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Preface 

Panel flutter, an aeroelastic stability structural problem, has been a research topic for more than 

three decades. When a flight vehicle flies at a supersonic speed in the air, some skin panels may 

experience high level vibrations and fail due to the aerodynamic pressure on the vehicle surface. This 

aeroelastically induced, self-excited motion has been described as panel flutter. In the early stage of 

this research, before 1960s, it was usually assumed that the phenomena could be adequately 

understood in terms of linear models and inviscid aerodyanmics and that the questions of self-excited 

stability and response to external disturbances could be readily separated. Later, from the late of 1960s 

and early 1970s, it has been found that these assumptions are invalidated most frequently for the 

aeroelastic behavior of plates and shells. Great progress has been made in understanding the effects of 

nonlinearities, viscous flow, and complex relation between the stability and response since then. Most 

recently, the smart material and structural technique has been implemented into this area to suppress 

the flutter of panels. 

However, most of the researches on this area are concentrated on the structural side, i.e., panel or 

plate. In these researches, the approximate theories, such as qusi-steady piston theory, full linearized 

(inviscid) potential flow theory, etc., are used to estimate the aerodynamic pressure. This kind of linear 

aerodynamics may not be adequate to predict the dynamic characteristics of the fluid and structure 

because the fluid flow is strongly nonlinear at the transonic and supersonic speeds. As we know, the 

high-fidelity equations, such as Euler or Navier-Stokes equations, can predict the flow characteristics 

more accurately. One of the important reasons that the high-fidelity equations have not been used to 

predict the aerodynamic loads is that the corresponding numerical simulation is very computational 

expensive. With the fast development of the computer techniques, the full analysis of the nonlinear 

panel flutter coupled with the Euler or Navier-Stokes flow equations becomes possible. 

The Air Force Office of Scientific Research (AFOSR), Department of Defense (DOD), sponsored 

a grant (F49620-98-1-0396) through the University of Arkansas at Fayetteville during the period of 

April 1st 1998 and March 31st 2001. The development of an aeroelastic solver which combined the 

Computational Structural Dynamics (CSD) and the Computational Fluid Dynamic (CFD) was required 

in this grant. Such a code is able to predict the change in shape or position of a structure due to a 

calculated fluid pressure exerted on it, and able to model the flow of fluid around the structure. As 
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required, the aeroelastic solver has been developed. Some important and useful results have been 

proposed. 

This report sets out to explain the principles used in the aeroelastic solver. In the structural side, 

two formulations, total Lagrangian and co-rotational formulations, for the nonlinear analysis of the 

thin plate are discussed in detail. In the fluid side, the finite volume method has been used to solve the 

Euler and Navier-Stokes equations. To accurately model the problems with moving and deforming 

boundaries, the deforming mesh schemes are provided and discussed to make the fluid grid conform to 

the changing shape of the boundary. The numerical simulation of the aeroelastic solver is provided 

using a specific panel. Several issues of the panel flutter are surveyed at the end of this report. 

We would like to express our special thanks to the AFOSR, DOD, for their sponsorship of this 

research. Thanks also go out to Dr. R. E. Gordnier and Dr. M. R. Visbal at the Air Force Research 

Laboratory for their help during the research. We also would like to record our appreciation of many 

helpful information and comments made by the graduate students, Jerry Scott R Prescort, Yangki 

Jung, Douglas Benton, in this laboratory. Finally, our wives and children are certainly not to be 
omitted from our acknowledgement. 

R. Panneer Selvam Zu-Qing Qu 

Fayetteville, Arkansas, USA 

November 2001 
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CHAPTER 0 

INTRODUCTION 

0.1 Importance of Current Panel Flutter Analysis 

0.2 Description of Current Panel Flutter Analysis 

0.3 Organization of this Report 

0.1 Importance of Current Panel Flutter Analysis 

With the resurgent interest in flight vehicles such as the High-Speed Civil Transport (HSCT), the 

X-33 Advanced Technology Demonstrator, the Reusable Launch Vehicle (RLV), the Joint Strike 

Fighter (JSF) and the X-38 Spacecraft using a lifting-body concept that will operate at 

supersonic/hypersonic Mach numbers, the need for panel flutter analysis has received broad 

acknowledgement1. 

The linear and nonlinear analysis of the panel flutter has been studied extensive during the past 

two decades1'6. However, most of the researches on this area are concentrated on the structural side, 

i.e., panel or plate. In these researches, the approximate theories, such as qusi-steady piston theory •, 

full linearized (inviscid) potential flow theory9'10, etc., are used to estimate the aerodynamic pressure. 

This kind of linear aerodynamics may not be adequate to predict the dynamic characteristics of the 

fluid and structure because the fluid flow is strongly nonlinear at the transonic and supersonic speeds. 

As we know, the high-fidelity equations, such as Euler or Navier-Stokes equations, can predict the 

flow characteristics more accurately. One of the important reasons that the high-fidelity equations 

have not been used to predict the aerodynamic loads is that the corresponding numerical simulation is 

very computationally expensive. With the fast development of the computer techniques, the full 

analysis of the nonlinear panel flutter coupled with the Euler or Navier-Stokes flow equations becomes 

possible. 
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0.2 Description of Current Panel Flutter Analysis 

Panel flutter in the supersonic flow falls in the category of self-excited or self-sustained 

oscillations. Historically, flutter and other problems involving a fluid and a structure were predicted 

using wind tunnels. This type of testing required building small test models, which are expensive and 

time consuming. In addition to physical models being costly, testing facilities such as wind tunnels 

capable of producing air speed beyond the speed of sound are very rare. However, within the past 

couple of decades, advances in computer technology has greatly lowered the time and cost of design 

by enabling us to model complex engineering problems on computer rather than building costly 

physical test models. Through computer modeling it is possible for engineers to predict the motion of 

complex shapes in a fluid field and correct failures and other problems of a design before the first 

prototype is built. 

The aerospace industry was among the first to use and further develop computer modeling to 

predict all types of phenomenon, several of these are dynamic loads, moments, fluid pressures, shock 

waves, and turbulence. Initially, computer modeling of aircraft was separated into two fields, 

Computational Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD). In CSD a 

structure is analyzed by assuming a fluid pressure for a given air speed as the structural load. Then 

apply it to the structure to obtain the displacements and stress. For CFD the flow of fluid is analyzed 

around an immobile, infinitely stiff structure. 

As technology progressed to produce faster aircraft so did the need to understand the nature of 

fluid and its interaction with a structure and more importantly to predict it. Highly maneuverable 

aircraft such as fighters can experience very complex fluid flow such as vortices, flow separation, 

shock waves, flutter, and other high speed, nonlinear flow phenomenon. 

Such problems create the need to combine CFD and CSD. The unity of these two programs is 

known as an aeroelastic code. Such a code is able to predict the change in shape or position of a 

structure due to a calculated fluid pressure exerted on it, and able to model the flow of fluid around the 

structure. However, neither CFD nor CSD has been perfected to give exact, computationally efficient 

results. Any errors produced in the structural calculations are carried over to the fluid calculations and 

vice versa via the fluid structure interaction. 

Fluid structure interaction is the exchange of information or data from one medium to the other. 

This takes place where the boundary of the fluid meets the boundary of the structure. The 

computational result of one medium becomes the initial boundary conditions of the other. In a physical 

problem the effect of one particle of fluid on a structure will change the motion of the structure and the 
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fluid will react to that change. In nature this process happens almost instantaneously. To accurately 

model this behavior the equations of motion for the fluid, structure, and the fluid-structure interaction 

have to be solved simultaneously. An integrate algorithm in which the fluid and structure are modeled 

as a single dynamic system" may satisfy this requirement. This, however, requires the development of 

an entirely new solver. One commonly used scheme is that the effects of one medium on the other is 

delayed or lagged in time and the results of one medium can be used to calculate the results of the 

other. The amount of lag or time step size affects the accuracy of the results. To reduce this error the 

Newton-type subiteration12 may be used. 

Another obstacle to be overcome in the fluid-structure interaction is the coordinate system that 

describes the motion of a fluid or a structure (The computational grid of the fluid or the structure 

represents the coordinate system). There are two types of coordinate systems, the Euler and the 

Lagrangian. Generally, the motion of a fluid is described by the Euler coordinate system, where the 

coordinate system does not move with the material particles in time. The motion of a structure is 

described by the Lagrangian coordinate system, where the coordinate system moves with the material 

particles in time. When dealing with a structure that is moving within a fluid, the fluid grid must be 

updated at each time step to conform to the new position of the structure. To solve this issue two 

things must be taken into account, how to modify the fluid equations to allow for movement and still 

get accurate results and, how to create a grid to conform to the new shape of the structure. 

Small amplitude linear structural theory indicates that there is a critical dynamic pressure above 

which the panel motion becomes unstable and grows exponentially with time. In reality, however, 

geometrically nonlinear effect is present due to vibration with large amplitudes. The panel not only 

bends but also stretches with in-plane tensile stresses. Such in-plane tensile stresses provide a 

stabilizing effect that restrains the panel motion to bound limit cycle oscillations with increasing 

amplitude as the dynamic pressure increases. The skin panels of the flight vehicle can thus withstand 

velocities beyond those predicted based on the small amplitude linear structural theory. For a more 

thorough understanding and more realistic assessment of the panel flutter problems, the geometrically 

nonlinear effect due to the large amplitude oscillations should be considered. 

0.3 Organization of this Report 

Geometric nonlinearity is increasingly being considered in structural analysis, especially for those 

structures that undergo large displacement with very little actual staining occurring. There are many 
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works on the way in which the geometrically non-linear problems may be formulated. Three main 

methods have been currently employed, namely, the Total Lagrangian (TL) formulation, the Updated 

Lagrangian (UL) formulation and the Co-Rotational (CR) formulation. Each of these formulation has 

its inherent drawbacks, merits and advocates. The details of the pros and cons of the formulations were 

surveyed using a cantilever beam in our laboratory13. Due to the slow convergence of the UL 

formulation, the TL and CR formulations will be discussed in this report. 

The large deflection of thin plates, which considers the coupling effect between the flexure and the 

in-plane deformation, is investigated in Chapter 1 by using the finite element method. The TL 

formulation in which the original undeformed configuration is taken as the reference configuration is 

to be used. Based on the von-Karman nonlinear strain-displacement relation, the dynamic equations of 

large deflection plates are derived at first. The formulation of Discrete Kirchhoff Theory (DKT) for 

triangular elements is then presented for the discretization of the thin plate. An iterative method 

between the equations of the flexure and membrane is used to solve the nonlinear equations at each 

time step. To make the method efficient, a relaxation factor was also used. The Newmark- ß method is 

used to approximate in time. Several numerical examples are also included in this chapter to 

demonstrate the efficiency of the method for nonlinear dynamic problems. 

The CR formulation makes use of both the original configuration and the current deformed 

configuration to formulate the system matrices. Although restricted to small rotation between 

iterations, it exhibits good rate of convergence and, thereby, reduces the computation time. In Chapter 

2, CR formulation for static and dynamic analysis of plate structures using DKT triangular elements is 

presented. A number of numerical examples are presented to fully test the capabilities of this 

formulation. The CR formulation code developed in this study can be used for more understanding and 

realistic assessment of the panel flutter problems. 

As mentioned above, the fluid equations are usually derived using the Eulerian motion description 

and the structural equations derived using the Lagrangian description. To accurately model problems 

with moving and deforming boundaries requires that the fluid grid conform to the changing shape of 

the boundary. To accommodate the movement of the fluid grid either a new grid must be generated at 

each time step (dynamic regridding) or the differential equations for the fluid must be modified to 

allow the movement of the existing fluid grid (ALE, Corotational, Space-Time). Once a method is 

found for modifying the fluid equations to allow for grid movement a method must be chosen to move 

or update the fluid grid to the new position of the structure. In Chapter 3, different methods used to 

modify the fluid equations to allow the movement of a structure within the fluid domain are described. 

For the ALE method, various methods used to update or move the fluid grid to conform to a changing 
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structural boundary are also described and evaluated. The details of the implementation of the Trans- 

Finite Interpolation scheme for the deforming mesh is provided in this chapter. Numerical simulation 

is also included to show the features of this scheme. 

In the fluid side of the fluid-structure interaction, the fluid dynamic computation must have the 

fidelity to capture the relevant flow features and provide accurate aerodynamic loads on the structure 

in developing a perfect fluid-structure interaction solver in computational aeroelasticity. A finite 

volume method is used in Chapter 4 to establish computational solvers for Euler equation and Navier- 

Stokes equation. 

A numerical simulation of the three-dimensional nonlinear panel flutter at supersonic flow is 

performed using the high-fidelity flow equations - Euler equations in Chapter 5. These flow equations 

are solved using the Beam-Warming, alternate-direction, implicit scheme. The governing equations of 

the thin panel are based on the von-Karman large deflection plate theory. Since the finite difference 

method is much more efficient than the finite element method for a simple structure, the former is used 

to discretize these governing equations in space and Newmark- ß integration scheme is applied to 

solve them in time domain. The Newton-like subiteration is implemented to eliminate the lagging 

errors associated with the exchange of the pressure and deformations between the fluid and panel at 

their interface. A simply supported square panel is considered at this time. The results at the 

supersonic flow are compared with those from the aerodynamic approximations, such as potential flow 

theory and qusi-steady supersonic theory. The flutter frequency and the effects of the panel thickness 

are also discussed in this chapter. 

Reference: 

'Mei, C, Abdel-Motagaly, K., and Chen, R, "Review of Nonlinear Panel Flutter at Supersonic 

and Hypersonic Speeds," Applied Mechanics Review, Vol.52, No.10, 1999, pp.321-332. 
2Dowell, E. H., Aerodynamic of Plates and Shells, Noordhoff International Publishing, Leyden, 

Netherlands, 1975. 
3Dowell, E. H., "Panel Flutter: A Review of the Aeroelastic Stability of Plates and Shells," AIAA 

Journal, Vol.8, No.3, 1970, pp.385-399. 

"Yang, T. Y., and Sung, S.H., "Finite Element Panel Flutter under Three Dimensional Supersonic 

Unsteady Potential Flow," AIAA Journal, Vol.15, No.12, 1977, pp.1677-1683. 
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6Bismarck-Nasr, M. N., "Finite Elements in Aeroelasticity of Plates and Shells," Applied 

Mechanics Reviews, Vol.49, No.10, Part 2, 1996, pp.sl7-s24. 

'Ashley, H., and Zartarian, G., "Piston Theory - a New Aerodynamic Tool for Aeroelastician," 

Journal of Aeronautical Science, Vol.23, No., 1956, pp.1109-1118. 
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Engineering, the University of Arkansas, May 2000. 



CHAPTER 1 

NONLINEAR PLATE ANALYSIS USING TOTAL 

LAGRANGIAN FORMULATIONS 

1.1 Introduction 

1.2 Finite Element Formulation of Large Deflection Plates 

1.3 DKT Triangular Element 

1.4 Static Nonlinear Problems of Large Deflection 

1.5 Dynamic Nonlinear Problems of Large Deflection 

1.6 Non-Dimensional Form of FEM Formulations 

1.7 Summary 

1.1 Introduction 

Panel flutter, an aeroelastic structural problem, has been a research topic for the past three decades 

and has recently received great interest14. When a vehicle flies at a supersonic speed in the air, some 

skin panels may experience high level vibrations and fail due to the aerodynamic pressure on the 

vehicle surface. This aeroelastically induced, self-excited motion has been described as panel flutter. 

Experiments showed that there are critical dynamic pressures in panel flutter. Below these critical 

pressures the panel has a random oscillation with small amplitude which is a small fraction of the 

panel thickness. The predominant frequency components are observed to be near the lower panel 

natural frequencies. Basically, the panel is undergoing a linear oscillation. These critical dynamic 

pressures are also called the flutter boundary. Beyond this boundary, the amplitude of the panel 

oscillation grows rapidly to the order of the panel thickness. For this case, the responses predicted 

using the small deflection linear theory are no longer applicable, and, therefore, nonlinear theory 

taking account the effects of large amplitude should be applied. 

The analytical solution of the vibrations of large deflection thin plates was surveyed by many 

researchers more than 20 years ago. Most of the studies, however, have been concerned with circular 



Computational Mechanics Laboratory, University of Arkansas at Fayetteville Selvam and Qu 

or rectangular plates due to the difficulty of the mathematical treatment. With the increased use of the 

plate in many optimum- or minimum-weight designed built-up structures, many numerical methods, 

such as finite difference method5, the finite element method6'8, finite strips method9,10, finite element - 

transfer matrix method" and so on, were used to discretize the plates in physical space. 

The nine-parameter bending plate element is a simple element that is widely used in engineering. 

Many such triangular elements have been developed. They include the element BCIZ , discrete 

Kirchhoff element DKT13, natural formulation element TRUNC14, free formulation element T3A
15, 

hybrid stress element HSM16,17, etc. Recently, a set of three good triangular elements18 and a refined 

direct stiffness method (RDSM)19 have been proposed. 

The formulation of elements based on the discrete Kirchhoff theory for thin bending plates is 

obtained by considering a theory of plates including transverse shear deformation. In this case, the 

independent quantities are the deflection and rotations and only C? continuity requirements need to be 

satisfied. The transverse shear energy is neglected altogether and the Kirchhoff hypothesis introduced 

in a discrete way along the edges of the element to relate the relations to the transverse displacements. 

Batoz20,21 studied the DKT element and concluded that it is one of the efficient, cost effective and 

reliable elements of its class for static bending. The convergence properties of the DKT element do not 

deteriorate with an increase in the element aspect ratio and which is not so far for other elements. 

Ratoz21 also presented the stiffness matrix of the DKT element in explicitly form in local coordinate 

system. This means that the stiffness matrix is to be transformed to a global coordinate system before 

assembly. A simple algorithm was proposed by Jeyachandrabose and Kirkhope22 to directly obtain the 

stiffness matrix in the global coordinates. The relationship of a series of elements based on Reissner- 

Mindlin assumptions and using discrete (collocation type) constraints was discussed by Zienkiewicz 

and Taylor et aP. Most recently many researchers24,25 have been trying to improve the accuracy and 

efficiency of the DKT triangular and rectangular elements. 

In this report, the large deflection of thin plates, which considers the coupling effect between the 

flexure and the in-plane deformation, is investigated by using finite element method. Based on the 

von-Karman nonlinear strain-displacement relation and the DKT of triangular elements, the dynamic 

equations of large deflection plates are derived using the finite element method. The Newmark- ß 

method is used to solve the dynamic equations of equilibrium in time domain. Several numerical 

examples are also included to demonstrate the efficiency of the method for nonlinear dynamic 

problems. 



 CHAPTER 1: Nonlinear Plate Analysis Using Total Lagrangian Formulations  

1.2 Finite Element Formulation of Large Deflection Plates 

1.2.1 Assumptions 

The following assumptions will be used during the derivation of the finite element formulation of 

the large deflection plates: 

• Isotropie material obeys Hook's Law (small strain); 

• Thin plate (a/t>20), and <7Z = 0; 

• Inplane inertia, rotatory inertia and transverse shear deformation effects are negligible; 

• Von Kaiman large deflection strain-displacement relations are valid. The displacements are not 

infinitesimal (linear problem), but also not excessively large (change in geometry, very large 

deflection problem); 

• Material is linear elastic, isotropic. 

1.2.2 Displacement Functions 

The finite element method assumes that the displacement solution is a node displacement vector 

W. For a plate structure, the displacement vector consists of flexure and membrane displacement 

vectors Wf and Wm, i.e. 

Relatively, the element displacement vector can be expressed as 

"-ft} °-2) 

The displacements at any point on the element could be expressed in terms of element nodal 

displacements as 

™ = Cwwf (1-3-a) 

u = Cuwm (1-3-b) 

v=Cvwm (1-3-c) 

where, the Cw, and Cu and Cv are the row vectors of interpolation functions. 

1.2.3 Nonlinear Strain-Displacement Relation (von Karman) 
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Considering small inplane strain and large lateral displacement, the total strain vector is given by 

e = e + z (1-4) 

where the membrane strain vector e consists of two parts: 

e =e„ +efl (1-5) 

The linear membrane strain vector e   is related to the displacements as 

em = 

u,y+v,> 

(1-6) 

Here a comma represents differentiation. The nonlinear stretching strain vector,   ee, induced from 

large lateral deflection by the von Karman strain-displacement relation is given as 

(1-7) 

1 
2 

w2 

1 
2 

w2 
,y 

w w 
. . 

The vector of bending curvatures ? in equation (1-4) is expressed as 

? =. w,y 

2w ,xy 

(1-8) 

By using the finite element displacement functions, equation (1-3), the membrane strain and 

curvature vectors can be expressed in terms of the element nodal displacements. The linear membrane 

strains from equations (1-3-b), (1-3-c) and (1-6) are given by 

±c, 
dx 

e   =<       —C       \w  =C w (1-9) ^™ -\ v m mm V       ' 
By 

-cu+-cv 
dy dx 

The nonlinear membrane strains from equations (1-3-a) and (1-7) are expressed as 

10 
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w r °1 1 
0 Wv 2 •y 

w , Wr L  -y 

k     2       2 w, = — ?C,w> e"y 

where the slope matrix and vector are given by 

9 — 

ws 0 " 
0 w,y 

w W-*. 

e = - 
w. 

w. 

and the curvatures from equations (1-3-a) and (1-8) are expressed as 

? = 

I" a2    1 
->   2      w ox 
a2 ^ -ArC a/ w 

d2 „ —— c 
dxy 

wf = CJ-WJ- 

(1-10) 

(1-11) 

(1-12) 

1.2.4 Relations of Stress and Strain 

The general stress-strain relation for a plane stress (Gz = 0) is given by 

s =<, = Ee 

where the strain vector is given by equation (1-4) and the elastic coefficient matrix is 

E = 
1-v2 

1    V 

V     1 

0   0 

0 

0 
1-v 

2  J 

(1-13) 

(1-14) 

The membrane or inplane force vector N and moment vector M are defined as 

(N,M)=j"n {l,z)adz = (Ae,DK) (1-15) 

where A and D are symmetirc matrix of material properties; h is the thickness of the plate. For an 

isotropic plate of uniform thickness, they are given by 
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A = 
Eh 

1-v' 

1 v 

v 1 

0   0 

0 

0 
1-v 

D = 
Eti 

12(1-v2) 

1 v 

v 1 

0   0 

0 

0 
1-v 

(1-16) 

1.2.5 Equations of Motion 

According to the principle of virtual work, the total work done by internal and external forces 

(including inertia force) on an infinitesimal virtual displacement is zero, that is, 

ÖW = ÖWmt-ÖWexl=0 (1-17) 

where, the internal and external work are given by 

8Wint=J8eTsdV,   SWexl=\v5W
TfextdV (1-18) 

Substituting all the corresponding equations into equations (1-17) and (1-18), the element equilibrium 

can be reached as (not including damping here) 

ntjy      0 

0     mmr 

wr 

w> 
• + "ff       "fin 

k       k "mf      "mm 

w 'r-r Wm\ Urn. 
(1-19) 

where m,, and m     are the mass matrices of flexure and membrane, respectively. They are defined 
*// 

as 

and 

mff = Psh\CT
wCwds ,    mnm = psh\cT

mCwds 

kfm = k)m=Ucl?TACmds,   kmf=klf=\\c
T

mA? Ceds 

(1-20) 

kff = kff + kff + kff 
(1-21) 

k0
ff, k

l
ff and k2

ff are the linear, the first order nonlinear and the second order nonlinear parts of the 

stiffness matrix. They are defined as 

k°f/ = \CT
fDCfds , k)f = 

l-\CT
6NmCeds , k2

ff = \[cT
e?

TA? C6ds (1-22) 

and mid-surface force matrix 

N 
jV   =      ""     _ "^ (1-23) 

N N 11 mx mxy 

N N * * nay my 

is constructed from 
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Nm = 

Itl 

AT 

N, mxy 

= ACmwm 
(1-24) 

The stiffness matrix pertaining to membrane is given by 

kmm=\clACmds 
Js 

(1-25) 

1.3 DKT Triangular Element 

In the following, the DKT element shown in Figure 1.1 is adopted from Batoz et af , 

Jeyachandrabose et af2 and Xue26 without modification. DKT element defines element shape 

functions due to slopes as20 

x,u 

Figure 1.1 DKT triangular element 

w w 
-^ = Hx{^)wf ,    -^=Hy(Z,r1)w^ 
dx dy 

where f and rj are area coordinates and the displacement vector wf is expressed as 

wf = w„ wxl, wyi, w2, wx2, wy2, w3, wx3, wy3 

The nine components of shape function vectors, Hx and Hy, are given by 

Hxl=-\.5a6N6-a5N5 

(1-26) 

(1-27) 

(1-28-a) 

(1-28-b) 
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Hx3=-b5N5+b6N6 

H -1.5 d6N6-dsNs 

Hy2=-b5N5+b6N6 

(1-28-c) 

(1-28-d) 

(1-28-e) 

The functions HxA, Hx5, Hx6, Hy„ Hy5 and Hy6 are obtained from the above expressions by 

replacing AT, by N2 and indices 6 and 5 by 4 and 6, respectively. The functions Hxl, Hxi, Hx9, 

H 7, Hy% and Hy9 are, respectively, obtained by replacing JV, by N3 and indices 6 and 5 by 5 and 

4. The shape functions are given by 

AT3=77 277-I 

N5 = 4r] \-£,-r) 

Af6=4£ 1-4-7] 

and the coefficients are given by 

b* = 4Xuyu/lv 

Ck = 
(\     2       1     2^ 
4* "2* 

where fc = 4, 5,6 for the sides i =23, 31, 12 respectively, and 

xu=x,-xj,  y„ = yi-yJ 

(1-29-a) 

(1-29-b) 

(1-29-c) 

(1-29-d) 

(1-29-e) 

(1-29-f) 

(1-30-a) 

(1-30-b) 

(1-30-c) 

(1-30-d) 

(1-30-e) 

(1-30-f) 

(1-31) 

14 



CHAPTER 1: Nonlinear Plate Analysis Using Total Lagrangian Formulations 

According to equation (1-10), the slope transformation matrix C0 can be found as 

Ce = H. 
(1-32) 

The curvature transformation matrix Cf can be derived as 

Cr = 
2A 

—   X3lHy£     —   XftHy^ 

■hiHxA-xnHxn +y3iHy4 +ynHyn 

Hx4 ~ 

where A is the area of an element 

2 A = x3]yi2 — xi2y3i 

The matrix Hx4 , Hxr], HyA and Hyn are given by 

p6l-2$ +Tjps-p6 

4-6(| +77)-r6(l-2£)+rKr5+r6) 

q6(\-2Z)-T]{q5+q6) 

-P6{1-2Z)+V{P4 + P6) 
2-6£-r6(l-2£)-77(r4-r6) 

g6{i-24)-n{qt-9A) 

-nips+p*) 

-p5 l-2r7 -£p6-Ps 
4-6{$+ri)-r5{\-2Ji)+Z{r5 + r6) 

q5{\-2r})-${q5+q6) 

ZiPt + Pe) 

p5{\-2n)-t{p4+p5) 
2-6rj-r5(l-2Tj)-<^(r4-r5) 

L q5{l-2rj)+S{qA-q5) 

where, 

H*4 ~ 

(1-33) 

(1-34) 

Hy4~ 

t6l-2£ +rjt5-t6 

q6{l-2£)-r}{q5+q6) 

l + r6(l-2$)-ri(r5 + r6) 

-t6(l-24)+ri{t4 + t6) 

q6(\-2%)+7l{q4-q6) 

-l + r6(l-2|)+r7(r4-r6) 

-riiU + ts) 

(1-35-a) 

HIA ~ 

l6_^5 -ts 1-277 -£t. 

q5{l-2r})-£{q5+q6) 

l + r5(l-2T7)-£(r5+r6) 

ts{i-2n)-${u+t5) 
q5{l-2Tl)+Z{q4-q5) 

-l + r5{l-2n)+S{rA-r. sU 

(1-35-b) 

Pk=-6xu/§> *k=-6yjii> ^w?» r*=mtj 
k =4, 5, 6 for i =23, 31, 12 respectively. 

(1-36) 
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w, 

w. 'x\ 

To develop the mass matrix of flexure and membrane the following displacement functions are 

used 

L]{\ + 2L2+2L3) + 214^ 

^iv*3i^3 ~x4i)^~W-4i\xz\~xn) 

12(1+24 + 2LX ) + 2LlL2L3 

L2\xnL1-x23Li) + —L1L2Li{xn — x23) 

42(1 + 2Z,+2I2)+21,413 

W^n^i ~ x3iAJ +~LlL2Li\x2i ~
xi\) 

The membrane displacement functions are linear functions of the nodal displacements, i.e. 

w = Cwwf = 

wyi 

w2 

W2x> 

W2y 

w 
'iy 

(1-37) 

Ivl 
Lx    0    4    0    L3    0 

0    Z,    0    L2    0    L3 
uv     m (1-38) 

Introducing equation (1-38) into equations (1-6) and (1-9), one has 

>23      3^31      7.2 

m    2A 
0 0      0 

v13       A21 

0 0 0 

-*32 X13 -"•21 

723 ttl ^12. 

(1-39) 

1.4 Statically Nonlinear Problems of Large Deflection 

1.4.1 Scheme for solving nonlinear static equations 

The structural static equation is given by 
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Kff       Kfm 

K„,f      A,,- mj mm 

\Wf\\Ff 
\wA    \F_ 

Equation (1-40) is equivalent to the following two equations 

KffWf=Ff-KfmWm 

KmmWm=Fm-KmfWf 

Hence, the iterative equations are given by 

XffWf'* wp=Ff-K%w(;A) w™ 
wp = Rfw^+(\-Rf)w

(;-X) 

^mW^=Fm-K^(w^)w}" 

W? = RmW^ + {\-Rm)W^ 

0 = U-) 

and 

wf^o, wr=o 
where, R, and Rm are relaxation factors for the flexure and membrane. 

The scheme for solving the nonlinear static problem is listed as below. 

1. Select constants for iteration; 

2. Formulate the load vectors Ff and Fm; 

3. Initialize the displacement vectors Wf and Wm ; 

4. Calculate the stiffness matrix of membrane Kmm and then factorize it; 

5. For ith iteration: 

5.1. Calculate the stiffness matrix K^ and general force vector K^^V^ 

5.2 Solve the first equation of equation (1-42) to obtain Wf ; 

5.3 Check convergence for flexure; 

5.4 Construct new flexure displacement vector Wf1 by using Rf; 

5.5 Calculate the general force vector K^Wf; 

5.6 Solve the third equation of equation (1-42) to obtain W^ ; 

5.7 Check convergence for membrane; 

5.8 Construct new membrane displacement vector W^ by using Rm; 

5.9 If the displacements of flexure or membrane are not convergent, go back to 5.1; 

(1-40) 

(1-41-a) 

(1-41-b) 

(1-42) 

(1-43) 
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6. Output results. 

1.4.2 Results and Discussions 

1.4.2.1 Accuracy of the Program 

Example I 

A clamped squared plate subjected to a uniform distributed load      is considered. The length of 

the sides is 7.62m. The thickness is 0.0762m. Modulus elasticity and possion ratio are 

E = 2.0685 xlOuN/m2 and 0.316 respectively. This example has become a "standard" used by many 

authors27"31 to check the GNL (Geometric Nonlinear) thin plate formulations. The analytical thin plate 

solution is given by Levy32 who solved von Karman's equations using a double Fouries series. This 

solution is quoted as having a possible error of less than 2%30. The plate is divided into 200 triangular 

elements and 121 nodes. The error tolerances are 10"5 and Rf = 0.7. The results are shown in Table 

1.1. Q = (qa4)l(Et4) is a non-dimensional uniformed distributed load. The third column, shown in 

Table 1.1, was obtained from Wood29 by using the Irons-Razzaque non-conforming triangular thin 

plate element. The results in Columns 4 and 5 are based on Mindlin's plate theory. Obviously, the 

results of present method are acceptable. 

Table 1.1. Comparison of central deflections from different methods (clamped plate) 

Load (O) Exact Wood Pica, et al Rao, et al Present 

17.79 0.237 0.2387 0.2351 0.2346 0.2383 

38.3 0.471 0.4717 0.4673 0.4660 0.4636 

63.4 0.695 0.6916 0.6887 0.6862 0.6791 

95 0.912 0.9008 0.9003 0.8987 0.8721 

134.9 1.121 1.1025 1.1041 1.1025 1.0677 

184 1.323 1.2961 1.2990 1.2979 1.2595 

245 1.521 1.4879 1.4913 1.4890 1.4539 

318 1.714 1.6744 1.6774 1.6750 1.6475 

402 1.902 1.8529 1.8682 1.8526 1.8365 

Example II 

The program is checked again by using a simply supported square plate with immovable inplane 

edges. The other parameters are identical to the above example. The results are listed in Table 1.2. The 
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results in the second column were obtained by Rushton33 who used a finite difference dynamic relation 

approach based on thin Kirchhoff plate. There is a little difference between these results. 

Table 1.2. Comparison of central deflections from different methods (simply supported) 

Load (0) Rushton Pica, et al Present 

9.16 0.335 0.3478 0.3296 

36.6 0.818 0.8184 0.7625 

146.5 1.47 1.4655 1.4168 

586 2.40 2.3927 2.4520 

2344 3.83 3.8124 4.1733 

9377 6.07 6.0521 7.1272 

1.4.2.2 Effects of Rf on the convergence 

Example I 

In this analysis, a simply supported square plate subjected to an uniformed distributed load is 

considered. The length of the sides is 10m. The thickness is 0.1m. Modulus elasticity and possion ratio 

are £ = 2.0x10" N/m2 and 0.3 respectively. The plate is divided into 200 triangular elements and 

121 nodes. The iterations and central deflections for different Rf are listed in Table 1.3. The error 

tolerances are 0.01. Obviously, Rf should be close to 1 for linear problems, while it is much smaller 

for nonlinear problems. 

Table 1.3. Iterations and central deflections for different Rf 

Pressure 
(Pa) 

Deflection of 
Linear 

^=1.0 Rf=0J tf^O.4 

Iter. Nonlinear Iter. Nonlinear Iter. Nonlinear 

200 .440689e-03 1 .440673e-03 5 .440673e-03 10 .440673e-03 

2000 .440689e-02 1 .439068e-03 5 .439089e-02 9 .439114e-02 

20000 .440689e-01 7 .355715e-01 2 .356139e-01 7 .356482e-01 

100000 .220345e+00 _ _ 15 .896526e-01 3 .900227e-01 

200000 .440689e+00 _ _ . - 4 .122599e+00 

2000000 .440689e+01 - - - - 11 .304909e+00 

Example II 

The example II in section 1.4.2.1 is considered again to check the convergence of the iteration. 

The iterations for different cases are listed in Table 1.4. The results show that it is very difficult to find 
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a single optimal Rf for different load cases. For higher nonlinearity, lower Rf is needed as shown in 

Table 1.4. 

Table 1.4. Iterations for different methods (simply supported plate) 

Load (Q) Rf*0.5 Är=0.2 ^=0.05 

9.16 12 38 169 

36.6 11 34 148 

146.5 16 34 150 

586 31 38 159 

2344 - 52 158 

9377 - - 201 

1.5 Dynamic Nonlinear Problems of Large Deflection 

1.5.1 Scheme for solving the nonlinear dynamic equation 

The classical Newmark- ß method34 is used to approximate in time. For convenience, the damping 

is not considered. The dynamic equations of the large deflection problem without damping can be 

written in matrix form as 

M 0 
ff 

0     M, 

\Wf 

\w_ 
+ 

vff K fm 

"■mf      Am 

\Wf\=\Ff 
\wA   \Fm 

According to the Newmark method, the effective stiffness matrix at time t + At is 

t+At v—l+^t K K + a'+MM 

Substituting equation (1-44) into equation (1-45), one has 

(+A( 
Kff Jm 

l+At 

'Kff Kfm 
l+At 

+ a0 
'Mff 0 

mj 
tr 

mm K Kmm_ L u 
mm _ 

Because Mfr, Mmm and Kmm are constant matrices, we have '// 

^Kff='^Kff + aoMff 

Kfm~        Kfm 
l+At W-        t + H TT 

Amf-        Amf 

'+ä,Kmm =Kmm + a0Mmm 

(1^4) 

(1-45) 

(1-46) 

(1-47) 
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According to the Newmark method, the effective load vector is given by 

'^'F='+AtF +M(a0'W + a2'W + ajw) 

which can be rewritten in partitioned form as 

t+At 

■/u •+ 
M 

ff 

0     M, 
+ a2 

\F \Fr 

Hence, the effective load vectors of flexure and membrane are given by 

t+*Ff=i+*Ff +Mff a0'Wf + a2'Wf+ai'Wf 

,+A,F='+A'Fr + Mmm a'Wm +a'Wm +a'Wm 

■ + a. Wt 
\wm 

The final equations to be solved are given by 

t+At 
K 

Kmf      Km 

vfm 
t+At i wt A- 

t+At r A 

F, 

\W„ 

(1-48) 

(1-49) 

(l-50a) 

(l-50b) 

(1-51) 

According to the assumption, one has  Mmm = 0. Therefore, the iterative equations for effective 

equations are given by 

<+4/j5-(i)   t+Atnr(i-\)    t+Atyy(i)_t+Atp _t+Atj£(i)   t+Atyy(i-\)    t+Atyy(i-\) 

"*Wp = Rf"*Wf + (l-Rf) 
/+AFF/-1) 

t+Atjr      t+Atnr(i)_t+Alp   _t+ätjr(i+\)tt+Atyy(i)\ t+Atyy(i) 
mm m m mf    \ f    / f 

t+*w(i)  _ p   I+A'WV) + (l_ /?    ) t+Atwy(i-l) 
" m m m     '   \ m I ' m 

0" = 1,2,-) (1-52) 

The scheme for solving the nonlinear dynamic problem is listed as below. 

1. Select constants for Newmark- ß method and the static iteration; 

2. Calculate integration constants for Newmark- ß method; 

3. Initialize structural data and evaluate index vectors for diagonals in the structural matrices of flexure 

and membrane; 

4. Initialize the displacement, velocity and acceleration vectors; 

5. Evaluate and factorize the stiffness matrix of membrane Kmm ; 

6. Evaluate the mass matrix of flexure M ff; 

7. Calculate the dynamic responses step by step (Newmark- ß loop): 

7.1 Formulate external force vectors Ff and Fm ; 

7.2 Evaluate effective loads at time t + At for flexure; 
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7.3 Initialize displacement vectors; 

7.4 For the ith iteration of nonlinear effective static problem: 

7.4.1 Calculate stiffness matrix t+Al K$ and general force vectort+M K% MW^~n of flexure; 

7.4.2 Calculate effective stifmess matrix t+/u Kf for flexure; 

7.4.3 Solve the first equation of equation (1-52) to obtain t+äl Wf' ; 

7.4.4 Check convergence for flexure; 

7.4.5 Construct new flexure displacement vector t+At Wf* by using Rf; 

7.4.6 Calculate general force vector **M K^ t+AlWf  ; 

7.4.7 Solve the third equation of equation (1-52) to obtain ,+Al W®; 

7.4.8 Check convergence for membrane; 

7.4.9 Construct new membrane displacement vector,+Al W^ by using Rm; 

7.4.10 If the displacements of flexure or membrane are not convergent, go back to 7.4.1; 

8. Output results. 

1.5.2 Numerical Examples 

1.5.2.1 Example I 
A simply supported square steel plate with immovable inplane edges is considered. The length of 

the sides is 1.0m. The thickness is 0.01m. Modulus elasticity and possion ratio are E=2.0E1 lN/m2 and 

0.3 respectively. The plate is divided into 200 triangular elements and 121 nodes. Assume a 

concentrated load, =10 Sin 20 N, acts on the center of the plate. The central responses for 

different time step sizes (0.0004, 0.0002, and 0.0001) and error tolerances (10'2, 10"4, and 10"6) are 

drawn in Figure 1.2 respectively. The iterations for these three cases are 5, 8, and 12 respectively. The 

results show that the error tolerance has much effect on the accuracy of the responses. When the error 

tolerance is large the responses change with the time step size. For this problem, the error tolerance 

can be set 10~6. 

1.5.2.2. Example II 
The   plate   used   in   example   I   is   considered   again.   Assume   the   concentrated   load   is 

= 5 Sin CO kN. The central responses of the plate for CO = 3 rad/s, CO = 100 rad/s and CO = 200rad/s 

are drawn in Figure 1.3 respectively. The error tolerance is 2xl0~7. A and B denote the responses 
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obtained from the nonlinear and linear theories respectively. For the nonlinear problems, 19 to 23, 13 

to 14, and 13 to 14 iterations are required in the three cases respectively. 

1.5.23 Example III 

Another simply supported square aluminum plate with immovable inplane edges is considered. 

The length of the sides is 0.8m. The thickness is 0.025m. Modulus elasticity and possion ratio are 

E=6.9elON/m2 and 0.33 respectively. A moving load, P=l000kN, travels at constant velocity 

v = 153.1ml s in the y-direction along the centerline. The plate is divided into 200 triangular 

elements and 121 nodes. Rf = 0.7 is used here. The responses at the center of the plate for linear and 

nonlinear are given in Figure 1.4. Again, A and B denote the responses obtained from the nonlinear 

and linear theories, respectively. In this figure, the error tolerance is 2 x 10"7 and the iterations are 13 

to 14 for the nonlinear case. 

1.6 Non-Dimensional Form of FEM Formulations 
The finite element formulations defined above are dimensional. As we know, dimensionless 

parameters are usually used in the fluid equations. To make them compatible, these FEM formulations 

are to be non-dimensionalized with respect to the length of the plate and other parameters from fluid. 

The dimensionless dynamic equations of equilibrium using finite element method may be obtained by 

non-dimensionlizing either the partial differential equations of nonlinear plate or the integration form 

of the finite element formulations. The details of the former will be shown in Section 5.4. The non- 

dimensional form of the latter is to be provided in the following. 

Assume the dimensionless parameters are given by 

~     U       ~     V       ~      w 
u = -,   v=-,   w = 7, 

~      X H 
w = w .   w = w x          x '        y          y 

7   tV~    v-   p 

i '     pyl 

~    z 
z = — 

/ 
(1-53) 

where / is the length of the plate; V„ is the velocity of the air in the far field; pa denotes the mass 

density of air; is the air pressure acting on the plate. With this assumption, the relation of the 

membrane displacement vectors between the dimensional form and dimensionless form is given by 

w=wj (1-54) 
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For the triangular element used above, the dimensionless membrane and flexural displacement vectors 

are defined as 

wm = w,    v,    w2    v2    u3    v3 
T (1-55) 

wf = w„ wx„ wyl, w2, wx2, wy2, w3, wx3, wy3 
T (1-56) 

Clearly, the dimensionless flexural displacement vector does not have the simple relation, as shown in 

equation (1-54), with its dimensional form. To simplify the derivation, defined the flexural 

displacement vector as 

wf= w,, lwxl, lwyl, w2, lwx2, lwy2, w3, lwx3, lwy3 
T (1-57) 

Now, we have the relation 

wf = wfl (1-58) 

Using the definition in equation (1-57), the following relations of the interpolation functions or 

other parameters between the dimensional form and the dimensionless form may be obtained from 

equations (1-3), (1-9), (1-11), (1-10), and (1-12) respectively, that is, 

C =C (1-59) ^W w 

CU = CU,   CV=CV (1-60) 

Cm=Cjl (1-61) 

? = ? (1-62) 

C,=Cjl (1-63) 

Cf=Cf/l
2 (1-64) 

Introducing equations (1-59) through (1-64) into equations (1-20), (1-21), (1-22), and (1-25) leads to 

mff = Pshl2\fiCwds = pshl2mff , mmm = pshl2[&Cwds = pshl2mmm (1-65) 

1 
kfm = ks

fm = Dm^7C
T

e?
TDCJs = Dmkfm ,   kmf = klf = *Jm (1-66) 

k\f = Dm i [cT
eNmCeds = Dmk)f (1-68) 

k)f = Dm\\Sl?TD? Ceds =Dmkjf (1-69) 
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Km = Dm[c
T

mbcjs=Dmkm (1-70) 

where, 

D = 

£> = 

1    V 0 

V     1 0 

0   0 
1-v 

2  . 

Eh 

1-v2 
Df = 

Eh3 

12(1-vO 

N  = 

N  = 

#» N mxy 

N mxy N my 

N, mxy 

= DCw m    m 

(1-71) 

(1-72) 

(1-73) 

(1-74) 

Using equation (1-53), the dimensionless acceleration and force vectors are given by 

wf=-fwf> w">=TWn (1-75) 

(1-76) f = ps = paV
2l2pZ = PaV

2l2f 

Remember, the vector wf in equation (1-75) is corresponding to the displacement vector in equation 

(1-57). Inserting equations (1-65) through (1-70), (1-75), and (1-76) into equation (1-19) results in 

PshlVi 
m ff 0 

0     m„ 

Wr 

W„ 
H- 

D, 

I 
*i    ° 
0     0 

+ D I 
"mf "mm 

Z'\=P.viAfj 

(1-77) 

Dividing both hand sides of equation (1-77) by psMV2 yields 

mff      0 

0     mm. 

W, 

W„ 
■ + ßs k)f   0 

0    0 
+tnlns 

kX + k2      k KffJ Kff     */"»' 

*mf "mm 

W .. „   // M.}™ 
in which the dimensionless dynamic pressure A, mass ratio fis, and internal force coefficient tnl are 

defined as 

D Psh 

12 
X 

I (1-79) 
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Equation (1-78) is the dynamic equilibrium of an element in non-dimensional form. 

Because the flexural displacement vector used here is different from that used in the triangular 

element in Section 1.3, the functions pertaining to this flexural displacement should be different from 

those defined in Section 1.3. The former may be obtained simply by dividing the items pertaining to 

the rotational degrees of freedom in the latter by the length /, namely, 

•    Flexural displacement functions: 

£;{l + 2L2 + 2L3)+2LlL1Li 

Avx3i-^3 ~x\2L2) + ~zLlL2Li\x31 —xi2) 

4 (1+2x3+21,)+2^X3 

L2(^i2Xi _ ^23X3J +—X|L2L3[xi2 — x23) 

X22 (y12Lt ~ J23X3 ) + - AX2X3 (?,2 " ?23 ) 

L3
!(l+2I, + 2Z.2) + 2X1X2Z.3 

X3^23X2 —x3lL]) +—LlL2L3[x23 — XjJ 

Ll{y23L2-yilLl) + -LlL2L,{y23 -y3l) 

(1-80) 

Slope transformation matrix: 

Ce = H.. 
(1-81) 

in which Hx and H   are the shape function vectors. Their components have the same forms as 

those shown in equation (1-28) while the coefficients bk, ck, and ek are given by 

«-{&-&)/* "-82b) 

•    Curvature transformation matrix has the same form of that in equation (1-33) except the 

coefficients qk and rk in equation (1-36) which are given by 
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qk=-fxijyy/l?j> rk=-jyl/lu 
(1-83) 

Finally, the dimensionless forms of these functions may be obtained by using the relations in 

equations (1-59) through (1-64). They are listed in the following for reference. 

•    Flexural displacement functions: 

l'(l + 24 + 24) + 2444 

Li[xJlLi —xl2L2) + —LlL2L3[x3i — xn) 

Aiynk -j?i2^)+-A44&. -£2) 

4(1+24+24)+24413 

4 (*i 24 ~" *23"^3 ) + T A-^2-^3 \X\ 2 ~~ X2i ) 

L\iyn^i ~ ynLi) + ^ ^L^ ^'2 " ^) 

^(1+24+24)+2444 

Li[x2iL1 — xJXL\) +—LlL2Li\x2i — XjJ 

L\{yliL2-yiXL{) + -L,L2L7>{y2% -y3l) 

C ...= 

Membrane displacement functions: 

HL.   0   4   0   4 
C"'      0    4     0 

Membrane strain coefficients: 

4   0   4_ 

c_ = 
2^ 

>>23      731 

0      0 
yi2 

0 

0 

A-21 

x32    x,3   x21    _y23   y3i   yl2 

Slope transformation matrix: 

(a) 

(b) 

(c) 

(d) 

where Hx and 1/   are the dimensionless shape function vectors. Their components have the 

same forms as those shown in equation (1-28) while the all the variables on the right hand sides of 

equations (1-30) should be their non-dimensional forms. 

Curvature transformation: 
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f    2A 
-%fiy4-xnilm ^ (e) 

'hß^ -XnHx,n +y3i
H,£ +ynHy,n_ 

The dimensionless derivatives of the shape function vectors have the same forms as those 

expressed in equation (1-35) except the definitions in equation (1-36). In the new definitions, the 

dimensional variables in equations (1-36) are replaced by the dimensionless variables shown in 

equation (1-53). 

1.7 Summary 

The large deflection of thin plates, which considers the coupling effect between the flexure and the 

in-plane deformation, was investigated by using finite element method. Based on the von-Karman 

nonlinear strain-displacement relation, the dynamic equations of large deflection plates were derived at 

first. The Formulation of Discrete Kirchhoff Theory (DKT) for triangular elements was then presented 

for the discretization of the thin plate. An iterative method between the equations of the flexure and 

the membrane was used to solve the static nonlinear problem. To make the method efficient, a 

relaxation factor was used in this method. The Newmark- ß method was applied to solve the dynamic 

equations in time domain. Several numerical examples were included to demonstrate the efficiency of 

the method for the nonlinear dynamic problem. The following conclusions can be drawn from the 

theory and the results of the examples: 

1. The results from the present program are acceptable by comparing with other typical results. 

2. The relaxation factor is very important for the convergence of the iterative method. If improper 

relaxation factor is selected, the iteration may not converge. 

3. Rf should be close to 1 for linear problems, while it is close to zero for nonlinear problems. 

4. The error tolerance has much effect on the accuracy of the responses. When the error tolerance is 

large the responses change with the time step size. 
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CHAPTER 2 

NONLINEAR PLATE ANALYSIS USING 

COROTATIONAL FORMULATIONS 

2.1 Introduction 

2.2 Nonlinear Static Analysis of Plates 

2.3 Nonlinear Dynamic Analysis of Plates 

2.4 Summary 

2.5 Appendix 

2.1 Introduction 

Geometric non-linearity is increasingly being considered in structural analysis especially for those 

structures that undergo large displacement with very little actual staining occurring, such as beams and 

plates. There are many works on the way in which the geometrically nonlinear problems may be 

formulated. Three main methods are currently employed, the Total Lagrangian (TL) formulation, the 

Updated Lagrangian (UL) formulation, and the Co-Rotational (CR) formulation. Each of these 

formulation has its inherent drawbacks, merits and advocates. The TL formulation in which the 

original undeformed configuration is taken as the reference configuration is only really effective for 

relatively small rotation. The UL formulation where the configuration at the end of the last iteration is 

used as the reference configuration can be path dependent and can also show very slow convergence. 

The CR formulation which makes use of both the original configuration and the current deformed 

configuration to formulate the system matrices, although restricted to small rotation between 

iterations1,2, exhibits good rate of convergence and thereby reducing the computation time. In this 

work, the CR formulation for static and dynamic analysis of plate structures using DKT triangular 

elements is presented. A number of numerical examples are presented that fully test the capabilities of 

the formulation. The CR formulation code developed in this study can be used for more understanding 

and realistic assessment of the panel flutter problems. 
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2.2 Nonlinear Static Analysis of Plates 

2.2.1 Elements in the Analysis 

Large deflection plate problem generally involves the coupling of in-plane and out-of-plane 

effects. In-plane deformation associated with the constant strain triangle with six degrees of freedom, 

two at each node, and out-of-plane deformation associated with the DKT trinagle with nine degrees of 

freedom, three at each node, are shown in Figure 2.1. Local displacement has, in total, fifteen degrees 

of freedom, five at each node, of the triangular element. Local and global degrees of freedom are 

represented by D and d, respectively. Simbolically, they are given by 

Ul 

vi   "^ 

2      TJ2 

In-plane local nodal degrees of freedom 

1    Vvl 
X 

Out-of-plane local nodal degrees of freedom 

Figure 2.1 Degrees of freedom (in-plane and out-of-plane) 
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D = U,   V, W, Vxi yryl  U2  V2  W2 y/x2 yy2 U3  V3  W3  Vxi yy3 (2.1) 

and 

d = u, v, w, 0XI eyl u2 v2 w2 ea ey2 u3 v3 w3 e* ey3 
T      (2.2) 

T T 
For plane stress: [u] = u, u2 u3    , [v]= v, v2 v3    , 

T 

For bending:     [w]= w, 9xl 9yl w2 9x2 9^  w3 9x3 6y3    , 

Where 9xl =tan -1 1 '   and   9vl = -tan ' -r-11 and so on 
[dy ) yl I 3x 

2.2.2 General Procedures of Large Deflection Analysis of Plates 

1. Generate the element stiffness matrix    Kp    (6x6) for plane stress condition (appendix-2) and 

K     (9x9) for plate bending (Appendix-3) and assemble them to find the element stiffness 

matrix   K     (15x15) in local co-ordinates.   It is obvious that the element stiffness matrix in 

global coordinates would be the same as Kg ; 

2. Assemble all the element stiffness matrices to obtain global structure stiffness matrix K . The 

equilibrium equation in global coordinates is [K d = r where d is the vector of nodal 

displacement components and [r is the vector of extrenally applied nodal forces. Solve the 

equilibrium equation to obtain the global displacement vector d ; 

3. Compute the element stiffness matrix Ke 
new in its current local configuration and establish the 

transformation matrix [ T   (15x 15) as derived in Appendix-1; 

4. Determine the local displacement vector D from global displacement vector d . Local 

displacements are defined as the displacement of the nodal points of the deformed element from 

the nodes of an undeformed reference element (l" - 2" - 3") located in the Xd - Y plane as 

shown in Figure 2.2; 

5. Compute the local resisting force  Q = K   [D]; 
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6. Transform the resisting force Q and stiffness matrix  Kg to global orientation by [T]    Q   and 

[T]T K  [T], respectively, and assemble them to obtain   q and K   in global coordinates; 

7. Compute the increments in global displacement    Ad by solving the incremental equilibrium 

equation [K Ad =[Ar , where [Ar =[r - q ; 

8. Determine the new estimate of global displacement [d new =[d +[Ad and repeat steps 3 

through 7 until   Ar becomes arbitrarily small; 

9. Apply a new load increment and follow the steps 3 through 8 until equilibrium is established for 

the new load increment. 

2.2.3 Coordinate System 
Coordinate systems before and after deformation of the triangular element used in the analysis are 

shown in Figure 2.2. 

1. x,y,z : the global coordinate system before deformation. Plate element initially lies completely 

on x-y plane. Hence, Xj ,y;  is the global coordinates of any point on the element before 

deformation. The global coordinates of nodes 1, 2 and 3 are    x,,y, , x2,y2  and x3,y3 , 

respectively, with z-coordinate of each node being zero. 

2. X, Y : Local coordinates of any point on the element before deformation. The local coordinates 

of nodes 1, 2 and 3 are   X,,Y,  , X2,Y2   and X3,Y3   , respectively. 

X^Y; = Xj.y, - x^y, 

3. xd,yd,zd : Global coordinates of any point on the element after deformation. The global 

coordinates of nodes i, 2 and 3 of the deformed element are  (x?,y|\z?), (xd,yd,zd) and 

X3'Y3'Z3 .respectively. 

xd,yd,Zid =(xi5yi,o)+ u^Vj.W; 

4. Xd,Yd,Zd : Local coordinates of any point on the element after deformation, The local 

coordinates of nodes l", 2', and 3' are Xd,Yd,Zd , Xd
2,Y*,Zd

2 and X^Y3
d,Zd , respectively. 
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5.    Xu, Yu : Local coordinates of any point on the undeformed reference element whose first node 

coincides with the first node of the deformed element.    Zu -coordinate of the undeforemed 

reference element (l"-2"-3") is zero as it completely lies on ^-YA plane. 

Zd,Zu 

Figure 2.2 Coordinate systems before and after deformation 

2.2.4 Determination of local displacement D from global displacement d 

1. Compute global coordinates after deformation (xf, y f, z f), (xj, y 2, z \)  and (xj, y£, Z3) from 

the global displacement vector 

d = u,   v,   w,   9xl   9yl   u2   v2   w2   9,2   9y2   u3   v3   w3   9,3   9y3 
T obtained in step-2 of 

Art. 1.2 and the input global coordinates   x,y,z  before deformation. The relationship stands for 

2. Rearrange the displacement vector d as 
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[dj = u, u2 u3 v, v2 v3 w, w2 w3 ex, e, e^ ey2 e^ ey3 
■ „ < i „ ———< 

Translational components of displaceme nt Rotational components of displacement 

3. Compute the new coordinate transformation matrix   T,    from equation A2.8 as described in 

Appendix-1 and determine the local co-ordinates of 2"(X2 »Y^ j, 3" X", Y" ; 

4. Determine the translational components of the nodal displacements in local coordinates as 

V 

w 

aiiai2ai3 
u 

a2ia22a23 V 

a3Ia32a33_ w 

in which 

u-u^ l-au Xf -a21YiU 

v-Vl -a12X?+(l-a22^
tt 

w-Wj      -a13X"        -a23YiU 

5. Compute rotational components of nodal displacement in the local coordinate system 

9Wj awt 
\i/xi =-tan—r;¥vi =tan—r 
yx. 3Yd'YYl axd 

(a„Xx+a21Y£+auUXE + a21VXE) 
3w; 

31     33 3xd 

3W: 
in which, 

(a12Xx + a22Yx
i +a12UXE +a22VXE) a-3-i + a 

3w; 
32 Ta33 ^   d dy* 

dXc 
and 

1-a 31 
3w; 

a^i + a^     — 31        33 ^a »32 

3w; 
a32+a33-^d- 

<9WJ 
a

31+
a33^T 

dYA 

(a„X- + a2IYJ +a21UYE +a21VYE) 

(a12X
u

Y+a22Y^+a12UYE+a22VYE|a32 + a 
i_  i 

<9W; 
33    V 

l-a31 
(9W; 

a3,+a33^T 
V J 

l32 

<9Wj 
32'"33^T a„+a 
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where, —j- = tan 
x 

(eyi);^ = -tan-'(exi) 

i+-av> 

xl =■ 
9XU 3YU 

ax d       / 

1+ 
axu 

V \ and 

1 + - 

A 

3V; 

3YU 

av; 

3Uj ay; 

3YU axu 

Yu = 
ayu 

axd 
3YU 

i+ 
aUj 

axu 

V 

1+ 
3YU 

A 

au; aVj 

3Yuaxu 

axu 3Y
U 

Similar values for X y = —j- and Yy = —j can be computed as 

Xl = 

Yv 

axu  
aYd=r   3Ui

Y 
3YU 

1+- 
axu 

A 

1 + ^L 
3YU 

au; aVj 
ä^ax" 

Now,UXE = 

UYE = can easily be computed. 

Uj   au;   aVj 
From equations A2.10 and A2.11 (Appendix-2), it can be seen that the values of ——, ——■, ——, 

dX       Y        X 

_avL 
yu are all constants and they are, 

au f = a2= —[(y2-y3)U1+(y3-y1)U2+(y1-y2)U3] 
X ^^ 

43 



Computational Mechanics Laboratory, University of Arkansas at Fayetteville Selvam, Roy, and Qu 

^- = a3=^[(x3-y2)U1+(x1-X3)U2+(x2-x1)U3] 

3V, Hß2 =i[(y2-y3)v,+(y3-y!)v2+(y,-y2)v3] 
Xu 2A 

av; = ß3=^r[(x3-y2)V,+(x1-X3)V2+(x2-X1)V3] 
Yu 2A 

T T 
6. Rearrange the Da    to comer order to have D   . 

2.2.5 Results and Discussion 

Example 1 
A clamped square plate subjected to a uniformly distributed load q is considered. The plate is of 

7620 mm x 7620 mm having a thickness of 76.2 mm. Modulus of elasticity (E) and Poisson's ratio (v) 

are 2.0685 xl05N/mm2 and 0.316, respectively. This example has also been used by Selvam and Qu3. 

The analytical thin plate solution is given by Levy4 who solved von Karman's equations using double 

fourier series. 

The plate is divided into 288 triangular elements. The number of nodes was 169.   The error 

tolerance was 10"4.  The results are shown in Table 2.1 where Q =qa4/Et4 is a non-dimensional 

uniformely distributed load. It can be observed that the present analysis estimates the results well. 

Example 2 
The program is checked by using a simply supported square plate with immovable inplane edges. 

The other parameters are identical to Example 1. The results are listed in Table 2.2. The program was 

checked for linear analysis using a concentrated load P equal to 105 N at the center of the plate. The 

result is checked against the standard solution (8max = a Pa2
/D =7.9495 mm) as derived by 

Timoshenko5. The maximum deflection was found to be 7.9324 mm with an estimated error of 0.2%. 
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Table 2.1 Comparison of the ratios of central deflections to thickness 

for different methods (clamped plate) 

Q Dmax/t 
Exact Wood Pica, et al Rao, at al Selvam, et al Present % Error 

17.79 0.237 0.2387 0.2351 0.2346 0.2383 0.2391 0.886 

38.30 0.471 0.4717 0.4673 0.4660 0.4636 0.4748 0.807 

63.40 0.695 0.6916 0.6887 0.6862 0.6791 0.6990 0.576 

95.00 0.912 0.9008 0.9003 0.8987 0.8721 0.9131 0.121 

134.90 1.121 1.1025 1.1041 1.1025 1.0677 1.1193 0.152 

184.00 1.323 1.2961 1.2990 1.2979 1.2595 1.3168 0.469 

245.00 1.521 1.4879 1.4913 1.4890 1.4539 1.5106 0.684 

318.00 1.714 1.6744 1.6774 1.6750 1.6475 1.7006 0.782 

402.00 1.902 1.8529 1.8682 1.8526 1.8365 1.8802 1.146 

Table 2.2 Comparison of the ratios of central deflections to thickness 

for different methods (Simply supported) 

Q D m,x/t 

Russton Pica, et al Selvam et al Present 

9.16 0.3350 0.3478 0.3296 0.3424 

36.60 0.8180 0.8184 0.7625 0.8073 

146.50 1.4700 1.4655 1.4168 1.4471 

586.00 2.4000 2.3927 2.4520 2.3706 

2344.00 3.8300 3.8124 4.1733 3.7836 

9377.00 6.0700 6.0521 7.1272 6.0273 

The computation in each loading was obtained by using a single load increment i.e. the load for 

which the solution is sought is applied in full at a time and the iteration was performed within this load 

until the difference of the applied full load and the resisting forces becomes minimum(of the order of 

10"4). The computation can also be performed by using as many load steps as desired without using 

the full load at a time. But the number of iterations is much less for the former case. As we are 

interested in the central deflection of the plate, the computaion was performed with the error tolerence 

based on the difference of the central deflection in consecutive two iterations. It was observed that the 

solution begins to diverge at a load equal to and greater than Q=586 pma,/t=2.314) for which the 

problem becomes highly non-linear. For convergence of the solution for higher loads, a relaxation 

factor (Rf) of 0.3 was used. After a few trial computations it was found that the result begins to diverge 
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for a load when D^t becomes approximately equal to 1.90 and an introduction of relaxation factor is 

then needed for the convergence of the solution. 

Example 3 

In this case, a simply supported square plate of size and thickness equal to 16 inch and 0.1 inch, 

respectively was used. In the computation, the modulus of elasticity (E) and Poisson's ratio (v) were 

taken as 30xl06 psi, 0.316, respectively. This example was used by Murray6. The central deflection 

was carried out for q=15 psi in 5 increments and the results are shown in Table 2.3 along with the 

results read from the graph produced by Murray. For higher loads the deflection was computed and the 

results are shown in Table 2.4. 

Table 2.3 Comparison of the ratios of central deflections 

to thickness (Simply supported) 

q,psi Draax/t 
Analysis    Murray (read from graph) 

3 1.0499 1.05 
6 1.3868 1.38 

9 1.6122 1.60 
12 1.7875 1.78 

15 1.9335 1.92 

Table 2.4 Central deflection of the plate 

q,psi 20          40          60          80         100        120 140 

DmJt 2.1362    2.7044    3.0990    3.4129    3.6774    3.9088 4.1152 

2.3 Nonlinear Dynamic Analysis of Plates 

2.3.1 Formulation of Nonlinear Dynamic Equations 

Newmark implicit time integration scheme is employed to calculate the nonlinear dynamic 

response. For convenience, the damping is not considered in the present calculation although the 

inclusion of damping will not affect the formulation. The dynamic equations for the large deflection 

problems without damping can be written in matrix form as: 
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M, 0 
+ KB 

0 

0 

K PA 

DB 

p. 

(2.3) 

where the subscripts B and P represents the characteristics associated with the bending and in-plane 

nodal displacements, respectively. Equation (2.2) can be written in general form as 

MD + KD=F (2.4) 

If the thickness of an element is t and that is assumed to be constant within the element, the consistent 

mass matrix can be computed from the following equation: 

Me=ptJJNTNdxdy (2.5) 

The following displacement functions are used to develop the mass matrix for flexure 

NT = 

Lit ~r Lit Li>\ "T Lit Lt?     Lt^ Li2     *-*\   s 

f 1 A / 
-b, 

J 

1 \ 
LXL2 +—AAA A A + TAAA 

\ l 

AA+
TAAA V-c3\LxL2-\-—LxL2L3 

f 
Lt2 ~T Lt2Li3 TLi2Lit     LI2LI3     LI2LIX 

1 
L2LX + —LXL2L3 

\ L J 

N    (    2     1 b\ L2L3 + —LXL2L3 

V L J 
( 2        1 
A A + r^4^3 

v z J 

^ f   2 1 ^ -c. 2-^3   '   ~ ^X^l^i 
\        z J 

Ju^   * -^2    I 3    2 3    1 3    2 

bx\%L2+-LXL2L3 \-b2 

*,-}w,u 

f   2 1 N 

AA+ TAAA 
v        z y 
/ 2       i ^v 
AA +TAAA (2.6) 

The mass matrix for flexure has been computed numerically following the procedures given by 

Anderson8 and that for membrane can be determined explicitly and is given by Zienkiewicz7. The 

formulation of stiffness matrix has been described in the static part. 

Employing Newmark's assumptions 

t+"b = 'D + [ 1 - S 'D + S I+A
'D\M (2.7) 

'+*D = 'D + 'DAt + --a)'D+a,+*'D A/2 (2.8) 
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The equilibrium equation at time t + At 

M'+"D + K'+"D='+&'F (2-9) 

Expression for  ,+A'D can be obtained by solving equation (2.8) for  l+A'D in terms of the unknown 

displacement ,+A'D and then substituting for   '+A'Z) into equation (2.7), expression for the velocity 

t+MD can be obtained. These are as follow: 

1+&,D = a0 
,+&'D-'D -a2'D-a,'D = a0

,+AlD- 'Q (2.10) 

•+"D = 'D + a6'D + a7'
+6'D = a1

,+*'D+'R (2-11) 

where   'Q = [a0'D + a2'D + a3'D]   and    R = ['D + a6'ö].   Expression   for   the   unknown 

displacement l+A'D can be obtained by substituting equation (2.10) into equation (2.9) as 

a0M + K'+»D=l+ätF (2-12) 

Where the effective load vector, '+A,F at time t + At is given by 

»*p= <+"F + M a^D + aSD + aSD^R+M 'Q (2.13) 

2.3.2 Iteration schemes 

Using implicit time integration, the equilibrium of the system at time t + At is considered. This 

requires in nonlinear analysis that iteration be performed. Neglecting the effects of damping matrix 

and using the modified Newton-Raphson iteration, the governing equilibrium equations are: 

l+AlM"t+&tD" +'+AtK"AD" ='+&'F—l+&'pn~l (2.14) 

and 

<+A<2)"=
,+4<

Z)""
1
 +AD" (2-15) 

where  '+A'pn-1 is the static resisting force.   Using the expression of acceleration at time   t + At, 

,+&lD in equation (2.10), equation (2.15) can be written as 
,+*Z)" = a0 ,+AlD"-1 -'Q + a0 AD" (2-16) 

and the velocity 

'+"£)" =a7'
+"Dn+!R (2-17) 

Substituting equation (2.16) in equation (2.14), the final expression for the incremental displacement 

AD" can be obtained as 
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a0'
+A'Mn+'+A'K" ADn='+"F-,+AIP"-l-'+A'M" a0'   

fl    "ß (2.18) 

2.3.3 Steps of Computing Nonlinear Dynamic Response 

1. Compute: Stiffness matrix, K, Mass matrix, M , Damping matrix, C; 

2. Set initial conditions at time, Displacement, D0 and Velocity, D0; 

3. Compute initial accelerations, D0, D0 = M"1 |F 0 - CD0 - KD0 J; 

4. Select: Time step, At and Parameters, a and j. Calculate Integration constants ao, ab %, a3, a,, a5, 

a6, and a7; 

5. Form effective stiffness matrix K, K - K + a0M + atC and factorize it K = LUlI; 

6. Calculate effective loads at time t + At, l+A,F = ,+A,F + M'Q + C'S, where, 

'Q = k 'D + a2 'D + a3 
lL>] and 'S = [a, 'D + a4 'D + a5 '£>]; 

7. Solve for displacement at time t + At, ,+»D from (LUL
T
 )>+*D='+A'F; 

8. Calculate acceleration and velocity at time t + At, l+AlD = a0 ,+A'D-'Q and 

l+AlD = a1'
+A'D+'R; 

9. Now for the n-th iteration at this instant of time, t + At: 

(a) Transform the displacement ,+A,Dwto local co-ordinates (l+Atd), establish local element 

stiffness (+Atk) and element mass (+Atm) matrices. Compute local balancing elastic forces, 

and transform and assemble it to global axis (^TT l+A'k'+A'd). Compute the global mass 

matrix (,+A,M) from £ TT *A'mT and global stiffness matrix t+MK from ^TT ,+AtkT; 

(b) Calculate    the    unbalanced    forces    at    time,     t + Atat    the    n-th    iteration    as 

t+M    iT?»_t+&tp_'^'rpTt+Alj{.n-lt+Aljn-\_t+&ti/rn-\   t+Atjkn-\ 

«+* AF"='^F-^TT'+A'k"~1'+A'dn~1-'+A'M'''1 a0'
+A'D"~l-'Q ; 

(c) Compute the effective stiffness as '^K^^K"'1 +a0'
+AtM"-i; 

(d) Solve for incremental displacement '+MKnADn='+A! ÄF"; 

(e) Update displacement, acceleration, and velocity by 

'+*'Dn='+A'D'-i+ADn,'+A'Dn =a0'
+A,D"-1-'Q + a0ADn and ,+A,D" =a0

t+A,D"+'R, 

respectively; 
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(f) Continue from 9(a) to 9(e) until the both or either of the following two criteria has been met 

(i) an error limit based on unbalanced forces i.e. ,+* AF"/'+6t F < specified limit, (ii) an 

error limit based on displacement, i.e. t+&,AD"/ t+A'D" < specified limit. 

2.3.4 Results 

Example 1: 
A simply supported square steel plate is considered. The length of the side and thickness are 

respectively, 1.0 m and 0.01 m. The modulus of elasticity and the Poisson's ratio are 2.0x10''N/m 

and 0.3, respectively. A concentrated load P=50000sin cot N is assumed to be acting on the center of 

the plate and the central responses were computed for (0=3 rad/s, 100 rad/s and 200 rad/s. 

Figure 2.3 shows the central responses at different time steps with different error levels at a 

forcing frequency of 100 rad/s. Figure 2.4 shows the linear and nonlinear central responses at different 

frequencies. At low frequencies (3 rad/s) the nonlinear responses are similar to results presented in the 

report of Selvam and Qu, but at higher frequencies (100 rad/s and 200 rad/s) the response does not 

match exactly with the report especially at later times. 

0.02 

0.015 

0        0.02     0.04     0.06     0.08      0.1      0.12 

Time, sec 

(a) 
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0       0.02     0.04     0.06     0.08      0.1      0.12 

Time, sec 

(b) 
Figure 2.3 Central responses of the plate at (0=3 rad/s at different time steps with an error level of 

(a) 10"5 and (b) 107 
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Figure 2.4 Central responses of the plate at (a) co=3 rad/s, (b) co=100 rad/s, (c) w=200 rad/s 

2.4 Summary 

A Co-Rotational formulation for static and dynamic analysis of geometrically non-linear plates is 

presented using DKT triangular elements. A number of numerical examples are provided and the 

results are compared with other methods of computation. The computation in each loading was 

obtained by using a single load increment i.e. the load for which the solution is sought is applied in 

full at a time and the iteration was performed within this load until the difference of the applied full 
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load and the resisting forces becomes minimum. The computation can also be performed by using as 

many load steps as desired without using the full load at a time. But the number of iterations was 

found to be much less for the former case. For proper convergence at higher load levels a relaxation 

factor has been introduced. For static analysis this fomulation produces the closest results of all the 

methods to the exact solution. There are some discrepencies in responses between the present method 

and other methods in dynamics analysis of plates which needs to be investigated in future. 

2.5 Appendix 

2.5.1 Determination of Rotational Transformation Matrix 

1. Determine the local co-ordiantes of the undeformed triangular element  [Xl,Y1 ), \X2,Y2) 

and X3,Y3   from the input global co-ordiantes and determine the co-ordinates of Q 

and the angle 

Xq,Yq 

ß = tan" 

fX2+X3  Y^Y,^ 

2 3 

(A2.1) 

VX2+X3/ 

(A2.2) 

2. Define local co-ordinate system by identifying the X*-Yd plane by passing through all the three 

displaced nodes l', 2, and 3. Determine the co-ordinates of Q as 

xd vd zd   = 
'xd+xd   yd+yd  zd+zd^ (A2.3) 

2      '      2      '     2 / 
3. The undeformed element is so placed on the displaced ^-Yd plane that the first node of the 

undeformed element coincides with the first node of the deformed element (origin of X"-Y -Z co- 

ordinate system), i.e (xd,Yd)= 0,0 . (xd,Yd)and Xd,Y3
d can be obtained by coordinate 

transformation Establish the vector 

d        d yd
q-y? Zdq-zf=VQx V, 

Qy V   =v , v,,Q,    vQd 

Similarly vector Vr2. =jxd-xd    yd-yf    zd-zd} 

A vector VZd in the direction Zd is given by the cross product VZd = VrQ. X Vr2' 

V, Qz 
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VZ<H 

vd_vd   „d_„d   _vd_    d      d _   d 
Yq     Yl    Z2      Zl Y2      Yl    Zq     Zl 

(zd
q-z?k-xf)-(xj-xffc-z?) 

(xq-xf^-yf)-(x^-x?)(yd
q-yf) 

Or, VJJ, = y V, v7 Zx T Zy v Zz 

4. Now the vector perpendicular to Zd -1' - Q' plane is given by VRd = V^ x VIQ. 

vR. = vzyvQ2-vZzvQy vz,vQx-vZxvQz vZxvQy-vZyvQx 

5. Determine the magnitudes of the vectors VQd ,VZd and VRd as 

RQ-=VVQx+VQy+V< 
2 
Qz 

Rz- = >z2x+vz
2
y+v: 

2 
Zz 

& (A2.4) RR<=VV£<+VRy+V« 
6.   Let      (lptn,,!!,)   denotes   the   direction   cosines   of  the   vectors   VQd.   Similarly 

l2,m2,n2andl3,m3,n3 are the direction cosinses of the vectors Vzd and VRd  respectively. The 

direction cosines are given by 

RQd RQd RQd 

,   _VRX    m   _VRy VR, 
1-, =——, m2 = -—, n, - 

R R° 
 > "2 

Rd R*1 

u=- 
R. 

, m3 = n, =■  '3 
Rzd R. 

(A2.5) 
kZ° "Zq **'Zd 

The direction cosines of the new co-ordinate system are given in matrix form as 

R< 

1,    mi    n, 

12    m2    n2 

Ll3    m3    n3 

(A2.6) 

7. Now rotate the coordinate system around Z? by the angle ß, and determine the transformation 

matrix Tt   from 
3x3 
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X° cosß sinß   0 li m, ni 

-sinß cosß   0 12 
m2 n2 

0 0        1 1*3 m3 n3. 

(A2.7) 

The elements of the transformatin matrix is given by ay as 

[T,] = 

an ai2 a13 

a21 a22 a 23 

.a3. a32 a33. 

(A2.8) 

8. There are five degrees of freedom at each node of the element; three translational components 

and two rotational components. Hence the complete transformation matrix of the element would be 

[T] = 
Tc 

0 

0     0 

0 
0   0   x 

(A2.9) 

where [TCJ = "31 

0 
0 

l12 

l22 

'32 

Cj 

a13   0 

a23     0 

»33 

0 
0 

0 
0 

0 

a, 

0 

0 

0 

a, 

*22. 

Steps in getting the transformation matrix  T   : 
15x15 

1. Determine the local coordinates of Q from equation (A2.1); 

2. Compute the angle ß (location of the median of the element from the local x-axis) for each 

element from equation (A2.2); 

3. Compute the directions cosines of the new coordinate systems from equation (A2.5); 

4. Compute the elements of the trasformation matrix for three translational components of 

displacement from equation (A2.7); 

5. Determine the complete 15x15 transformation matrix  T  form equation (A2.9). 

2.5.2 Derivation of Stiffness Matrix for Plane Stress Condition 

Element displacement is represented in terms of nodal displacement as 
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ue = oc, +cc2x + a3y or, ue = 1   x   y a{   a2   a3 
T (A2.10) 

Similary, 

ve=ß1+ß2x + ß3yor)v
e=l   x   y ß,    ß2    ß3 

T (A2.ll) 

Local coordinates of nodes 1, 2 and 3 are (x^y), (x2)y2) and (x3,y3), respectively. From equation 

(A2.1), we have 

, =a, +a2x,+a3 , 

2 =a, +a2x2 +a3 2 

3 =a, +a2x3+a3 3 

which can be written in matrix form as 

(A2.12) 

or, 

u, 1 Xl yi a i 
U2 

= 1 x2 y2 
a2 

.U3_ 1 X3 y3_ a3 

a, "l X. Yi 
-i 

u, 

a2 = 1 x2 y2 u2 

«3. 
1 X3 y3. .U3 *3 J 

The coefficient matrix can be obtained as 

a, «i 

a2 = [A]-' u2 
«3. .U3. 

or 

a, 

a2 

La3 

J_ 
|A| 

x2y3-y2
x3  x3yi-xiy3  

xiy2-
x

2yi 

y2-y3 

X.-1 i 

y3-yi yi-y2 

x2     X, u 3J 

where, 

|A| = 

=(x2y3-x3y2)-(xiy3-
x3yi)+(xiy2-

x
2yi) 

=2x area of the triangle=2A 

(A2.13) 
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Hence equation (A2.10) can be expressed in terms of nodal co-ordinates and nodal displacement 

components as 

U, 

»e=[i x yliii |A| 

x2y3-y2
x3  x3Yi ~xiy3  Xiy2-

x
2yi 

y2-y3       y3-yi       yi-yj 

X3       X2 
x,    x3 x2     X, 

u, 

u, 

ue = N!X,y     N2 x,y    N3 x,y   u{    u2    u3 

or, ue = N x,y [u] (A2.14) 

N.fx.y)   N2(x,y)   N3(x,y)       0 0 0 

0 0 0 N,(x,y)   N2(x,y)   N3(x,y) 

N.fx.y)       0       N2(x,y)       0       N3(x,y)       0 

0       N,(x,y)       0       N2(x,y)       0       N3(x,y) 

u. 
v, 
u2 

v
2 

U3 

.V3_ 

£p = 

I • 
a 0     r~ 9y 

_a_    _a_ 
3y       9x 

Strain-displacement relationship: 

EP = B
P  

aP 

where K] = lAl 

0        y,-y,       0 

x3"x
2  y2-y3  

xi~x3  y3-yi  x
2~

xi  yi-y2 

y2-y3 

o x3    x2 

y,-y2     o 
0 x, - and 

u, 

u2 

«3 

Vl 

V
2 

_V3_ 

(A2.15) 

(A2.16) 
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Kp = JBp
TDBptdA 

A 

= [Bp]TD[Bp]tA 

For plane stress condition, the elasticity matrix is given by 

d„ 

(A2.17) 

D = 
l-v2 

" 

1 1) 0 
D = 

V 1 0 » 

0 0 
1-1) 

2   . 

d12 o" 
d22 0 

0 daaj 
(A2.18) 

Note: The elements of the stiffness matrix for plain strain condition are given in Reference 2, pp.69. 

2.5.3 Derivation of Stiffness Matrix for Plate Bending 
In choosing a function for the lateral displacement w, the polynomial must include nine unknown 

constants e.g. 

w = a1+a2x+a3y+a4x
2+a5y

2 + a6xy+a7x
3+a8x

2y+a9y
3 

Comparing this to a full cubic polynomial, it may noted that one term has been omitted, namely xy2 

term. Many researchers have tried several methods to overcome this difficulty. For example the ten 

terms of the full cubic expression can be retained in the expression for w, two of the coefficients being 

specified to be equal, e.g. a8 = a,. However, if this done, the [A] matrix in the expression A2.4 

becomes singular for certain orientation of triangular element, e.g. when two sides of the isosceles 

triangles are parallel to x and y-axes. 

Derivation of element stiffness matrix using area coordinates 
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The position of P is uniquely defined by the area of three small triangles namely Ai, A2 and A3. 

Denoting the area of the triangular element by A, the area co-ordinates (L,,L2 and U) of P are defined 

as: 

A, A2 A3 (A2.19) 

Here, L + L2 + L3 = 1 and Al + A2 + A3 = A . The area of each trianle can be expressed in terms 

of nodal co-ordiantes 

A = -det 
2 

1 xl yi 
1 X2 y2 
1 x3 y3 

Thatis, t± = \   x2y3-y2x3 +x, y2-y3 +y, x3-x2   .Similarly, 

Ai=i[x2y3-y2x3+x y2-y3 
+y x

3-
x

2] 

Let, 

= x2y3-y2X3,b1=y2-y3 andc, =x3-x2 M - /V
2J'3 

(A2.20) 

(A2.21) 

Equation (A2.20) stands for 

A, =-[a,+b,x + c,y], 

Substituting the value of Ai in equation (A2.19), we get 
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a, + b,x+c,y 
T   =_t i i—   and similarly 

1 2A 

_a2 + b2x + c2y =a3+b3x + c3y ^ 

2 2Ä 3 2A 

where 

a2 = x3y,-y3x,,b2 =y3-yi>c2 = xi -x3 

a3 =x1y2-y1x2,b3 = y1-y2,c3=x2-x1 

Total displacement in the element=rigid body movement (no curvature)+simply supported case 

(No nodal translation) 

w = wA+wss (A2-23) 

Since no curvatures as set up in the case of rigid body movement case, the lateral displacement must 

be linear function of x and y 

wrb = w,L, +w2L2 +w3L3 (A2-24) 

Consideraing simply supported case, the element has only two rotaional degrees of freedom at each 

node, i.e. 6X and 9y. The element displacment vector may be written as: 

[D-.]=e-   e-   e»   e-   e»   e-T (A2.25) 

The corresponding force vector  F5®   contains six terms and the stiffness matrix Kss   is then a 6X6 

matrix. 

3y x 

Substituting for wss from equation (A2.23) 

eSs = ex+^andes;=ey-^ (A2.26) 
8y y x 

Substituting the expression assumed for wrb in equation (A2.24) into equation (A2.26), the slopes at a 

point in the simply supported case can be expressed in terms of total slopes at that point and the lateral 

displacement as follows: 

0x = e* + —(w,c, + w2c2 + WjC3) 

es
v
s=0  -—(w,b1 + w2b2+w3b3) (A2.27) 

y y        A 
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The slopes can be determined at each node. For example at node 1, 

esxi =exl+—(w1c1 + w2c2 + w3c3) 
A 

ö;
S

, =eyI-—(w1b1 + w2b2+w3b3) 

Similar expression can be obtained for other two nodes and the complete relationship between the 

nodal rotations of the simply supported element and those of the complete element may be written in 

matrix form as 

w, 

e* 

[D6SS]= 

QSS 
öxl r ci 2A 0 C2 0      0 c3 0 0 
QSS 

-bl 0 2A -b2 0      0 -b3 0 0 
QSS 
öx2 1 cl 0 0 c2 2A   0 c3 0 0 
Qss 
°y2 2A -bl 0 0 -b2 0    2A -b3 0 0 

QSS 
bx3 

cl 0 0 c2 0     0 c3 2A 0 

QSS [-bl 0 0 -b2 0     0 -b3 0 2A 

'yl 

W, 

'x2 

"y2 

w, 

'x3 

'y3 

(A2.28) 

This can be summarized as: 

D688 =[T] De 

From the princple of virtual displacement 

T T T-vess      pess   _   y)e      Ve 

From equations (A2.29) and (A2.30), 

Fe = [T]
T
 Fess 

(A2.29) 

(A2.30) 

(A2.31) 

Again, 

pess  _  j^e De (A2.32) 

From equations (A2.32) and (A2.29), it can be shown that 

KB = Ke = T Ke (A2.33) 

Derivation of Stiffness Matrix for Simply Supported Element 
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Lateral displacement at a point on the simply supported element in terms of the nodal 

displacement is chosen as follows: 

wss = Nxle- + v; +Nx2e- +Ny2e- + Nx3e- + Ny3e- (A2.34) 

Each individual Nx and Ny term in the expression represents the shape function. The slopes 0X  and 

ss     9wSS        Qss       aw88 

Q^ at each point are obtained from 9X = —      and 6y = - -r— 

9N. 
flss _^Lfiss +3i0ss + Bii.Bu +iiess +ÜLü.6" +^QS\ 

ess=- 
y 

3N 
Xl  QSS     , 

3N. 3Nv9 3N 
yl nSS   , XZ nSS 

9N. 8N 
esl + y2e88+Z22ie«+^yle" äx     *i+~äx     y»       ax   °x2T   ax   VT   3x     *3T   3x     y3 

The individual shape functions must be chosen so that they satisfy boundary conditions at the nodes of 

the simply supported element and constant strain criterion. 

NXI=b3[Lfr2 + !L1L2L3]-b2 
2 1 

Lf|i_/3 H       .L].L/2-*-<3 

\ 

N„, = c, L2,L, +-L,L,L "yl =*3\ ^1^2 ^2^3 -C: 
/   2 1 A 

L1L3 + "TLIL2L3 
(A2.35) 

The expression for other shape functions can be obtained by changing the subscripts in cyclic order. 

Nx2 =0,(^3+iL1L2Ljj-b3 

f  2 1 
L2L1 + — LjL^Lj 

Ny2=c, L2L3 + -L,L2L3  -c 2        1 
L2L1 +—■ LiL2L3 

Nx3=b2[L2
3L1 +iL,L2L, j-b,[L23L2+-LIL2L3 

Ny2=c2 L3L,+-L,L2Lj  -c 2 1 L3L2 + —L1L2L3 

The curvatures set up in the simply supported element may now be related to nodal displacements as 

follows: 
-it 

[ess(x,y)] = 
av 

' 9x2 
a2-ss 
'W 2„,ss     29

2w 
3y2 3x3y 
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SS     T-.SS 8    x,y   = B     D 

where the matrix Bss 3X6 matrix and can readily be determined by substituting the expression for wsl 

from equation (A2.34). 

[B
SS
]= 

9x2 

a2N 

32Nvl       9
2N x2 

32N 1L    _ a
2N x3 

a2N y3 

xl 

9x2 

a2N 
yi 

3x2 

a2N x2 

3x2 

32N 
y2 

3x2 

a2N x3 

ax2 

a2N 
y3 

ay2 

,a2Nx, 

ay 

a2N 
yi 

By2 

,a2N x2 

ay2 

a2N 
ay2 

y2       23
2Nx3 

ay2 

a2N 
y3 

3x3y        3x3y 3x3y     " 3x3y     " 9x3y 3x3y 

Finally the stiffness matrix for the simply supported element can be obtained from 

T 

(A2.36) 

Kss =jJBss   EB88 tdxdy (A2.37) 

where   Kss   is a 6 x 6 matrix.   Having thus found the stiffness matrix for the simply supported 

element, the stiffness for the actual element Ke can be obtained from equation (A2.33). 

Steps in deriving the element stiffness matrix for plate bending: 

1. Determine the local coordinates of elements using the transformation matrix as described in 

appendix A-1; 
2. Compute the values of ai; b, and a from equation (A2.21) and determine the area coordinate values 

Li, L2 and L3; 

3. Compute the values of shape functions Nx,, Nyi etc. from equation (A2.35); 

4. Establish the Bss matrix in equation (A2.36); 

5. Evaluate the product Bss   EBSS ; 

6. Integrate this product as in equation (A2.37) to get the stiffness matrix for the simply supported 

element [K*"]; 

7. Evaluate T  matrix as given in equation (A2.28); 

8. Evaluate the required element stiffness matrix  KB   from equation (A2.33); 

In this computation a closed form DKT element9 is used for bending. 
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CHAPTER 3 

MOVING GRID AND DEFORMING MESH 

3.1 Introduction 

3.2 Description and Evaluation of Different Algorithms 

3.3 Theory of the Deforming Mesh 

3.4 Numerical Simulations 

3.5 Summary 

3.1 Introduction 

As we know, fluid equations are derived using the Eulerian motion description (stationary grid 

with respect to time) and the structural equations derived using the Lagrangian description (grid moves 

with the displacement of the physical medium). To accurately model problems with moving and 

deforming boundaries, such as in aeroelastic analysis, requires that the fluid grid conform to the 

changing shape of the boundary. To accommodate the movement of the fluid grid in an aeroelastic 

code either a new grid must be generated at each time step (dynamic regridding) or the differential 

equations for the fluid must be modified to allow the movement of the existing fluid grid (ALE, 

Corotational, Space-Time). Once a method is found for modifying the fluid equations to allow for grid 

movement a method must be chosen to move or update the fluid grid to the new position of the 

structure. 

Grids are usually moved or updated with the same constraints used in the programs used to create 

the initial grid. Such constraints control the size of the grid cells, their distribution, and the 

orthogonality of the cell intersections and boundaries. The goal of any grid updating or moving 

method is to maintain a desirable grid throughout the duration of the program. If at any point the grid 

fails to meet the required level of quality a new grid must be generated that meets the desired quality. 

Generating a new grid or regridding requires the incorporation of a grid generation program into the 

aeroelastic solver and the interpolation of the values from the old grid to the new grid. This process 



Computational Mechanics Laboratory, University of Arkansas at Fayetteville Selvam, Qu, and Prescott 

takes time and can introduce errors due to the interpolation process. However, such a program is often 

needed for aeroelastic problems with large deflections and deformation. 

Ideally, a grid would be moved in such a way that would maintain grid quality under large 

deflection and deformation, introduce minimal errors, and be computationally efficient. Just like any 

other numerical method you have to give in one of these areas to get in another. One way to increase 

computational efficiency was addressed by Donea1 in that since the computational domain or the 

boundary of the fluid grid usually extends relatively far away from the structure and its movement, 

only the portions of the fluid grid near the structure, are required to be moved to accommodate 

deflection and deformation. The less grid points that are moved at each time step, the more efficient 

the code will be2. However, grid quality may suffer if the area allowed to move is not large enough to 

allow a smooth transition from the fixed points and the displaced structure. 

In this chapter the different methods used to modify the fluid equations to allow the movement of 

a structure within the fluid domain are described. For the ALE method, various methods used to 

update or move the fluid grid to conform to a changing structural boundary are also described and 

evaluated. The details of the implementation of the Trans-Finite Interpolation scheme for the 

deforming mesh is provided. Numerical simulation is also included to show the features of this 

scheme. 

3.2 Description and Evaluation of Different Algorithms 

3.2.1 Dynamic Regridding 
The dynamic regridding method is implemented by simply forming a new grid at each time step to 

conform to the shape of the structure3. The method can be summarized by: 

• Create an initial fluid grid. 

• Calculate the fluid pressure on the structure. 

• Calculate the structural response. 

• Generate a new grid around the new position of the structure. 

• Obtain the values of the flow variables for each grid point of the new grid by interpolating the 

values of the flow variables from nearby grid points of the old grid. 

The new grid needed at each time step can either be generated manually (i.e. a person with a grid 

generation program) or by an automatic grid generation program incorporated into the aeroelastic 

program. A simple  aeroelastic analysis can require several thousand time steps. This makes it 
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impossible to generate the grid manually. Programs with the grids generated automatically require a 

very robust generation program to ensure grid quality since the grids generated automatically cannot 

be viewed for quality and errors during the execution of the program. 

Compared to newer methods for moving boundaries, dynamic regridding is inefficient due to the 

amount of time needed to generate new grids. The method also introduces greater errors due to the 

interpolation of data from the old grid to the new. 

3.2.2 Corotational method 
Among the different methods developed to allow solvers to handle moving fluid grids is the 

corotational method. Farhat and Lin4 described the equation of motion of the fluid in moving frames of 

reference, which are attached to specific nodes of the structure. The result is an implicit generation of a 

structure attached corotational fluid grid. Using this scheme the grid does not need to be updated for 

rigid body motion. Instead of recalculating the new position of the grid points, the entire coordinate 

axis system is moved or rotated in physical space as seen in Figure 3.1. 

a) Grid and coordinate axis @ t = to b) Grid and coordinate axis @ t -1# 

Figure 3.1 Moving frame of reference 

The result of this procedure is that the coordinates of the individual grid points do not have to be 

recalculated at every time step. The grid is moved in the physical domain but remains stationary in the 

computational domain5. The fluid equations are modified by adding terms that describe the grid and 

axis movement on the right hand side of the equations. This method was originally designed for rigid 

body motion, but it can be modified to account for small structural deformations. Lin described ways 
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to implement the corotational approach to flexible configurations by implementing different Jacobian 

updating schemes. 

The attraction of this method is its ability to move the entire coordinate system with the movement 

of the structure. No updating is needed, so the same grid can be used for all time steps. The downside 

of this method is the difficulty in applying the unusually large amount of terms added to the fluid 

equations to account for movement. If small structural deflections are to be accounted for even more 

terms are added. 

3.2.3 Arbitrary Lagrangian Eulerian method 
A method presented by Hirt, Amsden, and Cook6, called the Arbitrary Lagrangian Eulerian 

method or ALE for short, suggests a way of modifying the fluid equation in a way that would reflect 

Eulerian, Lagrangian or an arbitrary combination of the two descriptions of motion. This method, 

originally developed for finite difference equations, was later modified for use with finite elements1. 

The ALE method takes advantage of the good properties in the Lagrangian and Eulerian systems 

by allowing a specified region of the fluid grid to move to conform to structural displacements. Yet 

allow the outer regions of the grid to remain motionless. Figure 3.2 shows the location of the ALE 

Pure Eulerian Coordinates 

Arbitrary Lagrangian 
Eulerian Coordinates 

Pure Lagrangian coordinates 

Figure 3.2 Body conforming grid with ALE region 

portion of the fluid grid. In this figure the different descriptions of motion that correspond to a specific 
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grid region are shown. The blue shows the Eulerian coordinates, the green is Lagrangian, and the red 

is the ALE. 
In this method the equations for the structure and the outer fluid region remain unchanged with 

Lagrangian and Eulerian descriptions respectively. For the ALE portion of the fluid grid the 

convective flux terms of the fluid equations are modified to account for the change in velocity of the 

moving grid. This is done by taking into account the fluid grid velocity and subtracting it from the 

calculated fluid velocity at each node. The equation reprinted below is an example of the ALE form of 

the momentum equation. The highlighted portion of the equation shows the grid velocity  Vj being 

Uu + (VJ-VJK <p^ 

\r )* 
■WiJ+uu)\. 

subtracted from the fluid velocity U}. The grid velocity is calculated by taking the change in position 

of the grid with respect to time from one time step to the next. This velocity will vary depending on 

the location within the ALE grid. At the surface of the structure the grid velocity will be equal to the 

velocity of the structure and decrease with distance from the structure until it is equal to zero at the 

outer edge of the ALE grid as seen in Figure 3.3. The result is a modified fluid equation that represents 

Vj = 0 
Vj — V structure 

Vj = between 0 and VStructure 

Figure 3.3 Grid velocities for ALE method 

pure Lagrangian motion at the structure surface, pure Eulerian motion description at the outer edge of 

the ALE grid, and a mix between Lagrangian and Eulerian motions descriptions in between. 
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The ALE method is one of the most widely used methods for problems involving moving 

structures. One advantage to this method is the ability to specify how much of the fluid grid is allowed 

to move. Limiting the size of the ALE region, limits the amount of grid that needs to be updated to 

correspond to the new position. This saves computational time and assures grid quality for the 

unmoved portion of the grid. The method can handle rigid body problems as well as problems 

involving structural deflection. Unlike the corotational method, the ALE method is also suitable for 

problems where the outer perimeter of the fluid grid is not allowed to move due to a boundary 

condition. However the method does have a disadvantage. 

The disadvantage of the ALE method is that it requires that the fluid grid be updated after each 

time step to correspond to the new position of a structure. The quality and efficiency of the ALE 

approach are dependent on the grid updating procedure used. If an updating procedure used fails to 

maintain grid quality, then the grid must be regenerated, which is computationally expensive. 

Therefore a grid updating procedure should be chosen carefully. Several grid updating procedures 

include the Trans-Finite Interpolation (TFI), a Cubic Blending, a dynamic mesh, and a rigid grid 

method are discussed below. 

3.2.3.1 Trans-Finite Interpolation (TFI) 

A commonly used method for grid generation, called Trans-Finite Interpolation (TFI), was used 

by Guruswamy7. In this paper Guruswamy developed an algebraic method using TFI for aeroelastic 

configuration adaptive grids. TFI controls grid quality by connecting grid lines perpendicular to the 

structure and distributing the nodes exponentially away from the structure to the outer boundary. The 

outer boundary is also located a significant distance away from the moving structure. The outer 

portions of the grid are restrained from moving by shearing the grid along the outer boundary. Grid 

lines are prevented from overlapping by preserving the arc-length distribution between nodes, and by 

using a simple linear distribution of translational displacement. 

At each time step the deformed shape of the structure is calculated by the displacement vector 

{d}=[<D]{q}, where [G>] is the modal matrix and {q} is the generalized displacement vector. The new 

positions of the grid points are calculated using the positions of the grid points from previous time 

steps. This is achieved using a first order backward difference scheme. The grid points are distributed 

along the grid lines in the radial direction using a spacing function. An example of this updating 

scheme can be seen in Figure 3.4. 
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V\\\ V \ -----   

"" 

/\¥~//fl /■-1.  
/ / / / / 7 

Initial grid Displaced grid 

Figure 3.4 An example of the TFI updating scheme8 

Shankar and Ide9, Gaitonde and Fiddes8, and Gaitonde, Jones, and Fiddes10 used a general 

structured grid method based on TFI for rapid grid generation at each time step. Selvam, Visbal, and 

Morton" used TFI method to update grid points in an aeroelastic solver for non-linear panel flutter. 

The advantages of the TFI method is that it is efficient and relatively simple to apply. A disadvantage 

is that mesh orthogonality at deforming surfaces cannot be guaranteed with TFI during moderate 

deflections12. Orthogonality at the surface is desired for simulations with a high Reynolds number and 

viscous flow. In some cases TFI can limit solution accuracy and stability. 

3.2.3.2 Cubic Blending 

Another algebraic method was developed by Melville, Morton, and Rizzetta12. This method is 

similar to TFI in that it is based on redefining the grid lines normal to the surface but it assures grid 

orthogonality near a deforming surface for deflections and rotations. This method also allows the 

option of fixing the outer region so the grid overlap connectivity remains unchanged. The name cubic 

blending comes from the procedure used to combine an old grid and a calculated reference grid 

together to form a new grid. 

The procedure for this method starts by solving the fluid equations and transferring the pressure to 

the structure. Then after the structural equations have been solved and the structure is moved, the new 

grid is calculated by first calculating the transition and rotation of each surface node by the equations: 

Translational displacements:      Ax = xM - xM Ay = y,_, - yiA 

Rotational displacements: COS0, = 
s s 

m 
sin 0 = 

sxs 

m 
Where: s is the original surface vector from i-\ to 2+1 
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s' is the displaced surface vector 

Then, according to the displacement of the surface node, the normal grid line is moved as a rigid body 

to form a displaced grid line, which serves as a reference grid line. These referenced grid lines are 

defined by the equations: 

*2T=*u +Ax<+(*<v -xui^Oi-lyu-yJ**0! 

y«f = y.x +Ay,. +(*,,, -xu)an0, -(ytJ -;>,,, )cos0,. 

Blending the old grid line and the reference grid line together forms the new grid line. Morton suggest 

blending the grid lines in arc-length space rather than in computational space by using the arc-length 

equation: 

k=2 

Where the arc-length of the starting node is siA = 0. Cubic blending with a zero slope at the end 

points ensures wall orthogonality is maintained, and that there is a smooth grid translation in the outer 

regions of the grid. The blending equation is: 

*,;=3 
su 

3 ij max 

-2 
<   3. ■     V 

'.V 

Ji,jmax 

The variabley ^ is the last node along each normal line that is allowed to deflect. The new grid can 

now be formed by applying the blending function to the reference grid and the old grid by the 

equations: 
REF 

yu=hj*yu+k-bj*y*l REF 

Figure 3.5 Displaced grid on a circular cylinder using the cubic blending method . 
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The advantage of this method is that, unlike TFI, cubic blending allows the grid lines to intersect 

perpendicular to the structure and the outer boundary. By doing this the quality of the grid can be 

maintained under larger deflections. The method is also applied in a relatively simple manner. One 

disadvantage is mat cubic blending may require more grid points to be allocated to move than TFI. 

This is done to ensure grid quality. 

3.2.3.3 Dynamic mesh 
A unique way of updating the fluid grid was developed by Batina13 for an unstructured mesh. This 

method uses the ALE method in that it allows the outer regions to be held fixed and a region to be 

specified where the fluid grid is allowed to move and deform to conform to the deflected or deformed 

structure. In this method Batina models each edge of a triangular element in the fluid grid by a spring, 

where the spring stiffness is the inverse of the length of the edge of the element and calculated by the 

equation h, = l/(x, -*,.)2 + (y, -J>,)2 '• Figure 3.6 shows an example of a triangular element 

modeled as a spring. An example of a network of triangular springs can be seen in figure 3.7. In this 

figure the blue indicates the stationary Eulerian grid points, and the red the ALE grid points. 

Figure 3.6 Element modeled as a spring system 
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Figure 3.7 Illustration of a fictitious spring system about an airfoil. 

The procedure for this method starts by solving the fluid equations and transferring the pressure to 

the structure. Then, the structural displacement is calculated and the structure is moved. The new 

mesh is found using a predictor-corrector procedure. At each time step when the structure deflects, the 

grid points on the outer boundaries are held fixed and the grid points on the body are prescribed by the 

structural deflection. Moving the nodes along the structure to their new location causes tension forces 

in the network of the springs. Summing these forces at each point in the x and y direction, gives static 

equilibrium equations. These equations are then solved for the nodal displacements, 8Xj and 8yi. The 

nodal displacements are predicted by a linear extrapolation of displacements from two previous time 

steps. 

Nodal displacements:     5Xi = 25," -8"'1 8yi=28n
yi-8n

y~
l 

These displacements are then corrected using Jacobi iterations of the static equilibrium equations. 

v k s        , y km8v 

*      "       IK 8"+i =  
"       IK 

Then summing for all the edges of triangles that have node (i) as an endpoint. 

Finally the new locations of the interior nodes are calculated by. 

Batina13 states that the predictor-corrector procedure is more efficient than performing  Jacobi 

iterations alone. This is due to a fewer number of iterations required to achieve acceptable 
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convergence. Figure 3.8, taken from Batina's paper, shows the movement of the grid using the 

dynamic mesh method. 

Initial grid Displaced grid 

Figure 3.8 Illustration of the dynamic mesh method about a pitching airfoil13. 

This concept was later expanded for 3-D unstructured meshes by Batina14. In this method the 

mesh is modeled by tetrahedrons with springs on the sides as shown in Figure 3.9. 

Figure 3.9 Tetrahedral element and the spring equivalent. 

Robinson, Batina, and Yang15 modified the dynamic mesh to work with structured hexahedral 

grids (Figure 3.10). In this version additional springs were added to the diagonal of each cell face to 

control cell shearing. A factor was also added to the equation for the spring stiffness for the ability to 

control the spring stiffness of the cells near the wing to prevent distortion. 
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/ / 

/ / 

Figure 3.10 Hexahedral element and spring equivalent. 

Singh, Newman, and Baysaf used the dynamic mesh algorithm with the factor for spring stiffness 

control proposed by Robinson, Batina, and Yang15 on a 2-D unstructured system. In this paper the 

number of elements available to adapt to the structure were limited in order to reduce storage and 

decrease CPU time. The authors call this the adaptive window procedure. Figure 3.11 shows an 

example of this method. 

« 

u 
^p|CpK|S^sSt^^^^^S»5jSSI<&2 

u 

&FY -u ^^^^^^^2&^^^^ 
TtevT^«3!5ni>r:^:>«^^T^4i£l£i£-»yWi; 

-I* 'yO^i^P^^^vG^^^^Q, 
1.4 

Initial grid Displaced grid 

Figure 3.11 Unstructured dynamic mesh about a pitching airfoil2 

Lesoinne and Farhat16 further modified the dynamic mesh by adding fictitious damping and mass 

to the spring elements to create a moving system known as a pseudo structural system. The authors of 

this paper also developed a method for analyzing the stability of the dynamic mesh algorithm. They 
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found that it could destabilize the fluid-structure interaction by introducing artificial instabilities. 

Farhat17 added to the pseudo-structural system by placing torsional springs at the vertex of the 

tetrahedron to prevent a vertex from interpenetrating the facet of a tetrahedron as seen in Figure 3.12. 

Torsional spring 

Linear spring 

Damper 

Lumped mass 

Figure 3.12 Pseudo-structural tetrahedron 

An advantage of the dynamic mesh method is the ability to specify the spring stiffness near the 

structure. This gives it the ability to handle large deflections and still maintain grid quality. One of the 

disadvantages is that the method is not as efficient as some of the other grid updating schemes. This is 

due to the predictor corrector procedure and the Jacobi iterations. The method also becomes more 

difficult to apply and less efficient as extra springs are added to the network to control cell shearing as 

discussed in Robinson, Batina, and Yang15. And the addition of the torsional springs to control 

interpenetration as discussed by Farhat17. 

3.2.3.4 Rigid grid method 

Tamura et al18 used an updating procedure implementing ALE by making the structural and the 

fluid grids attached, and move in a rigid fashion. This method is similar to the corotational approach 

in that the fluid grid is attached to a structure undergoing rigid body motion and the entire fluid- 

structure system moves together. What makes this method different is that the coordinate axis is fixed 

in space and does not move with the computational grid as seen in Figure 4-13. 

The same method is used by Selvam, Govindaswamy, and Bosch19 to model the incompressible 

flow of air around a bridge deck section to determine the critical velocities of the structure. Kandil and 

Chung20 used this method to model the compressible flow of air around an airfoil. 
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In this method the entire fluid grid is rotated about an origin in a rigid fashion to correspond to the 

changing position of the structure. The new grid is found by simply rotating the old grid in a rigid 

fashion the same amount of angular displacement that the structure was moved. Since the entire fluid 

a) Grid and coordinate axis @ t = to b) Grid and coordinate axis @ t = t# 

Figure 3.13 Movement of a rigid grid 

grid is moved there are no fixed regions (pure Euler coordinates), therefore the whole fluid grid is 

considered ALE 

The advantage of this method is that the same grid is used throughout the entire process. Since the 

grid is moved in a rigid fashion the element areas and sizes do not change from time step to time step. 

Therefore, grid quality is assured for every time step. The method is also easy to apply due to the grid 

displacement being the same as the structural displacement. No numerical methods have to be 

introduced to predict the new position of the grid making the method computationally efficient. The 

disadvantage that the outer boundary must be free to rotate and cannot be fixed to an outer boundary. 

3.3 Theory of the Deforming Mesh 

A gird deformation method12,21 which is suitable for aeroelastic simulations on overset grids is 

used in the following. This strategy is similar to TFI in that it is algebraic approach based on 

redefining the normal grid lines. However, unlike TFI, this method maintains the grid quality of the 

initial mesh near deforming surfaces under arbitrary, moderate deflections and rotations. In addition, a 
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specified region in the far-field may be held fixed so that the grid overlap regions, and their 

connectivities, remain unchanged. 

3.3.1. Calculation of the Translations and Rotations 

Given an original (starting) grid and perturbed surface (assumed to be at k=l here), the translation 

and rotation of each surface node can be computed from the deflected aerodynamic surface. 

Defining the coordinates of the original and perturbed nodes at i,    , k (=   ) as 

v1 - v°      v°      r° X1 - xp     vp     zp (3.1) Xo ~ xtj\ > y»i' Ziji    '   Ap ~ Xifl ' stA '    y'1 v 

where the superscript "1" and/or subscripts "o", "p" denote k = \, original and present respectively. 

The translational displacements are given by 

AX'=X\-X\ (3.2) 

The calculation of the rotational displacements is a little complex. It can be found by forming an 

orthonormal basis for the original surface position and the perturbed surface at that node. The 

following four steps are used to calculate the orthonormal basis. 

(1) Define and normalize surface vectors. Suppose the given node is 1 shown in Figure 3.14. The 

two surface vectors    and b are defined as 

fl) 

JL 

3) 

Figure 3.14. Definition of the surface vectors 

a — X2 -X,,   b — X4 — Xs 
(3.3) 
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where the subscript "2", "3", "4", and "5" denote the nodes 2, 3,4, and 5 respectively. The two surface 

vectors can be normalized as 

a'=—    b'=— <3-4> 
H'     W 

If the present surface node (i    ) is a boundary node, the nodes 2, 3, 4, and 5 defined as follows: 

(a) set incremental numbers of nodes 2, 3,4, and 5 are zeros, i.e., 

4 = 0, Ä = 0> (£ = 2,3,4,5) 

(b) Set 

4=1,    i * ie 

j3 = -l,    i±is 

h = 1.    J* Je 

js = -1,    s*js 

where ie, i , ye, and  js denote the ending node and starting node in the   i and      directions 

respectively, (c) The actual nodal number of 1 through 5 are given by 

i + ik, j + h, (£ = 1,2,3,4,5) 

Figure 3.15. Basis on the given surface 
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(2) Form and unitize the surface vectors. As shown in Figure 3.15, the summation and unitized 

vectors of the two surface vectors are expressed as 

e,=a° + b° (3-5) c2 

e. c°=-3_ (3.6) 2 hi 
(3) Form and unitize the surface normal vector. The normal vector of the surface is the cross- 

product of the two surface vectors a0 and b° which are shown in Figure. 

ei=a0xb° (3-7) 

0     % (3-8) 
\e, «i = 
e 

..ei 

(4) Form the third vector for the basis 

e°3=e°xe°2 (3-9) 

The orthonormal basis for the original and perturbed surfaces are given by 

E0 = [e\   e\   e\\,   Ep = \e°   e\   e\\p (3.10) 

Actually, E0 and E   are 3x3 matrices. The corresponding surface rotation matrix can be defined as 

R=E-E„ (3-11) 
p 

3.3.2. Update a Given Grid Line (Blending) 

Each normal grid line is moved in a rigid-body way according to the displacement of the surface 

node to form a reference, displaced grid line defined by 

Xr = Xl + AXX + R X\ - X\ (3-12) 

The subscript "r " denotes reference. The new grid line is constructed by blending the reference grid 

line and the old grid line. The blending choice is arbitrary but is best done in arc-length space rather 

than in computational space. The arc-length for each node is defined 

sk = t\x'-X'~l\ (3-13) 
1=2 

where sx = 0. 

A cubic blending with zero slope at the end points and that the grid transitions smoothly in the far- 

field. This can be written as 

81 



Computational Mechanics Laboratory. University of Arkansas at Fayetteville Selvam, Qu, and Prescott 

(        ^ 

sk .      "max     / 

(        ^ 
-2 

sk 

(3.14) 

■      "max     , 

where k^ represents the last node along each normal line that is allowed to deflect. Finally, the new 

position of each grid point can be calculated by applying the blending function to the reference, 

displaced grid and the original grid: 

XL=bX+l-hXk
r,   (k = \,2,~) (3-15) 

3.4 Numerical Simulations 

A simply supported square plate is considered. The side lengths and thickness are non- 

dimensionalized to the length of the side. The detailed information of the plate will be discussed in 

pj _ 
Chapter 5. The plate is discretized as 50x50 elements. Possion ratio is 0.3.   fl = -^--0.1. 

X - P°°u°°l  = 60 The initial translational velocities on all the nodes are 0.01. The grid coordinates 
D 

of the fluid in the Z direction are 0.02 X/Z, where IZ is the integer from KS to KE. The other 

parameters are IE=JE=51, IS=JS=KE=1, NSF=1, NFF=3, and IDEFM=3. Two cases, KE=10 and 40 

are considered. The moved grids for the two cases are shown in Figures 3.16, 3.17, and 3.18 

respectively. 
One disadvantage of the grid deformation approach is the grid will overlap when the deformation 

is a little large and the deformed grid in the boundary is not usually satisfied. 

3.5 Summary 

Different methods used to modify the fluid equations to allow the movement of a structure within 

the fluid domain are described in this chapter. For the ALE method, various methods used to update or 

move the fluid grid to conform to a changing structural boundary are also described and evaluated. 

After that, a gird deformation method which is suitable for aeroelastic simulations on overset grids is 

presented. This strategy is similar to TFI in that it is algebraic approach based on redefining the 
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normal grid lines. However, unlike TFI, this method maintains the grid quality of the initial mesh near 

deforming surfaces under arbitrary, moderate deflections and rotations. In addition, a specified region 

in the far-field may be held fixed so that the grid overlap regions, and their connectivities, remain 

unchanged. Numerical simulation shows that this scheme may be used for the deforming mesh of the 

panel flutter. 
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X^                 Y 

( a) 
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(b) 
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Y 

(c) 

Figure 3.16. The original grid of the fluid for case 1: (a) in 3-D coordinates; 

(b) in X-Y coordinate plane; (c) in Y-Z and X-Z coordinate planes. 
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X 

(b) 
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(c) 
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■■ 
! ! ! ! ! ! B 

■■■■■■■■■■■■■■■■■■■■■■■a 
■■■■■■■■■■■■■!■■■■■■■■■■■■*■ 

(d) 

Figure 3.17. The deformed grid of the fluid for case 1: (a) in 3-D coordinates; 

(b) in X-Y coordinate plane; (c) in Y-Z coordinate plane; (d) in X-Z coordinate plane. 
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(a) 
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»ip=iiEEjiHJHJj|E^^ffl 

(b) 
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(c) 
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Y 

SIB 

(d) 

Figure 3.18. The deformed grid of the fluid for case 2: (a) in 3-D coordinates; 

(b) in Y-Z coordinate plane for 1=25; (c) in X-Z coordinate plane for J=25; 

(d) in X-Y coordinate plane for K=20. 
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CHAPTER 4 

COMPUTATIONS OF NAVIER-STOKES EQUATIONS 

USING FINITE VOLUME METHOD 

4.1 Introduction 

4.2 Governing Equations 

4.3 Numerical Procedures 

4.4 Boundary Conditions Implementation 

4.5 Computational Results and Discussions 

4.1 Introduction 

The fluid dynamic computation must have the fidelity to capture the relevant flow features and 

provide accurate aerodynamic loads on the structure in developing a perfect fluid-structure interaction 

solver, or say in computational aeroelasticity. In the following sections, a finite volume method is used 

to establish computational solvers for Euler equation and Navier-Stokes equation. 

4.2 Governing Equations 

4.2.1 Governing Equation in Cartesian Coordinates: 

4.2.1.1 Non-Viscous Flow 
The governing equations of non-viscous fluid flow are Euler equations and the corresponding 

continue, energy equations. In Cartesian coordinate, they are given by 

JL + Z. + -G=o (4-D 
dt      etc     dy 
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"p " pu 'pv 

pu 

pv 
,F = 

pu2 +p 

puv 
,G = 

puv 

pv2+p 

IPEJ (E + p)u_ (E + p)v 

u = 

The conservative components of the above equations are given by 

P ,    (pu) |    (pv) _ 0 

dt       dx dy 

(pu) ^   (puu) t   (puv) _     p 

dx dt dx dy 

(pv) |    (puv) i    (pw) ^     P 

dt dx dy dy 

(pE) {    [(pE + p)u]{   (pE + p)v]_Q 

dt dx dy 

where, 

1 
E = e + -(u2+v2) 

and the state equation is defined as 

1 
p = (y-\)[pE—p(uz+vi)] 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

4.2.1.2 Viscous Flow 

The governing equations of viscous fluid flow are Navier-Stokes equation and the corresponding 

continue, energy equations. They are given by 

U      F      G    n  + — + — = 0 
dt      dx     dy 

U = 

P 
pu 

pv 

PE. 

F = 

pu 

G = 
pur+p-v„ 
puv-X^ 

(E + p^-uT^-vT^+q 

The conservative components of the above equation are given by 

P ,    (pu) ,    (pv) _ Q 
dt       dx dy 

pv 

PUV-Vty 

pV2+P-?yy 

(E + p^-uT^-vt^ + q^ 

(4-9) 

(4-10) 

(4-11) 
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dM+<K^ + <K^=_^ + ^+^L (4-12) 
dt dx dy dx     dx       dy 

3(^ + a(p^ + 9(pi^ = _^ + ^2_ + ^jl2L (4-13) 
dt dx dy dy     dx       dy 

d(pE)    d[(pE + p)u] | d(pE+ p)v] ^(uz^+vr^-qj | djuT^+vT^-q,) ^ ^ 

dt dx dy dx dy 

where, according to the Stokes hypothesis, 

2 
and X is second viscosity, for gases it can be take A = —pi. The momentum equations are given by 

J^ + J^ + J^ = _^ «_^(«      v}] M«      v}]   (418) 

dt dx dy dx    dx        dx    3  dx    dy      dy      dy    dx 

JM + JH+J^ = _1+     ^ + 2)]+     [,(2^1(2^)]     (4-19) 
dt etc dy dy    dx      dy    dx      dy        dy    3  dx    dy 

For convenience, casting the governing equation (4-9) in nondimensional form. If L is the 

characteristic length, and other characteristic quantities are taken to be freestream values denoted by 

subscript oo ,we may define the dimensionless variables, denoted by an asterisk, as 

.    x »    y        .       t x =T   y =T     =V /v„ 

u=l,      v*=-,      »' = £ (4-20) 
Lf Lf L> 

P      L      P      pj„ T„ Vl 

This nondimensionalized procedure is applied to the compressible Navier-Stokes equation (4-9), the 

following dimensionless equation are obtained as 

^1+^1+^1 = 0 (4-21) 
dt       dx*      dy* 
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Where U* ,F*,G*STQ the vectors given by equation (4-10), except that each term is dimensionless, 

denoted by an asterisk, and the dimensionless total energy per unit volume is given by 

E'=e'+!L+1- (4-22) 

The components of the shear stress tensor and the heat flux vector in dimensionless form are expressed 

as 

. _ jU*   4 du*    2 dv* 
T,""Re  3ä7    3dy* 

. _ IL   .du*    dv* 
OT    Re  dy*    dx* *y 

* _M*/4 9v*    2 du 

^"Re   3 3/    3 3* 

fi'      dr 
q*      (y-l)M'RePr dx* 

H* dT* 
qy       (y-l)M^RePr dy' 

(4-23) 

where  M„,,Re,Pr   are the freestream Mach number, Reynolds number and Prandlt number 

respectively, given by 

Re=A^   ,M„=-7^=)    Pr = ^ (4-24) 

jl* is dimensionless viscosity. It can be taken as constant (=1.0) if the temperature variation is not 

very large, or be calculated from Sutherland's law 

♦ =(r.y.5   (1 + Ci) (4.25) 

Where T*\s dimensionless temperature, constant C, =  . Here 7^ is freestream temperature (°K). 

The perfect gas equation of state become 

. = p'T* _. =       pT* 
P      jMt    ' 7(7-l)M': 

4.2.2 Governing Equation in Non-orthogonal Coordinates: 

100 
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4.2.2.1 Non-Viscous Flow 
From the Cartesian equations, we can get the governing equations in non-orthogonal coordinates: 

Continue equation: 

_£+JP^£  +JMn  + _Mg  +J£üL   =0 (4-27) 
dt      d$   ^      drj  %      3£  g*      377  ^ 

Because y*hk = m^ -ipu)fy, = Ä -(pu)(y^ = Ä , one has 
J J J J J 

d(Pu a r(prt,+(f»Kn, a Xpu)nxHpv)rin_Q (4.28) 

dtJ}   3<T J dri J 

_(P) + _(P^) + _(^)=0 (4-29) 
dtr 3<r J    dri J 

Momentum equations: 

d(pu) [ d(pu2+p)z   ( d(pu2+p)^ i d(puv)^   ( d(puv)^  =0        (430) 

then we have, 

ifH) + i-(PMy + ^) + —(PMK+'T'f>)=0 («I) 
ar/;   3<T      /     '   3T?V      / 

iÄ+A(^llZ) + A(^lM) = o (4-32) 
dtJJ   3<T      J 3r?v      J 

4.2.2.2 Viscous Flow 

Momentum equations: 

at   J      dg 3 J 

+ ^{[puV + (Uwx)x+(My)y)U + (~(mx)y+(my)x>+rixPVJ} 
07] 3 3 

3 , 3 r/4    2       2.     ,1 
+ ^rö(T^2 +ny

2)^+^nxvyv)]/J) 
(4-33) 
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at   J      at, ■> J 

+±{[pvv+((inlx)y --(wy),>+(-<ßny)y +Qtnx)x}v+riyPVJ} 
3TJ 3 3 

3TJ 87]   3 3 

(4-34) 

Energy equation: 

?   nF      ?) d s     gfwTn+vT™-?,).     3 Auryx+vcyy-qy) 
^)^p^P)uyj}^{iPE+P)vvj}^[ f.—1+^[ 7 ] 

(4-35) 

4.3 Numerical Procedures 

4.3.1 Finite Volume Method 
The Governing equations (Navier-Stokes) are discretized in control volume: 

4.3.1.1 Continue equation: 

^(AT-PIV + KP")"
4
!   -W"l  ]Av + [(pvr+1

1-(pv)"+,,]Ax = 0 (4-36) 

jc-direction momentum equation: 

—Kp»)u* -(puXj] + [(puuY+l   -{puuT\ )]A7 + [(P"v)"+1
1-(pMv)"+1

1]Ax 
At i+^J ''2J 'J+2 ''J~2 

(4-37) 

We denote the node (i,j) as P and its neighbor nodes (i+lj), (i-lj), (i,j+l) and (ij-1) as E, W,N,S 

respectively, and the surfaces which locate at (i +-,j), (i ~-,j), (i, j + ~), 0'» j~ ~) between 

these nodes as e,w,n,s etc.. as shown in Figure 4.1. 
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o 
NE 
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Figure 4.1 Diagram of points used for discretization 

The discrete continue equation is given by 

n+l _      n 

P£ P±AxAy + [{pu)e-{pu)w]Ay + [{pu)n-(pu)s]Ax = Q (4-38) 
A 

Here, upwind scheme is applied to the convection terms, for example, 

Fe<j>e =<j)Pmax(Fe ,0) - $E max( -F, ,0) (4-39) 

where Fe is flux across the control surface e. Therefore, we have 

P^-AxAy-^-AxAy + maxiF^pf -max(-F, fi)pf -ws^Fw,0)p"w  + max(-Fw,0)p 
At At 

n+\ 

+ max(Fn$)p? -max(-Fn,0)pn
N
+1 -max(Fs,0)pn

s
+l + max(-F, ,0)pf = 0 

The discretization equation is written as 

aPp"P
+i =aEpf +awP;

+l +aNp"N
+1 +aspf +bp 

where, the coefficients, source term and flux are respectively 

ap = max(Fe,0) +max(-Fw,0) + max(Fn,0) + max(-Fi,0) + 

(4-40) 

(4-41) 

AxAv 
At 

aE=mzn(-Fe,0), a„, =max(-Fw,0),    aN =max(-F„,0),       as = max(-Fs,0) 

b
P~Pr — 

Fe=ue(Ay\, Fw=uw(Ay)w, Fn=un{Ax\, Fs =us(^)s 
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(4-42) 

The ^-direction momentum equation is rewritten as 

(pu)n
P
+ -(pu)n

P ^Ay + Kpuu), -(puu)w]Ay + [(puv)„ -(puv)s]Ax = -[pe(Ay)e -pw(Ay)w] + 
At 

Re  dx       Re   dx Re  dy       Re  6y 

3[Rl(ä;)e " Re (ar)"1A,' + 3[Re(&)"    Re VJA* 
Upwind scheme is used for the convection term, and central scheme is used for diffusive terms, 

n 

iP^AxAy-^^AxAy + msK^Mpuy;1 -max(-Fe,0)(pw)f -max(Fw,0)(p<+I 

At At 
+ max(-Fw,0)(pu)pl + max(F„,0)(p")p+1 -max(-F„,0)(p«)*+1 -maK(Fs,0)(pu)f 

+ maxC-F,Mpu)"pX = ~lP.(Ay). ~/>w(4y)J + 

peRe(öx)e pwRe(öx)w 

-^^t(P"),-(P"),]--^T-[(P"),-(P"),] + p„ Re(&)„ ps Re(dx)s 

—^%-[(P")£-(P")J-r-^—t(P"),-(P") J + 
3peRe(<5x)e 3pwRe(fo)„ 

*"*L  K^-(HJ-/;1 [(pvL-(pv),J 
p„ Re(&)„ ps Re(&)s 

(444) 

Then, the x-direction momentum equation in discrete form is 

aP{pu)f =ctE(puyE
+1 +aw(pu)"w

+l +aN(pu)^ + as(puYs
+i +bu   (445) 

where the coefficients are respectively 

aE =     w^   +max(-Fe,0) = £>e+max(-Fe,0) 
Pe Re(&)e 

fl«r =—^r- + max(^50)=JDw+max(Fw,0) 
pwRe(&)w 

fl» =     p"t^  +max(-F.,0) = g. +max(-F„,0) 
P„ ReC&)H 

as =     ol  +max(^»Q)=A +max(Fj50) 
P, Re(&)s 
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AxAy 
aP=De+ max(Fe ,0) + Dw + ms^(-Fw,0) + Dn+ max(F„,0) + D,+ max(-F, ,0) + — 

(4-46) 

Source term 

bu=(puyp^-[pe(Me-pAWJ + b' (+47) 

Where b is given by 

Ät(^"^u-Ä[(pv)~-(pvU 

The iteration equation is 

(pu)P
+l = (pi/)?1 -a*reslaP c449) 

where the residual is given by 

res = aP{pu)f -aE{pu)f + aw(puyf + aN(pu)f +as(pu)f +bu      (4-50) 

^-direction momentum equation: 

Similarly, ^-direction momentum equation is discretized as: 

fl,(pv)r' =aE(pv)f +awW? +aN(pv)n
N
+i +as(pv)? +K (4-51) 

Its coefficients are all the same as that in x-direction equation, but the source term is 

^=(pv)^-b„(M„-^(Ax)J + ö' (4-52) 
A 

where, 

ÄK'">--(*)",-£^K'",)--('")-1 
(4-53) 

4.3.1.2 Energy equation: 

The energy equation is 

dt dx dy dx dy        dx ay 

pi        rd ,a?\. 3 ,3T\ 
trGr)^^ (7-l)MiRePr ftc 3x     9y  9y 
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(4-54) 

For convenience of discretization, rewrite the energy equation as 

dt etc dy dx dy       dx ay 

m   a d       T      l^v2
)]+l[l( T +^!±zl)]}_ 

RePr 3*3* 7(7-l)Mi        2 dy dy y(y-l)Ml        2 

RePr dx dx       2 dy dy       2 
(4-55) 

1 1 

Because specific energy E = ( r + ), the above equation is 
Y(y-\)M„       2 

3<p£)+3(p»£)+a(?S]     a^aü-v), + a )+9( „ +„j+ 
9? cbc 3y 3x 3>>       ox o> 

2   .  ..2 n      3     ,,2   ,  „2 jf3LrA(^HA(M)]_J^{i_[l(^J^l)]+i-[A(!fI±zl)]} 
RePr^V   a/o/    RePrWfe1    2     ;J    3/3/     2 

p,RePr(&)/      w    pwRePr(&)w 

n VJfo D =       ^s}Ay 

"     p„RePr(&)„'      '    PsRePr(&), 

Source terra bE is 

RePr dx dx       2 dy dy       2 M 

?E  = °E^UE   -TUE   ^»E   ™£ 

(4-56) 

we can discrete the energy equation in the same way as momentum equation, 

aP(pE)P
+i =aE(pE)f +aw(pEyw

+] +aN(pE)"^+as(pE)Tl +bE (4-57) 

where the diffusion conductance in the coefficients are respectively 

n -_i^L_    n =.     ^y 

(4-58) 

(4-59) 

b.=bl + bll+b?+bf+b\ (4-60) 

h\ = -[-^- + -^]Ax&y = -[PeFe -pwFw + PnFn -PsFs] (4-61) 
dx ay 
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b\ = [— ("*„ + vT^ ) +—(«V + vxn )]AxA^ (4-62) 
dx ay 

*]'=[|-(«„+vTv)]AxAy 

=-5T(7^"J^""ir(3^"3^)w+"ir(ay 
+ a,)e    Re % dxJ"        (4-63) 

öl2=^(MTxy+VV)]AxA;; 

_M"„Ax -   ^,       ^A jy     ,^!r4^_2 3«, ^Ax 4dv   2 ft, 

~    Re    (3j + ax}n       Re   C3y 3bcJ*       Re    S 3y    3dx'» Re   S 3y   3 dx * 
m Ac     ,                            !                          ^ Ax     , ! 

(4-64) 

RePr dx dx       2 ojy dy       2 

"RePr(&)e
L     2 2 RePr(&)w

L     2 2 

^uy     Ax  ,u2
N+v2

N    u
2

P+v2       pr    Ax ■■«?+v? _gj+v|.j 
+ RePr(^)„L     2 2 RePr(&),        2 2 

(4-65) 

v. AxAv 

In the above discrete equations, the terms are calculated as following: 

Ax = 0.5(x£ -xw) , Ay = 0.5(yN -ys), 

{Ay)e = 0.5(^^ + ^Z2^) , (Ay)w = 0.5(^^+^-=^) 

(Ajc)n =0,5(^Z^ + X^-X^), (AX)S=O.5(
X
äZ3!L+^SZ^1) 

(&). =*£ -*,>, (&)w = X
P-% >(#0» = ^w-^ > OH =yP -ys 
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(&)„ = (Ax), , (&), = (Ax), , (<H = (Ay), , (öy)w = (Ay)w 

{Ax)e = 0.5(^ZlL + $£^3-) , (Ax)w = 0.5(^^ + ^ZlSL) 

{Ay)a=0.!Ky'-y*+Z*Z^M) , (Ax), = 0.5(^^- + ^^) 

(j)e = O.5(0£ + <pP) , <j>w = 0.5((j)P +<pw) , <t>„ = O.5(0W +0P) , (t>s = 0.5(0, + (j>s) 

($)m = 0.5^ + ^^) . («„ = 0.5^ + ^^) 

Wje = 0.5(^ + ^±^) . (^ = 0.5(M^ + ^±^) 

(0L =0.5(^±^ + ^±^) . W. =0.5(^±^ + ^^) 

(0)M =0.5(^±^ + ^^-) , (0). = 0.5^ + *^) 

(4-67) 

4.3.2 QUICK Scheme 
The accuracy of upwind scheme is only first-order in terms of Taylor series truncation error. The 

use of upwind quantities ensures that the schemes are stable and obey the transportiveness requirement 

but the first-order accuracy makes them prone to numerical diffusion errors. Such errors can be 

minimized by employing higher order discretisation. 
The quadratic upwind interpolation for convective kinetics (QUICK) scheme uses a three-point 

upstream-weighted quadratic interpolation for cell face values. The face value of <? is obtained from a 

quadratic function passing through two bracketing nodes (on each side of the face) and a node on the 

upstream side. The Hoyase QUICK scheme can be summarized as follows: 

tf\v = tfV+-(30/>-2<^-tfW) forFw>0 

<Pe=<j)P + -(30£ -2<pP -(j>w) for Fe > 0 

(t>w = (j)p +-mw -20/> ~<PE) for K < ° 

0c = (j>E +1(30,-2^ -<j)EE) for Fe < 0 
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^=^+-(3^-2^-^) forFs>0 

0„ =^ + -(3^-20,-^) forF„>0 

*,= ^+-(3^-20,-^) forF,<0 

(j>n =<j>N +i(30P -24s -<Pm) for F„ < 0 

(4-68) 

The QUICK scheme has greater formal accuracy and retains the upwind weighted characteristics. 

The resultant false diffusion is small and solutions achieved with coarse grids are considerably more 

accurate than those of the upwind or hybrid schemes. The QUICK scheme can, however, give (minor) 

undershoots and overshoots as is evident in computational results (Figure 4.5). 

4.4 Boundary Conditions Implementation 

4.4.1 Inlet 

For the non-dimensional equations, at inlet the following conditions are given by 

M = 1.0 ; v = 0.0 ; p=      ;p = p„;T = T„ 

n=_l_- E = +- (4"69) 
YMJ'      r(Y-Wl   2 

4.4.2 Onlet 

In flow direction, gradients of variables are zero, which is: 

-1 = 0 (4"7°) 
/ 

4.4.3 Solid Wall 

4.4.3.1 Euler equation boundary conditions 

The basis is impermeable boundary condition: 

V =0 (4-71) n 

If the coordinates are non-orthogonal, we have, 
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Vn=V-n 

= Vin(+Vvn„+V<;nc 

+ (K{n, + *>|)[cos(£,rj)] + (^«f + ^)[cos( ££)] + (*>£ +^n,)[cos(l?,0] 

= Kcnf + F4/if [cos(^,0] + K„«f [cos(T/,0] 

(4-72) 

Here,« is the surface normal direction, w = #i{e{ +nnen + n(e( . % r\ Coordinates are on the solid 

surface. 

For two-dimensional flow problem, the above equation can be write as: 

r„ = F,n,+^«,[cos(£,i7)] (4-73) 

Here the r/ coordinate is on the solid surface. 

Planar wall: 

The % r/ components of velocity V% »F^and other parameters are extended to boundary by linear 

interpolation or symmetry techniques are used. Ff is obtained with the above equation. For example, 

when symmetry techniques are used, the boundary conditions are as follows: 

/>-,=/>+. >P-i=P« (4"74) 

{Venc +^«f[cos(|,C)] + ^«f[cos(T],C)]}-l =-{T(n( + Vsnc [COS(^,C)] + ^^[COS(TJ,C)]}+1 

(4-76) 

Here point -1 is the imaginary point outside the boundary. 

Curvature wall: 
For Curvature wall, the pressure boundary condition should be corrected with the following 

equation: 
I     2 

&--PY (4-77> 
Here R is radius of curvature. Then the pressure condition is corrected as: 
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2 
V 

p-^p.-p—^ (4-78) 

Here An, represent the distance between points 1 and -1. The density boundary condition is: 

P-,=P+1(^)7 <4-79) 

4.4.3.2 Navier-Stokes Equation Boundary Conditions 

On the solid wall boundary, the viscous flow no-slip conditions are applied. 

M=0,v=0 (4-80) 

The temperature boundary condition is adiabatic wall condition or given the freestream temperature 

-I = 0orr=r (4-81> 

4.5 Computational Results and Discussions 

The two numerical methods, Euler solver and Navier-Stokes solver, described in the previous 

section were combined into a single code in such a way that we could readily select between one 

method and the other in solving a specified flow problem. 

The problem of the flow in a channel with a circular arc "bump" was chosen to evaluate the code 

for subsonic, transonic, and supersonic steady state modeling. This particular problem is well suited 

for code development and testing. The geometry and the grids are easy to generate accurately and the 

problem symmetry and geometrical simplicity aid the interpretation of the results. Two circular arc 

bump thickness-to-chord ratios were used: 10% for subsonic and transonic modeling, 4% for the 

supersonic model. To the upper and lower boundaries of the channel, the solid wall boundary 

conditions were applied. The inflow boundary is on the left side. 

Figure 1 is the computational geometry for the flow model. Figure 2 shows isomach lines of the 

steady flow solution for an upstream Mach number, M_„ = 0.5 , obtained using the Euler solver. The 

isomach lines distributions are nearly symmetry. That is the verification of correctness of the 

computational code. The contour is not smooth enough, that may be result from the hyperbolic 

characteristics of Euler equation and the first-order boundary condition implementation. Improving the 

boundary conditions to second-order or adopting finer grids can make it better. Figure 3 shows the 
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channel upper and lower surfaces Mach number distribution for the same test case. A little asymmetry 

is due to the influence of the sharp leading and trailing edge. Figure 4 and 5 present the contour of 

Mach number and the surface Mach number distribution of the transonic flow solution for the same 

10% thick arc bump for M_„ = 0.675 using the Euler solver. 

The computational code can simulate the sharp shock profile very well that appears on the bump, 

except that there is a small spurious oscillating. That is the dispersion introduced by QUICK scheme 

along with its improvement in accuracy. Figure 6 and 7 present results for the supersonic flow in a 

channel with a 4% thick arc bump for M_ = 1.65 obtained with Euler code. The shock wave, their 

reflection and interaction can be simulated pretty well. The quality is improved when the grids get 

finer. Figure 8 and 9 show the contour of Mach number and near surface Mach number distribution of 

subsonic flow solution for the 10% thick arc bump for upstream Mach number  M_„ = 0.5 using 

Navier-Stokes equations. 
The Mach number contour is asymmetry, not as that of results of Euler solver. The reason is that 

viscous boundary layer developing along the surface and that the boundary separation near the trailing 

edge of the bump (Fig.8). The boundary layer and its separation also change the flow passage in non- 

viscous sense, therefore, the Mach number increases and the flow pattern is not symmetry anymore. 

Figure 10 and 11 present the results for transonic flow in the channel for the same test case with 

M_M = 0.675 using Navier-Stokes equation. 

The shock wave is a little smeared because of the physical viscosity, and at the same time the 

spurious oscillating does not appear also due to the physical viscosity. There is a shock and boundary 

interaction downstream of the bump. The boundary layer and its interaction with the shock affect the 

flow field in the channel. Figure 12-15 shows supersonic flow over a flat plate with 0% thickness for 

upstream Mach M_ = 1.8 using Navier-Stokes equation. The upper boundary is free stream. 

A shock wave appears in the middle of the plate, its action with the boundary layer generates an 

expansion shock downstream of it. The two shocks dominate the flow field pattern over the flat plate. 

References: 

'Selvam, R. P., "Computation of Nonlinear Viscous Panel Flatter Using a Fully-Implicit 

Aeroelastic Solver," AIAA Paper, 1998,98-1184. 
2Eidelman, S., "Application of the Godunov Method and Its Second-order Extension to the 

Cascade Flow Modeling," AIAA Journal, Vol.22, No.l 1, 1998, pp.1609-1613. 
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3Versteeg, H. K., and Malalasekera, W., "An Introduction to Computational Fluid dynamics," The 

Finite Volume Method. Longman, 1995. 
4Liu, S. L., and Zheng, Q., "Computational Fluid Dynamics," HRBEU Press,1998. 

Figure 4.2 The computational geometry of flow over a bump 

Figure 4.3 Contour of Mach number of flow over a bump 

(Inflow Mach number M_M = 0.5, Euler solution) 
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Figure 4.4 Mach number distribution on the upper and lower surface 

(Inflow Mach number M_„ = 0.5, Euler solution) 

Figure 4.5 Contour of Mach number of flow over a bump 

(Inflow Mach number M_„ = 0.675, Euler solution) 
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1.5 i— 

0.5 - 

Figure 4.6 Mach number distribution on the upper and lower surface 

(Inflow Mach number M_„ = 0.675, Euler solution) 

Figure 4.7 Contour of Mach number of flow over a bump 

(Inflow Mach number M_^ = 1.65, Euler solution) 
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2r- 

Figure 4.8 Mach number distribution on the upper and lower surface 

(Inflow Mach number M_ = 1.65, Euler solution) 

2.5 

1.5 

0.5 

Figure 4.9 Contour of Mach number of flow over a bump 

(Inflow Mach number M_„ - 0.5, Navier-Stokes solution) 
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Figure 4.10 Mach number distribution near the upper and lower surface 

(Inflow Mach number M_„ = 0.5, Navier-Stokes solution) 

Figure 4.11 Contour of Mach number of flow over a bump 

(Inflow Mach number M_„ = 0.675, Navier-Stokes solution) 
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2«- 

Figure 4.12 Mach number distribution near the upper and lower surface 

(Inflow Mach number M_„ = 0.675, Navier-Stokes solution) 

CO 

S 

Figure 4.13 Mach number contour of flow over flat plate (Inflow Mach number M_m = 3.0) 
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o 

Figure 4.14 Density contour of flow over flat plate (Inflow mach number M_„ =3.0) 

Figure 4.15 Pressure contour of flow over flat plate (Inflow mach number M_„ =3.0) 
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Figure 4.16 Energy contour of flow over flat plate (Inflow mach number M_„ =3.0) 
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CHAPTER 5 

THREE DIMENSIONAL AEROELASTIC SOLVER 

FOR NONLINEAR PANEL FLUTTER 

5.1 Nomenclature 

5.2 Introduction 

5.3 Aerodynamic Theories 

5.4 Governing Equations of Thin Plate 

5.5 Numerical Procedure 

5.6 Results and Discussions 

5.7 Summary 

5.1 Nomenclature 

B = membrane rigidity of plate defined in equation (5-33); 

c = speed of sound in air; 

D = bending rigidity of plate defined in equation (5-33); 

E = total specific energy per unit volume defined in equation (5-22); 

E = elastic modulus of plate; 

h = thickness of plate; 

HCCL = GCL source vector term; 

J = Jacobian of the transformation; 

/ = side length of plate; characteristic length; 

M„ = free-stream Mach number; 

= dimensionless air pressure; 

P = Prandtl number, 0.73 for standard air; 
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A = aerodynamic pressure, positive in the direction opposite to w; 

ApM = aerodynamic pressure due to plate motion; 

ApE = 'external" aerodynamic pressure independent of plate motion, e.g. turbulent pressure 

fluctuations; 

Re, = Reynolds number, paVJ/fi„; 

= dimensionless time; 

tnl = nonlinear internal force coefficient defined in equation (5-38); 

T = dimensionless static temperature; 

w = dimensionless deformations of the plate in x    z directions; 

w = dimensional deformations of the plate in .v y z directions; 

u = dimensionless displacement vector of the plate in x direction: «= u{,u2, •••,un ; 

V = velocity, V = vj + vyj + vzk ; 

Vm = free-stream velocity; 

vx,vy,v2 = three components of the velocity; 

v = dimensionless displacement vector of the plate in     direction: v= v,,v2,---,vn ; 

w = dimensionless displacement vector of the plate in z direction: w= wl,w2,---,wn ; 

x y z = dimensionless Cartesian coordinates; 

a ß S = constants for Newmark- ß integration method; 

5„ = Kronecker delta function; 

Q = velocity potential function; 

;/| = ratio of specific heat, 1.4 for perfect gas; 

X = dimensionless dynamic pressure defined in equation (5-38); 

jj. = molecular viscosity coefficient; 

fls = mass ratio defined in equation (5-38); 

pa = dimensionless mass density of air; 

ps = dimensionless mass density of plate; 

V = Poisson's ratio; 
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T = time in computational space; 

% rj £     = Coordinates in the computational space; 

Subscripts: 

= air; 

b = boundary; 

s = structure (plate); 

= viscous; 

oo        = free-stream value; 

Overhead: 
A = denote the dimensional parameter 

5.2 Introduction 

An important goal of computational aeroelasticity is to impact the design process with simulations 

of full aircraft configurations. In developing a fluid-structure interaction solver, three sets of governing 

equations, as well as their coupling, must be considered. These are the fluid dynamic, structural 

dynamic, and fluid-structure interface equations. The fluid dynamic equations must have the fidelity to 

capture the relevant flow features and provide accurate loads on the structure. The structural dynamic 

equations must in turn be capable of modeling the structural deformation properties under a given 

time-varying load. Since, in general, the aerodynamic and the structural discretizations are not 

identical, accurate and stable structural interface equations must be established to transfer the 

aerodynamic loads to the structure and the structural deformations to the aerodynamic mesh. 

When considered independently, high-fidelity fluid dynamic and structural dynamic solution 

algorithms have become mature for flows or structural members exhibiting nonlinearities. However, 

application of these solvers in a time accurate, multidisciplinary environment requires further study in 

order to elucidate various issues arising in the coupling of these high-fidelity solvers. 

Historically, researchers interested in dynamic aeroelastic computations have taken well-validated, 

implicit Navier-Stokes algorithms developed to solve complex flows over three dimensional, rigid 

bodies, and extended them to include aeroelastic effects. The most common practice is to simply lag 

the effects of moving/deforming structures by one time step1'2 allowing current algorithms to be used 
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in updating the aerodynamic variables. Bendiksen and Hwang3 pointed out that when took this 

approach unknown phrase and integration errors were introduced leading in some cases to incorrect 

prediction of the stability behavior of the fluid structure interaction system. To overcome this problem 

Bendiksen and Davis4 took the alternate approach to develop a new tightly integrated algorithm in 

which the fluid and structures are modeled as a single dynamical system. Although this approach has 

been shown to eliminate the lagging errors, it requires the development of an entirely new solver. This 

would entail large additional investments by the aircraft industry for developing and validating new 

flow solvers, and would result as well in the loss of the significant user experience already 

accumulated with existing aerodynamic and structural tools. 

An attractive alternative method for eliminating these phrase and integration errors, while utilizing 

existing fluid dynamic and structure dynamic algorithms, is implementing Newton-like 

subiterations5'6. Subiterations can eliminate the errors from the linearization and factorization, as well 

as from the lagging boundary conditions and turbulence models. The added computational cost of 

subiterations is typically an additional solution vector storage, and each subiteration is equivalent in 

workload to a time step of the baseline algorithm. The result is a fully implicit coupling between the 

fluid and structures without having to develop a completely new tightly coupled solver. 

Morton, Melville, Visbaf applied this approach to an elastically mounted cylinder in a uniform 

crossflow. The subiteration methodology was shown to reduce the structural coupling errors and 

allowed higher order accurate time integration scheme to be used with relatively minor changes to the 

baseline aerodynamic solver. The overall workload of the algorithm was improved by a factor of ten 

over traditional first order lagged approaches due to demonstrated second order, coupled, temporal 

integration. The structural dynamics solver was comprised two linear, second order differential 

equations describing motion in the horizontal and vertical axes and were integrated in time with the 

same method used in the aerodynamic code. The fluid-structural interface equations were trivial for 

this simple model. Melville, Morton, and Rizzetta7 also have used this technique to couple a three 

dimensional Navier-Stokes code with a general, linear second-order structural model. This solver has 

been applied successfully to the problems of transonic wing flutter8, tail-buffer9, and limit-cycle 

oscillations10. 

In order to identify pertinent issues related to coupling nonlinear structural dynamic and 

aerodynamic equations, a model problem that is geometrically simple, has reasonable computational 

requirements, yet requires high-fidelity fluid and structural solvers is desired. One such model 

problem is nonlinear panel flutter. 
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Only a few computational studies have recently been considered the nonlinear flow effetcs in 

panel flutter. Davis and Bendiksen", Davis12, Bendiksen and Davis4 have employed an improved 

modeling of the aerodynamics by tightly coupling the Euler equations with a nonlinear finite element 

model for two-dimensional, Transonic panel flutter problems. Selvam, Visbal, and Morton13 extended 

the subiteration methodology to more complex structural models including nonlinear effects and 

requiring the coupling of different time-integration schemes for the fluid and the structure. In addition, 

they provided some insight into the effects of viscosity on thin panel flutter in the transonic regime. 

Gordnier and Visbaf4 extended the preliminary work of Selvam, Visbal and Morton for two- 

dimensional panel flutter. Viscous effect on the flutter dynamic pressure for supersonic and subsonic 

flow was discussed. Additionally, some computations were performed for inviscid, three-dimensional 

panel flutter. 

Several commonly used approximate aerodynamic theories, linearized potential flow theory, qusi- 

steady supersonic theory, first order piston theory and full three order piston theory, are first listed in 

Section 3 for comparison purposes. The valid range of Mach number is provided for each theory. The 

unsteady, compressible, three-dimensional Euler equations are also provided in this section to predict 

the aerodynamic pressure acting on the panel due to its deformation. To reduce the interaction error 

between the fluid and structure, the expression for the Geometric Conservation Law (GCL) is 

discussed. In Section 4, the governing equations based on the von Karman large deflection theory are 

provided. All these governing equations are nondimensionalized by the appropriate combination of 

freestream density, velocity and the length of panel. In Section 5, the Beam-Warming, alternate- 

direction, implicit scheme is listed to solve the flow equations. The finite difference method and the 

Newmark- ß integration scheme are used to solve the governing equations of nonlinear panel. The 

Newton-like subiteration is also implemented in this section to eliminate the lagging errors associated 

with the exchange of the pressure and deformations between the fluid and panel at their interface. The 

nonlinear panel flutter under Euler flow is simulated for a square panel in Section 6. The amplitudes of 

the Limit Cycle Oscillation (LCO) are compared with those obtained from full linearized potential 

flow theory and qusi-steady linear piston theory. The flutter frequencies are also discussed and 

compared with their natural frequencies. 

5.3 Aerodynamic Theories 

5.3.1 Approximate Aerodynamic Theories 
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Normally the aerodynamic pressure may be considered as the sum of two parts, one given by the 

pressure fluctuations on the plate in the absence of any plate motion, e.g., due to turbulent boundary 

layer fluctuations, and the other due to the plate motion itself15. The superposition of these two 

contributions to form the total aerodynamic pressure implies that the plate motion and the consequent 

portion of the aerodynamic pressure are sufficiently small so that the turbulent pressure fluctuations 

themselves are not substantially modified. Hence, 

Ap = ApM+ApE (5-1) 

ApE is taken as prescribed from experiment or separate analysis while Ap    may be related to the 

deformation of the plate. The full expression of the ApM was defined by Dowell15. 

As disclosed by the survey papers, a vast quantity of literature exists on panel flutter using 

approximate aerodynamic theories without considering the effect of ApE. Several frequently used 

theories are listed in the following. Their valid ranges of Mach number were summarized by Mef6. 

5.3.1.1 Linearized Potential Flow Theory 

For air flow with Mach number close to one and less than five (1 < M„ < 5), the full linearized 

inviscid potential theory aerodynamics is usually employed17. The aerodynamic pressure loading is 

given by 

,     „ ~ (d(b     * d(b 

where the velocity potential function (j) must satisfy 

(5-2) 

V2d>-- 
V   c2 

'Ä+ ^ I 0 = 0 (5-3) 
dt    dx 

subject to the boundary conditions 

dw    . 

0 off plate 

30 
dz 2=0 

3w    » 9w , A 
¥ + F„-     on plate ^ 

5.3.1.2 Qusi-Steady Supersonic Theory 

The aerodynamic theory employed for most part of the panel flutter at higher supersonic Mach 

number (M„>1.6) is the quasi-steady first order piston aerodynamic theory by Ashley and 

Zartarian18. The aerodynamic pressure as given in this theory is given by 
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P-P  =^ F    F~      ß 
(dw    Mt-2 1 dw" 

(5-5) 
dx ' Ml -1 Vm dt 

where qa = paVl/2 is the free stream dynamic pressure; /J=^/M2-l. If the aerodynamic 

damping is neglected in Equation (5-5), the quasi-static Ackeret aerodynamic theory, also know as the 

static strip theory, is simplified to 

P-P  JL.± (5-6) 
P   P~      ß   dx 

5.3.1.3 First Order Piston Aerodynamic Theory 

The simplified formula of the aerodynamic pressure within the first order piston theory has the 

expression 15,19 

M_ 

f-\~ 

\ 

dw     1 dw 
dx    V  dt 

<- \ 
(5-7) 

/ 

This approximation is usually used for the supersonic and hypersonic flow (2.5 < M„ < 5 by Krause 

and Dinkier20, or -Jl < M„ < 5 by Mei16). 

5.3.1.4 Full Third Order Piston Aerodynamic Theory 

In the hypersonic regime (M„ > 5), the unsteady full third-order piston theory aerodynamics18 is 

used to develop the aerodynamic pressure given by 

M_ 
dw     1  dw     v + l)M„ 
— + -*-—-+- —^ 
dx    V   dt 4 

aw 

dx    V~ di 
V 

1   dw*     '«'^^" + (y+W: 
12 

dw     1  dw 
dx     V  dt 

(5-8) 

where ~/\ is the ratio of specific heat. 

5.3.2 Aerodynamic Theory Based on Navier-Stokes Equations 

The aerodynamic governing equations are the unsteady, compressible, three-dimensional Navier- 

Stokes equations written in nondimensional, strong-conservation law form employing a general time 

dependent transformation 
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%=%{x,y,z,i) 

r\=T]{x,y,z,t) 

£ =£(x,y,z,t) 
r = t 

The resulting system of governing equations is repressed as 

(5-9) 

W_     d_ 
dt +9£ 

V 

F-^-F 
Re,   v 

(. 
+ 

dr} 
G-±G, 

Re,   v + 
ac Re, 

= H, GCL (5-10) 

The source vector term, HGCL, defined as 

HGCL ~ U 

dr KJ H 
^ 

(r \ 
+ 

j 

c. 
J 

(5-11) 

is applied in order to account for errors associated with the GCL and will be discussed later. J is 

Jacobian of the transformation21. 

Vector quantities appearing in Equation (5-10) are defined as 

U=-U 
J 

G^jkjj+nj +n,yG+j],2H) 

H = ±(C,lU + Z,xF + S,yG + ^H) 

Fv=j(ixFv+^yGv+^Hv) 

With this formulation, the vector of dependent variables U is given as 

1 T 
U = JP°       P*V*      P*Vy      PaV'      PaE 

and the flux vectors are 

(5-12) 

(5-13) 

(5-14) 

(5-15) 

(5-16) 

(5-17) 

(5-18) 

(5-19) 
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F = 

PaVx 

PaVl+P 

PaVxVy 

PaVxVz 

(paE + p)vx 

G 

PaVy 

PaVxVy 

PaVl+P 
PaVyVz 

(paE + p)vy 

H = 

P v "a   z 

PaVxVz 

PaVyVz 

py,+P 
(paE+p)vz_ 

F = 0 T T T VT+VT+VT—Q ± v        " ''xx *xy * xz yx"xx   '   'y"xy      vz*xz      1x 

G =0 T T T VT+vT+VT—ö uv        " kAy ''w "yz yx*xy        y  yy      rz*yz      Vy 

H = 0    T      T       T       VT   +VT   +VT   — ff ■" V J2 *J!Z ZZ I    JZ ^    JZ Z    ZZ        Mz 

where the total specific energy per unit is defined as 

E = 
T        +_fe + v^+vz

2) 

(5-20) 

(5-21a) 

(5-2lb) 

(5-2 lc) 

(5-22) 

All variables have been normalized by the appropriate combination of freestream density, velocity and 

a characteristic length, that is, 

x y z tVm 

l     y    I I I 

vx = ir> vy = -f> vz=7r> V = Jr- 
Ü 

p = A, P=P, r=4- 
Pa    P~    P   PJI Tm 

Components of the stress tensor and the heat flux vector may be expressed as 

Tx,, = i" 

V 
dxj     dxt     3   y dxk 

1x, = 
(7 

1    TM 

(5-23a) 

(5-23b) 

(5-23c) 

(5-24) 

(5-25) 

where i       =        ; w, ,w2 ,w3 = vx, v ,vz and x, ,x2,*3 = x,y, z. Sutherland's law for the molecular 

viscosity coefficient j^ and the perfect gas relationship 

(5-26) P T 

are also employed, and Stokes' hypothesis for the bulk viscosity coefficient is assumed. 
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5.3.3 Geometric Conservation Law 

The relationship between the governing equations and the GCL is discussed in the following. The 

nondimensional Cartesian governing equations can be expressed as 

dU     d_ 

dt     dx 

( 
F-±F 

Re,   ' 
1   3f + — 

dy )    *\ 
Using chain-rule differentiation, 

_0 
dt 

_0 
dx 

0,   0 
3T 

0 

-+ -+■ 

Re, 

On, 0? 

( 

Re, 
= 0 

■ + 
d%  dt     dt]  dt     dC,   dt 

On,   Of • + -+• 
d£, dx     dr\ dx     d£ dx 

dy      dB, dy     dr) dy     dC,  dy 

(5-27) 

(5-28a) 

(5-28b) 

(5-28c) 

()_   0. ■+• 
()1L0? 

dz      3£ dz     dr\ dz     3£ dz 

and premultiplying by the inverse of the transformation Jacobian, J, equation (5-27) becomes 

(5-28d) 

Re, 
H.. 

(5-29) 

All four terms on the right hand side of equation (5-29) vanish analytically. The difficulty arises 

when discrete representations of the temporal and spatial derivatives are used. The discrete form of the 

last three terms are zero when central differences are used for all metric calculations in 3-D. 

Unfortunately, this is not true for the first expression due to the mixed temporal and spatial 

derivatives. The first term set to zero is referred to in the literature as the GCL  ' . The most 
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straightforward approach of accounting for the GCL is to simply include this term in the discrete 

governing equations. 

5.4 Governing Equations of Thin Plate 

The governing equations of the thin plate are the well known von Karman equations for large 

deflection. Derivations of these equations may be found in a number of sources24. For the von Karman 

theory the plate is assumed to be isotropic, of uniform small thickness and initially flat. The normal 

deflection of the plate is assumed to be on the order of the thickness of the plate, while the tangential 

displacements are assumed infinitesimal. Finally, Kirchoffs hypothesis is employed with tractions on 

surfaces paralle to the middle surface assumed negligible and strains varying linearly with the plate 

thickness. 

Using these assumptions the governing equations for the plate motion may be written as 

d2w d2w    ~  d2w 

dx      dy 

^- + ^ = 0 

d2w 

"tidy 

dx      dy 

where the two-dimensional Laplacian operator and the internal forces are defined as 

„4«     34vv    _   d4w      dAw 

9.x "4 ox ay      ay 
~4 

n=B 

ny=B 

du    1 
ydxy 

+ v 
dy + 2 

9v    1 

dy + 2 

r^-..\2 
dw 

+V 
du  i/a^2 

dx    2 \d*J 

B\-vfdu     dv    dwdw 
n*y=- ■+■ 

(5-30-a) 

(5-30-b) 

(5-30-c) 

(5-31) 

(5-32-a) 

(5-32-b) 

2      \dy    dx    dx dy 

The rigidity constants for the bending and membrane, D and 51, and the mass per unit area are 

(5-32-c) 
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Eh3 „Eh        _    . r D = *-^-,   B= „   ' ,^,   m=psh (5-33) 
12(1-U2)'   "    (l-V2) 

In equations (5-30) through (5-33), u, v, and w are the displacements in the x,     , and z directions 

respectively; h and ps are, respectively, the thickness and mass density of the plate; pz is external 

transverse pressure acted on the plate. 

The dynamic equations of equilibrium defined above are dimensional. To make them compatible 

to the governing equations for flow, they are non-dimensionalized with respect to the length of the 

plate. Suppose the plate is square and the length is / , the non-dimensional parameters are defined as 

ü v w h pz 

I I I I pj~ 
(5-34) 

Using equation (5-34), the non-dimensional form of the dynamic equations of the plate becomes 

V4w+ 
X 

<K 
dx      dy 

d2w 

dt2 

d2w 

dx 
~s"y 

d2w 

dy2 + 2WXy 
d2w 

dxdy 

■ + y* _ = 0 

^- + -^ = 0 
dx      dy 

and the two-dimensional Laplacian operator and the internal forces are defined as 

Y74       d4M\->   d*w      d4w 
VW=—T + 2TTTT + ' 

dx4       dx2dy2     dy 

nx = tnl\ 

ny=tnli 

du    Udw^ 
dx    21 dx 

+ V 
dv_   2 
dy + 2 

dw 

dv_    )_ 

dy + 2 

dw 
+ V 

du    Ifdw^2 

+ - 
dx    2 v^yj 

_t„,i-v du    dv    dw dw 

dy    dx    dx dy 

(5-35-a) 

(5-35-b) 

(5-35-c) 

(5-36) 

(5-37-a) 

(5-37-b) 

(5-37-c) 

The nondimensional dynamic pressure X, mass ratio fls, and internal force coefficient tnl are 

P.V-P     ,. - PJ x = 
D 

■.   P,=±T7,    Ki = 
Psh 

12 

X 

rn
2 

KhJ 

(5-38) 
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5.5 Numerical Procedure 

5.5.1 Aerodynamic 

Solutions to equation (5-10) are obtained numerically using the implicit approximately factored 

finite difference algorithm of Beam and Warming25, employing a Newton like subiteration 

procedure5,6. The numerical algorithm is obtained from equation (5-10) by utilizing either a two- or 

three-point backward time differencing and linearizing about the solution at subiteration level . The 

choice of the first or second-order temporal accuracy is retained in the following iterative approach by 

specifying (j> = or <p = 1/2, respectively. The numerical algorithm is written in an approximately 

factored, delta form as 

rdFp 1   dFf^ 
dU     Re, dU 

dHp      1   dHf 

JP+i (rT+tf&A dGf 
1  3G„' 

dU     Re, dU 
/-J 

Jp+i 

-U" 
ft \ L 
KJJ 

+ 

dU     Re, dU 

p+i 

AU^AtJh-'Y +i (l + <j))Up -(l + 2<l))Un +(I)U 

At 

71-1 

+ £. +sf Fp-—F> 
Re,   v + S„ Gp- 

l_ 

Re, 
¥S, 

where 

1 + 0 
AU = UP+1-UP 

Therefore,  UP = U'   for 

HP——HP 

Re,    v 

(5-39) 

(5-40) 

=     and Here,  Up   is the subiteration approximation of  U 

U" -> Ul+* as     -> oo. 

It should be noted that with this subiteration approach the right-hand side of equation (5-39) 

represents the numerical approximation of the governing equation, while the left-hand side vanishes as 

—> oo. The left-hand side, therefore, may be modified without loss of formal accuracy provided a 

sufficient number of subiterations are employed. In particular, a time step on the left-hand side of the 

equation, Ats, may be chosen independently from the physical time step At on the right-hand side to 

enhance the stability. Also, the right-hand side of equation (5-39) can be modified to include a higher 

order upwind algorithm, lagged boundary conditions or lagged  k-£ turbulence modeling without 
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destroying the implicit nature of the algorithm. Left-hand side efficiency improvements can also be 

implemented. The numerical procedure has been modified to include diagonalization, following the 

approach by Pulliam and Chaussee26. Although the diagonalized form of the ADI scheme is only first- 

order time-accurate, when coupled with subiterations, higher order time accuracy may be retained. The 

numerical scheme (5-39) reverts to the standard first order Beam-Warming procedure for  <p =   , 

Ats = At, and    =   . 

In equation (5-39) all spatial derivatives are approximated by the second-order accurate 

differences, and common forms of both implicit and explicit nonlinear dissipation27 are employed in 

order to preserve numerical stability. The gird speeds xt, y,, and z, are computed in a manner 

consistent with the temporal derivatives of the conserved variables in equation (5-39). 

5.5.2 Structure 

The structural equations (5-30) are discretized using a finite difference procedure in space and the 

Newmark-/? method in time. 

The Newmark- ß integration method is applied to solve the dynamic equilibrium of motion. It is a 

second-order accurate in time and unconditionally stable approach. In this method the following 

assumptions for the velocity and displacement in the time interval    to t + At are employed: 

*(+A = "} + (1 - S)wt + Swt+6l At (5-41a) 

W
*+A =wt + ™tAt + (V2 - «)#, + ccwt+iit  At2 (5-41b) 

where a and ß are integration parameters that determine the stability and accuracy of the method. 

For an unconditionally stable integration scheme, Newmark originally proposed that  OJ = 1/4 and 

8 = 1/2, in which case equation (5-41) corresponds to the constant average acceleration method. 

From equation (5-41), wl+Al may be solved in terms of wl+Al as 

*,+* = ao W,+A« - w< - *2 w( - a, w, (5-42a) 

Substituting equation (5-42a) for w/+4/ in equation (5-41a) yields 

S 
w,+A, = wf + 

{1-5)^^{W'^-Wy^'\h-5 

or in a simple form 

w<+* =öI w/+A, -w, -aAwt -a^ 

At 

(5-42b) 
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The constants in equation (5-42) are defined as 

1 
an = ■,   «1= —— >   «2 a(Atf'   "'    aAt'    *    aAt 

,   a3 = 
2a 

Ö   , At 
a4= 1,   a5= — 

a 2 {a     j 
(5-43) 

Both the acceleration wt+Al and velocity wt+At at time t + At are expressed in terras of the unknown 

displacement w,+A, at time t + At and the parameters in time . Using equation (5-42), the governing 

equation (5-35a) of the plate can be discretized in time domain as 

«ow,+A + Hj*> W,+4, = fi, nxwixx + nyw<yy + 2n7^wxy /+4/ + p*t+M (5-44) 

where the equivalent external force is defined as 

PM = VsPt+x +a0w, + a2wt + a3wt (5-45) 

Equations (5-35b) and (5-35c) are static equilibrium, there is no any change for them. 

The standard five- and three-point centered finite difference expressions24 are used to approximate 

the fourth-, second, and first-order spatial derivatives in equations (5-44), (5-35b), (5-35c), and (5-37). 

The derivatives expressions are given by 

—   " TÄxf^Wi+2J"   MJ     J ~     J W'~2J 
v obc4 , 
V       J 

a w 

V   '    J u    W 
(w,.y+2 -4w/>/+1 +6wtJ -4w/>y_, + w,.,_2) 

d w   * 

dx2dy2 

(wiJ+,-2wiJ + wiJ_1) 
r^2,.\ 

. 3bc2 , 

r^2,..\ 
d2w)       l   /        ,    ...      \   f92w 

[VL M 
( A,. \ d2w } 1      / \ 

3x3v .. 

= _i_(_W(_u+Wi+ij)) 
f^,.\ dw) 1   ( , ^ 

(5-46) 
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For the fourth-order expressions, i = ips + 2 to ipe - 2 (where ips and ipe denote the beginning and 

end of the plate in the x direction) and j = jps+2 to jpe -2 (where jps and jpe denote the 

beginning and end of the plate in the     direction). For i = ips +1 or ipe -1 and ;' = jps +1 or jpe -1, 

these equations are modified by inserting the appropriate boundary condition information. 

Introducing the derivative expressions in equation (5-46) into the equivalent static equilibrium (5- 

44), the finite difference expression of the dynamic equation (5-35a) for AY = Ay= without 

boundary condition is obtained as 

X4 

2\l    /w*,, 

X4        2 x4    2 
2H       Wxy 

X4 

ß 
X4 

Sfl     \xnx 

X4       2 
, 20/i , 2/m, , 2p*y 8jU    \in* 

X4       2 X4 2 

u 
1 

2\i    ßnxy 

Xh4    2h2 
8/i    Wy 

Xh4     h2 

2ß        WXy 
Xh4    2h2 

X4 

-P'+A,=Q 

(5-47a) 

where [ls is replaced by \X for simplicity. Similarly, the finite expressions for the governing 

equations (5-35b) and (5-35c) are given by 

Q, u(i -1, j) + u(i +1,j) + Cu2 u(i,j -1) + u(i, j +1) + Auu(i, j) 

+ C\v{i -1,7-1)- v(i +1J -1) + v(i + \,j +1)- v(z -1, j +1)] 

+ CwX [w(i -1, j -1) - w(i + l,j-l) + w(i + 1J + 1)- w(i -1J+1)] 

[-w(i,j-l)+w(i,j + l)] 

+ Cw2 [- w(i - \,j) + w(i +1, j)hii ~ Ij)" 2 w(i, j) + w(i +1,;')] 

+ Cw\- w(i -1,;) + w(i + l,j)lw(i,j -1) - 2w(i,j) + w(i, j +1)] = 0 

(5-47b) 
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Cu2v(i-l,j) + v(i+l,j) +Cuiv(i,j-l) + v(i,j + l) +Auv(i,J) 

+ CV[M(/-U-I)-"0'+U-I)+«('+U+!)-«('-!»y+1)] 
+ Cwl [Mi -1, j -1) - Mi +1, j -1) + w(i+1J +1) - w(i -1J+1)] 

[~w(i-l,j) + w(i + l,j)] 

+ Cw2[- MU 7 -1)+Mi, j+1)1*0", j -1)- 2MU J) + MU +1)] 

+ Cw3[- Mi, J ~ 1) + w0'. 7 + Ol^O' -1.7) - 2w0',;) + Mi + h J)] = ° 

where, 

r       t,      r   _t!(l-v)     r _t,(l + v)     r     J,(l + V) =J!_    c   =t,(l-v) 
Cul~J?'     u2~~^Ür'     v~    Sh2    '     wl"   16Ä3   '     "*    2Ä3'     w3       4Ä3 

(5-48a) 

^=-2C„1+C„2 (M8b) 

After the proper boundary conditions are applied to Equation (5-47), they can be solved. Assembling 

equation (5-47), the governing equations of the discrete model of the large deflection plate at the 

current time step is obtained as 

A(u,v,w)ww = B(u,v,w)w (5-49a) 

A(u,v,w)uw = B(u,v,w)u (549b) 

A(u,v,w\w = B(u,v,w\ (549c) 

Obviously, the coefficient matrices and vectors on the right-hand sides of equation (5-49) are the 

functions of the unknowns. This means equation (5-49) is nonlinear. Iterations, not only within 

equations of the equation (5-49) but also among them, are necessary to solve for the unknowns from 

this equation. 

5.5.3 Fluid-Structure Interaction 

The fluid-structure interaction analysis may be performed using the following three main steps in 

each time step. (1) Calculate the responses of the panel under the fluid pressure and other external 

forces; (2) Move the fluid grid using the displacements from the panel analysis; (3) Perform the fluid 

analysis under the moved grid and compute the pressure on the surface of the panel due to the its 

movement. To start the numerical simulation, some initial perturbation, initial displacements, velocity, 

or accelerations, is usually assigned to the panel. Steps one and three are corresponding to structural 

and fluid analysis respectively. For each step, iterations are required because the governing equations 

of the structure and fluid are nonlinear. 
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The pressure resulted from the fluid side is required when calculating the responses of the panel. 

On the other hand, the displacements of the panel should be available before performing the analysis 

of the fluid and obtaining the pressure to be assigned on the panel. Clearly, the fluid and the panel are 

coupled. If only one cycle, from structure to fluid, is used at each time step, big errors will sometimes 

be resulted due to the lagged fluid-structure coupling. This error will lead numerical instability when a 

relatively long time simulation is performed. To eliminate the possible numerical instability, the 

subiteration between the fluid and structure is implemented. 

As we know, the computational effort of the fluid is much more expensive than the structure, the 

following main logic is used to reduce the computational work. 

1. Assign the initial state of the panel; 

2. For each time step, do: 

2.1. For each subiteration p, do: 

2.1.1 Evaluate    the    equivalent    external    forces    acting    on    the    plate    using 

p]+6t = WP + aowi + a2™t + asWt 
md solve equation (5-49) iteratively; 

2.1.2 Move the gird using the displacement vector u, v,and w of the panel; 

2.1.3 Perform the fluid analysis and find the pressure acting on the panel; 

2.1.4 Set    =    +   and go back to step 2.1.1; 

2.2. Evaluate the velocities and accelerations at current time using equation (5-42); 

2.3. Output the results; 

3. Output the results. 

5.6 Results and Discussions 

The problem to be investigated is the flow, inviscid flow at this time, over a two-dimensional 

square flexible panel of length /, as shown in Figure 5.1. Unless otherwise noted the panel has the 

following properties: thickness h/l = 0.002, mass ratio p. = and Poisson's ratio V = 0.3. For all 

cases freestream pressure, p„, is specified on the underside of the panel. The coordinate of the flow 

- xyz and os - xsys are shown in Figure 5.1. 

Numerical boundary conditions for the panel provide the connection between the aerodynamic and 

structural equations. For viscous flow computations, a no slip condition is applied on the plate surface. 

This requires 
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vx = xb> vy=yb 

where xb and yb denote the velocity of the moving boundary with xb = yb = 0 in the static case. The 

remaining two conditions are the adiabatic wall condition and the normal momentum equation: 

Pa 
^ = 0     & = ■ 
3rj      '   dri 

2 2   fflxXb + 'ly Vjb) 

Along the inflow boundary, all dependent variables are assigned their respective freestream values for 

supersonic flow, whereas for the subsonic flow characteristic boundary conditions28 are applied. On 

the top boundary, either extrapolation or characteristic conditions are specified for supersonic or 

subsonic flows respectively. On the outflow boundary, first-order accurate extrapolation of the 

dependent variables is employed in all cases, corresponding to the condition 

cbc 

For the inviscid case, the boundary conditions along the plate are modified by setting the fluid 

velocity component normal to the surface equal to the corresponding values for the plate. Finally, a 

slip condition is implemented by using the second-order extrapolation for the tangential velocity 

component. 

Flow 

51 I 51 

Figure 5.1. Geometry of the flow and panel 
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Boundary conditions for the plate are specified for simply supported edges. No deflection is 

allowed along the edges of the plate, i.e., u = v = w = 0. No moment is on the edges, that is, 

d2w/dn2 = 0. 

The grid used for the panel is 20 X 20 with equal space. The finite difference grid for the flow is 

xXyXz=4 x4 x2   as shown in Figure 5.2. The minimum space in the z-direction is 0.001. 

11      11 

Figure 5.2 Finite difference grid for the range of flow 

5.6.1. Amplitudes of Limit Cycle Oscillation (LCO) 
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As mentioned above, panel flutter is induced by supersonic air flow on a panel. The aerodynamic 

pressure acting on the panel is a function of the panel motion itself. Therefore, it is very essential to 

accurately predict the pressure. Even though there are several aerodynamic theories, most of them are 

linearized, approximate. For the current research, the aerodynamic loads are resulted from the 

simulation of the Euler flow on the surface of the nonlinear panel. The amplitudes of the limit cycle 

oscillation resulted from the present computation will be compared with those from approximate 

aerodynamic theories. Two of them, fully linearized potential flow and qusi-steady piston theory, will 

considered at this time. 

The fully linearized aerodynamic theory was used to estimate the aerodynamic pressure on the 

panel by Cunningham29 and Dowell17 about two decades ago. This theory is based on the inviscid, 

potential flow. It is usually valid for a low Mach number (M„ =1). The amplitudes of the LCO at 

(0.75,0.50) in the panel coordinate obtained from this theory and the present calculation are plotted in 

Figure 5.3. Only three Mach numbers, 1.2, 1.414, and 1.6, are compared due to the availability of the 

former results. 

As shown in Figure 5.3, the critical flutter dynamic pressures, A, are 216, 462, 608 for the Euler 

flow while they are 191,421, and 591 for the linearized potential flow. The former pressures are 13%, 

9%, and 3% higher than the later respectively. The present amplitudes are lower than those from the 

linearized potential flow theory as shown in Figure 5.3. With the increase of the Mach number, the 

difference becomes smaller and smaller. The reason might be that the nonlinearity is ignored in the 

linearized potential theory. The percent difference of the amplitudes resulted from the potential flow 

with respect to the results from the Euler flow are listed in Table 5.1. Generally, the difference at 

higher Mach number is much smaller than the lower Mach number. 
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Figure 5.3. Comparison of LCO amplitudes: Potential flow and Euler flow 

Table 5.1. Percent differences of the LCO amplitudes 

M„ X Diff. M„ A Diff. 

1.2 250 75.3 1.6 650 24.9 

1.2 300 62.0 1.6 700 14.1 

1.414 500 88.7 1.6 750 13.0 

1.414 550 60.8 1.6 800 16.5 

1.414 600 50.2 1.6 850 18.3 

The qusi-steady first order piston theory was proposed to predict the aerodynamic pressure by 

Ashley and Zartarian in 1956. Since the three dimensionality and the unsteadiness of the air flow was 

ignored in this theory, it cannot be applied for the air flow with Mach number close to one. It mostly 

applied for the airflow with large Mach number {M„> J2 ). The LCO amplitudes obtained from the 

two theories are shown in Figure 5.4. The corresponding difference is listed in Table 5.2. It is shown 

clearly in Figure 5.4 that the present amplitudes are higher than those from the qusi-steady piston 

theory. The percent difference reduces with the increase of the dimensionless pressure. The difference 

for Mach number 1.6, for example, reduces from 44.4% at A = 650 to 9.3% at A = 850. This also 
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happens for Mach number 2.0. The most interesting phenomenon is that the shapes of curve resulted 

from the two theories are almost same for Mach number 1.6 and 2.0 respectively. Therefore, there is 

only some shifting difference. 

600 700 1100 

Figure 5.4. Comparison of LCO amplitudes: Piston theory and Euler flow 

Table 5.2. Percent differences of the LCO amplitudes 

M„ X Diff. M„ X Diff. 

1.6 650 44.4 2.0 900 41.8 

1.6 700 19.8 2.0 950 17.0 

1.6 750 14.0 2.0 1000 10.0 

1.6 800 11.2 2.0 1050 7.4 

1.6 850 9.3 2.0 1100 6.2 

As mentioned in the introduction, Gordnier and Visbal have also used Euler equations to predict 

the aerodynamic loads very recently. The present amplitudes are compared with theirs in Figure 5.5. 

Only the results at Mach number 1.2 are shown due to the availability of the later results. They are 

very close as expected. However, there is a big difference for the critical dynamic pressure. The 

prediction of the critical dynamic pressure is very computationally expensive when the high fidelity 
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equations are used to compute the aerodynamic loads. Since the critical pressure can not be predict 

explicitly, six to ten simulations for the dimensionless pressures around the critical are usually 

required even though the linear interpolation searching technique is employed. For example, about one 

week was used to find the critical pressure when the error is required to be less than 1. The 

computation was performed on a Sun 4500 computer with four of its eight processors. 

2.0 

1.5 

1.0- 

0.5 

0.0 

 Gordnier 
—■— Present 

100 
-i 1 1 1 r 

150 

Figure 5.5. Comparison of LCO amplitudes: Euler flow 

The deflections of the panel at the end of the 500 dimensionless time are plotted in Figures 5.6 and 

5.7. For these figures, Mach number M00=1.6, dimensionless dynamic pressure A = 650 and 

X = 900 are used. The following three phenomina may be easily obtained from these plots. (1) The 

maximum deflection is approximately located on the right one quarter, i.e., xjl =0.75 and 

yjl = 0.5 . This is shown clearly in Figures 5.6(a) and 5.7(a). (2) The deformations are symmetric 

with respect the central line of the panel in the x direction, that is, ys = 0.5. (3) In the y direction, 

the shape of the deformation is very close to the first modeshpe of the panel itself. These three 

phenomena are very similar to those based on the approximate theories. 
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Figure 5.6. Deflection of the panel for M«, = 1.6 and A = 650 : (a) in x direction; (b) in      direction 
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Figure 5.8. Surface pressure contour of the panel for M„ = 1.6: (a) X = 650 , (b) A = 900 
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The pressures and the flow velocity in the x -direction on the surface of the panel at the same time 

mentioned above are shown in Figures 5.8 and 5.9 respectively. Clearly, they are symmetrical with 

respect to the contral line of the panel in the x -direction, that is = 5 . As we know, the 

dimenionless air pressure of the freestream is 0.2790 as shown in the left one fifth part in Figure 5.8. 

Usually, there are three net pressure ranges. They approximately locate on the left one quarter, middle 

one half, and right one quarter of the panel respectively as shown in Figure 5.8. For convenience, they 

are called range I, II, and III from lest to right. Since the net pressures in range I are very close to the 

reference pressure 0.2790, they are not clearly shown in Figure 5.8. The net pressure in range III is 

much higher than that in range II which is much higher than that in range I. This is the reason that the 

maximum deflection of the panel is always very close the three-quarter of the panel from left. 

Furthermore, the pressure within ranges II and III usually have different sign. Of course, there is a 

pressure shock between these two ranges. The phenomenon of the distribution of the pressure may be 

explained from the air velocity distribution on the surface of the panel shown in Figure 5.9. 

5.6.2 Flutter Frequency 

The LCO in time domain is plotted for M^ = 1.2 and A =300 in Figure 5.10(a). The FFT 

transformation of the oscillation in frequency domain is shown in Figure 5.10(b). Initially, the 

amplitude grows rapidly due to the negative damping from the aerodynamic pressure. With the 

increase of the amplitude the membrane tensile forces become significant which bound the flutter 

amplitude at a constant some time later. It can be found from Fig. 5.10(b) that the fundamental flutter 

frequency of the LCO is 0.0854. 

As we know, the natural circular frequencies of the linear simply supported thin plate can be 

expressed as24 

„2 

mn 12   \ J\ 

D (5-50) 

where m    = • • •. The corresponding nondimensional frequencies are 

2VJK '\psh 

Using the dimensionless dynamic pressure X and mass ratio ßs, equation (5-51) may be rewritten as 

/-=%*+*)$ V*» 
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Hence, the first two natural frequencies are 0.0574 and 0.1434. 

400 

(a) 

(b) 

Figure 5.10. LCO for M„ = 1.2 and A = 300: (a) time domain; (b) frequency domain 
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Similarly, the flutter frequencies and the corresponding natural frequencies may be calculated. 

They are plotted in Fig. 5.11. In these pictures, "Linearl" and "Linear2" denote the first and second 

natural frequencies respectively. The natural frequencies decrease with the increase of the 

nondimensional dynamic pressure which can be explained clearly from equation (5-52). As we know, 

the panel becomes more flexible when the dynamic pressure increases. Under the same air flow, the 

responses should be bigger for the higher dynamic pressure. The nonlinear effect, therefore, gets more 

significant. Consequently, the flutter frequencies obtained from both Euler flow theory and piston 

theory increase very slightly when the dynamic pressure increases even though the corresponding 

natural frequencies decrease. For the higher Mach numbers, M„ = 1.6 and M„ = 2.0, the flutter 

frequencies are almost constant. The flutter frequencies resulted from the present simulation are a little 

lower than those from piston theory. Because the flutter frequency is pertaining to the nonlinear 

model, it should be bigger than the corresponding natural frequency. From Fig. 5.11 we know, almost 

all the flutter frequencies are located between the first and the second natural frequencies of the 

corresponding linear models. This means that the lowest two modes, especially the first mode, have 

significant contribution to the LCO. 

0.20 

250 350 

(a) 
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Figure 5.11. Comparison of the frequencies: 

(a) M^ = 1.2; (b) M„ = 1.414; (c) M.. =1.6; (d) M„ =2.0 

5.6.3. Effect of the Panel Thickness 

In the following discussion, we assume the nondimensional dynamic pressure A , mass ratio fls, 

and the parameters of the air flow are constants when the thickness h changes. This means that the 

panel and the air flow do not change in the nondimensional sense for different thickness. 

5.6.3.1 Linear Case 

The linear governing equations of the panel under the Euler flow can be easily obtained from 

equation (5-3 5a) as 

A*. d2w 
9-V4W+-T-=^SJP (5-53) 
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Figure 5.12. Linear deflection of the panel: (a) A = 650; (b) X = 900 
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As we know, the aerodynamic pressure resulted from the Euler equations is only dependent on the 

deflection w of the panel during the simulation. Hence, it will not be affected by the thickness. The 

items on the left-hand side also have nothing to do with the thickness. Therefore, the deflection of the 

panel is supposed to be independent of the thickness. Since the critical dimensionless dynamic 

pressure, Xa, can be determined from the linear panel, it is also independent of the thickness. 

The deflections of the panel for Af. = 1.6, A = 650 and X = 900 are plotted in Figure 5.12. In 

these results, three different thicknesses, 0.02, 0.002, and 0.0002, are used. The deformations blow up 

at time 90.58 in Figure 5.12(b) due to the unreasonable deformation of the panel. The deformations are 

exactly same for different thicknesses of the panel. 

5.6.3.2 Nonlinear Case 
For the nonlinear case, the effect of the thickness becomes a little complex. Let's discuss the 

influence of the thickness on the deformation w at first. Introducing equation (5-37) into equations (5- 

35b) and (5-35c) leads 

}2_. 3...  32.     \ d2u    dwd2w 
+.    _  „+V 

dx2     dx dx2 

d2v    dw d2w 

d2v     dw d2w 
■ + ■ 

dxdy    dy dxdy I 
+ {l-v) 

d2u     d2v     dw d2w    dw d2w 
■ + + ■ = 0 

dy2 ' dxdy ' dx dy2     dy dxdy 

(5-54-a) 

+v 
d2u 

+ ■ 
dwd2 w 

dy2     dy dy2      \dxdy    dx dxdy 
+ (l-v) 

d2u     d2v    dw d2w 
■ + + + ■ 

dwd2'^ w 

dxdy    dx2     dx dxdy    dy dx 
= 0 

(5-54-b) 

These two equations are independent of the thickness. Therefore, only Equation (5-35a) depends on 

the thickness through the internal forces expressed in equation (5-37). As shown in equation (5-37), 

the internal forces reduce with the increase of the thickness. This leads the decrease of the nonlinear 

effect. Hence, the deflection w will increase. This is shown clearly in Figures 5.13 and 5.14. The 

deflection of the case h = 0.02 is much bigger than the case h = 0.002 and the later is much bigger 

than the case h = 0.0002 .As shown in Figures 5.13(b) and 5.14(b), the deflections are very close to 

each other for different thicknesses at beginning. The reason is that these deflections are very small 

and the nonlinear effect is unimportant. They are close to the linear case. 
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Figure 5.13. Nonlinear deflection of the panel for X = 650 
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Figure 5.14. Nonlinear deflection of the panel for X = 900 
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Defining the ratio of the deflection w with respect to the thickness h as w=w/h. Substituting 

w for w in equations (5-35a) leads 

d2w 
AWw+^-^+u« — +un —+2an 
T dt2~   h   + Mdx2    ^ydy2      ^sxydxdy 

(5-55) 

in which, the internal forces are 

12 dZ    \(dw"? 
n  = —s 

*    X 

12 

dx+2 

__ , 3v     1 

KdxJ 

(art 
dy 

\ ' J 

+v 

+v 

3v    I 
dy + 2 

(dw* 

du     lfdw 

dx    21 dx 

~\2 

6\-v(du    dv    dwdw 
dy     dx    dx dy 

(5-56-a) 

(5-56-b) 

(5-56-c) 

where, u = u/h2 and v = v/h2. Using equations (5-56), the governing equations (5-35b) and (5-35c) 

become 

d2u     dwd2w 

dx2     dx dx2 

( d2v     dw d2w ' 
dxdy    dy dxdy 

2~ "\ /       Jd2u     d2v     dwd2w    dw d2w = 0 
dy2     dxdy    dx dy2     dy dxdy 

(5-57-a) 

d2v     dw d2w ( ^2 

■ + 
3/    dy dy2 +v 

d2u     dw d w ~ ^2~ "\ 

■ + 
dxdy    dx dxdy 

+ 
d2u     d2v     dw d2w     dwd2w^ I M    o  U V   V        1 - + - = 0 
dxdy    dx2     dx dxdy    dy dx 

(5-57-b) 

The ratios of the deflection for A = 650 and A = 900 are shown in Figures 5.15 and 5.16 

respectively. It can be seen that the amplitudes of the ratio become stable after some time, 200 for 

example. The stable amplitudes are very close for the same nondimensional dynamic pressure. This 

means that the ratio of the LCO amplitude is independent of the thickness. We also can conclude that 

the ratio of pjh has nothing to do with the thickness for the Mach number. 
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Figure 5.15. Ratio of the nonlinear deflections for X = 650: 

(a) h = 0.02; (b) h = 0.002; (c) h = 0.0002 
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Figure 5.16. Ratio of the nonlinear deflections for X = 900: 

(a) h = 0.02; (b) h = 0.002; (c) h = 0.0002 
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This phenomenon can be explained clearly if the  qusi-steady piston aerodynamic theory is 

considered. In this theory, the aerodynamic pressure acting on the panel is assumed as 

pV2 

■JMI 

rdw    Ml-2 1 dw 

-1 dx    Ml-lV_& 
(5-58) 

/ 

Its nondimensional form is given by 

Pa 
P: = 

(dw    Mj-2dw\ 

dx + Ml-l dt 

Introducing equation (5-59) into equation (5-55) results 

(5-59) 

dt7 jMl-l[dx Mi-l dt 
+ W* dx2 

d2w    „ d2w 

ay dxdy 

(5-60) 

Clearly, the above equation has nothing to do with the thickness. Actually, this is true for supersonic 

flow. 
Although the thickness does not affect the ratio of the LCO amplitude after the oscillation become 

stable, it does affect the way to the LCO. For example, the ratio of the amplitude for h = 0.02 

increases very slowly as shown in Figure 5.15(a). It takes about 110 nondimensional time for the ratio 

to close to the stable value. When the thickness decreases by one tenth and one hundredth, the 

computer times reduce to about 80 and 10, respectively, as shown in Figure 5.15. As we know, the 

deflection is very small at beginning and fall into the linear or weak nonlinear range. According to the 

results in Figures 5.13 and 5.14, the amplitudes should be very close. Therefore, the ratio which is 

scaled by the inversion of the thickness decreases with the increase of the thickness. At the very 

beginning, the difference is very close to l/h. With the increase of the amplitude, the difference 

decreases very fast. After the oscillation becomes stable, the difference becomes insignificant. 

5.7 Summary 

The three-dimensional nonlinear panel flutter at supersonic flow is analyzed using the high-fidelity 

flow equations, Euler equations. These flow equations are solved using the Beam-Warming, alternate- 

direction, implicit scheme. The governing equations of the large deflection panel are based on the von- 

Karman theory. Finite difference method is used to discretize the governing equations in space and 
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Newmark-Beta integration scheme is applied to solve them in time domain. The Newton-like 

subiteration is implemented to eliminate the lagging errors associated with the exchange of the 

pressure and deformations between the fluid and panel at their interface. The numerical simulation is 

performed on a simply supported square panel. The results at the supersonic air flow are compared 

with those from potential flow theory and qusi-steady supersonic theory. 

(1) The present LCO amplitudes are smaller than those resulted from the linear potential flow 

theory. Generally, the difference at higher Mach number is smaller than the lower Mach number. 

(2) The LCO amplitudes obtained from Euler flow are bigger than those obtained from qusi-steady 

piston theory. Similarly, the difference reduces with the increase of the dynamic pressure. 

(3) The current results are very close to those from Reference 14 except for the critical 

nondimensional dynamic pressure at Mach number 1.2. 

(4) The flutter frequencies increase very slightly with the increase of the dynamic pressure. For 

high supersonic low, M„ = 2.0 for example, these frequencies become a constant within a wide 

dynamic pressure range. The current flutter frequencies are a little lower than those from qusi-steady 

piston theory. The first mode of the panel has the significant contribution of the panel flutter. 

(5) Assume the nondimensional dynamic pressure X, mass ratio \LS, and the parameters of the air 

flow are constants. The deflection of the panel for the linear case, and hence the critical 

nondimensional dynamic pressure, is independent of the dimensionless thickness of the panel. For the 

nonlinear case of the panel, the nondiemsional thickness does not affect the ratio of the LCO 

amplitude. However, it does affect the way to the LCO. 
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CONCLUSIONS 

A three-dimensional solver for the nonlinear panel flutter at supersonic flow has been developed. 

The solver has been verified using several approximate aerodynamic theories such as the potential 

flow theory and the qusi-steady supersonic theory on a simply supported square panel at the supersonic 

flow. The complex problems like wing flutter can be solved with the development of the current work. 

Finite element method is the most commonly used approach for discretizing the nonlinear panel. 

The resulted nonlinear equations of equilibrium may be solved using three formulations. Two of them, 

the Total Lagrangian formulation and the Co-Rotational formulation, are efficient for the nonlinear 

panel and have been discussed in details in Chapters 1 and 2 respectively. Because only the panels 

with very simple geometry are considered at this time, the finite difference method rather than the 

finite element method for solving the governing equations of the nonlinear panel was implemented 

into the solver to save the computer time. The Newmark-j8 integration scheme was applied to solve 

them in time domain. 

In the fluid side, the high-fidelity flow equations - Euler equations was used in this solver. The 

viscous effect has not been included at this time. The finite volume method is applied to discrete the 

fluid in space. A three-dimensional aeroelastic solver using QUICK scheme has been developed using 

the procedure in Chapter 4. Because of the use of sequential solver for a highly nonlinear Euler (NS) 

equations, the implicit sequential solver becomes overall explicit solver even after subiteration. Hence, 

a Beam-Warming, alternate-direction, implicit scheme solver has been developed for the elastic solver. 

An explicit scheme for the interaction of the fluid and structure was used. The Newton-like 

subiteration was implemented to eliminate the lagging errors associated with the exchange of the 

pressure and deformations between the fluid and panel at their interface. 

The present amplitudes of the limit cycle oscillation of a simply supported square panel are 

smaller than those resulted from the linear potential flow and greater than those from qusi-steady 

piston theory. The difference becomes smaller when the Mach number increases. The flutter frequency 

and the effects of the panel thickness are also discussed in this report. 

Further work of this solver is underway and listed in the following: 

• Solve for the nonlinear panel using the finite element method together with both formulations; 

• Include the viscous effect in the solver (use NS equations); 
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• Solve for the panel flutter with complex conditions; 

• Extended present solver for the wing flutter problems. 
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