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I. INTRODUCTION 

Significant advancements in power electronic devices, electric machine design, and 

power converter packaging have made it possible for the U.S. Navy to consider electric 

drive for its new land-attack destroyer, DD-21. Many of the benefits of electric drive stem 

from incorporating it into an Integrated Power System (IPS), where both ship service and 

ship propulsion power are derived from a common set of prime movers. The commercial 

marine industry, including Alstom, ABB and Siemens, has exploited the benefits of IPS for 

more than a decade in cruise liners, ferries, tankers, and research vessels. The advantages 

of IPS are manifold including: reduced lifecycle costs, flexible ship layout, cross-connect 

capability, reduced signature, optimized prime mover operation, simple and rapid propeller 

control, and a pool of available electric power for future electric auxiliaries and weapons. 

In addition to the innovation of IPS, the U.S. Navy is also considering new paradigms 

in power distribution. In particular, traditional AC radial distribution architectures are 

being replaced by AC zonal architectures. The concept of a DC Zonal Electric 

Distribution System (DC ZEDS) is being investigated and advocated for its improved 

fault-response speed and distributed intelligence. Initiatives such as electric drive, IPS and 

DC ZEDS depend on the maturation of certain enabling technologies. A partial list 

includes power devices, compact high-bandwidth power converter topologies, high-power 

low-speed electric machinery, reliable automation technology, and advanced control and 

decision-making algorithms. 

The research effort reported on in this document concentrates on developing models 

and analyses required to control multiple power inverters operating in parallel. One 

potential application for such work is the main Propulsion Motor Module (PMM). The 

PMM may consist of an AC motor driven by a DC-AC power inverter. One option for 

such an inverter is to employ a high-power slower-switching main inverter in parallel with 

a lower-power fast-switching inverter. The rationale for such a choice is explained as 

follows. A typical surface combatant may require on the order of 100,000 SHP to achieve 

full speed (50,000 SHP per shaft), indicating a PMM power rating of approximately 

40MW. In order to achieve high-fidelity machine waveforms and rapid control, high- 

bandwidth (fast-switching) power converters are required. At high power, this implies 

IGBT technology. Unfortunately, to achieve 20kHz or greater device switching, IGBT- 

based inverters are limited to about 2MW. Despite the fact that the machine may be 

divided into more than three separate windings (phases), this would still require multiple 

paralleled modules and an unacceptably large-volume solution. For high power, devices 

must then be series connected, resulting in much lower admissible switching frequencies. 

One compromise then is to provide the "bulk" power of the drive using a slow-switching 

high-power inverter. The waveform fidelity could then be assured by paralleling with a 

fast-switching lower-power unit which may have to process no more than 10% of the rated 
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power. Thus the main "bulk" inverter would be rated at "36MW and the "high-fidelity" 

inverter would be rated at ~4MW, theoretically realizable by two units in parallel. The 

"high-fidelity" unit would "fill in" the waveform distortion produced by the "bulk" unit 

which is constrained to switch at l-2kHz. 

Another application that may require paralleled inverters is DC ZEDS. In DC ZEDS, 

DC-to-AC inverters convert the interzonal DC voltage to the necessary AC voltage 

amplitudes and frequencies. To avoid developing and inventorying inverters of many 

different power ratings and to implement redundancy in the distribution system, inverters 

are paralleled. High-switching frequency units are required to achieve suitable AC 

waveforms to optimize efficiency and minimize the acoustic signature of auxiliary systems. 

In order to tackle the problem paralleling, several questions must be posed: Will the 

units be co-located and, therefore, can they share information? If they are completely 

autonomous, how are they synchronized and how are the reference settings (i.e., voltage, 

current) determined? What strategy will be used to ensure proper load sharing? The 

following effort imposes the following boundaries on this problem: First, the units are 

assumed to be co-located as illustrated in Figure 1. Note that in Figure 1 the three-phase 

outputs of each unit are designated by a single connection line. Coupling inductors are 

used to aid in proper sharing and to limit unwanted circulating currents between the units. 

A common DC voltage input is then applied to each individual inverter unit. Second, an 

inner current control is assumed regardless of the type of load. With identical inverter 

units, this implies that each unit should produce an equal portion of the commanded load 

current. Third, a master control, also co-located, will produce the commanded current 

signals for each unit and establish the common electrical angle to ensure synchronization. 

As a consequence, if a fault occurs at one unit or it fails, the master control is responsible 

for re-allocating the current requirement between the remaining units within the bounds of 

their ratings. Furthermore, by assuming co-located units, the assertion of a co-located 

master controller is not unreasonable. Also, this does not prohibit a fall-back local droop 

control should the master fail. The assumed "global" or master control is indicated in 

Figure 2, where separate q- and d-commanded currents are specified in the synchronous 

reference frame (outlined later in this document). The quantity coe* is the commanded 

electrical radian frequency which could be a constant or could be a variable, say in a 

variable-speed drive. The fourth and final assumption is that the local control will 

appropriately handle circulating or zero-sequence currents. The local control refers to how 

the commanded currents at each "local" unit are converted into actual switch gate signals. 

One approach to such a local control is illustrated in Figure 3. The actual inverter output 

currents (ial, ib,, icl) are fed back to the local control. After being transformed into the 

synchronous reference frame, they are compared with the desired current values ("desired" 

is designated by an asterisk). 
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Figure 1. Inverter module containing five inverter submodules 
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Figure 2. Synchronizing and sharing global control 
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Figure 3. QDO local control 

The qdO-controllers produce modulating signals which are then inverse transformed back 

into "physical" (abc) variables which, for instance, can then be used in a standard Sine- 

Triangle Pulse-Width-Modulation (STPWM) algorithm. Other approaches including Space 

Vector Modulation are easily substituted into the block diagram. 

The principal goal of this work is to establish a theoretical basis for the stability of a 

particular control implementation, while in the process evolving the necessary system 

modeling equations required for detailed simulation. The initial development is conducted 

for a generic three-phase Resistor-Inductor (R-L) load, but since many different three-phase 

loads are admissible for shipboard applications, the results are then extended to a generic 

three-phase induction machine and a generic three-phase permanent-magnet synchronous 

machine.  The following details are presented in this document: 

• the dynamic equations are developed for two inverters powering an R-L load 

(given an assumed local current control); 

• an equivalent single-inverter system is derived and gains are analytically 

determined; 

• a mechanism for mapping the single-inverter gains to a multiple number of 

paralleled inverters is outlined and verified; 

• the local zero-sequence control  is designed to handle components of the 

potential circulating currents; 

• the above results are extended to a symmetrical three-phase induction machine 

load; 
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• the above results are extended to a round-rotor three-phase permanent-magnet 
synchronous machine load; 

• the necessary equations for the vector-control of induction machines and 
permanent-magnet synchronous machines are outlined; 

• the design of an outer speed-control loop appropriate to each machine type is 
presented. 

Much of the aforementioned development is equation and reference frame intensive. Many 

intermediate steps are included to provide guidance for any future modifications or 
extensions of this work (i.e., different loads or different control strategies). 
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II. TWO PARALLELED INVERTERS POWERING AN R-L LOAD 

The basic system under consideration is illustrated in Figure 4. Note, the inverters 
share a common DC source bus and each is coupled to the R-L load through inductors 

labeled L, and L2. The voltage vaoJ is referenced from the center of the a-phase leg (of unit 
1) to a fictitious mid-point of the DC voltage supply (designated o). These voltages are 
sometimes referred to as "pole voltages." The load is assumed to be wye-connected with 

the neutral point (labelled n) left floating. 
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Figure 4. Two paralleled inverters powering an R-L load 



Since the interconnection of inductances Lb L2 and LL form a cutset, all three inductor 

currents cannot be state variables. Thus, one is eliminated by virtue of the algebraic 

constraint. If we choose the currents in L, and L2 as our state variables, the dynamics of 

the circuit portrayed in Figure 4 can be established. 

A. Circuit Representation in Physical Variables 

The following Kirchhoff's Voltage Law (KVL) loop equations may be written for the 

network: 

-Vao,l   +   Ll-^pal   +   RL(ial + ia2)   +   LL — (ial + ia2)   +   Vn0   =   0 (1) 

A A 

-vb0il  + L, — ibl  + RL(ibi + ib2) + LL"^(ibi + ib2) + vno = 0 (2) 

A A 

-vco?,  + Lj —ic,  + RL(ici + ic2) + LL-T-(ici+ic2> + vno = 0 (3) 
at at 

A A 

-Vao,l    +   Lx — ial    -   L2"^-ia2   +   Va0>2   =   0 (4) 

-vb0,i   +  Li-^ ibl   -  L2-^-ib2 +  vbo,2  =  0 (5) 

-Vco,l    +   Ll~[pcl   ~   L2dTic2   +   Vco'2   =   ° (6) 

Equations (l)-(6) may be expressed in vector notation as: 

-Vabco,I    +   Li~T"1abc,l   +   RLC'abc,!   +   labc,2)   +   LL( —labc?1   +   — labc,2)   + 

'no 

V„o 

v vno 

= -6     (7) 

-^abco,l    +   L] — iabc,i    -   L2 — iabc2   +  ^abco.2   -   Ö (°) 

where for instance TabC)1 = [ia],ibi,ici]
T and %bcoA = [vao-1)vb0il,vCOi,]

T. The voltage vno is the 

voltage from the neutral point of the load back around to the mid-point of the DC voltage 

supply. 

B. Circuit Representation in the Synchronous Reference Frame 

These equations may be transformed into the synchronous reference frame (designated 

by the superscript "e") using the identities 

^qdO.l = Ks ^abco.l (") 

Vqd0,2 = KseVabco,2 (10) 

iqdO.l = Ks6 iabc.1 (H) 

iqd0,2 = Ks
e iabc2 (12) 
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where the diffeomorphic transformation matrix Kf is given by 

K,e 

cos9e  — cos(0e--i71)  -^- cos( Ge + -^p1 ) 

— sin 9e   — sin( 9e 

271      2 

3   }   3 

27t ,    2   . 

2rc 

3 

.    ~   .  ...     27t . 
)   -sin(ee+—-) (13) 

and, for instance, the notation implies that Vq
e
d0J = [vqj,vdj,v0,i]

T. The zero-sequence 

quantity (i.e., v01) is generally not given a superscript since it is equivalent in every 

reference frame. The angle 6e varies at a radian frequency of coe, which for instance, would 

be the fundamental or desired output frequency of the inverters. Solving for the "abc" 

quantities in (9)-(12) and then substituting into (7)-(8) gives: 

-(Ks
e)-%(,,,  + (L!+LL) — eriye 

(Ks  )      iqdO.l        +   RL(KS  )     iqdO.l    + 

RL(^S  )      'qd0.2   +   LL dt (Ks  )      iqd0.2 + = 3 

(14) 

-(K/T'VqV,  + L,-^ (Ks   )      iqdO.l (15) 

dt (K/r'TqVil + (K/r1^ = 3 

Multiplying (14)-(15) by Ks
e and employing the product rule illustrated in (16) 

d_ 
dt 

(Ks   )      iqdO.l -  fF«rl JL"?e      j.   ^   ( v e r '?e 

dt dt 
(16) 

gives 

-IqdO.l    +   (L!+LL)—tqdo.l   +   (L^LL)^
6 

dt 

RL(>qdO,l + iqd0.2)   +LLKS ~7T 

dt 
(Ks

e)-' iqdO.l    + 

(K/r •qdO.2 +  Kf = -6 

(17) 

"IqdO.l    +   Lj—iqdO.l    +   Lj K, dt dt 
(Ks

ey erl 
'qdO.l (18) 

T       d   - 
L7dP 2^7'qd0.2   ~   L2Ks6-^ 

erl (K/y + qd0.2   f    vqd0.2 V'*,,   =  3 

Equations (17) and (18) are simplified by observing that 

Ks
e -^ (K/r1 = 

0 coe 0 

-coe 0 0 

0 0 0 

(19) 
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and 

K5
e 

v
no ' o' 

vno = 0 

V„o _^no_ 

(20) 

Thus, expanding the resultant vector equations gives the representation of the two-inverter 

system in the synchronous reference frame: 

Vqli  + (Li+LL) —iq
e, + (LI+LL)coeid^1 + 

dt 

RL(iqei+iq!2)   +   LL —iq*2   +   LL C0e ifo   =    0 

d    :e 

(21) 

d_ 
dt 

-vd
ei  + (L, + LL) —id

e,  - (L,+LL)coeiq
e,  + 

RL(idei+id!2) + LL-^CU - LLcoeiq^2 = 0 

-v0,i  + (Li + Lü-^ricu  RL(io,i + io,2) + LL"^io,2 + vno = 0 

-Vq
ei    +   Ll^iq?l    +   Ll«e>41    -   ^"jpq^   "   1-2 «B »42   +   ^2   =   0 

-vd!i  + U-7-iti - LiO0eiq!i  - L2-rid
e2 + L2C0eiq

e2 + v£2 = 0 

(22) 

dt dt 

T    d   . _    d   . 
•v0,l    +   LläpO,l   ~   L2dTl0.2   +   V0.2   -   ° 

(23) 

(24) 

(25) 

(26) 

Recall, the voltages vq
ei and v^, are the transformed inverter #1 pole voltages while vai is 

the zero-sequence voltage for that unit. 

With a wye-connected load, Kirchhoff s Current Law (KCL) demands that 

(iai+itf) + (ibi+ib2) + (ici + itf) = 0 (27) 

But from the identities (11)-(12), the inverter zero-sequence currents relate to the output 

currents by 

1 
io,i  = 

10,2   - 

3 

3 L 

*al + hi + ]cl 

Ja2 + xb2 + ic2 

(28) 

(29) 

so that (27) then implies that 

io,2 = -io,i (30) 

Therefore, the inverter #2 zero-sequence current is NOT an independent state variable, but 

instead is algebraically related to i01. This is a direct consequence of the wye-connection 

of the load with the neutral floating.  Substituting (30) into (26) gives 
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+ Li— i0,i  + L2-J-io,i   + v0,2 = 0 -v0..    ■   -. dt -„..   •   ~, dt 

which simplifies down to 

d  . Vo,l    -   V0,2 

(31) 

(32) L,  + L2 

Thus, any difference between the developed zero-sequence voltages of the units will result 

in a zero-sequence current, which must flow between the units. Furthermore substituting 

(30) into (23) results in 

d ■ " (33) -vo.i + Li "Trio,!  + vno =  0 dt 

which allows us to solve for vno by first substituting (32) 

L, 
v0,l - V0,2 (34) V"° = V°'>  "   L,  + L2 

or more compactly 

L2vo,i  + L]Va2 

Vn° ~ L,  + L2 

The dynamic governing the zero-sequence current is described by (32) while the 

remaining state variable equations, (21)-(22) and (24)-(25), may be rewritten in 

vector/matrix form as 

(35) 

J-a~T"1d,12   -   C0eLa1q,12   +   Kaldl2   +   ^^.12 

(36) 

(37) 

where 

Jq.12 = 

-*e 
"idei" 

Jd,12 )ix 

^.2 = 
.Vq

e2 

[vd
e,j 

-?de.2 — 
<2 

(38) 

(39) 

(40) 

(41) 

and 

La   = 
L, + LL   LL 

(42) 
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Ra   = 
-RL -RL 

0       0 

Ca   = 
1     0 

1  -1 

Equations (36)-(37) may be placed into state-space normal form 

d   -r =-_! =TT», 
"T"iq,!2   -   La    Raiq,12   "   0^,12   +   La    Ca"^ql2 

37^,12   =   fOeiq.n   +   La    Raid,12   +   La    Ca\^i2 

where for the reader's information 

RL ^2    RL L2 

(43) 

(44) 

(45) 

(46) 

L-       R-,     — 

L_1C   = 

•L-den         ^den 

RLLI    RLL] 

Mien        ^den 

—L2 — LL         LL 

•L'den                 ^den 

LL         -I -1 - LL 

(47) 

Jden -'den 

(48) 

and 

Jden -L1L2 — LLL2 — L]LL (49) 

Thus, from (45)-(46) we observe that the "q" and "d" dynamics are coupled by the "speed 

current" terms ovq!i2 a°d tt>eTd
e
12. 

C. Synchronous Reference Frame Control Equations 

In order to investigate the stability of a proposed control architecture and to select 

suitable control gains, the control dynamics must be modeled and linked to equations (45)- 

(46). Assume that each inverter unit is supplied a common synchronous reference frame 

angle 9e, which can then be used locally together with the inverter output currents to 

calculate the inverter's qd-currents (see Figures 2 and 3). These currents may then be 

compared against desired qd-synchronous reference frame currents and processed through a 

Proportional-plus-Integral (PI) controller. The outputs, still mathematically in the 

synchronous reference frame, would then be inverse transformed back into abc-frame 

(physical) variables, which could serve as the modulating signals in a Sine-Triangle Pulse- 

Width-Modulation (STPWM) strategy (see Figure 3). A Pi-control is used since for 

sinusoidal reference abc-currents, the commanded qd-currents are constants in the 

synchronous reference frame. Thus, the integral action will guarantee zero steady-state 

error,   while   the   proportional   action   guarantees   improved   stability   margin.    The 
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implementation of the integrator must account for "integrator windup" which may occur 

when large operating point changes are specified. 

Given a bipolar triangle waveform varying between A, and -A„ the control is said to 

remain in the "linear modulation" range as long as each modulation signal has magnitude 

less than At. If the control is constrained to operate in the "linear modulation" range, then 

the following relates the fundamental modulation signal to the respective fundamental 

inverter output line-to-neutral voltage (as long as the fundamental frequency is much lower 

than the carrier frequency): 

va!.n 

vbl.n 

Vcl.n 

V, dc 

2 A, 

vamod. 1 

*bmod. 1 

* cmod. 1 

(50) 

The frequency spectra for the line-to-neutral voltages is identical to the pole voltages 

except for the triplen harmonics. Therefore, the fundamentals are identical and would thus 

be also related by (50). Transforming (50) into the synchronous reference frame gives us 

the "average" qd-voltage relationships: 

Vq.l 

vd
e. 

v0,i 

'dc 

2 At 

vqmod. 1 

^dmod.I 

v0mod.l 

(51) 

The term K, 
V, dc 

■pwm 2 A, 
is termed the STPWM gain and is clearly a function of the inverter 

input DC voltage and the amplitude of the carrier triangle waveform (clearly this 

modulation may take place via a Digital Signal Processing implementation and therefore 

the amplitude A, is dictated by the programmer). The dynamics of the Pi-control and the 

interface with the modeling equations (45)-(46) are therefore given by: 

dt   q 

d 

Xq.l    ~   Jq,l 'q.l 

dt 

d_ 
dt 

xd.l 

Xq.2 

:e*   _   ;e 

- Jq.2 'q.2 

-L- v e       —    ie       _    i e 

,.   xd,2   -   Jd,2 *d.2 dt 

ve    —   K       K vq,I           "-pwm xvpq 'q,l  ~ iq.l + \C       V    Y e 

"Twm ^^iq Aq, 1 

^d,I    —   ^pwm *T>d i|,i ~ idj * Kpwm Kjd xd,l 

ve     —   K       K vq,2           Ivpwm -^pq iq,2 - iqe2 
J 

+ ^pwm -^-iq xq,2 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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V«L2 ^•pwm "-pd id,2 ~ id^2 
+   KpWmKjdXdi2 (59) 

where the quantities with "*" denote commanded or desired values. The resultant set of 

equations, (45)-(46) and (52)-(59) provide the 8th-order system of equations in state-space 

normal form. As long as the average qd-voltages adequately represent the bulk of the 

dynamics, the eigenvalues of the resultant system matrix characterize the stability of the 

interconnected inverters and load. Reiterating, these equations would not be used for 

detailed simulation since we have average-value modeled through the inverter; however, 

the other purpose of modeling is to facilitate control design, which is what we are setting 

the stage to do here.  Those equations take the form: 

"17^,12   =   Al\M   ~   GVd.n   +   KiqA2*q,12   +   &mA2lq,\2 

e ""^e "7" ""^e             Tr' "7" -je             -rr'   "T" ~-*e* 
~^x&,\2 = MeiqM   +   A31d,12   +   KidA2*d,12   +   KpdA2Id>i2 

,e _ -fe        ,   "fe* 
Xq,12 - -1q,12   +   1q,12 

Xd,12 = ~id,12   +   id,12 

dt 

d_ 
dt 

d_ 
dt 

where the "primed" gains are 

"■pq   —   ^pwm "-pq 

*Nq   —   "i>wm "iq 

1C       —   V XC 
"■pd rvpwm Ivpd 

"■id   —   ^-pwm "-id 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

Technically, as will be discussed further in this document, the primed gains may also be 

used to represent additional scaling effects such as the non-unity gain of current sensors. 

The matrices in (60)-(61) are given by 

A,   = 

RLL2+Kpq(L2 + LL) 

■^den 

Ri Li — Kr,„Li M.M pq^L 

A, = 

^den 

L2 + LL        LL 

R LL2 - Kpq LL 

RL Li 

■^den 

+ K;q(L, + LL) 

^den 

(68) 

J^den 

LI + LL 

A, = 

J-'den 

LL          

J-^den J^den 

RLL2 + Kpd(L2 + LL) 

^den 

K-LLJ — KpdLL 

^den 

(69) 

Rl   LT  —  KnrfL ■pdM- 

^den 

RLL1 + K;d(L,+LL) 

■^den 

(70) 
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The notation in (60)-(63) uses the vectors 

% 
»e       _ 
q,12   - 

v e 
Xq.l 

v e 

_Xq,2 

d,12   _ 

"xd
e, 

.xcU 

e* 
1.12   - 

"  e*" 
Jq.l 
•e* 

e* 
1.12   - 

":e* 
!d,l 

:e* 
2d,2. 

(71) 

(72) 

(73) 

(74) 

The resultant system matrix takes the form: 

Ä] -CÖel2x2 Ki'qX2 Ü2x2 

COeT2x2 Ä3           Ö2x2 K;'dÄ2 

-^2x2 02x2          02x2 02x2 

C*2x2 "^2x2         02x2 02x2 

ASyS      — (75) 

where <32x2 is a two-by-two null matrix and I2x2 is a two-by-two identity matrix. The 

eigenvalues of (75) dictate the stability and strongly influence the transient response 

characteristics of the system. We will illustrate in subsequent sections how manipulating 

the Pi-control gains changes the eigenvalue locations. 
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III. DETERMINING THE CONTROL GAINS 

In order to establish a set of gains for each unit, let's consider converting the two 

separate inverter units into a single quivalent. To do this, the per-phase steady-state 

equivalent circuit of Figure 5 is helpful. The Thevenin Equivalent circuit looking back 

from the load is depicted in Figure 6. If we assume near-identical units (L,=L2 and equal 

voltages), then the Thevenin circuit reduces to simply the inverter voltage in series with 

half of the coupling inductance. 

Figure 5. Per-phase steady-state equivalent circuit 

V_ t      
L2      + V    —^ 

a'1L1 + L2        a'2L1+L2V- 

JO> 
LlL2 

J-i + L' 

Figure 6. Per-phase steady-state Thevenin circuit 
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Thus, to represent two units by one equivalent, the connection inductance used for the 

equivalent must be one-half the inductance used for either channel. The following 

procedure is adopted: 

• model the equations for a single inverter with connection inductance given by 

Lx = — L, (thus, for 2 units in parallel); 

• given desired closed-loop pole locations, substitute the control model into this 

representation and solve for the two q-channel and the two d-channel gains; 

• modify the gains to account for the fact that two inverters are used. This 

happens because each unit is only responsible for supplying half of the desired 

q- and d-axis load current. 

To better illustrate the  last bullet,  a single  aggregate inverter would have  a q-axis 

modulating voltage established by: 

t 

vq
e
m0d = KiqJ(iq

e*-iq
e)dt + Kpq(iq

e*-iq
e) (76) 

o 

In a system with two paralleled inverters, the commanded current is dividely evenly 

between the units so that the q-axis modulating signal for unit one would be 

v^od.  = Kiql { (±- - ±) dt + KpqI (-^- - Y ) (77) 

or to make the point more explicit 

vq
e
m0d.   =  ^T j (iq

e* - iq
e)dt +  ^ (iq

e* - iq
e) (78) 

z    o l 

Thus, for one of the two parallel units (designated with subscript 1) to produce the same 

voltage as the equivalent unit (no subscript number), it must follow then that 

Kiq = "Y31 (79) 

Kpq = ^f- (80) 

Therefore, upon finding the gains for a single unit, the gains for each of the two separate 

units are found by doubling those values. This point will be revisited during a subsequent 

example. 

A. Equivalent Inverter System Equations 

The development of the equations required to find the single-unit gains is presented 

next.   The inductance Lx represents the single unit (or equivalent connection) inductance. 
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Omitting consideration of the zero-sequence dynamics (since with a wye-connected load 

and a single inverter, there would not be any), the voltage equations in the synchronous 

reference frame are given by: 

d 
-V, + (LX + LL) —iq

e + (Lx + LL)coei| + RLiq 

-vf + (LX + LL) —i| - (Lx + LL)coeiq
e + RLi| = 0 

or in state-space form 

d 

RL 
inC    + 

LX + LL 
q        LX + LL   

q 

R. 
** = "-* - T^iz il + Lv + Li ■Vd 

Coupling these with the Pi-control equations 

— xe  =  ie*  -  ie 
^t 

Aq       Jq q 

dt *d   —   1<J      —   Id 

Vq    —    J^pwm L "-pq V lq lq )   +   &jq Xq J 

vd   -   Kpwm [ Kpd ( id    — id )   +   Kid Xd ] 

yields, in state-space normal form, 

-(RL + Kpq) 

;e 
'q 

d i| 

dt Aq 

Ki, 

Lv + L, 

co. 

-co„ 
U + U 

-1 

0 

-(RL + Kpd) 

0 

-1 
0 
0 

0 

KM iq 

id
e LX + LL 

0 

0 
*q 

xd
e 

+ 

K, ■pq 

0 
K, pd 

1 
0 

LX + LL 

0 
1 

where Kpq = KpwmKpq and Kiq = KpwmKiq have been used for notational simplicity. 

B. A qd-Current Loop Design Strategy 

Equation (89) can be further simplified if we assign 

RL + Kpq K, ■pq 
Lx + LL 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 
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Kpd  - 
RL + Kpd 

Lx + LL 

Kjq   = 
Kjq 

Lx + LL 

v".  - Kid 
,u        Lx + LL 

The characteristic equation for (89) is then found to be 

X4 + (K;q + Kpd)X> + (K^ K;d + coe
2 + Ki'q + Kj"d) X2 

+    ( Kpq Kjd + Kpd Kjq ) X   +    Kjq Kjd    =    0 

If this expression is set equal to a desired characteristic equation 

X4 + d3^
3 + d2X

2 + d,X, + do = 0 

coefficient matching yields the following nonlinear coupled set of equations: 

Kpq   +   Kpd   =   03 

Kpq Kpd 4- C0e + Kjq + Kjd   =   d2 

KpqKjd + Kpd Kiq   =   d, 

KjqKjd  = do 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

A Newton-Raphson algorithm was selected to iteratively solve these equations to find the 

"double-prime" unknowns from which the actual gains can then be derived. The first step 

is to re-express (96)-(99) in terms of the following four nonlinear functions: 

h - Kpq + Kpd - dj 

f?    =    Knn K„d + CO»  + Kjn + K;d    —   d-> '2   -   ^pq ^-pd f uje -r iviq -r xvid 

f|    =   Kpq Kid + Kpd Kjq   -   d] 

fo =  KjqKjd - do 

The update equation is given by 

(100) 

(101) 

(102) 

(103) 

v" xvpq,new 
v" Ivpq,old 

^■pd.new Kpd.old 

v" 
^iq.new Kjq.old 

"■id.new Kjd,old 

8? 
8 it ~ (K0id) 

-l 

h ( Kold ) 

$2 ( K0id ) 

f l (Koid) 

fo (Koid) 

(104) 

where f= [f3, f2,f],f0]
T and it' = [ Kpq, Kpd, Kiq, Kid]

T.    The notation  iC,d implies  that it" is 

evaluated at the old (or previous) value.  The specified Jacobian matrix is given by 
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8g" (Kold) 

1 1 0 0 

Kpd.old 
v" rvpq,oId 1 1 

Kjd,old Kjq.old Kpd.old "-pq.old 

0 0 Kid.old Kjq.old 

(105) 

C. Design Example 

Given the following desired Bessel closed-loop pole locations: 

A,li2 = 8000(-0.6573 ± j 0.8302) = -5258.4 ± j 6641.6 (106) 

X,3,4 = 8000(-0.9047 ± j0.2711) = -7237.6 ± J2168.8 (107) 

(which provide a closed-loop bandwidth of about 8000rad/sec or 1273Hz), the desired 

coefficients of the characteristic equation (95) are 

d3 = 2.4992000e+04 (108) 

d2 = 2.8108095e+08 (109) 

d,  =  1.6391316e+12 (110) 

do = 4.0966232e+15 (111) 

The authors selected a bandwidth of 1300Hz, so that the control would not interact with an 

assumed switching frequency of at least 20kHz. If additional signal filtering is used (i.e., 

for the local current measurements), then the control bandwidth may need to be reduced to 

prevent unwanted interaction with the filters. This would need to be explored via detailed 

simulation and possibly "tweaked" during implementation. Update equation (104) is run in 

MATLAB with coe=377rad/sec yielding the following double-primed gains: 

Kpq =  1.0485e+04 

Kpd =   1.4507e+04 

K, 

Ki, 

7.1686e+07 

5.7147e+07 

(112) 

(113) 

(114) 

(115) 

Note, equation (104) is not at all parameter dependent and is only a function of the form of 

the system equation (89). The actual gains for the single-unit controller are determined 

from 

Kpq   - 

K, pd 

Kjq    - 

(Lx + LL)Kpq - - RL 

^pwm 

(Lx + LL)K;d - - RL 

■^pwm 

(Lx + LL)Ki; 

K, 

(116) 

(117) 

(118) 
•pwm 
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Kid = (L
-;

LL)K:; (119) 

which ARE clearly parameter dependent!   Now since current sensors are in the feedback 

path, Kpwm must account for both the sensor gain and the gain through the STPWM 

vdc 
modulator (—-). 

2 A, 

D. Extension to Two Inverters in Parallel 

The results for two inverters in parallel are investigated next.  Assuming the following 

parameters for the system: 

L,  = L2 = 500uH (120) 

LL = 510^H (121) 

RL = 4Q. (122) 

and that the single-unit equivalent connection inductance is then 

Lx = y- = 250|iH (123) 

the resulting gains are (where the individual inverter control gains are found by doubling 

the result since we have two in parallel) so that 

Kwl = Kpq2 = 7.9373 (124) 

K^i =  Ki'q2 =  108,963 (125) 

K^di = Kpd2 =  14.0506 (126) 

Ki'd, = Kid2 = 86,863 (127) 

To derive the ACTUAL gains used in units 1 and 2, the PWM and sensor gains must be 

accounted for 

7.9373 (128) 

(129) 

(130) 

(131) 

With (124)-(127) substituted into (75), the following actual eigenvalues are achieved: 

Xu2  = -7,943  + j 12,445 (132) 

*V)i  - *V)2   - 
"-pwm ^"-sensor 

Kiql    = Kjq2   = 
108,963 

■^pwm xvsensor 

Kpdi   = Kpd2   = 
14.0506 

^•pwm ^-sensor 

Kjdi   = Kid2   = 
86,863 

**-pwm "-sensor 
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A.3,4 = -5,258 ± j 6,642 (133) 

Xs,6 = -7,238 ± j 2,169 (134) 

h = -9,191 (135) 

h = -18,899 (136) 

Clearly, there is a strong correspondence between the desired pole locations (106)-(107) 

and those realized. Detailed simulations would next need to be conducted to confirm the 
dynamic response. 

E. Zero-Sequence Control Analysis 

The zero-sequence dynamics for two inverters supplying the R-L load are given by 

d_;     _   vcu ~ vo,2 
-i + L2 dT^'  =    L, + U (137) 

io,2 - -io,i (138) 

Let's consider that only Proportional (P) control is used in the zero-sequence loop, so that 

vo,i  = KpwmKp0(i01 - i0,) (139) 

v0,2   =  Kpwm KpQ (io,2 - io,2) (140) 

With io.i = io,2 = 0 and (138), it follows then that 

vo,i  - v02 = -2KpwmKp0io,i (141) 

which, substituted into (137), yields 

d   . — 2KpwmKpo   . 

dT0'1  =     L,  + L2     ^ (142) 

Equation (142) has an eigenvalue at 

X = ^ ^-pwm KpO 

L, + L2 (143) 

and thus if we select a desired eigenvalue location Xdes, the required proportional gain Kp0 is 

(L, +L2) 
K

P° " ~ZT?  **« (144) 

To account for the sensor gain for the zero-sequence current measurement, (144) would 
need to be practically restated as 

(L,+L2) 
Kp0 ~  ^2K K   ^des (145) ■^ "-pwm "-sensor ' 

The Xdes should be at least on decade away from the radian switching frequency while 

sufficiently far in the left-half plane to minimize all lower-frequency circulating currents. 
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F. Extension to Five Inverters in Parallel 

If five identical units are placed in parallel, the expressions for the qd-gains become 

(^L+LL)K;q  - RL 

Kpq    - 5 
■^•pwm "'sensor 

(■y+LL)K;d   - RL 

Kpd = 5 
^■pwm ^sensor 

(y + LL)K;q 

Kjq   = 5 
"■pwm ^-sensor 

(^-+LL)K;; 

Kid = 5 
■^■pwrn -"-sensor 

(146) 

(147) 

(148) 

(149) 

where note, the connection inductance Lx must be set equal to the coupling inductance of a 

single unit divided by five. The resulting gains must have a scale factor or five out front 

for reasons documented earlier (in particular since the current allocated to a unit is one- 

fifth that of an equivalent single unit, for the voltages produced to be the same, the gains 

must be scaled by a factor of five). 

To address the design of the zero-sequence control loops for five inverters, consider 

the following dynamic equations 

-v0,i  + Lc^io,i - Lc"^io.2 + V0.2 = 0 (150) 

-V0,|    +   Lc^O.I    -   Lc ^"'0.3   +   V0.3   =   ° (151) 

-v0il   +  Lc-^io,i   -  Lc-^T'0,4  +  V0,4  =  0 (152) 

-v0>!  + Lc — i0,i  - Lc-^-io,5 + v0i5 = 0 (153) 

where an identical coupling inductance Lc is assumed for simplicity. It also follows that 

since the load is wye-connected, one zero-sequence current is algebraically related to the 

others.  If we choose to solve for i05, we get 

'o,5  = ~io,i  - io.2 _ >o,3 - io,4 (l-5^) 

If we assume a similar proportional control for each zero-sequence loop, then it follows 

that 

v0,i   = KpWmKpo(io,i-io,i) 055) 

v0.2 = KpwraKpo(io,2-io.2) (156) 
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vo,3 = Kpwm Kpo (io,3 _ io,3) 

vo,4 = Kpwm Kpo (io,4 _ io,4) 

vo,5 = Kpwm Kpo (io,5 - io,5) 

(157) 

(158) 

(159) 

Since it is desired that io,i = »0,2 = io,3 = io,4 = io,s = 0» substituting (154)-(159) into (150)-(153) 

and placing the result into state-space normal form yields 

io,i 

d '0,2 

dt !o,3 

.'0,4 

Lc 
-           0 0 

0 
— ^pwm Kpo 

0 

0 0 
— •"■pwm ^pO 

Lc 

0 0 0 

0 

0 

^pwm^pO 

»0,1 

io,2 

io,3 

io,4 

(160) 

The characteristic equation for (160) is simply 

{X   +    KPwm
KpO)(X   +    Kp^nKpO )(5L   + 

Lc Lc 

and so all four roots are co-located at 

^■pwm ^-pO . . -            ^-pwm ^-p0 . „ 
—j HA, + )   =  Ü 

M.2,3,4   - 
^■pwm ^-pO 

(161) 

(162) 

which is identical to (143) with L, = L2. Therefore, the zero-sequence gain formula (144) 

would continue to hold for five inverters in parallel. Repeating that equation (assuming 

equal combining/coupling inductances) 

Kpo - 
-U A, c 'Wies 

^pwm "« 
(163) 

where the impact of the feedback current sensor gain has been incorporated. 
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qs = r ie 
's'qs + Vds + 

«b 

d 

dt Vq
es 

e 
ds = rsi|s - 

0>b 
Vqes + 

d_ 

dt Vde
s 

IV. INDUCTION MACHINE LOAD ANALYSIS 

One of the goals of this research is to facilitate the development of motor controllers 

employing multiple paralleled power inverters. The following analysis will extend the R-L 

load results to an induction motor drive and, in a later section, to a permanent-magnet 

synchronous machine drive. The stator voltage equations of the three-phase symmetrical 

induction machine represented in the synchronous reference frame are given by 

(164) 

(165) 

where rs is the per-phase stator resistance, oob is the base (rated) electrical angular 

frequency, and \|/ represents flux linkages per second. The stator flux linkages per second 

may be expressed in terms of the stator leakage flux and the air-gap flux by 

VqS = X,siq
e
s + y*q (166) 

Vde
s = X!si|s + V£d (167) 

where the air-gap flux linkages per second are given by 

¥mq - Xm(iq
e
s + i'°) (168) 

Vmd = Xm(id
e
s + i£) (169) 

The parameters Xls and Xm are the stator leakage and magnetizing reactances, respectively 

(each a constant evaluated at cob). The prime in (168)-(169) denotes that a rotor variable is 

a referred quantity (that is, the rotor windings have been mathematically replaced by 

equivalent windings with the same number of turns as the stator windings). The referred 

rotor flux linkages per second are given by 

Vq?    =    Xlriq?    +    \|/, 

Vd? = X,'ri^ + y, 

mq 

md 

(170) 

(171) 

where X,'r is the referred rotor leakage reactance (a constant).   Solving (170)-(171) for iq? 

and i^, substituting the results into (168)-(169) and collecting the y£q and v|/£d terms yields 

Vmq   = 

Vmd 

XmX]r 

xm + xlr 

XmX]r 

xm + xIr 

Iqs    + 

ids + 

¥qr 

x,; 

x,; 

Finally, substituting (172)-(173) into (166)-(167) gives 

¥q£s    =    X"iq
e
s   +    V|/q 

(172) 

(173) 

(174) 
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V|s = x"i£s + Vd" (175) 

where the double-prime quantities are given by 

« Xm Xir 

X   = x!s +       m * (176) 
Am   +   Alr 

V," =  T-^h^ Vq? (177) 

-'Ms   f is               Y 
Am + x,; 

Xm 
Vq? 

xm + x)r 

Xm 
Vd? 

xm + x]r 
¥d  =   Y     "      Vd? (178) 

The stator voltage equations (164)-(165) may then be re-expressed as 

— (X i|s + ¥d) +  —-T- 
cob cob dt 

rsiq
e
s +  -2-(X i|s + Vd") +  -i--^-(X"iq

e
s + vq") (179) 

C0e        „ „ 1      fl ,e-^e__(xie+%)+   J_ | vd
es = rsi|s - ^(X"^ + <) +  -^-^-(X"i|s + ¥d') (180) 

The current control dynamics are desired to be very fast. As a result, the slowly-varying 

rotor variables may be assumed to be constant while considering the stator dynamics. This 

implies that 

^¥q?   =    ^Vd?   =   0 (181) 

which observing (177)-(178) requires that 

Furthermore, assuming the drive is vector controlled ensures that 

V* = 0 (183) 

Vd? = ¥df (184) 

Substituting (182)-(184) into (179)-(180) yields 

 X 4   + rVdr    + - 
cot ©b Xm + XIr 

Ydr        cob dt 
vq

e
s = rsiq

e
s +  -^X"id

e
s +  -f-        m

v, Vdf +  ^^iq
e
s (185) 

«>ev".e X     d 
— X i|s + - 
cob      

qs       cob dt vd
es = r,i& -  — X"i£ + 7T TH"1* (186) 

If we let 

L" = — (187) 
cob 

v      ' 

and merge these equations with the qd-equations for a single inverter with coupling 

inductor (81)-(82), we find 
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-Vq  + Lx^-iqs + Lxcoei|s + rs iq
e
s +  coeL id

e
s 

«e Xm d 
-V*   + L — iq

e
s = 0 

-vj + Lx-^ids 

<°b Xm + X,r 

Lxcoeiq
e
s + rsid

e
s - coeL"iq

e
s 

(188) 

(189) 

+ L ^-id
e
s = 0 

If we next observe that the Pi-control equations are 

*q pq ^ qs *qs /     '     ^-iq *q 

vd   =   Kpd(ids    -   ids)   +   KidXd 

d 
•xe = ie 

dt   q        qs 

d       e   _   ■ e* 

dTXd " Ids 

»qs 

Ids 

placing (188)-(193) in state-space normal form gives 

ie 
*qs 

d 
dt 

ides 

xe x
q 

= 

~ Kpq     — (Op     K| 

COP K, pd 

0 
-1 

Kpq    0 

o K;d 

1      0 

0      1 

0 s 
0 Kjd ides 

0 0 xq
e 

0 0. 
xd

e 

+ 
-coeXm\|/d? 

cob(Lx + L )(Xm + Xlr) 

where in this case 

Kpq    - 
rs   +   Kpq 

Lx   +   L" 

Kpd = 

rs + Kpd 

Lx + L" 

Kiq    = 
Kiq 

Lx + L" 

v"   — Kid 

(190) 

(191) 

(192) 

(193) 

(194) 

Ly  + L 

(195) 

(196) 

(197) 

(198) 

Note, this is the same form as equations (89)-(94) where the stator resistance (rs) has 

replaced the load resistance and the stator substransient inductance (L") has replaced the 

load inductance.   Thus, the solution may progress as before: use the Newton-Raphson to 
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solve for the double-primed gains, use (195)-(198) to derive the primed gains, and finally 

divide those quantities by Kpwm K.ensor to establish the gains for the single aggregate inverter. 

Those gains are then scaled by the required number of inverters to calculate the individual 

inverter current control parameters. 
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IV. PERMANENT-MAGNET SYNCHRONOUS MACHINE LOAD ANALYSIS 

The derivation of the control equations for a round-rotor permanent-magnet 

synchronous motor (PMSM) is more straight-forward. The PMSM is modeled in the rotor 

reference frame by 

VqS = rsiq
r
s + Lss — iq

r
s + corLssid

r
s + (Dr?^ (199) 

vds  =  rsid
r
s + Lss —id

r
s  -  corLssiq

r
s (200) 

These equations assume negligible cogging torque and sinusoidal back emf. The parameter 

rs is the per-phase stator resistance, Lss is the stator self inductance (leakage plus 

magnetizing), and X£ is the peak flux linkage between the permanent magnet and the stator 

windings. The inverter equations in the rotor reference frame are similar to what we had 

previously except now the angle in (13) is the rotor electrical angle, superscript 'e' is 

replaced by superscript 'r\ and coe is replaced by the rotor electrical angular velocity cor. 

Coupling the inverter dynamics in the rotor reference frame (81)-(82) to the machine 

equations yields: 

-vq
r  +  Lx-^-iqrs  +  LX05rids  +  rsi^s (201) 

+  Lss-^-iqs  +  <orLssid
r
s  +  G)rA^  =  0 

d     ;, -vd
r + Lx — 4 - Lxcori^s + rsid

r
s (202) 

dt 

d_ 

dt +   LSS — ids   ~   «'rLssiq's   =   0 

These equations may then be combined with the Pi-current control equations in the rotor 

reference frame 

v«; = K;q(iq
r
s* - iq

r
s) + Kiqxq

r (203) 

vd
r = K;d(id

r: - id
r
s) + K;dxd

r (204) 

^K = iq
rs* - iq

rs (205) 

-^xd
r = Us* - 4 (206) 

to yield the state-space description 
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d_ 
dt 

ids 
= 

-Kpq   -cor   Kiq    0 

cor    -Kpd   0   Ki'd 

-10      0     0 

0-100 

where in this case 

Kpq   - 

Kpd - 

r« + K, pq 

Kif 

Kirf    — 

Lx + '-'SS 

rs + Kpd 

Lx + 

Kiq 

■'-'SS 

Lx + 

Kid 

W 

"x    "*"   '-SS 

+ 

(207) 

Kp'q    0" 
^x "*" l^ss 

o K;d 

1      0 

. 0      1 . 

ir* 
■T* 

_lds. 
+ 

0 
0 

.      0 

(208) 

(209) 

(210) 

(211) 

Note, once again this is the same form as equations (89)-(94) where RL is replaced by rs 

and LL is replaced by Lss. Thus, the solution may progress as in the R-L case: use the 

Newton-Raphson routine to solve for the double-prime gains, use (208)-(211) and the 

equivalent connection inductance to solve for the primed gains, and divide those quantities 

by Kp^Kgensor to arrive at the actual gains for a single aggregate inverter. Those gains are 

then scaled by the required number of paralleled inverters. 
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VI. VECTOR CONTROL IMPLEMENTATION 

Vector control is the state-of-the-art means of controlling AC machines. It essentially 

gives the AC machine the torque characteristics of a DC commutator machine ~ notably, 

near-instantaneous torque response (as quick as the machine currents can be changed and 

tracked). The following equations are included to document how the inverter control 

development presented thus far can be extended to a high-performance servo application. 

We will start first with the induction machine. 

A. Induction Machine Vector Control 

The induction machine vector control may be implemented directly (by physically 

locating the position of the rotor flux and placing the synchronous reference frame d-axis 

there) or indirectly (by using the induction machine governing equations to establish a 

necessary and sufficient condition to guarantee that all of the rotor flux is directed along 

the synchronous reference frame d-axis). 

1. Direct method of vector control 

The direct method of vector control can either use air-gap flux measurement or simply 

stator voltage and current measurements. If sense coils are used to establish the air-gap 

flux (by integrating the resultant coil voltages), then we can establish the required 

synchronous reference frame angle by the following sequence of calculations: 

(212) 

(213) 

(214) 

(215) 

(216) 

(217) 

I     = »as 

•Is    = 
1     . 

V3las 
2   . 

vTbs 

Vv = 
X-      s 
^7-Vmq ~   Xlriqs 

¥dr   = 
X-      s 
Am 

~ X!rids 

Vr,pk   = =   V(¥qr)2 
+   (Vdr)2 

tan ' 
¥qr 

Vdr 

Notably, the approach has issues at low-frequency due to the requirement of integrating to 

find the air-gap flux linkage components. 

An alternative scheme does not require special air-gap sensors, but only simple 

current and voltage measurements. It establishes the required synchronous reference frame 

angle by first calculating the stationary reference frame voltages and currents from the 

physical variables: 
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*qs 'a 

!ds V3 
*n«: 

V3 

vds    - ^ V^ ^_ Vbs 

(218) 

(219) 

(220) 

(221) 

The stator flux linkages per second (in the stationary reference frame) are then found by 

integrating the governing equations: 

Vqs = J(-rsG>biqs + <obvq
s
s)d£ 

Vis = j(-rsCübid
s
s + cobvjs)dt; 

(222) 

(223) 

This again imposes a DSP difficulty at low frequencies.   The referred rotor flux linkages 

are then determined by 

V< qr 

Wr 

Xn 
x„ 

Xn 

¥qSs    -    (XS! 

X, m . . 
-)l, qs 

xi 
Vdss - (Xss-—^)id

ss 
Xrr 

(224) 

(225) 

Vr'pk   =   V(Vqr)2   +   (Vdr)' (226) 

The d-axis is placed on top of the rotor d-flux in the synchronous reference frame by 

assigning 

e„  = tan ¥qr 

L  Vdr 
(227) 

2. Indirect method of vector control 

Alternatively, the desired synchronous reference frame angle may be derived by only 

measuring the rotor electrical angular position, where this relates to the mechanical angle 
by 

2 or   -   ~®rm (228) 

where P is the number of poles.   Then 9e* is established from a necessary and sufficient 
condition 

e: er + J G>brrXmi, m'qs 

XrrVd?' 
dC (229) 

where i|/df is the desired d-axis rotor flux and i£ is the desired q-axis stator current, both in 
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the synchronous reference frame.  If the desired rotor flux magnitude is  kept constant, then 

it follows that 

v|>df = Xmid
e; (230) 

and (229) simplifies to 

CObTriqs* 
t 

e; = er + J 
0 X„ ids 

d^ (231) 

Thus it requires only position feedback information and feedforward of the commanded 

stator currents in the synchronous reference frame. 

B. Permanent-Magnet Synchronous Machine 

Field-oriented vector control for a PMSM is achieved through self-synchronization 

(feeding back 0r and setting it equal to 9e*) and setting id
r
s* equal to zero. The commanded 

q-axis stator current will then be directly proportional to the developed electromagnetic 

torque. 
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VII. OUTER SPEED LOOP DESIGN 

A perspective outer speed control loop for a vector-controlled induction machine or 
PMSM may take the form illustrated in Figure 7. That is under vector control, the 

developed electromagnetic torque is related to the commanded q-stator current for an 
induction machine by 

T   = 
3pxm¥;r 

*qs 

and for a round-rotor PMSM by 

3P^ 
ir 

(232) 

(233) 

KpS S + Kjs 1*1 , 
s 'TOT S+Bj, OT 

-^©rm 

Figure 7. Closed-loop speed control system 

By inspection of (232)-(233), the appropriate value for KT in Figure 7 may be found.  The 
closed-loop transfer function for the control loop of Figure 7 is given by 

     K,Kpss + KtKis 
GCL(S) = 

JTOTS
2
 + (BT0T + KtKps)s + KtKis 

(234) 

where JT0T represents the combined inertia of motor and load, BTOT is the combined viscous 
friction or motor and load, and Kps and Kis are the Pi-control gains. By specifying the 
dynamics of the speed loop (through a pair of desired pole locations), the two gains may 
be uniquely determined. The pole locations are best selected at least one decade away 
from the current control pole locations to avoid unwanted interaction. The zero in (234) 

may impact the response unfavorably by introducing more overshoot than desired. One 
potential solution is to insert a pre-filter after the commanded speed signal. For a pre-filter 
choice of 
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Gpf(s) = -F-i  (235) 
_E1 i 

the zero is canceled.   Obviously, detailed simulation should be used in conjunction with 

these design suggestions to investigate interaction and non-idealities in full. 
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VIII. CONCLUSION 

The research effort documented in this technical report provides analysis/synthesis 

tools for choosing feedback gains for a set of paralleled inverters. The local control is set 

forth in a synchronous reference frame and also addresses the question of circulating zero- 

sequence currents. The procedure for a generic R-L load was extended to both an 

induction motor load and a permanent-magnet synchronous machine load. Interestingly, a 

similar set of equations was found to be applicable in each case. The resulting inner 

current control design was then mapped outward, in the case of the machine loads, to 

facilitate the design of a speed-control drive. To make the analysis comprehensive, 

equations for the vector control implementation options were presented and the resultant 

simple Pi-control loop analyzed. 

In order to validate the control procedures outlined here, the dynamic equations for 

the R-L load, induction motor, and PMSM, together with the inverters, must be simulated 

in detail using a program such as ACSL. Such simulations could be structured to model 

slight differences between the units and thus study the efficacy of the circulating current 

control. Also, the interaction between sensor/filter dynamics and the current control 

dynamics may be more accurately studied and a more informed decision made about the 

suitability of the current control bandwidth. Finally, simulation would allow the study of 

the vector control implementations and any sort of speed control loop. The preceding 

research effort must next be applied to a hardware testbed, where the individual 

programming the DSP control must work closely with the modeler/simulator to accurately 

test each stage of development. 

Ultimately, the above approach could be extended to a propulsion-type application of 

a high-bandwidth low-power inverter module (consisting of paralleled units) operating in 

parallel with a low-bandwidth (slower switching) high-power inverter module. The 

efficacy of using the high-bandwidth unit to improve the fidelity of the output waveforms 

could then be evaluated. 
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