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JOINT PROBABILITY DENSITY FUNCTION OF SELECTED ORDER 

STATISTICS AND THE SUM OF THE REMAINING RANDOM VARIABLES 

INTRODUCTION 

Detection and location of weak signals in random noise is 

frequently accomplished by the ordering of the random variables 

(RVs) in a measured data set, followed by an investigation of the 

locations and statistics of several of the largest RVs under 

consideration.  Also of interest are the remaining smaller RVs in 

the data set, which can be used to estimate the background noise 

level and to form a basis for normalization, thereby realizing a 

constant false alarm processor. 

In this study, the original data set {x } is composed of N 

independent, identically distributed (IID) RVs with a common 

arbitrary probability density function (PDF) p(x).  This data set 

is ordered into the modified data set {x'}, n=l:N, of dependent 

RVs, where x£ > x£ > ••• > X£.  Then, M-l RVs are selected from 

this latter data set, namely, the n1~th largest RV, the n,-th 

largest RV, ..., and the nM_1~th largest RV (M > 2), where, 

without loss of generality, 1 < n, < n9 < ••• < nM  < N. 

Finally, the sum of the remaining RVs in the ordered data set is 

formed for a total of M dependent RVs.  The joint M-th order PDF 

of these M dependent RVs is the quantity of interest. 



For convenience of notation, the M-dimensional random vector 

(RV) z = [z1 ••• zM] is defined as 

N 
Zl = ^ M-l - xnM   '  ZM - TZ   *n > (1) 

1 M-l        n*=l 

where the tic mark on the sum denotes n ¥  n», n~, ..., n„ -. 12        M-l 

Thus, the first M-l components of RV z satisfy the inequalities 

zl - z2 - '*' - ZM-1*  The Joint PDF of M-dimensional RV z is of 

interest here. 

To determine this joint PDF of RV z, a series of simpler 

problems will be solved first, and the results will be 

interpreted in terms of conditional PDFs.  From these simpler 

results, the general form of the M-dimensional joint PDF of RV z 

in equation (1) can be deduced.  The end result is a single 

one-dimensional contour integral for the joint PDF of z, which 

can easily and accurately be numerically evaluated by moving the 

contour of integration to pass through the saddlepoint of the 

integrand.  As a backup, an alternative approach involving the 

joint M-dimensional moment-generating function (MGF) of RV z will 

also be derived; however, it is not as useful as the single 

contour integral indicated above. 

Since the original RVs {xn} are IID with common PDF p(x), the 

N-dimensional joint PDF of the ordered RVs {x'}, n=l:N, is simply 

g(u1,...,uN) = N! p(u1) ••• p(uN)  for u±   > u2 > ••• > uN   (2) 



and zero elsewhere.  The requirement that u  > u  . for n=l:N-l n   n+1 

represents the statistical dependence amongst the ordered RVs. 

For later use, it is convenient to define two auxiliary 

functions.  First, using the common PDF p(x) of RV x , function 

u 

c(u,X) = J dx p(x) exp(Xx) (3) 
— 00 

is defined, which is a mixture of a cumulative distribution 

function (CDF) and an MGF.  That is, c(u,0) is the first-order 

(FO) CDF of RV xn, while c(+°»,X) is the FO MGF /j(\)   of RV x , 

n=l:N.  Variable u is real, while X can be complex. 

Also defined is the auxiliary function 

+ 00 

e(u,X) = J dx p(x) exp(Xx) , (4) 

u 

which is a mixture of an exceedance distribution function (EDF) 

and an MGF.  That is, e(u,0) is the FO EDF of RV x , and e(-»,X) n ' 

is the FO MGF fj(\) of RV xn, n=l:N. The two auxiliary functions 

are interrelated according to 

c(u,X) = e(-»,X) - e(u,X) = fj{\)   -  e(u,X) , (5) 

e(u,X) = c(+»,X) - c(u,X) - fj(X)   -  c(u,X) , (6) 

where /j(\) is the common MGF corresponding to PDF p(x). Several 

useful examples of the c(u,X) and e(u,X) functions are listed in 

appendix A. 

3 (4 blank) 



SOME SPECIAL CASES 

JOINT PDF OF THE LARGEST RV AND SUM OF REMAINING RVs 

For this special case, M = 2.  The second-order (SO) MGF of 

RV z = t z-i z~ ] is given by the expectation 

Ü ( N ^ //Z(X1,X2)   =  E  exp(X1z1+X222)   -  E  exp^x^  +   X2 YH   xnJ 

J...J dUl..-duNi9(Ul uN)   exp(\1u1  +  X2 C   uj 
N 
—-1 

n^2 

ul 

= N! J du1 p(u1) exp(X1u1) J du2 p(u2) exp(X2u2) 

UN-1 

J duN p(uN) exp(X2uN) . (7) 

Denote the integral on variable u  by I .  Then, by reference to 

equation (3), 

XN = C<UN-1'X2) * (8) 

Next, there follows 

UN-2 

Vl   "   I duN-l   P'Vl»   eXP(X2   UN-1>   C(UN-1'X2> 
— 00 

UN-2 2 

=   \  duN-l   C'(UN-1'X2)   C(UN-1'X2)   =  I   [C(UN-2'X2)]      ' (9) 



Continuing in this manner leads to 

V2 = 3} [
C(U

N-3'
X
2>]   (10) 

1       r iN_1 J2 = (NTTTT [c(Ul,x2)J   , (11) 

or, generally, to 

1     r -.N+l-n 
I  = / KT ■ T ~^,      c(u  ,,X-)       for n=2:N . (12) n   (N+ 

Finally, the SO MGF of RV z is 

N-l 
//Z(X1,X2) = N J du1 p(u1) exp(X1 u±)    [cfu^X^J    .     (13) 

This single integral must be numerically evaluated to determine 

the SO MGF /uz(X1,X2) . 

For PDF q(u) = S(u - a), the MGF is exp(X a), and the inverse 

Laplace transform is given by the Bromwich contour integral on C: 

q(u) = jy-  dX exp(-Xu) exp(Xa) = S(u - a) . (14) 

This is an important reference case and will be used frequently. 

The SO PDF of RV z at arbitrary field point z = [z. z~] is 

PZ
(Z1'Z2> - jT^2 JT dXl dX2 exp(-XlZ;L-X2z2) ^(X^) 



N 

(i2lt) 
dX- dX2 exp(-X;, z1-X_z2)   du., p(u1) exp(X;,u1) 

,N-1 N-l 
x |^c(u1,X2)J    = N p(z1) jy^ j dX exp(-Xz2) [c(z1,X)j    ,  (15) 

where use has been made of equation (14). 

Since the RVs must always satisfy z2 < (N-l) z*, the field 

point z = [z* z~] should be chosen so that field components 

z2 < (N-l) z.; otherwise, the integral result in equation (15) 

will yield zero.  This result may be deduced directly from the 

integral for SO PDF p (z^z-) in equation (15) as follows. 

Function c(u,X) in equation (3) is analytic in X for Re(X) > X , 

a problem-dependent critical value.  Also, c(u,X) ~ exp(Xu) as 

X -> +<*>, since the largest that x can be in equation (3) is x = u. 

Therefore, the integrand in equation (15) is 

N-l 
exp(-Xz2) [c(zlfX)j    ~ exp[-x(z2 - (N-l) z1jl as X -» +• . (16) 

If contour C is moved far to the right in the X-plane, where the 

integrand is guaranteed to be analytic, then the integrand tends 

to zero if z2 > (N-l) z^.     Therefore, SO PDF p (z^z.) is zero in 

that region of field space.  The joint PDF in equation (15) can 

be written as 

Pz(z1,z2) - (N p(Zl) [c(Z;L)]
N X) ^ I dX exp(-Xz2) 

fc(zlfxn 
c(z1) 

N-l 

(17) 



where 

c(z1) = cUjjO) = J dx p(x) (18) 

is the common FO CDF of RVs {xn}, n=l:N.  However, the leading 

factor in equation (17) is just the FO PDF of the largest RV 

z^ = x|.  Therefore, the remaining term must be the conditional 

FO PDF of RV z2 at argument z^,   given that z, = z..     Expressing 

c(z1,X) 

c(z1) - Jdx ffffr —p(^> - J dx Pc(x) exp(Xx) (19) 

the quantity PQ(x) is recognized as the conditional PDF of each 

of the remaining {xnJ RVs, given that the largest one, x', has 

taken on the value z..  That is, 

'p(x)/c(z1)  for x < z.y 

PCU) = { 
0  for x > z., 

= PXn(x | x{ = zj (20) 

The corresponding conditional MGF is given in equation (19). 

Since all the remaining {xnJ RVs are still independent of each 

other (even given that the largest RV x' = z.) ,   the last term in 

the integral in equation (17) is the FO MGF of the sum z2 of the 

remaining N-l RVs, given that RV z1 equals value z...  Finally, 

the inverse Laplace transform in equation (17) yields the 

conditional FO PDF (at argument z^)   of RV z2, which is the sum of 

the remaining RVs, given that RV z, has taken on the value z-. 



JOINT PDF OF THE m-th LARGEST RV AND SUM OF REMAINING RVs 

Again, M = 2, while the RVs of interest are now 

■i - *; ' H -TZ  *n ' (21) 

n—1 

where the tic mark on the sum denotes n ^ m.  The SO MGF of RV 

z = [z, z2] is 

*a(XlfX2) - E exp(xiXm + X2 Y£   ^) 

" \'"\  dur-'duN g(ul UN) exP(Xlum + X2 ^ un) 

ul 

= N!   dUj^ p(u1) exp(X2u1) I du2 p(u2) exp(X2u2)   

um-2 um-l 

x J *V-1 P(Vl» exP(X2um-l) J dum P(um} exP(XlV 

UN-1 
x J dum+l P(u»+1> exP(X2um+l

) •'• J duN P(UN} exP<X2V '  (22) 

The N-m innermost integrals immediately integrate to 

lN=mTT [c(um'X2)]    • (23) 

The remaining m integrals in equation (22) require that 

u. > u2 > ••• > u .  Expressing this requirement (see appendix B) 

as u  < u  -<•••< u, < u, enables the alternative form for the m   m—i z 1 



SO MGF to be written as 

WV   -  TW=hi I dUm P(V   exP(XlU
m>   lc(um'X2)]N_m 

x J dum-l  p(um-l)   exp(X2um-l}   "*   J dul   P(ul'   exp(X2u1)   .      (24) 

m 2 

The  m-1   innermost  integrals  are   simply 

ÜTTTT [•(umA2)l
m-1  • (25) 

The  SO MGF  of  RV  z  then  follows  as 

00 

//Z(X1,X2)   = m(JJ]   J du  p(u)   exp(XlU)   [c(u,X2)]
N_m   [e(u,X2]

m-1.(26) 
— 00 

For m = 1, this result reduces to the earlier special case in 

equation (13). 

The SO PDF of RV z is given by the two-dimensional inverse 

Laplace transform of equation (26), namely, 

PZ
(Z1'Z2> = jT^2 JT dXl dX2 exP(- Xlzl" X2Z2> ^z(Xl'X2) 

= m(JJ) p(Zl) jf^ J dX exp(-Xz2) [ c( z± , X) ]N_m [ e( z± , X) ]m_1 , (27) 

C 

where equation (14) was used.  For m = 1, this result reduces to 

that in equation (15).  For m > 2, there is no limit on the 

10 



ranges of components z-i/Z2 °^ field point z (except where PDF 

value p(z1) = 0).  That is, RV z2 in equation (21) can be 

arbitrarily larger than RV z», and the corresponding PDF value 

p {T.,,Z~)   can be nonzero.  In terms of the integral in equation 

(27) for p (z.,z,)i the difference for m > 2 is that e(z-,X) is 

only analytic for Re(X) < X , a problem-dependent critical value. 

Any attempt to move contour C to the right in the X-plane will 

encounter a singularity of the analytic continuation of e(z1,X) 

at Re(X) = X , thereby leading to a nonzero integral result for 

p (z1,z~) at any z.,z 'zV£*l'*2 l'*2 

The SO PDF of RV z can be written as 

/     \   _ (N^  ,  \ r /  v iN-m r    ,      , ,m-l pz(zl'z2) =   UJ P(zi) tc(z1)]    te(z1)] 

ik ! dX exP<"Xz2> 
fc(z1,X) .N-m 

c(z1) 

fe(z1,X) . m-1 

e(z1) 
(28) 

The first factor (upper line) is the FO PDF of the m-th largest 

RV z- = x'.  That is, any one of the N RVs (x } could take on 1   m J l nJ 

value z,; then, there are (N-l|m-l) possibilities for which m-1 

RVs lie above z«   and the remaining N-m RVs lie below z,.  Thus, 

the total number is N (N-l|m-l) = m (N|m), with each of these 

possibilities having probability [c(z-)] ~m [etz.)]11- . 

The second factor in equation (28) is the conditional PDF of 

RV Z2 at argument z-, given that RV z. = z-.  It is also the 

11 



inverse Laplace transform of the conditional FO MGF of the sum z2 

of the remaining N-l RVs, given that x' = z» = z...  The ratio 

00 00 

^y = J dx e(z} ) exP<Xx> = J dx Pe
(x) exP<Xx)        (29) e 

j. z 1 

is the conditional MGF of each of the remaining RVs that lie 

above z., and 

fp(x)/e(z.,)  for x > z.' 
PeU) - (30) 

i,        0  for x < z^J 

is the corresponding conditional PDF, given that x' = z- = z-. 

Since all of the m-1 remaining RVs that lie above value z.. are 

independent of each other, and all of the N-m remaining RVs that 

lie below value z.. are independent of each other, the conditional 

MGFs can be multiplied together to give the conditional MGF of 

the remaining sum RV.  Finally, the inverse Laplace transform in 

equation (28) gives the conditional PDF of interest. 

12 



JOINT PDF OF THE TWO LARGEST RVS AND SUM OF REMAINING RVS 

For this special case, M = 3 and the RVs of interest are 

N 
Z.  = X' 1 '   z2 " x2 '   z3 ~ C xn n=3 

(31 

The joint third-order (TO) MGF of RV z = [z1 z2 z3] is 

//Z(X1,X2,X3) = E exp 
N   ^ 

Xlxi + X2X2 + X3 E xn n=3 

r     r f N 
= J...J dUl..-duN g(Ul uN) exp XlUl + X2u2 + X3 C ^ 

U-, 

= N! J du1   p(ux) exp(X1u1) J du2 p(u2) exp(X2u2) 

u. u N-l 
x J du3 p(u3) exp(X3u3) ••• J duN p(uN) exp(X3uN) 

u, 

= N(N-l) J dU;L p(Ul) exp(XlU;L) J du2 p(u2) exp(X2u2) c(u2,X3)
N"2. 

— » _os 

(32) 

The corresponding TO PDF is given by the three-dimensional 

inverse Laplace transform 

P«<81'82'SB3> = 77^—3" JH dXl dX2 dX3 exp(-XlZl-X2z2-X3Z3) 

x /^VW (33) 

Substitution of fj     from equation (32) into equation (33), an 

13 



interchange of integrals, and use of equation (14) results in 

.        .   N(N-l) r ,x     , N   . 
Pz

(zl'z2'Z3} - TIF- J dX3 exP("^3z3) 

u
l 

x J dux p(u1) S(u1-z1) J du2 p(u2) [c(u2,X3)]    
&(u2_z2* * ^34* 

— 00 —00 

The innermost integral on u- is zero if z- > u1 .  Therefore, its 

value is p(z2) lc(z~,X3)] ~ U(u,-z2), which gives the TO PDF 

Pz(z1,z2,z3) = N(N-l) p(z1) p(z2) U(z1-z2) 

x JYÜ  J dX exp(~Xz3) [c(z2,X)J ~  . (35) 
C 

The unit-step function U( ) merely emphasizes that field point 

z = [z, z, z,] should have components z, > z_ because RVs z» > z~ 

always; that is, xf > xl, by definition.  The joint PDF must be 

zero if field point components z.. < z~. 

Initially, there is no obvious limit on component z3 of field 

point z;  however, because RVs x' < x' = z? for n=3:N, then 

N 

YZt   «n < (N_2) z2 ' (36) 

n=3 

Therefore, PDF p (z-,z2,z3) will be nonzero for field point 

components z3 < (N-2) z~; any choice for field point component z, 

larger than (N-2) z~ will result in a zero value for PDF p . 

14 



This same result may be deduced from the integral relation for 

PDF p  in equation (35); the analysis is identical to that in the 

discussion surrounding equation (16).  In summary, field point z 

in PDF Pz(z) should satisfy z, > z- > z3/(N-2) to realize nonzero 

values for p (z). 

Equation (35) can be written in the form 

pz(zl,z2'z3) = N(N-1) P<zi) P<z2) tc(z2)] 
N-2 

IIiIdX exp(-Xz3) 
fc(z2,X) 

.N-2 

c(z2) j (37) 

The leading factor (upper line) is the joint SO PDF of x' = z. 

and x^ = z2 at arguments z1 > z2.  The last factor is the 

conditional PDF of RV z^  at argument z,, given values for RVs z, 

and z2.  This reasoning is identical to that presented earlier. 

15 (16 blank) 



JOINT PDF OF l^-th LARGEST RV, n2~th LARGEST RV, , 

nMl-th LARGEST RV, AND SUM OF REMAINING RVs 

Without loss of generality, 1 < n» < n- < ••• < n„.   <  N and 

M > 2.  The first step is to identify the RVs 

N 

ll        "-   »M-l'  Z" = } 
zl " XA,   zM-l=xn„,'  ZM - C XA ' (38) 

n£=l 

where the tic mark denotes n ^  n«, n-,..., nM_-, .  Then, the 

field point z = [z^  z2 ••• zMi z„] is taken such that 

*! > *2 > ••• > zH_r 

These events can only occur if the following conditions are 

met: n.^-1 RVs must lie above z-; n--n1-l RVs must lie between z~ 

and z-; n,-n0-l RVs must lie between z-, and z~;...; n„ .. -n„ ~-l 
1   .5 l 3      2       M-l  M-2 

RVs must lie between zM-1 and zM_2; and N-nM-1 RVs must lie below 

zM_]_ •  The number of ways in which these events can happen is 

N! 
F = (nrl)l (n2-ni-l). ..: (nM_1-nM_2-l)! (N-n^)! '    <39) 

where M > 2. 

If an "interval" MGF is defined as 

ub 

j"(ua,ub,X) = J dx p(x) exp(Xx) - c(ub,X) - c(ua,X) 

u a 

= e(ua,X) - e(ub,X) ,     (40) 

then the joint PDF of RV z = [z±   ••• ■ ] at field point z is 
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PZ(Z1 V = F P(Z1} •'• P^M-l) Ili I  dX exP("^M) 

N~nM-1 nM  1_nM  ->-l 
• • 

n2-n.-l 
ni_1 

x [fj{z2,z1,\)} x   [e(z1#X)] l        . (41) 

This result has been deduced as the natural extension of the 

earlier multiple integral approaches and their special cases in 

the previous section. 

An alternative form, which is more amenable to programming, 

is 

N! M_1 p
Z
(zl'"-'V = 5^ T[{P(zm)} HI I dX exP(-xV KX) ,  (42) 

m=l J 

C 

where  constant 

D =   (n^l):   fT{(na+1-nm-l)!}    (N-n^)! (43) 

and 

n -1  M-2f n
mxi~

nn,-1> 
m+1     m 

n.-l   M-2( ] 

KX)   =   [e(2l,X)] Q{fe(zm+l'
X)   "  e<VX)] 

N-n     n 

x   [c(zH_lfX)] • (44) 

For  each   X,   it   is   necessary  to   compute   {e(z   ,X)}   for  m=l:M-l 

C(Z
M_!/X)   =  f/{\)   -   e(zM_1,X). 

and 
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Letting X = X + iy, where X^ is (fairly near) the real 

saddlepoint location of the integrand of equation (42), then the 

joint PDF in equation (42) can be expressed as 

, M-l 
p,(z1,...,zM) =D^rT{P(zm)} J dy Re{exp[-(Xs+iy)zM] l(Xs+iy)} . 

m-l       0 

(45) 

COMMON NONLINEAR TRANSFORMATION OF REMAINING RVs 

If all the remaining N+l-M RVs in the last term of equation 

(38) are subjected to a common nonlinear transformation, h(x), 

prior to summation, the pertinent e(u,X) and c(u,X) functions 

above must be replaced by 

eh(u,X) =  dx p(x) exp[X h(x)] , 

u 

u 

ch(u,X) = J dx p(x) exp[X h(x)] = eh(-»,X) - eh(u,X) .   (46) 
_ 00 

For example, if xn = |gn|, where gn = N(0,1), and if h(x) = x2, 

then for Re(X) < 1/2, 

eh(u,X) = [ dx —2—r- exp(-x2/2) exp(Xx2) 
i (2n)'5 

=  T *(-u (1-2X)'1] for u > 0; — for u < 0 .  (47) 
U-2XP  v >                                (1-2X)'5 

Also, 
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ch(ufX) = ± 2$(-u (1-2X)1*) fQr u > 0   0 for u 
(1-2X)* 

These are not the same functions encountered in example 4 in 

appendix A; rather, the functions here can be expressed as 

eh(u,X) = e4(u
2,X) ,   ch(u,X) = c4(u

2,X) . (49) 

In general, letting RV y = h(x), there follows from equation (46) 

00 00 

eh(u,X) = J dx px(x) exp[X h(x)] =  [ dy p (y) exp(Xy) 
«J j     y 

u h(u) 

s ey(h(u),X) . (50) 

RATIOS OF RANDOM VARIABLES 

The ratios of RVs are defined according to 

rm = Zm/ZM  for m=1-M-l • (51) 

Then the joint PDF of [r. ••• r  , z„] is 

P(rl"-"rM-l'ZM) = (ZM)M_1 Pz
(Vl ¥M-1'

Z
H» '     (52) 

while the PDF of RV r = [r- ••• rM_,] is 

00 

P M  1 

Pr(rl'--"rM-l) = J du u "  Pz(ur1,...,urM_1,u) .       (53) 
— 00 

It is necessary to carry out this one-dimensional integral on u 

to evaluate the PDF at the M-l dimensional field point 

r = [rl '" rM-l] of interest. 
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SUMMARY 

The solutions for the joint PDFs of several simpler ordered 

statistics problems were obtained by first deriving the joint 

MGFs of the RVs of interest.  Then, the multidimensional inverse 

Laplace transform back into the PDF domain was manipulated into a 

form that involved only a single contour integral in the MGF 

domain.  Interpretation of the final form in terms of conditional 

MGFs and conditional PDFs afforded useful insights on the 

meanings of the various quantities involved, as well as on their 

interactions with each other.  Finally, these results were 

extended to the general problem of M-l ordered statistics and the 

sum of the remaining RVs in an original set of N IID RVs with 

arbitrary common PDF p(x). 

Numerical evaluation of the joint PDF is most easily 

accomplished by locating (approximately) the real saddlepoint of 

the MGF integrand in the X-plane, and using a Bromwich contour 

that passes through this point.  It is not necessary to resort to 

a saddlepoint approximation in the one X dimension; instead, very 

high accuracy in the numerical evaluation of the single integral 

for the joint PDF can be achieved with little computer effort. 

An alternative approach to this problem is afforded by 

determining the joint MGF of the RV z and then resorting to a 

saddlepoint approximation to obtain the joint PDF at field point 

z of interest.  This technique is presented in appendix C. 
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APPENDIX A - EXAMPLES OF c(u,X) AND e(u,X) 

Equations (3) through (6) of the main text lead to 

u 

c ' (u,X) = I dx p(x) exp(Xx) = /u(X) - e(u,X) / 

+ 00 

e(u,X) = I dx p(x) exp(Xx) = /u(X) - c(u,X) , 

u 

where //(X) is the FO MGF corresponding to FO PDF p(x). 

EXAMPLE 1 - EXPONENTIAL 

p(x) = exp(-x)  for x > 0, 0 for x < 0 ; 

c(u,X) = 1 " exP[~u(1~X)]  for u > 0, 0 for u < 0 ; 

e(UfX) = exp[-u(l-X)3  for u > 0, £-    for u < 0 . 

In the relation for e(u,X), Re(X) < 1 is also required. 

EXAMPLE 2 - GAUSSIAN, X = g = N(0,1) 

p(x) = (2n)_Js exp(-x2/2)  for all x ; 

c(u,X) = exp(X2/2) §(u - X)  for all u,X ; 

e(u,X) = exp(X2/2) #(X - u)  for all u,X . 

The function $ is the CDF of a normalized Gaussian RV, namely, 

•(x) = J dt (2n) ^ exp(-t2/2)  for all 

A-l 



EXAMPLE 3 - MAGNITUDE GAUSSIAN, x = |g 

p(x) = (-J exp(-x /2)  for x > 0 ,  0 for x < 0 ; 

c(u,X) = 2 exp(X2/2) [$(X) - $(X - u)]  for u > 0,  0 for u < 0 ; 

e(u,X) = 2 exp(X2/2) *(X - u) for u>0, 2 exp(X2/2) *(X) for u<0 . 

EXAMPLE 4 - SQUARED GAUSSIAN, x = g2 

P (x) = exp( 
x/2>  for x > 0,  0 for x < 0 ; 

(2nx) h 

c(u,X) = ^ 2$l u (1 - 2X) J  for u > Qf     o for u < 0 ; 
(1 - 2Xp 

e(u,X) = 2$l- u (1 - 2X)^J  for u > Qi      (1 _ 2X)-i5 for u < 0 

(1 - 2XP 

In the relation for e(u,X), Re(X) < 0.5 is also required. 

EXAMPLE 5 - CHI-SQUARED RV OF 2k+2 DEGREES OF FREEDOM; k-0,1,2. 

k     ._ 
p(x) = -—e*?(   x)     for x > 0,  0 for x < 0 ; 

k   j K    T T 

c(u,X) = (l-XT*-1 [l - exp(-ud-X)) C y—(^7X) ]  for u > 0, 

= 0 for u < 0 ; 

j-0     3 

k  j     i 
e(u,X) = (1-X)"k_1 expf-u(l-X)l £] -—(1;X)   for u > 0, 

v     '   j = 0    ]- 

= (l-XT*-1  for u < 0 . 

In the relation for e(u,X), Re(X) < 1 is also required. 
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For complex arguments of $ in examples 2 through 4, the 

relation 

*(z) = | exp(-z2/2) w(-iz//2) 

in terms of the w function (reference 1, chapter 7) is very 

useful. 

The above results extend immediately to a scaled and shifted 

RV x = a + b x according to 

c(u,X) = exp(aX) c fu ~ a,b\) , 

e(u,X) = exp(aX) e [u ~ a,bx) . 
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APPENDIX B - INTERCHANGE OF MULTIPLE INTEGRALS 

Suppose a multiple integral over the range 

ua < ul < u2 < u3 < u4 < ub is rec3uired» namely, 

Ub   ub   ub   ub 
1 = J dul J du2 J du3 J du4 *< WW ' tB-1) 

ua   ul   u2   u3 

This multiple integral may be expressed in numerous equivalent 

representations, such as 

Ub    u4    u3    u2 
1 = J du4 I  du3 J du2 J dul fdVU^Ug,^) 

Ua   ua   ua 

Ub    u3    u2    ub 
= J dU3 J du2 J dul J du4 £(^^2^3,^) 

u3 

Ub    ub   u2    u4 

J du2 J du4 j  dul J du3 f(u1,u2,u3,u4) 
U2    ua   u2 

Ub   ub   u4    u4 
= J dul J du4 J du2 J du3 f(^,u2,u3,u4) . (B-2) 

ua   ul   ul   u2 

Each pair of limits is chosen to be as tight as possible.  The 

general rule is that if a potential limit variable has already 

been integrated out, the next tightest limit variable still 

active should be selected. 
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APPENDIX C - JOINT MGF OF SELECTED ORDERED SET AND REMAINDER 

The RVs of interest are those listed in equation (38) and its 

sequel, except that the original RVs {x } are specialized here to 

be exponential RVs with common PDF exp(-u) for u > 0.  The joint 

MGF of the ordered RVs {x'}, n=l:N, is shown in reference 2 (page 

68, equation (B-18)) to be 

N! 
//o(al'",,aN) " (l-a1)(2-a1-a2) • • -(N-a., "V (C-l) 

for a, < 1, a. + a- < 2,..., a, + 

use of the Nxl vector a = [ a, ••• 

••• + 0C-. < N.  Alternatively, N J 

T aN]  produces 

N 
"o(a) - ynvai v 

'    n=l 
(C-2) 

where 

N 

Va) =  1   - }    ,   q       a       for  n=l:N 
P-l 

lnp    p (C-3) 

and 

(1/n     for  p=l:n"| 
q  _   =   \ \     for  n-l:N lnp ,0     for  p=n+l:Nj 

(C-4) 

Now,   the  NxN matrix  Q =   [q ]   is  defined.     Then,   Nxl  vector ^np 

'(a) = 

^(a) 

Va) 
= 1 - Q a , (C-5) 

where 1   is an Nxl vector of ones.  All the components {<f> (a)} 

must be positive. 
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The joint MGF //(X) of the RVs of interest in equation (38) is 

given by //Q( ^, . . . , aN) , with every an replaced by XM (that is, 

an ~*  XM^ ' excePfc for 

°V Xl '  °V X2   °Vi"* XM-1 ' (C_6) 

With Mxl vector X = [X1 ••• XM]
T, this replacement corresponds to 

the transformation a = A X, where NxM matrix A has ones in the 

M-th column, except for zeros in rows n1, n-, . . . , n  1, and A has 

ones in row n1 , column 1; row n-, column 2;...; and row n  ,, 
x z M-l 

column M-l.  The result is joint MGF JJ(X)   = l/n$ (a = A X), where 

<j>(a) = <MA X)=1-PX,   P = QA=[p  1. (C-7) 
— ^nmJ v  '' 

The matrix P is NxM. 

The joint cumulant generating function (CGF) corresponding to 

joint MGF /w(X) is 

N 
X(X) = - YZ,   logU_(A X)  , (C-8) 

n=l    ^ n     ; 

-ere 

M 
♦n(A X> = 1 " 12   Pnm X   for n=l:N . (C-9) _ «     nm m m=l 

All N of these quantities {<f>n) must be positive 

For purposes of evaluating the saddlepoint approximation and 

a correction term to the joint PDF corresponding to the joint MGF 

fj{\),   the following partial derivatives of the joint CGF are 
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needed.     Letting   <f>n =   <|>n(A  X)   and b>nm = Pnm/*n  for  n=l:N,   m=l:M, 

then 

3<f>n(A  X) 

3X m 
-  p      for   n=l:N,   m=l:M   , rnm ' 

a N 

äi- x(x) - xn bnm, 
8Xm fcl     nm 

N 

axm ax, m       x. 
X(X)   - E   b       bn,   , 

n=l nm    nX 

3Xm   3X,   3X, m       x       k 

N 
X(X)   =   2 2Z]   bnm  bn,   b  .    , *-—i     nm    nX    nk n=l 

94 N 

3Xm   3XX   3Xk   d\.   X(X)   *   6  rij  bnm  t>n* bnk   bnj 
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