note, on the other hand, that surprisingly,
k-hist algorithm seems to cause a smaller number of large errors than the k-opt algorithm. Although, this is interesting, we do not
believe that it is significant and generalizable.

5 Related Work
The cost model used by most researchers does not consider the effect of varying result sizes. Selinger et al. [15] find the cost of a
join assuming a constant product of cardinalities independent of query execution order. Recently, there has been efforts realizing
the fuzzy and probabilistic nature of new database applications (such as [2, 3, 10,11, 14]) and benefit from this nature in top-fc
retrieval [5]. Most of the existing work in this area concentrate on identification of efficient query processing techniques for queries
with fuzzy predicates. In this paper, we concentrate on optimizing queries; i.e., identifying efficient query plans when there are
various alternatives. In [6], Chaudhuri and Gravano discuss cost-based query optimization techniques for such filter queries. In
essence they convert top-fc retrieval queries to thresholding (filtering) queries that can be processed using more traditional database
processors. In [9] Donjerkovic and Ramakrishnan looked at the effect of top-fc evaluations on the query optimization task. Then-
focus was to minimize the overall query execution cost by trying to minimize the effect of restarts due to too little answers. In [3],
we presented an approximate query evaluation algorithm that builds on [10,11] to address the existence of non-progressive fuzzy
predicates. This algorithm uses the statistical properties of the minimizes the unnecessary accesses to non-progressive predicates,
while providing error-bounds on the top-fc retrieval results.

Hellerstein [12] presents various techniques for efficiently optimizing declarative queries that contain time consuming meth-
ods. The approach used for optimization in this work is construction of a plan tree as a first step with each sub-plan represented

39

as a separate stream. Then each of the streams are sorted based on a rank4. Then a differential cost function prunes the results by
pulling the top ranked predicates. Hellerstein discusses four main optimization strategies, namely pushdown with rank ordering,
pull up costly sub-plans, pull the costly ranked predicates while performing a join based on join ranks rather than predicate ranks,
and predicate migration, which considers the least cost plan at every stage of join. LDL [8] treats predicates as relations. One
major drawback of the optimization approach used in [8] is over eager pull up decisions. The algorithm makes decisions looking
at only the immediate sub-plans. Another drawback of this approach is that the complecity is exponential in terms of number of
relations and number of expensive predicates. [4, 7] provide a comparison of LDL and predicate migration approaches. Their
research focuses on pruning by ranks where Rank = ^_Sei°^ivityy Chaudhuri and Shim's algorithm [7] performs well with the
assumption that predicates with smaller ranks are always applied earlier than others. The assumption however holds for restrictive
predicates only (predicates where all the parameters are bound), which ceases to be the case when varying binding patterns are
used. Another assumption of their work is that there is only one rank value per predicate which again may not always hold. The
complexity is polynomial in the number of user-defined functions. The heuristic is very successful in pruning unwanted results.
The push down heuristic pushes all expensive predicates down or defers their evaluation until the last join.

6 Conclusion

In this paper, we presented a new query optimization model for multimedia and web databases, which use top-fc predicates.
Unlike the previous work, we considered non-restrictive predicates in query optimization. This model takes into account different
bindings for every predicate, and it recognizes the fact that a query may have different number of results (or coverages), depending
on the query execution plan. We used an efficient pruning criteria that prunes, based on cost and size factors, in the sub-plan level.
The proposed approach addresses the well-known NP-complete nature of the query optimization problem by adoptively reducing
the granularity of the search space. For this purpose, unlike the data histograms which capture the data distribution, we use
opt-histograms that capture the distribution of sub-query-plan values over many query optimization tasks.

Acknowledgements
We thank to Chris Mayer for his helpful comments.

References

[1] K.S. Candan and W.-S. Li. On Similarity Measures for Multimedia Database Applications, KAIS journal, 3(1), pp. 30-51,
2001.

[2] S. Adah, P. Bonatti, M.L. Sapino, and V.S. Subrahmanian. A Multi-Similarity Algebra. SIGMOD 98.
[3] K.S. Candan, W.-S. Li, and M.L. Priya. Similarity-based Ranking and Query Processing in Multimedia Databases. DKE

35(3): 259-298,2000.
[4] Surajit Chaudhuri, An Overview of Query Optimization in Relational Systems, Principles Of Database Systems, 1998.
[5] Surajit Chaudhuri and Luis Gravano, Evaluating Top-k Selection Queries, VLDB 1999, pp 397-410,1999.
[6] Surajit Chaudhuri and Luis Gravano, Optimizing Queries over Multimedia Repositories, SIGMOD 1996, pp. 91-102.
[7] Surajit Chaudhuri and Kyuseok Shim, Optimization of Queries with User-Defined Predicates, VLDB 96, pp. 87-98.
[8] D. Chimenti, R. Gamboa, and R. Krishnamurthy. Towards on Open Architecture for LDL, VLDB 1989, pp. 195-203,1989.
[9] Donko Donjerkovic and Raghu Ramakrishnan, Probabilistic Optimization of Top n Queries. VLDB, pp. 411-422. 1999.

[10] R. Fagin. Combining Fuzzy Information from Multiple Systems. 15th ACM Symposium on Principles of Database Systems,
pp. 216-226, June 1996.

[11] Ronald Fagin. Fuzzy Queries in Multimedia Database Systems, Principles of Database Systems, Seattle, WA, 1998.
[12] Joseph M. Hellerstein, Optimization Techniques for Queries with Expensive Methods, Association of Computing Machin-

ery, Transactions on Database Systems, Vol.23, No.2, June 1998, pp 113-157.
[13] Alon Levy, Ioana Manolesu, Dan Suciu, Daniela Florescu, Query Optimization in the Presence of Limited Access Patterns,

SIGMOD 1999, pp. 311-322,1999.
[14] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T.S. Huang, Supporting Ranked Boolean Similarity

Queries in MARS, TKDE, (10)6, pp. 905-925,1998.
[15] P. Griffiths Selinger, D.D. Chamberlin, R.A Lorie, T.G. Price, Access Path Selection in a Relational Database Management

System, SIGMOD 1979, pp.23-34,1979.

"The definition of rank of a predicate is Rank = (SeUcUvity-i)

40

Comparing Semi-Structured Documents via Graph Probing

Daniel Lopresti Gordon Wilfong

Bell Labs, Lucent Technologies Inc.
600 Mountain Avenue

Murray Hill, NJ 07974 USA
{dpi,gtw}@research.bell-labs.com

Abstract
In this paper, we describe our first steps towards adapting a new approach for graph

comparison known as graph probing to allow for the pre-computation of a compact, effi-
cient probe set for databases of graph-structured documents (e.g., Web pages coded in
HTML). We consider both the comparison of two graphs in their entirety, as well as de-
termining whether one graph contains a subgraph that closely matches the other. After
presenting an overview of work in progress, we provide some preliminary experimental
results and suggest directions for future research.

1 Introduction

Graphs are a fundamental representation in much of computer science, including the anal-
ysis of both traditional and multimedia documents. Algorithms for higher-level document
understanding tasks often use graphs to encode logical structure. HTML pages are usually
regarded as tree-structured, while the WWW itself is an enormous, dynamic multigraph.
Much work on attempting to extract information from Web pages makes explicit or implicit
use of graph representations [3, 4, 7, 11, 13].

It follows, then, that the ability to compare two graphs is also basic functionality, as
demonstrated by such diverse applications as pattern recognition, performance evaluation,
query-by-structure, wrapper generation for information extraction, etc. Because most prob-
lems relating to graph comparison have no known efficient, guaranteed-optimal solution,
researchers have developed a wide range of heuristics. For the problem of determining iso-
morphism, for example, many heuristics rely on the existence of certain vertex invariants,
which consist of a value f(v) assigned to each vertex v, so that under any isomorphism
i", if I(v) = v' then f(v) = /(V). One commonly used vertex invariant is the degree of a
vertex. It has been shown that for random graphs, there is a simple linear time test for
checking if two graphs are isomorphic that is based on the degree of the vertices, and this
test succeeds with high probability [1]. In fact nauty, a successful software package for
determining graph isomorphism (see [10]), relies on such vertex invariants.

This observation can be seen as forming the basis for graph probing, a paradigm we
have recently begun exploring for graph comparison [5, 6, 9]. However, we desire more than

41

a simple "yes/no" answer; we are interested in quantifying the similarity between graphs,
not just in whether they may be isomorphic. Conceptually, the idea is to place each of the
two graphs under study inside a "black box" capable of evaluating a set of graph-oriented
operations. We then pose a series of probes and correlate the responses of the two systems.
This process is depicted in Figure 1.

Database Graph Query Graph

Probe
Synthesis

Probe
Evaluation

 I
b^Probe Set #T$}

^ Probe Sef^l

IS
r

Probe
Synthesis

xwwww
Responses-

"Wfiitt

X
(% Agreement)

Probe Set #2

N N kUN N ate

Figure 1: Overview of graph probing.

Our past work in the area treats graph probing as an on-line process; both the query
graph and the database graph are available at run-time for synthesizing the probe set.
While this is an appropriate assumption when one is comparing, say, the output of a recog-
nition algorithm with its associated ground-truth, it is not a workable model for retrieval
applications when the database contains anything other than a small number of documents.

In the present paper, we describe our first steps towards adapting the graph probing
paradigm to allow for the pre-computation of a compact, efficient probe set for databases of
graph-structured documents in general, and Web pages coded in HTML in particular. The
comparison of two graphs in their entirety is considered, as well as determining whether
one graph contains a subgraph that closely matches the other. We present an overview of
work in progress, as well as some preliminary experimental results.

2 Related Work

Graph comparison is an important yet difficult problem, so it should come as no surprise
that a large number of researchers have proposed heuristics or solutions designed for special
cases. For example, Bunke and Messmer present a decision-tree-based precomputation
scheme for solving the subgraph isomorphism problem [2], although their data structure
can be exponential in the size of the database graphs in the worst case.

Lazarescu et al. propose a machine learning approach to building decision trees for
eliminating from further consideration graphs that cannot possibly be isomorphic to a given
query [8]. While they employ a similar set of features to the ones we use, they do not consider
the approximate matching or subgraph problems.

42

Papadopoulos and Manolopoulos discuss an idea that is philosophically quite similar
to ours [12]. However, they focus on a single invariant: vertex degree. It is clear this is
not sufficient for catching all of the interesting differences that can arise between HTML
documents. We would like to determine a range of possible graph features that can be used
to distinguish the sorts of effects that arise in practice. Moreover, their histogram technique
is applied only to the problem of comparing complete graphs, whereas we wish to examine
the subgraph matching problem as well.

Valiente and Martinez describe an approach for subgraph pattern-matching based on
finding homomorphic images of every connected component in the query [14]. Again, the
worst-case time complexity is exponential, but such features could also perhaps be incor-
porated in the heuristics we are about to present.

Instead of trying to solve the problem for graphs in general, some leeway can be had
be limiting the discussion to trees, for which efficient comparison algorithms are known.
Schlieder and Naumann consider a problem closely related to ours: error-tolerant embedding
of trees to judge the similarity of XML documents [13]. Likewise, Dubois et al. write about
tree embedding for searching databases of semi-structured multimedia documents and for
query-by-example [3].

The WebMARS system, as presented by Ortega-Binderberger et al. [11], models Web
documents via their parse trees. Queries are likewise treated as trees, although they encode
hierarchy for individual object types {e.g., text, images) and do not represent the same sorts
of inter-object relationships that the mark-up in Web documents encodes. Matching only
takes place between the leaves of the query tree and all possible "chains" in the document
tree {i.e., paths leading in the direction from the root to a leaf). The match values are then
propagated upwards towards the root of the query tree over edges that can be weighted
to reflect the importance of that particular component. Hence, there is an asymmetry
between queries and documents. In any case, the graph model we would like to support is
more general than simple trees, allowing both cross-and back-edges.

3 A Formalism for Graph Probing

In this section we formalize the concept of graph probing as a way of quantifying graph
similarity. Our goal is to relate probing, which is a heuristic, to more rigorous but harder-
to-compute graph edit distance models.

While ultimately we are interested in a more general class of graphs, to begin with let
G\ = (Vi, -Ei) and G\ = (V2, £2) be two undirected graphs. Consider a graph editing model
that allows the following basic operations: (1) delete an edge, (2) insert an edge, (3) delete
an isolated vertex, (4) insert an isolated vertex. It should be clear that such operations
can be used to edit any graph into any other graph. The minimum number of operations
needed to edit G™ into G\ is the undirected graph edit distance, disf (G^G^). As noted
previously, there is no known algorithm for efficiently computing this distance in general.

Now consider a probing procedure that, for a specific vertex degree n, asks the following
question: "How many vertices with degree n are present in graph Gu — {V, E)7" Let PR\a

collect the responses for all vertex degrees represented in the graph (the response for all

43

other vertex degrees is, of course, implicitly "0"),

PRia(Gu) = [\{veV\ deg(v) = n}\ for n e {deg{y) \v£V}] (1)

Then define probeu(G%,G%) = PRla(G\) - PRia(G%) as the U norm of the two vectors;
that is, probeu is the magnitude of the difference between the two sets of probing results.

Theorem 1 Under the undirected graph model and its associated edit model, probeu is,
within a factor of four, a lower bound on the true edit distance between any two graphs,
probeu(Gx[,G2

i) < 4 • distu(Gl{, G%).

The time needed to perform the above probing procedure is 0(max(|Vi|, |£i|, \V2\, \E2\)).
In the off-line case, we can precompute the probes and their responses for one of the graphs.
The result is exactly the same as in the on-line case. While the worst-case time complexity
remains unchanged, the precomputation and an efficient coding of its output can yield a
substantial savings.

Unfortunately, there is no guarantee that the above bound is particularly tight. Indeed,
it is not even as tight as the bound that can be derived for the measure described in [12],
although it does appear to be easier to generalize, a point that will become important
shortly. Still, as a lower bound it does provide a potentially useful filter, which is our goal.

To proceed to the case of directed graphs, we can consider the same set of editing
operations (recognizing that the edges are now directed) and change the probes to be: "How
many vertices with in-degree m and out-degree n are present in graph Gd1v Observations
similar to those made above concerning lower bounds and computation time for undirected
graphs apply here as well (including a theorem for directed graphs analogous to Theorem 1).
It can also be shown that the bound returned by the new, more specific class of probes is at
least as good as the original class and sometimes better: probeu(G(,G2) < probed(G(,G2).

Now generalize the graph model further so that vertices and edges are potentially labeled
by a type. For example, vertices might be labeled as corresponding to HTML structure tags
(e.g., section heading, paragraph, table), while edges are labeled to represent relationships
between structures (e.g., contains, next, hypertext reference). To handle such attribute
graphs, the edit model previously defined must be expanded to include additional oper-
ations: (5) change the type of an edge, (6) change the type of a vertex. The edges and
vertices created through insertion operations can be assigned any type initially.

In terms of probing, note that now two graphs can be different (in terms of the types
of their vertices and edges) and yet appear to be structurally identical. To deal with this,
the probes for counting in- and out-degrees are made specific to edge type. Suppose there
are a different edge labels lx,...,la. The edge structure of a given vertex can then be
represented as a 2a-tuple of non-negative integers, (xx,..., xa, yx,..., ya), if the vertex has
exactly Xi incoming edges labeled k and exactly yj outgoing edges labeled lj for 1 < i,j <
a. Then a typical probe will have the form: "How many vertices with edge structure
(xi,...,xa,yi,...,ya) are present in graph Ga?" We also need to add a new class of
probes focusing on just the vertices and their types: "How many vertices labeled vtype
are present in graph Ga?" Let PRlc collect the responses for vertex in- and out-degrees
and their respective edge types, and let PR2 collect the responses for vertex types. Define
probea(Gl,Ga

2) = (PRlc(Gl) - PRlc(Ga
2)) + (PR2(G

a
1) - PR2(G

a
2)). We then have:

44

Graph Model Edit Model Probe Model Bound

Undirected (1) delete edge
(2) insert edge
(3) delete vertex
(4) insert vertex

(a) vertex degree probeu(Gu
1,G^)<

A-distu{Gu
uG^)

Directed as above (a) vertex in- and out-
degree

probed{Gd,Gd
2)<

4-distd(Gd,Gd)

Attribute as above, plus
(5) change edge type
(6) change vertex type

(a) vertex in- and out-
degree by edge type
(b) vertex type

probe" (Ga
1:G

a
2)<

A-dist^Gl^l)

Table 1: Summary of the various models.

Theorem 2 Under the attribute graph model and its associated edit model, probea is,
within a factor of four, a lower bound on the true edit distance between any two graphs,
probea(G\,Ga

2) < 4 • dista(Gl,G%).
Moreover, probeu{Gl,G{) < probe\G\,G\) < probea(Gl,G%).

The precomputation needed for each graph is as follows. Computing the edge structures
of all the vertices takes total time 0(\E\ + a\V\). These |V| tuples can then be lexicograph-
ically sorted in 0(a(d+ \V\)) time, where d is the maximum number of edges incident on
any vertex. Then a simple pass through the sorted list allows us to compute the number
of vertices in each of the (non-empty) classes in additional time 0(«|F|). Thus the total
precomputation time is 0(a(d+ \V\)+ \E\). Since a and d are likely to be small constants,
the time is essentially the same as for the case of undirected graphs.

Table 1 summarizes the results of this section.

4 Graph Probing for Semi-Structured Documents

The attribute graph model we assume for HTML documents includes the standard tree-
structured hierarchy generated when parsing the tags (the "contains" /"contained-by" re-
lationship). In addition, we also make use of the order in which content and the various
substructures are encountered (in many cases this corresponds to the natural reading order
for the material in question). We represent this via "next"/"previous" cross-edges that
connect vertices at a given level in the hierarchy, rather than assuming an implicit fixed
ordering on the children of a vertex as some other researchers have done. Lastly, we record
hyperlinks as either back-edges (in the case of targets on the same page) or a distinguished
vertex type (in the case of external references). No provision is currently made for incoming
links from outside documents. See Figure 4 for an example from our small test database.

Recall that we have defined two probe classes for these kinds of graphs:

Class lc These probes examine the vertex and edge structure of the graph by counting in-
and out-degrees, tabulating different types of incoming and outgoing edges separately.

45

Class 2 These probes count the occurrences of a given type of vertex in the graph.

When comparing two graphs in their entirety, it suffices to correlate their responses to
the probes using the Lx norm as described earlier. For the problem of subgraph matching,
however, we cannot expect to be able to compare directly the outputs for the larger graph
to those for the smaller. For example, consider a query graph consisting of a single table
that corresponds to a table in some database document, but where that document also has
dozens of other, unrelated tables.

In the case of the Class 2 probes, clearly if the query graph contains a certain number of
vertices labeled in a given way, the target graph may possibly contain a perfectly matching
subgraph so long as it contains at least that many vertices labeled in the same way. Similarly,
the way in which the Class lc probes are correlated needs to be modified as well, since the
vertices present in the query graph may have fewer incoming and outgoing edges than their
corresponding vertices in a matching subgraph of a larger graph.

1.00

0.90

0.80

c
o
o 0.60

a <
a 0.50

NY Times 5/31/01 (query)

NY Times 6/4/01 NY Times 6/5/01 NY Times 6/6/01

iiiiiiliiillliiiiilillili
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Database Web Page

Figure 2: Graph probing results for Experiment 1 (full graph comparison measure)

5 Preliminary Experimental Results

This paper describes research that is still very much in progress. As we noted, we have
previously implemented the on-line version of graph probing (Figure 1) to help in the
evaluation of table understanding algorithms [5, 6]. However, the utility of graph probing in
that specialized domain is not an assurance that it is an appropriate paradigm for searching
databases for matches in a retrieval application, especially since the classes of probes we
have at our disposal are also different here.

46

To begin examining some of these issues, we performed two simple experiments to test
graph probing in an information retrieval setting. In both cases we used Class lc and
Class 2 probe sets. The first test examined the ability of the two classes to detect changes
as the structure of a specific commercial Web page evolved naturally over several days. The
second studied the subgraph matching problem by searching for a Web page that had been
edited by deleting a significant portion of its content.

The small database consisted of 75 current WWW homepages collected from a variety
of sources: commercial, educational institutions, personal, news organizations, and portal
pages. Our parse graph generator is capable of recovering from the kinds of simple errors
that often arise in real-world HTML (e.g., missing end tags). The size of the resulting
graphs ranged from a minimum of 60 vertices to a maximum of 1,204, with an average of
419 vertices. The probe set, generated automatically, consisted of a total of 219 Class lc

and Class 2 probes.

t «ft wwr $* string*« *»««» awi*y «*•

k ~;~~ - j's ...iI
ttfltete|fcfcrp- ;/«w,«,sfi *<fa.JSM«33*,'

: Wtw-itw^:>M(|Mr fm*w*n> iMtmn. **k •*•« i

■/.lli

wF>g;;c-nlsra:rä

Ih; am o' Sn wrtiiKpli tt> tmg :cgp*(r wsliii »I Süp»ctt cl mitrrfda nfnrnattai jyjttrr), *(rai rreda
Cmtoit,niitii«feil=:iitte5;;vjieTE ret*akhg,rea!-tire systems, jäpfcsardraataBcn.ailitej

Tb! war, p» w tfn*;!^g B* e™qro tcpc; *thn tte ttant ol 'Nmtifctd kUtnwta DatabMK' «'t
estctat, estua^d. Srtcted KI»S So-itfe pcesetfrcs »* b; Mfcted h a soectol teus o' "JturaiotMirhtiia

MM

Figure 3: Screen snapshot of the MIS'2001 homepage (http://www.cs.rpi.edu/mis2001/).

For the first experiment, we used as our query the May 31, 2001 homepage from The
New York Times (http://www.nytimes.com/). This is a relatively complex page, its parse
graph containing 1,089 vertices (for comparison, the graph depicted in Figure 4 is less than
one-fifth this size). The results for using graph probing to compare this page to the 75
pages in the database are shown in Figure 2. The May 31 page is, of course a perfect
match for itself, but also a very good match for the June 4, 5, and 6 homepages as well
(the only other examples from The New York Times in the database). Clearly some sort of
structural change in the page was made between May 31 and June 4. Conversely, a number
of other regularly-updated Web pages we have examined show no structural changes from
day-to-day, although obviously the content is constantly varying.

For our second experiment, we used the homepage for the MIS'2001 workshop, a screen
snapshot of which is given in Figure 3. The corresponding parse graph, containing 193

47

vertices, is shown in Figure 4. To create the query, the page was edited by deleting the
dark blue sidebar on the left side of the page. The parse graph for the edited page had 124
vertices and appears in Figure 5.

Figure 4: Parse graph for the MIS'2001 homepage (193 vertices).

Figure 5: Parse graph for edited version of the MIS'2001 homepage (124 vertices).

The results for this experiment, using graph probing with the subgraph comparison
measure, are shown in Figure 6. Here we can see that the two probe classes are able to
distinguish the original page and the smaller, edited version from the rest of the database,
but just barely. The current probes, which consider only structure (and high-level structure
at that), need to be supplemented with new classes that are able to make use of content
and other aspects of the page layout before the probing paradigm can be effective for the
subgraph matching problem. This is work in progress.

48

1.00

0.90

0.80

0.70
c

I 0.60

Edited page (query) Original page

0.30

0.20

0.10

0.00
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Database Web Page

Figure 6: Graph probing results for Experiment 2 (subgraph comparison measure)

6 Discussion

In this paper we have described our initial efforts to adapt the graph probing paradigm to
searching databases of graph-structured documents. We considered both the comparison
of two graphs in their entirety, as well as the subgraph matching problem, and gave some
preliminary experimental results.

Currently, our graph probing provides a measure of how similar two graphs are or how
similar one graph is to some subgraph of another. It does not, however, produce a mapping
from one graph to the other. Clearly, to extract information from semi-structured sources
we need to recognize more than the fact that some matching is likely to exist; we must be
able to identify the actual correspondence between the graphs (or between one graph and a
subgraph of the other). At the very least, however, graph probing can be used as a filter to
exclude graphs that could not possibly be a good match so that computationally expensive
methods may be run on much smaller collections of potential candidates.

Another topic for future research is extending the formalism and bounds of Section 3 to
the subgraph matching case.

References

[1] L. Babai, P. Erdös, and S. M. Selkow. Random graph isomorphism. SI AM Journal on
Computing, 9(3):628-635, August 1980.

[2] H. Bunke and B. T. Messmer. Recent advances in graph matching. International
Journal of Pattern Recognition and Artificial Intelligence, ll(l):169-203, November

49

1997.

[3] D. Dubois, H. Prade, and F. Sedes. Some uses of fuzzy logic in multimedia databases
querying. In Proceedings of the Workshop on Logical and Uncertainty Models for In-
formation Systems, pages 46-54, London, England, July 1999.

[4] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide
Web: A survey. SIGMOD Record (ACM Special Interest Group on Management of
Data), 27(3):59-74, 1998.

[5] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. A system for understanding and re-
formulating tables. In Proceedings of the Fourth IAPR International Workshop on
Document Analysis Systems, pages 361-372, Rio de Janeiro, Brazil, December 2000.

[6] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and its
evaluation. In Proceedings of Document Recognition and Retrieval VIII (IS&T/SPIE
Electronic Imaging), volume 4307, pages 44-55, San Jose, CA, January 2001.

[7] N. Kushmerick. Regression testing for wrapper maintenance. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence, pages 74-79, Orlando, FL,
1999.

[8] M. Lazarescu, H. Bunke, and S. Venkatesh. Graph matching: Fast candidate elimina-
tion using machine learning techniques. In Advances in Pattern Recognition, volume
1876 of Lecture Notes in Computer Science, pages 236-245. Springer-Verlag, Berlin,
Germany, 2000.

[9] D. Lopresti and G. Wilfong. Evaluating document analysis results via graph prob-
ing. In Proceedings of the Sixth International Conference on Document Analysis and
Recognition, pages 116-120, Seattle, WA, September 2001.

[10] B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45-87, 1981.

[11] M. Ortega-Binderberger, S. Mehrotra, K. Chakrabarti, and K. Porkaew. WebMARS: A
multimedia search engine for full document retrieval and cross media browsing. In Pro-
ceedings of the Sixth International Workshop on Advances in Multimedia Information
Systems, pages 72-81, Chicago, IL, October 2000.

[12] A. N. Papadopoulos and Y. Manolopoulos. Structure-based similarity search with
graph histograms. In Proceedings of the 10th International Workshop on Database &
Expert Systems Applications, pages 174-178. IEEE Computer Society Press, 1998.

[13] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML data.
In Proceedings of the ACM SIGIR Workshop On XML and Information Retrieval,
Athens, Greece, July 2000.

[14] G. VaUente and C. Martinez. An algorithm for graph pattern-matching. In Proceedings
of the Fourth South American Workshop on String Processing, pages 180-197. Carleton
University Press, 1997.

50

Indexing XML Documents: Improving the BUS Method*

Vincent Oria, Amit Shah, Samuel Sowell
College of Computing Sciences

New Jersey Institute of Technology
University Heights

Newark, NJ 07102-1982
oria@cis.njit.edu, acoolshah@usa.net, sowellms@mindspring.com

Abstract

In this paper we propose an indexing method for XML documents that improves the BUS method.
The main difficulty in indexing XML documents is that the index must accommodate two different
worlds that XML brings together: database and information retrieval. In the database world,
indexing is based on the data structure, while indexing in information retrieval is based on the
text content. One of the original XML document indexing methods is the Bottom Up Scheme
(BUS). This method was then modified to create a better mechanism for updating structured
documents. Despite the significant improvements made to the Bottom Up Scheme, the experiment
still indicated a 240% storage overhead, indexing time of 4 hours and 43 minutes for 250 MB of
documents, and query times as long as 6.46 seconds. The solution to minimizing the overhead
introduced by the indexing is to reduce the number of terms to be indexed. The method proposed
in this paper selects important words from the documents to be indexed, based on a user-defined
dictionary. Furthermore, each node in the tree structure of the BUS method has a fixed number of
children that causes complete tree reorganization from time to time. We propose a solution that
avoids the reorganization of tree.

1.0 INTRODUCTION
The challenge/problem of searching documents has been around as long as electronic documents
have existed. As Internet browsing has become more popular, information retrieval has increased
in importance. Current Internet browsers search some portion of the documents stored on their
servers, and return exact or similarity matches to the character string selected by the user.
Advanced techniques can be added to allow the user to connect multiple strings, using logic such
as "AND" and "OR". Given the lack of structure in HTML language, there have not been any
widely used alternatives. The difficulty with the current approach is that the context semantics are
not taken into account.

One alternative method that has been suggested for HTML and other unstructured electronic
documents is the use of a standard ontology for a given field, such as medicine, computer
software or oil drilling. Once the ontology is developed, software can be developed to parse
documents that have been created using the standard ontology. To date, this approach has not
received universal acceptance because of the time and effort it would take to produce an
ontology, and the burden placed on the user to conform to the ontology.

The lack of semantic definition has been addressed by the creation of two languages with more
structure: SGML and, more recently, XML. Both of these languages have a semantic structure
that can be used to create and search documents. As more XML documents are created, using
semantics for document retrieval is becoming a priority for computer users, especially in the

' This research is supported, in part, by the New Jersey Institute of Technology under the Grant 421130.

51

technical community. To date, two approaches, which incorporate semantics, have been
developed to address information retrieval.

The first approach is to create document-specific software that contains algorithms able to search
for very specific information in documents of a known structure and content. This method has
been used, for example, by lawyers in Australia who have created an algorithm to look at a
narrow set of court decisions to determine pertinent information [1]. In addition, they have
recommended a standard ontology to improve search results. Scientific researchers have also
created a product to index and retrieve scientific literature [2]. Using this method for scientific or
judicial documents is appropriate for a limited setting, but it provides a narrow-focus search that
produces less than desirable results when used for documents outside the original domain.

The second approach is to use structured documents and databases that allow semantic
information retrieval, as the documents contain tags that can be semantically interpreted. SGML
and XML languages both provide semantic tags. As Lee et al. stated in [3], "In order to perform
structure queries efficiently in the structured document management system, an index structure
that supports fast element access must be provided because users want to access any kind of
document element in the database." They proposed two index structures that could be used to
facilitate access to an element in the database - inverted index structures and signature file
structures. These two structures have been the basis for recent indexing research.

As described in [4] and [5], signature files only index representative words or "record signature".
Object signatures are stored in a bit format and compared to the query to determine matches.
Using signature files greatly reduces the storage requirements and minimizes access time. The
obvious drawback of using signature files is that very little information is included in the
indexing system. Therefore, the user can only search on a limited set of criteria.

Inverted file structures solve the problem of limited search criteria created by the signature file.
The inverted file structure, however, creates three new problems: significant increase in the
amount of storage required for a document, a significant increase in the amount of time required
to parse the document and index the elements at every level of the file structure, and an increase
in the query time. To reduce storage requirements and improve query processing, Shin et al [6]
developed the Bottom Up Scheme (BUS). This scheme reduces the storage requirements by using
a general identifier (GID) for each element so that indexing occurs only at the leaf node (text)
level. The BUS method was further modified to create a better mechanism for updating structured
documents [7]. Despite the significant improvements made by the Bottom Up Scheme, the
experiment still indicated a 240% storage overhead, indexing time of 4 hours and 43 minutes for
250 MB of documents, and query times as long as 6.46 seconds. Because BUS uses a complete
tree structure including virtual nodes, significant updates require the restructuring of a large
portion of the inverted file structure.

The intent of this paper is to show how the BUS indexing method can be used as a basis for an
indexing method that will reduce the time involved to store, query and update SGML and XML
documents, while reducing the storage overhead. The efficiency of updating the content and tree
structure can be improved by modifying the BUS method so that a complete tree structure is not
necessary. Storage time and space, as well as query time, can be improved by including a
hierarchical data dictionary in the database. The hierarchical dictionary is a more flexible notion
ontology that can range from a list of keywords to a complex ontology. The hierarchical
dictionary includes all relevant concepts and terms for a given application domain. Although
building an ontology can be a difficult task, the flexibility in our approach makes it practical: a
list of domain keywords as seen at the end of every textbook is enough for a start.

52

2.0 RELATED WORKS
In the past years, several methods have been created to retrieve information from structured
documents. Path encoding [8] is a technique that encodes each path from the root to the
destination node in the hierarchy into a compressed form [7]. The index overhead is low, but the
paper did not address the query evaluation.

Lee et al. [3] created an index that reduced the storage overhead, by indexing at all levels of a
document. This method uses a complete tree where the parent element has a predefined maximum
number of children (k). Any tree created would consist of real nodes indexed by keyword and
virtual nodes to provide room for future elements. Each element is assigned a Unique element
IDentifier (UID) using a left-to-right, top-to-bottom traversal that can be used to calculate the
parent DID .Development of this method allowed an index to be created only at the parent level if
an index term appeared in all of the leaf nodes of the tree to be indexed. The method enabled
some queries of structured documents, but it did not provide a mechanism to determine index
weights.

The Bottom Up Scheme (BUS) [6] built on Lee's work by creating a General element IDentifier
(GID), which included the LTD of the element and the level of the element in the tree. This makes
it possible to include weight information. Although this improvement was significant, the major
contribution of the BUS scheme is the reduction of indexing overhead by indexing only at the leaf
nodes. During query evaluation, higher-level information can be determined by collecting
information from the lowest levels of the document.

In order to more efficiently update the database indices following document updates, Jang et
al.[7] extended the BUS method by using Oracle Index-Organized tables. Three postings were
created: content, structural, and attribute. The Index-Organized tables improved the efficiency of
index updates, and the postings allowed the user to query the document using content, structure,
and attribute criteria.

2.1 Bottom Up Scheme (BUS)
The Bottom Up Scheme (BUS) [6] is an indexing method that minimizes storage overhead by
indexing only the leaf nodes, and also provides relatively efficient techniques for querying
structured documents. It is an extension of the indexing structure proposed by Lee [3]. As
described above, Shin et al. were able to reduce overhead by representing a document as a
complete tree with k children per parent. To identify each of the members of the tree, they also
created the UID; the UID of parent node is determined using the following formula:

Parent(UED) = UID - 2 + 1
k

Remember that in the tree, the UID is assigned following a left-to-right and top-to-bottom
traversal. Since the number of children for a node is fixed, room is reserved for non-existing
children called virtual nodes as opposed to concrete nodes. The BUS also introduced the concept
of the General element Identifier (GID) by extending the UID concept to include (1) Document
Number, (2) the UID of the element, (3) the level of the element in the tree and (4) the element
type number. The document number distinguishes the element from elements contained in other
documents, and the UID distinguishes it from elements within the document. The level of the
element facilitates queries that allow the user to select the level at which terms are to be collected.
The element type number facilitates queries when the user wants to retrieve information based on
the structure of the document. The central concept of the BUS method is to maintain indexing
information (the GID) only at the leaf nodes of a B+ tree structure. Information at higher-level

53

nodes can be determined from the information stored in the leaf nodes at run time. If a user wants
to get information at an intermediate level, term frequencies at the leaf nodes are automatically
accumulated to the corresponding ones at the intermediate level [7].

Chapt er

Section 1
/ \ Section 2

Hypertext
Browser

Paral / \ Para 2

Hypertext
Internet

Multimedia

Hypertext
Internet

Java

(a) Document Tree with Index Terms

Chapter

Hypertext (10)
Browser(4)
Internet(5)

Multimedial 5)
Java(7)

Hypertext (8)
Intemet(5)

MuMmedia(5)
Java(7)

^J

Hypertext(2)
Browser(4)

HypertextP)
Internet(3)

Multimedia^)

Hypertext(5)
Internet(2)

Java(7)

(b) Indexing and Retrieval of Term Frequency

Figure 1: Bottom Up Scheme Query Processing

The BUS method executes indexing for each element at the text level by extracting all of the GID
information and the frequency of a term appearing in the element. First, it scans the document,
assigning a GID to each element; then it extracts terms and calculates their frequencies in each
element at the text level [6]. The result is an inverted index with the B+ tree and the posting file.
The Query Evaluation Procedure (QEP) of BUS first creates a set of accumulators corresponding
to all of the elements in the document set. It then analyzes the query to determine which level and
element type the user wants, and extracts the appropriate postings. Using these, QEP maps the
posting UID to the parent UID and adds the frequencies into the accumulators until it reaches the
level desired by the user. Figure la) shows a document structure with some terms at the leaf
nodes and Figure lb) presents the accumulators for a query at the root level.

2.2 Improved BUS Method
Jang et al. [7] improved the efficiency of updating a structured document by organizing the index
into relational tables (Index-Organized Tables), especially designed for information retrieval and

54

storage of indices, and implemented on top of the Oracle system. An Index-Organized table is an
index that stores the terms and the auxiliary data in leaf nodes.

Indexing consists of preprocessing the original documents, extracting postings, and loading
posting information into database tables. Preprocessing and posting extraction extract words from
the documents, calculate the UID of the element, compute the term frequencies in each element,
and associate a GJD to the term. The data are saved in three postings: content, structural, and
attribute. In addition to the GID information, the index word is saved in the content posting, the
level and number of children are saved in the structural posting, and the attribute name, level and
attribute value are saved in the attribute posting. Postings are loaded into Index-Organized Tables
(Content Index Table, Structural Index Table, and Attribute Index Table), using SQL*Loader to
increase the speed of the process.

Updates can cause changes to the element content and/or structure. When the content is changed,
new indices in the Content Index Table replace old ones. When the elements are inserted and
deleted, content typically changes also. Thus, insertion of a new element normally causes the
replacement of indices in both the Content Index Table and the Structural Index Table for the new
element, and possibly sibling elements. If the insertion of an element changes the value k (the
maximum number of sibling elements in a tree), then the whole content and structure of the
document should be updated. Deletion of an element causes the deletion of all postings related to
the element, and may cause the update of content. As is the case with insertion, sibling elements
may be affected.

The improved BUS method has the ability to retrieve information using the content, structural, or
attribute index tables, individually. A content query uses a term and element name, and retrieves
postings whose terms match the given term. A structural query retrieves elements that satisfy the
condition imposed by the query. An attribute query uses the element name, and attribute name
and value to return the document ID and the UID.

3.0 MODIFIED BUS METHOD (MBM)
As mentioned above, the improved BUS method implemented by Jang et al. still has significant
drawbacks. The overhead is large, indexing and query times are long, similarity queries cannot be
performed, and some updates require re-indexing the entire document. We propose the modified
BUS method (MBM) of indexing and querying using a hierarchical dictionary in order to address
the storage overhead, indexing time, querying time, and similarity query concerns; and a
modification to the tree structure to eliminate the need for re-indexing the entire document during
updates.

3.1 Hierarchical Dictionary and Concept Hierarchies
Given the reduction in storage overhead that BUS has achieved by indexing only leaf nodes, it is
unlikely that there is another method that will greatly reduce the overhead while indexing the
same number of terms. Therefore, the only choice is to reduce the number of terms to be indexed.
The obvious concern with reducing the number of indexed elements is that the user will not be
able to retrieve information on all words in the document. But are all the words in a document of
the same importance? At the end of every textbook there is an index that lists all the important
words on the topics covered in the book. Indexing the textbook based on the words in the index
will certainly be sufficient to answer most of the questions related to the topics in the textbook.
Another approach is to index only the instances of certain important element types. For a book,
these might be the author, title, ISBN, publisher and copyright date. The solution presented in this
paper uses the two approaches in conjunction.

55

Selecting in advance the terms to index will be more effective than indexing all the words in a
document in addition to reducing the index overhead. This solution requires the application
designer to provide some domain knowledge for each specific application. Although it requires
some additional work for the designer, the flexibility in our notion of hierarchical dictionary
makes the solution practical, as there is no need to have a complete ontology in order to start
using such a system. The domain knowledge can range from a flat dictionary composed of a list
of words, to a complex ontology. The dictionary starts with a list of words of idioms of interest to
the application. The application developer can then build a concept hierarchy with a list of
keywords provided as leaves of the hierarchy, in order to obtain a complete hierarchical
dictionary. An example of a hierarchical medical dictionary, based on an ontology with a small
section of topics that might be chosen, is shown in Figure 2. Using this second method of
indexing, only words in the specific dictionary and relevant concept hierarchies would be
indexed, greatly reducing the total number of words stored in the database and - therefore -
indexing time. The use of the first and second methods together greatly reduces the amount of
storage overhead caused by indexing of the entire document, incorporates the ontology concept,
increases the number of search criteria over signature files, and provides flexibility for the user.

The hierarchical dictionary provides an added benefit when used during the query process. When
the user writes a query, the dictionary can be used to find all indexed words related to the user
topic. This allows the user to search for a family of words based on the dictionary hierarchy. For
example, if the user wants to find all documents that are related to "dentistry", with an index
based on Figure 2, the retrieval process will return all documents that contain "dentistry",
"orthodontics" and "periodontics". The overall effect of using the hierarchical dictionary is that
the user can retrieve information by specific indexed keywords, families of keywords, or
similarity searches at any level in the document. The level determination is performed using the
weight accumulation query features of the BUS system. Despite the increased power of MBM
queries, the queries should still be performed more quickly than the BUS or improved BUS
methods, due to the relatively small number of indexed terms.

3.2 Avoiding Re-Indexing on Updates
As discussed in the Improved BUS section, the BUS system maintains a complete tree with a
maximum number of children, k [6]. Whenever an update is made that causes the number of
children for a particular parent to exceed k, then the document must be completely re-indexed and
each element must be given a new UID to allow the creation of a new complete tree. Adding the
parent ID to each element GID will eliminate the need to maintain a complete tree with a fixed
number of maximum children. Using the MBM method, as each element is indexed, the next
sequential UID can be assigned. Therefore, updating with MBM never requires the entire
document to be re-indexed.

Figure 3a, borrowed from [6], shows a sample of a BUS Document Tree - with the solid boxes
representing the actual nodes and the dashed boxes representing the virtual nodes. The BUS
method assigns UTDs starting at the top and traversing the tree left-to-right, including virtual
nodes. If this document is updated to include a real S3, the UID has already been assigned, so
there is nothing else to do than making the virtual node S3 visible. If, however, the document is
updated to include an S4 element, then the entire document has to be re-indexed using a tree with
4 maximum children. MBM does not have a restriction on the maximum number because each
node explicitly stores the parent UID (Figure 3b). Thus, when a new element is added, it is
assigned the next available UID and re-indexing of the entire document is never performed. As
was the case for the BUS method, we chose a relational database with hierarchical tables
developed by Oracle.

56

Figure 2: Sample Medicine Document Set Dictionary

P6 P7

fsi!

fps! fw!

(a) Document Tree in BUS (b) Document Tree in MBM

Figure 3: Document Trees in BUS and MBM

4.0 IMPLEMENTING MBM
The first step in indexing a document set is to load the user-defined dictionary or dictionaries.
Each dictionary document is parsed, and the dictionary structure is extracted and stored in the
Keywords and Concept_Relationships tables. The leaf concepts in the Concept_Relationship
table are keywords from the Keywords table, on top of which the hierarchical structure of the
dictionary is built.

Once the dictionary has been loaded, the document set DTD needs to be loaded, if available. If
not, reviewing the available document set can create the DTD, and then it can be loaded. The
information from the DTD is stored in the DTD and DTD_Attributes tables. In the DTD table,
Element_Type_Code, Parent_Element_Code, Element_Name, Multiplicity, and
Index_By_Dictionary are stored using Element_Type_Code as the primary key for the table. The
Element_Type_Code is the same as that used by the two BUS methods - it defines the element
type from the DTD. The Parent_Element_Code is the element code of the element if it exists.
Multiplicity describes whether the element is required/allowed to have zero, one or more
instances when used in the document. Index_By_Dictionary is a Boolean attribute that is 1 if the
element is type is to be used when retrieving information by using the dictionary. In the
DTD_Attributes table, Element_Attribute and Required are stored with Element_Attribute as the
primary key and Element_Type_Code as a foreign key. Element_Attribute is one of the
component parts that make up an XML element. For instance, "Last_Name" might be part of the

57

element "Person". The attribute "Required" refers to whether the given attribute is required to be
specified when the given element type is used in the document.

Information from the document set can be parsed, extracted, and identified once the
dictionary, concept hierarchy and DTD have been loaded. Before indexing, the dictionary
to be used for indexing needs to be identified. Indexing consists of preprocessing the
original documents, extracting postings, and loading posting information into database
tables in a similar manner to the improved BUS method [7]. Preprocessing and posting
extraction extract words from the documents based on comparison to the DTD,
hierarchical dictionary, and the concept hierarchy.

As the documents are parsed, information about each document is determined and posted at three
levels: document level, element level and element attribute level. Document level information
includes the doc_id, doc_data, docjength. Doc_id is the unique number that identifies each
document and corresponds to DID in the BUS system, doc_data is the title of the document, and
docjength is the length of the document in words. Element level information includes the
element_id, Element_Type_Code, parent_element_id, level, and frequency. The element_id is the
unique number that, along with doc_id, identifies each element. Element_Type_Code is
determined by comparing the element type to the DTD and determining the number. The
parent_element_id is the element_id of the parent, and is used to parse the tree during queries.
Level describes where in the document the element is found. Frequency is the number of times
the element appears at the given level. Element attribute information includes the attribute and
value. Attribute is the type of attribute, and value is the actual number/characters in the document.
Using a previous example, an attribute of person might be last_name and have a value of
Johnson.

The last task of indexing is to populate the tables of the database. The first table to be filled is the
elements table, which contains element_id, doc_id, Element_Type_Code, parent_element_id, and
level, with element_id as the primary key and doc_id as the foreign key. The next table to be
filled is the attributes table, which contains attribute, element_id, doc_id, and value with attribute
as the primary key; and element_id and doc_id as the foreign keys. The last table to be filled is
the element_keywords table, which contains keyword, element_id, doc_id and frequency, with
keyword, element_id, and docjd as the foreign keys. The E-R diagram resulting from indexing
and the loading of the DTD data dictionary is shown in Figure 4.

5.0 MBM QUERY PROCESSING
When a user defines a query, several steps need to be executed to return the result. First, the
query must be parsed to identify parts of the database participating in the query. The
Concept_relationships, Elements, Element_Attributes, and Element_Keywords tables may all be
needed to execute the query properly. If keywords higher in the dictionary hierarchy are needed,
then the query has to be expanded to include all of the dictionary keywords at or below the level
of the user query. MBM uses a method similar to the BUS method for processing the SQL query
[6]. First, the query creates a set of accumulators corresponding to all indexed elements in the
document set. Secondly, it determines which level and element type is wanted and compares
desired level to actual level. Thirdly, it maps the element_id to the parent element_id, and the
frequency is added into the accumulator. At the end, the process has summed all of the
frequencies of the descendant element to the accumulator corresponding to the user level element.
The result that is returned is a set of documents that satisfy query criteria.

58

DTD

e1ement_type_code

parent_element_code
element„name
multiplicity
index__by_dictiona ry tl

DTD_Attributes

doc_data
docjength

keywords

keywords

element jype__code (FK)
element_attribute

required

e!emerrt_id
doc_id (FK)

elementJype_code (FK)
parent_elementjd
level

ElemerrLAttributes Element...

Concept_Relationships

sywords

parent_concept
concept (FK)

attribute
element_id (FK)
doc_id (FK)

omlue

keyword (FK)
elementjd (FK)
doc_id (FK)

frequency

-o-
i

Figure 4: MBM Index-Organized Table E-R Diagram

5.1 Hierarchical Queries
The classical approach to resolving hierarchies is to employ the recursive approach. That is, to
find all children of a particular node, we visit each child and, recursively, visit their children. The
standard SQL for relational databases is not amenable to hierarchical queries. Yet, there are
numerous examples of hierarchies modeled as relations. To resolve such hierarchies, Oracle
provides some additional clauses such as CONNECT BY, PRIOR, and START WITH which can
be used in conjunction with standard SQL.

Concept_Relationships

parent_concept
concept(FK)

For example if we wanted to recover the entire subject hierarchy
under Pediatrics (see figure 2), we could have a query as follows

SELECT subject, parent_subject, level
FROM Concept_Relationships
CONNECT BY PRIOR parent_concept = concept
START WITH subject = 'Pediatrics'

Figure 5: Using the Hierarchical Dictionary in a Query

The above-mentioned query would give the result set shown in Table 1. Note that level is not a
column in Table 1 but an Oracle reserved word, which is treated as a function. Similar techniques
are used for resolving the various hierarchies, such as Element Type Hierarchies.

Concept Parent Level
Pediatrics 1
Growth Disorders Pediatrics 2
Joints Growth Disorders 3
Muscles Growth Disorders 3
Bones Growth Disorders 3
Behavioral Disorders Pediatrics 2

Table 1: The Hierarchy From the Subject "Pediatrics"

5.2 MBM and Updates

59

Content and structural updates are easy to accomplish using MBM. When a document is modified
to create new elements, the section of the document that has been modified needs to be re-
indexed, and new elements are assigned new element_id numbers with the associated information
- including parent_element_id - discussed earlier in this paper. On deletion, the process is
simpler. Re-parse the affected section, deleting table entries that no longer exist. This method is
much simpler, and therefore much quicker, than the document update method used by the
improved BUS system.

6.0 CONCLUSION AND FUTURE WORKS
The BUS and improved BUS methods made a significant contribution to structured document
retrieval using semantics. These methods, however, still are not satisfactory as they induce long
indexing time, long query time, large storage overhead, inefficient update method, and the
inability to perform similarity queries.

This paper improves the BUS method by proposing to index fewer DTD elements and terms.
Only the terms that appear in a user-defined hierarchical dictionary, and selected DTD elements,
are indexed. This leads to a lower storage overhead, and shorter indexing and querying times. The
hierarchical dictionary can range from a list of keywords, such as keyword indexes seen at the
end of textbooks, to an ontology. When the dictionary is hierarchical, it is possible to pose some
similarity queries. The query on an internal node of the hierarchical dictionary is enlarged to
include all the terms in the sub-tree that start with the query term. Unlike the BUS, a node in the
index tree we use does not have a fixed number of children in order to avoid a complete
reorganization of the tree in case of heavy updating. Although our notion of a hierarchical
dictionary is flexible enough to range from a flat list of keywords to a complex ontology,
providing the dictionary is still a tedious task. But in some applications like education that we are
currently applying our method to, it is easy to find lists of keywords at the end of textbooks.

There is work that remains to be done, based on MBM. We are currently conducting
experiments, taking into account different types of document styles, to determine what
improvement may be possible. The results will be included in subsequent publications.

REFERENCES

[1] James Osborn and Leon Sterling. JUSTICE: A Judicial Search Tool Using Intelligent Concept
Extraction. In 1CAIL 99, Oslo, 1999.

[2] Steve Lawrence, Kurt Bollacker, C. Lee Giles. Indexing and Retrieval of Scientific Literature.
In CIKM 99, Kansas City, November 1999.

[3]Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon and P. Bruce Berra. Index Structures for
Structured Documents. In DL 96, Bethesda, 1996.

[4] Yangjun Chen and Karl Aberer. Layered Index Structures in Document Database Systems. In
CIKM 98, Bethesda 1998.

[5] Seyit Kocberber and Fazli Can. Compressed Multi-Framed Signature Files: An Index
Structure for Fast Information Retrieval. In SAC 99, San Antonio, 1999.

[6] Dongwook Shin, Hyuncheol Jang and Honglan Jin. BUS: An Effective Indexing and Retrieval
Scheme in Structured Documents. In DL 98, Pittsburgh, 1998.

[7] Hyunchul Jang, Youngil Kim and Dongwook Shin. An Effective Mechanism for Index
Update in Structured Documents. In CIKM 99, Kansas City, 1999.

[8] J. A. Thorn, J. Zobel and B. Grima. Design of Indexes for Structured Documents. In CITRI,
1995.

60

Multimedia reporting: building multimedia
presentations with query answers

Augusto Celentano and Ombretta Gaggi

Dipartimento di Informatica, Universitä Ca' Foscari Venezia
{auce,ogaggi}(8dsi.unive.it

Abstract. A multimedia report is a multimedia presentation which integrates data
returned by one or more queries to a multimedia database, thus extending the concept
of report familiar in traditional structured databases. In such a scenario information
retrieval consists in building a continuous presentation in which the retrieved data
are located, connected, synchronized and coherently presented to a user.
We discuss modelling of multimedia reports in terms of data co-ordination and syn-
chronization, based on a synchronization model we have defined for specifying complex
multimedia presentations. As in a report the user can browse the returned data with-
out loosing consistency, in a multimedia report moving along the presentation time
requires appropriate synchronization to be guaranteed.

1 Introduction

Multimedia databases are similar to structured databases concerning basic operations: classifying,
storing and retrieving data through algorithmic procedures and interactive interfaces. Nevertheless,
the presence of different media types adds new facets to the operations and increases the complexity
of data management.

In this paper we approach a quite traditional problem in the new perspective of multimedia data
retrieval. The problem is basically the construction of a report on a set of data, and can be stated as
follows: given a set of multimedia data, a retrieve task consists in building a continuous presentation
in which the retrieved data are located, connected, synchronized and coherently presented to a user.

Reporting is one of three basic access modes to a data repository, the other two being browsing
and querying. Browsing means to access a data repository along a priori undefined paths according
to an estimate of relevance that the user formulates as he or she proceeds in the exploration of the
repository. Querying means to identify relevant information according to precise and pre-defined
selection criteria based on the content of the information.

Accessing data by reporting means that the retrieved data are meaningful as a collection, and
the relationships among data items are perceived as relationships among aggregations which have
a meaning in the application domain. Also the presentation schema of the report suggests the user
a way of reading it and adds further semantics to the data.

When the operating environment evolves from text-only databases to complex and distributed
multimedia repositories, reporting must be extended to face issues like media delivery and syn-
chronization, channel management, user interaction, and cannot be effectively performed without
a suitable model for describing the multimedia presentation which constitutes the report itself.

The problems of automating the construction of multimedia presentation have been approached
by several authors, that we review in Section 2. We focus our discussion to data co-ordination and
synchronization, based on a media synchronization model we have defined for specifying complex
presentations made of continuous media.

We assume the World Wide Web as the surrounding environment of our discussion. As a first
consequence, we are concerned with scenarios in which media items might be delivered indepen-
dently, possibly by several servers, and must be synchronized at the user client site. Then, since
data instances are not known in advance, we are concerned with a data integration and synchro-
nization model which is based on data classes and types rather then on data instances, a quite

61

multimedia
tuples

multimedia
presentation

Fig. 1. Overview of the multimedia reporting process.

different situation with respect to traditional multimedia authoring and integration environments.
Last, we are interested in building complex and interactive multimedia presentations. Therefore,
we must define how different types of data can be presented together and how user actions must
be handled in order to maintain the whole presentation coherent.

Figure 1 summarizes the process of building a multimedia presentation by querying a multi-
media repository. Query execution returns a set of multimedia tuples whose components belong
to different media types. In each tuple instances are homogeneous1 therefore the specifications for
media playback are compatible over all the data instances of a specific tuple type. The presentation
specifications describe, among other information, how media items are integrated; the specifica-
tions describe how media items behave when events related to their playback happen. Master-slave
relationships are established among media types, so that when the overall presentation is delivered
to the user, its behavior is dictated by the dynamics and the timing of a master medium, usually a
video clip or an audio track. Once the presentation is started, the master medium generates events
when it starts, ends, or when the user interacts, e.g., by stopping playback. Such events propagate
to other media, which in turn generate other events, determining the dynamic evolution of the
whole presentation.

In this paper we are concerned only with the temporal and synchronization aspects of integra-
tion of the returned media items. We therefore do not face query specification and execution, nor
we deal with layout specifications of the generated presentation. In Section 6 we shall discuss some
open issues about multimedia querying.

The paper is organized as follows: in Section 2 we review the relevant literature by comparing
the different goals and approaches taken. Section 3 introduces the functionality of multimedia
reporting in terms of co-ordination and synchronization among the media objects returned. In
Section 4 a suitable model for multimedia synchronization is presented, while Section 5 illustrates
how such a model can be applied for specifying multimedia reports. Section 6 discusses consistency
issues related to multimedia integration, and Section 7 presents concluding remarks.

2 Related work

Automation of the production of multimedia presentations has been approached in recent years
from several points of view. All the approaches have the common goal of building in a more or less
automated way a multimedia document that integrates different media objects extracted from a
database or from document segments.

In Section 6 we shall argue about this assumption.

62

SQL+D [1,2] is an extension to SQL which defines the presentation properties of a multimedia
query result. Given a multimedia database, an SQL+D query allows users to specify in the query
a screen layout and time intervals to show the answer. In addition to SELECT-FROM clauses,
DISPLAY-WITH clauses define screen areas (called panels), in which groups of retrieved media
items are placed with specified relative positions. A SHOW clause defines the temporal behavior
in terms of timed sequences of returned instances display.

The Cuypers system [15-17] is a prototype multimedia transformation environment supporting
semi-automated assembling of multimedia documents according to a rich structural and semantic
annotation based on XML. The annotation allows different processing steps concerning semantic
structure, constraints satisfaction and final form presentation, which occur in multimedia author-
ing, to be integrated in a single execution stream.

In [10] the authors present a methodology for automated construction of multimedia presenta-
tions. Differently from the works reviewed above, the paper does not deal with query or retrieval
environments, but focuses on the semantic coherency of a multimedia presentation in terms of inclu-
sion and exclusion constraints. Given a set of multimedia document segments, the authors discuss
how a user selection of some segments should be completed or modified by including additional
segments based on semantic consistency of their content.

In [3] a system for the automatic generation, integration ad visualization of media streams is
described. The authors view teaching and learning experience as a form of multimedia authoring, so
the solution proposed are strongly oriented towards the educational domain, although this system
can be applied to different fields. The paper describes a method to integrate different media streams,
such as a video captured during a university lecture and its audio track, through the use of different
levels of granularity, and of one particular solution to each level. A timeline "road map" of the
lecture, marked with significant events, is proposed for the visualization of multiple streams.

DelaunayMM [8] is a framework for querying and presenting multimedia data stored in dis-
tributed data repositories. Media objects returned by a query are inserted into a multimedia
presentation. DelaunayMM uses profiles to design user-defined layout of a document and ad hoc
querying capabilities to search each type of media item. The authors do not address any formal
model for the specification of temporal synchronization of different objects.

In most of the reviewed systems the authors assume (coherently with the examples provided)
that the data items retrieved or selected for building the presentation are in some way predictable
and homogeneous, i.e., they can be combined in temporal sequences or spatial layout with an
a priori specification. This could be stated as an explicit requirement in order to be able to
build presentations which are coherent for a user, and is almost true for static items like text
and images. However, dynamic media like video and audio may need additional specifications of
temporal behavior in terms of co-ordination and synchronization, that we shall discuss in this paper.
The assembly of a multimedia dynamic presentation thus requires suitable models for specifying
structure and temporal scenarios of hypermedia documents.

Amsterdam Hypermedia Model [11-13] was the first serious attempt to merge document struc-
ture with temporal relations. AHM distinguishes between atomic and composite components: the
former are simple media elements, like a video file or a text page, and the latter are composition
of different objects grouped together according to synchronization relationships. Media items are
associated to channels which represent the devices needed for their playback.

SMIL[19], Synchronized Multimedia Integration Language, is a simple markup language denned
as a W3C recommendation. It is an XML application to describe temporal behavior of a multimedia
presentation using tags. Synchronization is achieved through tag seq to render two or more objects
one after the other, and tag par to reproduce them in parallel. Using attributes it is also possible
to play segments inside the time span of an object.

In [7] a formal framework for verifying temporal synchronization of a presentation is denned,
with the goal of determining whether a multimedia presentation is synchronized or amenable to
synchronization.

Madeus[14], an authoring and presentation tool for interactive multimedia documents, describes
synchronization among different objects through the use of timing constrains based on particular

63

events, like the beginning or the termination of a media file. Temporal information is represent
through a direct acyclic graph, and layout is specified by spatial relations like align or center.

In [18] the authors discuss a system for authoring and formatting hypermedia documents,
named HyperProp. It uses composition to represent spatial and temporal information. HyperProp
provides the structural views to graphically browse and edit the logical structure of a document,
the temporal view to represent objects along a timeline and the spatial view to formatting objects
layout.

In previous works [4,5,9] we have discussed the problem of authoring and navigating hyperme-
dia documents composed of continuous and non continuous media objects delivered separately in a
Web-based environment. We have introduced a formal model which defines a static structure and
synchronization relationships among media objects belonging to a same presentation. Temporal
relationships between different media are described according to the event-based approach. In [6]
we have applied the model to the identification of the scope of a query answer in a set of multimedia
presentations. More details on the model are given in Section 4.

3 Multimedia reporting

Let us suppose a fashion Company wants to offer Web users the possibility of looking at a person-
alized catalog of the last collection in the shape of a multimedia presentation performing a virtual
fashion show. A repository stores multimedia information about the fashion collections. The user
can query the repository selecting the set of data which set up the virtual fashion show.

We do not enter into details about the visual richness of such a show, because it is out of
the scope of this paper. We simply note that the result can be built on several types of data: for
example, a set of pictures which portrait models wearing the selected dresses, or a set of movie
clips which play parts of real fashion shows in which the selected dresses are shown. Text pages
can describe the collection items from a stylistic point of view, and other text documents could
provide details about tissues, techniques, commercial information, and so on. In order to complete
and make more pleasant the presentation, a soundtrack could be played with songs or spoken
comments.

Can we call such a presentation a "multimedia report"? Indeed, several aspects of text-based
reports are present also here. The simplest multimedia presentation is a slide show: an ordered
sequence of images displayed sequentially with appropriate timing and visual transitions, possibly
with associated text documents. Such a presentation is similar to a report on an alphanumeric
database because it exhibits a high degree of homogeneity in handling the components of the
presentation: it is an organized collection of data, the overall structure reveals a recurring pat-
tern, the transitions between data instances are perceivable like the breaks between groups in a
report. Basically a slide show is a report translated from a linear space dimension to a linear time
dimension.

Some of the systems reviewed in Section 2, e.g. SQL+D, can generate multimedia reports of
such kind. Sequence, transitions, timing and spatial layout can be described by DISPLAY-WITH-
SHOW clauses much as report sections are described by constructs of a reporting language. We can
extend this simple scenario by introducing dynamic media which require complex synchronization
specifications, e.g., by introducing movie clips and a soundtrack possibly made of different songs.
In this case two data sets must be merged, and the transition between instances of the first set do
not occur necessarily at the same time than in the second set, except for trivial cases. The slide
show metaphor is no longer sufficient to describe such a scenario.

As an example, let us suppose that the presentation integrates a collection of dresses in the
shape of movie clips coming from different fashion shows. Text pages describe the dress models,
and for each fashion show a different song has to be played. A dress change (therefore a movie
change) in the same fashion show, however, must not cause a song change.

This presentation is built on three different data types: the movie clips, the soundtracks, and
the text documents associated to the movies. They can be returned by different queries as long as
the instances of movies and texts are related by some foreign key correspondence2.

how such queries can be formulated is out of the scope of this paper

64

audio track

video track

text track

fashion show 1 fashion show 2

dress 1 dress 2 dress 3

DDDDGGD DDDD DDDODDDD

playing time

Time

Fig. 2. Timeline of the example presentation.

We could attempt to describe such a presentation according to a timeline-based description like
in Figure 2. Indeed, we cannot design such a timeline because we do not know how many objects
will be returned by the query. Therefore we cannot define the transition times between instances.
We do not even if text instances and movie instances are retrieved consistently, i.e., if for each
movie there is a corresponding text page. Such a lack of information does not allow us to rely on
models like the ones reviewed in Section 2. These models provide timing specification in terms of
media sequencing and duration. In our example, moving from one fashion show to another causes
not only a different movie to be played, but also a different soundtrack to be played. This event
cannot be described in terms of media properties, but concerns the dynamic structure of the whole
presentation

We need therefore to translate a representation based on a timeline into a sequence of events
whose occurrence makes the presentation to evolve. In order to achieve this result we need a
synchronization model that is able to define the relationships between the presentation of several
media elements, defining also how the playback channels (e.g., the windows) are used and released.

Before describing this model we go someway further in order to justify the kind of synchroniza-
tion relationships we shall introduce. The report composition model must allow us to go from a
temporal description based on a timeline, like the one in Figure 2, to a description based on events
like the one illustrated in Figure 33. An event based description is more suitable for a Web envi-
ronment since synchronization is not required to be fine-grained, but occurs only at specific events
such as the beginning or the completion of a download, or the start and the end of a streaming
medium, or a user action.

The model we have denned relies on relationships like "play medium B when medium A stops",
which do not require to know in advance the duration and the physical features of the media
involved, which are not known when the query is formulated and the presentation schema is
defined.

4 Modeling synchronization in multimedia presentations

In previous works [4,5,9] we have proposed a model to describe synchronization among components
of a multimedia presentation with reference to a distributed environment like the World Wide Web.
The model defines relationships between media instances. It is however well adapt to describe
relationships between classes, which in our scenario describe intensionally the query results.

Static components such as text and images are called generically pages; dynamic components
are video and audio files. A hierarchical structure is defined which describes the overall presentation

details of the figure will be described in next section

65

Video

OOOOOOO^OOOD-

7

<^>6

page

i fashion show 1

page

"audio

video

0000D000

page

fashion show 2

 ■ , ™__

Fig. 3. Synchronization relationships between media items.

organization. The continuous media which constitute the main module content make up a story,
which is composed of a sequence of continuous media files, audio and video, which are called
clips. Clips are divided into scenes. A scene is associated to a (set of) static documents which are
presented together. A clip with its scenes and associated pages build up a section.

Media objects require resources to be played. A channel is a virtual device allocated to a
document media component, e.g. a window. Generally speaking, a channel is the set of resources a
media object needs for its playback. Different media type require different channel types. A channel
is busy if an active object is using it, otherwise it is free and can be used by another media object
of the same type. Since static media do not evolve in time, they have an unlimited time extent,
i.e., they holds a channel until forced to free it.

Synchronization is achieved with a set of primitives which define objects behavior during pre-
sentation playback and channels utilization. The events to which media react can be internal, like
the beginning or termination of an object playback, or external, like a user action. We have defined
five synchronization relationships.

- A plays with B, denoted by the symbol <£> (A <£> B), to play two objects in parallel with object
A acting as the master one; when it comes to end, object B play is also terminated.

- A activates B, denoted by the symbol =» (A =>• B), to play two objects in sequence; the end
of object A causes object B to start playing.

- A is terminated with B, denoted by the symbol J| (A ty B), to terminate two objects at the
same time as a consequence of a user interaction or of the forced termination of object A.

-Ais replaced by B, denoted by the symbol # (A ^ B), to force the termination of object A
so that object B can use the same channel.

- A has priority over B with behavior a, denoted by the symbol > (A> B), to stop (if a = s)
or pause (if a = p) object B when the user activates object A. This relationship describes the
behavior of objects related by hyperlinks, that require to pause or stop part of a presentation
in order to allow the user to focus the attention on the document at fink destination.

Figure 3 shows an example of such relationships for the module described by the timeline of
Figure 2. Relationships 1 and 2 state that the first audio track and the video clip showing the
first dress start when the presentation of the first fashion show is started. By relation 3 the audio
track is repeated as long as the presentation goes on. In this way we need not to be concerned
with its length. Dresses are presented one after the other as described by relation 4 between the
video clips. At the beginning of the first video clip, the first static page is presented, as described
by relation 5, while the second page is displayed when the second video clips is played (relation
6). Since the two pages are displayed in the same window, the second one must replace the first
one in the channel usage. This behavior is described by relation 7. The presentation of the first
fashion show ends when the last video clip ends. Then, the second show is started, which takes the

66

<£>
kA/WWi

=>-
<=>

DDDODG^GDDG
o

JA/VVWWWWI

<^>

-000000000
<^>

Fig. 4. A Synchronization schema for a more complex multimedia report.

resources that were allocated to the first part of the presentation. This is described by relations 8
and 9. The second fashion show proceeds in the same way, as well as the remaining ones. Relation
10 defines that the whole presentation starts with the first fashion show.

The whole presentation is structured in two levels, as revealed by the dotted regions they
enclose media instances belonging to returned query results related to the same fashion show. The
hierarchical structure allows the definition of environments in which some temporal relationships
are derived by induction. For example, relations 1, 2 and 10. of Figure 3 are induced by the
hierarchy between the whole presentation, its models (i.e., the different fashion shows), and the
module components, therefore need not to be identified by the presentation designer, and introduce
some degree of automation in multimedia authoring. The reader is referred to the cited previous
works [4,5,9] for a more complete discussion of the model.

5 Presenting query results

The presentation of retrieved information can be described according to dynamic synchronization
relationships, in order to present the user a coherent playback of the different media items involved.
Let us modify and enrich our example, defining a multimedia presentation in which four kinds of
media are involved, retrieved by queries from several related databases: movie clips, which portrait
models with selected dresses; soundtracks, which play continuously in the background; text pages
which describe some features about the portrayed dresses; and voice comments which introduce
the different items of the fashion show, one short comment for each item. Also in this case the
resulting presentation is organized along a hierarchical decomposition in two levels, the higher
level defined by the aggregation of movie clips belonging to the same real fashion show (a group),
the lower level defined by the sequence of movie clips portraying different dresses displayed in the
same real fashion show. Figure 4 describes an instance of this presentation schema. In this case the
voice comments are activated by the video clips, so that each clip starts a different comment. The
soundtrack is still activated by the module which includes all the video clips of a specific fashion
show, but executes several songs in sequence according to their own timing.

It is important to note that Figure 4 cannot describe exactly a presentation schema, since it
has to be modelled intensionally and not extensionally, being unknown at presentation definition
time the instances that will be returned by the query. It has the purpose of making evident what
relationships need to be established among the returned media item in order to build a coherent
view for the user.

The synchronization schema of this presentation is based on the following properties.

- The movie clips are the "master" section of the presentation. They give the overall timing to
the presentation, because each of them defines the time a text page is displayed.

67

- The soundtrack is made of songs which are played one after the other within the same group.
The time when a transition between two songs occurs is not related to other media, and depends
only on the songs length.

- The voice comment is started by the movie clip to which it is associated.
- The whole presentation is a self-contained structure which begins execution by starting the

execution of the first group, then letting each group start the following one upon completion.
A group, in turn, starts the movie clip and the background soundtrack4. Starting from the pre-
sentation activation, every media item is played upon occurrence of events in the set retrieved
by the queries, as described by the synchronization specification.

The constraints on media instances returned by the queries can be expressed by the following
relationships. For each module:

soundtracks^ => soundtracks^ Vj
videok,i => videok,i+i Vi
videos^ •£> voices^ Vi
videos^ ■&■ textpagekj Vi
textpagek,i ^ textpages,i+i Vi
modules ■£> videos,i Vfc
modules O- soundtracks,i Vfc
modules ^ modules+i Vfc

where indexes i, j span over the media instances of module k. The first module is activated by
starting the presentation and subsequent modules are activated in sequence by the end of the last
video clip of the previous module:

presentation <$ modulei
videok,iast => modulek+i V/c

More care should be put in order to consider the possibility that the voice comments last longer
than the movie clips in some cases. In general we cannot know about returned media instances
aU the properties that would be needed to anticipate their behavior. The relationships holding
between modules, video clips and soundtracks (that we have defined constraints because are not
known until query execution) should in this case specify that the medium which has the longer
time span act as a master in activating the other medium:

max(videOk,i, voices^) O- min(videok,i, voicek,i) Vi
max(videos,i, voices^) => max{videos,i+\,voices,i+i) Vi
modules & max(videos,i,voices,i)

where max(a, b) and min(a, b) return the longer and the shorter medium, in terms of time span.
They are defined by functions at presentation specification time, and are expanded to specific
instances identifiers when actual data are returned.

6 Discussion

A number of issues deserve discussion, due to the many unknown elements with respect to a fully
defined multimedia presentation.

Inter-media consistency. We assume that query execution returns sets of results which are
consistent by definition. This is a quite obvious assumption, inherited from the traditional database
environment where tuples are homogeneous, but in principle it can be false. For example, some
dresses could be described only by text pages without movies, or conversely only by movies without
related texts. In order to manage these cases we could follow two ways: to extend the master-slave
relationship between media types to identify relevant instances, not only timing relationhips, e.g.

In the model terminology such groups are called modules

68

by assuming that the movie clip is the master data item, and a text without an associated movie
clip is meaningless; or to supply stubs, i.e., empty placeholders for instances which do not have a
counterpart in other media types, thus introducing some form of NULL values in multimedia data.

In both cases this issue can be approached by some kind of query post-processing, which should
return a consistent and complete set of data, possibly with explicit NULL values. Both solutions
are straightforward to implement, and the choice should be related to the desired meaning and
appearance of the whole target presentation rather than to abstract considerations.

Boundary constraints. Linking distinct objects into a seamless multimedia composition requires
compatible interfaces between components. Differently from textual database reports we cannot
guarantee that returned data items can always be integrated in a multimedia presentation by
showing the same visual properties. A complete discussion goes beyond the scope of this paper
but we can address some main issues here. Given two generic data items, their compatibility is
referred to a notion of type equivalence which is related to the set of values they can hold, the
operation defined over them, the selection properties that allow to select parts of aggregations,
and so on. Multimedia data have a much richer set of properties to be considered. For example,
two movies are compatible or not according to a wide spectrum of features: size, color, resolution,
frame per second, compression, and so on. Some of these properties are fixed, other can be modified
without changing the data meaning. The presence of such differences makes compatibility a matter
of substance rather than a matter of pure form.

As an example, the transition between two images is perceived differently not only according
the visual properties, but also according to the meaning that the images convey. In a fashion show
a sequence of images portraying models with different dresses in the same show room is perceived
differently from a sequence of images taken in different rooms. We argue that this problem could be
approached as integrity constraints are approached in conventional databases, in order to guarantee
formal consistency of sets of related data. To some extent boundary constraints should be denned
as a means to measure the consistency of the user perception of the multimedia report. However
we feel that a solution to this problem is not close.

Query formulation and integration. We have not discussed issues related to the formulation of
queries and to the syntactic and semantic devices needed to relate instances returned from different
media repositories, e.g., movie clips, associated voice comments and related pages. This of course is
a problem of crucial importance, and we do not claim it is easy to formulate formally and to solve.
Automatic correspondence between different types of data cannot be established safely relying
only on the interpretation of the data content. Content-based image retrieval systems available
today are still far from handling a concept of similarity based on the human perceived meaning of
the images. Extending the semantic interpretation to several media adds an unknown amount of
complexity.

This problem can be approached with success only if we assume that multimedia reporting
shares with textual reporting a correspondence between the syntactic and the semantic level of
the query execution. In other words, multimedia data can be integrated by automatic procedures
only if some features (tags, metadata, identifiers) can be fully recognized at a syntactic level, and
used as semantic indexes to relate instances belonging to different data types. XML is a promising
environment for approaching this issues, as its use in some related work demonstrates [15,16].

7 Conclusion

Multimedia reporting can be viewed as an information retrieval activity which constructs a mul-
timedia presentation integrating the data returned by queries directed to different repositories.
The consistency of the presentation requires modelling of the relationships among the media ob-
jects which are returned by query execution. The relationships define the compatible execution of
media elements in terms of synchronization relationships which drive the overall dynamics of the
presentation.

In a previous work we have defined a model for delivering and synchronizing complex multimedia
presentations. This model is suited to describe the relationships that must hold among elements
of a multimedia report built automatically from results of multimedia database queries. While

69

the spatial and logical composition of the media items returned into a multimedia document has
been approached in the literature, the management of the synchronization relationships among
the different components has not received too much attention. Our proposal makes a step in this
direction, even if further investigation is needed.

References

1. C. Baral, G. Gonzalez, A. Nandigam. SQL+D: extended display capabilities forjmultimedia database
queries. A CM Multimedia Conference. Bristol, UK, 1998.

2. C. Baral, G. Gonzalez, T. Son. A multimedia display extension to SQL: language design and architec-
ture. University of Texas El Paso, El Paso, 1997.

3. J.A. Brotherton, J.R. Bhalodia, G.D. Abowd. Automated Capture, Integration, and Visualization of
Multiple Media Streams. Proceedings of IEEE International Conference on Multimedia Computing
and Systems, pages 54-63, Austin, Texas, June 28-July 1, 1998.

4. A. Celentano, O. Gaggi. A Synchronization Model for Hypermedia Document Navigation. Proceedings
of the 2000 ACM Symposium on Applied Computing, pages 585-591, Como, 2000.

5. A. Celentano, O. Gaggi. Authoring and Navigating Hypermedia Documents on the WWW. ICME
2001, IEEE International Conference on Multimedia and Expo, Tokio, August 22-25, 2001.

6. A. Celentano, O. Gaggi. Querying and Browsing Multimedia Presentations. In M. Tucci (ed.), MDIC
2001, 2nd International Workshop on Multimedia Databases and Image Communication, LNCS Series
2184, Springer Verlag, 2001.

7. I:F: Cruz, P.S. Mahalley. Temporal Synchronization in Multimedia Presentations. IEEE International
Conference Multimedia Computer Systems (ICMCS '99), Vol. 2, pages 851-856, 1999.

8. I.F. Cruz, W.T. Lucas. A Visual Approach to Multimedia Querying and Presentation. Proceedings
of the Fifth ACM International Conference on Multimedia '97, pages 109-120, Seattle, WA, USA
November 9-13, 1997.

9. O. Gaggi, A. Celentano. Modeling Synchronized Hypermedia Documents. Technical Report n. 1/2001,
Department of Computer Science, Universitä Ca' Foscari Venezia, Italy, January 2001, submitted for
publication.

10. V. Hakkoymaz, J. Kraft, G. Ozsoyoglu. Constraint-based automation of multimedia presentation
assembly. Multimedia Systems, 7, pages 500-518, 1999.

11. L. Hardman, D.C.A. Bulterman and G. van Rossum. The Amsterdam Hypermedia Model: adding
time and context to the Dexter Model. Comm. of the ACM, 37(2), pages 50-62, 1994.

12. L. Hardman. Using the Amsterdam Hypermedia Model for Abstracting Presentation Behavior. Elec-
tronic Proceedings of the ACM Workshop on Effective Abstractions in Multimedia. San Francisco, CA,
4 November 1995.

13. L. Hardman. Modelling and Authoring Hypermedia Documents. PhD. Thesis, University of Amster-
dam, 1998. http://www.cwi.nl/ftp/~lynda/thesis.

14. M. Jourdan, N. Layaida, C. Roisin, L. Sabry-Ismail, L. Tardif. Madeus, an Authoring Environment
for Interactive Multimedia Documents. ACM Multimedia Conference. Bristol, UK, 1998.

15. J. van Ossenbruggen, F. Cornelissen ,J. Geurts, L. Rutledge, L. Hardman. Cuypers: a semi-automatic
hypermedia generation system. CWI Tech. Report INS-R0025, CWI, Amsterdam, 2000.

16. J. van Ossenbruggen, J. Geurts, F. Cornelissen, L. Rutledge, L. Hardman. Towards Second and Third
Generation Web-based Multimedia. Tenth International World Wide Web Conference. Hong Kong
May 1-5, 2001.

17. L. Rutledge, B. Bailey, J. van Ossenbruggen, L. Hardman, J. Geurts. Generating Presentation Con-
straints from Rethorical Structure. Proc. 11th ACM Conference on Hypertext and Hypermedia. San
Antonio, Texas, USA, May 30-June 3, 2000.

18. L. F. G. Soares, R. F. Rodrigues, D. C. Muchaluat Saade. Modelling, authoring and formatting
hypermedia documents in the HyperProp system. Multimedia Systems, 8(2), 2000.

19. Synchronized Multimedia Working Group of W3C. Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification. W3C Recommendation, 15 June 1998. http://www.w3.org/TR/REC-smil.

70

An End User Retrieval Interface for
Structured Multimedia Documents

Andreas Henrich Günter Robbert

Otto-Friedrich University of Bamberg
Department for Databases and Information Retrieval, D-96045 Bamberg, Germany

{Andreas.Henrich IGuenter.Robbert}@sowi.uni-bamberg.de

Abstract

We present an end user retrieval interface for a repository containing large amounts
of structured multimedia teaching content. This interface is dedicated to authors of new
courses searching for reusable components. Therefore the expressive power of the query
opportunities is a dominant design target, but ease of use is nevertheless important. The
interface allows to search for arbitrary granules ranging from complete courses to single me-
dia objects. It comprises (1) the query structure window which allows to define the objects
relevant for the query together with their interrelationships, (2) search detail forms which
allow to define conditions and ranking criteria for the single objects and (3) sophisticated
facilities to define the semantics of the combination of different ranking criteria and filter
conditions in the context of structured documents.

1 Motivation

The market for computer-based training applications (CBT) and web-based training appli-
cations (WBT) is rapidly growing. The objective with respect to the creation of training
applications must be to reduce both production costs and production time. Obviously reuse of
existing components would be a good step in this direction.

With this scenario in mind, there are two important prerequisites. First, the whole teaching
content developed by the organization has to be maintained in a common repository in a
structured way. Second, powerful retrieval facilities are needed for this repository to find the
desired reusable components in a concrete situation. These retrieval facilities have to be highly
expressive in order to define the desired components precisely and they nevertheless have to be
easy to use. In our opinion a two tier approach is best suited for this purpose. There should be
an application specific graphical user interface for the end-user. This user interface should be
implemented on top of an object-oriented general purpose query language comprising powerful
facilities to address multimedia data. The retrieval interface accepts queries from the user in a
rather intuitive and nevertheless expressive form. These queries are automatically transformed
into queries for the underlying object-oriented query language. The basic ideas of the general
purpose query language our approach is based on have been presented in [7, 8]. The present
paper is dedicated to the graphical end user interface.

To give a first flavor of the user interface, consider a user searching for an image containing a
given logo where the text nearby the image is dealing with "data mining and data warehousing".
Figure 1 depicts the formulation of this query in our user interface. The structure of the query
is defined in the upper right panel (query structure window). To this end, the icons from the
left panel are placed in the query structure window via drag and drop. In the example we see a

71

POQLMM-QueryBuildei

FUs Öusry Wizard Query Management Result Browser Options Help

norms! user j expert Lreer

Query Targets

Document Granules

document chunk

Media Objects ■

aixfio vkfeo

suüioseg, vÄfeoseö

Processing Mode

j edit connect execute]

region based segmentation

Irnaye segment sear ch detail form

Selection bytmage segment attributes (fitter)

minimum fteigriH 0 maximum height/! 768

minimum width-i 0 maximum width-! 1024.1

-Search based on image content
r~ Query by sketeh pier) -

Add object

Edit objeet properties.!

r cortsidertie spatial relationship

p -Query by example

connected to pH sowi uni-tsamöerg.de an port 53462

Figure 1: Example query created with the user interface

chunk object (representing an intermediate document fragment), an image object, a text object
and an image segment object in this panel. The corresponding icons are connected to define
the desired interrelationships of the objects. In our example the image object emphasized by
a black border forms the center of the query. This means that image objects are requested as
result. From the corresponding icon a broad arrow is leading down to an image segment icon.
This link represents a region based image segmentation. The image segment icon is active
(impressed) at the moment. For the active icon the corresponding search detail form is shown
in the lower right panel where filter conditions and ranking criteria can be defined. In the
example a ranking with respect to the similarity to the given logo is requested.

Above the image icon in the query structure window is an association to a chunk object
representing the part of the document containing the image. From this chunk there is an arrow
downward to a text icon representing text objects. In this way text objects occurring in the
vicinity of the image object can be addressed. For the text object arbitrary conditions can be
defined e.g. regarding the occurrence of terms such as "data mining" or "data warehousing".
Roughly spoken the small icon graph in the query structure window defines that we are looking
for image objects, and that conditions or ranking criteria are defined for associated image
segment objects and text objects maintained in the same chunk.

The semantics of the particular elements of the user interface will be described in section 4.
Beforehand, we summarize the requirements for the user interface in section 2 and present the

72

example schema presumed in our system in section 3. Finally, some related approaches are
considered in section 5.

2 Requirements for the User Interface

For the design of the user interface we have to take into consideration that the typical user is
a professional author of multimedia documents. We are not concerned with an unexperienced
occasional user of the system. Therefore the focus of the user interface is on its expressive
power. In the context of CBT- and WBT-applications, this does especially include the following
aspects:

(1) The query user interface (QUI) must allow to search for arbitrary granules ranging from
whole documents over intermediate chunks to single media objects. (2) With multimedia data
the semantics is usually given implicitly in the media objects, therefore the QUI should allow
to extract features from the media objects potentially describing their semantics. (3) Because
of the vagueness in the interpretation of the media objects and in the expression of the users
information need partial match and similarity queries should be facilitated. (4) Multimedia
documents usually contain substantial textual parts. Hence a QUI for multimedia data should
admit the use of text retrieval techniques and especially the combination of text retrieval tech-
niques with retrieval techniques for other media types. (5) Due to the heterogeneous nature of
multimedia applications there is no single combination of different similarity measures fitting
well in all application areas. Thus the QUI must facilitate a flexible combination of different
similarity measures trimmed well for application specific needs.

3 Example Schema

As pointed out in the introduction our approach is based on the assumption that the teaching
content is maintained in a common repository. Hence, a schema covering all relevant aspects
of the maintained multimedia documents is needed. To this end, we employ the conceptual
schema given in figure 2 which is partly deduced from the ideas presented in [1]. It is consciously
general, to cover the whole variety of multimedia teaching content. The attribute types applied
to each object type are given in the ovals at the upper left corner of the rectangles representing
the object types. The relationship types between the object types are indicated by arrows. A
double arrowhead at the end of a link indicates that the relationship has cardinality many.

The upper right corner of the schema in figure 2 represents the model for the document
structure. We assume that a multimedia document is made up of one or more substructures
called "chunks", which in turn consist of media objects or lower level "chunks". As a conse-
quence media objects form the leaves of the tree representing the structure of a multimedia
document, and chunks represent the internal nodes of this tree. The lower right part of the
schema depicts the different types of media objects. There are four subtypes (image, video,
audio, and text) for the object type media-object with specific attributes for registration data.
The object type raw-data is used to store the raw data of a media object in one or more formats.

The third part of our schema, depicted in the lower left corner, represents the potential seg-
mentation of media objects. For example an image might be segmented into regions containing
certain conceptual objects - we call this a spatial segmentation - or a video or an audio might
be segmented into shots or songs - we call this a temporal segmentation.

As suggested in [1] a "multimedia interpretation model" is added to the schema. This part
is represented in the upper left corner of the schema. It describes the content of media objects
and segments by interpretation objects (interp„object). For example an image showing Steffi
Graf and Andre Agassi might be associated with two interpretation objects, representing their

73

name
.description

real_world_
object

name
^description

describes has_feature

interp_object

associated

has_interpretation

describes

described_by

refers_to

described_by

■*=^

contains_seg

.start time)
' duration)

temporal_seg

(soundsystem)
(channels
(quantisation
(samplerate
(length

audio

(height
(width
(framerate
(channels
(colordepth
(length

video

Figure 2: Model for the document structure

appearance in the image. Additionally features of interpretation objects and real world objects
can be maintained by the object type feature. An example for such a feature would be "mimic".
E.g. there could be a feature object representing that Andre Agassi is smiling in the image.
Finally the object type keyword allows the assignment of keywords to media objects in order
to classify them further.

4 User Interface

The basic idea of the user interface is to define the structure of a query in the query structure
window. Here "structure of the query" especially means the object types involved in the query
and their interrelationships. The desired properties of the single objects are in turn specified
via search detail forms which exist for all object types {document, chunk, image, text, ...).
Hence, the query specification in our tool can be subdivided into three subtasks: (1) Specify
the concerned parts of the document hierarchy. (2) Specify the conditions for the single query
components. (3) Specify the relationships between the query components. In the following we
will present the user interface based on this structure.

74

4.1 Define the concerned parts of the document hierarchy

For all objects, which shall be addressed in the query, corresponding icons have to be dragged
from the left panel (Query Targets) into the query structure window. The first icon placed in
the query structure window is peculiar in the sense, that it specifies the desired result object
type - i.e. the "central" object type of the query. Therefore this icon is emphasized by a black
border.

The user interface provides icons to address documents, chunks and the four types of media
objects, i.e. text, image, audio and video. Icons for the corresponding segments of the media
object types are available as well.

When placing the icons in the query structure window the position of the single elements
in the document hierarchy has to be considered. For those icons which have to be connected
afterwards the icon representing the components has to be placed in a row underneath the icon
representing the superobject.

As an example we resume our query from figure 1. In this query we are searching for
images containing a given logo where the text in the vicinity of the image is dealing with "data
mining" and "data warehousing". Here an image icon is used to represent the desired result
object type. The image segment icon is placed in the row underneath the image icon because
the image segments can be envisaged as components of the image. The chunk icon is placed
in the row above the image icon because it represents superobjects containing the image under
consideration as a component. The text icon is placed in the same row with the image icon and
also underneath the chunk icon since we want to address text objects which are components of
the chunk.

4.2 Conditions for the single query components

To define filter conditions and/or ranking criteria for the objects corresponding to a certain icon,
this icon has to be activated by a single mouse-click. Then the search detail form associated
with the icon type is displayed in the lower right panel of the user interface. Here the desired
properties can be specified.

Let us consider the Image segment search detail form displayed in figure 1 as an example.
This form is subdivided into two group boxes. In the first group box (Selection by image segment
attributes) conditions regarding the size of the segment can be defined. In the second group
box (Search based on image content) there are two alternatives to address the image content.
The Query by sketch subpanel can be used to define desired properties for the interpretation
objects associated with an image segment 1. To this end, an interpretation object can be added
to the small graphic panel via the Add object button. For each interpretation object on this
graphic panel conditions based on the name, the description and associated feature values can
be defined in a pop-up menu started with Edit object properties If multiple interpretation
objects are considered, the check box consider the spatial relationships can be activated to define
the spatial relationships of the objects represented in the small graphic panel as mandatory for
the corresponding interpretation objects in the image. The conditions for the interpretation
objects associated with an image segment are used as a filter for the image segment objects. In
contrast, the requirements defined in the Query by example (QBE) group box are not used as
a filter, but as a ranking criterion [4]. Here an image from a file or from the clipboard can be
used as an example for the features of the desired image segments. These features include the
color distribution, the texture and the shape of the objects. The weights of the single criteria
with respect to the overall ranking of the corresponding image segments can be defined using
sliders (cf. figure 1). For the actual derivation of rankings for the image segments we use the

1This approach is inspired e.g. by the work presented in [13].

75

ranks of the image segments with respect to the single criteria. Let ry be the rank of image
segment i with respect to criterion j (j e {1,..., m} and ritj G {1,2,...}) and let Wj be the
weight of criterion j representing its relative importance amongst the criteria. Then we can
use the sum J^JLi wj - ^= to derive the combined ranking. In fact this means that we assign

1 point for the first rank, 0.71 points for the second rank, 0.58 points for the third rank, and
so forth. In addition the ranking criteria are weighted with the values Wj as defined via the
sliders 2.

Summarizing the semantics of the Image segment search detail form is that the conjunction
over all filter conditions is built. For the remaining elements a weighted ranking with respect
to the selected ranking criteria is calculated.

The search detail forms for the other segment types and media types are more or less
analogous to the described Image segment search detail form. However, one important point is
to mention that mature text retrieval techniques are available especially with the Text search
detail form. Here pattern matching facilities and a text content based ranking according to the
well known vector space model [12] can be used to define filter and ranking conditions.

4.3 Relationships between the query components

In the following we will use the term query component to address an icon in the query structure
window together with the filter conditions and ranking criteria defined for the icon. The
semantics of the relationships between the query components covers three main aspects: (1)
the actual interrelationship between the objects represented by the query components at both
ends, (2) the way filter and/or ranking criteria for the destination query component are applied
to the objects represented by the origin query component, and (3) the way multiple relationships
originating from one query component are combined.

To define the details for a concrete relationship a pop-up menu is opened whenever the user
connects two query components in the query structure window. Figure 3 gives an example for
such a dialog which covers the three aspects mentioned above. In the following we will discuss
these aspects in more detail.

4.3.1 The actual interrelationship between the objects

In principal, three types of relationships between objects can be distinguished: decomposition,
segmentation and conversion. An example for a decomposition arises when a query component
representing chunks is connected with a query component representing images. In this case the
query component for the images represents all image objects, which can be reached from the
actual chunk object via a contains „object relationship. An example for a segmentation arises
when a query component representing images is connected with an image segment icon. Finally,
an example for a conversion arises when a query component representing images is connected
with a text icon, meaning, that the text should be derived from the corresponding image via
OCR.

For many relationships drawn between query components the required actual interrelation-
ship is non-ambiguous. If we connect, for example, a chunk icon with an image icon, this means
that there must be a contains-object relationship between the objects.

Nevertheless, specific situations are conceivable where details for the actual relationship
have to be defined. Assume for example that — in contrast to our example schema — multiple
segmentation methods are provided by the system. In this situation the user has to specify the
desired segmentation method in the pop-up menu. The group box titled image segmentation
method in figure 3 illustrates this alternative. Consequently the pop-up menus for all available

See [9] for a comparison of combination schemes based on ranks vs. concrete similarity values.

76

I! Relationship image->image segment

image segmentation method- -

ff region based segmentation

*~ contour based segmentation

r quad-tee based segmentation

-semantics of fitter conditions forthe destination objects ■■ ~ —

^ atieast | T objects) fulfilling the conditions exist(s)

C at! destination objects fulfill the conditions

-semantics of ranking criteria forthe destination objects

use as ranking criterion forthe origin object
& the maximum over al! destination objects

r the minimum over alt destination objects

f the average over ail destination objects (rnaeroevaiuation)

C consider the union of alt destination objects as a single object (mieroevatuation)

10 relative weight compaired to other rankings forthe same origin object

• transitive traversal of Sinks

F ailow transitive traversal

liii

Figure 3: Pop-up menu for a relationship from an image to an image segment

relationship types have in common that if there is a potential ambiguity in the underlying
actual interrelationship, corresponding details have to be specified in the upmost group box of
the pop-up menu.

Another aspect of the semantics of the underlying relationship between objects is that
transitive traversals may be appropriate in some situations. If we consider our example from
figure 1 situations are conceivable where the text objects are not directly connected to the chunk
object but indirectly via intermediate chunk objects. In such situations, the check box in the
transitive traversal group box has to be marked. In the query structure window relationships for
which transitive traversal is allowed are represented by dotted lines.

4.3.2 Application of filter and ranking criteria to origin objects

When a query component qc\ is connected with another query component qc% for which a filter
condition and/or a ranking criterion is defined, the question arises, how the filter condition
and/or a ranking criterion for qc% influences qc\.

As an example, assume that we are looking for a chunk for which all text components
are created by "Smith". In this case a chunk icon represents qc\ and a text icon represents
qc2- For qc2 the condition creator — "Smith" has to be defined in the associated search detail
form. Furthermore, we have to express the desired "V-semantics" in the pop-up menu for the
relationship from qc\ to qc2- This can be done in the second group box (for filter conditions)
of the pop-up menu (cf. figure 3). Here the user can select either "exists" together with a
minimum required quantity or "for all". "Exists" obviously means that there must be one (or
the specified number of) destination object (s) fulfilling the criteria defined for the destination
objects of the relationship. "For all" means that all destination objects must fulfill the criteria.

The situation becomes a bit more complicated when a ranking criterion is defined for the
destination query component. Assume, that we are searching for chunks. We connect the

77

chunk icon with a text icon for which a ranking criterion is defined. In this case, the ranking
criterion is defined for the text objects but the ranking is in fact needed for the chunk objects
because the text objects are not present in the query result. Therefore a ranking criterion for
the chunks has to be derived from the ranking criterion for the text objects. To describe how
this ranking can be derived, it is important to remind that the ranking on the text objects in
our example is based on similarity values. The same is true with ranking criteria for images
and other media types. Now we have to derive a similarity value for the superobject from the
set of similarity values of its components or segments. To this end, we can apply the maximum,
the minimum or the average. For our example the maximum means that we are looking for
chunks with at least one "highly relevant" text component. The minimum means that we
are looking for chunks with no "irrelevant" text components and the average is a compromise
in between. However, what average means finally depends on the applied similarity model.
With the vector space model for example we have to take into account that there is usually
a document length normalization. This means that components of all sizes have the same
influence on the ranking of the chunks. However, it might be more appropriate for an average
to consider the concatenation of all text components of the chunk as the critical unit, and to
apply the vector space model to this "virtual" text of the chunk. Note that the same principle
can be applied e.g. with images where a normalized color histogram is used to derive the
similarity values. In this situation it might also be appropriate to consider the union of all
pixels in the images instead of simply calculating the average over all similarity values.

As a consequence, the pop-up menu given in figure 3 provides the user with all four alter-
natives mentioned above.

4.3.3 Combining multiple relationships originating from one icon

In section 4.3.2 we dealt with the semantics of one relationship originating from a query com-
ponent. If there are multiple relationships originating from a query component, the interrela-
tionship between them has to be clarified. To this end, we have to distinguish three cases: (1)
all destination icons represent filter conditions, (2) all destination icons represent rankings and
(3) some destination icons represent filters and some rankings.

Let us start with the first case: multiple filter conditions. An example would be a query
where we are looking for chunks containing an image with the name "Sun" and a text from
the creator "Smith". The desired semantics of this query can be stated as: We are searching
for all chunks c with (3 image i component of c: i.name = "Sun") A (3 text t component
of c: t.creator = "Smith"). Therefore an "AND"-semantics is desired for the two conditions.
However, we could as well intend an "OR"-semantics, and in situations with three or more
connected query components arbitrary Boolean expressions are conceivable. In our user inter-
face, we have solved this as follows: The default combination semantics is "AND". For more
complex conditions the expert user mode of the interface provides additional icons with AND,
OR and NOT semantics. If the user intends a semantics other than AND, he can employ these
icons to specify the desired expression.

Let us now consider the situation where ranking criteria are defined for multiple related
query components. As an example we can recall our query from figure 1. Here ranking criteria
are defined for the image segments and for the text objects in the vicinity. In this case we
calculate the similarity values which shall be applied for the ranking of the image objects on
the basis of the semantics defined with the relationships originating from the image icon. If
we assume that the maximum semantics is defined for the image segments and that "micro-
evaluation" (cf. figure 3) is defined for the relationships from the image icon to the text icon,
this means that four ranking criteria are defined for the images: (1) the similarity of the union
over all texts in the vicinity compared to the query text, (2) the color similarity value for the

78

most similar image segment, (3) the texture similarity value for the most similar image segment
and (4) the shape similarity value for the most similar image segment. These four similarity
values are now combined to a ranking for the image objects analogously to the combination of
multiple similarity criteria described in section 4.3.2.

Finally, the semantics for situations where ranking and filter conditions are mixed has to
be clarified. Here it is useful to recall that a ranking is a set with an - at least partial -
ordering. This means, that we can apply the same mechanisms we applied to combine filter
conditions. If we have AND-semantics between a filter and a ranking, only those objects
(typically chunks) are considered for which the filter condition is fulfilled and for which there is
at least one component to derive the ranking. In other words, we apply the ranking and reject
those objects for which the filter condition does not hold. The situation becomes a bit more
complex with an OR-semantics. In this case, there are some elements in the result for which
no ranking exists. In such situations we define, that the desired objects (typically chunks) for
which a ranking exists are ranked ahead of those objects, for which no ranking exists, simply
because they do not have corresponding associated objects.

5 Related Approaches

In the recent years graphical user interfaces for information retrieval systems have gained more
and more significance. Especially in the range of digital libraries numerous approaches were
proposed. Most of these approaches deal with the visualization of search results (an example
is Envision presented in [10]).

However, graphical user interfaces are not only useful with respect to the visualization
of search results but can also assist users during the creation of queries — as our system
does. This applies in particular when queries can address the structure of the documents and
the content of multimedia data. An interesting approach in this respect is InfoCrystal [14],
a visualization tool and visual query language for boolean and vector space queries. Users
can explore an information space along several dimensions simultaneously and manipulate
this information by creating abstractions. Arbitrarily complex queries can be constructed by
using InfoCrystals as building blocks, organizing them in a hierarchical structure. InfoCrystal
enables users to explore and filter text-based documents in a flexible and interactive way, but
does not address multimedia aspects. Another interesting approach is PESTO [2] providing
querying and browsing of an object database in a hypertext like fashion. The main idea of this
approach is a paradigm, called "query in place", that presents querying as a natural extension of
browsing. The query facilities of PESTO comprise support for object-oriented queries including
path predicates, queries over nested sets, filtered sets and method invocation. But, similar to
InfoCrystal, PESTO addresses only the search on textual data.

Contrary to the interfaces specified above, the Delaunay system [3] supports an inter-
active customizable interface for querying multimedia distributed databases. Here users select
virtual document styles that cater the display of query results to their needs. Furthermore
DelaunayMM provides pre- and post-query refinement and nested queries. Attribute-based
search for multimedia data is offered by the Delaunay system while content-based search
on multimedia data is not possible.

InfoGrid [11] and Fire Works [5] pursue another approach. They offer a framework for
building information retrieval applications that support the rapid construction of graphical
user interfaces. The InfoGrid framework consists of a set of five classes and object-oriented
protocols which build the basis for a default implementation of a user interface. The Fire Works
framework is very similar to InfoGrid but offers the possibility to state one query against
different repositories. Again, both frameworks only support text-based search, nevertheless
our work was inspired by the concepts of Fire Works.

79

6 Conclusion and Future Work

In this paper we have proposed an end user retrieval interface for structured multimedia docu-
ments. One main distinguishing feature of our interface is the support for complex queries on
structured documents. This comprises the combination of filter conditions and ranking crite-
ria as well as flexible means to combine different ranking criteria. Future research directions
for the interface include the development of a sophisticated query optimizer deriving not only
correct but also efficient queries in the underlying query language exploiting e.g. the existing
high-dimensional index structures - LSDh-trees in our case [6].

References

[1] A. Analyti and S. Christodoulakis. Multimedia object modelling and content-based querying. In
P. Apers, H. Blanken, and M. Houtsma, editors, Multimedia Databases in Perspective, pages 145-
179. Springer-Verlag, New York, 1997.

[2] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams. Pesto : An integrated query/browser for
object databases. In VLDB'96, Proc. of 22th Intl. Conf. on Very Large Data Bases, pages 203-214,
Mumbai (Bombay), India, Sept. 1996.

[3] I. F. Cruz and K. M. James. A user-centered interface for querying distributed multimedia
databases. In SIGMOD 1999, Proc. ACM SIGMOD Intl. Conf. on Management of Data, Philade-
phia, Penn., USA, June 1999.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. IEEE
Computer, 28(9):23-32, Sept. 1995.

[5] D. G. Hendry and D. J. Harper. An architecture for implementing extensible information-seeking
environments. In Proc. of the 19th Annual Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 94-100, Zürich, Switzerland, Aug. 1996.

[6] A. Henrich. The LSDh-tree: An access structure for feature vectors. In Proc. of the 14th Intl.
Conf. on Data Engineering, Orlando, FL, USA, Feb. 1998.

[7] A. Henrich and G. Robbert. Combining multimedia retrieval and text retrieval to search structured
documents in digital libraries. In Proc. of the First DELOS Network of Excellence Workshop on
Information Seeking, Searching and Querying in Digital Libraries, Zürich, Switzerland, Dec. 2000.
ERCIM Workshop Reports.

[8] A. Henrich and G. Robbert. POQLMM: A query language for structured multimedia documents.
In Proc. Workshop on Multimedia Data and Document Engineering (MDDE'01), July 2001.

[9] J. Lee. Analyses of multiple evidence combination. In Proc. of the 20th annual Intl. ACM SIGIR
Conf. on Research and development in information retrieval, pages 267-276, July 1997.

[10] L. T. Nowell, R. K. France, D. Hix, L. S. Heath, and E. A. Fox. Visualizing search results: Some
alternatives to query-document similarity. In Proc. of the 19th Annual Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages 67-75, Zürich, Switzerland, Aug. 1996.

[11] R. Rao, S. K. Card, H. D. Jellinek, J. D. Mackinlay, and G. G. Robertson. The information grid:
A framework for building information retrieval and retrieval-centered applications. In Proc. of the
ACM Symposium on User Interface Soßware and Technology, Nov. 1992.

[12] G. Salton. Automatic Text Processing: the Transformation, Analysis, and Retrieval of Information
by Computer. Addison-Wesley, Reading, Mass., 1989.

[13] J. Smith and S.-F. Chang. VisualSEEk :A fully automated content-based image query system.
In Proc. of the Fourth ACM Multimedia Conf. (MULTIMEDIA'96), pages 87-98, New York, NY,
USA, Nov. 1996.

[14] A. Spoerri. Infocrystal: A visual tool for information retrieval & management. In CIKM 93, Proc.
of the Second Intl. Conf. on Information and Knowledge Management, Washington, DC, USA,
November 1-5, 1993, pages 11-20, 1993.

80

MULTI-MODAL RETRIEVAL FOR MULTIMEDIA DIGITAL
LIBRARIES: ISSUES, ARCHITECTURE, AND MECHANISMS

Jun Yang1, Yueting Zhuang1 and Qing Li2

1 Department of Computer Science, Zhejiang University, Hangzhou, CHINA
i vancrBvahoo.com: vzhuancr@cs■ziu.edu.cn

2 Department of Computer Science, City University of Hong Kong, Tat Chee Ave., KLN, Hong Kong, CHINA
cscrli@ci.tyu. edu ■ hk

ABSTRACT

Supporting effective and efficient retrieval of multimedia data is a challenging problem in building a
digital library. In this paper, we examine the issues related to accommodating multi-modal retrieval
of multimedia data (text, image, video and audio), and propose 2M2Net as a generic framework for
such versatile retrieval in multimedia digital libraries. The retrieval is conducted based on the
integration of multi-modal features including both semantic keywords and media-specific low-level
features. This framework is capable of progressive improvement of its retrieval performance, by
applying the learning-from-elements strategy to propagate keyword annotations, as well as the query
profiling strategy to facilitate effective retrieval using historic information of the previously
processed queries.

1. INTRODUCTION

As the most complex and advanced multimedia information systems, digital libraries are emerging at
an increasingly fast rate throughout the world. One of the primary difficulties in building a digital
library is to support effective and efficient retrieval of the media objects from the whole library,
including text, image, video and audio. The current mainstream of the retrieval technologies in most
digital libraries is keyword-based retrieval[5]. Although such technology works well with textual
document, it cannot, by itself, accomplish the retrieval task in a multimedia digital library, mainly
due to the limited expressive power of keyword to describe or index media objects. Feature-based
retrieval, on the other hand, is proposed to index and search for media objects such as image, video
and audio [1,2,3] based on their respective low-level features. This paradigm reflects to a certain
extent the similarity between media objects at the perceptual level, such as visual and auditory
similarity. However, in most cases it cannot achieve the retrieval accuracy that the keyword-based
approach can reach, because low-level features cannot be easily associated with the intrinsic
semantics of media objects, while keywords explicitly describe the semantics. Therefore, integrating
feature-based retrieval with keyword-based approach provides great potentials of improved indexing
and retrieval for digital libraries.

No matter which approach is adopted, two problems essential to the retrieval task in the context
of digital libraries have to be addressed. First, how to be multi-modal? That is, the retrieval approach
must be able to search for multimedia data of various modalities (text, image, video and audio), and
it should exploit an integration approach to facilitate the multi-modal retrieval task. Second, how to
be progressive? As a major impediment of retrieval performance, it is commonplace that content of a
digital library is not adequately indexed either by semantics or by low-level features. The retrieval
facilities must be therefore intelligent enough to improve its performance progressively by learning
from the history of previously conducted queries.

To address the aforementioned issues, we propose 2M2Net as a multi-modal framework for

81

multimedia retrieval in digital libraries. It is characterized as being multi-modal in two aspects:

Retrieval of various multi-modal data such as text, image and video can be conducted.
Multi-modal features including both semantic keywords and low-level features are seamlessly
integrated for retrieval purpose.

Moreover, this framework employs the following mechanisms to make itself progressive:

Learning-from-elements for propagation of keyword annotation at the semantic level.
Query profiling to facilitate feature-based retrieval based on querying history.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the 2M2Net
framework. In Section 3 and 4, we discuss some key issues regarding semantic-level and
feature-level retrieval respectively. We then demonstrate how the feature-level and semantic-level
retrieval can be integrated in Section 5. The implementation issues of the prototype system are
discussed in Section 6. Finally we present the concluding remarks in Section 7.

2. VERVIEW OF THE 2M2Net FRAMEWORK

The architectural framework of 2M2Net is illustrated in Figure 1. In the context of this framework, a
digital library is viewed as a collection of multimedia documents1, which is recursively defined as a
logical document consisting of several elements that are multimedia documents by themselves or
individual media objects such as text, image, video and audio. A multimedia document is a semantic
grouping of multimedia data, that is, all its elements share a common semantic subject. The concrete
forms of a multimedia document can be a web page, a portion of a digital encyclopedia and other
forms of multimedia data collection. Since multimedia documents can be constructed recursively, we
are able to model many composite documents in real world, e.g. a newspaper, or a website.
Multimedia document is internally represented by means of its semantic skeleton, which maintains
the metadata of both high-level semantics and low-level features for each element in the document.

Multimedia documents are firstly pre-processed so that their various elements are extracted out
and stored into the corresponding databases in the Storage Subsystem. The metadata of these
elements, including semantic keywords as well as media-dependent low-level features, are extracted
to constitute the semantic skeleton. User queries are handled by the Query Processor at either
semantic level or feature level. In the Feedback & Learning Subsystem, a set of feedback
techniques specific to each media type is utilized for short-term refinement of retrieval results. For
long-term improvement of retrieval performance, the learning-from-element strategy is applied to
propagate and update semantic keywords, and the query profile is constructed to facilitate effective
retrieval using querying history.

If not indicated explicitly, document is referred to multimedia document in this paper

82

Multimedia
Document User

Interface

KSVWDTO

: t f (

Figure 1: The 2M2Net framework

3. SEMANTIC-LEVEL RETRIEVAL

In this section, we discuss two key issues regarding this semantic-level retrieval, as initial semantic
analysis and the learning-from-element strategy.

3.1. Initial Semantic Analysis

In 2M2Net, each document and media object has a list of weighted keywords attached to it as their
semantic annotation. When a document is pre-processed, we perform semantic analysis to obtain the
keyword annotation for the document and its elements. This analysis is straightforward for a textual
element, as many traditional IR [5] techniques can be applied to extract representative keywords and
calculate keyword weight from itself. The semantics of non-textual object such as image and video,
however, cannot be extracted from its content by the current image (video) understanding techniques.
Their semantics are acquired indirectly using the following heuristic method.

By our definition of multimedia document, the elements of a document are semantically
correlated to each other, so that semantics of a non-textual element can be inferred from related
textual elements. Such inference greatly depends on the concrete form of the document. In a digital
encyclopedia, the accompanying text and captions of images and videos can be used to represent
their semantics. In a Web environment, besides the above text sources, we can take the advantage of
using URLs, link strings and other HTML tags to be the descriptions of image and video contained in
the web page. The keyword weight is determined heuristically in this case. For example, among all
text sources related to an image, we regard the image caption is of the highest relevance and thus
give it a large weight. In this way, each keyword can be assigned an estimated weight. The keyword
annotation of the whole document can be obtained similarly.

Besides the intra-document correlation used by this heuristic method, there is also

83

inter-document semantic correlation that can be further explored for semantic analysis. Such
inter-document correlations widely exist in a digital library, indicated by structural neighborhood and
hyperlinks between documents or media objects. By analyzing the structure of these semantic links
inside a digital library, we can induce the semantics of a document or a media object from other data
directly or indirectly linked to it. However, currently we use solely the intra-document correlation in
semantic analysis for the sake of simplicity.

After the keyword annotation become available, the semantic retrieval can be handled by
matching the query with the annotation of each candidate document or media object. The matching
can be conducted by simply counting the intersection between the query and object annotation in
terms of common keywords, or by more sophisticated thesaurus-based semantic similarity measure.

3.2. Learning-from-Elements

The semantics obtained by the heuristic semantic analysis is likely to be incomplete, inaccurate or
even non-existing, so that we propose the learning-from-elements strategy to propagate and improve
the keyword annotations progressively and interactively during relevance feedback. This strategy can
be thought as a kind of semantic feedback, because it is triggered when the user submits a set of the
documents or media objects as the feedback examples for a given query. As illustrated in Figure 2, it
propagate keywords along three directions, which are from user query to feedback examples of
documents or media objects (scheme A), from a document to its elements (scheme B) and from a
media object to its parent document (scheme C).

User
query

multimedia
document

 I, image video text

i r
I
I

nultimedia
document

CO

t /
A

\

«
i

t
image • •. text

Figure 2: Learning-from-elements strategy

In scheme A, we adopt a simple voting algorithm to update the keyword list of the documents
and media objects that are designated as feedback examples. This algorithm is described as follows.
For a positive example, we add each query keyword into its keyword list. If the query keyword is
already there, its weight is increased by a certain step. For a negative example, if there is any query
keyword in its keyword list, we remove it from there. By applying this algorithm on each feedback
example, the involved documents and media objects learn their semantics implicitly from users.
Besides, the representative keywords with a majority of user consensus are likely to receive a large
weight.

Scheme B and C are more ambitious propagation schemes that utilize the intra-document
semantic correlation. We apply scheme B if the positive feedback example is a media object. In this
case, the keywords inserted or updated (in terms of weight) by scheme A are propagated to its parent
document. If the positive example is a document, we use scheme C to spread some of its keywords to
its elements. To avoid spreading erroneous keywords, only the keyword with highest weight in the
list may be propagated in both scheme B and C, because the top keyword is likely to represent the
actual semantics of the document/object. Compared with scheme A, scheme B and C can spread the

84

query keywords to more documents or media objects including those that are not designated as
feedback examples, so that they are particularly advantageous when users are reluctant to give many
feedbacks. But they are also not as reliable as scheme A. One likely concern of using these two
schemes is a tradeoff between wide coverage of keywords and possible erroneous keywords. We
argue that a rich set of keywords (perhaps imperfect) is more desirable than a small set of precise
keywords for retrieval purpose, and erroneous keywords are relatively easy to identify and correct.

4. FEATURE-LEVEL RETRIEVAL

In this section, we discuss feature-level retrieval as an alternative to the keyword-based retrieval
described in the previous section.

4.1. Feature Extraction and Matching

In 2M2Net framework, the low-level feature of each media object is extracted in the pre-processing
phase, such as the color and texture feature for image, structural and motion feature for video, etc. In
feature-based retrieval, the user is required to submit a media object as the query example, and the
results are retrieved based on the similarity of low-level features. We also incorporate into the
framework a set of feedback techniques specific to each media type, including the image feedback
technique proposed by Rui [4] and video feedback technique proposed by Wu [6]. Although these
techniques are capable of improving retrieval results immediately, they make no contribution to
long-term retrieval performance, because they do not memorize the previously conducted feedbacks
and start from scratch for the new query.

4.2. Query Profiling

Query profiling is the counterpart of learning-from-elements strategy at the feature level. It can be
regarded as an incremental feedback technique that memorizes the history of previous user feedbacks
to assist the processing of future queries. The details of this strategy are given below.

For each media object O,, we construct a query profile to record the objects that were designated
as relevant or irrelevant to it in the past feedbacks. The profile is divided into two lists, one for
relevant objects (denoted asZ,p,) and the other for irrelevant objects (denoted asZm). Each object in

the list has a weight attached to it. Initially, the query profile for each media object is empty. Later,
when a media object O, is selected as the query example and some objects are appointed as
feedback examples to it, we update its profile using the voting scheme similar to that described in
Section 3.2. For each object designated as positive example, we check to see if it is already inLpi. If

so, we increase its weight by a certain increment; otherwise we add it into Lpi with an initial weight.

If we find this object in Lni, it is immediately removed from there. The Lni list of the query
example can be updated in a similar way from the negative examples. The query profile can be
utilized when O, is used as query example again. In this case, we select the top N objects with the
highest weights from Lpi and Lni to be the positive and negative feedback examples, respectively.

Then, the feedback techniques can be applied directly on these past feedback examples, without any
real feedback conducted by the current user.

As more queries and feedbacks are submitted from users, the query profile for each media object
can be constructed and improved incrementally. Higher retrieval performance is achievable by using
query profiles, since the current retrieval can be brought to a higher level of accuracy achieved by

85

many iterations of relevance feedbacks performed
previously.

The query profile described above is associated with
each media object and therefore domain-specific. On the
other hand, we can construct user-specific profiles that
model the different preferences and habits of performing
query and feedback for individual users. Finally,
personalized query profiles can be established by
combing the query profiles and user profiles, which
embody the characteristics of both the specific domain
and the specific user.

5. INTEGRATION OF SEMANTICS
AND FEATURES

In the previous sections, we discussed the retrieval
approaches at the semantic level and feature level
respectively. In this section, we show that the semantics
and low-level features can be seamlessly integrated
throughout the whole working flow of the framework to
enhance its performance.

Keywords query

Keyword-based
search

>'

Query example

Feature-based
search

Display retrieval
results

Collect feedback
examples

Learning-from-
elements

Feature-based
feedback

Reevaluation of
retrieval results

J
Figure 3: Integration of semantics

and low-level features

As illustrated in Figure 3, the user can conduct either a keyword-based search by inputting a set
of query keywords, or a feature-based search by submitting a query example. These two search
paradigms can be combined to facilitate each other to achieve a better performance. For example,
when the keyword annotations of media objects are insufficient, the matches returned by a
keyword-based search are usually limited. In this case, we can start a feature-based search using the
objects retrieved by keyword search in top ranks as the query examples, in order to find more media
objects that resemble them. This second pass search provides many potential results, which, although
not very precise, are important supplements to the keyword search. Similarly, feature-based search
can benefit from keyword-based approach by accommodating the semantic similarity between the
query example and other media objects.

After collecting the feedback examples from the user, the system conducts feedback process in
parallel at the semantic level and the feature level. At the semantic level, the learning-from-elements
strategy described previously is applied to propagate the query keywords among the related
documents or media objects, given that the retrieval is initiated by a keyword-based search. If it is a
feature-based search, the keywords in the annotation of the query example are propagated using the
same strategy. At the feature level, many conventional relevance feedback techniques are utilized to
improve the quality of low-level features, in terms of adjusting their weights or revising the distance
metric. The specific technique employed depends on the media type that is currently dealt with,
including those for images [4], for videos [6] and possibly for audios (if any). For feature-based
queries, we also need to update the query profile of the query example accordingly.

Finally, we recalculate the retrieval results based on the improved semantics and low-level
features. Each candidate object is evaluated of its similarity to the query using a comprehensive
metric that accommodates its similarity to the initial query, to the positive feedback examples and to
negative examples. To achieve this, a uniform distance metric function that measures the similarity

86

between a candidate object 0t and the query is given as follows:

[RteOR J [N teON J

where a, ß and y are suitable constants, 0Äand O^are set of relevant and irrelevant media objects of a
certain type, A^and JV^are the number of objects in O^and ON. Rt is the semantic similarity between
the object 0, and the initial query Q, calculated as the number of common keywords between Q and
the annotation of Of. If the retrieval is started with a content-based query, Rt is the similarity between
Ot and the object designated as query example Rik'\s the similarity between 0, and the positive (or
negative) feedback example with subscript k, calculated in the say way as Rt in the case of keyword
query. S^is the their similarity in terms of low-level features. For textual object that has no low-level
features, Sik is simply set to 1.

6. IMPLEMENTATION ISSUES

A prototype system for multimedia retrieval in a digital encyclopedia has been built based on the
proposed framework. The system is composed of a back-end and a front-end. The back-end is
responsible for the processing, storage, authoring and retrieval of multimedia data, while the
front-end is a web browser based interface that is in charge of all user-system interactions.

Object — • yfli mmm^ ■• = Multimedia
"*""'*' " : ,.» * * «. *-.*%. I Document

Image
Object

Video
Object

Figure 4: The query results as multimedia documents

The system offers users with great flexibility to perform retrieval task. The user can choose to
search for multimedia documents or media objects of a certain modality by a simple keyword-based
approach. The main user interface shown in Figure 4 displays the multimedia documents retrieved
for the query of "volcano". A multimedia document is rendered as its sketch, i.e. the abstracts of
textual objects, thumbnails for image objects and key-frame lists for video objects that are shown
together. For each media object, the user can click on the "Details" link below it to view the original
media object and other related information. Besides keyword-based search, the user can conduct a

87

feature-based search using a specific media object as the query example by clicking the "Similar"
link below it. Each document and media object displayed as retrieval result has a "V" and a "x" icon
attached to it that denotes positive and negative example respectively. The user can indicate feedback
examples by clicking on the icons and signal the system to perform feedback by clicking the
"Feedback" button.

7. CONCLUSIONS

In this paper, we have described 2M2Net as a multi-modal framework for multimedia retrieval in
digital libraries. Among others, 2M2Net can accommodate retrieval of multi-modal data such as text,
image, video and audio, based on the integration of multi-modal features including semantic
keywords and the media-specific low-level features. This framework is capable of progressively
improving its retrieval performance by applying the learning-from-elements and query profiling
strategy. A prototype system has been built upon which the proposed framework is implemented.

Being the most popular operations, browsing and navigation of the multimedia documents are
compulsory to be devised. The former is usually facilitated by their subject categories, whereas the
latter is to traverse from one document to another related one either semantically or structurally.
However, our current prototype system does not maintain any subject category, nor does it track the
inter-document links through which the users navigate. In our future work, we plan to include the
support of browsing and navigation functionalities into the current prototype system.

REFERENCE
[1] Chang, S. F., Chen, W., Meng, H. J., Sundaram, H., Zhong, D., "VideoQ: An Automated Content Based Video

Search System Using Visual Cues", ACM Multimedia, 1997.

[2] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., "Query by image and video content: The QBIC system." IEEE
Computer, 1995.

[3] Rui, Y., Huang, T. S, Chang, S.F. "Image Retrieval: Current Technologies, Promising Directions and Open Issues",
Journal of Visual Communication and Image Representation, Vol. 10, pp39-62,1999.

[4] Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S., "Relevance Feedback: A Power Tool for Interactive Content-Based
Image Retrieval", IEEE Trans on Circuits and Systems for Video Technology, Special Issue on Segmentation,
Description, and Retrieval of Video Content, Vol 8, pp644-655, 1998.

[5] Salton, G., Buckley, C. "Introduction to Modern Information Retrieval", McGraw-Hill Book Company, New York,
1982.

[6] Wu, Y., Zhuang, Y. T, Pan, Y. H, "Relevance Feedback of Video Retrieval", in Proc. of the first IEEE Pacific Rim
Conference on Multimedia, pp 206-209, December, 2000.

88

Querying Images in the DISIMA DBMS'

Vincent Oriaj M. Tamer Özsu*and Paul J. Iglinski§

Abstract

Because digital images are not meaningful by themselves, images are often coupled with some
descriptive or qualitative data in an image database. Moreover the division of these data into syntactic
(color, shape, texture) and semantic (meaningful real word object or concept) features necessitates
novel querying techniques. Most image systems and prototypes have focussed on similarity searches
based only on the syntactic features. In the DISIMA system we also propose a solution for similarity
searches that combines color histograms, spatial relationships of image blocks and a hash structure
to better discriminate among images. AdditionaUy we query images on the basis of salient objects
(regions of interest in images) and their properties. This paper presents the querying facilities
implemented for the DISIMA system. Both the textual query language (MOQL) and its visual
counterpart (VisualMOQL) allow the combination of semantic queries with different types of image
queries for better results.

1 Introduction

Multimedia data, especially images, are becoming ubiquitous and are manipulated on a daily basis by
computer users. As is the case for all multimedia data, the digital image data does not convey any
meaningful information about the image. That is why most image database systems and prototypes
focus on content-based image retrieval (CBIR) based visual features such as color, texture and shape
[Del99]. The visual features are extracted and represented as points in a multi-dimensional vector space
and multidimensional access methods are used to support efficient image searches [SNFOO, BBB+97,
KSF+96]. The query results returned by these systems can fairly be accurate for some well-defined
domains but fail in the general case.

To overcome this problem, an image database has to model and store image semantics that can
be used in the querying process. Obtaining these semantics is another issue resolved in most cases
using a semi-automated approach. In the DISIMA System, the content of an image is described by
means of salient objects (regions of interest) organized hierarchically, following the object-oriented
paradigm. The aim of this paper is to show how MOQL [LOS097], a declarative query language is used
to integrate different image querying approaches: image and salient object semantics, salient object
syntactic properties [OOIL99], and image color distribution [LOON01].

Section 2 discusses the modelling of semantics in DISIMA. Section 3 presents the querying facilities
in DISIMA. Section 4 describes the type system and the query processor. Finally, Section 5 concludes
the paper.

"This research is supported by a strategic grant from the Natural Science and Engineering Research Council (NSERC)
of Canada and the Institute for Robotics and Intelligent System (IRIS). The work was conducted while the authors were
affiliated with University of Alberta

t College of Computing Sciences, New Jersey Institute of Technology, oria@homer.njit.edu.
^Department of Computer Science, University of Waterloo, tozsu@db.uwaterloo.ca.
^Department of Computer Science, University of Alberta, iglinski@cs.ualberta.ca.

89

2 Modelling Semantics in DISIMA

Image semantics in the DISIMA system are captured through salient objects, their shapes, and their
spatial relationships within images. The DISIMA model [OÖL+97] provides an efficient representation
of images and related data to support a wide range of queries. The DISIMA model is composed of two
main blocks: the image block and the salient object block. The image block is made up of two layers:
the image layer and the image representation layer. An image is distinguished from its representations
to maintain an independence between them.

At the image layer, the user defines an image type classification. Figure 1(b) depicts a partial
type hierarchy for an application that involves medical images, electronic commerce catalogs, and news
images. These first level image types are derived from the type Image, the root image type provided by
DISIMA. The type Newslmage is specialized by three types: Environmentallmage, Personimage, and
Misclmage. An image is an object of an image class with some user-defined properties in addition to
low-level feature properties such as textures and color distributions (color histograms).

Salient_object Image

HumanBody Other Person Medicallmage Catalog Newsjtaiage

Head Limb Politician Athlete Environmentallmage Misclmage
Torso OtherPerson Personimage

(a) Salient Object Hierarchy (b) Image Hierarchy

Figure 1: An Example of an Image Hierarchy.

The salient object block is designed to handle salient object organization. A simple example of
a salient object hierarchy, corresponding to the image hierarchy defined in Figure 1(b), is given in
Figure 1(a). DISIMA distinguishes two kinds of salient objects: logical and physical salient objects
(LSO and PSO). An LSO is an abstraction of a salient object that is relevant to some application; it
is a meaningful object. A PSO is a syntactic object in a particular image (region of an image) with
its semantics given by an associated LSO. A PSO has a shape which is a geometric object stored in its
most specific class [OÖIL99], a set of colors and textures.

The object-oriented modelling of geometric objects potentially conflicts with the their mathematical
definitions. In [OOIL99], we provided a more general solution to the.shape hierarchy design issue based
on the mathematical definitions that allows shape group similarity matches in addition to integrating
code reuse at both the data structure and the method levels. The shapes of the salient objects are
further used to define some spatial qualitative relations between the objects which are very important
in multimedia databases because they implicitly support semantic queries which are captured by qual-
itative reasoning. The spatial model for DISIMA [OÖIL99] is based on Allen temporal algebra [A1183].
The shape of the objects are projected onto the axes and the intervals are combined with the alien's
temporal operators to define some topological relations in one-dimensional space. The one-dimensional
relationships are further combined to define the spatial relationships.

DISIMA permits feature-based search in addition to search based on image content semantics. This
allows more sophisticated queries such as the following: (Find images of flowers taken by John that
look like this one). The fundamental elements of histogram-based image retrieval include the selection
of the color space, the color space quantization, and the histogram distance metric. There is no general
agreement as to the most suitable color space for color histogram-based image retrieval. This is a result

90

of the fact that color perception is highly subjective. Therefore, a variety of color spaces are used
in practice such as RGB, HIS, or L*u*v*. In our work, we have chosen to represent the color space
using the RGB model. Besides extracting color histograms from entire images, an image can also be
segmented into several blocks, each of which has an associated color histogram. These color histograms
together form multi-scale color histograms of an image. The multi-scale color histograms are used to
define image multi-precision similarities [LOON01].

3 Querying Images

Querying images on salient objects and their properties assumes the detection of these objects. The
image annotation is semi-automatic. The image syntactic features are automatically extracted and a
human-annotator adds the semantic information on the salient objects in the image. In addition, an
image has some descriptive properties (i.e., meta-data), such as date and photographer, that have to
be provided. Till now, multimedia data are produced without accompanying meta-data and a human-
annotator is often solicited to get this information. This is changing. The emergence of MPEG-7 [GroOl]
will lead to media production together with the description of the content descriptions that will provide
information such as salient-objects. For the rest of the paper, we assume that the information on salient
objects is provided.

3.1 Querying Semantics with MOQL

MOQL (Multimedia Object Query Language) is a text-based multimedia query language [LÖS097],
which is an extension of the standard OQL language [CBB+97].

Most extensions introduced to OQL by MOQL are in the where clause, in the form of four new pred-
icate expressions: spatiaLexpression, temporaLexpression, contains .predicate, and similarity-expression.
The spatiaLexpression is a spatial extension which includes spatial objects, spatial functions, and spatial
predicates. The temporaLexpression deals with temporal objects, functions, and predicates for videos.
The contains-predicate is defined as: containsjpredicate ::= media-object contains salientObject where,
media-object represents an instance of a particular medium type, e.g., an image or video object, while
salientObject is an object within the media-object that is deemed interesting (salient) to the application
(e.g., a person, a car or a house in an image). The contains predicate checks whether or not a salient
object is in a particular media object. The similarity predicate checks if two media objects are similar
with respect to some metric.
3.1.1 Querying Images Through Salient Objects

The following are two examples of queries expressed in MOQL. The first query looks for images with
people and the second finds all image in which a politician named "Chretien" appears.

Query 1 Find all images in which a person appears,
select m
from Images m, Persons p
where m contains p

Query 2 Find all images in which a politician named Chretien appears,
select m
from Images m, politician p
where m contains p
And p.lastName = "Chretien"

91

Queries in MOQL can easily become non-trivial to express. A query Q: "Find images with 2 people
next to each other without any building, or images with buildings without people" can be expressed in
MOQL as follows:

Query 3 Find images with 2 people next to each other without any building, or images with buildings
without people,

select m
from image m, building bl, person pi, person p2
where (m contains pi and m contains p2

And pi.MBB west p2.MBB
And m not in

(Select ml
From image ml, building b2
Where ml contains b2))

Or (m contains bl
And m not in

(Select m2
From image m2, person p3
Where m2 contains p3))

This example points to the need for a visual query interface. Although the user may have a clear
idea of the kind of images he/she is interested in, the expression of the query is not straightforward.
The logic in VisualMOQL is based on the observation that queries expressed in natural languages are
often composite. VisualMOQL provides a way to construct complex queries by composing simple query
blocs or sub-queries.

3.2 Querying Semantics with VisualMOQL

VisualMOQL provides an easier way to express queries, and then translates them into MOQL. Query Q
can be decomposed into 2 sub-queries Qi: "Find images with 2 people next to each other without any
building" and Q2 " Find images with buildings without people". Each of these sub-queries can further
be decomposed into 2 simpler sub-queries.

User can choose the image class they want to query and the salient objects they want to see in the
images. They can also specify the maximum number of images they want, and the similarity threshold
(for similarity queries). The working canvas is where users construct simple queries. They can insert the
salient objects that they want to see in images, into the working canvas. The spatial relationships may
also be specified between the salient objects. The color, texture, and shape properties of images and
salient objects can be specified through a dialog box. After users finish constructing a simple query in
the working canvas, it is moved into the query canvas. Several simple queries are combined in the query
canvas to form a compound query. Finally, the user presses the query button to submit the query. The
VisualMOQL query specified in the query canvas will then be translated into an MOQL query before
being submitted to the query processor.

3.3 Feature-Based Searches in DISIMA

DISIMA permits feature-based search in addition to search based on image content semantics. This
allows more sophisticated queries such as the following: (Find images of flowers that look like this one).

92

3.3.1 Color and Texture Similarity for Salient Objects

Since colors and texture are perceived differently by people, searching for an exact match, even at
the salient object level, will yield poor results. Color and texture comparisons are done consequently
through similarity searches. The user can give the RGB values for the color if he/she knows it or pick
a color from an appropriate window to get the color value. The same thing applies to textures. For
example:

Query 4 Find all images that contain a salient object with a color similar at 80% to the RGB value
(255,0,255) and similar at 70% to the texture value (0.6).

select m
from Images m, LSO o
where m contains o
And o.color similar colorgroup(255,0,255) similarity 0.8
And o.texture similar texturegroup(0.6) similarity 0.7

3.3.2 Shape Similarity

The Geometric-Object class supports three types of similarity match: full-group, class, and sub-group,
depending on the similarity threshold specified in the query. The ellipse group includes the Ellipse and
Circle classes. The polyline group includes the Polyline and Segment classes. The Polygon, Rectangle,
Square, and Triangle classes belong to the polygon group. The shape similarity algorithm we used is
the turning angle algorithm [ACH+91] because it is orientation invariant. A shape similarity query can
be posed with or without a given shape as illustrated by the two following examples:

Query 5 Find all images containing salient objects with a rectangular shape,
select m
from Images m, LSO o
where m contains o
And o.shape similar rectangle similarity 0.5

When a shape is not given (i.e., only the shape class is given) in a shape similarity query, the query
is processed without any similarity metric. For the example, the query processor will select images for
which at least one salient object has a shape of interface type Rectangle. The question is which extent
to use (shallow or deep extent)? This decision is made with regard to the similarity threshold in the
query. If the similarity threshold is set to 1, the query is processed using the shallow extent (class
match) otherwise the deep extent is used (sub-group match).

Query 6 find all images containing salient objects with a a shape 50% similar to the
rectangle((l,2),(10,2),(10,7)).

select m
from Images m, LSO o
where m contains o
And o.shape similar rectangle((l,2),(10,2),(10,7)) similarity 0.5

If we let e denote the threshold, r the rectangle ((1,2),(10,2),(10,7)), S a set of shapes, PSO a
set of physical salient objects , and I a set of images, then the solution of the similarity query is
{i 6 I\ 3s € S, 3o G PSO, d(s, r) < e A s = shape(o) A i contains o} where d is a distance function
using the shape similarity algorithm. The problem here is to find the minimal extent that contains all
the shapes satisfying the conditions. For example, if we are trying to match a given rectangle within a

93

similarity threshold of 0.9, should we begin our search with the deep extent of all polygons or simply
confine our search to the extent of all rectangles? Are we willing at higher thresholds, to miss matching
some polygons when we match against a similar rectangle? Of course the lower e is, the wider both the
solution and the shape search space will be. In the current implementation, full-group match is applied
when the similarity threshold in the search condition is less than 1. Class match is applied when the
similarity threshold equals 1 (exact match).

3.4 Image Similarity Queries Using MOQL

The similarity ^expression can also be used to check whether two images are similar with respect to the
metric defined in the multi-precision similarity algorithm.

3.4.1 Image Similarity Queries

For querying images by color histogram matching, two kinds of similarity-expression are used to check
if two images are similar. One is whole-image similarity queries. For example:

Query 7 Find images that are similar to the user-provided image el, with respect to color histogram
matching at precision level 1, with the similarity threshold 0.8.

select m
from Images m
where m.colorJiistogram similar el.colorJiistogram

precision 1 similarity 0.8

The other kind of expression is querying sub-images. For example:

Query 8 Find images whose left halves are similar to the user-provided image i, with respect to color
histogram matching with the similarity threshold 0.6.

select m
from Images m
where m.colorJiistogram similar i.colorJiistogram

quadrants (1, 2) similarity 0.6

3.4.2 Combining Similarity Queries with Semantics

A similarity query can be combined with some semantic properties for a more precise response. The
result of such a query is all the images similar with respect to the similarity metric which also satisfy
the semantic conditions. For example:

Query 9 Find images with people that are similar to the user-provided image el, with respect to color
histogram matching at precision level 2, with the similarity threshold 0.8.

select m
from Images m, person p
where m contains p
And m.colorJiistogram similar el.colorJiistogram

precision 2 similarity 0.8

The same applies to sub-image queries:

94

Query 10 Find images with people whose left halves are similar to the user-provided image i, with
respect to color histogram matching with the similarity threshold 0.6.

select m
from Images m, person p
where m contains p
And m.colorJiistogram similar i.color_histogram

quadrants (1, 2) similarity 0.6

Note that the precision levels are not defined for the sub-image queries; that is, all the sub-image
queries are carried out at the first precision level.
3.5 Image Similarity Queries Using VisualMOQL

An image in the result of a query can be selected as an entry to a similarity query. A dialog box is
brought up by pressing the image property button under the working canvas. The right part of the
dialog box is for textual properties such as title, publisher, creation date, etc. The left part of this
dialog box is for color histogram similarity matching. The similarity can be done on the whole image or
a sub-image. For sub-image queries, users can select the region that they want to query on. However,
the size and position of the region is limited by the grid partitions that the system provides [LOON01].

4 Type System and Query Processor

The DISIMA prototype is implemented on top of a commercial object database. The type system
provides the data structures to store and index the images that are used by the query processor we
implemented to answer user queries.

4.1 Type System

The DISIMA type system has been extended to include some structures needed by the multi-precision
similarity algorithm. The DISIMA type system is the implementation of the DISIMA model. It pro-
vides a root type (or class) for each layer of the model: Image, Image-Representation, LSO, PSO
and PSO-Representation. By means of schema specifications, Image and LSO are subtyped by the
application developer to define application-specific types. PSO-Representation has two subclasses:
Raster-Representation, which is similar to Image-Representation, and Vector-Representation, which
represents the geometry of physical salient objects. Figure 3 shows a high level view of the classes
used in the DISIMA type system. The Image, Image Representation, PSO, and LSO classes have been
introduced before. The MBB (Minimum Bounding Box) class defines the spatial feature; the Geometric
Object class defines the shape feature; the Texturegroup class defines the texture feature; the Colorgroup
class and the Multi-scale Color Histogram class define the color feature. The straight line connecting
two classes represents the relationship between the classes. The numbers on the straight lines indicate
the cardinality of the relationship. The Color Histogram class stores the multi-scale color histograms
as quadtrees (Figure 2). An integrated indexing structure (3DEH) is used to index average colors of
these color histograms to facilitate image/sub-image queries by color histogram matching [LÖON01].
4.2 Implementation of the Index Structure for Image Similarity

While tree-based structures are good for supporting nearest neighbor search, there is considerable
traversal that needs to be done. In the DISIMA system, we implemented a hash structure for multi-
dimensional indexing called three-dimensional extendible hashing (3DEH). Like traditional hashing, this
structure provides efficient, direct addressing of the targeted buckets.

The hash directory of the three-dimensional extendible hashing has three initial depths (di, di,
dz), one for each of the R, G, B color components; it also has a growth depth dg, which is 0 at the

95

2 4

Kl
1 3

10

h!2 18 20
1

N ^ \l
9^ A ̂

19

6h V \ > 1 \l \\ \|
5 7 13' 15

(a) N order of image blocks

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) quadtree with predetermined children node order

Figure 2: A quadtree stores color histograms of image blocks

beginning and will increase as the address space increases. The number of bits of a hash address is
(di + d2 + d3 + dg), so the hash directory has 2^+d2+d^+d9) entries. The bucket in three-dimensional
hashing has three local depths (pi, P2,p3), which means that all records in the bucket have common pu

P2, P3 leading bits of the R, G, B values, respectively. At the beginning, the local depths of buckets are
the same as the initial depths of the directory. The directory entry either points to a bucket or holds a
null value if no data records are hashed to this entry.

When a bucket overflows in three-dimensional hashing, like traditional extendible hashing, the hash
address space increases and the bucket splits. Unlike traditional extendible hashing, in which a bucket
can be split along only one dimension, a bucket in three-dimensional extendible hashing can be split
along any of the R, G, B dimensions. We split the bucket along the dimension with the highest variance
so that the records can distribute as evenly as possible in the two resulting buckets.

Since the bucket can be split along any one of the three dimensions, we need to record in which
dimension it is split. A data structure named mask track is maintained to keep track of the splitting
history of the bucket. For example, if the bucket 010 split along the R dimension, we record the fact
that no buckets have been split, except that the bucket with the initial hash address 010 is split along
R dimension in the mask track (Figure 4). That is, every entry in the mask track is zero, except that
the 010 entry is 100. We use 3 bits to record that information but the space used for this purpose can
be optimized by using fewer bits (e.g., 2 bits for three dimensions). The experiments ran, reported in
[LÖON01], show that the 3DEH significantly out performs the SR-tree [KS97]

The three-dimensional extendible hashing is designed to index average colors of the images and their
quadrants. If the images are not categorized in the database, then all the images will be simply inserted
into one index structure. However, the images in the DISIMA system are organized as hierarchical
image classes, so the index structure has to correspond to the hierarchy of images. That is an index for
each image class,

4.3 Query Processing

Although ObjectStore provides some querying facilities over collections, it does not have a built-in
declarative query language. Therefore, we have fully implemented a MOQL parser and query processor
for MOQL queries. The result of the parser is an internal query tree structure which is later transformed

96

Figure 3: The DISIMA type system overview.

Hash Directory

Initial Depths (1,1, 1)

Growth Depth 1

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Local Depths (1,1,1)

Local Depths (2,1,1)

Local Depths (1,1,1)

Local Depths (2,1,1)

000 000

001 000

010 100

011 000

100 000

101 000

110 000

111 000

Figure 4: First expansion of the hash directory

into an execution plan.
As MOQL queries follow the same SELECT-FROM-WHERE structure as traditional queries, the

design of the DISIMA parser is able to make use of basic rules defined in SQL parsers. The new rules
defined on top of the basic rules deal with objects and the clauses introduced by MOQL. The objective
of the DISIMA parser is to check the semantics and syntax of the external query, which is in the form
of a character string. The parsed string is then converted into a query tree. A query object stores all
the information given by the query string.

The query engine uses the query tree directly to generate a non-necessarily optimized execution
plan. In the query tree, each node is associated with either one or two conditions. When there are
two conditions, either intersection or union is performed upon the results of the conditions for and
and or operators, respectively. Once the query tree is constructed, the query engine initiates post-
order traversal. The left-condition is executed before the right-condition, and any sub-node before the
higher-level node.

97

5 Conclusion

In this paper, we have presented the querying functionality of the DISIMA DBMS. We have shown
how the the integration of different image query types was achieved in the DISIMA syatem through a
declarative query language and a rich type system. We have extended both MOQL and VisualMOQL
to support image similarity. Hence, an image similarity search can start with a semantic search to
reduce the query domain before the similarity matches. In the current implementation, the semantic
information is provided by a human-annotator. But the emergence of MPEG-7 will facilitate the
production of media objects together with their content descriptions.

References

[ACH+91] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently
computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(3), March 1991.

[A1183] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of ACM, 26(11):832—
843, 1983.

[BBB+97] S. Berchtoll, C. Böhm, B. Braunmuller, D. Kein, and H. Kriegel. Fast parallel similarity search in
multimedia databases. In Proceedings of ACM SIGMOD International Conference on Management of
Data, Tucson, Arizona, May 1997.

[CBB+97] R. G. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan, A. Springer,
H. Strickland, and D. Wade, editors. The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
1997.

[Del99] A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Publishers, 1999.

[GroOl] MPEG-7 Working Group. The MPEG-7 web page, http://www.cselt.it/mpeg/standards/mpeg-
7/mpeg-7.htm, 2001.

[KS97] N. Katayama and S. Satoh. The SR-tree: An index structure for high dimensional nearest neighbor
queries. In Proceedings of ACM SIGMOD International Conference on Management of Data, pages
369—380, Tucson, Arizona, May 1997.

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Propopapas. Fast nearest neighbor search in
medical image. In Proceedings of the 22nd International Conference on Very Large Databases, VLDB,
Bombay, India, September 1996.

[LÖON01] S. Lin, M. T. Özsu, V. Oria, and R. Ng. An extendible hash for multi-precision similarity querying of
image databases. In Proceedings of the 27th VLDB conference, Rome, Italy, September 2001.

[LOS097] J. Z. Li, M. T. Özsu, D. Szafron, and V. Oria. MOQL: A multimedia object query language. In
Proceedings of the 3rd International Workshop on Multimedia Information Systems, pages 19—28,
Como, Italy, September 1997.

[OOIL99] V. Oria, M. T. Özsu, P.J. Iglinski, and Y. Leontiev. Modeling shapes in an image database system.
In Proceedings of the 5th International Workshop on Multimedia Information System, pages 34—40,
Indian Wells, California, October 1999.

[OÖL+97] V. Oria, M. T. Özsu, X. Li, L. Liu, J. Li, Y. Niu, and P. J. Iglinski. Modeling images for content-based
queries: The DISIMA approach. In Proceedings of 2nd International Conference of Visual Information
Systems, pages 339—346, San Diego, California, December 1997.

[SNF00] R. O. Stehling, M. A. Nascimento, and A. X Falcao. On "shapes" of colors for content-based image re-
trieval. In Proceedings of ACM Multimedia 2000 Workshops, pages 171—174, Los Angeles, California,
November 2000.

98

PAMIR: A Parallel Multimedia Information Retrieval System

Adil Alpkocak, Tuba Ulker, Taner Danisman

Dokuz Eylul University
Department of Computer Engineering

35100 Bornova, Izmir, TURKEY
{alpkocak, tuba, tarier}®cs.deu.edu.tr

Abstract. This paper describes the design, implementation and
evaluation of Parallel Multimedia Information Retrieval system.
PAMIR is implemented on a network of Pentium PC based
workstations to exploit the I/O and computation parallelism in
both insertion and processing phase of complex similarity
queries in Multimedia Information Retrieval. The system is
capable to index and query multimedia objects concurrently
based on more than one features (i.e., global color, local color,
texture, shape) and each feature of an object queried by a
different workstation using multithreaded version ofM-tree.

The system was tested for a collection of approximately 68000
images and each image described by three features; color
moments, histogram layouts and texture. Experimentation has
been shown that the system provides a good reduction in CPU
times on both insertion and query processing phase. Detailed
explanation of the system and experimentation results also
presented.

1 Introduction

State-of-the art in content-based multimedia retrieval involves two main issues:
feature extraction, which extracts feature with distinguishing power from the original
Multimedia Objects (MOB), and feature indexing, which organizes the objects in the
database according to their extracted features in such a way that at run time, only a
small portion of the database needs to be explored to retrieve the target objects. The
features are extracted directly from the Multimedia Objects (MOB) with as less
human intervention as possible. Feature extraction is a very old research area and the
literature involves many of the well-known techniques to extract meaningful features
from various types of signals such as images, video and audio. In content-based
multimedia retrieval, the most common features for MOBs are shape, texture, color
for still images, loudness and harmonicity for sounds, shots and objects' trajectories
for video etc. Although these features are very common and successfully implemented
by many content-based information retrieval systems, the feature extraction phase
alone is still a CPU bound problem, particularly, when audio or video is the case.

In a Multimedia Information Retrieval System, the extracted features are then mapped
into points in d-dimensional vector space and queries are processed against those

99

features vectors. Therefore, a multimedia database can be envisioned as a collection
of feature vectors representing MOBs. The Similarity of two images is defined as a
distance of their representing feature vectors in <2-dimensional vector space. In image
databases, a typical similarity query corresponds to a nearest-neighbor or range query
in ^-dimensional feature space.

To date, many of the similarity indexing structures has been proposed such as
TV-trees, R-trees, SS-trees, X-trees and M-tree. But, use of a similarity indexing is
not generally fulfills the constraints about similarity searches. This is because,
similarity indexing is both CPU and I/O bound due to the fact that the distance
computations are CPU intensive tasks and image data can be too large. Moreover,
contents of a MOB may have different properties, i.e., different dimensionality, and
distance/similarity metrics. In other words, in a multimedia repository, each MOB is
represented by a set of features vectors that may have different properties. Therefore,
a multimedia retrieval system should be able to index every features used according to
their properties.

On the other hand, content-based multimedia queries do not have to be based on one
single feature, and the queries are generally based on the similarity of objects using
several feature attributes like shape, texture, color or text. These types of multi-feature
queries are called complex similarity queries consisting of more than one similarity
predicate. Complex queries return a ranked result set with a calculated cumulative
score. The results are presented to the user in rank order with highest scores indicating
a better match. Within this context, a query based on only one feature is called as
atomic query and a complex query is considered as a combination of atomic queries.

Some recent work has been done on processing complex similarity queries. In
[CPZ97], the authors proposed a solution by extending M-tree indexing structure.
However, they have concentrated on a situation where all similarity predicates refer to
a single feature. In [CPOO], another extension was proposed and original M-tree was
renamed as M -tree, to perform complex similarity search over multimedia objects
represented by multiple features. Both study focused on feature indexing issue of
content-based multimedia retrieval.

In [Fag99], Fagin proposed a solution that the k best matches are returned for a
complex query carried out by independent sub-systems, and that access to any one
system is synchronized with the others. This algorithm is called A0. It has problems of
needing too many random accesses. AQ algorithm formed a base for new researchers.
In [NR99], another algorithm, based on Fagin's algorithm, was proposed and called a
multi-step query processing algorithm. They claimed that it performs better than
Fagin's algorithm by reducing number of database touches on random access phase.
In [GBKOO], the authors has modified Fagin's algorithm again, and called,
quick-combine and proved that it was more efficient by a factor of 30. In [GBK01],
authors presented a new algorithm called stream-combine, that allows retrieving the k
top-scored objects from a set of different ranked result list without needing any
random accesses where the order of the objects in resulting k set is not important.

Based on these observations, we present the parallel multimedia information retrieval
(PAMIR) system, which is designed to address issues for both in feature extraction
and feature indexing. PAMIR is implemented on a network of Pentium PC based

100

workstations to exploit the I/O and computation parallelism in both search and
insertion process of multimedia retrieval. The architecture of PAMIR involves a
dedicated workstation for each features of MOB. Each workstation is responsible for
both extracting respective features directly from MOB in insertion phase, and
indexing those extracted features using modified multi-threaded version of M-tree.
Although the main idea behind the PAMIR is quite simple it provides a good speed up
in both database population and query processing response time, and it is scalable
with the increasing number of features used in the system.

The remainder of the paper is organized as follows. Section 2 describes the problem,
presents the architectural characteristics of PAMIR and explains the basic operations
such as object insertion and query processing. In Section 3, we present the results
obtained from the performance evaluation experimentations. Section 4 concludes the
paper and provides an outlook for our future work on this subject.

2 Parallel Multimedia Information Retrieval Environment

A Multimedia Information retrieval system locates and retrieves objects that are
relevant to user queries from database. A multimedia object can be an article, reports,
image, chart, audio or video. So, multimedia information retrieval systems are
designed with the objective of providing, in response to a user query, references to
items that contain the information desired by the user.

Retrieving relevant multimedia objects from a large collection is of great importance
in almost all types of multimedia information. Large databases create a performance
problem and complex feature description consumes too much CPU time. While
solving this problem, the throughput of the system must be increased and the response
time of the individual queries must be decreased. In order to fulfill these requirements
we believe that parallelism may help to this problem, therefore, we propose the
PANflR - Parallel Multimedia Information Retrieval system.

2.1 Basic Definitions

To clarify the later details, let us consider a multimedia system containing the set of
multimedia objects, MMS = {Mi, M2, ..., Mm), where each multimedia object is
defined by its feature vectors, Mt = {Fi, F2, ..., F„},where \<i<m, and a feature
vector is defined by its properties F, = <fn, ...,fiP>, where 1 < i < n and each F, may
have different dimension. In addition, let a set of similarity (distance) functions,
SIM={ SIMi, ..., SIM„}, be defined to calculate spatial proximity between Fs, where
SIMs may not be identical.

A multimedia query Q can be formulated using these feature vectors as follows:

Q = {Fu F2,..., F„}

In a system like this, the query processor requires an organization, which facilities
locating relevant objects with respect to their distinct features.

101

The main issue for parallel system is how we distribute all the multimedia information
in the whole collection to the processors in such a way so that all advantages of
parallelism could be handled. So, the problem is how to partition the data? There may
be two methods for partitioning the data over the processors. These are horizontal
partitioning and vertical partitioning.

To clarify how partitioning handled, let us consider an example involving an image
database where each image is described by three feature vectors: color histogram,
texture and shape information of the image. More formally, the image database has a
set of images, i.e., multimedia objects,

MM5={/1,/2,...,/m}

where /, is an image object and each image object is described by three feature
vectors, /, = {Q, Tt, 5,}, where Q is color histogram vector, T,is texture information
vector, 5, is shape information vector of image object i. Each feature vector for image
/, can be defined as follows:

C;= < Qi,..., Cj>,>

Ti— < tn,...»tip>

where n, p and r are the number of entries in the feature vectors. So, an image can be
represented as follows:

Ii = {< en,..., cin> , < tn, -, tip> , < Sn ,..., sir> }

Alternatively, we can show the image database with their corresponding features as a
matrix as follows:

MMS =

Partitioning can be done horizontally (row-wise) or vertically (column-wise). In this
study, we focus on vertical partitioning due to the main issues of multimedia
information retrieval (e.g., feature extraction and feature indexing). We propose
vertical partitioning of data over the processors so that different feature algorithms
and different indexing schemes can be applied to each feature.

2.2 Architecture

Figure 1 shows a typical architecture of PAMIR with one master and three slaves: one
for color, one for texture and one for shape. Color vectors of all objects are stored in
first slave, texture vectors of all images are in second slave and so on. A typical query
can be processed as follows. The master processor gets the query via interacting by
user and sends the request to slaves. Slaves process the query request concurrently

102

Q Tx Si

c2 T2 v2

cm Tm V

and then master collects the each slave's response. Finally, it merges and outputs the
results to user.

Master

Slave 1
(Color)

Slave 2
(Texture)

Slave 3
(Shape)

Slave n

Figure 1. PAMIR architecture

When a new object is to be inserted into the database, firstly it is necessary to extract
the feature vectors of object. To do this, object is broadcasted to all slaves. Then, each
processor extracts its respective feature vector applying proper algorithms and stores
the vector in its own disk. Each processor can use different indexing methodology.

If we process a complex query of three predicates sequentially in one machine, the
expected query processing time will be the following;

Serial = (TSI+TS2+TS3) + TC ' Combine

The time in a parallel environment like in PAMIR, the total time for query processing
will become as follows;

1 Parallel = max(rsl,rS2,rS3)+r(Combine

where 7si, Tsi and Ts?, are the search times for respective sub-queries and Tcombine is
the time for combining the results from each sub-query. It is clear that TSeriai > Tpamiui
assuming that the communication time is a small fraction of the total query time for a
large number of query. However, there is still an open problem for this kind of system
for balancing the loads of the each processor for both feature extraction and query
processing phase. The total time for both of the phases can be further improved by
balancing the loads.

2.3 Query Processing

A Multimedia Information Retrieval Systems must be enable to find all objects in the
region which is defined with a specific distance from a given query object in large
linearly ordered domains of attribute values. For an image database, a typical query
can be posed in natural language as, "find all images having the red circle". In this
example, the query has two predicates: one for color feature (red) and the other one
for shape feature (circle). However, these feature vectors describing different media

103

contents have different properties, i.e., different dimensionality and similarity or
distance measure metrics.

If a multimedia query is formed with more than one predicate, as in above example,
each of which corresponds a single feature then such queries are called complex
queries. Complex queries may have a different similarity function from single feature
queries. This is because the user wants to retrieve the best matches to the whole
query. The similarity function of complex queries must be a combined function that
compares all features available in the query. Fagin's A0 algorithm provides a solution
for multiple features at the same time. Based on Fagin's algorithm, some other
researchers offered some improvements [NR99][GBK00]. We will explain these three
algorithms and their parallel versions in the following sections.

Fagin 's A0 Algorithm

For a given complex query, (Color = "Red") A (Shape = "Round"), the solution set of
this query is a "graded" (or "fuzzy") set. A graded set is a set that is given by some
pairs such as (x, g), where x is an object, and g is a real number in the interval [0,1]. It
can also be considered that a graded set is a sorted list, where the objects are sorted by
their grades.

For each sub-query that handles a single feature predicate, a grade is assigned to each
object. The grade represents the degree of fulfillment of object on this sub-query,
where the larger the grade is, the better the match. In particular, a grade of 1
represents a perfect match. For traditional database queries, the grade for each object
is either 0 or 1, where 0 means that the query is false about the object, and 1 means
that the query is true about the object. For multimedia queries, grades may be
intermediate values between 0 and 1. Boolean combinations of sub-queries are
processed by some "aggregation functions" that assign a grade to a fuzzy conjunction,
as a function of the grades assigned to the conjuncts.

If x is an object and Q is a query, let \iQ(x) the grade of JC against the query Q. Based
on definitions and boolean combinations of sub-queries are defined by the standard
fuzzy logic given below;

Conjunction rule : \IAAB (X) = min {\LA (X), \IB (JC)}

Disjunction rule: [iAvB (x) = max {\iA (JC), \iB (x)}
Negation rule: \i-,A (JC) = 1 - u.A (JC)

These are the 2-ary aggregation functions because there are 2 queries (A and B)
combined. What else if more than 2 queries? Such these queries are called m-ary
queries. Let F(AU ..., Am) be an m-ary query, where A\, ...,Am are query terms. The
grade of each object under m-ary query is defined as \ip{/a,..., Amy The standard fuzzy
logic semantics of the conjunction AXA... A Am is given by defining

V-AU...AAm(x) = min {\iM (x),..., \iAm (x)} ,

for each object x. Let t be an m-ary aggregation function.The m-ary query

104

Ft(A\,..., Am) is defined by

\lFt(Al,...,Am)(x) = t (|i,Al (*), \^Am 00) .

Fagin's A0 algorithm was used in Garlic project, for combining multiple features. Both
conjunctive and disjunctive queries can be processed using A0 algorithm. The
algorithm returns the top k answers for a query with multiple features F(AU ..., Am),
which is denoted by Q. It consists of three phases: sorted access, random access and
computation phase.

1. There is a subsystem i that evaluates the sub-query A,-. For each i the
corresponding subsystem outputs a set one by one in sorted order based on
grade, the graded set consisting of all pairs (x, [iAi (x)), where as before x is an
object and \iAi (x) is the grade of x under query A,-.

This process is repeated until the intersection of the m lists is of size at least k.
That is, repeat until there is a set L of at least k objects such that each
subsystem has output all of the members of L.

2. For each object x that has been seen, do a random access to each subsystem j
to find \iAj (x). If x is in the graded set of sub-query A,-, there is no need to do a
random access for x in subsystem,/.

3. Compute the grade \xQ (x) = ti\LAi (X), ...,\iAm (x)) for each object x that has
been seen. Sort the objects on their grades and form a result set. The output is
then selected from this set with the top k objects.

Multi-Step Query Processing Algorithm

This algorithm was proposed in [NR99] and claimed that it performs better than
Fagin's algorithm, because it requires fewer database accesses. It was shown that, to
improve Fagin's algorithm, combining function must satisfy two additional properties
defined below.

Definiton 1 Lower bounding property: A combining function t for the objects x and x'
under the query A\ A A2 A ... A Am satisfies the lower bounding property iff

3*'Y/ : \lAi (X) < \lAj 00 =» t(\iA1 (X), ..., |lAm (*)) ^ *(UAI (A ••-, V-Am CO)

Definiton 2 Upper bounding property: A combining function s for the objects x and x'
under the query A\ v A2 v ... v Am satisfies the upper bounding property iff

3iV/: H/u (x) > \iAj (x') =» J(HAI (X), ...,[iAm (x)) > s(|iAi (A ..., U^m (A

Again, the standard rules of fuzzy logic for conjunction, disjunction and negation are
used from combining functions. The standard fuzzy rule "min" satisfies the lower
bounding property while the standard fuzzy rule "max" satisfies the upper bounding
property.

105

Multi-step query processing algorithm returns the top k objects for a query
Q=Ft{Ai,..., Am). Each subsystem i, where \<i<m, returns the matching objects in
sorted order. The termination condition is to fill the result list with at least k objects.
This process is an iterative process.

L For each query term A,-, request the subsystem i to return the next object x.
Thus, each subsystem i outputs the graded set of pairs (jt, \iAi (x)), where x is
an object in the database and \iAi (x) is the similarity value of x under A,.

2. For each object x returned by the subsystem i in the current iteration, do
random access to subsystems j, i &j, to find \iAj (x).

3. Compute the threshold grade, th for this iteration, th = t([iAi (x,-), ...,\iAm (xm))
where xi is the element retrieved by subsystem i in the current iteration.

4. Compute the grade \iQ (x) = t(\iAi (x), ...,\iAm (x)) for each objectx retrieved in
this iteration. Update Y, the set containing all objects that have grade \iQ (x) >
h.

5. Go to next iteration (repeat steps 2 to 5) until the set Y has k objects.

6. Output the graded set {(x ,\iQ (x))\ x e Y}

Their theorem on this algorithm is "For every query Ft(Au ..., Am), the multi-step
algorithm correctly returns the top k answers, if t satisfies the bounding properties".
From their observations, Fagin's algorithm requires more database accesses. Because,
when the lower and upper bound properties are satisfied by the combining function
used, the number of random accesses for non-available grade values can be reduced.

Quick-Combine Algorithm

Quick-Combine algorithm proposed in [GBKOO] is similar to multi-step algorithm in
the property of iterative process. But in this case, instead of computing a threshold
value, present-top scored object is found in each step. Termination condition is to
retrieve a list that has at least k objects. The number of necessary database accesses
can be minimized with this new test of termination. Not only the information of ranks
in output streams, but also the scores which are assigned to all objects in each output
stream and the specific form of the combining function is used for this new test.

The following algorithm returns the top answer (k = 1) to any combined query
consisting of n atomic sub-queries q1,...,q„ aggregated using a monotone combining

function F. Let x be an object and s,(x) be the score of x under sub-query qt. An

object occurring in the result set of sub-query qt on rank; will be denoted r{ (j).

1. For each sub-query compute an atomic output stream consisting of pairs
(x, s((x)) in descending order based on score and get some first elements.

106

2. For each object output by a stream that has not already been seen, get the
missing scores for every sub-query by random access and compute its
aggregated score S(x) = F(s1 (x),...,sn(x)).

3. Check if the present top-scored object otop is the best object of the database:

Compare the aggregated score S(o,op) to the value of F for the minimum scores
for each sub-query that have been returned so far. Test:

S(otop)>F(Sl(ri(Zl)),...,sn(rn(zn))) (1)
where zt is the lowest rank that has already been seen in the output stream of
Qi-

4. If inequality 1 holds, otop can be returned as top object of the whole database.
If inequality y 1 does not hold, more elements of the output streams have to be
evaluated. Therefore get the next elements of the streams and proceed as in
step 2 with the newly seen objects.

2.4 Combining Complex Queries in PAMIR

In PAMIR, complex queries are processed based on the algorithms mentioned before.
All three algorithms have been adapted into PAMIR environment to retrieve the result
of complex queries. The steps that we followed while processing queries are given in
Algorithm 1, 2 and 3.

Algorithm 1. Fagin's A0 Algorithm

Step 1. Master gets the user query in the form of boolean combination of sub-queries,
i.e. Q = (Color="Red" and Texture = "Fine" and Shape = "Circular")

Step 2. Master divides the whole query into sub queries according to the predicates of each
feature, i.e. Qx = (Color = "Red"), Ö2=(Texture="Fine"), ß3=(Shape="Circular")

Step 3. Master sends each sub-query to the corresponding slaves and requires the sorted lists
from each slave, i.e. 3 sorted lists each of which has k elements for color, texture and
shape are required. This step meets the sorted access phase of Fagin's algorithm.

Step 4. Each slave evaluates its own sub-query and sends the result sets back to master.
Step 5. Master merges all lists and forms a single set. The objects in this set may not have

similarity values for all features. That is, there may be non-available grade values for
object. Master determines the non-available grade values of each object and send a
request for grade value to the corresponding slave processor, i.e. non-available grade
values for color feature are sent to slave 1, non-available grade values for texture
feature are sent to slave 2, non-available grade values for shape feature are sent to
slave 3. This step meets the random access phase of Fagin's algorithm.

Step 6. Each slave gets its request and begins to compute the similarity values for objects.
Then, they send the results back to master.

Step 7. Master computes the similarity values of each object under the overall query (Q) and
sorts them on their similarities. Finally, it outputs the top k objects (highest k objects)
to user. Last step meets the computation phase of Fagin's algorithm.

107

Algorithm 2. Multi-Step Query Processing Algorithm

Step 1. Master gets the user query in the form of boolean combination of sub queries, i.e. Q
= (Color = "Red" and Texture = "Fine" and Shape = "Circular")

Step 2. Master divides the whole query into sub queries according to the predicates of each
feature, i.e. ßi = (Color = "Red"), Q2= (Texture = "Fine"), Q3= (Shape = "Circular")

Step 3. Master sends each sub-query to the corresponding slaves and requires the sorted lists
from each slave, i.e. 3 sorted lists each of which has k elements for color, texture and
shape are required.

Step 4. Each slave evaluates its own sub-query and sends the result sets back to master.
Step 5. Master doesn't merge all lists. It picks just one object from returned list. And sends

this object to all slaves except the subsystem that the object belongs it to compute the
missing grade values. This phase includes random access for one object.

Step 6. Master computes a threshold value based on all subsystems. Then for selected object
the grade value of overall query is computed from the grade value under all
subsystems. If the grade of this object is bigger than threshold value then add it to the
final list.

Step 7. Go to step 5 and stop until the final list has at least k objects.
Step 8. Finally, show the graded set of k objects to the user.

Algorithm 3. Quick-Combine Algorithm

Step 1. Master gets the user query in the form of boolean combination of sub queries, i.e. ß
= (Color = "Red" and Texture = "Fine" and Shape = "Circular")

Step 2. Master divides the whole query into sub queries according to the predicates of each
feature, i.e. ßi = (Color = "Red"), ß2 = (Texture = "Fine"), ß3 = (Shape = "Circular")

Step 3. Master sends each sub-query to the corresponding slaves and requires the sorted lists
from each slave, i.e. 3 sorted lists each of which has k elements for color, texture and
shape are required.

Step 4. Each slave evaluates its own sub-query and sends the result sets back to master.
Step 5. For returned objects, master picks p objects among them where p is a suitable natural

number. It sends these objects to all slaves except the subsystem that the object
belongs it to compute the missing score for every sub query by random access. For
each new object there are (n - 1) random accesses necessary.

Step 6. Master checks if the k top-scored objects are the best k objects of the database. It
compares the aggregated score of the present k top-scored objects to the value of the
combining function with the lowest scores seen from each feature. Then, it checks if
there are at least k objects whose aggregated score is larger or equal than the
aggregated minimum scores per feature.

Step 7. Master checks if the k top-scores of k objects are bigger than the minimum scores
then the k top-scored objects can be returned as top objects of the whole database. I
this case, add them into the final list and go to step 8. If not, more elements of the
atomic ouqDut streams have to be evaluated. In this case, go to step 5 for next p
objects and stop until the final list has at least k objects.

Step 8. Finally, show the graded set of k objects to the user.

3 Performance Evaluation

The current implementation of PAMIR is built on top of four Pentium MMX based
workstations (one master and three slaves), running at 233 Mhz processor speed.
Master has 128 MB memory, and the rest have 64 MB. The workstations are linked
via a 100 Mbit/s Fast Ethernet under the operating system of Linux. The
communication among the processors provided using MPI (message passing
interface).

108

The system is tested on a collection of 68040 images from various categories. This
dataset contains image from a Corel image collection. Images are described with three
features based on the color histogram, color moments, and co-occurrence texture.

For color histogram, HSV color space is divided into 32 subspaces (32 colors: 8
ranges of H and 4 ranges of S). In the resulting histogram, the value in each
dimension in a color histogram of an image is the density of each color in the entire
image. Histogram intersection was used to measure the similarity between two
images.

Color moments, we obtained 9 dimensional vectors (3 x 3) (one for each of H,S, and
V in HSV color space) mean, standard deviation, and skewness. Euclidean distance
between color moments of two images is used to represent the dis-similarity
(distance) between two images.

The last feature used in our experimentation is for texture. Texture features are
extracted by co-occurrence matrix, resulting 16 dimensions (4x4). Images are first
converted to 16 gray-scale images and co-occurrence matrix in 4 directions is
computed (horizontal, vertical, and two diagonal directions). The 16 values are (one
for each direction) second Angular Moment, Contrast, Inverse Difference Moment,
and Entropy. Euclidean distance between co-occurrence matrices of two images is
used to measure the dis-similarity (distance) between two images.

In order to evaluate the system, we have done some experimentation to test different
combining algorithms for complex queries on our parallel environment for varying k
values for a 100 successive queries. Figure-2 shows the results we obtained from our
experimentation. As k value increases Multi-step and Quick-combine algorithms are
seemed to be approaching to Fagin's algorithm due to increased communication cost
among processors.

200-1

180
160
140
120
100
80

60
40
20

0

btM

Fagin

Multi-step

Quick-combine

smr

5 10 25 50 100 250
k values

Figure 2. Result of combining algorithms comparison
experiment.

109

While processing queries, we have added one more features in each step and observed
the total time for 100 successive queries. As we added new features to PAMIR the
total time has been increased slightly due to increased communication cost. So, it can
be said that the PAMIR is almost scalable with increasing number of features. We are
planning to observe how scalability is changed as more features are added.

4 Conclusion

This paper presents the design, implementation, and evaluation of a parallel
multimedia information retrieval system called PAMIR to exploit the I/O and
computation parallelisms specifically for multi-feature complex query. We have
successfully implemented the first PAMIR prototype on a network of Pentium
workstations, and carried out a comprehensive performance evaluation of the
prototype against a database consisting of 68040 images where each image has been
described by three features, color histogram, color moments and co-occurence texture.

In complex query processing phase, we have evaluated Fagin's, multi-step and
quick-combine in our parallel environment. The performance evaluation experiments
showed that quick-combine algorithm outperforms the others. Stream-combine
algorithm is also a good solution if the order in final result set is not important. We
have presented both all experimentation results and parallel version of respective
algorithms for PAMIR environment.

PAMIR is a prototype system for parallel Multimedia Information Retrieval, which is
designed to address issues for both in feature extraction and feature indexing phases
and it helps to process complex queries. PAMIR is implemented on a network of
Pentium PC based workstations to exploit the I/O and computation parallelism in both
search and insertion process of multimedia retrieval. PAMIR provides a good speed
up in both database population and query processing response time, and it is scalable
with the increasing number of features used in the system. In longer term, we expect
the PAMIR project to lead us into new research in many dimensions, including query
processing technologies, user interfaces, parallel similarity indexing and more.

110

References

[CH+95] W.F.Cody,L.M.Haas,W.Niblack, M.Arya,M.J.Carey, R. Fagin, M.
Flickner, D. Lee, D. Petkovic, P. M. SchwarzJ. Thomas, M. T. Roth, J.
H. Williams, and E. L. Wim-mers. "Querying multimedia data from
multiple repositories by content: the Garlic project", Proceedings of
Third Working Conference on Visual Database Systems, VDB-3,
Lausanne, Switzerland, March 1995.

[CPOO] Paolo Ciaccia, Marco Patella, "The M2-tree: Processing Complex
Multi-feature Queries with just One Index", First Delos Workshop on
Information Seeking, Searching and Querying in Digital Libraries,
Zurich, Switzerland, 2000.

[CPZ97] Paolo Ciaccia, Marco Patella, Pavel Zezula, "M-tree: An efficient access
method for similarity search in metric spaces", Proceedings of the 23rd
VLDB International Conference, Athens, Greece, September 1997.

[CPZ99] Paolo Ciaccia, Marco Patella, Pavel Zezula, "Processing Complex
Similarity Queries with Distance-based Access Methods", Proceedings
of the 6th EDBT International Conference, Valencia, Spain, March,
1998.

[Fag99] Ronald Fagin, "Combining fuzzy information from multiple systems",
Journal of Computer and System Sciences, Vol. 58, pp. 83-99, 1999.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling, "Optimizing
Multi-Feature Queries for Image Databases", In Proceedings of the 26th
International Conference on Very Large Databases (VLDB 2000), pp.
419-428, Cairo, Egypt, 2000.

[GBK01] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling, "Toward
Efficient Multi-feature Queries in Heterogeneous Environments", Proc.
Of the IEEE International Conference on Information Technology:
Coding and Computing (ITCC 2001), Las Vegas, USA, 2001.

111

[NR99] Surya Nepal and M.V. Ramakrishna, "Query Processing Issues in
Image(multimedia) Databases", Proceedings of the 15th International
Conference on Data Engineering , Valencia, Spain, March, 1999.

[WH+99] Edward L. Wimmers, Laura M. Haas, Mary Tork Roth, Cristoph
Braendli, "Using Fagin's Algorithm for Merging Ranked Results in
Multimedia Middleware", Proceddings of 4th IFCIS International
Conference on Cooperative Information Systems, Edinburgh,
SCOTLAND, September 1999.

112

Implementing Relevance Feedback Techniques
for Large Image Collections Efficiently

Klemens Böhm Ana Stojanovic Roger Weber

Institute of Information Systems, ETH Zentrum, 8092 Zurich, Switzerland

{boehm,stojanov,weber}@inf.ethz.ch

Abstract
Relevance Feedback is a powerful technique to raise the quality of search results in image databases.
A number of relevance feedback models have been proposed. Frequently, these solutions appar-
ently do not scale with the number of images. Another issue is that some relevance feedback models
support only simple similarity queries, but not similarity queries with a more complex structure,
e.g., more than one reference image. This article in turn describes the design and implementation
of a relevance feedback engine that supports relevance feedback in its full generality. To this end,
we have developed a query language for similarity search with the following characteristics: it is
expressive enough to map user feedback to a statement in the language for any of the relevance
feedback models under consideration here. At the same time, it is not excessively complex and
allows for an extremely efficient implementation, even for large data sets.

1 Introduction

Similarity search for images plays a key role in a large number of multimedia applications. Examples

can be found in astronomy, entertainment, education, journalism, advertisement, and cultural heritage.

Typical approaches for image retrieval are either keyword-based or content-based. In this context,

keyword-based retrieval identifies relevant images by applying textual retrieval methods to the annota-

tions or meta data of the images. On the other hand, content-based retrieval looks for similar images

based on statistical information on the raw image data. This includes color, texture and shape fea-

tures [13, 6] as well as high level classification features (e.g. to detect faces in an image). In the past,

most work on image similarity search has focused either on the extraction of characteristic features from

the images and the definition of effective similarity measurements on top of them, or the development

of efficient index structures for simple similarity search, i.e. efficient nearest neighbor search methods.

However, only little work has addressed the efficient evaluation of effective similarity measurements so

far [3, 5, 2], i.e. fast evaluation of complex queries consisting of several reference images and several

features (including textual features). Moreover, most of the existing approaches do not scale well with

the database size. For instance, our implementation of Fagin's A0-Algorithm often resulted in query

times well above 100 seconds (see also [15]).

As a consequence, image retrieval systems either perform simple similarity searches and are able to deal

efficiently with huge image collections, or they apply complex and effective similarity measurements

but are restricted to small database sizes. Moreover, most image retrieval systems do not allow for

relevance feedback. It is a concept that has been introduced for text retrieval to improve the quality of

113

Fi.mm I feature types R, FnMn-

feature

rMJ

V V V V require w u. .. u.
|v1,1,l||v1,1,l[1,1)| ri,m[1].l|ri,m[1],l[1,n0]]| values I Vn,1,1 11 vn,1,l[n,1] | | vn,m[n],11| vn,m[n],l[n,m;n]

Figure 1: Query Model

search results. A search with relevance feedback consists of several steps. The user judges the search
results after each step. The system takes this feedback into account in subsequent steps to come up with
results of higher quality. The problems with relevance feedback for image retrieval are the incapability
of the retrieval system to handle complex queries (which often result from the feedback step) or the
long duration of query evaluation, which is in the way of interactive search.
The objective of this article is to describe our image similarity search system. It carries out complex
similarity search efficiently and supports relevance feedback in its full generality. Our query model
is a reasonable compromise between effectiveness and efficiency: we restrict our model to two-level
queries consisting of a number of reference images. Each such image can define its own similarity
measurement based on a set of feature types (see Figure 1). We have implemented an efficient search
technique for this query model called GeVAS (generalized VA-File based search) [1]. In combination
with parallelization [14], this method identifies the most similar images in a database of more than
230,000 images and with complex similarity queries within a few seconds (less than 5s). Our image
retrieval system supports relevance feedback by generating statements in our query model, and the
mapping of feedback to query statements reflects the respective feedback model. We show that this is
feasible with any of the models considered [8, 9].
The remainder of this article has the following structure: Section 2 summarizes our query model and
the implementation of the GeVAS search technique. Section 3 provides a comprehensive overview of
the relevance feedback models used in the context of image similarity search. Section 4 reviews related
work. Section 5 concludes.

2 Query Model for Similarity Search

Our apprach to relevance feedback maps user feedback to a statement in our query model for similarity
search. This model must be appropriate for our purpose, i.e., (1) it must be sufficiently expressive to
reflect user feedback with any of the feedback models under consideration, and (2) it should not be
unnecessarily complex and allow for an efficient implementation. In the remainder of this section, we
summarize our previous work [1], namely the query model and its semantics as well as the efficient
evaluation of complex queries with the Generalized VA-File Based Search Technique (GeVAS).

114

2.1 Query Structure

A common approach to measure similarity between an image in the collection and a reference image is
to extract so-called features, both from the images in the collection and from the reference images. A
feature describes a particular characteristic of an image, e.g., its color distribution. Typically, a feature
is a vector in a high-dimensional space with a dimensionality varying between 5 and 500. This space
is typically referred to as feature space. Two images are assumed to be similar with regard to a certain
feature type if the distance between their feature vectors is small.
Figure 1 displays the general structure of a query. A query consists of n reference objects. For each
reference object Qit there may be an arbitrary number of feature types (Ft>\,... ,^im[,]). Finally, the
point (v/j-,1,..., Vij,i[i,j\) is the representation of query object g, in feature space F{j. For the sake of
presentation, Figure 1 omits the weights at the various levels of the query model. In the following, an
atomic sub-query of multi-feature multi-object query is a sub-query with one reference image over one
feature type. The following examples provide some intuition regarding the structure of a query.

Example 1 (Complex Query) A user is looking for an image of a black cow, but he only has a picture
of a brown cow and one of a black horse at hand. The corresponding query has two reference objects
Q\ (cow) and Qi (horse). There is one feature type for each image: F\ti is the shape feature ofQ\, F24
the color feature ofQi.

Example 2 (Relevance Feedback) Usually, a user would not type in a complex query as insinuated
in Example 1. Rather, he tells the system which images he likes and for what reasons. To continue the
above example, his initial query might have returned an image A with a black horse and image B with
a brown cow. The user would rate the images as follows: image A contains an object with the right
color but wrong shape, and image B has the right shape but the wrong color. The resulting query is
equal to the one in Example 1 but is now generated by the system. Note that relevance feedback based
on Rocchio [8] will often not suffice. In the current example, Rocchio would produce artificial vectors
for the shape and color feature that lie between the two vectors for the images.

2.2 Query Semantics

Distances. To state what a similarity query stands for, we introduce the notions of feature distance,
reference-object distance, and query distance. The feature distance measures the dissimilarity of a
reference object and a data object regarding a single feature type. The r'-th reference-object distance of
a data object is a combined distance to the i-th reference object with regard to the feature representations
Fit\,... ,F,jm[,]. Moreover, we allow to weight the individual features to reflect their importance for the
current information need. Finally, the query distance is a combined distance over all reference objects.
We also allow for weighting on this level of the query model.
Distance Functions. Each object of the database and each reference object is mapped to a set of feature
representations. The Z-th feature representation of an object lies in a di-dimensional feature space. A
distance measure 8/(p, q) defines the distance between two points in this space. A common measure is
the (weighted) Minkowski metric Ls:

di

Ls: 8,(p,q) = ' 2>;>,—*,|' (2.1)

115

Distance-Combining Functions. To describe the reference-object distance and the query distance, we
introduce the notion of distance-combining function (A). It combines a set of distances to an overall
distance and must be monotonic in all arguments, i.e. A(JCI, ... ,xm) < A(x'v... ,x!m) if xt < ^ for all i.
Note that monotonicity is a natural requirement: if all distances become larger, the similarity decreases.
The following distance-combining functions implement different ways of combining distances. The
example is such that they combine reference-object distances to a query distance.

Example 3 (Fuzzy-And, Fuzzy-Or, Weighted Average) Given a set of n reference objects, Fuzzy-
And implements the idea that a data object should be close to all of them. This leads to the maximum
function (max) for A, i.e.: 6(/>) = Amd(S1(P),...,&n(P)) = max 8,(P).

If the reference objects represent a set of possibilities, and each of them is acceptable, the Fuzzy-Or
distance-combining function would be more appropriate. Rather than A = max, it uses A = min.
Finally, let w<EW be the weights of the individual distances such that £"=iw« = 1. Then Weighted
Average is given asA = £"=1 u>,- • 5,-.

Normalization. Combining feature distances as described so far is not sufficient since the meaning of
a distance value depends on the distance distribution. For example, assume we would deploy Fuzzy-
Or on a distance from the feature space [0, l]10 and on one from the feature space [-10,10]100. As
distances in the first space are much smaller than in the later one, Fuzzy-Or yields the distance from the
first space in almost all cases. This would mean that the second feature did not matter with regard to
overall similarity. We normalize distances with a well-chosen normalization function for each distance
measure to avoid such situations.
Weighting. Some relevance-feedback models further require weighting of individual reference objects,
feature types and dimensions within a single feature vector. The distance function implements dimen-
sion weights, e.g., wt in Equation 2.1. Weighting reference objects and feature types is straightforward
with Weighted Average. But this is not the case with Fuzzy-And or Fuzzy-Or. Fagin et al. solved this
problem for a slightly different setting, and we deploy their solution in our context (cf. [4]).
Distances and Scores. While distances measure dissimilarity, it would also be possible to work
with scores that measure the similarity. Scores are normalized by definition, i.e., from the interval
[0,1] (l=identity, 0=no similarity). We deploy a correspondence function [2] to map query distances to
overall scores. Hence, unlike [3,2,15], we do not need to deal with scores at the intermediate levels.

2.3 Query Evaluation

Our earlier work has combined/generalized existing approaches, resulting in a set of techniques called
Generalized VA-File-based Search (GeVAS) [1]. An extensive evaluation of our techniques has shown
that GeVAS gives rise to a significant improvement over other approaches (usually by more than a
factor of 10). Figure 3 shows elapsed times for multi-object queries and multi-feature queries within
our database containing around 230,000 images (k = 15 means that we search for the 15 most similar
objects to the query). On the left hand side, the response times for multi-object, single-feature (a 45-
dimensional color feature) queries of GeVAS are compared with some competitive methods ([2] applied
to M-Tree, R*-Tree, and SR-Tree as well as [3] based on VA-File). With around 10 reference objects,
GeVAS outperforms all other approaches by more than a factor of 10. This kind of query is important
with the query extension method discussed later in Section 3.6. Figure 3 (b) plots the response times
for single-object, multi-feature queries. In the figure, Fx denotes a feature type with x dimensions.

116

F4s,k=15, best case

0
I 10

■o
CD 1 a. «

' 0 0
^~--—~*

/^~

:-«-M-Tree
l-s-AO

^R*-Tree -e-SR-Tree
-»•GeVAS

F, & FM F, & F«, F, & F„

[■Feature Fusion ^VAF-single DSingle-AO|

1 4 7 10
Number of ref. objects (n)

(a) (b)

Figure 2: Elapsed times for (a) multi-object queries, and (b) multi-feature queries.

The left-most bars (Feature Fusion) represent optimal search costs with the VA-File by combining the
feature vectors a priori. The bars in the middle represent search costs with GeVAS; in this case, the
features are combined at evaluation time. The right-most bars correspond to the search costs of the
A0-Algorithm using VA-Files as base search structures [3]. Again, the figure shows the superiority of
GeVAS: the AO-algorithm is always more than a factor of 10 slower than GeVAS. Moreover, GeVAS
almost reaches the optimal case with pre-composed feature vectors. In practice, however, this optimal
scheme is not feasible since the number of combinations with around 20 feature types is by far too
large (220).
In the general case (see [1]), query response times grow linearly with the database size and the com-
plexity of the query, i.e. the number of features and the number of reference objects. In most relevant
cases however, depending on the distance functions and the chosen distance-combining function, our
technique has a constant complexity in the number of reference objects.

3 Relevance Feedback for Image Similarity Search -
State-of-the-Art and New Directions

This section deals with various aspects of relevance feedback. We first classify user feedback in vari-
ous dimensions. We then give a summary of existing relevance feedback models from literature, i.e.,
possible interpretations of user feedback.

3.1 Dimensions of User Feedback

We can distinguish user feedback in the following dimensions:

Granularity of feedback. User feedback may either refer to the image as a whole, it may refer to a
particular feature, or it may refer to an individual aspect of the feature. An example for the last
case for feature type 'color' is feedback on the individual RGB values of the image.

Range of feedback predicates. Another dimension is the number of possible feedback values. Pos-
sible values are 'relevant'\'not relevant' on the one hand and a continuous scale from —1 to 1
on the other hand, among others. Another differentiation is to facilitate only explicit positive

117

b /^~

[o, »»—'S..

\ >'''
a,

! °0j

Oo, /

a

(a) (b)

Figure 3: (a) Example of dimension weighting (Euclidean metric), (b) Illustration of Rocchio.

feedback, i.e., have feedback values 'relevant' and 'indifferent' on the one hand, as opposed to
'relevant', 'not relevant' and 'indifferent' on the other hand.

Obviously, the tradeoff is between user effort and preciseness of feedback. Preliminary experiments

indicate that users favor the coarser variants in both dimensions. We use a homogeneous internal

representation of user feedback with regard to implementation. I.e., we map coarse feedback internally
to a finer, equivalent representation.

We have conducted an extensive survey of literature on relevance feedback models used for image re-

trieval. The main alternatives encountered are dimension weighting, feature weighting, query weight-

ing, query point movement, and query extension. The following subsections discuss these models.

3.2 Dimension weighting

Recall that each image is represented by a number of feature vectors in different feature spaces. All

dimensions have the same importance (weight), with the common distance metrics. The principle of

dimension weighting [9] is to modify the weights of the dimensions according to the user feedback.

Example 4 Figure 3.1 serves as an illustration. For the sake of simplicity, assume that the query has

one subquery with one feature type, q is the original query point, and Oi,..., o6 are the items returned

in the first step of the search, oi,..., o3 are the items judged relevant by the user, and o4,..., o6 are

not relevant. Obviously, Dimension b discriminates better between relevant and non-relevant items

than Dimension a. With dimension weighting, the relevance feedback component adjusts the dimension
weights. In this case, it would generate a new query which corresponds to the ellipse.

More formally, let i be the number of a dimension, and let a(i) denote the standard deviation of the i-th
components of the relevant data points. Obviously, the smaller the standard deviation for a dimension,

the better the dimension discriminates between relevant and non-relevant items. Consequently, if the

standard deviation is small, the weight on the dimension should be large, i.e. w(i) = l/a(i). These
weights further need to be normalized to avoid numerical instabilities.

Dimension weighting requires at least two relevant objects. Otherwise the standard deviation is not

meaningful. Furthermore, a larger number of objects judged by the user facilitates a more accurate
weighting, because it reduces the influence of a single object.

Finally, dimension weighting for complex queries in our system looks at each atomic subquery in

isolation: dimension weighting is carried out in the respective feature space and the reference object as
described above for simple queries.

118

3.3 Feature Weighting

Dimension weighting adjusts the weights of individual dimensions. Feature weighting in turn adjusts
the weights of features as a whole [9]. The input of feature weighting is the result list of the overall
query and the user feedback, but also the result lists of each atomic sub-query. The more relevant
images from the result list of an atomic query appear in the final result, the higher should be the weight
of the respective atomic query. More formally, let A; be the objects in the result list of the i-th atomic
sub-query, F be the objects in the overall results, R be the objects judged relevant, and N be the objects
judged non-relevant. The feature weight w(i) of the i-th atomic sub-query is then as follows:

w(i)=ifiax(Jti-|A,-nÄnF|-*2-|Ain^nF|,0) (3.1)

where Jfci, &2 are parameters that specify the influence of the relevant and the non-relevant objects on
the feature weight.
A few problems have arisen with our tests of the algorithm. A short result list rarely produces any
matchings. Applying the algorithm in such a situation does not make sense. This feedback model
also is much more expensive than dimension weighting from an implementation perspective. Since
the model needs the result list of each atomic sub-query, it has to submit a number of single-object
single-feature queries to generate these lists.

3.4 Query Weighting

In analogy to feature weighting, query weighting defines weights on sub-queries on the reference image
level, i.e. it determines how well a reference image describes the information need of a user. Obviously,
query weighting compares the result lists of the sub-queries at the reference image level with the final
result, instead of the result lists of the atomic queries (at the feature type level).

3.5 Query Point Movement

Query Point Movement is a method whose implementation is feasible with a less powerful query model.
We first describe the basic version of the algorithm, first published in [8], and then say how to extend it
to finer feedback and to complex queries.
Recall that the vector space model represents the query and the database objects as points in a high-
dimensional feature space. The model uses the positive feedback to move the query point towards the
relevant points, and the negative feedback to move the query away from the non-relevant pointsThe
following formula captures this.

qnew = qow +]|| X r_ i^T X n (3-2)

R and N are sets containing the relevant and the non-relevant objects, respectively. Finally, ß and y are
constant factors reflecting the influence of relevant and non-relevant objects on the new query point.
Normally ß > 7: otherwise, the query may go too far away from the relevant objects in some cases.
Good values for ß and y can be determined experimentally. We for our part have taken the values
from [10], namely ß = 0.75 and y = 0.25. These values have been used successfully in text retrieval.

Example 5 Consider the situation depicted in Figure 3.1. Query q0uj has four nearest neighbors

119

Query

Extension

Query Result List New Query

Figure 4: Example of a simple query extension method.

Oi.. .04. Oi and o% are non-relevant, but o3 and 04 are relevant. vneg is the shift of the query point
resulting from the non-relevant objects, vpos the shift resulting from the relevant ones. The new query
resulting from query point movement has other nearest neighbors, including objects 05 and Og.

Objects are either relevant or non-relevant with the Rocchio model. But feedback can be more fine-
grained (cf. Subsection 3.1). With our extension of the model, an object with a high feedback value,
be it relevant, be it non-relevant, has a stronger influence on the new query point than the objects with
smaller values. With multi-object multi-feature queries, we apply Rocchio's formula to each sub-query
with a single reference image and a single feature type. Finally, note that the new query points no
longer represent an existing reference image. Rather, each of them describes an artificial object that
subsumes the characteristics of the reference image, the relevant images and the non-relevant images.

3.6 Query Extension

Query Extension takes the relevant images and simply adds them to the query as new sub-queries (using
the same feature types as the reference images). Figure 4 serves as an illustration. In this example, only
the highly relevant images, denoted by two hooks, extend the query.1

3.7 Improvements of Existing Relevance Feedback Techniques

Additional measures improve the feedback process and give rise to better results.

Blacklists. If the user has judged an image as non-relevant, it should not appear again in the result fist
of a subsequent step. We propose to set up a blacklist: it collects the IDs of the non-relevant
images. If an image in a result fist is an entry in the blacklist, it is removed from the result list.

Taking the user feedback from all steps into account. A search process may consist of several steps,
and each step collects feedback information. Thus, the system typically does not only have the
current user feedback, but also the one from the previous steps. Some methods (but not all of
them) could use all the feedback information available.

'image 1 has two hooks, Image 2 and 5 just one, i.e., these are the images judged relevant. Images 3, 4 and 6 have been
crossed off as non-relevant.

120

The bottom line of this section and the previous one is that we have a relatively simple but fairly expres-
sive query model for similarity search that is sufficient for the relevance feedback models addressed
here. Moreover, we have an implementation of the query model that is based on the VA-File, and that
is very efficient.

4 Related Work

There is a number of image retrieval systems that provide relevance feedback functionality. MARS
is the most influential one with regard to our current work. It implements weighting of dimensions
and features. However, the main differences are that our query model is more general (more than
one reference object), and we had to extend the relevance feedback models accordingly. Furthermore,
query evaluation with our query engine is extremely fast, and working with large image collections
is feasible (as opposed to experiments described in [9] with 286 images). MetaSeek from Columbia
University [11] uses the relevance feedback model proposed by Rocchio, together with a normalization
technique. CIRCUS [7] from EPFL, Switzerland, makes use of the user feedback to adopt the similarity
metric. Similarity search in their system is based on Latent Semantic Indexing. The image retrieval
system from the Computer Vision Group of the University of Geneva introduces the notion of feature
frequency and adapts the concept of inverse document frequency to the image domain [12]. Finally, a
system from the University of Bristol [16] uses an approach based on neural networks to interpret the
relevance feedback.
We are aware of work on query models for similarity search and approaches to evaluate complex sim-
ilarity queries. Fagin has proposed the AO-Algorithm that combines result lists from different sub-
queries and shows that it is optimal under certain middleware-specific assumptions that are somewhat
restrictive [3,15]. QuickCombine, an extension of the AO-Algorithm, significantly reduces the costs of
merging result list but it still is much more expensive than our GeVAS-technique. Ciaccia et al. have
come up with an evaluation scheme for complex queries with more than one reference object, but
limited to one feature type [2].

5 Conclusions

Similarity search is an essential feature of image databases. The objective is to support the user such
that his information need is covered in the best way possible. Relevance feedback gives the user control
over the search process: the user explicitly states which results of the current step of the search are
relevant, and which ones are not. The system uses this information to refine the query for the subsequent
step. Several relevance feedback models, i.e., mappings of user feedback and the current query to a
new, refined query, have been proposed. This article has given a review of these approaches.
Furthermore, we have described the relevance feedback component in our image retrieval system. It
is realized as follows: we have an expressive query model for complex similarity search (e.g., several
reference objects, explicit references to different features). Query evaluation is based on the VA-File [1]
and is very efficient, even for large data sets. Our relevance feedback component maps the feedback
and the current query to a new expression in the query language. We have explained that this is feasible
for all relevance feedback models considered.
Future work includes comprehensive quality experiments on large data sets. The main problem hereby
is the definition of a suitable test collection (like the TREC collections for text retrieval systems) and

121

feasible user tasks. E.g. looking for images of a certain person is only feasible if the features are able

to discriminate between that person and other persons. Preliminary tests in our database have shown

that relevance feedback significantly increases result quality with only a few steps.

Our retrieval systems currently contains more than 230,000 images, more than 20 feature types (mostly

color and texture based), and all the feedback models described in this paper. The system is available

online at http://www-dbs . ethz . ch/~imageDB/ .

References
[1] K. Böhm, M. Mlivoncic, H.-J. Schek, and R. Weber. Fast Evaluation Techniques for Complex Similarity

Queries. In Proceedings of the International Conference on Very Large Databases (VLDB), Roma, Italy,
2001.

[2] R Ciaccia, M. Patella, and R Zezula. Processing Complex Similarity Queries with Distance-Based Access
Methods. In Proceedings of the International Conference on Extending Database Technology, volume 1377
of Lecture Notes in Computer Science, p. 9-23, Valencia, Spain, 1998.

[3] R. Fagin. Combining Fuzzy Information from Multiple Systems. In Proceedings of the ACM Symposium
on Principles of Database Systems (PODS), p. 216-226, Montreal, Canada, 1996.

[4] R. Fagin and E. L. Wimmers. A Formula for Incorporating Weights into Scoring Rules. In Proceedings
of the International Conference on Database Theory (ICDT), volume 1186 of Lecture Notes in Computer
Science, p. 247-261, Delphi, Greece, 1997.

[5] U. Giintzer, W.-T. Balke, and W. Kiessling. Optimizing Multi-Feature Queries for Image Databases. In
Proceedings of the International Conference on Very Large Databases (VLDB), p. 419-428, Cairo, Egypt,
2000.

[6] B. Manjunath and W Ma. Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(8):837-842,1996.

[7] Z. Pecenovic, M. Do, S. Ayer, and M. Vetterli. New methods for image retrieval. In Proceedings of the
International Congress on Imaging Science, volume 2, p. 242-246, University of Antwerp, Belgium, 1998.

[8] J. Rocchio Jr. Relevance Feedback in Information Retrieval, The SMART Retrieval System: Experiments
in Automatic Document Processing, chapter 14, p. 313-323. Prentice Hall, Englewood Cuffs, New Jersey,
USA, 1971.

[9] Y. Rui, T. Huang, and S. Mehrotra. Relevance Feedback Techniques in Interactive Content-Based Image
Retrieval. In Storage and Retrieval for Image and Video Databases (SPIE), p. 25-36, San Jose, California,
USA, 1998.

[10] P. Schäuble. Multimedia Information Retrieval, Content-based Information Retrieval from Large Text and
Audio Databases. Kluwer Academic Publishers, Zurich, Switzerland, 1997.

[11] J. Smith and S.-F. Chang. Searching for Images and Videos on the World-Wide Web. Technical Report
459-96-25, Columbia University, New York, New York, USA, 1997.

[12] D. Squire, W. Müller, and H. Müller. Relevance feedback and term weighting schemes for content-based
image retrieval. In The Third International Conference On Visual Information Systems, p. 549-556, Ams-
terdam, The Netherlands, 1999.

[13] M. A. Strieker and A. Dimai. Color Indexing with Weak Spatial Constraints. In Storage and Retrieval for
Image and Video Databases (SPIE), volume 2670 of SPIE Proceedings, p. 29^0, San Diego/La Jolla, CA,
USA, 1996.

[14] R. Weber, K. Böhm, and H.-J. Schek. Interactive-Time Similarity Search for Large Image Collections
Using Parallel VA-File. In Proceedings of the International Conference on Data Engineering (ICDE), p.
197, San Diego, CA, 2000.

[15] E. L. Wimmers, L. M. Haas, M. T. Roth, and C. Braendli. Using Fagin's Algorithm for Merging Ranked
Results in Multimedia. In Proceedings of the Fourth IFCIS International Conference on Cooperative In-
formation Systems, p. 267-278, Edinburgh, Scotland, 1999.

[16] M. Wood, N. Campbell, and B. Thomas. Iterative Refinement by Relevance Feedback in Content-based
Digital Image Retrieval. In Proceedings of the 6th ACM international conference on Multimedia, p. 13-20,
Bristol, U.K., 1998.

122

Optimal Cache Memory Exploitation for Continuous Media:
To Cache or to Prefetch?

Peter Triantafillou1, Dept. of Computer Engineering, Tech. Univ. of Crete,

Antonis Hondroulis, Dept. of Computer Science, Stanford University,

Costas Harizakis, Dept. of Computer Engineering, Tech. Univ. of Crete.

Abstract

Network continuous-media applications are emerging with a great pace. Cache memories have
long been recognized as a key resource (along with network bandwidth) whose intelligent
exploitation can ensure high performance for such applications. Cache memories exist at the
continuous-media servers and their proxy servers in the network. Within a server, cache memories
exist in a hierarchy (at the host, the storage-devices, and at intermediate multi-device controllers).
Our research is concerned with how to best exploit these resources in the context of continuous
media servers and in particular, how to best exploit the available cache memories at the drive, the
disk array controller, and the host levels. Our results determine under which circumstances and
system configurations it is preferable to devote the available memory to traditional caching (a.k.a.
"data sharing") techniques as opposed to prefetching techniques. In addition, we show how to
configure the available memory for optimal performance and optimal cost. Our results show that
prefetching techniques are preferable for small-size caches (such as those expected at the drive
level). For very large caches (such as those employed at the host level) caching techniques are
preferable. For intermediate cache sizes (such as those at multi-device controllers) a combination
of both strategies should be employed.

1 Introduction
A fundamental issue when building the system support for continuous-media (CM) applications is how to best

exploit the available cache memories, which nowadays exist at various levels in the system: at the (proxy) server's
main memory, at intermediate multi-device controllers and at the embedded controllers of individual storage
devices.

Problem Formulation and Overview of Contributions

The literature contains several strategies, which compete for memory and can be classified into two broad
categories: caching and prefetching. A critical question is, therefore, whether the cache memory should be devoted
for "consumption" by caching or by prefetching strategies. Under which circumstances and configurations is one
preferable? And, how can we configure a cache so to achieve optimal performance? At optimal costs? Note that the
size might be an important parameter, with different cache sizes calling for different solutions. Given that a real
(proxy) server will contain caches of different size at the host level, at the disk array controller level, and at the drive
level, the answers to these questions will prove of true interest to system designers. With this paper, we advocate
solutions to these problems.

2 Related Work

2.1 Research in "Smart" Storage

Recently, there has been an increased interest for smart disk technology from both academia and industry
[1,6,8,10,12]. These works propose new architectures and the migration of a great deal of processing into these
smart devices. Our prior work in this area [15] differs in that it relies only slightly on the available embedded
processors, specifically to perform tasks for carrying out directives for prefetching specific disk blocks. We center
our attention on providing the necessary system support for continuous media applications. In general, the focus is
on exploiting currently available resources of increasing capacity, i.e., the drive-level caches, to improve current
performance and offer continuously greater performance benefits as this technology matures and develops (e.g., as
the drive-level cache sizes increase).

Contact author; email: peter@softnet.tuc.gr: URL: www.softnet.tuc.gr

123

2.2 Research in Caching Continuous Data

The basic idea behind the caching (or so-called "data sharing") techniques [5,7,13] is that if two clients, request
the same video at different times, the server may service the latter one using the data, which is cached on behalf of
the former one. Thus, the referenced video is read from disk only once, while the system can support in this way
several simultaneous displays of the video.

23 Research in Prefetching Continuous Data into "Smart" Disk Caches

Nowadays drives with 8MB cache memory are common. In addition, while transfer rates increase fast, providing
up to more than 15MB/sec, the positioning cost paid on every disk drive's seek improves at a much slower pace.
Data prefetching is a policy, which minimizes the seek-to-transfer time ratio. Instead of reading a single disk data
block more are fetched into a cache. Because of the CM data nature, soon the cached blocks will be also requested
and thus two (or more) requests will have been served by "paying" only a single disk head positioning delay. Of
course, the algorithms must ensure that the time to prefetch blocks of streams does not cause hiccups and/or high
startup latencies. Several prefetching algorithms [15] have been proposed that significantly improve the maximum
number of displays a device can support, at low latencies. We now briefly overview two techniques (presented in
[15]) for prefetching video blocks which can improve I/O performance significantly.

23.1 Sweep & Prefetch algorithm (S&P)

Most related recent research has adopted the notion of scheduling with rounds [2,4,9,14,16,20]. Each continuous
data object (stream) is divided into data segments such that the playback duration of each segment is some constant
time (typically, from one to a few seconds). Within a round the storage server must retrieve from the disk the next
data segment for all active displays, employing either a round-robin or a SCAN algorithm.

Scheme Sweep is the well-known continuous media retrieval scheme that reduces disk seek overhead to improve
throughput. During a round, Sweep reads each stream's next segment with a SCAN like policy. Double buffers in
main memory are needed to ensure continuous playback. The S&P [15] algorithm, briefly described below, employs
prefetching as follows.

For a given duration of a round there is a specific upper bound in the number of streams N that can be supported
by a disk. This number is mainly dependent on two parameters: the total positioning overhead (the time needed for
the disk head to be positioned on the beginning of a segment) and the total transfer time (the time needed for the
disk data to be transferred to main memory). Both of these delays are experienced when retrieving a data segment,
which has not been prefetched. From now on this retrieval will be called "random retrieval". The number of data
segments retrieved this way during a round (i.e., from the disk's surface), is denoted by the letter v. On the other
hand, choosing to prefetch a data segment, incurs no additional positioning overhead. The number of prefetched
segments in a round is denoted by the letter/».

Round 1
BEHEB HHRHH HHHKIKI HHHRH EHHBE]

Rounö 2
BHHHH BEHHB HI3HHH E3E3BHR HHEIRE

(0) N = 25, v = 20 . p = 0

Roma 1
HHHHH BHBHH HHHBH HHHHH HHSHB
HBBBIS BBS
ROunO 2 3 nawa'M-ns

ÜDDDD ODDISH HHRHH HHHBH El HH El El HEIEI
BBEJBE3 BE3B

Round 3
EIEIHEIE] HHEIEIH EIEIHEIEI BHE1EIH DDDDD DPD
BEHEB EJHB

(b) N = 28 , V = 20 , p = 8

H Segxent feod from disk 0 Segment ployed ficm^erJevel cache
D Seg men' played torn dsk ccche

Figure 1: Throughput increase via prefetching

For demonstration purposes of this series of schematic figures, we consider a disk drive
with 10 MB/sec transfer time and a combined seek and rotational fixed overhead of 15
ms for every request. It is also assumed a constant display rate of 2 Mbps and round
lengths of 1 sec. The latter implies that the size of any segment will be 250 KB. Given

124

these values, the maximum number of segments that can be read within a round is 25,
while the ratio of random retrieved segments that can be "exchanged" (in terms of time
constraint) with prefetched segments, is 5 / 8 (40 ms and 25 ms retrieval times
correspondingly).

During every round, v blocks are read from the surface and p blocks (one for each of the /> streams) are
prefetched. During the next round, those/» segments will serve/» streams at no positioning overhead. So there will
be enough time to serve v additional streams and also prefetch the next segments from p of these v streams.
Because the /» segments are read at no positioning overhead, the total number of supported streams (p + v) is
greater. That is, the maximum throughput has been increased at the expense of exploiting cache memory, while the
round and the size of the segments is kept constant.

Figure 1 demonstrates in a pictorial way the technique described. A box under another box stands for the next
segment - contiguously placed on disk - of the same stream, while two adjacent boxes in the same line stand for the
segments of two streams - that will be scheduled within a round in the same order as they appear. Figure 1(a)
introduces the maximum number of streams (25 in this example) that can be supported with Sweep in a given
configuration. Then, in Figure 1(b), the prefetching of 8 segments - one for each of 8 streams - is used to increase
the supported number of streams from 25 to 28. Instead of randomly retrieving 25 segments, as scheme Sweep
would do, in the S&P scheme there are 20 random retrievals. The time that scheme Sweep would spend to make five
more retrievals, the S&P scheme uses it to prefetch 8 segments in each round. Note that the five segments that are
'neglected' by S&P are played from a higher-level cache. A straightforward way in order to avoid hiccups for these
'neglected' streams, is to delay these five streams enough to buffer an additional segment before their playback
begins. In [15] the reader can find the details of the algorithms used so that the S&P algorithm can increase the
maximum throughput without incurring high startup latencies and/or hiccups.

232 Group Periodic Multi-Round Prefetching algorithm (GPMP)

Scheme GPMP [15] introduces the concept of an epoch. The time interval of an epoch (or virtual round) is
defined as the total duration of a fixed number (u + l)of actual rounds. The supported streams are grouped. There
are (u + 1) groups.

sound 1
HBHHH HDDOD DDDDD DDDDD DDDDD DDDDD DDDOD D

Wound 2
DDDDD DBHHH HHDDD DDDDD DDDDD DDDDD DDDDD D

Rsjnd 3., S

Round 6
DDDDD DDDDD DDDDD DDDDD DDDDD DDDDD HHBHH E

H Seansnt read lam *< D SEgmenplovsfltoml*«/ BscgHESBS a

N = 36 , V = 6, U = 5. p = 3D

Figure 2: Grouped Periodic Multi-Round Prefetching (GPMP)

During a round, only v data segments will be retrieved from the disk, serving a group of v streams. There will
also be enough time to prefetch u data segments for each one of these v streams. The letter u is used for the number
of segments prefetched for the same video stream, while the letter/» - used in the previous algorithm - was referring
to the total number of prefetched segments.

The total streams supported under GPMP is N = v*(u + 1). Figure 2 demonstrates GPMP in the same
framework of figure 1. The maximum number of streams at u = 5 is 36 (v = 6). In figure 2, as before, during
Round 1 the 30 streams not served from the disk surface, have their segments already stored in the cache as a result
of prefetching during the previous rounds. More specifically, as it is assumed that Round 1 corresponds to the status
of an instance of the server working at its maximum throughput, each of the second group of 6 streams in the figure

125

have 1 remaining segment in the cache, each of the third group of 6 streams have 2 remaining segments and so on.
Recall that "played" segments are discarded immediately.

3 The Advocated Solution: Optimal Cache Utilization & Configuration

A simple way to combine both CM data caching and prefetching is to divide memory into two parts and
optimally decide what percentage (including zero) to assign to each. An optimal way could mean maximizing the
throughput (in displays per hour) or minimizing the average cost of serving a request (in $ per display). We will
adapt a "scheduling" algorithm used differently in [13]. It is based on a system parameter called the distance
threshold dt. This parameter expresses the time distance threshold between two consecutive client requests for the
same video, under which the latter will be served using data fetched earlier for the former - using data sharing
techniques - and over which a new disk stream will be initiated - using prefetching techniques.

In fact, the value of the distance threshold d, effectively partitions memory into 'caching' and 'prefetching' parts.
The two limiting cases for the value of the distance threshold d, are the prefetching only (d,=0) and caching only
(</,-> -foo). An answer to an optimality problem involves the estimation of the optimal value for the distance
threshold dt. Actually, a result such as dt=0 implies that prefetching is the most beneficial technique, whereas
d,—¥ +oo implies that caching is preferred.

3.1 The 'Scheduling' Algorithm

As multiple streams must be supported concurrently, the media server typically serves them in rounds
[2,4,9,14,16,20]. During a round of length R the system reads one segment from each stream that is adequate to
sustain the playback of the stream for the duration of the round.

In the beginning of every round, for every new request arrival concerning the f video, the distance between that
new request and its immediate leading request (predecessor) is calculated. The distance is measured in blocks of
playback equal to the round length R. The distance between a pair of requests for the same video is considered 0
blocks if both requests arrive during the same round. Then, the scheduler decides whether to serve a new request by
a new disk stream or by caching2, based on the distance between the new request and its immediate predecessor for
the i video. If the calculated distance is greater than d„ then a new disk stream is scheduled to serve the new
request. Else, the caching of the blocks for the predecessor request will also serve the new one. In the former case,
when retrieving the video data from the disk, a prefetching technique (namely, the most efficient technique proposed
in [15]) will be used to exploit available memory in order to improve performance. Thus, for every new request
either the data sharing or the prefetching approach will be used.

3.2 Analysis and Experimentation Setup

Requests for videos arrive with mean rate X. When in steady state, the service rate (throughput) u equals the
arrival rate X. The inter-arrival time distances are considered independent and identically distributed random
variables. An exponential distribution is considered, with density f(x) = Xe~Xx,x>0 and (cumulative) distribution
function F(x) = l-e'Xx, x>0. The total number of videos is V and each has popularity p \<i<V and playback

duration L. It is assumed that the requests are served in rounds of duration R. Also, a specific distance threshold d, is
given.

In summary:
SYMBOL DESCRIPTION

X Poisson request arrival mean rate (reqs/sec)
V Total number of available videos

p,,l<i<V Popularity (access) distribution

L Video duration (sees)

R Round duration (sees)

Crate Video consumption rate (in KBytes per sec)

d, Distance threshold

CostPerDisk Cost of a single disk (in $)3

CostPerMByte Cost of 1 Mbyte of memory (in $)

The next table contains a list of symbols that will be used throughout the following analysis:

Even in the case of caching, a temporary new I/O stream for the new request is necessary, until playback reaches the point
where the predecessor was when the request arrived.

This is the "disk bandwidth" cost for a single disk unit: the cost of the imbedded disk-cache has been deducted.

126

SYMBOL DESCRIPTION

AU Total concurrent displays

N. Concurrent displays supported by caching

Np Concurrent disk streams (one per display) supported by

Mem Total memory available (in Kbytes)

Cmem 'Caching' memory requirements (in Kbytes)

Pmem 'Prefetching' memory requirements (Kbytes)

Ps Probability of caching (for consecutive requests)

qs
Probability of prefetching (for consecutive requests)

Costm Configuration cost (in $)

Disks Total disks available

MaxDiskThr Max 1 disk throughput (in concurrent streams)

The parameters included in the second table, when subscripted refer to the i* video. The parameters Ntot, Ns and
Np can be considered the throughput, the "caching" throughput and the "prefetching" throughput of the system
respectively, in displays per time unit (which is equal to L).

Our goal is to derive the X^ value and the du opt value (that yields this maximum throughput X^), as they
depend on the basic system and problem parameters.

33 Analysis

In the analysis we refer to "server" and "cache" without particular mention to host, disk array controller or disk
with their respective caches.

33.1 Estimating data sharing cache size & I/O stream requirements

Given the parameters included in the 1st table, the following is an estimation of Np and CMem requirements. It
can be shown that the requests for the i* video, are separated by inter-arrival time distances that are also i.i.d.
random variables, exponentially distributed with mean arrival rate:

The server model assumed is an M/DA» model, with constant service time L. Schematically:
A,

-> M/D/oo ->

The number of requests for the i'h video (state of the system) N, ,1<»<F, follows the Poisson distribution

[17,18], so its mean and variance are:
N,=XrL o\=\-L

The total number of requests ^served by the system has the following mean and variance:
v v

t=\ i=i

We call a pair of consecutive requests for the same video a sharing pair ofthat video if the distance between
those requests is not greater than dt. The lagging request in a sharing pair can be served by caching. A new disk
stream must be used to serve the lagging request if it and the leading request form a non-sharing pair. The
probabilities of a sharing pair and a non-sharing pair for the i video are:

P«=l-e-v \{d,+l)R
9, =!-/>,= «'

_ „-Vto+i)-*

Consequently, the disk streams requirement for the i video, 1 < i < V, are:

N. ■^■N^^-q^L <*Nn =%GN=^-%L

And thus, the mean and variance of the total concurrent disk streams A^, are:

N,
i=i

= L
V

1=1
% = LX

V

i=i

e-kPi{d,+i)R , (1)

°k=
i=l

= L
V

i=l
< = LX

V

■In
i=\

. g-i-x-pM+i)* , (2)

127

The number of displays for the i' video Ns being served by caching has the following mean and variance:

N„ = Ps, ■N^l.-p^-L O\H = p{ ■ a2
N: = A,. • pi ■ L

If random variable A(is the distance (in blocks of duration R) between the leading and the lagging request in a
■ th

pair for the l video, sharing or non-sharing, then:

P{A, =k}=pfa, < JtflA, <k-\}=(l-e-x'ik+l>s)-(l-e-x'kR) = e^kR-d-e'k'R)

The distribution of the distance As between a sharing pair for the /* video is:

PK ^}=/>{A,.^|A,.<t/(}=f{A'=/nAS-^= *&=*}'■+"-Ore'**) ,
^ J l" ' ' '' P{At<dt) P{At<d,} i-e-vw+y*

k = 0,l,...,rf,
and therefore its mean and variance are:

*=o 1 - e t=0

Let Dk,i denote ^ distance between the £* sharing pair for the i* video. The random variables of the sequence

of distances Dki are i.i.d. with distribution that of As . The caching memory requirement for the t video is:

CMemi = CRate R ■]T £>tj

Hence, assuming4 independence of Ns and the sequence of Dk ., its mean and variance5 are:

CMemt=R-CRate■ NSi -E^s}

<r2CMem, =(RCRate)2.(E2\ASi}.a2
Nti +Var{As} Ns,)

Therefore, the following are the mean and variance of the required 'caching' memory6:

CMem ^CMem^ CRate R^{NSi -E{Aj=CRateR-Ä-L^pr{l-e-lp'R)-(^k€'Xp'ks\

a2
CMem=(R-CRat$-2Jp%}.o:2 +Va{As} NJ , (4)

(3)

3.3.2 Optimal memory utilization (to cache or to prefetch)

Given Disks, MaxDiskThr and Mem from the second table and all parameters of the first table, excluding X and
d„ in order to maximize the server throughput \i = A, (in concurrent displays per second), the optimal values for d„
CMem and PMem are calculated using the following formulae:

d,,oP, = arg max {^(iV, {X,d,).< Disks ■ MaxDiskThr)n {CMem{X,d,)+ PMem{Np (k,d,)) < Mem)}

Amx = maxf/L^ {k,dtm)< Disks ■ MaxDiskThr)n {CMem(X,dlopl)+PMem(Np {X,dtopl))< Mem)}

CMemopl=CMem{X_,dtopt) , (5)

PMem^^PMemiN^^d,^)) , (6)

Despite the feet that the random variables Ns and Dk t are correlated, and the fact that detailed analysis becomes really
complex, the results even with this simplifying assumption matches very well experimental data
5 A detailed analysis ofthat can be found in [19], p.183

The maximum caching memory requirement for the I video is L • CRate, i.e. the whole video

128

Determination of the above four variables can be easily implemented by use of a lookup table containing pre-
calculated values of AT (X,dt) and CMew(A,rf()> the pre-calculation which uses formulae (1) and (3).

333 Optimal server configuration - Minimizing its cost

In a very similar way, we can estimate the minimum cost (in $ per display) of a video server capable of
supporting a given throughput (i = X (in concurrent displays per sec). Assuming MaxDiskThr7, CostPerDisk and
CostPerMByte from the second table and all parameters of the first table except d„ the optimal values for d„ Disks
and Mem are calculated using the following formulae (here, Np{Xgiven,dt) and CMem{Xgiven,dJ are considered

functions of d,ovly):
Disks ■ CostPerDisk +

d,,opl = arg min
fcMem{d,) + PMem{Np{d,))}• CostPerMByte^isks>lnNp{d,)< Disks■ MaxDiskThr

Disksop, = argmin Wisks■ CostPerDisk + {CMem{dtßpt)+PMem{Np{dtopt))}- °S>' " yt€ \ > (7)
Dish [1UZ4 J

Memopt=CMem{dtJ+PMem{Np{dtopt)) , (8)

Again, determination of the above two variables can be easily implemented by use of a lookup table containing
pre-calculated values of Np{X,dt) and CMem{X,dt). In fact, only Np(Xgiven,dt) and CMem[Xgiven,d t) are

necessary for giving an answer to the current problem.

4 Validation and performance results

The effectiveness of the proposed solutions has been studied extensively by simulating a server that uses the
aforementioned scheduling algorithm and serves every incoming request for display without any delays.

We have simulated a server that delivers videos with a delivery rate of 250 KB/sec. Movies are assumed to be
one hour long so that the total amount of storage required per movie is approximately 880 Mbytes. Disks have an
average transfer rate of 14MB/sec, 10 zones, an average seek delay of 5ms, 10,000 rpm, and 10GB storage capacity.
The disk serves incoming requests using the standard elevator/SCAN scheduling algorithm while the seek cost
model used is the standard one [21]. Arrivals follow a Poisson process, with mean rate A,. Simulations were ran with
X in the range from 1 req/hr to 3,558 req/hr (400 - 800 are some typical values [3] for active clients for VoD
servers). For simplicity, powers of 2 have been used for values of parameter d„ from 1 and up to 4096. The values
used for the round R are 0.25 sec, 0.5 sec and 1.0 sec. Video popularity follows a Zipfian distribution with
distribution parameter 0 = 0.271 as is typically done [3].

The cache memory is modeled as a collection of blocks of size equal to R • CRate, (CRate is the video
"consumption" rate). Out simulations have durations over 250,000 hrs, which are adequate for the computation with
sufficient confidence of the average values and variances for the number of concurrent displays, the average
concurrent disk streams, and the average caching-memory requirements.

4.1 Validation and Results on Optimal Cache Utilization

We first measure the mean and variance of both Np (number of I/O streams for which the prefetching policy is
used) and CMem (the memory required for data sharing).

Figure 3 illustrates the optimal memory partitioning. Also, illustrated in figure 4 are the corresponding mean and
max concurrent disk I/O streams during optimal performance (maximum server throughput), along with the
maximum possible concurrent I/O streams the disk can offer for the respective available memory, if that memory
were dedicated to prefetching.

It is evident by figure 4 that during optimal performance, a server with as little memory as 128 Mbytes, serves
requests using prefetching and takes the most out ofthat technique for the available memory. Of course, if still there
is an unused portion of memory left, that portion is given to the caching approach, since it can offer some (although
limited) extra throughput. In fact, this explains the anomaly shown in figure 3, for 32 Mbytes of available memory.
It is clear from figure 4 that with the available memory being equal to 32 Mbytes, the maximum concurrent disk
streams instantly used by the server are nearly 38. To support those streams our analysis and experimentation shows
that 23 Mbytes are necessary.

7 MaxDiskThr can be set to a smaller value, in order to account for some specific disk utilization other than that assumed during
the disk's peek performance.

129

Memory Partition (1 Disk, R = 0.25 sec)

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

Concurrent Diek Streams vs Available Memory
(1 Disk. R = 0.25 sec)

A. ^S " *
\ *A / \ /

---0 - THEORYCaching '

--■A.-. THEORY Prefetch .

/-*\ / \

-O— i B i /
ST

 "1 1 1— —T lil^H

 f % X X X

^fr-4T "^«^^ /^

/y V^
^»- ■~+-_— ■•-~^!SV jr

 B SIMUL MoanNp

 4 SIMUL MaxNp S
. . 43- . -THEORY MeanNp

-.-A- ..THEORY MaxNp

S 3

Memory (KBytes) Memory (KBytes)

Figure 3 Figure 4
Ttiftu^pu" vfi Wii-irtli.r Mama/ Reciira-nnrb

■RO Jna? Mä4es -*-

■Rfl _pa = I.Dqafca -o-

K r
hj—

f sana

_. . . _. .
j_
|

H
« j
i !

9

DJ
jsH

I

:V 1

J KBpW
l

hSO-B«1 ^ÜS 1
0 *Sf£ W& r ' r ■

Tflroujhpc: (airaana c«r Ncur)

Figure 5

Figure 5 shows the memory requirements in order to achieve the desired throughput using prefetching only
techniques, given the round duration R. The server cannot use more that 38 concurrent streams because this would
require at least lOOMbytes as shown in figure 5. Thus, it only uses 23 Mbytes for prefetching, leaving the other 9
Mbytes for caching. Still, prefetching is more efficient in those ranges of available memory, that as soon as the
necessary 100 Mbytes are available, e.g. when there are 128 Mbytes of memory, memory is again almost completely
devoted to prefetching. That of course explains why the curves in figure 3 go up and then down near 32 Mbytes.

Max Throughput vs Available Memory (1 Disk, R = 0.25 sec) Optimal dt vs Available Memory (1 Disk, R = 0.25 sec)

500-

450.-

300

250

-SIMUL Throughput

-THEORY Throughput

Memory (KBytes) Memory (KBytes)

Figure 6 Figure 7

130

Of course, when the upper bound on concurrent disk streams is reached, all remaining memory is given to
caching. It is interesting to note that as the available memory increases, caching is becoming more effective than
prefetching. That is why in figure 4 there is a decrease in both the mean and maximum concurrent disk streams the
server uses for larger caches.

Last, figures 6 and 7 show the values for A^ and dtp (corresponding to the optimal performance. Certain

mismatches (peeks) are due to the selected coarse granularity forcf,.

4.2 Results on Optimal Server Configuration for Minimal Cost

A comparison of the theoretically estimated and measured minimal server cost is performed. The total cost is the

sum of the cost for disks (Disks ■ CostperDisk) and the cost of the total memory ({CMem +PMem) .CostPerMByte).

Also, the values used for Disks and Mem = CMem + PMem are thus found. Cmem and Pmem refer to the cache
space required for caching and prefetching.

Figures 8 and 9 show the optimal cost server in terms of Disks and Mem, for different values of throughput. The
memory requirements are increasing with increasing server throughput, as expected.

Similarly, the required number of disks increases as the throughput requirements increase. Interestingly enough,
for R = 0.25 in figure 9, there is a decrease from 8 to 7 disks required for optimal configuration, when throughput
increases from 400 to 800 displays/hr. This is because between 400 and 800 displays/hr we have already overcome
the crucial point of required memory, beyond which caching is starting to be more efficient than prefetching. Thus at
that high throughput the cost of increasing throughput by caching is cheaper (incurs less increase in $ for extra
caching memory) than that of increasing it by prefetching. Actually, at 800 displays/hr it is even cheaper to replace a
whole disk with caching memory. This is exactly analogous to what happens in figure 4 when the available memory
increases beyond 1 Gbyte. A similar drop happens, for the cases of R being equal to 0.5 and 1 sees, when the server
throughput is further increased (although not shown here).

Optimal Cost Server
Required Memory vs. Throughput

Optimal Cost Server
Required Disks vs. Throughput

50 100 200 400 800
server throughput (displays/hr)

Figure 8

100 200 400
server throughput (displays/hr)

Figure 9

Figures 8 and 9 show that with increasing R the peek value for required disks is increasing. That means that as R
increases it becomes more and more cost-effective to further utilize prefetching.

5 Contributions and Concluding Remarks

Network continuous-media applications are emerging with a great pace. Cache memories have long been
recognized as a key resource (along with network bandwidth) whose intelligent exploitation can ensure high
performance for such applications. Cache memories exist at the CM servers and their proxy servers in the network.
Within a server, cache memories exist in a hierarchy (at the host, the storage-devices and at intermediate multi-
device controllers).

Our position is that it is of fundamental importance therefore, for the efficient system support for such
applications, to devise optimal cache exploitation strategies. Especially in the light of the large number of memory
exploitation strategies which have been proposed by researchers, and the fact that these strategies compete against
each other for memory resources, it is important to optimally utilize and configure caches at all levels they appear.

Our advocated solution shows that prefetching is clearly more advantageous than caching, if the available
memory is up to 128 Mbytes, regardless of round R. Considering the expected size for on-board disk caches, which
is 64 Mbytes (prediction for year 2001/2), prefetching is the desirable approach at the disk level. The same result
also reveals that for available memory beyond 1 Gbyte caching is significantly more effective. So for the host level

131

caches, which are expected to be at least a few Gbytes, the traditional CM data sharing techniques offer indeed the
best way to exploit this memory. It should be stressed that for intermediate level caches found in a typical
hierarchical server (e.g., a cache of 200MB at the disk-array controller) our results advocate the employment of the
indicated optimal mixture of CM data sharing and prefetching techniques to exploit the available cache.

Our goal is to aid in the configuration of a modem CM system. To this end:
1) Given the basic parameters like the mean request arrival rate X, the number of videos V, the access

distribution etc., using the derived formulas (l)-(4) one can determine the memory requirements for
caching and prefetching purposes.

2) Given the available memory, formulas (5)-(6) can be used to determine the optimal way to partition the
memory into caching and prefetching partitions so as to maximize the achievable throughput.

Given a requirement on the achievable throughput, using formulas (7) and (8) one can determine the cheapest
solution for the video server, in terms of the number of disks and the amount of necessary memory (including the
best way to partition this memory).

6 References

[I] D. Anderson, Network Attached Storage Research, talk given in the spring 1998 NSIC/NASD Workshop,
(available from http://www.nsic.org/nasd)

[2] S. Berson, S. Ghandeharizadeh, R.R. Muntz and X. Ju. Staggered Striping in Multimedia Information
Systems. Proc. of the Intern. Conf. on Management of Data (SIGMOD), Minneapolis, Minnesota, pp. 79-
90,1994.

[3] Asit Dan, Dinkar Sitaram, Buffer Management Policy for an On-Demand Video Server, IBM Research
Report RC 19347, Oct. 1998

[4] D.J. Gemmel, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A. Rowe. Multimedia Storage Servers: A
Tutorial. IEEE Computer, Vol.28, no.5, May 1995, pp.40-49.

[5] L. Golubchik, J.C.S. Lui and R.R. Muntz, Adaptive Piggybacking: A novel technique for data sharing in
video-on-demand storage servers, Multimedia Systems (1994) 4: 140-155

[6] J. Gray, Put everything in the storage device, Talk given in the spring 1998 NSIC/NASD Workshop,
(available from http://researsh.microsoft.com/~grav')

[7] M. Kamath, K. Ramamritham and D. Towsley, Buffer Management for Continuous Media Sharing in
Multimedia Database Systems, Technical report 94-11 University of Massachusetts 1994

[8] K. Keeton, D. Patterson and J. Hellerstein, A Case for Intelligent Disks (IDISKs), SIGMOD Record, Vol.
27, Number 3, August 1998

[9] B. Ozden, R. Rastogi and A. Silberschatz. Disk Striping in Video Server Environments. In Proc. of the
Intern. Conf. on Multimedia Computing and Systems (ICMCS), June 1996

[10] D. Patterson and K. Keeton, Hardware Technology Trends and Database Opportunities, Keynote address at
SIGMOD '98, June 1998

[II] A.L.N. Reddy and J.C. Wyllie. I/O Issues in a Multimedia System. IEEE Computer, March 1994, pp. 69-74
[12] E. Riedel, G. Gibson and C. Faloutsos, Active Storage for Large-Scale Data Mining and Multimedia

Applications, In Proc. Of Int. Conf, on VLDB, 1998
[13] Weifeng Shi, Data sharing in interactive continuous media servers. Ph.D. dissertation, U.Southern

California, Sept. 1998
[14] P. Triantafillou and C. Faloutsos. Overlay Striping and Optimal Parallel I/O in Modem Applications.

Parallel Computing, January 1998, (24) pp 2143.
[15] P. Triantafillou and S. Harizopoulos, Prefetching into smart disk caches for high performance video

servers, IEEE Int. Conf. on Multimedia Computing and Systems, June 1999. (See also IEEE Concurrency,
July 2000).

[16] D.J. Gemmel, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A. Rowe. Multimedia Storage Servers: A
Tutorial. IEEE Computer, May 1995, pp.4049.

[17] D. Gross, C. Harris, Fundamentals of queuing theory, 1985
[18] L. Kleinrock, Queuing systems, 1975
[19] A. Papoulis, Probability, random variables and stochastic processes, 1984
[20] S. Ghandeharizadeh, S.H. Kim and C. Shahabi. On Disk Scheduling and Data Placement for Video Servers.

ACM Multimedia Systems, 1996.
[21] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer, March 1994, pp. 17-

28.

132

An Architecture for Redundant Multicast Transmission Supporting
Adaptive QoS

Ch.Bouras1'2 A.Gkamas1,2 An. Karaliotas1'2 K. Stamos1,2

x Computer Technology Institute, Riga Feraiou 61, GR-26221 Patras, Greece
2Computer Engineering and Informatics Dept, Univ. of Patras, GR-26S00 Patras, Greece

e-mail: {bouras, gkamas, karaliot, stamos}@cti.gr

Abstract
In this paper we describe the architecture and the implementation of an application that was
developed for the transmission of multimedia data, using the multicast mechanism, over the
Internet. There are two major issues that have to be considered when designing and implementing
such a service, the fairness and the adaptation schemes. The fairness problem results from the fact
that receivers with different capabilities have to be served. In our application we use a mechanism
that categorizes the receivers into a number of groups according to each receiver's capabilities and
(the mechanism) serves each group of users with a different multicast stream. With the term
"capabilities " we do not only mean the processing power of the client, but also the capacity and the
condition of the network path towards that client. Because of today's Internet heterogeneity and the
lack of Quality of Service (QoS) support, the sender cannot assume that the receivers will
permanently be able to handle a specific bit rate. We have therefore implemented an additional
mechanism for the intra-stream bit rate adaptation.

Keywords: Networking protocols and media delivery, Multimedia distribution and transport,
Multicast, Quality of Service, Adaptation mechanisms, CORBA

1 Introduction - Related Work
The heterogeneous network environment that Internet provides to the real time applications as well
as the lack of sufficient Quality of Service (QoS) guarantees, many times forces applications to
embody adaptation elements in order to work efficiently. The main goal of such an approach is to
adapt the data rate that is sent to the network every time that network conditions change. The
decision whether the rate will increase or decrease is based on feedback information that the
receivers send back to the sender. Many researchers believe that this end-to-end control scheme
must be implemented in the application layer because today's Internet architecture does not provide
such a mechanism in the network layer ([20], [13]).
The implementation of adaptation mechanisms in the applications is often criticized. The main
arguments that rise against it are that the technologies that are used today for the implementation of
the core networks, typically based on ATM (Asynchronous Transfer Mode) technology, provide
capabilities to support QoS; as a result the network should offer to the applications QoS guarantees.
This is generally true but there is a big problem about it: Today's Internet is divided into thousands
of different administration domains. The QoS strategies that are implemented on each one are
certainly different, and in many cases no QoS strategy is implemented at all. So the multimedia data
flows that have to traverse many of these different domains in order to reach to the end user don't
have a sufficient QoS support.
In addition any application that sends data (mostly multimedia) over the Internet should have a
friendly behaviour towards the other flows that coexist in today's Internet and especially towards
the TCP flows that comprise the majority of flows. Due to the sliding window algorithm that TCP
deploys, such flows are the most sensitive in network congestion conditions. Therefore the sliding

133

window algorithm forces applications to meet some special characteristics in order to be
characterized as TCP friendly ([26]).
The system we propose is based on multicast video transmission with the use of RTP/RTCP ([10]).
The main perspectives we tried to fulfil are 1) each receiver should receive the best video quality
that it is capable of and 2) the generated multicast data flow should not be a constraint for the other
flows.
In order to achieve the first goal we create n different streams (in most network conditions a small
number of different streams is enough -typically 3 or 4 streams), each one within certain bandwidth
limits. All the streams carry the same video information, each one of them having a different
quality. Receivers join in the appropriate stream depending on the condition of the network path
towards them and the processing power of each one. If meanwhile the receiver detects that the
stream it has joined isn't suitable for it any more another implemented mechanism is used in order
to provide the receivers the capability of moving into another stream.
In order to achieve the second goal, we deploy the Additive Increase Multiple Decrease (AMD)
scheme in the inter-stream adaptation algorithm. The adaptation mechanism adapts the rate of each
stream taking into account the number of the receivers that are congested or unloaded. In addition,
if the capabilities of a receiver aren't suitable for the stream it has joined, it moves to another stream
with lower or higher bandwidth limits.
The subject of adaptive streaming of multimedia data over networks has engaged researchers all
over the world. The simplest approach for the sender is to use a unicast connection towards each
receiver ([1], [2], [3], [5], [6], [14]). This approach is best adapted to each receiver's receiving
capability, but has the drawback of making unnecessary use of network resources and cannot
therefore scale well into a large number of receivers. In order to overcome the above drawback,
someone must use multicast transmission ([23]). The methods proposed for the multicast
transmission of time sensitive data in the Internet can be generally divided in three main categories,
depending on the number of multicast sessions used:
1. The source uses a single multicast session for all receivers ([4], [16],[15], [27]). This results to

the most effective use of the network resources, but on the other hand the fairness problem
arises.

2. Simulcast: The source transmits versions of the same video encoded in varying degrees of
quality. This results to the creation of a small number of multicast sessions with different rates,
responsible for a range of receivers with similar capabilities ([17], [21], [23]). The different
streams carry the same video information but in each one the video is encoded with different bit
rates, and even different video formats (MPEG, H263, JPEG). So each receiver joins in the
session that carries the video quality, in terms of bit rate, that is capable of receiving. The main
disadvantage in this case is that the same video information is replicated over the network.

3. The source uses layered encoded video, which is video that can be reconstructed from a number
of discrete data streams and transmit each layer into different multicast session ([18], [19]). The
receivers subscribe to one or more multicast sessions depending on the available bandwidth into
the network path to the source. The video is divided in to one basic stream and more additional
streams. The basic stream provides the basic quality and the quality improves with each layer
added.

This work is based on the simulcast approach and it is an extension of the work, which has been
presented in [24] and [23]. The rest of this paper is organised as follows: Section 2 presents the
architecture of the implemented prototype. In section 3, we give a detailed description of the
operation of our prototype application. Section 4 presents some implementation issues. In section 5,
we present some initial results in performance evaluation of the implemented prototype. Finally,
section 6 concludes the paper and discusses some of our future work.

2 System Architecture

Our system is based on the multicast transmission of video. The advantages that the IP multicast
service has, makes it the only choice for transmitting multimedia data, especially when the

134

application is emulating some kind of broadcasting over the Internet. On the session layer,
according to the OSI reference model, the Real Time Protocol (RTP) - Real Time Control Protocol
(RTCP) - is used both by H.323 application and MBONE and is broadly considered as the de facto
standard for multimedia transmission over the Internet. The RTP-RTCP protocol was also used
because of the feedback capabilities that it offers (RTCP reports). At the same time, a unicast
session is established between each client and the Server. This session provides the necessary
information to the client concerning the multicast IP address as well as the port that is used. So the
main multicast data session can be joined. Because of the variations on the quality of video that
various clients can handle, the source transmits a small number of (in our implemented prototype
we use three) different multicast video streams, each one with its own bandwidth limits, with no
overlapping. The transmission rate within each stream is adapting within its limits according to the
capabilities and the state of the clients participating in.
The main goals that we tried to fulfil are: 1) A quite flexible and fast application, which can react
fast to the network changes, 2) adjust its rate in such a way that keeps a friendly behaviour against
other TCP or UDP network applications, and 3) achieve the best possible fairness for each receiver
based on the idea that fairness for each receiver means to give a slightly worse video quality
compared to that the receiver might have if it was alone in the multicast stream. The system
architecture consists of two major entities: The server and the client.

2.1 Server Architecture

The server is unique and responsible: 1) to create of the n different multicast streams, 2) to set each
one's bandwidth limits, 3) to track if there are any clients that are not handled with fairness and 4)
to provide the mechanisms to the clients to change stream whenever they consider that they should
be in another stream closer to their capabilities. Before the beginning of the transmission the Server
entity interacts with the system administrator, with a quite simple graphical user interface, in order
for the user to set the desirable values to the main variables of the application. These variables are
the number of the streams that will be created, the bandwidth limits of each one, the multicast IP
address and the ports, data and control and the video that will be transmitted.

User Data f SetverEnöty \

Figure 1 The architecture and the data flow of the Server.

In the above figure the organisation and the architecture of the Server entity is shown. The Server
generates n different Stream Managers. In each Stream Manager an arbitrary number of Client
Managers is assigned. Each Client Manager corresponds to a unique receiver that has joined the
stream controlled by this Stream Manager.
The server architecture can be further decomposed in the following modules:
• Synchronisation Server: Responsible for the management, synchronization and

intercommunication between Stream Managers. When a Stream Manager wants to resume the
video transmission that was stopped because either all of its clients have left towards another
stream or have stopped receiving video, it has to know where the transmission of the video from
the other streams currently is. It therefore requests this information from the Synchronisation
Server.

135

• Video archive: The hard disks where the video files are stored. Our implementation supports
three video formats, namely H.263, MPEG and JPEG.

• Stream Manager: The Stream Manager entity is created by the server entity. It is responsible
for the maintenance and the monitoring of one of the n different multicast streams that are
generated in the beginning of the application. Also the Stream Manager entity has all the intra-
stream adaptation mechanisms for the adjustment of the transmission rate. These mechanisms
will be described later on. A Stream Manager uses the information provided by Client Managers
to adjust its data rate in order to achieve optimum overall results. A Stream Manager can only
transmit when it has at least one client participating in its multicast session. The Stream Manager
entity contains the following modules.
• Optimal Rate Estimation: The Feedback Analysis module (described later in detail) contained

in every Client Manager processes the RTCP reports from the Client and declares the Client
to be in one of three states: CONGESTED, LOADED or UNLOADED. The Optimal Rate
Estimation module periodically gathers the states reported by all Client Managers belonging
to its Stream Manager at the end of a specific, fixed time period (from now on called an
epoch). It then uses an algorithm described in a following paragraph that tries to improve
fairness between clients by determining whether a lower or a higher bit rate is more
appropriate. Whenever a client cannot be satisfied by a stream due to the fact that most of the
other receivers have much higher or much lower reception capabilities, the Optimal Rate
Estimation module informs it that it has to move to a lower or higher quality stream.

• Quality Adaptation: Responsible for the adaptation of the video transmitting quality. Its
behaviour (whether to adapt the transmitting quality upwards or downwards) is determined
by the Optimal Rate Estimation module. Due to the fact that the new bit rate depends on the
value of the current one, the Quality Adaptation module computes the current bit rate by
dividing the amount of bytes sent from the end of the last epoch until the end of this epoch,
by the time period that is represented by an epoch. The other alternative would be to make no
manual computation and to assume that the current bit rate is the one that the module tried to
establish at the end of the previous epoch. This second approach has the decisive drawback
however, that there is no guarantee that the previously intended bit rate was actually achieved
by the encoder and sent to the network. In fact, practice showed that sometimes the actual bit
rate achieved varies significantly compared to the bit rate the Quality Adaptation module
intended to achieve. Whether there is a big difference between the bit rate requested by the
Quality Adaptation module and the actual bit rate, mainly depends on the encoder and the
encoding format, as well as the capabilities of the server host.

• Packet scheduler/ Server buffer: This module sends all outgoing information to the network.
Its responsibility is to encapsulate data in RTP packets. There is also a buffer used to smooth
accidental problems during the network transmission.

• Client Manager: Corresponds to a unique Client. It processes the RTCP reports generated by
the Client and can be considered as a representative of the client at the side of the server. It can
interact only with one Stream Manager at a given time, the Stream Manager controlling the
stream from which the client is receiving the video. It contains the following component:
• Feedback analysis/Report buffer: This module receives the RTCP reports from the client and

processes them based on packet loss rate and delay jitter information. It then makes an
estimation of the state of the client, based on the current and a few previous reports, that it
stores in a buffer. The exact operation of the algorithm is described in a following paragraph.

2.2 Client Architecture

The client architecture consists of the following modules:
• Client buffer: Multimedia data received are first stored in this module, and presentation does

not begin unless there is a necessary amount of data stored in the client buffer. In order to achieve
smooth media presentation to the user, this buffer's capacity has to exceed the maximum delay
jitter during data transmission.

136

• Feedback: This is the module that produces the information necessary for the Feedback
Analysis Module at the server to estimate the client's state. Control information is transmitted
with RTCP reports, which include, as mentioned earlier, information about packet loss rate and
delay jitter.

• Decoder: This module takes the data packets from the client buffer as input, decodes them and
outputs them suitable for presentation. The quality of the presented video is higher when the
receiving data rate is high. Video quality can also be affected by packet loss and delay.
Presentation can come to a complete stop if data in the client buffer drops below the required
minimum

• User Display: The module responsible for the presentation of the video to the user, which can
be a computer monitor.

3 Description of System Operation and Algorithms

The source initially constructs a number of streams. This number depends on the number of
receivers with different reception capabilities that expected to request video from the source and the
processing capabilities of the machine where the server runs. Since in this implementation this
number is determined at the initialisation of the server, an estimation of the actual number of
receivers is useful. A small pre-determined number can, however, work well in most cases, because
it offers the possibility of a reasonable categorization of all receivers according to their capabilities.
Each stream has to do its own processing on the video so as to transmit it at its prescribed rate,
therefore many streams mean heavy processing load for the server. A solution to this problem, apart
from using a small number of streams, could be storing the video in various (or all) needed
encoding types so that each stream can use its own locally stored file. This, of course, has the
drawback of taking up more disk space. Since a small number of streams were considered satisfying
for our experiments, our implementation performs encoding on the fly. A stream without any clients
in its session is ready for transmission but remains inactive.
When a client wants to start receiving video, it requests from the server the address of a multicast
session belonging to a transmitting stream. This and all other Client - Server communication is
made through the use of CORBA (Common Object Request Broker Architecture). Since the client
user can have some local knowledge over its connection quality, he can make an initial estimation
of the stream in which the client might best fit and is allowed to enter any stream the user chooses.
If no choice is made, then by default the client enters the lowest quality stream. An overestimation
can be expected to have small negative effects, since the client will be moved shortly to a more
suitable stream.
By joining a multicast session the client informs the stream to start transmitting, if it is not doing so
already. A dedicated Client Manager is created to represent the client at the side of the server.
RTCP reports are sent back to the stream and in particular to the appropriate Client Manager's
Feedback Analysis module. Information in RTCP reports contains two values that describe the
quality of the transmission: packet loss rate and delay jitter. These values are passed through the
following filters used to avoid wrong estimations and determine the aggressiveness of the feedback
analysis protocol:
For the packet loss rate:

LRnew = a *LR0id + (1-a) *LRnet

Where: LRnew: The new filtered value of packet loss rate, LRoia: The previous filtered value of
packet loss rate. For the first report after the start of transmission, this value is 0, LRnet: The packet
loss value that was contained in the RTCP report received from the Client, a: a parameter that
determines the aggressiveness of the adaptation concerning the packet loss value. Its value ranges
from 0 to 1, with a=0 meaning that only the current report is taken into account, and a = 1 meaning
that all new RTCP reports are ignored.
For delay jitter:

Jnew = b*J0id + (1-b) *J„et

137

Where: Jnew: The new filtered value of delay jitter, J0id: The previous filtered value of delay jitter.
For the first report after the start of transmission, this value is 0, Jnet: The delay jitter that was
contained in the RTCP report received from the Client, b: a parameter that determines the
aggressiveness of the adaptation concerning the delay jitter value. Its value ranges from 0 to 1, with
b=0 meaning that only the current report is taken into account, and b = 1 meaning that all new
RTCP reports are ignored.
For the sake of clarity, a distinction has to be made between two kinds of states, that both can take
the values of UNLOADED, LOADED or CONGESTED: we call the first one the "unprocessed
state" and the second the "processed state". The unprocessed state is derived directly from the
filtered values of packet loss rate and delay jitter, according to the following rules:

if(LRnew >=LRC) unprocessed state = CONGESTED
if(LRu < LRnew < LRC) unprocessed state = LOADED
if(LRnew <= LRJ unprocessed state = UNLOADED
if (Jnew > V*Joid) unprocessed state = CONGESTED

We have defined LRu as the maximum value of the unloaded packet loss rate and LRc as the
minimum value of the congested packet loss rate. Where y is a parameter, which specifies how
aggressive the network condition estimation component will be to the increase of delay jitter.
The state that will be reported to the Optimal Rate Estimation module of the Stream Manager is
called the processed state. It is computed by taking into account the last n unprocessed states, which
are held in an n-sized buffer in the Client Manager. This buffering mechanism contributes to the
conservative behaviour of the Optimal Rate Estimation module. A CONGESTED unprocessed state
does not necessarily impose that the processed state will also be congested, especially if the
majority of the previous "unprocessed states" were UNLOADED. The way the processed state is
computed is presented below:
We first introduce a new variable, USV (Unprocessed State Variable), that takes a new value for
each unprocessed state as shown:

if (unprocessed statet = = CONGESTED) then USV, = -1
if (unprocessed statet = = LOADED) then USVt = 0

if (unprocessed statet = = UNLOADED) then USVt = 1
The processed state is then determined by the value of

f(i) = state, * wt + statet.} * ww + ... + statei.n+2 * wt„„+2 + statet.„+1 * wt.n+1

where wi, ..., Wi_n+i are weights used to quantify the decreasing importance of old unprocessed
states.

if(f(i) <0) then processed statet = CONGESTED
if(f(i) = = 0) then processed statet = LOADED
if(f(i) > 0) then processed statet = UNLOADED

Information update in Client Managers is made asynchronously, every time an RTCP report arrives.
However, Stream Managers update their rates synchronously and therefore time in system operation
is divided in epochs of certain length. At the end of an epoch, each Stream Manager polls the states
of all the Client Managers that correspond to a client receiving this stream and the Quality
Adaptation module determines the improvement or degradation in this stream's video quality.
Whether there will be an improvement or degradation is determined as follows: If all receivers1 are
in the UNLOADED state, video quality is improved. If more than a certain threshold of receivers is
CONGESTED, video quality is degraded. The threshold used for our experiments was one-third of
all receivers listening to the stream.
The new bit rate is estimated using an Additive Increase, Multiplicative Decrease (AIMD)
algorithm, just like TCP. Increase is achieved by adding a standard small value to the previous bit
rate, and is therefore quite conservative in bandwidth consumption, while decrease is achieved by
multiplying the previous bit rate with a number in the range of 0... 1 (typically around 0.75) and so
the algorithm is more aggressive when trying to react to congestion.

The number m of the receivers can easily computed by the RTCP protocol

138

There are three cases in this phase that will lead to a client's transition towards another stream:
• If the stream from which the client is currently receiving video has already reached its lowest

transmitting rate and the client is still in CONGESTED state then the client stops listening to this
stream and joins the session of a lower quality stream (if such a stream exists).

• If the stream from which the client is currently receiving video has already reached its highest
transmitting rate and the client is still in UNLOADED state then the client stops listening to this
stream and joins the session of a higher quality stream (if such a stream exists).

• The third case applies to a client that co-exists in a stream with low capacity receivers but is
capable of handling better quality video, so it has been unable to improve the video quality of the
current stream. The mechanism used aims in making the protocol more conservative and operates
by counting the number of consecutive times the receiver was UNLOADED but failed to
improve the video quality. When this number exceeds a certain limit, we assume that the receiver
has indeed higher capabilities and move it to a better quality stream. Transition from one stream
to another also means that the client's corresponding Client Manager module will now interact
with the new Stream Manager.

The conservatism our protocol exhibits has two advantages: (1) We successfully ignore RTCP
reports that are the result of temporary factors, for example congested reports that appear almost
certainly when a stream transition occurs and are due to system load but have a very short effect on
the reception capability. (2) Our protocol is TCP-friendly, because it only consumes excessive
bandwidth when it is absolutely certain that this bandwidth can be handled, and furthermore uses
the conservative AMD algorithm.

'f Server >,

Figure 2 The operation of the application.

4 Implementation Issues
For the implementation of our system we used the Java Programming Language, and in particular
the Java Media Framework API ([12]). Java's object-oriented model fits our design and JMF offers
a convenient level of abstraction, which allows the developer to concentrate on high-level issues,
thus making it an ideal platform for experimental research. In particular, JMF provides support for
RTP transmission and reception of real-time media streams across the network. It offers some very
useful classes and interfaces, like the Session Manager, that encapsulates the creation, maintenance
and closing of an RTP session, the Processor that encapsulates processing and control of time-based
media data and the DataSource that encapsulates media protocol-handlers. Our JMF-based
implementation is represented by the Figure 3 and Figure 4. The Figure 5 shows the Graphical User
Interface of the Client.
All communication between the server and the clients is achieved using CORBA. This technology
allows a module written in any language that supports CORBA to be integrated seamlessly in our
system, as long as it implements a small number of functions necessary for remote communication.
CORBA communication between the Server and the Clients also requires a third entity, the Naming
Service. It can be located on the same host as the Server or on any other host in the network. All
clients and the server, however, must know its location. When the Server is initialised, it registers
itself and all the Stream Managers it creates to the Naming Service using a hierarchical
representation similar to an operating system's file structure. When a client is started it uses the
Naming Service to request a reference to the Stream Manager it wishes to receive data from. Every
time the client makes a transition to a different stream, it uses the Naming Service to get a reference
to the new Stream Manager. Since communication may also be directed from the Client to the
Server, during initialisation every Client also registers itself to the Naming Service. This way the

139

Client Manager module (which is part of the Server entity) can locate its corresponding Client and
order it to move to a different stream whenever necessary.
These choices generally indicate our purpose for this implementation to be experiment- and
flexibility- oriented, rather than performance-oriented and therefore it can be improved in terms of
resource optimisation.

o o o

Session Manager

Session Manager

Figure 3 The Server operation

Figure 4 The Client operation

Figure 5 Client GUI

5 Performance Evaluation - Initial results

In order to evaluate the performance of the implemented prototype, we run an experiment over a
controlled networking test-bed, which, we have implemented over the campus network of
University of Patras in Greece. The test-bed consists of one Server and six Clients. We connect each
participant with connections of different capacity to our network test-bed with the use of traffic
policy on the access router of each participant (the Server and the six Client) in the test-bed. More
particularly, the Server is connected to our test-bed with 2 Mbps connection and the Clients are
connected with connections, which vary from 200-700 Kbps. The Server was transmitted three
streams with the following limits: Stream 1: 10Kbps-184Kbps, Stream 2: 184Kbps-368Kbps and
Stream 3: 368Kbps-600Kbps.During the experiment the Server was using the following parameters
in order to control the operation of the implemented mechanism: a=0.5, b=0.8, y=2, LRU=0.02,
LRc=0.05 (the values of the above parameters base on experimental results). The AMD algorithm
of the Server was increasing the transmission rate of a Stream by 50Kbps during network unloaded
periods and was decreasing the transmission rate to 75% during network congestion periods. We
run the experiment for 360 sec and in the begging of the experiment the Server transmits only the
Stream 1 with transmission rate of 10Kbps and all the Clients are connected to Stream 1.
Figure 6 shows the transmission rate of the Server Streams during the experiment and the Figure 7
shows the receive rate of a representable Client which is connected to the network test-bed with 400
Kbps connection.
As the Figure 6 shows, in the beginning of the experiment all the Clients are connected to Stream 1
and the transmission rate of Stream 1 increase until it reach its upper limit. Then some Clients
switch to Stream 2 and the Server starts transmit the Stream 2 (at 60th second) except of the Stream
1. After some time some Clients switch to Stream 3 (at 100th second) and the Server transmits all
the three streams. During the experiment, the Server stops a stream if the stream does not have any

140

receivers. As the Figure 7 shows, the representable Client starts receiving Stream 1 from the Server
and when this Stream reach its maximum capacity, the Client switch to Stream 2 in order to exploit
the available bandwidth. The switching from Stream 1 to Stream 2 takes some time to complete
because the join action and especially the leave action of a multicast group take some time to
complete.
The above described experiment can only be consider as an initial performance evaluation of the
implemented prototype and shows predictable operation of the implemented prototype and has
encouraging results. We plan to investigate in more detail the behaviour the implemented prototype
in our future work.

- Stream 1 ■ -Stream 2 ■ -Stream 3

O t- CM CO ^ W CD
*-c\ICO^i-in<DK_ — ..
CMCMCMCMCMCMCMCMCMCOCO

r^oiOT- N n t w ffl COCßT-CSCO^lQtDN; _. —. — __ ~ p, (fj pj p3

Time (sec)

Figure 6 Transmission Rate of Server Streams

-Receive Rate - - - -Stream No

CM CM CM CM CM CM

Time (sec)

Figure 7 Receive Rate of representable Client

6 Conclusion - Future Work
In this paper, we present the implementation of a prototype for multicast transmission of adaptive
multimedia data in a heterogeneous group of receivers with the use of replicated streams. We
concentrate on the design of a mechanism for monitoring the network condition and estimate the
appropriate rate for the transmission of the multimedia data in each stream in order to allocate each
receiver to the appropriate streams and treat the receivers with fairness. The implemented prototype
uses RTP/RTCP protocols for the transmission of multimedia data.
Our future work includes the validation of implemented prototype by using it for the multicast
transmission of multimedia data in a heterogeneous group of receivers both in a controlled network
test-bed and in the Internet in order to examine the behaviour of the implemented prototype against
TCP and UDP traffic. In addition we plan to examine the behaviour of the proposed mechanism in
very large multicast group through simulation. In addition we will investigate the benefits of
dynamically adding more streams instead of the static number of streams that the implemented
prototype supports now.

7 Bibliography
[1] C. Cowan, S. Cen, J. Walpole, C. Pu. "Adaptive Methods for Distributed Video Presentation", ACM Computing

Surveys, 27(4), pp. 580-583, December 1995. Symposium on Multimedia.
[2] R. Rejaie, D. Estrin, and M. Handley, "Quality Adaptation for Congestion Controlled Video Playback over the

Internet" inProc. of ACM SIGCOMM '99, Cambridge, Sept. 1999.

141

3] J. Walpole, R. Koster, S. Cen, C. Cowan, D. Maier, D. McNamee, C. Pu, D. Steere, L. Yu, "A player for adaptive
mpeg video streaming over the internet," in Proceedings of the 26th Applied Imagery Pattern Recognition
Workshop AIPR-97, SPIE, (Washington DC), Oct. 1997.

4] I. Busse, B. Deffner, H. Schulzrinne, "Dynamic QoS control of multimedia applications based on RTP," Computer
Communications, Jan. 1996.

5] S. Jacobs, A. Eleftheriadis, "Adaptive Video Applications for Non-QoS Networks", Proc. 5 th International
Workshop on Quality of Service (IWQoS'97), Columbia University, New York, USA, pp.161-165.

6] R. Ramanujan, J. Newhouse, M. Kaddoura, A. Ahamad, E. Chartier, K. Thurber, "Adaptive Streaming of MPEG
Video over IP Networks", Proceedings of the 22nd IEEE Conference on Computer Networks (LCN'97), November
1997.

7] P. Mundur, A. Sood, R. Simon, "Network Delay Jitter and Client Buffer Requirements in Distributed Video-on-
Demand Systems", Department of Computer Science George Mason University Fairfax, VA 22030.

8] S. Cen, C. Pu, J. Walpole, "Flow and Congestion Control for Internet Media Streaming Applications", In
Proceedings of Multimedia Computing and Networking, 1998.

9] B. Vandalore, W. Feng, R. Jain, S. Fahmy, "A Survey of Application Layer Techniques for Adaptive Streaming of
Multimedia", Journal of Real Time Systems (Special issue on Adaptive Multimedia), April 99.

10]Shculzrinne, Casner, Frederick, Jacobson, "RTP: A Transport Protocol for Real-Time Applications", RFC 1889
IETF, January 1996.

ll]Shculzrinne, Casner, "RTP Profile for Audio and Video Conferences with Minimal Control", RFC 1890, IETF,
January 1996.

12] Java Media Framework: http://java.sun.corn/products/java-media/jmf/index.html
13] R. Rejaie, M. Handley, D. Estrin. "Architectural considerations for playback of quality adaptive video over the

Internet", Technical Report 98-686, USC-CS, November 1998.
14] R. Rejaie, M. Handley, D. Estrin. "RAP: An end-to-end rate-based congestion control mechanism for real time

streams in the Internet", Proc. IEEE Infocom, March 1999.
15]H. Smith, M. Mutka, D. Rover, "A Feedback based Rate Control Algorithm for Multicast Transmitted Video

Conferencing", Accepted for publication in the Journal of High Speed Networks.
16] J.-C. Bolot, T. Turletti, I. Wakeman. "Scalable feedback control for multicast video distribution in the Internet" In

Proceedings of SIGCOMM 1994, pp. 139-146, London, England, August 1994. ACM SIGCOMM.
17] T. Jiang, E. W. Zegura, M. Ammar, "Inter-receiver fair multicast communication over the Internet". In Proceedings

of the 9th International Workshopon Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pp. 103-114, June 1999.

18]B. J. Vickers, C. V. N. Albuquerque T. Suda, "Adaptive Multicast of Multi-Layered Video: Rate-Based and
CreditBased Approaches," Proc. of IEEE Infocom, March 1998

19] S. McCanne, V. Jacobson. Receiver-driven layered multicast. 1996 ACM Sigcomm Conference, pp 117-130
August 1996.

20] S. Floyd, K. Fall, "Promoting the Use of End-to-End Congestion Control in the Internet," IEEE/ACM Transactions
on Networking, 1998.

21] T. Jiang, M. Ammar, E. W. Zegura, "Inter-Receiver Fairness: A Novel Performance Measure for Multicast ABR"
Sessions, pp. 202-211 SIGMETRICS 1998

22] X. Li, M. Ammar, S. Paul, "Video Multicast over the Internet", IEEE Network Magazine, April 1999
23] S. Y. Cheung, M. Ammar, X. Li. "On the Use of Destination Set Grouping to Improve Fariness in Multicast Video

Distribution", INFOCOM 96, March 1996, San Fransisco.
24] Ch. Bouras, A. Gkamas, "Streaming Multimedia Data With Adaptive QoS Characteristics", Protocols for

Multimedia Systems 2000, Cracow, Poland, October 22-25, 2000, pp 129-139.
25] C. Diot - Sprint Labs "On QoS & Traffic Engineering and SLS-related Work by Sprint", Workshop on Internet

Design for SLS Delivery, Tulip Inn Tropen, Amsterdam, The Netherlands, 25 - 26 January 2001.
26] J. Pandhye, J. Kurose, D. Towsley, R. Koodli, "A model based TCP-friendly rate control protocol", Proc.

International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
Basking Ridge, NJ, June 1999.

27] D. Sisalem, A. Wolisz, "LDA+ TCP-Friendly Adaptation: A Measurement and Comparison Study," in the 10th
International Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV2000), June 25-28, 2000, Chapel Hill, NC, USA

142

Retrieval Scheduling for Multimedia Presentations*
(Extended Abstract)

Martha L. Escobar-Molanot, David A. Barrett, Zornitza Genova, Lei Zhang
{mescobar,barrettd}@asgard.com {zgenova,lzhang}@csee.usf.edu

Asgard Systems University of South Florida

Abstract

Advances in computer graphics, authoring tools and the explosive growth of the
Internet has increased the use of multimedia presentations. This article presents a new
retrieval scheduling technique to support the display of multimedia presentations in a
multi-user environment. A multimedia presentation consists of a collection of objects
with temporal constraints that define when the objects are rendered. A scheduling
algorithm must determine when objects are retrieved from disk to satisfy the temporal
constraints of the presentation. The time elapsed between the arrival of a request and
the onset of its display (latency) depends upon the resources (CPU, disk, and memory)
available to the system. The resources available depend upon those consumed by other
presentations already being displayed. Therefore, the latency must be computed when
the new request for a presentation arrives and that latency must include its computation
time.

Prior scheduling techniques applicable to arbitrary resource requirements have quadratic
time complexity. Unlike prior work, our scheduling algorithm has linear time complex-
ity. We compare the performance of our scheduling technique with one that exhaustively
searches for the earliest time to schedule a presentation. Our simulation results show
that our technique significantly reduces the latency of a presentation as compared with
the exhaustive search.

1 Introduction
A multimedia presentation consists of a collection of objects with temporal constraints that
define when the objects are rendered. For example, a computer generated animation consists
of a collection of 3-D objects that represent the characters and background of the animation
with their time of appearances. To display a presentation, the storage system must deliver
the participant objects to the renderer according to their time of appearances.

We assume that the unit of retrieval from disk into memory is a fixed-size page. Objects
are not restricted by the page size. Smaller objects are clustered together into a page and
larger objects are partitioned into multiple pages. We partition time into fixed-size time
intervals. A retrieval schedule of a presentation defines for each time interval what pages to

"This research was supported, in part, by the National Science Foundation CAREER Award No. 9875528
TThis work was done while this author was at the University of South Florida

143

retrieve from disk and what pages to discard from memory to satisfy the temporal constraints
of the presentation. The retrieval schedule also determines the memory and disk bandwidth
requirements of the presentation at each time interval.

The retrieval schedule overlaps the display of the presentation. To minimize memory re-
quirements, the retrieval schedule aims to fetch pages from disk during the interval that
preceeds their display. However, the disk bandwidth capacity might not be sufficient to re-
trieve all pages displayed at interval i during its preceeding interval i - 1. Therefore, some
pages might be pre-fetched at an earlier time interval. Only pages displayed during the first
time interval and pages required to be pre-fetched before the beginning of the presentation
are retrieved before the display of the presentation.

The system maintains a system availability that contains the resources still available while
presentations are being displayed. The system availability is a sequence of tuples, one for
each interval that the system has allocated resources for presentations being displayed. For a
system with D disks, each tuple has 1 + D elements and represents the available memory and
bandwidth for each disk at the corresponding interval.

When a request for a presentation arrives, the system determines when to schedule the re-
quest so that the presentation requirements would not exceed the memory and disk bandwidth
in the system availability.

An approach to determine when to schedule the request is to exhaustively search for the
earliest sequence of time intervals when the presentation can be scheduled. Suppose that
a request for a presentation with a retrieval schedule of k time intervals arrives at interval
t-r, where r is the time to search for this sequence. The system tries to start the retrieval
schedule of the presentation at interval t. If there is a time interval when the memory and disk
bandwidth requirements in the retrieval schedule exceed the the system availability, then it
tries starting at t+1. If starting at t+1 also exceeds the availability, it tries at t+2, and so forth.
When trying to start the retrieval schedule at t, the system compares pair-wise the system
availability at intervals t,t + l,...,t + k-l with the requirements at intervals 0,1,..., k - 1
in the retrieval schedule. Since there are D + l1 resources, it takes kx (D + l) comparisons
to check whether the presentation can be scheduled starting at t. If the number of tuples in
the system availability is n, it takes up to k x (D + 1) x n comparisons to determine when
the presentation requirements would not exceed the memory and disk bandwidth available in
the system. Therefore the time complexity of the exhaustive search is quadratic.

To illustrate, consider a system configuration with 36 disks (D = 36) and a CPU of 400
MHz. Suppose that we partition time into 4-second time intervals. When trying to schedule
a 2-hour (k = 1800 time intervals) retrieval schedule on a system that has allocated resources
for 24 hours (n = 21,600 time intervals), the system performs up to 1,800 x 37 x 21,600 =
1,438,560,000 comparisons. Suppose that it takes 23 cycles to compare the required and
available amounts of a single resource for a single time interval. Then, it takes up to
1,438,560,000 x 23/400,000,000 = 82.71 seconds to search for the earliest sequence of time
intervals when the presentation can be scheduled (r < 82.71). Since the system does not
know in advance how long this search will take, it must consider the worst case (r = 82.71)
to guarantee that all the temporal constraints of the presentation are satisfied. Starting the
display before this search ends might introduce disruptions at the end of the presentation
because the system might not have available resources to retrieve the pages on time for their

1One for each disk and one for memory.

144

display.
In this paper, we present a technique that determines when to schedule a request in linear

time. Our technique limits the number of comparisons to If x n x (D +1), where If is a linear
factor. For a linear factor of 50, our technique takes up to 50 x 21,600 x 37 x 23/400,000,000 =
2.30 seconds to search for the time to schedule the presentation in the example above. As
illustrated in this example, the search time following the exhaustive search is significantly
higher than our technique.

2 Related Work

Previous studies [9, 1, 2] have investigated scheduling for continuous media (e.g., audio,
stream-based video). These studies conceptualize a presentation as a file that is read sequen-
tially at a pre-specified rate. They assume a data layout so that the disk reference pattern
is regular, e.g., read the first block of a presentation from disks 0, 1, and 2 during the first
time cycle, read the second block from disks 3, 4, and 5 during the second time cycle, and so
on. Presentations sharing objects might reference them in different order. Therefore, finding
a placement of objects that yields a regular disk reference pattern might be infeasible. Our
scheduling technique works for arbitrary data layouts.

Retrieval scheduling for composite multimedia objects have been studied before [6, 8]. They
conceptualize a presentation as a collection of multimedia streams with temporal constraints.
However, their scheduling techniques have quadratic time complexity for presentations whose
resource requirements (memory and disk bandwidth) vary arbitrarily over time.

Retrieval scheduling for presentations whose resource requirements vary arbitrarily over
time have been studied before. In [5], an optimal retrieval scheduler for single disk archi-
tectures was proposed. This scheduler minimizes both latency and memory requirements.
The complexity of resource scheduling for multi-disk architectures was studied in [4]. This
study demonstrated that the computation of a resource schedule that satisfies a pre-specified
display schedule and minimizes the startup latency is NP-Hard. In [3], a taxonomy of re-
source scheduling techniques that satisfy the display schedule of a presentation was proposed.
This study introduced three resource scheduling techniques for multi-disk architectures and
quantified their trade-offs. However, both [5] and [3] assume a single-user environment.

In a multi-user environment, the system has to find a sequence of time intervals where
the memory and disk bandwidth available is sufficient to support the display. This problem
can be stated as follows: given a sequence of requirements 7*1,..., rmi, find a subsequence in
the system availability sysi+i,...,sysi+m' such that for each j e [l,m']: r,- < sysi+j. For
multiple resources, sysj and r, are vectors. We can pose the problem of finding a match
for a string in a document in a similar manner. The string corresponds to the requirements
and the document to the system availability. And, the matching criteria is equality: for each
j G [l,m']: Tj = sysi+j. Like the string matching technique in [7], our scheduling techniques
encodes the scheduling decision process into an Finite State Automaton (FSA). However,
having < as the matching criteria makes the encoding and execution of an FSA significantly
different from the encoding and execution in the string matching problem.

145

60 75 91

60 75 91 95

60 75 91 95 82 89 91
95 82 89 91 96 90 96
82 89 91 96 90 96 97

96 90 96 97

Figure 1: An example of an FSA for a single resource with a system availability being recog-
nized by the FSA.

3 Scheduling Techniques

The proposed scheduling technique pre-computes the memory and disk bandwidth require-
ments of a presentation. The single-user retrieval scheduling techniques in [3] can be used to
precompute these requirements. Based on these requirements, it builds an FSA and stores it
on disk. This FSA recognizes the sequence of intervals when the resources (disk bandwidth
and memory) in the system availability are greater than or equal to the resources required by
the presentation. When a request arrives, the system loads and executes the FSA to determine
when the presentation can be scheduled.

An FSA is a tuple (P,Sf,5b,Si,sm>), where P is the set of states, Sf and 5b transition
mappings, sx the starting state, and sm> the accepting state. If the retrieval schedule of a
presentation requires m' time intervals, its FSA has m' + 1 states (s0, «i, • • •, sm>). There
is a state for each time interval in the retrieval schedule and a sentinel state (s0). Each
state (si) is associated with the memory and bandwidth requirements of the presentation
at the corresponding time interval (i). Transition mappings 8f and 6b represent forward
and backward transitions, respectively. Forward transitions occur when the memory and
disk bandwidth at the current time interval in the system availability are greater than or
equal to the requirements associated with the current state in the FSA. Backward transitions
occur where the requirements associated with the current state in the FSA exceed the system
availability at the current time interval. The FSA starts at state sx and reaches state sm>
when recognizes the sequence of intervals in the system availability when the presentation can
be scheduled.

An FSA can be represented as a directed graph. To illustrate, suppose that we have only one
resource in our system (say memory). Figure 1 represents the FSA for a presentation whose
memory requirements for each interval are 50,70,90,80,85,90,95. Each state is represented
by a node (circle) with its requirements inside. The state with a zero in it is the sentinel state.
Forward and backward transitions are represented by forward and backward links, respectively.
The starting state is marked by a carat (si) and the accepting state is represented by a double
circle (s7).

Because of space limitations, we describe the algorithms here and refer the reader to the
full paper for the pseudo-code of the algorithms.

146

3.1 Running the FS A

When a request for a presentation arrives, the system loads the FSA associated with the
presentation and executes it. The FSA reads the first tuple in the system availability (memory
and bandwidth available during the first time interval) and compares it with the requirements
in state Si (memory and bandwidth required by the presentation during the first time interval).
If the tuple in the system availability is greater than or equal to2 the requirements in s1 (the
current state), the FSA advances to the next state by following a forward link and reads
the next tuple from the system availability. If the tuple in the system availability is smaller
than the requirements in the current state, the FSA advances to the next state by following
a backward link but does not read the next tuple from the system availability. It continues
comparing tuples in the system availability with the requirements in the states of the FSA
until it reaches the accepting state or the end of the system availability. Following a backward
link from Sj to Sj increases the latency by i — j.

To illustrate consider the example in Figure 1. The system availability is represented by
the sequences of numbers below the FSA. When the FSA starts, it reads 60 from the system
availability and compares it with 50 (the amount in Si). Since 60 > 50, the FSA follows
the forward link and reads the next element in the system availability (75). Similarly, it
compares 75,91,95 with 70,90,80, advances to state s5, and reads 82. Since 82 < 85, the FSA
follows the backward link from s5 to s2. Following this backward link increases the latency by
three time intervals. This increase is represented by a shift of 3 time intervals in the system
availability as shown in the second line at the bottom of Figure 1. Then, it compares 82 with
70. Since 82 > 70, the FSA follows the forward link and reads the next element in the system
availability (89). Since 89 < 90, the FSA follows the backward link from s3 to s2. Following
this backward link increases the latency by one time interval, as shown in the third line at
the bottom of Figure 1. Then 89,91,96,90,96,97 are compared with 70,90,80,85,90,95 and
the FSA reaches the accepting state (s7). Therefore, the request can be scheduled during the
sequence of time intervals with 82,89,91,96,90,96,97 as their memory available. The total
latency is four time intervals. The sentinel state (s0) is used to force reading the next element
in the system availability. For example, suppose that the FSA runs on a system availability
whose first element is 45. Since 45 < 50, the FSA follows the backward link to s0 and compares
45 with 0. Since 45 > 0, it reads the next element in the system availability.

As shown in the full paper, the complexity of the algorithm to execute an FSA is Ö (n),
where n is the number of tuples in the system availability.

3.2 Constructing the FSA

When constructing the FSA, a forward link is created between the states associated with
two consecutive time intervals in the retrieval schedule of the presentation. When executing
an FSA, the tuples in the system availability are compared with the requirements of the
presentation in sequential order. Once a tuple t satisfies the requirements of the request in
the current state, a new tuple is read and t is not referenced by the FSA anymore. For

2 A tuple in the system availability is greater than or equal to the requirements in a state if and only if: (1)
the memory available in the tuple is greater than or equal to the memory required in the state, and (2) for
each disk d, the bandwidth available for d in the tuple is greater than or equal to the bandwidth required for
d in the state.

147

sO

60

/50V- -^(joj— ■«wo) »-(80\—

s4 -

*/85) •/90V-.

—rt> «7

60
75

75
91

91
95

(3
82

J52
89

89
91

91
9(

96 90 96 97
90 96 97

Figure 2: An example of an FSA for a single resource

example when processing 82 in the system availability, the FSA followed the backward link
from s5 to s2 and did not have to verify that the memory available in the preceding time
interval of the system availability (95) is greater than or equal to the requirements in sx (50).
Therefore, the FSA must be constructed so that following a backward link during execution
does not require comparing preceding tuples in the system availability with corresponding
requirements. Thus, the FSA is constructed so that there is a backward link from st to Sj
having the shortest distance i - j that satisfies the following two conditions:

(i) The requirements in Si are greater than the requirements in Sj, and

(ii) For all states sk such that 1 <k < j, the requirements in sk are smaller than or equal
to the requirements in s^+i-j.

3.3 Refinements

To reduce the latency incurred by a presentation, we introduce additional backward links
(termed conditional links). A conditional link from state s, to Sj is represented by a labeled
link. The labels specify the condition that must be satisfied in order to follow the link. A
label is a sequence of states sh,..., sik whose requirements might be higher than the system
availability. In order to follow a conditional link, the system must verify that the requirements
in states sh,..., sik are smaller than or equal to the system availability. Conditional links do
not satisfy Condition (ii) in Section 3.2. The labels in the link are the states sk that violate
Condition (ii). Figure 2 shows a conditional link from s5 to s4 with label s3. A backward link
from s5 to s4 increases the latency by one time interval. Therefore, the requirements of each
pair of consecutive states before s5 are compared to obtain the states that violate Condition
(ii). Since s3 is the only state that violates Condition (ii) (s3 > s4), the label of this link is
s3. This label will be used during execution to determine whether or not to follow the link.
To illustrate, suppose that we are executing the FSA in Figure 2. During this execution, it
reads 82 (in the system availability) and compares it with the requirements in s5 (85). Since
82 < 85, then it follows a backward link. There are two backward links: from s5 to s4 and
from s5 to s2. It first tries the shortest link (from s5 to s4). Since this link is conditional,
it checks first whether there is enough memory available to satisfy the requirements of s3. If
the link is followed, the element in the system availability that would correspond to s3 is 95.
Since 95 > 90, the link is followed.

An FSA with conditional links is a tuple (P, Sf, S'b, sx, sm>). 5'b maps a state s to a sequence
L = [< skl,seqkl >, < sk2,seqk2 >,...,< skl,seqkl >} of pairs. Each pair < ski,seqki >}
represents a target state and the label on the link. The sequence L is sorted by the increase
of latency incurred by the link: kx > k2 > ... > kt. A backward link from Si to skl increases

148

the latency by i - ku while a link to sk2 increases the latency by i - k2. Hence, the higher the
subscript (fc1;..., k{) is the lower the latency is.

The algorithm to execute an FSA with conditional links selects the backward link with
the shortest latency such that the condition on its label is satisfied. Checking this condition
increases the number of comparisons performed by the FSA. Therefore, our algorithm to con-
struct the FSA selects the backward links that would bound the total number of comparisons
during execution of the FSA to a linear factor // of n {If x n), where n is the number of
tuples in the system availability. This bounding is achieved by selecting the backward links
such that the number of comparisons while transiting a cycle from state s^j to Sj back to Si-j
is less than or equal to If x j. The full paper describes this bounding in detail.

There might be more than one set of backward links that satisfy the above selection criteria.
To decide which link to include in 5'b(si), our technique assigns priorities to each link. The
priority of a link from s, to Sj with label L is defined as 1 - 4^-. The value of \L\ is bounded

by j - 1, therefore 4^- represents the percentage of number of states in the label over all
possible states. The lower this percentage is the higher the priority of the link.

4 Evaluation

We compared our scheduling technique with a scheduler that exhaustively searches for the
earliest time intervals in the system availability when the presentation can be scheduled. The
performance of both techniques was evaluated using a simulation study and synthetic data.

As described in the full paper, we generated display schedules for 16 presentations of 100
minutes, 16 of 45 minutes, and 16 of 40 seconds. Once the display schedules of the 48
presentations were generated, we applied the memory-based scheduling technique in [3] to
compute the memory and disk bandwidth requirements of each presentation assuming four
different system configurations: (1) 1 GBytes of memory and 12 disks, (2) 2 GBytes of memory
and 24 disks, (3) 3 GBytes of memory and 36 disks, and (4) 4 GBytes of memory and 48 disks.
All configurations have a single CPU of 400 MHz and a page size of 128 KBytes. Each disk
supports a 338.1 mbps transfer rate, 11.24 millisecond seek time, and 6 millisecond rotational
latency.

The computed memory and disk bandwidth requirements are used by the exhaustive search
to find the earliest time to start the retrieval schedule. These requirements are also used to
build an FSA for each presentation. The FSAs were constructed with linear factors of 100 for
100-min and 45-min presentations and 6 for 40-sec presentations.

We assumed that the frequency of access of the presentations follows the Zipf distribution
and the inter-arrival time of requests follows the Poisson distribution. Based on these as-
sumptions, we generated lists of requests for arrival rates varying from 0.1 to 4.0 arrivals per
minute. The span of request arrivals for these lists was 2 hours. We also assumed that besides
displaying presentations on demand, the storage system supports pre-scheduled presentations.
For our simulations, we assumed that the system pre-scheduled presentations for 8 hours.

We then schedule the requests in each list using both approaches: the exhaustive search
and the FSA-Based technique. For each request, we compute the latency incurred by the
presentation. This latency has 5 components:

(1) Time to retrieve pages referenced at the beginning of the display and to pre-fetch some pages

149

Table 1: Computation Time for Exhaustive Search vs FSA.

Movie
Length

12 Disks 24 Disks 36 Disks 48 Disks Linear
Factor ES FSA ES FSA ES FSA ES FSA

40
2700
6000

0.064
3.644
8.088

0.032
0.540
0.540

0.124
7.008

15.552

0.064
1.036
1.036

0.184
10.376
23.016

0.092
1.532
1.532

0.244
13.740
30.484

0.120
2.028
2.028

6
100
100

Avg 4.422 0.433 8.587 0.822 12.620 1.213 16.645 1.606 NA

Computation time for the FSA algorithm depends upon a implementor-chosen linear
factor. Avg is the average over the mix of all arrivals in the simulations. Values other
than the Linear Factor are in seconds.

in preparation for the display. This component is derived from the memory-based scheduler
and is identical for both approaches.

(2) Time to compute when to start the retrieval schedule of current request. This computation is
dominated by the comparisons between available resources in the system and the requirements
of the presentation. Therefore, we assume that this component is the time taken by the
comparisons. For the exhaustive search, this time is k x n x (D + 1) x 23/CPUfreq, where k
is the number of time intervals in the retrieval schedule of the presentation, n is the number
of tuples in the system availability, D is the number of disks, 23 is the number of cycles per
comparison, and CPUfreq is the number of cycles per second. For the FSA-Based, this time
is If x n x (D + 1) x 23/CPUfreq, where If is the linear factor.

(3) Delay due to a CPU conflict with the scheduling of previous requests. When a new request
arrives while the CPU is still searching for the time to schedule a previous request, the system
has to wait until the search is finished before it starts the search for the new request.

(4) Time to retrieve meta-data from disk. For the exhaustive search, this component is the time to
retrieve the file containing the memory and bandwidth requirements of the presentation. For
the FSA-Based, this component is the time to retrieve the file containing the FSA computed
by our technique.

(5) Delay due to memory or disk bandwidth conflicts with other presentations being displayed.
This component is the increase of latency due to shortage of resources in the system availability
for the presentation requirements. For the FSA-Based, this component is the latency incurred
when following the backward links.

The latency incurred by the FSA-Based technique does not include the time to build the
FSA. The construction of the FSAs is done before the requests of presentations arrive. This
construction is based on the memory and bandwidth requirements of each presentation, which
is pre-computed (Section 3).

4.1 Results

Table 1 shows how the average time to compute the retrieval schedule (component 2) for our
FSA algorithm compares with the exhaustive-search algorithm. In all cases the FSA consumes
less computation time and the gap widens significantly as the as the movie length grows.

We seek to determine whether this reduction in computation for FSA will result in lower
latency than exhaustive-search. Because FSA limits the number of comparisons by a linear

150

(a) 12 Disks, 1 GByte Memory

' ' 1 ' ■ ' ' I ' ' ' ' 1 ' ' ■ ■ i ■ ' ■

 x Exhaustive Search
---a--- FSABased '/

800
: r^

600 -

400 /:' -

200

>.,,-d;

"x
- ß -

Q i,-.-a-i--<Bi"»'fri-'W . i i i i i i i i i i i i i i . i

(b) 24 Disks, 2 GByte Memory

1000

~. 800 -

600

400

200

i ' ' ' ' I ' ' ' ' i ' ■ ■ ■ i
 x Exhaustive Search
-••a--- FSA Based

.&■<■-!

x.ja/
/B'''X'

fr-ä

o ^-<a^-tt^^ir
0.2 0.4 0.6 0.8 1

Arrivals per Minute

1.2 1.4 0.6 0.8 1 1.2 1.4 1.6 l.i

Arrivals per Minute

2.2 2.4

1000

~ 800

(c) 36 Disks, 3 GByte Memory

 x Exhaustive Search
- --a--- FSA Based i'-

•a a o i' :

nc
y

(s
ec

: P
;

§ 400 : ,#tf ~

A
ve

ra
ge

: ß'
:

1000

(d) 48 Disks, 4 GByte Memory

; x Exhaustive Search A
- ---a--. FSA Based

^ 800 X :

X o o
8 600 X 1 >, ET ■ s x a
i 400 -
►J x -Ö

§ 200
X .0'

7 x-x"-0' " <

1.5 2 2.5

Arrivals per Minute

2.5 3
Arrivals per Minute

3.5

Figure 3: Total Latency. Total net average latency incurred for presentations as a function of
request arrival rate for four system configurations.

factor, it will occasionally incur increased latencies because of resource conflicts with disk
bandwidth or memory requirements.

Figure 3 shows the total latency for all components (1-5 combined). In Figure 3(a), for
arrival rates below 0.5, the average total latency for our FSA technique was 8 seconds and
varied from 10.7 to 11.2 seconds with exhaustive-search. Since the exhaustive-search always
finds the earliest time intervals to schedule a presentation, the delay due to resource conflicts
with other presentations is expected be lower for the exhaustive-search. For arrival rates
greater than .5, the average latency with exhaustive search was up to 24% lower than with
our scheduling technique (occurred at .6 arrivals per minute, too small to see in the figure).

In Figure 3(b), for arrival rates smaller than 1.5, FSA incurred 8 seconds total latency
and exhaustive-search varied from 14.2 to 15.5 seconds. For all arrival rates, the average
latency with exhaustive search was up to 13% lower (@1.9Arr/min) than the latency with
our scheduling technique. In Figure 3(c) FSA slightly outperformed exhaustive-search for all
arrival rates. CPU computation time (Table 1) and CPU contention (component 3) start to
have a stronger influence for this configuration. Figure 3(d) shows that our FSA technique
significantly outperformed the exhaustive-search algorithm for all arrival rates. The average
latency of exhaustive-search was between 39% and six times higher (@2.7 Arr/min) than
FSA. The average latency varied from 38 to 951 seconds for exhaustive-search and from 8.5
to 569 seconds for FSA. Computation time was significant for this configuration. Table 1
shows average computation time for exhaustive search was 16.6s as compared to 1.6s for FSA.
Arrival rates of higher than 3.6 requests per minute yield inter-arrival times of less than 16.6

151

seconds. Therefore exhaustive-search suffers progressively further delays because the CPU is
busy computing previous schedules when new requests arrive.

Thus, our FSA algorithm's improvement in computation time translates into a significant
reduction in latency over exhaustive-search in this case.

5 Conclusions

This paper introduced a linear retrieval scheduling technique to support the display of mul-
timedia presentations. We compared the performance of our technique with a scheduling
technique that exhaustively searches for the earliest time intervals where the request can be
scheduled. Simulation results show that the reduction on the computation time of our tech-
nique results in lower latencies (up to six times lower) than the exhaustive search, as the
number of resources (disks) in the system increases.

Our scheduling technique reduces the computation time by budgeting the number of com-
parisons during the scheduling of a presentation. This paper introduced one alternative to
budget the comparisons. One question that arises is how different alternatives to budget
comparisons affect the outcome of the scheduling technique. Other future research directions
include: retrieval scheduling techniques that maximize throughput, retrieval scheduling for
dynamically generated display schedules such as in video games, and fault tolerant retrieval
scheduling techniques.

References

[1] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Staggered Striping in Multimedia Infor-
mation Systems. In Proceedings of ACM-SIGMOD, pages 79-89, May 1994.

[2] S. Chaudhuri, S. Ghandeharizadeh, and C. Shahabi. Avoiding retrieval contention for composite
multimedia objects. In Proceedings of Very Large Databases, 1995.

[3] M. L. Escobar-Molano and S. Ghandeharizadeh. On Coordinated Display of Structured Video.
IEEE Multimedia, 4(3):62-75, July-September 1997.

[4] M. L. Escobar-Molano and S. Ghandeharizadeh. On the Complexity of Coordinated Display of
Multimedia Objects. Theoretical Computer Science, 242(1-2):169-197, 2000.

[5] M. L. Escobar-Molano, S. Ghandeharizadeh, and D. Ierardi. An Optimal Resource Scheduler for
Continuous Display of Structured Video Objects. IEEE Transactions on Knowledge and Data
Engineering, 8(3):508-511, June 1996.

[6] M. N. Garofalakis, Y. E. Ioannidis, and B. Ozden. Resource Scheduling for Composite Multimedia
Objects. In Proceedings of Very Large Databases, pages 74-85, August 1998.

[7] D. E. Knutt, J. H. Morris, and V. A. Pratt. Fast pattern matching in strings. SIAM Journal on
Computing, 6(2):323-350, 1977.

[8] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri. On Scheduling Atomic and Composite
Multimedia Objects. IEEE Transactions on Knowledge and Data Engineering, To Appear.

[9] F.A. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-A Disk Array Management
System for Video Files. In First ACM Conference on Multimedia, pages 393-400, August 1993.

152

Distributed Multimedia Information Retrieval

that Accepts Arbitrary Media Key

Takashi Hayashi(takasi@dq.isl.ntt.co.jp)*, Gengo Suzuki(gsuzuki@dq.isl.ntt.co.jp)*,

Yuichi Hzuka(iizuka@rd.nttdata.co.jp) **, Kazuya Konishi(koni@dq.isl.ntt.co.jp) *

and Takashi Honishi(honishi@dq.isl.ntt.co.jp) *

In this paper, we propose an integrated retrieval system that retrieves
distributed multimedia information from existing heterogeneous information
sources by entering any media key independent of the sources. The main feature
of the proposed system is a media translation dictionary that can translate the
medium of the retrieval key entered into media appropriate for the available
information sources by connecting different media data. Furthermore, it issues
query statements compatible with each heterogeneous information source to
retrieve distributed multimedia information. In addition, the dictionary can be
automatically made from learning data. We implement a prototype system and
perform image and text integration retrieval experiments. The effectiveness of
making the dictionary automatically is confirmed.

1. Introduction

The amount of multimedia information
continues to increase because documents,
images and sounds are rapidly being
converted into digital format. Contents
are stored in files and distributed
databases as information sources.
Retrieving the information needed by
entering any multimedia key would yield

a very useful retrieval method. For
example, you could retrieve the title of a
movie by humming the theme song, or
you could retrieve a report by entering a
keyword or drawing a figure.

In this paper, we propose an integrated
retrieval system that allows distributed
multimedia information to be retrieved
from existing heterogeneous information
sources by entering any multimedia key.

* NTT Cyber Space Laboratories (1-lHikari-no-oka,
Yokosuka-Shi, Kanagawa, 239-0847 Japan)

** NTT DATA CORPORATION (1-21-2 Shinkawa,
Chuo-ku, Tokyo, 104-0033 Japan)

153

2. Current Retrieval Methods
and their Problems

As the amount of multimedia
information continues to grow, concern is
mounting over the development of easy
and convenient retrieval methods. Most
retrieval methods utilize text data to
reference multimedia information. Data is
retrieved by entering keywords as the
retrieval keys. On the other hand, several
studies have examined similarity retrieval
[1][2][3]. In this method, characteristics
are extracted directly from data and
stored in a database. For example, when a
user inputs an image key, the system
calculates image similarity values or
distances and retrieves similar images.
Similarity is calculated by mapping from
an N-dimensional characteristics space to
a one-dimensional distance space. This
mapping involves weight vectors because
we must indicate which characteristics
are to be emphasized. It is presumed that
data that are close to each other are
similar (Fig.l, hypothesis 1). Therefore,
goal of similarity retrieval is to find data
that are within a certain distance from the
retrieval key [4]. Needless to say,
however, it is the user who ultimately

• ••• Retrieval Key

^ o ••• Similar Data __
A... Non-Similar Data & '& Similar Data

Characteristic 1

(a) Characteristics Space

Non-Similar Data

Distance from Retrieval Key

(b) Distance Space

Fig.l Similarity Retrieval in Characteristics

Space and Distance Space

judges whether the retrieval results are
similar to the retrieval key or not.
The problem that these retrieval

methods have in common occurs when a
user wants to retrieve objects using a
retrieval key that is not suitable for some
media types of information sources. In
order to solve this problem, several
studies have tried to connect data in
different media types. In [5], linear
mapping between text (adjectives) vector
and image characteristics vector is
calculated using canonical correlation
analysis. This mapping has been used to
connect texts and images. In [6], text data
are allocated in a word space organized
by a clustering method and the distance
between texts is embedded in an image
space. Sentences related to the input
image are retrieved via similar images
that are linked to texts. In [7], textual and
visual characteristics are combined in a
single index vector.
In order to retrieve distributed

multimedia information from existing
heterogeneous information sources by
entering any multimedia key, there are
two problems that must be overcome.
(1) It is difficult to connect data that have
a multimodal distribution in a
characteristics space

Current methods assume that the data
that are similar to each other are close in
the characteristics space (the inverse of
hypothesis 1). However, this hypothesis
does not hold if the data that should be
connected have a multimodal distribution
that makes it difficult to find a linear
weight vector that can make them close.
For example, let us consider how to
connect red and green apple images to

154

«N A

u

RedAppl^o«
^--i--,. o o
/ A\oN O
;AA VA\ ,

<N A

./

/ o \A\ A /Orange

\o °°/GreenApple

U

RedAppl^pO^
lb o

o ,

A A^
£ /'Orange

o öo/Green Apple

Characteristic 1

(a) Average Data

Characteristic 1

(b) Clustering

Fig.2 Connecting data in Current Methods

texts about apples. In this case, average
data, which is calculated by averaging the
characteristic vectors of red and green
apple images, or clustering, are adopted
in current methods (Fig.2). This makes it
difficult to connect data that have a
multimodal distribution in characteristics
space.

(2) It is difficult to utilize existing
heterogeneous information sources

The characteristics and query
languages used differ from information
source to information source, especially
multimedia databases. A user must make
query statements compatible with each
type of information source. This makes it
difficult to retrieve multimedia
information from distributed
heterogeneous information sources.

3. Proposed Method

To solve the problems mentioned in
chapter 2, we propose an integrated
retrieval system that allows any
multimedia key to be used to retrieve
multimedia information from distributed
heterogeneous information sources. First,
to translate the medium of the retrieval

key into an appropriate medium for each
information source, we show how to
connect data of different media types.
Second, we will discuss how to make
query statements compatible with each
heterogeneous information source so as
to retrieve distributed multimedia
information. Finally, we will discuss how
to make connections automatically from
learning data consisting of complex
media types.

3.1. Media Translation using
Dictionary

It is the user who is the final judge of
whether data of different media types
resemble each other or not. As mentioned
in chapter2, however, similar data are not
always close in the characteristics space.
Even if similar data have a multimodal
distribution in the characteristics space, it
is necessary to connect similar data and
perform media translation. To utilize
various information sources, the data
itself is better than the characteristic
vectors because the kind of characteristic
vector differs from information source to
information source. Therefore, we
propose a media translation method that
uses a dictionary that connects similar
data in different media type through an
identifier with the same category (Fig.3).
We call the data of different media type
'dictionary key' and the identifier of a
category an 'entry.' An 'entry' can be
explained by 'dictionary keys' in media
translation dictionary just like a regular
dictionary; furthermore, the same
dictionary key connects different entries
according to the user's interpretation.

155

Entry

Dictionary
Key

Text Image

Equate Red and Green Apple

Entry

User

Dictionary Key

Distinguish Red Apple
from Green Apple

(b) E-R Diagram of Media
(a) Entry and Dictionary Key Translation Dictionary

Fig. 3 Media Translation Dictionary

Therefore, it is necessary to express

many-to-many relationships between

entries and dictionary keys in the media

translation dictionary as set by users
(Fig.3 (b)).

In addition, it is easy to accommodate
new types of media, because the uniform
data structure can be used to manage
connections between data. In short, only
the dictionary keys for the new type of

media have to be added to an entry to
accommodate a new type of media.

3.2. Steps in Retrieval

Fig.4 shows the retrieval steps using
media translation.

3.2.1 Media Translation Function
A media translation dictionary consists

of entries, dictionary keys, and

connections as set by users. The media

translation function is realized using three
sub-functions:

(1) Query interpretation function;
(2) Entry look up function;

(3) Key look up function.

We describe these functions in detail
below.

(1) Query interpretation function

A retrieval key and the dictionary keys
are seldom exactly the same because it is
impossible to manage all data as
dictionary keys. Therefore, it is necessary
to retrieve the dictionary keys that are
similar to the retrieval key with the same

type of media using similarity retrieval.

Media Translation
Dictionary

Dictionary Entry Media translated

Retrieval Key
in any Media

Key : Retrieval Key

53 i

M
IM
O :

& !

^L ^^
_,...

Media Translation Function

Similarity Retrieval
in Same Media

Query Statement of
Each Information Source

Retrieval
Result

Access
Information:

Existing Information Sources

Fig.4 Steps in Retrieval

156

We call this function,

interpretation function.

(2) Entry look up function
To determine retrieval keys' meaning,

entries are looked up by the dictionary

keys. We call this function, the entry look

up function.
(3) Key look up function

To translate the medium of the retrieval
key into a different media, the dictionary

keys of different media types are looked

up by entries. We call this function, the

key look up function.

3.2.2 Query Statement Function
The proposed system must make query

statements that are compatible with
heterogeneous distributed information

sources using the media-translated

dictionary keys. However, the
characteristics and weight vectors differ

from information source to information
source, especially multimedia databases.
Furthermore, most query languages are
extensions of SQL. Fig. 5 shows query
statement examples of ImageCompass [1]
and QBIC [2], which are image similarity
retrieval engines. It appears necessary to

Query Statement Example of ImageCompass

the query meet two requirements:

select x.filename
from Image x, x.subimages y
where y.features similaK4O,'0hue',0.8,'L1'," ■)

SubImageFeatures.MakeValue('0hue,17,0.1,02,- ■ ■');

Query Statement Example of QBIC
select ObScoreFromStr
CObColorFeatureClass file=<server, "filename">'

weight=50.0 and
ObTextureFeatureClass weight=30.0, db2image),

Content{db2image, 'jpg'), FILENAME(db2image)
from db2image_table order by 1;

Fig. 5 Query Statement Examples of

ImageCompass and QBIC

(1) Making query statements that support

the user
If a user emphasizes different

characteristics, the retrieval results will
differ. For example, there are many cases

in which the user emphasizes color or
shape in image similarity retrieval. To get
good retrieval results, it is necessary to
make the query statements follow the

user's intention. Of course, each query

statement must suit the type of

information source accessed.

(2) Accommodating new information

sources
Access information, such as logical

address, user name and so on, differs
from information source to information

source. If a new information source is

added as a retrieval target, the proposed
system should dissolve heterogeneity and

accommodate the source.
To meet the first requirement, the

proposed system manages weight vectors

Access Inforrnation)
Address, User Name and
Password etc

Representation of
Intention

Weight Vector
in Similarity Retrieval

Fig. 6 Representation of Intention and

Access Information

157

as 'representation of intention.' To meet
the second requirement, it manages
logical address, user name and so on of
each source as access information (Fig. 6).
Query statements compatible with each
type of information source are made from
the media-translated dictionary keys,
referring to the weight vector. Referring
to the access information, query
statements access each information
source.

3.3. Automatic Dictionary
Construction

The amount of work needed to make a
media translation dictionary manually is
huge. We propose a method that makes
the dictionary automatically from
learning data in complex media types, for
example, web pages, electronic
dictionaries and so on. Effective
dictionary keys can be defined as 'data
that represents an entry.' For example, in
[5], average data in the characteristics
space represents an entry. However, this
method is not effective against data that
have multimodal distributions. Our
approach is to choose effective dictionary
keys from learning data by estimating
whether the retrieval results are good or
not. Estimation of retrieval results is
based on F measure, which is the
weighted average of recall ratio and
precision ratio [8]. In addition, the
number of effective dictionary keys
should be rmnimized. This approach is a
form of combinatorial optimization
problem. Genetic algorithms [9],
simulated annealing [10] and so on have
been proposed as ways to solve the

• o ... Set X of "Apple"

• - Selected K Keys
A - "Non-Apple" Data

() - Range of Top T Retrieval Results

(Nl A |X|=17

■S cs# » © . # K=n

"g
ca
S3

O
** „bo \ * -

•'■ '"> - • A

'•A<"„.

Total Num of
• o AinO-

U>(*AO->)=26

Total Num of

$ • ^ • oinO-
* Z| = 17

F measure= 0.79
Characteristic

Fitness =0.42

(a) Case where All Keys are Selected

CJ# (^ Ö
•g /W\ A .Xs A Js

th
cd

M
! (• *! dA Ai ^»\ i Q<A

u

U-
&

Characteristic 1

|Z| = 17

K = 6

Total Num of
• O A inC).

Total Num of
• O in Q.

|Z|=16

F _measure= 0.97
Fitness = 0.57

(b) Case where Effective Keys are Selected

Fig.7 Selection of Keys

combinatorial optimization problem. An
automatic dictionary construction method
can be created by combining one of these
solutions with an appropriate fitness
function. Our idea is to maximize the F
measure and minimize selected key
number as follows.

A set X is a set of dictionary keys
that are connected to an entry, and each
dictionary key is element xt. It is the
user who judges whether this connection
is valid or not. Therefore, a set X is a

158

learning data, and relevance set as well.
Y(xt) is the set of top T retrieval results

using each JC(. as the retrieval key. At
first, we assume K(± 0)keys are selected,

we denote these keys as
XMV'XX(T)'''''XX(K)\A\J) ^ I-'-JA'">■"))

The union of retrieval results using

selected K keys is calculated;

IX^O))
Intersection Z of a set X and

l£n xX(J)) is calculated;

Z = Xn{fj=Y(x,U)))

Precision, Recall, and F measure are

calculated;

\z\
Precision =

|lX^o>)
Z

Recall = 7—7
\x\

tew

[Retrieval Key]
Image of a Clock
with a Black Face

[Retrieval Result]
Image of a Stopwatch
with a White Face

[Retrieval Result]
Web Page which
can be Retrieved
by Entering
Keyword Only

S>$**«MA»te

F measure =
1

a \-a

Precision Recall

|^4| expresses the number of elements in
set A ; a(0 < a < l) expresses whether
emphasis is placed on precision or on

recall.
We define minimization of selected

key number as follows;

»-A \x\
Our proposed fitness function that

maximizes F measure and minimizes

selected key number is as follows;

Fig. 8 Example of Retrieval using

Prototype System

Fitness = ß X F _ measure + (1 - ß) 1-
K

ß(0 < ß < l) expresses whether
emphasis is placed on maximization of F
measure or on minimization of selected
key number. When the fitness function

becomes more than a set value,
XA(\)>XM2),'",XKK) are selected as
effective dictionary keys. Repeating this
process, for all entries, all users, and all

159

^ÜP

 *

(a) Stopwatch with (b) Clock with
a White Face a Black Face

Fig.9 Selected "Clock" Keys

1

0.8

.2 0.6
1/3

'3
2 0.4

eu
0.2

0

Selected Keys

Average key

144- in
0 Recall 1

Fig. 10 Recall-Precision Graph of

Selected Keys and Average Key

media types, can automatically make a
media translation dictionary. Fig. 7 shows
the selection of effective keys using
image data connected to the entry
"apple." Fig.7(a) shows the selection of
all keys; fig.7(b) shows the selection of
the most effective keys.

4. Experiments

4.1. Implementation and
Retrieval Experiments

We implemented a prototype system.
This system can retrieve image and text
information if either an image key or a
keyword is entered. The image
information source, PhotoDisk [11]

images, is managed by ImageCompass
[1]; the text information source is
managed by namazu [12]. These search
engines are also utilized by the "Query
interpretation function." In addition, web
pages, which can be retrieved by entering
keywords only, can be used as another
information source. All we have to do is
add the representation of intention and
access information.

Fig. 8 shows retrieval examples of the
prototype system. Entered image key is a
clock with a black face. Dictionary keys,
image and text, are looked up by entering
the image key into the media translation
function. Similar image retrieval and full
text search are done automatically by
entering these dictionary keys. Retrieval
results of ImageCompass are a clock with
a black face and a black darts target etc.
On the other hand, clocks with white
faces are retrieved through the media
translation dictionary. In addition, web
pages can be retrieved via the image key.
The result shows that integrated retrieval
of image and text information is possible.
The retrieval experiments confirmed that
the media translation function was
realized using dictionary keys of different
media types. In addition, the proposed
query function can realize integrated
retrieval of information sources managed
by different search engines.

4.2. Evaluation of Automatic
Dictionary Construction

Experiments were conducted to
evaluate the effectiveness of the
automatic dictionary construction method.
640 images, including human faces,

160

animals, instruments, and so on, were
placed into an image database managed
by ImageCompass [1]. Let us assume 15
clock images are connected to a "clock"
entry. Effective 'dictionary keys' were
selected. Fitness function, mentioned in
3.3, was optimized using a genetic
algorithm. We determined a and ß
through a pilot experiment. Fig. 9 shows 2
effective dictionary keys that offer the
maximum fitness function (=0.43). Fig. 10
shows a recall-precision graph of selected
keys and average key, which was
calculated by averaging the characteristic
vectors of the 15 clock images.

Generally speaking, it is presumed that
the data that are close to each other in the
characteristics space are similar as
determined by current retrieval methods.
However, similar data are not always
close in the characteristics space. Fig. 10
shows that the retrieval results achieved
with optimized keys are better than the
ones achieved with the average key.
Therefore, effective retrieval against
multimodal distribution in the
characteristics space was realized using
multiple dictionary keys.

5. Conclusion

In this paper, we proposed an
integrated retrieval system that retrieves
distributed multimedia information from
existing heterogeneous information
sources by entering any multimedia key.
We implemented a prototype system.
This system can retrieve image and text
information by entering either an image
key or a keyword.

Our proposed method can be applied to

other forms of multimedia as they are.
When the proposed system integrate a
music retrieval system [13] and full-text
search engine, both hummed tunes and
keyword of music can be accepted as
queries, for example.

Since we use a media translation
dictionary to connect different media data,
the proposed system can translate the
medium of the retrieval key into the
media types appropriate for existing
information sources. Since it makes
appropriate query statements for each
information source, it can retrieve
distributed multimedia information from
heterogeneous information sources.

In addition, the media translation
dictionary can be automatically
constructed from learning data by
optimizing the fitness function.
Evaluation experiments showed that
effective retrieval against multimodal
distributions in characteristics spaces was
realized using the optimized dictionary
keys.

References

[1] K. Kushima, M. Satoh, H. Akama and
M. Yamamuro, Integrating
Hierarchical Classification and
Content-based Image Retrieval
-ImageCompass-, In Proc. of
Conference on Intelligent Information
Processing, ppl79-187, 2000.

[2] IBM Almaden Research Center:
"Query by Image and Video Content:
The QBIC System", IEEE Computer,
Vol.28, No.9, pp.23-32, Sept 1995.

[3] M. T. Maybury, Editor, "Intelligent

161

Multimedia Information Retrieval",
The MIT Press, 1997.

[4] Christos Faloutsos, "Searching
Multimedia Databases by Content",
Kluwer Academic Publishers, 1998.

[5] T. Kurita, T. Kato, I. Fukuda and A.
Sakakura, "Sense Retrieval on an
Image Database of Full Color
Paintings", Information Processing
Society of Japan, Vol.33, Noll,
pp. 1373-1383, November 1992.

[6] Y. Mori, H. Takahashi, Y. Nitta and R.
Oka, "Proposal of a Method for
Image Understanding using
Self-organized Data of Image and
Text", Technical Report of IEICE,
PRMU98-74, pp.9-15, September
1998.

[7] Marco La Cascia, Saratendu Sthi and
Stan Sclaroff, "Combining Textual
and Visual Cues for Content-based
Image Retrieval on the World Wide
Web", IEEE Workshop on

Content-based Access of Image and
Video Libraries, June 1998.

[8] van Rijsbergen, C. J., "Information
Retrieval(2nd Ed.)", Butterworths,
1979.

[9] D. E. Goldberg, "GENETIC
ALGORITHMS", Addison-Wesley
Publishing Company, 1989.

[10] R.H.J.M. Otten and L.P.P.P van
Ginneken, "The annealing algorithm",
Kluwer Academic Publishers, 1989.

[11]http://www.photodisc.com,
PhotoDics, Inc.

[12] http://www.namazu.org/index.html
[13] Naoko Kosugi, Yuichi Nishihara,

Tetsuo Sakata, Masashi Yamamuro
and Kazuhiko Kushima, "A
Practical Query-By-Humming
System for a Large Music
Database", Proceedings of the 8th

ACM International Conference on
Multimedia, pp333-342, October
2000.

162

Towards a Flexible Information Retrieval Approach
based on the Context

Francesca Arcelli Fontana Ferrante Formato
University of Milano-Bicocca, University of Salerno
email: arcelli@disco.unimib.it email:formato@unisa.it

Abstract

In this paper we briefly describe a language, we have developed
([2]), for flexible information retrieval to deductive databases. It is
a fuzzy logic programming language, where similarity is introduced
on predicate and constant names and both flexible queries and crisp
queries with flexible answers are allowed. Then we introduce our on-
going research directed to involve the notion of context in the query-
answering process. We start from the observation that similarity is
based on the context and we describe how an adaptive and flexible
user interface based on the context can be developed. Finally, we out-
line the relevance of similarity-based search according to the context in
many applications domains, as for web search and multimedia database
systems.

Keywords: fuzzy techniques, similarity, flexible information re-
trieval, adaptive user interface.

1 Introduction

It is a largely recognized and obvious problem that with all the large amount
of available information through the web, it becomes even more necessary
to find some flexible information retrieval techniques, which allow us to find
the more relevant and valuable information, to gather also the data that
partially satisfy our requests and to be able to manage imprecise queries,
since often user queries represent only an approximation of what one wants
to know. To do that, both the notions of similarity and of context, as we
will see below, become crucial for these information retrieval aims. Find
the most relevant documents and information depends on the context of the

163

query, while usually the result of a search is obtained independently of the
context in which the request is made.

The role of the "context", and the knowledge derived from it, is a major
topic of investigation at present in several areas, as knowledge-based sys-
tems, database systems, information retrieval and for different applications
domains (see for example [9]). As the role of "similarity" for information re-
trieval and similarity-based search has been largely studied in the literature
too.

In this paper we describe a flexible information retrieval approach to
deductive databases, where flexibility is introduced in the data and in the
queries through similarity, defined as a fuzzy equivalence relation. A fuzzy
logic programming language, called Likelog (LIKeness in LOGic) has been
defined in [2] for this purpose, where the core of the language is represented
by the similarity-based unification algorithm. Logic programming is well
suited for the representation of nested relations and to model complex types
and objects. Through the fuzzy logic programming paradigm which we have
proposed we are able to combine logic programming and databases allowing
the management of uncertain or fuzzy information.

We observe, through some examples, how the answer to a query is strictly
connected to the context in which this query is done and so we investigate
in the paper how the role of the context can be captured through similarity
too. Contexts may determine the true or falsity of a sentence as well as its
meaning. We use similarity for two different but correlated aims: similar-
ity notions are necessary for user query specification and satisfaction and
similarity is particularly useful to model contextual knowledge.

We describe our ongoing research on the development of a system with
a flexible and adaptive user interface, able to give flexible answers to the
queries and to determine the context that best fits the user queries. Our
approach to model the contextual knowledge is based on similarity and we
give some hints on how to use the similarity reconstruction for adaptive user
models able to guessing what the user wants. The availability of an efficient
adaptive similarity-based search and user interface assumes a relevant role
also for multimedia and distributed database systems.

As we said before, many works have been proposed in the literature
on similarity-based research, in particular for multimedia databases, where
similarity is captured through different approaches; for example in [10] simi-
larity indexing has been described to scale large video databases and in [7] a
fuzzy query language for multimedia data has been described, by introduc-
ing a similarity algebra, which extends relational algebra, incorporating the

164

use of weights in predicates and operators to better fit user requirements.
Another interesting approach is described in [1], where a multi similarity
algebra is introduced for similarity based retrieval in multimedia databases.
What kind of similarity measures could be used for multimedia databases,
"ranking portions of the database with respect to similarity with the query"
is deeply explored in [8].

The paper is organized through the following Sections: in Section 2 we
briefly introduce the principal features of our similarity-based logic program-
ming language Likelog and we show how flexible information retrieval based
on similarity is allowed through this language; in Section 3 we describe the
relations between similarity and context and we introduce how the similar-
ity query/answering process could be extended according to the context.
Finally we conclude and discuss several future developments related in par-
ticular to multimedia databases and on how the notion of context could be
exploited to enhance web search.

2 Similarity-based Information Retrieval

We now describe how we can exploit similarity for flexible information re-
trieval to deductive databases through Likelog. Deductive databases can
be viewed as information systems where knowledge is stored both explic-
itly, through facts, and implicitly, through a set of rules. Data are extracted
through "query evaluation" methods, such as resolution and bottom-up eval-
uation. The similarity-based resolution used by Likelog is a flexible evalu-
ation method for answering queries that cannot be satisfied in the classical
case.

We now briefly describe the theoretical background of Likelog; for a
deeper description of the language see [2].

A t-norm is a commutative and associative binary operation * on the
interval [0,1] such that for any x,y G [0,1], x * y < x' * y if x < x' and
x * 1 = x.

Definition 1 Given a t-norm * and a setU, a *-similarity onlt, or simply
a similarity, is a fuzzy relation, i.e. a map V,: U x U —*■ [0,1] such that, for
any x,y,z EU :

TZ(x, x) = 1 (reflexivity), TZ(x, y) = 1Z(y, x) (symmetry) and R(x, z) >
TZ(x,y) * 7l(y,z) (*-transitivity).

We use the minimum as t-norm and in the following we will use the

165

notations A and V to indicate the infimum (inf) and supremum (sup), re-
spectively.

We call clouds the non-empty subsets of U. Intuitively, a cloud is a
set of elements in U that are considered pairwise "similar". For exam-
ple, consider the set S = {computer.science, network.economy, informa-
tion.science}, where computer.science, network.economy, information, sci-
ence correspond to some of the several degrees available at the University
level.

We set Tl(computer.science, network.economy) = 0.5, Tl(computer.
science, information.science) = 0.8, TZ(information.science, network .
economy) = 0.6. Therefore the cloud {computer-science, information-science}
indicates a "set of University degrees" that are considered similar one an-
other.

The degree up to which a cloud collapses into a singleton is called codiam-
eter; given a cloud X, the codiameter fi(X) is defined as follows:yu(X) = /\

x,y£X
Tl(x, y). One can easily extend \i to the empty set by setting /x(0) = l.We use
the term "co-diameter" since the function Tl'(x,y) = 1- K{x,y) is associated
to a cloud, whose related diameter is given by 1- ß(X) = f\ Tl'(x,y).

x,y€X
Let £ be a first-order language with a set of variables V, a set of constants

C, a set of predicate symbols V and no function symbols. We denote with £
the language obtained by replacing the set C in L with the set C of non empty
clouds of C. Let Tic and Tl-p be a similarity on C and V, respectively, Ty be
the characteristic function of the identity in V and let K = Tic U %v U "%>•

Usually, a complete definition of 7lv and Tic is a task too large to be
tackled by the user. For example, for any x GU, one could implicitly as-
sume that Tl(x,x) = 1. Analogously, if Tl{x,y) has been already defined,
then Tl(x,y) = Tl(y, x). Therefore, it can be convenient to let the user intro-
duce Tl as a general fuzzy relation on a relatively small number of pairs of
elements and let the system compute the smallest similarity^ that contains
Tl. We call extended term (briefly e-term) any element of V U C and then
we derived a notation for our extended unification theory, defining what we
mean for extended substitution (e-substitution), for unification degree and for
extended most general e-unifier (e-mgu). The classical unification algorithm
has been extended towards an unification under conditions (the clouds de-
fined above) and the classical resolution rule has been extended using the
similarity based unification algorithm, starting from a straightforward ex-
tension of the classical SLD-resolution for definite programs.

166

We have defined the operational semantics of Likelog given by the ex-
tended SLD-resolution and the fixed point semantics of Likelog given by the
extension of the least Herbrand model of a program; it has been proved that
the extension of the least Herbrand model corresponds to the fuzzy subset
of ground formulae that are derived by extended refutations, obtaining in
this way the completeness result of the coincidence of the operational and
fix-point semantics of Likelog.

2.1 Flexible Information Retrieval

We now show, how it is possible to exploit the features of Likelog for flexible
information retrieval to deductive databases. Consider, for example, the
following instance of a deductive database for personal recruitment, where
we have people classified according to their University degree and age and
where we assume that on the market the most requested persons are those
very young with computer_science degree.

computer-science(spot) .
computer_science (strogof f) .
computer_science (smith) .
network_economy (bond) .
network_economy(pearl) .
information_science (boston) .
law(giordano).
political-science (bianchi) .
very_young(boston) .
age(boston, 22).
age(bond, 28).
age(smith, 29).
age(strogoff, 32).
age(pearl, 34).
age(rossi, 31).
age(giordano, 40).
very_requested(X) :- computer_science (X) , very_young(X) .
young(X) :- age(X, N) , N <= 30.

Moreover, we can consider other rules, as for example in relation to the
University where the degree has been taken, by associating a value of impor-
tance to the University and by substituting the rule of very .requested (X)
with another one in which also the "University-value" is taken into account.

167

In a classical database, if the user asks for a "very requested" person,
no answer will be provided. The goal ?-very_requested(X)has no classical
solution, since there is no person with the computer-science degree which is
also very_young. Nevertheless, it seems reasonable for the user to consider
the constants very_young and young as "similar" up to a certain degree,
as also consider the similarity that exists between the different degrees.

Precisely, suppose that the user introduces the following similarities 11:
-7£(computer_science, network_economy) = 0.7
-7£(computer_science, information-science) = 0.8
-7£(network-economy, information-science) = 0.5
-7£(law, political-science) = 0.8
-7£(law, computer-science) = 0.1
-ft(very .young, young) = 0.9
-7l(a, b) = 2,4(0, b) where A = {spot,

strogoff,smith.bond, pearl, boston, rossi.giordano, bianchi}.
and %A is the classical identity on A.
Now, the query ?-very_requested(X)can be evaluated through Likelog,

giving as a result the following pairs of computed extended substitution an-
swers and conditions sets (obtained through the similarity-based unification
algorithm):

<{X—> boston}, {computer-science, information-science} >,
<{X—s-smitb.}, {ery.young, young} >,
<{X-> bond}, {very_young, young},
{computer-science, network _ economy} > .

This means that the user accepts the person "boston" as very requested
provided that computer_science is similar to information _ science; in
other words, the similarity degree between computer _ science and

information-science (which we call co-diameter of the cloud {computer
_ science, information _ science}) represents the cost one must pay to
have a classical refutation of very_requested(X)with X—► boston as com-
puted answer substitution. Of course, to avoid possible infinite loops, the
user must set a threshold as degree of validity of the answers of his query.
The above query has been evaluated with degree 0.8 and a threshold can be
supplied directly with the query. Moreover, if we ask for several people with
information-science degree and we find only a person with this degree or sup-
pose that we don't find any one, then we try to satisfy the request by finding
all the people with the degree more similar to information-science, al-
ways applying our similarity-based research.

168

We have described a very simple example, in which obviously the condi-
tions to consider a person as "very requested" and the similarity relations
involved are subjective and can be changed, as one wants, but the example
aims to outline the capabilities of Likelog for flexible data retrieval which
can be exploited in many different and significant applications. We have
studied applications in the case of an Estate Agency and of a Library.

3 Context-based Information Retrieval

There is no general agreement on what is to be considered a "context", most
often, this notion is somewhat vague. Respect to our aims we are looking
for a model of contextual knowledge that, starting from some sample fea-
tures of a certain environment, (i.e. some samples of evaluation of distances
or similarities) is able to derive a more general set of features allowing to
"predict" the behavior of a certain "user". A context must be able to pre-
dict some actions and must be scalable; both these two features seem to be
easily grasped by the notion of similarity. We now see how our definition of
context can be modeled through similarity, exploiting the duality existing
between the notions of distance and similarity.

To model a context with a similarity 1Z, suppose to have a set 5, repre-
senting the whole context, and a finite set N = {Pi, P2,...., Pn} of elements
of S. Consider the case where the similarity V, is described by "examples"i.e.
the values Tl(x, y) are defined for any x,y € N. Our goal is to determine the
t-norm * that best fits the behavior of TZ as a *-similarity or find the t-norm
* such that TZ is the * -similarity that best fits the modeling of the context.
Until now we have seen how similarity can be used for information retrieval
aims exploiting in particular the similarity-based unification algorithm and
the notions of cloud and co-diameter of cloud, which represent the extent by
which a set does not contains dissimilar elements. Then, we observed how
the notion of context is strictly connected to similarity. Now we introduce
our aims in exploiting similarity to define a similarity-based information re-
trieval system according to the context. We start by view how we can model
a context by using different t-norms.

In [3] we have pointed out two ways by which the background knowledge
or experience of a user can be used, in order to discover the context. Either
we give a comprehensive set of t-norms, and then we try to pick out the one
that best fits a given fuzzy relation, or we give a parametric t-norm and then
we try to fit the fuzzy relation through the choice of a suitable parameter.

169

In this case, one can choose between three different t-norms, the t-norm of
the minimum, the t-norm of the product and the t-norm of Lucasiewicz,
defined as x * y = max(a; + y - 1,0), which model the three most significant
cases of conjunction in fuzzy logic ([5]). Three significant cases of contextual
knowledge can be modeled using these t-norms.

For example, consider the case where we have to model the role of the
context associated to a scenario, in which a tourist visiting a city wants to
know where the different monuments are located respect to his position or
respect to downtown, asking for these distances at a Tourist Board Office.
After obtaining this information, the tourist will retain worthy to move or
not.

When we have to consider "small" variations respect to the total distance
considered, we may use the t-norm of the minimum, for large-scale distance,
where the degree of closeness get lower and lower, we can use the t-norm of
product and finally in the case in which beyond a certain distance, everything
is considered "far", Lucasiewicz logic seems suitable to model this context.
In this way we have observed how a restricted family of t-norms can models
a wide variety of contexts. In turn, such t-norms can be parametrized to
constitute a bundle of contexts, according to the specifications of context
given before. This suggests a method to fine tuning of a context through
a family of t-norms indexed by a parameter, since searching for the best
parameter is easier than searching for the appropriate t-norm.

We would like to use this kind of similarity reconstruction to develop a
similarity-based user model for flexible query/answering system. The sim-
ilarity relations existing between the data in the database are established
in advance by the system administrator or can be supplied directly by the
user, through a fuzzy relation that the system extends into a similarity au-
tomatically. We are working on the possibility to develop a similarity-based
adaptive user interface by which the system can directly learn from the user
the similarities existing between the data, without the direct intervention of
the user itself. In this case the user is able to choose directly a t-norm or the
system is able to determine the t-norm that best fits the context described
by the user through samples values. The system asks the user about the
degree of similarity between objects of the domain and then according to the
user answers, the system deduce the contextual knowledge and the t-norm
which best fits it.

170

4 Conclusions and Future Developments

In this paper we described our ongoing research directed to study how sim-
ilarity can be exploited for information retrieval purposes in two particular
directions:

i) to allow a flexible query answering process able to retrieve the most
satisfying answer, also when the classical approach fails; ii) to exploit the
contextual knowledge to retrieve the more appropriate answer according to
the context. In particular we focused our interest in exploring the devel-
opment of a user adaptive interface able to guess the context of the user
queries. Some works have been proposed for automatically infer search con-
text; for example in [4] a completely different approach is described which
attempts to model the context of user needs according to the content of the
documents searched.

We are interested to explore how our research can be applied for web
search. Many current web search engines are similar to traditional informa-
tion retrieval systems according to the principal operations performed. In
searching on the web, usually the results of the queries are independent from
the "kind" of user, in particular from the context in which the user acts. We
would like to explore how the contextual knowledge can be used to increase
the web search, by developing a similarity based web search engine able to
specifically request the information necessary to reconstruct a context and
find the best answers. An interesting exploration on the role of the context
for web search is described in [6].

Through the web a lot of multimedia data is available, we would like
hence to experiment our approach to retrieve multimedia data through flex-
ible queries, when crisp notions or exact matching are not satisfied or allowed
and a notion of similarity is necessary to model the contextual domain and
to model the imprecision and incompleteness in the representation of mul-
timedia data.

In general, we think that database queries are typical situations where
contextual knowledge occurs. We invite to observe that the role of the officer
at the Tourist Board described in Section 3 can be satisfactorily played by
an information system that exploits contextual information and this is not
featured by classical databases and information retrieval systems.

Acknowledgments
The research reported is partially supported by the "MUSIQUE: Infras-

tructure for QoS in Web Multimedia Services with Heterogeneous Access",
MURST project.

171

References

[1] S.Adali, P.Bonatti, M.L.Sapino and V.S.Subrahmanian. A Mullti-
Similarity Algebra. Proceedings of 1998 ACM SIGMOD Int. Conference
on Management Data, Seattle, WA, 1998, pp.402-413.

[2] F.Arcelli and F.Formato. " A Logic Programming Language for Flexible
Data Retrieval". Proceedings of ACM SAC'99, San Antonio, Texas,
1999.

[3] F.Arcelli and and F.Formato. "User Adaptive Models based on Simi-
larity", Proceedings of ACM Symposium, on Applied Computing, Como,
Italy, 2000.

[4] J.Budzik and K.J.Hammond. User interfaces with everyday applica-
tions as context for just in time information access. Proceedings of the
2000 Int. Conference on Intelligent User Interfaces, ACM Press, New
Orleans, Louisiana, 2000.

[5] P.Hajek. Mathematics of Fuzzy Logic. Kluwer Academic Publishers
1997.

[6] S.Lawrence. Context in Web Search. IEEE Data Engineering Bulletin,
Vol.23, N.3, 2000, pp.25-32.

[7] D.Montesi and A.Trombetta. Similarity-based search through fuzzy
relational algebra. Proceedings of 1st Worksop on Similarity Search
(IWOSS'99), Folrence, Italy, 1999.

[8] S.Santini and R.Jain. Similarity Matching, in IEEE Transaction on
Pattern Analysis and Machine Intelligence, 1997.

[9] Special issue on using context in applications, Int. Jour, of Human-
Computer Studies,Vol. 48, n.3, 1998.

[10] D.A.White and R.Jainn. Similarity Indexing with SS-trees. Proceed-
ings 12th IEEE Internat. Conference on Data Engineering, New Or-
leans, Louisiana, Feb. 1996.

172

Multimedia Metacomputing1

Ulrich Marder Jernej Kovse

University of Kaiserslautern
Dept. of Computer Science

P. O. Box 3049
D-67653 Kaiserslautern

Germany

{marder.kovse} @ informatik.uni-kl.de

Abstract

The concept of multimedia metacomputing involves the formation of a large
scale loosely coupled multiprocessing environment capable of performing
complex transformations on media objects. The transformations are pro-
vided in the form of operations integrated in special media processing com-
ponents. The components are described by signatures that denote the run-
time environments required for component deployment, the types of media
objects the component operations accept and emit and a formal description
of transformations they perform. The multiprocessing environment also
connects a set of heterogeneous processing resources in which the compo-
nents are dynamically deployed in order to carry out the transformations.
The existing Internet infrastructure is used to connect storages of media
processing components, available processing resources and the system con-
trolling the transformation process. By such an environment, we try to real-
ize the concept of delivering global media data without the need to generate
specially adapted materialization of the media data in advance. An open
"plugable" environment provides the possibilities for both vendors of media
processing components as well as providers of processing resources to ex-
ploit the potential of the business model involved in offering and providing
multimedia services using the existing Internet infrastructure.

1 Introduction
Over the last couple of years, the Internet has significantly improved in the sense of the vari-
ety of different media types it involves. The introduction of complex media types, such as
graphics, sound and video clips has made the usage of various Internet services, ranging from
electronic mail to the World Wide Web (Web), more appealing. However, the existing Inter-
net infrastructure along with its protocols today still is mainly used to merely support the ex-
change of media objects. It would be useful if we could find a way to combine this exchange
with the possibilities of media processing. This way, the Internet infrastructure would be used
to form a large, loosely coupled multiprocessing environment where various kinds of media
objects could efficiently be found and processed according to the requirements that may be
posed by human as well as certain types of software agents.

f This work is supported by the Deutsche Forschungsgemainschaft (DFG) as part of the Sonderforschungs-
bereich (SFB) 501 "Development of Large Systems with Generic Methods".

173

During the last decade, metacomputing concepts have been invented to support the dynamic
distribution of processing components in high-performance multiprocessing environments.
While early approaches were targeted at homogeneous massive parallel systems [9], newer
approaches, e. g. [3], often exploit the advantages of distributed component architectures. Our
proposal of a multimedia metacomputing environment enhances the component-based ap-
proach with dynamic configuration, optimization, and multimedia-specific semantics. In par-
ticular, this kind of environment involves the following parts:

• mechanisms supporting storage and retrieval of various types of processing compo-
nents that enable media objects to be transformed according to specific user require-
ments,

• processing and communication infrastructure supporting the transfer of media objects
between processing resources used to carry out the transformations specified by cho-
sen processing components,

• a special control system supporting scheduling and dynamic migration of processing
components between the resources as well as initialization and gathering of the results
of the media transformation process taking into consideration the availability and the
existing processing load for a certain resource,

• a semantic model supporting the description of multimedia processing tasks independ-
ently from concrete processing components, optimization strategies, and materializa-
tion of media objects.

In the following, we describe the requirements that each of the parts has to fulfill in order to
be able to form the heterogeneous open multimedia metacomputing environment.

2 Component-based Multimedia Metacomputing

2.1 Providing and storing media processing components
Using the definition provided by the Unified Modeling Language (UML) Specification [7], a
component represents a physical piece of implementation of a system, including software
code (source, binary or executable) or equivalents such as scripts or command files. As such,
a component may itself conform to and provide the realization of a set of interfaces, which
represent services implemented by the elements resident in the component [7]. Over the last
couple of years, the so-called Component-based Software Development (CBSD) [1] has be-
come highly popular primarily because of its promise of reducing costs and time needed to
produce software products using components as their building blocks. Today, component
technologies such as JavaBeans [8] may be used to support the CBSD.

Using the term media processing component, we refer to a software component providing a
set of services used to transform the state of a media object. In our case, it is not necessary
that such a component conforms to one of the predefined technologies, such as JavaBeans, for
example. A component should merely be deployable in the sense of being able to find an ap-
propriate run-time environment tied to a processing resource where the operations provided
by a component may actually be applied to a media object. However, an important aspect of
using predefined technologies is that the issues of specifying a set of interfaces, component
deployment, and component cooperation are already defined, which makes the usage and
combination of such components easier.

After a deployed component receives a media object, it applies a sequence of transformations
and delivers a transformed object as its output. An audio transcription component, for in-

174

stance, first performs a speech recognition and then generates a text object containing the
transcript. The transformation process is configurable by a set of parameters, which makes it
possible for the user agents to influence the process of applying the transformations.

2.1.1 Describing component services
In our scenario, components are stored using a special storage mechanism. In order to be able
to successfully locate and retrieve components according to the transformations of the media
object that have to be carried out, a component has to provide not only processing functional-
ity, but also a formal description of the transformation process it supports. Also, the types of
media objects the transformations may be applied to, have to be precisely specified. This way,
the result of the process of applying transformation operations is exactly defined and the con-
trol system knows what kind of result a media object transformation delivers. We call such
additional information related to transformation functionality a component signature. In case
a component provides a formal description of its set of interfaces, as it is the case with the
majority of common component technologies, the component signature is to be compre-
hended as an upgrade of such a description that defines not only which operations may be
invoked, but also the exact effects of applying the transformation operations to a media ob-
ject. Component signatures may not be provided directly by media processing components
and may therefore be stored separately. Hence, relationships need to be established between
storage representations of components and component signatures. Figure 1 illustrates possible
usages of provided component signatures.

Component signature

J—| Media
1 processing
i—I component

<component>
<!— runtime environment —>
<environment><platfonii>JVM</platform>...</environment>
<!— media objects accepted —>
<input name="audio_in">
<signaturexproperty name="MAINTYPE" ...>AUDIO</property>...</signature>

</input>
<!— media objects emitted —>
<output name="text_out">

<signature>.. .</signature>
</output>
<!-- transformations performed —>
<operation semantics="transcript">

<input ref="audio_in"/>
«coutput ref="text out"/>
<param name="language"><value>EN</valuexvalue>DE</value>. ..</param>

</operation>
</component>

Figure 1: Media Processing Component with Sample Component Signature (shortened)

2.1.2 Managing dependencies between component versions
In a lot of cases, not only components, but also relationships declaring dependencies and pos-
sibilities of cooperation between them have to be stored and managed. For example, a com-
ponent declares by its set of interfaces that it is capable of carrying out an operation that per-
forms a media object transformation as required by the user. However, in the course of this
transformation, services of another component are required. For this reason, relationships be-
tween components have to be established to make the control system aware of this depend-

175

ency. This makes it possible to successfully deploy both components in appropriate run-time
environments, so that the media object transformation can be carried out. For example, the
transcription component mentioned earlier could as well be realized as a composition of two
other components:
speech recognition and
text generation. How-
ever, the storage
mechanism should also
be capable of storing
and managing different
versions of the same
media processing com-
ponents. A new compo-
nent version may pro-
vide improved
functionality related to
media processing, but
may prove to be incom-

Configuration I: Transcript Filter
X

J Component
"Speech Recognition'

J Version 1

Symbolic speech
representation

X
] Component

"Text Generation"
J Version 1

Configuration II: Optical Character Recognition

T

] Component
"Optical Recognition'

J Version 1

Recognized
patterns

] Component
Text Generation"

J Version 2

Figure 2: Configuration Example

patible with other components the initial component depends on. Therefore, various versions
of the same component should be stored and managed by the storage mechanism. Moreover,
the relationships between the components that define the dependencies should be refined in
such a fashion that it is possible to choose and deploy the appropriate configuration of com-
ponent versions that fits the desired context of a media object transformation. Hence, follow-
ing a similar approach as with components, configuration signatures are required. Figure 2
illustrates an example of configurations of different component versions. Mahnke et al. [4]
describe more general advantages of using customized version control in repositories.

2.1.3 Storing media processing components
Because of the complex requirements related to storing meta information to support searching
of the appropriate components and managing valid configurations of component versions, we
think that the services of a file system offer only limited functionality to provide storage fa-
cilities for media processing components. Therefore, it is essential to provide storage facilities
in a form of special component repositories. Such a repository usually provides standard
amenities of a database management system (DBMS), such as data model, query facility,
view mechanism, and integrity control. However, in our case the functionality is upgraded
using special value-added repository services, such as efficient searching for stored compo-
nents according to desired functionality as well as version and configuration control.

Note that a repository may be distributed in general such that various media processing com-
ponents may actually be stored at different locations. Various component vendors may pro-
duce components providing media processing functionality, provide component signatures for
these components, store them at their own location and register them with the repository. This
way, a repository seamlessly integrates various storage locations in a single virtual storage
environment, which makes it possible for the control system to find and retrieve the compo-
nents in a simple fashion (see Figure 3).

2.2 Processing and communication infrastructure
The processing and communication infrastructure enables the control system to locate the
resources available for media processing, transfer data related to a media object to these

176

Storages of media
processing components

--t A processing component
with signature

Processing resources
^1 _

Processing environment

deploying components,
managing the transformation results

Figure 3: General Architecture of the Multimedia Metacomputing Environment

resources and initiate the transformation process that may take place at various resources in a
parallel or sequential manner.

Processing resources form special run-time environments in which media processing compo-
nents are deployed in order to perform transformations on the media objects. Note, since our
multiprocessing environment involves multiple types of different processing components, the
communication infrastructure links heterogeneous run-time environments. Run-time envi-
ronments register with the control system, where the exact environment type and the possibili-
ties of component deployment are described.

2.3 Control system
A special control system is used to direct the transfer of components to appropriate run-time
environments as well as the transfer of media objects between the components on various
stages of the performed transformations.

As an input, the control system receives data related to the media object and a formal descrip-
tion of a transformation that has to be performed on the object. The description may be given
as a list of commands in a special-purpose high-level language like VMML [6] (cf. Figure 4).
The system tries to analyze the description to obtain a list of basic transformation tasks
needed. Using special query capabilities of the distributed repository of media processing
components, it tries to locate the components capable of performing the requested transforma-
tions. In the process of searching for the components, component signatures stored in the re-
pository are used. In case the component is capable of carrying out the transformation, addi-
tional information about dependencies of the component to other components may be
delivered so that it is possible to choose a valid configuration of cooperating components.
Next, run-time environments needed to deploy the components have to be chosen among the
environments that have registered with the control system. After component deployment, a
media object that needs to be transformed is passed as an argument to the components along
with additional arguments used to configure the transformation process performed by the
components. The process of deploying appropriate components to run-time environments,
configuring them and passing the media object is repeated for each of the basic transformation
tasks. As a result of this process, an object transformed according to the user specification is
delivered to the user.

Note that due to different types of media processing components, the way of accessing a
component by a control system and retrieving the results of the transformation process may

177

vary. In this aspect, the
usage of predefined com-
ponent models proves to
be easier, since such mod-
els already define the way
clients access component
services, pass a media
object and other configu-
ration parameters, and
retrieve the results of the
transformation of the me-
dia object. However, the
usage of other compo-
nents, such as binary ex-
ecutables deployed in an
operation system envi-
ronment requires addi-
tional functionality
needed to access the ser-
vices to enable the com-
munication with the con-
trol system. This func-
tionality may be provided by a component vendor as a separate part of the software that is
deployed in the same run-time environment and is used as a mediator between the control
system and the actual component performing media transformation.

<?xml version="1.0" encoding="UTF-8"?>
<?doctype vmd system "vmd.dtd"?>
<vmdesc>

<source>
<moid alias="bc_video" ext_ref="CNN_db/CNN_Videos/47117>

</source>
<virtual name="TranscriptedSpeech">

<signature>
<property name="Maintype" class="Typespec">Text</property>
<property name="Subtype" class="Typespec">Plain</property>
<property name= "Encoding" class="Typespec">UTF-8</property>

</signature>
•^transformation name="transcription">

<operation semantics="transcript">
<input alias="il" ref="bc_video"/>
<param name= "language" value="EN"/>

</operation>
</transformation>

</virtual>

</vmdesc>

Figure 4: Sample Client Request using VirtualMedia
Markup Language (VMML)

3 Semantic Model for Multimedia Metacomputing
The component-based metacomputing foundations described in the previous section form a
necessary prerequisite for multimedia metacomputing. We need, however, also a semantic
model clearly specifying

• an abstract collaboration model,

• the external representation of media objects, operations, and client requests, and

• how client requests are pre-processed (transformed) to become executable by the
metacomputing environment.

This model supplies the user or application programmer with everything needed to create both
ad-hoc requests and metaprograms (e. g., request templates). The model also precisely de-
scribes how these requests get transformed into plans executable within a given metacomput-
ing environment. The advantages of letting users make requests instead of directly creating
plans are:

Ease of use: Requests are much simpler to create, because one does not have to deal with
finding components implementing a certain operation, manipulating the media objects in
order to fit them to the selected operation's signature, and so on.

Stableness: Requests are stable while plans are not. The reason is the inherent unstableness of
a Web-based metacomputing environment, in which resources may become unavailable,
replaced, or updated from time to time. A plan fails, if one of the required resources is not

178

available or compatible anymore, whereas a request would result in an alternative plan (if
one exists).

Optimization: A request may be transformed into different plans depending on volatile condi-
tions. We may, for example, consider time constraints, cost limits, utilization of resources,
and exploitation of redundancy.

Due to space limitations, we only sketch
the major aspects of the model in the
following sections.

p,
\1

fi
^5* u

\^L i c>
c

p e. _ V\
V F yv

P2 1 \ ^
e4

J h

3.1 Abstract Collaboration Model
Our collaboration model is based on
filter graphs (cf. Figure 5) similar to
those introduced in [2]. The start nodes
of the graph are media producers p\
(media objects managed by some
server, maybe even live media sources)
and the end nodes are media consumers
c\ (e. g., client applications). The inter-
mediate nodes are media filters /;, the
basic operations of a media computa-
tion, while the edges of the graph represent media streams flowing from one filter (or media
producer) to another filter (or media consumer).

The graph in Figure 5 can be interpreted as follows. There is a producer pi creating a media
object sent to filter/}. Filter/; generates from its input two media objects which are sent to
filters f2 and f4, respectively, and so on. Thus, the graph nodes are not bound to any real in-
stances of media servers or filters, therefore we call this an abstract collaboration model.

Figure 5: Illustration of the Collaboration
Model

3.2 Abstract Media Semantics
Turning our collaboration model into a
multimedia metacomputing model requires
the addition of some more specific media
semantics to the graphs. This is done by
means of signatures. A signature is a set of
properties belonging to any of the follow-
ing property categories: type, quality, con-
tent, functional, and non-functional speci-
fications.

Figure 6 shows an example of a filter
graph with signatures, in which the path
pi~^fi~^C2 corresponds to the sample re-
quest presented previously in Figure 4. The
rectangular nodes contain node signatures.
An edge has two signatures, one for each
end. Edge signatures may be empty. In
Figure 6, non-empty edge signatures are
drawn as a circle between edge and node.

P/: CNNVi-
deos/4711

fj. Transcript

(a^ c-. Speech

->\a« c : Transcr-
2

iptedSpeech

«v CT02:

[Typespec] [Typespec]
Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=UTF-8
[Quality]
Sampling_Frequency=44100
Sample_Depth= 16

Figure 6: Sample Request Graph with
Signatures

179

Conditions:
on must be equally or more
specific than ovl and
O^must be equally or more
specific than cv2

(in at least one case "more").

A graph like the one in Figure 6 describes the computation of some media objects on a very
abstract level, yet reflecting the full semantics from the client perspective.

3.3 Request Processing

The first thing to note is that the addition of edge signatures may turn the edges into a sort of
"magic channels". Consider, for example, the edge between px and ci in Figure 6. The signa-
ture Oci contains some type properties of the media object emitted by this channel, but what
goes into this channel
fully depends on the
internal representation
of the media object
referenced by p}. Thus,
we can get edges with
incompatible signatures
at both ends. Appar-
ently, there should be
some kind of hidden
computation within the
channel, hence, the
name "magic channel".

Consequently, one of
the major purposes of
request processing is
revealing the semantics
of "magic channels" in
such a way that the
request becomes executable by configuring and integrating appropriate components. In other
words, the request graph has to be transformed into a semantically equivalent graph that con-
tains only deployable components as nodes and edges with compatible media signatures at
both ends. This automatic process has to be supported by formally specified semantic equiva-
lence relations.

The three basic equivalence relations are neutrality, reversibility, and permutability, thus de-
fining which media operations are considered semantically neutral, which operation is the
inverse of another, and which groups of operations are semantically independent from each
other, respectively. The semantics of media composition and decomposition is defined by
generalized forms of these relations. The most important equivalence relation is called seman-
tic assimilation (see Figure 7), which defines the relation between an abstract media operation
(usually specified in a user request) and a component or configuration of components imple-
menting that operation. More detailed explanations and a discussion of other important issues
like, for instance, materialization management can be found in [5,6].

4 Conclusions
In this paper, we described the so-called multimedia metacomputing approach that aims at the
formation of a large scale loosely coupled multiprocessing environment providing a distrib-
uted architecture to perform transformations on media objects. Basically, the following con-
clusions emerge from our previous discussion:

• operations that perform the transformations on media objects can be provided in the
form of special media processing components,

Additional filters must
be semantically neutral

Figure 7: Equivalence of Abstract Operations (Filters) and
(possible) Implementations defined as Semantic Assimilation

180

• each media processing component should provide a signature to formally describe the
run-time environment it requires during its deployment, types of media objects it ac-
cepts and the transformations it performs,

• it proves to be essential to exploit services of a repository as a distributed storage
mechanism for processing components; in comparison to other solutions, a repository
may provide additional functionality related to component versioning as well as com-
bining component versions into valid configurations capable of cooperation in the
process of media object transformation,

• an abstract semantic model has to be provided to ensure (semantically) correct request
processing and robustness of client programs against changes of the metacomputing
environment like, for example, exchange of components, processors, or media object
materialization.

A global multimedia metacomputing environment would, in principle, allow to deliver global
media data to any client and any kind of multimedia device without need to generate espe-
cially adapted materialization of the media data in advance. Moreover, computationally com-
plex transformations and manipulations of the data are dynamically delegated to the most ap-
propriate processing resources at run-time, thus optimizing response time and utilization of
expensive special-purpose hardware. Ultimately, a "plugable" model for vendors of compo-
nents providing media transformations and processing resource providers could form the
(technical) foundation of a flexible business model for offering and vending multimedia ser-
vices over the Internet. Albeit, our future work will be related to:

• further exploring the possibilities of using existing component technologies, such as
JavaBeans in our approach,

• developing a mechanism used to dynamically evaluate the performance of processing
components deployed in run-time environments while carrying out transformations on
the media objects; using this mechanism, the results obtained are stored in a special
history database and later used by the control system in order to achieve improved re-
sponse times in the instances of subsequent media transformations.

181

References
1. Brown, A. W.: Large Scale Component Based Development, Prentice Hall, 2000.
2. Candan, K. S., Subrahmanian, V. S., Venkat Rangan, P.: Towards a Theory of Collaborative

Multimedia. In: Proc. IEEE International Conference on Multimedia Computing and Systems
(Hiroshima, Japan, June 96), 1996, pp. 279-282.

3. Hawick, K. A., James, H. A., Silis, A. J., et al.: DISCWorld: An Environment for Service-Based
Metacomputing. In: Future Generation Computer Systems, 15 (5-6), 1999, pp. 623-635.

4. Mahnke, W., Ritter, N., Steiert, H.-P.: Towards Generating Object-Relational Software Engineering
Repositories. In: Proc. 8th GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft",
BTW '99 (Freiburg, Germany, March 1-3), Buchmann, A. (ed.), Informatik aktuell, Springer-Verlag,
March 1999, pp. 251-270.

5. Marder, U.: On Realizing Transformation Independence in Open, Distributed Multimedia Information
Systems. In: Proc. 9th GI-Fachtagung "Datenbanksysteme in Büro, Technik und Wissenschaft", BTW
'2001 (Oldenburg, Germany, March 7-9), Heuer, A., Leymann, F., Priebe, D. (eds.), Springer-Verlag,
Heidelberg, Berlin, March 2001, pp. 424-433.

6. Marder, U.: Transformation Independence in Multimedia Database Systems. SFB-Report 11/2000, SFB
501, University of Kaiserslautern, Nov. 2000, 24 pages.

7. OMG, Unified Modeling Language Specification, version 1.3, OMG Document ad/00-03-01, March
2000.

8. Roman, E.: Mastering Enterprise JavaBeans, John Wiley and Sons, 1999.
9. Smarr, L, Catlett, C. E.: Metacomputing. In: Comm. ACM, Vol. 35 No. 6, June 1992, pp. 44-52.

182

A system for Query By Example in

Image Data Base

Angelo Chianese Antonio Picariello Lucio Sansone

Dipartimento di Informatica e Sistemistica
Universitä di Napoli Federico II

via Claudio, 21. 80100 Napoli ITALY

{angelo.chianese, picus, sansone}@unina.it

ABSTRACT
Processing queries for databases containing multimedia information is a hard question.
In this paper we describe a knowledge base approach to effectively resolve query by examples
in image database. We present a prototype system that is at the moment under developing in
our Labs. We consider wavelet descriptors for modeling color, shape and texture features, and
we propose a knowledge base for assisting the user in the retrieval process.
Results on a collection of about 1000 images are reported to provide a validation of the
proposed strategy.

Keywords
Image Database, Content Based Image Retrieval, Data Mining, Multimedia Query Processing.

1. INTRODUCTION

The development of the world wide web and fast computer technology are at the origin of the large
amount of visual information retrieval systems: the growing needs of how to assist a user in accessing and
retrieving images has become an important problem [1]. Traditional multimedia DBMS use textual
keywords as an index to quickly access to multimedia data. However, this kind of representation requires
a burdening manual processing.

Query By Example (QBE) is considered a promising approach because an user handles an intuitive
query representation, that is an image itself. Clearly, the greatest difficult is to find feature vectors that
effectively represent an image[2].

In a QBE system the basic question is "when two images may be considered similar". In the literature,
similarity of images has been expressed using four features: colors, texture, shape and spatial position
[3].

Several prototypes [4], [5], [6], [7] and commercial systems [8], [9] have been proposed. The
techniques, however, can be more or less summarized as follows:

1) a feature extraction module - based on Computer Vision techniques - is used to detect prominent
features from image - or more generally multimedia - objects;

2) a similarity concept - based on a distance metric - is determined;

3) the retrieval process is performed by means of a similarity distance in the feature space.

183

However, it is evident that the effective use of such techniques in a real Data Base, requires the
development of strategies for mapping high-level features to low level visual descriptors. According to
[11] - and it is also the author's opinion -Knowledge Discovery (KD) techniques are suitable to
automatically reach this goal.

In the literature, KD refers to non trivial extraction of implicit, previously unknown and potentially useful
information from the data stored in a certain database [12]. The use of KD techniques for large data base
has been used extensively in the last decade [13], [14], [15], [16], [17], expecially exploiting the concept
related to learning from examples techniques [18].Several system prototypes have been released, as
INLEN [17], KDW+ [19], Quest [13], IMACS [16], Datalogic/R [20], 49er [21]. Few systems have been
specialized for multimedia related problems.

Paper originality consists of proposing a new approach to image query processing that exploits the
rules, extracted from visual low level descriptors, by means of a KD module, and produces a Knowledge
Base useful for query rewriting and pre-processing. Innovative visual descriptors based on Wavelet and a
novel KD module have been used and integrated in the developed system.

The paper is organized as follows: first we provide a description of the system architecture. Section 3 is
dedicated to a detailed description of the proposed strategy, describing the features, the KD module and
the problems related to a Fuzzy Knowledge Base (FKB) in order to produce a semantic catalogues for fast
image retrieval. A discussion of experiments and results is also provided.

2. SYSTEM ARCHITECTURE

It is well known that traditional Data Base Management System (DBMS) are not suitable for managing
multimedia data.

User Interface and Feature Extractor

mediator

Semantic Representation

Query Rewriting

Knowledge Base

Results processing and top k selection

Figure 1: System Architecture

In our work, we used a mediator based architecture [22] to manage the complexity related to multimedia
data.

Our mediator serves as an interface between the user and the information sources. Its main task is to
decompose a complex query into a sequence of more simple and efficient sub-queries.

184

In our work, the mediator uses a set of abstract properties, that have been extracted in an automatic or
semi automatic way.
Figure 1 outlines a synthetic description of the system, that is actually being developed in the Multimedia
Database Lab of our Department.
An image is decomposed into a set of features (physical descriptors) that are analyzed by a Fuzzy
Knowledge Base (KB). The FKB is used to transform the queries based on visual descriptors into a set of
symbolic queries and the results are finally analyzed by a "top-k selection " stage.

In the following we describe the Data Model and the Fuzzy Knowledge Base.

3. DATA MODEL

Image Data Bases (IDB) are typically examples of available information in a descriptive and imprecise
form that requires a fuzzy representation.

A fuzzy set [23] consists of data and their corresponding grades of memberships in the set.

Let a fuzzy relational schema be a collection of rules in the form R: {Ah A2, , A»} where At cDt, Z>,
being the fuzzy domain from which At are selected.

An instance of relation schema R denoted by r consists of values of attributes Ah

A tuple of R is formed by the elements vhv2, -,v„ , elements, v, eAt. Each component v,is atomic or a set
value.

For the aims of image databases, we model the values v, eAt as

v, ={(au, pu), (a;,2, pi,2),,(a;,K, pi)K)} = t[AJ

where at is an atomic value and/jy = juA (atJ denote the membership function.

The uncertainty of any value is defined as fuzzy predicate, and expressed by pt,j e [0,1].

The value py has the following meaning

1) Pu = ° means that the value is completely false;

2) pij = / means that the value is completely true;

3) 0< pij <1 means that the value is true to the degree expressed by the real numberpu..

Example:
A simple fuzzy relation r according to our model is showed as follows.

File Color Shape Content

Iml.gif {(red, 0.78), (grey, 0.80)} {(circle, 0.79), (ellipsis, 0.89)} {(Sun in the dark, 0.7)}

Im2.gif {(blue, 0.89), (black,
0.90)}

{(rectangle, 0.94), (square, 0.90)} {(Sea, 0.8)}

Suppose that ti represents the first tuple listed above. This tuple may be interpreted as saying that:

ti.File = Iml.gif with certainty equal to 1;

t!.Color = red with certainty 0.78 and ti.Color = grey with certainty 0.80;

185

ti.Shape = circle with certainty 0.79 and ti.Shape = ellipse with certainty 0.89;

ti.Content = Sun in the dark with certainty 0.7;

A Fuzzy Knowledge Base (FKB) [24] is made up of a set of rules a set or rules Rx = {R1, R2, ... Rsj,
where each R1 is in the form:

If = (A1, ftj) 0 (A2, juA
2).... 0 (An, juA") -+(C>Mc)

A being a fuzzy subset having a grade juA', and C being a fuzzy subset having a grade nc, and 0 being a
fuzzy operator and, or and not.

Our proposed FKB is formed by a set of rules described as follows.

Let an object be a region of an image selected by a user by means of the visual interface module. Over the
object domain, we define two classes of rules:

Simple rules. Simple rules describe the visual descriptors of an object, i.e. shape (circle, rectangle, lines,
and so on) texture, colors (red, yellow, and so on), position (North, West, South, East, NorthEast and son
on). Let/ be defined in an interval set [fia, fib] . We define simple rule a rule in the form:

fie[fia,fib] ®..&f„ e[fna,fnb] -^basicFeature = 'bFl',pbfl

where basicFeature is one of the attribute {shape, colors, texture, position} bFl is a value in the attribute
Domain, pbfl is the grade of confidence of the rule. Note that the previous rule is a fuzzy rule having all
the antecedents grade equal to 1.

Complex rules. Complex rules describe the concepts relating to a certain image I. In our approach the
symbolic visual descriptors are combined to produce a rule which describes the image content at a higher
level. A complex rule is as defined as a rule in the form:

(bFl,pbfl) 0... 0(bFN,pw) ->highLevelFeature = 'hlf,pMf

where basicFeature, bFj and ptn have the same role played in the simple rules, and highLevelFeature, 'hlf,
phif refer to concepts.

4. IMPLEMENTATION

A central role of our methodology is played by the FKB. It is the authors' opinion that the ability to
perform advanced "query by examples" based on similarity criteria can be enhanced by means of the FKB
itself

The basic question is so how to build a FKB for a given IDB. This task is performed by a Knowledge
Discovery module.

Figure 2 shows the steps we have used for obtaining the FKB rules .

Feature
Extraction

fe Knowledge
discovery

Knowledge
discovery 1 r

w
1 r

w
1 r

Phsyical features Simple Rules Complex Rules

Figure 2: FKB Building

186

The KD module analyzes the structural features of an image and produces a first set of rules. The
structural - or "physical" - features describe colors, texture and shape and they are extracted by the
feature extraction layer.
We have chosen a certain number of samples from the given IDB in order to build a training set of
features organized into a "feature vector". We have associated a symbolic description - determined by a
human - to each feature vector {supervised learning). The feature vectors and each associated symbolic
description is analyzed by the KD module in order to extract a set of simple rules. Simple rules are
organized and associated to a high level description provided by humans again. In this way, the KD
modules produces a set of complex rules.
In other words, the KD module performs a classification task. KD has been implemented in one of the
author's previous work [25] and is based on genetic algorithms.

At the end of the classification process, the FKB contains two kind of classes:

a) the ones related to the considered visual descriptor: classes of textures, colors, shapes and spatial
position;

b) the others related to the content of images or regions of an image (objects into image) contained into
the given database: sea, landscapes, city skylines, animals and so on.

The KD module associates a reference class to each discovered rule and a membership grade. We assumed
that the nature of the extracted rules \% fuzzy, in order to manage the uncertainty related to the similarity
concepts between two images: however, we also note that several model dealing with uncertainty are
proposed by using the fuzzy set theory [26].

In the following, we show the descriptors we have used in our work.

4.1 PHYSICAL FEATURES

It is well known in the literature that the similarity of two images may be expressed using colors, texture,
shape and spatial descriptors. The features used in this paper are an extension of those proposed in [27]: at
the moment, only color, texture and shape features have been considered

Color is described using color histograms calculated on the sub-sampled, low-pass, image in the HSV
color space [27].
Texture features are provided by the wavelet covariance signature [28]. In particular, we define the
wavelet covariance as:

C^-J/^WB*«»")*

ID being the detail subband of the X component in a given Color Space of an Image /, b ranging over the
domain of the subbands.

Let us call the set

fr
Xj-XiXJ,k=l,2,S;j<k

Vcm f n=0,...,d-l;i=l,2,3

the wavelet covariance signature.

The shape features are calculated using a shape-from-texture algorithm [29]. The algorithm uses Gabor
wavelets for the extraction of local spectral moments, considering as features the second order moments of
the local surface spectra:

187

bs(Xs,ys) = JJVA7<V V V^>* A

c (x ,v)= JJv V /(x ,7 ;x ,j>)du dv
s^ s s' " s a K s 's s 's' s s

The above descriptors are organized into a feature vector Fv formed by 78 fields, containing

Reduced HSV histogram description (field0-field48)

Texture Code (field49-field75)

Shape Description (field76-field78)

4.2 LOW LEVEL DESCRIPTORS

Fv is associated to a symbolic description provided by humans.

This stage is hardly dependant on the given image database. In our experiments, we have used the following
descriptors.

Feature

Color

Texture

Shape:

Symbolic Description

black, white, green, red, yellow, brown, orange, blue, blue light, purple, violet, gray,
pink, red dark, beige

thin texture, thicktexture, mixtedtexture, platedtexture, rectangularJhinjexture,
rectangularthicktecture, crespedtexture

triangle, rectangle, circle, undefined shape

Examples of simple rules that are extracted by KD is given in the following table

[field27]>2 AND [field27]<67 AND [field28]<99->bleu, 0.653
[fieldl5]<90 AND [field25]>8 AND [field25]<99-*bleu, 0.827
[field4]<22 AND [fieldll]<99->green, 0.96154
[field34]<95 -»green, 0.816
fieldl2]>l AND [fieldl2]<58-»white, 0,918
[fieldll]>l AND [fieldll]<15 -»white, 0,939

The numeric value which follows the symbolic description represents a fuzzy membership grade.

4.3 HIGH LEVEL DESCRIPTORS

The set of simple rules is analyzed by KD module once again, and a High Level Descriptor is associated,
to each rules

In the following we show the used descriptors.

188

Feature

HighLevel

High Level Symbolic Descriptors
Landscape, snowy landscape, mountain landscape, coast landscape, waterfall landscape,
sunset landscape.

The following example shows some high level rules from our FKB:

[white]>0,918 AND [gray]>0,561 AND [mixt_texture]>0,674 -» SnowMountainPicture, 0.918

[purple]X),856 AND [bordeaux]>0,765 AND [yellow]>0,449 AND [thinJexture]<0,704->SunSetPicture, 0.839

[bleu]>0.827 AND [beige]>0.765 AND [green]>0.449 AND [thin_texture]<0.704 -»SeaCoastPicture, 0.939

For the sake of clarity, we show the results of an analysis performed over a given image.

Let us consider the following sample image.

Our FKB produces the following rules:

[bleu]>0.827 AND [beige]>0.765 AND [green]>0.449 AND [thin_texture]<0.704 -»-SeaCoastPicture, 0.939
[field27]>2 AND [field27]<67 AND [field28]<99-»bleu, 0.653
[fieldl5]<90 AND [field25]>8 AND [field25]<99-»bleu, 0.827
[field4]<22 AND [fieldl l]<99->green, 96.154
[field34]<95 -»green, 0.816
[field75]>-17105,29054 AND [field75]<34) -> thintexture, 0.633
[field55]>92 AND [field55]<1814756,920325 -> thintexture, 0.704

Once we have built the FKB, the overall IDB is indexed by the FKB itself and the extracted knowledge is
stored into the following image catalogue.

ImageCatalogue {Image (ImagelD, ImageName), Object (ImageED, ObID), ObjDescription (ObID,
FeaturelD, Confidence), Content (FeaturelD, FeatureValue), featDescription (FeaturelD, FeatureName)
}•

The table Image contains information about the name of the image; the table Object describes the selected
objects for each image; the table ObjDescription describes the features used for analyzing the object and
the probability of positive classification (confidence); the table Content contains the name of the
recognized features, as classified by the use of the KB and of the KD module; the table
featureDescription contains the set of the all considered and analyzed features.

189

4.4 PROCESSING STAGE

The mediator finds - for each query - a set of equivalent subqueries in order to process QBE queries: an
image is processed by the visual interface and the extracted features are analyzed in terms of the FKB. In
this way, the set of features derives a fuzzy query Q that is used for query processing. Eventually, the user
is provided with a list of several results that satisfy in a certain grade and order the expressed similarity
query

For the aims of our work, a query Q is decomposed into a set of subqueries, say Q= {ql, q2,..., qn}.
We assumes that:

(i) each subquery is a query expressed in terms of symbolic values and confidence (grade of
membership).

(ii) the result of each query is a graded (fuzzy) set:

q; -> FRi ={(rü, aü), (ri2, ai2),..., (rik, a^)} .

(iii) the computation of q; may be (or may not be in the case of independence) conditioned by FRiA .

From a general standpoint, two generic query approaches to query processing are either based on entirely
sequential or entirely parallel processing plans. Sequential processing requires a subquery qi to be
submitted to a local system if and only if the results of subqueries ql, q2,, qi-1 are already available.
This method is efficient when the partial results rl, r2,...., ri-1 can be used to reduce the processing time
of the remaining subqueries. Parallel processing plan requires simultaneous submission of all subqueries
to the local queries. It is beneficial when the computational complexity of all subqueries is more or less
the same and the majority of subqueries cannot be simplified by the results of the other subqueries. In
complex similarity queries, we proceed starting from the idea that some of the subqueries are submitted
and usefully processed sequentially, while the other ones may be processed in parallel.

To best understand the task performed at this stage, let us consider the following example.

Example: Let us consider that the query rewriting module receives in input the tuple (fcoior = [a,b], ftexture =
[v,z]). Let us suppose that the KB module could satisfy a certain number of rules, and determine that the
image is similar to those images representing the 'sea' with a confidence value equals to 0.8.
So the query may be rewritten in the form:

select ImageName
from Image natural join Object natural join objDescription natural join Content natural join

featDescription
where featDescription.name = 'content' and featureValue = 'sea' and objDescription.confidence > 0.8

The nature of the select varies according to the kind of subqueries.

We have considered the following classes of subqueries.

a) query containing low level descriptors

b) query containing high level descriptors

c) a combination of a) and b).

The queries containing high level concepts have been considered independent.

The queries containing visual descriptors may be dependent, and the dependencies may be resolved at
processing time.

190

For our aims, a query is viewed as a query tree whose leaves correspond to a single symbolic query. The
nodes correspond to fuzzy operator. Each leaf node in the query tree corresponds to a selection operation
through symbolic features on the described catalogue.

The adopted techniques are based on the different kinds of queries as described by a) b) and c), and are
inspired to [30].
The global query Q is partitioned into two subset of queries, g, and Qd, where Qt indicates the queries
described in a) and Qd those of topics b) and c):

Q = {QuQd}
Each node of g, and Qd is analyzed according to the algorithms showed in the following code, through the
independentQueriesQ and the dependantQueriesQ procedures appropriately on each node.

Figure 3 shows a description of the implemented procedures.

Procedure independentQueries();

Begin

For each qv find all the images which are
similar to g, and store the result into
result tables.

For each couple of result tables, apply
the fuzzy operators and, or, not,
according to the original query.

Show the top k in the final result table.

End;

Procedure DependantQueries();

Begin
While there exist queries to process

Do begin

table! := result(qi)

table2 := result (qi+1)
For each element of table-,

Evaluate the grade of
similarity of the given

elements with all the
elements in table2, using
min, max or not (fuzzy).

End;

Show the top k in the final result table

End;

Function result(q: query): table;

Begin
This function performs the query q with
confidence p, calling the SQL statement:

select ImageName, confidence
from Image natural join Object

natural join obj Description
natural join Content natural
join featDescription

where featDescription.name =
"symbolic feature"
objDescription.confidence > p

end;

Figure 3: The independentQueries() and
dependantQueriesO procedures

191

5. RESULTS AND DISCUSSION

Preliminary experiments have been conducted over a variety of data sets to measure the performance of
the methods and the query processing algorithms developed.

Note that the evaluation of visual perception of similar colored images is a complex process. In the
literature no method for measuring effectiveness and efficiency of a query has been found. However, it is
largely agreed that the efficiency of an approach may be evaluated as respect to human evaluation. Our
results have been reported in term of True Positive TP (the percentage of right similar images) and False
Positive FP (the number of false detected similar images). The plot of TP vs FP is also called ROC. We
have plotted ROC curve as a function of the threshold used in the KD module for deciding the region of
confidence of a certain rule.

The experiments have been done on about 1000 images picked out the Internet and several commercial
archives. They represent landscape, common objects and pictures. The images have been grouped and
stored into a commercial object relational DBMS. About two hundreds images have been used for training
building the FKB and a semantic catalogue has been built.

For experiments, we have used Burt and Adelson wavelet [31] and four decomposition levels, 16x8x8
colors and the space color HSV.

The following figure 3 represents the results of the experiments over our set of images.

Figure 3: ROC curve

6. CONCLUSIONS AND FURTHER WORKS

To address the needs of application based on Query By Content in image database, we are developing a
system based on the integration of computer vision and knowledge discovery techniques.

Our results, reported in terms of ROC curves, show that this method is a promising approach.

However, we note that there are a number of issues that need to be addressed:

■ the notion of query dependency has to be more deeply exploited. We have proposed of decomposing a
query into either dependent or independent subqueries: we haven't yet discussed how to aggregate the
results of these subqueries, which can affect the outcome of the execution (i.e. the top k selection
module);

■ a study of the computational cost of the proposed strategy;

■ at the moment, we do not employ any automatic segmentation techniques. This approach is not
scalable to support large image databases: for this reason we are extending the work with an automatic
segmentation module based on active vision techniques.

192

eventually, we will provide the work with a comparison against other techniques.

7. REFERENCES

[1] A. Yoshitaka, T. Ichikawa, A survey on content based retrieval for Multimedia Databases, IEEE Trans. On Knowledge and
Data Engineering, vol. 11, n. 1, 1999, pp.81-93.

[2] E. Albuz, E. Kocalar, A. Khohkar, Vector-Wavelet based scalable indexing and retrieval system for large color image
archives, Proc. Of IEEE ICASSP 99, pp. 3021-3024.

[3] T. Caelli, D. Reye, On the classification of Image Regions by colour, texture and shape, Pattern Recognition, vol. 26, n. 4,
1993, pp. 461-470.

[4] J. R. Smith, S. F. Chang, Tools and Techniques for Color Image Retrieval, Proc. IS&T, Storage and Retrieval for Image and
Video Databases, vol.2, 670, SPIE 1994

[5] A. Pentland, R.W. Picard, S. Sclaroff, Photobook: tools for Content-Based Manipulation of Image Databases", vol.2, pp. 34-
47, SPIE, Bellingham, WA, 1994.

[6] B. S. Manjunath, W.Y. Ma, Texture Feature for Browsing and Retrieval of Image Data, Tech, Report TR-95-06,1995

[7] S. Mehrotra et al., Towards extending information retrieval techniques for multimedia retrieval, proc. Third Int. Workshop
on Multimedia Information Systems, Como, 1997.

[8] M. Flickner et al., Query By Image and Video Content: the QBIC system, IEEE Computer, vol. 28, n. 9,1995, pp. 23-32.

[9] J. R. Bach et al., The Virage Image Search Engine: an open framework for image management, Proc. SPIE Storage and
Retrieval for still

[10]M. J. Swain, D. H. Ballard, Color Indexing, Int. Journal of Computer Vision, vol. 7, n. 1,1991,pp. 11-32.

[11]C. Djeraba, When image indexing meets knowledge discovery, Proc. of ACM MDM/KDD 2000, Simoff and Zaiane (ed.),
pp.73-82

[12] J. Han, Y. Huang, N. Cercone, Y Fu, Intelligent Query Answering by Knowledge Discovery Techniques, IEEE Transactions
on Knowledge and Data Engineering, vol. 8, 3, June 1996, pp.373-390.

[13]R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large Database, Proc. 1993 ACM-
SIGMOD Int. Conference on Managment of Data, pp. 207-216, Washington DC, 1993.

[14] W. J. Frawley, G. Piatetsky-Shapiro, C. J. Matheus, Knowledge discovery in Database: an overview, pp. 1-27, AAAI/MIT
Press 1991.

[15] J. Han, Y. Cai, N. Cercone, Data Driver Discovery of quantitative rules in relational databases, IEEE Transaction on
Knowledge and Data Engineering, vol. 5, pp. 29-40,1993.

[16]R. J. Brachman, Viewing data from Knowledge representation lens, Proc. Int. Conference Building and Sharing of Very
Large Scale Knowledge Bases, pp-117-120,1993.

[17]R. S: Michalsky et al.„ Mining for knowledge in database: the INLEN Architecture, initial implementation and first results,
Journal of Information Systems, vol. 1, pp. 85-114,1992.

[18] J. Han, Y. Fu, Exploration of the Power of attribute-oriented induction in data mining, Advances in Knowledge Discovery
and Data Mining, pp. 399-421, AAII/MJT Press, 1996.

[19]G. Platetesky-Shapiro, C. J. Matheus, Knowledge Discovery Workbench for Exploring Business Databases, International
Journal Intelligent Systems, vol. 7, pp. 675-786,1992.

[20] W. Ziarko, R. Golan, D. Edwards, An application of Datalogic/R Knowledge Discovery Tool to identify Strong Predictive
Rules in stock market data, Pro. AAAI-93 Workshop on Knowledge Discovery in Databases, pp. 93-101, Washington DC,
1993

[21] J. Zykow, J. Baker, Interactive Mining of regularities in Databases, Knowledge Discovery in Databases, AAAI/MIT Press,
1991

[22] A. Brink, S. Marcus and V.S. Subrahmanian. Heterogeneous Multimedia Reasoning. IEEE Computer, 28, 9, pps 33-39,
Sep. 1995.

[23] L. Zadeh, Quantitative Fuzzy Semantics, Information Sciences 3, pp. 159-176,1971

193

[24] D. Dubois, H. Prade, L. Ughetto, Checking the coherence and redundancy of Fuzzy Knowledge Base, IEEE Trans. On
Fuzzy Systems, vol. 5, 3,pp. 398-420, 1997.

[25] I. Finizio, A system for Knowledge Discovery in Data Base, (In italian), Laurea Degree Dissertation, L. Sansone (advisor),
June 2000, University of Naples "Federico II".

[26]R.Fagin, Combining fuzzy information from multiple systems, J. Computer and Systems Sciences, 68, pp. 83-99,1999.

[27] A. Chianese, G. Boccignone and A. Picariello, Wavelet transform and image retrieval, preliminary experiments, Int.
Conference on Computer Vision, Pattern Recognition and Image Processing, Atlantic City 2000

[28] G. Van de Wouwer et al., Wavelet correlation signatures for color texture characterization, Pattern Recognition vol 32
1999, pp. 443-451.

[29] B. J. Super, A. Bovik, Shape from texture by Wavelet-Based Measurement of Local Spectral Moments, IEEE 1992.

[30]M. Ortega, K. Chakrabarti, Sharad Mehrotra, T. S. Huang, Supported Ranked Boolean Similarity Queries in MARS, IEEE
Transactions on Knowledge and Data Engineering, vol. 10, 6, pp. 905-924,1998

[31]M. Antonini, M. Barlaud, P. Mathieu, I. Daubechis, Image coding using wavelet transform, IEEE Trans. On Image
Processing, vol. 1, n. 2,1992, pp. 205-219.

194

INDICE DEI NOMI

Alpkocak Adil, 99
Amsaleg Laurent, 1
Antonis Hondroulis, 123
Arcelli Fontana Francesca, 163
Barrett David A., 143
Berrani Sid-Ahmed, 1
Böehm Klemens, 113
Bouras Ch., 133
Candan K. Selcuk, 31
Celentano Augusto, 61
Chianese Angelo, 183
Costas Harizakis, 123
Danisman Taner, 99
Escobar-Molano Martha L., 143
Formato Ferrante, 163
Gaggi Ombretta, 61
Genova Zornitza, 143
Gkamas A., 133
Gros Patrick, 1
Güdükbay Ugur, 11
Gupta Amarnath, 21
Hayashi Takashi, 153
Henrich Andreas, 71
Honishi Takashi, 153
Iglinski Paul J., 89
Iizuka Yuichi, 153
Karaliotas Anastasios, 133

Konishi Kazuya, 153
KovseJernej, 173
QingLi, 81
Lopresti Daniel, 41
Marder Ulrich, 173
Oria Vincent, 51
Oria Vincent, 89
Özsu M. Tamer, 89
Picariello Antonio, 183
Priya Mahalingam Lakshmi, 31
Robbert Günter, 71
Sansone Lucio, 183
Santini Simone, 21
Saykol Ediz, 11
ShahAmit, 51
Sowell Samuel, 51
Stamos K., 133
Stojanovic Ana, 113
Suzuki Gengo, 153
Triantafillou Peter, 123
UlkerTuba,99
Ulusoy Özgür, 11
Weber Roger, 113
Wilfong Gordon, 41
Yang Jun, 81
Zhang Lei, 143
Zhuang Yueting, 81

195

196

INDICE

Preface V

A Robust Technique to Recognize Objects in Images, and the DB Problems it Raises
Laurent Amsaleg, Patrick Gros, Sid-Ahmed Berrani 1

A Semi-Automatic Object Extraction Tool for Querying in Multimedia Databases
Ediz Saykol, Ugur Güdükbay, Özgür Ulusoy 11

A Data Model for Querying Wavelet Features in Image Databases
Simone Santini, Amarnath Gupta 21

Query Optimization in the Presence ofTop-k Predicates
Lakshmi Priya Mahalingam, K.Selcuk Candan 31

Comparing Semi-Structured Documents via Graph Probing
Daniel Lopresti, Gordon Wilfong 41

Indexing XML Documents: Improving the BUS Method
Vincent Oria, Amit Shah, Samuel Sowell 51

Multimedia Reporting: Building Multimedia Presentations with Query Answers
Augusto Celentano, Ombretta Gaggi 61

An End User Retrieval Interface for Structured Multimedia Documents
Andreas Henrich, Günter Robbert 71

Multi-Modal Retrieval for Multimedia Digital Libraries: Issues, Architecture, and Mechanisms
Jun Yang, Yueting Zhuang, Qing Li 81

Querying Images in the DISIMA DBMS
Vincent Oria, M. Tamer Özsu, Paul J. Iglinski 89

PAMIR: Parallel Multimedia Information Retrieval System
Adil Alpkocak, Tuba Ulker, Taner Danisman 99

Implementing Relevance Feedback Techniques for Large Image Collections Efficiently
Klemens Böhm Ana Stojanovic, Roger Weber 113

Optimal Cache Memory Exploitation for Continuous Media: To Cache or to Prefetch?
Triantafillou Peter, Hondroulis Antonis, Harizakis Costas 123

197

An Architecture for Redundant Multicast Transmission Supporting Adaptive QoS
Ch. Bouras, A. Gkamas, An. Karaliotas, K. Stamos 133

Retrieval Scheduling for Multimedia Presentations
Martha L. Escobar-Molano, David A. Barrett, Zornitza Genova, Lei Zhang 143

Distributed Multimedia Information Retrieval that Accepts Arbitrary Media Key
Takashi Hayashi, Gengo Suzuki, Yuichi Ezuka, Kazuya Konishi, Takashi Honishi 153

Towards a Flexible Information Retrieval Approach Based on the Context
Francesca Arcelli Fontana, Ferrante Formato 163

Multimedia Metacomputing
Ulrich Marder, Jernej Kovse 173

A System for Query by Example in Image Data Base
A. Chianese, A. Picariello, L. Sansone 183

Indice dei nomi 195

198

Finito di stampare
nel mese di ottobre 2001
dalla CUEN srl - Napoli

con DocuTech

Workshop General Chairs:
Prof. R. Chellappa (Univ. of Maryland)

Prof. L Sansone (Univ. di Napoli "Federico II")

Workshop Program Chairs:
Prof. S. Adali (Rensselaer Polytechnic)

Prof. S. Tripathi (Univ. of California Riverside)

Steering Committee:
Prof. V. S. Subrahmanian (Univ. of Maryland)
Prof. S. Tripathi (Univ. of California Riverside)

Dr. D. Hislop (US Army Research Office)

Organizing Committee:
Prof. A. Chianese (Univ. di Napoli "Federico II")
Ing. A. Picariello (Univ. di Napoli "Federico II")

Dr. G. Boccignone (Univ. di Salerno)

mis £% r\

Segreteria Scientifica
Dipartimento di Informatica e Sistemistica

Via Claudio, 21 - 80100 NAPOLI
Tel. +39 081 7683827-26
E-mail: angelo.chianese@unina.it
Sito Web: www.cs.rpi.edu/mis2001

Segreteria Organizzativa
effe erre congressi snc
Via Coroglio 156, 80124 Napoli
Tel. +39 081 2302417 Fax +39 081 2301044
E-mail: frcongr@cittadellascienza.it

