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Abstract 

This report presents a basic set of guidelines to facilitate the generation of expected 
properties in the context of Model-Based Verification. Expected properties are natural 
language statements that express characteristics of the behavior of a system—characteristics 
that are consistent with user expectations. Through model checking, expected properties of a 
system, formally expressed as claims, are analyzed against the model. This analysis can 
detect inconsistencies between models of the system and their expected properties and 
identify potential system defects. 
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1   Introduction 

Model-Based Verification (MBV) is a systematic approach to finding defects (errors) in 
software requirements, designs, or code [Gluch 98]. The approach judiciously incorporates 
mathematical formalism, in the form of models, to provide a disciplined and logical analysis 
practice, rather than a "proof of correctness" strategy. MBV involves creating essential 
models of system behavior and analyzing these models against formal representations of 
expected properties. 

The artifacts and the key processes used in Model-Based Verification are shown in Figure 1. 
Model building and analysis are the core parts of Model-Based Verification practices. These 
two activities are performed using an iterative and incremental approach, where a small 
amount of modeling is followed by a small amount of analysis. A parallel compile activity 
gathers detailed information on errors and potential corrective actions. 
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Figure 1: Model-Based Verification Process and Artifacts 
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An essential model is a simplified formal representation that captures the essence of a system, 
rather than provide an exhaustive, detailed description of it. Through the selection of only 
critical (important or risky) parts of the system and appropriately abstracted perspectives, a 
reviewer, using model-based techniques, can focus the analysis on the critical and technically 

difficult aspects of the system. Driven by the discipline and rigor required in the creation of a 
formal model, simply building the model, in and of itself, uncovers errors. 

Once the formal model is built, it can be analyzed (checked) using automated model- 
checking tools. Within this analysis, the user identifies potential defects both while 
formulating claims about the system's expected behaviors and while formally analyzing the 
model using automated model-checking tools. Model checking has been shown to uncover 
the especially difficult-to-identify errors: the kind of errors that result due to the complexity 
associated with multiple interacting and interdependent components [Clarke 96]. These 

include embedded as well as highly distributed applications. 

A variety of different formal modeling and analysis techniques are employed within Model- 

Based Verification ([Gluch 98, Clarke 96]). The choices are based upon the type of system 
being analyzed and the technological foundation of the critical aspects ofthat system. This 
decision on the technique(s) involves an engineering trade-off among the technical 
perspective, formalism, level of abstraction, and scope of the modeling effort. 

The specific techniques and engineering practices of applying Model-Based Verification to 
software verification have yet to be fully explored and documented. A number of barriers to 
the adoption of Model-Based Verification have been identified including the lack of good tool 
support, expertise in organizations, good training materials, and process support for formal 

modeling and analysis. 

In order to address some of these issues, the Software Engineering Institute (SEI) has created 
a process framework for Model-Based Verification practice. This process framework 
identifies a number of key tasks and artifacts. Additionally, the SEI is working on a series of 
technical notes that can be used by Model-Based Verification practitioners. Each technical 
note is focused on a particular Model-Based Verification task, providing guidelines and 
techniques for one aspect of the Model-Based Verification practice. Currently, the technical 
notes that are planned address abstraction in building models, generating expected properties, 
generating formal claims, and interpreting the results of analysis. 

This technical note addresses the search and definition processes (generation process) for 
expected properties. Expected properties are natural language statements about the 
characteristics of a system's behavior—characteristics that are consistent with user 
expectations. The generation activity involves the participation of domain experts as well as 
software engineers and requires a systematic approach not unlike requirements elicitation 
techniques. Once generated, expected properties are expressed as formal claims. These 
formal claims are compared against a model of the system using model-checking tools. 
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2  Characterizing Expected Properties 

Building essential models and analyzing models against expected properties are fundamental 
practices in Model-Based Verification. The automated analysis process of model checking is 
shown in Figure 2. The results of the analysis are a confirmation of the correctness of the 
properties or a statement that the properties are not true for the model. In many cases when a 
property is not true, a counter example showing a violation of the property is included in the 
output. Model-checking tools (e.g., the Symbolic Model Verifier [Clarke 95, McMillan 92]) 
leverage the formal aspects of models to automatically analyze them, determining whether or 
not specific system properties, expected properties, are valid for the model. 
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Figure 2:   Model Checking 

Expected properties are natural language statements about the behavior of a system. In model 
checking, models can be thought of as formal representations of behavior or structure1 and 
expected properties as the characteristics ofthat behavior and structure. Expected properties 
are complementary to models of a system and often describe properties that reflect the 
requirements but are not explicit in a model. 

As an example of the distinction between models and expected properties, consider a system 
that involves the sharing of resources among different functional components. A requirement 
may be that only one of these components at a time should access a given resource. A design 
approach may be to use an algorithm that defines how processes should coordinate their 
access to a shared resource.   In a Model-Based Verification analysis of the design, a model 
that reflects this algorithm may be built. The model portrays the behavior that is dictated by 
the algorithm in some formal modeling representation. But nowhere in the model is there an 
explicit statement that (1) only one process should have access to a shared resource at a time 

We have focused on behavioral models. Models that portray the structure of a system can be 
checked for the integrity of their structure as well as for the behavioral implications of the model 
(e.g., Alloy [Jackson 00] and NitPick/Ladybug [Jackson 96a, 96b]). 
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or that (2) if a process requests access, it eventually will get access to the shared resource. 
Nevertheless, mutual exclusion and fairness would be expected properties of such a system. 
Through model checking the model should demonstrate them in its portrayal of the system's 

behavior. 

Characterizing expected properties is not simple. Expected properties complement models in 
that expected properties portray system behavior in a different, often more general or abstract 
way. The next subsections discuss the special nature of expected properties and how they 
complement models. This characterization will help identify expected properties for a given 

essential model. 

2.1   Implicit vs. Explicit Statements 
The implications of an explicitly stated requirement are good candidates to become expected 
properties. These implied attributes of a system are often not recorded in any document. 
Some of these attributes involve general engineering common sense (the system should not 
crash every five minutes). Others are related to the use of standards (Internet Inter-Object 
Request Broker Protocol of the Object Management Group) or underlying technology 
(Message Oriented Middleware), which are omitted just to make the specification readable. 
Finally, there are domain-specific properties that are deemed not necessary for inclusion, as 
they are well known by all developers. For example, in a transactional information system, 

transactions must be fully committed or fully rolled back; a state in which part of the 
transaction is committed and part rolled back is not acceptable. 

As another example, consider the functional specification for caching information among 
processes [Clarke 95]. The requirements specification may state that when a process 
accesses the same cache entry as other processes, it will always indicate to the other 
processes when it modifies its local copy ofthat entry.   The specification may also include a 
statement that all of the other processes sharing that line must invalidate their copies when 
another process has signaled its modification. In addition, other statements about 
invalidating, and so forth, may be included in the requirements specification. For a complex 
distributed system, these requirements may exist in very different parts of a large document 
or in multiple documents. Collectively, these requirements imply that "there is no case where 
a process thinks it has an unmodified copy when one or more other processes have modified 
the cache line." But a statement reflecting this condition (which can be considered an 
implied consequence) may not appear anywhere in the documentation. It can be useful to rely 
on personnel experiences and engineering expertise to identify properties that may not be 
explicitly stated in the requirements or other specification, but are important properties to 

maintain. 

Another dimension to this issue is that the expected-property-generation process can uncover 
requirements that are not stated appropriately, are implied, or are sometimes omitted, but 
nevertheless should be included in a requirements document. For example, statements about 
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and responses to exception conditions during operation are often implied rather than 
explicitly stated in a requirements specification. In a requirements specification, there may be 
a statement that a data update process shall read the integer value between 0 and 10, 
inclusive, and modify it in some way. The value is sent by another process, but nowhere is it 
stated what to do if the value is outside the range or even not an integer. Similarly, in the 
mutual-exclusion example described earlier, the requirements document might explicitly state 
that: "no more than one process should access a resource at one time." But a statement of 
fairness (e.g., that both processes must be able to gain access to resources when requested) 
might be omitted. This omission as well as the omission of the exception cases in the 
previous example should be viewed as deficiencies in a requirements specification2. 

2.2   Application Domain Considerations 
A particularly rich source of expected properties is application domain knowledge. These 
properties are founded upon general characteristics of systems that are common across the 
operational environment for the broad application domain of the system. 

An interesting application domain for MBV techniques is the concurrent system. Concurrent 
systems have multiple processes running in parallel or interleaved. Each process has a 
particular behavior that may or may not conflict with the expected properties of the system as 
a whole. The following is a list of typical (and often implicit) global expected properties of 
concurrent systems. 

• Fairness - All expected functions can execute or all processes have a chance to execute. 

• Absence of deadlock - Deadlock is the condition where no progress is being made; for 
example, where processes are waiting for resources that are held by other non-executing 
processes and as a result none of the processes can execute. 

• Absence of livelock - Livelock involves the condition where execution is occurring but 
no progress is seen; for example, a system does something but is not interacting with the 
environment. 

• Absence of starvation - Starvation is the condition where one process dominates, not 
allowing any others to progress. The others are starved out. 

2.3   Generic vs. Detailed Statements 
As a software project evolves, the development team generates increasingly concrete 
specifications through successive refinements (or "realizations" in Object Management 
Group [OMG] terminology) at different levels of abstraction [OMG 01]. The user's needs are 
refined into requirements; the requirements are refined into designs and so on. Model-based 
verification is used at different project phases to verify different artifacts. In each 

2    In current practice these implied requirements are often not included in a requirements document. 

CMU/SEI-2002-TN-003 



development phase, in addition to other sources such as requirements, users, customers, and 
so forth, expected properties should be generated from the source on which the modeled 
artifact is based. The design is used as the source of expected properties when verifying the 
code; the requirement specification is used to verify the design; and input from the users is 

used to verify the requirements. 

In addition to the antecedent documents, general statements within a single specification can 
be used for generating expected properties. A general statement on which one or more 
detailed "refined" statements are based is not necessarily found in a predecessor document. 
Often, there are multiple levels of abstraction coexisting in the same document. For example, 
the very generic statement "no unauthorized user will be granted access to the system" found 
in the introduction of a requirements specification can be expanded into one or more sections 
of that specification with detailed descriptions of authentication protocols and standards. 
Typically, the detailed statements can be used as a source for models and the generic 

statements as a source for expected properties. 

2.4  Whole vs. Part Statements 
Modeling an entire system in detail is extremely difficult and generally impractical. For this 
reason, systems are normally decomposed into parts and each part is modeled separately. In 
modeling for a requirements specification, for example, different models are built for 
different parts of the system; each individual model represents the requirements belonging to 
that particular piece of the puzzle. Thereafter, we can argue that models are representing the 
individual parts and not the whole of the subject artifact. 

If individual attributes (from parts) are the source for the models, we can use global attributes 
(for the whole) as well as implied characteristics of the individual parts as sources for 
expected properties. This approach verifies that the individual parts contribute to reach the 
global objectives. Returning to the security requirements specification example, we could 
verify that the individual security requirements of the different subsystems comply with the 
global security requirements for the system. 

This strategy is particularly useful for Component-Based Software Engineering (CBSE) 
[Wallnau 00]. Component-based systems are ensembles of potentially numerous individual 

components. As the number of components increases, so do the number of possible 
interactions, which makes it very difficult to infer the properties of the ensemble from the 
properties of its components. MBV can be used to model how each individual component 
contributes to the behavior of the ensemble, thereby helping to verify that the expected 
properties of the ensemble hold. 
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3   Generating Expected Properties 

The generation of expected properties is part of an overall verification and validation strategy 

for the product. Expected properties focus model-based analyses on the critical system 
considerations: those aspects that are of special interest to the client, user, or other 
stakeholders, or those aspects of the system that are risky (e.g., safety or special reliability or 
other quality requirements). 

3.1   Focusing the Generation Process 
In the context of Model-Based Verification, the identification of expected properties should 
be coordinated with the generation of the statement of scope, formalism, and perspective 
[GluchOl]. 

• Scope: the portion of a system that is to be modeled and analyzed is its scope. The 
critical (important and/or risky) aspects of the system and its development, including 
both programmatic and technical issues, are used to define the scope. 

• Formalism: the modeling approaches and tools to be used. Modeling techniques that can 
be employed in Model-Based Verification include state machine representations, process 
algebras, and rate monotonic modeling. 

• Perspective: the context for representing the behavior and characteristics of a system. A 
perspective could be the user's view of a system or it could be the representation of a 
specific feature, function, or capability of a system. 

The perspective and scope focus the analysis efforts on the important or risky elements of the 
system. Expected properties specifically identify the behaviors associated with those aspects 
and parts of the system highlighted in the perspective and scope. 

Scope and perspective can be used to make the expected-properties-generation process 
iterative. Initially, expected properties for a small component (scope) related to a particular 
perspective can be created. Later, more components can be added or more perspectives can 
be considered. This incremental and iterative approach can be followed until a satisfactory 
coverage of the system is achieved. 

3.2   Partitioning of Expected Properties 
To further structure expected properties and their elicitation and capture process, the system 
can first be examined with respect to 1) what is expected or desired of its behavior, and 2) 
what is not desired in its behavior. 
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1. Desired (what should happen) - Examine the behavior scenarios of the system and 
identify how it should be working and what must happen for the system to work 
properly, capturing specific statements of this type of behavior. 

2. Undesired (what should not happen) - Examine the behavior scenarios of the system and 
explicitly identify what things should not happen and what could happen to result in 
undesirable system behavior. 

3.3   Capturing Expected Properties 
The process of capturing expected properties resembles that of capturing requirements 
[Siddiqui 96]. Part of the elicitation flow for generating expected properties is shown in 
Figure 3. Expected properties can be collected directly from stakeholders employing similar 
techniques to requirements elicitation. Alternatively, expected properties can be extracted 

directly from requirements documents and related specifications. 

Sources 
• Users 
• Customers 
• Operations Personnel 
• Maintenance Personnel 
• Quality Assurance Personnel 
• Domain Experts 
• Development Experts 
•Technology Experts 
• MBV Experts 

Standards 
• Engineering Standards 
• Quality Standards 
• Standard Practices 

L Expected 
Properties 

Techniques 
• Structured Interviews 
• Group Consensus Processes 

Figure 3:   Requirements and Expected Properties Elicitation Processes 

In addition to a similar pattern, both processes involve multiple stakeholders, can be 
facilitated by team processes (consensus-based practices), and are directed towards getting 
the key aspects of the system identified. As with requirements elicitation and capture, it is 
important with expected properties to ensure that a variety of views and stakeholders are 
represented in the process, regardless of the specific method used. The following list 
enumerates different sources for expected properties. 

1.    Requirements documents: If the project has followed sound engineering practices, 
requirements should be the most reliable source of expected properties, as they are the 
consensus of what the system is supposed to do. One important value of generating 
expected properties from requirements specifications is that it can uncover requirements 
that are not stated appropriately, are implied, or are omitted. 
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2. Users of the system, customers, and operations and maintenance personnel: An 
excellent source of information about what the system is supposed to do is the collective 
knowledge of stakeholders including users, customers, and operations and maintenance 
personnel. Members of these groups can provide first-hand insight into behavioral 
aspects of systems. If sound engineering practices were used in the original 
development effort, all of these groups would have had a role in defining the 
requirements documentation. 

3. Domain experts and quality assurance personnel: We have grouped in this category 
sources that are not specific to the system.   There are expected properties common to 
individual application domains. For example, every entry in the assets column of a 
balance sheet should be followed by an entry in the liabilities column. Other expected 
properties represent quality attributes common to any software system. For example, all 
internal errors should produce some defined and identifiable external manifestation. 

4. Developers and implementation technology experts: In theory, technical details of the 
implementation are not needed to define the expected properties of the system. In 
practice, however, an understanding of the internals of a potential or actual 
implementation of the system can be useful in generating effective expected properties. 

5. MBV experts: The activity of translating specifications into models can result in errors. 
Even if these errors do not affect the quality of the system, they do hamper the capability 
of models to faithfully reflect the behavior of the system. There are expected properties 
that address the correctness of the models in contrast to the correctness of the system. 
For example, every state in a state machine should be reachable under some sequence of 
valid input. If a state is not reachable it is cluttering the model without reflecting any 
feasible system behavior. MBV experts are software engineers who are trained and 
experienced in applying Model-Based Verification techniques in a variety of application 
domains. They can help to craft expected properties that are more readily expressed as 
formal statements, thereby facilitating and reducing errors in the translation of expected 
properties into claims. 

6. Standards: There are expected properties induced by the standards with which the 
system must comply. For example, if the system uses Common Object Request Brokers 
Architecture (CORBA) Messaging v. 2.4.2 with order policy set up to 
ORDER_TEMPORAL, the messages from the client should be guaranteed to be 
processed in the same order in which they were sent. 
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4   Expected Properties and Claims 

To be used in automated model checking, the natural language statements of expected 
properties must be expressed as formal statements—claims. The various translations among 

requirements and claims are shown in Figure 4. There are three basic paths to formal claims. 

In most cases natural language statements of expected properties, based primarily upon 
domain expertise, are generated first. Software engineers who are experts in the relevant 
formal language translate these statements into formal expressions for model checking3. This 

translation is often not a one-to-one mapping of statements. The richness and ambiguities of 
natural language, in contrast to the precision and constraints of a formal style, often make the 

translation difficult and error prone. Consequently, the translation process should also 
involve domain experts and others who helped to develop the expected property statements. 
Their involvement can be either in direct support of the process or as active reviewers. In an 
active reviewer role, these individuals interact with software engineers to establish a shared 
interpretation of the formal statements, one where all parties agree on the consistency of the 
intent between the natural language statements and their formal expression(s). This 
collective involvement will help to ensure that subtle differences between the languages do 
not result in formal statements that misrepresent the expected property statement. 

Occasionally, it can be valuable to restate the expected property in a form that is more 
amenable to direct translation. This approach can be used as a method to clarify the meaning 
for domain experts who are not conversant with the formal language. This may be a 
semiformal structured expression. An intermediate representation can facilitate a review 
process. It can also enhance the understanding of the domain issues by software engineers 
involved in the process, and of the formal expressions by other domain participants in the 
process. For example, consider an expected property: "All alarms will be displayed at the 
system console." This may be broken into an intermediate statement: "If an alarm condition 
is detected then it must be displayed." This is readily translated into the Computation Tree 
Logic (CTL) expression AG(alarm -> AF display). In addition it exposes the need to confirm 
that, in the model, the alarm can eventually occur (i.e., EF alarm). 

The most direct path is where formal claims are developed from the sources used to generate 
expected properties (e.g., a system description or requirements document). In this case 
software engineers, expert in the relevant formal language (e.g., CTL or Linear Temporal 
Logic [LTL]), formulate the claims, often in cooperation with domain experts. This approach 

For more information on the issues associated with the translation of expected properties into 
formal representations, see the technical note by Comella-Dorda and associates [Comella-Dorda 
01]. 
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can work if the software engineer generating the claims is also an expert in the domain. As is 
the case with the other paths, it is important that other individuals be involved, either directly 
or as reviewers of the natural language statements and their formal representations, to help to 
ensure the correctness of the claims. 

Sources of 
f    Expected 

Properties 

Domain 
sr Expert(ise) M 

Expected Properties 
(Natural Language) 

Expected Properties 
(Restated Natural Language) 

Software 
Engineer 

& 
Domain 
Experts 

Claims 
(CTL or LTL) 

Figure 4:   Expected Property Transformations 

This technical note addresses the creation of the natural language statements (expected 
properties). Since expected properties are natural language expressions, they can have 
arbitrary structures and semantics. The transformation of expected properties into claims is 
not covered in this report. However, we do include an overview of the relation between 
expected properties and claims since understanding this relation is important in the effective 
analysis of formal models. For additional information on this relationship and the generation 
of formal claims consult the technical note: Model-Based Verification: Claim Creation 
Guidelines [Comella-Dorda 01]. 

4.1   The Relationships Between Expected Properties and Claims 
General statements of what is expected of the system are often not readily translatable into 
meaningful claims. Any kind of expression that defines what is good (or bad) for a system 
can be considered an expected property. For example, the expression "the system works 
properly under any condition" is a valid expected property; unfortunately it cannot be 
immediately formalized into a realistic claim to be verified by a model-checking tool. Only 
by defining specifically, in the context of the model, what the correct operations are under 
each specific condition can a useable expected property and resultant claim be produced. 

Other variations that can be realized between expected property statements and claims 
involve the practice of iteratively exploring expected properties by using the flexibility in the 
form of the claims. For example, in analyzing a model it is often useful to start with a claim 
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that is weaker than the expected property and create additional stronger claims until reaching 
the semantic level of representation of the expected property. For example, suppose that an 
expected property is "The value of variable E must always decrease." In checking a model 
we can start with the claim: 

EF(E.decreasing) = The value of variable E must be able to decrease at least once 

After verifying the weak claim, we can strengthen it to read 

AGAP(E.decreasing) = The value of variable E must be able to decrease multiple 
times (an infinite number of times) 

If this is confirmed as true, we will reach the semantic level of the original expected property 

AG(E.decreasing) = The value of variable E must always decrease 

4.2  Classifying Expected Properties and Claims 
When trying to classify expected properties, it is useful to focus on the range in which the 
property (and the claim) applies. According to this classification, we identify the following 
types of expected properties. 

• invariants (global and local) - conditions that remain unchanged throughout (globally) or 
conditions that remain unchanged in a particular portion or under specific circumstances 
(locally) 

• assertions - conditions that apply at a single point in an execution4 

• pre- and post-conditions - condition pairs that apply before and after something occurs in 
a system. These can be viewed as assertion pairs. 

• constraints - statements that apply across all changes or a subset of changes that occur in 
the system 

This classification and the process of generating expected properties are influenced, in part, 
by the realization that the natural language statements must be translated into formal 
representations—claims. Consequently, while the generation process should rely on the 
guidelines outlined earlier, using the four classifications defined above during the 
identification process can help to tailor the expression of expected properties into forms that 
more readily translate into formal expressions. Invariants, assertions, pre-and post-conditions, 
and constraints are propositions, in that they can be evaluated as either true or false when 
applied to a model. Thinking about the systems' behavioral characteristics in the context of 
these propositional forms can help in phrasing natural language statements that are more 
amenable to direct translation into a formal representation. For example, in a traffic light 

A point invariant is equivalent to an assertion and is a single-line local invariant. A local invariant 
may span more than one state or point of execution, e.g. a loop invariant in a program. Invariants 
talk about things that don't change and assertions are about what is true at a single point in an 
execution. 
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control system that encompasses a large metropolitan area, it is clear that the system should 
control all intersections so that only one traffic flow direction is permitted through that 
intersection at a time. In thinking about what should not happen with respect to this property, 
one can identify an invariant stating that in any intersection in the system: "It will never be 
the case that the north-south traffic light and the east-west traffic light are both 
simultaneously green." This is readily expressed as a formal claim in CTL: AG !(N_S = 
green & E-W = green).5 Employing a usage-based approach complemented by considerations 
of the ultimate need to formalize the expected properties can facilitate the model-checking 
process. 

Invariants 

Global invariants remain unchanged throughout all possible behaviors of the system. These 
forms can be used to express characteristics of the system that remain constant throughout all 
executions [Bensalem 96]. Often these are not explicitly stated in a requirements 
specification. For example, in a flight control system, the forward loop gain may take on 
many values. These may depend on the airspeed or some other factor, but whatever the value, 
it is never negative or equal to zero.. Thus, an invariant of the system is that the "Forward 
control loop_gain is always greater than zero." Another example, in a complex system 
consisting of multiple operating modes, might be that it is always possible for the system to 
return to the idle mode. 

As another example, consider a process control system and the statement that while the 
system is in mixing mode, the secondary and primary flow control systems are operational. 
The entire statement is true throughout all executions. It is a global invariant, but it can be 
viewed as consisting of a local invariant with its restricting condition.   Local invariants are 
statements that apply only at certain times, over a range of states or executions of the system. 
In the example, the local invariant is the statement "the secondary and primary flow control 
systems are operational" which is restricted by the condition that "the system is in mixing 
mode." 

One approach for identifying invariants is to look for distinct conditions or collective 
(related) conditions among components that must be true no matter what happens. This may 
involve looking at system operational scenarios (e.g., detailed use cases in 0-0 
representations) and questioning what characteristics should remain unchanged. This 
questioning is embedded in the two-fold usage-based procedures of iteratively considering 
what is desired and what is undesired in the behavior. 

"    Comella-Dorda and associates provide more details on the CTL notation and claims [Comella- 
DordaOl]. 
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Assertions 

Assertions are statements that apply at some specific point (instant) in the execution. For 
example, when the airspeed is 100 knots and the altitude is 1000 feet, the forward loop gain 
variable is 0.8. Assertions are widely used in programming languages to check the values of 
variables during the execution [Drabent 98, Rosenblum 95]. As an example consider the 
simple assertion "assert( speed >= 0)" inserted in a flight navigation program. It checks that 
the variable "speed" is non-negative at that point of execution. 

Pre- and Post-Conditions 

Pre- and post-conditions are the best-known kind of assertions. They are used to assess the 
impact of some computational or execution element in a system. Their semantics are the 
following: "If the pre-condition is true before the execution, then the post-condition must be 
true after the execution. If the pre-condition is not true, the result is undefined." As a simple 
example, consider driving. A pre-condition of leaving a parking space would be that the 
engine is running. A post-condition for leaving a parking space would be that the car is not 
parked anymore. 

Constraints 

Constraints are similar to invariants but they operate over the transitions of the system rather 
than over the states. They describe restrictions on changes that may occur in the system. For 
example, a constraint for a telecommunications system is that when the number of clients 
increases, the number of active server connections must increase. As with invariants, 
constraints can be applied globally or locally over executions of the system. 

One approach for identifying constraints is to look for limits on the variations that are 
possible for critical system parameters throughout the system's execution. As an example, 
consider a chemical-process-control-system specification. The specification requires that 
while the system is in the mixing mode, a key feedback parameter affecting process 
concentrations must never decrease. A constraint over all mixing-mode transitions would be 
that the feedback parameter must always remain constant or increase. 
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5   Conclusions 

Defining the characteristics of behavior in natural language is a difficult task. Often, no 
single individual has a clear idea of all of the expected properties of the system being 
developed. While requirements specifications are one of the most prominent sources of 
expected properties, important system properties can be poorly defined in, or completely 
missing from, a requirements specification. Consequently, effective expected-property- 
generation processes require 

• collaboration among all of the stakeholders involved 

• recognition of various levels of refinement and scope throughout a development effort 

• considerations of what might not be explicitly documented 

• what is generally implied by the application environment or a specific user need 

The inherent challenge associated with identifying expected properties is further complicated 
by the need to eventually represent them as formal statements for an automated model- 
checking tool. Consideration of this need by thinking about formal expression categories and 
forms within the generation process can facilitate the entire model-checking activity. These 
considerations will enable easier translation and can help to guide the identification process 
(e.g., looking for what is true always). 

Throughout all of the activities involved in defining expected properties, the main assets for 
the practitioner are a thorough understanding of both the system and the domain, and a 
reliance on sound engineering principles that guide the development of any successful 
software system. 

Taking the time to define expected properties can provide deeper insight into a system and its 
design, and identify potential defects, even if no formal model checking is performed. This 
technical note presented a number of guidelines and techniques to facilitate the critical 
activity of expected property definition. As Model-Based Verification practices mature, 
modifications and extensions to the guidelines introduced in this technical note will be 
developed. 
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