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Abstract 

In ground surveillance from an airborne or space-based radar it is desirable to be 
able to detect small moving targets, such as tanks or wheeled vehicles, within se- 
vere ground clutter. For operational moving target indication (MTI) systems the 
clutter filter coefficients have to be updated frequently due to rapidly changing 
interference environment. This report examines the small sample size perfor- 
mance of different fast fully adaptive space-time processors (STAP) and com- 
pares it to the optimum-detector performance. These recently proposed tech- 
niques, named Matrix Transformation based Projection (MTP) and Lean Matrix 
Inversion (LMI), were originally developed to provide fast man-made jammer 
suppression in large surface phased array radars with many elements. For this 
application they have been proven to operate with near-optimum performance, 
yet with a computational expense drastically reduced from that of the optimum 
detector in most practical cases. The investigation herein focuses on the perfor- 
mance achieved when only a few data samples are available to adapt (update) the 
clutter filter coefficient. 

In this report, the techniques are described and a number of simulations carried 
out. The two applications, STAP and jammer suppression, are similar; both are 
required to suppress an interference which is characterized by a certain number 
of dominant eigenvalues of the sample space-time covariance matrix. Despite the 
similarities the performance between the two differs due to the different shapes 
of their eigenvalue distribution. The LMI is shown to give the best Signal-to- 
Noise-plus-Clutter Ratio (SNCR) for a given computational load. 
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Resume 

Ce rapport examine la performance de differents processeurs spatio-temporels 
totalement adaptables (STAP) ä haute vitesse pour les 6chantillons de petite 
taille, et il la compare ä la performance du detecteur optimal. Les techniques 
proposers r£cemment, appelees projection ä base de transformation matricielle 
(MTP) et inversion matricielle oblique (LMI), ont ete mises au point ä l'origine 
dans le but d'assurer la suppression rapide du brouillage de source artificielle 
dans les radars ä rdseau en phase presentant une grande surface et dotös de nom- 
breux elements. Pour cette application, il s'est av6r6 qu'ils fournissent une per- 
formance quasi-optimale et qu'ils exigent, dans la plupart des cas pratiques, des 
ressources de calcul considerablement reduites par rapport au d&ecteur optimal. 
L'&ude d£crite porte essentiellement sur la performance obtenue lorsque seule- 
ment quelques Schantillons de donnees sont disponibles pour adapter (mettre ä 
jour) le coefficient de filtrage du clutter. 

Ce rapport decrit les techniques utilisees et un certain nombre de simulations ef- 
fectuSes. Les deux applications, STAP et la suppression de brouillage, sont sem- 
blables, et les deux sont ndcessaires pour eliminer un brouillage caract6rise" par 
un certain nombre de valeurs propres dominantes dans la matrice de covariance 
spatio-temporelle de l'6chantillon. En depit des similitudes, les performances 
des deux se distinguent par les formes differentes de leur repartition des valeurs 
propres. II est d^montre" que la LMI procure le meilleur rapport signal sur bruit 
plus clutter (SNCR) pour une charge de calcul donn6e. 
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Executive summary 
Background 
In ground surveillance from an airborne or space-based radar it is desirable to be 
able to indicate small moving targets, such as tanks or wheeled vehicles, within 
severe ground clutter. The clutter echoes received by the radar show a motion- 
induced spread of the Doppler spectrum which particularly masks out the slowly 
moving targets. The problem is to suppress this clutter effectively. 

The optimum technique to address this problem is space-time adaptive process- 
ing (STAP). In STAP an array of antenna elements, N, as well as a number of 
pulses, M, is used to estimate the clutter. The optimum processor is given by the 
inverse of the space-time covariance matrix of the clutter. Since this matrix is of 
order NM, the full inversion is too computationally intensive to adapt the pro- 
cessor frequently. By exploiting the fact that the rank of the clutter covariance 
matrix is, in most cases, much smaller than the order (due to the redundancy in 
the space-time domain), it is possible to develop techniques requiring less com- 
putational effort. 

Principal results 
In this report, two different, recently developed, fast rank reduction techniques, 
the so called subspace or projection methods, are applied to the problem of clut- 
ter suppression. These methods were originally proposed to provide fast man- 
made jammer suppression in large surface phased array radars with many ele- 
ments. The basic theory behind them is briefly reviewed and their performance 
is studied via simulations. 

Significance of results 
While most investigations in the literature deal only with the asymptotic per- 
formance, i.e. an infinite number of data samples, studies of the small sample 
size behaviour are rare. Finite sample size is the practical case for operational 
radar systems in which the filtering coefficients have to be adapted frequently 
along the range dimension. The techniques described in this report are found to 
produce superior Signal-to-Noise-plus-Clutter Ratios (SNCR) for a given com- 
putational complexity. The most computationally efficient algorithm reduces the 
requirement for high speed computation by 10 — 1000 times in many practical 
cases. 

Christoph H. Gierull. 2001. Analysis of the Small Sample Size Performance of Fast 
Fully Adaptive STAP Techniques for MTI Radar. DREO TR 2001-079. Defence Re- 
search Establishment Ottawa. 
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Sommaire 
Contexte 
Pour la surveillance air-sol, il est souhaitable de pouvoir d&ecter de petites cibles 
mobiles, comme des blindds ou des vöhicules ä roues, dans du clutter de sol in- 
tense. Les 6chos de clutter reus par l'aeronef montrent un 6talement du spec- 
tre Doppler cause" par le mouvement, qui masque particulierement les cibles 
mobiles lentes. Le probleme consiste ä supprimer efficacement ce clutter. La 
technique optimale pour aborder ce probleme est le traitement spatio-temporel 
adaptable (STAP). Selon cette technique, un r£seau d'elements d'antenne, N, 
ainsi qu'un certain nombre d'impulsions, M, sont utilises pour evaluer le clut- 
ter. Le processeur optimal correspond ä 1' inverse de la matrice de covariance 
spatio-temporelle. Comme cette matrice est de 1'ordre N M, l'inversion complete 
necessite trop de calculs pour l'adaptation frequente du processeur. En exploitant 
le fait que le rang de la matrice de covariance du clutter est, dans la plupart des 
cas, beaucoup plus faible que 1'ordre (en raison de la redondance dans le domaine 
spatio-temporel), il est possible de mettre au point des techniques exigeant moins 
d'efforts de calcul. 

Principaux res u I tats 
Ce rapport ddcrit comment deux techniques differentes de reduction rapide du 
rang qui ont rScemment 6t6 mises au point, soit les m&hodes subspatiales ou de 
projection, sont appliquees au probleme de suppression du clutter. Ces m£thodes 
ont 6t6 mises au point ä l'origine dans le but d'assurer la suppression rapide du 
brouillage de source artificielle dans les radars ä rdseau en phase pr£sentant une 
grande surface et dot6s de nombreux elements. Les principes sous-jacents sont 
examines brievement et les performances sont etudiees ä l'aide de simulations. 

Signification des res u I tats 
Bien que la plupart des eüides qui se retrouvent dans le documentation portent 
uniquement sur la performance asymptomatique, c.-ä-d. sur un nombre infini 
d'echantillons de donnees, les dtudes comportementales relatives aux echantillons 
de petite taille sont rares. Dans la pratique, des tailles d'echantillon finies sont 
utilis6es pour les systemes radar opeYationnels dans lesquels les coefficients de 
filtrage doivent s'adapter frequemment dans la dimension de la distance. II 
s'avere que les techniques demtes dans ce rapport produisent des rapports signal 
sur bruit plus clutter (SNCR) supeYieurs pour une complexity de calcul d6termin6e. 
L'algorithme le plus efficient du point de vue des calculs reduit de 10 ä 1 000 fois 
la necessite" de calculs ä haute vitesse, dans beaucoup de cas pratiques. 

Christoph H. Gierull. 2001. Analyse de la performance de techniques spatio-temporelles 
totalement adaptables (STAP) ä haute vitesse pour les 6chantillons de petite taille. 
DREO TR 2001-079. Centre pour la Recherche de la Defence Ottawa. 
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1.   Introduction 
In military space-based or air-to-ground surveillance it is desirable to be able 
to detect small moving ground targets such as tanks or wheeled vehicles within 
severe ground clutter. The clutter echoes received by the aircraft show a motion- 
induced spread of the Doppler spectrum which particularly masks the slowly 
moving targets. The problem is to suppress this clutter effectively, i.e. down to 
the sensor noise power level. One very promising solution is the use of mul- 
tiple antenna apertures or a single antenna aperture with multiple feed horns. 
The extra degrees of freedom offered by these structures allows one to exploit 
the information contained in both the temporal (Doppler) and angular (spatial) 
domains towards the goal of distinguishing between the clutter and the desired 
target signals. The different phase centers of the antenna provide the auxiliary 
spatial dimension which allows the use of digital signal processing to suppress 
the unwanted clutter energy. Good general introductions of space-time filtering 
of data from an array of sensors for Moving Target Indication (MTI) are given in 
[1], [2]. 

In this report, two different recently developed fast rank reduction techniques, 
so called subspace or projection methods, are applied to the problem of clutter 
suppression. They were originally proposed to provide fast man-made jammer 
suppression in large surface phased array radars with many elements. In this 
report, the basic theory behind them is reviewed and their performance is studied 
via simulations. While most investigations in the literature deal only with the 
asymptotic performance, i.e. an infinite number of data samples, studies of the 
small sample size behaviour are rare. Finite sample size is the practical case 
for an operational system for which the filtering coefficients have to be adapted 
frequently along the range dimension. 

In chapter 2 the problem is mathematically formulated and the concept of opti- 
mum processing is briefly reviewed. The simulation scenario used for the analy- 
sis and comparison of the different methods is described. In chapter 3 the finite 
sample size processing scheme is introduced. This processing scheme is required 
to estimate the covariance matrix which is not known in practice. In section 3.2, 
the two SNCR-optimizing techniques SMI/LSMI are reviewed, followed by the 
description of the idea behind subspace or projection methods. Since the com- 
putational complexity of the best known subspace technique (the eigenvector 
decomposition) is enormous, a much faster method, called MTP, is proposed in 
the following section. The shape of the eigenvalue distribution of the covariance 
matrix is exploited to develop a robust and computationally efficient algorithm. 
It is based on a weighting of the projector and is called lean matrix inversion 
(LMI). The computational complexity of the various techniques is compared in 
chapter 4. 
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2.   Optimum Processing 

2.1 Maximization of the SNCR 

Let a spatial-time-snapshot x, hereafter called a snapshot, be modeled as the su- 
perposition xjt = D^. + n^, where «^ is the sensor noise vector with mutually 
independent components of power a2 and the time k := /*• ^ is a complex 
normal distributed random vector with independent entries representing the am- 
plitudes of the clutter at time k. The snapshots are sampled at such intervals that 
xjc and xk_l are completely independent (see also [1]). In the case of MTI the 
snapshots are often gathered from the range bins surrounding a guard bin along 
the range direction. With these definitions in mind, the received data vectors 
can be understood as realizations of mutually independent, identically complex 
normal distributed random vectors X. The random vectors X have mean 0 and 
the covariance matrix R = EXXH = DADW + a2I, where E is the expectation 
operator and I denotes the identity matrix. Matrices are written bold, vectors are 
underlined and (-)H means complex conjugate transpose. 

As can be demonstrated using basic detection theory [3], the probability of de- 
tection of a signal in noise depends mainly on the SNR. Therefore, one criterion 
for adjusting the filter vector w could be the maximization of the signal-to-noise- 
plus-clutter ratio (SNCR) of the filter output when the processor is matched to 
frequency ft. The SNCR of this filter output, hereafter denoted as p, is given by 

rw        rv_v   )>       ii      E|H?"X|
2 W

H
RW 

where a is the complex amplitude and d(iD) a given signal at this frequency. It is 
easy to verify that the solution of (1) is given by 

vvopt = aR-]d(-&) (2) 

with 
9<m = d(*)HR-ld(*), (3) 

where a is an arbitrary complex factor [4,5]. The optimum processor can be sep- 
arated into two steps: a decorrelation of the clutter via multiplication with R-1/2 

(pre-whitening) and a matched filtering with the adapted signal s = R~'/2rf. 

2.2 Simulation Scenario 

In order to analyze and compare different suppression techniques, the SNCR 
can be used as a measure of the performance of the clutter filter. The SNCR is 
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normalized with respect to the signal-to-noise ratio in the noise-only case: 

ölVK. [XT) without clutter 

_ |w(fl)g4(fl)l2 (Hjöfdwfy1 

~ w($)HRw($) \d{ö)Ho2U(#)) 
_ a2|w(^)^(^)|2 

N w(ü)HILw(ü)' 
(4) 

i.e. the resultant curve is actually the SNCR-loss with respect to the best possible 
case of no interference at all. 

Fig. 1 shows the normalized SNCR versus the normalized target frequency for 
the two special cases of, no adaptation1 with w(#) = d(d) and, optimum pro- 
cessing with w(-d) = R-1rf(ft). The simulation scenario used in this report was 
chosen as follows: 

• Side-looking geometry 

• Number of channels N =12, X/2 spacing. 

• Number of Pulses M = 12, DPCA spacing, i.e. (VQ/PRF = X/2). 

• Clutter-to-noise ratio CNR = 20dB. 

The sensor noise level has been normalized to a2 = OdB. One can see that almost 
no loss is suffered by optimum processing even for target frequencies close to 
the clutter notch. In contrast, the case of no adaptation equals the inverse of the 
filter response function and has an average loss of about -17dB over the entire 
frequency range. If the desired target signal perfectly overlays the clutter $ = 0, 
the loss of SNCR is given as -10 * loglO(NM) - CNR £ -40dB. 

As will be shown later, an important measure of the quality of the clutter sup- 
pression is given by the magnitudes and shape of the eigenvalue distribution of 
the space-time covariance matrix. Fig. 2 shows the corresponding distribution 
of the simulated covariance matrix. Since the DPCA-criterion is fulfilled in this 
side-looking case, the number of eigenvalues larger than the sensor noise power 
level can be determined as N + M — 1 = 23 (Brennan's-rule [1]). Only the first 
50 eigenvalues are plotted. In order to simplify the notation throughout the re- 
port, the order of the space-time covariance matrix will henceforth be denoted 
as N and the number of dominant eigenvalues (larger than a2) as M. This nota- 
tion corresponds to the jammer suppression case. Accordingly, for STAP, these 
numbers have to be substituted with NM and N+M, respectively. 

'When no clutter is present and therefore no suppression is needed. 
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3.   Finite Sample Size Processing 

In practice the exact (asymptotic) space-time covariance matrix is not known 
and must be estimated from a given number of samples. With the number of 
snapshots denoted by K, an often used estimation is given by the average of the 
dyads 

A =4 EM?- (5) 
A k=i 

Assuming that the vectors X^ are identically complex normal-distributed with 
expectation zero, R is equivalent to the Maximum-Likelihood-estimator of R. 
That is known to to be complex Wishart-distributed with ^-degrees of freedom 
and parameter matrix R [6]. 

A requirement for a large number of samples often proves untenable for practical 
reasons. For instance, the acquisition time of the samples may be too long or 
the extra computational effort may be wasteful if an acceptable SNCR could 
have been reached with fewer samples. For MTI-applications, a large number of 
samples are often not available since the snapshots are gathered from the range 
bins surrounding the guard bin along the range direction. Since the clutter is 
non-stationary due to its range-dependence, only a small number of surrounding 
range cells might be useful for estimating the clutter covariance matrix of the 
cell in question. 

3.1  Sample Matrix Inversion (SMI) 

In an approach analogous to the maximization of the SNCR with known covari- 
ance matrix it is possible to determine the filter vector by maximizing the SNCR 
using only a limited number of samples 

'   = max. (6) 
vfRw 

The optimization criterion in (6) is equivalent to the minimization of the clutter 
power with limited sample number under the constraint of a normalized filter 
vector in target direction, 

v/1 Rw = min    u. c.    vFd = 1. (7) 

The solution of eq. (7) can be obtained as a multiple of the product of the inverse 
sample covariance matrix and the signal vector 

w = aR~1d. (8) 
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This approach is well known under the name Sample Matrix Inversion SMI [7, 
5, 8]. To assure the nonsingularity of the space-time covariance matrix, it is 
necessary that the number of snapshots at least matches the order of the matrix 
K > N. Substituting the adapted filter (8) into eq. (4) yields for the SNCR 

\d($)HR-ld($)\2 

P(*) = (9) 

where the sensor noise level has been set to OdB. In Fig. 3, 10 realizations of 
the SNCR are plotted for SMI. The sample space-time covariance matrix was 
estimated with K = 150 snapshots and shows a relatively large loss (« —18 dB 
) over the whole frequency range. 

Sample Matrix Inversion, K = 144 

0.5 -0.1 0 0.1 
Normalized Frequency 

Figure 3:   Normalized signal-to-clutter plus noise ratio versus normalized fre- 
quency for SMI. 

Here, p(w) is also a random variable depending on the statistics of R-1. For the 
related application of man made jammer suppression, theoretical performance 
analysis has been done [5]. To study the performance of the SMI, Reed et. al. [5] 
calculated the pdf of the normalized version 

p(w) = p(w)/d(ü)HR-ld($). 

The classical result they found was that the normalized SNCR for SMI is Beta- 
distributed with the parameters (2(N-\),2(K-N + 2)) and an expectation 

Ep = (K-N + 2)/(K+l). 
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One of the main disadvantages of the SMI is the large number of samples re- 
quired to adapt the weight vector and suppress the interference effectively. For 
example, the average number of snapshots to reach the 3 dB loss of normalized 
SNCR Ep = 0.5 is given by K3dB = 2N-3^2N (see also [7]). 

3.2 Loaded Sample Matrix Inversion (LSMI) 
3.2.1   Motivation 

In order to improve the slow convergence of the SMI shown in Fig. 3 
one can try to introduce an additional constraint to the optimization task 
in eq. (7). For instance, M^W = const, can be used; this also solves 
another disadvantage of the SMI, namely strong fluctuating sidelobes of 
the filter output. Fig. 4 shows several realizations of the adapted filter 
output for the SMI 

a(d) = \w('&o)Hd('&) |2 = \d('do)H&-ld('&) |2. (10) 

The filter is matched to a desired signal at ft = 0.25 which means the 
target is located completely outside of the clutter band. The bold curve 
corresponds to the case where the covariance matrix is perfectly known. 
Obviously, the required clutter notch does exist but the side lobes of 
the filter output are now strongly fluctuating and greatly increased over 
the entire frequency range. Low side lobes of the filter response are 
crucial if the probability of false alarm detections not to increase. The 
criterion for the minimization of the clutter power under the constraints 
of a normalized filter on one hand, and a preserved constant average 
sidelobe level of the adapted filter response on the other hand, yields 

P(w) = vt^Rw = min    u.c.   w?d=l,     f \wHd(K)\2dK=c. (11) 

The integral in eq. (11) 

f |V^(K)\2dK = *?([d(K)d(K)HdK\ w = /Cw 

is performed over the surface of the unity-sphere. For the case of plane- 
antennae with equidistant spacing of |, it has been shown that C con- 
verges quickly towards the identity matrix. For a linear-antenna with 
equidistant spatial spacing | the identity C = I holds exactly [9]. Us- 
ing this simplification and omitting the indices, $, in the following for 
simplification, eq. (11) can be expressed as 

p(w) = vt^Rw = min    u.c.   v^Id=li    M^W = C       (12) 
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or as the Lagrange-function 

p(w,^,y) = wHKw+/j(\^d- 1) +y(w"w- c), 

respectively. 

-0.2        -0.1 0 0.1 
Normalized frequency 

0.2 0.3 0.4 

Figure 4 :   Adapted antenna pattern with SMI, K = 150. 

The solution results in 

-l 
w = a(R + yl)    d, 

0.5 

(13) 

where y must be determined under the second constraint in eq. (12). 
Unfortunately, no simple analytic relation between y and c is known. 
Therefore, the additive loading of the diagonal of the sample covariance 
matrix with a suitable chosen constant 8, i.e. w = a (R + 8l)~ d, will 
be taken as the solution [10, 8, 11]. A definition of a reasonable range 
of values is given in [12,13]. 

Fig. 5 shows the SNCR for the filter vector calculated with LSMI- 
technique. The number of snapshots was chosen to be K = M = 24 
and the loading factor is set to three times the sensor noise power level, 
i.e. 8 = 3a2. 
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Loaded Sample Matrix Inversion, K = 24 
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Figure 5:   Signal-to-clutter plus noise ratio versus normalized frequency for 
LSMI. 

-0.5        -0.4        -0.3        -0.2        -0.1 0 0.1 0.2 0.3 0.4 0.5 
Normalized frequency 

Figure 6:   Adapted antenna pattern for LSMI, K - 150, 8 = 3. 
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A significant performance improvement over that of the original SMI 
can be recognized over the entire frequency range. The approximate 
SNCR loss is only —2.5 dB, although the number of samples chosen 
was six times less than for Fig. 3. The improvement of the SNCR is 
linked to the desired reduction of fluctuation in the average sidelobe 
level of the adapted matched filter response, as shown in Fig. 6, [14]. 

3.2.2   Consequences 

To study the impact of the diagonal loading on the adapted matched 
filter response, i.e. the gain of SNCR, let the sample covariance ma- 
trix R be decomposed into its real eigenvalues Xn (with the smallest 
eigenvalue Xm^ > 0) and corresponding orthonormal eigenvectors u^ 
(n=l,...,N): 

N N 

R = Y ^rxänl^     With      £ ^ = I- 
n=\ n=\ 

The inverse can be written as 

R-1 
N     j !      / N \ N     1 

Y r^ = i— J~~ L ^S + £ r^ä" 
n=l *m Amin  y       n=, J      n=x Kn 

Substituting eq.   (14) into eq.  (10) yields the adapted filter response 
without loading: 

a{*) = mfm - Y i^-^) m)Hun£m 
2 

1 
X2    ' min 

For a given target signal orthogonal to the clutter subspace, with dfö) ± 
{«!, ..., uM}, i. e. in the sidelobe regions of the clutter, it holds that: 

«(*) dioofdo»- Y (*L^)d(<h)Hu,jgd(<>) 
2 

1 

^min 

When the noise eigenvalues are of different magnitude, and in partic- 

ular when the sample sizes are small, the error term (1 — ^ J for 

n G {M +1,...,N} can be large. On the basis of this notation, the effect 

10 DREOTR 2001-079 



of the diagonal loading, i.e. %n = Xn + 8, becomes clear: 

a(d) mfdw-1 (^ 
n=M+l \ 

l + 5)-(Ämfa + 8)' 

2 1 

#o)V^(ö) 
2   1 

(^min + 8) 

The error term after diagonal loading 

Anün + O      Kn — Anün 1 
Xn + 8        ^M + 8 

becomes smaller due to the compression of the noise eigenvalues, if 8 
is larger than the largest noise eigenvalue XM+\- On the other hand, to 
preserve the clutter notch, 8 must be chosen to be much smaller than 
the smallest dominant clutter eigenvalue, i.e. 8 <C XM- For the case of 
adaptive jammer suppression, a less known analytical expression for the 
pdf of the normalized SNCR resulting from LSMI can be found in [12]. 
Herein it is shown that if K > M, and some reasonable conditions are 
imposed on the diagonal load y 2, the normalized SNCR is also Beta- 
distributed but with parameters (2(K - M +1), 2Af) 

»N.-tw/-""-^    »<p<l        OS 
and expectation 

Ep = (K-M+l)/(K+l). (16) 

It can be seen that the expected 3 dB loss of SNCR is now reached for 
only KjdB = 2M — 1 snapshots, a number remarkably lower than that re- 
quired with SMI. Therefore, the statistical properties are independent of 
the number of channels, and the number of snapshots needed to suppress 
the interference effectively is now proportional to M (see also [15,13]). 

To study the statistical properties of the improvement factor resulting 
from the application of clutter suppression in more detail, the empir- 
ical probability density function has been computed at one particular 
frequency. In Fig. 7 the histogram of the normalized SNCR generated 
from 100000 trials is plotted along with the theoretical pdf in eq. 15 
for M = 12. The discrepancy between the two curves is due to the dif- 
ferent shapes of the eigenvalue distributions. While the eigenvalues in 

2o2 < y < XM> where XM denotes the smallest interference eigenvalue 
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the man-made jammer case resemble step-functions (sharp edge), the 
eigenvalues in Fig. 2 decrease gradually down to the level of the sen- 
sor noise. This fact is discussed in more detail in the following section. 
It is noteworthy to point out that the variance (variation) of the SNCR 
for clutter suppression is remarkably smaller than in the case of jammer 
suppression. 

1.2 
Loaded Sample Matrix Inversion, K = 24 

0.8- 

E 
2 
8TJ.6- 

0.4- 

0.2- 

-10 

I            I 1               1               1               1               1 

l/l 
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I         \ 
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i               i _ - -   i—— i           i           i         N—. 
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Normalized SNCR [dB] 

Figure 7:   Histogram of SNCR for LSMI at normalized frequency 0.25, calculated 
over 100000 trials (dashed). Theoretical pdf (15) forM= 12 (solid). 

3.3 Subspace Techniques 

Using the low rank approximation of the space-time covariance matrix, subspace 
techniques can be exploited for complete rejection of the clutter in terms of inde- 
pendency of clutter power. The basic idea of the so called projection methods is 
the separation of the overall space of observation into an interference and a noise 
part, followed by a projection of the array outputs into the clutter-free subspace 
to remove the interference. 

The adaptive spatial interference cancellation problem is in principle closely re- 
lated to that of superresolution angle estimation. The application of a projec- 
tion into the space complementary to the interference or jammer subspace, often 
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called the (sensor) noise subspace, generates deep notches in the antenna pattern 
in the directions of the jammers. The detection of these notches leads directly 
to estimations of the unknown locations. Thus, all subspace techniques can be 
used for both problems, although their statistical properties can, of course, be 
very different. An overview of subspace methods concerning both applications 
can be found in [16,17]. 

Starting from the model in chapter 2, a clutter data vector can be written as 

x = Db + n 

the superposition of the phase vectors D = \dx,..., dM] weighted with the clutter 
amplitudes b, and the sensor noise n. Via a projection orthogonal to D 

N 
(i. e. the M-dimensional subspace of the (C which is spanned by the column 
vectors dx,...,dN+M) it is possible to suppress the clutter exactly down to zero. 
Then, the filtering 

y = dHx = dHP^x 

gives the filter vector as 

w = P^d. 

For the special case of an indefinite clutter-to-noise ratio CNR this orthogo- 
nal projection is equivalent to the SNCR optimization w = Rrld. Using the 
matrix inversion lemma3, the inverse of the space-time covariance matrix R = 
DBDH + <J2I can be written as 

R-i = J_ (i_D(D^D + B-1)-^") , 

where B = B/a2. Assuming CNR ->• °° it follows B_1 -» 0, so that 

C
2
R-

1
-»P^ = I-D(D"D)~

1
D

//
. (17) 

Since the phase matrix D is generally unknown, the projection matrix has to be 
estimated. This can, for instance, be achieved by a subspace fitting of the random 

NxM    „ N ,     „ 
data vectors. A M-dimensional subspace S6(C        of the (D   must be found so 
as to best approximate the data vectors in a Mean Square Error MSE sense: 

E||X-PsX||2 = min. (18) 
3(A + BCB")_1=A-1-A-1B(BHA-1B + C-1)"1BWA-1 
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Ps denotes a projection matrix into the subspace which is spanned by the columns 
of S = [5],... ,SM}. The minimization in eq. (18) is equivalent to the maximiza- 
tion of 

E||PS£||2 = EXHPSX= tr{PsEXXw} = tr{PsR} = max. 

If the orthonormality of the vectors 5,,... ,SM is also demanded, the projection 
can be written as Ps = SSW. Hence, the maximization turns out to be an opti- 
mization under constraint: 

tr{S//RS} = max    u. c.   SWS = I. (19) 

Substituting the eigenvalue decomposition R = UAUW into eq. (19) results in 

tr{S//UAUwS} = tr{Q//AQ}=max    u. c.    QWQ = I.        (20) 

The solution of eq. (20) is shown in the appendix to be the subspace Q which is 
spanned by the eigenvectors corresponding to the M dominant eigenvalues, or an 
arbitrary unitary transformation of it. Denoting the eigenvectors corresponding 
to the M dominant eigenvalues as S, the projection matrix can be written as 

Pg^I-SS" 

and the filter vector as 

w = aV^d = a{d-SSHd). (21) 

Unlike the LSMI, the dimension of the clutter subspace M needs to be known 
in order to calculate Ps in eq. (21); it has to be estimated as well. Several 
different approaches exist in literature. The extended sphericity-test [18], tests 
the equality of the last N -M smallest eigenvalues of the sample covariance 
matrix. The, so-called, information theory based algorithms, such as AIC- [19] 
and MDL-criterion [20] are different approximations of the density function of 
the extended sphericity-test statistic. The white noise test for active systems [21] 
is based mainly on the comparison of the estimated noise power level with a a- 
priori known level. The analysis of a suitable dimension of the clutter subspace 
is a major task of this report. 

3.3.1   Eigenvector Projection (EVP) 

Since the asymptotic covariance matrix R is not known in practice, it 
is possible to use the eigenvectors of the sample covariance matrix to 
determine the filter vector w 

R = ÜAÜ" = SAsS" + NNW. 
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N 
Using eq. (5), one can show that the desired subspace S G (D is the 
one which best approximates the sample vectors x^. (k = 1,..., K) in the 
meaning of least square error (compare also eqs. (18) to (20)): 

K 

£|fe-ps*jfcl|2 = min 

or 

£||Ps^||2= tr|sH£^sl=iar{S"RS} = max 
k=\ \     k=\ ) 

u. c.   SHS = IM, (22) 

respectively. This technique is completely analogous to the Multiple 
Slgnla Classification MUSIC algorithm for high resolution spectral es- 
timation [22]. It has been shown analytically that the suppression per- 
formance of the so called Eigenvector Projection (EVP) is equivalent 
to that of LSMI [23]. To be consistent, the eigenvectors of the sam- 
ple covariance matrix are denoted by S and the corresponding estimated 
weight vector by w(-&) = (I - SSH) d(-&). Inserting this weight into eq. 
(1), we get for the SNCR 

,ö „ _    l<*(*)HPfr*(*)|2    c2 

P{b,i}) ~ d(V)»PiKPJrd(1>) AT (23) 

The behaviour of p is shown in Fig. 8 and Fig. 10 for a clutter subspace 
dimension of 12 and 24, respectively. One can see that the average loss 
of SNCR in both cases is about (-2) to (-3) dB. To evaluate the statisti- 
cal properties of the SNCR in more detail, identical histograms to those 
used with LSMI have been calculated and displayed in Fig. 9 and 11. 
Two remarkable results are observed. 

In regards to asymptotic losses, it can be seen that even a small dimen- 
sion of the clutter subspace results in near-optimum suppression. The 
main difference is some minor ripples; the reason for these ripples lies 
in the special shape of the eigenvalue distribution. The sum of all eigen- 
values is identical to the total clutter power. After removing the power 
contained in the first 12 eigenvalues the power in the remaining eigen- 
values is only a small fraction of the entire clutter power, even if they are 
still larger than the sensor noise floor. Further increasing the subspace 
dimension to 24 (Fig. 10) eliminates the remaining power and causes 
the ripples to disappear. 
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In contrast, when a limited number of samples is used to estimate the 
covariance matrix, surprising behaviour is observed, namely the smaller 
subspace dimension produces slightly better results, i.e. the loss appears 
to be slightly less. This impression is confirmed by the two histograms 
in Fig. 9 and 11, where the demonstrated expectation is slightly smaller. 
The reason for this behaviour is not clear but it is believed that both the 
magnitude of the eigenvalues and the orientation of the corresponding 
clutter and noise subspaces with respect to each other, play an important 
role (compare also section 3.3.4). 

Eigenvector Projection, SS = 12, K « 24 

——•—1—-~___-L        i          i          i          i i   ^, j 
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Figure 8:   Signal-to-clutter plus noise ratio versus normalized frequency for EVP, 
dimension of subspace 12. 
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Figure 9:   Histogram of SNCR for EVP at normalized frequency 0.25 calculated 
over 10000 trials, dimension ofsubspace 12. 
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Figure 10:   Signal-to-clutter plus noise ratio versus normalized frequency for EVP, 
dimension ofsubspace 24. 
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1.2 
Eigenvector Projection, SS = 24, K = 24 
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Histogram of SNCR for EVP at normalized frequency 0.25 calculated 
over 10000 trials, dimension ofsubspace 24. 

3.3.2   Projections without Eigenanalysis 

The estimation of the complete covariance matrix and the following 
eigendecomposition are very intensive and time consuming computa- 
tional processes. Many different techniques have been proposed in the 
literature, with the goal of reducing the computational complexity of 
subspace methods for use in real time applications in large antenna ar- 
rays, see e.g. [24, 25, 26]. These iterative methods, which employ ex- 
ponential forgetting factor to partially update the eigenvectors, have the 
drawback of possessing a lower convergence rate than MUSIC, i.e. they 
need a large number of samples to perform sufficiently well. In con- 
trast, subspace methods which work with successive short time frames 
(i.e. on a small block of data) show better tracking performance [17]. 

Since every arbitrary complete basis of the clutter subspace can be used 
to form the projection matrix, it is possible to develop faster subspace 
methods which are not based on eigenanalysis. In principle, the simplest 
way to estimate the subspace, as suggested by Hung and Turner [27], is 
to take the data vectors directly as a basis for the clutter subspace. This 
method, called HTP, gives only a rough estimate of the subspace and 
yields sufficient results only for high CNR. The theoretical statistical 
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analysis of the HTP, when used for man-made jammer suppression, can 
be found in [13]. 

The noneigenvector estimation of a basis of the signal subspace based 
on the sample space-time covariance matrix, can be conceptualized as 
an extension of the HTP to the case of an infinite amount of samples. 
One class of subspace estimation methods, called Yeh-Brandwood- Pro- 
jections (YBP), is based on the idea of a sufficient data reduction pre- 
processing, namely the estimation of a basis of the clutter subspace 
based only on a part of the sample covariance matrix. Since the mea- 
sured covariance matrix always contains receiver noise, the estimated 
subspace is disturbed. 

Different techniques have been proposed in the literature to reduce the 
negative influence of the sensor noise e.g. [28,29]. In [30] it was shown 
that the influence of the additive noise can be interpreted as a leakage of 
the signal power into the noise subspace. Instead of recollecting the lost 
jammer power, it is desirable to pre-apply an adaptive mechanism which 
protects the method before or during execution of the subspace estima- 
tion. A mathematical technique to achieve this property is known as the 
rank-revealing QR-factorization [31] of the sample covariance matrix, 
also called QR-decomposition with permutation (PQR) [32]. This tech- 
nique was first used in this context by Hsieh et. al. [33] and Prasad et.al 
[34]. 

To avoid the time consuming recursive permutation, Reilly [35] suggests 
a fixed pre-selection of M columns of the covariance matrix using some 
a-priori knowledge about their structure. He called this method reshuf- 
fled QR decomposition, or RQR. In [36], a simple, efficient extension 
of the RQR, called Matrix Transformation based Projection (MTP), has 
been presented. It is based on a generalised representation of the class of 
YBP. The performance of the MTP, when applied to the closely related 
problem of superresolution angle estimation with small sample size, has 
been investigated in [37]. 

3.3.3   Projections Based on Covariance Matrix Transformation 
(MTP) 

This section deals with the performance of MTP when applied to the 
suppression of clutter for airborne MTI. Let us first consider a general 
dimension reducing transformation of the covariance matrix 

R = RT = (DAD" + a2!) T, (24) 
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NxM 
where T is an arbitrary transformation matrix of the (D with rank{T} 
= M. It can be directly seen from eq. (24) that a substitution of T by the 
first M columns of the identity matrix is identical with the classical YBP. 
Moreover, if we replace the transformation by the permutation or pre- 
selection matrices mentioned in the previous section, the PQR and RQR 
methods are also included as special cases of this general expression. 
Using R = XXWT to build up the projection matrix 

Pi 
R 

we get for the SNCR 

and inserting the resulting weight vector w($) = P-td('d) into eq. (1), 

p(R'*)=^™pw"' (25) 

3.3.3.1     Optimum Transformation for Known Covariance Matrices 

Eq. (24) raises the question of whether a constant (non adap- 
tive) transformation T exists for which an efficient subspace 
estimation can be achieved, assuming the covariance struc- 
ture, including the sensor noise term, is given. That means, 
one is looking for a transformation of the covariance ma- 
trix for which lin{RT} = lin{D}, i.e. RT must be a linear 
combination of the phase matrix R = RT := DG which is 

MxM 
not at all affected by the sensor noise, with G € (D and 
rank{G} = M. It is easy to verify that an optimum transfor- 
mation in this sense is given by an arbitrary linear combina- 

MxM 
tion of the phase matrix itself: T = DF with F G G and 
rank{F} = M. Since 

R = RT = RDF = DADWDF + a2DF = DG, 

where 

u T MxM 
G = ADwDF + a2Fe(D 

R represents a basis of the interference subspace which is not 
interrupted by the noise even in the case of fully correlated 
interference sources, i.e. when rank{ A} < M. 
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3.3.3.2     Suboptimum Transformation for Estimated Covariance Ma- 
trices 

As the phase matrix of the clutter is supposed to be unknown, 
one might follow the considerations of the HTP and take M 
snapshots vectors Xo = [xl,...,xM]asa rough estimation of 
the interference subspace for the transformation R = RT = 
XXwXo. The result of this approach shows an unexpected 
effect. Although the transformation matrix T = Xo, i.e. the 
M snapshots are highly fluctuating and therefore the spanned 
subspace lin{Xo} strongly deviates from the exact one4 lin{D}, 
it seems that the subspace lin{R} (spanned by R = DAD^Xo 
+a2Xo) has effectively no loss of SNCR compared to lin{D}. 
To explain this phenomenon, we will establish a relationship 
between the MTP and the Power-method [32] for recursive 
evaluation of the eigenvectors corresponding to the M domi- 
nant eigenvalues: 

Y, = RY/_! = R'Yo 
Y/= orth{Y/}        / = 1,...,L, (26) 

where orth{#} denotes the orthonormalization of the columns 
included in $. 

One can see in eq. (26), that depending on the initial matrix 
Yo used in the first step of iteration L — 1, either a YBP with 
Yo = I, a PQR or a RQR will be performed. To analyse the 
convergence of the algorithm, we will replace the covariance 
matrix in (26) by its eigen-factorization. Further, let the initial 
matrix Yo be an arbitrary linear combination of the eigenvec- 
tors 

Y0 = UA = SA5 + NAN 

r    T      T1T MxM (N-M)xM 
with A = [Aj,Ajrj  , As € (D and AN € (D 
Assuming linear independence of the eigenvectors and the 
columns of Yo, it directly follows that the matrix of coeffi- 
cients A = U^Yo has the rank{A} = M and, particularly, 
that rank{As} = rank{SwYo} = M. Inserting these terms 
into the iteration (26) yields 

Y/ = RZY0 = S Al
s As + NA^AJV 

4Compare, for instance, Fig. 1 in [13] 
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and due to the nonsingularity of A5 

Y/=  [s + NAJvAyvA^'A^ A'cA sAs 

S+0(J)]A
1

SAS       Z=1,...,L       (27) 

with 

q = max AM+I Ai, • • •, XM+I/XM, ■■-, XN/X\ > 
••• AN Aw} = ^M+\/XM- 

The convergence of the iteration is ensured by the succes- 
sive orthonormalization of Y/. If we take into account that 
the smallest clutter eigenvalue XM is proportional to the av- 
erage of the interference power of the clutter, and that XM+\ 

is approximately equal to the sensor noise power a2, then the 
order of the error quotient q1 is proportional to (1 /CNR) . 
This can be negligible even for L = 1, particularly in case 
of strong clutter. Thus, it can be concluded that the perfor- 
mance of the MTP and YBP depend not only on the CNR, 
but also on the condition of the coefficient matrix A5. This 
statement can easily be confirmed if a pure noise matrix for 
transformation is used. In that case, the coefficient matrix 
As = SWT is given as a random linear combination of the 
clutter eigenvectors, which is generally well conditioned. Al- 
though this kind of transformation has no relation to the inter- 
ference subspace, the given results shown no difference (see 
also [15]). Under MTR the number of complex operations 
to estimate the interference subspace R = RT = X (XWT) 
is of the order 0(2KN). This is double that of the YBP or 
RQR-method which achieve greater computational efficiency 
through the special structure of their transformations, e.g. us- 
ing the identity or any other permutation matrix for transfor- 
mation requires no explicit matrix multiplication rather only 
a selection of corresponding columns. 

3.3.3.3     Suboptimum Transformation with Small Computational 
Complexity 

In this section, we use a physical interpretation of the different 
special cases of the YBP introduced above, to develop a trans- 
formation matrix with very small computational effort.   In 
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other words, we are looking for a transformation matrix which 
is sparse but still guarantees a good condition of As = SWT. 

The estimation of a part of the sample space-time covariance 
matrix corresponds to the average of the correlation of a M- 
element subarray output with the entire array. For example, a 
subarray built with the first M elements (YBP) shows a wide 
beamwidth due to its strongly decreased aperture. A pair of 
closely located clutter points which are still conventionally 
resolvable by the entire aperture AM > beamwidth ~ \/N, 
now appear so close together that the corresponding subar- 
ray phase matrix DWT in eq. (24) will be almost singular. 
It now becomes clear that a fixed pre-selection scheme, like 
that suggested for the RQR [35], means a regular thinned ar- 
ray which still preserves the entire aperture. Hence, some 
grating lobes will appear in the subarray pattern although the 
condition number of the subarray phase matrix is strongly re- 
duced. The effect of this undersampling can be interpreted as 
a penetration of nonsuppressable clutter power into the sys- 
tem through these grating lobes. From the theory of subarray 
design [38,39], it is known that the use of a random subarray 
configuration can reduce these periodicities due to the multi- 
plicative superposition of the ambiguities. 

For a sufficiently large array, it is possible to find a trans- 
formation by randomly re-sorting the columns of the identity 
matrix. For example E e {0,1 }NxN is the randomly gener- 
ated permutation matrix which can be divided into nonover- 
lapping block matrices E = [Ei, E2,...] with E,- <E {0,1 }NxM 

and 

E?Ey-{*J IM   i = j 
else. 

The transformation matrix might then be determined via a 
sum of a small number of these blocks T = £j_j E,-. Figs. 
12 and 14 show the resulting SNCR of the MTP for the case 
in which the transformation was generated as a sum of three 
blocks.i.e. T = Ei + E2 + E3. It can be seen that the perfor- 
mance of MTP is slightly worse than EVP for the asymptotic 
as well as the finite sample size case. Moreover almost no 
difference can be recognized for different dimensions of the 
clutter subspace, Figs. 13 and 15. The number of operations 
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to estimate the interference subspace 

R = X (XwEi + XHE2 + XWE3) 

is now NKM complex multiplications, therefore requiring only 
2KM more complex additions than the YBP or RQR methods. 
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Figure 12:   Signal-to-clutter plus noise ratio versus normalized frequency for MTP, 
dimension of subspace 12. 
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Figure 13:   Histogram of SNCR for MTP at normalized frequency 0.25, calculated 
over 10000 trials, dimension of subspace 12. 
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Matrix Transformation based Projection, SS = 24, K = 24 
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Figure 14:   Signal-to-clutter plus noise ratio versus normalized frequency for MTP, 
dimension ofsubspace 24. 
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Figure 15:   Histogram of SNCR for MTP at normalized frequency 0.25, calculated 
over 10000 trials, dimension ofsubspace 24. 
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3.3.4   Weighted Projection - Lean Matrix Inversion (LMI) 

This section describes a simple yet computationally highly efficient ap- 
proach for adaptive spatial interference suppression which was origi- 
nally developed as a robust method for use in the presence of dispersive 
channel errors [40]. The method, called lean matrix inversion (LMI), 
is based on a weighted projection. The corresponding interference sub- 
space is estimated by the MTP-technique. 

It is known that the dispersive channel errors included in data measured 
with an array of sensors will cause a decorrelation between the chan- 
nels which leads to a loss of the low-rank property of the corresponding 
covariance matrix [41]. The resulting spread of the eigenvalue distri- 
bution can be interpreted as a leakage of interference power from the 
jammer subspace into the noise sub-space. The clear separation of the 
two subspaces disappears as a result of this leakage. Since clutter eigen- 
values have a similar distribution, the application of this approach to the 
MTI-problem appear to hold promise. 

The problem of choosing the correct dimension of the jammer subspace 
occurs as a result of the eigenvalue spread [41] (see also section 3.3.1). 
As mentioned in section 3.3.1, it is obvious that the clutter power con- 
tained in the remaining eigenvalues will not be suppressed when the 
dimension of the clutter subspace is chosen to be M = 12. As a result, 
a SNCR-loss occurs over the entire frequency range. It has been noted, 
however, that the loss 

K N 

is strongly dependent on the clutter-to-noise ratio and probably on the 
orientation of the array, i.e. side-looking versus forward-looking system. 
The latter is the subject of future work. Let the inverse of the space-time 
covariance matrix in eq. (28) be substituted by its eigen-factorization 
R~' = U A-1 UH, where the unitary eigenvector matrix is separated into 

NxM MxM 
one part S £ G        corresponding to the eigenvalues As € IR        and 

Nx(N-M) ,. , . t(N-M)x(N-M) 
a part N G (D corresponding to the rest AN € IR 
Then, the SNCR in the sidelobe region of the clutter is given as 

dH (SAcl SH + NAN' N") d     dH (NAZ
1
 N

H
) d 

9 = ~   { N =~   V     N '       ^ 

For AN close to the identity matrix, the SNCR would be p = 1 outside 
the main clutter with SHd = 0. With the eigenvalue distribution shown 

DREOTR 2001-079 27 



in Fig. 2 it is evident that strong clutter with large additional eigenvalues 
(i.e. far beyond the noise level) results in an additional loss to the SNCR. 
Or, differently formulated, relatively weak CNR produces eigenvalues 
which are at or below the noise floor level. 

The subspace dimension could be increased to ensure that all dominant 
eigenvalues are covered, however, this can lead to a loss in antenna gain 
as the remaining degrees of freedom in the array may be too small to al- 
low detection of the moving targets. In other words, a larger clutter sub- 
space dimension results in an unwanted suppression of target power it- 
self. Hence one may conclude that no subspace dimension can be found 
for which projection methods work as well as those methods based on 
the Wiener solution. 

The loaded sample matrix from eq. 13 can be approximated as 

R+yI = S(As+yI)&H + Ü(AK + yL)ÜH 

* StAs+YlJS^ + yNN" 

= §(AS+YI)§"+Y(I-§S
W

) 

= SAgS^ + yl. (30) 

Using the matrix inversion lemma, and the fact that the eigenvectors are 
mutually orthonormal, the inverse of the loaded space-time covariance 
matrix can be written as 

(R + Yl)_1=I-SGSw. (31) 

MxM 
The entries of the diagonal matrix G = diagjGi i,..., GMM) € IR 
are given as 

Gmm = %m/{K + i)    for   m=l,...,M. 

Eq. (31) shows that the LSMI approximates a "weighted" projection, 
wherein the "importance" of each subspace base vector (eigenvector) is 
determined by the magnitude of its corresponding eigenvalue. This ap- 
proximation motivates a modification of the classical projection meth- 
ods in order to make them more robust against an eigenvalue spread. 

As shown in section 3.3.3 the QR-decomposition of the estimated sub- 
space 

R = X (XWE, + XWE2 + XWE3) = QL = Q[QSQN]        (32) 
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can be used to both, orthonormalize the subspace base vectors and to get 
an approximation of the jammer eigenvalues needed for the weighting, 
i.e. the diagonal elements Li,i, • • • ,LM,M- Fig- 16, for instance, shows 
the distribution of the magnitudes of the diagonal elements of L in eq. 
(32). These magnitudes are a measure of the mutual linear independence 
of the columns in R. The number of dominant diagonal values is the 
same as the eigenvalues, i.e. 24. The special shape reflects the inherent 
structure of the asymptotic covariance matrix and might be useful in the 
determination of the clutter subspace. 

The weighting matrix can be determined as diag(Gmm = 1^/(2^ + y)). 
Only those diagonal elements of the QR-decomposition that are larger 
than a threshold a are used. The threshold is the criterion to determine 
the dimension of the clutter subspace. The value can be chosen in iden- 
tical fashion to LSMI as a = 3a2, where a2 describes the receiver noise 
power. This method was termed lean matrix inversion (LMI) method. 
To what extent the LMI is sensitive to the choice of the threshold a 
should be examined in future work. 

Figure 16:   Magnitude of the diagonal elements after QR-decomposition of the 
space-time covariance matrix. 

Figs. 17 to 20 show the loss of SNCR for the two different clutter sub- 
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space dimensions, 12 and 24. It can be seen that a dimension of 12 
is not large enough to show the impact of the weighting. The results 
in that case are similar to the MTP; increasing the subspace dimen- 
sion to 24 allows the utilization of the information contained in the tail 
and shows superior performance compared to all other techniques. It 
should be pointed out that the SNCR-loss in that case is even less than 
with LSMI. This is remarkable since the performance of LSMI and EVP 
were believed to represent the optimum for the application of interfer- 
ence suppression. To verify that this effect is not due to variations in the 
estimation of p, the number of trials in Figs. 18 and 20 was increased to 
100000, thereby obtaining a better estimate and a smoother histogram. 

To investigate the performance of the LMI on the form of the transfor- 
mation matrix, the three block matrices, T = £?_j E;, have been ran- 
domly generated in Fig. 21 for one fixed set of estimated data vectors 
(snapshots). For this particular set of snapshots, with an SNCR-loss 
of — 1.57dB, the variance due to the random transformation matrix is 
about lOdB smaller than the fluctuation of the data itself. This result 
shows that the suppression performance of LMI and the MTP are not 
very sensitive on the choice of T. 

Lean Matrix Inversion, SS = 12, K = 24 

-0.1 0 0.1 
Normalized Frequency 

Figure 17:   Signal-to-clutter plus noise ratio versus normalized frequency for LMI, 
dimension of subspace 12. 
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Lean Matrix Inversion, SS = 12, K = 24 

Normalized SNCR [dB] 

Figure 18:   Histogram of SNCR for LMI at normalized frequency 0.25, calculated 
over 10000 trials, dimension ofsubspace 12. 

Lean Matrix Inversion, SS = 24, K = 24 
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Figure 19:   Signal-to-clutter plus noise ratio versus normalized frequency for LMI, 
dimension ofsubspace 24. 
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1.2 
Lean Matrix Inversion, SS = 24, K = 24 
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Histogram of SNCR for LMI at normalized frequency 0.25, calculated 
over 100000 trials, dimension ofsubspace 24. 

Lean Matrix Inversion, SS = 24, K = 24 
1 

E    =-1J5775dB 

Var =-33.5219 dB 
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Figure 21: Histogram of SNCR for LMI at normalized frequency 0.25, calculated 
over 10000 trials, dimension of subspace 24. Applied on one fixed esti- 
mated covariance matrix but with varying transformation matrices. 
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4.   Computational Complexity 

This section presents compares the computational complexity of the different 
techniques examined in this report. Only complex operations (multiplications 
and divisions) are counted for each technique as they represent the most intensive 
calculations. Their number is dependent on the 

• number of channels: N, 

• number of pulses: M, 

• number of samples: K 

• and the dimension of clutter subspace: C. 

To determine the computational overhead of the SMI/LSMI-method, one must 
first consider the estimation of the space-time covariance matrix R = %Y%=\ 
X^f + 81. Only the upper (or lower) triangle has to be calculated as the co- 
variance matrix is hermitian. The number of complex multiplications is then 
KNM(NM+\) ^ Insteaci 0f a direct inversion of R it is numerically more economi- 
cal to solve the equation Rw = d, e. g. via a Cholesky-decomposition. Since R 
is hermitian positive definite, there exists a unique lower triangular L with pos- 
itive diagonal entries such that R = LLH. Since the matrix L is triangular, the 
solution can be found by a two-step forward-backward substitution procedure 
Lb = d and LHw = b. The number of complex operations required to factor- 
ize the covariance matrix is N^N ff ~1'. The two substitutions give an additional 
N2M2 — NM operations. Consequently, the overall number of operations is of 
the order 0(^ + ^f). 

A full eigenvector factorization for the EVP technique needs approximatively 
0(1(W3M3) complex operations [32]. 

The estimation of the clutter subspace S within the MTP or LMI technique is 
achieved by 

S = X (X* Ei + XWE2 + X//E3). (33) 

This operation requires NMKC complex multiplications since the permutation 
matrices, £,-, only select the appropriate columns of XH, they do not calculate 
them. The orthonormalisation of S then requires another NMC2 operations. 

Inserting sample values for the simulation (i.e. N = 12, M = 12, K = 24 and 
either C = 12 or C = 24) yields for the number of complex operations: 
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• SMI/LSMI: 746496, 

• EVP: 29.87106, 

• MTP/LMI: 41472 if C = 12 and 82944 if C = 24. 

For this scenario the MTP/LMI techniques are about 10-20 times faster than 
the LSMI, and about 375 - 750 times faster than the EVP. 
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5.   Conclusions 

In this report, two different recently developed fast rank reduction techniques, the 
so called subspace or projection methods, have been applied to the problem of 
clutter suppression for MTI. The basic theory behind them was briefly reviewed 
and their small sample size performance was studied via simulations. 

As a result of this study the following important conclusions can be drawn: 

• Both subspace techniques, namely MTP and LMI, are capable of suppressing 
the clutter effectively. The loss of SNCR between the LSMI and EVP on one 
hand and the MTP and LMI on the other hand is only a fraction of one dB. 

• It is not necessary to suppress the full clutter subspace defined by Brennan's 
rule, particularly in the finite sample case. It is the magnitude of the eigenval- 
ues rather than the number larger than the noise floor which is the dominant 
factor, i.e. their contribution to the overall clutter power. This reduction leads 
to savings in computational overhead. 

• The asymptotic and finite sample size behaviour of each method are notice- 
ably different. Ripples in the shapes of the matched filter outputs for known 
covariance matrices, blur or even disappear in the different realizations due 
to the uncertainty of the estimation process. 

• The LMI technique was superior to all other methods, in that it possessed 
both the smallest loss of SNCR and the lowest computational complexity. 
The first point is especially noteworthy, since LSMI and EVP were believed 
to represent the optimum interference suppression performance. 

Since this study is based only on one particular simulation scenario, future work 
will have to focus on different open items, such as: 

• Investigation and comparison of the proposed techniques for varying number 
of channels and pulses; particularly for the practical case of a small number 
of channels with a larger number of pulses. 

• Studying the impact of a different radar orientation, such as a forward-looking 
system (i.e. range-dependency of the clutter), as well as the effects of inher- 
ent channel errors on the performance of MTP and LMI, especially for small 
sample size. 

• Developing a method for automatic determination of an optimum dimension 
of the clutter subspace for EVP, MTP and LMI, e.g. based on the ratios of 
the eigenvalue magnitudes. 
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• Comparison of the performance versus computational cost of the fully adap- 
tive processor concept with a so-called beamspace approach. In the latter the 
data are dimension-reduced before calculating the cancellation filter. This 
technique has also been proposed to reduce the computational effort [1]. 
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Annex 
Proof of Eq. (20) 

NxM 
Let Q € (D be an unitary matrix and A a diagonal matrix with real entries 
X\, • • •, XN, then: 

M 

maxtr{Q//AQ}= £ Xm. (A.1) 

Proof: 
The trace in eq. (A.l) can be re-written as 

N N 

tr{Q"AQ} = tr{AQQ"} = £ K&QQ"^ = £ Kflmt 
m—\ m=\ 

where ^ denotes the m-th column of the identity matrix I#. Since QQW de- 
scribes a projection matrix (i.e. it is idempotent), it has M-eigenvalues equal to 
1 and the rest 0. Hence it yields for the diagonal elements am = e^QQ^e^, 

i) 0<am< 1    m=l,...,N 
M 

xx) £am=tr{QQ//}=M. 
ro=l 

Proposition: 

N M N M 

£ XmCLm = £ Xmam +   £   Xmam < £ "Xm 
m=\ m=\ m=M+l m=l 

or 
M N 
£Xm(am-l)+   £   Xmam<0, 

m=\ m=M+\ 

respectively. Since XM+I is greater than or equal to zero, it follows 
M N 
£(Xm-?iM+i)(am-l)+   £   (km-^A/+i)am<0 (A.2) 

m=\ m=M+\ 

and 
M N I M N 
£ Xm(am -1) +   £   Xmam < XM+\    £ (otm - 1) +   £ 

m=l m=M+\ \m=l m=M+l 

= XM+if £ccm-Mj. (A3) 

Using ii) the term within the brackets on the right side of inequality (A.3) equals zero. 
(q.e.d) 
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