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Long-term goals 

My long-term goal was development of a self-consistent analytical, dynamical 
and statistical theory of weak and strong nonlinear interactions in ocean 
gravity waves. The theory should be supported by the extensive numerical 
simulations as well as by laboratory experiments and field observations. The 
theory will be used as a basis for development of approximate models of 
Snl, which can be used in a new generation of operational models for wave 
forecasting. Another goal is the development of the theory of wave breaking 
which will make it possible to find a well-justified estimate for the rate of 
energy dissipation due to this process. 

Objectives 

The level of nonlinearity in an ensemble of wind-driven ocean waves is rel- 
atively small. It makes possible to apply for its statistical description the 
theory of weak turnulence. In the simpliest case, it is the theory of kinetic 
(Hasselmann's) equation for spectra of the normalized wave action. The ki- 
netic equation has a remarcable family of exact stationary Kolmogorov-type 



solutions. They are governed by two parameters: fluxes of energy and mo- 
mentum to the region of high wave numbers, and can be applied for descrip- 
tion of energy spectra in the "universal" range behind the spectral peak. All 
Kolmogorov spectra have asymptotics E(u) ~ w~4 after averaging in angle. 

The exact kinetic equation is too complicated to be used in the operational 
models of wave prediction. Thus, the development of its approximate models 
is an actual problem. 

The wave-breaking, which in most cases participate in the wave dynamics 
is a strongly nonlinear process, makes an important contribution to energy 
dissipation. So far, there is no reliable theory for this phenomenon. 

Approach 

I combine in my work the analytical methods of mathematical physics with 
massive numerical simulation and construction of simple phenomenological 
models. All results are compared with laboratory experiments and field ob- 
servations. 

Results 

The results obtained in the period of 1998-2001 are summarized in ten ar- 
ticles. Five of them are published in refereed journals, another one in the 
Proceedings of the 6-th International workshop on wave hindcasting and fore- 
casting, three others are alredy accepted for publication in refereed journals, 
and last one is presented for publication to Phys. Rev. Let. The results were 
also reported on six International conferences and workshops, including two 
WISE meetings and the 20th International Congress of IUTAM. 

These results are described in the next chapters. 

1 Theoretical foundation for the statistical description 
of the wind-driven surface waves 

For a long time the main tool for the statistical description of wind-driven 
waves remains the kinetic equation for spectra of wave action, derived in 
1962 by Hasselmann.   Fourty years ago the work of Hasselmann was an 



outstanding achievment. However, since that time the derivation of this 
equation was never critically revised. 

I have performed this revision and found the following [1]. The Hassel- 
mann's equations, being formally completely correct, are written not for the 
real spectra of wave action Nk, which can be observed in experiments. They 
correspond to the "renormalized", or "refined" spectrum nk. 

The difference between these two types of spectra has very clear physical 
origin. In the linear theory, the waves comprising a wave ensemble obey 
the linear dispersion relation between frequency and wave vector, u = oj{k). 
They are "free waves". In the presence of nonlinearity "slave waves" or 
"beatings" appear. The most important "beatings" are due to quadratic 
nonlinearity in dynamic equations. Their frequences and wave vectors obey 
the equations, 

u   =   u(ki) ±u(k2), 

k   =   k\±k2, (1) 

where k\, k2 are wave vectors of "free waves". 
A real wave ensemble, described by spectrum Nk and observed in field 

and laboratory experiments, is a mixture of "free waves" and "slave waves" 
of all orders. Meanwhile, the spectrum nk from the Hasselmann's equation 
is the distribution of the "free waves" only. The physical oceanography did 
not took this important difference into the account for almost fourty years! 

The difference between n^ and Nk can be estimated as follow [1]: 

A = n*-Nk fl_ (2) 
nk      ~ (tanh<5)5' V } 

Here e ~ ka, 5 ~ kh; a is a wave amplitude, and h is a depth of the ocean. 
In a typical situation, e ~ 0.1. 

On deep water 5 —> oo, tanhJ -> 1, so the difference A ~ 10-2 is neg- 
ligably small. But on shallow water the role of "slave harmonics" increases 
dramatically. For a moderate depth 5~0.5, A~0.3. If 5 ~ 0,3, the 
difference A > 1, and the weakly nonlinear approach is not applicable any 
more. 

In future I plan to develop a numerical algorithm, making it possible to 
recompute n^ and Nk and vice versa. 



2 Hasselmann's kinetic equation: constants of motion 
and exact solutions 

Hasselmann's kinetic equation in absence of forcing reads 

f = 5„, (3) 
It is considered that this equation preserves the standard constants of motion, 
i.e. wave function N, enegry E, and momentum R: 

N   =   JNkdk, (4) 

E   =   jukNkdk, (5) 

R   =   JkNkdk. 

In reality, only N is a real constant of motion, while E and R "leak" to the 
region of high wave numbers. Thus, energy and momentum are just "for- 
mal" constants of motion. The nonlinear wave interaction produces spectra 
governed by fluxes of energy and momentum to high wave numbers. Due 
to this curcumstance, four-wave interaction can arrest instability induced by 
wind. This question is discussed in details in article [10]. 

In the theory of wind-driven sea waves the exact solution of the equation 

Snl = 0 (6) 

plays a central role. This equation is called Kolmogorov-Zakharov spectra 
and has the most important solution in the following form: 

g^P^     9M 
K~^J~H^0) (7) 

Here Fu is a spectrum of energy and P, M are fluxes of energy and momen- 
tum. We found [6] that for large u 

where c0 and cx are first and second Kolmogorov constants. Formulae (7), 
(8) give the explicit expression for the spectrum in the equilibrium range. In 
presence of wind forcing the functions P and M are slow functions on time 
and frequency. 



3 Numerical simulation of the Hasselmann's equation 

Taking as a basis the method developed earlier by D. Resio, we (in collabo- 
ration with D. Resio and A. Pushkarev) elaborated a comfortable algorithm 
for numerical solution of the Hasselmann's equation in a duration-limit frame 
[6]. The algorithm is stable and reliable, and makes it possible to model the 
evolution of wave spectra for tens of hours of physical time. For a mesh as 
dense as 36 points in angle and 71 points in frequency it takes less then a 
week on a personal computer. We performed several series of numerical sim- 
ulation and found that theory of weak turbulence is confirmed completely, 
up to details. We observed leakage of energy and momentum to high wave 
numbers and formation of weak-turbulent Kolmogorov spectra. We found 
numerically the values of Kolmogorov's constants: 

c0 ~ 0.37,   ci ~ 0.23. 

We included into consideration the forcing, which models the influence of the 
wind, and obtained spectra very similiar to the ones observed in the ocean. 
We obtained in our experimants such characteristic phenomenon as peak 
enhancment and bymodality of spectra in angle. We made a comparision of 
our results with a few available experimental data on limited-duration frame 
and found a rather good coincidence. 

Another set of numerical experimants performed with W. Perrie and 
based on more old version of Resio's code issued similiar results [2]. 

4 Diffusion models 

The numerical simulation of the exact kinetic equation is too slow process 
to be used in operational models. Even the advanced algorithm of a fine 
enough grid runs with the rate comparable with the rate of spectral evolution 
in nature. To make the algorithm suitable for an operational model, its 
speed should be increased at least in three orders of magnitude. So far, 
the only way to do this is to use phenomenological models instead of exact 
Snl. First such model known as DIA was proposed by Hasselmann and 
Hasselmann in 1985. It is widely used now in WAM and SWAN operational 
programs. In our opinion, DIA does not give good enough results. It leads 
to isotropization of spectra in angles, while in reality the spectra, at least 



in energy capaciting range, are narrow in angle. Moreover, DIA does not 
explain a peak enhancement and bymodality. 

In 1999 we offered another phenomenological model[3]. This model is 
based on replacing the exact Snl by a second-order differential non-linear 
elliptic operator. This procedure turns Hasselmann's kinetic equation to a 
nonlinear diffusion equation. We elarorated an efficient numerical algorithm 
to solve this diffusion equation and found that our model is at least not worse 
than DIA but is four orders of magnitude faster than the exact Snl. It does 
not describe the peak enhancement and bimodality, but describes relatively 
well the angular spreading, much better than DIA does. 

We consider our diffusion model as a first representative of a whole seria of 
more sophisticated phenomenological models, where the exact Snl is replaced 
by much simplier integro-differential operation. A systematic study of such 
models is one of our goals. We plan to use for exact solution of the kinetic 
equation the algorithm, which we have now in our posession, as a paragon 
for examination the quality of such models. A preliminary consideration of 
some phenomenological models shows that the peak enchancement can be 
reproduced easily. 

5 One-dimensional dynamic models of wave turbulence 

Not all the experts in the field of wind-driven sea do believe in Hasselmann's 
kinetic equation. Some respected scientists (M. Schassnie, M. Tulin) consider 
that four-wave interaction is too slow process to explain real phenomena. 
They note that hypothesis on phase randomness, which is a theoretical foun- 
dation of the kinetic equation is not justified well enough. However, pure 
theoretical justification of this hypothesis is an extremely difficult problem. 

A natural way for examination of validity of the kinetic equation is direct 
numerical simulation of primitive dynamic equation describing wave propoga- 
tion and interaction. In the ideal case it should be Navier-Stokes equation. 
However, as a first step, it makes sense to perform simulation of more simple 
one-dimensional models. The most popular model of that sort was proposed 
by Maida, McLaughlin and Tabak in 1998 (MMT model). Numerical experi- 
ments performed by the authors showed an essential deviation of MMT mod- 
els from predictions of the weak-turbulent (WT) theory. We repeated these 
experiments and performed carefull analytical study of the MMT model. 

We found that the deviation from the WT theory is explained by strong 



influence of coherent structures - quasisolitons and wave collapses [5]. We 
found a modification of the MMT model where coherent structures are ab- 
sent [6]; in this case the numerical experiment completely supports the weak 
turbulent theory. We should stress that MMT model is not "academic". For 
certain values of parameters (a = 1/2, ß = 3) it describes with a good quality 
strongly nonlinear gravity waves on the surface in a strictly one-dimensional 
case (two-dimensional, including vertical direction). 

6 Direct simulation of three-dimensional wave turbu- 
lence 

The most direct and persuading support of the weak turbulent theory could 
come from the direct numerical solution of the Navier-Stokes of the Euler 
equation of Hydrodynamics describing fluid with free surface. Developing 
such algorithm is a very difficult task. The most promising approach for 
solution of this problem is the use of Taylor expansion in powers of nonlin- 
earity in the equations of potential flow and implementation of the spectral 
code, using the fast Fourier fransform. This program was successfully real- 
ized recently [8], on the mesh 256 x 256 modes. We put as an initial data 
the Jonswap spectrum cut at u = 2LJP, and observed very fast formation of 
spectrum a;-4 in high frequency domain. It is important to stress that this 
spectral tail was obtained in absence of wind. It is a very strong argument 
in support of the view-point that w~4 spectrum is a result of nonlinear wave 
interactions only. We plan to continue these experiments using larger grids 
(512x512, or even 1024x1024). 

7 Direct simulation of wave breaking and freak wave 
formation 

Not all important physical phenomena can be described efficiently in a frame- 
work of the perturbative approach. Such effects as wave breaking or forma- 
tion of rogue waves are essentially nonlinear. Combining a conformal map- 
ping technique with Hamiltonian formalism, we elaborated a method which 
makes possible to solve efficiently exact Euler equations for 2-dimensional 
nonstationary potential flow of the fluid with free surface [7]. The effects 
of capilliarity could be included. The new method makes possible to imple- 



raentate the spectral code using the fast Fourier transform. A number of 
harmonics could be as much as 32 000 or more. First experiments show that 
this method is stable and reliable and can be used systematically as a tool for 
study of strongly nonlinear phenomena, such as wave breaking, freak wave 
formation and" generation of capilliary waves by gravity waves. 

8 Boussinesq equation revisited 

The well-known Boussinesq equation describes gravity waves of small slope 
on shallow water. Actually, these waves are not "weakly nonlinear". On 
shallow water, even if the slope is small, the "slave harmonics" could be as 
much important as "free harminocs". It leads to formation of solitons, which 
interact in a nontrival way and could be unstable. It has been known since 
1973 that the Boussinesq equation can be solved exactly by the method of 
Inverse scattering transform. 

However, this procedure never was done before. We have performed an 
analytical solution of the Boussinesq equation [9]. In particulary, we found 
an exact solution describing the scattering, merging and collapse of solitons. 
The results can be applied for description of real phenomena on shallow 
water. 
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Appendix 

I. Formula, connecting observed spectrum Nk and "refined" spectrum nk (see [6]): 

nk = Nk   -   9-t l^(1'2)(Mi,fc2)|
2
(iV  N   _ NkNki _ NkNMk - kx - k2)dhdk2 

2 J   (uk-ujkl -uk2)
2 

_   g r iV^iKkuh)^ + N       _ NkN )6fc _k_ k2)dkldk2 
2 J   {ukl -uk -uJk2r 

_ g r iv^ihikh)?        + N    _ NkNki)s{k-2 _k_ kl)dkldk2 
2 J   (wk2 -uk + ukl)

2 

_   g j \V^\kMM)\\NNk^ + NkNk^ + NkNMk _ kl _ k2)dkldk2 
2J   [ujk + ukl + uk2)

2 

where 

L^(-k,k2) 
BkBklAk2\ 
AkAklBk2 

^««■«)-s^{(^Ä)WxPJ(S'ft+(^Ä)WlW(W) 

L^\ki,k2)   =   -(ki,k2) - \ki\\k2\ta,nhkihta.nhk2h 

Ak   =   k tanh kh,  Bk = g 
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2. Results of numerical simuation of Hasselmann equation is duration- 
limited frame. Wind velocity V = 10m/sec [6]. 
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Figure 28: Logarithm of the wave energy averaged over the angle as the function of logarithm of 
frequency for different moments of time. Dotted line - function proportional to w-5, dashed line - 
function proportional to w~4. 
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Figure 29: Logarithm of one-dimensional slices of wave energy at 6 = 0 as the function of logarithm 
of frequency for different moments of time. Dotted line - function proportional to w~5, dashed line - 
function proportional to u~i. 
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3. Comparison of numerical calculation [6] with duration-limited exper- 
imental data, taken from monograph of I.R.Young "Wind generated 
Ocean Waves". 
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4. Oncet of wave-breaking - direct numeric solution of exact Euler equa- 
tion [7]. 
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5. Formatin of freak waves as a result of mudulation instability of Stokes 
waves. 
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6. Diffusion approximation. Level-lines of a mature sea spectrum in~p^la7 
coordinates. Wind velocity V = lOm/sec [3]. 
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7. Weak-turbulent Kolmogorov spectra in the MMT-model with 2 types 
of interacting waves [7]. 
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8. Formation of wave turbulence Kolmogorov spectrum Ik * *"". Direct 

simulation of Euler equations. 
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Boussinesq equation revisited 

L.V.Bogdanov* and V.E.Zakharov 
Landau Institute for Theoretical Physics 

Abstract 
Continuous spectrum and soliton solutions for Boussinesq equation 

are investigated using the 9-dressing method. Solitons demonstrate 
quite extraordinary behaviour; they may decay or form a singularity in 
a finite time. Formation of singularity (collaps of solitons) for Boussi- 
nesq equation was discovered several years ago. Systematic study of 
solitonic sector is presented. 

1    Introduction 

Our renewed interest to Boussinesq equation is explained mostly by unusual 
behaviour of soliton solutions of this equation. A common thinking about 
solitons in integrable system is that they are stable objects interacting triv- 
ially, changing only phase as a result of interaction. However, behaviour of 
solitons of Boussinesq equation destroys this stereotype. Solitons of Boussi- 
nesq equation may decay under the action of perturbation or form a singu- 
larity in a finite time. One would probably think that Boussinesq equation is 
itself rather unusual. Not at all, it is a typical example of dimensional reduc- 
tion in the framework of KP hierarchy (KdV equation being the simplest), 
and it is also physically relevant equation, representing a nonlinear integrable 
generalization of wave equation [1]. Formation of singularity (collapse) for 
Boussinesq equation solitons was first observed several years ago [2] (see also 
[3]). In this work we perform a systematic study of solitonic sector of Boussi- 
nesq and also sum up the results concerning continuous spectrum obtained 
in the framework of the d-dressing method [4, 5, 6]. 

*e-mail leonid@landau.ac.ru 



The plan of the paper is the following. First, we sum up basic facts 
concerning the Boussinesq equation. 

Then, we briefly review the technique of d-dressing method [7, 8, 9, 10], 
restricting ourselves to the scalar case as the simplest. We would like to 
emphasize that most of the contents of this part is not original and is in 
the main described in the papers mentioned above. We concentrate on the 
generally less known features of the method, namely on the technique of 
dimensional reduction and on the characterization of continuous spectrum 
[4, 5, 6]. We will discuss different types of problems in the complex plane 
that arise in this context. We also derive determinant formula for soliton 
solutions. ■ 

Using the developed technique, we investigate continuous spectrum for 
all four versions of Boussinesq equation and obtain Carleman type problems 
in the complex plane and integral equations describing them. 

Finally, we study behaviour of solutions defined by the determinant for- 
mula, which gives a solitonic sector for Boussinesq equation. To illustrate 
behaviour of soliton solutions, we will use the pictures drawn from analytical 
formulae by Mathematica. 

2    Boussinesq equation 

Boussinesq equation describes propagation of waves in weakly nonlinear and 
weakly dispersive media [1]. To derive Boussinesq equation for some physical 
model, one should start from a Lagrangian 

L = fdx {^o?{utf - ß{ux)2 + \{uxxf + 3K)3) , (1) 

where a2, ß e R. Equation of motion corresponding to Lagrangian (1) is 
the Boussinesq equation for the function v = ux 

(jO?vtt - ßvxxj = - (^-vxx + -v2)    . (2) 

This equation describes waves moving in both directions. One-wave ap- 
proximation reduces Boussinesq equation to the Korteweg-de Vries equation. 

In fact there are four different cases of Boussinesq equation (2). The 
coefficients can be rescaled to get ß = ±1, a2 = ±1, therefore the only choice 



is the choice of the two signs.   The properties of the Boussinesq equation 
depend essentially on this choice.   The primary choice for us will be the 
choice of the sign of ß. According to this choice, we will distinguish between 
the 'plus' Boussinesq equation and the 'minus' Boussinesq equation. 

'Plus' Boussinesq equation reads 

3 13 
±jvtt - vxx + -vxxxx + {-v2)xx = 0. (3) 

In the case of the second sign plus it is a nonlinear wave equation, having in 
a linear approximation monochromatic solution 

v~ei(*y+kx)     2=4    2     1   4 
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In the minus case it is a nonlinear elliptic equation. 
'Minus' Boussinesq equation is 

3 13 
±jVtt + Vxx + jVxxxx + {l^2)xx = 0. (4) 

Dispersion law for this equation is given by the expression 

tf = ±\{-# + \k% 

For the sign plus this dispersion law is unstable for short waves and stable 
for long waves, for the sign minus it is stable for short waves and unstable 
for long waves. 

So four cases of the Boussinesq equation can be characterized in the fol- 
lowing way: wave case, elliptic case, Boussinesq equation with long-wave 
instability and Boussinesq equation with short-wave instability. 

Boussinesq equation is integrable by the inverse problem method (see, 
e.g., [11]). Our interest to this equation is explained by nontrivial properties 
of both continuous and discrete spectrum for this equation. 

Technically, Boussinesq equation is a result of dimensional reduction of 
KP equation taken in the moving frame. The initial KP equation in the 
moving frame reads 

— ((vt - ßvx) + -vxxx + 3vxv) = --a?vyy, (5) 



where the constant a defines the choice between KPI (a = i) and KPII 
(a = 1) equations, and the constant ß is the velocity of the frame (we take 
ß = ±1). Considering stationary solutions of (2+l)-dimensional equation 
(5), we get (l+l)-dimensional Boussinesq equation (2), 

2„, />„,   ^ _      /l ,      ,  3  2 -a vyy - ßvxxj = - \^-vxx + -v2j    , (6) 

where the role of the time variable t is played by KP variable y. 
To investigate continuous spectrum, we use the d-dressing method [7, 8, 

9, 10], in which very effective apparatus to describe dimensional reductions 
and continuous spectrum was developed [4, 5, 6]. We get information about 
the structure of continuous spectrum and the problems in the complex plane 
corresponding to all four versions of Boussinesq equation. Geometry of the 
spectrum is rather interesting, the spectral data are localized on the hyper- 
bola in the complex plane and on the segment of the real axis and small 
decreasing solutions are given by the Riemann problem with a shift on this 
curve (see another approach in [12, 13]). 

Behaviour of solutions of Boussinesq equation belonging to solitonic sec- 
tor is also rather unusual. The formula for the multisoliton solution of the 
Boussinesq equation can be obtained from the formula for the plain solitons 
of KP equation [11] 

v = -Ll°Sdet(A), (7) 

■As* — 0, 

dx2 

Ri 
v ~ uu Hi — Xj 

here 
Rk = ickexp(i(fik - Xk)(x - ioTx(ij,k + Xk)y)), 

{Xl±Xk-{4±fjLk) = 0, A^/i (8) 

Afe # ßj, where Xk, fj,k are two arbitrary sets of points of the complex plane 
satisfying the condition (8), which characterizes stationary KP solutions in 
the moving reference frame (ck ,Xk,ßk should also satisfy some reduction 
conditions to get a real solution). Formula (7) can be obtained in many 
different ways, in our work we will derive it using the 9-dressing method. 

We will treat mostly the case of the 'plus' Boussinesq equation with a = 1. 
This equation has a stable 'wave sector' (i.e., in the linear limit it is a wave 



equation). There are two soliton sectors for this equation: 'usual' solitons, 
running with the velocity limited from above, and soliton configurations, 
forming a singularity in a finite time. The latter may be considered as 
bounded states of several singular solitons. 

But even 'usual' solitons demonstrate quite extraordinary behavior in this 
case. Slow solitons are unstable with respect to small perturbations and may 
decay into two solitons or two singular solitons (that means a formation of 
singularity in finite time). Interaction of slow solitons unavoidably leads to 
formation of singulatity. Rapid solitons moving in the same direction behave 
like it is usually expected from the system of solitons; they do not decay and 
their interaction does not lead to formation of singularities. 

In this work we present a systematic study of solitonic sector of Boussinesq 
equation. 

3    ^-dressing: the basic technique 

The main technical tool of our work is the dressing method based on the 
nonlocal 9-problem [7, 8, 9, 10]. This is a powerful method of constructing 
(2+l)-dimensional integrable equations together with a broad class of their 
solutions. 

Boussinesq equation may be considered as a dimensional reduction of KP 
equation in the moving frame. To apply (^-dressing method to Boussinesq 
equation, we will use the scheme of dimensional reduction for the 9-dressing 
method developed in [5]. It leads us to the problem with a special kind of 
non-locality - the 3-problem with a shift and to the Riemann problem with 
a shift. It appears that these scalar nonlocal problems are a general and 
natural technical tool in (l+l)-dimensional case. 

The construction developed in [4] gives a simple and straightforward de- 
scription of solutions belonging to continuous spectrum (i.e., small decreasing 
solutions) in the framework of the d-dressing method. Continuous spectrum 
is characterized in terms of conditions which single out some special classes 
of the kernels of the general nonlocal <9-problem. 

Taking into account conditions of dimensional reduction, for small de- 
creasing solutions of (l+l)-dimensional equations we come to Carleman type 
problems in the complex plane. 

The scheme of the dressing method uses the nonlocal d-problem with a 



special dependence of the kernel on additional (space and time) variables 

d(^(x,A)-77(x,A)) = i^(x,A), (9) 

Riß(x, A) = JJ ip(x, X)R(X, (x) exp(J] fax^dß A dß, 
i 

(f>i = Ki(ß)-Ki(\),l<i<3, (10) 

where A E C, 5 = d/dX, r](x, A) is a rational function of A (normalization), 
Ki{\) are rational functions, the choice of which determines the equation 
that can be solved using the problem (9). We suppose that the kernel R(X, ß) 
equals to zero in a neighborhood with respect to A and to // of the divisor of 
poles of functions Ki(X), tends to zero as A, ß ->• oo and that for the chosen 
kernel R(X, //) problem (9) is uniquely solvable (at least for the sufficiently 
small x). The solution of problem (9) normalized by 77 is the function 

?/>(x,A) =?7(X,A) + </?(X,A), 

where r?(x, A) is a rational function of A (normalization), <^(x, A) decreases 
as A ->• 00 and is analytic in a neighborhood of the poles of Ki(X). 

Problem (9) reduces to integral equation for the function </? 

¥>(x, A) = drlR(<p(x, A) + ?7(x, A)), (11) 

here 

(5-V)(A) = (2*0-' // j0Y)dX'A dX' 

which is supposed to be uniquely solvable for given R.  Solvability is guar- 
anteed if operator 9_1i? is 'small enough' (i.e., norm of this operator is less 
then 1 for some properly chosen space of functions). 

Let us introduce p(X, X) = dip. Now 

iKx, A) = 77 + (27TZ)-1 JJ j^^dX' A dX'. (12) 

Substituting (12) into (11), we can get another form of the basic integral 
equation, resolving the nonlocal 9-problem 

p(x,A) = JR(r? + ö-1p). (13) 



The nonlocal d-problem and its special cases (3-problem with a shift, 
nonlocal Riemann problem, Riemann problem with a shift) are powerful tools 
for constructing integrable nonlinear equations and their solutions (see [7], 

[8], [9], [10]) 
The algebraic scheme of constructing equations is based on the following 

property of problem (9): if ip(x.,X) is a solution of the problem (9), then 
functions 

M(X)V, Dtf = (d/dxi + KM (14) 

are also solutions. Combining this property with unique solvability of prob- 
lem (9), one obtains differential relations between the coefficients of expansion 
of functions ^(x, A) into powers of (A — Xp) at the poles of Ki(\). Let us 
outline the basic steps of this scheme for KP equation that will be used in 
this work. 

For KP equation 

K^X) = iA, K2(X) = a~lX2, K3(X) = iA3, 

and, respectively, 

Dx = d/dx + iA, 

D2 = d/dy + a~1X2,    (a = l;i), 

£>3 = d/dt + iA3. 

Let us introduce the solution of problem (9) normalized by 1 (rj = 1), 

ip(X, x,y, *)A-»OO -> 1 + ipo(x, V, t)X~x + ... 

The basis in the space of solutions of problem (9)) with the polynomial 
normalization is constituted by the set of functions D™ip , 0 < n < oo. It 
follows from the unique solvability of problem (9) that tp satisfies the relations 

(£>3 + D\ + g(x, y, t)Dx + h(x, y, t))ip = 0, (15) 

(aD2 + DJ + 2v(x,y,t))i/) = 0.        . (16) 

The successive use of the coefficients of expansion of these relations as A —>• oo 
allows "us to define the functions v, g, h 

d 3 
v = -i—tpo, g = 3u, hx = -(vxx - avy), 



and to derive the KP equation for the first coefficient of expansion of the 
function ^ as A —> oo: 

9 ,       1 „     x        3  , 
fa{vt + ^vxxx + Svxv) = ~-a\y. (17) 

3.1    Special cases of nonlocal d-problem 

In the most important cases the kernel R{\, //) is a singular function localized 
on some manifold in C2. That means that the kernel contains the 5-function 
localized on the corresponding manifold, or in other words that the measure of 
integration in the operator d~lR is localized on this manifold. The operator 
d~xR in this case is still well defined. 

d-problem with a shift 

In a typical situation this manifold is a covering of the complex A-plane, 
defined by the equation 

f(\,\,H,ß) = 0, (18) 

where / is some function in C2. Equation (18) defines a multi-valued shift 
function ß = /^(A, A). The kernel of problem (9) in this case reads 

R = y£Ri(X,X)5{fM-tii(X,X)). 
i 

We will call this case a d-problem with a shift. 

Nonlocal Riemann problem 

Another special case of problem (9) is a nonlocal Riemann problem. Let 
7 = A(f), £ G R be an oriented curve in a complex plane (may be not 
connected), and the kernel of problem (9) be concentrated on the product of 
couple of these curves in A and in // planes. In other words, 

R(X,ß)=81(X)Ry(X,ß)S1(iJ,) (19) 

where 57(A) is a 5-function picking out points on 7. The solution ip of problem 
(9) with the kernel (19) is rational outside 7 and has boundary values ^>+, 



\\)~~ on 7. After regularizing <57 we obtain from problem (9) with the kernel 
(19) a nonlocal Riemann problem 

^-r = \ j(V+r WA, Ad», (20) 

the integration in (20) goes along the curve 7. 

Riemann problem with a shift 

A combination of these two special cases leads to the Riemann problem with 
a shift (or Carleman's problem). The shift function ß = ßi(X) is defined now 
on the curve 7 ( A, \x G 7). In this case 

Är(A)/i) = £4(%0i-W(A)) 
i 

and 

^ - r = 0 5>+o*(A))+r (MA)K (A), (21) 

where //j(A) is a multi-valued shift function on the curve A(£). We will write 
problem (21) symbolically in the form 

Aty(A(0)) = Är(A, M(A))^(A*(A(0)), (22) 

where 7 = A(£) (£ G R) is a curve in the complex plane, A is a jump of the 
function across the curve, the value of the function on the curve is the half- 
sum of the boundary values, //(A) is the shift function (may be multi-valued). 

Integral equations 

In all these three cases problem (9) is equivalent to a certain integral equation 
which can be obtained by a proper reduction of equations (11),(13). Let us 
do that for a Riemann problem with a shift. Introducing 

p7(A) = ip+ ■-ip~\\&r, 

we can restore the function ip in a form 

^+U0hM- 



Hence 

and from equation (21) one gets 

ftW = E (l(*M) + +**. I jrfgL-*) ZW. * 6 7-      (23) 

Let the curve 7 consist of n connected branches 7, = A»(£), £ G R, and /jj(f) 
be the jump of the function ip across the corresponding branch. Then the 
expression for the function ip takes the form 

* = y+±±f      ft«*)      jjig (24) 

and integral equation (23) reads 

MO = E (,</.«)) + ^ E«,. / j^g^y^) «»(0. 
(25) 

Thus we have obtained a system of n singular integral equations. 

The 5-functional kernels 

There is one important special case of nonlocal 9-problem which is exactly 
solvable, which corresponds to soliton solutions and discrete spectrum (in 
some broad sense). This is a case of «^-functional kernels 

N 

R{\, ß) = 2TU £ RiSiX - Xi)5(ß - /zi), (26) 
i=l 

where Aj, /i; is a set of points in the complex plane, Aj ^ fj,j, 

In this case the solution of problem (9) is a rational function, and problem 
(9) reduces to a system of linear equations.   The formula for the solution 

10 



normalized by (A — fi) x is 

w-d-xV «*>">« fa-,&-*)■       (27) 

A    -S ^ 
An ~ Aj 

here 
Rk = ck exp((Äi(/ifc) - Äi(Afc))a;i), 

or, in a more symmetric form with respect to A and fj, 

^ A») = ^ + (W-)« fa _„)(,_,,)■ W 

Pi — Aj 

In the limit when a pair of poles A;, ßj coincide, rational with respect to xq 

factors appear in the formula for ijj. The limit \ —>■ //» for all 0 < i < N 
corresponds to a rational with respect to xq solution. 

Expression for solution with canonic normalization (77 = 1) can be ob- 
tained from the formula (27), 

lKA,x) = Hm -/iV(A,/.,x) = 1 + £((A')-%(A - A,-), (29) 
3 

and potential 

reads 

■0o(x) = lim A'0(A,x) 
X—>oo 

^W = EE((^)-1)«- (so) 

Introducing variable x with K(X) = i\, it is easy to check that expression 
(30) can be rewritten in the form 

Vo(x) - -i^logdet(A) ~ -i— logdet(A') (31) 

11 



(up to a constant). Indeed, 

= EEexpdfe - A,)) (c;\, - «PPfa-y»))-1 

= EE((^)-1k- (32) 

3.2    Solutions with special properties 

Small decreasing solutions (continuous spectrum) 

A solution given by the problem (9) in a general case is defined only locally 
in a vicinity of the point x = 0, where the d-problem is uniquely solvable. 
Solvability may be lost on some manifold in a space (xi, £2,0:3), where the 
solution has a singularity. To get 'good enough' solutions having no singular- 
ities and bounded (decreasing) as |x| ->■ 00 one should put some restrictions 
on the Lernel R(\,{i). These restrictions were discussed in our article [4]. 
The man result, of this article can be formulated as follows. Let us choose a 
unit vector n{ (£ n? = 1) defining a direction in the x-space. The solution 
given by problem (9) is regular in a neighborhood of straight line x{ = m£ 
and decreasing along this line as £ ->■ ±00 if the condition 

3 

■ ReJ2ni(Ki(\)-Ki(ß))=0 (33) 
»=1 

is satisfied (this condition is in fact the condition for the kernel R(\,(J), it 
means that we should use the kernel localized on the manifold (33)), and the 
kernel R(X, p) is 'small enough'. 

To get a solution which is 'good enough' in a neighborhood of some plane, 
defined by two vectors n^rrii, one has to satisfy two conditions 

Re2"<(Äi(A)-Äi(/i))=0> 
»=1 

3 ' 

12 



In a generic case a pair of conditions (33) define some manifold with real 
dimension 2 in the space C2 of complex variables A, JJL. 

Let us illustrate this result on the simple example of the KP equation. 
To obtain the small nonsingular solution decreasing in the plane (x, y) it is 
sufficient to use the problem (9) with the kernel localized on the manifold 
defined by the system of conditions (33) 

Im(A -ß)=0, (34) 

Rea"1(A2-/x2) = 0. (35) 

If a = i, the system (35), (34) has a solution A,/x G R, which defines a 
nonlocal Riemann problem on the real axis. So the small decreasing solutions 
of the KP1 equation are given by the nonlocal Riemann problem 

•0+ - jjj- = / (ijj+ + ^-)Äy(A, JJ) exp(^iXi)dfj,, (36) 

that was originally used by Manakov [14] to integrate the KP1 equation. 
If a = 1, the solution of the system (35) is \i = -Ä. Thus the small 

decreasing solutions of the KP2 equation are given by the 3-problem with a 
conjugation 

di{>(xt y, t, A) = R(X, -X) exp((j)iXi)ip(x, y, t, -Ä), (37) 

and we reproduce the problem used by Ablowitz, Bar Yaacov and Fokas [15] 
to integrate KP2 equation. 

Dimensional reduction 

Solutions independent of the variable Xj can be obtained from the problem 
(9) with the kernel localized on the manifold 

Kj{\) - Kjifi) = 0. (38) 

This observation allows us to use (2+l)-dimensional dressing method for 
(l+l)-dimensional equations and leads us naturally to the 9-problem with a 
shift and, for decreasing solutions, to the Riemann problem with a shift. Let 
us consider this observation in more detail. 

If we have (2+l)-dimensional integrable equation, defined by the func- 
tions Ki(\), we can descend to (l+l)-dimensional case, using the condition 

13 



(38) for some coordinate xt in the original or rotated coordinate system. For 
example, ^-independent KP equation gives the KdV equation 

{vt + jvxxx + 3vxv) = 0 

The condition (38) in this case reads 

A2-//2 = 0, 

and the solutions of the KdV equation are given by the d-problem with a 
shift [8] 

dip(\) = R(X, -A) exp(<j>iXi)iP{-\) (39) 

the shift function for this case is quite simple (// = -A), and it is easy to 
transform problem (39) to local matrix (2x2) Riemann problem. 

We may also consider the case of the ^-independent KP equation, which 
corresponds to simplified Boussinesq equation 

3 13 
-a\y = -{-vxx + -v2)xx, (40) 

Condition (38) in this case reads 

A3-/i3 = 0, 

and solutions of simplified Boussinesq equation (40) are given by the 8- 
problem 

where ef = 1. Simplified variant of the Boussinesq equation was considered 
in [13]. Let us show that for decreasing solutions our approach leads us 
to the Riemann problem with a shift for the functions analytic in sectors 
(such a geometry for the local matrix Riemann problem arose in [13] from 
the analytical properties of the direct scattering problem). Combining the 
condition (38) with the condition (33) 

Im (\-p)= 0, 

we obtain 
f A - eifx = 0 
I A-^ = £, £eR 

14 



The solution of this system is 

A   =   e(l-ei)"1. 

it defines a Riemann problem with a shift on the pair of straight lines with 
the vectors exp(nr/6), exp(-i7r/6), the shift function is /i = -Ä. So we came 
to the problem for the function analytic in corresponding sectors. 

For an arbitrary rational function Ki(X) condition (38) defines a multi- 
valued shift function //j(A), and corresponding 9-problem reads 

W = t^(W- (41) 
»=i 

4    Boussinesq equation via ^-dressing method 

Let us consider KP equation in the moving frame equation 
r\ -I Q 

Q-{(vt - ßvx) + -vxxx + 3vxv) = --a2vyy, ß2 = 1. (42) 

Solutions of this equation are given by problem (9) with dependence of 
the kernel on variables x,y, t defined by the expressions (compare (10),(14)) 

Di   =   d/dx + iX, 

D2   =   d/dy + a-l\\ (a = l;i), 
D3   =   d/dt + i\3 + iß\. (43) 

Time-independent solutions of equation (42) satisfy Boussinesq equation 

3 13 
(TO!

2
% - ßvxx) = ~(jvxx + -v2)xx. (44) 

Such solutions are given by problem (9) (v = —i-^ipo), if the support of 
kernel R(X, /x) belongs to the manifold defined by condition (38) 

(A3 + /?A-//-/fy) = 0, A^/z, (45) 

or 
X2 + Xß + ß2 + ß = 0. 

15 



This relation defines a d-problem with a shift 

dip(\, x, y) = R(X, //(A)) exp(<f>iXi)iß(ti(X),x, y), (46) 

// = ^(-A±(4/?-3A2)i), 

Solutions of Boussinesq equation, given by problem (46) (v = -i-^tpo), 
are defined locally in the neighborhood of the point x = 0, y = 0. We consider 
Boussinesq equation as a dynamical equation with respect to the variable y. 
To obtain small decreasing as |x| -> co solutions, we should investigate the 
intersection of the manifold (38) with the manifold, defined by the condition 
(33): 

Im(A - p) = 0. (47) 

Conditions (45), (47) define a Riemann problem with a shift (the Carleman's 
problem) which is a proper tool to solve Boussinesq equation. Introducing 
f = |(A - //), v — -i\{\ + ß), £ G R, one can get 

/? + £2-3z/2 = 0. (48) 

About the reduction 

Let us make a remark about the reduction. For a = 1 v(x,y) is real if the 
kernel of the problem (9) satisfies the condition 

R(\tfi)=R(-\,-fi), (49) 

for a = i if 
R(\,p) = R(ß,\). (50) 

4.1    Continuous spectrum 

'Plus' Boussinesq equation 

One can see that the properties of Boussinesq equation depend essentially 
on the sign of ß. Let ß = 1. Corresponding equation ('plus' Boussinesq 
equation) has a form 

3   2 1 ,3  2 Oi    Vyy VXX   + VXXXX   +   ( —"' orvmi - vTT + -vxxxx + (-v2)xx = 0. (51) 

16 
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Figure 1: Localization of continuous spectrum for 'plus' Boussinesq equation 

In the case a2 = 1 it is a nonlinear wave equation, having in a linear approx- 
imation monochromatic solution 

In the case a2 — —1 it is a nonlinear elliptic equation. In both cases equation 
(51) can be solved by the following Riemann problem with a shift 

-3z/2 + £2 + 1 = 0, 

A = -fl, 
A = £ + iv, fj, = —£ + iv 

(52) 

Equation (52) defines a hyperbola with the branches belonging respectively 
to upper and lower half-planes (Figure 1). The shift is defined as change of 
sign of the real part of A. Let us introduce 

p±(0 = A</> |±, 

17 



jumps of the function ip(X) across upper and lower branches of the hyperbola. 
The function ip can be represented in a form 

V 2^7-00 (A-A+(e)) df' 

37ri./-ooa-A_te')) #' c' 27ri7-0o(A-A_(f)) df' 

where 

Riemann problem with a shift (52) is equivalent to the system of two integral 
equations (25) 

^/-l(A+(4)-'L(e))^)^(^*^-. 

27Ti 7-oc (A_(-0 - A+(0) «' ^ Uje 

Solution of Boussinesq equation is given by the formula 

'Minus' Boussinesq equation. 

This equation, 

— OL Vyy + Vxx + —fxixx "I" („"  Jxa; = 0, 

arises after putting /3 = -1.   The reduced 8 problem for this equation is 
described by the conditions - 

A2 + A/i + jj,2 = 1 (53) 

18 



Im 

3- 

4-3     -2 yi 5^2        3    '  4 

-3 

-4- 

Re 

Figure 2: Localization of continuous spectrum for 'minus' Boussinesq equa- 
tion 

(time independence) and 
. Im(A -n) = 0 (54) 

(decreasing in x-direction). There are two possibilities to satisfy these con- 
ditions. 

1. A and \i are real (A2 < |,/x2 < |) and 

„=-Wi-?*. (55) 

We have a Riemann problem on the cut —\1\ < ReA < w| with the twofold 
shift (55). 

2. A and \x are complex, A = v + i£, fj, = — v + i£, £, v G R, 

v2 - 3£2 = 1 (56) 

Both A and /i belong to the hyperbola (see Figure 2). The shift as for 'plus' 
Boussinesq equation is reflection with respect to imaginary axis. 
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Let us parameterize the curves, on which the solution ip of Riemann 
problem with a shift has a discontinuity, in the following way 

7+ = A+(f) = i£ + y/l + 3£2, -oo < f < oo 

7- = A_(0 = i£ - Vl + 3^2, -oo < £ < oo 

7o = A0(£) = £, £2 < ^ 

and introduce the jumps p+(f), P-(£)> Po(£) of tne function ^ across the 
curves. Then the function ip can be represented in a form 

+± r    p-(0    dX-dr>\  l  (^ -EaW-H? 
^2m 7-oc (A - A_(0) #' ^      27TZ 7-^1 (A - £'p ' 

Riemann problem in this case is equivalent to the system of three integral 
equations 

Pb(fl = 1 

+fj- r ^e ^±de'+- r    p-(e0   dA-- 
\2m 7-co (p+(0 - A+(0) df'   ?      27ri 7-oc (p+(£) - A_(0) «' 

P-(f) dX. 
■oo(/u_(o-A_(eo) de; 

where 

+ 

+(± r ^2 ^+— r    p-(o    ^ 
\>i 7-oc (MO - A+(e)) df'   *      27ri 7-00 (M£) - A_(e')) d? ** 

K = \t±Ji-\e, 

\27ri i-oo (A_(O - A+(eo) de ? + 27ri loo (A_(O - A_(e)) de 4 

+ 27Ti7-yi(A_(e)-e) V     lU 
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p-(fl = 1 
J±_ r P+(f) d\+ 1    r~ p_(Q dX+ 

V27Ti 7-00 (A+(0 - A+(£')) d?   ? + 27ri 7-co (A+(0 - A_(e)) d? 

Solution of Boussinesq equation is given by the formula 

__d_l_ 
dx 2TT 

d\+ ,      ,^d\-\ „ ,   /Vf     ^dAo c {^ra+r-^it) *+y-^w* 
In this case the spectral data i?7 split into two parts; short-wave part of 

continuous spectrum is localized on the hyperbola (56), and long-wave part 
of the spectrum on the segment of real axis (in fact on the covering of this 
segment); see Figure 2. For a = 1 hyperbola corresponds to the stable part 
of spectrum (exponent (10) for y is imaginary) and segment to the unstable 
part (exponent is real), for a = i the situation is reversed, i.e., long-wave 
instability takes place for a = 1, and short-wave instability for a = i. 

4.2    Soliton solutions 

Behaviour of solitons in the case of Boussinesq equation is very unusual for 
integrable system. We will treat mostly the case of 'plus' Boussinesq equation 
with a2 = 1. This equation has a stable 'wave sector' (i.e. in the linear limit 
it is a wave equation), and it may be considered as integrable nonlinear 
generalization of the wave equation. There are two soliton sectors for this 
equation: 'usual' solitons, running with the velocity limited from above, and 
soliton configurations, forming a singularity in a finite time. The latter may 
be considered as bounded states of several singular solitons. 

But even 'usual' solitons demonstrate quite extraordinary behaviour in 
this case. They are unstable with respect to small perturbations and may 
decay into two solitons or two singular solitons (that means a formation of 
singularity). 

This phenomenon was discovered by Orlov [2] several years ago, but it is 
hot well known even in the soliton community, so we would like to investigate 
it here in detail in the framework of our general approach. 
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To study soliton solutions of the Bousinesq equation, we start from the 
general determinant formula (31). For KP equation in the moving frame (42) 
from this formula we get (see analogous expression for the KP in [11]) 

d2 

logdet(4), (57) 

where 

dx2 

A   -Ü ^ 
fli — Aj 

Rk = -ickexp(i(nk - Xk)(x (ßk + Xk)y)). 

We will use equivalent form of this formula 

d2 

logdet(A), (58) 

1 
dx2 

Mj = —r- exp($i)^ + , (59) 

where 
$k = i(Afc - fik)(x - i(/xfc + Xk)y). 

To get solutions for the Boussinesq equation (44), the pairs (\k,ßk) should 
satisfy the condition of dimensional reduction (45) 

A2 + A// + ß2 + 1 = 0. 

and Xk ^ fij. The reduction (49) is to be taken into account. 
We should also put some restrictions to get from the formula (57) solutions 

having no singularities at least for some values of y (y is dynamical variable, 
'time', in our treatment). The prescription we will use is to put the condition 

Re(Ai - in) = 0. (60) 

Then the exponents containing x are real, and at y — 0 we can provide the 
absence of singularities by the choice of coefficients. This condition together 
with the condition (45) define a curve to which the points Aj, ß{ should belong. 
This curve is identical to the curve we studied in the case of 'minus' Boussi- 
nesq equation with the interchanged real and imaginary axes (see Figure 3). 
So we have the curve consisting of two parts: the segment of the imaginary 
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Figure 3: Localization of discrete spectrum for 'plus' Boussinesq equation 

axis and hyperbola. Let us consider the simplest solutions corresponding to 
these parts. 

First, in complete analogy with the formulae (55), (56), we introduce 
parameterization of the pairs of points \k,ßk in the following way: for the 
segment of imaginary axis 

A = -i£,    p = -iri,    v=-\(Z±^-3e), (61) 

for pairs belonging to hyperbola A = £ — iv, ß = £ + iu, f, v E R, 

u2 - 3£2 = 1. (62) 

Let us start with solutions corresponding to the points on the hyperbola. 
We should take two pairs of points on the hyperbola 

\1=£-iy/l + 3e,    ^i = £ + i\/l + 3£2, 

A2 = -Ä1 = -£-i^/H-3£2,    iA2 = -ßi = -Z + iy/l + 3?.   (63) 

to satisfy reduction condition (49) 

R(X,fj) = R(-X,-ß). 
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General formula for determinant solution (59) corresponding to two pairs 
of points (Ai,/ii), (A2,/z2) is 

det(i) = <M-WJ*-I*) + V^.     (4i) + h^H exp(#2) 
(Ai-/i2)(^i-A2)       -ici -lea 

■^-^•exp^Ox^l^exp^). (64) 
lCi -ic2 

Let us take two pairs of point on the hyperbola parameterized by formulae 
(63) and Ci,c2 = c e R. Then determinant (64) is real, and it is given by 
the expression 

det(A) = —— + 2^1 + 3^2 (gy/i+zPb-Wiv) + #y/i+ap{*+2itv)\ 

+ «(l + 3f)e4^Hg. (65) 

For positive c this expression has no zeroes at initial moment, so the solution 
is nonsingular and decreasing. But then at some moment zeroes appear in 
this expression, so the singularities are formed. Let us illustrate this pro- 
cess by several figures corresponding to some special choice of parameters 
(c = —20, £ = 1). Figure 4 shows the lines on the plane x, y, where the de- 
terminant is equal to zero. General form of the solution is given by Figure 5. 
Figure 6 illustrates development of singularity for the solution (dynamics is 
considered with respect to y variable). Figure 7 shows the solution after 
creation of singularity. Then the solution behaves like two singular solitons 
(see Figure 8), first they go away from each other to some maximal distance, 
then they come close and singularity disappears (see Figure 9). The process 
is periodic with respect to y. Qualitatively this picture keeps for the arbi- 
trary value of parameters. The change of c just shifts the picture. Parameter 
£ defines the period of the process and the characteristic length. Maximal 
distance between the singularities is 

Ux = vfrwavccosh G4)' (66) 

time between creation and disappearance of singularities is 

*=^arccos(F(£)), (67) 
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Figure 6: Development of singularity 
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where 

The function F(£) is monotone increasing function equal to zero at £ = 0 
with the limit 1 at infinity and -1 at minus infinity. 

Dynamics of singularities becomes more complicated when we take solu- 
tion corresponding to a set of several points \i} //;. The case of four pairs of 
points is illustrated by the Figure 10 

Decay of solitons 

A pair of points belonging to the segment of imaginary axis gives us a soliton 
solution 

detl= l + —r^exp(i(X-fjl)(x-i(fjL + X)y)). 

Using parameterization (63), we get the formula 

detÄ = i + ^-!LeXp((Z-v)(x-{S + v)y)) 

(69) + 2c e 

02 
V = 0-j log COSh 2i±^H! (2(a-x0)-ttT V4=3i») „) . (70) 

To understand dependence of soliton on parameters f, rj, it is useful to 
recall that these parameters belong to the ellipse 

e + ^V + V2 = l- (71) 

Introducing velocity of soliton 

and parameter defining amplitude of soliton 
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we rewrite the equation of this ellipse in the form 

Then it is easy to see that the absolute value of velocity of soliton v = £ + 77 
is limited by ^4/3. For ^ > 0 soliton is nonsingular. As £ - 77 ->• 0, 
the amplitude of soliton goes to zero, and velocity reaches its maximum 

M ~> V4/3- Tw0 P°ints with f = 77 belonging to the ellipse are the points of 
the change of sign, where (for fixed c) nonsingular soliton becomes singular 
and vice versa. 

There are some unusual features concerning behaviour of soliton under 
small perturbations, which come to light when we study two-soliton solutions. 
General formula of two-soliton interaction (64) rewritten for the segment of 
imaginary axis in terms of parameters f, 77 looks like 

det{A) ~ &-*)(*-6)+~^rexp($i)+-s~exp($2) 

-^^exp^) x ^^exp($2), (72) 
Ci c2 

where 

*< = (6 - rn)(x - (£ + rji)y) = Ai(x- vty). 

Considering formula (63) defining % through &, one remarks that there are 
two possible choices of 77 corresponding to the same f (and also two possible 
f corresponding to the same 77). It is natural to ask a question what kind of 
solution we get if we consider two pairs of point with the same f (or the same 
77). The formula (72) in this case degenerates, the first term in it is equal 
to zero. Naively, we expect this solution to be two-soliton solution. But 
further study shows that this solution possesses rather unusual properties. 
It describes process of decay of soliton (70) (or fusion of two solitons). 

Considering formula (72) with £x = £2 = £, We get 

det(l) = +Lj?L exp($1) + izi& exp($2) 

+£^exp($1)x^^exp($2), (73) 
C\ c2 
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or, using explicit parameterization (63) of 771,772 through £, 

«^ ~ ' + — 3{-V4-3?  

+ 2cie    V A         i (74) 

here Ci,c2 G R, and determinant is written up to exponential factor that 
doesn't change the solution. Experimenting with the plots drawn by Math- 
ematica from this formula for some choice of parameters, one discovers two 
solitons for some (big positive) values of y, and one soliton for other (big 
negative) values. Analytic study of formula (74) confirms this impression. 

Let us consider the simplest case of the staying soliton (soliton with ve- 
locity zero). In this case the value of parameter £ is equal to 1, and formula 
(69) (with the sign +) takes the form 

detl~l + ^exp(-2a;), (75) 

that corresponds to standard soliton solution with zero velocity 

v = cosh-2 (x — x0). 

Substituting £ = 1 to the 'two-soliton' formula (74), we get 

det(^) ~ 1 + c2 exp(y — x) + -c\ exp(—2x). (76) 

To study asymptotic behaviour of solution corresponding to this determinant, 
we should take into account that solution is given by the second derivative of 
the logarithm of determinant (formula (57)). At y = —00 we discover only a 
staying soliton of the form (75) 

d2 1 
log(l + -ci exp(-2:r)), 

dx*    bK    ' 2 

which is nonsingular if c\ is positive. Multiplying the determinant (76) by 
exp(x — y) (that does not change the solution), we get another representation 
of 'twö-soliton' solution 

v = — log (exp(x -y) + c2 + -ci exp(-a; - y)J 
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Using this representation to study asymptotic behaviour of solution at y — oo 
in the arbitrary moving frame x — x + vy, we discover that for v = ±1 
asymptotics is nontrivial, corresponding to two solitons moving with veloci- 
ties v = ±1, 

d2 d2        (\ \ 
^^'°g(exP(* - V) + c2) + g-2 !og (jcx exp(-a; - y) + c2) .      (77) 

As we have mentioned before, for nonsingular staying soliton Ci is positive. If 
C2 is also positive, formula (77) gives two nonsingular solitons, and negative 
C2 corresponds to two singular solitons. 

The initial data for the solution v corresponding to the determinant (76) 
may be made infinitely close to one-soliton solution by the choice of constants. 
In fact at y = -co this is exactly a soliton. But then this slightly disturbed 
soliton solution decays! It may decay into two solitons or into two singular 
solitons, depending on the initial perturbation (see Figure 11,12). So staying 
soliton solution for the Boussinesq equation is unstable with respect to small 
perturbations, it may develop singularity or decay into two solitons. 

A natural question to ask next is whether arbitrary soliton may decay. To 
answer it, we start from some general remarks concerning the decay formula 
(73) 

det(l) ~ 1 + —— exp(-$i) + —— exp(-$2). (78) 

Using simple example of staying soliton, we have shown that three different 
solitons enter this formula. Soliton is defined by a pair of real parameters £, rj 
satisfying equation (71), or, in other words, by the point of ellipse (71). The 
point T], £ defines the same soliton (up to a change of constant c). Deriving 
formula (78), we start from two solitons having the same £. To understand 
the reason of appearance of third soliton, it is easy to show that if rj = r/i, 
p = r}2 satisfy equation (71) with the same £, then the point (77, p) also 
belongs to the ellipse (71). So the formula (78) 

det(A) ~ 1 +    Cl   e-tt-qXs-tf+'rty) +    °2   e-tf-rt(»-tf+p)y)     (79\ 

contains three solitons with the parameters (£,77), (f,p), (r),p). Thus the 
decay process is characterized by three real parameters £,r],p, possessing 
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Figure 11: Decay of soliton into two solitons 

u 

Figure 12: Decay of soliton into two singular solitons 
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the property that each pair of parameters defines the point of the ellipse 
(71). Depending on f (which defines 77 and p through the formula (63)), each 
soliton is present only at y = 00 or at y = — 00. 

Considering formula (79) in the moving frame 

x = x + (f + n)y, 

we discover that soliton with the parameters (£, 77) is present at 

2/ = sign((£-p)(77-p))oo. 

Similarly, we come to the conclusion that soliton with the parameters (£, p) 
is present at 

2/ = sign((£-77)(p-r?))oo. 

Rewriting expression (79) in equivalent form 

det(I) ~ e-fa-O^-K-Hj)») + _£l_ +    C2   e-(v-P)(x-(ri+P)y)      (80) 

and considering the moving frame 

x = x + (r? + p)y, 

we show that soliton with the parameters (77, p) is present at 

3/= sign((»j-£)(/£>-f))oo- 

Choosing to be definite f > p > 77, we discover that formula (79) describes 
decay of soliton with the parameters (£,77), i.e., the smallest and the largest 
of parameters f, p, 77. Let us use explicit parameterization (63) 

If we start from the maximal value of f = ^|, formula (79) describes decay 
of soliton with the parameters (£, 77); velocity of this soliton is 
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As p comes close to f (at f = ^i), velocity of the soliton (f,p) reaches 

maximal velocity v = J\, and velocity of decaying soliton (£, 77) reaches the 

value v = -A/|- At p = £ formula (79) degenerates, it describes one soliton 

with velocity v = -v/f- As £ becomes smaller then y|, p becomes larger 
then £, and formula (79) describes decay of soliton (p, rj) with the velocity 

-£• 

At f = -\/| £ becomes equal to 77, formula (79) degenerates once again, the 

velocity of decaying soliton reaches the value y |, and for —yj\ > £ > — y | 
it describes decay of soliton £, p with the velocity 

k+v^" 3e2). 

Thus the velocity of decaying soliton changes in the range 

-Jl < ^dec < 7|. 

There are decay processes into two solitons or two singular solitons, depend- 
ing on the choice of constants ci, C2 in the formula (79). 

There are no decay processes for the solitons with \v\ > v/|, so these 
solitons are stable. Thus we have answered our first questions, and the 
answer is negative, not all solitons may decay. 

Interaction of solitons 

Next question is about soliton systems and interaction of two solitons. It is 
whether singularities may appear as a result of interaction, and are there any 
stable soliton systems (not forming singularities as a result of interaction). 
First we would like to formulate two results concerning these questions. 
Statement 1. Solitons moving in one direction with velocities \v\ > J^ do 
not form singularities as a result of two-soliton interaction. 
Statement 2. Two-soliton interaction of solitons with velocities \v\ < w| 
necessarily leads to formation of singularity (i.e., the result of interaction of 
two solitons always is two singular solitons). 
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The proof of both statements is based on formula (72). Interaction of two 
solitons is much more standard in soliton theory than decay process, so we 
will not consider it in detail. Using moving reference frames and considering 
asymptotical behaviour of solution (72) at y = ±infty, it is easy to show 
that the character of interaction process is defined by the sign of the first 
term in the formula (72) 

(6-6)fa-r?2) , 
«1 -%)(!?! -6)' (8) 

If c > 0, the result of interaction is a pair of solitons, and for c < 0 the 
result is a pair of singular solitons (that means that singularity is formed in 
the process of interaction). The points of change of sign £i = £2, Vi = %, 
fi = V2, Vi = 6 correspond to degeneration of formula (72) into triple (decay 
or fusion) process and appearance of third soliton. The results of analysis of 
triple soliton diagram given before show that it always contains two solitons 
moving in the same direction; one with velocity \vi\ < v/| (the decaying 

soliton), and another with velocity \v2\ > \ß. Third soliton moves in the 

opposite direction with the velocity \v3\ > yf^. 
Let us take two solitons moving in the same direction with velocities \v\ > 

y |. There are no decay diagrams containing these solitons, and expression 
(81) doesn't change sign when we change parameters of solitons. It is easy 
to check that in this case the sign is positive, and the result of interaction 
of two solitons is two (nonsingular) solitons, that proves Statement 1. This 
statement can be easily generalized to the case of iV-soliton interaction, and 
thus the system of solitons moving in the same direction with velocities \v\ > 

sj\ doesn't form singularities and is stable with respect to decay processes. 
In other words, this system demonstrates a 'standard' behaviour usually 
associated with a system of solitons. 

Similarly, considering two solitons moving in the same direction with 
velocities |u| < ^J\, we come to the conclusion that the sign of expression 
(81) is negative. Interaction of two solitons in this case always results in two 
singular solitons, i.e., in the formation of singularity, that proves Statement 
2. Thus the system of solitons moving in the same direction with velocities 
\v\ < VI demonstrates rather extraordinary behaviour. First, the solitons 
are unstable under perturbation and may decay into two solitons or two 
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singular solitons. And second, interaction of two solitons unavoidably leads 
to formation of singularity in a finite time. 
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We study numerically the generation of power laws in the framework of weak turbulence theory for 
surface gravity waves in deep water. Starting from a random wave field, we let the system evolve 
numerically according to the nonlinear Euler equations for gravity waves in infinitely deep water. In 
agreement with the theory of Zakharov and Filonenko, we find the formation of a power spectrum 
characterized by a power law of the form of |k|-2'5. 

PACS numbers: 47.27.-i, 92.10.Hm, 47.35.+i, 03.40.Kf 

After the pioneering work by Kolmogorov [1] on the 
equilibrium range in the spectrum of an homogeneous 
and isotropic turbulent flow, there have been a number 
of studies on cascade processes in many other fields of 
classical physics such as plasma physics, magnetohydro- 
dynamics and ocean waves. For surface gravity waves the 
first seminal theoretical work was done by O.M. Phillips 
in 1958, [2]. Using dimensional arguments, he argued 
that the frequency spectrum in the inertial range was of 
the form F(w) = ag2uj~5, where a was supposed to be 
an absolute constant and g is gravity. Even though in 
the introduction of Phillips' paper it was stated that "a 
necessary condition for the equilibrium range over a cer- 
tain part of the spectrum is the appreciable non-linear 
interactions among these wave-numbers" (from [2]), his 
arguments were based on the geometrical features of the 
free surface elevation. One of his basic assumptions was 
that the only variable of interest was gravity, while the 
friction velocity, «,, was not supposed to be involved in 
the spectral relation, limiting the possibility for a correct 
dimensional analysis. 

Some years later Zakharov and Filonenko [3] estab- 
lished that in infinite water the direct cascade should 
produce a power spectrum of the surface elevation of the 
form P(|k|) ~ |k|-25 that corresponds, using the linear 
dispersion relation in infinite depth, to an u>-4 frequency 
power spectrum: the result was found as an exact solu- 
tion of the kinetic wave equation (see [4]). The theory de- 
veloped is known as "weak" or "waveturbulence" and has 
many important applications in different fields of physics 

such as hydrodynamics, plasma physics, nonlinear optics, 
solid state physics, etc. see [5]. It is called weak turbu- 
lence because it deals with resonant interactions among 
small-amplitude waves. Thus, contrary to fully devel- 
opped turbulence, it leads to explicit analytical solutions 
provided some assumptions are made. The first exper- 
imental support of the theory for surface gravity waves 
was made by Toba [6] who was completely unaware of 
the paper by Zakharov and Filonenko. He reformulated 
the Phillips' equilibrium range law in the following way: 
F(iv) = ßgut,u)~4, where ß should now be an universal 
dimensionless constant. After the work by Toba, succes- 
sive experimental observation of the w~A law have been 
made by a number of authors, see for example [7-10]. 

Even though there is a consensus on this result, it must 
be stressed that so far the verification of the theory has 
never been established from first principles and more- 
over the mechanisms that lead to the power law w-4 

are not universally recognized: geometrical aspects re- 
lated to wave breaking, without invoking the nonlinear 
wave-wave interaction mechanism, are still retained by 
many oceanographers as fundamental for generating an 
w~4 power law. Confirmation of the Zakharov-Filonenko 
solution to the kinetic equation has being given through 
numerical simulations of the kinetic wave equation itself 
[11] [12], solving exactly the so called Sni term. Never- 
theless, it must be underlined that the kinetic equation is 
derived from the primitive equations of motion under a 
number of hypotheses (see for example [13]), therefore it 
cannot be concluded a priori that power law solutions of 



the kinetic equation are also shared by the fully nonlinear 
wave equations. 

One way to verify weak turbulence theory is to per- 
form direct numerical simulations of the primitive equa- 
tions of motion. The numerical confirmation of the the- 
ory for gravity waves propagating on a surface has not 
been an easy task (for capillary waves see [14], for one 
dimensional wave turbulence see [15,16]), basically be- 
cause of the intrinsic difficulties of the computation of 
the boundary conditions. Different numerical approaches 
have been used for integrating the fully nonlinear sur- 
face gravity waves equations (see [17] for a review). The 
numerical methods based on volume formulations show 
very interesting results, in particular they are capable 
of modeling in a quite appropriate way wave breaking. 
Unfortunately they have the disadvantage that they re- 
quire large computational resources, and therefore are 
not suitable for long time numerical simulations. For ir- 
rotational and inviscid flows boundary formulations are 
usually preferred: only the surface is discretized reduc- 
ing the dimension of computation (from three to two). 
The Higher-Order Spectral Methods (HOS), indeed the 
method used in our numerical simulations, introduced in- 
dependently by West et al. [18] and by Dommermuth et 
al. [19], belongs to this second approach (see also the re- 
cent work byTanaka [20]). Very recently three new meth- 
ods have been proposed as very promising for simulating 
water waves [21-23]. Results using these new approaches 
on turbulent cascades are still to be completed. 

In this Letter we establish numerically, using a HOS 
method, that nonlinear interactions are sufficients for 
generating power laws in wave spectra; moreover we show 
that the Zakharov-Filonenko theory is completely consis- 
tent with the primitive equations of motion. We consider 
a system of random waves localized in wave number space 
and we show how nonlinearities "adjust" the spectrum in 
agreement with the Zakharov and Filonenko prediction. 
Numerical work in the case of a forced and dissipated 
system has been attempted by Willemsen [24] using what 
sometimes are called the "Krasitskii equations" (see also 
[13]). In order to avoid the effects of external forcing, 
we considered the case of a freely decaying wave field. 
If the simulations, as we will see, would show the for- 
mation of a power law, then it will have to be excluded 
the conjecture that this power law is caused by geomet- 
rical features related to forcing and wave breaking, since 
forcing is absent and wave breaking cannot be taken into 
account using the numerical method considered. From 
a physical point of view, the freely decaying case corre- 
sponds to the evolution of a swell wave field. A generic 
wave field is considered at time t = 0 and it is allowed to 
evolve in a natural way using a high order approximation 
of the Euler equations. Since numerical computation are 
limited by the dimension of the grid considered, an arti- 
ficial dissipation is needed at high wave numbers in order 
to prevent accumulation of energy and a break down of 

the numerical code. The fluid is considered inviscid, ir- 
rotational and incompressible. Under these conditions 
the velocity potential (f>(x,y,z,t) satisfy the Laplace's 
equation everywhere in the fluid. The boundary con- 
ditions are such that the vertical velocity at the bottom 
is zero and on the free surface the kinematic and dynamic 
boundary conditions are satisfied for the velocity poten- 
tial ip(x,y, t) = <j>(x, y,rj(x, y, t),t) (we assume that fluid 
is of infinite depth): 

A + 9 V + 2 rt+rt-ttzuni+vi+vD 

Vt + ipxVx + ipyVy - &|„(1 + t)l + rfy) = 0, 

0   (1) 

(2) 

The major difficulty for numerical simulations of the sys- 
tem (l)-(2) consists in that we have to compute the 
derivatives of <j) with respect to z on the surface rj. This 
problem can be overcome if we express the velocity po- 
tential ip(x,y,t) as a Taylor expansion around z = 0. 
Inverting asymptotically the expansion one can express 
<f>z\r, as an expansion of derivatives of ip(x,y,t) that can 
then be computed using the Fast Fourier Transform, sim- 
plifying notably the computation. This is nothing other 
than a different way for formulating the HOS method. 
We underline that this is the same approach that has 
originally been used in [4] for deriving analytically the 
equation that is usually known as the "Zakharov equa- 
tion" . The order of the simulation can be decided a priori 
and depends on how many terms in the Taylor expansions 
are retained; in our numerical simulations we considered 
the expansion necessary to take into account four wave 
interactions so that we are consistent with the order of 
the "Zakharov equation". 

A delicate point in our numerical simulations is related 
to the dissipation of energy at high wave numbers. We re- 
mark that this dissipation is completely artificial since we 
are dealing with a potential flow. Nevertheless we have 
considered the dissipation phenomenon of the wave field 
to be similar to the one that takes place in a turbulent 
flow, i.e. that is mathematically expressed by a Lapla- 
cian that operates on the velocity. As is usually done in 
direct numerical simulation of box turbulent flows, in or- 
der to increase the inertial range, we have used a higher 
order diffusive term. More explicitly on the right hand 
side of equation (l)-(2), we have added respectively two 
extra terms: -zv(-V2)"V and -ju(-V2)m?7, where v and 
fj, represent an artificial viscosity coefficient and V2 is the 
horizontal Laplacian. If n and m are greater than 1 the 
viscosity is known as "hyperviscosity". 

It has to be noted that, at first sight, one would use 
a very high power of the Laplacian in order to increase 
notably the inertial range, unfortunately very high values 
of m and n could bring about the "bottleneck effect" [26], 
i.e. an accumulation of energy at high wave numbers 
that could distort the power law expected [27].   In our 



numerical simulations we used v = \i = 3 x 104 and n = 
m = 8. These values have been selected after some trials 
and errors during the development of the numerical code: 
because of our limitated number of grid points, smaller 
values of m and n, would obscure almost completely the 
inertial range. In our numerical simulations we did not 
impose any a dissipation at low wave numbers. 

In order to prepare the initial wave field it is rea- 
sonable to consider a directional spectrum S(|k|,0) = 
P(\k\)G(6). The directional spreading function G{6) 
used here is a cosine-squared function in which only the 
first lobe (relative to the dominant wave direction) is con- 
sidered: 

G{6) = 
^cos2 

0 

£0)   if-a<e<a 

else 
(3) 

a is a parameter that provides a measure of the direc- 
tional spreading, i.e. as a —> 0, the waves become in- 
creasingly unidirectional. In our numerical simulations 
we selected the value of a = TT/2. We tried to avoid the 
complete isotropic case in order to verify if the theory 
still holds for intermediate values of the spreading. At 
the same time the selection of a large value of u was 
motivated by the fact that recently it has been found 
[28] that, for sufficiently narrow angle of spreading, the 
Benjamin-Feir instability can be responsible for the for- 
mation of freak waves. As a consequence the nonlinear 
energy transfer could be slightly altered and some cor- 
rections to the prediction could be necessary (this very 
interesting topic is now under investigation and results 
will be reported in a different paper). P(|k|) is chosen to 
be any localized spectrum. We have performed numerical 
simulations with a gaussian function or with a "chopped 
JONSWAP" spectrum (a JONSWAP spectrum with am- 
plitudes equal to zero for frequencies greater than 1.5 
times the peak frequency) with random phases. For the 
case of the gaussian function, wave numbers lower than 
a selected threshold have been set to zero in order to 
avoid extremely long large waves. The velocity potential 
is then computed from the initial wave field using the 
linear theory. Both gaussian and JONSWAP spectrum 
led to the same results in terms of the turbulent cascade. 

Our computation is performed in dimensional units; we 
have selected the initial spectrum centered at 0.1 Hz, i.e. 
we are considering 10 seconds waves. The initial steep- 
ness computed as e = koHs/2 was chosen to be around 
0.15 (Hs was computed as 4 times the standard devi- 
ation of the wave field). The wave field was contained 
in a square grid (the resolution is 256 x 256) of length 
L — 1417.6 meters. The time step considered was 1/50 
the dominant frequency, i.e. At = 0.2 seconds. We have 
performed our numerical simulations on a 400Mh PC. In 
Fig. 1 we show the evolution of the wave power spectrum 
for different time (t=0, 0.1, 0.5, 1 hours). We see that, 
as expected, the tail of the spectrum starts to grow. This 

process seems to be quite fast: as is shown in the figure 
after a few dominant wave periods some energy is already 
injected into high wave numbers. The process of adjust- 
ing the power law to the "correct" one becomes then very 
slow, especially for low wave number. This could be due 
to the frozen turbulent phenomenon [29], i.e. a condition 
in which the energy fluxes towards high wave numbers 
are reduced because of the discretness of the spectrum. 
Moreover decaying numerical simulations are very time 
consuming with respect forced simulations because, as 
time passes, energy is lost due to viscosity, thus reducing 
the significant wave height of the wave field and therefore 
the steepness. Even though it is not clear from the Log- 
Log representation in Fig. 1, there is a downshifting of 
the peak of the spectrum towards lower wave numbers; 
as a consequences the steepness subsequently decreases 
over time. The time scale of the nonlinear energy transfer 
becomes larger and larger. In Fig 2 we show the power 
spectrum of the surface elevation after 4 hours (the steep- 
nes of the wave field is e ~ 0.07). In the same plot we 
show two power laws ~ fc~25 and ~ A;-3: the first one 
seems to better fit the data. In order to be completely 
sure that the numerical data are in agreement with the 
prediction of Zakharov and Filonenko, we show in Fig. 
3 compensated spectra with different compensation pow- 
ers: z = 2.5 seems to be the most plausible power law. 
Thus there seems to be ample evidence from our numeri- 
cal simulations that the power law is in sufficiently good 
agreement with the value predicted that there is no need 
for corrections due, for example, to small scale intermit- 
tency. 

After the pioneering work by Zakharov and Filonenko 
the kinetic wave theory has developed further, making 
available quantitative predictions for other physical ob- 
servables such as energy fluxes, downshifting of the peak, 
energy dissipation etc. All this quantities will be exam- 
ined and results will be reported in future papers. Other 
questions naturally arise from our results: in HOS sim- 
ulations the order of the computation depends on how 
many terms are retained in the Taylor expansion; do 
higher order terms influence the cascade process? Our 
computation has been performed in a freely decaying 
case; could external forcing (especially if anisotropic) in- 
fluence the power law? And more, what would be the 
influence of the water depth? These are all questions to 
be answered in the near future. 

This work was supported by the Office of Naval Re- 
search of the United States of America (T. F. Swean, Jr.) 
and by the U.S. Army Engineer Research and Develop- 
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FIG. 1. Wave spectra at different times. 



FIG. 2. Wave spectrum at t = 4 hours. A k 2'5 (dot- 
ted-line) and a fc-3 (dashed-line) power law are also plotted. 

FIG. 3. Compensated wave spectra for different values 
of the compensation power: z = 2 (dahsed-line) z = 2.5 
(solid-line) and z = 3 (dotted-line). 
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Abstract 

A new method for the numerical simulation of potential flows of a two- 
dimensional fluid with a free surface, based on combining a conformal map- 
ping and a Fourier Transform is proposed. The method is efficient for studying 
strongly nonlinear effects in gravity waves, including wave breaking and for- 
mation of rogue waves. 



1 Introduction 

The problem of analytic and numeric description of a non-stationary potential flow 
in fluid with a free surface is one of the most fundamental in Hydrodynamics. At the 
moment several different approaches to the solution of this problem are elaborated. 
We do not plan to give in this article even a brief review of all these methods. We 
just mention that they can be divided, roughly speaking, into two groups. Some 
authors assume that nonlinearity is weak and use expansion in powers of the surface 
slope. In the most advanced works belonging to this direction, they use Hamiltonian 
formalism [1]. The most important advantage of this approach the is opportunity 
to implement such an efficient numerical algorithm as the fast Fourier transform. 
It is possible to use a very fine mesh and resolve as many as thousands or even 
tens of thousands of Fourier modes. The obvious disadvantage of this approach is 
that it is impossible to describe the most interesting physical processes such as wave 
breaking and formation of the freak waves. These processes are essentially nonlinear. 
Another group of methods uses the exact hydrodynamic equation and can in principle 
be applied for description of the strongly nonlinear phenomena see, for instance [2]. 
But these methods are usually incompatible with the Fourier formalism and allow 
only a relatively poor resolution (hundreds of the spectral points or the Fourier 
modes). 

In the given article we offer a completely new method for the analytic and numeric 
study of a nonstationary flow of an ideal noncompressible fluid with a free surface. In 
our opinion, this method combines the advantages of the existing approaches, being 
free of their disadvantages. The basic idea of this new method is to refurmulate the 
exact Euler equations, describing a potential flow of a fluid with a free surface, as the 
"Hilbert-differential" equations with just a polynomial (cubic) nonlinearity. A new 
form of the exact equations makes possible to implement the Fourier method even 
more efficiently than in the approximate equation. As a result we can achieve a very 
high resolution in the description of completely nonlinear phenomena such as wave- 
breaking and formation of freak waves. So far we performed only first starting series 
of numerical experiments. This results are really impressive. For instance we clearly 
observed formation of freak waves as a result of development of the modulational 
instability of weakly-nonlinear Stokes waves. 

2 Basic Equations 

We study a fluid of infinite depth, occupying the area 

—oo < y < rj{x,t) 

The flow is irrotational, hence 
V = V<f> 



The condition of incompressibility divV = 0 implies that the velocity potential (j) 
satisfies the Laplace equation 

A(/. = 0 

In the absence of an external pressure the boundary condition imposed on </> are 

■Q7     +    Vx(f>x = <f>y (2-1) 

and |^ = 0aty->-oo The total energy of the system is 

U = -\    dx \V<l>\2dy  +   9-        r?{x,t)dx (2.2) 
Z J — 00 J— 00 Z J — oo 

where g is gravity acceleration. The system is hamiltonian [3, 4] and can rewritten 
as follows 

dv _ sn 
dt   ~   <ty' 

at or} 

Here ip = <t>\z=r) and 77 are canonically conjugated variables.   Let us perform the 
conformal mapping of the domain, filled with fluid 

—00 < x < 00, —00 < y < r)(x,t) 

to the half-plane 
—00 < u < —00, —00 < v < 0 

After the transform, the shape of surface rj(x,t) is presented in a parametric form 

y = y(u,t), x = x(u,t) = u + x(u,t) 

here x(u,t) and y(u,t) are related through Hilbert Transformation 

y = Hx, x = -Hy, H2 = -1 

and „, ,, , , 
1   /•« /(u')du' 

H(f(u)) = P.V.- f 
7T 7- 00    u' — U 

After the conformal mapping (f){x,y,t) -* (j)(u,v,t), ip(x,t) ->■ V>(M)- Jt was 

shown [5], see also [6, 7], that y(u,i) and -0CM) obey the following system of equa- 
tions: 

yt = (yuH-xu)1^ (2.4) 



A = Yj + H[—j-\^u + —j-Hij;u-gy (2.5) 

J = xl + yl = l + 2xu + xl + y\. (2.6) 

Equation (2.4), (2.5) can be written in the complex form. Let z = x + iy,   $ = 
ijj + iHip be analytic functions in the lower half-plane. They satisfy the equation 

zt = iUzu (2.7) 

$t = iU$u-B + ig(z-u). (2.8) 

Here U is a complex transport velocity: 

■U=HT&) (2'9) 
~"U,\ 

and 

B = P (PP\ (2.10) 
\z I2 

In (2.9) and (2.10) P is the projector operator generating a function analytical in 
the lower half-plane P(f) = \ (l + IH) f. 

It occurs [8] that equations (2.7)-(2.8) can be simplified just by changing variables. 
Indeed, let us introduce instead of z(w,t) and &(w,t) another functions R(w,t) and 
V(w,t) in a following way 

$w   =   -iVzw. (2.11) 

(V is just «H, i-e- complex velocity). Note, that because of z(w,t) is a confor- 
mal mapping, its derivative exists in lower half-plane and does not have zeroes there. 
Thus function R(w, t) is analytic in the lower half-plane and has the following bound- 
ary condition: 

R(w,t)->1,    \w\-+oo,   lm(w)<0. 

It is obvious that boundary condition for V is: 

V(w,t)->0,    \w\ -> oo,   lm(w)<0. 

Then for these analytic functions equations acquire a very nice form: 

Rt = i(UR' - U'R) (2.12) 

Vt = i(UV' - RB') + g(R - 1) (2.13) 



Here (see [8]) 
B = P'(VV),     U = P{VR + VR). 

Equations (2.12)-(2.13) are exact, and completely equivalent to the "traditional" 
system of equations for the free surface potential flow (2.1). But system (2.12)-(2.13) 
is much more convenient for analytical and numerical study than the "traditional" 
system (2.1) as well as Hamiltonian system (2.3). Indeed, one cannot express H 
explicitly in terms of the "natural" variables ip and 77. At the best one can present 
H as an infinite series in powers of 77. As a result, the equations in the "natural" 
variables are presented by the infinite series as well. This is a great obstacle in the 
way of their numerical simulation. On the contrary, new motion equations (2.12)- 
(2.13) are just polynomial (cubic) in terms of new variables R, V. This circumstance 
makes it possible to implement the fast Fourier transform to the solution of new exact 
equations. 

One can mention that all three equivalent systems of equation, describing dy- 
namic of free surface in conformal variables (2.4)-(2.5), (2.7)-(2.8), (2.12)-(2.13) are 
not PDE. They are "Hilbert-differential" equations, which include together with dif- 
ferentiation by u 

s^y. (2,4) 
the Hilbert transformation 

f-*Hf (2.15) 

^From an analytical viewpoint these two operations are completely different, but 
from a numerical viewpoint they are similar. Indeed, in terms of Fourier transform, 
operation (2.14) means 

fk -> ikfk 
while operation (2.15) means 

fk -Msign(A;)/fc 

./.From a computational viewpoint both these operations are of the same level of 
difficulty. 

3    Constants of motion, forcing and dissipation 

Dynamic equations describing fluids with a free surface have natural constants of 
motion: mass of fluid M, horizontal momentum Px and energy H. A serious advan- 
tage of the conformal approach is an opportunity to express all of these quantities 
as integrals over their local densities, which can be expressed explicitly in terms of 
Z and $. Indeed, deviation of the mass of fluid from its equilibrium value can be 
expressed by 

M   =     I mdu I 



m = yxu n ■   \ZZU           ZuZj 

OO 

Px =        Pxdu 
—00 

Px = tpVu = Y^ (Zu ~ Zu) 
oo 

n =      wdu 
— 00 

w - = wT + wv 

(3.16) 

(3.17) 

where WT is the kinetic energy density 

wT = --4>Hi)u = - ($$„ - $$„) (3.18) 

and wu - the potential energy density 

wu = ^y2xu = -^-(z-z)2(zu + zu) (3.19) 

Apparently WT > 0, u>u > 0. 
Expressions of m, p and w in terms of R and V are not that elegant. One can 

obtain these expressions using formulae 

f dw      ^ . f V , , 

Formulae (3.16)-(3.19) can be used for the control of the numerical calculations. 
In reality any system of surface waves is not conservative and such effects as 

viscosity and interaction with wind should be taken into account. A complete con- 
sideration of these effects is a difficult problem. In many cases one can take into take 
into consideration dissipative and forcing effect by the use of some phenomenological 
modification of the basic equations. It is convenient to perform a modification in 
equations (2.7)-(2.8). Equation (2.7) is just the kinematic boundary condition on 
the surface. It should not modified. The simplest modification of (2.8) is replacing 

$t-^$i + 7$ (3.21) 

Here 7 is a pseudodifferential linear operator of convolution type. 
As far as functions $ and z are analytical in the lower half-plane, they can be 

presented in a form 

1     °° 
${u,t)   =   ~^= [$ke-ikudk 

V2W 



1     °° 
(u,t)   =   -== J zke~ikudk (3.22) 

2% 

Now (7$) = 7fc$fc Here 7^ is a symbol of the operator 7 in terms of Fourier trans- 
forms. The energy balance equation read 

<m_ 
dt "     4 

00 

±/*7*|*fc|
adfc (3.23) 

0 

Operator 7 provides "pure dissipation" if jk > 0 for all 0 < k < 00. Otherwise it 
describes a coexistence of forcing in some range of scales with dissipation in the rest 
scales. One should take into account that special scales in the conformal variables 
u and in real coordinate x can be essentially different. In the linear approximation 
\ZU\2 < 1 and U = i$u. Linearization of equations (2.7)-(2.8) leads to the dispersion 
relation (<£> ~ e<wt-<*«) 

uj=l^-±Jgk-^-,   0<k<oo (3.24) 

It is important to stress that formula (3.23) holds not only in the linear approx- 
imation, but for waves of arbitrary large amplitude. The equivalent modification of 
system (2.12)-(2.13) is more complicated. 

Rt   =   i(UR'-U'R) 

Vt   =   i{UV'-RB') + g{R-l)-m(j) (3.25) 

One can see that the dissipative term in this system is essentially nonlinear. 

4    Numerical algorithm 

All three versions [(2.4)-(2.5), (2.7)-(3.17), (2.12)-(2.13) ] of the exact equations 
describing free surface dynamics of fluid are convenient for numerical simulation by 
the use of spectral code. In the non-conservative case the equations 

zt   =   iUzu 

$4 + 7$   =   iU$u-B + ig(z-u). (4.26) 

are most convenient. However, in the pure conservative case one should use more 
simple equations (2.12)-(2.13). 

Now we describe the details of the numerical simulation of these equations. We 
use the fourth order Runge-Kutta integration scheme to numerically solve these 
equations.   The domain of length 2it was investigated.   The actual spectral area 



includes up to N — 12288 negative modes, whereas the total spectral area and the 
number of points in the real space was 2iV. This feature is a consequence of the 
presence of projector operator P. All concerned functions are analytic in the bottom 
half-plane. So when we calculate projector operator we need to make nullify positive 
spectral modes. For this purpose we use the fast Fourier transform procedure. Empty 
positive spectral modes prevent aliasing - arising the parasite noise from fast Fourier 
transform procedure. 

To keep our numerical scheme stable, we need to define time step At < -^ because 
we have differential operators in equations (2.12)-(2.13). Another indispensable con- 
dition is At < j; where F is maximal value of right parts of equations. In our 
calculations we keep At <^- and At < 0.05F. 

We check conservation of total energy H to control the accuracy of numerical 
calculations. In our calculations energy conserves up to 11 decimal digit after the 
decimal points fcr wave breaking and 6 decimal digits for modulational instability. 

5    Preliminary results 

We plan to include the effect of surface tension into the derived equation and perform 
massive numerical experiments embracing a vast variety of dynamical and statical 
problems including simulation of wave breaking, formation of freak waves, and estab- 
lishment of a universal spectra of wave turbulence. In this article we present only the 
very preliminary results attained in framework of this program. In all cases we use 
Dyachenko equations (2.12)-(2.13) without any kind of dumping and forcing. In all 
our experiments we use the domain 0 < x < 2iv, 0 < u < 2-K with periodic boundary 
conditions. The total number of harmonics was as much as 12288. We put gravity 
acceleration g = 10. In the first experiment we use the initial data in the form 

R(u,t = 0)   =   l + aexp(—iu) 
V(u,t = 0)   =   -idyfg exp(-w) (5.27) 

For a<l this initial data leads to formation of propagating wave of small amplitude 

R(u,t = 0)   =   1 + aexp(—iu + iy/gt) 
V(u,t — 0)   =   -ia^/g exp(-iu + iy/gt) (5.28) 

However for a ~ 1 the propagating wave turns to break. In our experiments we 
put a = 0.28. Figures 1-2 demonstrate time evolution of the wave profile and the 
surface spectrum. One can see tendency to formation of singularity as well as to 
development of spectral "tails". Calculation was terminated when the absolute value 
of R(k) reached the level |Ä(A;)| ~ 10-10 at the end of spectral interval iV = 12288. 

Second experiment demonstrates development of modulational instability and 
formation of freak waves.  Modulational instability of Stokes waves was discovered 



independently and almost simultaneously by V.E. Zakharov [3, 4] and T.B. Benjamin 
and J.E. Feir [9]. Nonlinear stage of this instability so far was not investigated. 

A Stokes wave is characterized by its steepness \i = ka, (k - wave number, a - 
wave amplitude). If \x <C 1 the Stokes wave is very close to a linear monochromatic 
propagating wave. In our experiments we put \i = 0.1. That makes it possible to 
neglect a deviation of the Stokes wave from an exponential one and choose initial 
data in a form superposition of the monochromatic wave with wave number k = -50 
and the Gaussian random noise: 

R(u, t = 0) = 0.1 exp(-50m) + ^g^ £ randi(fc) exp (-(5Q"8
fc

0f"
2 - iku + 27nrand2(&)) 

V(u, t = 0) = -i^i exp(-50m)- 

-^§£i g ^randl(Ä;) exp (-(5°-M2"2 - iku + 27rirand2(A;)) 

(5.29) 
The initial spectra of function R is shown on Fig.4 (it mark is t — 0), and a part of 
initial surface y(x) is shown on Fig.5. 

In our computations forcing and dumping are absent. The total energy remains 
constant during simulation up to t = 90. It means, that in this time interval the 
spectra don't reach the end of the spectral area and numerical results have sufficient 
accuracy. 

The initial spectra (t = 0) and its evolution t = 40 and t = 80 are shown on Fig.4. 
We can see how smooth continuous spectra develop from single a spectral harmonic 
with the addition of small noise. The spectral "tail" steady propagates in the area 
of high wave numbers. This process can be interpreted as formation of singularities 
on the crests of individual waves, another words, as an onset of wave-breaking. To 
continue calculations beyond the moment t = 80 one should include dissipation into 
calculation. 

The most impressive results of our experiments on simulation of nonlinear stage 
of the modulational instability is fast formation of "freak waves". Figure 5 presents 
the initial shape of fluid surface. One can see, that the initial random noise imposed 
on the monochromatic wave is very small. Figure 6 presents the shape of the surface 
in the end of our calculation. One can see the formation of "freak" or "rogue" 
waves with amplitude more than three times exceeding the initial level. Figures 7-9 
displaying distribution of densities of kinetic, potential and total energy even more 
spectacular. One can see that the total energy density in freak waves exceeds the 
average level almost by two orders of magnitude. .  . 

6    Conclusions 

We have developed a very efficient numerical method for the computer simulation 
of the dynamics of an ideal incompressible fluid with a free surface.  We will show 

9 



in our next publication that the effects of dissipation and surface tension can be 
included in the algorithm in a very natural way. The new method makes it possible 
to perform massive experiments on careful study of wave-breaking, interaction of 
capillary waves and generation of capillary waves by gravity waves. We plan also to 
perform systematic study of formation of freak waves including mechanism of their 
appearance from a "smooth sea". As long as our mew algorithm is fast enough, 
we will be able soon to study the statistic of freak waves and to find PDF of their 
generation. 

We are grateful Joint Supercomputer Center (www.jscc.ru) for disposed compu- 
tational resources. This research was partially supported by INTAS-96-0413 Grant, 
by ONR Grant # N00014-98-1-0070, by DACA 42-00C0044, by RBRF Grant No.00- 
01-00929 and by the Grant of Leading scientific schools of Russia 00-15-96007. 
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Figure captions 

Figure 1. Wave breaking: the surface of the fluid y(x) at the different moments of 
time t = 0.2 - 1.4. Initial amplitude A = 0.28. 

Figure 2.   Wave breaking:  the surface of the fluid y(x) at the moments of time 
t = 1.6 - 2.0. Initial amplitude A = 0.28. 

Figure 3.  Wave breaking: the spectra R(k) of the function R(u) at the different 
moments of time t. Initial amplitude -A = 0.28. 

Figure 4. Development of modulational instability: the spectra R(k) of the function 
R(u) at the different moments of time t. 

Figure 5. Development of "freak" waves due to nonlinear interaction: the surface 
of a fluid for initial time moment t = 0. 

Figure 6. Development of "freak" waves due to nonlinear interaction: the surface 
of a fluid for time moment t = 80. 

Figure 7.   Development of "freak" waves due to nonlinear interaction: density of 
kinetic wT(x) a) energy for time moment t — 80. 

Figure 8.   Development of "freak" waves due to nonlinear interaction: density of 
potential wu{x) energy for time moment t = 80. 

Figure 9.  Development of "freak" waves due to nonlinear interaction: density of 
total energy w(x) for time moment t = 80. 
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On conservation of the constants of motion in the models of 
nonlinear wave interaction. 

A.Pushkarev, V.Zakharov 

1. Introduction 

One of the central problem of the development of the operational models for sea-wave prediction is an 
adequate description of nonlinear wave interaction. So far, the most solidly justified approach to this 
description is the use of the kinetic equation for the spectral density of wave action first derived by 
K.Hasselmann in 1962. Since this time, several codes for numerical simulation of nonlinear wave 
interaction were developed (Webb 1978, Masuda 1980, Hasselmann and Hasselmann 1981, Resio and 
Perrie 1991, Polnikov 1994, Lavrenov 1998, Komatsu and Masuda 1996, Van Vledder 1999, etc). 

Nonlinear wave interaction is described by a complicated nonlinear integral operator and its 
numerical simulation is a tricky problem. All existing algorithms for its simulation are cumbersome and 
time consuming. So far, they are too slow to be directly used in practical operational models of wave 
prediction. Therefore, the development of faster approximate models of the nonlinear wave interaction is a 
very urgent problem. 

The mostly common approximate model is DIA (Discrete Interaction Approximation), known also 
as the WAM method. Hasselmann and Hasselmann offered it in 1985. In this model, the integral operator in 
S n is replaced by a sum consisting of few discrete terms. Zakharov and Pushkarev proposed quite another 
approximate model, based on the use of the nonlinear diffusion operator in 1999. 

To estimate the quality of an approximate model one should compare its prediction with the results 
of numerical simulation in the framework of the "exact" kinetic equation. To make this comparison reliable 
on should be sure that the " exact" model is good enough to be a paragon for such test. Actually, the real 
criteria for examination of quality of such models are absent. 

Different schemes for numerical solution of the Hasselmann kinetic equation give qualitatively 
similar, but quantitatively slightly different results, and there was no so far a standard way for estimation of 
their reliability. This circumstances makes the problem of construction of fast approximate models of 
nonlinear wave interaction difficult and uneasy. One cannot believe in an approximate model if one cannot 
compare it with a real good standard for calibration. 

Meanwhile there is a natural way for examination of numerical method for solution of the wave 
kinetic equation. This is the control of conservation of the basic constants of motion - wave action, energy, 
and two components of momentum. Similar approach is widely used in applied mathematics in the case 
when physical situation is described by conservative ordinary or partial differential equations. 

In the case of nonlinear wave interaction, the situation is more complicated. It is described by not 
differential, but by the integral operator, which is non-local in the k-space. Any scheme of numerical 
integration of the kinetic equation operates in some finite domain of this space, always bounded in 
frequency and sometimes limited in angle. Integrals of motion, contained in any bounded domain are not 
conserved; the non-linear wave interaction carries them out of the domain. Due to non-locality of the 

Snl operator, this leakage cannot be interpreted just as a flux through a boundary of the domain. The loss 

of the motion constants from finite domains is not a mathematical abstraction. Its is a real and a very strong 
physical effect. In many cases, the transport of motion constants is the major mechanism defining shape of 

spectra. For instance, a typical asymptotic behavior of energy spectrum at large frequency Ef °<= f-4 is 

the result of constant transport of wave energy to the large frequency region. 
In this article, we propose a modified method of calculation of conservation of the motion constant 

in finite domain making possible to take into consideration the leakage outside a domain. We call it "clean 



test", which allows accurate estimation of the quality of any algorithms for numerical solution of the wave 
kinetic equation. 

2. Are the constants of motion really conserved? 

In the absence of pumping from the wind and dissipation the Hasselmann equation reads: 

dn    c -^ = snl (2,) 
sni = JI Tkklk2k31

2 8{k + k{-k2-k3 )S(Q)k + a>ki + (oh + o)k3) x 

(Wh +nknknk) -nknknh -nknknki)dk,dk2dkz 

(2.2) 

It is considered that equation preserves the following constants of motion 

N = \ ndk - Wave action (2.3) 

E=\ü)knkdk -Energy (2.4) 

M = J knkdk - Momentum (2.5) 

Are these constants really constant? To prove conservation of these integrals, one must prove validity of 
following identities: 

dN 3-=K*~-o (2.6) 

dE     r 
-T = J«A/^=0 (2.7) dt 
cM 
dt 

= jkSnldk=0 (2.8) 

These identities are trivial if one can change the order of integration by different A,. If this operation is 
possible, one can transform, for instance, the expression (2.7) to the form 

jo)kSnIdk = j(o)k+a)ki+ak2+wk3)S(k + kl-k2-k3) 

S(o)k + o)ki + coki + ak% )nknknkdkxdk2dk, (2'9) 

As it is known from the classical calculus, the operator of change of the integration order in improper 
integrals is allowed if the integrand decays fast enough at infinity. Let us consider this question in detail. 

In equation (2.2), as well as in formulae (2.3)-(2.9), the integration is going on the infinite domain. 
In reality, both in experiment and in computer modeling the domain of integration is finite. Thus to check 
the identities (2.6)-2.8) we should first consider a finite domain. This is a quite nontrivial procedure. 
Suppose that the domain of integration is finite 

{kl<P (2.10) 



One can denote 

[nk,\k\<p 
np

k=\  * (2.11) 
*     [0,IJfcl>p 

By plugging Dk instead of Dk into S ni one get by definition Sn —» S)f. Apparently integrand in S^f 
has bounded support and change of order of integration is permitted at any value of p. Hence 

js(fdk= js(fdk+ js(fdk = o 
\k\<p Vc\>p 

jo)kS
{
n
p)dk = jo)kS

(J)dk+ ja)kS
(J)dk = 0 (2.12) 

m<p \k\>p 

jkS(fdk= jko)kS
{fdk+ jkS(fdk=0 

\k\<p \k\>p 

Let us denote 

Np = jndk,   Ep = jo)knkdk,   M" = jknkdk 
\k\<p Vc\<p litkp 

Now one can find balance of the motion constants in the domain \k |< fZ 

^- = L \nkdk = \sfdk = - \s[fdk = -Q(p) 

^ = |- \(oknkdk = \a>kS
(fdk = - \cokS

(
nfdk = -P(p) (2.13) 

07 °* \k\<p \k\<p Vc\>p 

dM(p)     d 
= ?- jknkdk = \kS[p)dk = - jkS(fdk = -K{p) 

01 m l*l<p Itkp litl>p 

Last integrals in (2.13) can be calculated by the use of identity (2.11). In (2.13) Q, P and K are the values 
of the "losses" of the constants of motion. One can present Snl in the following form 

Sni(k) = Fk-yknk (2.14) 

Fk = j I Tutto \2S{(ok + a)ki + cok2 + wh )S(k +kl+k2+k3)x 
n

kl
nk2^k3^A2dk3 

ft = JI r»,*2*3 ^K + ^ + *>*2 + a*, Mk +kl+k2+ic3)x 

K"*2 
+nkl

nki -nknki)dkxdk2dk3 

(2.15) 

(2.16) 



By definition 

SP
nl(k) = nP)-r(

k
P)np

k (2.17) 

FtP) =        Jl7W3 ^ + ö\ +Q)h +0)ki)S(k+kl+k2 +k3)x 
K.kp.itjkp.^kp (2.18) 

nk nk nk dkxdk2dk3 

rlp) =      J i r«^ i2^(ö>t + »t, + o)k2 + coh )S(ic+k1+k2+k3)x 
^kp.itjkp.Kjkp (2.19) 

K"*2 
+wi1"*3 -nknh)dkxdk2dk3 

One should mention that S^ (k) & 0 at I k l> /?. As far as nk = 0 at I k l> p, one has: 

5n/(*) = F/,lfcl>p (2.20) 

Formula (2.20) is extremely important. It expresses the following clear physical fact: the income term Fk 

is nonzero far beyond the domain of I k k p where the wave spectrum is concentrated. Meanwhile 

Fk   ^ 0 only in a finite domain. Indeed, vector k satisfies the conditions 

k = k2 + k3-k, (2.22) 

®k=<»kl+<»ki-<»kx (2.23) 

and    I kx k p, I k2 k p , I k3 k p. 

Conditions (2.22), (2.23) can be satisfied only for 

'^k/'max (2.24) 

Here Pmax = f(p) - some uPPer limit depending on a shape of COk . One can get some apriori estimate for 

pimx . From (2.22) one can get 

Pmax < 3P (2.25) 

From (2.23) one obtains 

(0
P^

<2O
>P (2.26) 

More accurate estimate for pmax  is defined by 0)k and depends on the depth. On the infinite depth 

®t = 4&k and Pmax is achieved if 



k2 = k3, kx = —k2, I k21= p (2.27) 

In this case 

»«-=1^ (2'29) 

Introducing polar coordinates in k -pane, we have the following expressions for losses (rates of leakage) of 
the constants of motion from the domain I k l> p 

ß(p)= J pdPJFp(p,0)dd 
p o 

Proa* 2* 

/>(/?)= J Po)pdpJFp(p,e)de 
p o 

Pma* 2/T 

*,00 = J p2dpJFp(p,e)cos8de 
p o 

Pmax 2/T 

*,(p) = J p2dpJFp(p,d)smOdO 

p o (2.30) 
Pma* 2/T 

3. Clean test for integrals conservation 

Now we can answer the question about real conservation of the integrals. If the domain is finite, they are 
never preserved. It is obvious from (2.30) that in all cases 

Q(p)>0,P(p)>0 (3.i) 

Thus, wave action and energy always leak out of the domain I k k p . In most cases, wave spectrum is 

concentrated in the right half-plane <G<—, COS 0 > 0. In this situation Kx.(p) > 0, the sign of 

Ky(p) can be arbitrary. 

Suppose again that 

nk=0,\k\>p (3.2) 

We showed that 

|pSi'>(*) = *■<'>(*) >0 (3.3) 



Hence, from physical viewpoint condition (3.2) is artificial. If it is satisfied in the initial moment of time, it 
will be immediately violated. In the close moment of time St 

n = nQ+Sp
nl{k)-& (3.4) 

n becomes positive in the whole domain I k k pttax. 

Anyway, the consideration we performed is useful. It can be used as a foundation for a "clean" test 
for all codes for numerical solution of the kinetic wave equation. 

If condition (3.2) is satisfied 

fpo  x\kt>pn (3.5) 

Hence 

dt 

d_ 

dt 

= 0 
1=0 

jo)kS^dk 
l*l<Pm 

= 0 (3.6) 

»=o 

-   jkS'dk 
dt 

M<Pm 

= 0 
(=0 

Conditions (3.6) can be rewritten in polar coordinates as 

2z ~\   Pmax 

- } pdp\sifd6 
dt 0 

"max 

= 0 
1=0 

-\   Pmax 2lT 

- J copPdp\s[fde 
dt 

= 0 
<=0 

lit ~\   Pmax 

-j p'dpjs'fcosßde 
0 

lit 

(3.7) 

= 0 
r=0 

~\   Pmax 

— J P2dpjs(f sin ddd = 0 
t=0 

Condition (3.7) can be relatively easily checked for any numerical code used for solution of the kinetic 

equation. To check the quality of the code one should put the initial data nh > 0  at I k k v 

Expansion of the integration domain is the price to be paid for nonlocality of the four-wave interactions. 



Relations (2.13) can be generalized to the case when there is the interaction with wind and 
damping. Now kinetic equation (2.1)-(2.2) reads 

^ = Snl+ßknk (3-9) 

where   ßk is growth-rate of the instability or the damping depending on the sign. Equations (2.6)-(2.8) 

now should be replaced by the following relations: 

3-=JAM* 
dt 

^ = jwjknkdk (3.10) 

Relations (3.10) are formal and for a finite domain should be deciphered in a proper way. To do that one 
can assume 

ßk=-A, A^oo,\k\>p 

3n 
In the domain I k l> p one can neglect the time derivative — and put 

at 

Snl-ßknk=Fk
p-(7k+A)nk=0 

As far as yk « A, one can consider approximately (I k l> 1) 

«*=-*— (3-11) 

By plugging (3.11) into (3.10) one notice that the value of A is cancelled from the equations, taking the 
form 

^ = -jßknkdk-Q 

dEp 

dt 

dM 

= - jü)kßknkdk-P (3.12) 
lk\<p 

= - jkßknkdk-K 
at        w\<p 



Equations (3.12) are the balance equations which also could be used to control numerical codes. One should 

either specially program the calculation of the losses Q, P, K or extend the integration domain to 

i max 

4. Estimates for integral losses. 

Suppose that spectral density of wave action n(k) has the maximum at k ~ k0 and p»k0. Let us 

estimate in this limit the losses Q, P and K. Integrals (2.30) consist of two parts. One part is given by 
integration in a small domain p'=p + %>, öp < k0. In this domain, integration by fc,, k2 is performed 

over the vicinity of the spectral maximum k0. Thus 

ö = ß(1)+ß(2) 

p _ p(D + p(2) 

—      -»(1)       —(2) 
K = K   +K 

(4.1) 

Here 

Qm _ <p)n2(k0) i ,2 

O)(k0)      I "•k<"p'k"\   ° 0 

2 

,p,k, Pm^^\T,,, 
ko (4.2) 

Kw =-^—n{p)n\k) 
|2     , 

T k6 

Other part of contribution in (4.1) is given by integration in the domain p'=p.In this case, all wave 
vectors in (2.18) have the same order of magnitude. Hence 

ß<«3üi£).|r        iy 
(O(p)   I p'p'p'p\ F 

P(2)=n3(p)\T p.p.p.p 

3     6 

P (4.3) 

6>(/7)       ^   I   "•"•"■" I   P 

We consider now the case of deep fluid. In this case 0)(p) = g1/2pi/2 

T(P,P,P,p) = p3 

T(p,k0,p,k0)^k2p      K<<P (4-4) 

We will consider that n(k) is a powerlike function 



n(k) = k~s (4.5) 

Comparing Qm and ß(2) one see that for the case S > 19/4      ß(1) « ß(2). The same is correct for 
other constants of motion. Finally, one obtains 

P = pn~3s (4.6) 

K = p25'2-'s 

Now we can answer the question about real conservation of the motion constants. All motion constants 
conserve if 

n{k) < Ck~25/6 at Ä: -> °° (4.7) 

5. Kolmogorov spectra and their experimental confirmation. 

It is known since 1966 (Zakharov, Filonenko) that the stationary equation 

Snl=0 (5.1) 

has isotropic powerlike solutions 

«r = Cxk-"'6 (5.2) 

»*2) = C.k-4 (5.3) 

The physical meaning of this solution becomes clear after plugging (5.2) into (4.6). For S = 23/6     Q is 
the constant while P and K grow in time. Hence, (5.2) is a Kolmogorov spectrum, corresponding to constant 

flux of wave action from large to small wavenumbers. For such type of asymptotic neither N, E or M are 
"real" constants of motion. 

If s = 4 Q = p~' . In this case Q —» 0 at p —> °° , and wave action is "a real" constant of 
motion. Meanwhile, in this caseP = const. Hence, (5.3) is a Kolmogorov spectrum describing permanent 
leakage of energy to large wavenumbers. In terms of spectral density of energy spectra (5.2)-(5.3) read 

ta  -axQ' CO (5.4) 

ta   -a2F' CO (5.5) 

Here    ax, a2  are unknown Kolmogorov constants. One can formulate a conjecture that a general 
physically relevant solution equation 

nk=p^k-"F{%{gkr,^{gkr'2) p"  <     -p—,      , (5.6) 



where F is an unknown function of two variables. It can be found explicitly in heuristic "diffusive" model of 
Snl (Zakharov, Pushkarev 1999). 

The spectrum CO has the long history. Zakharov and Filonenko found it analytically as a well- 
hidden exact solution of equation (5.1) in 1966. Both authors lived in the USSR and were not allowed to 
travel abroad and report their results on international conferences. That was one reason why the paper of 
Zakharov and Filonenko, published in the leading Russian scientific journal (Doklady Academii Nauk) was 
almost not noticed. 

There was another reason too. In 1958, O.Phillips offered that the spectrum of wind-driven waves 
is defined completely by wave breaking and has a universal form 

em = ag2o)-5 (5.7) 

Here (X is the dimensionless "Phillips constant". 
The very idea of Phillips was seminal and productive. A we understand now, situations when 

spectra of wave turbulence are defined completely by local singularities is rather common (see, for instance, 
Zakharov, Dias, Pushkarev, Guyenne 2000). 

According to original idea of Phillips, spectrum (5.7) is automatically established at CO > C00, 

where C0Q is a characteristic frequency of the spectral maximum. All spectral dynamics is just evolution 

^o = *°o(0 ~* 0 at t —> °o . in Spite of its elegance and simplicity, the initial conjecture of Phillips is not 

confirmed by experiments. By definition 

JV<y = (;72) = tf2 (5.8) 
0 

By integration of (5.7) one obtain 

H2 -.  Off2   _.      Qg2      T4 

Aaf     4(2^)4 

or 

H°cT2 
(5.9) 

Here T — 27U/C00 - characteristic period of energy containing waves. 

Relation (5.9) can be checked experimentally. It was Yoshiaki Toba who did it. In 1972-73, he 
published a set of articles, summarizing his long-time experiments on the wind-wave channel in Sendai 
University. He found that, instead of (5.9), another relation holds: 

"-■>■** (S,0) 

Moreover, the Phillips constant, supposed to be universal and not depending on the wind velocity, happened 

to be proportional to the " friction velocity" u,, characterizing the momentum transfer from air to sea. 

These facts can be naturally explained if one assume that instead of (5.7), the spectrum has a form 

£a=ßgu^ (511) 



Here ß is another dimensionless constant (Toba's constant). Toba made careful measurements of the 

spectrum tale and found that formula (5.9) describes the spectral asymptotic very well. He found 

experimentally that the value of ß is: 

y? = 6.2-l(T2 (5.12) 

We must stress that Toba was completely unaware about the paper of Zakharov and Filonenko. 

After pioneering works of Toba experimental confirmation of CO spectrum are mounted. Just a 
list of authors who observed this asymptotic is impressive: among them Kawai at al. 1977, Kahma 1981, 
Forristall 1981, Battjes at al 1986, Donelan, Hamilton and Hui 1985, Donelan and Pierson 1987. In 1985 
O.Phillips, summarizing all experimental data, criticized his early theory (which, in our opinion, is still a 

sample of outstanding scientific intuition) and agreed that CO   is a reality. 

Another approach for confirmation of the CO spectrum is the numerical experiment. Several 
groups (see Masuda and Komatsu 1980, 1996; Resio and Perrie 1991; Polnikov 1994, 2000) observed a 

universal effect. If the initial data in equation (2.1)-(2.2) decay like Of , very soon its asymptotic behavior 
_4 

changes to CO    . 
In this connection, we would like to mention especially works of the group of D.Resio. They did 

not only follow formation of the CO     spectrum, but also calculated fluxes of energy at k —> °° and 

checked that for CO     the flux is constant in CO. 

In conclusion, one can say that the spectrum CO     is definitely confirmed now by both many 
-11/3 experiments as well as many numerical simulation arguments. The spectrum CO also is confirmed quite 

well, but this point is beyond the scope of this article. 

5. Why co-4 not*»-5? 

-4 —5 The battle between CO and CO could look strange for a person outside of a narrow community of 

Snl experts. Nevertheless, this argument makes a serious sense. It is enough to compare the value of the 
-4 A —5 energy loss P in (4.6) for both spectra. For B^ = CO   and s = 4, P is the constant. . For £m—C0 

^ = 9/4, P = p_3/2 -> 0 at p -> oo. 

Another words, for Em = C0~   the energy in the wave ensemble is conserved, while in the case 
_4 

£a = CO     it leaks out with a constant rate. This is a very critical difference. Just an elementary analysis of 

the observational data contradicts the idea that both wave action and energy are conserved. Indeed, all 
experiments show that the spectral maximum moves in the process of "maturing " to the low wave numbers. 

At the same time, the spectrum in the asymptotic area CO » C00 stays almost constant. As far as quanta of 

waves loose their energy, moving from high to low frequency region, the outlined facts are compatible with 
the fact of permanent loss of wave energy, existence of the constant flux of energy to high CO and, as a 

result, to the CO    asymptotic at CO —> °° . 

Summarizing the facts, one can say that the asymptotic E^ = CO'5 in the weak turbulent regime is 

a contradiction to the energy conservation law. 
Said Aristotle: "You are friend Plato, but the truth is more valuable". We can say 

" You are a friend Dr.... but the conservation of energy is more important". 
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Abstract 

We performed numerical simulation of the kinetic equation describing behavior of an ensemble 
of random-phase, spatially homogeneous gravity waves on the surface of the infinitely deep ocean. 
Results of simulation support the theory of Weak Turbulence not only in its basic points, but also 
in many details. 

The Weak Turbulent theory predicts that the main physical processes taking place in the wave 
ensemble are down-shift of spectral peak and "leakage" of energy and momentum to the region of 
very small scales where they are lost due to local dissipative processes. Also, spectrum of energy 
right behind the spectral peak should be close to the weak-turbulent Kolmogorov spectrum which is 
the exact solution of the stationary kinetic (Hasselmann) equation. In a general case, this solution 
is anisotropic and is defined by two parameters - fluxes of energy and momentum to high wave 
numbers. Even in the anisotropic case the solution in the high wave number region is almost 
proportional to the universal form w~4. This result should be robust with respect to change of the 
parameters of forcing and damping. 

In all our numerical experiments, the w-4 Kolmogorov spectrum appears in very early stages and 
persists in both stationary and non-stationary stages of spectral development. A very important 
aspect of the simulations conducted here was the development of a quasi-stationary wave spectrum 
under wind forcing, in absence of any dissipation mechanism in the spectral peak region. The' 
equilibrium is achieved in the spectral range behind the spectral peak due to compensation of wind 
forcing and leakage of energy and momentum to high wave numbers due to nonlinear four wave 
interaction. Numerical simulation demonstrate slowing down of the shift of the spectral peak and 
formation of the bimodal angular distribution of energy in the agreement with field and laboratory 
experimental data. More detailed comparison with the experiment can be done after developing of 
an upgraded code making possible to model a spatially inhomogeneous ocean. 

1    Introduction 
The phenomenon of wind-generated gravity waves on the sea surface is a very interesting object not only for 
oceanographers, naval architects and coastal engineers. It is also a subject of fundamental interest for the 
physicists. The ocean waves is the most conspicuous natural example of weakly nonlinear waves in a strongly 
dispersing media. 

Indeed, on a deep water the dispersion relation is w = y/gk, thus the dispersion is very strong. The level of 
nonlinearity could be measured by the characteristic steepness, p = ka (k is an average wave number and a is a 
wave amplitude). Numerous observational data show that typically, ß ~ 0.1 (see, for instance [1]). Even in the 



condition of a strong storm, fi rarely exceeds this limit. Meanwhile, the critical steepness of the Stokes waves 
is ß ~ 0.45. Thus, the level of nonlinearity of the ocean waves is small or at least moderate. This statement is 
very much enhanced by the predictions of the weakly nonlinear statistical theory. According to this theory a 
characteristic time of evolution of the wave spectrum is 

1 
r — —I- ai/i4 

Even for p ~ 0.1 this time is equal 104 wave periods. 
The weakly nonlinear statistical ensemble of surface gravity waves can be described by the theory of weak 

turbulence. This theory is quite universal and is applicable to a very broad scope of physical phenomena, 
including waves in plasmas, waves in liquid super-fluid Helium, a Rossby waves, and acoustic waves. The 
references can be found in the monograph [2]. And this list is far from being complete. 

The theory of weak turbulence is far advanced analytically. In this theory the evolution of basic correlation 
functions is described in terms of kinetic equations for the wave action. These kinetic equations are nothing but 
standard kinetic equations for bosons, traditionally used in statistical physics since twenties. The new point 
is the following: we deal now not with thermodynamically equilibrium solutions, which are not relevant for 
description of a real wave turbulence, but focus our interest on Kolmogorov-type solutions. These solutions 
carry a finite amount of constants of motion (energy, momentum, wave numbers) from the region in fc-space, 
where they are generated, to the region where they are accumulated or absorbed by some kind of dissipation 
mechanism. In the theory of weak turbulence we study these equations in the limit of very high occupation 
numbers, where the equations become homogeneous with respect to the distribution function (quadratic, cubic, 
etc). As a result, in most physical situations the Kolmogorov-type solutions are power-like functions. 

The analytical theory of weak turbulent Kolmogorov solutions has been studied in details, but the exper- 
imental and the numerical justifications of this theory cannot be considered as being sufficient. There is only 
one physical situation, the capillary wave turbulence, where the weak-turbulent theory is strongly supported 
by the experiment and the numerical simulation [3], [4], [5]. 

It is extremely challenging and attractive to apply the theory of weak turbulence to such a great natural 
laboratory as the world ocean. In this article we make a step in this direction. We present here our numerical 
experiments on solution of the Hasselmann's kinetic equation for gravity waves on a deep sea. We show that 
these experiments completely confirm the prediction of the wave turbulent theory. First of all, they confirm the 
fundamental role of the universal Kolmogorov spectrum eu — w-4, which was found by Zakharov and Filonenko 
in 1966 [6]. They make it possible to explain in a natural way a lot of experimental data accumulated in the 
physical oceanography for decades. 

2    General consideration 
Let r)(r, t) is a surface elevation, tp(r, t) is a potential on the surface. We assume that density of the fluid p = 1. 
The complex amplitude of propagating waves is given by formula: 

V2 
m1/4      • AV/4 , (2-1) 

In the pair of correlation functions, 
< akak, >= gNk5k^k>, 

Nk is a spectral density of the wave action. This definition of wave action is common in oceanography. It has 
dimension iVfc ~ L4T. The Hamiltonian describing the motion of fluid is a functional that includes terms of 
all orders in expansion on ak,ak. One can perform the canonical transformation to new variables bk, excluding 
the cubic terms in the Hamiltonian. For new variables bk we have 

<bkb*kl >=gnk6k-kt. (2.2) 

The complex amplitude ak is expressed through bk as the power series, as well as TV* through nk. Their 
cumbersome coefficients are presented in the Appendix I (see also [35]. The details of calculation can be found 
in Appendix III. The difference between Nk and nk on a deep water is of the order /i2, and can be neglected. 
In shallow water this difference is much more important. 

If the nonlinearity is weak, the fluid is described by the Hamiltonian 

H    =        ukbkb*kdk+ -     Tkklk2k3blb*kibk2bk3Sk+kl-k2-ksdkdkidk2dk3. (2.3) 



Here T is a homogeneous function of third order, 

T(ek,eki,ek2,ek3) = e3T(k, ftijfojfe)- 

The explicit formula for Tkkik2k3 is in the Appendix II. 
The kinetic equation for nk reads 

^t = Sni+l(k)nk. (2.4) 

This equation was derived by K.Hasselmann in 1962 [7],[8], and broadly applied in oceanography. Hasselmann 
erroneously considered that equation (2.4) is written for Nk, and this view is shared until now by most oceanog- 
raphers. While the difference between nk and Nk is relatively small for deep water, it becomes significant for 
shallow water. 

In (2.4) 

Sni    =    2ng2 \Tkklk2k3\
2(nklnk2nk3 + nknk2nk3 -nknklnk2 -nknklnk3) x 

J\k2\<\ka\ 

<5(w* +wkl -Uk2 - uk3)5(k + fa -k2 - k3)dkidk2dk3. (2.5) 

The function jk describes the active forcing by the wind and the damping due to the wave breaking. Due to 
complexity of these processes, this function should be found from the experiments. For large and moderate 
scales 7*; is dominated by the interaction with wind. Due to the large difference between air and water densities, 
7fc is small and is of order 

I*- ~ e ~   Pair   . (2.6) 
Wfc Pwater 

From (2.4) one obtains /i ~ e1/4, in accordance with experimental data. For the rate of the spectrum evolution 
one has 

wr~-~103. (2.7) 
e 

Applicability of the weak turbulent theory in a final degree comes from the small value of e. 
Hereafter the polar coordinates w = \/gk, 0 in fc-plane are used. The wind velocity V defines the charac- 

teristic frequency wo = g/V. Even for a very weak wind, V ~ 1 — 2m/'sec, the characteristic frequency is by 
the order of magnitude less than the frequency wc — 30Hz, where the effects of capillarity become important. 
For w < wo, 7 is negative, small and unknown. It is defined by friction between sea surface and turbulent air 
boundary layer. For w > wo, 7 is positive due to Cherenkov-type excitation of waves by the wind. According 
to Donelan [9], one can put 

7(w e) = {  °M% - D2"cos0    COSÖ > 0,   W > WO 
n   '  ;     \ 0 otherwise v     ; 

This expression can be trusted up to w equal 5 -j- 6wo- For higher frequencies experimental data are scarce, and 
the expression for 7(w,#) is not clearly known. 

If the wind is weak enough, U < 5m/sec, a wave breaking is absent, the sea surface is smooth, and 7 > 0 
at least up to w ~ wcap. For stronger winds, the effects of micro-scale and macro-scale (white capping) wave 
breaking make 7 < 0 in the high enough frequency region (see [10]). In both cases there is an effective sink of 
wave energy in small scales. In the absence of wind velocity, this sink is realized either by excitation of capillary 
waves and their viscous dissipation, or by the wave breaking. 

Existence of this sink leads to a conjecture that real physics of wind-driven waves on the sea surface can be 
compared with the physics of turbulence in the incompressible fluid at high Reynolds numbers. It is considered 
that kinetic equation (2.4), if 7 = 0 has constants of motion. In the isotropic case case they are 

= fuknkdk (2.9) E = I uknkdk 

and a wave action 

N=  fnkdk (2.10) 

In the general case it also should preserve momentum 

R= fknkdk (2.11) 



In reality neither energy nor momentum are constants of motion. They "leak" to the region of high wave 
numbers (similar situation takes place in turbulence of incompressible fluid). Only wave action is the true 
constant of motion. Other conservation laws (of energy and momentum) are just formal. The problem of 
non-conservation of formal motion constants is discussed in details in the article of Pushkarev and Zakharov 
[15]. 

"Leakage" of energy to high wave numbers is clearly demonstrated practically by all numerical experiments 
of the Hasselmann equation, since pioneering works of Hasselmann and Hasselmann [16]. In a typical case 
angle-averaged S„i 

2ir 
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is a "two-lobe" function.  It has only one zero at u - wp and /(w) > 0 for 0 < w < wv while f{u) < 0 for 
u > UJP. Preservation of both wave action and energy means that /(w) satisfies simultaneously two conditions: 

oo 

fu3f(u)du = 0 (2.12) 

o 
oo 

Ju4f{u)dw = 0 (2.13) 
o 

Apparently it is impossible if /(w) is a "two-lobe" function. Integral (2.13) must be negative. We denote 

oo 

/ 

2 

w4/(w)dw = -<L (2.14) 

Here P is the flux of energy to high wave-numbers. Inevitable presence of the flux lead us to the theory of 
Kolmogorov style. 

In the Kolmogorov theory of turbulence the spectra are governed by fluxes of the constants of motion. 
Due to the presence of two constants of motion even in the isotropic case, the turbulence of gravity waves is 
qualitatively similar to turbulence of two-dimensional incompressible fluid, which is governed by fluxes of energy 
and enstrophy. 

We should stress here the fundamental difference between weak (wave) and strong (hydrodynamic) turbu- 
lence. In the theory of turbulence Kolmogorov spectra are just a plausible hypothesis, which is not supported 
properly by rigorous arguments. In the theory of weak turbulence, Kolmogorov spectra appear as exact solution 
of equation 

Snl = 0 (2.15) 

For gravity waves on the surface of a fluid the most important Kolmogorov spectrum, describing the direct 
cascade of energy to high frequencies has a form 

eu ~ P1/3uT4 (2.16) 

In 1966 Zakharov and Filonenko found that spectrum (2.16) satisfies equation (2.15). In 1972 spectra with this 
form were experimentally observed by Toba [11], who was not aware about the work of Zakharov and Filonenko. 
The interpretation of spectrum (2.16) as a Kolmogorov spectrum was published first in 1982 by Zakharov and 
Zaslavskii [12] and than propagated by Kitaigorodskii [13]. 

3    Weak turbulent Kolmogorov spectra 
In this chapter we summarize the basic facts on weakly turbulent Kolmogorov spectra. We discuss solutions of 
the equation (2.15) and present these facts without detail analytical justification. This justification is referred 
to Appendix III in the brief form. 

Naively, one can think that this equation has thermodynamic solutions of the form 

T 
nk = —^ (3.1) 



In fact, in the considered case of gravity waves these solutions do not exist because of divergence of the integral 
(2.5) at large wave numbers. Let us call a function nk "allowed" if the integrals in the operator Sni[nk] are 
converged for both k —> oo and k —> 0. 

To determine the class of allowed functions one put k\ -¥ oo, k3 -»• oo. From the conditions 

k + ki    =    k2+k3 (3.2) 

one can see that at k\ -¥ oo, k3 -¥ oo, k2 remains finite (\k2\ ~ |fc|). 
The contribution S$ to the integral (2.5) comes from integration over large fci, and can be written approx- 

imately as follows: 

S#    ~    27vg2nkJ\Tkkl\
2nk2S(uk-uk2)^k-k2,^jdk1dk2 (3.4) 

As far as (see Appendix II) \Tkki \2 ~ kjk4 at fci » k, integral (3.4) converges if 

nk<^ (3.6) 

at k ->■ oo. Thermodynamic solutions do not satisfy the condition (3.6). 
Let fei ->• 0. Due to (3.2) k2 -* 0 as well.  The contribution S$ provided by integration over small ki,k2 

reads 

S™    ^    2ng2 / nklnk2{\Tklkl,k2lk+kl-k2\2(nk+kl-k2 -nk)S(uk +uikl - uk+kl-k2 -w*2) 

+    \Tk,k2,kl<k+k2-kl\
2(nk-kl+k2 -nk)5(u)k + wk2 -wk-kl+k2 -uikl)}dkidk2 (3.7) 

The integrand should be expanded in Taylor series over k\, k2. First term of expansion vanishes due to the 
symmetry. In the second approximation kinetic equation transforms to the diffusion equation 

|P    =    divD(k)Vn (3.8) 

D(k)    =    ^g2 / \Tkkl\
2nknkl{ki -k2)

2ö(ukl -uk2)dkik2 (3.9) 

Suppose that nk ~ k 3. Integral (3.9) converges if s < ^. Thus nk must satisfy the condition 

Conditions (3.6), (3.10) define the class of allowed functions. In particular, the power-like function nk — k~x is 
allowed if : 

3 < x < " (3.11) 

Let us formulate the central results of the theory of weak turbulence: 
Suppose that an ensemble of weakly-nonlinear waves in the space of dimension d is described by kinetic 

equation (2.4). Suppose that the following conditions are satisfied: 

1. Equation (2.4) is invariant with respect to rotations in d-dimensional fc-space.   This condition implies 
.  that the dispersion law depends only on modulus of k: u = w(|fc|). 

2. There is no characteristic length in the system. It implies that u is a power-like function, while T is a 
homogeneous function of its arguments w = |fc|a : 

T(ek, eki, ek2,ek3) = eß T(k,kuk2,k3) (3.12) 



In this case equation (2.15) has no more than four power-like solutions : 

nk    =    k~Xi,   t = l,...,4 (3.13) 
2/3  ,   , 2/3 -a      , 

xi    =    Y+   '   X2 = —3— +d'   Xs = a>    x* = ° (3-14) 

The solutions are 

ni    ~|*l    3 (3.15) 

n2    ~\k\~sers-d (3.16) 

n3    ~£7 (3.17) 

T 
n4    ~ A = const,    A =      lim      — (3.18) 

T->oo   A« 
/i -> 00 

To find a real amount of power-like solutions, one should determine the class of functions, allowed by the S„i. 
If this class does not include power-like functions, neither of solutions (3.15)-(3.18) is relevant for description 
of a real physical simulation. Suppose that power-like functions nk = k~x are allowed if 

«l < x < s2 (3.19) 

The power-like solution nk ~ k~x' is physically relevant if Xi belongs to this interval 

si < X{ < s2 (3.20) 

In the case of gravity waves on deep water the conditions (3.6)-(3.10) are obviously satisfied and a - 1/2, ß = 3. 
Hence 

23 1 
xi=4,  x2 = —,   x3 = -,    x4 = 0 (3.21) 

According to (3.6), (3.10) Si = 3, s2 = %. Thus si < xi < s2, Si < x2 < s2, while x3 < su x4 < Si and only 
solutions can be used for description of real physical situations. These solutions are weak-turbulent Kolmogorov 
spectra. We define spectral density of energy by relation 

2w4 

eudoj = u{k)n(k)dk = —^-n(u>, 6)dud6 (3.22) 

In terms of energy density Kolmogorov spectra read : 

sV    =    Co54/3P1/3
W-4 (3.23) 

e<2)    =    9oS4/3Q1/3"-11/3 (3.24) 

In (3.23)-(3.24), P is the energy flux to high wave-numbers, Q is the wave action flux to small wave numbers. 
Co and go are dimensionless Kolmogorov constants. 

According to (3.22) 

,(2)       _ 90 *  - w ^Q1/3AT23/6 (3.26) 

From (2.1) one obtains 

Hence 

1   /fc\1/4 

T}k=rf{g)      (a* + a-*) (3-27) 

h=<\nk\
2>=hgk)1/2(Nk+N-k) 2 (3.28) 



Here Ik = I-k is the spatial spectrum. For deep water one can neglect the difference between Nk and nk and 
put according to (3.25), (3.26), (3.28) 

(1)      CosP'pV* 
k o 1.7/2 W'2 

(3.29) 

J(2) = gog3/2Q1/3 (330) 

* 2     fc10/3 

Power-like isotropic Kolmogorov spectra are not unique solutions of the equation (2.15). One has to expect 
that this equation has also anisotropic power-like Kolmogorov spectrum 

<?> = M1/3/(0)w-13/V/3 (3.31) e, 

Here M is the flux of momentum along the x-axis to the high-frequency region. In (3.31) f(6) is an unknown 
function of angle with respect to real axis which cannot be found analytically in a general case. It can be done 
for special "diffusion" model (see Zakharov and Pushkarev [14]). 

Moreover, from the symmetry consideration one has 

f(-6) = -/(*) (3.32) 

hence his function is not positively defined and cannot be a model of any real spectrum. 
More general Kolmogorov-type solutions are governed by more than one flux of motion constants. Even in 

the isotropic case a general solution of (2.15) must have a form 

Euj — ^'(2) 
where F(£) - some unknown positive function, satisfying the conditions £=*]?. Here P is the flux of energy 
originated by sources concentrated at k -> oo, Q is the flux of wave action, coming from infinity. 

Then: 

F(fl) = Co (3.34) 

F(0 -»• q0e
/3,   f^oo (3.35) 

Spectrum (3.33) describes the situation when there is the source of energy P in small frequencies and source of 
wave action Q in high frequencies. 

The most general Kolmogorov solution of equation 

Snl = 0 

has the form 
4/3pl/3 fuQ  gM    \ 

{-P'-^P'9) 
Gl^y™0) (3.36) 

Here G is some function of three variables to be found numerically by solution of the system of nonlinear 
integral equations imposed on Fourier component of angular-frequency spectrum (see Appendix III). We plan 
to undertake a full-scale numerical experiment for definition of this function. Some particular properties of this 
function, however, can be found analytically. 

General Kolmogorov spectrum (3.36) appears in the case when one has sources of energy and momentum 
P, M at small wave-numbers together with the source of wave action Q at high wave-numbers. In the situation 
we are discussing (direct cascade) there is no flux of wave action from infinity, and Q — 0. In this case one has 

<^(g..) - (3-3. 
Let us introduce dimensionless parameter £ = äM. For completely isotropic spectrum M = 0, hence £ = 0. One 
can say that value of £ characterizes a degree of anisotropy. For small values of £ function H can be expanded 
in Taylor series 

H = Ho(6) + Hi(9)t + ... (3.38) 

Apparently, Ho(6) = Co does not depend on 6. This is just the Kolmogorov constant, introduced in (3.23). 
One can prove that H\(Q) = C\ cosö [2]. 



The constants Co, Ci can be called the first and and the second Kolmogorov constants. We established 
that for small £ 

4/3pl/3  / M \ 

e» = jL^r-(Co + C1 — cose + ..j (3.39) 

This case is realized at any values of M, P if u -»■ oo. Hence the spectrum (3.36) becomes completely isotropic 
at large values of w. 

One can determine H(£,6) at very large values of f. In this "extremally" anisotropic case the spectrum is 
governed by a single parameter M and its dependence of the flux of energy P should be dropped out. It means 
that in this limit H(Z,6) -> £1/3f(6) at £ -► oo and formula (3.37) goes to the formula (3.31). 

In reality the simple formula (3.39) gives a reasonable approximation to observed spectra. Banner [1] found, 
by analysis of the experimental data that the averaged by angles spectrum behave like w~4, while the one- 
dimensional slice at 9 = 0 goes to zero faster. Banner assumes that its behavior obeys the Phillips law w-5. 
Another words, according to Banner 

£w(0)        1 
:TT4: - - (3.40) 

According to our formula (3.39) 
ea(0)       _   ,  CiM ,      N 

This is the decreasing function of w as well and our results coincide with Banner's results at least on a qualitative 
level. However, the difference due to presence of constant Co in our formula (3.41) is very essential. Co is the 
Kolmogorov constant, which certainly cannot be zero. 

4    Matching with sources and non-stationary behavior 
Now we discuss under what conditions weak-turbulent Kolmogorov spectra can be realized in a physical situa- 
tion. We will discuss only the "direct cascade", which is described in a general anisotropic case by the spectrum 
(3.37). First and foremost condition for realization of this spectrum is an efficient sink in the high-frequency 
domain. For surface waves this sink is provided by generation of capillary waves or wave breaking. In the 
framework of the model (2.4) the sink is described by 7(A) < 0 at |fc| > kd, j(k) -> -00 if \k\ -> 00. 

Like in the Kolmogorov theory of turbulence in incompressible fluid, a detailed shape of j(k) is not impor- 
tant. Damping coefficient i(k) just must absorb fluxes of energy and momentum coming from small frequency 
region. In the conditions of full absorption 

P    =    -    /    j(k)u(k)n(k)dk (4.1) 
\k\>kd 

M    =    - j(k)kn(k)dk (4.2) 

l*l>*d 

The ideal conditions for realization of Kolmogorov spectrum (3.37) takes place if the region of instability, where 
f(k) > 0, is localized in the domain 

ko <k <ki (4.3) 

and ki « kd- To provide absorption of the inverse cascade which is forming at k < k0, one should have 
damping at k < k0. Thus j(k) < 0 at k < k0. 

In this situation one can expect formation of a stationary spectrum, obeying the equation 

S„i + i{k)nk = 0 (4.4) 

A shape of the spectrum in the region 0 < k < fci can not be predicted from the general principles. But in the 
"window of transparency" 

ki <k<kd ' (4.5) 

one expects the appearance of a Kolmogorov spectrum (3.37), defined by the fluxes P, M. 
By integrating (4.4) one has 

P    =        /    ujk7knkdk (4.6) 

|fc|<*i 

-     /    UkSnidk (4.7) 

l*K*i 



In a similar way 

M    =        /    jkkcosOnkdk (4.8) 

M    = 

\k\<k 

-    I    k cos eSnidk (4.9) 

Thus we have three different ways for calculation of the fluxes P, M. 
We want to point out that localization of instability in small wave number is the sufficient, but not the 

necessary condition for forming Kolmogorov spectrum of the inverse cascade. The income of energy e+ is defined 
by formula 

e£=7(*M*)n(fc) (4.10) 

includes product of -y(k) and n(fc). Even if j(k) grows at large k, the product -y(k)uj(k)n(k) could be concentrated 
at small k. 

Let us suppose that there is no damping in small k. In this case no stationary state can be established. 
In the region k < ko one will observe formation of the inverse cascade, propagating like a front toward k —► 0. 
Meanwhile, in k > ko a stationary state will be reached in a finite time. Formulae (4.1)-(4.2) as well as (4.7)-(4.9) 
remain valid, while formulae (4.6) and (4.8) are not correct anymore. 

Propagation of the inverse cascade front is described by self-similar solution of equation 

ft=Snl (4.11) 

It has the following self-similar solution 

where a and ß are connected by relation 

n = tau(ktß) (4.12) 

2a +1 = ^/3 (4.13) 

To determine a,ß one should use'some additional information about the solution. In the case of inverse 
cascade this information can be extracted from the fact that there is no flux of wave action to high frequencies 
if fci «kd- All gained wave action is deposited to the wave ensemble. Assuming that in the instability region 
k ~ fco the stationary state is reached, one has 

Hence 

=  fnkdk~t (4.14) 

a-2ß = l,    ß=±,    a=g (4.15) 

Solution (4.12) takes a form 

n = t23'nu(ktVu) (4.16) 

and the front propagates to small k according to the law 

fe/~r6/11 .    - (4.17) 

The region k ~ 0 has " infinite capacity" and can absorb infinite amount of wave energy. 
At k ~ ki solution (4.12) should be matched with the Kolmogorov spectrum (3.37) with some fluxes P, M 

which are formed in the instability region. 
Another important self-similar solution describes the evolution of "swell" or water waves in the absence 

of any type of sources. In this case wave action is preserved, while energy and momentum leak to k -¥ oo. 
Preservation of N implies 

a = 2/3,   ß=l,    a=^ (4.18) 

Self-similar solution has the form 
n = t4/11C/(fei2/n) (4.19) 



It describes down-shift of wave maximum 
km ~ r2/n (4.20) 

Total energy and momentum of solution (4.19) decreases as 

e-r1'11,    M~t~2/n (4.21) 

Finally we discuss a self-similar solution describing formation of direct cascade Kolmogorov spectrum. An 
additional constrain on a, ß can be found from the assumption that at small k Kolmogorov spectrum is already 
established. In this area n does not depend on time, and U ~ £~4 ~ 1/fc4. It might happen only if 

2 8 
a = 4/3,    a=-,    ß=- (4.22) 

Corresponding solution has a form 

n = (to - t)f U (k(t0 - t) I) (4.23) 

Formula (4.23) describes propagation of the "shock" wave to the high-frequency region. A trajectory of the 
shock 

*" * (TT^Ts (4-24) 

This shock is self-accelerating. It reaches infinity in a finite time and Kolmogorov spectrum w-4 is established 
in the explosive way. 

Finally, let us perform an elementary derivation of the Kolmogorov spectrum w-4. To do this, we return back 
to the stationary equation (4.4). Let ks be some wave number inside the interval of transparency k\ < ks < kd- 
Multiplying (4.4) by uk and integrating by the domain |fc| < A:s, one find for the local value of energy flux 

P(ks) = /        LükSnidk (4.25) 
J\k\<k. 

The other hand, jk = 0 if fci < k < kd. Hence, P is defined by formulae (4.6)-(4.7). 
Let us assume that 

nk = C0P
1/3k-x,    3<x< 19/4 (4.26) 

Plugging (4.26) into (4.25) and taking into account convergence of the operator Sni on this class of allowed 
functions, one find from dimension consideration 

P(k.) = PC%\kl2-3x (4.27) 

As far as the flux P(ks) does not depend on ks, one find 

i 

: 4 (4.28) 

Co = A-* ^0 (4.29) 

Comparing with (3.22) one can see that we obtained again Zakharov-Filonenko spectrum e ~ ui4.   Due to 
convergence of Sni, A is finite and Co ^ 0. 

Note that for the Phillips spectrum su ~ w-5 gives A = 9/2. In this case 

P(k.) ~ K3/2 (4.30) 

(4.31) 

and P(ks) -¥ 0 at ks -¥ oo. 
Another words, Phillips asymptotic means that energy is preserved and there is no leakage of energy to small 

scales. This point is in contradiction with the Kolmogorov picture of weak turbulence. We would like to make 
clear that the Phillips asymptotic w-5 never can be obtained as the solution of the Hasselmann's equation. 

Anyway, experimentalists systematically observe a;-5 tails in spectra of gravity waves, both in laboratory 
and in the ocean (Forrestall [26], Kitaigorodski [13]). On our opinion, these tails appear in the conditions when 
local steepness is close to critical and the kinetic Hasselmann's equation in this case is not applicable, because 
the level of nonlinearity is very high. 

Our slogan is : 
"Hasselmann equation and w~5 spectrum are incompatible things". 
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5    Numerical simulation 
Numerical integration of kinetic equation for gravity waves on deep water (Hasselmann equation) was the subject 
of considerable efforts for last three decades. The "ultimate goal" of the effort - creation of the operational 
wave model for wave forecast based on direct solution of the Hasselmann equation, happened to be extremely 
difficult computational problem due to mathematical complexity of Sni term, which require calculation of 
three-dimensional integral at every advance in time. 

Historically, numerical methods of integration of kinetic equation for gravity waves exist in two "flavors". 
First one is associated with works of Hasselmann and Hasselmann [16], Dungey and Hui [17], Masuda [18]-[19], 
Lavrenov [20], Polnikov [21] and is based on transformation of 6-fold into 3-fold integrals using 5-functions . 
Such transformation leads to the appearance of integrable singularities, which creates additional difficulties in 
calculations of Sni term. 

All numerical experiments show that angle-averaged Sni is "two-lobe" function and consequently support the 
Kolmogorov scenario of wave turbulence. In some experiments (Masuda [18],[19]; Polnikov [21]) the Kolmogorov 
asymptotic w-4 was observed. 

Second type of models developed in works of Webb [22] and Resio and Perrie [23] uses direct calculation of 
resonant quadruplet contribution into Sni integral based on the following property: given fixed two vectors k, 
k[, another two k2, h are uniquely defined by the point "moving" along the resonant curve - locus. 

Numerical simulation in current work was performed with the help of modified version of second type 
algorithm. Calculations were made on grid 71x36 points in the frequency-angle domain [ui, 6] with exponential 
distribution of points in frequency domain and uniform distribution of points in the angle direction. 

We performed two series of experiments. In the first one we put in equation (2.4) an "artificial" driving 
and damping, which provide relatively broad "window of transparency". We assumed that damping is isotropic 
while instability can be either isotropic or anisotropic. These experiments are pure "academic". Their results 
cannot be applied to physical oceanography directly. They are designed to examine applicability of the weak 
turbulent theory and to validate a fundamental importance of weak turbulent Kolmogorov spectra. In these 
experiments we made calculation of the first and the second Kolmogorov constants. 

Second series of experiments is modeling of the realistic case where equation (2.4) is supplied with wind- 
driven instability. 

All cases of simulation started from uniformly distributed low level noise. Having in mind an application 
to real wind-driven sea waves we calibrate time of evolution in hours. Criterion for stop of the calculations was 
reaching of stationary or asymptotic regimes. Simulation was performed on Compaq Presario 1700 notebook 
computer featuring 850 Pentium III CPU with 256 Mb of RAM. Typical time of calculations varied between 
several dozens hours and several days. 

5.1    Isotropic case 
In the isotropic case 

f  Ci exp (- (^)4)    if 0.63 < u < 1.26 
7(w, 0) = I       _c2(w - 0.63)2 if w < 0.63 t5-1) 

[      -C3 (w - 5.65)2 i/w>5.65 

where d, i = 1,2,3 are positive constants. Coefficient C\ at (5.1) is defined from the condition of the smallness 
of the growth rate with respect to the corresponding local frequency. Negative components of (5.1) are high and 
low frequency damping terms, the only purpose of which is to absorb direct (energy) and inverse (wave action) 
cascades. Constants Ci and C3 as well as the frequencies w = 0.63 and w = 5.65 are defined experimentally from 
the conditions of the effectiveness of the fluxes absorption and maximization of the inertial (forcing/damping 
rates free) interval with respect to w. 

• Fig.l show evolution of wave action as a functions of time. The picture indicates that there are three 
main stages associated with system evolution: instability development, saturation at t = 3.7 hours, and final 
evolution into the stationary state. Energy demonstrates similar behavior. 

Fig.2 shows logarithm of energy distribution against logarithm of frequency at different moments of time. 
One can see formation of w* asymptotic at finite moment of time. We interpret this fact as a vigorous support 
of the weak-turbulent theory. We should stress that w-4 asymptotic is very robust. Actually it appears in all 
our experiments. 

According to the predictions of Section 4, formation of the w-4 asymptotic is going by the explosive way. 
Energy spectra taken in four moments of time, closed to the moment of explosion are shown in Fig.3. 
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Next two figures display Kolmogorov flux of energy as a function of time measured by two different ways, 
by formula (4.1) (see Fig.5) and (4.6) (see Fig.4). 

On the first stage energy grows exponentially until the "shock wave" in fc-space reaches the Kolmogorov 
asymptotic. Then dissipation in high wave numbers explodes and the level of energy falls down and reaches its 
stationary asymptotic value. 

Fig.6 presents the function 
2TT 

[e{u,6)d9 (5.2) 27TPV3fl4/3 
0 

which gives for the first Kolmogorov constant 

0.35 < Co < 0.45 (5.3) 

Fig.6 shows that in the stationary state the spectrum has two different components - the Kolmogorov tail 
w~ and the sharp peak concentrated near the frequency w ~ 0.6, corresponding to the lower edge of the 
instability region. Similar coexistence of "peak" and "tail" components is typical for wind-driven wave spectra, 
observed in the real ocean. In the standard JONSWAP spectrum a special parameter, determining peakedness 
is provided (see also Donelan, Hamilton and Hui [9]). 

5.2    Anisotropie case 
In the anisotropic case 

7(w, B) = « 

£,iexp(-(io=T^)4-(^4)8)    if 0-63 <u< 1.26 

-D2(w-0.63)2 i/w<0.63 (5,4) 

-£»3 (w - 5.65)2 if w > 5.65 

where Dt, i = 1,2,3 are positive constants, selected similarly to isotropic case.   Fig.7 shows distribution of 
damping and instability defined by (5.4). 

This numerical simulation was motivated by the following reasons: 

1. We want to be assured that weak-turbulent Kolmogorov spectra are realized not only in isotropic case. 
We would like to be completely sure that they play the same key role for essentially anisotropic spectra 
as well. 

2. We planned to check once more the value of the first Kolmogorov constant Co and be sure that it is the 
same as in the isotropic case. 

3. We want to trace the difference between the angle-averaged spectrum and its slice at 9 — 0. We want 
also to find the value of the second Kolmogorov constant C\. 

The experiment shows that the stationary state is established similarly to the isotropic case. Typical 
saturation time for given forcing and damping is t ~ 0.68 hour. 

Fig.8-10 display line-levels of energy distribution at different moments of time. One can see that stationary 
picture is bimodal and has double spike. Similar double spike picture is typical for experimental results f24L 
[25]. _ 

Fig. 11 demonstrate set of angle averaged energy distribution taken in different moments of time. They are 
very close to w~4 law. Fig.12 presents one-dimensional slices at 9 - 0 for the energy distribution at the same 
times. Fig.13 presents ratio of one-dimensional slices of spectra to angle averaged spectra. One can see that 
one-dimensional spectra decay at w ->• oo faster, than averaged energy spectrum, in accordance with Banner's 
observations [1]. We cannot identify, however, one-dimensional spectra with Phillips spectrum w~5. Their decay 
is more slow and not uniform in w. 

In the anisotropic case we also saw explosive formation of spectra tails, similar to the isotropic case. Fig.14 
shows the energy spectrum development at four close equidistant time moments. As in the isotropic case one 
can notice that Kolmogorov spectrum establishment happens strongly non-uniformly in space and time and 
looks like the "shock" propagation, in accordance with (4.16). 

4      2,r 

Fig. 15 shows the function ^ J e cos BdB. If the formula (3.39) is correct, this plot should be proportional 
o 

to u~ . It easy to see that correspondence is quite good. 
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,4 

Fig.16 presents the function 

2j^I£{U'e)de (5'5) 
o 

which gives the value of first Kolmogorov constant in anisotropic case 

0.33 < Co < 0.37 (5.6) 

Fig. 17 presents the function 
p2/3w5    2* 

I e(u,8) cos 6de (5.7) 
wMg7'3 

o 

which gives the value of second Kolmogorov constant 

0.18 < Ci < 0.27 (5.8) 

Fig.16-17 show that in the anisotropic case we have again a combination of the spectral peak and the 
Kolmogorov-type tail. 

5.3    Wind forcing case 
In this chapter we present the results of modeling of the situation which is close to reality in maximum degree. 
We studied the surface waves excited by the wind in the angle-frequency domain 0 < 9 < 2TT and wm,„ < w < 
Umax where umin = 0.06 and wmol = 12.56. Initial conditions is the noise in energy space ew = 4 • 10-5. Wind 
forcing and sink of energy at large u> are defined in accordance with (2.8) as: 

{2 • 10_4(^ - l)2wcos0    if cos0 > 0 and w0 < w < wx 

-C{U) - Wl)2 if U>1 < U! < Umax (5-9) 
0 otherwise 

where wo = 0.94 (corresponds to wind velocity U ^ 10.4m/sec) and wi = 8.48. High-frequency damping is used 
to simulate infinite-capacity phase volume at high wave numbers. Constant C and frequency wi are defined 
experimentally from the condition of the effectiveness of the energy flux absorption at high frequencies. As in 
the reality, we did not provide any damping at small wave-numbers. Fig.18 shows distribution of damping and 
instability defined by (5.9). 

We started our calculation from low-level noise and stopped them, when sea was close to its "mature state". 
As far as we know, nobody has performed similar experiments before. 

The main purpose of our experiments is to prove that the weak-turbulent four-wave interaction of gravity 
waves is a powerful enough mechanism to stabilize the wind-driven instability at relatively low level ka ~ 0.1-=-0.2 
and to provide fast enough down-shift of the peak of spectral density. This viewpoint is far from being widely 
accepted. Some authors (M.Stiassnie [44]) consider that the random phase four-wave interaction is too weak 
process to explain the rate of spectral evolution observed in real ocean. Many authors traditionally believe that 
stationary spectra could appear only as a result of saturation of the instability by wave-breaking. 

To argue with these point, we deliberately did not include the effects of wave-breaking in our consideration. 
We will show that the income of energy and momentum from wind is mostly compensated by Kolmogorov fluxes 
of these constants of motion. Income of wave action cannot be stabilized, thus a whole process is non-stationary. 
But at large times all spectral grows is concentrated in very small wave numbers, while at finite wave numbers 
it reaches a quasi-stationary state, which slowly changes in time. We should stress that on the current stage 
of our work we cannot perform detailed comparison of our theory with experiments, because in the most real 
cases spectra are non-uniform in space. They depend essentially on "fetch" (distance from the shore) and are 
"fetch-limited". Experimental data, pertaining to the spatially-uniform ocean ("duration limited fetch") are 
scarce and note quite accurate. Some of this data are reviewed in the recent monograph of J.Young [45]. 

We performed comparison of our results with this data and found quite good coincidence. Anyway, we plan 
to perform the full-scale comparison of our numerical results with field and laboratory experiments as soon as 
we will have in our possession a numerical algorithm for modeling of non-stationary limiting fetch situation. 
Then we will consider more carefully possible role of wave-breaking in he balance of energy in the wind-driven 
sea. 

In our experiments wind velocity was 10.4m/sec. The total duration of running was about Ah of physical 
time. We discuss below the results of these experiments. First of all, one can see that four-wave interaction is a 
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very powerful and fast mechanism of the instability saturation. Fig.19 presents total wave action as a function 
of time. After few minutes of exponential growth, described by linear theory, wave action stabilizes and turns 
into linear function of time. 

Total energy H and significant wave height aa defined by standard formula 

as = AVH (5.10) 

grow more slowly ( Fig.20,21): 

H(t) ~ t079 (5.11) 

as(t)~t039 (5.12) 

In the end of experiment os reaches the value as ~ 3m. 
Four-wave interaction provide efficient down-shift. Average frequency < w > decays approximately as 

< w >~ r027 (5.13) 

and reaches the value < w >~ 1.2Hz, see Fig.22. 
Dependence of the average slope on time p =< ka > is presented on Fig.23. Here a = \/2H is a characteristic 

amplitude of the wave. One can see that in the initial stage of evolution a reaches its maximum value p = 0.27 
and decreases slowly to \i = 0.15. Fig.24, 25 demonstrate comparison of our calculations with experimental 
results presented in the book of J.Young [45]. 

One should stress that physical time of numerical experiment ( 4h ) is moderate and even in the end of our 
calculations waves are relatively young. Recently we performed more long calculations and can pre-announce 
some new results. After lO/i of physical time average frequency < u > down-shifts to 0.6Hz, while slope 
decreases down to fi ~ 0.1, in accordance with estimates obtained from analysis of experimental data. 

Fig.26 presents level-lines of the spectral density at the end of calculations. The spectral peak is narrow 
in angle and is concentrated inside the range < 69 >< 30°. The spectral tail is more broad. Fig.27 presents 
evolution of averaged spectra in logarithmic scale. It is clear that spectral tail is close to w~4. On the 
Fig.28 "compensated" spectra u*eu are plotted in natural scale. Fig.29 presents one-dimensional slices of wave 
energy in different moment of time. Fig.30 presents ratio of one-dimensional spectra to averaged spectrum in 
natural scale. One can see that one-dimensional spectra decay faster than average in accordance with Banner's 
observation. 

Pictures Fig.31-33 demonstrate contribution of different terms in equation 

dn      _ 
-QJ: = Sni+ fkrik (5.14) 

in three different moments of time. One can see that in area of spectral maximum f^ ,s almost equal to Sni 
and forcing terms are small even in the initial stage of the process. On the contrary, in the area of spectral tail, 
time derivative of action is very small, and instability term ^knk is compensated by nonlinear interaction term 
Snt. In this case the spectrum is quasi-stationary. These figures clearly demonstrate that Sni alone arrests the 
growth of instability on the very low level. To make this fact more conspisious, we present the same picture in 
natural scales on Fig.34-36, performing zoom on the vertical axis. 

Fig.37-39 present fluxes of action, energy and momentum 

2jr 

Q(Sl)    =    4 j Include (5.15) 
o 
2n 

p(n)   =   4 /i^dude (5.16) 
0 

2JT 

M{ü)    =    — fnu6 cos 9dud6 (5.17) 

o 

as the functions of current frequency f2. 
All three fluxes reach their maximum values at the end of the range of instability. Thus Qmax, Pmax,Mmax 

are total income of motion constants from the wind per unit of time. Apparently, Qx, Poo,Moo taken at the 
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Mfoo 

tymax 
~0.80 

Poo 

■tmax 
~0.45 

Moo 

Mmax 
~0.29 

n ratio „   PK 

end of damping region can be identified with time derivatives of total action, energy and momentum. One can 
see that at the end of calculation 

(5.18) 

(5.19) 

(5.20) 

Weak turbulent theory predicts that at t -> oo ratios jr^ -+ 0, jjft^ -> 0, while ^J^- -» A < 1, where A is 
some constant. 

Another words, for very developed sea waves almost all energy and momentum are transferred from air 
to sea are carried by Kolmogorov fluxes to high frequency region. Our calculation clearly demonstrate this 
tendency. 

6    Conclusions 
The method presented here for numerical solution of Hasselmann's kinetic equation for gravity waves makes 
it possible to solve this equation in a broad domain that covers more than two decades in frequency. This 
algorithm makes it possible to perform 104 -r-105 time steps without accumulating significant error or developing 
any instabilities. Results based on the numerical simulations conducted here support the theory of Kolmogorov 
spectra for weak turbulence not only in its basic points but also in many details. Some key conclusions from 
our investigation are as follows: 

1. In accordance with weak-turbulence theory, we found that energy and momentum of the wave ensemble 
are not preserved. Both of these quantities are "leaked" to the region of very small scales where it is 
assumed that they are lost due to local dissipative processes (wave breaking, generation of capillary waves, 
etc.). This leakage is an important part of the formation of the universal Kolmogorov spectrum. 

2. Directionally integrated energies in the equilibrium range are proportional to ai-4. This result is very 
persistent; and in all numerical experiments, the u~4 Kolmogorov spectrum appears in very early stages 
of the simulation and persists in both stationary and non-stationary stages of spectral development. 

3. A very important aspect of the simulations conducted here was the development of a quasi-stationary 
wave spectrum under wind forcing, without the need for a dissipation mechanism in the spectral peak 
region. Previous investigations (for example Komen et al. [37] and Banner and Young [38]) have been 
unable to achieve this result and consequently concluded that wave breaking in the spectral peak region 
must be an important component in developing fully-developed seas. Our results suggest that primary 
wave dissipation region is most likely located only in the high-frequency tail of the spectrum. 

4. Fluxes of momentum and energy through the equilibrium range (Kolmogorov region) of the wave spectrum 
are observed to produce a bimodal angular distribution of energy at high frequencies. This is consistent 
with observations of sea waves in nature (Hwang [24]). 

It should be recognized here that our results are consistent with several previous empirical investigations. 
First of all, behavior of integral characteristics of wave ensemble (average energy and mean frequency) is in 
accordance with experimental data on limited duration observations. Laboratory data from the classic study 
of Toba [11], clearly showed that wave spectra at laboratory scales contain characteristic w-4 equilibrium 
ranges, rather than the w-5 form initially hypothesized by Phillips [39] and adopted into many early spectral 
parameterizations of ocean spectra (Pierson and Moskowitz [40] and Hasselmann et al. [41]). More recent 
studies, including Mitsuyasu et al. [42], Forristall [26], Donelan et al. [9] and Battjes et al. [31], have all shown 
that the equilibrium range in deep-water ocean waves follows an w-4 form. Resio et al. [43] have shown that the 
infinite-depth form for the equilibrium form is fc-5^2, which is also consistent with the Kolmogorov spectrum 
and asymptotically approaches w-4 form in deep water. 

The findings here are quite robust and hopefully will be applied to the practical problems. Present wave 
prediction models are based on fairly crude parameterizations of the nonlinear energy transfers. In large part due 
to inaccuracies in these parameterizations, these models have had to include strong dissipation in the spectral 
peak region to inhibit wave growth as full development is approached. Possibly because of the dominance of 
the dissipative term in the energy balance near full development, these models consistently under-predict wave 
heights in larger storms.  Results from this study could be used to reformulate the complete energy balance 
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equation for wave generation, propagation and decay which could lead to substantially improved predictions in 
the near future. 

The research presented in this paper was conducted under the U.S. Army Corps of Engineers, RDT&E 
program, grant DACA 42-00-C0044, ONR grant N00014-98-1-0070 and NSF grant N... . The Chief of Engineers 
has granted permission for publication. This support is gratefully acknowledged. 

The authors are grateful to I.Lavrenov for valuable comments. 

16 



7    Appendix I 
Presented formulae are valid for any depth. They are taken from the article [35]. Variables ip, u are canonical. 
They obey the Hamiltonian equations 

3T? = _SH_ 
dt ~       <5* 

Ö* _ SH_ 
dt ~ Sr] 

H is the total energy of fluid.  It is presented by the series in powers of characteristic slope ka in terms of 
Fourier transforms: 

H    =    H0 + H1+H2 +... 

Ho    =    | f[Ak\^!k\2 + Bk\Vk\2]dk,   Afc = fctanh(fc/»),   Bk=g 

Hi    =    2^r [L(1\k1,k2)Vkl*k2S(ki+k2+k3)dkidk2dk3 

H*    =    nln ^  / Lm(ki,k2,fcs,ki)9kl9k2mumJiki + fa + fa + ki)dkidk2dk3dkn 
2{2ir)z J 

LW{ki,k2) = -(kik2) - IfciUfoltanhfci/itanhfo/i 
where 

and 

L(2)(fci,fc2,fc3,fc4)    =    -1 fci | |fo| tanh fci/i tanh fo/i 

2'fcl'   + r-TT^t + l*i + *sltanh l*i + *3lfc 
tanhfcift      ta.nh.k2h 

+     \k~2 + k3\ tanh \Jt2 + k3\h + \ki + kt\ tanh |fc*i +kt\h + |fa + fal tanh \k2 + ki\h\ 

4 
JLK\ ^n»2 A . A i     A 

■—. -. h A\+z + A2+3 + A1+4 + A2+4. 
Ai       A2 

Cubical terms in Hamiltonian are excluded by canonical transformation.   The Hamiltonian is given by the 
infinite series 

a^ai°' + al1>+al2> + ... 

where 

*i0)    =    h 
(i)    =     frw(k,kuk2)bklbk25(k-ki-k2)dkidk2 

-    2 j T(1)(k2,k,ki)b*klbk2S{k + k\ - k~2)dkidk2 

JT^\kM,k2)b*k,bl28{k + ki + k2)dkidk2 

I B(k,k\,k2,k3)bklbk2bk35(k — ki — Ä2 — k3)dkidk2dk3 + ... 

+ 

,(2)       - 

r<.>AS,S>  .  -\^S& 
I U)k — OJki — U>k2 

Z Wfc — Wfci — Wfc2 

£(jfc, fcl,j£,/T3)    =    r(1)(fc*i,k2,ki - k2)T
(1)(k3,k,k3 -k) + rw(ki,k3,k - k3)r

{1)(k2,k,k2 - k) 

- Tw(k,k2,k - k2)r
w(k3, kuks - ki) - rm(ki,k3,ki - k3)T

w(k2,ku fa - fci) 

- r(1)(£ + ki,k,ki)rw(k2 + k3,k,fci) + r(2)(-fc-&,%,fc*i)r(2)(-/T2 -k3,k2,k3) 
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Then 

where 

nk = Nk    +    | / I V '    '    ^.(JViniVta - iV*iVfcl - NkNk2)8(k - Ai - k2)dkidk2 

+    | / jV   '   (*.*i.*a)|   (jV   ^   + NkN    _ NkN   )Sfö _ £ _ k2)dk1dk2 

+    I / )Vl'2(fe2'^fcl)j2(jVfclArfc2 + JV*JVia - NkNkl)S(k2 - A - k1)dk1dk2 z J   \uk2 —wk+ uikl y 

+    | / Y   '   (fc'fc|'fc2)j2 (jvtlNk2 + NkNkl + NkNk2)5(k - £ - jSjdJfexdfca 

v«><M.ft-^{(^)w
i«(6.ft-(S££)''>(_W) 

|  (BkBk 

\AkAk 

8    Appendix II 
The coefficient of four-wave interaction for pure gravity waves on deep water was calculated by many authors 
since Hasselmann (1962). We present here relatively compact expression for this coefficient (see [35]): 

T1234    =    ■= (Ti234 +T2134J 

fl234 = ~ vb (Ax*,*!*«)!/« i-12k^k^ 

- 2(wi + w2)
2 [W3W4 [(hi ■ k2) - A1A2J +W1W2 ((AA) - A3A4)1 — 

- 2(W1 - W3)
2  |w2W4 Ufclfcs) + fclfc3J + W1W3 Ufc2Ä4) + A2A4 )]  -J 

- 2(wi - W4)
2  |W2W3 Ufclfc4) + A1A4J + W1W4 ((Ä2Ä3) + A2A3 jl  -J 

[(Ai • k2) + fcife] [(fe • ki) + A3A4] + [-(Ai • A"*3) + AiA3] [-(Al • A4) + A2A4] 

[-(A~! • let) + A1A4] [-(A~*2 • A3) + A2A3] 

+ 

+ 

+    l(m 1 u2)
2 ^ ' fc^ ~ fa*2^"2' fe~3) ~ fc2fc3] 

Wl+2 - (Wl + w2)2 

,     4c N2 [(Ai ■ A3) + AiA3][(fe2 • k4) + fc2A4] 
Wl-3 ~ (Wl - W3)

2 

+    4(w  -w )2 Kfo " fc"4) + fcife«][(^ • fc~3) + A2A3] \ 
W2_4 - (Wi - W4)

2 J 

Here W{ = \/5|A;|. 

18 



For coinciding wave vectors Ti2,i2 = Ti2 : 

T12    =    -8* *   /a Uk\kl + {kik2f - 4wiw2(fc*i • k2)(ki + k2) 

(wi + u>2)
2 fci • fo -fcifo           (wi -W2)2 Uifa + fciA;2 

_l_    2 - — + 2 - — 
Wl+2 _ (Wl + W2)2 Wl-2 _ (Wl _ W2)2 

92 

(8.1) 

In the one-dimensional case the formula (8.1) becomes remarkably simple (see [36]): 

k2 

T   _ J_ J k\k2   ki < 
12 ~ 2TT

2
 \ *i*l   *i > 

In a general case T\2 has the asymptotic 
1        , 

T12 ^ 2~2Ä;ifc2cos0 

at fei >> fo. 

9    Appendix III 
To determine the equation, describing the general Kolmogorov solution (3.36) one defines the following function: 

00 u>3 00 27T 27r 2TT 

F(u, 0) = 4TT / dwi     dui2     du>3 / «$1 / dö2 / <%<5(w + wi - ui2 - w3) (9.1) 

0 0 u 0 0 0 

6(ui cos 9 +uii cos 0\ — u>2 cos Ö2 — ui3 cos Ö3)5(w sin 0 + uii sin öi — u>2 sin Ö2 — W3 sin Ö3) 

[w^ujJV^iVwg +u>lNuNU2NU3 -U2NUNU1NU3 -u>%NuNulNU2] ■ \TUUlU2U3<eoie2e3\
2 

0, ,3 

N(u,0) = —n(u,e) (9.2) 
0 

7V(w, ö)dwdö = nkdk (9.3) 

and find its Fourier coefficients 
2* 

Fn(u)= I Fn(ui,0) cosn0d0 (9.4) 

0 

A general Kolmogorov spectrum is defined by the following system of equations: 

P + uiQ    =     /(w-wi)Fo(wi)dwi (9.5) 

0 
w 

M    =    - I' ulFAuAdui (9.6) 
9 J 

0 

Fn(u)    =    0   if   n>2 (9.7) 

Now ew(0) = uiNu(0). One can present AT in a form of the Fourier series 

N{u>,0) = i VATn(w)cosn6» (9.8) 
27T z—' 

and turn (9.5)-(9.7) into an infinite system of nonlinear integral equations imposed on Nn(u>). 
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Figure 1: Total wave action as the function of time (hours) 

Time=2.986h 

Time=3.192h 

Time=3.700h 

Time=5.676h 

Figure 2: Logarithm of the wave energy averaged over the angle as the function of logarithm of frequency 
for different moments of time. Dotted line - function proportional to w~5, dashed line - function 
proportional to w~4. 
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Figure 3: Dynamics of the "shock" propagation for different equidistant moments of time: logarithm 
of the wave energy at zero angle versus logarithm of u. Dotted line - function proportional to w-5, 
dashed line - function proportional to w-4. 
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Figure 4: Energy flux P as a function of time 
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Figure 5: Energy absorption as a function of time 
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Figure 6: Function 2nP"/3 4/3 / e{w,6)d6 as a function of logo; 
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Figure 7: Linear growth rate as the function of frequency and angle. 
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Figure 8: Levels of constant energy density as the function of frequency and angle. Levels positioned 
as Max/271-1, where Max is the maximum of the distribution and n = 1, ...10 are contour number 
starting from the highest contour. 
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Figure 10: Same as Fig.8, for different time. 
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Figure 11: Logarithm of the wave energy averaged over the angle as the function of logarithm of 
frequency for different moments of time. Dotted line - function proportional to w~5, dashed line - 
function proportional to w-4. 
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Figure 12: Logarithm of one-dimensional slices of wave energy at 0 = 0 as the function of logarithm 
of frequency for different moments of time. Dotted line - function proportional to u~5, dashed line - 
function proportional to w-4. 
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Figure 13: Ratio of one-dimensional slice of wave energy at 0 = 0 to angle averaged spectrum as the 
function of frequency for different moments of time. 
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Figure 14: Dynamics of the "shock" propagation for different equidistant moments of time: logarithm 
of the wave energy at zero angle versus logarithm of w.  Dotted line - function proportional to CJ~

5
, 

dashed line - function proportional to w-4. 
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Figure 16: Function 2TP1"3 4/3 / e{w,6)dß as a function of log w 
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Figure 18: Linear growth rate as the function of frequency and angle. 
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Figure 20: Total energy as the function of time (hours) 
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Figure 21: Significant wave height < as > as the function of time (hours) 

Figure 22: Average frequency < u> > as the function of time (hours) 
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Figure 23: Average wave slope as the function of time (hours) 
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Figure 24: Data compiled by WIegel (1961) showing duration limited growth of nondimensional energy 
92a2/Uf0 vs non-dimensional duration gt/Ui0. The solid line is data fit by CERC. Data taken from 
[45]. Dotted line is data from current numerical experiment. 
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Figure 25: Data compiled by Wiegel (1961) showing duration limited growth of nondimensional fre- 
quency fpUio/g vs non-dimensional duration gt/Uio- The solid line is data fit by CERC. Data taken 
from [45]. Dotted line is data from current numerical experiment. 
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Figure 26: Levels of constant energy density as the function of frequency and angle. Levels positioned 
as Max/2n~1, where Max is the maximum of the distribution and n = 1,...10 are contour number 
starting from the highest contour. 
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Figure 27: Logarithm of the wave energy averaged over the angle as the function of logarithm of 
frequency for different moments of time. Dotted line - function proportional to u~5, dashed line - 
function proportional to u~i. 

Figure 28: "Compensated" spectra w4ew as a function of u for different times. 

34 



1CT 

10' 

101- 

10   ^ 

10" 

10" 

10 -5 

0.1 

^    ' '■.'   '   ' ' ' '      Ti'me=0.139h' \    ••. 
\   '-. Time=0.422h 

\ \ Time=3.825h 
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of frequency for different moments of time. Dotted line - function proportional to u~5, dashed line - 
function proportional to w~4. 
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Figure 30: Ratio of one-dimensional slice of wave energy at 9 - 0 to angle averaged spectrum as the 
function of frequency for different moments of time. 
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Figure 32: Same as 31, for t = 0.42hours. 
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Figure 33: Same as 31, for t = 3.83hours. 
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Figure 34: Angle averaged terms in the kinetic equation ^ = S„i + jn as the function of u. Term 
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Figure 35: Same as 34, for t = QA2hours. 
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Figure 36: Same as 34, for t = 3.83/iours. 
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Abstract 

A system of one-dimensional equations describing media with two types of interacting waves is considered. This system can 
be viewed as an alternative to the model introduced by Majda, McLaughlin and Tabak in 1997 for assessing the validity of weak 
turbulence theory. The predicted Kolmogorov solutions are the same in both models. The main difference between both models 
is that coherent structures such as wave collapses and quasisolitons cannot develop in the present model. As shown recently 
these coherents structures can influence the weakly turbulent regime. It is shown here that in the absence of coherent structures 
weak turbulence spectra can be clearly observed numerically. © 2001 Elsevier Science B.V. All rights reserved. 

PACS: 05.20.Dd; 05.90.+m; 47.10.+g 
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1. Introduction 

Weak turbulence theory is an efficient tool for de- 
scribing turbulence in systems dominated by resonant 
interactions between small-amplitude waves. One of 
the key ingredients to the theory of weak wave tur- 
bulence is the so-called Kolmogorov spectrum [1].' 
Kolmogorov weak-turbulence spectra have been ob- 
served in several physical systems (for example, in a 
sea of wind-driven, weakly coupled, dispersive water 
waves). We believe that Kolmogorov weak-turbulence 
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spectra are a useful theoretical tool for explaining var- 
ious complex wave phenomena observed in nature. 

Only a few attempts have been made to compare 
predictions of weak turbulence theory with numeri- 
cal results. One can mention the results of Pushkarev 
and Zakharov [2] who numerically solved the three- 
dimensional equations for capillary water waves and 
observed a power-law spectrum close to that derived 
by Zakharov and Filonenko [3]. Majda, McLaughlin 
and Tabak [4] introduced a model, the so-called MMT 
model, for assessing numerically the validity of weak 
turbulence theory. Since their results indicated a fail- 
ure of the predictions of weak turbulence theory, more 
computations have been carried out recently to get a 
better understanding of wave turbulence in the MMT 
model [5-7]. The present understanding is that co- 
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herent structures can strongly affect weak turbulence. 
These coherent structures essentially are wave col- 
lapses and quasisolitons. Wave collapses in the form 
of sporadic localized events represent a strongly non- 
linear mechanism of energy transfer towards small 
scales. Quasisolitons or envelope solitons denote ap- 
proximate solutions of the MMT model which tend to 
classical solitons in the limit of a narrowbanded spec- 
trum. The presence of such quasisolitons may explain 
the deviation from weak turbulence leading to the ap- 
pearance of a steeper spectrum (the so-called MMT 
spectrum) in some cases [6,7]. Recently, Biven et al. 
[8] addressed the problem of breakdown of wave tur- 
bulence by intermittent events associated with nonlin- 
ear coherent structures. 

In the present Letter we consider a model which is 
quite similar to the MMT model. However, coherent 
structures cannot develop. Our model takes the form 
of a system of equations describing the interactions of 
two types of waves. This is a fairly widespread case 
which includes, for example, the interaction of elec- 
trons with photons or the interaction of electromag- 
netic waves with Langmuir waves [1,9]. The main con- 
clusion of this Letter is that numerical results based 
on the present model are in agreement with the pre- 
dictions of weak turbulence theory. Agreement be- 
tween numerical simulations and weak turbulence the- 
ory was also recently obtained by Zakharov et al. [10], 
who examined a modified version of the MMT model 
that allows for "one to three" wave interactions. 

Of course, it will be necessary in the future to per- 
form numerical computations on the full equations de- 
scribing the physical phenomena of interest. However, 
we believe that a lot of information can be obtained 
from the solution of simplified models. Since the the- 
ory of weak turbulence is quite general, its main state- 
ments can be tested with simple models, for which nu- 
merical simulations can be performed more easily. 

2. Model equations and Kolmogorov spectra 

We consider the system of equations proposed in 
[7], 

' dt 
= s<okbk+ / T\23kbia2a^ 

.3ak Bak f 
— = cokaic + / T\23ka\b2b3 

xS(ki +k2-k-i-k)dk\dk2dki, 

x 8(k\ + k2 — k3—k) dk\ dk2 dk3, (1) 

where ak,bk denote the Fourier components of two 
types of interacting wave fields and asterisk stands 
for complex conjugation. Like the MMT model, this 
model is determined by the linear dispersion rela- 
tion cok = \k\a and the interaction coefficient Tmk = 
\k\k2ksk\PI*. Thus cok, sa)k and T\?sk are homoge- 
neous functions of their arguments. The three parame- 
ters s, a and ß are real with the restriction s, a > 0. If 
we set or — 2 and ß = 0, Eqs. (1) correspond to cou- 
pled nonlinear Schrödinger equations. 

The system possesses two important conserved 
quantities, the positive definite Hamiltonian H, which 
we split into its linear part HL and its nonlinear part 

= J<ok(\ak\2+s\bk\
2)dk 

+ f Ti2uaib2bla*kS(ki + k2-k3-k) 

x dk\ dk2dk-idk, 

and the total wave action (or number of particles) 

N = f(\ak\2 + \bk\2)dk. 

Note that both individual wave actions / \ak\2dk and 
/ |fc*l2 dk are conserved in the system. 

Eqs. (1) describe four-wave resonant interactions 
satisfying 

kl+k2 = k3+k, 

co\ + sco2=sü)3 +cok. (2) 

It is well known that when 5 = 1 conditions (2) have 
nontrivial solutions only if a < I. The case s = 1 and 
or = 1/2, which mimics gravity waves in deep water, 
was treated in some recent studies [4-7]. In particu- 
lar, Zakharov et al. [7] showed that the MMT model 
with or < 1 exhibits coherent structures which strongly 
affect the weakly turbulent regime. Here accounting 
for j 7^ 1 allows the resonance conditions (2) to be 
satisfied for any a. If or = 2, we can solve explicitly 
Eqs. (2) to obtain 

2(ki-sk2) h=k\ 
l+s 
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k = k2 + 
2(&i - sk2) 

1 + 5       ' 
(3) 

It is clear that Eqs. (3) with s = l give the trivial solu- 
tion &3 = k2, k = k\. As a general rule, for a given 
a, nontrivial families of resonant quartets obeying 
Eqs. (2) can be found for all values of s ^ 1. 

In the framework of weak turbulence theory, we are 
interested in the evolution of the two-point correlation 
functions 

(aka*,) = na
kS(k-k')   and   (bkb*k,) = nb

kS(k-k'), 

where (•) represents ensemble averaging. Under the 
assumptions of random phases and quasi-Gaussianity, 
it is then possible to write a system of kinetic equations 
for nk and nk as 

3«? f 2     . 
—±=27T J  |7i23itr^i23Jt5(wi-|-5ft)2-SW3-ft)t) 

xS(ki+k2-h-k)dkidk2dk3, (4) 

-^ = 2n J \Tn3k\2Ufyk8(sa)i + co2-co5- scok) 

x S(k\ +k2—k-$ —k)dk\dk2dk-i, (5) 

with 

U?k = naA4 + naAna
k -n

a
xn\n°k -n\n\n\. 

The stationary power-law solutions of Eqs. (4), (5) 
can be found explicitly. To do so, let us examine 
Eq. (4) only since the problem is similar for Eq. (5) by 
permuting nk and n\ as well as cok and scok. Looking 
for solutions of the form «£ oc a>k

Y, nk oc (scok)~r 

and applying Zakharov's conformal transformations, 
the kinetic equation (4) becomes 

*K occo. -y-1 Ia 
Qt     K       'sctßy 

where M° = nk dk/dcok and 

Ifaßy = j Sl23[l + (*&)* " MlY - $] 
A 

XÄ(l+j|3-*f2-ft) 

x [1 + (s&)y - (^2)y - tf]dh dfrdb, 

(6) 

with 

4 = {0<|i <1, 0<5f2<l, fi+j|i>l}, 

a4s*y 

and 

y = 3y + l- 
2^8 + 3 

The nondimensionalized integral J°aßY in Eq. (6) re- 
sults from the change of variables COJ ->• co^j (j = 1, 
2,3). 

Thermodynamic equilibrium solutions (y = 0,1) 
given by 

-l a,b 
V <•" (8) 

are obvious. In addition, there exist Kolmogorov-type 
solutions (v = 0,1) 

„a,b occo. (-20/3-l+a/3)/cr and 

(9) 

which correspond to a finite flux of wave action Q and 
energy P, respectively. We point out that Eqs. (8), (9) 
are also steady solutions of Eq. (5) and they are identi- 
cal to those derived from the MMT model [4]. The fact 
that the kinetic equation depends on the parameter s 
implies that the fluxes and the Kolmogorov constants 
also depend on s (see below). However, there is no 
j-dependence on the Kolmogorov exponents because 
of the property of scale invariance. As found in [7], the 
criterion for appearance of the Kolmogorov spectra (9) 
is 

ß<-3- 
^        2 

or ß>2a--. (10) 

This means physically that a flux of wave action to- 
wards large scales (inverse cascade with Q < 0) and 
a flux of energy towards small scales (direct cascade 
with P > 0) should occur in the system. The full ex- 
pressions of Eq. (9) can be obtained from dimensional 
analysis yielding 

„a _ ra n\ß(-2ßß-l+aß)/a 
nk — Cj £/fl  cok , 

nb
k=c\Q\'\scokrW-WV°, 

and 

<=4P„V/3+1)/°, 
(7)        nb = cbpyß(s(ükr(2ßß+D/a< 

(11) 

(12) 
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where 

ca,„_(   dQßr\     V Ci -v""ärl,J 
/ai"'b i    \-i/3 

2        V    By    \y=J (13) 

denote the dimensionless Kolmogorov constants. 
These can be computed directly by using integral (7) 
and its analogue for dAf^/dt. 

In the numerical computations, we will fix a = 
3/2 > 1 in order to prevent the emergence of coherent 
structures such as wave collapses and quasisolitons 
revealed in [7]. Our goal is to check the validity of the 
Kolmogorov spectra which are relevant in several real 
wave media as already said in the introduction [1]. We 
will restrict our study to solutions (12) associated with 
the direct cascade. 

3. Numerical results 

Numerical experiments were carried out to integrate 
Eqs. (1) by use of a pseudospectral code with periodic 
boundary conditions. The method includes a fourth- 
order Runge-Kutta scheme in combination with an 
integrating factor technique which permits efficient 
computations over long times [4,7]. Resolution with 
up to 2048 de-aliased modes in a domain of length 27T 
is achieved here (fcmax = 1024). To generate weakly 
turbulent regimes, source terms of the form 

<?>"' 
"© (14) 

were added to both right-hand sides of Eqs. (1). The 
first term in Eq. (14) denotes a white-noise forcing 
where 0 < 0* < 2TT is an uniformly distributed random 
number varying in time. The term in square brackets 
consists of a wave action sink at large scales and an 
energy sink at small scales. The random feature of the 
forcing makes it uncorrelated in time with the wave 
field. Consequently, it is easier to control the input en- 
ergy with a random forcing than with a deterministic 
forcing. For the results presented below, the forcing 

region is located at small wave numbers, i.e., 

fd,b =i6,3   if8<fc<12, 
*        10       otherwise. 

Parameters of the sinks are 

a,b_) 16,0.8 
0 

if*<*J(*J=5), 
otherwise, 

and 

,.a,b 10-2,7 xl0~4 

0 otherwise. 
= 550), 

Using this kind of selective dissipation ensures large 
enough inertial ranges at intermediate scales where so- 
lutions can develop under the negligible influence of 
damping. According to criterion (10), we focused on 
ß = 2 and $ = 1/10 as a typical case for testing weak 
turbulence predictions. Simulations are run from low- 
level initial data until a quasisteady state is reached 
and then averaging is performed over a sufficiently 
long time to compute the spectra. The time step, set 
equal to Ar = 2 x 10-5, has to resolve accurately 
the fastest harmonics r ~ l/<wmax of the medium or 
at least those from the inertial range. Time integra- 
tion with such a small time step leads to a compu- 
tationally time-consuming procedure despite the one- 
dimensionality of the problem. This explains why we 
chose a = 3/2 rather than a greater integer value (e.g., 
a = 2) as well as s = 1/10 rather than a value s > 1. 
Otherwise the constraint on Af would be more severe. 
There is a priori no special requirement in the choice 
of the value of s, except s ^ 1. 

Figs. 1 and 2 show the temporal evolution of the 
wave action Af and the quadratic energy HL over the 
window 80 < t < 100. At this stage, the stationary 
regime is clearly established since the wave action and 
the quadratic energy fluctuate around some mean val- 
ues N ~ 0.5 and #L ~ 5.3. Typically, the time interval 
for both the whole computation and the time averag- 
ing must exceed significantly the longest linear period. 
In order to monitor the level of turbulence, we define 
the average nonlinearity e as the ratio of the nonlinear 
part to the linear part of the Hamiltonian, i.e., 

e = 

As in [2,7], this quantity provides a relatively good 
estimate of the level of nonlinearity once the system 
reaches the steady state. We can see in Fig. 3 that 
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Fig. \.s = 1/10, a = 3/2, ß = 2. Evolution of wave action N vs. time in the stationary state. 

98 100 

Fig. 2. s = 1/10, a = 3/2, ß = 2. Evolution of quadratic energy //L vs. time in the stationary state. 

the average nonlinearity fluctuates around some mean 
value e ~ 0.14, which indicates that the condition of 
weak nonlinearity holds in our experiments. However, 
it should be emphasized that e could not be imposed 
too small (by decreasing the forcing) otherwise the dif- 
ferent modes would not be excited enough to generate 
an effective flux of energy. This problem is particularly 
important in numerics due to the discretization which 
restricts the possibilities for four-wave resonances. 
Since the effects of nonlinearity are assumed to be 
small in weak turbulence, it is sufficient to consider 
only the quantity #L which contains the main part of 
the energy. We deduce the conservation of the total 

Hamiltonian from the conservation of Hi. and e, as 
illustrated in Figs. 2 and 3 because H = Hj_(l + e). 

Fig. 4 displays the stationary isotropic spectra na
k' 

realized in the present situation. By comparison, we 
also plotted the predicted Kolmogorov solutions given 
by Eq. (12). For a = 3/2 and ß = 2, they read 

ni=ciPxJW"9=ciPlßk-y\ (15) 

and 

nb
k=cb

2Pl'\scoky W-cW's-Wk-V3, 

5 = 1/10, (16) 
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Fig. 3. s = 1/10, a = 3/2, ß = 2. Evolution of average nonlinearity e vs. time in the stationary state. 

wave number k 

Fig. 4. s = 1/10, a = 3/2, ß = 2. Computed spectra («£ for the lower one and njj! for the upper one) and predicted Kolmogorov spectra 

Ca,bk~lß with Ca = cg/>«1/3 and Q, = c^V14/9 (dashed lines). 

where c| = 0.094 and c\ = 0.047 are numerically cal- 
culated from Eq. (13). The mean fluxes of energy Pa^ 
in Eqs. (15) and (16) can be expressed as 

Pa =2   f va
+{k-tff(Dkn

a
kdk • 

*>« 

and 

Pb = 2   f v*_(k-kj)2scokn
b

hdk, 

*>*+ 

with kj the cutoff of ultraviolet dissipation [1,7]. Then 
it is straightforward to get their values P„ = 0.86 and 

Pb = 0.56 from simulations.. We can observe in Fig. 4 
that for both wave fields the spectra are well approx- 
imated by the Kolmogorov power-laws over a wide 
range of scales (say 20 < k < 300). Here the agree- 
ment between theory and numerics is found with re- 
spect to both the slope and the level of the spectra. 

4. Conclusion 

We have studied a simplified one-dimensional mod- 
el describing media with two types of interacting 
waves. The regime of parameters has been chosen such 
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that weak turbulence theory can be applied correctly 
and coherent structures cannot develop. This way we 
avoid any interference between weak wave turbulence 
and coherent structures. Our numerical results show 
the appearance of a pure weak turbulence state with 
the formation of a complete Kolmogorov spectrum. 
This suggests the general relevance of weak turbulence 
even in one-dimensional systems. In the future it will 
be of interest to extend the present work to higher di- 
mensions by still considering simplified models such 
as the present one, and to perform computations on the 
full equations describing the physical phenomena of 
interest. Recall that Pushkarev and Zakharov [2] suc- 
cessfully observed weak turbulence for capillary wa- 
ter waves in three dimensions. However, their numeri- 
cal simulations based on the truncated basic equations 
were very time-consuming and the Kolmogorov spec- 
trum that they measured extended only over a small 
range of scales. 
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Abstract 

A two-parameter nonlinear dispersive wave equation proposed by Majda, McLaughlin and Tabak is studied analytically and 
numerically as a model for the study of wave turbulence in one-dimensional systems. Our ultimate goal is to test the validity 
of weak turbulence theory. Although weak turbulence theory is independent on the sign of the nonlinearity of the model, the 
numerical results show a strong dependence on the sign of the nonlinearity. A possible explanation for this discrepancy is 
the strong influence of coherent structures — wave collapses and quasisolitons — in wave turbulence. © 2001 Published by 
Elsevier Science B.V. 

Keywords: Weak turbulence; Wave collapses; Quasisolitons; Kinetic wave equation; Kolmogorov spectra 

1. Introduction 

A wide variety of physical problems involve random nonlinear dispersive waves. The most common tool for 
the statistical description of these waves is a kinetic equation for squared wave amplitudes, the so-called kinetic 
wave equation. Sometimes this equation is also called Boltzmann's equation. This terminology is in fact misleading 
because the kinetic wave equation and Boltzmann's equation are the opposite limiting cases of a more general 
kinetic equation for particles which obey Bose-Einstein statistics like photons in stellar atmospheres or phonons in 
liquid helium. It was first derived by Peierls in 1929 [1]. In spite of the fact that both the kinetic wave equation and 
Boltzmann's equation can be derived from the quantum kinetic equation, the kinetic wave equation was derived 
independently and almost simultaneously in plasma physics and for surface waves on deep water. This was done in 
the early 1960s while Boltzmann's equation was derived in the 19th century! The derivation for surface waves is 
due to Hasselmann [2,3] (see also Zakharov [4]). 

Once the kinetic wave equation has been derived, the shape of wave number spectra can be predicted by the 
so-called weak turbulence (WT) theory. It is called weak because it deals with resonant interactions between 
small-amplitude waves. Thus, contrary to fully developed turbulence, it leads to explicit analytical solutions pro- 
vided some assumptions are made. So far, there have been only a few studies to check the results of WT the- 
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ory. Recently, Pushkarev and Zakharov [5] numerically solved the three-dimensional dynamical equations for the 
free-surface elevation and the velocity potential in the case of capillary water waves. They obtained an isotropic 
spectrum close to the theoretical power-law found by Zakharov and Filonenko [6]. Majda, McLaughlin and Tabak 
[7] (hereafter referred to as MMT) considered four-wave interactions by introducing a one-dimensional model 
equation. This equation can be integrated numerically quite efficiently on large inertial intervals. They examined 
a family of Kolmogorov-type solutions depending on the parameters of the equation. The validity of several theo- 
retical hypotheses was then assessed numerically. Namely, MMT confirmed the random phase and quasi-Gaussian 
approximations. They also showed the independence of the solutions on the nature of forces, initial conditions, and 
the size and level of discreteness of the computational domain. However, their simulations surprisingly displayed 
spectra steeper than the predicted ones. They explained the discrepancy by proposing a new inertial range scaling 
technique which seems to yield the appropriate exponents. More recently, Cai et al. [8-10] revisited their earlier 
results and found some results which agree with WT theory as well.l They considered two kinds of Hamiltonians: 
Hamiltonians which are the sum of a quadratic term and a quartic term (positive nonlinearity), as in [7], and Hamil- 
tonians which are the difference between a quadratic and a quartic term (negative nonlinearity). For either sign of 
nonlinearity, they found agreement with MMT theory in some cases and agreement with WT theory in some other 
cases. Since their computations were performed with a dispersion relation in which the frequency varies like the 
square root of the wave number, one can see an analogy with deep water waves. Incidentally, the WT theory was 
recently developed for shallow water waves by Zakharov [11]. 

As in many other fields, numerical modeling leads to some difficulties, especially when one wants to compare 
with the theory. Most of these difficulties are related to finite-size effects, i.e. the domain is discretized into a 
grid of points in computations whereas one assumes an infinite medium in theory. We can mention the bottleneck 
phenomenon [12] which tends to flatten the slope of the inertial range at small scales. It is commonly observed 
in problems with a dissipative cutoff. In addition, Pushkarev [13] revealed the phenomenon of frozen turbulence 
at very low levels of nonlinearity. In this situation, the resonance conditions have very few solutions (or may not 
be fulfilled at all!) because of the discrete values of wave numbers. As a consequence, there is no energy flux due 
to the lack of resonating wave vectors. The power-law regime only takes place at moderate levels of nonlinearity 
where quasi-resonant interactions come into play. Pushkarev concluded that WT in bounded systems combines the 
features of both frozen and Kolmogorov-type turbulence. The beauty of the MMT model equation is that the above 
mentioned difficulties can be controlled completely. 

After introducing the model equation, the paper is divided into two parts. In the first part (Sections 3-11), the MMT 
equation is studied analytically. A WT description of the equation is provided (see [7]). We find the Kolmogorov 
solutions of the kinetic equation and determine the set of parameters for which such solutions can be realized. Then 
we discuss the coherent structures which can compete with WT. The most simple coherent structures are solitons 
similar to the soliton solutions of the nonlinear Schrödinger equation (NLS). 

Solitons for the MMT equation exist only if nonlinearity is negative. In the cases of interest, they are shown to 
be unstable (see Section 7) and cannot play an important role in the wave dynamics. 

As an alternative to soliton coherent structures, there are wave collapses described by self-similar solutions of the 
MMT equation. These solutions can exist in a certain parameter regime for both signs of nonlinearity. Theoretically 
speaking, both solitons and collapses can coexist with WT. 

Another type of coherent structures are quasisolitons, or envelope solitons. They were discussed recently by 
Zakharov and Kuznetsov [14]. In the MMT model quasisolitons exist at positive nonlinearity only. Their stability 
remains an open question. 

These three papers were kindly given to us when the present manuscript was essentially completed. Some of the results are similar to ours, 
but their interpretation is different. 
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The main new theoretical results of the first part are a careful tabulation of the signs of the fluxes for the MMT 
model equation, the existence and possible role of quasisolitons for positive nonlinearity, and an analogy with 
Phillips spectrum associated with the formation of collapses. 

In the second part (Sections 12-14), we describe the results of the numerical study of the MMT equation. We find 
that the wave turbulence described by the MMT equation is different both quantitatively and qualitatively for both 
signs of nonlinearity. Since the predictions of WT theory are identical for both signs of nonlinearity, WT theory can 
be applied at best for one sign of nonlinearity. Our analysis of the results leads to somewhat contradictory results. 

For positive nonlinearity the balance of energy and particle fluxes as well as the level of turbulence are in good 
agreement with WT theory. Meanwhile the slope of the spectrum in the window of transparency is steeper than 

predicted by WT theory. 
In the case of negative nonlinearity the picture of turbulence is quite different from the WT predictions, both 

qualitatively and quantitatively. First of all, the turbulence is stabilized on a level which is one order of magnitude 
less than predicted by WT theory. Then the sign of the flux of particles is opposite to the one predicted by WT 
theory. Both these facts lead to a conjecture on the existence of a strong and essentially nonlinear mechanism which 
competes successfully with WT quartic resonances. In our opinion, this mechanism is the wave collapse, described 
by self-similar solutions of the MMT equations. At the same time, the high-frequency tail of the spectrum has a 
slope which coincides exactly with the slope predicted by WT theory. This leads to the conclusion that in spite of 
the presence of wave collapses, the high-frequency asymptotics of spectra is governed by the WT processes which 
are responsible for carrying only a small part of the energy. The coexistence of wave collapses and WT was already 
described in the context of the 2D NLS [15]. 

Wave collapse is an example of an essentially nonlinear coherent structure arising in wave turbulence under certain 
conditions. As said above, another important type of coherent structures are quasisolitons or envelope solitons living 
for a finite time. Such structures can arise in the MMT model in the case of positive nonlinearity. We believe that 
these structures are responsible for the deviation of the spectra from the ones predicted by WT theory. 

2. Model equation 

We investigate the family of dynamical equations 

dir 
dt 

d 

dx 

a 

f + X 
3 

dx 

ß/4  ( d 

dx 

ß/4 

if 

2 
d 

dx 

ß/4 

f A. = ±l, (2.1) 

where ir(x,t) denotes a complex wave field and a, ß are real parameters. 
If X = +1, one exactly recovers the MMT model which was treated in [7]. Note that our parameter ß is the 

opposite of the parameter ß in MMT. The extension X = ±1 in Eq. (2.1), which was also treated in [8-10], raises 
an interesting problem because the balance between nonlinear and dispersive effects may change according to X. 

Besides the Hamiltonian 

H = HL + HNL 

■/( 

1 a a/2 2 
X d ß/4 

V' + - if 1 dx 2 dx 
dx, (2.2) 

the system (2.1) preserves two other integrals of motion: wave action and momentum, respectively 

dir* 
N -/hH»dr    and   M = \ f (,£ - %*') dx. 
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As usual, it is convenient to work in Fourier space. Let us write Eq. (2.1) as 

i— = <o(k)*k + / TW^w, + kl _ k  _ k) dk 
J 3' (2.3) 

ct;;ir(*',)d™ewi—^^ 
dispe*^ (23) ,0OtS * 'he S°-Ca,led ™e-dime"Si- ^—•• — defined by „» linear 

w(*) = i*r, a>o, 

and the simple interaction coefficient 

Ti23k = T(kuk2, k3, k) = X\kxk2k3kf'A. 

One easily sees tha, fc kerne, r123i p„ssesses the symme(ry ^ by ^ ^.^ ^^ 

^123* = 72i3/t = Tm3 = Tmi. 

of their arguments with degrees « and /*, respectively, i.e Y "* homoSeneous ^tions 

TWut-k2, £*3, £*) = ^T(kuk2, k3, k),    £ > o. 

term but we will consider a wide^L^vaSf68 * ^ "^ " "^ » ^ "^ 
Eq. (2.3) describes four-wave interaction processes obeying the resonant conditions 

ki+k2=k3+ k, 
(2.8) 

CO{ + C02 = C03 + CO. 

(2.9) 
For a > 1 these equations only have the trivial solution Jh = *,  fr - *„ nr *-  - z.   /      ,    T, 
a non-trivial solution. Note that in this case the «m5 «f t        *u   7~ ~~  2'    = *'' For a < l there is also 

(2.4) 

(2.5) 

(2.6) 

In the case a = 2 and /J = 0, Eq. (2.1) becomes the NLS equation 

(note here that |9/3;c|2 = -d2/dx
2) 

CTO lineari'y A = +1 C<meSP°ndS » "" «*«*» NLS' ** «**« n„nli„earity ccesponds ,o the 

(2.10) 

(2.11) 
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3. Weak turbulence description of the model equation 

If one only considers small nonlinear effects, then the statistical behavior can be mainly described by the evolution 

of the two-point correlation function 

(f(k,t)f*(.k',t))=n(k,t)8(k -k'), 

where brackets denote ensemble averaging. We introduce also the four-wave correlation function 

mkuMih, t)f*(k3, M*{k, t)) = Jmk&Oci + k2-k3-k). (3-D 

On this basis WT theory leads to the kinetic equation for n(k, t) and provides tools for finding stationary 
power-law solutions (for details, see [7]). Here we explain the main steps of the procedure applied to our model. 

The starting point is the original equation for n{k,t). From Eq. (2.3), we have 

^ = 2 / Im Ji23*ri23*«(*i + k2-k3-k) d*i dk2 dk3. (3-2) 
dt        J 

Due to the quasi-Gaussian random phase approximation 

Re/123* ^"i«2[*(*i -*3) + *(*i "*)]■ (3'3) 

The imaginary part of Jmk can be found through an approximate solution of the equation imposed on this correlator. 

The result is (see [16]) 

Im Jmk ~ 2jtT?23k8(m + (o2-co3- co)(nin2n3 + nm2nk - nxn3nk - n2n3nk). (3.4) 

This gives 

— =4TT I \Tn-ik\2(n\n2n3+n\n2nk-n{n3nk-n2n3nk)8{a>i+ O)2-(ö3-(O) 

xS(ki+k2-k3-k)dhdk2dk3. 
(3-5) 

Since the square norm cancels the sign of Tmk, it is clear that the WT approach is independent on X. Here we point 
out that MMT mistakenly wrote a factor 12*r instead of An in Eq. (3.5) and the right-hand side of Eq. (3.5) with 
the opposite sign. This fact is particularly important when determining the fluxes of wave action and energy. 

Assuming that n (-k) = n (k) (similarly to an angle averaging in higher dimensions), one gets 

dmco) = — l'(cola>2a>3co)W1-tt+X)la(.nxn2n3 +n,n2n(B - nxmn» - n2ninu)&(a>i +co2-co3-co) 
dt a4 J 

:    x[5(^+^/a-a>^+a;1/«) + 5(^/a+^/a+^/a-^/a) 
+S(co\/a - co\/a - a>l/a - Co"«) + &{-co\la + o%a - co\/a - a,1'")] da>i dm da*, (3.6) 

where Mifo) = n(*(©)) difc/da>, na stands for n(k(a>)) and a> is given by Eq. (2.4). 
The next step consists in inserting the power-law ansatz 

t s       -v (3-7) n (co) ex co Y, v 

and then performing the Zakharov's conformal transformations [7,15,16]. Finally, the kinetic equation becomes 
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where 

x««,"" + fc"« +13"« - i)(i + # - $ _ ^ d?l d& dfe (3 9) 

with 

4 = {0<fKl,0<fe<lf|1+|2>i}    and    y = 3y + l-2ß + 3. 
a 

Thenon-dimensionalized integral /(«, /j, y) is obtained by using the change of variables a,, - «f, (/ = l 2 3) 
The ansäte (3 7) makes sense if the integral in (3.6) converges. I, conld diverge both a. low and high freqnencies 

2K<-l + ^±i. 
a (3.10) 

The condition of convergence at high frequencies can be found after substituting (3.7) into (3.6). Omitting the 
details, we get the result B 

ß + a-1 
Y > . 

of (3.11) 

In all the cases discussed in this paper, both conditions (3.10) and (3.11) are satisfied 
For the case a = \, one can transform Eq. (3.6) into the form 

—±± = öWtf+Dtf, + s2 + s3 + s4], 

where 

2 Jo u^ |_" ( *>J »((« + 1)»)H f ~<A 

. .    /1+u + u2   \ "I -n(co)n ^ a)\ n((u + 1)ö))   d||> 

/-^+2(1+M + M¥+1 /1+M + M2    x      (    u 
3 y0 (i + M)2^+3    n^ü))n ( —- ö,) „ f -—a) 

,     ,   ,     /1+K + M2 

V      1+K 

1+"       /    V1 +" 
n \j^^)-n{(o)n(uco)n (±±^~-co^ - n(co)n(uco)n (~co) du. 
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S*-J0   u2ß+3(l+u)2ß+2[n\u)
n\   M(l+M)      ;     \1+"    / V"(l+")      /     VM/ 

/<ü\     /    O»    \ /ft»   \     /1+w + M2   \"|   , 

-"«■*" U" (uTu) -nlt0)n (r»)" I^öT^J J""• 
5   This equation can be used for the numerical simulation of WT. 

I    4. Kolmogorov solutions 

The aim is to look for stationary solutions of the kinetic equation. From Eqs. (3.8) and (3.9) we easily find that 

1    the stationarity condition 

d-*p-=0*I(a,ß,y) = 0 (4-1) 

I    is satisfied only for y = 0,1 and y = 0,1. 
1        In terms borrowed from statistical mechanics, the cases y = 0,1 represent the thermodynamic equilibrium 

f    solutions 

3 n(co) = c, 

I    where c is an arbitrary constant and 

I n{a>) (xco~x oc \k\~a, 

which stem from the more general Rayleigh-Jeans distribution 

r   >> C' (4.4) 
C2+CO 

They correspond respectively to equipartition of particle number N and quadratic energy E 

N= fn{k)dk = [ M(co) dco, (4-5) 

E = f (o(k)n(k) dk= I coN{co) dco. (4-6) 

The cases y = 0,1 give the non-equilibrium Kolmogorov-type solutions, respectively 

_n(co)cx^-2^-l+a^acx\k\-2^-l+a^, (4-7) 

and 

«(^a^^+^alJtr2^3-1, (4-8) 

which exhibit typical dependence on the parameter ß of the interaction coefficient. The latter solutions are more 
interesting since realistic sea spectra are of Kolmogorov-type by analogy. 

For the case a = \ and ß = 0, the Kolmogorov-type solutions are 

«(ffl)Kffl-
5/3air5/6, (4-9) 

n(co)cxco-2<x\k\-K .(4.10) 

Both exponents satisfy the conditions of locality (3.10) and (3.11). 

8 

(4.2) 

(4.3) 
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5. Nature and sign of the fluxes 

The stationary non-equilibrium states are related to fluxes of integrals of motion, namely the quantities AT and E 
in our four-wave interaction problem. We define the flux of particles (or wave action) and energy as, respectively 

P{co) H 
dt 

*  ,dN{co') 
CO 

dt 
do»'. (5.2) 

Here, Eq. (4.7), respectively Eq. (4.8), is associated with a constant mean flux QQ, respectively P0, of particles, 
respectively energy. Let us now mention a physical argument which plays a crucial role in deciding the readability 
of the Kolmogorov-type spectra. A more detailed justification is provided in Section 11 (see also [7,16]). Suppose 
that pumping is performed at some frequencies around co = cof and damping at co near zero and <w » co/. Weak 
turbulence theory then states that the energy is expected to flow from cof to higher w's (direct cascade with P0 > 0) 
while the particles mainly head for lower co's (inverse cascade with Q0 < 0). Accordingly, we need to evaluate the 
fluxes in order to select, among the rich family of power laws (4.7) and (4.8), those which are likely to result from 
numerical simulations of Eq. (2.1) with damping and forcing. 

By inserting Eq. (3.8) into Eqs. (5.1) and (5.2), we obtain 

co ,-y 
go oc lim ■ 

y^O   y 

which become 

/, 
a>-y+l 

PQ OC lim / 
y-M 1-y 

91 fiooc — 
dy y=0 

Po<* 
3/ 
9y" y=l 

(5.3) 

(5.4) 

Using Eq. (3.9), the derivatives in Eq. (5.4) can be expressed as 

9/ 
9y" 

9/ 
dy~ 

= /s(*i.*2,fe)(i+#-tf-#)a(i+fe-*i-*2) 
f=0        JA 

xin (^) a«/'« + e2
la + ^/a - 1) d|, d£2 d£3, 

V=l        JA 

a(?1
l/« + t2'/', + |*-l)dfld?2dfe 

with 

4;r 
Or 

The sign of each integral above is determined by the factor (see [15]) 

/(y) = i+ #-#-#• 
It is found that f(y) is positive when 

Y < 0    or    Y > I- (5.5) 
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Table 1 
Signs of the fluxes for the Kolmogorov-type solutions, a = 5 

ß 
YQ 
Sign of go 

YP 
Sign of P0 

-1 
l 
3 
+ 
2 
3 

2 
3 
+ 
1 
0 

1 
0 
4 
3 

+ 

4 
3 

5 
3 

+ 

0 
5 
3 

2 
+ 

+3 
11 
3 

6 
+ 

For the same values of ß as those considered by MMT and the additional value ß = +3, Table 1 displays the 
corresponding frequency slopes from Eqs. (4.7) and (4.8) and the signs of ß0, Po according to the criterion (5.5). 

Our calculations show that WT theory should work most successfully for ß = 0 (instead of ß = -1 in [7]) at 
which they yield both ßo < 0 and P0 > 0. Incidentally, MMT reported the smallest difference between numerics 
and theory for ß = 0. The cases with spectral slopes less steep than the Rayleigh-Jeans distribution (i.e. y < 1) 
are non-physical. At best, a thermodynamic equilibrium is expected in the conservative regime. Hence, we cannot 
strictly rely on the Kolmogorov-type exponents for ß = -1, -f to compare with the numerical results in forced 
regimes. Note that for ß = -|, although we find P0 > 0, a pure thermodynamic equilibrium state (i.e. y = 1) 
is predicted instead of the inverse cascade. This is however not valid because of the necessity for a finite flux of 
particles towards co = 0. The direct cascade may then be influenced one way or another, possibly making the theory 
not applicable to the whole spectrum. Using both criteria (5.5), we deduce that the fluxes of particles and energy 
simultaneously have the correct signs in the region of parameter 

ß < -\    and   0>2a-§, (5.6) 

or 

ß < -\    and   ß > -\    if a = \. (5-7) 

Since the strength of nonlinearity decreases with ß, the case ß < -§, which is close to a linear problem, is not 
interesting from a general viewpoint and may raise some difficulties in numerical studies. 

Restricting again to a = \ and ß = 0, one has for the spectrum 

n{co) = aP^ <o-\ (5-8> 

where P is the flux of energy towards high frequencies and 

(v -1/3 

is the Kolmogorov constant. Numerical calculations give for a 

a = 0.376. 

(5.9) 

(5.10) 

An important question is the stability of the stationary spectra. This question was studied by Balk and Zakharov 
in [17] from a general point of view. The particular situation discussed in the present paper requires an additional 
study based on the work [17]. However, one should note that instability of the present spectra is unlikely. The reason 
is that the stationary spectra are solutions of the kinetic equation, which is not sensitive to changing the sign of 
the nonlinearity in the dynamical equation. In other words, if the Kolmogorov solution was unstable, it would be 
unstable in both cases. Since, we observe the Kolmogorov spectrum in the numerical simulation for one of the signs 
of nonlinearity, instability is unlikely. 
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6. Solitons and quasisolitons 

Besides random radiative waves, solitons are the most interesting features of nonlinear Hamiltonian models such 
as the focusing NLS. These localized coherent structures can naturally emerge and persist as the result of the stable 
competition between nonlinear and dispersive mechanisms. It is known that they act as statistical attractors to which 
the system relaxes and they can influence the dynamics in a substantial way. 

Equally important coherent structures are quasisolitons. They could be defined as solitons having finite but 
long enough life time. Solitons and quasisolitons can be compared with stable and unstable elementary particles 
Formally, both solitons and quasisolitons are defined as solutions of Eq. (2.3) of the form 

&(0=ei(O-*v>'&. . ,Ä„ 
(61) 

Here ß and V are constants. In the x-space, 

t(x,t)=jnti;{x-Vt), 
(6.2) 

where $(*) is the inverse Fourier transform of fa and V is the soliton velocity. The amplitude fa satisfies the integral 

1 r 

^ = ~C2-kV+co(lc) J Tl23k^*A*Ä(*i + *2 - *3 - *)d*, dk2d*3. (6.3) 

The "classical" or "true" soliton is a localized solution of Eq. (6.3). In this case, 

\Hx)\2 -* 0    as |x| -> oo. 
(6.4) 

This implies that fa is a continuous function which has no singularities for real k. Thus the denominator in Eq (6 3) 
should not vanish on the real axis ' 

ß-*V+o>(*)^0,     -oo<k<+oo. ,£e. 
(6.5) 

For co(k) = |*|« and a < 1, the last condition is violated for any V # 0. So "true solitons" can exist only if V = 0 
Next, we show that "true" solitons can only exist for A = -1. Eq. (6.3) can be rewritten in the variational form' 

S(H + i2N) = 0. 
(6.6) 

Obviously, ß > 0 should hold (otherwise, the denominator (6.5) has zeroes). Since 

Tl23k=Mk1k2k3kf'\     A = ±l, 
(6.7) 

the Hamiltonmn is positive for X = +1 and Eq. (6.6) can be satisfied only if fa s 0. There are no solitons in this 
case. Meanwhile, solitons can exist for A = -1. A rigorous proof of existence is beyond the frame of this paper 

Quasisolitons are a more sophisticated object. Let us allow the denominator (6.5) to have a zero at * = *0 and 
suppose that 0* is a function which is sharply localized near the wave number k = km. Let the width of fa near 
* = km be K. One can introduce 

T(k) = J Ti23kfafa$*8(ki + *2 - *3 - *) d*i d*2 d*3. (6 8) 

We might expect that 

nk0)^c-c^o-uMlkkm)l2kkm)i 
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In other words, fa has a pole at k = ifco but the residue at this pole is exponentially small. It means that the soliton 
(6.2) is not exactly localized and goes to a very small-amplitude monochromatic wave with wave number k = ko 

as* -> -co. 
If one eliminates the pole from fa, one gets a quasisoliton, which is a stationary solution of (2.3) only approx- 

imately. Such a quasisoliton lives for a finite time. If this time is long enough, the quasisoliton could become the 
basic unit of wave turbulence. This is what we believe may happen in the MMT model with positive nonlinearity. 

7. Soliton stability and collapse 

Coherent structures can play a role in wave turbulence only if they are stable. For X = = — 1, a soliton satisfies the 

equation 

(O + \kf)fa = f \kik2k3k\ß/44>i$24>3S(ki +k2-k3-k) d*i d*2 d*3. (7.1) 

The free parameter Q can be eliminated by the scaling 

& = ß-tf-a+2>/2ax(ß",/a*). (7.2) 

where x (£) satisfies the equation 

(1 + mtt)x(f) = / IMlklf/4XiX2X3*a(£i + & -& -I)d£id&d$3. (7.3) 

Let us calculate the total wave action in the soliton 

tf = [\fa\2dk = £2-V-a+l)/aNo, (7.4) 

where 

M> = yixl2d*. (7.5) 

The stability question can be answered by computing BN/dQ. As is well-known (see [18]), a soliton is stable if 
dN/dQ > 0. In our case, 

dN          /ß-a + l\N 

9ß ~     V       a       ) & 
(7.6) 

The soliton is stable if 

ß < a - 1, (7.7)     ■•*' 

otherwise the soliton is unstable. For a = j, the condition of soliton instability reads 

ß>-j- (7.8) 

This condition is satisfied in all the cases we studied. 
The soliton instability leads us to guess that the typical coherent structure in the case of negative nonlinearity is 

a collapsing singularity. Typically, the formation of such singularities is described by self-similar solutions of the 
initial equations. Eq. (2.3) has the following family of self-similar solutions 

#(Jt,0 = (fo-Op+i6x[*fo>-0,/a], (7.9) 



vflg' 

584 VE. Zakharov et al. /Physica D 152-153 (2001) 573-619 M 

where p = (ß - a + 2)/2a and e is an arbitrary constant, x (£) satisfies the equation ;;; j 

i(p + i€)X + £f x' + maX+^f lti^3^l^/4XlX2X3*5(fi + §2 - f3 - f)d£i d£2d£3 = 0. (7.10) 

The soliton (7.9) should stay finite when t -» to. This requirement imposes the following asymptotic behavior . 

onx(£) 

m-+Ci-{-ß+a-2)l2,    $->0. (7.H) 

At time t = to, Eq. (7.9) turns to the powerlike function 

fk -» a-v, " " v = \{ß -r a + 2). (7.12) 

In reality, the self-similar solution is realized in x-space in a finite domain of order L. Hence, the solution (7.12) 
should be cut off at k ~ 1/L. In fc-space, Eq. (7.9) represents the formation of a powerlike "tail" (7.12). The wave 
action concentrated in this tail must be finite. Therefore the integral 

poo 

I    IW2d* (7-13) 
Jo 

should converge as k -> oo. It leads to the condition on parameters 

ß>a-\, (7.14) 

which coincides with the condition for soliton instability. 
Let us plug (7.9) into the Hamiltonian in Fourier space 

H = f (o{k)\fk\2 dk + f TmkhhfzftW\ +k2-k3-k) d*i dk2 dk3 dk 

= {to-t)V-2"^laHo, 

where 

Ho= I malxl2d£ + kj l^fck*l^/4XiX2X3*X*^i + fe -h -I)d|i d§2d£3d£. (7.15) 

If a — 1 < ß < 2a — 1, then H -» oo as f -» ?o> unless 

#0 = 0. (7-16) 

Apparently, this condition can be satisfied only for k = -1 (negative nonlinearity). The condition (7.16) imposes 
implicitly a constraint on the constant e. In fact, it can be realized only at one specific value of e, which is an 
eigenvalue of the boundary problem (7.10) with the boundary conditions 

xiH)^c^-^a-2)'2,   |->0,      lx(f)l->oo,    m-K». 
In the case ß > 2a - 1, H ->• 0 as t -» ft- There is no limitation on the value of H0 and the singularity can take 
place for either sign of k. If v < 1 in Eq. (7.12) or a - 1 < /3 < a, a collapse is the formation of an integrable 
singularity in x-space. If v > 1 or ß > a, the singularity is the formation of a discontinuity of the function f(x) 
or its derivatives. 

The formation of singularities leads to the formation in &-space of a powerlike spectrum 

nk ~ \fk\
2 ^ |jfc|-2v ~ \k\-ß+a'2. (7-17) 



VE. Zakharov et al. /Physica D 152-153 (2001) 573-619 585 

I   For a = \ and ß = 0, one obtains 

I   This spectrum can be called Phillips spectrum by analogy to the well-known "co~5 spectrum" for deep water waves 
I   [19]. As co ->• co, it decays faster than Kolmogorov spectra. 

8. More on quasisolitons 

Let us consider again the case of negative nonlinearity X = -1 and denote 

F = -n+W-<o{k) = -n+kV-\k\a. _   (8-1) 

If V = 0 and ß > 0, |F| has a minimum at k = 0. The Fourier transform of the solution 4>k is concentrated near 

this minimum in a domain of width 

Assuming that the soliton is smooth in x-space, 4>k decays very fast outside of the domain (8.2). So far we assumed 
that V = 0. Let now V be positive but very small. Then the denominator F has a zero at k = k0 ~ V1/(a-1). For 
small V, the wave number Jt0 is much larger than K and this zero occurs very far from the domain which supports 
the soliton. This means that 4>k has a pole at k ■= kQ, but the residue at this pole is very small. The presence of this 
pole means that the stationary solution (6.3) looks in the x-space like a soliton, which is not completely localized. 
As x -+ +00, it becomes a monochromatic wave with wave number ko and negligibly small amplitude. 

If this "wave tail" is cut off in the initial data, one has a "quasisoliton" which slowly decays due to radiation of 
energy in the right direction. If V is small enough, the lifetime of the quasisoliton is very long and its shape is close 
to the shape of "real" solitons. 

It is unlikely that quasisolitons play an important role in wave turbulence at negative nonlinearity. If V is not 
small, their lifetime is too short; if V is small, they are unstable like real solitons. Quasisolitons are more relevant 
in the case of positive nonlinearity X = +1. 

Let us choose an arbitrary /: = km > 0 and plug in Eq. (6.3) 

V = ak%r\        Q = -(1 - a)kl - \a{\ - a)k^V- <8-3) 

Then 

F = ka
m - \k\a + aka

m-
x {k - km) + i«(l - a)*rV- <8-4) 

Note that if a < 1 then F has a zero at k = k0 < 0 for any km. Hence, \/F always has a pole on the negative 
real axis, and the soliton (6.3) cannot be a real soliton. But if q2 « k2

m, \/F has a sharp maximum at k ~ km. 
Introducing 

K = \k-km\, <8-5) 

one has approximately 

F ~ \a{\ - cc)k«r2[K2 + q\ (8-6) 

and one gets for the width of the maximum of 1 / F 

i * -q. 
& m 

(8.7) 
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If K < \ko\, one can construct a quasisoliton which is supported in &-space near km. In the general case, |&ol — km. 
If a = \ and q = 0, one can easily find 

*o = -(V2 - l)% (8.8) 

The quasisoliton moves to the right direction with the velocity V(km) and radiates backward monochromatic 
waves of wave number fo. The shape of the quasisoliton can be found explicitly in the limit q -± 0. Now K «; km 

and one has approximately 

f \kxk2k3k\ß/44>ih4>ts^ + k2-k3-k) dki dk2 dk3 ~ kfn / $I4>24>38(KI + K2-K3-K) d/q d/c2 <k3. 

Taking into account Eq. (8.6), one can rewrite Eq. (6.3) as 

]-a{\ - a)kf-2(K2 + q2)fa = kfn 14>\fafa&{K\ + K2-K3-K) <ki d*2 d*3- 

With the help of inverse Fourier transform, one can transform (8.10) into the stationary NLS 

1 i r   d24> 

which has the soliton solution 

+ q <t> = 4\(j>\2(t> 

</>(*) = 
a(l—a)     q 

(8.9) 

(8.10) 

(8.11) 

(8.12) 
£/3-a+2   j-Qsh gX 

It gives the following approximate quasisoliton solution of Eq. (2.1) with k = +1: 

f{x, 0 = 0(* - Vt) ^t+ikm0c-vi)t        ß = _(i _ a)fc« _ 1 „(i _ a)ka
m-

2q2,        V = ak^1.     (8.13) 

The quasisoliton (8.13) is an "envelope soliton", which can be obtained directly from Eq. (2.1). Simply inject 

fix, t) = u{x, t) e-ia-°oo+i*m(*-vo 

and use the binomial expansion 

d 
dx 

e
ikxU = eikx + \k\aU + a\k\a-' (-i^) U + \a{a - \)\k\a~2 (-i^)   U 

Plugging Eq. (8.15) into Eq. (2.1) with k'= +1, one obtains a differential equation of infinite order 

— \=L2U + L3U + --- , 

(8.14) 

(8.15) 

■u+v- v = <»"'. 

Here 

L2U = i«(l - a)ka
m-

2^+4\U\2U, 

L3U = i 

dx2 

l-a(a - 1)(« - 2)*r3|^ " ßkt1 \U\2^ 

(8.16) 

(8.17) 

(8.18) 
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Taking into consideration only the first non-trivial term L2U, one gets the non-stationary NLS 

It has a soliton solution 

U(x, t) = 4>{x- Vt) e-0/2)i«(i-«)C-V'. (8.20) 

To find the shape of the quasisoliton more accurately, one should keep in the right-hand side of Eq. (8.15) a finite 
(but necessary odd!) number of terms. The expansion in Eq. (8.16) runs in powers of the parameter q/km. Note 
that one cannot find the lifetime of the quasisoliton. The lifetime grows as &^lq and its calculation is beyond the 
perturbation expansion. 

As a matter of fact, the parameter 

€ = ± (8.21) 

is crucial for quasisolitons. The smaller it is, the closer the quasisoliton is to a "real soliton". The amplitude of a 
quasisoliton is proportional to e. Quasisolitons of small amplitude satisfy the integrable NLS and are stable. It is 
not obvious for quasisolitons of finite amplitude. One can guess that at least in the case ß > 0, when collapse is 
not forbidden, there is a critical value of the amplitude of a quasisoliton ec such that for e > ec it is unstable and 
generates a singularity at a finite time. Our numerical experiments confirm this conjecture for ß = +3. 

Quasisolitons move with different velocities and collide. If the amplitudes of the quasisolitons are small and 
their velocities are close, they obey the NLS and their interaction is elastic. One can guess that the same holds for 
small-amplitude quasisolitons even if their velocities are quite different. This is not obvious for quasisolitons of 
moderate amplitude. One can think that their interaction is inelastic and leads to the merging and formation of a 
quasisoliton of larger amplitude. 

9. Nonlinear frequency shift 

Let us consider one more important nonlinear effect. In a linear system, the harmonic of wave number k oscillates 
with the frequency co(k). In the presence of nonlinearity, the frequency changes due to the interaction with other 
harmonics. In a weakly nonlinear system, the frequency is modified by a functional depending linearly on the 
spectrum 

fi>(Jfc)-*.fi>(Jfc) + /" Tiifc«i dJfci. (9.1) 

It is easy to show that 7i* can be expressed in terms of the coefficient 7"i23* in Eq. (2.3) as 

T\k = 27-1*1*. (9-2) 

For the MMT model, 

TXk = 2X{kxk)PI2. (9.3) 

For ß = 0, 

Tlk = 2X = ±2, (9.4) 

I 
i 
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and 

o^ik) = co(k)± 2N, (9-5) 

where N = / \fk I2 dk is the total number of particles. 
In the general case ß ^ 0, renormalization of the frequency leads to modified resonance conditions (2.8) and 

(2.9). But in the particular case ß = 0, renormalization terms in Eq. (2.9) cancel and the resonance conditions in 
the first nonlinear approximation remain unchanged. At the same time, the difference of frequencies for different 
signs of nonlinearity has the form 

(D+(k)-a)-(k)=4N. (9.6) 

In our case, it does not depend on the wave number. 

10. On the MMT model spectrum 

In [7], MMT found that in the case of positive nonlinearity the spectrum of wave turbulence is well described by 
the formula (MMT spectrum) 

nk ~ |Ä|-i-W+«)/2, (10.1) 

They checked this result for a = \ and different values of ß. Our experiments are in agreement with (10.1). In 
[8-10], it was found that the MMT spectrum can appear for either sign of nonlinearity. So far there is no proper 
theoretical derivation of the MMT spectrum. In this section, we offer some heuristic derivation of (10.1). 

Assuming formula (3.2) to be exact, the problem of closure for the equation on particle number lies in the 
expression of Im J\nk in terms of n*. This expression should a priori satisfy the conditions of symmetry 

Im Jn3k = Im 7213* = Im Juki = -Im hkn- (10-2) 

Moreover, one can assume that the nonlinearity is weak and that the wave energy is roughly 

£~ I co(k)nkdk. (10.3) 

From conservation of energy, one obtains 

/ Ti23k(a>i + <»2 - COT, - co) Im Jnsk d&i dk2 dk3 dk = 0. (10.4) 

Hence, one must have 

Im/l23A: — 8(a>i +ft>2 — 0)2, — ö>). (10.5) 

For Gaussian wave turbulence, the real part of Jmk is given by Eq. (3.3) and dimensional analysis gives 

Re/i23*-^. (10-6) 
k 

Up to this point, our consideration was more or less rigorous. Now, we present a heuristic conjecture. We suppose 
that the imaginary part of the four-wave correlator has the same scaling as the real part. In other words, it is quadratic 
inH£. 
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If one takes into account the necessary conditions (10.2) and (10.4) and the scaling (10.6) for Im Ji23k, there are 
I  only a few possibilities for the construction of Im Jmk • We offer the following closure: 

d 

S /9<*>l      da>2      dco3      3w\ r/ w . ,in^ 
g lrciJmk=a\-— + -— + -—+ — )8(u\+(O2-m-0))(n\n2-n?,nk), .    (10.7) 
I \Bk\      dK2      ak3      dk J 
ft 

I   where a < 1 is a dimensionless constant. The closure leads to the kinetic equation 
I 
//3&>i      d(02      dco3      dco\ 

Ti23k(n\n2 - n3nk) I — + — + — + — 1 &{a>\ + (o2-(o3-<o) 

a     | 
t     j dru 

I xS(ki+k2-k3-k)dkidk2dk3. (10.8) 

It is easy to check that the Kolmogorov solution of Eq. (10.8) leads to the MMT spectrum. Eq. (10.8) resembles 
the Boltzmann's equation for interacting particles. Apparently, it can make sense only if aTmk > 0. Otherwise, 
the %-theorem and the second law of thermodynamics will be violated. We must stress that the formula (10.7) is 
heuristic and has no rigorous justification. 

11. Particle and energy balance 

In the presence of damping and linear instability, Eq. (2.3) can be written in the form 

where 

H= fa)(kMk\2dk+^ [Ti23kfaM3$kS(ki+k2-k3-k)dkidk2dk3dk, (11.2) 

I   is the Hamiltonian, D(k) is the damping or the growth rate of instability depending on its sign. 
Let iV = / I fk 12 dk be the total number of particles in the system. From (11.1), one can obtain the exact equation 

for the particle balance 

dN      „     „ f — = Q = 2 
dt       *       J 

D(kMk\
2dk. (11.3) 

After averaging, one has 

d(N) 

dt -'/ 
D(k)nkdk=(Q). (11.4) 

The total mean flux of particles (Q) is a linear functional of nk at any level of nonlinearity. 
For the total flux of energy, one has the exact identity 

AH c 1   r 
P = —=2J co(k)D(kMk\2dk +-J [D(ki) + D(k2) + D(k3) + D(kWmkhht$f*k 

x«(*i +k2-k3-k) dJfci djfc2 dfc3 dk. (11.5) 

For the averaged density of energy, one has 

(P) =2 jco(k)D(k)nk dk+l- j[D{kx) + D(k2) + D(k3) + D(k)]Tl23k Re /123ft 

xS(h +k2-k3-k) dki dk2 dk3 dk. (11.6) 
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Assuming that Gaussian statistics holds, one can write 

Re Jmk ^ nin2[S(ki - k3) + S(ki - k)], (11.7) 

and one obtains after simple calculations 

(P) = 2 j co(k)D(k)nk dk, (11.8) 

where co(k) = co(k) + / T\kU\ dk\ is the renormalized frequency. 
In the case ß = 0 and T\k = ±2, 

(P)=2Jco(k)D(k)nkdk + 2XN(Q). (11.9) 

In the stationary state, (Q) = 0, (P) = 0 and the balance equations are 

D(k)nkdk = 0, (11.10) 

/ 
a)(k)D(k)nkdk = 0. (11.11) 

In this particular case, renormalization of the frequency does not influence the balance equations. 
The balance equations (11.10) and (ll.ll)canbe rewritten as 

Qo = Q+ + Q~, (11.12) 

Po = P+ + P~, (11.13) 

where go and Po are the input of particles and energy in the area of instability co ~ COQ. Q+ and P+ are the sinks 
of particles and energy in the high frequency region u> ~ co+. Q~ and P~ are the sinks in the low frequency region 
(O ~ 0)~. 

Roughly speaking, 

Po^cooQo, (11.14) 

P+~co+Q+, (11.15) 

p-~o)-Q~, (11.16) 

and the balance equations can be written as 

Qo=Q+ + Q~, (11.17) 

o)oQo-o)+Q+ + (o~Q-. (11.18) 

Hence 

Q+      too — (o~ P+      co+ (OQ — co~ 
Q~      co+ — coo'        P~      co~ (o+ — coo 

For co~ ~ coo <£ <w+, one has 

Q+      COQ - co~ P+      COQ - co~ 
Q- CO+     ' P- CO 

(11.19) 

(11.20) 
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In other words, if COQ <£ <w+, almost all particles are absorbed at low frequencies. The amounts of energy absorbed in 
both ranges have the same order of magnitude. These conclusions are valid only under the hypothesis of approximate 
Gaussianity of wave turbulence. 

ox   i 12. Numerical integration scheme 

1 The direct method employed to simulate the model is similar to that in [7]. With the aim of observing direct and 
I inverse cascades, the complete equation to be integrated reads 

?)   I \d-p- = co{k)fk + f TimfifafaWi +k2-h-k) d*i d*2dk3 + i[F(k) + D{k)]fk                  (12.1) 
1 ot                       J 
.1 

with 

F(k) = J2fjS(k ~ kj)    and    D(*) = ~v~\k\~d~ - v+\k\d+. 

| The forcing term F(k) denotes an instability localized in a narrow spectral band. The damping part D(k) contains 
f a wave action sink at large scales and an energy sink at small scales. The presence of these two sinks is necessary 
I to reach a stationary regime if two different fluxes are assumed to flow in opposite ^-directions from the stirred 
1 zone. In our experiments, we set d~ = 8 and d+ = 16 unless other values are specified. The purpose of using 

high-order viscosity (also referred to as hyperviscosity), which separates sharply the inertial and dissipative ranges, 
is to minimize the effects of dissipation at intermediate scales of the simulated spectrum. 

A pseudospectral code solves Eq. (12.1) in a periodic interval of Fourier modes. We define the discrete direct 
Fourier transform (FT) as 

,   Nd-\ 

Ukn) = h= FT(Vry) = w J2 *J e~'lknXJ > (12-2) 
Nd 7=0 

and the discrete inverse Fourier transform (FT x) as 

Nd/2 

f(xj) = fj = ¥I-\fn) =       J2      *n JknXj, (12.3) 
n=-{Nd/2)+\ 

where Nd is the number of grid points, kn = litn/L the «th wave number, Xj = jL/Nd the location of the y'th 
grid point and L the size of the computational domain 0 < x < L. We usually choose L = 2n so that the fc„s 
are integers and the spacing in Fourier space is A£ =1. In our experiments, quantities defined as integrals along 
the spectral interval are computed in their discrete forms without any renormalization. For instance, we use for the 
number of particles the formula 

Nd/2 

n=-(Nd/2)+\ 

and for the quadratic part of energy 

F:' Nd/2 

I E = HL=        J2      co{knMn\2. (12.5) 
I n=-(A^/2)+l 
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The linear frequency term is treated exactly by an integrating factor technique, removing it from the timestepping 
procedure. As emphasized by MMT, we thus avoid the natural stiffness of the problem as well as possible numerical" 
instabilities. Consequently, we do not need to shorten the inertial interval by downshifting the cutoff of ultraviolet 
absorption (as in [5]). The nonlinear term is calculated through the Fast Fourier Transform by first transforming to 
real space where a multiplication is computed and then transforming back to spectral space. For the multiplication 
operation, twice the effective number of grid points are required in order to avoid aliasing errors. A fourth-order 

Xv+Xl y {Tgmeu thC COnSerVative m0del in time' Sivi«g * solution to which the diagonal factor 
6L i ^wja/ 1S apphed at each time step At. 

13. Numerical results for ß = 0, k = ±1 

A series of numerical simulations of Eq. (12.1) with resolution up to Nd = 2048 de-aliased modes has been 
performed. We choose the case ß = 0 as the candidate for testing WT in our experiments. Both cases A = ±1 
are examined, providing an additional test of the theory, and the study is focused on the direct cascade. Forcing is 
located at large scales and the inertial interval is defined by the right transparency window *f « * « kd (where 

T H   i n     Char?CteriStiC Wave numbers of forci"g a"d ultraviolet damping, respectively). As displayed in 
lable 1, the theoretical spectrum which can be realized in this window is 

Hk ock~l. 
(13.1) 

Typically initial conditions are given by the random noise in the spectral space. Simulations are run until a 
quasi-steady regime is established which is characterized by small fluctuations of the energy and the number 
of particles around some mean value. Then time averaging begins and continues for a length of time which signifi- 
cantly exceeds the characteristic time scale of the slowest harmonic from the inertial range (free of the source and 
the sink). In turn, the time-step of the integration has to provide, at least, accurate enough resolution of the fastest 
harmonic m the system. As our experiments show, one has to use an even smaller time-step than defined by the last 
condition: the presence of fast nonlinear events in the system requires the use of a time-step At = 0 005 which is 
40 times smaller than the smallest linear frequency period. Time averaging with such a small time step ieads to a 
computationally time consuming procedure despite the one-dimensionality of the problem 

From now on, we will present numerical results in the specific situations v~ = 196 61ft = ±1) v+ - 
5.39 x 10^(A = +1) or v+ = 2.1 x 10^(A = -1), and fj = 0.2, non-zero only for kj e [6, 9](A = ±1)    " 

The numerical simulations clearly display the development of dynamical chaos and statistically uniform turbu- 
lence. Both the amplitude and the phase of each harmonic fluctuate independently of each other. Figs. 1-4 show the 
behavior of the seventh and eighth harmonics. 

Figs. 5-8 show the behavior of the real and imaginary parts of the amplitude of the harmonic * = 200 One 

Tan^rfr~"lTdUlated 0SCiUati0nS With Carrying fre^uency close t0 the corresponding linear frequency of the 

Figs 9-12 represent FTs in time of the evolution of the harmonic * = 200 from the previous pictures. One can 
see that the maximum of the spectra corresponds to the linear frequency shifted in accordance with the nonlinearity 
sign A = ± 1. J 

Figs. 13and 14 demonstrate the behavior of the fourth- and sixth-order moments as functions of the second-order 
moment They fit the Gaussian laws very well. They provide a justification of the initial conjecture that the statistics 
of the turbulence is close to Gaussian. 

Fig. 15 represents the time evolution of the quadratic energy E for A = ±1 with the same amplitude of forcing 
The curves are plotted over the interval t e [5000, 10000] where the time averaging actually takes place. One 

»*'-:*. 
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Fig. 3. ß = 0,X = -1. Time evolution of the real part of the amplitude for the mode/: = 8. 

Fig. 4. ß = 0, X = -1. Time evolution of the imaginary part of the amplitude for the mode k = 8. 
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Fig. 5. ß = 0, X. = —1. Time evolution of the real part of the amplitude for the mode k = 200 (time resolution r = 0.015). 

Fig. 6. ß = 0, X = +1. Time evolution of the real part of the amplitude for the mode k = 200 (time resolution r = 0.015). 
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Fig. l.ß = 0,X = -1. Time evolution of the imaginary part of the amplitude for the mode/: = 200 (time resolution r = 0.015). 

Fig. 8. ß = 0, X = +1. Time evolution of the imaginary part of the amplitude for the mode k = 200 (time resolution r = 0.015). 



Fig. 9. ß = 0, k = -1. Square amplitude of the FT for the mode k = 200 vs. frequency (time resolution r = 0.015). 
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Fig. 10. ß = 0, k = -1. Same as before but with a zoom on a smaller frequency window. 
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Fig. 1 l.ß - <U = +1. Square amplitude of the FT for the mode * = 200 vs. frequency (time 
resolution r = 0.015). 
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Fig. 13. ß = 0, k = +1. Fourth-order (crosses) and sixth-order (circles) moments as functions of the second-order moments. The straight lines 

are the fitted Gaussian laws. 

Q    Fig. 14. ß = 0, X = -1. Fourth-order (crosses) and sixth-order (circles) moments as functions of the second-order moments. The straight lines 

are the fitted Gaussian laws. 

m 
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Fig. 15. ß = 0. Quadratic energy vs. time. X = +1 (solid line), A = -1 (dashed line). 
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Fig. 16. ß = 0. Number of particles vs. time, k = +1 (solid line), k = -1 (dashed line). 
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Fig. 17. ß = 0. Average nonlinearity e = |#NL/#LI 
VS

- 
l^me- ^ = +1 (solid line), X = —1 (dashed line). 

obviously sees that the systems have already reached the steady state. Their energies moderately fluctuate about 
mean values which are E ~ 19 (A = +1) and £ ~ 9 (A = — 1). This significant difference with respect to the sign 
of A is quite unexpected from the viewpoint of the WT theory since the same rate of forcing is imposed in both 
systems. We can make the same remarks about the evolution of the number of particles N. In Fig. 16, the mean 
values stay near N ~ 3 (A. = +1) and N ~ 1 (A = — 1) so that their relative difference is even bigger than for 
E. Fluctuations also spread much more in the case A = +1. 

In Fig. 17, the stationarity as well as the gap between both signs of A are verified again in the time evolu- 
tion of the average nonlinearity €. We define the average nonlinearity in the system as the ratio of the nonlinear 
part to the linear part of the Hamiltonian e = |//NL/#L|, each part being calculated over the whole field. Of 
course, this definition does not really make sense when external forces are applied but it provides a relatively good 
estimation of the level of nonlinearity once the systems reach the steady state. Note here that the mean values 
e ~ 0.4(A = +1) and e ~ 0.2(A = —1) are relatively small. Thus, the condition of small nonlinearity required 
by the theory holds for both systems. This conclusion is also supported by comparing Figs. 10 and 12. It is seen 
that the difference of frequencies caused by nonlinearity is relatively small. We point out that in our numerical 

Table 2 
Time-averaged values of the wave action, quadratic energy and corresponding fluxes in the stationary state, a = j,ß=0 

i-                            N                          E                           Q- Q+ P~ P+ 

+1                          3                            19                          0.1957 
-1                          1                              9                          0.0098 

0.0090 
0.0478 

0.276 
0.014 

0.258 
1.430 
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Fig. 23. ß = 0, A. = -1. Evolution towards a collapsing peak of the isolated solution for the initial amplitude fo = 2. Dotted line t = 0, dashed 
line t = 0.55, solid line t = 1.1. 

za 

ft; Fig" 24- 0 = 0, X = +1. Evolution towards decay of the isolated solution for the initial amplitude fo = 2. Dotted line t = 0, dashed line 
|g ' = 1.65, solid line t = 3.85. 
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Fig. 25. ß = 0, X = — 1. Computed spectrum vs. wave number. The theoretical slopes are shown as well (k ' for WT and k 5/'4 for MMT). 

experiments e could not be taken too small (i.e. e < 10-3) for two reasons. First, the nonlinear turnover time 
grows longer and the energy flux is too weak to act effectively. Second, one may catch the undesirable frozen 
turbulence [13] due to the disappearance of quasi-resonances. One should note that, in general, frozen turbu- 
lence arises more easily in one-dimensional problems due to fewer degrees of freedom than in higher-dimensional 
problems. 

The difference between the cases A. = ±1 is especially conspicuous if one considers the dissipation rates of 
particles and quadratic energy for small wave numbers 

Q-=ll    V-\k\-d~Wk\2dk, 
Jk<k{ 

and for large wave numbers 

Q+ = 2[     v"W+|^|2dÄ:, 
Jk>kf 

>+ 

= l!    v~\k\-d (oikMkl1 dk, 
Jk<ki 

= 21     v+\k\d+co(k)\jrk\
2dk, 

Jk>k{ 

where kf is the characteristic wave number of forcing. Figs. 18-21 represent the time evolution of these quantities 
and their time-averaged values are collected in Table 2. I 

One can see that the case X = +1 quantitatively fits WT theory. Indeed, in this case Q+/Q~ — 0.046 «; 1 
and P+/P~ ~ 0.94. But in the case of negative nonlinearity X = — 1 the situation is opposite. In this case^ 
Q+/Q~ ^ 4.9 and P+/P~ ~ 102 which means that most of both quadratic energy and particles are transported! 
to high frequencies. 
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Comparison of the turbulence levels and fluxes of particles Q+ for both signs of nonlinearity leads to aparadoxal 
result. At A. = -1 the total number of particles is three times less than at A. = +1, while the dissipation rate of 
particles is higher by one order of magnitude. It can be explained only by the presence in this case of a much 
more powerful mechanism of nonlinear interactions, which provides very fast wave particles transport to high 
frequencies. In our opinion, this mechanism is wave collapse, studied theoretically in Section 7. Sporadic collapsing 
events developing on top of the WT background could send most of particles to high wave numbers without violation 
of energy conservation, because in each self-similar collapse structure the amount of total energy is zero. 

We observed such collapsing events in our numerical experiments. Fig. 22 displays the collapse event taking 
place at the point x = 1.006 at time t = 5000.19. One can conjecture that the collapses are described by self-similar 
solutions. For such solutions H = 0. It means that the collapse can carry particles to high frequencies, without 
carrying any energy at that timel As far as the Hamiltonian is the difference of quadratic and quartic terms and both 
of them go to infinity, it becomes possible to explain the apparent contradictions of the dissipation rates. 

The hypothesis related to the prevailing role of collapses at A. = -1 is corroborated by the following facts: 

1. Intermittency in dissipation rates of quadratic energy and particles for A. = —1 is much higher than for A. = +1 
in the region of large wave numbers. This intermittency can be explained by outbursts of dissipation when wave 
collapses occur. 

2- The analysis of time FTs of separate harmonics (we take k = 200) shows the presence of two components, 
see Fig. 9. The peak at co ~ 13 corresponds to a linear wave with a moderate nonlinear shift of frequency. 
This is the "WT" component of the wave field. Another component is roughly symmetrical with respect to the 
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Fig. 27. ß = 0, X = -1. Computed spectrum and WT spectrum vs. wave number. The WT spectrum (straight line) is given by n(k) = ck 

with c = aP1'3 ^ 0.42. 

-l 

reflection to -> -co with the maximum at co = 0. This is certainly a strongly nonlinear component which could 
be associated with wave collapses. 

Another indication of the difference of the wave dynamics in the cases X = +1 and X = -1 follows from the 
following experiment. Figs. 23 and 24 show the early stages in the conservative evolution of the same isolated initial 

condition 

f{x) = toe-{x-n)2l2a\    a = 0.5. 

In the case X = -1, a sufficiently large initial condition collapses into a sharp spike, while in the case X = +1 it 
decays. This experiment could serve as an evidence of the finite-time singularity formation for the case X = -1. 

Now, we discuss the stationary isotropic spectra of turbulence which are displayed in Figs. 25-28. We plotted 
on the same pictures the Kolmogorov spectra calculated by putting either P = P+ = 1.430 (A. = -1) or P = 
P+ = 0.258 (X = +1) and a = 0.376 in Eq. (5.8). In Figs. 27 and 28, one can see that for both cases this spectrum 
provides a higher level of turbulence than the observed one. For X = -1 this difference is almost of one order of 
magnitude. For X = +1, the observed spectrum almost coincides with the WT one at low frequencies and then 
decays faster at higher wave numbers (approximately as MMT spectrum in Fig. 26). 

It is interesting that for X = -1 the high frequency asymptotics is fairly close to the one predicted by WT theory 
(Fig. 25). One can explain this fact as follows. In this case, the turbulence is the coexistence of collapsing events and 
WT. Collapses carry most of the fluxes of particles and quadratic energy to high frequencies. But their contribution 
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with c = aP}'3 ~0.24. 

to the high-frequency part of the spectrum is weak, because they produce Phillips-type spectra, decaying very fast 
as k -» oo. In our case, this spectrum is 

n/c ~ k~3/2. (13.2) 

Hence as k -* oo, only the WT component survives. Even P ~ 1(T2P+ is enough to provide an observable tail in 
the WT Kolmogorov spectrum. 

We should stress out again that at X = +1 the picture of turbulence matches the WT prediction both quantitatively 
and qualitatively. Meanwhile, the spectrum at high *s is steeper and closer to the MMT formula. So far we cannot give 
a consistent explanation of this fact.. We can just guess that it is somehow connected with quasisolitons. As an illus- 
tration, Fig. 29 shows the conservative evolution of the initial quasisoliton (8.13) with parameter q/km = 0.1, which 
is small enough to justify the Taylor expansion used in its derivation. As expected, we observe that the solution prop- 
agates and persists over a relatively long time. This similarity between quasisolitons and real solitons is verified even 
better in Figs. 30-33 where two initial quasisolitons with q/km = 0.2 for the smaller one and q/km = 0.25 for the 
bigger one collide almost elastically. Note here that the solution with smaller amplitude moves with a greater velocity. 

14. Numerical results for ß = +3 and A. = +1 

Another series of experiments has been performed for the case ß = +3 and A = +1. This case is especially 
attractive due to the fact that the intensity of interaction grows with characteristic wave number in Fourier space 
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Fig. 29. ß = 0, X = +1. Evolution of the initial quasisoliton for q/km =0.1. Solid line t = 0, dotted line t = 1250, dashed line t = 2500. 

and one can expect reduced "frozen" turbulence effects compared to the case ß = 0. Another motivation is the fact 
that the scaling of the interaction kernel reproduces the kernel for gravity water waves. Therefore, Eq. (12.1) with 
a = 2, ß = +3 can be considered as a model of turbulence of the ocean surface. 

The numerical simulation of Eq. (12.1) was performed on a grid of 2048 points in the real space domain of length I 
2n. Parameters of the forcing are defined by f 

F(k) = 
0.001    if 30 < k < 42, 

0 otherwise, 

and parameters of damping in the "hyperviscosity" form by 

D(k) = 

-0.05(£-4)8      if 0<jfc <4, 

-0.1 (it - 824)2    if 824 < k < 1024, 

0 otherwise. 

Aliasing effects were not of concern due to the run-time control of the fastness of the spectrum decay toward high 
wave numbers. 

The time-step of integration was equal to ^ of the inverse fastest linear frequency in the problem. Such a small 
value was chosen due to the fact that the time dependence of the individual Fourier harmonics corresponding to 
intermediate range wave numbers showed the presence of processes of time scale smaller than the smallest linear 
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Fig. 30. ß = 0, X = +1. Interaction of two initial quasisolitons at t = 0. The smaller and bigger ones correspond to q/km = 0.2 and 0.25, 
respectively. 

time in the system. This observation was an initial indication of the significant role of nohlinearity in the problem 
under consideration. 

Eq. (12.1) was integrated numerically over long times for different kinds of initial conditions: low level random 
noise and single harmonic excitation (k = 30) initial conditions. While initial stages of computations were quan- 
titatively different, the later stages of evolution were strikingly similar. Starting from big enough times, the wave 
system was separated into several soliton-like moving structures and low-amplitude quasi-linear waves. Processes 
of interaction of solitons and waves slowly redistributed the number of waves in a way leading to the growth of 
initially bigger solitons and the collapse of initially smaller solitons. Finally, the system was clearly separated into 
a state with one moving soliton and quasi-linear waves. 

We interpret the observed phenomenon as similar to the "droplet" effect observed earlier in non-integrable NLS 
equation [20]. The soliton solution turns out to be the statistical attractor for nonlinear non-integrable wave systems: 
long time evolution leads to the condensation of the integral of total number of waves into the single soliton which 
minimizes the Hamiltonian. 

Figs. 34 and 35 show snapshots of the final state of the system: the single soliton is moving with constant speed on 
the background of quasi-linear waves. A quantitative comparison shows that the parameters of the observed object 
are close to the parameters of the quasisoliton solution (8.13). 

One should emphasize that there is a difference between the situation observed in the present work and former 
observations of "droplet" effects in non-integrable NLS equations. Solitons observed in [20] were exact stable 
solutions of the corresponding NLS equation. Solitary solutions observed in the present work are "quasisolitons" 
which are unstable at least in a certain range of parameters. 
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Fig. 31. |8 = 0, X = +1. Interaction of two initial quasisolitons at f = 37.5. 
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Fig. 32. ß = 0, A. = +1. Interaction of two initial quasisolitons at t = 50. 
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Fig. 33. ß = 0, X = +1. Interaction of two initial quasisolitons at / = 100. 
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Fig. 34. ß = 3, k = +1. Single moving soliton, t = 6915. 
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Fig. 37. ß =3,X = +1. Evolution of the initial quasisoliton for q/km = 0.3. Solid line t — 0, dotted line / = 23.6, dashed line t =47.1. 

In Fig. 36 the initial condition is the quasisoliton (8.13) with parameter q/km =0.1. Here again, it behaves as the 
soliton should: it moves without any detectable change of shape. Fig. 37 shows the evolution for q/km = 0.3. One 
can interpret such initial condition as a "deformed" quasisoliton. This initial condition rapidly develops moving 
singularity collapsing, presumably, in finite time. 

15. Conclusion 

The MMT model with a < 1 and either sign of nonlinearity exhibits coherent structures. In the case of negative 
nonlinearity these structures are weak collapses. These collapses are a powerful mechanism of energy dissipation, 
which dominates in all our numerical experiments. Weak turbulence coexists with collapses, and is responsible for 
the formation of Kolmogorov-type tails of wave spectra. But it carries to high wave numbers just a small part of the 
energy (less than 5%). 

One may hope to get "pure" WT by decreasing the level of nonlinearity. But to achieve an adequate modeling 
of the continuous medium, one should take a very fine mesh (at least 104 harmonics) and apply forcing in a broad 
range (say 10 < k < 100). Otherwise effects of "frozen turbulence" will blur the picture. Such experiments would 
be very time consuming. 

The case of positive nonlinearity is less clear. In this case the picture of turbulence is qualitatively similar to WT, 
but the slope of the spectrum fits better the MMT spectrum. So far we do not have a satisfactory explanation of 
this phenomenon. Probably it could be explained by the presence of interacting quasisolitons. In this case again, 
experiments with a larger number of harmonics could give a result closer to WT predictions. 
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The relative "suppression" of WT in the MMT model can be explained by a peculiarity of the resonant conditions. 
I 
2' In the one-dimensional case with a = A, only well-separated waves interact. Indeed, one can see from (2.10) 

that 

= (I + l+fV    £>0, (15.1) 

and therefore minl^All = 9 is reached at £ = 1. This phenomenon can be called "sparsity of resonances". 
Due to this sparsity, four-wave resonances easily lose the competition with coherent structures — collapses and 
quasisolitons. In this sense the MMT model is not an optimal object for checking the validity of WT theory. We can 
offer the following model, which includes the interaction of two types of waves 

H = f \k\a(\ak\2 + s\bk\
2)dk+ [\kklk2k3\^\a*ka*a2a3 + 2Pla*kb*a2b3 + p2btb\b2b3) 

x8(k + ki-k2- k3) dkdki dk2 dk3. (15.2) 

If a > 1 and ß < 2a — 1, the corresponding dynamical system does not describe any coherent structures which 
could compete with four-wave resonances. Meanwhile, for s =£ 1, it describes non-trivial resonant interactions for 
different waves propagating in the same direction. The system (15.2) looks like a possible object for the simulation 
of wave turbulence. In the special case a = 2 and ß = 0, it describes coupled NLS equations. 
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Abstract. A simple phenomenological model for non- 
linear interactions of gravity waves on the surface of 
deep water is developed. The Sni nonlinear interaction 
term in the kinetic equation for wave action is replaced 
by the nonlinear second-order diffusion-type operator. 

Analytical and numerical studies show that the new 
model gives a reasonably good description of a real situa- 
tion, consuming three order of magnitude less computer 
time. 

1     Introduction 

The leading nonlinear interaction of gravity waves on the 
surface of deep liquid is four-wave interaction (Phillips, 
1966) satisfying the resonant conditions 

&i + k2 = fa + ki 

Uk, + wfcl = wk2 + LJk3 

(1) 
(2) 

where ui = \fgk is the dispersion law. 
The four-wave interactions play a very important role 

in the surface dynamics. They arrest the growth of wave 
amplitudes, caused by instability of the flat surface in 
the presence of the wind, redistribute wave energy along 
the Jf-plane and form the basic cascades, governing the 
wave kinetics: direct cascade of the energy to large k 
and inverse cascade of the wave-action to small k (see 
Zakharov and Zaslavskii (1982), Zakharov (1992)). 

The four-wave interactions are described by the ki- 
netic equation for squared wave amplitudes derived first 
by Hasselmann (1962). This equation is a natural base 
for practical models of wave-prediction. Due to this 
reason many people during last two decades endeav- 
ored to develop efficient numerical solvers for this equa- 
tion (Hasselmann and Hasselmann (1985) , Hasselmann 
at al. (1985) , Masuda (1980) , Komatsu and Masuda 

(1996) , Resio and Perrie (1991) , Polnikov (1989) , 
Lavrenov (1991) ). 

Due to complexity of the kinetic equation, existing 
codes are still time-consuming and hardly can be used 
for practical purposes. The development of a simplified 
model of four-wave interaction describing in an adequate 
way the main feature of this process is, therefore, an 
urgent problem. 

There is another reason for development of such a 
model. The stationary kinetic equation has remark- 
able exact solution: weak-turbulent Kolmogorov spec- 
tra ( Zakharov and Filonenko (1966), Zakharov and Za- 
slavskii (1982)). For energy spectrum they are 

~     gu Patm 
we—,   e —  

^ Pwater 

=    C2e 
gsuz 

U) 3 

(3) 

(4) 

where u is the wind velocity. 
The spectrum (3) describes the transport of energy to 

small scales, while (4) describes the transport of wave 
action to large scales. Both spectra are obtained in a 
very idealistic assumption of isotropy in angles. Real 
wave spectra both in the ocean and in the laboratory 
are strongly anisotropic. Meanwhile, there are a lot of 
evidences, that at least the spectrum ( 4) fits very well 
the real situation. 

Asymptotic u~4 was observed by many experimental- 
ists since Toba (e.g. Toba (1973), Donelan et al. (1985), 
Phillips (1966)). This asymptotic appears systemati- 
cally in numerical experiments (Resio and Perrie (1991), 
Komatsu and Masuda (1996), Polnikov (1989)). But the 
complexity of the real kinetic equation does not allow to 
construct analytical angle - dependent anisotropic spec- 
tra. A properly simplified model would serve better this 
purpose. 

In this article we suggest a very simple model of four- 
wave interaction of the gravity waves.  We replace the 
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complex nonlinear integral interaction term by simple 
nonlinear elliptic differential operator of the second or- 
der. 

The whole kinetic equation becomes the nonlinear dif- 
fusion equation. Its stationary solution can be easily 
found analytically. They describe not only isotropic Kol- 
mogrov spectra (3) and (4), but also anisotropic spectra 
corresponding to momentum transport to small scales. 
We developed the code for numerical solution of new 
model equation in the presence of a wind and received 
quite reasonable results. Due to simplicity of the model, 
it consumes three order of magnitude less computer time 
than the model using exact kinetic equation. We hope 
that the new model can be efficiently used in practical 
programs of wave prediction. 

2    General background 

Let T){k) be a Fourier Transform of the surface elevation 
and 

Ik5(k + k') = {rj(k)r](k')) (5) 

where Ik is the spatial spectrum of the surface. It con- 
tains important, but incomplete information about the 
surface and cannot satisfy any self-consistent evolution- 
ary equation. More complete information is contained 
in the distribution of wave action 

nkS(k - A;') = (a(k)a(k')) (6) 

where ak is the complex normal amplitude ( see Za- 
kharov (1968) ) , n_fc ^ nk and 

h = j-^k(nk +n_fc) (7) 

Hasselmann showed that nk satisfies the kinetic equa- 
tion (Hasselmann, 1962) 

dn 
~di — Sni(n,n,n) - ßknk (8) 

where ßk is the coefficient describing interaction with 
the wind and wave-breaking and 

Sni(n,n,n) = 4ir J \Tkklk2k3\26k+kl_k2_k3 

^u>k+u:kl-uk2-uk3{nklnk:ink +nknk2nk3 

-nknklnk2 - nknklnk3)dkidk2dk3 (9) 

where Tkklk2k3 is the coefficient, describing four-wave 
interaction. It is a homogeneous function of the third 
degree 

T(ek, eh, ek2, ek3) = e3T{k, h ,k2,k3 (10) 

A relatively compact explicit expression for Tkklk2k3 can 
be found in the article of Webb (1978). This function 
has the following symmetry properties 

Tkklk2k3 — Tklkk2k3 — Tkklkzk2 = Tk2k, kk\ (11) 

Due to these properties, equation (8) formally preserves 
the following quantities of wave action N, wave energy 
E and momentum P if ßk = 0 : 

N 

E 

P 

I nkdk 

/ uknkdk 

/ knkdk (12) 

Conservation of these quantities is "formal" because one 
have to change the order of the integration in four- 
dimensional integrals to prove it. According to Fubini 
theorem, this change is permitted if nk vanishes fast 
enough at \k\ -¥ oo. 

For conservation of the wave action N one has to sat- 
isfy the condition . 

nk < Cfc-(*+£) (13) 

Conservation of the wave energy E is guaranteed if 

nk < Ck~^+^ (14) 

and conservation of the momentum P takes place if 

nk < cfc(-"+£) (15) 

where e > 0. 
Corresponding critical behavior of the energy spectral 

density 

ewdu> = wknkkdkd(f) (16) 

is ew < LJ 3 tor wave action, eu < w~4 for energy and 
ew < CJ~T for momentum. 

In reality, typical asymptotic "for eu is eu ~ w~4 , and 
conditions ( 14) and ( 15) are not satisfied while the 
condition ( 13) is fulfilled. Thus, in the typical situation 
only wave action N is a real constant of motion. Energy 
and momentum "leak" to the small-scale region. 

Let us consider the equation 

Sn[(n,n,n) = 0 

It has obvious thermodynamic solutions 

(17) 
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nk 
V + Uk 

(18) 

where T and fi are the constant temperature and chem- 
ical potential. Special cases of this solution are 

,(D    _ 

42) 

—,   (/i = 0) 
w* T 

n0,   (T -» oo, (i -> oo, — = n0) 
A1 

(19) 

All motion constants on thermodynamic solutions di- 
verge on thermodynamic solutions at k -> oo. This fact 
makes thermodynamic solutions useless for applications. 

Equation (17) has also non-thermodynamic solutions. 
Looking for the solutions in the form 

where F(<p, k) is so far unknown function of <f> and A;. 
One can guess that its dependence on k is "slow". In 
the limit of large k this function should has the form 
(Kats and Kontorovich, 1971) : 

F(cj>,k) = 1 + a—cos<p (26) 

where S is the momentum flux, P is the energy flux and 
a is a constant. 

Complexity of the equation (9) is the compelling fac- 
tor for construction of the simplified models of four- 
wave interaction. The most popular model is the WAM 
model. In this model, five-dimensional variety of reso- 
nances satisfying conditions (l)-(2) is contracted to 2- 
dimensional manifold describing the resonance of a sin- 
gle type 

«* = C|fc|- (20) 

one can find (Zakharov and Filonenko (1966), Zakharov 
and Zaslavskii (1982), Zakharov at al. (1992)) that x 
can take four values 

1 23 
ii=0,   Z2 = 2'   x3 = -g->   Z4=4 (21) 

Exponents x\ = 0 and x2 = \ correspond to thermody- 
namic solutions ( 19). Exponents x3 = y. and z4 = 4 
give the spectra 

nk 

nk 

=  c3\k\-? 
=  c4\k\-*t 

E» = C3u   3 

Eu = C4W 

(22) 

(23) 

These solutions are Kolmogorov spectra (3), (4). 
Since the equation (17) preserves the momentum, it 

must have Kolmogorov solution, carrying the momen- 
tum to small scales. From dimensional consideration it 
has a form 

nk = f(4>)k   s (24) 

where f(<j>) is some unknown function of the angle , 
which cannot be found analytically so far. Solution (24) 
is realized in the case when there is the source of the 
momentum, but no source of the energy in the region of 
small k. This situation is non-physical and therefore one 
can't get much use from the solution (24). The generic 
Kolmogorov solution, corresponding to given fluxes of 
both the energy and the momentum, is much more im- 
portant. This solution is anisotropic and non-power- 
like. It has the form 

h =k,   k2 = (1 + s)k,   k3 = (1 - s)k (27) 

nk = Ck-*F(4>, k) (25) 

where s is certain linear operator on the fc-plane. 
In WAM model, integral equation ( 9) transforms into 

nonlinear difference equation. The most basic proper- 
ties of this equation stay the same. In particular, the 
stationary WAM equation has the same Kolmogorov so- 
lutions (22), (23). 

The most weak point of the WAM approximation is 
an ambiguity in the choice of the basic resonance. Actu- 
ally, there is no particular reasons for preferring of the 
resonance ( 27) over others. Some sort of the optimiza- 
tion of the choice of the basic resonance could essentially 
improve this "difference" model. 

3    Differential approximation 

In this article we replace the integral equation (9) by 
nonlinear diffusive equation of the second order. In 
the contrary to the difference models, the differential 
model can be constructed in the unique way. Our model 
is quite convenient for numerical simulation and gives 
quite reasonable description of the four-wave interac- 
tion. Differential approximation in the theory of the four 
-wave interaction was offered independently in the pa- 
pers of Iroshnikov (1985) and Hasselmann at al. (1985). 
More simple derivation of this equation was done in the 
article of Balk and Zakharov (1988). Later, the differ- 
ential equation was used in the work of Dyachenko at al. 
(1992). 

Rigorously speaking, the integral operator in (9) can 
be replaced by the differential operator only when 
Tkkik2k3 ¥" 0 and the wave vectors ki,k2,k3 are close 
to k. In this case, the differential approximation can 
be obtained using the expansion of nkl, nk2, nk3 into the 
Taylor series in the vicinity of the points kt — k. This 
cumbersome procedure was done by Hasselmann and 



Hasselmann (1985) who obtained nonlinear differential 
equation of the fourth order. 

We, following the work of Balk and Zakharov (1988), 
offer the more simple way of derivation of this equation. 
First, we put 5 = 1 and introduce the polar coordinates 
(cf>, k = u>2) on ff-plane. In these coordinates, eq. (8) 
reads 

dn(<p,t) 
8t = 32   /  |T(w,Wi,W2,W3l0,<£l,02,03)|2 

■5{W + UJi - U2 — UJZ)8(U
2
 cos <j) + u2 COS 01 

-wf cos <j)2 - o>3 cos (j)z)8(u)2 sin (f> + w\ sin 4>i 
-u\ sin02 - w| sin<p3)(nin2n3 + nn2n3 

-nn\n2 — nn\n3)du)iduj2duj3 (28) 

This equation preserves the following quantities 

N u3n(LJ,<j})d(f>duj (29) 

E   =        u4n(u>, <j>)d<pdw (30) 

i?i    =        u)5cos(f>n(u!,(f))d^duj (31) 

i?2    =        uj5 sin (t>n(u),4>)d(j)duj (32) 

It has the following stationary thermodynamic solutions 

C\ + C2w + C3W2 cos 0 + C4W2 sin 0 (33) 

where C\,C2, C3,d are the arbitrary constants. Let us 
introduce the differential operator 

~ 2 du2 + w2 <902 

One can see that the equation 

dn       1 T 

(34) 

(35) 

preserves all four quantities (29)-(32) if u is periodic 
function bounded at u = 0, satisfying the condition u -> 
0 at w —> 00. 

From the other hand, one can check that 

L- = 0 
n (36) 

if n is given by ( 33). 
Since Tkklk2k3 ~ fc3, equation ( 28) can be roughly 

estimated as 

dn 
V2-l-2-2+V=w19n3 (37) 
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Let us consider the fours-order differential equation 

dn 
It ^f = ^LnW6L 

or (38) 

This equation can be treated as a differential model for 
kinetic equation (28). Indeed, it preserves the same con- 
stants of motion, has the same thermodynamic solutions 
and the same dimensional estimate (37) as the exact 
equation (8). It is uniquely constructed up to the con- 
stant C. 

We have to stress that the equation (38) is heuris- 
tic. It cannot be derived from the exact kinetic equa- 
tion (8)-(9) for any realistic Tkklk2k3. Therefore, if the 
differential model (38) (or more simple one) is applied 
for description of the real situation, there is absolutely 
no way to find the constant C analytically. It has to 
be found from the comparison of the physical and nu- 
merical experiment. This fact was first mentioned by 
Hasselmann and Hasselmann (1985). 

The equation (38) satisfies the F-theorem. Let us 
define the entropy as 

H =  / \nnkdk = 2 / ulnndfidui 

From (38) one gets 

™ = 1CI n V6 (iX V diodt > 0 

This is an additional argument in favor of this equa- 
tion. 

The stationary equation (17) in the simplest axially- 
symmetric case takes a form 

_L-0Ln4w26_öM 
u2 du2 du2 n 

0 (39) 

Looking for power-like solutions of the equation ( 39), 
one obtains 

=    ,.,-v (40) 

2    --- (41) 

Equation ( 39) has four power-like solutions 

V = 2/1,2/2,2/3,2/4 
23 

2/1    =    0,   2/2 = 1,   j/3 = —  2/4 = 

ni = const,    n2 u n3 : U)     3 n$ = u> (42) 

First two solutions are thermodynamic, the other two 
are Kolmogorov spectra (22),(23). 

Differential equation (38) coincides with the equations 
obtained earlier by Iroshnikov (1985) and Hasselmann 
and Hasselmann (1985). 
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4    Diffusion approximation 

Equation (38) is good for the description of both ther- 
modynamic and Kolmogorov solutions. It can be essen- 
tially simplified if we are interested only in turbulent 
solutions of Kolmogorov type. In accordance with (25) 

n^rrW-'F^w) (43) 

Since F(4>,LJ) is a slow function of u, one gets approxi- 
mately 

28 
n ~ \2du2 + u2d<j)2) F(<j),u) ~ FU 

28 
nur 

(44) 

This calculation prompts us to replace ( 38) by more 
simple equation 

dn       a r  o   94       a 
at      LJ* or 

1 d2      J__Ö^ 
2duj2 + u2d4>2. 

nV4     (45) 

Q = ^(u(w'^)) =7r9i (49) 

Thus <7i is the flux of the wave action coming from in- 
finity. 

In the same way one can find 

P = —       du j     d<j> L)An{bJ,<t>) = 
Jo        Jo 

7T90 (50) 

where P is the flux of the energy to infinity. 
A little bit more complicated calculation gives 

/*W /»27T 

S = —       du        d(j> <jjhcos(j) n{ijj,(j>) = Sirai 
Jo       Jo 

(51) 

where S is the flux of £he longitudinal momentum to 
infinity. 

Thus the special stationary solution 

where a is new indefinite constant. This is a nonlinear 
diffusion equation. It preserves the integrals (29)-(32) 
and has the correct dimensional estimate (37). One can 
easily find its stationary solutions. They are given by 
the equation 

LU={1&+^S)U=°> u=a^24 (46) 

■K 3 w 
(52) 

can be easily interpreted. It is the Kolmogorov spec- 
trum, corresponding to constant flux of the wave action 
from infinity Q and constant fluxes of energy P and mo- 
mentum S from w = 0. 

A general Kolmogorov solution has a form 

A general periodic solution of this equation can be pre- 
sented in the form nw = 

{■KO) 3 L 
P + Qu) + - — cos 0 

3u> 
(53) 

u    =    9o + 9iw + ( 1- b\w2) cos(</> - 0o) 

+   w5 ^2(anu>~Xn +bnu
Xn) cosn((j)-(f>n), 

71=2 

A   = + 2n2 (47) 

To find a physical interpretation of this solution, one 
should calculate fluxes of the conservative quantities 
(29)-(32). Let us denote 

rU p2lt nuj t*2lT 

Q    = du)        d4>u)zn{u),4>) =  /    du        d<j)Lu 
Jo        Jo Jo        Jo 

p2ir 

(u)    =     /     ud(f> 
Jo 

(48) 

From the physical consideration, one has to assume that 
u —> 0 at u> —» 0 together with all its derivatives. Hence 

If the flux of wave action from infinity is absent, equation 
(53) gives the expression for F(cf>, u) : 

F(4>,u) = 
7T3 

7, 1S J. P + - — cos <p 
3w 

(54) 

It is the "slow function" in comparison to UJ~
8
. 

If 5 T^ 0, Kolmogorov solution (53) becomes negative 
for small enough u. It can not be applied in this range of 
frequencies. Asymptotically, at u> ^> |^, this solution 
becomes isotropic. At infinity 

F{<j> 
•^(=)'( 

1-1 cos q> 
gw 

(55) 

Referring to the formula (26) one can find that in this 
model a — |. 

The other stationary solutions have no simple physical 
interpretation. 
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5    Numeral simulation 

We solved the equation T2(cj,<j>)    =   Ts-Cbu
2 

dn      a ,  o  r,A    „ 
-57 = -rinV4 + Tun 
at     wA (56) 

numerically, assuming that the dumping coefficient Yu 

is the sum of two parts 

rw = r, + r2 (57) 

Coefficient Ti was nonzero in all experiments. It consists 
of high-frequency hyper-viscosity Th and strong damp- 
ing Ti in low frequency region: 

T,(w)    =    -Q(w-wo)2,   w0 = 4,   UJ<CJ0 (58) 

rfc(w)    =    -Ch(— - l)2,   wi = 98,   u > wi       (59) 

where C; and Ch are the positive constants. Presence of 
the low-frequency damping is necessary for the numeri- 
cal reasons. 

Coefficient T2 includes forcing due to external phys- 
ical mechanisms, and the damping due to the wave- 
breaking. 

We studied the following variants of the forcing: 

Case A. Symmetric forcing 

T2(u) = Cp6{u-S),  Cp>0 

Case B. Point forcing 

r2(u) = Cp6(uj-8)ö{<p),  Cp>0 

Case C. "Realistic" forcing 
This point should be explained. There is no univer- 

sal agreement in the wave-modeling community about 
the form of the source of the energy transmitted from 
wind to the surface waves. One of the commonly used 
expression for Tj is 

H - { 0/- 7^(7 - 1)cos<f>,    c>v 
C < V 

(60) 

Here v is wind velocity, c .= f = £ is phase velocity, a 
is dimensionless constant. 

Therefore we used the following parameters of forcing 
corresponding to "realistic" situation: 

f C[ (CJ-10)UJ cos cf>,    10<w<94 

( C{e V 2.5 ; cos^    94<w<98 

where Cj, C( and C{ are positive constants. 
This means that in the region 10 < u < 94 T/(w) is 

chosen to get the accordance with (60), while in the in- 
terval 94 < u> < 98 Tf(uj) is chosen to provide a smooth 
transition from region of forcing to the region of high- 
frequency viscosity. 

Equation ( 56) is not convenient for direct numerical 
simulation due to the presence of the numerical instabil- 
ities appearing from "simple-minded" discretizations. It 
can be regularized and effectively solved by introducing 
a new variable y = (u>8n)3 : 

1=^)0+^)0+3^ (61) 

where 

P(w,v) = 2aw52/'. Q(u,y) = 3au3y3 

are nonlinear diffusion coefficients. 
This "classical" diffusion equation is solved economi- 

cally with the help of implicit numerical scheme by sim- 
ple recursion in the direction of u and cyclical recursion 
in the direction of 4>. The efficiency of the algorithm 
is illustrated by the fact that it takes just a few dozen 
of minutes to calculate the development of the turbu- 
lence from the random noise initial conditions to sta- 
tionary state using Pentium 133 MHz CPU on the grid 
of 128 x 32 nodes of (w, <p) domain. 

We started with the "free" case (Tu = 0) putting as 
an initial data the JONSWAP spectrum: 

n(uj,(j>) = -w5e   *\"p) 
2TO 

cos <f> 

where u)p = 27r'/m, fm = O.lUHz, 7 = 3.3, -f < '<j> < 
f, a = 0.07 for u < wp and a = 0.09 for u > up 

Fig.l presents §f |t=o plotted together with the re- 
sults of Resio and Perrie (RP), Masuda (RIAM) and 
WAM method. It is seen that the diffusion approxima- 
tion results are close to the results of first two groups 
and essentially differ from the DIA WAM results. 

In the symmetric Case A (see Fig.2, 3) there was an 
ample range of frequency with T == 0 (transparency win- 
dow). Stationary isotropic solution in this case is 
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Fig. 1. Comparison of the collision terms for diffusion approxi- 
mation with RIAM, WAM and RP data taken from Komatsu and 
Masuda (1996). 

y = Au + B (62) 

where A < 0 is the flux of the wave action to large 
frequencies. The stationary spectrum was established 
rather soon. 

In the case of "point forcing" (see Fig.4, Fig.5 and 
Fig.6; () means angle averaging), the stationary spec- 
trum is essentially anisotropic. It was reached very soon" 
as well. 

An essential anisotropy also exists in the case of "re- 
alistic" forcing (see Fig.7, Fig.8). 

It is important to note that in all three abovemen- 
tioned cases the angle-averaged spectrum exhibits u>~4 

Kolmogorov law despite angular dependence in the last 
two cases. Temporal evolution of the "realistic" spec- 
trum in the form of the wave propagating toward low w 
is presented on-Fig.9. 

Fig.10, Fig.11 and Fig.12 show temporal behavior of 
the integrals N,E and average frequency u> = ^ in the 
"realistic" case. 

Fig.13, Fig.14, Fig.15 show temporal behavior of the 
same functions for the case r2 = 0. We used as an initial 
condition the stationary spectrum obtained for F2 ^ 0 
case. ■ 

6    Conclusion 

The diffusion model of four-wave interaction is the most 
simple model presenting the major feature of the phys- 
ical phenomenon under investigation - conservation of 
the constants of motion and righteous scaling. It is very 
convenient and effective for numerical simulation. The 
numerical experiments show that this model describes 

Time=  1.90e+01 

Fig. 2. Energy density / = u4n(u>,<p) for symmetrical forcing at 
CJ = 8 

Symmetricol forcing 

Fig. 3. Log((I(\og(ui)))) for symmetrical forcing at o> = 8 
—T 1 1 1 1  

3   o 

o 

Fig. 4. Line levels for I(u>,4>) - point forcing at w = 8, </> = 0 
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Time= 1.55e+03 Time»  1.13e+01 

Fig. 5. Energy density / = üj4n(w,6) for point forcing at u = 8, 
6 = 0 
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Point forcing 

- 

 i 
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JV'0 
- 

,o-12 
- 

10"M - 

io-'6 . -j >—i—■   ■  ■ . i  >— ' 
■ 

to 
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Fig. 6. log((/(log(w)))) for point forcing at u = 8, 6 = 0 

20 ': 

-20 : 
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Fig. 7. Same as Fig.4 for "realistic" case 

Fig. 8. Same as Fig.5 for "realistic" case 

^m-'o 

Fig. 9. log((/(log(oi)))) for "realistic" forcing for three different 
time moments 

Fig. 10. Temporal behavior of integral N in the "realistic case" 
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Fig. 11. Temporal behavior of integral E in the "realistic case" 

Fig. 12.   Temporal behavior of the averaged frequency in the 
"realistic case" 

Fig. 14. Temporal behavior of integral E in the T2 ^ 0 case 

3 20 

Fig. 15.   Temporal behavior of the averaged frequency in the 
T2 5^ 0 case 

Fig. 13. Temporal behavior of integral N in the T2 ^ 0 case 
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evolution of the wave spectra reasonably well and can 
be used for development of the new generation of wave- 
prediction models. It would be desirable to compare the 
new model with numerous accumulated data of the field 
observations and laboratory experiments. To do this we 
should include in the equation (35) the dependence on 
the spatial coordinate x (the fetch). The new equation 
is 

dn     cos (f> dn 
~di+   2u  dx —rLu + T(Lj,(f>)n (63) 

The numerical simulation of the equation (63) is sep- 
arate and nontrivial problem. We hope to present the 
results of the simulation of this equation in the next 
article. 
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(Received 1 December 1998, accepted 2 February 1999) 

1. Introduction 

In many physical situations, the oscillations of the free surface of a fluid is are a random process in space and 
time. This is equally correct for ripples in a tea cup as well as for large ocean waves. In both cases the situation 
must be described by the averaged equations imposed on a certain set of correlation functions. The derivation 
of such equations is not a simple problem even on a "physical" level of rigor. It is especially important to 
determine correctly the conditions of applicability for a given statistical description. For some physical reasons 
they might happen to be narrow. In this article we discuss the statistical description of potential surface waves 
on the surface of an ideal fluid of finite depth. We will show that this problem becomes nontrivial in the limit 
of long waves, i.e. in the case of "shallow water". 

The most common tool for the statistical description of nonlinear waves is a kinetic equation for squared wave 
amplitudes. We will call it the "wave kinetic equation". Sometimes it is called "Boltzmann's equation". This is 
not exactly accurate. In fact, a wave kinetic equation and Boltzmann's equation are the opposite limiting cases of 
a more general kinetic equation for particles obeying Bose-Einstein statistics like photons in stellar atmospheres 
or phonons in liquid helium. It was derived by Peierls in 1929 and can be found now in any textbook on the 
physics of condensed matter. Both Boltzmann's equation and the wave kinetic equation can be simply derived 
from the quantum kinetic equation. In spite of this fact, the wave kinetic equation was derived independently 
and almost simultaneously by Patric, Petchek and others (see Kadomtsev, 1965) in plasma physics and by K. 
Hasselmann (1962) for surface waves on deep water. It was done in the early sixties. Recall that Boltzmann 
derived his equation in the last century. Some authors call this equation after Hasselmann. We will use a more 
general term - "kinetic wave equation". 

The pioneers starting from Boltzmann did not care about rigorously justifying the kinetic equation and finding 
the exact limits of its applicability. This work was done later. Boltzmann's equation was derived in a systematic 
and self-consisted way by Bogoliubov in 1949. The quantum kinetic equation was studied systematically by the 
use of diagram technique in fifties. 

The wave kinetic equation can be derived and justified in a similar way. It is a lengthy procedure, thus in 
this short article we will give the final results of the diagram procedure - the kinetic equation and the limits of 
its validity. We will see that in the case of shallow water the limits are very restrictive. 

2. Hamiltonian formalism 

We will study weakly-nonlinear waves on the surface of an ideal fluid in an infinite basin of constant depth 
h. The vertical coordinate is 
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~h<z < V(r),        r = (x,y). (2.i) 

The fluid is incompressible, 

divy = 0 (22) 

and the velocity V is a potential field, 

F = V$, (2>3) 

where the potential $ satisfies the Laplace equation 

A$ = 0 {2A) 

under the boundary conditions 

$U=„ = tf(f,t), $,|,=_A = 0. (2.5) 

Let us assume that the total energy of the fluid, H = T + U, has the following expressions for kinetic and 
potential energies: 

T = \idriy*?dz> (2-6) 
U   =    2P/772dr+a/(V/1 + (VJ7)2-l)dr. (2.7) 

Here g is the acceleration of gravity, and a is the surface tension coefficient 
The Dirichlet-Neumann boundary problem (2.4)-(2.5) is uniquely solvable, thus the flow is defined by fixing 

1968)- Pair 1S Can0niCa1' S° the equati0n 0f motion for « and * takes the form (Zakharov, 

dv^M      cM__6H 
dt      6$'     dt~ ~1^" (2-8) 

Taking their Fourier transform yields 

dy _    SH d$(k) SH 
dt      6*(k)*'       dt    ~    srffr' (2-9) 

Here #(£) is the Fourier transform of #(r): 

*(fc) = ^|*(r>-^dr. (210) 

The Hamiltonian H can be expanded in Taylor series in powers of rj: 

H = H0 + Hi + H2 H  (2.11) 
>:K 
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Omitting the procedure of calculating Hi we present the final expressions for the first three terms in this 
expansion: 

Ho    =    5/{A*l**l2 + ß*to*l2}dfc»      Ak = k tsah(kh), Bk = g + ak2 (2.12) 

Hi    =    ^7^rjL^(k1,k2)^k1^k2Vk3S(k1+k2 + k3)dk1dk2dk3, (2.13) 

H2    =    2(2 .2 / £(2)(ki,k2,k3,k4)
iSk1^k2Vk3 Vk* S(fa + fa + fa + fa) dfa dk2 dfa dfa 

-8(2 v2 / (fafa)(fafa) T]kl i)k2 Vk3 Vk* S(fa + fa + fa + fa) dfa dk2 dfa dfa . (2.14) 

The formulas for L^ and IP1) were found in 1970 by Zakharov and Kharitonov (see also Craig and Sulem 1992, 
Zakharov 1998). Here are their expressions: 

Lw(ki,k2) - -(fafa) - \fa\\k2\ tanh&i/i tanhfofc, (2.15) 

and 

L^2'(fa, fa, fa, fa)    =    — IA;iIjA^21 tanh&i/i iaxih.fah 

-    /      2N 2N    + \%1+%3\t&rih\fa + fa\h 
[   tanhfci/i     tsuihfah 

+    \fa + fa\ tanh|A-2 + fa\h + \fa + fa\tanh\fa + fa\h + \k2 + fa\ tanh\fa + fa\h\ 

1 f    2k2     2k2 1 
=    -A1A2l—j±--^- + A1+3+A2+3 + A1+i + A2+4> (2.16) 

One can introduce the normal variables ak, a*k. They can be expressed as follows: 

J_M* m = ^UJ {ak+a-k) 

The transformation ^k,r}k -t ak is canonical. One can check that 

■äf+iK=0' (218) 

where the Hamiltonian H can be represented as the sum of two terms 

H = H0+Hint. (2.19) 

For the first term we have 

H0=     u>k ak a*k dk, (2.20) 
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where uk > 0 is defined by the formula 

uk = y/AkBk = y/k tanh (kh) (g + a k2). (2.21) 

The second term, Hint, is represented by the infinite series 

Hint=M    ^    / V(n<m){ki,... ,kn,kn+1,...,icn+m)a,l1---alnakni.1---akn+m 
«..I..-*,%s.O * n+m>3' 

x£(£i + • • • + kn - 4+i £„+m) dfci... dkn+m (2.22) 

In the case under consideration we have 

y(».'»>(P,Q) = y<m.»)(QjP)> (223) 

where P = (fci,... , kn) and Q = (fcn+i,... , kn+m) are multi-indices. 
For more general Hamiltonian systems (in the presence of wind, for instance), the coefficients V^m\P,Q) 

are complex, and 

V^m\P,Q) = V<m^{Q,P). (2.24) 

The condition (2.24) guarantees that the Hamiltonian Hint is real. 
For surface waves the coefficients can be written as 

'^^(^-(^"Vc-W      (,25) ^4*; -B* 

In this paper we will use only one coefficient of fourth order V^2\P, Q). After a simple calculation we can 
obtain the following expression for this coefficient: 

V^(kUk2,k3,k4)      =      -^{L(2)(-4,-fc2^3,4)+L(2)(4)4)_4)_4)_Z,(2)(_^)fc3)_^2)jfc4) 

-£(a)(-^i,^,-^,Ä3)-L(2)(-^,Ä3,-^i,^)-L(2)(-^,^,-^i,^)} (2.27) 

i07r J     \ Ok! -Dfc2 -Dfe3 -D*4 / : 

where 

i»&.4,fc,&) - \ {%£%£)Ut ^ik.kAM). . (2,8)  fc 
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We will not discuss the five-wave processes systematically.   This makes it possible to use the following 
approximation for the Hamiltonian: 

H   =       uk\ak\2dk + -     F(1,2)(£,h,k2)(ak a*kl a*k2 + a*k akl ak2)6(k -kx- k2) dkdfa dk2 + 

+_ / W°'3)(£,kuk2)(ak akl ak2 + a*ka*kl a*k2)S(k + h + k2)dkdkx dk2 + 

+- I V<-2'2)(k,k1,k2,k3)alal1ak2ak3S(k + ki-k2-k3)dkdk1dk2dk3 (2.29) 

3. Canonical Transformation 

In this chapter we will study only gravity waves and put a = 0, so that 

uk = \Jgk tanh(/c/i) 

The.dispersion relation (3.1) is of the "non-decay type" and the equations 

Wfc = <jjkl + u>k2     k = ki + k2 

(3-1) 

(3.2) 

have no real solution. This means that in the limit of small nonlinearity, the cubic terms in the Hamiltonian 
(2.11) can be excluded by a proper canonical transformation. The transformation 

a(k,t) -+b(k,t) (3.3) 

must transform equation (2.18) into the same equation: 

dh     .SH 
-W + lSbi=°- (3.4) 

This requirement imposes the following conditions on Poisson's brackets between ak and bk: 

r,    ,   -. f / Sbk  8bkn      Sbk  6bk» \     „ 
{h,ok>}    =        <-z T~r~TT-l—>dk" = 0 J   I oak» öa*k,      öal„ öak> ) 

The canonical transformation excluding cubic terms is given by the infinite series: 

ak = ak*+aU+akV + ... 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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where 

40) = h 
.0(i)    =    JrM&kufyht bk2 S(k-h - k2)dh dk2 -2JT^{k2,k,h)btl bk2 6{k + h - k2)dkx dk2 

+   fr^^kuk^b^b^sik + h + k^dhdh 

..42)    =     1 B(k,k1,k2,k3)b*klbk2bk3S(k + k1-k2-k3)dkidk2dk3 + --- (3.10) 

Plugging (3.9) into (3.5)-(3.8), we obtain infinite series in powers of b, b*, which must identically cancel out at 
all orders except zero. 

Let us assume that 

r(2)(Mi,£2) = r^(k1,k,k2) = r^(k2,k,h). (3.11) 

This condition guarantees that (3.11), (3.5)-(3.8) are satisfied at first order in b, b*. Substituting (3.9) into H 
we observe that the cubic terms cancel out: 

„(i),? z   Cv ■ 1   V^2\k,kuk2) 
rW(*,*i,*2)    =    -0 7  \ (3.12) 

2 (wfc-wjt, -Wfc2) 
v       y 

*»<«,«,,*> - -1^'^^-fe) (3.13) 2 (wfc+wfcl +wjt2) 
v      ' 

A simple method for the recurrent calculation of B(k, h,k2, k3) and higher terms in the expansion (3.9) was 
found by the author in the article (Zakharov, 1998). By the use of this method one can find 

B(k,kuh,h)  = rW^.^.^-^rW^^.^-^ + rW^,^,^-^)^1)^,^,^-^)   (3.14) 

-rW(k + k1Xk1)rW(k2 + k3,k2,k3) + r^(-k-k1,k,h)r^(-k2-k3,k2,k3) 

The series (3.10) should be at least asymptotic. Hence we require 

la^l^N (3.15) 

Let us consider the limit of shallow water as kh -4 0. We will assume also that the wave packet is narrow in 
angle: ky < kx. In this limit 

uk->s\k\(l-±(kh)2+ ■■■),      S=y/gJ, (3.16) 

and 

L^ihM)--^,    Ak~h\k\2,    Bk~g,    V^ikMM^-^-Fikk^f/2 (^]m . 

Denoting ky = q, kx = p and \p\ » \q\, one obtains: 

IK 
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We will study two opposite cases - wave packets narrow in angle and broad in angle. In both cases we will look 
only for the leading order terms in 1/kh. For a packet which is very narrow in angle: 

a.W(p,q)    a    b(p)6(q),  a,W(p,q) =b^(p)8(q) 

bW(p)    ~ 
8irV2 

m1/4 _L{ r 
\hJ      sh2\J0 

3     m1/4   1   j   r 6fa)6(p-Pi) d     | 2 f00b*{Pl)b(p + p1) 

PPi(P - Pi))1/2     l       Jo   PPiip + Pi))1/2 dpi } + ■ ■ •   (3.18) 

The condition (3.15) now reads now 

pV2   \h) sh2 (3.19) 

Let a be a characteristic elevation of the free surface, ß = (ka)2, 6 = kh. The condition (3.19) is equivalent to 

/x«<56,    or   N = !^r<l, (3.20) 

N is known as "Stokes number". 
For wave packets which are broad in angle the condition (3.15) is less restrictive. In this case the denominator 

of T^(k,ki,k2) is small if all three vectors k,k\,k2 are parallel. Let us put k = (p,q), ki = (pi,qi), fa = 
(p2, —92)- Then T^(p,pi,p2,q) has a sharp maximum at q = 0. Performing integration over q yields 

&(1)(P)0) = sTi (h)1/4 ^^{lo
Pp1/2(p-p^/2b(p^b^-p^dp^ 

+ 2j™p\/2(P + p1)
1/2b*(Pu0)b(p + p1,0)dp1\ + --- (3.21) 

The condition 

now reads 

|^1)(p,0)|«|6(°)(p,0)| 

/x«: 84. 

4. Effective Hamiltonian 

(3.22) 

(3.23) 

After performing the canonical transformation the cubic terms in the Hamiltonian cancel out. In new variables 
bk we have 

H = Ho + H2 + H3 + 

H0=     uk\bk\2dk, 

Ei - - / T(k, fa, fa, fa) b*k b*kl bk2 bks S(k + ki-fa- fa) dkdfa dk2 dfa , 

(4.1) 

(4.2) 

(4.3) 

H3 = 
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W 

where 

T{k,h,k2,k3) 

T&kuhM) 

i (f(k,kuk2,k3) + f(kuk,k2,h) + f{k2,k3,Kh) + f(k3,k2,k,fci)) 

VW(k,h,k2,k3) + R^(k,h,k2,k3) + R{2)(k,h,k2,k3) (4.4) 

and 

RW(k,kuk2,k3) = - 

R^(k,h,k2,k3) = - 

u}(—k — ki)+uj(k) + cj(k2) 

V^2\k + h,k,ki)V^2)(k2 + k3,k2,h) 

V^2\k,k2,k-k2)V^2Hh,k3-kuki)     V^(k,k3,k-k3)V
{1'2)(k2,k2-kuh) 

LJk-k2 - Uk + Wfc2 Wk-k3 - Wfc + Wfc3 

V^2\k2Xk-k)V^2\kukx-k3,kz)     V^2\kXh-k)V^2\k2M-kuki) 
Uh2-k + Wfe - Wfc2 Wfc3-fc + U>k —Wk, 

(4.5) 

(4.6) 
K 

In the presence of capillarity, the expression (4.6) makes sense everywhere except in the vicinity of the zeros of 
the denominators. The width of these vicinities depends on the level of nonlinearity. 

The equation of motion (3.4) in new variables takes the form 

dt. 

9        / —^    ^^       —^       —♦ —^ *-* "^ "♦ 

+ iwfc bk = ~-     T(k, h,k2, k3) b*kl bk2 h3 S(k + h - k2 - k3) dkx dk2 dk3 (4.7) 

The term T(k, ki,k2,k3) is defined on the resonance manifold 

Wfc + Wfcj = Wfe2 + a;*;,,   A; + ki = &2 + h (4.8) 

Further we will omit the wave numbers k and keep only their labels.   After a series of transformations the 
four-wave interaction coefficient T can be simplified into the form 

- T1234    —    2(^1234 + 22134), 

'1234     = 
1    /AtA2A3A4\^ /AiA2A3A4\> 

\B\B2B3B4J 167r2VßiB2ß354. 

x [k2 Bx + k\ B2 + kj B3 + k\B4- (wi - OJ3)
2
 AX-3 - (wi - u4)

2 Ai_4 - (wi + w2)
2 A1+2] 

\_B2B3B4  1_ (B1B2BzB±V'A      f _1 
16TT

2
 \AiAiAiAi) \BL 

+ 
B 1-3 

A2A3A4 

L-i>3L-2<i + 

L1.2 L3A + 
1+2 

«-l,3«-2,4 

"1,2^3,4 

wl-3 _ (wl ~W3)2J        #1-4 
+ 

W2
+2-(wi+W2)

2. 

1 r _. 
■^-1,4-^-2,3 + 

«-l,4«-2,3 

Wl-4 _ (Wl _ W4)2 
•(4.9) 

Here 

Ak = fctanh fc/i,    Sfc = g + ok2 ,    Lii2 = -(ki • k2) - A\A2 ,    u)k = \fAkBk. (4.10) I; 
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The expression for Uit2 is 

«1,2    =    (fa ■ fa) 

■Bl+2 

„l(l+^)+„2(1+^) 
AiA2\^ 

+-ff~ U2 K + -g— wi ki + [ß-ß-)     (wi w2 - Wi+2)(o;i + w2) 

u. -1,3  =  -(£i • £?) „1(1+^)_„3(l+^) 

Bl-3 

B3 

AiAs^/2 
2,2   .   -"1-3        ,2   ,   / \/ ,2      \ /'■Al-A3\ w3 fa + —g- uxk3 + (o>i - w3)(o>iu;3 + w^s) \ß—ß) (4.11) 

The above expression is the most general form of four-wave interaction coefficient and is applicable for gravity 
as well as for capillary waves on an arbitrary depth. It can be simplified in different limiting cases. 

In the absence of capillarity a — 0, Bk = g and 

«1,2 = (wi + w2)< 2(fa • k2) + -viu2(ul +ui%- uj+2) 

u-it3 = (wi - u3)< - 2(fa ■ fa) + -uiu)3(u}l_3 -u\+ u)\) (4.12) 

5. Deep water limit 

The coefficient of four-wave interaction for pure gravity waves on deep water was calculated by many authors 
since Hasselmann (1962). We present here a relatively compact expression for this coefficient. 

335 

^1234      = — 12&iÄ;2Ä;3/i;4 
167T2   (fafafafa)1/4 

-2(wi + u2)
2 IW3W4 ((£1 • £2) - fafa) + wlw2 ((£3 • fa) - fafajl — 

-2(wi - w3)
2 L>2w4 (( fa ■ fa) ■$■ fafa\ + wiw3nfe2 • £4) + fafa) I — 

-2(wi - W4)
2 L2W3 ((fa -fa) + fafa) + W1W4 ((fa • fa) + fafa )J ~2 ... 

+[(fa •fa) + fafa][(fa ■ fa) + k3fa] + [-(fa ■ fa) + fak3][-(k2 ■ fa) + fafa) 

+[-(fa ■ fa) + fafa][-(fa ■ fa) + fafa] 

lAt      ,      s2[(fa-fa)-fafa][~(fa-fa) + fafa]  , At s2[{fa-fa) + fafa}[(k2-fa) + fafa} 
+4(<J1+U>2)     -2      ,       j.,.^2  +4(Wi-W3)     -2 37- —T2  

+ 4(wi - U>A) 

Wl+2 ~ (Wl + W2)2 

2 [{fa ■ fa) + fclfc4][(fc2 • fa) + fc2fc3] 
Wl-4 ~ (wl - W4)2 

Wl-3 ~ (Wl ~ W3)2 

(5.1) 

Here wf =Völfc»l- 
In spite of its complexity the expression (5.1) has an inner symmetry and beauty. It was mentioned that in 

the one dimensional case the coefficient T1234 cancels out (Dyachenko and Zakharov, 1994). This result was 
obtained earlier by computer. We will obtain it below "by hand". Another compact expression for T1234 was 
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found by Webb (1978). Both expressions coincide on the resonant surface (5.2), but a proof of cancellation of 
T1234 in a one dimensional geometry is more difficult with the Webb formula. 

In the one-dimensional case the resonant conditions 

U>2+U)2     =     V3+ W3 

h+k2    =   k3 + k4 (5.2) 

have trivial solutions k3 = kuk4 = k2i k3 = k2,k4 = fci describing wave scattering without momentum exchange, 
and nontrivial solutions providing the momentum exchange. For these solutions the sign of one of the wave 
vectors is opposite to others. For instance, we can put 

ki > 0, k2 < 0,  k3 > 0,  kA > 0. 

In the one-dimensional case most of the terms in (5.1) cancel out, and the expression is simplified down to 
the form 

Tl2M = ~g^Wl(WlW2a;3a,4)1/2{ -3w2w3w4 + w2(wi +u)2)
2 -W3(wi -u3)

2 -w4(wi -W4)2] (5.3) 

The-resonant conditions (5.2) can be solved by the parametrization 

wi = A{\ + £ + e2), w2 = A£, u3 = A(l + 0, Ui = MO- + 0 
k1=A*(i+t+e)2, k2 = -A2

?, k3=A
2
(I+02, h=A2ea+o2 (5.4) 

By plugging the parametrization (5.4) into (5.3) we get 

T1234 = - ^2 wi (ujiu^uji)2 A3Z(1 + 0 (-3£(1 + 0 + (1 + O3 - 1 - O = ° (5-5) 

6. Shallow water limit 

The shallow water limit takes place if kh -> 0. In this limit 

Ak -> k2h    uk^sk,    s2 = gh,    L12 -»• -(& • k2),    Ul,2 -> s(*i + k2)(h ■ k2), 

«-i,3 -»• s(ki - *3)(£i • k3). 

The coefficient (4.9) can be simplified into the form 

ll' 
'1234      =      — 

+2 

HA (hhhhy/i ] (*x" k2^ks'k^ + &" *3)^2 • &)+ & ■ &)& • &) 

(fci • k2)(hj k4)(ki - k2)
2     (& ■ k3)(k2 • k4)(h - fc3)

2     (Ei • k4)(k2 • £3)(fc! - k4)
2 

(h ■ k2) - kxk2 {ki-k3)-hk3 (&•&)-*i*4 

(6.1) 

6.2) 

The three terms in (6.2) are singular if the vectors h are parallel. But there is a remarkable fact: these singu- 
larities cancel and the whole expression (6.2) is a regular continuous function. The cancellation of singularities 
is a quite nontrivial circumstance. It could be checked by a straightforward calculation. 

The singular part of 7\234 can be written as follows: 

[1234 = — 
k2k3k4 

4TT2h (kifahh)1/* 
(fci + k2f (*i - hf (&i - k4) 2. 

k2 (cos <j>2 - 1)      k3 (cos 03-1)      k4 (COS 04-1) (6.3) 
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Here cos^j = (ki • ki)/kiki. 
The resonant conditions are: 

fa+k2    =   k3 + ki, 

k\ + k2 COS (f>2     =      ks COS <f>3 + &4 COS </>4, 

k2 sin <f>2    =   k3 sin fa + k4 sin 4>i • 

For small angles |<fo| <C 1, we can put approximately 

ti cos fa - 1 ~ —^-,  sin^j ~ fa. 

The resonant conditions now become now 

k2<f>2 = kZ(j>l + k4<pl,    k2<f>2 = fafa + kA(f>4 

The most singular part of T1234 is 

1     {hhkiY'2 \     (h+k2)
2  ,  (h-fa)2  ,  (h-k4)

2 

■l-sing —      r,„2U ,1/2 k2(t>j 
+ 

h<t>l 2n2h       ÄJ. 

But one can check by a direct calculation that 

(fci + k2)
2      (h - h)2      (h - ki)2 _ 

+ 
kA<t>\ 

h4>2 h4% ki</>2 
0 

in virtue of (6.5). Hence the singularities cancel and (6.2) is a regular function. 
We can calculate T1234 more accurately by putting 

^1234 = "lfor^X (fcifc2fc3fc4)
1/2 ] (*i*s)(^**) + (kih)(k2h) + (££)(££) 

+ 4s2 (hhXkjkJih + k2)
2 _ (hhXhhXh - k3)

2 _ (hhXfakMh - k4)
2 

W
l+2 - (Wl + W2)2 Wi_3 - (Wl - W3)2 W2_4 - (Wi - W4)2 

Here we put 

u>(k) = sk(l-hkh)2>) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

Now denominators in (6.8) cannot reach zero, but for almost parallel ki they are of order (kh)2 and small if 
kh -)• 0. As a result, some terms in (6.8) are large, of order 1/h3, but in fact they cancel each other. The major 
terms in (6.8) are 

T ■    ~ ■'-sing — 
(*i + k2)

2 1     (fc2fc3fc4)1/2f   
2n2h       fcV2       \k2[<t>2 + h2{k1+k2j

2]      M^+^2(*i-*s)2]      htä + Wih-h)2] 
(h-h)2 

(fci - kif 
= 0(6.10) 

The expression (6.10) is identically zero in virtue of (6.5). As h -> 0 (6.10) goes to (6.7). 
Cancellations (6.7), (6.10) have a very deep hidden reason - they are consequencies of the integrability of the 

KP-2 equations (see Zakharov 1998). 
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7. Statistical description 

The statistical description of nonlinear wave fields is realized by the correlation function 

< < • • • a*knakn+1 ■ ■ ■ akn+m >= Jn'm(ki. ■ ■ • kn, kn+1 ■ • ■ £„+m)<K£i + •■• + £„- kn+1 kn+m)        (7.1) 

The presence of ^-functions in (7.1) is a result of spatial uniformity of the wave field. 
In the saihe way we can introduce correlation functions for the transformed variables bk: 

<K1--- KJkn+l • • • bkn+m >= In'm(ki •■•£„, 4+1 • • • £n+m)$(Äl + • • • + kn - 4+1 kn+m)        ■   (7.2) 

To find the connection between Jn>m and In'm one has to substitute (3.9) into (7.1) and perform the averaging. 
The following pair of correlation functions is the most important: 

< aka*k, >    =   nk 5(k - k') 

< bkb*k, >    =   Nk S(k -k') (7.3) 

Here nk and Nk are different functions.   nk is a measurable quantity, connected directly with observable 
correlation functions. For instance, from (2.17) we get 

/     \ !/2 

J* =< to*l2 >= Ö ( BT )     (nk+n-k) = -^(nk + n-k) (7.4) 
k 

The function Nk cannot be measured directly. It is an important auxiliary tool used in analytical constructions. 
In most articles on physical oceanography the authors make no difference between nk and Nk. This is a source 
of persistent and systematic mistakes. We will see that the difference between nk and Nk is especially important 
on' shallow water. 

Plugging (3.9) into (7.3) we get: 

nk = Nk+ < 4°) a"* > + < 4°)* flW > + < af> a«* > + < a<°> a?> > + < a{°> a« > + ■ (7.5) 

Terms < ak ak >, < 4 4 > are expressed through triple correlation functions < b*bb > and <bbb>. As 
far as the cubic terms in the effective Hamiltpnian are cancelled, triple correlation is defined by the fifth-order 
correlation functions and is small and can be neglected. In fact, I^1'2^ ~ n5. 

The next terms in (7.5) are expressed through quartic correlation. Only one quartic correlation function is 
really important 

< K b*kl bk2 bk3 >= J(2>2)(£,kuk2,k3)S(k + & - k2 - k3) (7.6) 

We study only weakly nonlinear waves and can assume that the stochastic process of surface oscillations is close 
to Gaussian. Thus we can put approximately 

Ii2'2)(k,k1,k2,k3) = NkNk2S(k-k3)+NkNk3S(k-k2) (7.7)     \ 
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By the use of (7.7) we obtain the following expression: 

nk   =   Nk + 2 f \rW{k,kuk2)\2 Nkl Nk2 8(k -kx- k2)dkxdk2 

+2. f \r^(k2,k,kx)\2 Nkl Nk2 5(k + kx- k2)dkxdk2 + 

+2 f \T^(kx,k,k2)\2 Nkl Nk2 6{k -kx + k2) dkxdk2 + 

+2 f \rW(k,kx,k2)\2Nkl Nk2 6(k + kx + k2)dkxdk2 - 4Nk f B(k,kx,k,kx)Nkl dkx       (7.8) 

Using the expression (3.14) for B and formulae (3.12), (3.13) we get the final result: 

nk    =   Nk + -     I k '  u  V\2 (Nkl Nk2 - NkNkl - NkNk2) 6(k -kx-k2) dkxdk2 + 
* j (w* - ukl -wk2y 

1 j \V^2 (k,kx,k2)\
2 {NkiNk2 + NkNki _ NkNkj Sfc -k-k2) dkxdk2 + 

* J [ukl -uk ^-cok2r 

1 f \V^2)(k2,k,kx)\2 {N    N     + NkN     _ NkN    )S{k2 -%-kX) dkxdk2 + 
2 J   {uk2 -Wfc-WfcJ2 

+1 j \v^(k,kx,k2)\
2 (NkiNk2 + NkNki + NkNk2)sg + £1 + %2)dkidk2 (7 9) 

•^ J  [wk +ukl +uk2y 

On deep water all the terms in (7.9) are of the same order, and the difference between nk and Nk is small: 

nk -Nk 

nk 
^ H (7.10) 

However, in shallow water, denominators in (7.9) are small, and this difference can be dangerously big. The 
integration in (7.9) for a wave distribution which is broad in angle in the perpendicular direction can be 
performed explicitly. The last, nonresonant, term in (7.9) must be neglected. It is suitable to present the result 
in polar coordinates in the fc-plane. The final formula is astonishingly simple: 

9   /h\1/2   1    r   fk f°° i n(k,e) = N(k,e) + — (-)    j^[J .N{kue)N{k-kue)dkx + 2j   N(kx,e)N(k + kx,e)dkx) (7.11) 

Comparing the leading term with the next terms in (7.11) we obtain 

nk ~ Nk ~ p/65  8~(kh) (7.12) 
nk 

Then the condition of applicability for a weakly-nonlinear statistical theory of waves on shallow water becomes 

H < 65 (7.13) 

For a very' shallow water, kh ~ 0.1, this condition can practically never be satisfied. But for a moderately 
shallow water, kh ~ 0.3, it could be satisfied for small amplitude waves, ß ~ 10-4. In many real situations the 
corrections in (7.11) are important and cannot be neglected. Generally speaking, the weakly-nonlinear theory 
has narrow frames of applicability in shallow water. 



340 

V. Zakharov 

8. Kinetic equation 

The function nk is usually named "wave action distribution". There is no standard name for the function 
Nk so far. We will call it "renormalized wave action". It is very important that the kinetic equation is imposed, 
not "on the wave action nk but on the renormalized wave action ATft. 

To derive this equation we can begin from the equation (4.7). It imposes an infinite set of relations on 
correlation functions. The statistical description means a loss of time reversibility and needs an introduction of 
negligibly small damping. It can be done by replacing in (4.7)' 

Wfc -> u>k + ijk 

Directly from (4.7) we obtain 

^ + 2'ykNk = IT(k,kuk2,h) JmI{k,h,k2,h)6(k + h-k2- k3)dhdk2dk3 (8.1) 

We will shorten the notation further. 

ÖT A234 + («A + T) 7i234 = — 2   /   {^1567 <5l+5-6-7 ^267345 + 

+^2567 <W5-6-7 -^167345 ~~ ^3567 ^125467 ^3+5-6-7 — ^4567 ^125367 84+5-6-7 tdk^dkedki (8.2) 

Here 

A = Ai234 = -Wl - iV2 + (J3 + Ui 

r = 7i + 72 + 73 + 74 (8-3) 

To make a closure in the system we perform the canonical expansion of the correlation function 

il234 = NiN^Su + 8u) + Jl234 (8-4) 

into 

^123456 = NiN2N3(5u525 + ^14^26 + ^15^24 + ^15^26 + <5l6$24 + 8i6825) + 

+Ar4((/2356<5l4 + ^1356^24 + ^1256^34) + 

+NS(I234G8I5 + il346$25 + -^1246^35) + 

+iV6 (72345^16 + ^1345^26 + ^1245^36) + ^123456 (8-5) 

The formulae (8.1)-(8.4) are exact. There Ä234 and Ä23456 are the cumulants, irreducible parts of the correlators. 
Substituting (8.5) into (8.3) and using (8.1) we obtain 

J^/1234 + (t& + T)/i234 = T123i(N2N3N4 + NiNsNi - i^ jV2JV3 - N^N*) + LI + Q (8.6) 

Here Q is the right part of the equation (8.2) where the six-point correlator is replaced by a corresponding 
cumulant, for instance, J256347 ->• ^256347 • 

Ä = — Q — L32 +LJ3 +J4, (8.7) 

{ 
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where ü(k) is a renormalized dispersion relation 

w(fc) = w(fc)+ ftfaZiW^dki,    T(k,ki) = T(k,ki,k,h) 

LI is a linear operator: 

(L/)i234  =  M1234 + M2134 ~ M3412 - M4312 

=    -%-N2 ITi256/56346(1 + 2 - 5 - 6)dk5dk6 

-iN3 IT1546 ^2645 5(1 + 5-4-6) dk5dk6 - iN4 f T1536 /2635 5(1 + 5-3- 6)dk5dk6 

M- 1234 

(8.8) 

(8.9) 

(8.10) 

The system (8.1),(8.6) becomes closed by putting /123456 = 0. It is still very complicated. For further simplifi- 
cation one has to neglect LI. Sending r -+ 0, we finally get 

Im Ä234 = nT1234(N2N3N4 + NiN3NA - N!N2N3 - N1N2N4) 5(A) 

Substituting (8.9) into (8.1) leads to the final result 

dNk 

(8.11) 

dt 
+ 2jkNk = st(N,N,N) 

st(N,N,N) = 7T f \T1234\2 (N2N3N4 + NiNsNi - N^Na - N1N2NA) x 

x5i+2-3-4 5(ü>i + ü2 - cJ3 — u>4) dk2dk3dk4 (8-12) 

Due to the inclusion of the frequency normalization, the equation (8.12) is more exact than the "common" wave 
kinetic equation. 

To get the quantum kinetic equation we can use the same procedure, assuming that ak, a£ are noncommu- 
tative operators of annihilation and creation of quasiparticles. 

9. Renormalized dispersion relation 

Frequency renormalization is described by the diagonal part of the four-wave interaction coefficient 

T(kuk2) = T$ltk2,%iM = T12 (9.1) 

This "naive" formula presumes the existence of the limit: .r 

T(kuk2)= lim T(kuk2,h+q,k2-q) 
|9l—>0 

(9.2) 

This limit exists and does not depend on the direction of the vector q only in deep water. In the general case, 
we can obtain from (4.9) 

T12    = 
167T2 (ihT2)   [2^Bl+2**ß2 ~(W1+W2)2Al+2 ~(W1 ~W2)2Al_2l 

1    / AXA2 (9.3) 

1       BjB2 

'32TT
2
 \AIA2 

1/2 

'1+2 
L2,+ «12 

wl+2 - (wi + w + 2)2 
+ 

'1+2 
■ + 

u. 1.2 
1,2        Wl-2 - («I - W2)

2 
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In the absence of capillarity in deep water the expression (9.3) becomes 

T      - 1 1 
12    =    -g^ä (klk2)i/2 \ 3/;ifc2 + (*i • fo)2 - 4o;1u;2(fc.fc2)(fc1 + k2) + 

(wi + a;2)
2 [(& • fc2)

2 - fc2fc2]        (wi - u>2)
2 [(*! ■ £2)

2 + A;2A:2] 
+2 5—L-T : ^ -. + 2 (9.4) 

Wl+2 ~ (wi + wa)2 w2_2 ~ (wi ~ w2)2 

In the one-dimensional case the formula (9.4) becomes remarkably simple 

T   _   1   j k\k2    h <k2 ,    s 
ri2-2^\ hkl    h>k2 

(9'5) 

The function Ti2 is continuous at k = k\, but its first derivative has a jump. This result was published by the 
author in 1992 (Zakharov, 1992). At k2 = h 

In the presence of capillarity 

For monochromatic waves we have: 

In natural variables 

Ti2->Tllt   
Tn = ^k3. (9.6) 

T    _  *»    2-qfc2 

Tll-4^r^p- (9-7) 

b = F6(k-k0),  6LJ = ^Tii \F\2 (9.8) 

and 

1    kci 
T] = acos(kox — uit — (ft), o2 = —-5- |F|2 

2TTJ ujk0 

6u      1  2 - ok2  ,,   .0 

It is in agreement with the classical results of Stokes and other authors. In shallow water the limiting procedure 
(9.2) needs some accuracy and falls beyond the framework of this article. 

10. Kolmogorov spectra 

Let us look now for stationary solutions of the kinetic wave equation (8.12). They satisfy the equation 

st(N,N,N) = 0 (10.1) 

This equation has an ample array of solutions describing direct and inverse cascades of energy, momentum, and 
wave action. A full description of these solutions has not been done so far. Only very special, isotropic solutions 
could be found analytically in the case when u;* is a power function 

uk = a\k\a, (10.2) 
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and T(ki, fa, fa, fa) is a homogeneous function: 

T{ekuefa,efa,efa) = eß T{kufa,fa,fa) (10.3) 

It is assumed that the function T(fa, fa, fa, fa) is invariant with respect to rotation in fc-space. 
In the general case of water of finite depth Uk is not a homogeneous function. As a result, all known analytical 

methods are unable to construct any nontrivial (non-thermodynamic) solution of equation (10.1). But in two 
limiting cases, deep water and very shallow water, some solutions can be found. On deep water 

uk = ^k,   a = 1/2, (10.4) 

and T(fa, fa, fa, fa) is given by the expression (5.1). Apparently, ß = 3. On very shallow water 

uk = s\k\,   a = l, (10.5) 

and T(ki,fa,fa,fa) is given by formula (6.2). As far as singularities in (6.2) are cancelled, it is a regular 
continuous function on the resonant manifold (6.4). Now ß = 2. On a flat bottom the isotropy with respect to 
rotation is satisfied. 

It-is well known (see, for instance, Zakharov, Falkovich and Lvov, 1992) that under conditions (10.2), (10.3) 
the equation (10.1) has powerlike Kolmogorov solutions 

n<2)    =    a2QV*k-2J^-d (10.6) 

Here d is a spatial dimension (d = 2 in our case). 
The first one is a Kolmogorov spectrum, corresponding to a constant flux of energy P to the region of small 

scales (direct cascade of energy). The second one is a Kolmogorov spectrum, describing inverse cascade of wave 
action to large scales, and Q is the flux of action. In both cases ai and o2 are dimensionless "Kolmogorov's 
constants". They depend on the detailed structure of T(k,fa,fa,fa) and are represented by some three- 
dimensional integrals. 

It is known since 1966 (Zakharov and Filonenko, 1966) that on deep water 

nj^aiP1/3*-4. (10.7) 

For the energy spectrum 

Iudw = Uk n£ dk (10.8) 

one obtains 

iu-P1/3^-4. (10.9) 

This result is supported now by many observational data as well as numerical simulations. 
In the same way on deep water (Zakharov and Zaslavsky, 1982): 

42)=a2Q
1/3fc-23/6)    /„-Ql/3^-11/3. (10.10) 

On a very shallow water a = 1, ß = 2, and we obtain: 

41}    =    ^P^k'^h2'3,  J^-P^o;-4/3 (10.11) 

42)    =   ä2Q
l'3k-3h2/3, iM-Q^u-1 (10.12) 
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Formulae (10.11), (10.12) are new. We must keep in mind that they are applicable only if the condition fi <g.65 

is satisfied. 

11. Conclusions 

The weakly nonlinear theory of gravity waves has some window of applicability on shallow water. But this 
window shrinks dramatically when the parameter S = kh tends to zero. For 6 ~ 0.5 the window is relatively 
wide, n < KT?, but for 8 ~ 0.2 it barely exists, fj, <g 10-4. 

On deep water we can neglect the difference between the observed, n*, and renormalized, Nk, wave action. 
On shallow water the difference could be very important for correct interpretation of observed data. We have 
to remember that the kinetic equation is written not for real, but for "renormalized" wave action. 

Many problems pertaining to the statistical theory of gravity waves on shallow water are still unresolved. 
The most important problem is finding a Kolmogorov spectra for a fluid of arbitrary depth. From dimensional 
consideration we can conclude that it has the form 

JVW = P1'3 AT4 F(kh),    F->ai,    kh -}• oo,    F -> a~i {khf5    kh -> 0 (11.1) 

The function F(£) is unknown and should be found numerically. 
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