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1    INTRODUCTION 

Computational electromagnetics continues to rely heavily on surface integral equations for 

the efficient numerical solution to scattering from perfectly electrically conducting (PEC) 

bodies [1], [2], [3]. Both the magnetic-field integral equation (MFIE), which was derived by 

Murray [4] in 1931, and the electric-field integral equation (EFIE), which was derived along 

with the MFIE in the definitive 1949 paper by Maue [5], are applied only to the surface 

current of the scatterer and thus require a number of unknowns proportional to the sur- 

face area in square wavelengths of a three-dimensional (3-D) scatterer.1 The MFIE is an 

absolutely convergent integral equation of the second kind whose associated discrete matrix 

has a bounded condition number as the number of discretizations (grid points) on the sur- 

face of the scatterer approaches an infinite value. The EFIE is a conditionally convergent 

integro-differential equation of the first kind whose associated discrete matrix has an un- 

bounded condition number as the number of discretizations on the surface of the scatterer 

approaches an infinite value [5], [6], [7], [8]. Therefore, the determination of surface current 

(and subsequently the scattered fields) for a scatterer using the EFIE generally requires a 

more sophisticated numerical scheme with more unknowns per square wavelength than the 

MFIE. However, the matrix solution to the MFIE degenerates to an underdetermined set 

of equations for the surface current on an open scatterer (infinitesimally thin conductor) [9, 

pp.  168-172] and approaches degeneracy if parts of the conducting surface become much 

closer to each other than a wavelength as in the case of a thin plate, thin wire, or tip of a 

although we often refer to "the" MFIE or "the" EFIE, these equations can be written in many different 

forms. 



small-angle cone. Consequently, to determine the scattering from many different kinds of 

PEC bodies using surface integral equations, the EFIE must be employed. 

Both the EFIE and the MFIE have a serious limitation. As Murray [4] and Maue [5] 

pointed out, the EFIE and the MFIE fail to produce a unique solution for the current on a 

PEC scatterer at frequencies equal to the resonant frequencies of the interior cavity formed 

by the surface of the scatterer. Since the density of the cavity resonant frequencies increases 

rapidly with frequency beyond the first resonance, which for many cavities occurs when the 

maximum linear dimension is approximately one wavelength, the numerical solution of 3-D 

multiwavelength bodies is severely hampered by these spurious resonances. In principle, the 

spurious resonances in the solution for the surface current occur only at discrete frequencies, 

and for the EFIE they should not contribute to the scattered field [6]. In numerical practice, 

however, they contaminate the surface current and scattered fields of both the EFIE and 

MFIE over finite bandwidths about the cavity resonant frequencies. Within these band- 

widths the determinants of the solution matrices of the integral equations become too small, 

and the condition numbers become too large, to produce an accurate numerical solution. 

Among the several ways to eliminate the spurious resonances from the original integral 

equations, the combined-field integral equation (CFIE) and the dual-surface magnetic-field 

integral equations (DSMFIE) have distinguished themselves in numerical practice as ef- 

fective, efficient, and convenient alternative integral equations for eliminating the spurious 

resonances [9, pp. 222-225], [10], [11], [12], [13], [7], [14], [2, ch. 6]. 

The CFIE [15], [9], [10], [11] is formed by combining the MFIE 

n x Hinc(r) = J(r)/2 -fix f J(r') x V'G(r, v')dS' (1) 



with the EFIE 

n x Einc(r) = -i-n x [[k2J(r')G{r,T') - Vs ■ J(r')V'G(r,r')]rf5' (2) 

to get 

n x (1 - a0)H
inc(r) - ^n x Einc(r) 

= (1 - <*„) J(r)/2 - n x j J(r') x V'G(r,r')dS' 

-J^n x n x f[k23(T')G(T,T') - Vs • 3(r')V'G{r,r')]dS' (3) 

where J(r) is the surface current density on the surface S of the scatterer (r E S), Vs- is 

the surface divergence [16, Appendix 2, 18.], n is the outward unit normal from the surface 

S, eo, ßo, and Zo = JHQ/CO are the permittivity, permeability, and impedance of free space, 

and (Emc, Hmc) are the electric and magnetic fields incident upon the scatterer. Harmonic 

time dependence of the form exp(jut) has been suppressed, k = uj^/JIöeö, and the free-space 

Green's function is given by 

G(r,r') 
exp(-jfc|r-r'|) 

47rlr — r'l (4) 

The combination parameter a$ is a real constant that can assume values between 0 and 1, 

with Qio = .2 as a typical choice [17]. Mautz and Harrington [10], [11] give a straightforward 

proof that the CFIE has a unique solution at all frequencies and therefore eliminates the 

spurious resonances from the original MFIE and EFIE. 

The DSMFIE and dual surface electric-field integral equation (DSEFIE) can be written 

as [13], [7] 

n x Hd(r) = J(r)/2 - n x j J(r') x VGd(r, r')dS' (5) 



n x Ed(r) = -^-n x /[A;2J(r')Gd(r, r') - V's • J(r')VGd(r, v')}dS' (6) 

where Hd(r), Ed(r), and Gd(r,r') are defined as 

Hd(r) = Hinc(r) + aKinc(rd) (7) 

Ed(r) = Ei7IC(r) + aEinc(rd) (8) 

Gd(r,r') = G(r,r') + aG(Td,T') (9) 

with r £ S and rd lying on a surface Sd a normal distance S inside 5 as shown in Fig. 1. 

The DSMFIE and DSEFIE in (5) and (6), although identical in form and comparable in 

complexity to the original MFIE and EFIE, each provide a unique solution for J(r) at all real 

frequencies as long as the combination constant a has an imaginary part and the positive 

real separation constant S is less than half a wavelength (A/2) [13]. In recent numerical 

practice, we usually choose a equal to .25j and 8 between A/32 and A/4. 

It is not necessary for uniqueness of solution to keep the inner surface at a fixed distance 

5 from the scattering surface as long as 6 is less than A/2 and large enough to numerically 

maintain uniqueness of solution. In practice it is not always necessary to include the inner 

surface for every observation point or to make the inner surface a continuous surface. This 

means that one can often avoid difficulties in defining the inner surface for scatterers with 

complicated shapes by simply leaving out the inner surface if it gets closer than a minimum 

distance 5 from any part of the surface 5. 

The dual-surface integral equations were introduced a number of years ago [18] and the 

DSMFIE (5) has been successfully applied to multiwavelength rectangular boxes [13], [7] and 

to bodies of revolution [14], [19]. To date, a numerical solution to the DSEFIE (6) for 3-D 



Figure 1. Geometry of a perfectly conducting scatterer with surface S and a fictitious "dual 

surface" Sd at a normal distance 6 inside S. (The value of S can vary over S.) 



scatterers has not been successfully formulated and programmed2, and thus it is the primary 

aim of this report to formulate, test, and document the DSEFIE (6) for bodies of revolution 

(BOR's). 

What is the utility of a dual-surface integral equation computer program for BOR's 

when CFIE computer programs for BOR's are available [21]? We can answer this ques- 

tion by reviewing some of our recent work with surface integral equations in connection 

with incremental length diffraction coefficients (ILDC's). In order to test the accuracy of 

shadow-boundary ILDC's developed to improve upon the accuracy of physical optics (PO) 

for calculating high-frequency scattering, we applied them to multiwavelength perfectly con- 

ducting BOR's and, in particular, to prolate spheroids [19]. To determine the accuracy of 

the calculated PO+ILDC solution, we needed a highly accurate (< ±.1 dB error in the 

far-field patterns) numerical solution to the exact field equations for scattering from prolate 

spheroids. (No eigenfunction solution exists for electromagnetic scattering from spheroids.) 

We used our in-house DSMFIE BOR program to compute the scattering from the prolate 

spheroids. (As explained above, the dual surface is required to eliminate the spurious reso- 

nances from the solution to the MFIE.) Although we gained some confidence in the DSMFIE 

solution by noting convergence of the solution as the surfaces of the spheroids were divided 

into smaller and smaller increments, and by comparing the computed and exact Mie series 

solutions for the sphere, we could only be sure that the DSMFIE numerical solution was con- 
2A method of moments solution for the DSEFIE applied to BOR's was considered in [20].   Although 

the details of the method of moments formulation are not given in [20], they can be determined from the 

computer program written in conjunction with [20].  An analysis of this method of moments formulation 

revealed that it was invalid for the dual surface part of the DSEFIE. 



verging accurately enough to the correct solution for eccentric spheroids if we could compare 

it to another independent numerical solution. 

To obtain a second independent numerical solution for scattering from the prolate spheroids, 

we used a CFIE computer program called CICERO [21] . The CFIE and the DSMFIE agreed 

over the entire far-field pattern to within the thickness of the lines used to plot the far-field 

patterns. Even though the CFIE and DSMFIE are each integral equations, the CFIE com- 

bines both the electric and magnetic field operators to form a surface integral equation that 

is very different from the DSMFIE, which involves only the operator of the magnetic field 

integral equation. Therefore, the close agreement of the two very different integral equation 

solutions gave us the confidence to designate these solutions as the "highly accurate reference 

solution" to which we could compare our approximate high-frequency ILDC solution. 

This experience not only confirmed in us an appreciation for surface integral equations, 

but it also clearly demonstrated the importance of having available two independent sur- 

face integral equation formulations that can be applied and solved straightforwardly and 

efficiently. In the work with spheroids described above, the two surface integral equations 

we used were the DSMFIE and the CFIE. However, as explained above, for infinitesimally 

thin conductors (open surfaces), the magnetic field operator degenerates to give an under- 

determined set of equations, and for conductors containing narrow-angle wedges and tips, 

the magnetic field operator becomes unstable. Thus, for many scattering geometries, such 



as the small-angle cone-sphere, one must use the DSEFIE instead of the DSMFIE.3 

Consider the following example of using the DSEFIE where the DSMFIE has difficulty 

producing as accurate a solution. The measured and CFIE-computed radar cross sections of 

a cone-sphere with a half angle of 7° were shown in [22] to disagree by several dB over a large 

range of incident angles, and it remained uncertain as to whether the measured data, the 

CFIE computations, or both contained large errors. Results for this cone-sphere computed 

with the DSEFIE developed in the present paper agreed very closely with the CFIE results 

in [22], and thus it was concluded that the large discrepancy between the computed and 

measured radar cross sections was due mainly to errors in the measured data. 

The importance of having two independent surface integral equation formulations is also 

underlined by the fact that calculating scattering with surface integral equations is often far 

from being a simple "turn the crank" procedure. As a recent investigation of the convergence 

properties of the CFIE has shown [23], the value of the CFIE combination parameter a>o 

can strongly influence the rate at which scattering calculations converge with increasing 

grid point density.  Similar conclusions apply to our own experience with the influence of 

the combination parameter a and the separation distance 5 on results obtained with the 

DSEFIE. Careful checking of the results of scattering calculations obtained with surface 

integral equations is thus very important, and can be done more easily and rigorously if two 

independent formulations are available. 
3The difficulty with the MFIE and DSMFIE near the tip of a small-angle cone-sphere several wavelengths 

long has been remedied by inserting the known Bessel function dependence of the exact zeroth order lon- 

gitudinal tip current of the infinite cone [20, ch. 5]. There is no guarantee, however, that this remedy will 

work for any shape and size of a BOR containing a narrow tip. 



The organization of the report is as follows. Section 2 contains the analysis of the DSEFIE 

solution of the BOR scattering problem. It is divided into several subsections beginning with 

the statement of the problem and definition of the geometry in Section 2.1. The formulation 

of the DSEFIE in terms of the vector and scalar potential functions A and $ is derived in 

Section 2.2. The solution of the DSEFIE by the Galerkin form of the method of moments is 

outlined in Section 2.3. Detailed expressions for the elements of the Z matrices that multiply 

the column vectors of the surface current expansion function coefficients to be determined 

are derived in Section 2.4. The Z matrices are treated by expressing them as the sum of four 

submatrices. Two of these submatrices contain the terms involving the vector potential A, 

one each for the observation point on the original surface and the dual surface, respectively, 

and two contain the terms involving the scalar potential $, again one each for the observation 

point on the original and dual surface. It is noteworthy that the procedure of Mautz and 

Harrington [11] we use to transfer the differential operator on $ to the testing function when 

the observation point is on the original surface cannot be used when the observation point 

lies on the dual surface. In Section 2.5 we obtain detailed expressions for the elements of the 

V column vectors in the right-hand side of the Galerkin matrix equation formulation of the 

DSEFIE. In Section 2.6 we obtain expressions for the currents induced on the surface of a 

BOR by a transverse electric (TE) and transverse magnetic (TM) linearly polarized plane 

wave in terms of the solution to the Galerkin matrix equation, and in Section 2.7 expressions 

for the components of the far scattered field are derived. The analysis of Sections 2.4 - 2.7 is 

general in the sense that no explicit form is assumed for the expansion and testing functions 

other than the Fourier modes used to express their azimuthal dependence. In Section 2.8 

we introduce the four-impulse approximation to a triangle function used to express the 



dependence of the expansion and testing functions on the BOR generating curve parameter 

t. This allows the integrations with respect to t of the expansion and testing functions to be 

carried out in closed form. The expressions for the elements of the Z matrices and V vectors 

obtained in Sections 2.4 and 2.5, and the expressions for the far scattered field obtained 

in Section 2.7 are then given as summations that can be readily evaluated by computer. 

The efficiency of evaluating these summations can be greatly increased by using a change in 

indexing described in Section 2.9. Section 2.10 discusses the choice of the number of Fourier 

modes that need to be used in the calculations. 

Section 3 contains the results of calculations performed with a DSEFIE computer pro- 

gram written to implement and validate the analysis of Section 2. Section 3.1 shows that the 

DSEFIE removes a spurious resonance that appears when the backscatter radar cross section 

(RCS) of a PEC sphere is calculated with the EFIE. Section 3.2 demonstrates the DSEFIE 

removal of a spurious resonance in the bistatic RCS pattern of a PEC prolate spheroid ob- 

tained with the EFIE. Section 3.3 shows the effectiveness of the DSEFIE in eliminating a 

spurious resonance in the calculation of the bistatic and monostatic patterns of a finite cylin- 

der. Section 3.4 discusses calculations of the bistatic RCS pattern of an axially illuminated 

PEC cone-sphere, and the special treatment of the dual surface needed when the DSEFIE 

is applied to a cone-sphere with a narrow tip angle. Section 3.5 continues the discussion of 

scattering by a cone-sphere with a narrow tip angle by treating monostatic scattering. The 

monostatic case is significantly different because of the presence of the zeroth order Fourier 

mode, absent in axial illumination. Section 3.6 discusses the use of half-triangle basis func- 

tions at the beginning and end of the generating curve for a BOR. A report summary is 

given in Section 4. 

10 



2    ANALYSIS 

2.1    Statement of Problem 

We seek to determine the surface current and the far scattered field of a perfectly electrically 

conducting (PEC) closed body of revolution (BOR) excited by an incident plane wave. The 

geometry of the BOR is shown in Fig. 2. Circular cylinder coordinates (p, <f>, z) are employed 

with (p, 0, z) denoting the corresponding unit vectors, and with the z axis chosen as the axis 

of revolution. The origin of the circular cylindrical coordinate system lies on the z axis but 

does not necessarily coincide with the lower pole of the BOR as in Fig. 2. The coordinates 

(t, </>),with t the pathlength along the generating curve of the BOR from the lower pole, 

form an orthogonal curvilinear system on the surface S of the BOR; the corresponding unit 

vectors are (t, <f>). Figure 3 shows the propagation vector kmc = k kmc of the incident plane 

wave. The propagation vector is assumed to lie in the xz plane ((f) = 0), with — kmc making 

an angle of 6mc with the positive z axis and with kx
mc < 0 so that 

kinc = -jfe(sin 0incx + cos 6incz). (10) 

The free space propagation constant is given by k = u/c where c is the speed of light 

and oj > 0. Harmonic time dependence exp(jut) is assumed. Also shown in Fig. 3 are 

the spherical polar angles of the far field observation point r/ar = (r,9^ar,(j)far) and the 

^ far ~ far 
associated unit vectors 0 and 4> . For TM illumination the incident electric field is 

given by 

Einc = kZ0exp(-jkinc ■ r)9inc (11) 

11 



Figure 2. Body of revolution and coordinate system. 
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Figure 3. Plane wave scattering by a body of revolution. 
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while for TE illumination 

Emc = kZ0exp(-jkmc • r)0    . (12) 

In (11) and (12) r is the vector from the origin to any point in space and Z0 is the intrinsic 

impedance of free space. The factor of kZ0 is inserted to simplify the analysis. 

2.2    Derivation of the Dual-Surface Electric-Field Integral Equa- 

tion 

To derive the dual-surface electric-field integral equation (DSEFIE) we first derive the or- 

dinary electric-field integral equation (EFIE). On the surface S of the PEC BOR the total 

tangential electric field vanishes. The total field is expressed as the sum of the incident field 

and the scattered field, so that 

n(r) x Etot(r) = n(r) x [Einc(r) + E*c(r)] = 0, r on S (13) 

where ~Etot and E*c are the total and scattered electric fields, respectively, and n is the unit 

normal vector to the surface S at r, assumed directed outward from S. The scattered field 

can be expressed in terms of a vector potential A(r, J) and a scalar potential $(r, J) by 

E
SC

(T) = -juA(r, J) - V$(r, J) (14) 

where 

A(r,J)=/io|j(r')G(r,r')d5' (15) 

and 

$(r,J) = - [a{T')G{r,r')dS'. (16) 
e°s 
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Here G(T, r') is the free-space Green's function 

G(r'r)-       47T | r - r' |      ' (17) 

r and r' are the vectors to the field and source points respectively, J(r') is the electric 

current on S to be determined, fiQ and eo are the permeability and permittivity of free space 

respectively, and a is the surface charge density given by 

a(r') = -^-V's-J(r') (18) 

where the operator V's- is the surface divergence [16, Appendix 2, 18.]. Combining (13) and 

(14) and dividing by the free-space impedance Z0 = (/ioAo)1//2 we obtain 

^ x \juA(T, J) + V*(r, J)] = *p- x Einc(r), r on S. (19) 

Equation (19) with A and $ given by (15) and (16) is the potential form of the EFIE for 

the current on the surface S of the BOR. 

To obtain the DSEFIE we note that for points inside of S the total electric field vanishes 

so that 

Esc(r) = -Einc(r), r inside S. (20) 

With (14)-(16), (20) can be written as 

juA{r,J) + V$(r, J) = Einc(r), r inside S. (21) 

In (21) we can now let r lie on a surface 5,$ parallel to, and a small distance S > 0 inside, 

the actual surface of the BOR. If rd(r) denotes the point on the dual surface corresponding 
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to a point r on the original surface4 then 

ju;A(rd(r), J) + Vr<i$(rd(r), J) = Einc(rd(r)), r on S. (22) 

Dividing (22) by Z0 and adding an(r) x (22) to (19) yields the DSEFIE 

^ x [jwA(r, J) + jauA(rd(r), J) + Vr$(r, J) + öVr^(rd(r), J)] 

Einc(r) + aEtnc(rd(r)], r on 5. (23) 
n(r) 

x 
Zo 

If the combination constant a has an imaginary part and the separation distance 5 is less 

than half a wavelength the DSEFIE (23) provides a unique solution for J(r) at all real 

frequencies [13], unlike the conventional EFIE (19). We have found that choosing a = .25j 

has worked well for the BOR's we have considered. 

2.3    Solution of the DSEFIE by the Galerkin Form of the Method 

of Moments 

To solve the DSEFIE (23) for the surface current J we employ the method of moments and 

let 

J = ££(4Ä + #iJy (24) 
n   i 

where Jj, • and J„j are the expansion (basis) functions of the BOR surface coordinates t and 

3l
nj = ifjity**, n = 0, ±1, ±2, • • •, (25a) 

4For smooth generating curves rd can be obtained from r by setting rd(r) = r — <$n(r). For generating 

curves with corners, however, a correspondence such as shown in Fig. 4 for the generating curve of the finite 

cylinder may be preferable. 
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R     P 

Figure 4. Correspondence between points on the body of revolution generating curve for a 

finite cylinder and points on the dual-surface generating curve. 
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Jjj = Mitt)**1*, n = 0, ±1, ±2, • • •, (256) 

/£, and Inj are coefficients to be determined, and the summation over the Fourier modes 

ejn4> is from _N t0 N_ The choice 0f the functions /,•(*) is treated below in Section 2.8, and 

the value of N discussed in Section 2.10. 

Next, using the Galerkin method, the dot product of (23) with each one of a collection 

of testing functions W^, W^ defined by 

W^ = ifi{t)e-^, m = 0, ±1, ±2, • • •, ±N, (26a) 

Wjtf = 4>fi(t)e-im*, m = 0, ±1, ±2, • • •, ±N (266) 

is integrated over S and use is made of the fact that n, 0, t form an orthogonal triad of 

vectors to yield the matrix equations 

Bßünft + [Zl)li) = VI (27a) 
n 

BKX + [3ft]I*) = V* (276) 
n 

where the Z's are square matrices whose ijth elements are given by 

[ZZh = j-JWPmi ■ D"A(rf J«,-) +jauA(rd(r), jy 

+Vr$(r, jy + aV^(r), J^)]d5, (28) 

V^ and V* are column vectors whose zt/l elements are 

VL = YJ W™ ' tEinC + aEinV(r))] dS' (29) 

and Ij,,l£ are the column vectors of the coefficients of the expansion functions in (24). In 

(28) and (29) p and q, which can be either t or <f>, indicate the unit vectors of the testing 

and expansion functions, respectively. 
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2.4    Expressions for the Elements of the Z Matrices 

Detailed expressions are now obtained for the elements of the Z matrices given by (28). We 

write 

\zzh = KJ£ + «[zz]« + \zz\% + oc[zz\t- (30) 

with 

[ZZtj = 4" / WL • juA(v, jydS, (31a) 

[ZZW = ~ / WL • ju,A(rd(r), jy dS, (316) 

KJ J = ^ / WL * Vr$(r, J«,)dS, (31c) 

l^»]y = YQJ
WPmi- Vr^(rd(r),J^)d5, (31d) 

and treat each of these four terms in turn.   The superscript d is used here and below to 

indicate dependence on the dual surface. The superscripts p and q indicate the unit vectors 

of the testing functions and the expansion functions, respectively. 

Equation (31a) together with (15), (17), (25), and (26) becomes 

K„]§ = jk jdtj pd4>I dt' J f/dtffiMMtyp ■ qV^'e-^G(r, r'). (32) 
—IT —7T 

In (32) and the following, quantities with primes are associated with the source point (ex- 

pansion function) integration and unprimed quantities are associated with the observation 

point (testing function) integration. The integrations with respect to t and t' are from 0 

(the lower pole of the BOR, see Fig. 2) to the length of the generating curve for the BOR, 

the value of t and t' at the upper pole of the BOR. It is easy to establish the unit vector 
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relations5 

t • t' = sinv(t) sinv'(t') cos(<f>' - <j>) + cosv(t) cosv'(t'), (33a) 

t • </>' = - sinv(t) sinf>' - <f>), (33b) 

<t> ■ t = sin v'(t') sin(<^' - 4>), (33c) 

and 

<j> ■ 4> = cos((f>' - (f>), (33d) 

where v and v' are the angles measured positive clockwise from the positive z axis to t and 

t respectively (see Fig. 5). It is also simple to show that 

p2 + pa _ 2ppl cos{(j) _ ^ + {z_ 2,)2] V* 

= [(p-p')2 + (2-z')2 + Wsin2(^)]1/2. 

r — r 

2 

In view of (33) and (34) the (j) and 4>' integrations in (32) are of the form 

(34) 

71 71 TV 7T 

/" ctye-
J'm* f d<t>'e3n<t>' f(<j)' - <f>) = f aV(n~m)0 / d0V'n(*'-*)/(0' - $ 

— 7T —7T — 7T — 7T 

7T 

= 2ir5nmJd<(>'e>n*f (</>') (35) 
— 7T 

where the Kronecker delta 5nm equals 0 for m ^ n and equals 1 for m = n, and we have 

used the 27r-periodicity of the ^'-integrand to set 0 = 0. Hence 

■n 

rajy = \W\ti = J27T*/dip/, W /dt'p'f3(t') J #'(p • <{)*<* G{R) (36) 

5Equations (33a-d) follow directly from noting that 

t = cos v(t)z + sin v(t)p = sin v(t) cos 0x + sin v(t) sin 0y + cos v(t)i, 

<fr = — sin </>x + cos </>y, 

and similarly for t and <p . 
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generating curve 
for the BOR 

Figure 5. Defining geometry for the angle v in the pz plane. 

21 



where, from (33) and (34) with <f> = 0, 

and 

Then 

and 

t • t = sin v(t) sin v'(t') cos <j>' + cos v(t) cos v'(t), 

t • 0 = — sin i>(£) sin <p, 

0 • t = sin ?/(£') sin ^', 

(f) ■ (fi  = cos </>', 

Ä=|r-r'|= (p - p'f + (z - z'f + 4pp> sin^) 
-,1/2 

raj = &*k Idtphit) jdt'p'fjit') 
IT 

■ I d<t>'G{R)ejn4'' [sin v(t) sin v'(t') cos <£' + cos v(t) cos i/(*')], 
—w 

[Zf ]A = J27TÄ: | eftp/^) / <W, (0 sin v'(t') J d4'G{R)eP^ sin <£', 
— 7T 

7T 

[Z^]A = -j2nk J dtpfi{t) sin u(t) J dt'p'ftf) J d<f>'G{R)ejn4'' sin <f>', 

[Z*% = j2nk j dtpfi(t) j dt'p'fji?) J #'G(/?)e^' cos <f>'. 
— 7T 

Making use of the symmetries in the 4>' integrations in (39), we obtain 

\Z%   =   Jk2 jdtpfi(t) jdt'p'fjit'^sm v(t) sin v'(t')G2,n(p, p', z - z') 

+   cosv(t) cosv'(t')Gi<n(p,p',z - z')\, 

(37a) 

(376) 

(37c) 

(37d) 

(38) 

(39a) 

(396) 

(39c) 

(39d) 

(40a) 
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and 

where 

and 

[Zt% = -k2 jdtpfti)Idt'p'f^smv'WGs^P'^- A (406) 

[Zn% = k2j dtpfi(t) sin v(t) J dUpffjWG^ip, p', z-z'), (40c) 

\Zt% = Jk2 j dtpfi(t) Jdt'p'fj{t')G2,n{p, p', z - z'), (40d) 

Ghn(p, p\ z-z') = J G0(R) cosWW, (41a) 
o 

G2,„(p, p', z-z') = J G0(R) cos(n0') cos 0'#', (416) 
o 

G3,n(p, p', z-z') = J GQ(R) sin(n</»') sin </.'#', (41c) 

with 

Go(R) - HE(g^) (4W) 

and i? given by (38). In the arguments of the Gk,n,k = 1,2,3, p and z are functions of the 

observation point coordinate t, and p' and z' are functions of the source point coordinate 

t'. Equations (40a-d), the detailed expressions for (31a-d), are in terms of the t dependence, 

fi(t), of the expansion and testing functions discussed below in Section 2.8. Referring to 

(38) it can be seen that R — 0 when p' = p, z' = z, and </>' = 0, so that Gi,n(p, p', z - z') and 

G2,n(p, P1, z - z') become singular. This problem will also be treated in Section 2.8. 

Turning next to (31b) it can be seen that the treatment of (31a) carries over if rd = 

(pd,(f),zd) is substituted for r in (32) and (34). (Note that the value of <f> is the same for 

corresponding points r and rd(r), and that the testing function integrations are performed 
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on the surface of the BOR.) Hence letting 

Rd=\rd-r'\, (42) 

ray"   =   Jk2 j'dtpfi{t) j'dt,p'fj{t')[smv{t)ünv'{t')G2,n{p\p',zd ~ *') 

+   cos v(t) cos v'{t')Ghn(pd, p', zd - z')], 

(43a) 

[Z^tf = -k2 j dtpfi(t) j dt'p'fjit') sin v'(t')G3,n(pd, p\ zd - z'), (436) 

[ W = k2j dtPM sin «(«) / dt'p'f^G^ip", p', zd - z'), (43c) 

and 

[ W = Jk2 j dtpfiit) Idt'p'fj{t')G2,n{pd, p\ zd - z% (43d) 

where the Gk,n,k = 1,2,3, are defined as in (41a-d) with R replaced by Rd. It should be 

noted that unlike R defined by (38), Rd defined by (42) cannot equal zero and so there are no 

singularities of the integrands of Gi<n(pd, p', zd - z'), G2<n{p
d, p', zd ~ z')> and G3)T1(p

d, p', zd - 

z>). 

Next, addressing (31c), we first show that [11] 

jwp
mi • Vr$(r, jydS = - /(Vs • Wp

mi)$(r, J^dS, (44) 
s s 

where Vs- is the surface divergence operator [16, Appendix 2, 18.]. The importance of (44) 

is that the integrable singularity of | r - r' |_1 in the Green's function G(T, r') given by (17) 

is thereby not converted to a singularity of higher order | r-r' |~2 by the operator Vr acting 

on $ in the left-hand side of (44). To prove (44) we start with the relationship 

jVs-^Wp
mi)dS = 0 (45) 

s 
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which holds because S is closed and W^j is tangential to S [16, Appendix 2, 42.]. Since 

Vs • (*WSJ = W^ • V5$ + (V5 • WL)$, (46) 

we have 

Jwp
mi-Vs$dS = -J(Vs-W

p
mi)$dS (47) 

and (44) follows from noting that in (47) Vs$ can be replaced by V<fr because W^j is 

tangential to S. Equation (31c) together with (44),(16),(17), and (18) then becomes 

[3SJS = -tfdSJdS'iVs- Wp
mi)(Vs- jyG(r,rO. (48) 

s      s 

Now 

and 

V's-J^ = ^[p7i(0]^', (49a) 

VWi-= y/i(tVB*, (496) 

V5'W-i = ^[p/l(i)]eJn*'' (49C) 

^s-yfL = -—fm^n4f. (49d) 

Hence 

i^»is=4 / %![p/i(t)] /#pe_jm' / dt'^[p,fj{t')] I d(t>'p'ejn*'Gttr -r' i). 
~7T — TV 

(50a) 

KJS = 4 /^ I ^^Idt'^dT>[p'm] I WftJ^GÜ r - r' |),      (506) 
— 7T — 7T 

7T .   .,        7T 

Ä15 = Udt~Jt[pm] I d(t>pe~jm*I dttf    I W/teffGU r - r' |), (50c) 
— 7T 
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and 

mnJ* = -^rj^ I d4>pe-™jd1*yp-1 d<t>'p>e^'G(\ r - r' |). (50d) 
-7T 

Just as for [Z^n]fj the (j) and (p' integrations in (50) are treated using (35) and the symmetries 

of the resulting (j)' integrations then yield 

[ZX = -j J'dtjt[Pn{t)} j dt'^yf^G^p^z - z'\ (51a) 

[Zf\% = -njdt^jdt'^lp'f^^^p^z- z'), (516) 

[#1S = nfdtjt[pfMfdt'^f±G1,n(P,P,,z- A (51c) 

and 

[Zt% = -jn2 jdt^> jdt'^-GUP,P',z- *')■ (51d) 

Finally we turn our attention to (31d). Here it is not possible to use the device of (44) 

to transfer the differential operator on $ to the testing function W^ because the gradient 

operates with respect to points on the dual surface. Hence, using (16),(17), and (18), we 

obtain 

Vrd*(r«(r), Jjy = -L /[V's • ZW)]l±2^^e-m^\^ _ T.)dS> (52) 
s 

so that 

KJ*d = -{ j *S j dff[Vs ■ Wl   4tTri
r_rM3 '^fc|rd-r''WL • (rd - r').       (53) 

s       s ' ' 

It is simple to establish the relations (see the footnote regarding (33a-d)) 

t • (rd - r') = pd sin v(t) - p' sin v{t) cos(cf>' -</>) + {zd - z') cos v{t) (54a) 
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and 

4>-(vd- r') = -ff sin((j)' - <f>). (546) 

Hence (53) together with (54) and (49a,b) yields 

[ZUt   =   ~{ jdtfi{t) I type'™Idt'j^lp'fjit')} I dj>'p'e***' 
—IT —ir 

•    [pdsmv(t)-p'smv(t)cos((l>'-<l)) + (zd-z')cosv(tj\ H(Rd), 

(55o) 

[Ztnt = U */*(<) / type-*" J de—lpfftf)] j dcß'p'h**' sm(<f>' - j>)H(Rd), (556) 

IT IT 

WLt   =   I j'dtfi(t) j'type-** J'dt'-W) J'dfp'e**' 
— IT —7T 

•    [pd sin v(t) - p' sin v(t) cos(</>' -</>) + {zd - z') cos v{t)] H(Rd), 

(55c) 

and 

IT IT 

[Ztttv  =~IJ dtM) j *!>/*-*"* j dt'-Mt') J d<t>'p'2e**' sm(<f>' - <i>)H{R%     (55rf) 
— IT — IT 

where we have let 

with 

Rd =\ rd - r' | . (57) 

Once again the <j> and $ integrations are treated using (35), and the symmetries of the 

resulting <j>' integrations then yield 
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rad - -jk'jdtpj^jdt'^p'at')) 

■ {[pdsmv(t) + (zd - z')cosv(t)} Hhn{pd,p',zd - z') - p'sinv(t)H2,n(pd,p',zd -*')}, 

(58a) 

\Zt\t = -k21dtpMt) Idt'p'^[p'fJ(t'))H^n(p
d,p',zd - z'l (586) 

[Z*X   =   nk* j dtpfm j dt'^jp- 

■ {[pdsinv(t) + (zd - z')cosv{t)] Hlin{pd,p',zd - z') - p'sinv(t)H2,n(p
d,p',zd - z')} , 

(58c) 

and 

In (58) 

where 

\Zt?\% = -Jnk21 dtpfi{t) I dt'p'fJ(t')H,,n(pd, p', zd - z'). (58d) 

Hhn(pd, p', zd -z') = J H0(R
d) cos(n0')<¥, (59a) 

o 

H2,n(pd, P',zd ~ z') = / H0(R
d) cos(n^) cos <f>'d<f>', (59b) 

0 

#3,n(pd, p\ zd -z')= I H0(R
d) sm{n</>') sin <«', (59c) 

1 _i_ ii-/?rf 

^o(ßd) =   ,TD1,   eM-JkRd) (59d) (A;fld)3 

and i?d is given by (57). 

In view of the fact that we have demonstrated that 

[ZZh = 0, m + n (60) 
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the set of matrix equations (27) for determining the coefficient vectors Pn and 1% reduce to 

[ztl] [zu*] V? 
,n = 0,±l,±2,---,±iV. 

It is also easy to see from (30) and (40), (43), (51), and (58) that 

\z\\ = = [#], 

[z%\ = -[zl
n% 

[ztln] = -\zt\ 

and 

[zS] = {ZH,X 

(61) 

(62a) 

(626) 

(62c) 

(62d) 

2.5    Expressions for the Elements of the V Vectors 

Now that we have obtained detailed expressions for the elements of the Z matrices we turn 

to the elements of the column vectors V^ and V<* in (27) given by (29). Let 

V%=±-Jwp
ni.E™'<(r)dS (63) 

where p is either t or (f>, indicating the unit vectors of the testing functions given by (26), 

and q is either 6 or $, indicating the polarization of the incident electric field given by (11) 

or (12). The Fourier mode index m has been replaced by n since the original distinction 

between the Fourier mode index n of the expansion functions for the current and the Fourier 

mode index m of the testing functions is no longer needed in view of the orthogonality 

relation (35) which has been used in deriving expressions in Section 2.4 for all the elements 

of the Z matrices.   Since the expressions that will be obtained for V™ given by (63) will 
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carry over immediately for Emc'9(rd) needed in (29), there is no need to treat these two cases 

separately. It is simple to establish the unit vector relations (see the footnote to (33a-d)) 

t • e     = cos 9inc sin v(t) cos(0 - 4>inc) - sin 9inc cos v{t), 

4>-0     = -cos0incsin(</>-<^"c), 

i-4>    = sin*;(£)sin(<£-</>inc), 

and 

<p-d>     = cos(0 - 4>inc). 

Also, using (10), 

kinc • r = -fc(sin 0incx + cos 9incz) ■ (p cos <px + p sin <f>y + zi) 

-kp sin 9mc cos <f> - kz cos 9V 

Hence, recalling that it has been assumed that 4>mc = 0, 

2TT 

V% = kf dtpfi{t)ejkzcoseinc [cos9incsinv{t) f d<f>cos^P™*™COS*-«*) 

2TT 

- sin 0inc cos u(«) /" d<t>ej{kps'n °inc cos*""*>j, 
o 

Vff = -cos9inck f dtpfi(t)e
jkzcose'nc fd(t>sin (t)ej{kpsine'nCcos4'-n1>), 

o 
2n 

V% = k[ dtpfi{tyktcas0inc sin v{t) f d(j>sin (f>ej pj(kps\n 6xnc cos <t>-n4>) 

and 
2TT 

V*? = k f dtpfi{t)ejkzcose'nc fd4>cos(ße]{kps'meinCcos't>-n4'). 

(64a) 

(646) 

(64c) 

(64d) 

(65) 

(66a) 

(666) 

(66c) 

(66rf) 
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Using the integral representation for the Bessel function 

•-n   2,r 

Jn(x) = L— [ eH*«»*-™»^ (67) 
0 

it is simple to obtain the integral representations 

j8in^XCM*-n*)d<f> = -7rjn[Jn+1(x) + Jn-i{x)} (68a) 
0 

and 

Jcos<j>eJixcoS(),-n<t>)d<t> = 7ijn+l[Jn+1{x) - J„_!(x)] (686) 
0 

so that 

V$ = njn+1k jdtphit) [cos9incsmv{t)(Jn+l - Jn^)+ 2jsmeinccosv(t)Jn] e^
cos6inc, 

(69a) 

V$ = *jnk j dtpUit) cos 9inc( Jn+1 + Jn^
kzcos9in\ (696) 

V3 = -*Jnk j dtpfi{t) sinv(t)(Jn+1 + J^y**«"*"0, (69c) 

and 

Vff = ^Jn+1k j'dtpfi(t)(Jn+1 - Jn-Xy
kz™einc\ (69d) 

where we have let 

Jn = Jn{kp sin 9inc). (69c) 

Using the Bessel function relation 

J_n = (-l)nJn(z) (70) 

it is easy to show from (69) that 

V^u = K, (71a) 
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v* = —v<p 
v
-ni vni i 

rt<t> rt(p 

and 

r —rat ' ni i 

T/00   _ T/00 
'-ni        'ni   • 

(716) 

(71c) 

(71«0 

The expressions corresponding to (69) for V™ when Emc'9 in (63) is evaluated at rd(r) on 

the dual surface, needed for calculating (29), are obtained from (69) simply by substituting 

pd for p in (69e) only and zd for z in (69a-d). 

2.6    Calculation of the Current 

To calculate the current on the BOR surface we refer to (24) and (25) and write 

j«(t, d>) = £ <*«*£ [iium+iSfi{t)4»] (72) 
n= — N i 

where g = 9 (TM) or 0 (TE1) indicates the polarization of the incident electric field given 

by (11) or (12), and I^ltl are the elements of the coefficient vectors 1^,1^, obtained as 

the solution of the matrix equation (61) 

ra   [ft] 

\Z«]   [Z»\ 

Jtq 

\<t>Q 

Vf? 

vtq 
,n = 0,±l,±2,---,±JV. (73) 

Letting / = [/i(0/2(0 • • • /W(0] be the row vector of the expansion functions fi(t) (we use 

the tilde to indicate the transpose of a column vector), (72) can be written as 

N 

I 
n=-N 

J*M) =   £  e** [/tft +/#*] . (74) 

From (73), the relations (62) for the Z-n matrices in terms of the Zn matrices, and the 

relations (71) for the V_n vectors in terms of the Vn vectors, it is simple to derive the 

32 



relations 

ft = I?, (75a) 

ft = "If, (75Ö) 

ft = "In0, (75c) 

and 

ft=e (75d) 

(Note that (75b) and (75c) imply that if = 0 and if = 0.) Substituting (75) in (74) then 

yields the expressions for the currents induced on the surface of the BOR by a TM and TE 

linearly polarized incident plane wave, respectively: 

3e(t, 4>) = /ift + 2 £ [(/#) cosn<t>t + j(/lf) sinn<f>4>] , (76a) 
71 = 1 

and 

J*(i, <f>) = flf4> + 2 £■ [(/I?) sin n</>t + (/If) cos n<^] . (766) 
71=1 

2.7    Calculation of the Far Scattered Field 

In the far-field region the 9 and <f> components of the scattered electric field can be obtained 

from the vector potential A given by (15) [24, p. 281] 

Esc(v)r^-juA(T,J). (77) 

Then with (15) and (17), 

—jk\r—r'l 
Esc,pq{T) ™ _jkZo /-[J9(r/). p]e         , 

J 47T   r — r 
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A
 far ■* far 

where p : 9 or </>, indicates the far scattered field component; p : 0 or </> , is the 

corresponding unit vector (see Fig. 3); g : 9 or </>, indicates the polarization, 9 (TM) or 

4> (TE) of the incident electric field; J<? is given by (74), r = (r,9far,(ßfar) is the far-field 

observation point, and r' = (p1,4>\ z') is the source point on the BOR surface. In the far 

field, | r - r' | in the phase of the Green's function can be approximated by 

; ir->oo r — r    ~ r - p' sin 9far cos(<// - <f)far) - z' cos 9far (79) 

so that 

£".w(r) ™ -jkZ0— f[Jq(v') ■ p]eJVsinö/-cos(0'-^-)e^2'cose/-d5/_ (80) 

Anr J 
s 

The relations (64) can be used directly to obtain 

t' • 6far = cos9far sinv{t') cos{<f>' - <pfar) - sin9far cosv{t') (81a) 

0 . 0far = - cos 9far sin(0' - <f>far), (81 b) 

t • <£/ar = sinu(*') sin(0' - <£/ar), (81c) 

and 

$' -4>far = cos{4>'-<f>far). (81d) 

Letting the elements of the vectors Rjf and R*p be defined by 

R% = A;|/^(f0(t^p)e^^sine/arcos^-*/o^)+^'cose/orle^^-*/ar)d5' (82a) 

and 

Rt = k f fi{t')(4>' .p)e^'sin9/arcos(*'-*/or)+2'cose/or]e^^-*/ar)d5', (82ft) 
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with p = 0 or <f>, (80) together with (74) can be written as 

ESC,Pq{r)  r-OO        jkZoe-'   r      £     ejn<j)!ar   ^^ + ^^ 

Ankr 
(83) 

n=-N 

where, using (82) and the 2n periodicity of the 4>' integration 

2n 

R* =kf dt'p'fi (t')ejkz'cos elaT [ cos 6far sin v{t') j dtf cos </>'e>^sin e'°r cos <t>'+n^ 
o 

- sin 0'flr cos u(f) | d<t>'ej(kp'sin 0/a"cos *'+n^], (84a) 
o 

i2g = -cos9farkjdt'p'fi(t')e
jkz'cosefaT Jd(f)'sm<f>'ej(kp'sine,arcos't>'+n't>'\        (846) 

o 
2TT 

i$ = ifc /düffftf)^"*0'" srai;(f) |#'sin4>V^'8ine/Qrc08*'+n^, (84c) 

and 
2ir 

Rtf = kj dt'p'n{t')eikz'cos9,aT j d<t>' cos </>'e 
o 

j'(fcpsin^arcos(/)'+n^') (84d) 

Comparing (84a-d) with (66a-d) we observe that the corresponding expressions are the same 

if 8inc of (66) is replaced by 6far and —n of (66) is replaced by n. Then (69) and the relations 

(71) can be used to yield 

i$ = irjn+lkjdt'(/fi(t') [cos9^Tsinv(t')(Jn+l - JB_j) + 2jsin0'arcos<;(*')J„] ejkz'cos6'ar, 

and 

B£ = -nfkJdt'p'f^cose^iJ^ + Jfl_1)e**W" 

B% = 7rjnkJdt'p'ft(t')smv(t')(Jn+1 + Jn^
kz'coseJaT, 

Rtf = *jn+lkJde/ffi(t)(Jn+1 - Jn-xJe*''cose/ar, 

(85a) 

(856) 

(85c) 

(85d) 
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where 

Jn = Jn{kp' sin 9}a 

The relations (71) apply to the R™ as well, so that 

(85e) 

pte   _ pte 
■fl-m       lxnii (86a) 

D0C    _ _r>W 
■fl-nt ■n7ii » 

?t<fi piq>     _ _ rji<P 
•n--ni •fLnt' 

and 

D'/xA    _  ft<t><t> 
•"--nt        -"Wii • 

Then, substituting (86) and (75) in (83) it is straightforward to obtain 

Esc<ee{r) r ~°° 
jkZoe -jkr 

Ankr RX + 2 £ {&X + Rflf) cos(n^) 
n=:l 

L. 7 p-jkr      N 

4nkr ra=l 

gscMtf 

and 

ßSC,(p(f> /jA r->oo jkZ0e -jkr 

47TÄT 

AT 

R^I^ + 2 £ (R^lJ? + Rf If) cos(n0/ar) 
n=l 

The radar cross section a is defined as 

CT
P?
 = lim 4-Kr 

21 ESC'Pq |2 

r->oo I E'nc'9 I2 

(866) 

(86c) 

(86d) 

(87a) 

(876) 

(87c) 

(87a1) 

(88) 

where p : 9 or </>, denotes the component of the far scattered field, and q : 9 (TM) or 0 (TE), 

indicates the polarization of the incident electric field. 
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2.8    Choice of the expansion and testing functions 

The detailed expressions we have obtained for the elements of the Z matrices and the V 

and R vectors all involve the functions fi(t) that give the t dependence of the expansion 

and testing functions in (25) and (26). The choice of the fi(t) has been left open so far 

and must now be addressed. Following Mautz and Harrington [11] we use a four-impulse 

approximation to a triangle function developed as follows. 

The generating curve of the BOR is parametrized in terms of t, the distance along the 

curve measured from the lower pole of the BOR. For each value of t, the corresponding point 

on the generating curve is given by [p(t), z(t)]. A set of P points pl,p%, • • • ,pp, P odd, P > 5, 

is chosen to discretize the generating curve with p\ = (p\, z{) the lower pole of the generating 

curve corresponding to t = 0, pp = (p*P, zp) the upper pole of the generating curve, and with 

t* > tl_x. The generating curve is approximated by straight line segments between adjacent 

points. The midpoints of the approximating straight line segments are given by 

(^Zi)=(^^,^^),i = l,2,...,P-l (89) 

and the length of the ith straight line segment denoted by 

di = (^i-Pl))2 + (<fi-<): 
I 1/2 

(90) 

For calculation purposes the discretized generating curve then completely replaces the origi- 

nal generating curve and the parameter t now becomes the length along the discretized curve 

from the lower pole instead of the length along the original generating curve from the lower 

pole. Thus, for example, t(pl) = 0, ^(pj) = ^i, ^(^3) = di 4- d2, etc. The trigonometric 

functions sinv(t) and cosv(t) appearing in (33), (40), (58), (69), etc., with v the angle mea- 
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sured positive clockwise from the positive z axis to the tangent to the generating curve in 

the direction of increasing t (see Fig. 5), are then replaced by the discretized values 

sin Vi = 

and 

COS Vi = 

Pi+i ~ Pi 
di 

zi+l       zi 

(91a) 

di 
(916) 

A triangle function Ti(t) spanning four segments of the discretized generating curve can be 

defined as in Fig. 6 where 

Ti(t) = < 

0, * — *2i—1 > ^ — ^2t+3 

t*     — t L2i+3       L 

(92) 

The first triangle function is T\(t) and the last triangle function is T(p_3)/2.   The triangle 

functions overlap as shown in Fig. 7. 

We now let the functions fi(t) be defined by 

kpfi{t)=Ti{t). (93) 

Then jt[pji{t)\, also required for calculating the elements of the Z matrices and the V and 

R vectors, is given by 

A 1 
(94) 

>■«>] = > 

where 

0, 

r[{t) = 

t < £2j_i>£ > hi+3 

 1      -f*      <: i <r i* 
l        Ö2i+l+öW     t2i+1-      -W 

(95) 
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*2i-l   *2i-l     t*2 2i 

h- 
hi        th+l     *2t+l    *2t+2   *2i+2     t2i+3 

d2i   --»j 

Figure 6. The triangle function Ti(t) and the four impulse approximation (arrows). 

39 



0  ti-i 

Figure 7. Overlapping of the triangle functions n{t) and ri+1(f). 
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With the functions fi(t) chosen as above there still remains the problem of how the t 

and t' integrations in the expressions for the elements of the Z matrices and the V and 

R vectors are to be performed, since the use of direct numerical integration to evaluate 

these expressions is clearly not practical. To perform these integrations we therefore use a 

four-impulse approximation to Ti(t) (see Fig. 6) letting 

4 

kpfi{t) « £ Tp+4i-46{t - ip+2i_2) (96) 
P=I 

where the T's are equal to the value of r{t) at the segment midpoints multiplied by the 

width of the segments: 

2(dw-i + d*i) 

_           (rf2j-i + ^d2i)d2i ,    ,v 
i-M-2 — —j —; > v*'0) 

a,2i-\ + Ö2i 

{d2j+2 + ld2i+i)d2i+i ,    A 
i4j_i = — — , \y<c) 

021+1 + «2i+2 

T« = „.   4;2.      v (97d) 

and 5(x) is the Dirac delta function. Similarly, a four-impulse approximation is also employed 

for the jt[pfi(t)] using the derivative of r(t) at the segment midpoints multiplied by l/k and 

the width of the segments. Thus 

■  jtwm «I E n+Ai^s(t - tp+2i-2) (98) 

where 

TL_3 = _, "":iJ  , (99a) 
^,     _      d2j-i 

L4i-3 —    , ,   J    > 
«2i-l + «2i 

_        d2i 

d2i-i + d2i 
TL-2 =   ,      ^  ,  , (996) 

r«-i = -7-%—' (99c) 
«2i+l + «2i+2 
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and 

rpi   _               ^2i+2 (99d) 
<^2t+l + ^2i+2 

As an example of the implementation of the four-impulse triangle function approximation, 

let us take (40d) 

[Zt% = Jk21 dtpMt) 1 tfftfjWGi, n{p,p',z -A (100) 

with G2 n(p,p',z- - z) given by (41b). Substitution of (96) in (100) then gives 

[Z£%=jEZT
P'T«>G2,n(P^P? 

p=\q=l 
Z{i — Zy ) (101) 

where 

p' = p + Ax — 4, 

q' = q + Aj - 4, 

i' = p + 2i - 2, 

(102a) 

(102ft) 

(102c) 

and 

j' = q + 2j - 2. (102rf) 

In the integral (41b) that defines G2,n, R is given by 

R = {pi> - pj,f + (zi> - zyf + 4pi>pj> sin2   — 
1/2 

(103) 

In (103), {pi>,Zi>) and (pj',Zj>) are the respective midpoints of the i'th and j'th segments of 

the discretized generating curve. 

Once the integrations over t and t' have been replaced by summations as in (101), we 

introduce the following changes in the summation indexing in preparation for the increase 
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in efficiency of the resulting calculations discussed in Section 2.9. First, let the summations 

be represented schematically in general as 

Q« = EEwn*V) (104) 
p=lq=l 

where Qij is the quantity to be evaluated, F(i',f) is the summand apart from the triangle 

functions, and p', q', i', f are given by (102). (Although we have used T given by (97) in (104), 

either or both of Tp> and Tq> can be replaced by a derivative T'v, or T'q, given by (99) without 

in any way affecting the argument.) Next, we change the indices so that the summations are 

over the indices of F by letting 

r = i'=p + 2i-2 (105a) 

s = j' = q + 2j-2 (1056) 

so that 

p = r-2i + 2 (106a) 

q = s - 2j + 2 (1066) 

and 

p' = r + 2% - 2 (107a) 

q' = s + 2j - 2. (1076) 

Then successive values of p from 1 to 4 correspond to successive values of r from 2i — 1 to 

2% + 2, and successive values of q from 1 to 4 correspond to successive values of s from 2j — 1 

to 2j + 2, and 
2i+2     2j+2 

Qij=   E     E   Tr,Ts,F(r,s) (108) 
r=2t-ls=2j-l 
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where 

r' = r + 1i - 2 (109a) 

and 

s' = s + 2j - 2. (1096) 

Finally, we change i,j to p, o; r, s to i,j; and r', s' to i',f so that (108) becomes 

2p+2     2<j+2 

Gw =   E     E   T.TyF^j) (110) 
i=2p-l j=2<?-l 

where 

z' = i + 2p-2 (Ilia) 

and 

j' = j + 2g-2. (1116) 

Substituting the expressions (96) and (98) for the expansion functions and their deriva- 

tives in (40),(43),(51), and (58), and performing the change in summation indexing of 

(104)-(111), the elements of the Z matrices now become the following: 

2p+2      2q+2 

\Zn\pq =J    E        E    Ti'Tf [Sin vi sin VjG2,n(pi, Pj, % ~ Zj) + COS Vt COS VjGi,n{pi, Pj, Z{ ~ Zj)] , 
i=2p-l j=2q-l 

(112a) 
2p+2      2q+2 

[ZtXo = -   E     E   TfTfsinvjG^(pi,pj,Zi-zi)f (1126) 
i=2p-l j=2q-\ 

2p+2      2q+2 

\Zn%=   E     E   TvTfsmviG^Kp^Zi-Zj), (112c) 
i=2p-l j=2q-l 

and 
2p+2     2.J+2 

[Z£XQ = J   E     E   TvTfGi^puPjtZi-Zj); (112d) 
i=2p-l j'=2g-l 
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2p+2     2g+2 

[Zn ]£" = ■?'    E       53    T*,7> [Sln V* Sln V3G^n(pt Pi, 4 ~ Zi) + C0S Ui COS VjGlM* Pj> 4 ~ Zi)\ > 
i=2p-l j"=2q-l 

and 

and 

2p+2     29+2 

W = -   E     E   T¥Tj,BmvjGsM,Pj,4-*i)> 
i=2p-l j=2q-l 

2p+2     2q+2 

K^=   E     E   TvTfsmviG^täpj^-Zi), 
i=2p-lj=2q-l 

2p+2     2q+2 

iX<=i  E     E   TvTfG^Pjrf-zfr 
i=2p-\ j=2q-\ 

l~n ipq ~       fo2 

2p+2     2g+2 

£  x; Tfäd^p^zi-Zj), 
i=2p-l j=2g-l 

2p+2     29+2    T T/ 

Jpg ^.2 
i=2p-lj=2g =2g-l     # 

2p+2        29+2      rp,rp 

M% = T2   E     E   -^G^frZi-Zjl k2 
i=2p-lj=2q-l     Pi 

2     2p+2      29+2    rprp 

[Zt% = -3^    E       E    ^Gi.nfaPjiZi-Zj); k2 
i=2p-lj=2g-l   #£?' 

(113a) 

(113ft) 

(113c) 

(113d) 

(114a) 

(1146) 

(114c) 

(114d) 

ß? pq 

2p+2     2q+2 

-j E    E m 
i-2p-\j=2q-\ 

{[pdi sinVi + {zf - Zj)cosv%] Hhn(pi,pj,zf - Zj) - PjsinViH2,n(piPi,zf - Zj)} 

2p+2     29+2 

[#]£ = "   E     E   T^pjH^ip^^zf-zj), 
i-2p-\i=2q-\ 

(115a) 

(1156) 

Pn Jpg 

2p + 2 29 + 2        ATT    -T-I 

* E   E — 
i=2p-l j=2g-l     Pi 

{[pd
{ sin «j + {zf - Zj) cos vt] #i,„(p?, Pj, *•* - *,-) - Pj sin ^#2,n(p?, Pi, 4 ~ zi)} > 

(115c) 
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and 
2p+2     2<?+2 

i=2p-lj=2q-l 

(115d 

In the integrals (41a-c) and (59a-c) that define the Gk,n and Hk,n, k - 1,2,3 in (112) to 115), 

from (38) and (42) 

Rij — {pi ~ Pj? + {zi ~ z3f + 4plPj sin2(-) 
1/2 

(116) 

and 

Rdij = (pf-^)2 + (^-^)2 + 4pfesin2A 
1/2 

(117) 

The two superscripts of the Z's, t or 0, indicate the unit vectors of the testing functions 

and expansion functions, respectively (see (26) and (25)). When i = j, we see from (116) 

that Rij = 0 when </>' = 0 so that the integrals defining the Gk,n become singular. Hence, for 

i = j, Rij is approximated by an equivalent distance [11] 

I 1/2 

Rij = (dI/4)2 + 4p2sin2(^) ,i = j. (118) 

Since Rfj never equals zero no special treatment using an equivalent distance is needed. 

Next, substituting the four-impulse triangle function representation (96) of the expansion 

functions in (69) followed by the change in indices, we obtain the following expressions for 

the elements of the V vectors: 

2p+2 

Kl = TJn+1   E   Ti' [cos^sinü^Jn+x - Jn_i) + 2jsm8inccosviJn\ e^-cos«inc,    (119a) 
i=2p-l 

2p+2 

K? = *f   E   Ti' cos0-c(Jn+1 + Jn^)e^cos0'nc, 
i=2p-l 

2p+2 

V$ = -7rjn   £   TysmviiJ^ + J^1" 
i=2p-l 

(1196) 

(119c) 
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and 
2p+2 

Vff = *Jn+l     E    ^(Jn+x-Jn.!)^0"«'", (119d) 
j=2p-l 

where 

Jn = •/„(*;# sin 0inc). (119e) 

In (119a-d) the two superscripts of the V's indicate respectively the unit vectors of the 

testing functions given by (26) and the polarization of the incident electric field given by 

(11) and (12). 

Similarly, substituting (96) in (85) followed by the change in indices, we obtain 

2p+2 

E 
i=2p-l 

K = *in+l   E   ^[cos^arsin7;i(Jn+1-Jn_1) + 2isinö/a'-cos?;iJn]e^cosö/ar,   (120a) 

and 

where 

2p+2 

Rtl = -*Jn   E   TrcoB9'«r(Jn+l + Jn-l)e>k«a"'*\ (1205) 
i=2p-l 

2p+2 

R% = *jn   E   Ti,sin^(Jn+1 + J7l_1)e^
cose/°r, (120c) 

i=2p-l 

2p+2 

RZi = *3n+1   E   W„+i - Jn-i)e^cosö/or, (120d) 
i=2p-l 

Jn = Jn{kPism6far). (120e) 

In (120a-d) the two superscripts of the R's indicate the far scattered electric field component 

and the polarization of the incident electric field, respectively. 

An alternative choice of the expansion and testing functions, closely related to that of 

Mautz and Harrington which we have used, is to let the functions fi(t) be given by 

fi(t) = Ti(t) (121) 
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instead of by (93), with Tj(£) given by (92) as before. Then 

jt[p(t)fi(t))} = P(t)rl(t) + p'(t)r(t) (122) 

where r/(£) is given as before by (95). Again, using the four-impulse approximation to 

perform the t and t' integrations, (96) is replaced by 

4 

kpfi(t) « £ V«-4<$(< - «p+2i-2) (123) 
p=\ 

and (98) is replaced by 

jt[pfi(t)) « £ E 7?+«_4*(t - U-2) (124) 

with 

Tp+4i-4 = kpp+2i-2Tp+4i-4,    p = 1, • • • ,4 (125) 

and 

7^'+4i_4 = kpp+2i-2T^4i_4 + k sin t;p+2i_2Tp+4i_4,    p = 1, • • •, 4. (126) 

In (125) and (126) rp+4i_4 and Tp+4i_4 are given by (97) and (99) respectively. The expres- 

sions (112)-(120) for the elements of the Z matrices and the V and R vectors can then be 

used exactly as they are simply by substituting T for T and T' for T".6 It is shown in Section 

3.6 that the alternative choice of the fi{t), (121), must be used instead of (93) if half-triangle 

functions are to be used at the beginning and end of the discretized generating curve of the 

BOR. 
6This efficient method of implementing the alternative choice of the functions fi(t) is due to John Putnam 

[25]. 
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2.9    Increasing the Efficiency of the Computations 

Referring back to the general form of the computations, (110), we observe that the T's 

are trivial to calculate and store, once and for all, at the outset of a calculation of the 

far scattered field pattern for a BOR, whereas in contrast the F's are time consuming to 

calculate. Furthermore we observe that in (110) the same F(i,j) will contribute to the 

calculation of several Qpq. Hence, rather than using (110) to calculate Qpq, it is desirable to 

have the limits of the summations go from one to the number of segments in the discretized 

generating curve of the BOR so that there is no repetition of the calculation of F(i,j). The 

basic question to be answered, then, is given i and j what are the values of p and q for which 

F(i,j) contributes to Qpql An example will help to clarify this question. Suppose i = 5 and 

j — 6. Then we can make the following tabulation 

p   2p-l   2p   2p+l   2p + 2   q   2q - 1   2q   2q + 1   2q + 2 

112        3 4       112        3 4 

4789 10      4789 10 

and observe that F(5,6) contributes to Qpq when p is either 2 or 3 and q is either 2 or 3, 

so that F(5,6) contributes to four different Qpq. In general it is clear from the limits of the 

summations in (110) that if i is odd then p = (i - l)/2 and p = (i +1)/2 whereas if i is even 

then p = (i — 2)/2 and i/2, and similarly for j and q. Of course, when i or j equals 1 then 

only one of the two values of p or q is a valid index for Qpq and similarly when i or j is equal 

to the number of segments in the discretized generating curve. 
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2.10    Choice of the Number of Fourier Modes for Expansion and 

Testing Functions. 

The (j) dependence of the current given by (24) is expressed as a summation from — N to N 

of the Fourier modes eJn*. The value of N can be set equal to the number of Fourier modes 

sufficient to represent, to the desired accuracy, the (f> variation of the tangential component 

of the incident electric field on the surface of the BOR. Let a be the largest value of p of a 

point (p,z) on the generating curve of the BOR. Then from (10), (11), and (12) it can be 

seen that the 4> variation of the incident field along the circle on the BOR corresponding to 

the point (a, z) is given by 

f{(j>) = cos0eJ'fcasino'"Ccos^ or /(</>) = sm<t>ejkasine"lCcos<i'. (127) 

For axial incidence 0mc = 0 and f((f>) equals cos(f> or sin0 so that only the e±J* modes are 

needed. For oblique incidence, we can express f(<f>) as the Fourier series 

/(</>) = £>„e^ (128a) 
-N 

with 

cn = —Jf(<f>)e-Jn*d<t> (1286) 
o 

from which, with (127) and (68a,b), 

.      ,     1 r 
Cn I- 2 Jn+l (ka sin 6mc) ± Jn_! {ha sin 9inc)\ . (129) 

As n increases beyond ka sin 9inc, | Jn(ka sin 8inc) \ decreases rapidly and it suffices to choose 

N = I + M (130) 
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where 

7 = Int[Ä;asin0inc] (131) 

and M is the smallest integer for which 

TW^ * < <132> Ji(ka smdinc) 

with e a small number depending on the desired accuracy. If the value of N given by (130) 

is plotted as a function of Int[A;asin0mc] the plot is found to be almost linear. For e = 0.005, 

for example, 

iV«Int[l.O4A;asin0inc] + 7. (133) 

A similar expression 

iV«Int[ifc+(asin0) + A] (134) 

with k+ denoting a value a few percent larger than k was obtained by Yaghjian [26] for the 

reciprocal problem of estimating the number of angular modes needed to represent the far 

field of a radiator in the 9 direction. 

3    RESULTS 

The analysis presented in Section 2 was implemented in a FORTRAN computer program 

which was then used to obtain numerical results for several different BOR's. These results 

will now be described and discussed. 
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3.1 Spurious Resonances for a PEC Sphere 

As noted in the Introduction, the ordinary EFIE does not have a unique solution to the exte- 

rior scattering problem at frequencies equal to the resonant frequencies of the corresponding 

interior cavity. Consequently, numerical results obtained by solving the EFIE can have sig- 

nificant errors called spurious resonances when the electrical dimensions of the scattering 

object are such as to make the interior cavity resonant. The DSEFIE by contrast has a 

unique solution to the exterior scattering problem at all frequencies. For a sphere, the cavity 

problem has been treated by Harrington [27] who shows that the condition for resonance is 

ka = unp for TE modes and ka — u'np for TM modes where unp is the pth zero of the Bessel 

function Jn+1/2(a;) and u'np is the pth zero of [xl/2Jn+i/2]'(x). 

As an example of how the DSEFIE eliminates spurious resonances that may occur in 

solving the EFIE, in Fig. 8 we show the backscatter RCS of a PEC sphere as a function of 

ka in the vicinity of the resonant value of ka = 6.062, the first zero of [xl/2Jg/2]'(x). It is 

clearly seen that the spurious resonance displayed by the EFIE curve at 6.08 is eliminated 

by the DSEFIE curve which agrees closely with the exact Mie solution curve. 

3.2 Spurious Resonance for a PEC Prolate Spheroid 

As a second example of the DSEFIE removal of a spurious resonance obtained using the 

EFIE, in Fig. 9 we show the Eg bistatic RCS pattern in the <f> = 90° plane of a prolate 

spheroid illuminated by a TM plane wave. The geometry of the spheroid is shown in Fig. 

10. The propagation vector of the incident plane wave lies in the xz plane making an angle 

of 9inc = 45° with the z axis, and the semi-major and semi-minor axes of the spheroid are 
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Figure 10. Geometry of the prolate spheroid. 
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given by ka = 50 and kb = 25, respectively. The large error displayed by the EFIE pattern 

for 6 < 10° is eliminated in the pattern obtained using the DSEFIE computer program and in 

the pattern obtained with the combined-field BOR integral equation program CICERO [21] 

shown for reference. The discrete nature of the spurious resonance can be seen by comparing 

Fig. 9 with Fig. 11 which shows the corresponding bistatic RCS patterns for a spheroid 

with ka = 49.8 and kb = 24.9. In Fig. 11 the EFIE pattern has no spurious resonance. 

3.3    Spurious Resonances for a PEC Finite Cylinder 

Calculations of scattering from a finite cylinder provide another example of the elimination of 

spurious resonances by the DSEFIE. Expressions for the resonant frequencies of a cylindrical 

cavity are derived in [28]. In particular, the resonant frequency for the dominant TE mode, 

TEni, is given by 

»>»=jmn{i+™4T (135) 

where R and d are the radius and height, respectively, of the cylinder. Since Uy/ßoe0 = k = 

2ir/\, fovR = d and A = 1 the radius and height of the cylinder that supports the TEm 

mode is R = d = 1.841(3.912)1/2/(27r) = 0.580. Figure 12 shows the monostatic E-plane 

RCS pattern for R = d = .587 as obtained by the EFIE, the CFIE, and the DSEFIE, with a 

discretization of the generating curve for the finite cylinder using 20 points/A. The striking 

spurious resonance displayed by the EFIE pattern is removed by both the CFIE and DSEFIE 

which are in close agreement with each other. In contrast, the EFIE, CFIE, and DSEFIE 

monostatic patterns for the non-resonant cylinder R = d = .52 are shown in Fig. 13. For 

this cylinder there is no spurious resonance in the EFIE pattern. Figure 14 shows the EFIE, 
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CFIE, and DSEFIE curves for bistatic scattering in the E-plane for oblique incidence at 30° 

on the resonant finite cylinder, R = d= .587. As in Fig. 12, the spurious resonance behavior 

of the EFIE curve is removed by both the CFIE and DSEFIE. 

3.4    Bistatic Scattering From the Cone-Sphere with Axial Illumi- 

nation 

The cone-sphere is the BOR whose generating curve is shown in Fig. 15. It is determined by 

two parameters: 1) the semi-vertex angle £ of the cone, and 2) the radius a of the spherical 

cap. The length b of the straight-line segment of the generating curve is given by b = a/ tan £ 

and the length of the circular portion of the generating curve is a(n/2 + (). Also shown in 

Fig. 15 is the generating curve for the cone-sphere dual surface separated by 6 from the 

original surface. 

The use of the DSEFIE to calculate scattering from the cone-sphere introduces a problem, 

not encountered in calculating scattering from the sphere or spheroid, that will be discussed 

here. In Fig. 16 we have plotted bistatic scattering in the E-plane from a cone-sphere with 

C = 5° and ka = 5.9 for axial incidence in the — z direction, as calculated by the CFIE and 

DSEFIE. The separation S of the dual surface from the original surface is 5 = A/4. It is seen 

that there are small oscillations in the central portion of the DSEFIE curve that are not 

present in the combined-field integral equation pattern obtained using the computer code 

CICERO. To investigate the source of these oscillations, in Fig. 17 we have plotted the CFIE 

RCS pattern of Fig. 16 along with the two "components" of the DSEFIE pattern: the EFIE 

pattern obtained with the original cone-sphere surface alone, and the DSEFIE pattern 
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dual surface 

original surface 

Figure 15. Generating curves for the cone-sphere and the dual surface. 
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obtained with the dual surface alone.7 It is seen that while the RCS curve obtained with the 

EFIE and the original cone-sphere surface is very close to that obtained with the CFIE, the 

RCS curve obtained using the DSEFIE with the boundary condition enforced on the dual 

surface alone differs greatly from the other two curves. With the dual-surface-only pattern 

so much in error, the DSEFIE cannot be expected to give accurate results, since the DSEFIE 

calculations will be very sensitive to the value of the combination parameter, a. For further 

understanding, the currents on the cone-sphere surface were printed out and it was found 

that when the zero-tangential electric field boundary condition was enforced on the dual 

surface alone, the currents close to the vertex of the cone were several orders of magnitude 

larger than the currents close to the vertex when the zero-tangential electric field boundary 

condition was enforced on the original cone-sphere surface alone. The discrepancy between 

the DSEFIE and CFIE RCS patterns in Fig. 16 is therefore due to a problem in calculating 

scattering from the cone-sphere when a zero-tangential electric field is enforced on the dual 

surface alone. 

A partial explanation for why this problem occurs appears to be the following. Unlike 

for the sphere or spheroid where corresponding points on the original and dual surfaces are a 

specified distance 6 apart, for the cone-sphere points close to the vertex can be considerably 

further apart than 8 from their corresponding points on the dual cone-sphere surface. For 
7When we refer to the "components" of the DSEFIE pattern, we do not mean to imply that the total 

DSEFIE pattern is a linear combination of the EFIE solution and the DSEFIE solution obtained with the 

zero-tangential electric field boundary condition enforced on the dual surface alone.  This is not the case. 

Loosely speaking, however, there is no harm in referring to these two limiting forms of the DSEFIE solution 

as "components", especially as considerable insight into the DSEFIE solution can be obtained by so doing. 
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example, the vertex point on the dual cone-sphere surface is a distance £/sin£ from the 

vertex of the original cone-sphere. For ( = 5° and 5 = A/4 this distance is almost 3A. The 

boundary condition of zero-tangential electric field on the dual surface is then apparently 

insufficient to guarantee that the currents close to the tip of the cone-sphere will be correct. 

It should be noted, however, that this problem is specifically associated with the tip of the 

cone and is not simply a result of corresponding points on the original and dual surface 

varying in distance from one another. For the finite cylinder generating curves shown in 

Fig. 4, for example, the distance between the corresponding points on the corners of the 

original and dual surface generators is greater by a factor of y/2 than the distance between 

the corresponding points on the midpoints of the horizontal or vertical line segments, but 

there is no problem in calculating the RCS pattern when the zero-tangential electric field 

boundary condition is enforced on the dual surface alone. 

The problem we have described cannot be solved simply by placing the dual surface 

considerably closer than A/4 to the original surface. Even a separation of A/64 does not 

satisfactorily resolve the difficulty. What can be done, however, in addition to placing the 

dual surface closer to the original surface is to insert an auxiliary dual surface close to the 

vertex of the cone-sphere as shown in Fig. 18 in which the line segment that generates this 

auxiliary dual surface is obtained by drawing a line from the origin to, say, the midpoint of 

the line from the vertex of the dual cone-sphere normal to the original cone-sphere generator. 

The point on this generating line segment of the auxiliary dual surface that corresponds to 

the vertex of the original cone-sphere is taken a small distance, say A/64, along this line. In 

Fig. 19 we show the bistatic RCS patterns for the same cone-sphere as in Fig. 16 obtained 

using the DSEFIE with an enhanced dual surface with 8 = A/32 for the main dual surface. 
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original surface 

dual surface 

Figure 18. Generating curves for the cone-sphere and the dual surface with auxiliary dual 

surface inserted close to the tip. 
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The small oscillations present in the DSEFIE pattern of Fig. 16 are completely removed. 

Also shown in Fig. 19 is the pattern obtained with the DSEFIE when only the enhanced dual 

surface is employed. In striking contrast to the DSEFIE pattern of Fig. 17 the dual-surface- 

only pattern of Fig. 19 is now very close to the CFIE pattern. To demonstrate that the 

great improvement obtained with the enhanced dual surface is the result of both employing 

the auxiliary dual surface in the vicinity of the cone-sphere vertex and moving the main dual 

surface closer to the original surface, in Fig. 20 we have plotted two additional patterns 

along with the CFIE pattern. One pattern corresponds to employing the same auxiliary 

dual surface but with the main dual surface separated by A/4 from the original surface, and 

the other pattern corresponds to simply moving the main dual surface close to the original 

cone-sphere surface by taking 5 = A/32 but not employing the auxiliary dual surface. It is 

seen that employing the auxiliary dual surface while keeping the main dual surface separated 

by A/4 from the original surface results in considerable improvement compared to the dual- 

surface-only pattern of Fig. 17 though not as much as that obtained when the main dual 

surface is moved closer and the auxiliary dual surface employed. Merely moving the main 

dual surface close to the original surface without employing the auxiliary dual surface still 

results in a very poor RCS pattern, however. For larger semi-vertex angles C the problem 

we have described in this section is less severe but is still present. For (, = 45°, for example, 

a separation of 6 = A/32 suffices to resolve the problem without the necessity of inserting 

an auxiliary dual surface close to the cone tip. 
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3.5    Cone-Sphere Monostatic Scattering 

In this section we discuss scattering for oblique incidence on the cone-sphere in contrast 

to the previous section where axial incidence was considered. For axial incidence, only the 

first order Fourier mode is required to describe azimuthal variation. For oblique incidence, 

however, the zeroth order Fourier mode as well as higher order modes are required in addition 

to the first order mode. It will be seen that the presence of the zeroth order mode in particular 

introduces complications not encountered for axial incidence. 

Figure 21 shows the monostatic pattern in the E-plane for the narrow tip-angle cone- 

sphere, £ = 5°,fca = 5.9, treated in Section 3.4 as calculated by the CFIE8, EFIE, and 

DSEFIE, using Fourier modes 0 through 6. The DSEFIE calculation is performed with the 

enhanced dual surface described in Section 3.4, with a separation of 8 = A/32 between the 

original cone-sphere surace and the main dual surface. Figure 22 shows the corresponding 

curves in the H-plane. It is seen that there is a significant difference between the values of 

the E-plane RCS's for 9 in the vicinity of 15°, while the H-plane patterns exhibit only small 

differences in a low dB region of the patterns. In Fig. 23 we show the E-plane monostatic 

patterns when modes 1 through 6 are used, and observe that there is virtually no difference 

between the CFIE, EFIE, and DSEFIE patterns. In contrast, the CFIE, EFIE, and DSEFIE 

patterns for the zeroth order mode only, shown in Fig. 24, display significant differences in 

the vicinity of 6 = 15°. The results shown so far thus demonstrate that the differences in the 

E-plane monostatic patterns plotted in Fig. 21 are attributable to differences in the zeroth 

order mode patterns. Furthermore, since the E-plane and H-plane zeroth order mode pat- 
8Unless otherwise noted, when we refer to the CFIE it is assumed that the combination parameter OJO 

(see (3)) is set equal to 0.5, thereby giving equal weight to the EFIE and MFIE components of the CFIE. 
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terms are due solely to the ^-directed and «/»-directed currents, respectively, it is the difference 

in accuracy with which the fields radiated by the zeroth order mode ^-directed currents are 

calculated by the CFIE, EFIE, and DSEFIE, that accounts for the differences we have 

observed. 

To establish which one of the CFIE, EFIE, and DSEFIE patterns of Fig. 24 can be 

regarded as correct, we begin by considering the discrepancy between the CFIE and EFIE 

patterns. Since it is known that the MFIE is ill suited to calculations involving scatterers 

with surfaces separated by much less than a wavelength, as is the case with narrow tip-angle 

cones, it can be conjectured that the discrepancy between the CFIE and EFIE patterns is 

due to the MFIE "component" that enters into the CFIE in combination with the EFIE, 

thereby degrading the accuracy of the EFIE solution.9 In Fig. 25 we have plotted the EFIE 

and MFIE zeroth order mode E-plane monostatic patterns. We observe that the MFIE is 

considerably at variance with the EFIE not only in the vicinity of 6 = 15° but for almost 

the entire range of 6 from 0° to 90°. To verify that it is indeed the MFIE pattern that is 

incorrect, in Fig. 26 we have plotted the EFIE pattern of Fig. 23 along with the MFIE 

pattern as recalculated with a density of 400 points/A for the first wavelength from the tip 

of the cone where the ^-currents vary most rapidly, and a density of 40 points/A elsewhere. 

The MFIE pattern is now closer to the EFIE pattern, though it still displays a discrepancy 

of almost 2 dB in the near vicinity of 9 = 15°. Also shown in Fig. 26 is the EFIE pattern 

9When we refer to the MFIE and EFIE "components" of the CFIE, we do not mean to imply that the 

CFIE solution is a linear combination of the MFIE and EFIE solutions. There is no harm, however, in 

thinking of these two limiting forms of the the CFIE solution as "components" since considerable insight 

into the CFIE solution can be obtained by so doing. 
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as calculated with a 400 point/A density close to the tip. It is seen that there is almost no 

change in the EFIE pattern. We therefore feel justified in regarding the EFIE pattern as 

correct. 

Now the CFIE was developed to remove spurious resonances resulting from non-uniqueness 

of the MFIE and EFIE at internal cavity resonant frequencies. For non-resonant scatterers, 

such as the particular cone-sphere we are concerned with, the CFIE gives correct results 

provided that the MFIE and EFIE solutions, separately, are correct. Here, however, as we 

have seen, the MFIE solution of Fig. 25 that enters into the CFIE solution shown in Fig. 

24 is highly inaccurate. Combining an inaccurate MFIE solution with an accurate EFIE 

solution can only degrade the accuracy of the EFIE solution, as witness the discrepancy 

between the CFIE and EFIE patterns of Fig. 24. If the CFIE pattern is recalculated using 

a density of 400 points/A close to the cone tip, then the CFIE pattern is much closer to the 

EFIE pattern, as shown in Fig. 27. This is as expected since, as we have seen, the accuracy 

of the MFIE component of the CFIE is thereby considerably increased. The problem we 

have encountered here with the CFIE corroborates the finding of Wood and Hill [23] that 

the value of the combination parameter used in the CFIE can strongly influence the rate 

of convergence of the solution as the density of points/A is increased. An accurate EFIE 

(ao = 1-0) solution can be obtained here with a 40 points/A density, but a value of ao = 0.5 

(equal weighting of the EFIE and MFIE) requires a density of approximately 400 points/A 

to yield acceptable results. 

Having established the accuracy of the EFIE zeroth order mode E-plane monostatic 

pattern, how is the discrepancy shown in Fig. 24 between the DSEFIE and EFIE solutions 

to be explained? As with the CFIE, employing a density of 400 points/A for the first wave- 
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length from the cone vertex and a density of 40 points/A elsewhere gives a DSEFIE pattern 

very close to the EFIE pattern as shown in Fig. 28. It is difficult to be sure without 

extensive further investigation why this high density of points close to the cone tip is needed 

to obtain a highly accurate solution with the DSEFIE. Since the EFIE by itself gives an 

acceptable pattern for a density of 40 points/A, it is clearly the calculation of the dual 

surface component of the DSEFIE that requires a high density of points. Furthermore, since 

a density of 80 points/A gave acceptable DSEFIE results for the axial incidence bistatic 

scattering discussed in Section 3.4, it appears that the rapid variation of the zeroth order 

mode ^-directed currents in combination with some aspect of the dual surface integration 

procedure, possibly the treatment of the self-term, is responsible for the difficulty with the 

dual surface calculation. The essential thing to stress, however, as we did in connection with 

the CFIE, is the importance of numerical experimentation before accepting the validity of 

surface integral scattering calculations, especially if high accuracy is desired. 

Since, as stated in the Introduction, the rationale for developing the DSEFIE has been the 

importance of having two independent BOR surface integral equation scattering formulations 

and computer codes, and since, as we have also noted in the Introduction, a DSMFIE 

formulation already exists, it is of interest to see how well the DSMFIE calculates the zeroth 

order mode monostatic E-plane pattern for the narrow tip-angle cone considered here. In 

Fig. 29 we show the DSMFIE pattern calculated with a density of 400 points/A close to 

the cone tip and 40 points/A elsewhere, along with the EFIE pattern of Fig. 24, and the 

DSEFIE pattern of Fig. 28. A separation of 5 = A/4 between the dual surface and the 

original cone-sphere surface is used for the DSMFIE calculation (the auxiliary dual surface 

used for the DSEFIE cone-sphere calculations is not useful for the DSMFIE calculations). 
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The DSMFIE pattern is in error by 1.6 dB at 6 = 13° and there are additional discrepancies 

in the location of peaks and nulls. We conclude that for calculations involving scatterers 

with narrow tips, the DSEFIE is significantly more reliable than the DSMFIE (see, however, 

Footnote 3). 

3.6    Half-Triangle Functions 

In Section 2.8 the expansion and testing functions were defined in terms of triangle functions 

Ti(t) shown in Fig. 6. The Tj(£) overlap as shown in Fig. 7 so that, for example, T;_I(<) = 1 

at t*2i_x where Tj(£) = 0, and Ti-i(t) — 1 at t*2i+x where Ti(t) = 0, etc. At the lower and upper 

poles of the discretized generating curve there is no overlap, however, since the first triangle 

function is Ti(t) which is 0 at the lower pole, and the last triangle function is T(p-z)/2(t) 

which is 0 at the upper pole. In certain applications it may be desirable to have overlapping 

at the lower and upper poles of the generating curve. This can be achieved by employing 

the upper half of the triangle function r0(t) at the lower pole where, from (92), 

Mt) = < 
0, t<0,t>t*3 

(136) 
tl-t 

and adding the lower half of the triangle function T(p_3)/2+i (t) at the upper pole where 

T(P-3)/2+l(t) = < 
0, t<tp-2,t>t*p 

(137) 
t — t* , l     LP-2        f*      <r + < +* 

If half-triangle functions are employed at the beginning and end of the generating curve, 

however, it is important to define the expansion and testing functions fi(t) by (121) rather 

than by (93) if p —>• 0 at the lower or upper pole of the BOR generating curve. If, for example, 
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(93) is used to define f0(t) in conjunction with (136) and p ->■ 0 as t -> 0, fQ(t) becomes 

singular at p = 0. Even if the actual value of t = 0 is not used because of the four-impulse 

approximation (96), calculations based on (93) and employing half-triangle functions can 

yield erroneous results. 

As an example of the problems that can result by employing half-triangle functions along 

with the expansion and testing functions of (93), in Fig. 30 we show the E-plane RCS 

pattern of a sphere with ka = 5.5 obliquely illuminated by a TM plane wave at an angle of 

incidence of 45°. Along with the Mie series pattern shown for reference we show the DSEFIE 

patterns obtained with the basis functions of (93) with and without half-triangle functions, 

and the pattern obtained with the basis functions of (121) using half-triangle functions. It is 

seen that the pattern obtained using half-triangle functions and the basis functions of (93) 

differs greatly from the other three patterns. This discrepancy does not occur with the H- 

plane. Further calculations demonstrate that the discrepancy that occurs using half-triangle 

functions along with the basis functions of (93) is due to the zeroth order Fourier mode as 

shown in Fig. 31. No discrepancy occurs with the higher-order Fourier modes. Although 

not an explanation it is noted that for the zeroth order mode the E-plane pattern is due 

solely to the ^-directed currents and not to the «/»-directed currents while the H-plane patten 

is due solely to the (/»-directed currents on the sphere. 

4    SUMMARY 

The purpose of this report is to provide for the first time a detailed analysis and solution of 

the problem of determining scattering from a PEC BOR using the DSEFIE, and to show 
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results obtained with a computer code based on this analysis. The DSEFIE is an extension 

of the EFIE in which the boundary condition that the tangential electric field vanish on the 

surface of a PEC object is satisfied not only on the actual surface but also on a fictitious 

surface lying inside the actual surface and separated by a small distance from it. Scatter- 

ing solutions obtained using the DSEFIE are free from the spurious resonances that can 

seriously degrade the accuracy of solutions obtained using the conventional EFIE or MFIE 

for 3-D scatterers whose linear dimensions exceed a wavelength. These spurious resonances 

are a consequence of the fact that the EFIE and MFIE fail to produce a unique solution 

for the current on a PEC scatterer at frequencies equal to the resonant frequencies of the 

interior cavity formed by the surface of the scatterer. Although the widely used CFIE also 

eliminates spurious resonances, it is important to have available two independent surface 

integral formulations that can be applied and solved efficiently. Another surface integral 

equation solution free from spurious resonance that has been successfully programmed and 

tested, the DSMFIE, is also independent of the CFIE, but it does not yield accurate results 

for conductors containing narrow-angle wedges or tips. 

In this report the DSEFIE is formulated in terms of the vector and scalar potentials, A 

and $, and then solved by the Galerkin form of the method of moments. It is noteworthy 

that the device of Mautz and Harrington used to transfer the differential operator on $ 

to the testing functions and so maintain the singularity of the kernel equal to that of the 

free-space Green's function, cannot be used when the observation point lies on the dual 

surface rather than on the original surface. As a result the elements of the Z matrices for 

the DSEFIE have a more singular kernel than that of the free-space Green's function. This, 

however, does not appear to create numerical difficulties since the distance between points 
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on the original surface and points on the dual surface never goes to zero. The basis and 

testing functions are given as products of the Fourier modes used to express the azimuthal 

dependence of the currents, and triangle functions are used to express the dependence of the 

currents on the BOR generating curve parameter t. A four-impulse approximation to the 

triangle functions is used which enables the integrations with respect to t to be performed 

in closed form. Detailed expressions for the elements of the Z matrices and the V column 

vectors that appear in the Galerkin matrix formulation of the DSEFIE are then given as 

summations that can be readily evaluated by computer. The efficiency of evaluating these 

expressions can be greatly increased by using a change of indexing described in the report. 

Calculations performed with a computer program of the DSEFIE solution demonstrate the 

removal of spurious resonances that appear in calculations of the RCS's of spheres, spheroids, 

and finite cylinders made with the conventional EFIE. Cone-sphere calculations show that 

application of the DSEFIE to objects containing narrow tips requires careful placement of 

the dual surface in the vicinity of the tips and sometimes an increased density of grid points 

in the t direction a wavelength or so from the tip. When these precautions are taken, the 

DSEFIE yields significantly more accurate solutions than the DSMFIE for scatterers with 

narrow tips. 
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