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ABSTRACT 

The very large varieties of the multi-sensor scene signatures that needs to be considered for building a robust 
machine-based scene analysis system requires that one explores the possibility of deriving multi-sensor 
representations that are at the least invariant to scale, translation, and rotation with respect to the observer. 

In this paper we develop methodologies for multi-sensor scene analysis based on the theory of invariant algebra. 
Two cases of similar and dissimilar sensor types are considered. The fused invariant for the case of similar sensor 
types are unchanged under material as well as under affine transformations. For the case of dissimilar sensors the 
approach leads to the derivation of the multi-sensor invariant expressions that remain unchanged under scale, 
translation and rotation with respect to the observer. Examples of the application of the approach on real multi- 
sensor data are presented. 

1. INTRODUCTION 

The large varieties of the multi-sensor scene signatures that needs to be considered for building a robust machine- 
based scene analysis system requires that one explores the possibility of deriving multi-sensor representations that 
are at the least invariant to scale, translation, and rotation with respect to the observer. 

In this paper we develop methodologies for multi-sensor scene analysis based on the theory of invariant algebra. 
Two cases of similar and dissimilar sensor types are considered. The fused invariant for the case of similar sensor 
types are unchanged under material as well as under affine transformations. For the case of dissimilar sensors the 
approach leads to the derivation of the multi-sensor invariant expressions that remain unchanged under scale, 
translation and rotation with respect to the observer. 

In the Case I the sensor types are assumed to be similar, correlated, co-located and registered. Hyperspectral images 
are good example of this Case. Case II deals with dissimilar sensor types where the imagery can be assumed to be 
uncorrelated. Laser range, passive IR, and Doppler imaging sensors are examples of this second case. 

2. CASE I: SIMILAR SENSORS 

From the Planck Law one has the following relationship between the emissivity, temperature, wavelength, 
and the spectral radiant emittance W^. 

w   = 27Ehc2 £l (1) 
X       i5       ch 

A     eAKT _1 

Where T is temperature in degree Kelvin, e^ is spectral emissivity, h is the Planck's constant, and X is the 

wavelength- In (1) only emissivity is material dependent. 
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The scene radiation, Rn(j,k) where n is the index indicating a particular spectral band is obtained by integrating (1) 

over different bands of frequencies. From a wide range of frequency bands (different n values) different spectral 
images corresponding to the same scene are obtained. 

When the effects of the radiation reflectance are negligible or ignored and we assume that the scene is in thermal 

equilibrium the radiation varies only with e\ (and frequency) in a particular scene. The thermal equilibrium 

assumption is useful because target detection and classification, under this assumption cannot be performed only by 
exploiting the temperature differences between targets and background. The variations of e\ with frequency for 

different materials and paints are well documented [1]. Table I shows typical emissivity values of several material 
averaged over all wavelengths at 20° C. 

TABLE I. Typical Emissivity of Various Material 
Material Emissivity 

Water 0.96 
Wet Soil 0.95 
Concrete 0.92 

Steel 016 
Wood 0.90 
Glass 0.94 

When the effects of radiation reflectance can not be ignored the thermal equilibrium assumption is no longer useful 
for scene analysis. 

The out put of a focal plane array (FPA), in general, is a linear function of the incidence photons [6]: 

x 

•I Nä =Kä K.WhftjJW^T^ + Il-e.aMW^TJjcU + N; (2) 

Where Ny is the total number of accumulated electrons at pixel ij, Ky is a coefficient that is dependent on the active 

pixel area, optical transmission,, frame time, and pixel angular displacement from the optical axis, and the f-number of 

the optics. The quantum efficiency of the ij pixel is denoted by C,x (A), and background radiant reflectance is shown 

by W^ (Tb ). Tb is the background temperature in degrees Kelvin, and X\ and X2 define the spectral band of the 

sensor. Finally, the dark charge for the pixel ij is denoted by Ny. The e^(i,j) indicates the spectral emissivity at the 

pixel location ij. 

The effect of the spectral emissivity- and its variations with frequency for different materials-can be seen in the 
equation (2). 

For each pixel e(i,j), an n-dimensional vector (n being the number of frequencies used), consider the probability of it 

being from a material nK, k being the number of different materials in the scene, be denoted as p(e|7F k ) and the 

probability of material occurrence nK as p(%). Then according to the Bayes Decision rule one has to select the 

following: 

max{p(7Tk£) = !—— ;Vk} (3) 
k P(e) 

p (e | K k ) is assumed to be known for each frequency k at a range of temperatures of interest. This assumption is 

not restrictive since for different material (and paints) the emissivity as function of frequency and temperature has 
been documented [1]. The p(e) is obtained from the following: 



p(e)=  Xp(£7Tk)p(7rk) (4) 

^k 

Once for each pixel a material label has been chosen a new image is formed. This image is formed by replacing the 
value of each pixel wit its most likely emissivity label (iron=l, water=2, etc.)- Denoting each pixel as J%(i,j) the 

information content of the image varies by the frequency of occurrence of the emissivity label in the image. 

3. MOMENT GENERATING FUNCTION AND INVARIANT ALGEBRA 

If the joint characteristic function of random variables x and y has a Taylor-series expansion valid in some region 
about the origin, it is uniquely determined in this region by the moments of the random variables [2] : 

oo       oo n, ,m, \n^.Am 
Mxy(u,v)=  X    X  E(x"y'") (^"(v)111 (5) 

n=0m=0 n!m! 

Hence knowing M   (U,V) would imply knowing 7%(x,y), the joint probability density function of the x and y random 

variables. This implies that one can represent the probability density function denoting an image in terms of a bi- 
variate homogenous polynomial referred to as a binary form in terms of the image statistical moments. The changes 
in the orientation, scale or position in the field of view of the objects in this new image, or in other words the change 
of the coordinate system will transform the probability density function 7%(x,y) accordingly. 

What remains unchanged under these transformations fall under the domain of theory of invariant algebra. The 
objectives pursued under this branch of algebra, developed in the 19th Century by Cayley and Silvester, is the study 
of the algebraic expressions that remain unchanged under linear transformation of the coordinate systems [3,4]. 

If a binary p-ic (polynomial of two variables and order p) has an invariant 

f(a'p0,...,a'0p)=Acof(ap0,..,a0p) (6) 

then the moments of order p has an algebraic invariant 

f(^p0,...,^0p)=|J|Amf(np0,..,^0p) (7) 

where J is the Jacobian of the transformation A and co are constants. 

Using the tools of invariant algebra the following seven expressions that are invariant under size, rotation and 
translation can be obtained [5]. 

3.1. Second and Third Order Invariants 

Defining the central moment of order p+q as: 

Mpq=XX(x-x)P(y-y-)q7rk(x,y) (8) 
x y 

The normalized central moments are: 

,   ^    '"pq 77pq(;rk) = ^+?  (9) 
ß0

2
0   +1 

The first and the second Order Invariants are then 



<!>Ank) = ri2o+Vo2 0°) 

02 (&■K) = (T)'20 -Voif+Wu) (11) 

03 = (^30 -3T712)
2
 +(3?72l -7703)

2 

04=(^3O-J7l2)2+(^2I+^O3)2 

05 =(^30-377l2)(^30+77]2)[(^30+77l2)2-3(??21+^03)2] + (3772]-^03)(7721+^03)) 

[3(?730+^I2)2+(^21-^03)2] 

06 = (^20 - ^02 )[(7?30 + *7l2 )2 - (»721 + ^03 f ] + 4j7l 1 (^30 + ^12 )(^21 + ??03 f 

>7(^k) = (37?21 -773o)(773o +7712)[(7730 +7712)
2 -3(7721 +7703)

2] 
(12) 

+(3T?12 -7730)(772I +T?03)[3(7730 +77I2)  - (n 21 + V m) ] 

4. INVARIANCY TO MATERIAL CHANGES 

For the Case I, the above functions are l)themselves functions of the material that the targets and scene are made of 
and 2) are k-ary forms.  Consequently for any linear transformation in 7% (changes in material) there exist  a set of 

invariant expressions that will remain unchanged. These Second Order Invariants will be Invariants under scene 
rotation, scale, translation and material transformations. The expressions (]>I(J%) to (|>7(%) are polynomials of order 

1 to 4 in terms of 7% for various k. Each of different k values indicate a different material. Any linear transformation 

of 7% indicates a change of material in the scene such as changing the paint on a target, or having the objects on a dry 

land verses wet land, or for a target being on a grass verses being on a concrete background. 

5. CASE II: DISSIMILAR SENSOR 

For this case the output of the sensors can be assumed to be non-correlated. This is valid for the case of colocated, 
registered passive IR, Laser range, and Doppler imaging sensors. 

One can assume that in this case each image represents a conditional density function  p(f(x, y)| X). Where 

X represents a particular imaging sensor output. Then the effect of using all of the sensory outputs is equivalent to the 
use of the total probability function. The total probability density function can be obtained by: 

p(f(x,y)) = Ip(f(x,y)|A)p(A) (13) 
x 

The fused invariant expressions then can be extracted from this total probability function. 

Figures 1-3 show the co-located, and registered outputs of a particular laser, Doppler and passive IR imaging 
sensors obtained from the US Army's Night Vision and Electro-Optical Center. The Table II shows their 
corresponding seven invariant expressions. These invariants can be seen to be different for different sensory outputs. 



Figure 1. Laser Range Image Figure 2. Doppler Image 

Figure 3. Passive IR Image 

Figures 4-7 show the total probability image at four different orientations. Their corresponding invariant expressions 
are summarized in the Table III. As can be seen the fused invariants remain as expected unchanged under the 
orientation changes. 

TABLE II. Invariants of the Conditional Probabilities 
INVARIANTS RANGE DOPPLER IR 

m 12381.447771 13568.759615 13354.107680 

02 89364967.289028 65854066.127031 62477079.926206 

03 1214.153333 0.287704 99.834628 
<D4 1679.326671 0.348603 50.435774 

05 -2175770.238461 0.085832 3499.153708 

06 863328.796422 2824.946900 348173.107680 

07 554695.407939 -0.095781 -812.440325 

Figure 4. Total Probability Image Figure 5. Total Probability Image 
180 Degrees Rotated 
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Figure 6. Total Probability Image 
Mirrored Around Vertical Axes 

Figure 7. Total Probability Image 90 Degrees Rotated 

TABLE HI. Invariants of the Total Probability at Four Different Orientations 
INVARIANTS Original Position 90 Degrees 

Rotation 
180 Degrees 
Rotation 

Mirror around 
Vertical Axes 

$1 12736.175825 12736.175825 12736.175825 12736.175825 
0>2 81187446.960661 81187446.960661 81187446.960661 81187446.960661 
$3 1070.623457 1070.623457 1070.623457 1070.623457 
04 1162.027092 1162.027092 1162.027092 1162.027092 
$5 -1204674.097088 -1204674.097088 -1204674.097088 -1204674.097088 
06 -2936904.647600 -2936904.647600 -2936904.647600 -2936904.647600 
$7 531810.313835 531810.313835 531810.313835 531810.313835 

The testing of the presented procedure to answer the issues of computational complexities verses storage 
requirements needed in general model/template techniques is currently underway. It is however an accepted fact that 
one can not store signatures at all conceivable variations in scene and target geometry and for every variations in 
their material contents. The procedures presented here are attempts to address the combinatorial explosive problem 
of signature storage without sacrificing the target classification performance requirements The number of Invariants 
needed for scene/target representation is a function of the target types and scene complexity. For example for 
separating targets such as tank versus truck the second and third order Invariants may be sufficient. However 
discriminating among similar type targets such as tank versus tank, requires higher order Invariants. 

6. SUMMARY 

In this paper a methodology for multi-sensor scene analysis, based on the theory of invariant algebra is presented. 



Two different cases are considered. For the case of similar sensors such as hyperspectral imaging sensors the 
methodology leads to the representations that are Invariants to scene material s as well as scale, rotation, and 
translation with respect to the observer. 

For the case of dissimilar imaging sensors, such as laser range, Doppler and passive IR the presented 
methodology leads to the derivation of sensor fused Invariants. 

The use of these approaches can substantially reduce the number of frames/templates needed for multi-sensor/multi- 
spectral scene analysis, and target classification by their exploitation of the scene/ target invariant properties. 
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