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1 INTRODUCTION

Computational electromagnetics continues to rely heavily on surface integral equations for
the efficient numerical solution to scattering from perfectly electrically conducting (PEC)
bodies [1], [2], [3]. Both the magnetic-field integral equation (MFIE), which was derived by
Murray [4] in 1931, and the electric-field integral equation (EFIE), which was derived along
with the MFIE in the definitive 1949 paper by Maue [5], are applied only to the surface
current of the scatterer and thus require a number of unknowns proportional to the sur-
face area in square wavelengths of a three-dimensional (3-D) scatterer.! The .MFIE is an
absolutely convergent integral equatiﬁn of the second kind whose associated discrete matrix
has a bounded condition number as the number of discretizations (grid points) on the sur-
face of the scatterer approaches an infinite value. The EFIE is a conditionally convergent
integro-differential equation of the first kind whose associated discrete matrix has an un-
bounded condition number as the number of discretizations on the surface of the scatterer
approaches an infinite value [5], [6], [7], [8]. Therefore, the determination of surface current
(and subsequently the scattered fields) for a scatterer using the EFIE generally requires a
more sophisticated numerical scheme with more unknowns per square wavelength than the
MFIE. However, the matrix solution to the MFIE degenerates to an underdetermined set
of equations for the surface current on an open scatterer (infinitesimally thin conductor) [9,
pp. 168-172] and approaches degeneracy if parts of the conducting surface become much

closer to each other than a wavelength as in the case of a thin plate, thin wire, or tip of a

! Although we often refer to “the” MFIE or “the” EFIE, these equations can be written in many different

forms.



small-angle cone. Consequently, to determine the scattering from many different kinds of
PEC bodies using surface integral equations, the EFIE must be employed.

Both the EFIE and the MFIE have a serious limitation. As Murray [4] and Maue [5]
pointed out, the EFIE and the MFIE fail to produce a unique solution for the current on a
PEC scatterer at frequencies equal to the resonant frequencies of the interior cavity formed
by the surface of the scatterer. Since the density of the cavity resonant frequencies increases
rapidly with frequency beyond the first resonance, which for many cavities occurs when the
maximum linear dimension is approximately one wavelength, the numerical solution of 3-D
multiwavelength bodies is severely hampered by these spurious resonances. In principle, the
spurious resonances in the solution for the surface current occur only at discrete frequencies,
and for the EFIE they should not contribute to the scattered field [6]. In numerical practice,
however, they contaminate the surface current and scattered fields of both the EFIE and
MFIE over finite bandwidths about the cavity resonant frequencies. Within these band-
widths the determinants of the solution matrices of the integral equations become too small,
and the condition numbers become too large, to produce an accurate numerical solution.

Among the several ways to eliminate the spurious resonances from the original integral
equations, the combined-field integral equation (CFIE) and the dual-surface magnetic-field
integral equations (DSMFIE) have distinguished themselves in numerical practice as ef-
fective, efficient, and convenient alternative integral equations for eliminating the spurious
resonances [9, pp. 222-225], [10], [11], [12], [13], [7], [14], [2, ch. 6].

The CFIE [15], [9], [10], [11] is formed by combining the MFIE

i x H™(r) = J(r)/2 - fi ¥ / I(r') x V'G(r,r')dS’ (1)
S



with the EFIE

WeEy

A x Bne(r) = -2 x / [R23()G(r, 1) — V5 - I()V'G(r, r)]dS’ )
S

to get

i x [(1 — ) H™(r) — %%ﬁ x E“w(r)]

%% v x [(RI(F)G(,F) - V- IE) VO, )l 3)
J I

where J(r) is the surface current density on the surface S of the scatterer (r € S), Vs- is
the surface divergence [16, Appendix 2, 18.], i is the outward unit normal from the surface
S, €, Mo, and Zy = m are the permittivity, permeability, and impedance of free space,
and (E™°, H™™) are the electric and magnetic fields incident upon the scatterer. Harmonic
time dependerice of the form exp(jwt) has been suppressed, k = w,/Jig€o, and the free-space

Green’s function is given by

exp(—Jkir —r'|)
G(r, r') = 47[-|r — r'l

(4)

The combination parameter aq is a real constant that can assume values between 0 and 1,
with ap = .2 as a typical choice [17]. Mautz and Harrington [10}, [11] give a straightforward
proof that the CFIE has a unique solution at all frequencies and therefore eliminates the
spurious resonances from the original MFIE and EFIE.

The DSMFIE and dual surface electric-field integral equation (DSEFIE) can be written
as [13], 7]

f x HY(r) = 3(r)/2 — & x / I(t') x V'GY(r,1')dS" 5)
S

3



A x Bé(r) = L i x / [K2I()G(x, 1) — V- I(X)V'G%(r,1')]dS’ (6)
3 .

Wwe€y

where H%(r), E4(r), and G%(r, ') are defined as

HY(r) = H™(r) + oH™(r?%) (7)
E‘(r) = E™(r) + aE™(r%) (8)
G4(r,r') = G(r,r') + aG(r%, 1) 9)

with r € S and r? lying on a surface S¢ a normal distance ¢ inside S as shown in Fig. 1.

The DSMFIE and DSEFIE in (5) and (6), although identical in form and comparable in
complexity to the original MFIE and EFIE, each provide a unique solution for J(r) at all real
frequencies as long as the combination constant o has an imaginary part and the positive
real separation constant ¢ is less than half a wavelength (A/2) [13]. In recent numerical
practice, we usually choose a equal to .25j and § between A/32 and A/4.

It is not necessary for uniqueness of solution to keep the inner surface at a fixed distance
d from the scattering surface as long as § is less than A/2 and large enough to numerically
maintain uniqueness of solution. In practice it is not always necessary to include the inner
surface for every observation point or to make the inner surface a continuous surface. This
means that one can often avoid difficulties in defining the inner surface for scatterers with
complicated shapes by simply leaving out the inner surface if it gets closer than a minimum
distance § from any part of the surface S.

The dual-surface integral equations were introduced a number of years ago [18] and the
DSMFIE (5) has been successfully applied to multiwavelength rectangular boxes [13], [7] and

to bodies of revolution [14], [19]. To date, a numerical solution to the DSEFIE (6) for 3-D



Figure 1. Geometry of a perfectly conducting scatterer with surface S and a fictitious “dual

surface” S? at a normal distance d inside S. (The value of é can vary over S.)



scatterers has not been successfully formulated and programmed?, and thus it is the primary
aim of this report to formulate, test, and document the DSEFIE (6) for bodies of revolution
(BOR’s).

What is the utility of a dual-surface integral equation computer program for BOR’s
when CFIE computer programs for BOR’s are available [21]? We can answer this ques-
tion by reviewing some of our recent work with surface integral equations in connection
with incremental length diffraction coefficients (ILDC’s). In order to test the accuracy of
shadow-boundary ILDC’s developed to improve upon the accuracy of physical optics (PO)
for calculating high-frequency scattering, we applied them to multiwavelength perfectly con-
ducting BOR’s and, in particular, to prolate spheroids [19]. To determine the accuracy of
the calculated PO+ILDC solution, we needed a highly accurate (< +.1 dB error in the
far-field patterns) numerical solution to the exact field equations for scattering from prolate
spheroids. (No eigenfunction solution exists for electromagnetic scattering from spheroids.)
We used our in-house DSMFIE BOR program to compute the scattering from the prolate
spheroids. (As explained above, the dual surface is required to eliminate the spurious reso-
nances from the solution to the MFIE.) Although we gained some confidence in the DSMFIE
solution by noting convergence of the solution as the surfaces of the spheroids were divided
into smaller and smaller increments, and by comparing the computed and exact Mie series

solutions for the sphere, we could only be sure that the DSMFIE numerical solution was con-

2A method of moments solution for the DSEFIE applied to BOR’s was considered in [20]. Although
the details of the method of moments formulation are not given in [20], they can be determined from the
computer program written in conjunction with [20]. An analysis of this method of moments formulation

revealed that it was invalid for the dual surface part of the DSEFIE.



verging accurately enough to the correct solution for eccentric spheroids if we could compare
it to another independent numerical solution.

To obtain a second independent numerical solution for scattering from the prolate spheroids,
we used a CFIE computer program called CICERO [21] . The CFIE and the DSMFIE agreed
over the entire far-field pattern to within the thickness of the lines used to plot the far-field
patterns. Even though the CFIE and DSMFIE are each integral equations, the CFIE com-
bines both the electric and magnetic field operators to form a surface integral equation that
is very different from the DSMFIE, which involves only the operator of the magnetic field
integral equation. Therefore, the close agreement of the two very different integral equation
solutions gave us the confidence to designate these solutions as the “highly accurate reference
solution” to which we could compare our approximate high-frequency ILDC solution.

This experience not only confirmed in us an appreciation for surface integral equations,
but it also clearly demonstrated the importance of having available two independent sur-
face integral equation formulations that can be applied and solved straightforwardly and
efficiently. In the work with spheroids described above, the two surface integral equations
we used were the DSMFIE and the CFIE. However, as explained above, for infinitesimally
thin conductors (open surfaces), the magnetic field operator degenerates to give an under-
determined set of equations, and for conductors containing narrow-angle wedges and tips,

the magnetic field operator becomes unstable. Thus, for many scattering geometries, such



as the small-angle cone-sphere, one must use the DSEFIE instead of the DSMFIE.®

Consider the following example of using the DSEFIE where the DSMFIE has difﬁculty
producing as accurate a solution. The measured and CFIE-computed radar cross sections of
a cone-sphere with a half angle of 7° were shown in [22] to disagree by several dB over a large
range of incident angles, and it remained uncertain as to whether the measured data, the
CFIE computations, or both contained large errors. Results for this cone-sphere computed
with the DSEFIE developed in the present paper agreed very closely with the CFIE results
in [22], and thus it was concluded that the large discrepancy between the computed and
measured radar cross sections was due mainly to errors in the measured data.

The importance of having two independent surface integral equation formulations is also
underlined by the fact that calculating scattering with surface integral equations is often far
from being a simple “turn the crank” procedure. As a recent investigation of the convergence
properties of the CFIE has shown [23], the value of the CFIE combination parameter aq
can strongly influence the rate at which scattering calculations converge with increasing
grid point density. Similar conclusions apply to our own experience with the influence of
the combination parameter o and the separation distance é on results obtained with the
DSEFIE. Careful checking of the results of scattering calculations obtained with surface
integral equations is thus very important, and can be done more easily and rigorously if two

independent formulations are available.

3The difficulty with the MFIE and DSMFIE near the tip of a small-angle cone-sphere several wavelengths
long has been remedied by inserting the known Bessel function dependence of the exact zeroth order lon-
gitudinal tip current of the infinite cone [20, ch. 5). There is no guarantee, however, that this remedy will

work for any shape and size of a BOR containing a narrow tip.



The organization of the report is as follows. Section 2 contains the analysis of the DSEFIE
solution of the BOR scattering problem. It is divided into several subsections beginning with
the statement of the problem and definition of the geometry in Section 2.1. The formulation
of the DSEFIE in terms of the vector and scalar potential functions A and ® is derived in
Section 2.2. The solution (.)f the DSEFIE by the Galerkin form of the method of moments is
outlined in Section 2.3. Detailed expressions for the elements of the Z matrices that multiply
the column vectors of the surface current expansion function coefficients to be determined
are derived in Section 2.4. The Z matrices are treated by expressing them as the sum of four
submatrices. Two of these submatrices contain the terms involving the vector potential A,
one each for the observation point on the original surface and the dual surface, respectively,
and two contain the terms involving the scalar potential ¢, again one each for the observation
point on the original and dual surface. It is noteworthy that the procedure of Mautz and
Harrington [11] we use to transfer the differential operator on @ to the testing function when
the observation point is on the original surface cannot be used when the observation point
lies on the dual surface. In Section 2.5 we obtain detailed expressions for the elements of the
V column vectors in the right-hand side of the Galerkin matrix equation formulation of the
DSEFIE. In Section 2.6 we obtain expressions for the currents induced on the surface of a
BOR by a transverse electric (TE) and transverse magnetic (TM) linearly polarized plane
wave in terms of the solution to the Galerkin matrix equation, and in Section 2.7 expressions
for the components of the far scattered field are derived. The analysis of Sections 2.4 - 2.7 is
general in the sense that no explicit form is assumed for the expansion and testing functions
other than the Fourier modes used to express their azimuthal dependence. In Section 2.8

we introduce the four-impulse approximation to a triangle function used to express the

.



dependence of the expansion and testing functions on the BOR generating curve parameter
t. This allows the integrations with respect to ¢ of the expansion and testing functions. to be
carried out in closed form. The expressions for the elements of the Z matrices and V vectors
obtained in Sections 2 4 and 2.5, and the expressions for the far scattered field obtained
in Section 2.7 are then given as summations that can be readily evaluated by computer.
The efficiency of evaluating these summations can be greatly increased by using a change in
indexing described in Section 2.9. Section 2.10 discusses the choice of the number of Fourier
modes that need to be used in the calculations.

Section 3 contains the results of calculations performed with a DSEFIE computer pro-
gram written to implement and validate the analysis of Section 2. Section 3.1 shows that the
DSEFIE removes a spurious resonance that appears when the backscatter radar cross section
(RCS) of a PEC sphere is calculated with the EFIE. Section 3.2 demonstrates the DSEFIE
removal of a spurious resonance in the bistatic RCS pattern of a PEC prolate spheroid ob-
tained with the EFIE. Section 3.3 shows the effectiveness of the DSEFIE in eliminating a
spurious resonance in the calculation of the bistatic and monostatic patterns of a finite cylin-
der. Section 3.4 discusses calculations of the bistatic RCS pattern of an axially illuminated
PEC cone-sphere, and the special treatment of the dual surface needed when the DSEFIE
is applied to a cone-sphere with a narrow tip angle. Section 3.5 continues the discussion of
scattering by a cone-sphere with a narrow tip angle by treating monostatic scattering. The
monostatic case is significantly different because of the presence of the zeroth order Fourier
mode, absent in axial illumination. Section 3.6 discusses the use of half-triangle basis func-
tions at the beginning and end of the generating curve for a BOR. A report summary is
given in Section 4.

10



2 ANALYSIS

2.1 Statement of Problem

We seek to determine the surface current and the far scattered field of a perfectly electrically
conducting (PEC) closed body of revolution (BOR) excited by an incident plane wave. The
geometry of the BOR is shown in Fig. 2. Circular cylinder coordinates (p, ¢, z) are employed
with (p, ¢, 2) denoting the corresponding unit vectors, and with the z axis.chosen as the axis
of revolution. The origin of the circuiar cylindrical coordinate system lies on the z axis but
does not necessarily coincide with the lower pole of the BORlas in Fig. 2. The coordinates
(t,¢),with ¢t the pathlength along the generating curve of the BOR from the lower pole,
form an orthogonal curvilinear system on the surface S of the BOR; the corresponding unit
vectors are (£, @). Figure 3 shows the propagation vector k™ = k k¢ of the incident plane
wave. The propagation vector is assumed to lie in the zz plane (¢ = 0), with —ki® making

an angle of "¢ with the positive z axis and with k," < 0 so that
k" = —k(sin ™% + cos §"°%). (10)

The free space propagation constant is given by k& = w/c where ¢ is the speed of light
and w > 0. Harmonic time dependence exp(jwt) is assumed. Also shown in Fig. 3 are
the spherical polar angles of the far field observation point r/*" = (r, 89" ¢79") and the
associated unit vectors 9far and (,:bfar. For TM illumination the incident electric field is
given by

~inc

E™ = kZyexp(—jk™ - )0 (11)

11



Figure 2. Body of revolution and coordinate system.
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Figure 3. Plane wave scattering by a body of revolution.
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while for TE illumination

inc

E™ = kZyexp(—jk™™ - 1)@ (12)

In (11) and (12) r is the vector from the origin to any point in space and Z; is the intrinsic

impedance of free space. The factor of kZj is inserted to simplify the analysis.

2.2 Derivation of the Dual-Surface Electric-Field Integral Equa-
tion

To derive the dual-surface electric-field integral equation (DSEFIE) we first derive the or-
dinary electric-field integral equation (EFIE). On the surface S of the PEC BOR the total
tangential electric field vanishes. The total field is expressed as the sum of the incident field

and the scattered field, so that
fi(r) x E°(r) = A(r) x [E™(r) + E*(r)] =0, ron S (13)

where E*! and E*° are the total and scattered electric fields, respectively, and 1 is the unit
normal vector to the surface S at r, assumed directed outward from S. The scattered field

can be expressed in terms of a vector potential A(r,J) and a scalar potential ®(r,J) by

E*(r) = —jwA(r,J) — V&(r, J) (14)
where
A(r,J) = 1o / J(¢')G(r, r')dS" (15)
and
B(r,J) = é [ o)Gr,)as' (16)
S
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Here G(r,r') is the free-space Green’s function

G(l‘, I") — exp(—.]k | r—r |)

17
r|r—-r'| (17)
r and r' are the vectors to the field and source points respectively, J(r') is the electric

current on S to be determined, p and ¢ are the permeability and permittivity of free space

respectively, and o is the surface charge density given by

1

o(r') = o

Vi - 3(r') (18)

where the operator V- is the surface divergence [16, Appendix 2, 18.]. Combining (13) and

(14) and dividing by the free-space impedance Zy = (10/€)'/% we obtain

B(0) s wA(r,3) + Vo, 3)] = 2« Ber), ron s (19)
Zo ZO

Equation (19) with A and ® given by (15) and (16) is the potential form of the EFIE for
the current on the surface S of the BOR.

To obtain the DSEFIE we note that for points inside of S the total electric field vanishes
so that

E*(r) = —~E™(r), r inside S. (20)

With (14)-(16), (20) can be written as
jwA(r,J) + V®(r,J) = E™(r), r inside S. (21)

In (21) we can now let r lie on a surface S; parallel to, and a small distance § > 0 inside,

the actual surface of the BOR. If r%(r) denotes the point on the dual surface corresponding

15



to a point r on the original surface? then
jwA(ri(r),J) + V. ®(r(r),J) = E™(r(r)), ron S. (22)
Dividing (22) by Z, and adding an(r) x (22) to (19) yields the DSEFIE

%) x [jwA(r,3) + jowA(r4(r), ) + V:@(r,J) + aVa®(r¥(r), J)]

- “_%2 x [E™(r) + aE™*(x(r)], ron . (25)

If the combination constant o has an imaginary part and the separation distance § is less
than half a wavelength the DSEFIE (23) provides a unique solution for J(r) at all real
frequencies [13], unlike the conventional EFIE (19). We have found that choosing o = .25

has worked well for the BOR’s we have considered.

2.3 Solution of the DSEFIE by the Galerkin Form of the Method
of Moments

To solve the DSEFIE (23) for the surface current J we employ the method of moments and
let
I=%3 (1,38, + 12,32)) (24)
noj
where J}. and Jf:j are the expansion (basis) functions of the BOR surface coordinates ¢ and

9,

I =tf)e™n=0,£1,£2,- -, (25a)

¢ can be obtained from r by setting r¢(r) = r — dii(r). For generating

4For smooth generating curves r
curves with corners, however, a correspondence such as shown in Fig. 4 for the generating curve of the finite

cylinder may be preferable.
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~

Figure 4. Correspondence between points on the body of revolution generating curve for a

finite cylinder and points on the dual-surface generating curve.
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I2 = dfi(t)e™ n=0,41,42,- -, (25b)
I}; and I,fj are coeflicients to be determined, and the summation over the Fourier modes
'™ is from —N to N. The choice of the functions f;(t) is treated below in Section 2.8, and
the value of N discussed in Section 2.10.

Next, using the Galerkin method, the dot product of (23) with each one of a collection

of testing functions W' ;, W?_ defined by
Wi, =tfi(t)e ™ m =0,41,42,---, £N, (26a)
W, = ¢fi(t)e™ ™, m=0,+1,42,--- +N (26b)
is integrated over S and use is made of the fact that A, ¢,t form an orthogonal triad of

vectors to yield the matrix equations

> ((Zmally, + [Z25,002) =V, (27a)
> (2T, + [275)18) = V7, (27b)

n

where the Z’s are square matrices whose ij** elements are given by
1 . .
(25805 = 5 [ Wi [j0A(r,38,) + jowA (), 32,
5
+V,8(r, J,) + aV,a®(ré(r), J1)]dS, (28)
V! and V¢ are column vectors whose i elements are
1 : .
Vai= / W2, - [E" + B (r4(r))] d5, (29)
0%
and I}, I$ are the column vectors of the coefficients of the expansion functions in (24). In
(28) and (29) p and g, which can be either ¢ or ¢, indicate the unit vectors of the testing

and expansion functions, respectively.
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2.4 Expressions for the Elements of the Z Matrices

Detailed expressions are now obtained for the elements of the Z matrices given by (28). We

write
[ n]lJ [ n]A + a[Zp n]zg [er;:ln 3 + a[er;?n]zy (30)

with
2zl = 5 / W2, - jwA(r,JL)dS, (31a)
2204 =5 [ Wi oA, 3L,)ds, D

S

(2282 = / W2, . V,8(r, J3,)dS, (31¢)
[Zpe % = / . V,e®(r(r), J2,)dS, (31d)

and treat each of these four terms in turn. The superscript d is used here and below to
indicate dependence on the dual surface. The superscripts p and g indicate the unit vectors
of the testing functions and the expansion functions, respectively.

Equation (31a) together with (15), (17), (25), and (26) becomes

7t =5k fat | s [ / P LOLE) B DG ). (32)

-

In (32) and the following, quantities with primes are associated with the source point (ex-
pansion function) integration and unprimed quantities are associated with the observation
point (testing function) integration. The integrations with respect to ¢t and ¢’ are from 0
(the lower pole of the BOR, see Fig. 2) to the length of the generating curve for the BOR,

the value of ¢ and ' at the upper pole of the BOR. It is easy to establish the unit vector
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relations®

~1

t-t =sinv(t)sinv'(t') cos(¢' — ¢) + cosv(t) cosv'(t'), (33a)
t-¢ = —sinv(t)sin(¢' — ¢), (33b)
¢ -t = sinv/(¢) sin(¢ - ¢), (33¢)

and
¢ = cos(¢' - ¢), (33d)

where v and v’ are the angles measured positive clockwise from the positive z axis to t and

t respectively (see Fig. 5). It is also simple to show that

|x—1'|= [0+ 9% — 2pp cos(¢ — ¢') + (2 - 2')?] 2

= [(o= 0+ (= = 22 + apptsin2(E2)] (34)
In view of (33) and (34) the ¢ and ¢’ integrations in (32) are of the form
/d¢e‘jm¢/d¢’ej"¢'f(¢' —¢) = /d¢ej(n—m)¢/dd)'ejn(eb’—tb)f(d,' —¢)
= 26, / dg'e™ f(4) (35)

where the Kronecker delta 4,,, equals 0 for m # n and equals 1 for m = n, and we have

used the 27-periodicity of the ¢'-integrand to set ¢ = 0. Hence

(Z281 = 12214 = jank [ dipfit) [t i) [ dd'p- @) GR)  (36)

SEquations (33a-d) follow directly from noting that
t = cosv(t)z + sinv(t)p = sinv(t) cos px + sin v(t) sin ¢§ + cosv(t)z,
éﬁ = —sin ¢x + cos ¢y,
and similarly for t' and q}b’.
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generating curve
for the BOR

Figure 5. Defining geometry for the angle v in the pz plane.
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where, from (33) and (34) with ¢ =0,

~1

t-t =sinu(t)sinv'(t') cos ¢’ + cosv(t) cosv'(t'),

~ ~

t-¢ = —sinv(t)sing’,

¢ -t =sinv'(t)sing,

$-¢ =cosd,
and
; 1/2
Relx=r |= (o= 9P + - S+ o sG]
Then
(244 = jork [ dtofi(t) [ dt'o f5(¢)
: ] d¢'G(R)e’™ [sinv(t) sinv'(t') cos ¢’ + cosv(t) cos v'(t')],
(22 = jork / dtpfi(t / dt'p' f;(t') sin v'( / d¢'G(R)e™ sin ¢,
(24 = g2k [ dtpfi(®)sino(t) [ dt's'f;(t) / dg'G(R)e™ sin ¢,
and —

(2218 = jork / dtpfi(t) / dt'p' f;(t') / d¢'G(R)e™ cos 4.

Making use of the symmetries in the ¢’ integrations in (39), we obtain

[Zrtzt]z% = sz/dtpfz /dtlp,fj va( )sinv'(t')Gon(p, P2 — 2)

+ cosv(t)cosv'(t')Gia(p, P,z - z’)],

22

(37a)

(37b)
(37¢)

(37d)

(38)

(39a)

(39)

(39¢)

(394)

(40a)



[Z2)5 = 162/(1tpfZ /dt’p fi(') sind'(t')Gsn(p, 0, 2 — 2'), (400)

[Z2015 = K f dtpfi(t) sin v(t) / dt'p' f;(t)Ganlp, 02 = 2'), (40¢)
and
(22918 = iK® [ dtosi(t) [ dt'pf;(¢)Ganlp 0,2~ 2), (40d)
where
Ginlp, oz —2') = ] Go(R) cos(ng)dd, (41a)
b
Gonl(p, 02~ 2) = /" Go(R) cos(ng') cos ¢'d¢, (41d)
b
and
Ganlp,p 2 —2') = ] Go(R)sin(n¢') sin ¢'d¢’, (41c)
with 0
Go(R) = S’%‘%@ (41d)

and R given by (38). In the arguments of the Gx,,k = 1,2,3, p and z are functions of the
observation point coordinate ¢, and p’ and 2’ are functions of the source point coordinate
t'. Equations (40a-d), the detailed expressions for (31a-d), are in terms of the ¢ dependence,
fi(t), of the expansion and testing functions discussed below in Section 2.8. Referring to
(38) it can be seen that R =0 when p’ = p, 2’/ = 2, and ¢’ = 0, so that G ,(p, ¢/, 2 — 2') and
Gan(p, 0,z — 2') become singular. This problem will also be treated in Section 2.8.
Turning next to (31b) it can be seen that the treatment of (31a) carries over if r¢ =
(p%, ¢, 2%) is substituted for r in (32) and (34). (Note that the value of ¢ is the same for

corresponding points r and r%(r), and that the testing function integrations are performed
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on the surface of the BOR.) Hence letting

RY=|r?-1| (42)

[fo];-?d = ij/dtpfi(t)/dt’p’fj(t')[sin v(t)sinv'(t')Gan(p%, 0, 2% — 2')

+ cosv(t) cosv'(t)Gin(p% o, 24 — z')],

(43a)
(7298 = =k [ dpfi(t) [ dt'p f5(¢) sin o/ () Ganle", 2 - '), (43b)
[Z‘¢]Ad = kQ/dtpf,-(t) sinv(t) /dt'p'fj(t')Ggin(pd,p',zd - 2'), (43c)
and
(2294° = jK* [ dtpfi(t) [ at 4 £5(¢)Ganl®, 2 - 2), (43d)

where the Gin,k = 1,2,3, are defined as in (41a-d) with R replaced by R¢. Tt should be
noted that unlike R defined by (38), R? defined by (42) cannot equal zero and so there are no
singularities of the integrands of G} (%, o/, 2¢ — 2'), Gon(p?, 0/, 2% — 2'), and Ga n(p%, p', 2% —
2').

Next, addressing (31c), we first show that [11]

/ WP, - V,&(r, J%,)dS = — / (Vs - W2)®(r, J2,)dS, (44)
S

where Vg- is the surface divergence operator [16, Appendix 2, 18.]. The importance of (44)
is that the integréble singularity of | r — r’ |~! in the Green’s function G(r,1') given by (17)
is thereby not converted to a singularity of higher order | r —r’ |2 by the operator V, acting

on ® in the left-hand side of (44). To prove (44) we start with the relationship
/ Vs - (BWP,)dS = 0 (45)
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which holds because S is closed and WP . is tangential to S [16, Appendix 2, 42.]. Since

we have

Vs (@Wr,;) = Wi, - Vs + (Vs - WT,) @, (46)
/ WP, . VsddS = — / (Vs-WP,)®dS (47)
S S

and (44) follows from noting that in (47) Vs® can be replaced by V® because W?; is

tangential to S. Equation (31c) together with (44),(16),(17), and (18) then becomes

Now

and

Hence

Ztt ¢ __

mnliij —

Z¢t d

mnlij =

[2%)2

mn i =

(Zr2]8 = / ds / dS'(Vs - W2 (Vs - 39,)G(r, r'). (48)
Vs 3ty = BN, (490)

P ——f;( t')e?, (49b)

Vs Wi, = ;;ﬁ[ﬂfi(t)]ej"d’l, (49¢)

Vs -Wo, = - ”;‘ (t)em? . (49d)

/ s L1pfi(t) / dgpe ™ [ dt'= > dt,[pfj / dgpe™ G| —1'|),

(50a)

k/dtf’ /d¢ ‘J”“f’/dtp,dt,[pfj /d¢ e G(lr—r']), (50b)

% /dt [sz‘(t)]—[ ol¢pe"j"“”/dt’—]ij—l(),ﬁ—[r dg'p'e™' G(|r —r' ), (50c¢)
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and
[220]8 = _ji%”l / dtfiff—) / dgpe=Ims / dt'%t,—) / do'de™G(r—1']).  (50d)

Just as for [Z7 n] the ¢ and ¢’ integrations in (50) are treated using (35) and the symmetries

of the resulting ¢’ integrations then yield

12898 = 3 [ de S 1of0) [ dt 1 (G a(p 2 - 2), (51a)
2295 = =n [ a2 [t L1 0Graton 12 - ), (51b)
(Z:?) u—n/dt [pfi(t) /dt’pf’ )Gln(p,p z2-7), (51c)
and
(2092 = —jn? / dt%}” / dt'plf—;,(t’—)Gl,n(p, o,z — 7). (51d)

Finally we turn our attention to (31d). Here it is not possible to use the device of (44)
to transfer the differential operator on ® to the testing function W? . because the gradient

operates with respect to points on the dual surface. Hence, using (16),(17), and (18), we

obtain
| 1 1+gk|vd—1'| _ o
d — ! kjr¢—r d [
% Vasd(r(x), %) = S/ V- 0 e HFlpd g (5)
so that
1 - _J "V 39 ( 1+jk|r?—1'| e~ IkIr!—rIyy7P -
- kS/dSS/dS[VS S e W2 (=), (53)

It is simple to establish the relations (see the footnote regarding (33a-d))

t-(r?—1r') = p*sinv(t) — p'sinv(t) cos(¢’ — @) + (2% — 2’) cos v(t) (54a)

26



and
¢ (r¢—r1') = —p'sin(¢' — ¢). (54b)

Hence (53) together with (54) and (49a,b) yields

[Ztt'n,] = i/dtfi(t)/ﬂdqﬁpe“jm‘t/dt ’dt’[ o f;(t ]/dqg'p'eanqﬁ'

g [pd sinv(t) — p'sinv(t) cos(¢' — @) + (2% — 2') cosv(t )] H(RY),

(55a)
(2805 =7 f dtfi(t) / deppem / ' dt, / de' 2 sin(¢' — ) H(RY), (55b)
2815 = T [ atheo) [ dopeme [ar g Jasiene
[p"sinv(t) — p'sinv(t) cos(¢’' — ¢) + (2% — z)cosv(t)] H(RY),
(55¢)

and

i)y = -7 [ttt / e / 4 P26 sin(@ — Q)H(RY),  (554)

where we have let

1 +JkR ]de

H(R') = 47rR“3

(56)

with

Ri=|rt-r'|. (57)

Once again the ¢ and ¢’ integrations are treated using (35), and the symmetries of the

resulting ¢’ integrations then yield
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295 = ik [ dtfie) [ a1 (0

{[pd sinv(t) + (2% — 2') cos v(t)] Hya (0% 0,28 = 2') = p'sinv(t)Hyn (0%, 0, 2% - z')} :
(58a)
2295 =~k [[dtpf(t) [ el 1) Hanle, 24— ), (580)

Zt¢ ‘Pd —_ k2 : dlp,f](t’)
zes = e [atofict) [ YL

{[pd sinv(t) + (2% - 2') cos v(t)] Hy o (0% 0, 2% = 2') = p'sinv(t)Ha (0%, p', 2% - z')} ,

(58¢)
and
(285" = —jnk? [ dtofi(t) [ dt'd f5(¢) Hyalo®, ol 2% = 2). (58d)
In (58)
Hinlp®, 28 = ) = [ Ho(R%) cos(nd)dg, (59)
0
Hon(p%, 0, 2% - 2') = / Ho(R?) cos(nd') cos ¢'d¢, (59b)
0
H3n(p% 0,24 = 2') = /Ho(Rd) sin(ng') sin ¢'d¢’, (59c¢)
0
where
1+ jkR¢ .
Hy(RY) = —=— exp(—jkR?
and R? is given by (57).
In view of the fact that we have demonstrated that
[Z5n)ii = 0,m #n (60)
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the set of matrix equations (27) for determining the coefficient vectors I, and I? reduce to

(Z}] 1z || L. v
= ,n=0,+1,%2,---,%+N. (61)
(234 (28] | | 18 v

It is also easy to see from (30) and (40), (43), (51), and (58) that

2%.] =123, (620)
241 = -2, (620)
(2% = (22, (62c)
and
2%%] = 23] (62d)

2.5 Expressions for the Elements of the V Vectors

Now that we have obtained detailed expressions for the elements of the Z matrices we turn

to the elements of the column vectors Vi and V¢ in (27) given by (29). Let
VI = o [ Wh Ena(e)ds (63)
0
s

where p is either ¢ or ¢, indicating the unit vectors of the testing functions given by (26),
and g is either  or ¢, indicating the polarization of the incident electric field given by (11)
or (12). The Fourier mode index m has been replaced by n since the original distinction
between the Fourier mode index n of the expansion functions for the current and the Fourier
mode index m of the testing functions is no longer needed in view of the orthogonality
relation (35) which has been used in deriving expressions in Section 2.4 for all the elements
of the Z matrices. Since the expressions that will be obtained for V! given by (63) will
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carry over immediately for E®9(r?) needed in (29), there is no need to treat these two cases

separately. It is simple to establish the unit vector relations (see the footnote to (33a-d))

~  ~linc

t-0 = cosf™sinv(t) cos(¢p — ¢™) — sin §"° cos v(t),

A Aine

¢-0 = —cosh™sin(¢p — ¢™),
i.6"™ =sin v(t) sin(¢ — ¢°),
and
~ ~inc inc
¢ ¢  =cos(dp— ¢").
Also, using (10),
k'™ . r = —k(sin 6% + cos #'"°z) - (pcos ¢px + psin ¢y + 22)
= —kpsin §™ cos ¢ — kz cos 6.
Hence, recalling that it has been assumed that ¢*"¢ = 0,
fole =k / dtpfi(t)ejkz cos §inc [COS ginc gin 'U(t) / d¢ cos ¢ej(kpsin 6'7¢ cos ¢—ne)
0

2
. ; i(kpsi ginc _
— sin '™ cos v(t) /dq&e?( psin 8¢ cos ¢ ""’)],
0

2w
anz;G = — cos 0"k / dtpfi (t)ejkz cos §inc / d¢ sin ¢ej(kpsin 6'"¢ cos ¢—n¢),
0

2
VY =k [ dipfi(t)e?* <™ sinv(t) [ dgsin gel(kpsind'™ cosp=no)
ni
0

and

Vi
ani:(i? — k/dtpf,»(t)ejkzmsem /d¢ cos d)ej(k,psin ginc cosd>—n¢).
0
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(64a)

(64b)

(64c)

(64d)

(65)

(66a)

(66b)

(66¢)

(66d)



Using the integral representation for the Bessel function
27

Jn(z) = 3_2_; [ =g (67)

it is simple to obtain the integral representations

27
/ sin gl @S0 g — i J 1 (z) + Jno1(2)] (68a)
0

and
2n
[ cos =20 dg = 71T () = Fuca ()] (68b)
0

so that

Vi = rjntig / dtpfi(t) [cos 0" sin v(t)(Jng1 — Jn_1) + 27 sin 6 cos v(t)Jn] elkacosne

(69a)
v = Wj"k/dtpf,-(t) 08 0 (Jpy1 + J _1)edkzeosne (69b)
VY = _njnk / dtpfi(t) sinv(t) (Jus1 + Ju_y)elE7e0s0™ (69¢)
and
V= mim ik [ dtpfi(t)(Jnss = Tn-r)eT 0, (694)
where we have let
Jn = Jn(kpsin §7°). (69e)
Using the Bessel function relation
Jon = (=1)"Jn(2) (70)
it is easy to show from (69) that
Vi = Vat, (71a)
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v = v (71b)

V8. = -V (71c)
and

Ve =yl (71d)

The expressions corresponding to (69) for V! when E"®9 in (63) is evaluated at r(r) on
the dual surface, needed for calculating (29), are obtained from (69) simply by substituting

p? for p in (69e) only and 2¢ for z in (69a-d).

2.6 Calculation of the Current

To calculate the current on the BOR surface we refer to (24) and (25) and write
N ~
J(t, ¢) = eW > (12 i) + 120 £i(t) D) (72)

where ¢ = 6 (TM) or ¢ (TE) indicates the polarization of the incident electric field given

by (11) or (12), and I, I?? are the elements of the coefficient vectors It I#9, obtained as

niy n - n

the solution of the matrix equation (61)

[Z¥] (2] || I Vi
= ,n=0+1,42,---,£N. (73)
[Z8 (22 | | I¢e v

Letting f = [f1(t)f2(t) - - - fn(t)] be the row vector of the expansion functions f;(t) (we use

the tilde to indicate the transpose of a column vector), (72) can be written as
N . -~ ~ -~ -~
Jtg) = Y e [fIt + f12g)]. (74)

n=-N

From (73), the relations (62) for the Z_, matrices in terms of the Z, matrices, and the
relations (71) for the V_, vectors in terms of the V, vectors, it is simple to derive the
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relations

Y =1% (75a)
1% = 1%, | (75b)
I° = -1, (75¢)
and
1% =1 (75d)

(Note that (75b) and (75c) imply that 1 = 0 and I} = 0.) Substituting (75) in (74) then
yields the expressions for the currents induced on the surface of the BOR by a TM and TE

linearly polarized incident plane wave, respectively:

N
3(t,9) = fI¥E +2 Y [(F1?) cosngt + j(f12) sinnggp) , (76a)
n=1
and
N
3*(t,0) = fIf’¢ +2 Y [(f1¥)sinngt + (1) cosnggp) . (76b)
n=1

2.7 Calculation of the Far Scattered Field

In the far-field region the  and ¢ components of the scattered electric field can be obtained

from the vector potential A given by (15) [24, p. 281]

E*(r) "X —jwA(r, J). (77)
Then with (15) and (17),
Bem(s) 2 gz [[3() - Bl S’ (7
J Os p47rlr—r’_|
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where p : 0 or ¢, indicates the far scattered field component; p : éfar or &far, is the

corresponding unit vector (see Fig. 3); ¢ : 6 or ¢, indicates the polarization, 8 (TM) or

¢ (TE) of the incident electric field; J9 is given by (74), r = (r,8/°",¢/%") is the far-field

observation point, and r' = (¢, ¢, 2') is the source point on the BOR surface. In the far

field, | r — r' | in the phase of the Green’s function can be approximated by

|r—1' |77 — p'sin6/% cos(¢' — ¢7°") — 2’ cos 6/

so that

—jkr

Bena(s) "~k

/[Jq(rl) . p]ejkp’ singfer cos(¢’——¢/“')ejkz’ cosﬂf‘”dsl.
The relations (64) can be used directly to obtain

~1  ~far

t -0 =cosh/ sinv(t') cos(¢ — ¢/%") — sin67°" cos v(t')

~1 - far .
¢ -0 = —cosf/sin(¢' — ¢,
~t ~f

i ¢ ar _ sinv(t') sin(¢' _ ¢far),

and

¢ - ' = cos(¢) — ¢').

Letting the elements of the vectors R and R?” be defined by
R = k/fi(t')(£’ . p)edkle' sinf7e cos(¢/ —/er) 42" cos07r) pin(d ~97em) g o1
ni
5

and

R? =k / Fi(E) (@ - p)erkle sin0f cos(@ =17 2" cos01e7] nte ~81) g
S
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(80)

(81a)

(81b)

(81c¢)

(81d)

(82a)

(82b)



with p = 6 or ¢, (80) together with (74) can be written as

r—00 _jkzoe_jkr
e Lo

N
ing/er (R tpyt D $pYP
e L © (RPIY + RYPIY) (83)

n=-N

E*%P(r)
where, using (82) and the 27 periodicity of the ¢’ integration

27
R = k [ dt g fi(t)er <o [ cos 672" sin u(¥) [ 8 cos gre e sindleTcongend)
0

27
—sin 6 cosu(t) [ dgeer no s )] (840)
0
27
RY = —cos 607k [[df pfi¢)e™ > [ e sin e om0 s nd, - (sa)
0

27
R;q: =k / dt’p,fi (tl)ejkz' cos §far sin ’U(t') / d¢l sin ¢’ej(kpl sin 8727 cos ¢/+n¢'), (840)
0
and

2r
Rz;b — k/dtlplfi(tl)ejkz’cosﬂ‘" /d¢’ cos ¢Iej(kpsin0-"‘”cos¢’+n¢’). (84d)
0

Comparing (84a-d) with (66a-d) we observe that the corresponding expressions are the same
if #¢ of (66) is replaced by 6/%" and —n of (66) is replaced by n. Then (69) and the relations

(71) can be used to yield

RY = 7rj"+1k/dt’p'fi(t’) [cos 079 sin v(t')(Jng1 — Jn_1) + 27 sin 6% cos v(t')Jn] eIk’ cosbfe”

(85a)
R¥ = —nj"k/dt’p’fi(t')cos 0797 (Jng1 + Jnoy )Pk 0507 (85b)
R = nj"k / dt'g fi(#') sinv(t') (Jn1 + Jnoy)e?ts o0’ (85¢)
and
R%? = mj™k / dt' 0 fi(#) (Jnp1 — Jnmr)e?? 50" (85d)
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where

Jp = Jo(kp' sin 67°7).

The relations (71) apply to the RF! as well, so that

td __ pté
RZ.i = Ry,
@0 1)
R—m - _Rni’

and

Then, substituting (86) and (75) in (83) it is straightforward to obtain

sy roo  JRZoe T [ =0t A P far
E*o%(r) TR T RYTY +2) (RYTY + RETYY) cos(ng’™) |

n=1

) T00 kZoe skr

EH(x e ,,Z_:l (ﬁfflff 4 R;’;"’Iﬁ”) sin(ng/?"),
pretog) T2 kZoe‘J’"2 i (R + R¢"I¢¢) sin(nd/*")
4kt non non ’

n:

and

so(y o0 _IRZ0ET [ h5i0s oo (Rtoqto . T oTed far
Ero#t(r) TR° 220 RIS 1+ 2 (RYIY + REIZ?) cos(ng™) | .

drkr

n=1
The radar cross section o is defined as

| Escpq |2

| Emcq I2

oP? = hm 4rr?

(85€)

(86a)

(86b)

(86¢)

(86d)

(87a)

(87b)

(87¢)

(87d)

(88)

where p : 6 or ¢, denotes the component of the far scattered field, and ¢ : § (TM) or ¢ (TE),

indicates the polarization of the incident electric field.
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2.8 Choice of the expansion and testing functions

The detailed expressions we have obtained for the elements of the Z matrices and the V
and R vectors all involve the functions f;(t) that give the ¢ dependence of the expansion
and testing functions in (25) and (26). The choice of the f;(t) has been left open so far
and must now be addressed. Following Mautz and Harrington [11] we use a four-impulse
approximation to a triangle function developed as follows.

The generating curve of the BOR is parametrized in terms of ¢, the distance along the
curve measured from the lower pole of the BOR. For each value of ¢, the corresponding point
on the generating curve is given by [p(t), z(t)]. A set of P points p},p3, - --,pp, P odd, P > 5,
is chosen to discretize the generating curve with p} = (p}, 2}) the lower pole of the generating
curve corresponding to t = 0, pp = (pp, 2p) the upper pole of the generating curve, and with
t} > t;_,. The generating curve is approximated by straight line segments between adjacent

points. The midpoints of the approximating straight line segments are given by

(pia zi) = (pz +2pi+1 ’ i +2zi+1) ai = 1) 2’ Ty P-1 (89)
and the length of the i*" straight line segment denoted by

di = [(P;-H - PZ))2 + (Z;+1 - 25)2] " : (90)

For calculation purposes the discretized generating curve then completely replaces the origi-
nal generating curve and the parameter { now becomes the length along the discretized curve
from the lower pole instead of the length along the original generating curve from the lower
pole. Thus, for example, t(p}) = 0, t(p3) = di, t(p;) = di + dp, etc. The trigonometric

functions sin v(¢) and cosv(t) appearing in (33), (40), (58), (69), etc., with v the angle mea-
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sured positive clockwise from the positive z axis to the tangent to the generating curve in

the direction of increasing t (see Fig. 5), are then replaced by the discretized values

sinv; = p‘Ld—p’— (91a)
and
cosv; = 21+_1d:ﬁ (91d)

A triangle function 7;(¢) spanning four segments of the discretized generating curve can be

defined as in Fig. 6 where

4

0, t <yt 2 by
. _ | t"— * *
i)=Y 2 B St<ty (92)

t;i 3 t *
a__‘l’_d___ <t <t
\ daiy + daiy2’ Bit1 S TS Tiy

The first triangle function is 7;(t) and the last triangle function is 7(p_3)2. The triangle
functions overlap as shown in Fig. 7.

We now let the functions f;(t) be defined by

kpfi(t) = 7i(t). (93)

Then gz[p fi(t)], also required for calculating the elements of the Z matrices and the V' and

R vectors, is given by

Sloh(0)] = 27100 (94)
where )
0, t <1515t 2 My
Ti(t) = m th oy <t <thy, (95)
\ _m’ tois1 ST < 143
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Figure 6. The triangle function 7;(t) and the four impulse approximation (arrows).
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Figure 7. Overlapping of the triangle functions 7;(t) and Ti+1(2).
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With the functions f;(t) chosen as above there still remains the problem of how the ¢
and t' integrations in the expressions for the elements of the Z matrices and the V and
R vectors are to be performed, since the use of direct numerical integration to evaluate
these expressions is clearly not practical. To perform these integrations we therefore use a

four-impulse approximation to 7;(t) (see Fig. 6) letting

4
kpfi(t) = Y Tpyai—a0(t — tpi2i2) (96)

p=1
where the T"s are equal to the value of 7(t) at the segment midpoints multiplied by the

width of the segments:

dz.
Thioz = ——21 97a
43 2(d2i—1 + d2s) (97)
(doi1 + ‘1'd2i)d2i
Thio= 2 , 97b
- doi-1 + dy; (975)
(daiy2 + Ldait1)d2is1
Ti_ = 2 ; 97
tl doit1 + doito (97¢)
d%i+2 (97d)

Ty = :
“ 2(d2i41 + daiy2)

and 6(z) is the Dirac delta function. Similarly, a four-impulse approximation is also employed
for the %[p fi(t)] using the derivative of 7(t) at the segment midpoints multiplied by 1/k and

the width of the segments. Thus

d 1
a‘t'[/’fi(t)] N2 T y4i-40(t — tpr2i2) (98)
=1
where
doi—1
T ol S
43 = g (99a)
da;
T = b
42 = g (99b)
T/ _ d2i+1
41T T (99¢)

- ’
dait1 + doit2
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! d2i+2
T = - —=7= 99d
& doiy1 + doita (99d)

As an example of the implementation of the four-impulse triangle function approximation,

let us take (40d)
(22415 = & [ dpfi(t) [ 0 15(t)Gan(p, 0,2 — 2) (100)

with Gan(p, o', 2 — z) given by (41b). Substitution of (96) in (100) then gives

4 4
(Z2)A =33 Y TyTyGanlps, piry 20 — 2y) (101)
p=1g=1
where
pl=p+4i—4, (102a)
¢ =q+4j 4, (102b)
i =p+2i—2, (102¢)
and
j'=q+2j-2 (1024)

In the integral (41b) that defines G, R is given by

2 2 #\]"
R=|(pr — py)" + (20 = 2;7)° + dpypj sin® <5>} - (103)

th segments of

In (103), (ps, 2+) and (p;, zj) are the respective midpoints of the 7" and j
the discretized generating curve.

Once the integrations over ¢ and ' have been replaced by summations as in (101), we

introduce the following changes in the summation indexing in preparation for the increase
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in efficiency of the resulting calculations discussed in Section 2.9. First, let the summations

be represented schematically in general as

4 4
Qi =) > TyT,F(,j) (104)

p=1g=1

where Q;; is the quantity to be evaluated, F(¢, ') is the summand apart from the triangle
functions, and p', ¢, 7, j' are given by (102). (Although we have used T given by (97) in (104),
either or both of Ty and T can be replaced by a derivative T}, or T, given by (99) without
in any way affecting the argument.) Next, we change the indices so that the summations are

over the indices of F' by letting

r=1=p+2i—2 (105a)
s=j =q+2j—2 (105b)
so that
p=r—2+2 (106a)
g=5—-2j+2 (106b)
and
p=r+2-2 (107a)
qd =s+2j—2. (107b)

Then successive values of p from 1 to 4 correspond to successive values of r from 27 — 1 to
21+ 2, and successive values of ¢ from 1 to 4 correspond to successive values of s from 25 — 1

to 25 + 2, and
242 2j+2

Qi= Y, Y T.TaF(rs) (108)

r=2i—1s=2j-1
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where

r=r+2i-2 (109a)

and

s'=s+2j—2. (109b)

Finally, we change ¢,j to p,g; 7,s to 7,7; and 7, ' to ¢', j' so that (108) becomes

2p+2  2¢+2
qu - Z Z Ti’T}’F(i,j) (110)
i=2p—1j=2q-1
where
i/ =i+2—2 (111a)
and
j=j+29—2. (111b)

Substituting the expressions (96) and (98) for the expansion functions and their deriva-
tives in (40),(43),(51), and (58), and performing the change in summation indexing of
(104)-(111), the elements of the Z matrices now become the following:

2p+2  2g+2

[Z,‘f]:; =7 Y. Y TiTy[sinv;sinv;Gan(ps, pj, 2 — 25) + €08 v; cos v;G1a(pi, pjs 2 — 25)]
1=2p-1j=2¢-1

(112a)
2p+2 242
[Zf:‘];?q = - Z Z Ty Ty sinvjGsn(pi, pj, 2i — 25), (112b)
1=2p~13j=2¢—1
2+2 242
[fo]% = Z Z Ty Ty sin ’UiG3,n(Pi,Pj, Z; — Zj), (112¢)
1=2p-1j=2q—-1
and
2p+2  2g+42
(28 =3 > 2. TeTyGanlpi, pj 2 — 25); (112d)

i=2p—1j=2¢-1
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2p+2  2¢+2

thAd _ . . d d . , d .4 _
[Zx ]pq =J Z Z T Ty [Sm vi sin v;Gon (05, pj» 2 — 2;) + COS v; cosV;G1p (05> Pj» % z])] ,
1=2p—1j=2¢-1

(113a)
ot1AY 2p+2 2q+2 . 4 .
[Zn ]pq == Z Z Ti'Tj’ sin UjG3,n(pivpj7 2 zj)’ (113b)
1=2p—1j=2¢-1
(51Ad 242 2042 . , )
[Zn ]ij = z Z E'T.'?" sin UiG3,‘n(pi7pj’zi - zj)a (1136)
1=2p-1j=2q-1
and
2
Z¢¢ Al _ . 2p+2 2¢+ TG N iy
[ n ]pq =) Z Z i d 5 2,n(pi,p],zi Z]), ( )
i=2p—1j=2¢-1
[Ztt]q) "'_.i 2%*':2 2§2 T,TIG ( PSR ) (114 )
nlpg ™ T p2 . id 5 G1n\Pi, 05, Zi — Zj), a
1=2p—1j=2¢—1
. 2p+2 2¢+2 T T/
[Zfl) ]Pq Z Z _—""'Gl n(pnpj,zz - )a (114b)
z—2p-1 j=2q~1 i
. 2p+2 2g+2 T'T
Z ¢]Pq k2 Z Z Gl n pza P], 25 — ) (1146)
i=2p-1j=2¢—1 Pi
and

2 2p+2  2¢+42 T T'

_n

i=2p—1j=2¢—1 PiPj

Gl n(pzapjazz - ')a (114d)

2+2  2q+2

1z = =1 2 X LTy

i=2p—1j=2¢-1

{[p¢sinv, + (2 - 2j) cos v Hy(of, psr 2 = 2) — pysinviHan(pf, pj, 28 — z)}

(115a)

2+2  2¢+2

[fot]g); = - Z E T;"T;’ijS,n(pga pj’zg - zj)) (]_15b)

1=2p—1j=2¢—-1

2 20+2 T T

2 = n X X2

1=2p—1j=2¢-1 Pj

{[osinv; + (2 = 2;) cos vi] Hin(p, 03, % = 23) — pysinviHan(of, 05, %~ 27)}

(115¢)
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and

4 2p+2 2942
[ZZ"Z&]:‘] = _jn Z Z n’n’HS,n(p;ia Pjs Z? - ZJ) (115d
1=2p-13=2¢-1

In the integrals (41a-c) and (59a-c) that define the Gi, and Hy .k = 1,2,3 in (112) to 115),

from (38) and (42)

; 11/2
R = [(pz- = ) + (2i = %) + 4pip; sin2(%)] : (116)
and
¢ 1/2
R = [ -+ Gt - s+ sty B )

The two superscripts of the Z’s, t or ¢, indicate the unit vectors of the testing functions
and expansion functions, respectively (see (26) and (25)). When ¢ = j, we see from (116)
that R;; = 0 when ¢' = 0 so that the integrals defining the Gy ,, become singular. Hence, for
i = j, Ry; is approximated by an equivalent distance [11]

& 1/2
R, = (d,-/4)2+4p?sin2(-é-) Q=g (118)

Since R;ij never equals zero no special treatment using an equivalent distance is needed.
Next, substituting the four-impulse triangle function representation (96) of the expansion
functions in (69) followed by the change in indices, we obtain the following expressions for

the elements of the V vectors:

2p+2
V,fz =mj"* 3N Ty [cos 6" sin v; (Jny1 — Jn_1) + 27 sin 67 cos viJn] k7088 1 (119a)
1=2p-1
2p+2 )
Vn“;f =" Z Ty €08 0 (Jpyq + Jp_y)elkzicos0™ (1190)
1=2p-1
2p42 '
Vi = —mj™ Y Tysinvi(Jngr + Jnop)edh st (119¢)
i=2p-1
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and

2P+2 . inc
VP = 1™ S Ty(Jnpr — Juor P50, (119d)
1=2p—1
where
Jn = Jy(kpisin 67). (119¢)

In (119a-d) the two superscripts of the V’s indicate respectively the unit vectors of the
testing functions given by (26) and the polarization of the incident electric field given by
(11) and (12).

Similarly, substituting (96) in (85) followed by the change in indices, we obtain

' 2p+2 : ar
Rff;, =mi" Y Ty [cos 07" sin v;(Jps1 — Jno1) + 27 sin 877 cos viJn] efkzicosler (120a)
1=2p—1
2p+2 ) p
R = —mj™ 3" Ty cos§/ (Jppr + Jooa )50, (120b)
i=2p-1
2p+2 ) far
Ry =mj" 3 Tosinvi(Jngs + Jnoy)e o0, (120c)
1=2p—1
and
2p+2 ] P
Rip = aj™™ 30 Ta(Jnar = Jpa)el5 e, (120d)
i=2p~1
where
Jn = Jn(kp; sin 67°7). (120e)

In (120a-d) the two superscripts of the R's indicate the far scattered electric field component
and the polarization of the incident electric field, respectively.
An alternative choice of the expansion and testing functions, closely related to that of

Mautz and Harrington which we have used, is to let the functions f;(t) be given by

fit) =7(1) (121)



instead of by (93), with 7;(t) given by (92) as before. Then

{p( fi)] = p)7;(t) + o' (t)7(2) (122)

where 7{(t) is given as before by (95). Again, using the four-impulse approximation to
perform the ¢ and ¢’ integrations, (96) is replaced by

4

kﬂfz R Y Tpri-a0(t — tpri-2) (123)
p=1
and (98) is replaced by
d 1 |
—[pfi(t) T 7, +2i-2) (124)
dt 1 k pz=:1 p+4i— 4 P
with
To+di-a = kpproi—2Tpr4i-g, p=1,---,4 (125)
and
7;,'.*_41'_.4 = ka+2z T, p+di—4 T k sin Up+2i— 2Tp+4z 5, P=1,---,4. (126)

In (125) and (126) T}44i—4 and T, 4, 4 are given by (97) and (99) respectively. The expres-
sions (112)-(120) for the elements of the Z matrices and the V and R vectors can then be
used exactly as they are simply by substituting 7 for T"and 7" for 7".% It is shown in Section
3.6 that the alternative choice of the f;(t), (121), must be used instead of (93) if half-triangle
functions are to be used at the beginning and end of the discretized generating curve of the

BOR.

8This efficient method of implementing the alternative choice of the functions f;(t) is due to John Putnam

[25].
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2.9 Increasing the Efficiency of the Computations

Referring back to the general form of the computations, (110), we observe that the 7's
are trivial to calculate and store, oﬁce and for all, at the outset of a calculation of the
far scattered field pattern for a BOR, whereas in contrast the F's are time consuming to
calculate. Furthermore we observe that in (110) the same F(i,j) will contribute to the
calculation of several @,,. Hence, rather than using (110) to calculate Qy,, it is desirable to
have the limits of the summations go from one to the number of segments in the discretized
generating curve of the BOR so that there is no repetition of the calculation of F(3, j). The
basic question to be answered, then, is given 7 and j what are the values of p and g for which
F(i, j) contributes to Qp,? An example will help to clarify this question. Suppose ¢ = 5 and

j = 6. Then we can make the following tabulation

p 2p—1 2p 2p+1 2p+2 q 29—-1 29 2g+1 2q+2

1 1 2 3 4 1 1 2 3 4
2 3 4 5 6 2 3 4 5 6
3 5 6 7 8 3 5 6 7 8

4 7 8 9 10 4 7 8 9 10
and observe that F'(5,6) contributes to @, when p is either 2 or 3 and g is either 2 or 3,
so that F(5,6) contributes to four different Q. In general it is clear from the limits of the
summations in (110) that if ¢ is odd then p = (i —1)/2 and p = (i +1)/2 whereas if ¢ is even
then p = (i — 2)/2 and /2, and similarly for j and g. Of course, when ¢ or j equals 1 then
only one of the two values of p or ¢ is a valid index for @,, and similarly when i or j is equal

to the number of segments in the discretized generating curve.
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2.10 Choice of the Number of Fourier Modes for Expansion and
Testing Functions.

The ¢ dependence of the current given by (24) is expressed as a summation from —N to N
of the Fourier modes e’™®. The value of N can be set equal to the number of Fourier modes
sufficient to represent, to the desired accuracy, the ¢ variation of the tangential component
of the incident electric field on the surface of the BOR. Let a be the largest value of p of a
point (p, z) on the generating curve of the BOR. Then from (10), (11), and (12) it can be
seen that the ¢ variation of the incident field along the circle on the BOR corresponding to

the point (a, z) is given by
f(¢) = oS ¢ejkasin0‘"°cos¢ or f(¢) = sin ¢ejkasin0i"c cosd)_ (127)

For axial incidence 8" = 0 and f(¢) equals cos ¢ or sin ¢ so that only the e*/¢ modes are

needed. For oblique incidence, we can express f(¢) as the Fourier series

N
f(¢) = chej"¢ (128a)
-N
with
1 27
_ —jng
n =5 0/ f(@)emdp (128b)
from which, with (127) and (68a,b),
1 : .
| cn |= 5 [Jn+1(ka sin §'"°) & J,_,(kasin 9"“)] . (129)

As n increases beyond kasin 6, | J,,(kasin ) | decreases rapidly and it suffices to choose
N=I+M (130)
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where

I = Int[ka sin 6] (131)
and M is the smallest integer for which

Jn (ka sin §')
—_— < 132
Jr(kasin @inc) — ¢ (132)
with € a small number depending on the desired accuracy. If the value of N given by (130)

is plotted as a function of Int[ka sin §#7¢] the plot is found to be almost linear. For e = 0.005,

for example,

N ~ Int[1.04kasin 6] + 7. (133)

A similar expression

N ~ Int[k" (asinf) + )] (134)

with k* denoting a value a few percent larger than k was obtained by Yaghjian [26] for the
reciprocal problem of estimating the number of angular modes needed to represent the far

field of a radiator in the @ direction.

3 RESULTS

The analysis presented in Section 2 was implemented in a FORTRAN computer program
which was then used to obtain numerical results for several different BOR’s. These results

will now be described and discussed.

o1



3.1 Spurious Resonances for a PEC Sphere

As noted in the Introduction, the ordinary EFIE does not have a unique solution to the exte-
rior scattering problem at frequencies equal to the resonant frequencies of the corresponding
interior cavity. Consequently, numerical results obtained by solving the EFIE can have sig-
nificant errors called spurious resonances when the electrical dimensions of the scattering
object are such as to make the interior cavity resonant. The DSEFIE by contrast has a
unique solution to the exterior scattering problem at all frequencies. For a sphere, the cavity
problem has been treated by Harrington [27] who shows that the condition for resonance is
ka = un, for TE modes and ka = uj,, for TM modes where uy, is the p** zero of the Bessel
function Jy41/2(z) and uj,, is the p* zero of (212 Jp11/2) (2)-

As an example of how the DSEFIE eliminates spurious resonances that may occur in
solving the EFIE, in Fig. 8 we show the backscatter RCS of a PEC sphere as a function of
ka in the vicinity of the resonant value of ka = 6.062, the first zero of [z/2Jy,) (z). 1t is
clearly seen that the spurious resonance displayed by the EFIE curve at 6.08 is eliminated

by the DSEFIE curve which agrees closely with the exact Mie solution curve.

3.2 Spurious Resonance for a PEC Prolate Spheroid

As a second example of the DSEFIE removal of a spurious resonance obtained using the
EFIE, in Fig. 9 we show the Ej bistatic RCS pattern in the ¢ = 90° plane of a prolate
spheroid illuminated by a TM plane wave. The geometry of the spheroid is shown in Fig.
10. The propagation vector of the incident plane wave lies in the xz plane making an angle

of "¢ = 45° with the 2z axis, and the semi-major and semi-minor axes of the spheroid are
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Figure 10. Geometry of the prolate spheroid.
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given by ka = 50 and kb = 25, respectively. The large error displayed by the EFIE pattern
for @ < 10° is eliminated in the pattern obtained using the DSEFIE computer program and in
the pattern obtained with the combined-field BOR integral equation program CICERO [21]
shown for reference. The discrete nature of the spurious resonance can be seen by comparing
Fig. 9 with Fig. 11 which shows the corresponding bistatic RCS patterns for a spheroid

with ka = 49.8 and kb = 24.9. In Fig. 11 the EFIE pattern has no spurious resonance.

3.3 Spurious Resonances for a PEC Finite Cylinder

Calculations of scattering from a finite cylinder provide another example of the elimination of
spurious resonances by the DSEFIE. Expressions for the resonant frequencies of a cylindrical
cavity are derived in [28]. In particular, the resonant frequency for the dominant TE mode,

TEy11, is given by

1.841 R2\'/?
= (1+2.912-é;> (135)

where R and d are the radius and height, respectively, of the cylinder. Since w,/i€o = k =
2m/A, for R = d and A = 1 the radius and height of the cylinder that supports the TEq;;
mode is R = d = 1.841(3.912)"/2/(2r) = 0.580. Figure 12 shows the monostatic E-plane
RCS pattern for R = d = .587 as obtained by the EFIE, the CFIE, and the DSEFIE, with a
discretization of the generating curve for the finite cylinder using 20 points/\. The striking
spurious resonance displayed by the EFIE pattern is removed by both the CFIE and DSEFIE
which are in close agreement with each other. In contrast, the EFIE, CFIE, and DSEFIE
monostatic patterns for the non-resonant cylinder R = d = .52 are shown in Fig. 13. For

this cylinder there is no spurious resonance in the EFIE pattern. Figure 14 shows the EFIE,
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CFIE, and DSEFIE curves for bistatic scattering in the E-plane for oblique incidence at 30°
on the resonant finite cylinder, R = d = .587. As in Fig. 12, the spurious resonance behavior

of the EFIE curve is removed by both the CFIE and DSEFIE.

3.4 Bistatic Scattering From the Cone-Sphere with Axial Illumi-
nation

The cone-sphere is the BOR whose generating curve is shown in Fig. 15. It is determined by
two parameters: 1) the semi-vertex angle ¢ of the cone, and 2) the radius a of the spherical
cap. The length b of the straight-line segment of the generating curve is given by b = a/tan(
and the length of the circular portion of the generating curve is a(m/2 + ¢). Also shown in
Fig. 15 is the generating curve for the cone-sphere dual surface separated by ¢ from the
original surface.

The use of the DSEFIE to calculate scattering frorﬁ the cone-sphere introduces a problem,
not encountered in calculating scattering from the sphere or spheroid, that will be discussed
here. In Fig. 16 we have plotted bistatic scattering in the E-plane from a cone-sphere with
¢ = 5° and ka = 5.9 for axial incidence in the —z direction, as calculated by the CFIE and
DSEFIE. The separation § of the dual surface from the original surface is § = A/4. It is séen
that there are small oécillations in the central portion of the DSEFIE curve that are not
present in the combined-field integral equation pattern obtained using the computer code
CICERO. To investigate the source of these oscillations, in Fig. 17 we have plotted the CFIE
RCS pattern of Fig. 16 along with the two “components” of the DSEFIE pattern: the EFIE

pattern obtained with the original cone-sphere surface alone, and the DSEFIE pattern
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dual surface

original surface
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Figure 15. Generating curves for the cone-sphere and the dual surface.
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obtained with the dual surface alone.” It is seen that while the RCS curve obtained with the
EFIE and the original cone-sphere surface is very close to that obtained with the CFIE, the
RCS curve obtained using the DSEFIE wit}; the boundary condition enforced on the dual
surface alone differs greatly from the other two curves. With the dual-surface-only pattern
so much in error, the DSEFIE cannot be expected to give accurate results, since the DSEFIE
calculations will be very sensitive to the value of the combination parameter, . For further
understanding, the currents on the cone-sphere surface were printed out and it was found
that when the zero-tangential electric field boundary condition was enforced on the dual
surface alone, the currents close to the vertex of the cone were several orders of magnitude
larger than the currents close to the vertex when the zero-tangential electric field boundary
condition was enforced on the original cone-sphere surface alone. The discrepancy between
the DSEFIE and CFIE RCS patterns in Fig. 16 is therefore due to a problem in calculating
scattering from the cone-sphere when a zero-tangential electric field is enforced on the dual
surface alone.

A partial explanation for why this problem occurs appears to be the following. Unlike
for the sphere or spheroid where corresponding points on the original and dual surfaces are a
specified distance d apart, for the cone-sphere points close to the vertex can be considerably

further apart than & from their corresponding points on the dual cone-sphere surface. For

"When we refer to the “components” of the DSEFIE pattern, we do not mean to imply that the total
DSEFIE pattern is a linear combination of the EFIE solution and the DSEFIE solution obtained with the
zero-tangential electric field boundary condition enforced on the dual surface alone. This is not the case.
Loosely speaking, however, there is no harm in referring to these two limiting forms of the DSEFIE solution

as “components”, especially as considerable insight into the DSEFIE solution can be obtained by so doing.
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example, the vertex point on the dual cone-sphere surface is a distance §/sin( from the
vertex of the original cone-sphere. For ¢ = 5° and § = A/4 this distance is almost 3X. The
boundary condition of zero-tangential electric field on the dual surface is then apparently
insufficient to guarantee that the currents close to the tip of the cone-sphere will be correct.
It should be noted, however, that this problem is specifically associated with the tip of the
cone and is not simply a result of corresponding points on the original and dual surface
varying in distance from one another. For the finite cylinder generating curves shown in
Fig. 4, for example, the distance between the corresponding points on the corners of the
original and dual surface generators is greater by a factor of v/2 than the distance between
the corresponding points on the midpoints of the horizontal or vertical line segments, but
there is no problem in calculating the RCS pattern when the zero-tangential electric field
boundary condition is enforced on the dual surface alone.

The problem we have described cannot be solved simply by placing the dual surface
considerably closer than A/4 to the original surface. Even a separation of A\/64 does not
satisfactorily resolve the difficulty. What can be done, however, in addition to placing the
dual surface closer to the original surface is to insert an auxiliary dual surface close to the
vertex of the cone-sphere as shown in Fig. 18 in which the line segment that generates this
auxiliary dual surface is obtained by drawing a line from the origin to, say, the midpoint of
the line from the vertex of the dual cone-sphere normal to the original cone-sphere generator.
The point on this generating line segment of the auxiliary dual surface that corresponds to
the vertex of the original cone-sphere is taken a small distance, say A/64, along this line. In
Fig. 19 we show the bistatic RCS patterns for the same cone-sphere as in Fig. 16 obtained

using the DSEFIE with an enhanced dual surface with § = /32 for the main dual surface.
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Figure 18. Generating curves for the cone-sphere and the dual surface with auxiliary dual

surface inserted close to the tip.
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The small oscillations present in the DSEFIE pattern of Fig. 16 are completely removed.
Also shown in Fig. 19 is the pattern obtained with the DSEFIE when only the enhanced dual
surface is employed. In striking contrast to the DSEFIE pattern of Fig. 17 the dual-surface-
only pattern of Fig. 19 is now very close to the CFIE pattern. To demonstrate that the
great improvement obtained with the enhanced dual surface is the result of both employing
the auxiliary dual surface in the vicinity of the cone-sphere vertex and moving the main dual
surface closer to the original surface, in Fig. 20 we have plotted two additional patterns
along with the CFIE pattern. One pattern corresponds to employing the same auxiliary
dual surface but with the main dual surface separated by A/4 from the original surface, and
the other pattern corresponds to simply moving the main dual surface close to the original
cone-sphere surface by taking 6 = A/32 but not employing the auxiliary dual surface. It is
seen that employing the auxiliary dual surface while keeping the main dual surface separated
by A/4 from the original surface results in considerable improvement compared to the dual-
surface-only pattern of Fig. 17 though not as much as that obtained when the main dual
surface is moved closer and the auxiliary dual surface employed. Merely moving the main
dual sﬁrface close to the original surface without employing the auxiliary dual surface still
results in a very poor RCS pattern, however. For larger semi-vertex angles ¢ the problem
we have described in this section is less severe but is still present. For { = 45°, for example,
a separation of § = A/32 suffices to resolve the problem without the necessity of inserting

an auxiliary dual surface close to the cone tip.
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3.5 Cone-Sphere Monostatic Scattering

In this sectiqn we discuss scattering for oblique incidence on the cone-sphere in contrast
to the previous section where axial incidence was considered. For axial incidence, only the
first order Fourier mode is required to describe azimuthal variation. For oblique incidence,
however, the zeroth order Fourier mode as well as higher order modes are required in addition
to the first order mode. It will be seen that the presence of the zeroth order mode in. particular
introduces complications not encountered for axial incidence.

Figure 21 shows the monostatic pattern in the E-plane for the narrow tip-angle cone-
sphere, { = 5°,ka = 5.9, treated in Section 3.4 as calculated by‘ the CFIE®, EFIE, and
DSEFIE, using Fourier modes 0 through 6. The DSEFIE calculation is performed with the
enhanced dual surface described in Section 3.4, with a separation of § = \/32 between the
original cone-sphere surace and the main dual surface. Figure 22 shows the corresponding
curves in the H-plane. It is seen that there is a significant difference between the values of
the E-plane RCS’s for # in the vicinity of 15°, while the H-plane patterns exhibit only small
differences in a low dB region of the patterns. In Fig. 23 we show the E-plane monostatic
patterns when modes 1 through 6 are used, and observe that there is virtually no difference
between the CFIE, EFIE, and DSEFIE patterns. In contrast, the CFIE, EFIE, and DSEFIE
patterns for the zeroth order mode only, shown in Fig. 24, display significant differences in
the vicinity of 8 = 1§°. The results shown so far thus demonstrate that the differences in the
E-plane monostatic patterns plotted in Fig. 21 are attributable to differences in the zeroth

order mode patterns. Furthermore, since the E-plane and H-plane zeroth order mode pat-

8Unless otherwise noted, when we refer to the CFIE it is assumed that the combination parameter ag

(see (3)) is set equal to 0.5, thereby giving equal weight to the EFIE and MFIE components of the CFIE.
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terms are due solely to the ¢t-directed and ¢-directed currents, respectively, it is the difference
in accuracy with which the fields radiated by the zeroth order mode t-directed currents are
calculated by the CFIE, EFIE, and DSEFIE, that accounts for the differences we have
observed.

To establish which one of the CFIE, EFIE, and DSEFIE patterns of Fig. 24 can be
regarded as correct, we begin by considering the discrepancy between the CFIE and EFIE
patterns. Since it is known that the MFIE is ill suited to calculations involving scatterers
with surfaces separated by much less than a wavelength, as is the case with narrow tip-angle
cones, it can be conjectured that the discrepancy between the CFIE and EFIE patterns is
due to the MFIE “component” that enters into the CFIE in combination with the EFIE,
thereby degrading the accuracy of the EFIE solution.® In Fig. 25 we have plotted the EFIE
and MFIE zeroth order mode E-plane monostatic patterns. We observe that the MFIE is
considerably at variance with the EFIE not only in the vicinity of # = 15° but for almost
the entire range of 6 from 0° to 90°. To verify that it is indeed the MFIE pattern that is
incorrect, in Fig. 26 we have plotted the EFIE pattern of Fig. 23 along with the MFIE
pattern as recalculated with a density of 400 points/A for the first wavelength from the tip
of the cone where the t-currents vary most rapidly, and a density of 40 points/) elsewhere.
The MFIE pattern is now closer to the EFIE pattern, though it still displays a discrepancy

of almost 2 dB in the near vicinity of § = 15°. Also shown in Fig. 26 is the EFIE pattern

9When we refer to the MFIE and EFIE “components” of the CFIE, we do not mean to imply that the
CFIE solution is a linear combination of the MFIE and EFIE solutions. There is no harm, however, in
thinking of these two limiting forms of the the CFIE solution as “components” since considerable insight

into the CFIE solution can be obtained by so doing.
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as calculated with a 400 point/) density close to the tip. It is seen that there is almost no
change in the EFIE pattern. We therefore feel justified in regarding the EFIE pattern as
correct.

Now the CFIE was developed to remove spurious resonances resulting from non-uniqueness
of the MFIE and EFIE at internal cavity resonant frequencies. For non-resonant scatterers,
such as the particular cone-sphere we are concerned with, the CFIE gives correct results
provided that the MFIE and EFIE solutions, separately, are correct. Here, however, as we
have seen, the MFIE solution of Fig. 25 that enters into the CFIE solution shown in Fig.
24 is highly inaccurate. Combining an inaccurate MFIE solution with an accurate EFIE
solution can only degrade the accuracy of the EFIE solution, as witness the discrepancy
between the CFIE and EFIE patterns of Fig. 24. If the CFIE pattern is recalculated using
a density of 400 points/\ close to the cone tip, then the CFIE pattern is much closer to the
EFIE pattern, as shown in Fig. 27. This is as expected since, as we have seen, the accuracy
of the MFIE component of the CFIE is thereby considerably increased. The problem we
have encountered here with the CFIE corroborates the finding of Wood and Hill [23] that
the value of the combination parameter used in the CFIE can strongly influence the rate
of convergence of the solution as the density of points/A is increased. An accurate EFIE
(ap = 1.0) solution can be obtained here with a 40 points/A density, but a value of ap = 0.5
(equal weighting of the EFIE and MFIE) requires a density of approximately 400 points/A
to yield acceptable results.

Having established the accuracy of the EFIE zeroth order mode E-plane monostatic
pattern, how is the discrepancy shown in Fig. 24 between the DSEFIE and EFIE solutions

to be explained? As with the CFIE, employing a density of 400 points/A for the first wave-
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length from the cone vertex and a density of 40 points/\ elsewhere gives a DSEFIE pattern
very close to the EFIE pattern as shown in Fig. 28. It is difficult to be sure without
extensive further investigation why this high density of points close to the cone tip is needed
to obtain a highly accurate solution with the DSEFIE. Since the EFIE by itself gives an
acceptable pattern for a density of 40 points/), it is clearly the calculation of the dual
surface component of the DSEFIE that requires a high density of points. Furthermore, since
a density of 80 points/\ gave acceptable DSEFIE results for the axial incidence bistatic
scattering discussed in Section 3.4, it appears that the rapid variation of the zeroth order
mode t-directed currents in combination with some aspect of the dual surface integration
procedure, possibly the treatment of the self-term, is responsible for the difficulty with the
;iual surface calculation. The essential thing to stress, however, as we did in connection with
the CFIE, is the importance of numerical experimentation before accepting the validity of
surface integral scattering calculations, especially if high accuracy is desired.

Since, as stated in the Introduction, the rationale for developing the DSEFIE has been the
importance of having two independent BOR surface integral equation scattering formulations
and computer codes, and since, as we have also noted in the Introduction, a DSMFIE
formulation already exists, it is of interest to see how well the DSMFIE calculates the zeroth
order mode monostatic E-plane pattern for the narrow tip-angle cone considered here. In
Fig. 29 we show the DSMFIE pattern calculated with a density of 400 points/A close to
the cone tip and 40 points/\ elsewhere, along with the EFIE pattern of Fig. 24, and the
DSEFIE pattern of Fig. 28. A separation of § = A\/4 between the dual surface and the
original cone-sphere surface is used for the DSMFIE calculation (the auxiliary dual surface

used for the DSEFIE cone-sphere calculations is not useful for the DSMFIE calculations).
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The DSMFIE pattern is in error by 1.6 dB at § = 13° and there are additional discrepancies
in the location of peaks and nulls. We conclude that for calculations involving scatterers
with narrow tips, the DSEFIE is significantly more reliable than the DSMFIE (see, however,

Footnote 3).

3.6 Half-Triangle Functions

In Section 2.8 the expansion and testing functions were defined in terms of triangle functions
7;(t) shown in Fig. 6. The 7;(t) overlap as shown in Fig. 7 so that, for example, 7;_;(t) = 1
at t5;,_, where 7;(t) = 0, and 7,,(t) = 1 at ¢}, , where 7,(t) = 0, etc. At the lower and upper
poles of the discretized generating curve there is no overlap, however, since the first triangle
function is 7;(¢) which is 0 at the lower pole, and the last triangle function is 7(p_3)/2(t)
which is 0 at the upper pole. In certain applications it may be desirable to have overlapping
at the lower and upper poles of the generating curve. This can be achieved by employing

the upper half of the triangle function 7o(t) at the lower pole where, from (92),

0, t<0,t> 1t
To(t) = gy (136)

m, OZtIStSts

and adding the lower half of the triangle function 7(p_3)/2+1(t) at the upper pole where

0, t<tp_gt>th

T(p-3)/241(t) = (g (137)
—tp_2

Trp+dpy P SPST

If half-triangle functions are employed at the beginning and end of the generating curve,
however, it is important to define the expansion and testing functions f;(¢) by (121) rather

than by (93) if p — 0 at the lower or upper pole of the BOR generating curve. If, for example,
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(93) is used to define fy(t) in conjunction with (136) and p — 0 as t = 0, fo(t) becomes
singular at p = 0. Even if the actual value of ¢t = 0 is not used because of the four-impulse
approximation (96), calculations based on (93) and employing half-triangle functions can
yield erroneous results.

As an example of the problems that can result by employing half-triangle functions along
with the expansion and testing functions of (93), in Fig. 30 we show the E-plane RCS
pattern of a sphere with ka = 5.5 obliquely illuminated by a TM plane wave at an angle of
incidence of 45°. Along with the Mie series pattern shown for reference we show the DSEFIE
patterns obtained with the basis functions of (93) with and without half-triangle functions,
and the pattern obtained with the basis functions of (121) using half-triangle functions. It is
seen that the pattern obtained using half-triangle functions and the basis functions of (93)
differs greatly from the other three patterns. This discrepancy does not occur with the H-
plane. Further calculations demonstrate that the discrepancy that occurs using half-triangle
functions along with the basis functions of (93) is due to the zeroth order Fourier mode as
shown in Fig. 31. No discrepancy occurs with the higher-order Fourier modes. Although
not an explanation it is noted that for the zeroth order mode the E-plane pattern is due
solely to the t-directed currents and not to the ¢-directed currents while the H-plane patten

is due solely to the ¢-directed currents on the sphere.

4 SUMMARY

The purpose of this report is to provide for the first time a detailed analysis and solution of

the problem of determining scattering from a PEC BOR using the DSEFIE, and to show
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results obtained with a computer code based on this analysis. The DSEFIE is an extension
of the EFIE in which the boundary condition that the tangential electric field vanish on the
surface of a PEC object is satisfied not only on the actual surface but also on a fictitious
surface lying inside the actual surface and separated by a small distance from it. Scatter-
ing solutions obtained using the DSEFIE are free from the spurious resonances that can
seriously degrade the accuracy of solutions obtained using the conventional EFIE or MFIE
for 3-D scatterers whose linear dimensions exceed a wavelength. These spurious resonances
are a consequence of the fact that the EFIE and MFIE fail to produce a unique solution
for the current on a PEC scatterer at frequencies equal to the resonant frequencies of the
interior cavity formed by the surface of the scatterer. Although the widely used CFIE also
eliminates spurious resonances, it is important to have available two independent surface
integral formulations that can be applied and solved efficiently. Another surface integral
equation solution free from spurious resonance that has been successfully programmed and
tested, the DSMFIE, is also independent of the CFIE, but it does not yield accurate results
for conductors containing narrow-angle wedges or tips.

In this report the DSEFIE is formulated in terms of the vector and scalar potentials, A
and ®, and then solved by the Galerkin form of the method of moments. It is noteworthy
that the device of Mautz and Harrington used to transfer the differential operator on &
to the testing functions and so maintain the singularity of the kernel equal to that of the
free-space Green’s function, cannot be used when the observation point lies on the dual
surface rather than on the original surface. As a result the elements of the Z matrices for
the DSEFIE have a more singular kernel than that of the free-space Green’s function. This,
however, does not appear to create numerical difficulties since the distance between points
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on the original surface and points on the dual surface never goes to zero. The basis and
testing functions are given as products of the Fourier modes used to express the azimuthal
dependence of the currents, and triangle functions are used to express the dependence of the
currents on the BOR generating curve parameter t. A four-impulse approximation to the
triangle functions is used which enables the integrations with respect to ¢ to be performed
in closed form. Detailed expressions for the elements of the Z matrices and the V column
vectors that appear in the Galerkin matrix formulation of the DSEFIE are then given as
summations that can be readily evaluated by computer. The efficiency of evaluating these
expressions can be greatly increased by using a change of indexing described in the report.
Calculations performed with a computer program of the DSEFIE solution demonstrate the
removal of spurious resonances that appear in calculations of the RCS’s of spheres, spheroids,
and finite cylinders made with the conventional EFIE. Cone-sphere calculations show that
application of the DSEFIE to objects containing narrow tips requires careful placement of
the dual surface in the vicinity of the tips and sometimes an increased density of grid points
in the ¢ direction a wavelength or so from the tip. When these precautions are taken, the
DSEFIE yields significantly more accurate solutions than the DSMFIE for scatterers with

narrow tips.
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