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ABSTRACT 
This paper describes a theory of data fusion in random-set formalism. Data fusion 
problems are defined as problems for estimating random sets of targets, i.e., an unknown 
number of objects whose states are to be estimated, based on information given in terms of 
random sets, i.e., a collection of sets of unknown numbers of observables with unknown 
origins. In this theory, information, i.e., a state of knowledge, is described, both a priori 
and a posteriori, in terms of random-set probability density functions, sometimes known as 
Janossy densities. Using this formalism, this paper considers an abstract distributed 
information processing system consisting of multiple information processing agents that, in 
addition to processing local information obtained through local information gathering 
sources, exchanges information with each other to achieve a globally optimal informational 
state collectively. 

1.   Introduction 
Efforts to formalize distributed data fusion processing by multiple processing nodes (or data 
processing agents) were made in the 1980's under the DARPA-sponsored Distributed Sensor 
Networks Projects, as reported in Refs. [1] to [8]. In those efforts, not only network connectivity 
among processing nodes but also the precise timing of "who talks what to whom" is 
mathematically described, to model information flows in a given communication network. In 
short, these efforts were to describe information exchanges as precisely as possible, by 
describing temporal and spatial information changes as a directed graph, called an information 
graph ([8]). 

In this theory of information exchange, an underlying estimation problem was formulated as a 
general abstract estimation problem on an appropriate abstract state space. However, the 
research was clearly motivated by multiple-sensor, multiple-target, tracking problems, or 
multiple-source, multiple-object, dynamic state estimation problems. Hence, in parallel to these 
efforts to establish a general theory of information exchanges, attempts were made to build a 
general theory of multi-target tracking, as a natural extension of a general nonlinear filtering 
theory, which we may view as a theory of abstract tracking with a known number of targets and 
a known origin for each unit of measurements. 

These efforts to establish a general framework for multi-sensor, multi-target problems resulted in 
a general theory that expands the multi-hypothesis filtering algorithm described in the paper [9] 
by D. B. Reid. This general theory of multi-target tracking was reported in [10] and [11], and is 
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recently referred to as the MCTW filter in [12]. In this framework, targets, or objects to be 
estimated, are modeled as a random finite sequence in an abstract state space. This formalism 
was incorporated into the general theory of multi-agent estimation problems, mentioned above, 
and resulted in a general, distributed data fusion theory, as summarized in [8]. Subsequently, 
treatment of non-deterministic cases which had been left more or less ambiguous in [8] was 
explored in [13]. 

Recently, this general multi-target tracking theory based on the random finite sequence 
formalism was re-examined in view of a surge of interest in random set formalism, as seen in 
[14], [15], [16], and [17]. These attempts at re-examination resulted in the rewriting of the 
general multi-target tracking theory explicitly using the random-set formalism as established in 
[18] and [19], and they are described in [20], [21], and [22]. The Point-process formalism as 
seen in [14] and [23] is equivalent to the random-set formalism, as shown in [24]. At this point, 
however, despite several claims to providing new tracking algorithm development, [16] and [17], 
the practical benefits of using the random-set formalism remain, in my opinion, unknown. As a 
theory, however, the random-set formalism gives us a more consistent picture of various 
complicate problems, although it seems to some a mere rewriting of the same story in a different 
language. 

The purpose of this paper is to re-examine the theory of information exchanges, as described in 
[8], using the random-set formalism established in [20], exploring the possibility of some 
advantage in using the random-set formalism in describing a general data fusion theory. In the 
next two sections, Sections 2 and 3, we will review the distributed data processing theory in [8], 
and the random-set formalism [20] of a general class of multi-target tracking problems, which is 
followed by Section 4 which re-writes the main result of [8] in the random-set formalism. 

2.   A Theory of Distributed Information Processing 
This section reviews the general theory of data processing as described in [8]. Let us consider a 
finite set of data processing nodes, called agents. We call them agents rather than nodes mainly 
not to confuse them with nodes in the information graph described later. Each data processing 
agent has its own set of sensors and processes information gathered by those local sensors more 
or less autonomously. However, agents are connected by a communication network, and 
exchange information with each other, under a given set of rules. 

We assume that information flow into this system of data processing agents is through the 
sensors, each of which is owned undisputedly by one of the agents. Thus the basic unit of 
information in this system is a triple \y,s,t) of a data set y which is an element in a measurable 

space2 Es associated with sensor s, the sensor index itself s, and a time index t.  Then we call 

In this paper, by a measurable space we mean a locally compact Hausdorff space satisfying the second axiom of countability. 
Every locally compact linear space is finite-dimensional. On the other hand, a locally compact Hausdorff space is a regular 
topological space, and if it satisfies the second axiom of countability, it is metrizable. Hence, in practice, we can consider such a 
space as a so-called hybrid space, i.e., a direct-product space of a Euclidean space (or its subset ... to represent "continuous" 
states or observations) and a finite (or at most countable) set (to represent discrete components of states or observations). It is 
interesting to see that this topological property is necessary to develop a general theory of random sets ([18]) as well as to define 
conditional probabilities ([25]). 



any finite set of data sets an information set. Each information set represents an accumulation of 
information gathered by sensors in the system. Thus we can describe information possessed by a 
data processing agent at a given time by a particular information set. 

In order to describe temporal and spatial changes of information sets, it is convenient to use a 
directed graph called an information graph. Each element, called an information graph node, or 
simply a node, of a information graph represents an event in which some change in informational 
state, i.e., information sets in each data processing agent takes place, and is partially ordered by 
time and informational flow. For example, Fig. 1 shows a three-agent system in which agents 
A1 and A2 act as sensor processing agents, and agent A3 is the higher-level data fusion agent. In 

this figure, the inputs from each sensor are represented by squares, while the informational nodes 
are depicted by circles, labeled as ijk, where j refers to each agent and k is the ordering indices. 

Agent A1 

Agent A2 

Agent A3 

Fig. 1: Hierarchical Data Processing System 

The horizontal lines (arcs) represent an accumulation of, and lack of loss of, information within 
each agent. The downward lines represent the informational flow from the subordinate agents to 
the superior agent. For each information node ijk, let Zjk be the information set accumulated at 

that node. Then, apparently, we have Zu = Zu U Z2k. 

Figs. 2 and 3 show examples in which agents are more or less equal to each other, but with 
different information exchange patterns, i.e., broadcasting and cyclic. Unlike Fig. 1, Figs. 2 and 
3 have extra information nodes to represent information increases due to information received 
from the other nodes. In the broadcasting case of Fig. 2, each agent exchanges information with 
each other agent periodically so that, after each exchange, the information set at each agent 
becomes identical, i.e., Zu = Zu = Z3t, for each k = 2,4,...   On the other hand, changes in the 
information sets possessed by each agent become much more complex when an asymmetric 
information pattern such as the cyclic information pattern shown in Fig. 3 is used. 



Agent A1 
14 l15 

Agent A2 

Agent A 

Figure 2: Broadcasting Communication 

14 l15 

Agent A1 

Agent A2 

Agent A3 

Figure 3: Cyclic Communication 

Our problem is to obtain an efficient estimation method exploiting given information exchange 
patterns. Let us assume that the goal of the system as a whole, as well as the individual agents, is 
to estimate a random system state x in a measurable state space3 E.  We assume that this state 

Footnote 1 is applied to this space also. 



space E, as well as each sensor measurement space Ys, has an appropriate measure4, and both 
system state distribution and each sensor data set distribution has a well-defined density function 
with respect to the given measure. We can assume that the system state can represent anything 
but the state is static for the moment. Moreover, all the data sets are conditionally independent, 
i.e., 

p(z\x)=   Y[p(y\x) (1) 
(y,S,t)eZ 

for any information set Z 

The following rather simple equation, a direct consequence of this assumption, is indeed the 
basis of the theory of information exchanges, as summarized in [8]. 

„(\7 U7\    ^-1 P(
X

\
Z

I)P(
X

\
Z

I) p{x\ZlUZ2)=C ■ (2)5 

with the normalizing constant C, for any pair of information sets, Z, and Z2. Eqn. (2) claims 
that when fusing two information sources, we first add the two but subtract the common 
information afterwards to avoid informational double-counting. 

For every node i in a given information graph, we can define the information set Zi at node i as 

the union of all the information sets at the nodes which precede node i. A node without any 
predecessor should be connected to a sensor input which becomes its information set. This 
definition assumes the perfect memory of each agent as well as perfect communication among 
agents. We can view eqn. (2) as an abstract binary data fusion equation, which can be 
generalized in the following form. For a given node i in an information graph, let I be the set of 

all the nodes preceding node i. We can show ([6]) that there exists a set I of nodes preceding 

i and an integer-valued function a defined on I such that 

/ 

P x 
\ 

\ 
Uz, =c?Y[p{x\z]y 
ie/ 

(3) 

4 When the state space or any of the sensor measurement spaces are of "hybrid" type in the sense explained in 
Footnote 1, an appropriate measure is the direct measure of the Lebesgue measure on the continuous part and the 
counting measure on the discrete part. 
5 The conditioning by an information set may not be well defined without the conditional independence assumption 

(1).   With this assumption, however, conditioning by Z, U Z2   and Z, f] Z2  coincides with that by the upper 

bound (7, V (72 and the lower bound (7, A (72 of the two O -algebras generated by the information sets Z, and 

Z2, respectively. 



which we can use to fuse the information contained by the all the nodes in I to calculate the 

information at node i . 

The general fusion equation can be used for any communication pattern, or even for any kind of 
information exchange. This approach was tied to the general formalism of multi-target tracking 
using the random finite sequences as its basis ([1] - [8]), and applied to tracking of airborne 
targets by distributed network of acoustic sensors in collaboration with MIT Lincoln 
Laboratory's experimentation using "real" sensors and "real" targets, as described in [26] - [28]. 

3. Multi-Target Tracking in Random-Set Formalism 
This section reviews the random-set formulation of a general class of multi-target tracking 
problems in an abstract form, as described in [20] - [22]. We will restrict ourselves to the 
Poisson-i.i.d. cases, i.e., a class of target models without a priori identification6. We redefine the 
system state as a random finite set X (rather than a point x) in a target state space E. A Poisson- 
i.i.d. model can then be written as 

{x)=e^E)Ylß{x) (4) P 

where 7 is a finite measure on the state space E, called the intensity measure, having the density 
function ß with respect to a o -finite measure ji on the state space E. The real-valued function 
p defined on the space of all the finite sets in the target state space E through eqn. (4) is 
historically called the Janossy density [24]. In this section, as well as in the preceding and 
succeeding sections, we assume that the targets are static. Removal of this seemingly restrictive 
assumption will be discussed at the end of the next section. We will maintain this assumption to 
keep the arguments simple. 

Each data set y introduced in the previous section is now redefined as a finite random set Y in the 
sensor measurement space Es of a sensor s. Then each data set can be modeled as 

P(Y\X)=    I   [  n/tfW40/tf(*)T    U^-Pst(x))\:f(Y\Ma)) (5y 
ae A(X,Y) xe Dom (a) lxeX\Dom(a) 

where   pft \y\x) is the conditional probability density function of a measurement y when 

originating from a target at a state x, and pft{
x) is tne probability of a target at state x being 

6 By targets without a priori identification we mean targets given as a random set, as opposed to the targets with a 
priori identification, which are modeled as a fixed, ordered array of individual target states. This distinction was 
first explicitly described in [11]. 
7 For any function a , we denote its domain and its image by Dom(a) and Im (a). For any pair \X,Y) of sets, 

A\X,Y) is the set of all the one-to-one maps from X to Y , i.e., 

A(X,Y) = [jDcX {a e YD |# (lm(a )) =# (D)}, with # (X) being the cardinality of any set X . 



detected by a sensor s at time t. pF
sf is the density function of the false alarm random set, and 

using a Poisson-i.i.d. model, can be written as p™(Y)=e~r" E Y\, A« GO* where yst is the 

intensity measure on the sensor measurement space Es of sensor s at time t, having the density 

function ßst with respect to the a -finite measure on Es. Using this sensor model, we explicitly 

exclude any split or merged measurements. 

Then we can define any information set Z as a collection of data sets, each of which is a triple 
(Y,s,t) including a random finite set Y in Es taken by sensor s at time t. The straightforward 

application of the Bayes' rule, coupled with the conditional independence assumption, yields 

/   ,   x    p{z\x)p{x)    Y[{Y s.zp{Y\x)p{x) 

p(Z) p(Z) 

Therefore, the goal of each body of theory of multi-target tracking using this random-set 
formalism is to show how far we can break down this expression into a form that may be useful 
for practical problems, or at least useful in providing us with some insights into each particular 
problem. 

The following form of the solution uses the concepts of tracks and (data-to-data association) 
hypotheses, as first defined in [29]. Those concepts are used as the basis for multi-hypothesis 
target tracking as described in [9] - [11]. First let the collection of tagged measurements in a 
given information set Z be defined by I J 7x{(s,r)}.    Namely, every element in the 

collection of tagged measurements in a information set Z is a triple, (y,s,t), of a measurement y 
included in a data set Y taken by sensor s at time t. We call any subset x of the collection of the 
tagged measurements in an information set Z a track on Z if it contains at most one measurement 
from each data set in it, and we denote the set of all the tracks on Z by 7(z). Then a data-to- 
data hypothesis or simply a hypothesis X on Z is a collection of non-empty and non-overlapping 
tracks on Z, and we denote all the hypotheses on Zby A(z). 

Then the general solution described in [10] - [11] can be re-written as 

P(X\Z)=    X    P(AZ)   I   q(x\lm{a}z)Y[fx{a{x)) 
XeA(z) aeA{X,X) Tel (7) 

#(X)<#(X) 

where /?(A|z) is the evaluation of each hypothesis X on Z, determined as 



p{x\z) =c?\Y[\   UsA* rißbHdx) \fnkA(y}(y,s,t)e\Jl$ 
Tel       (s,t)=K(Z) 

f 

^Z TIL U8Äx;rWx)\(TlkAiy%y^h[jx}) 
(8) 

BI       (SJ)EK(Z) 

with Cz being the normalizing constant so that we have ^T , ,/?(A|z) = 1, K(z) being the set 

of all the indices in Z, i.e., K(z)= ^s,tJ(Y,s,t)e z), and eachgrf being defined as 

gj<(x;T)=KW^(x) if^)GT (9) 
\\-p"(x) otherwise 

for every (s, t)e K(z), every x e E, and every T e 7(z). 

The function /T for each track T e A in the last factor of eqn. (7) is the density of the target state 

distribution of the target hypothesized by track T , and defined by 

m    n^M'-'M*) (10) 

for every xe E and T e 7(z). The function <?(• |z) in (7) is the (Janossy) density of the random 

set of targets that have remained undetected in the data sets in Z, which, we can show, is a 
Poisson finite random set (or Poisson point process) with the intensity measure y\ \z) having the 

density /3(-|z), defined as 

f(dx\z)= ß{x\z)ß(dx)=   Yl(\-p°(x))ß(x)li(dx)=   Tlk-Pftixfoifb) (11) 

(s,t)ßK(z) (SJ)EK(Z) 

4. Distributed Data Fusion Equations In Random-Set Formalism 
The results shown in the previous section claim that a set of sufficient statistics for the multi- 
target      tracking      problem       given      an       information       set      Z      is       a      triple, 

X(z)= ((p(A|z))feA,  ,(/r(-)|re7^-),j8(-|z)j.    The purpose of this section is to show how to 

generate the sufficient statistics when the information set Z on a given node in an information 

graph i is given as the union of the information sets on nodes preceding i. The probability 
density function, described as the Janossy density, can be formally obtained by eqn. (3) of 
Section 2. We would like to have a set of expressions to express the sufficient statistics Z(z) 

through the sufficient statistics X(Zf) of predecessor nodes i e 7, just as we derived (7) in place 

of the formal expression (6). 



For a given information graph node i and the set I of immediate predecessors of i, the first step 

is to identify the set I of the predecessor nodes of i, with an integer-valued function a defined 
on I, such that eqn. (3) holds.   In fact, there may be many pairs (l,a) that satisfy such a 
condition. We would like to have a pair which gives the smallest node set I. An algorithm to 
achieve it is described in [8]. Then the problem becomes that of expressing the sufficient 
statistics Z(z) from (ZyZj)^. The second step is to construct the set 7(z) of all the tracks on 

Z and the set A(z) of all the hypotheses on Z from the collection \y(Zj),A(Zj))ieI of tracks and 

hypotheses given on the predecessor nodes i in I. A rather straightforward algorithm to do this 
is described in [8]. 

For each "global" track TG 7(Z) and each predecessor information graph node / e I, there 

exists a "local" track rf e 7{Zr) such that T, is the intersection of T and the collection of tagged 

measurements in Z.. Using this notion, the individual target state distribution can be calculated 

as 

/,(*) = - 

ru-w 
ie/ 

Tr*0 

(0 

/ U-=0           ) 

L Ylf„(x7{ 
16/ 

T7*0 

HßfajJ® u{dx') 
iel 

(12) 

while the undetected target density is calculated as 

ß{x\z)=Y\ß(x\zi) 
iel 

Finally using the normalizing constant that appears in eqn. (12), 

(13) 

^H ruwa(n 
iel 

f7*0 

nfiUvY" 
iel 

u(dx) (14) 

We can write the hypothesis evaluation equation as 

p(A|z)=c-,nAKf)n^(^) 
re X (15) 

for each /Le Mz), where, for each iel, h is the "local" hypothesis on the information graph 

node i, obtained by restricting the "global" hypothesis X to Z.. 



Up to this point, we consider the system state X (that is modeled by a random finite set) as 
stationary. In order to expand the results developed with this statics assumption into dynamic, 
and generally non-deterministic cases, we only need to replace the target state space E by the 
direct product space EN by multiplying itself as many times as necessary. Namely, with K(z) 

being the set of all the data set indices, (s,t), pairs of sensor identifiers and observation times, by 

expanding the state space from E to EK(Z', we can treat any kind of target dynamics, at least 
theoretically. Needless to say, the direct implementation of this approach is impractical because 
of the potentially very high dimensionality of the targets state space. However, with a common 
assumption on Markovian target dynamics, the batch-processing type algorithm shown in the 
previous section can be reduced to a more familiar recursive form with an appropriate 
extrapolation step being inserted between two consecutive update processes. 

As shown in [8], even with such a modification, the fusion equations shown in this section 
become no longer valid if the target dynamics are non-deterministic, except for very special 
cases of informational exchanges, such as immediate broadcasting-type information exchanges 
after each local observation as shown in [2]. A method for calculating the track-to-track 
likelihood function (14) in such non-deterministic cases is described in [13]. The algorithm 
described in [13] uses individual measurements stored in each track, thereby violating our "rule" 
that was set up in the beginning of this section, i.e., we should calculate the sufficient statistics of 
a given information set from those of a given set of predecessor information sets. In absence of 
better algorithms for non-deterministic cases, however, the track likelihood calculation described 
in [13] will remain useful in many cases where track-to-track association is more desirable than 
more traditional central report-to-track association (correlation) approaches. 

5. Conclusion 
A theory of information exchange, developed in the 1980's, [1] - [8], was revisited in view of 
the recent reformulation of multi-target tracking problems using random-set formalism. The 
random-set formalism provides us with deceptively simple formula both for usual Bayes updates 
and data fusion equations in distributed data processing systems. The simplicity in those 
equations is obtained by increasing dimensionality of the problems. For example, when the 
cardinality of the target space is M, the cardinality of the domain of the Janossy density for a 

random finite set is given by 2_,   «M" ln\ where N is the maximum cardinality of the random 

set, or the maximum number of targets. 

These simple-looking equations are contrasted with significantly more complex expressions 
using the "traditional" concepts of tracks and hypotheses. Equivalence between a direct formula 
and its track-hypothesis representation can be shown but only through a long chain of derivation, 
which is omitted for this paper. The track-hypothesis approach used for multi-hypothesis 
algorithms have been often criticized for its fast growing complexity, and hence, processing 
requirements. The random-set formalism may solve this complexity growth problem by not 
using the combinatrics explicitly. At this point, however, it is not clear at all that the random-set 
formalism, as shown in this paper, actually provides an algorithm with less complexity than 
track-hypothesis-based multiple-hypothesis algorithms. To determine if the random-set 
formalism has any practical use besides some theoretical insights, further studies must be 



conducted, in particular, in complexity analysis and possibility of effective approximation 
techniques. 

ACKNOWLEDGMENT 
Earlier work related to the topics discussed in this paper was supported by the Defense Advanced 
Research Projects Agency as acknowledged in [8] and [11]. Recent work was supported by the 
Institute of Mathematics and Its Applications, University of Minnesota, including my 
participation in the Workshop8 on Applications and Theory of Random Sets that was held in 
August 1996, and by Raytheon Systems Company's internal research and development, and 
other promotional fund. 

REFERENCES 
[I] C. Y. Chong, "Hierarchical Estimation," Proc. Second MIT.ONR Workshop Distributed 

Communication Decision Problems, Monterey, CA July 1979. 
[2]     C. Y. Chong, E. Tse, and S. Mori, "Distributed Estimation in Networks," Proc. American 

Control Conf., San Francisco, 1983. 
[3]     C. Y. Chong, and S. Mori, "Fusion Algorithms for Hierarchical Multitarget Tracking," 

Proc. C3 Workshop, San Diego, CA, 1984. 
[4]     C. Y. Chong, S. Mori, and K. C. Chang, "Information Fusion in Distributed Sensor 

Networks," Proc. American Control Conf., Boston, 1985. 
[5]     C. Y. Chong, K. C. Chang, and S. Mori, "Distributed Tracking in Distributed Sensor 

Networks," Proc. American Conf., Seattle, 1986. 
[6]     C. Y. Chong, S. Mori, and K. C. Chang, "Adaptive Distributed Estimation," Proc. IEEE 

Conf. Decision Control, Los Angeles, 1987. 
[7]     C. Y. Chong, K. C. Chang, S. Mori, and D. S. Spain, "Distributed Tracking in Distributed 

Sensor Networks," Advanced Decision Systems Final Technical Report TR-1128-02, 
Mountain View, CA May 1989. 

[8]     C. Y. Chong, S. Mori, and K. C. Chang, "Distributed Multitarget Multisensor Tracking," 
in Multitarget-Multisensor Tracking: Advanced Applications, ed. Y. Bar-Shalom, Chapter 
8, Artech House, 1990. 

[9]     D. B. Reid, "An Algorithm for Tracking Multiple Targets," IEEE Trans. On Automat. 
Contr., Vol. AC-24, Dec. 1979. 

[10]   S. Mori, C. Y. Chong, E. Tse, and R. P. Wishner, "Multitarget Multisensor Tracking 
Problems - Part I: A General Solution and a Unified View on Bayesian Approaches," 
A.I.&D.S. Technical Report TR-1048-01, Advanced Information and Decision Systems, 
Mountain View, CA, 1983, Revised 1984. 

[II] S. Mori, C. Y. Chong, E. Tse, and R. P. Wishner, "Tracking and Classifying Multiple 
Targets Without A Priori Classification," IEEE Trans. On Automat. Contr., Vol. AC-31, 
1986. 

[12] R. P. S. Mahler, "Random Sets in Information Fusion: An Overview," in Random Sets - 
Theory and Applications -, ed. By J. Goutsias, R.P.S. Mahler, and H.T. Nguyen, Springer 
Verlag, 1997. 

Recently the proceedings of this workshop was published as a book (cf. [20]). 



[13]   S. Mori, K. A. Demetri, W. H. Barker, and R. N. Lineback, "A Theoretical Foundation of 
Data Fusion - Generic Track Association Metric -," Proc. Of the 7th Joint Service Data 
Fusion Symposium, Laurel, MD 1994. 

[14]   R. B. Washburn, "A Random Point Process Approach to Multiobject Tracking," Proc. 
1987 American Control Conference, Minneapolis, MN, 1987. 

[15]   R P. S. Mahler, "Random Sets as a Foundation for General Data Fusion," Proc. Of the 6th 

Joint Service Data Fusion Symposium, Vol. I, Part 1, JHU, APL, Laurel, MD, 1993. 
[16]   K. Kastella, "Discrimination Gain for Sensor Management in Multitarget Detection and 

Tracking," Proc. Of IEEE-SMC and IMACS Multiconference CESA '96, Lille, France, July 
1996. 

[17]   L. D. Stone, M. V. Finn, and C. A. Barlow, "Unified Data Fusion," Report to Office of 
Naval Research, Metron Inc., 1996. 

[18]   G Matheron, Random Sets and Integral Geometry, John Wiley & Sons, New York, 1974. 
[19]   D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and its Applications, Second 

Edition, John Wiley & Sons, Chichester, England, 1995. 
[20]   S. Mori, "Random Sets In Data Fusion: Multi-Object, State-Estimation as a Foundation of 

Data Fusion Theory," in Random Sets - Theory and Applications -, ed. By J. Goutsias, 
R.P.S. Mahler, and H.T. Nguyen, Springer Verlag, 1997. 

[21]   S. Mori, "Random Sets in Data Fusion Problems," to appear in Proc. Of 1997 National 
Symposium on Sensor and Data Fusion, MIT Lincoln Laboratory, Lexington, MA 1997. 

[22]   S. Mori, "Random Sets In Data Fusion Problems," Proc. 1997 SPIE Conf. on Signal and 
Data Processing of Small Targets, San Diego, CA, July 1997. 

[23]   N. Portenko, H. Salehi, and A. Skorokhod, "Optimal Filtering of Multitarget Tracking 
Systems Based on Point Processes Observations," Random Oper. And Stock. Equ., Vol. 5, 
No. 1, 1997. 

[24]   D. J. Daley, and D. Vere-Jones, An Introduction to the Theory of Point Processes, 
Springer-Verlagm 1988. 

[25]   J. L. Doob, Stochastic Processes, John Wiley & Sons, Inc., New York, 1953. 
[26]   R. T. Lacoss, "Distributed Mixed Sensor Aircraft Tracking," Proc. American Control 

Conf, Minneapolis, June 1987. 
[27]   S. Mori, K. C. Chang, and C. Y. Chong, "Tracking Aircraft by Acoustic Sensors - 

Multiple Hypothesis Approach Applied to Possibly Unresolved Measurements," Proc. 
American Control Conference, Minneapolis, June 1987. 

[28]   C. Y. Chong, K C. Chang, S. Mori, and D. S. Spain, "Tracking Air Targets by a 
Distributed   Network   of Acoustic   Sensors,"   Proc.   1987   Tri-Service  Data   Fusion 
Symposium, Laurel, MD, June 1987. 

[29]   C.  L.  Morefield, "Application of 0-1   Integer Programming to  Multitarget Tracking 
Problems," IEEE Trans. On Automat. Contr, Vol. AC-22, 1977. 


