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Preface 

Welcome to Lisbon 

It is my pleasure to welcome you to Instituto Superior Tecnico, where BIANISOTROPICS 2000 
takes place. I hope you enjoy your stay and take the opportunity to attend an exciting conference 
and visit a beautiful town. 

BIANISOTROPICS 2000 is the eighth in a series of conferences devoted to Electromagnetics 
of Complex Media, the first one held in 1993, in Helsinki. This is a very unique meeting joining 
researchers with very different backgrounds actively contributing to new developments in this 
scientific discipline. 

After the issue of a Call for Papers, in December 1999, a very positive reaction was regis- 
tered: 101 regular contributions have been received and, after an external review, 96 have been 
considered adequate for presentation. Moreover, 9 invited contributions by leading experts in 
the field will complete an interesting technical program. By the printing deadline, a total of 93 
full manuscripts have been received and are included in these Proceedings. 

Following the format of last editions, the program includes oral sessions and poster presen- 
tations as well as a round table discussion on a selected topic. 

Around 80 delegates from 20 countries are expected to attend the Conference. 
I sincerely hope you may consider your participation in BIANISOTROPICS 2000 a rewarding 

experience. 
Once again welcome and I wish you a pleasant stay in Lisbon. 

Afonso M. Barbosa 
Conference Organizer 

Lisbon, September 2000 
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Waves and Fields: Prom Uniaxial to Biaxial 
Mediums, in Between and Beyond 

W. S. Weiglhofer1 and A. Lakhtakia2 

l Department of Mathematics, University of Glasgow 
University Gardens, Glasgow G12 8QW, Great Britain 
Fax: + 44 - 141 - 330 4111; email: wsw@maths.gla.ac.uk 

2 CATMAS — Computational & Theoretical Materials Sciences Group 
Department of Engineering Science and Mechanics, Pennsylvania State University 
University Park, PA 16802-6812, USA 

Abstract 

First, a consistent perspective for the formulation of constitutive dyadics for biaxial medi- 
ums — for the anisotropic dielectric and the full bianisotropic cases — is provided. Then, 
the connection between the existence of closed-form, infinite-medium, dyadic Green func- 
tions and the factorization properties of certain scalar differential operators is explored by 
focusing on a special type of homogeneous, anisotropic, dielectric medium. Its anisotropy is 
of a higher degree of complexity than an uniaxial medium's but falls short of a fully biaxial 
medium's. 

1. Prom Uniaxiality to Biaxiality 

An anisotropic dielectric medium of the simplest type has a relative permittivity dyadic e that 
is uniaxial. Stated as1 

I«m = e«l+e6uu' (1) 

it employs two complex-valued scalars (i.e., ea and eb) and one unit vector (i.e., u) which is 
parallel to the sole distinguished axis of the medium [1]. Extending the structure of (1) to the 
permeability dyadic and the magnetoelectric dyadics as well, we arrive at a uniaxial bianisotropic 
medium [2]. 

Generalization from medium uniaxiality to biaxiality requires the introduction of a second 
distinguished axis. Recently, we [3] put forward a consistent approach to that issue for biaxial 
bianisotropic mediums, delineating their frequency-dependent constitutive relations as 

D(x) = e0 gb. • E(x) + (yO^) gw • B(x), (2) 

H(x) = (vQ^)£6. • E(x) + (V//o)£6. • B(x). (3) 

Here, the four constitutive dyadics are given by 

iu = eaL + eb (um un + u„ um) , (4) 

Eftj = aa|+a& (umun + unum) , (5) 

'In this paper, vectors are in boldface; dyadics are underlined twice; a • b = £. aibi; A = ab is a dyad 
with elements Ay = 0,6,; | is the unit dyadic and g is the null dyadic; the superscript _1 indicates inversion of 
dyadics and differential operators; while x and x' are the observation and the source points, respectively. 



ß     =ßal + ßb (örn Un + U„ Um) , (6) 
=bi — 

gb. = Xal + Xb (um un + u„ um) , (7) 

with um and un as two unit vectors that are, in general, neither parallel nor anti-parallel to 
each other. The simplification um = ±u„ leads us back to uniaxial bianisotropic mediums. 

The two unit vectors in (4)-(7), and both corresponding distinguished axes [1], are common 
to all four constitutive dyadics. Furthermore, these dyadics contain eight complex-valued pa- 
rameters: ea, eb, aa, ab, ßa, ßb, Xa and Xb, while the angle <f> = cos_1(um * %) is real-valued. 
Therefore, any biaxial bianisotropic medium is characterized by 8 x 2 + 1 = 17 real-valued 
constitutive scalars. A redundancy in this scheme is filtered out by the Post constraint [4]: 

Trace (gw - ß .) = 0    =>     3 (a0 - ßa) + 2 (ab - ßb) cos<£ = 0. (8) 

Hence, (4)-(7) actually contain just 15 real-valued independent constitutive scalars. Further- 
more, as presently defined, the biaxial bianisotropic medium is a nonreciprocal medium. 

A biaxial anisotropic medium [1] arises as a special case when ^w = ß = Q in (4)-(7). The 
biaxiality is thus purely in the dielectric-magnetic properties, and is described by 4 complex- 
valued constitutive parameters plus the real-valued angle <p. As the Post constraint (8) is then 
trivially fulfilled, a biaxial anisotropic medium is uniquely described by 9 real-valued constitutive 
scalars. 

Perhaps the most attractive feature of the representation (4)-(7) is found in the possibility 
that one and the same orthogonal transformation is able to diagonalize all four constitutive 
dyadics. Full details about that feature, as well as a comprehensive study of electromagnetic 
wave propagation in biaxial bianisotropic mediums, are available elsewhere [3]. 

2. Dyadic Green Functions 

The dyadic differential equation 

£(V)-£(x,x') = <5(x-x')I, (9) 

constitutes the standard field problem for the electric field phasor, with the exp(—iu)t) time- 
dependence implicit throughout. The dyadic Green function (specifically, of the electric type) is 
denoted by £(x, x'), while <5(x - x') is the Dirac delta function. The specific form of the dyadic, 
second-order, differential operator £(V) depends on the type of medium being considered; see 
Ref. [5] for the relevant exposition of the general Green function technique. 

For brevity's sake, we limit our attention here to anisotropic dielectric mediums, whose per- 
meability dyadic equals I and whose magnetoelectric dyadics equal Q. A closed-form expression2 

for G(x,x') for an uniaxial dielectric medium is available in textbooks [1], but none is known 
to exist for a biaxial dielectric medium. The latter is not surprising in view of some results 
pertaining to the so-called determinant operator of Ji(V). 

An important step towards a closed-form solution is to determine whether the determinant 
operator 

Hdet = £(V) • £adj.(V) = Ladj(V) . £(V), (10) 

can be factorized into a product of two second-order operators, the adjoint operator £..(V) in 
(10) being always of the fourth order by virtue of the structure of the Maxwell equations. It was 

2The dyadic Green function should be expressible through simple mathematical functions which will most often 
be scalar Green functions of second-order Helmholtzian operators and derivatives as well as linear combinations 
thereof. It does not include representations in terms of integrals, because such representations can be trivially 
achieved with spatial Fourier transformations due to the linearity of (9). 



first stated in Ref. [6] — see also Ref. [7] — that the determinant operator can be factorized 
only if the relative permittivity dyadic has the structure 

if act = AI + ab, (11) 

where A is a scalar while a and b are vectors. Parenthetically, the formulas given in Refs. [6, 7] 
pertain to the more general anisotropic dielectric-magnetic mediums. 

The form of gfact stated above is only sufficient but not necessary for factorization. Fur- 
thermore, the relation between factorization and the availability of closed-form solutions is not 
clear. In fact, closed-form expressions for dyadic Green functions could not be obtained, despite 
factorization, for certain types of uniaxial bianisotropic mediums, as was first observed in Ref. 
[8] and explored further in Refs. [9, 2]. 

3. More than Uniaxial — Not quite Biaxial 

We now consider an anisotropic dielectric medium whose relative permittivity dyadic is 

£=eaI + e6umu„, (12) 

where um and un are distinct unit vectors. The right side of (12) is clearly equivalent in form to 
=facf In Seneral> the chosen medium is not reciprocal as g does not equal its transposed dyadic. 
The uniaxial medium defined through (1) appears as a specialization of (12) when um = un. 
However, (12) also has a connection to a biaxial structure: Upon decomposition of its right side 
into symmetric and skew-symmetric parts, (12) can be rewritten as 

| = tal + y (um un + un um) + j (um un - un um) . (13) 

The first two terms on the right side of (13) have the exact biaxial structure of (4), whereas 
the last term has a typical gyrotropic form. Nevertheless, neither the biaxial dielectric nor the 
gyrotropic dielectric medium can be obtained from (13) as special cases — because the last two 
terms on the right side of (13) are far too intimately linked to allow those specializations. 

For the medium characterized by (12), we obtain [10] 

kadjW = HmLe(V) ~ k2T (V X U„) (V X Um) , (14) 

Hdet = -k2 (1 + r um • un) He Hm, (15) 

where k2 = w2e0ea/x0, the ratio r = eb/ea, and the dyadic operator 

£.(V) = VV + *»(l + r,..^) (l-T_Z_UmU„) . m 

Of the two scalar, second-order operators appearing in (14) and (15), Hm = V2 + fc2 is a 
standard Helmholtz operator due to the magnetic isotropy of the medium, but 

ge = V2-l + rum.uJ
VXU-)-(V><U") + fc2' (") 

is only a Helmholtzian operator as it reflects the dielectric anisotropy of the medium. As 
anticipated for the chosen medium, it is apparent from (15) that Hdet indeed factorizes as a 
product of two second-order operators [10]. 

Further manipulations then lead to the complete representation of £(x, x') in the form 

£(X'X0 = fc2(l + rum.un) [£e(V)Se(x,x') + *2rM(x,x')] , (18) 



where the scalar Green function 

(       >\ -        1        exp[zfcX>(x,x')] ,ig, 
5eiX,Xj      V/Ö^Ö7     4TTL>(X,X')     ' 

satisfies the differential equation Hege(x,x') = -<5(x - x'), and the structure of the modified 
distance function D(x,x') (which also contains aXtV>z) is detailed in Ref. [10]. 

What remains unknown in (18) is the dyadic function M(x,x'), for which the differential 

equation 
HeHm M(x, x') = (V x un) (V x um) <5(x - x'), (20) 

must be solved. As discussed elsewhere [10], no closed-form solution for A£(x,x') appears to 
emerge from (20). 

The medium considered here is the most general type of anisotropic dielectric medium for 
which the determinant operator is the product of two scalar, second-order differential operators 
of the Helmholtzian type; yet no closed-form expression for £(x, x') appears to exist for this 

medium! Thus, we conclude that 
(i) while all currently known closed-form, infinite-medium dyadic Green functions are based 

on factorizable determinant operators, factorization is not a sufficient condition for the existence 
of closed-form, infinite-medium, dyadic Green functions; and 

(ii) within the class of anisotropic dielectric mediums, the uniaxial dielectric medium (or any 
medium that can be reduced to such a medium by, for example, affine transformations) remains 
the most general medium for which a closed-form, infinite-medium, dyadic Green function has 

been derived.3 
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Abstract 

In this paper we give a review of the current state in the investigations of spatially dispersive 
media and, especially, of the problems involving interface boundaries between such media. 

1. Introduction 

Natural and artificial media are dispersive (though rather weakly sometimes). We know two 
types of dispersion: temporal dispersion and spatial dispersion. Temporal dispersion results in 
different electromagnetic properties of media at different frequencies. This phenomenon occurs 
due to inertiality and (or) resonance behaviour of the medium polarization response. The 
effects of temporal dispersion are well known and investigated. No specific knowledge of the 
electromagnetic properties of media boundaries is needed to account for temporal dispersion. 
Mathematically, dispersion of this kind is described by frequency dependence of the medium 
material parameters. 

Spatial dispersion is often more complicated to study One of the reasons of that is difficulty 
in studying interfaces between media. Here the medium response is spatially nonlocal. This fact 
results in more complicated material relations and the increased complexity gives us differential 
equations for the fields having higher order than the usual ones. Hence, to solve a boundary value 
problem for a spatially dispersive medium we should use some additional boundary conditions. 

Most of the results for spatially dispersive media were obtained for materials with the first- 
order spatial dispersion called reciprocal bianisotropic media. The theory shows that for the first- 
order spatial dispersion we can find such a form of the constitutive relations that no additional 
boundary conditions are necessary. The problem of the additional boundary conditions has 
been considered in the literature (e.g., [1, 2, 3]), but no general method for obtaining additional 
boundary conditions is available. Moreover, this question still causes conceptual problems, see 
recent paper [5] where the very necessity of additional boundary conditions is negated. 

2. Theoretical Description of Spatially Dispersive Media 

From the point of view of macroscopic electrodynamics the spatial dispersion phenomenon can 
be described by two main approaches. The first one deals with integral operators and the 
second one uses spatial derivatives of the fields. These approaches mostly lead to similar results 



especially when Fourier space-transformed field equations are used. In such a case the set of 
the Maxwell equations together with the material relations for a spatially dispersive medium is 
reduced to a dispersion equation from which the propagation factors of the medium eigenwaves 
can be found. Here the spatial dispersion shows itself by appearance of new dispersion branches 
of eigenwaves. 

Till today there is some misunderstanding in the macroscopic theory of the constitutive 
relations and the boundary conditions for spatially dispersive media. Different authors use 
different forms of relations to describe media of the same type. In non-magnetic media all the 
polarization effects can be described only with the help of the averaged electric polarization 
current in the medium. Using this method (valid also as a model of higher-order dispersion 
effects), one writes 

D'(w, k) = i{w, k) • E(w, k),        B(w, k) = Ai0H'(w,k) (!) 

Here f{üJ,k) takes into account magnetoelectric interaction and induced magnetism in the 
medium. On the other hand, phenomenologically considering non-magnetic media with first- 
order spatial dispersion, the relations can be written in a symmetric way with no explicit de- 
pendence on the wave vector: 

D(w)   =   f(u) • E(w) + K(w) • H(w) ^ 
B(w)    =   -i^M • E(w) + p(u>) ■ H(w) 

It is often asked: which form of the constitutive relations is "more correct": symmetric (2) or 
nonsymmetric (1)? The answer is that both are correct1 but only with appropriate boundary 
conditions. 

Indeed, if vectors E and B are considered as defined by the Lorentz force, then D and H 
should be considered as auxiliary vectors. It is known that there is some freedom in the definition 
of D and H. The Maxwell equations do not change under the following transformation with an 
arbitrary differentiable vector T: 

D = D' + VxT,        H = H'+juT (3) 

It can be shown that if one properly finds the necessary form of vector T, the two systems of 
the constitutive relations (1) and (2) can be converted one into the other. 

We want to emphasize here that not only the constitutive relations change under transfor- 
mation (3). The boundary conditions involving the auxiliary vectors should be transformed too. 
This fact is sometimes ignored and the same boundary conditions (the usual Maxwellian plus 
some additional phenomenological conditions if needed) are used together with different sets 
of the material relations of a medium. For media with weak spatial dispersion this problem is 
discussed in [4]. 

3. Boundary Conditions 

From the above consideration one can see that the boundary conditions and the material relations 
are connected, i.e.   for different approaches used to describe the response of a material the 

'Sometimes in the literature relations (2) are "generalized" to include also dependence on the wave vector (or 
convolutions over space coordinate variables). Care should be exersised here because the cross terms in these 
relations already come from the Taylor expansion of a space convolution kernel. For modelling reciprocal media 
just one space convolution integral is enough to account for arbitrary spatial dispersion effects, as in (1). Note 
also that sometimes relations (2) are called local constitutive relations because they connect the field vectors at 
the same point in space. This can be misleading because these relations account for first-order spatial dispersion 
effects. In fact, first-order derivatives of the electric field are "hidden" here, as it is obvious from the Maxwell 
equations. 



boundary conditions must be different. Following [2] we can write the boundary conditions for 
the tangential field components as 

z0 x (H2 - Hi) = -ju I f    ADi dz + J    AD2 dz I,       z0 x (E2 - E{) = 0       (4) 

where zo is the unit vector normal to the interface boundary directed from medium 1 to 
medium 2. Here the right-hand side of the relation for H represents the surface polarization 
current. This current can be calculated as follows. Authors of [2] propose to consider a model 
reflection problem. The problem assumes fast but continuous changing of the material parame- 
ters through the interface (we denote the character size of the transition region as 6). To solve 
such a problem no additional boundary conditions are necessary. One should make here some 
assumptions on how the medium parameters vary across the interface layer. If the problem is 
solved, we can then find the difference between the smooth and sharp interface models. In (4) 
that difference is represented by ADi and AD2 which correspond to the first and the second 
media, respectively. More exactly, AD = D(z, E) - D<°) (z, E<0)) where T>(z, E) is obtained from 
the smooth model and D(°)(z, E^) is given by the sharp model, i.e. by the constitutive relations 
supposed to be correct up to the interface boundary. It allows the authors of [2] to conclude 
that considering boundary value problems may lead to necessity in new material relations for 
the surface polarization current. 

From the above consideration we see that the problem of boundary conditions is not so 
simple as it may seem at first sight. Even the relations corresponding to the usual Maxwellian 
boundary conditions happen to be much more complex in the spatially dispersive media. The 
difficulties become yet more significant when the number of the usual conditions is not enough 
and some additional relations should be used. How to find these additional conditions? How 
do they correlate with the material relations? May they be obtained from the field equations as 
the usual ones? There are many questions here. 

There is a chapter in [1] devoted to the considered problem. The authors of [1] try to find a 
general form of the boundary conditions. This form includes a set of unknown coefficients which 
could be then somehow found for particular cases. They propose to use the following form: 

D+f-E = 0 (5) 

Such a condition gives three additional scalar equations for the amplitudes of waves. If the num- 
ber of new waves in a medium is greater than three, then some relations with space derivatives 
of the fields are needed. Also, here some questions arise: how does dyadic T depend on k and w? 
And how to specify the form off? The authors of [1] claim that in general only the microscopic 
theory can give answers to such questions. _However, considering the situation in the vicinity of 
an isolated exciton resonance, the form of T can be specified as shown in [1]. 

Semiconductor is an example of a spatially dispersive medium. The dispersion effects exist 
there, for instance, due to charge diffusion. Phenomena of this kind at microwaves are considered 
in [3]. In presence of diffusion the macroscopic medium induced current can be represented as 

J = &E - eZ>V(V • E) (6) 

where D is the diffusion coefficient. Eq. (6) can be considered as a material relation for media 
with second-order spatial dispersion. Here the order of dispersion means the highest order of 
spatial derivatives of field presented in the relation. Second-order dispersion may lead to new 
eigenwaves in the medium and it can be necessary to use some additional boundary conditions 
there. 
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Authors of [3] give special attention to the boundary condition problem. They use an ap- 
proach based on the uniqueness requirement. New form of the material relation requires to 
repeat the standard uniqueness development with new terms. Considering the difference be- 
tween two possible solutions and writing down the Poynting theorem for the difference fields E 
and H they obtain: 

Re f {E x H* - e£>E(V • E*)} -dS + J {<r|E|2 + e£|V • E|2} dV = 0 (7) 

From here one can see that some conditions on the normal component of the electric field or on 
the divergence of the electric field are required in addition to the usual boundary conditions. For 
a dielectric-semiconductor interface this condition reduces to vanishing of the normal component 
of the current J at the surface. 

In a recent paper [5] entitled "Additional boundary conditions: an historical mistake" the 
author claims that no additional boundary conditions are needed at all. Let us consider his 
speculations in more details. The author starts from a scalar electric field wave equation 

d*E(*:<*) + <S   f+~dx,<x_j    )E{3fiU) = aM (8) 
OX1 Cl J-oo 

Here sources s(x,u) represent equivalent polarization in the transition region (an interface be- 
tween free space and the medium is under investigation) induced additionally to that already 
considered in e. These equivalent sources replace free-space volume and sources there, as in 
Huygens' principle. Next, the author assumes that the transition layer is negligibly thin com- 
pared to the wavelengths of all eigenmodes in the medium, and comes to the conclusion that 
the reflection problem has a unique solution with no need for additional boundary conditions. 
However, the thickness of the transition layer is comparable to the inhomogeneity scale of the 
medium. For example, for interfaces with regular crystals, the layer has thickness of a few peri- 
ods of the lattice (for the theory of transition layers see e.g. [6] and references therein). Thus, 
the assumption that the transition layer is negligibly thin is in fact equivalent to the assumption 
that spatial dispersion effects in the medium can be neglected (because the inhomogeneity scale 
is very small compared to the wavelength). Naturally, no additional boundary conditions are 
needed in this case. 

4. Conclusion 

We see how many problems arise when we start to consider boundaries between spatially disper- 
sive media. This area of science is very prospective to study and we hope that in the near future 
a more complete and logical theory of the boundary problems for spatially dispersive media will 
be developed. 
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Abstract 

We present an approach to characterizing complex media, based on the use of new families 
of orthonormal electromagnetic beams. Each familly consists of orthonormal exact solutions 
of Maxwell's equations, which differ fundamentally from the well-known approximate solu- 
tions — the Hermite-Gaussian and Laguerre-Gaussian beams. A promising type of such 
orthonormal beams—beams defined by the spherical harmonics—is discussed. The proposed 
approach makes it possible to use beams focused into a small spot on the sample surface. 

1. Introduction 

The free-space techniques for characterizing complex media are based on the use of the plane- 
wave approximation of the incident beam. Computer modelling [1, 2, 3] of the free-space tech- 
niques [1, 2, 3, 4], based on the covariant impedance methods, has shown that these techniques 
make it possible to extract all material parameters of an anisotropic, chiral, or general bian- 
isotropic medium, provided that the reflection and transmission coefficients of planar samples 
under normal and oblique incidence of plane harmonic waves are measured with sufficient ac- 
curacy. However, this requires a rather complicated measurement setup, and in many cases the 
plane-wave approximation of beams in use proves to be inadequate, especially for thick samples. 

The technique presented in Refs. [5, 6] makes it possible to compose a set of orthonormal 
beams in a complex medium or free space, normalized to the energy flux through a given plane. 
They can be used to generalize the free-space techniques [1, 2, 3, 4] for characterizing complex 
media, developed for the case of plane incident waves, to the case of incident beams. A promising 
type of such orthonormal beams—beams defined by the spherical harmonics—is introduced in 
Ref. [7]. In this paper, we discuss the properties and applications of these beams in more detail. 

2. Beams Defined by the Spherical Harmonics 

In this paper, we consider electromagnetic fields in free space of the form [7] 

Wj(r,i) = e~wt        dip       JTk(WY!>(8,<p)u(e,<p)W(8,<p)sm0d0. (1) 
JO JB\ 

They are defined by the spherical harmonics 

Yr(8,<p) = Nlmp\m\cos0)Jm*, (2) 

where 

Nlm ~ V     4TT(Z + H)!   '' (3) 
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and Pf1 {cos 6) and ji(kr) are the spherical Legendre and Bessel functions. The spherical har- 
monics Y{n{9,ip) satisfy the relations 

<yr\YF')=        /     dp      Yl
m*(e^)YlY

l(6,<p)smedß 
Jo        Jo 
= Sw 6mm>. (4) 

Hence, for the beams under consideration (see also Ref. [8]), Bu is a unit sphere (Bu = S2), the 
beam manifold B C Bu is its zone with 6 E [0i, 02] and <p € [0, 2TT]; and dB = sinddOdy. 

To compose electromagnetic beams in free space, it is convinient to set W = col(E, B) = 
col(E,H). For a time-harmonic field, the component S3 = e3 • S of the time average Poynting 
vector S can be written as 

S3 = _£-e3 ■ (E* x H + E x H*) = W+QW, (5) 
1D7T 

where 
0 ei (8> e2 - e2 ® ei   \ ,^ 

e2 <8> ei - ei <g> e2 0 y 

and ® is the tensor product. Therefore, for the electromagnetic beams Wj, the condition 
(W^|(9|W^) = NQ is in fact the normalization to the beam energy flux NQ through the plane 
(To normal to q = e3: 

(WjIQlWj) = / S3da0 = NQ. (7) 

Each family of the fields under consideration is described by functions which have integral 
expansions in plane waves with wave normals lying in the same given solid angle ft. In particular, 
one can set the angular spectrum of plane waves by 

k = k(0, <p) = k[0'(0, ¥>), <ff(0, <p)], (8) 

where 
k = k/fe = sinö'(ei cos ip' + e2 siny?') + e3 cos 6'. (9) 

In this paper, we restrict our consideration to beams with 

6' = KQ6,    ip' = ip, (10) 

where K0 is some real parameter; 0 < K0 < 1. Correspondingly, to set the beam base, it is 
convinient to use the radial, the meridional, and the azimuthal basis vectors 

er(8',ip) = sin6'(ei cos tp + e2 shop) + e3cos0', (11) 

e0'(0',¥>) =cos0'(eicos<£ + e2sin^) -e3sinö', (12) 
ev(v) = —ei s*n(P + e2 cos V- (^) 

Let us set two amplitude functions by 

Since the beams with the amplitude function W [Eq. (14)] are composed from plane waves with 
the meridional orientation of E and the azimuthal orientation of B, they will be referred to as 
EM beams or BA beams. Similarly, the amplitude function W [Eq. (15)] results in EA beams 
or Bu beams. The field vectors of EM and EA beams are related by the duality transformation 
E->B, B-»-E. 
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3. Orthonormal Beams 

Let us first consider orthonormal beams with the angular spectrum £1 = 2ir, i.e., the superpo- 
sitions of eigenwaves propagating into a given halfspace. To this end, let us set 6\ — 0 and 
02 = 7r/2 in Eq. (1), and K0 = 1 hi Eq. (10). In this case, the amplitude functions W(d,ip) 
for EM and EA beams are given by Eqs. (14) and (15) with 0' = 0, and the orthonormalizing 
function v = v(d, (p) reduces to a constant [5]. The beam manifold B — Sjf is the northern 
hemisphere Sfj of the unit sphere S2. This results in two different sets of orthonormal beams 
defined by the spherical harmonics Yf with even and odd j, respectively. However, it is of 
value to have a complete system of orthonormal beams Wj defined by the whole set of spherical 
harmonics Y?, for which (Wj|Q|Wj!) = 0, if at least one of the three conditions is met: j'^j, 
s'^s, or the beams have the alternative polarization states (EM and EA beams). 

To this end, let us set the beam base of time-harmonic electromagnetic EM beams Wj [Eq. 
(1)] by Eqs. (9) and (10)-(15) with 0X = 0, 82 = IT, and K0 < 1/2. In this case, the beam 
manifold is the unit sphere» (B = S2), the angular spectrum Q < 2ir, and the orthonormalizing 
function has the form 

= 2J2nKoNQM^O)m (16) 
A V csmö v    ' 

These EM beams also can be expanded into a series as described in Ref. [5]. As before, EM and 
EA beams are related by the duality transformation. 

The smaller is K0> the smaller is the angular spectrum fi, i.e., the more collimated is a beam. 
Conversely, if «o = 1/2, i.e., tt = 2it, the beam becomes highly localized and has an energy 
distribution in the core region similar to the beams presented in Refs. [5, 6, 7]. When s^O and 
K = 1/2, or K «1/2, these beams resemble electromagnetic tornadoes with spiral energy fluxes 
and pronounced core regions. 

The general time-harmonic beam with two-dimensional beam manifold B can be written as 

W(r, t) = e~iwt I eiT*Wv(b)u(b)W(b)dB, (17) 
Js 

where u : B -» C1 is a complex scalar function on B. Let (un) be an orthonormal base of 
complex functions on B. Then, the function u can be expanded into a series as 

U(6) = SC"U«(6)' (18) 
n 

where c„ = (um\u). By applying the approach described in Refs. [5, 8], we obtain an expansion 
of W (17) into a series of orthonormal beams Wn as 

W = J2cnWn. (19) 
n 

It is essential that the coefficients c^ can be extracted from the beam W as follows: 

en = ^(Wn\Q\W). (20) 

What is even more important they are measurable values provided that there exists a source 
of orthonormal beams W„. As it is shown in Refs. [5, 7], 1 = (W|Q|W) is the energy flux 
through the plane CT0 in the case of time-harmonic beams with two-dimensional manifold B. 
Each of the complex coefficients c„ of the beam W (19) can be calculated from the results of 
three measurements [5, 7]. 
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4. Conclusion 

The presented approach to characterizing complex media is based on the use of new famines 
of orthonormal electromagnetic beams. Each familly consists of orthonormal exact solutions 
of Maxwell's equations, which differ fundamentally from the well-known approximate solutions 
—the Hermite-Gaussian and Laguerre-Gaussian beams. By using these solutions, the results 
obtained in Refs. [1, 2, 3, 4] for the case of plane incident waves are generalized to the case 
of time-harmonic beams obliquely incident onto a general bianisotropic slab. To this end, the 
fields of incident, reflected, and transmitted waves are expanded into series of orthonormal vector 
functions. The obtained solutions make it possible to calculate the complex scalar coefficients 
of these series. It is shown that these coefficients are measurable values, and the corresponding 
measurement scheme is suggested. Assuming that they are given or measured, it is possible 
to reconstruct the reflection and transmission coefficients of the slab for partial incident plane 
waves and then, using the techniques presented in Refs. [1, 2, 3, 4], to extract the whole set 
of material parameters. One can use various families of orthonormal beams, in particular, the 
family of beams defined by the spherical harmonics. Results of numerical analysis of the latter 
and peculiarities of its possible application to characterizing various complex media will be 

reported orally. 
The proposed approach makes it possible to use beams with wide angular spectrum, focused 

into a small spot on the sample surface. Usage of well focused beams eliminates the need to 

work in an anechoic enviroment. 
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Abstract 

A comparison analysis of the Landau-Lifshitz and Casimir forms of the Maxwell equations 
in condensed media is made. It is shown that the Casimir form comprises sufficient informa- 
tion of the system to solve any electromagnetic problem whereas the Landau-Lifshitz form 
demands an additional constitutive equation for surface current. It is shown that the main 
difference in these forms is that the Casimir form being free from seeming spatial dispersion 
gives more adequate description of effects of spatial dispersion. 

1. Introduction 

The manufacturing of advanced artificial materials (chiral, percolation and etc.) challenges the 
researcher to develop an adequate description of the phenomena observed in these materials. 
The new theory must account for multipole interaction and effects of retardation. The theories 
of this a kind were well developed for serving phenomena in crystal or dilute systems [1], [2]. 
Unfortunately, they confine themselves to consideration of weak effects and deal in frame of per- 
turbation theory. In frame of these theories one does not bother his head with strong definitions 
of involved quantities and concepts. Today we cannot permit ourselves to deal in such a manner. 
Here we review the existing forms of constitutive equations in the light of their predictions. 

2. Constitutive Equations in Forms Suggested by Landau-Lifshitz and by 
Casimir 

In the case of spatial dispersion Landau and Lifshitz [3], [4], [5] suggested including all the 
induced currents into definition of polarization 

dfLL 

at = ? (i) 
avoiding introduction of magnetization. The most general form of linear constitutive equation 
looks as: 

D\L ^fdrj cPr'eff (T>, T>\ r) Ej (i* t - r) (2) 

where D\L = Et + 4TTP^
L
, Eh and PPL are macroscopic values of electrical induction, electrical 

field and electrical polarization. The frequency domain Maxwell equations together with this 
constitution equation could be written as: 
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iuiP = c [V x ^] ,        -iu~t)LL = c [V x it] (3) 

(v •£)=(),        (v-^j^O, (4) 

egL {■?,-f',u)=        dr exp (twr) e£L ("»», 7*', r) (6) 
J u 

The kernel in (5) decreases with increase of the distance ~$ = 7* - "?'. If both the dimension 
a of an inclusion and the mean distance d between the inclusions are small in terms of the 
wavelength A then the kernel radius in (5) is also small (the case of weak spatial dispersion). In 
this case we can expand the field under integral, in the Taylor series. The relation (5) can be 
rewritten as: 

DlL (u,,T>)   =   $f(u,,T>)Ej{u,T>) = (7) 

/ 4t<0W)+ \B. ^ 
1«g™ («■ *> v» + «&5P> (-. ^) vtv, +... J B>(w'r) 

where £LL(n) are frequency dependent tensors. If during homogenization we separate mean 
current, eddy current, and saddle current we arrive at the Casimir form of constitutive equations 
based on the following representation of the macroscopic current ([6]) 

here "P, and Q, are the densities of electric dipole and electric quadrupole moments, M is the 
density of magnetic dipole moment. The next step is introduction of the magnetic field H and 
magnetic permeability yP: 

~ti = 1$ - Axht,        Bi = fifjHj (9) 

And redefine electrical displacement [7], [6], [8]: 

Df = Ei + AnPf - 4TTV • Q (10) 

The current representation (9) implies nonlocal relation of the moment densities to macroscopic 
field which results in nonlocal constitutive equations 

Df = I rfVeg (7», 7»',«) Ej (7*', u),        B{ = J rfVjig (7>, 7»', w) ^ (T* w) (11) 

Likewise in (7) we can write (11) 

D?(u>,?)   =   %(U,1>)EJ(u,,T>)= (12) 

I «8?> («. *> v, + 4? («. *> v, V, + ■ • J ^ ("' *) 

JSi(w,^)   =   /Ig (w, 7»)^(a;,7>) = (13) 

^ («, *) vfc+/4? («, y) vfc v, +... J ^(w'r) 
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The Landau-Lifshitz and Casimir constitutive equations must explain and forecast the same 
phenomena. In other word there should be an equivalence relation between the tensor in (7) 
and the tensors in (12) and (13). It is suitable to write the relation for spatial Fourier transforms: 

ef (u>, t) = eg (w, t) + (^   {eiklejnmkkkn   (tfm)
_1 - Slm } (14) 

The last relation is often treated as a condition of equivalence of two forms of constitutive 
equations. Really, one can reconstruct ejf (u, k ) from eg and ß^m, but it is impossible to solve 

the inverse problem of reconstruction eg and pfm from eff. To make the latter problem solvable 
it often suggested that eg and, pfm are scalars whereas eg is a tensor. The last assumption 
seems to be unjustified. Moreover we loose a series of phenomena. For example, the existence 
of magnetic longitudinal waves can not be described. If eg and nfm are tensors they have the 
form: 

eg,   =   e^(o;,fc)(<JJm-^)+ec'(a;,fc)^i, (15) 

tfm   =   ^(«,fc)(*ta-^)+MCI(w>lfe)^ (16) 

It is obvious that along with electrical longitudinal waves there may be magnetic longitudinal 
waves with /iCT, ( k ■ HJ ^ 0. The examples are stratified medium and composite loaded with 
be-helix structures. The waves existing in both media are of evanescent. They cannot propagate 
through the infinite system but the may be generated on the boundaries. The irreversibility of 
(14) and the existence of the magnetic longitudinal waves means that the Casimir constitutive 
equations comprise more information of the system. 

3. The Physical Sense of the Fields Governed by the Material Maxwell Equa- 
tions and the Boundary Conditions 

In order to understand the reason of incompleteness of the Landau-Lifshitz form we have to 
consider the problem of the boundary conditions. Dealing with bounded body demands a 
procedure of sewing together the solution of the Maxwell equation outside and inside the body 
because just on the boundary the Maxwell equations are not valid. If the dispersion equation 

k2=(f)\c»{u>,k)f»{u>,k),        (t-^)=0,        (t.^)=0 (17) 

has only one solution for k2 the common Maxwell boundary conditions are enough. These 
conditions come about from the assumption that we deal with the same fields inside and outside 
the medium. In other words the physical sense of the fields ^ and ^ should be the same in 
vacuum and inside the medium. Saying about the physical sense of the fields implies that there 
must be determined a method of measuring these fields. By now almost all authors proceed from 
the Rosenfeld Ansatz. Rosenfeld [9] suggested determining the fields investigating the motion 
a small probe particle with charge e. Rosenfeld assumed that this particle moves under the 
Lorentz force 

f = ell! + e [v x if] (18) 

where E and B are just the fields staying in the Maxwell equations. "The fields are taken to 
be the primitive fields" [10]. The fields D and if are often considered being of secondary kind 
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or induction fields [10]. Indeed, one can introduce a new field Q and redefine the fields D and 
/? [11]. 

I)' = Ü + cw\$,        l£ = ti + ~'$ (19) 
cot 

The fields D' and also H' satisfy the Maxwell equations. In particular choosing W' =B we 
can pass from the Casimir to Landau-Lifshitz form [11]. Unfortunately, this scheme ceases being 
so attracting if we remember that even in absence of the fields a charged particle moving through 
the matter looses energy polarizing the surrounding medium. There is another way to determine 
the fields. This way is tightly connected with boundary conditions. Temporarily forgetting that 
we deal with heterogeneous media let us recall that the field inside the anisotropicallv shaped 
cavity is equal to if (^) if the cavity is elongated along the force lines and is equal to D (B) if 
the cavity is flattened along the corresponding direction. This property is a consequence of the 
Maxwell boundary conditions. Thus if we assume that the Maxwell boundary conditions are 
valid we have the method of measuring all the fields involved in our problem. There is neither 
freedom nor uncertainty in definition of any field. Introduction of any auxiliary vector field Q 
results in changing" the boundary conditions. 

There are some indications that it is the Casimir form that is accompanied with the Maxwell 
boundary conditions. First of all along the surface separating two media may flow a surface 
current that is due to difference in eddy currents induced in different media. Another constitutive 
equation relating this current to fields should be added to. Thus the Landau-Lifshitz form is 
incomplete while describing edge effects including the evanescent waves. The suggestion that 
the Casimir form should be supplemented with the Maxwell boundary conditions means that 
e^j and nfm comprise information not only of the wavenumber but also of the impedance. This 
fact accounts for the irreversibility of (14). 

4. Chiral (Optically Active) Media 

It is worth emphasizing that really the problem exists if the effects of spatial dispersion are 
important. If it is not the case the situation becomes trivial. Indeed, the Landau-Lifshitz form 
produces seeming spatial dispersion. The relation (7) reduces in this case to 

^ = £M^ + ^(w)[txpxi]] (20) 
Employing eijkkjEk = — (w/c) B{ we arrive at the usual Casimir form with scalar permeabil- 

ity fj, = 1/ (1 + iuj£ (u) /c). This seeming spatial dispersion may be a source of some troubles. 
Let us consider the phenomenon of chirality. It is well known that the chirality is the effect of 
first order in (ka), where is a characteristic dimension of the inclusion and k is the wavenum- 
ber. Nevertheless truncating the series (7) and (12), (13) at the same order in (ka) may lead to 
different consequences. As we shall see the reason of the disagreement is neglect of the seeming 
spatial dispersion. In the Landau-Lifshitz form the constitutive equations looks as 

ifi = et + 7curl^ (21) 

where 7 is a pseudo-scalar. The constitutive equation predicts rotation of the plane of polariza- 
tion during propagation. Beside this, the theory employed together with the Maxwell boundary 
conditions predicts that in the case of normally incident, linearly polarized wave the reflected 
wave is elliptically polarized. Moreover, the main axis of the polarization ellipse is azimuth ro- 
tated (effect of optical activity on reflection). Such a behavior is an attribute of non-reciprocal 
medium. On the other hand the chiral system made of reciprocal elements should be reciprocal. 
The authors of [12] suppose that this behavior is connected with existence of transition layer 
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near the boundary surface. Indeed the boundary breaks the translation invariance. The kernel 
in (5) depends not only on difference of spatial variables but also on position of the point of 
observation. As a consequence there appear an additional term in the constitutive equation: 

JÖ" =£$ + 7curl^ + [grad7 x it] (22) 

The boundary conditions obtained by the usual way change too [12] 

En - En = 0,       B2t - Blt = 1 -^ (23) 

The angle of main axis rotation changes his sign but the main result remains: the reflected wave 
is elliptically polarized. In the problem there appear a vector grad7. The situation seems to 
remain the situation in ferromagnetic and antiferromagnetic where the rotation of polarization on 
reflection is a well known effect. Indeed, in ferromagnetic there is the vector of magnetization At 
and in antiferromagnetic there is the vector L which is equal to the difference of magnetizations 
of sublattices. The key moment is that in the last cases the vectors are axial whereas grad7 is 
a polar vector. Thus we cannot anticipate the appearance of nonreciprocity. To rest the theory 
in [13] the constitutive equation was generalized: 

5" = et + 71curli£ + [grad72 x it] (24) 

Where it is assumed that 71 = 272. This relation between the quantities were determined 
from continuity of the Pointing vector and strange assumption that [it x djfi/dt] ^ 0. This 
corrects the boundary conditions so that the effect of optical activity on reflection disappears. All 
these troubles can be avoided if we deal with Casimir (in our case Born-Fedorov) constitutive 
equations. There is no effect of optical activity on reflection neither in uniform medium nor 
while taking into account a transition layer [11]. The background of complexity in boundary 
conditions appears due to incorrect treatment of derivatives in (7). Dealing with effects of 
spatial dispersion we must remember that there are two scales in the problem. The first one 
is the inclusion dimension a . The second scale is the wavelength. Thus coefficients staying in 
(7) in front of derivatives depend on both scales but only those depending on a contribute in 
the corresponding term of perturbation theory. The part depending on A should be rewritten 
employing the Maxwell equation, relating the first derivatives of it to I?. In so doing we should 
take into consideration the term with third order derivative. This term produces the term 
7curl5 in the Born-Fedorov constitutive equations. 

5. Conclusion 

Thus the Casimir form of the constitutive equations is more complete in comparison with the 
Landau-Lifshitz form. The Casimir form produces not only wavevector but also the impedance of 
the material, whereas the Landau-Lifshitz form demands introduction of additional constitutive 
equation for the surface current [15]. This additional constitutive equation usually appears as 
modification of the boundary conditions. 
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Abstract 

The Maxwell Garnett (MG) and the Bruggeman (Br) formalisms are extended to homogenize 
nonlinear, two-component, composite mediums. The chosen material topology is ellipsoidal 
and weak nonlinearity is assumed. The MG formalism is illustrated by a case in which 
both component materials are bianisotropic, but only the inclusion component is nonlinear. 
Both component materials are isotropic dielectric in the following case, but only one has 
an intensity-dependent permittivity scalar; and the Br formalism is applied to show that 
the homogenized composite medium is anisotropic and has cubically nonlinear dielectric 
properties. Enhancement of nonlinearity emerges as a significant possibility. 

1. Introduction 

The Maxwell Garnett (MG) and the Bruggeman (Br) formalisms for the homogenization of linear 
composite mediums formed by randomly dispersing electrically small, bianisotropic, ellipsoidal 
inclusions in bianisotropic host materials can be extended to composite mediums comprising 
nonlinear materials. We illustrate this extension with an example for each formalism. The 
nonlinearity is assumed as weak and, therefore, perturbatively tractable. 

In the first example, both component materials are bianisotropic, but only the inclusion ma- 
terial is nonlinear. The effective constitutive properties of the homogenized composite medium 
(HCM) are estimated using the MG formalism. The linear and nonlinear properties of the HCM 
are estimated separately in consequence of two assumptions: the nonlinearity of the inclusion 
material is weak, and the composite medium is dilute [1]. 

In the second example, both component materials are isotropic dielectric, but just one of 
them has an intensity-dependent permittivity scalar. Application of the Br formalism shows 
that the HCM is anisotropic and has cubically nonlinear dielectric properties. The anisotropy of 
nonlinearity can be considerably different from the anisotropy of the linearity; and the possibility 
of nonlinearity enhancement exists [2]. 

2. Nonlinear Bianisotropic Composite Medium 

Consider a countably infinite number of identical, electrically small, ellipsoidal inclusions that 
are similarly oriented but randomly embedded in a host material. Each inclusion has a volume 
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v; the number density of inclusions is denoted by N; while / = Nv, 0 < / < 1, is the volumetric 
proportion of the inclusion medium. Typically, / < 0.2 for the MG formalism to yield adequate 
results. The inclusions are described by a shape dyadic which is real symmetric with positive 

eigenvalues [3]. 
The use of 6-vectors and 6x6 dyadics is very convenient for bianisotropic mediums as it 

permits a compact notation. In this notation, the constitutive properties of the host material 
are expressed as 

SM = ( if\ &\ ) ■ EM = j?M • EM, M 

where the 6-vectors P(w) = [E{u), H{u)]T and G(w) = \D{u), B{u)f, the superscript T 
denoting the transpose. 

With the 6x6 constitutive dyadic of free space denoted by C_u (which contains e0 and p0), 
the linear and the nonlinear constitutive properties of the inclusion material are best expressed 
through the 6-vector QM = \P(u), M(w)]T = G(w) - Qv ' EM, which contains both the 
polarization field P(u) and the magnetization field M(w). This 6-vector is split into linear and 
nonlinear parts as QM = Q*M + Qnl(u). Its linear part Q£M obeys the constitutive relation 

Q£ M = [ginM ~ Qv]  ' EM» with £inM analogous to Qh(u). 
~~ The nonlinear properties of the inclusion material are described as follows: Let W = 
{wi, W2, tos,..., UJM} be a set of M > 1 angular frequencies, there being no requirement that all 
members of W be distinct. Suppose there exists an ensemble of M fields F(u;m), (1 < m < M). 
Then the simultaneous action of this ensemble of fields in the inclusion material gives rise to the 
nonlinear part of QM at u = unl. The j'-th element of this 6-vector is given by 

Qf(unl) ̂-EE 
6 6      ( 

E-E  * 
M 

■33132—3m- ■3M 
(^Win^nW    ,    l<i<6,    (2) 

n=l 

where v^ ■    •     ■   (unl:W) represents the nonlinear susceptibilities of the inclusion material. 
" '^■33l32—3m—3M v ' ' r j 

The angular frequency wnl is simply related to all members of W as unl = a\ u)\ + a-i u-i +... + 
ttMwM, with Om = ±l, (l<m<M); furthermore, unl may or or may not lie in W. When 
an = -1, Fjn(wn) must be replaced by its complex conjugate on the right side of (2) and in 
subsequent derivative expressions. 

Details of the implementation of the MG formalism to homogenize the described composite 
medium were given elsewhere [1]. In summary, the constitutive relation of the HCM is given by 

0» = £MGM • EM + s(u,u^) Q"isM ,    w € (W U {cjnl}) , (3) 

where the switching function s(u,u}nl) equals unity when both of its arguments are the same, 
but is null-valued otherwise. Expressions for QMG(u) have been available for about three years 
[3], and need not be reproduced here. The nonlinear source polarization-magnetization field is 
expressed through [1] 

Q^(w^) = (l-iw^[l-iü;n7ßin/^^)-lin/Ä(wn')]"1 -S^V')} -Q^M1'), (4) 

where 

(<#/), K1) = / E E- E - E {&*..*...<, J^M 
il = lj2=l jm=l JM = 1   ^ 

fl [(¥n/MGM • EK))J }.   i < i < 6 • (5) 
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In these expressions, the 6x6 dyadics 

£"/* (w) = [ gn (w) _ Qh (w)j   . ^tn/h (w) j (g) 

Xin/pM = {l + kjJ2n/*(u) • [gin(u;) - gp(w)] }_1 ,    p = h, MG, (7) 

while D_in/p (resp. Ö. ) is the 6x6 depolarization dyadic of an ellipsoidal (resp. spherical) 
exclusion region in a linear medium with Cp as its constitutive dyadic [3]. 

The presented formalism is general in that it can be used to examine harmonic generation, 
parametric oscillation, self-focusing, stimulated Raman scattering, and a multitude of nonlinear 
phenomenons. It also updates and extends our previous work on the MG formalism for complex 
nonlinear composite mediums [4, 5]. 

3. Anisotropie Dielectric Composite Medium with Intensity-Dependent Per- 
mittivity Dyadic 

Next, we implement the Br formulation for homogenizing a mixture of two dielectric materials. 
For the sake of illustration, here only one component material is assumed to be nonlinear: it 
possesses an intensity-dependent permittivity scalar. Accordingly, eh = eh I, ein = einl = 

(4" + en"li£|2) L ^ = ßin = VoL and the remaining components of Qh and £in are null- 
valued. The w-dependences are not explicitly identified, as both the linear and the nonlinear 
fields vibrate at the same frequency. Both component materials are assumed to have parallel 
ellipsoidal topologies. As both component materials are treated in the same manner in the Br 
formalism, the labels in and h lose the meanings they have for the MG formalism, and the results 
are valid prima facie for / € [0, 1]. 

The Br formalism requires the solution of the dyadic equation [3] 

where 

/ (einl-gBr) • (xjn/Br)     +(1-/) (c*!-£*■) • (Kh/Br)   l=g, (8) 

Xin/Br =i + iu} gn/Br .  ^in ^ _ ^ ^ 

and X=
h/Br is defined similarly; while £in/Br and Rh/Br are 3x3 depolarization dyadics. 

The HCM is anisotropic, and the Br formalism predicts its permittivity dyadic as [3, 2] 

gBr = e?rUxUx + tyr uyuy + eBr uzuz . (10) 

I     |2 
A perturbative treatment permits the ansatz gBr ~ |^r + f& \E\ , consistently with our as- 

sumption that the nonlinearity of ein is weak; hence, 

,Br „   Br  ,    Br 12 i     i2 
f Br ^   Br  ,    Br   p\ Br ^ cBr   ,  cBr   w 

'    ev   ~ €yt + e»«i m  '    ez   - ezt + eznl \£L (11) 

Therefore, the Taylor expansions 

üp/B^m/Br+g!iBr\E\\    P = in,h, (12) 

emerge. Expressions for £g/Br are available in Ref. [2]. Accordingly, 

x?/Br~x!;/Br + xl{Br 
E Br p = in, h, (13) 
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where 

^in/Br = j + ^ ^«/Br .   (£m | - ^) , (14) 

^Br = I + zu; £j/Br • (eh L - ifr) , (15) 

^/Br = - [£T/Br • {g 411 - £) + £S/Br • (4n I - if)]' <16> 

zT = ** [- £?/Br • ül+ßJT • ^ i - if)] ■ (17> 
The local field factor g is estimated, as a first approximation, as g ~ (l/9)|trace {Y^1    r j | 

where^n/Br = (^n/Br)_1[2]. 
With the foregoing developments, the nonlinear dyadic equation (8) separates into two parts 

[2]: (i) §£r is the solution of 

eJr = [; ^J/flr + (1 _ /} ^»/flr j "*   .   [/ejn ^J/Br + (1 _ f)f ^m/Br]  ^ (lg) 

while (ii) §£[ has to obtained from 

/(4ni-ifr) •^{ßr + (i-/)(^|-ifr) -2£/Br} ■      a») 
These two equations were solved iteratively on a computer.   The obtained numerical results 
allowed us to conclude the following [2]: 

(i) The anisotropy of nonlinearity can be considerably different from the anisotropy of the 
linearity in the chosen HCM. 

(ii) Enhancement of nonlinearity over that of the inclusion material is possible, the enhance- 
ment being anisotropic too. 

In closing, we note that the algorithm developed can be easily generalized when both component 
materials have intensity-dependent permittivity scalars. 
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Abstract 

We present two approaches to homogenize bianisotropic particulate composite mediums: (i) 
the Incremental Maxwell Garnett (IMG) formalism, in which the composite medium is built 
incrementally by adding the inclusions in N discrete steps to the host medium; and (ii) 
the Differential Maxwell Garnett (DMG) formalism, which is obtained from the IMG in the 
limit N -» oo. Both formalisms are applicable to arbitrary inclusion concentration and are 
well-suited for computational purposes. Application of both formalisms is exemplified here 
by numerical results for a uniaxial dielectric composite medium and a chiroferrite. 

1. Introduction 

Discrete random mediums — comprising electrically small particles of a certain material dis- 
persed randomly in some host medium — have been considered in the electromagnetics liter- 
ature for about two centuries as homogeneous material continuums. Several homogenization 
formalisms exist to connect the electromagnetic response properties of a homogenized compos- 
ite medium (HCM) to those of the constituent material phases; see Ref. [1] for a selection of 
milestone papers about this topic. 

Perhaps the most widely used homogenization formalism is the Maxwell Garnett (MG) 
formalism. It was recently set up for bianisotropic composite mediums containing ellipsoidal in- 
clusions [2], [3], covering thereby a large domain of electromagnetic applications in the materials 
sciences. One drawback of the MG formalism is that it can be used only for dilute composite 
mediums. 

Our present work illustrates and enlarges upon an earlier report [4] on overcoming this 
handicap of the MG formalism. The so-called Incremental Maxwell Garnett (IMG) formalism is 
applicable to dense composite mediums. It has an iterative flavour, being based on the repeated 
use of the MG formalism for certain intermediate dilute composite mediums. Furthermore, we 
show that the IMG formalism leads to a Differential Maxwell Garnett (DMG) formalism that is 
based on the numerical solution of a system of differential equations. Details of the IMG/DMG 
formalisms shall be published shortly elsewhere [5]. A more general survey of homogenization 
formalisms for bianisotropic composite mediums is given in Ref. [6]; see also Ref. [7]. 
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2. Theory 

Suppose that identical, similarly oriented, electrically small inclusions made of a medium labelled 
b are randomly dispersed in a host medium labelled a. The volumetric proportions of the 
constituent material phases are denoted by /a and /b = 1 - /a- Both mediums are linear and 
bianisotropic, their frequency-domain constitutive relations being specified as [3], [4]: 

(f)=s-(l)-    (a=^b)- (1) 

The 6x6 constitutive dyadic Qa is composed of 3 x 3 dyadics in the following way: 

Ca=(  !Q   =a      ,        (a = a,b), (2) 

where ea and //" are the permittivity and permeability dyadics, respectively, whereas |a and £Q 

are the two magnetoelectric dyadics. An exp(-iut) time-dependence is implicit in this work, 
u) being the angular frequency. 

We define the 6x6 polarizability dyadic 

l«'ino = (Qa> -Qa) ' [l + iuUa • (Qa' -üa)}~1 (3) 

of an electrically small ellipsoid of medium a' embedded in medium a, where I is the 6x6 
identity dyadic. In the general case of a bianisotropic medium, the 6x6 depolarization dyadic 
Da can be computed by numerical two-dimensional integration, and in many important cases 
even analytically [6]. 

The MG estimate gMG of the constitutive dyadic of the HCM is given by [2] 

eMG(ga
1e

b
1/b) = fia + /bibina-(i-<wAna-ibina)~1, (4) 

where D* is related to g? and the functional dependencies of QUG are identified explicitly. 
In the IMG formalism, the actual composite medium is built incrementally by adding the 

inclusions not all at once, but in N stages. After each increment, the composite medium is 
homogenized using the MG formalism. In this fashion, the following iterative scheme emerges 

g(o)=ea, £(n+1)=£MG(£(n),£b,5b), (n = 0,1,2,...)- (5) 

In order to terminate the iterative scheme in N stages, we fix the incremental proportion 

Sb = l-(l-h)l/N. (6) 

As the final result of the iteration, we obtain the IMG estimate Q1MG = g(N). 
The DMG formalism arises from the IMG formalism in the limit N -> oo. The difference 

equation (5) is then converted into the ordinary differential equation 

drj— 1 — rj- 

with initial value Q(0) = Q*. The DMG estimate is then given by 

CDMG=0/b). (8) 
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3. Numerical Results and Discussion 

Two independent numerical implementations of the IMG and DMG formalisms were set up by 
us. Both codes produced identical results in all cases tested. The number of iteration steps for 
the IMG formalism is finite, because N is finite, and therefore no convergence problems can arise 
so long as an adequately large value of N is used [4]. For implementing the DMG formalism, 
one can rely on well-tested algorithms in numerical libraries so that no numerical problems are 
to be expected either. Thus, the IMG and DMG implementations are more robust than the 
implementation of the Bruggeman (Br) formalism. 

We now illustrate the IMG and DMG formalisms in relation to the MG and Br formalisms 
and begin with the simple case of a composite medium consisting of a uniaxial dielectric host 
medium with spherical isotropic dielectric inclusions. That is, 

|a = e0(l + 3M«) ,    |b = 10e0I;    (S'h = PoL    f>b = Ca'b = Q, (9) 

where eo and po are the permittivity and permeability of free space, u is a unit vector parallel to 
the optical axis of the uniaxial medium, and I is the 3x3 unit dyadic. The calculated nonzero 
components of the permittivity dyadic 

jHCM = £o [eHCM L + (eHCM _ eHCM) ^J  > (1Q) 

are plotted as functions of /b in Figure 1; trivially, ^HCM = fiQ £, |HCM = £HCM = 0. The order 
of the IMG calculations was set to N = 5 to keep the differences with theI)MG appreciable on 
the graphs presented. Both the DMG and IMG estimates are bounded by the MG and the Br 
estimates for 0 < /b < 1. 

We now consider a fully bianisotropic composite medium, viz., a chiroferrite conceptualized 
as a random deposition of electrically small, isotropic chiral spheres in a ferrite host. The 
constitutive dyadics are denoted as 

Za = r0[ral- iif u x I + (ru
Q - ra)uu] , (11) 

(T = e, £, C, M;    oi = a, b, MG, Br, IMG, DMG); 

and we chose the following parameter values: ej} = ea = 5, e| = 0, £a = £a = 0, p* = ß& = 1.1, 

Hl = 1.3 for medium a; and e\ = eb = 4, eb = 0, £b = -|b, £ = £b== l,^b = 0, ^ = /xb = 1.5, 

jUg = 0 for medium b. Estimates of the three nonzero scalar components of the constitutive 
dyadics |HCM, |HCM, and £HCM, are plotted as functions of /b in Figure 2. Results for CHCM 

are not displayed since |HCM = _£HCM f0uows numerically from all four formalisms. 

Clearly, the differences between the predictions of the homogenization formalisms studied 
here are relatively small. The simplicity and robustness of the numerical implementation is 
then a clear advantage for the Incremental/Differential Maxwell Garnett formalisms over the 
Bruggeman formalism. 
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Abstract 

The strong-property-fluctuation theory (SPFT) is developed for the homogenization of 
bianisotropic composites with two constituent material phases. A bianisotropic compari- 
son medium is introduced as an initial ansatz in the perturbative process resulting in the 
SPFT estimate of the constitutive properties of the homogenized medium. Analytic results 
are presented for ellipsoidal topology, and under the bilocal and long-wavelength approxi- 
mations. 

1. Introduction 

Many homogenization approaches — exemplified by the Maxwell Garnett and the Bruggeman 
formalisms, and their variants — are limited through their simplistic treatments of the distri- 
butional statistics of the constituent material phases [?]. A notable exception is the strong- 
property-fluctuation theory (SPFT), which provides a method to determine both local and 
nonlocal constitutive properties of composites while allowing for a sophisticated handling of the 
distributional statistics [?]. The theory has already been developed for isotropic dielectric [?], 
anisotropic dielectric [?], as well as chiral-in-chiral composites [?]. We present here a general- 
ization of the theory to bianisotropic mediums; further details are reported elsewhere [?]. 

2. SPFT Preliminaries 

We begin with the constitutive relations of a nonhomogeneous bianisotropic medium1 

D(r) = |(r) • E(r) + |(r) • H(r) ,        B(r) = £(r) • E(r) + g(r) • H(r), (1) 

where |(r) and fjJ^r) are the permittivity and permeability dyadics, respectively, and £(r) and £(r) 
are the magnetoelectric dyadics. Substituting (??) into the source-free Maxwell curl postulates, 
we obtain the dyadic differential equation 

L(V) • F(r) = -iwK(r) • F(r), (2) 

1 Whereas 3-vectors (6-vectors) are in normal (bold) face and underlined, 3x3 dyadics (6x6 dyadics) are 
in normal (bold) face and underlined twice. The adjoint, determinant and inverse of the dyadic Q are denoted 

by adj(Q ), detQ and Q_1, respectively. 
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where 

L(V) = 
g        Vx| 

-Vx J      0 Kfe) = 
|fe)    |fc). 

Cfe)   ME) 
E(r) = £(r) 

fife) 
(3) 

with J denoting the 3 x 3 unit dyadic. 
Equation (??) is specialized to a two-phase composite mixed at the microscopic (but not 

molecular) length scale, each constituent material phase taken to be bianisotropic as follows: 
All space is divided into disjoint parts Va and Vb such that 

£(£) = £„>   £(£)=%<   £te)=£p'   ^=%    =* 

We introduce the characteristic function 9p(r), defined as 

K(E)=Kp, r€Fp.     (4) 

öP(E) = I,      rev; P' ME) = O,     r^yp (5) 

The complete statistical information about the composite is contained in 9p(r). On average, the 
composite is assumed to be homogeneous. 

The concept of ensemble-averaging, i.e., averaging over a large number of different samples 
of the two-phase composite, is central to the SPFT. With ensemble-averages denoted by ( ), 
the nth moment of 9p(r) is the expectation value {9p{r_i)... 9prn)), which represents the prob- 
ability for rl5... ,r„ being inside Vp. The first moment for the phase p is its volume fraction 
/ = {9p{r)). Only fp, {p = a, b) appear in the Maxwell Garnett and the Bruggeman formalisms, 
which thus contain minimal statistical information about the composite. A more detailed de- 
scription is provided by the second moment (0a(r)0a(r')) of 0a(r), or, equivalently, by the second 
cumulant or covariance 

'(® = <0«(r)0«(r')> - (ea(r))(9a(r')) = (9b(r)9b(r!)) - <06(r))<06(r')>, (6) 

where R — r — r'. If the composite is disordered, it is usually possible to define a correlation 
length L such that r(R) is negligible for | R \ » L; i.e., on scales larger than L, the composite 
may be considered homogeneous. 

The formulation of SPFT requires the introduction of a bianisotropic comparison medium 
(BCM), which allows an approximate treatment of electromagnetic fields in Va U Vj,. This is 
a homogeneous medium, characterized by the constitutive dyadic £BCM) which serves as the 
preliminary ansatz for the SPFT and may be chosen as the result of implementing the Bruggeman 
formalism [?]. The corresponding dyadic Green function Q:BCM(r - r') satisfies the differential 
equation 

L(V) + iuK = BCM 
£R™(r-r') =lS(r-r'), 
=BCM (7) 

where I is the unit 6x6 dyadic and 6(r-r') is the Dirac delta function. The singular behaviour 
oi9=BCM (r - r') in the limit r-tr' can be accommodated through 

(R)=VGzBCM(R) + U6(R) 
= BCM^ (8) 

where V is the principal value operation excluding a certain infinitesimal region centred on R = 0 
and the corresponding depolarization dyadic g. of the specified region in the BCM [?] is fixed 
at a later stage in the analysis. 

In the SPFT, K is refined in a perturbative manner in order to estimate the constitutive 
dyadic K (R) of the nonlocal effective medium arising from the homogenization of the material 
phases a and 6. However, when the principal electromagnetic wavelengths are much larger than 
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the correlation length L, a macroscopic description of the composite as a homogeneous local 
continuum is possible. In this long-wavelength regime, |£D (R) = |C      , where 

^o = lBCM-^(i + Io-n)"1 -S0;       i0 = jUR)d3R. (9) 

The mass operator J±(R) consists of an infinite series of terms involving VGßCM(R).   The 
lowest-order non-trivial result emerges from the bilocal approximation; thus, 

lo - fe.-xj • [*/rca>£TCM(fl)*fi] • fe.-xj • (10) 

where 

^P-EBCM] ' [l + ^S- (gp-KBCM)]_1 , (P = a,b).        (11) 

An explicit expression for Q.BCM(R) cannot be written down, but (??) yields its Fourier 
transform as 

1 **i {ÄBCMM) , 
£BCM(

-
)
 
= * detAflCM(i)   ;       =BCM(£)

 
= 

Q (£/w) x I 
-fa/w) x I 0 + ^BCM 

(12) 

where £ is the spatial frequency vector. Significantly,   Q:BCM{q) may be partitioned as [?] 

Let V* be an ellipsoidal region, centred at the origin of our coordinate system, of size 
determined by the linear measure T). We imagine that both constituent phases are distributed as 
conformal ellipsoids of surfaces parameterized by ^(0, <f>) = 77 £ • R(0, <f>), where R(8, </>) is the 
radial unit vector depending on the spherical polar coordinates 0 and <£, and U is a real-valued 
dyadic of full rank. We determine g as the depolarization dyadic associated with the exclusion 
region of shape ^ [?] and choose the covariance T(R) to reflect the ellipsoidal topology relating 
to Dj accordingly, 

r(E) = fafb,        Re V[; T(R) = 0,        R?V£. (14) 

Thus, the principal value integral in (??) becomes 

-pfrmgBCMmd3R= 

where v is a dummy vector variable. 

3. Implementation for Biaxial Bianisotropic Mediums 

In order to illustrate the implementation of the long-wavelength approximation in the bilocal 
SPFT framework, we consider a two-phase composite for which both constituent phases belong 
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to the general class of reciprocal biaxial bianisotropic mediums. The constitutive dyadics of the 
constituent phases are taken to have the diagonal forms 

e   =diag(eP,eP,6P),    £   = diag(&£J,#) =-C ,    "   = diagO&MJ^S),    (p = «,&),   (16) —p " =p " =p     =p 

where all diagonal entries are complex-valued. For simplicity, we choose a spherical particulate 
topology for the constituent phases, i.e., U = I. The integration with respect to v in (??) may 
be performed by means of residue calculus, exploiting symmetries in the integrand along the 
way: Introducing 

= 
adj(iWte)) - det(kBCM(v))g™CM(v) 

— {v'ean..'v)(v-ß •£) + (£>•£ • v)(v ' f • v) ' ' 
-BCM    -"-    £BCM    -'       K-    =BCM     -/K-    =BCM    ~' 

we find that 

/       /       /      G D„,.(u) LcosuL    sin0dud0d<£ = ——- /       / 
J4,=oJo=oJv=o=BCM     \   v ) Ai J^oJe^o 

lr=v^     2N(0) 1 
+   =      > sinö dö d0, (18) 

where K± are the u2 roots of detÄBCM(v) and are assumed to be distinct. 

4. Concluding Remarks 

The constitutive dyadic KDj/0 is fully specified through (??), (??), (??), (??) and (??). The 
surface integral representation (??) requires numerical evaluation, in general; a selection of 
results is presented in [?]. These calculations reveal a biaxial bianisotropic composite structure 
which includes scattering losses, and is therefore attenuative even when the constituent material 
phases are nondissipative. 
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Abstract 

Bistable behavior of nonlinear composite structures with spherical metallic inclusions 
embedded in a weakly nonlinear dielectric host as well as coated spherical particles with 
a metallic core and a nonlinear dielectric shell have been theoretically studied using 
variational approach. A metal fraction of spherical inclusions causes a surface plasmon 
resonance. The dielectric permittivity of the nonlinear host depends on the intensity of 
the local electric field. It is shown that the bistable behavior can be achieved by adjusting 
the physical parameters of the constitutive materials. 

1. Introduction 

Recently, considerable attention has been devoted to composite nonlinear materials due to their 
potential uses as materials for optical devices [1-4]. Particularly, they can be exploited as materials 
for real time holographic and bistable memory devices, optical correlator devices, thresholding 
devices etc. The composite media with the optical bistable behavior have a particular interest as 
materials for optical devices. In this work the composite structures with Al spherical particles 
embedded in the nonlinear dielectric host as well as composite spherical particles with Al core and 
nonlinear dielectric shell were studied with respect to their bistable behavior based on the recently 
developed variational approach [1] for such media. 

2. Theory 

Let us consider the composite structure with the metallic spheres embedded in a weakly nonlinear 
dielectric host. The metallic spheres are described by the frequency dependent but field independent 

dielectric  permittivity   e'(co) = e'+ JE" while  the  host  medium  is  described  by  the  frequency 

independent  but  field  dependent   dielectric   permittivity   E
/,
(E)=E0+%LE     Suppose   that  the 

concentration of the metallic inclusions is rather small, so we can neglect the interactions between 
them and the inclusions are small as compared with the wavelength of the incident electromagnetic 
waves (electrostatic approximation). Using variational approach [1] one can obtain the equation for 
the normalized field intensity t in the composite structure 

f(t) = t3-2\it2+t = a (1) 
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where 

t = B' 
8X£0

2      .   u_   Re(£'+2e0). W% 
—     ,     fX — i       ,       «, — 
e'+2e0 e'+2e0, 

|u|<l; t>0. 

e'+2eo 

(2) 

B is the complex variational parameter, E0 is the averaged electric field in the composite medium. 
The bistable regime in the composite structure can be achieved if the Eq. (1) has two (three) solutions 
for real t. It always has at least one real solution. In order for it to have three solutions, |J. and a must 

satisfy the additional inequalities 

(3) \L>^y2  , oc_>oc>a+ , a+ = /(?+) 

where t+  are the positions of the maximum or minimum of f(t) respectively. 

t±=^±(4^-3f (4) 

The quantity    e' + 2e0  measures how far the composite structure is from a resonant condition, where 

it vanishes. 
Consider the next particular composite structure with the composite spheres which consist of a 

metallic core, characterized by the same dielectric permittivity e'(co), and a concentric dielectric 

spherical shell having the dielectric permittivity eh\E). Using the same variational approach [1] one 
can obtain the following parameters for the equations (1), which correspond to the coated sphere 
model 

t s B 
,|X£o2(5p3+52/72+16/7 + 8) 

1    5e'+2e0-;p(e'-E0] 

Re e'' + 2e0 - p{z' -e0)J 

oc = 

|e'+2e0-Jp(e'-e0J 

XE&p3 +52p2 +\6p + 8\ei -e 

5e'+2e :0-/>(e'-e0] 

(5) 

(6) 

(7) 

where p = \rc/rs J is the core to shell radius ratio of the composite sphere. 
The complex dielectric permittivity for the metallic spheres can be described by the classical Drude 
free-electron model or by the Drude model in combination with the Lorentz oscillator for the bound - 
electrons [2] 

e'(co)=i 1- 
(0 pf • + ■ 

«ojft 
co2 + iarff    ©o - co2 + iccrft, 

(8) 

with 



39 

to2    -Nf>»e2 m#J> ~ /e0m0 

where   copf, co „^ are  the  plasma  frequencies  for  the  free  and  bound  electrons  respectively, 

y      = % f b is the free- and bound - electron scattering time, N f b in the free- and bound - electron 
/ lfjb 

density, e,m0 are the electron charge and mass respectively. 

3. Numerical Results 

As have been mentioned above the bistable regime in the nonlinear composite structure can be 
achieved at the conditions expressed by inequalities (2,3). Several types of composite structures with 
different metallic inclusions (Al, Au, Ag) have been examined as the possible candidates for 
composite media. The dispersive parameters for the Drude models of the dielectric permittivity were 
taken from the literature [2]. In this work the bistable regime was studied for the composite structure 
with Al spherical inclusions described by Drude free- electron model. The following parameters were 

employed for the dielectric permittivity of aluminium particles mpf = 2.28xl016 sec-1, xf = 6.9 fsec. 

The nonlinear dielectric host was chosen as a doped glass so as to enhance its cubic nonlinearity 

coefficient x = 10 As can be seen from Fig. 1 the bistable regime in the particular composite 

structure can be achieved at the frequency co=7.5xl015 rad/sec . In this case we have |a = 0.895, 

t+ = 0.742, t_ = 0.449 , oc+ = 0.167 , oc_ = 0.179,  %|.E0|
2 = 4.6xl0"5, B = 68 and the required field 

intensity to produce the bistable regime / = (c/47ü)J£0|   ~ 106w/cm2 . On the Fig. 2 one can see the 

similar analysis for the coated sphere with Al core and the nonlinear dielectric shell. For the coated 
sphere there is an additional adjustable parameter p which allows to tune the bistable regime to the 
desired range. The parameters used in this case are the same as in the previous model with the 

additional p = 0.4 . The corresponding frequency of bistability co = 5.45x 1015rad/sec. 

4. Conclusion 

In this work the bistable regime was studied for the particular composite structures with Al small 
spherical particles embedded in the nonlinear dielectric host, as well as for the composite coated 
sphere with Al core and the nonlinear dielectric shell. It is shown that the bistable behavior can be 
achieved by adjusting the physical parameters of the constitutive materials. 
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Fig. 1 The bistable regime in the nonlinear composite structure with spherical Al inclusions. 
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Fig. 2   The bistable regime in the nonlinear composite structure with the coated Al spherical 
inclusions. 
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Abstract 

A technique is presented for the accurate computation of the effective quasistatic permittivity of 
lattices containing particles with potentially complicated shape. This technique is based on the 
moment method for the computation of the electric dipole moments of the dielectric or conducting 
particles. Through proper homogenization of the lattice, a simple formula for the effective 
permittivity is given in terms of these particle dipole moments. Verification data is presented for 
lattices of dielectric spheres obtained with the 7-matrix method. Results are shown for lattices of 
dielectric cubes. Mutual interaction between the edges and corners of such a lattice combine to 
reduce the effective permittivity to values near the lower Hashin-Shtrikman bound. 

1. Introduction 

The computation of the effective material constants for lattices of particles has in the past been 
restricted primarily to inclusions of canonical shape. For example, Rayleigh's approximate analysis 
considered round cylinders and spheres [1] and McPhedran, McKenzie and Derrick considered cubic 
lattices of spheres [2, 3]. Additionally, our recent work has produced solutions for multiphase lattices 
of spheres and round cylinders [4, 5]. One exception to this canonical shape rule is the work of Sareni, 
et al. who considered lattices of rods and disks, among other shaped particles [6, 7]. 

The objectives of this work are twofold. First, we present a methodology for the computation of 
the effective quasistatic permittivity for lattices of complex shaped particles. That is, particles with 
edges, corners or other complicated surface features such as those present on cubes (in 3-D lattices) 
and square cylinders (in 2-D lattices). This methodology is based on the moment method (MM) 
wherein a set of electric potential integral equations is solved for the infinite lattice and the electric 
dipole moments of the particles are computed. By properly homogenizing this lattice, we obtain an 
accurate effective permittivity that properly captures the scattering by the particles and their 
interactions. 

The second primary objective of this work is to investigate the effect of the inclusion shape on the 
resulting effective permittivity. For example, to investigate the edge effects and the mutual interaction 
between particles with sharply defined edges and the resulting effective permittivity. 

2. Integral Equation Solution for the Dipole Moments 

The first step in the computation of the effective quasistatic permittivity for lattices of complex 
shaped particles is the accurate determination of the electric dipole moments of the particles when the 
lattice is illuminated by a uniform (but otherwise arbitrary) electric field. We have chosen to use the 
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MM for these calculations since the particles may not be of canonical shape. Following the surface 
equivalence theorem, exterior and interior equivalent problems are constructed using equivalent single 
(ps) and double (T) layers of charge density [8, 9]. Shown in Fig. 1, for example, is a portion of the 
original lattice as well as the exterior and interior equivalent problems. 

Original Exterior equivalent Interior equivalent 
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+ + + r *^ 
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1 
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Figure 1 Geometry of the original and exterior equivalent scattering problems. 

The scattered scalar potentials produced by these two types of equivalent sources are 

1 Ans -V R 

(1) 

(2) 

In our MM solution to this lattice problem, we expand the two types of charge in sets of coincident 
constant basis functions 

p,=2>jn(0 
71=1 

N 

T = J^hßnTn{r') 

(3) 

(4) 

where Tn is the n* flat triangular patch on the surface of the scatterer. 
Using a simple point matching scheme and enforcing the proper boundary conditions in the 

exterior and interior equivalent problems [9], the following set of integral equations can be formed 
f „        , A       ,      N      f . , ^ 1 

4X£, n=l i=l   5..        nm 

ATte ^-f      JJ R 

1 
47Z£b  „=1 

XA. 

47IE 
I/3jJJ«-v'(^-)^' 

c,l :$"*(/•,) (5) 

(6) 

where the i summation is over all particles in the lattice and Ocl is the constant and unknown 

potential of particle 1. The double layer of surface charge we are solving for has zero average value 
over the surface so we add the constraint 

2>A=o (7) 

In matrix form, Eqns. (5) through (7) can be expressed as 
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INxI 

0 
[ol Wxl 

0 
(8) 1^21 iNxN       L^22 JNXN       IPJ, 

Once the matrix equation in (8) has been solved, the electric dipole moments of the particles can 
be computed as 

p = $(Psp' + T)ds' (9) 
c, 

In the case of isotropic lattices, the effective permittivity can be determined using the simple and 
accurate expression [4, 10] 

p/(3e0E'-Vc) 
Jr.<ff = 1 + 3- (10) 

'l-p/(3e0E**vJ 
We reiterate that after following the methodology presented in this section, this er<ts properly 

accounts for all scattering from (and mutual interactions between) particles that have possibly very 
complicated shape. A similar procedure has been developed for conducting 3-D particles as well as 
dielectric and conducting complex shaped 2-D cylinders [9, 11]. 

3. Results 

In order to verify the accuracy of this technique, the effective permittivity of a simple cubic (SC) 
lattice of dielectric spheres with er= 40 was computed for varying volume fraction/. These results are 
shown in Fig. 2. This er,eff compares well with erfiff computed using our ^-matrix solution [4]. These 
two results deviate by no more than 1% even at ultra-high volume fractions (f> 0.5). 
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 Maxwell/Maxwell Garnett 
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Figure 2 Computed er,eff for SC lattices of dielectric spheres and dielectric cubes. In both 
cases the particles have £,=40. Notice that the two vertical axes have different scales. 

Also shown in Fig. 2 is £r,eff for a SC lattice of dielectric cubes with er = 40. Unlike the sphere 
lattice, the maximal volume fraction for this lattice is 1. For most of these MM cube results, 1304 flat 
triangular cells where used to discretize the cubes and 27 unit cells where used to truncate the infinite 
lattice sums for the numerical calculations. For volume fractions/> 0.95, however, it was necessary to 
increase both the discretization and the number of unit cells (1890 and 125, respectively) to achieve 
less than 1% variation in the electric dipole moment of the dielectric cube. 
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While there is no accurate analytically based formula with which to compare these results for the 
lattice of dielectric cubes, we alternatively present the Maxwell/Maxwell Garnett (MG) predictions 
[12 Arts 314 and 430]. Interestingly, it is apparent that the MM results for the cubes and the MG 
predictions are quite close (up to approximately 9% variation at/= 0.98). Even closer agreement has 
been observed for conducting square 2-D cylinders where the maximum variation is less than 0.4% at/ 

= 0.99 [11]. 
The close agreement between the cube and MG results in Fig. 2 may appear at first glance to be 

the result of little mutual coupling between the cubes at high volume fraction. However, our 
investigations have shown that this is not the case [11]. Instead, the close agreement in these dielectric 
cube results (and other similarly shaped particles shown elsewhere [9, 11]) is likely the result of the 
large mutual interaction between the edges and corners of the particles. Interestingly, such interactions 
produce a reduction in the polarization of the particles with respect to the isolated case. Consequently, 
the effective permittivity of the lattice is reduced almost to the theoretically minimal amounts 
predicted by the lower bound of Hashin and Shtrikman [13, 14]. 
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Abstract 

An alternative method of determining of the constitutive dispersion parameters for composite 
media is discussed. It is assumed, that the constitutive materials of composite media are 
characterized by the complex dielectric permittivity. Furthermore, we consider the composite 
media with small inclusions as compared with the wavelength of that range for which the 
dispersion parameters are determined. We have used the experimental reflectance spectra of the 
composite media from which the effective complex optical refractive index and effective complex 
dielectric permittivity were determined. 

1. Introduction 

Last time considerable attention has been devoted on the inverse problem of determining the 
constitutive parameters of complex media [1-3]. Sometimes using of general methods for determining 
the constitutive parameters of such media, e.g. solutions of biological macromolecules in aqueous 
media, is restricted by strong absorption of water outside the transparent ranges. To overcome this 
problem an alternative method of Kramers-Kroning analysis of the experimental spectra can be 

applied [3]. In this work, the effective optical functions n and k , were obtained using Kramers- 
Kroning analysis from the experimental reflectance spectra of the composite medium. The real and 
imaginary parts of the effective complex dielectric permittivity e were calculated using the effective 
optical functions. 

2. Theory 

The complex reflection amplitude of a normal incident electromagnetic wave, used in the Kramers- 
Kronig analysis, is defined as follows [1] 

fll/2 = (S-D + ft =fll/2eftp (1) 

(n + l) + ik 

were R is the magnitude of the reflectance at the frequency CO. The phase cp is related to the 
reflectance by the dispersion equation, defined in the Kramers-Kronig analysis as follows 

(p(co) = -P vs;<%-7t (2) 
it   J £2 - co2 

were P stands for the Cauchy principal value. The real and imaginary parts of the complex optical 

refractive index n and k are related to the reflectance amplitude and phase by the relations 
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l-R ~        -2fl1/2simp m 
n-     ,      k = rjz  V) 

l + i? + 2/?1/2cos9 l + /? + 2fl"zcos9 

Using obtained complex refractive index we can calculate the real and imaginary parts of the effective 

dielectric permittivity of the composite mediume, = n2-P,e2=2nk . Further, using the effective 
complex permittivity of the composite medium, we can obtain the complex dielectric permittivity of 
the constituents. For this purpose we can utilize one of the widely used approximations, such as 
Maxwell-Garnett or Bruggeman formalism 

S       _P   + T/b E«-e*        fliZlsG_ + g-f)  eh~lBG    =Q (4) 

were E,is the dielectric permittivity of the inclusions, eh is the dielectric permittivity of the host 
medium. Using known dielectric parameters of the host and the filling factor for the inclusions, we 
can reconstruct the dielectric permittivity for the inclusions, or using known dielectric permittivity of 
the inclusions and host medium we can determine the filling factor of the inclusions. 

3. Numerical results 

To demonstrate the validity of the above formalism the composite structure was considered in a 
mixture form of LiF small particles embedded in a KBr host. The optical constants for LiF particles 
correspond to the classical oscillator theory. The relevant real and imaginary parts of the complex 
dielectric permittivity have the following form 

e' = n2 k2_c_^ 41CPXM-"»2) >c._2n/:_v   4«pX(y^j) (5) 

; (co2 - co2 J + (YJ-CO,. } ' j (co2 - co2 f + (Y;CO;. } 

The experimental reflectance spectra, taken from the literature [5], for the composite structure with 
filling factor / =0.2 is shown on Fig.l. The calculated phase using Kramers-Kroning analysis is 
shown on same Fig.l. The effective optical constants of LiF-KCl composite, calculated using 
Kramers-Kroning, are shown on Fig.2. The experimental and restored effective complex dielectric 
permittivity for LiF-KCl composite are shown on Fig.3. Finaly, the restored real and imaginary parts 
of the complex dielectric permittivity of the inclusions are shown on Fig. 4. 

4. Conclusion 

The apparent conformity of restored complex effective dielectric permittivity with experimental 
curves proves the validity of above formalism. This rather simple procedure will be useful for 
spectroscopic investigation of complex media, e.g. in spectroscopic studying of biological 
macromolecules immersed in aqueous solutions with known dispersion properties. 
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Fig. 1   Reflectance spectra and restored faze of reflected wave for LiF particles embedded in KBr 
host. 
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Abstract 

The system of an ideal metal or superconductor - dielectric plate - vacuum or 
unpolarizable substance is considered in presence of the constant electric field directed 
normal to the plane of the plate. Dispersion relations for surface phonon polaritons of 
this system are derived and analyzed. These polaritons are induced by a dynamical 
magnetoelectric effect. It has been shown that in the case, when the plate thickness 
essentially exceeds the penetration depth of the surface polaritons, the approximation of 
a half-infinite (bulk) insulator satisfactory describes the polariton spectrum and the 
"switching over" effect is possible for a magnetoelectric wave: the variation of the 
electric field on the opposite one leads to "switching on" or "switching off" of the 
corresponding frequency branches. The dependence of the spectrum of surface phonon 
polaritons from the plate thickness is calculated numerically. The corresponding criterion 
of an existence of magnetoelectric waves in the dielectric plate has been found. 

1. Introduction 

A number of publications devotes to the influence of a dynamical magnetoelectric (ME) effect on the 
spectrum of surface phonon polaritons in an insulator. In these publications the «switching over» 
effect and the «rectification» one of surface polaritons at the change of direction of applied constant 
electric or magnetic fields. 

We consider the system of an ideal metal (or superconductor) - dielectric plate - vacuum (or 
unpolarizable substance) in presence of a constant electric field directed normal to the plate. 
Dispersion relations for the spectrum of surface phonon polaritons are derived taking into account the 
dynamical ME effect influence. Restrictions for the plate thickness, when the «switching over» effect 
takes place, are analyzed. It is shown that in the case when the plate thickness essentially exceeds the 
penetration depth of surface polaritons the approximation of a half-infinite (bulk) insulator describes 
quite exact the polariton spectrum. While the dielectric plate thickness decreases, the «switching 
over» effect disappears. However, this effect can be kept down to the sufficient small plate thickness 
(depending on the value of the constant electric field). The dependence of the spectrum of surface 
polaritons on the plate thickness is calculated numerically. Analitical expressions for the dispersion 
law and the penetration depth of surface polaritons are obtained for small thicknesses. 



52 

2. Dispersion  relations  for  the  system  of an  Ideal  Metal-Insulator- 
Vacuum 

Let us consider an uniaxial non-magnetic insulator (z is an easy axis). It occupies the region of the 
space 0<z<d and borders on ideal metal or superconductor (z<0) and vacuum or unpolanzable 

substance (z>d), d  is the insulator thickness. A constant electric field E0 is applied along the 

normal to the dielectric plate (i.e. along the z axis). 
The linear responce of an insulator in the field of an electromagnetic wave with electric and 

magnetic components e,h with taking into consideration of the dynamical ME effect has been 
obtained in [1]. Electric and magnetoelectric susceptibilities in the absence of damping and in the 
neglect of the space dispersion have been analyzed in works [2]-[6]. 

The electric (d ) induction of medium and the magnetic {b ) one are connected with electric 
and magnetic fields by means of the following relations 

where e..,HV are the tensors of dielectric and magnetic permeabilities correspondingly, yik is the 

tensor of magnetoelectric permeability. Components of the electric polarization of medium can be 
presented in the form: 

^=i-((e„-5„K+YA) & 
471 

where 8/t is Kroneker symbol. In our case \iik = 8tt (non-magnetic insulator), and components of the 
electric and magnetoelectric permeabilities, which are not equal to zero, are determined by the 
following expressions: 

Q2-co2 Q2-co2   „        . __47tcogP0 E"=E-=£l=4^'E-e3=^T^'^=^=-'^-^V- (3) 

Here P0 is an equilibrium value of polarization. If the external constant electric field E0 = E0z is 

applied to the insulator, then from the formula (2) we obtain P0 = P0z = —(e^ -l)£0. In the case of 

ferroelectric, P0 is spontaneous polarization; a>0 is the excitation frequency of transverse components 
of the polarization Px,Py; co, is the excitation frequency of polarization along the easy axis z. 

Frequencies Q.Q,Q.e are zeroes of dielectric permeabilities of transverse (eÄ,ew) and longitudinal 

(ea) correspondingly. Besides, g=ejmc is gyromagnetic ratio (e is the particle charge, m is the 
particle mass, c is the speed of light). An ionic polarizability is excited effectively in the IR region of 
the spectrum. Therefore, g is gyromagnetic retio for anion-cation pair. In the optic region of the 
spectrum where electronic polarizability prevails, g is gyromagnetic retio for an electron. 

The Maxwell's equations for a wave that propagates along the x axis can be presented in the 
following way: 

—ex+-yex-i 
dz        c 

^co2^ co co3 CO2 n  , CO 

c k 
e'="• 'T^'^r--A11*=0-*'="^SA   (4) 

The solution of equations (4) in the insulator is sought in the form: 

ex = (Ae-* + Be*** Je^", ez = (Ce^+De* Je'^" (5) 

From the requirement of equality to zero of tangential components of an electric field at the boundary 
with an ideal metal (or superconductor) we obtain 
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A + B = 0 (6) 

For the rest of amplitudes in the equation (5) the following expressions can be obtained when 
amplitude C is considered as independent one: 

( 

A = C-  ?—l,B = -A, D = C £-. 
ietk 

(7) 

The wave in vacuum is sought in the form 

e =Fe-kQZ&m'a'\e =Ge"*0V(^m,) (8) 

Tangential components of an electric field and normal component of electric induction must be 
continuous at the boundary of the insulator with vacuum. Thus, such equalities must be implemented 

C*=e*U'     £3eZ=
e0^U- (9) 

Where e0  is dielectric constant of vacuum (then  e0 = 1) or any unpolarizable substance in the 
considered frequency region. For amplitudes from equations (5) H (7) we obtain: 

A(e-M-ew) = Fe-M,Ce3 
k0c - coy 

= GE0e"M 

Solving the system of equations (4)-(10) we obtain finally for boundary conditions: 

I       c   y ei    I koc-wy j 

Besides, the following relation for nonzero solutions in the insulator must be implemented 
CO 

fc-ifc-T        AC   tj    i   Co 

r,2     CO2       ^ 
*0-—Y2 

V c        J 

■0 

The analogous relation in vacuum 
CO' 

*  CIQ      K,     i  ACQ  "~~ \) 

(10) 

(11) 

(12) 

(13) 

must be realized when amplitudes F,G in (8) and (10) differ from zero. 
The system of equations (11)—(13) determines the dispersion law of polaritons which 

propagate in the insulator parallel to the interface. 
Let us analyze this system at k0d »1 i.e. when the insulator thickness essentially exceeds 

the value of the penetration depth of the wave into the insulator. Then the equation (11) can be 

realized in two cases: k0c = -coy and k0c * -coy,   k0 yk = £0e,. 

In the first case we obtain the solution in the form of a wave which exists due to the 
.2 

dynamical ME effect. It is easy to see that equation (12) in this case will be k2 =—783. From 
c 

equation (7) one can see that from all amplitudes in the insulator A,B,C,D only the amplitude C is 
not equal to zero. Thus, the wave propagates along the boundary of ideal metal with insulator, and its 
amplitude exponentially damps deep into the insulator. From the equation (10) it follows that the 
amplitude F in vacuum is equal to zero, and the amplitude G —»0, k0d -> °°. Therefore, the equation 
(13) in this case does not exist. Further we will call this polariton wave as «magnetoelectric» one [3]. 
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In the second case    k0 y 
c 

e0 = £0£,  we have a common surface polariton wave at the 

boundary of the insulator with vacuum which exists in the frequency interval [co0,(Os], where 

CD2 = (&] +cOo)/2 (see [7]). In [2] it has been shown that presence of the constant electric field (i.e. 

y*0) in this case leads to interesting effects whose quantities, however, are small since the 

dynamical ME effect is small too. 
Hence, we can indicate the application limits of result of work [3]-[6] if we find the 

qualitative condition of existence of the «magnetoelectric» wave in the case of the finite plate 
thickness. The plate thickness of the insulator d must essentially exceeds the penetration depth into 
the insulator fc0~' . From k0d »1, ck0= -coy and equality (3) we obtain: 

d>>k-=8ME=A^-c (14) 
471CO gP0 

The order of penetration depth of the «magnetoelectric» wave at values of constant electric field 
which is typical for the spontaneous polarization in the ferroelectric crystal E0 ~ P0 ~ 10 CGSE and 

optical frequencies (co~1014 sec"1, g ~107) is 8M£ ~10"2 sm. Thus, for the relation of the condition 
k0d »1 the plate thickness of insulator must be greater or of the order of magnitude 1 mm. The 
numerical calculations of dispersion relations (11)—(13) performed by us confirm these qualitative 
results. 

3. Conclusion 

In the system of an ideal metal (or superconductor) - dielectric plate - vacuum (or any unpolarizable 
substance) surface polaritons propagate along the interface. For plate thicknesses d, which 
essentially exceed the characteristic penetration depth 5M£ (see (14)), the «magnetoelectric» wave 
propagates along the boundary of insulator with ideal metal (or superconductor). Thus, the condition 
d » 6WE shows the application limits of results of work [3]. At the optic frequencies and the value of 

the constant electric field E0 ~ 104 CGSE the characteristic value is 8M£ ~ 1CT2 sm. Therefore, for 
the experimental verification of the work [3] at the given value of the constant electric field (or at 
such value of the spontaneous polarization in the case of the ferroelectric) we can use the insulator 
layer with the thickness greater or of the order of magnitude 1 mm. 

While the thickness of the dielectric plate decreases, the «magnetoelectric» wave destroys. 
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Abstract 
Vector plane-wave superpositions defined by a given set of orthonormal scalar functions on 
a two- or three-dimensional manifold are treated. We present a technique for composing 
orthonormal electromagnetic beams in complex media and free space. New families of exact 
time-harmonic solutions of the homogeneous Maxwell equations in linear media (isotropic, 
chiral, anisotropic, and bianisotropic) and free space, which describe orthonormal electro- 
magnetic beams, are obtained. 

1. Introduction 

Properties of electromagnetic beams in composite and complex media (chiral, anisotropic, bian- 
isotropic) are still investigated insufficiently. In some practical cases, for example, in character- 
izing complex media by free space techniques, the plane-wave approximation of incident beams 
proves to be inadequate. As in the case of conic refraction in biaxial crystals, in investigating 
possible physical phenomena caused by anomalous propagation in homogeneous [1, 2, 3, 4] and 
helicoidally nonhomogeneous [5,6,7] bianisotropic media, the plane-wave model of the incident 
beam is also inadequate. The most commonly used Hermite-Gaussian and Laguerre-Gaussian 
beams are mere the approximate solutions of Maxwell's equations in free space. 

In Ref. [8], a novel technique for composing orthonormal electromagnetic beams and some 
other specific exact solutions of wave equations in linear media is suggested. By applying this 
technique, some new families of exact solutions of the homogeneous Maxwell equations for 
electromagnetic waves in isotropic media and free space are obtained in Refs. [8, 9, 10]. In this 
paper, we briefly outline the basic ideas of this technique and present its further applications. 

2. Beam Manifold, Beam Base, and Beam State 

Let (un) be a set of complex scalar functions un : Bu-^Cl on a real manifold Bu, satisfying the 
orthogonality conditions 

{um\un} = I   u*m{b)un{b)dB = 8mn, (1) 

where dB is the infinitesimal element of Bu; u^ is the complex conjugate function to um, Smn 

is the Kronecker ^-function. Let us consider a plane-wave superposition (termed below the 
"beam" for brevity sake) 

Wn(x)=       /   j~K(%n(b)u(b)W(b)dB 
JBu 

Jx-K(%n(b)v(b)W(b)dB, (2) L 
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where B C Bu—beam manifold—is a subset of Bu with nonvanishing values of function W = 
1/(6)W(6); x and K are the four-dimensional position and wave vectors. For electromagnetic 
waves, W can be any of the following quantities: the electric (magnetic) field vector E (B), the 
four-dimensional field tensor F, or the six-dimensional vector col(E,H). Functions K = K(6) 
and W = W(6) specify the set of plane harmonic waves involved in the beam (beam base), 
whereas a complex scalar function v = v{b) specifies the beam state. The function W„(x) is an 
exact solution of the linear field equations, provided that the integral in Eq. (2) exists. 

The fields treated in this paper are composed of plane waves with factorized vector ampli- 
tudes W(b)u{b)un(b)dB, where each of the factors plays a specific part in determining the field 
structure. The normalized vector factor W(6) prescribes the polarization of the infinitesimal 
plane wave, whereas the scalar factors specify the intensity and the phase as follows. The func- 
tion v = u(b) is used mainly to obtain a set of orthonormal beams or to change the beam state 
[8]. In some special cases, it simply reduces to a normalizing constant factor. In the general 
case, the infinitesimal element dB depends on 6, so that both un and dB act as weight functions 
defining the ratios in which plane waves with different propagation directions and polarization 
states are mixed in the beam Wn. However, the distinctive features of W„(x) as opposed to 
other beams are imprinted completely by the complex factor un = un(b). This factorization is 
equally convenient both to set a unique wave pattern for each beam and to obtain the whole 
family of beams with a prescribed general property such as the orthonormality. 

3. Time-Harmonic Orthonormal Beams 

There are four key elements defining the properties of the presented beams: the set of complex 
scalar functions un = un{b) on a real manifold Bu, the beam manifold B, the beam base functions 
K = K(6) and W = W(6), and the beam state function v = v(b). By setting these elements 
in various ways, one can compose a multitude of normalized and orthonormal beams with very 
interesting properties [8, 9]. In particular, these elements can be set [8, 9] in such a way as to 
satisfy the orthonormality condition smn = <Wm|Q|W„> = NQ6mn, where NQ is some given 
scalar coefficient. 

A time-harmonic beam of the form Wn [Eq. (2)] with a two-dimensional beam manifold B, 
propagating in a homogeneous linear medium, can be written as 

Wn(r,t) = e-™1 f eir^un(b)u(b)W(b)dB. (3) 

Let us introduce a scalar product 

smn = <Wm|Q|W„> = / W^Cr,t)QWn(r,t)da0, (4) 

where aQ is the plane with unit normal q, passing through the point r = 0, Q is some Hermitian 
operator, and WJ„(r, t) is the Hermitian conjugate of Wm(r, t). To compose orthonormal beams, 
it is convinient to set W = col(E,H), and 

(5) 

where qx is the antisymmetric tensor dual to q (qxE = q x E). For a time-harmonic field, the 
normal component Sg of the time average Poynting vector S can be written as Sq = q ■ S = 
WtQW. Therefore, the condition (Wn|<5|W„) = NQ is in fact the normalization to the beam 
energy flux NQ through the plane CTQ: 

<Wn|G|W„)= / V^o = iVQ. (6) 
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We assume here that the tangential component t(6) = k(6) — q[q • k(b)] of the wave vector 
k(6) is real for all b € B, and that the mapping b H->- t(fe) is one-one (injective). It can be shown [8], 
that the beams Wn become orthonormal, if B = Bu, and the function v(b) is given by 

9(6)Wt(6)QW(fe)' y) 

where J(b) = D(V)/D(£l) is the Jacobian determinant of the mapping 61—>-1(6), calculated in 
terms of the local coordinate systems (£*, i = 1,2) on ß and (#', j = 1,2) on the t-plane, 
preserving the orientation (J(b) > 0), and dB = g^d^d^2. The expression under the square 
root in Eq. (7) has to be finite and positive almost everywhere, i.e., for all b G B with the 
allowable exception of a set of measure zero in B. This condition can be met with appropriately 
chosen beam manifold B, operator Q, and normal q. In some cases, when B is a proper subset 
of Bu, i.e., B 7^ Bu, the whole set of beams Wn [Eq. (3)] can not be orthonormalized; instead, 
its subset may be orthonormalized. 

It is significant that the beam base functions K = K(6) and W = W(fe), the beam state 
function v = v(b), and the orthonormal functions un = un(b) are defined on the same manifold 
Bu. Therefore, the natural coordinates providing the coordinate representation of un, being used 
as integration variables, provide also the natural parametrization of the beams W„(x) [Eq. (2)] 
or Wn(r,i) [Eq. (3)]. In the case of beams defined by the spherical harmonics, treated in Refs. 
[8, 9, 10], Bu is a unit sphere. The polar angle 8 and the azimuthal angle ip compose the natural 
coordinate system on it. These coordinates may coincide [8, 9] or be closely connected [10] 
with the spherical coordinates of the propagation direction, but this is by no means always the 
case. In particular, to compose the similar beams in a biaxially anisotropic medium, it is more 
advantageous to relate 0 and (p with the biaxial coordinates [11]. These curvilinear coordinates 
yield the parametric representation of the wavevector surface, which makes possible to obviate 
the need for solving algebraic equations to describe this fourth order surface. They provide also 
a very convenient means for decription of field vectors of both eigenwaves and beams in biaxially 
anisotropic media. 

If the beam Wn (3) consists of homogeneous eigenwaves, i.e., k*(6) = k(6) for all b € 5, it 
may be of advantage to expand it into a series by using the Rayleigh formula 

+0O 1 

eikr = Air J2ilji{kr) £ lf*(fc)17»(p) , (8) 
1=0 m=-l 

where k = k//c, f = r/r, and Y™ are the spherical harmonics. Substituting the expansion (8) 
into Eq. (3), we obtain 

+0O I 

W(r, t) = e-*" £ il J2 ^(r)Wr(r) , (9) 
Z=0     m=-l 

where 

WP(r) = 4TT f ji(fe(&)0^m*(k(6))^(&)u(6)W(&)rfß . (10) 

Within the framework of this description, the beam is characterized by a set of radial vector 
functions Wf1 = Wf(r). In an isotropic medium (achiral or chiral), these relations become 

+0O I 

W(r, t) = e-*"* £ i'j,(fcr) £ Y,m(f)W}» , (11) 
1=0 m=-l 
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where the coordinate independent vector coefficients 

WT = 4TT f y,m*(k(6))i/(6)u(6)W(6)dß (12) 
JB 

completely characterize the beam. 

4. Conclusion 

New families of exact time-harmonic solutions of Maxwell's equations in homogeneous linear 
media (isotropic, chiral, anisotropic, and bianisotropic) and free space, which describe orthonor- 
mal electromagnetic beams, are obtained. Owing to the orthonormality conditions, these beams 
form convenient functional bases for more complex fields and provide a helpful technique for 
modelling the beams now in use and investigating their scattering and propagation in various 
media. The presented results form a basis for generalizing the wave-splitting technique devel- 
oped in [12,13] to the case of beams in plane-stratified media. They can be used for modelling of 
incident and scattered beams in investigating possible physical phenomena caused by anomalous 
propagation in homogeneous and helicoidally nonhomogeneous bianisotropic slabs. 

In the poster presentation, we illustrate the obtained solutions by calculated spatial distri- 
butions of energy density, time average Poynting's vector, and local polarization parameters for 
a number of beams in complex media and free space. 
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Abstract 

The presented exact solutions of homogeneous Maxwell's equations in complex media and 
free space describe fields having a rather involved curl structure and a very small—about 
several wave lengthes of composing plane waves—and clearly defined core region with max- 
imum intensity of field oscillations. In a given Lorentz frame L, a set of the obtained exact 
time-harmonic solutions of the free-space homogeneous Maxwell equations consists of three 
subsets—termed "storms", "whirls", and "tornadoes" for the sake of brevity—for which time 
average energy flux is identically zero at all points, azimuthal, and spiral, respectively. In 
any other Lorentz frame L', they will be observed as a kind of electromagnetic missiles mov- 
ing without dispersing at speed V < c. The solutions which describe finite-energy evolving 
electromagnetic storms, whirls, tornadoes are also presented. 

1. Introduction 

In the beginning of eighties, Brittingham [1] proposed the problem of searching for specific 
electromagnetic waves—focus wave modes—having a three-dimensional pulse structure, being 
nondispersive for all time, and moving at light velocity in straight lines. A number of packet- 
like solutions have been presented [1, 2, 3]. However, it seems [3, 4, 5], finite-energy focus wave 
modes can not exist without sources. In 1985, Wu introduced [5] a conception of electromagnetic 
missiles moving at light velocity and having a very slow rate of decrease with distance. Because 
of these properties, such missiles have important possible applications [5]. 

In Ref. [6], vector plane-wave superpositions defined by a given set of orthonormal scalar 
functions on a two-dimensional or three-dimensional manifold—beam manifold B—are treated. 
The proposed approach makes it possible to compose a set of orthonormal beams, normalized to 
either the energy flux through a given plane <r0 with unit normal q (beams with two-dimensional 
B) or to the total energy transmitted through this plane (beams with three-dimensional B), as 
well as some other specific exact solutions of wave equations such as three-dimensional standing 
waves, moving and evolving whirls. This approach can be applied to any linear field, such as 
electromagnetic waves in free space, isotropic, anisotropic, and bianisotropic media, elastic waves 
in isotropic and anisotropic media, sound waves, etc. By way of illustration, some specific families 
of exact solutions of the homogeneous Maxwell equations, describing localized electromagnetic 
fields in free space, are obtained in Refs. [6, 7, 8]. In this paper, we present some new types of 
such localized electromagnetic fields in complex media and free space. 
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2. Time-Harmonic Localized Fields Denned by the Spherical Harmonics 

In this paper, we treat time-harmonic electromagnetic fields in linear complex media or free 
space, defined by the spherical harmonics as 

W?(r, t) = e~lwt /    dtp /    e,r*<Wy/(0, tp)u(9, tp)W(9, tp) sin9d9, (1) 
J Jo J0i 

where W = col(E, B) specifies the polarization of the eigenwave with the wave vector k. To 
compose these beams, it is necessary first to calculate parameters of eigenwaves. The corre- 
sponding relations for electromagnetic waves in a general bianisotropic medium are presented in 
Ref. [6]. 

There are two main ways to set the beam base, i.e., to specify the functions k = k(0,<£>) 
and W = W(0, tp). One can set first the unit wave normals of these eigenwaves by a function 
k = k(0, tp). In particular, one can set the angular spectrum of plane waves by 

k = k/fc = sin 6'(ex cos tp + e% sin tp) + e3 cos 9, (2) 

where 9' = KQ9, and «o is some real parameter. Then, one has to calculate the refractive indices 
rij(9, tp) — nj(k(9, tp)) of all isonormal waves and, by choosing some branch rij(9, tp), to specify 
the wave vector function k(6) = (u/c)rij(9,tp)k(9,tp) and the amplitude function W(6,tp) = 
col('E(9,tp),'B(0,tp)) as well. The alternative is to set first the tangenial components of wave 
vectors by a real vector function t = t(9, tp). Then, the normal component £j(0, tp) = £j(t(0, tp)) 
of k(0, tp) = t(0, tp) + £j(9, <p)q is chosen from the roots of a quartic equation [6]. In addition to 
the parameters of eigenwaves themselves in the medium under study, there are three parameters 
defining the properties of the presented beams: 0i, 02, and «o- By setting these parameters in 
various ways, one can compose various localized fields with very interesting properties. Let us 
illustrate this on the case of localized fields in free space. 

In free space, the integral representations of the localized fields under consideration and the 
orthonormal beams, presented in Ref. [9], differ only by the values of the integration limits in 
Eq. (1). In both cases, there are beams with two independent polarization states—EM and EA 

beams. 
Let us consider time-harmonic fields Wj [Eq. (1)] with 9y = 0, 7r/2 < Ö2 < TT, and «o = 1, 

i.e., with 9' — 9. These fields are composed of plane waves propagating in a solid angle tt € 
[27T, 4TT]. For the sake of simplicity, we assume that the beam state function v — u(9, tp) reduces 
to a constant. A set of these exact time-harmonic solutions of the free-space homogeneous 
Maxwell equations consists of three subsets—termed "storms", "whirls", and "tornadoes" for 
brevity—for which time average energy flux is identically zero at all points, azimuthal, and 
spiral, respectively. 

Let us first set #2 = f • Then, the fields under consideration are composed from plane 
waves of all possible propagation directions, i.e., Q. = A-K. They are in effect three-dimensional 
standing waves with rather involved structures of interrelated electric and magnetic fields. Beams 
with s 7^ 0 are essentially electromagnetic whirls with azimuthal energy fluxes. For EA and BA 

electromagnetic storms, both of which are defined by the zonal spherical harmonics (s = 0), 
the time average Poynting vector S is vanishing at all points. The electric field vector E of EA 

storms has the only—azimuthal—component, whereas the azimuthal component of the magnetic 
field vector B is everywhere zero. The opposite situation occurs with BA storms. 

The spherical harmonics with s ^ 0 define electromagnetic whirls for which the time average 
Poynting vector S has the only nonvanishing—azimuthal—component. This component, as well 
as the energy densities we and wm of the electric E and magnetic B fields, is independent of 
the azimuthal angle rp. The whirls with j > s > 1 have two major domains—above and below 
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the equatorial plane—with large energy fluxes. The whirls, defined by the sectorial harmonics 
(j' = s > 1), have only one such domain, and the energy flux peaks in the equatorial plane. 

Let us now consider time-harmonic fields Wj [Eq. (1)] with $i = 0, 7r/2 < 02 < n, and 
«o = 1, i-e., with 0' = 0, and 2it < tt < Air. As before, we assume that the beam state function 
v = i/(0, (p) reduces to a constant. In this case, the field also is highly localized, but the normal 
and the radial components of time average Poynting's vector S are not vanishing. As a result, 
lines of energy flux become spiral, provided that s ^ 0. We refer to such specific localized 
fields with spiral energy fluxes as electromagnetic tornadoes. Their lines of energy flux closely 
resemble spirals, and as 02 tends to ir, the step of these spirals decreases. For the fields defined 
by the zonal spherical harmonics (s = 0), the lines of energy flux lie in meridional planes. 

3. Evolving Storms, Whirls, and Tornadoes 

Although, in many cases, the presented time-harmonic solutions may provide satisfactory models 
of real physical fields, more accurate models can be obtained by integrating these solutions 
with respect to frequency. In particular, some solutions which describe quasimonochromatic 
electromagnetic beams are obtained in Ref. [6]. 

Let us consider localized fields Wj(r,i) with three-dimensional beam manifold B$ = B x 
[w_,w+], related with Wj(r,t) [Eq. (1)] as 

1 tLJ-X. 

^'(r'i)==2Ä^l    WiM)dw' (3) 

where Aw = (w+ - w_)/2. In the case of quasimonochromatic beams, Au -C w. For the beams 
under consideration, the amplitude function W(0, tp) is frequency independent. If the beam 
state function z/(0, <p) also is frequency independent, or its frequency dependence is negligibly 
small, we have 

/■27T r$2 

Wj(r,t)=       e-*"*/    *p       eirk(^)y/(ö,^obo(r-k(ö,^)-o;t)] 
JQ J0i 

x 1/(0, <p)W(8, ip) sin 0d0, (4) 

where u = (u>+ + w_)/2 and po = Au/w. In free space, this field is composed of plane wave 
packets radially moving with the light velocity c. 

Therefore, the field under considerarion is essentially an evolving whirl in the neighbourhood 
of the point r = 0. It varies in intensity as different "peaks and valleys" reach the core region. 
At -TT/ALO < t < TT/AU), the main peak passes through this region, and the whirl reaches 
its absolute maximum intensity at t = 0. At this moment, its field structure is very close to 
the structure of the corresponding time-harmonic whirl. In particular, lines of energy flux are 
circular for both whirls. At -TT/AU < t < 0 and 0 < t < IT/Aw, the energy flux lines of the 
evolving whirls are convergent and divergent, respectively. 

On the whole, the evolution of the field can be described as follows. When t -)■ ±oo, the field 
tends to zero at all points r. Therefore, the solution Wj(r,t) [Eq. (4)] describes initiation and 
evolution of a whirl, which originates at the infinity at t = -oo as infinitely small converging 
wave propagating with the light velocity c. At t < -ir/Au), there is a very small converging 
wave with maximum peak at the distance r = -ct. During all this time, there is also a weak 
whirl in the neighbourhood of the point r = 0. It passes through maximums and minimums of 
activity, gradually gaining in intensity as t tends to zero. 

The total field can be described as the superposition of converging and expanding waves with 
ever changing proportion. At t > 0, the whirl, still passing through maximums and minimums 
of activity, gradually transforms into expanding wave, which vanishes in the infinity as t ->• +oo. 

It is significant that the evolving storms, whirls, and tornadoes have finite total energy. 
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4. Conclusion 

In this paper, new families of exact solutions of the homogeneous Maxwell equations in complex 
media and free space, obtained on the basis of angular-spectrum representations, are presented. 
These families of solutions specify three-dimensionally localized electromagnetic fields having a 
rather involved curl structure and a very small—about several wave lengthes of composing plane 
waves—and clearly defined core region with maximum intensity of field oscillations. Outside of 
the core, the intensity of oscillations rapidly decrease in all directions. In complex media, these 
fields provide a unique global description of the medium under study, which is supplementary 
to the eigenwave description. Whereas each eigenwave specifies the properties of the medium 
for one particular direction of propagation, the field value of a three-dimensional standing wave 
in any point is defined by all eigenwaves. Moreover, even in free space such waves possess 
very interesting properties. In a given Lorentz frame L, a set of obtained time-harmonic free- 
space solutions consists of three subsets — termed "storms", "whirls", and "tornadoes" for 
brevity sake — for which time average energy flux is identically zero at all points, azimuthal, 
and spiral, respectively. In any other Lorentz frame L', they will be observed as a kind of 
electromagnetic missiles moving without dispersing at speed V < c. Solutions which describe, 
in the frame L, finite-energy quasi-monochromatic evolving electromagnetic storms, whirls, 
tornadoes, and correspondingly, in the frame £/, various types of moving and evolving missiles, 
are also obtained. The intrinsic tensor technique in Minkowski space [10] provides a convenient 
means for investigating all these new types of waves. Their properties are illustrated in graphic 
form. 

References 
[1] J. N. Brittingham, "Focus waves modes in homogeneous Maxwell's equations: Transverse electric 

mode," J. Appl. Phys., vol. 54, no. 3, pp. 1179-1189, March 1983. 
[2] R. W. Ziolkowski, "Exact solutions of the wave equation with complex source locations," J. Math. 

Phys., vol. 26, no.4, pp. 861-863, April 1985. 
[3] A. Sezginer, "A general formulation of focus wave modes," J. Appl. Phys., vol. 57, no. 3, pp. 678-683, 

February 1985. 
[4] T. T. Wu and R. W. P. King, "Comment on "Focus waves modes in homogeneous Maxwell's equa- 

tions: Transverse electric mode",", J. Appl. Phys., vol. 56, no. 9, pp. 2587-2588, November 1984. 
5] T. T. Wu, "Electromagnetic missiles," J. Appl. Phys., vol. 57, no. 7, pp. 2370-2373, April 1985. 
6   G. N. Borzdov, "Plane-wave superpositions defined by orthonormal scalar functions on two- and 

three-dimensional manifolds," Phys. Rev. E, vol.61, no. 4, pp. 4462-4478, April 2000. 
[7] G. N. Borzdov, "New types of electromagnetic beams in complex media and free space," in Abstracts 

of Millennium Conference on Antennas & Propagation AP2000, Davos, Switzerland, April 2000, Vol. 
II - Propagation, p.  228. 

[8] G. N. Borzdov, "Electromagnetic beams defined by the spherical harmonics with applications to 
characterizing complex media," in Abstracts of Millennium Conference on Antennas & Propagation 
AP2000, Davos, Switzerland, April 2000, Vol. II - Propagation, p.  229. 

[9] G. N. Borzdov, "The application of orthonormal electromagnetic beams to characterizing complex 
media", this issue. 

[10] G. N. Borzdov, "An intrinsic tensor technique in Minkowski space with applications to boundary 
value problems," J. Math. Phys., vol. 34, no. 7, pp. 3162-3196, July 1993. 



63 

Point Sources of Magnetoelectric Fields 

E.O. Kamenetskii 

Department of Electrical Engineering - Physical Electronics 
Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel 
Fax: +972-3-6423508; e-mail: kmnsk@eng.tau.ac.il 

Abstract 

In this paper, we show that the unified quasistatic magnetoelectric fields (QME fields) origi- 
nated by point sources - the quasistatic magnetoelectric particles (QME particles) - can exist 
when symmetry properties of these fields are distinguished from that of the electromagnetic 
fields. The physical ground for QME particles can be found in small ferromagnetic resonators 
where short-wavelength (so-called magnetostatic) oscillations take place. The question about 
QME particles and fields arises in such a topical subject as artificial bianisotropic materials. 

1. Introduction 

The question about coupling of electric and magnetic polarizations arises in problems of artificial 
chiral and bianisotropic media [1,2]. It is supposed that there exists a possibility to describe 
properties of media with intrinsic coupling between the electric and magnetic polarizations by 
phenomenological constitutive relations with further use these constitutive relations in Maxwell's 
equations. Fundamental contradictions in such an approach can be perceived, however. Some of 
these contradictions concerning nonlocal properties of bianisotropic composites based on small 
helices and so-called omega-particles, we have recently discussed [3-5]. Is it possible to have arti- 
ficial bianisotropic media with local properties? One can suppose that these composite materials 
should be based on point bianisotropic (magnetoelectric) particles that can be considered, by a 
simple model, as small coupled electric and magnetic dipoles. However, the question suggests 
itself: Can one consider (classical electrodynamically) two small, i.e. quasistatic (with sizes 
much less than the electromagnetic wavelength) coupled electric and magnetic dipoles as point 
sources of the electromagnetic field! To answer this question, the following aspects should be 
taken into account: (a) neither Lorentz nor Coulomb gauges [6] can be used to describe the 
fields of such particles and (b) mechanical interaction between two such particles cannot be de- 
scribed by the Lorentz force since potential energy of every particle is characterized not only by 
electric and magnetic energies, but also by energy of internal coupling between the electric and 
magnetic dipoles. Based on these aspects and also taking into account the fact that in a small 
region (much less than the electromagnetic wavelength) of sourceless free space a character of 
the unified field is physically undefined by the Maxwell equations, we should come to conclusion 
that the unified quasistatic magnetoelectric fields (QME fields) originated by point sources - the 
quasistatic magnetoelectric particles (QME particles) - can exist when symmetry properties of 
these fields are distinguished from that of the electromagnetic fields. 

The physical ground for QME particles can, in particular, be found in small ferromagnetic 
resonant specimens where short-wavelength (so-called magnetostatic) oscillations take place [7]. 
In a case of small normally magnetized ferrite disks placed into a region of the uniform rf 
magnetic field, a long series of oscillating magnetostatic modes were observed experimentally 
[8,9]. Recently, we have shown that these oscillations can be characterized by a discrete spectrum 
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of energy levels [10]. The QME particles one can realize based on ferrite resonators with special- 
form surface electrodes. In this case, magnetostatic oscillations in a ferrite body are accompanied 
with short-wavelength surface-electric-charge oscillations on a metallic electrode [3,11]. Recently, 
the first experimental evidence for this magnetoelectric coupling in small ferrite resonators with 
special-form surface electrodes has been obtained [12,13]. 

2. Symmetry Properties of Ferrite QME Particles 

Based on a semi-classical model, one can illustrate some symmetry properties of ferrite QME 
particles. These particles can conventionally be described as a pair of two coupled dipoles: an 

electric dipole with moment pe and a magnetic dipole with moment pm. These two dipoles are 

mutually perpendicular and the bias magnetic field H0 is oriented perpendicular to the_plane 

of pe, p™ vectors. So, one has a triple of mutually perpendicular vectors: pe, pm and H0. As 
we discussed in [5], the PT invariance (the time-reversal operation T combined with the parity 

—► —> —> 

P) does not hold in this model of one polar (pe) and two axial {pm and H0) vectors. But, the 

CPT invariance (when the charge conjugation C changes the sign of vector pe) takes place. 
It should be clearly understood that in this our semi-classical model of a QME particle, the 

charge conjugation C does not mean interconversion of electrons and positions in the magnetic 
processes (of the atomic scales) in a ferrite. As an important fact, it is discussed in this paper 
that the problem of the charge conjugation has to be considered in connection with the sign of 
energy eigenstates of oscillations in a QME particle. To clarify the problem, we should analyze 
the "microscopic properties" of magnetostatic oscillations in ferrite QME particles. 

3. Energy Eigenstates Magnetostatic Oscillations 

The average magnetostatic energy of magnetostatic oscillations in a "pure" (without surface 
metallic electrodes) normally magnetized ferrite disk, having a small ratio of thickness h to 
radius a can be described as [10]: 

=   yw 'r  —f ° 
4 

s 

h 

ds (1) 
h 

where ip is the magnetostatic potential, X^ and X(F) are coefficients characterizing wave 
processes, respectively, in dielectric V (z < 0, z > h) and ferrite F (0 < z < h) regions. 
Coefficients X are found from the equations 

written for every region. Here vjj is a longitudinal part of Laplace operator. 
We suppose that in a ferrite disk resonator, magnetostatic potential V> can be represented as 

[10] 
^ = J2 AV1 £P (*) ^9 01' a) (3) 

P.9 

For "in-plane" resonant mode (pq (and p "thickness" mode), one has an operator equation 
for normalized energy of magnetosttic oscillations [10] 

F±<Pg   =  Epgifig (4) 
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Differential operator F± is defined as 

^ = 9^1 (5) 

where vi is two-dimensional ("in-plane") Laplace operator, g is unit dimensional co-efficient. 
The property of energy orthonormality for magnetostatic oscillations is described as 

(Epg - Epg,) J <pq(pq,ds = 0 (6) 
Q 

where Q is a square of "in-plane" cross section of an open ferrite disk including radius regions 
QF(P < a) and Qt>{a < p < oo). 

4. Effect of the External Fields 

We can write the Hamiltonian taking into account an interaction of the magnetoelectric par- 
ticle with the exciting electric e and magnetic U fields. For a disk with unit thickness, the 
Hamiltonian has a form [14] 

H = F± + F'± + -~fpe +Vpe~e (7) 

where V is a constant that can be positive or negative, F'± is the term of extra energy of the 
particle due to the external magnetic field. 

Operator F'± can be written as 

F'± =n m± (8) 

Here m± is the operator of the "in-plane" alternative magnetization. Operators F± and mx do 
not commute one with another. For a ferrite disk resonator placed in a tangential rf magnetic 
field, we have energy perturbations similar to those one has for atom placed in an external 
electric field (the Stark effect) [15]: the second-order effect of a split of energy levels in the 
external rf magnetic field. The energy split AEn of energy level En is proportional to 

AEn ~ a^Hi-Hj (9) 

where afi> is the tensor of magnetic polarization ("in-plane") of a ferrite disk. For every energy 
level, an average magnetic moment of a ferrite disk is 

(pm)i = onjUj (10) 

Unlike the average magnetic moment, electric moments of a ferrite disk are not equal to 
zero in oscillation eigenstates. An interaction between the external rf electric field and a ferrite 
disk is similar to an interaction between the electrically neutral particles (neutron, atom) with 
("magnetic") spin and external alternative magnetic field [15]. 

The particle can have potential energy in the external electric ~e field. Similarly, the particle 
can possess potential energy in the external magnetic U field. At the same time, because 
of the effect of internal magnetoelectric coupling, the particle should have potential energy 
in the combined e + U field. The structure of this combined external t + % field is not 
just a superposition of the e and U fields. It is clear that the ~e and U components of 
this (combined) field should be in a certain phase correlating to provide a maximum of potential 
energy. Because of this correlation we have to talk about the unified- quasistatic magnetoelectric 
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(QME) - field. If we suppose that potential energy due to the effect of magnetoelectric coupling 

is a small part of summarized potential energy that a particle has in separated e and % field, 
the total potential energy Etotai can be represented as a sum of three components: 

Etotai=Ee + En + E', (11) 

where Ee is the potential energy of a particle due to external electric field, E% is the potential 
energy of a particle due to external magnetic field, and E' is the potential energy due to a 

combined effect of action of two ( e   and H) fields 

Conclusion 

Based on "microscopic properties" of magnetostatic oscillations in ferrite disk resonators, we 
have shown, in this paper, that such resonators can be considered as QME particles: the point 
sources of unified QME fields. The symmetry properties of these fields are distinguished from 
that of the electromagnetic fields. 

Magnetostatic oscillations in a ferrite disk resonator can be characterized by eigen angular 
momentum of magnetostaic oscillations with the so-called "electric spin" and the eigen electric 
moment. Similarly to neutrino (where spin is not separated from orbit moment), in our case, 
"electric spin" is also not separated from the angular momentum operator. 

References 
A. Lakhtakia, "Beltrami Fields in Chiral Media". Singapore: World Scientific 1994. 
I.V. Lindell, A.H. Sihvola, S.A. Tretyakov and A.J. Viitanen, Electromagnetic Waves in Chiral and 
Bi-Isotropic Media. Boston: Artech House, 1994. 
E.O. Kamenetskii, Phys. Rev. E„ vol. 57, p. 3563, 1998. 
E.O. Kamenetskii, Phys. Rev. E„ vol. 58, p. 7965, 1998. 
E.O. Kamenetskii, Microw. Opt. Technol. Lett., vol. 19 vol. 6, p. 412, 1998. 
J.D. Jackson, "Classical Electrodynamics", New York: Wiley, 1975. 
A.G. Gurevich and G.A. Melkov, Magnetic Oscillations and Waves. New York: CRC Press, 1996. 
J.F. Dillon, J. Appl. Phys., vol. 31, p. 1605, 1960. 
T. Yukawa and K. Abe, J. Appl. Phys., vol. 45, p. 3146, 1974. 
E.O. Kamenetskii, Phys. Rev. E., submitted. 
E.O. Kamenetskii, Microw. Opt. Technol. Lett., vol. 11, no. 2, p. 103, 1996. 
E.O. Kamenetskii, I. Awai and A.K. Saha, "Proceedings of the 29th European Microwave Confer- 
ence", in Microwave Engineering Europe, Munich, Germany, 1999, pp. 40-43. 
E.O. Kamenetskii, I. Awai and A.K. Saha, Microw. Opt. Technol. Lett., vol. 24, no. 1, p. 56, 2000. 
E.O. Kamemetskii. Phys. Rev. E., submitted. 
L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory. Oxford: Pergamon 
1977. 



67 

Quasistatic Magnetoelectric Particles: Experimental 
Investigation at Microwave Frequencies 

A. K. Saha1. E. O. Kamenetskii2, and I. Awai1 

1 Department of Electrical & Electronic Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube Shi 
755-8611, Japan, email: saha@emlab.eee.yamaguchi-u.ac.jp 

2 Department of Electrical Engineering-Physical Electronics, Tel-Aviv University 
Tel-Aviv-269978, Israel; email: kmntsk@eng.tau.ac.il 

Abstract 

The theoretical aspects of electrodynamics of bianisotropic media raised in recent publications 
may be considered as interesting as such but not very relevant as long as experimental validation, 
or at least some proof of principle is missing. New particulate bianisotropic composites - the 
magnetostatically controlled bianisotropic materials (MCBMs) - have been recently conceptualised. 
Recently, an experimental evidence for the magnetoelectric (ME) coupling in small straight-edge 
ferrite resonators with different -form surface metallizations has been observed experimentally. As 
the further extension of these investigations, experimental results of ME coupling in disk-type 
ferrite resonators are reported in this paper. 

1. Introduction 

New particulate bianisotropic composites based on ferrite ME particles - the MCBMs - have been 
recently conceptualised [1-2]. Different types of ferrite ME particles can be realized with the use of 
different forms of ferromagnetic resonant bodies and surface metallic electrodes. One of the main 
features of the YIG-film resonators is a very rich spectrum of magnetostatic (MS) oscillations. The 
straight-edge ferrite resonators have evident technological advantage in cutting as compared to the 
disk-form samples. At the same time, disk-form resonators have regular (with respect to magnitude 
and mutual spacing) spectrums of MS oscillations [3-4], when the spectrums of straight-edge samples 
are irregular [5]. In our previous experiments [6-8] with ME particles, based on straight-edge YIG- 
film resonators with different types of surface electrodes, we observed strong ME coupling. But 
characterization of the observed spectrums and an analysis of correlation between the MS and ME 
spectrums were hampered because of irregularity of pictures of MS oscillations in a straight-edge 
ferrite body. In this paper we show new experimental results of ME spectrums in disk-form ME 
particles with different types of surface metallic electrodes. Certain characterizations of the observed 
spectrums and important conclusions are made. 

2. Experiment 

A general view of a ferrite quasistatic ME particle is shown in 
Fig.l. We used a disk form (diameter = 5mm, thickness = surface metallization 
0.1mm) YIG film (47tMs = 1780 Gauss) resonator with two 
different types of surface metallic electrode. These two types 
of surface metallizations (one- dimensional, or wire-form and 
two-dimensional, elliptical form) are shown in Fig.2. ME 
particles were placed in different positions of a rectangular f 
cavity (Fig.3), resonant in TEioi  mode at 4.02 GHz. We ferromagnetic film 
observed    rich    spectrums    of   absorptions    peaks.    The     Fig.l Suggested quasistatic ME particle 
experimental results with a wire type surface metallization are 
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• 

Fig.2  Two forms of surface metallizations 
(a) wire and (b) elliptical 

shown in Fig. 4 and those with 
elliptical one are shown in Fig. 5. 
Position of the sample, type of 
metallization and orientation with 
respect to the y-axis (or, in other 
words, with respect to the £-field) 
are described in each figure. 
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Fig. 3 Experimental arrangement showing the 
positions of the ME particle in the cavity, (a) 
rough sketch, (b) top view 
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Fig. 4 Absorption spectrum of disk type YIG resonator with wire (length = 4mm and diameter= 0.1mm) type 
surface metallization. 
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Fig. 5 Absorption spectrum of disk type YIG resonator with elliptic (major axis = 4mm and minor axis = 2mm) 
type surface metallization. 

It is seen that zero levels of the absorption spectrums are different in each picture of Figs. 4 and 5. 
This is attributed to the fact of variation of the type and orientation of surface electrodes with respect 
to the Zi-field as well as positions of the ME particles in the cavity. 

3. Discussion and Conclusion 

A detailed analysis of absorption spectrums obtained for different types of ME particles and different 
types of the exciting fields leads us to a very important conclusion that only for ME particles based on 
disk-form ferrite resonators with wire-form surface electrodes, one has a spectrum of the unified ME 
oscillating modes. Since different types of the exciting fields produce the same oscillation spectrum, a 
system is characterized by a set of parameters with certain spectral properties. This fact gives us a 
possibility to represent a disk + wire ME particle as a particle characterized by two (electric and 
magnetic) moments and so find it as a particle most applicable for bianisotropic composites. 
Compared to a case of a wire-form metallization, where only linear surface electric currents are 
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possible, in two-dimensional metallizations different distributions of linear and circular (closed-loop) 
surface electric currents are possible. This fact gives different pictures of spectrums excited by the 
different-type external fields, as we can see in our experiment. 
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Abstract 

Among problems of modern optics the elaboration of the methods of formation and 
control by the space structure of light beams is of great importance. In the papers [1,2] it 
has been shown that the nonlens focusing and nondiffractional propagation of light, 
stipulated by the presence of concavity of wave vector surface, are possible near by 
optical axes of biaxial gyrotropic crystals. The application of external electric field leads 
to strengthening of concavity and then, increasing of focusing effect for slow waves near 
binomials [3]. But conducted consideration was limited by the case of the most 
symmetrical biaxial crystal, namely, orthorhombic one. At the same time many widely 
used gyrotropic biaxial crystals have lower symmetry. For example, their symmetry is of 
2 or m class. Its description is very complex, but at the same time is of essential interest 
in the connection with enlargement of possibilities of controlling by parameters of 
optical radiation. 
It is known that the big electrooptic effect takes place in ferroelectrics which have 
orientational spontaneous polarization in definite temperature range in the absence of 
external electric field. Characteristic peculiarity of given media is strong temperature 
dependence of optical and electrooptic properties which may be used for control by the 
focusing of optical radiation. 
The aim of the paper is investigation of influence of electric and temperature fields on 
focusing properties of the lens created on the base of lower symmetrical ferroelectric 
crystal of 2 class. 

1.   Introduction 

In this paper we analyze the peculiarities of wave vector surface near binormal of biaxial 
gyrotropic crystal of 2 class symmetry. It has been shown that the presence of gyrotropy leads to 
appearance of concavity on the wave vector surface for slow light wave and, hence, to possibility of 
focusing. It has been founded the conditions for this phenomenon. It has been analyzed the influence 
of temperature and electric field near Curie point on light beam focusing in ferroelectric crystals. It 
has been grounded that electrooptic interaction in ferroelectric lower symmetrical biaxial crystals may 
be used for creation of electro- and thermocontrolled crystalline lenses for which one can achieve 
slow thermochanges of focus length in wide range and fast changes of it by electric field. If the 
temperature is near Curie point the range of changes of focus length increases abruptly, but the 
aperture of proposed lenses decreases. By this, it is necessary to thermocontrol of crystalline model. 
Thus, while creating such elements you must conduct parameter optimization. 
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2.   Peculiarities  of Structure  of Wave Vector Surface of Monoclinic 
Crystal near by Optical Axes 

It is known [4] that the field of light radiation in the crystal in general case may be presented in the 
form: 

E(r,i) = {(2K)'
2
 f A(g)_aexp i[(r-Ut)a--Wg£t]}x exp i(k0 r-(00t), (1) 

Here E is the electric vector, A are amplitudes, a are polarization vector, g_ = k - &0; 6*> and ko are 
correspondent^ frequency and wave vector of "central" wave of the beam; U = das/dk is group 

velocity; W= ^^/dk 3£ is tensor of divergence of the group velocity which is connected with tensor 

of divergence of the wave vector surface. In the result of analysis of expression (1) it may be obtained 
that divergence of arbitrary light beam in the crystal is determined by eigenvalues of W tensor, 
namely: if Wa > 0, then, collimated beam in the medium is defocusing; if Wa < 0 it is focusing; by 
Wa = 0 it takes place nondiffractional propagation of radiation[4]. 

Let us consider the structure of wave vector surface in the case of propagation of light beams 
in the crystal of 2 class symmetry. For this let us analyze characteristic equation [5] 

det L = 0, (2) 

where 

Lk = (cc/c)2Sie+ rim(ame+ iSmj,Gj) 

with rim = kikm - k
2Sim and where G} = ^ gjm km is gyration vector [6]; gjm is gyration tensor ; n is 

A. 

wave normal; X is light wavelength; Sie, 8imn are Kroneker' and Levi- Chivita' symbols; amt is tensor of 
dielectric nonpermeability. Differentiating of characteristic equation (2) by components of wave 
vector k_one may be obtained for the case of correct coincidence of beam's axis with optical axis: 

Wm = (V2/co)p±q
2. (3) 

Here 

p± = (n2/2)[a, + a2±a2/GJ, (4) 

with 

fl3.i ={an+a33±A1/2}/2, (5a) 

a2 = Ö22, (5b) 

A = [an-fl33]2 + 4fli32, (5c) 

a0 = [(a2-a3)(a3-aj))m, (5d) 
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where n2 = V2/c2 = a3 ± G ; n0 and V are correspondently refraction index and phase velocity of light 
wave in the direction of optical axis in gyrotropic crystal of 2 class symmetry; G is projection of 
gyration vector on optical axis; q.=.q\ + q2

2. By this we consider that a2 > a^ > ax and plane of 
optical axes coincidences with (XiX2) crystallographic one. How it is evident, tensor W in the 
direction of optical axis has two equal eigenvalues: Wu = W33 = W±= (V2/co) p± . 

By influence of external electric field along ferroelectric axis X2 dielectric constants are 
changed: 

au(E) = a(i + rl2E (6a) 

a]3(E) = a13 + r52E, (6b) 

where r{j are linear electrooptic coefficients. By this wave vector surface has deformation. Let's 
consider that the influence of external electric field is weak. By this, eigenvalues of tensor of 
derivative of group velocity may be determined from (3) by following changes: a,y —» ai}{E), A 
—)A(E). Then, how it follows from (3), by the case 

a](E) + a2(E) < a0(E)2/G, (7) 

eigenvalues of W tensor for slow waves are negative and, hence, in conformity with (1) focusing of 
slow light wave takes place. In conformity with [7-9] parameters of anisotropy and gyrotropy near 
Curie temperature in ferroelectric phase of crystal have essential temperature dependence. But correct 
analytical analysis of wave surface deformation by simultaneous influence of electric and temperature 
field near point of phase transition has essential difficulties. Let us estimate the focusing properties of 
ferroelectric crystals on the base of experimental data about physical constants of widely used crystal 
NaN02, for example, near Curie temperature. 

How it follows from (3), decreasing of gyrotropy parameter G near Curie point Tc leads to 
strenthening of concavity of the wave vector surface for slow waves. Calculation that coefficient of 
thermostrenthening of concavity of wave vector surface r = p.(T) / p.(Tn) , where Tn = 20 °, for 
NaN02 by T=140° achieves 1.3. Considered peculiarities of electrooptic interaction in lower 
symmetrical ferroelectric crystals may be used for creating of crystalline lenses. If divergent Gaussian 
beam falls into the crystal, in accordance with results of [2], the beam is focusing twice: into and out 
of the crystal on the distance Fj = -Z^Jp. and F2 = -(Z, + LpJn0) from its entrance correspondently. 
Here Z, is distance from the weak point of entrance beam to crystal with the L length. Then, changes 
of focus length by variation of p. are determined by correlations F, = ZjnAp/p2, F2 = LApn/n and 
near Curie temperature may be great. For example, for NaN02 crystal F2 -89 cm by change of 
temperature from Tn = 20° to T=140° and L=l cm. 

3.   Conclusions 

In this paper, it is shown that electrooptic interaction in ferroelectric lower symmetrical biaxial 
crystals may be used for creation of electro- and thermocontrolled crystalline lenses for which one can 
achieve slow thermochanges of focus length in wide range and fast changes of it by electric field. If 
the temperature is near Curie point the range of changes of focus length increases abruptly, but the 
aperture of proposed lenses decreases. By this, it is necessary to thermocontrol of crystalline model. 
Thus, while creating such elements you must conduct parameter optimization. 
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Abstract 

The influence of a dynamic magnetoelectric interaction on TE and TM polaritons in a 
ferrimagnet in IR region of the spectrum has been considered. Frequency dispersions of 
dielectric and magnetic tensors were taken into account. Spontaneous magnetization 
induces an electric gyrotropy in a ferrimagnet and the additional radiant TM mode. In the 
presence of a constant electric field the possibility of a resonant interaction and 
transformation of the TM polaritons into the TE one and vice versa was predicted. 

1. Introduction 

In a magnet with more than one magnetic sublattice the exchange spin mode may be in the same IR 
region of the spectrum where there is an optical phonon mode. In this case it is necessary to take into 
account the frequency dispersions of dielectric and magnetic tensors simultaneousely. This situation 
was considered for polaritons in the cases when resonant (antiresonant) frequencies of dielectric and 
magnetic tensors are equal [1]. The appearance of the anomalous dispersion in the polariton spectrum 
was predicted. 

We have considered the TE and the TM polaritons in a ferrimagnet in IR region of the spectrum in 
the cases of the different relations between the resonant and antiresonant frequencies of dielectric and 
magnetic tensors. The influence of a dynamic magnetoelectric (ME) interaction on TE and TM 
polaritons in a ferrimagnet was analyzed. 

2. Energy and susceptibilities 

For the example we consider a uniaxial ferrimagnet (z is an easy axis) with equilibrium antiparallel 
magnetic moments M10, M20 directed along z-axis, MW>M20. The density of the energy consists of 
a magnetic energy, electric dipole energy and the ME energy: 

W = A(MlM2)-h(Ml+M2)+^-P^+^(P^+P^-P(E0+e)+—U2+—P[flxB]     (1) 
2 2 2p cp 

where P is the electric polarization, fl is the momentum density, E0 is a constant electric field, e 

and h are alternating electric and magnetic fields; p = m/V0, mis the ion mass, V0 is the volume of 
elementary cell; c is the velocity of light. Magnetic energy (two first terms) is written in exchange 
approximation, A >0 is the exchange constant. The last term in (1) is the dynamic ME energy [2] .It is 
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the energy of the interaction of P with an effective electric field Eef =-(l/c)[vxß] produced by the 

motion of charge e with velocity v in the media with magnetic induction B = h + 4n(Mx + M2). 

In the presence of a spontaneous magnetic moment m = Ml0-M20 the ME interaction induces 

the nondiagonal component of a dielectric tensor e^ and the precession of polarization around the 

direction of magnetic field. We obtain: 

(n?-co2)(ß?-co2) _ . . 
£«=£    =ei=-^ 2^-f 2-,    (x>h2=wt+(Qm,(öm=4ngm0,g = e/mc, 

' (cof -ar)(co2-cr) 

e   = ie' = <87taxom(^2 

^ (W2-(02)(CO^-CD2) 

n2 -co2 

£„=£,=—! -,     ß2=C02+4KC02 

co^-coz 

with 

£22
2 = CO2 + 2TCC0<2 + CO2 + 2^712C0Q + CO2 (CO2 + 2TCC0,2) 

co,2 = C2öö(
2,co2 sCjCÖo.fflo =e2/mV0 

Here coeis the excitation frequency of Pz, and cofis the excitation frequency of the Px,Py'm the 

absence of a spontaneous magnetization. In ER region of the spectrum the expressions for the 
components of a magnetic tensor are following 

ßo-co2 

\Lxx=\Lyy=V- = -Z 2 
COQ - (O 

,_mf{Q.2-<ü2) 

co(coo-co2) 
»*y=v'=    '   ,      ,, (3) 

with 
Q.l=(ül+4%AMl0M20(gl-g2)

2,(ü0=A(g2Ml0-glM20) 

Q2 =47tAg1g2m2co0co}1,co/47t(g]M10 -g2M20) 

where co0is the exchange frequency, gi2is the gyromagnetic relations for electron magnetic 

moments. The gyromagnetic relation for ion g«g\,2. We consider the exchange constant A»l. 

Thus,     we    have    that     com«co f«co0 ~ co,.     The    relations     E'/EJ     ~    47ccom/co, «1, 

\\3i'l\X,\~(Üfl(ÜQ ~47l/A«l. 

In the presence of a constant electric field E0 directed along *-axis the ME susceptibilities X^1 

and Xe™«Xe™ appear, where 
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3.   Phonon and magnon polaritons 

We solve the Maxwell equations for the ferrimagnet with the dielectric, magnetic and ME tensors (2- 
4) for waves propagating in the direction of the jc-axis (k = kx) 

In the absence of a constant electric field (Xem = 0) the TE and TM polaritons are independent. 

In TM polariton wave     ex,eym& hz are not zero. The spectrum is described by the relation 

(see Fig. 1) 

k 2 = coV2 (co2 - co2 )(co2 - G)j )(co2 - Qj2 )_1 (co2 - Qj) 

CÖj 2 = H, + com, ß2 = CO2 + 47TÜÖ(2 

The frequencies a>2, ß2, ®i are closed one to another because (5>2 -^2) ~ (^2 ~^>i) ~ ^m • &1 

the absence of a magnetization cö2 = c&i = ß2 
and there are two modes of TM polaritons. Thus, the 

ME interaction adds the new mode. This mode is a radiant one because of the possibility of a 
resonance interaction of this mode with the electromagnetic mode co = ck (see Fig. 1). 

In the TE polariton wave, hx,hy and ezare not zero. The dispersion relation is 

*2=coV2e2|!-V-^2) (6) 

The spectrum consists of the three modes, which are similar to the shown one in figure 1. But these 
modes are not closed one to another. The value of the wave vector   k = 0   if  co = fle   and 

(H=(o = Cl0+(of(2Q.0) (Q. -ß0) = Q0. The wave vector &->«> if co-Q.0 and co =coe. The view 

of the polariton spectrum is the same as one in figure 1 but the disposition of the frequencies on the 
axis depends on the values of coe, Q.e, co0 and Q0. In the case when the phonon frequency (oe is in 

the interval [C00, Q.0] the middle mode is the mode with anomaly dispersion. It exist in the interval 

[cö,ß0]. So Q.Q -co0 ~ ay in this case coe = co0 . 

4.   Resonance of TE and TM polaritons 

So the TM and TE modes belong to IR region of the spectrum the possibility of their crossover exists. 
For example, the intersection of the middle mode of the TE (TM) polaritons with another TM (TE) 
modes is possible. The exchange magnon frequency is often less than the mode of an optical phonon. 
Besides in a uniaxial crystal the value of co, is more than the value of coe. Then in the case when 

Q0<coe<co1 the crossover of the lower TM mode (Fig.l) with the middle TE mode is possible (the 
dashed curves in Fig. 2). Without a constant electric field the TE and TM modes do not interact. 

In the presence of electric field E0 directed along the magnetization the interaction between the 
TE and TM polaritons appear due to the ME susceptibility (4). In the TM polaritons the fields 
hx, hy,ez appear which are proportional to the small ME constant y. So, we have 
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YteV + l^-v2)]^)-1 

e2(l^ -LI'2)-LW2 
h7,   \ = ckl(ü (7) 

In the TE polariton excitations the weak fields ex,ey,hz are induced by electric field. These additional 

fields are small far from the resonance of the modes. The resonance frequency (üR is determined by 
the equation 

£1e2n(ix2-ix'2) = e2-e'2 (8) 

Near the crossover the values of the additional fields in the modes increase (the dominator in (7) 
becomes a small) and the resonance interaction between the TE and TM polaritons takes place (Fig. 
2). Thus, the resonance transformation of the TE(TM) polaritons into the TM (TE) one may be 
realized in the constant electric field. 
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Abstract 

Effects of charge-carrier drift on the electroacoustic interactions in piezoelectric semicon- 
ductors with spatial dispersion and induced chiral properties is studied. The wave numbers 
and ellipticities of eigenmodes of acoustic waves are found and effects of charge-carrier drift 
are investigated. Boundary-value problem for a slab under rotating electric field influence is 
solved. 

1. Introduction 

In the literature, electroacoustic interactions in media having dielectric and conducting proper- 
ties are well known. A possibility to control acoustic wave polarization by electric field inducing 
artificial spiral anisotropy was shown by Belyi and Sevruk [1]. The availability of charge carri- 
ers in semiconductors allows to influence on the character of interaction of acoustic waves with 
external electric fields. Charge carriers interact with the electric field of waves in crystal. The 
character of interaction can be changed by external constant electric field with strength E'. 
Under the action of this field, the electrons in a crystal start moving. Their averaged motion is 
described as electron drift with the velocity v0 = — fxE', where /x is the electron mobility in the 
crystal. The objective of this study is to take into account a complex of various effects, i.e., the 
charge-carrier drift influence on the electroacoustic interaction in piezoelectric semiconductors 
with induced chiral properties and spatial dispersion. Below, we report the results of the study 
of electroacoustic interactions in piezoelectric semiconductors with spatial dispersion in rotating 
electric fields with due regard for the charge-carrier drift influence. 

2. Theory and Discussion 

Rotating bias electric field can be created by the electrodes which are placed on the wall of a 
waveguide [2]. The phase shift between the fields in electrode pairs is determined by the number 
of electrodes, and for the case two pairs of electrodes is |. We assume that the electric field 
rotates around the x axis and the incident wave propagates also along the same x axis. In 
practice, the change of the elastic constant of media under external electric field influence can 
reach 10 per cent. Acoustic properties of a semiconductor crystal (without a center of symmetry) 
which is placed into a rotating electric field can be described by the following constitutive 
relations taking into account spatial dispersion and piezoelectric effect [2]: 

a = cry + b-^- + gE0e0eE,      D = e0eE - e0egF,Qj. (1) 
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Here a, 7, c, and b are tensors of tensions, deformations, elastic constants and acoustic gyration, 
respectively (scalar multiplication of tensors is implied), g is a tensor of rank four, gB0 is tensor 
of rank three, taking into account piezoelectric effect induced by the rotating electric field, e0 is 
the electric constant, e is the relative permittivity of the medium. Electric field of propagating 
wave E consists of two components: 

E = Ex + E', (2) 

where Ei is the longitudinal electric field created by piezoelectric effect, and E' is the external 
constant longitudinal electric field. E0 is the strength vector of the rotating electric field. The 
equation for the current density should contain terms that take into account the interaction of 
acoustic wave with external longitudinal electric field: 

j = -e(JV0 + n)(v0 + v) « -eJV0 - ei\r0vo - env0, (3) 

where n is the change in electron concentration induced by the acoustic wave, e is the unit charge. 
Electron velocity is vo + v, where vo is velocity component due to the drift in bias electric field 
E', and TVo is the equilibrium carrier concentration. In accordance to [2], the solution to the 
equation of elastic wave propagation is sought in the form of coupled plane monochromatic 
waves: 

u = [A+n+e-*^-")* + A_n_e-'<w+n>']ettMx (4) 

having equal wavenumbers k(u>), different frequencies u ± Q and opposite circular polarizations 
described by vectors n± = (y0 ^iz0)/\/2, where yo and z0 are the unit vectors of the Cartesian 
coordinate system. Here UJQ is the incident acoustic wave frequency, VL is the rotating electric 
field frequency, and w = OJQ — Q. As a result, we can arrive at the system of equations for the 
amplitudes which allows to determine the wavenumbers and ellipticities of eigenmodes. We have 
considered the case when on the crystal border x = 0 circularly polarized acoustic wave 

ue = uon- exp[—io;o*] (5) 

with frequency UQ « Q, is incident. Displacement vector of this acoustic wave has the same ro- 
tation direction as the external electric field. This wave can interact in resonance with rotating 
electric field because its frequency is near to the rotation frequency of the anisotropy structure 
formed by the electric field. As a result of interaction of propagating wave with rotating electric 
field in crystal amplification of the transmitted wave and generation of reverse wave are possi- 
ble [1, 2]. The displacement vectors of these waves on the crystal borders (x = 0 and x = L, L 
is the crystal thickness) can be described as follows: 

uT = «Tn_ exp[—iu>ot + ikoL],    uc = ucn+ exp[—i(uio — 2to)t]. (6) 

Acoustic field in the crystal can be represented in the form of a superposition of two eigenmodes: 
2 

u = J2 Am ( n_e-iw°* + f-^wo - f^n+e-^o-2")' ) e**™^"")* (7) 
m=l 

A. where £m = -j^- is the ratio of the amplitudes of eigenwaves. 
^Prom the condition of continuity of the displacement vectors on the crystal borders we can 

obtain system of the following equations: 

£ Am = uo,     J2 Wh - fi)el'M"o-n)L = 0> 

m=l m=l 

£ Ameik^°-VL = Ure**L,     £ A^-^o - «) = «c. (8) 
m=\ m=l 

The solution of this system allows to determine the amplitudes of reflected and transmitted 
acoustic waves. 
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3. Numerical results 

Calculations have been made with the following values of parameters [2]: m* = 0.0145 me (me is 
the electron mass), Ü = 109 radn/s, v = 1013 s_1, T = 300 K, c = 1011 N/m2, p = 5.7-103 kg/m3, 
/? = 10~2, b = 14.4 N/m. The dependence of the wavenumbers of eigenmodes on the frequency 
is presented in Figure 1 (left). £From Figure l(left) we can see that charge-carrier drift influence 
is displayed as a shift of diagrams. The dependence of the intensity of the transmitted waves 
normalized to the intensity of the incident waves (transmission coefficients) on the frequency 
is presented in Figure 1 (right). Analysis of numerical results leads us to the conclusion that 
charge-carrier drift influence can be a cause of a shift of the maximum of the transmission 
coefficients. The direction of the shift depends on the direction of carrier drift. When charge- 
carrier drift direction coincides with the incident wave propagation direction we can see an 
increase of the transmission coefficient. This effect can be explained by interaction of acoustic 
wave and electron "clouds". When charge-carrier drift direction is the opposite to the incident 
wave propagation direction we can see a shift of maxima of the transmission coefficient to the 
lower frequency region. The dependence of the intensity of the reflected waves as functions of the 
crystal thickness is presented in Figure 2 (left) in the logarithmic scale (the basis of logarithm 
is 10). When the crystal thickness L corresponds to the resonance condition [2], the reflection 
coefficients have periodic resonances. Spatial dispersion influence can be a cause of a decrease 
of the crystal thickness corresponding to maxima of the reflection coefficients. The influence of 
electron drift on the changing of the crystal thickness corresponding to maximum of reflection 
coefficients is much smaller than the spatial dispersion influence. Rotation of the polarization 
plane dependence on the incident wave frequency is presented in Figure 2 (right). The influence 
of charge-carrier drift exhibits as a change of the angle of rotation of the polarization plane 
in the case of resonant interaction. Charge-carrier drift influence leads to a shift of diagrams, 
and the relative change of the maximal rotation power can reach 2. Natural acoustic activity is 
comparable with the chiral properties of crystal induced by rotating electric fields. 

4. Conclusion 

Wave numbers and ellipticities of acoustic eigenmodes in semiconductors without a center of 
symmetry which are placed into rotating electric field have been found. So called two-wave ap- 
proximation has been used to find the solution of the boundary-value problem. The transmission 
and reflection coefficients dependence on the incident wave frequency and crystal thickness have 
been studied. Found characteristics of transmitted and reflected waves have been compared 
with the results for semiconductors with spatial dispersion without charge-carrier drifts. The 
obtained results can be used for the design of devices that can rotate the polarization plane of 
ultrasound [3]. 
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Figure 1: left)The wavenumbers of eigenmodes as functions of the frequency. Dashed lines (1 
-fci, 2 -k2) correspond to the crystal without charge-carrier drifts, and solid lines (3 -fci, 4 -fo) 
correspond to the crystal with a charge-carrier drift; right) The intensity of the transmitted wave 
as a function of the frequency. 1 corresponds to the intensity of the transmitted wave without 
charge-carrier drift; 2 corresponds to the intensity of the transmitted wave taking into account 
charge-carrier drift {VQ = — 10ut); 3 corresponds to the intensity of the transmitted wave taking 
into account charge-carrier drift {VQ = 10ut). 

1 c 

3 - 

c o 
CO 
o 

0C 

__LsJ=iJ 

I               !   \3 
!         !      2~ 

-""   Pi     ^Sv 

0 -™ 9.9.10™ 9.95.10™        1.10"       I.005.1009     1.01.10™ 

Frequency, Hz 

Thickness, ra 

Figure 2: left) The intensity of the reflected waves as a function of the crystal thickness. 1 
corresponds to the intensity of the reflected wave without charge-carrier drifts, and 2 corresponds 
to the intensity of the reflected wave taking into account charge-carrier drift (v0 = ±10ut); right) 
Rotation of the polarization plane dependence on the incident wave frequency UJ: 1 corresponds 
to the crystal with the charge-carrier drift direction which is opposite to the incident wave 
propagation direction; 2 corresponds to the crystal with charge-carrier drift direction which 
coincides with the incident wave propagation direction; 3 corresponds to the crystal without 
charge-carrier drift. 
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Abstract 

Periodical changing of laser beam polarization with initial polarization of 45°to the optical axis of 
quartz after its passing through quartz cube depends on crystallographic direction and turn angle of 
the cube. The resulting polarization is different for quartz with impurity of Co and without any 
impurity especially for direction parallel to the optical axis. Some peculiarities in the modulation 
pictures take place at initial polarization of laser beam + 45° or -45° to the optical axis of quartz. It 
is supposed that observed features in polarization of laser beam can be connected with anisotropy 
of crystal. 

1. Introduction 

Light polarization is very intricate area in optics. Polarization appearances are not quite the same for 
coherent and incoherent sources of light. It is known that many crystals change polarization of light, 
which passes through them. The study of these changing even for incoherent sources of light is very 
complicated problem. The use of lasers results in obtaining new information about interaction 
radiation and matter. We believe that the investigations of the state of polarization of laser beam after 
its passing through quartz single crystals are very interesting and useful not only for creation different 
optical devices but for obtaining new data about properties of crystals and coherent radiation. 

According to Stocks [1] there are six basic states of polarization: horizontal linear polarization 
and vertical linear polarization, linear polarization under ± 45° and at last two kinds of elliptical 
polarization, right and left.. The polarization under angles ±45°to the optical axis is worthy the 
especial interest as far as it gives possibility to get almost 100% modulation of the laser beam 
intensity after its passing through the crystal and in dependence on the turn angle of the sample [2-4]. 

2. Experimental 

The aim of the present work is to obtain the influence of Co impurity in quartz on the polarization of 
the laser beam passing through the quartz cube under various angles. The polarization of laser beam 
after passing through the crystal depends also on the initial polarization of laser beam (±45°) [1] that 
falls onto the sample and presence of impurity. Two kinds of quartz were measured: colorless quartz 
without impurity and slightly blue quartz with impurity of Co. The samples were prepared in form of 
cubes with high accuracy. One of the edges of cube was parallel to the optical axis of quartz. All 
measured single crystals were quite transparent and had high quality. 

In our experiment the narrow laser beam was directed to the center of the quartz cube facet. The 
cube was placed between crossed polarizers on the table of goniometer. The sample can be rotated 
clockwise, counterclockwise, and also from position of normal incidence cloclwise (conditionally 
negative angles) and then counterclockwise (conditionally positive angles). The turn angle was 
measured with 5" precision. 

He-Ne was used as a source of light. The Bruster window of the laser tube was turned so that 
the laser beam was polarized under angle 45° to the optical axis of quartz. 
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3.   Results and Discussion 

It was obtained that the modulation of the laser beam intensity is connected with changing of the state 
polarization of light and takes place upon the sample rotation. During one period the polarization 
transforms from one linear polarization, for example -45°, to another linear polarization, +45°, 
passing through all forms of the elliptical polarization. Period of modulation depends on such factors 
as crystallographic direction, presence of impurity and initial polarization of laser beam. 

The intensity modulation of laser beam after its passing through the cube made from colorless 
quartz in direction parallel to the optical axis at normal falling of the beam onto the cube face is 
shown in Fig. 1-a). 

-450 

-40    -30    -20    -10 10     20     30 

-30    -20    -10      0       10 
Rotation angle,grades 

Fig. 1 Modulation pictures for laser beam passing normally to the optical axis for two kinds of 
quartz: a) Colorless quartz without impurity; b) and c) Belongs to two different samples with 
the same sizes which made from one piece of blue quartz with impurity of Co. Fig. 1-b) and 1- 
c) belong also to two different states of polarization of laser beam. 

As one can see from the figure that the modulation period decreases to the side of the greater 
angles of falling and its minimum is equal - 50", and its maximum value is equal - 3° without central 
part. The central part consists of two maximums with elliptical polarization and minimum between 
them with period - 15°. The polarization of next maximums and minimums corresponds to the linear 
polarization -45° and +45° accordingly. 

The modulation period for blue quartz is changed in another way than for colorless quartz. The 
central part of each picture is wholly occupied with the small period (40 - 45") maximums. One can 
say that central minimum with large period is absent for blue quartz. That is the difference between 
the modulation pictures for colorless quartz and blue quartz with impurity of Co. We would like to 
notice that transformation of the one linear polarization to another orthogonal one which is 
accompanied by the turn of electrical vector at 90°, takes place at the turn angle of the sample -20-25" 
when the period of modulation is equal to 40 -50". 
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Fig. 2 The intensity modulation of laser beam after its passing through the two different pairs of 
parallel facets of cube made from blue quartz in direction perpendicular to the optical axis of 
quartz. 

Fig. 1-b) and Fig. 1-c) differ with the different initial polarization of the laser beam what is 
falling onto the facet of crystal. The period of the intensity modulation decreases from conditionally 
negative angles towards the conditionally positive angles for the case depicted on Fig. 1-b) from 1,5° 
to ~ 30". The same period increases from conditionally negative angles to conditionally positive ones 
for the second case with another initial polarization, Fig. 1-c). 
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Fig. 3 The intensity modulation of laser beam after its passing through the two different pairs of 
parallel facets of cube made from colorless quartz in direction perpendicular to the optical 
axis of quartz. 

Such modulation of intensity cannot be observed when the electrical vector of laser beam was 
parallel or perpendicular to the optical axis of quartz. It cannot be observed too when other non-laser 
sources of light are used, for example, mercury lamp. 
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As it is shown in Fig. 2 there is some difference between the two modulation pictures when 
laser beam passing in directions perpendicular to the optical axis for blue quartz. Here we can see 
central maximum with large period which is absent for the direction parallel to the optical axis for this 
sample and for this polarization shown in Fig. 1-c). 

The difference between the two modulation pictures for the directions perpendicular to the 
optical axis is greater for blue quartz in comparison with colorless quartz for the same initial 
polarization. We believe that this difference is connected with anisotropy in atoms' location in lattice 

° qUaThere is some difference between the modulation pictures obtained for some pair of parallel 
facets of one and the same sample but for different polarization of laser beam falling onto the facet of 
the cube. It can be difference in period of modulation, in the position of central part of the picture and 
in the intensity of radiation. 
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-40    -30 -20-10      0      10     20 
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Fig. 4 The intensity modulation of laser beam after its passing through the cube made from blue 
quartz with impurity of Co in direction perpendicular to the optical axis for one and the same 
pair of facets but for different polarization of the falling beam. 

4.   Conclusions 

Partly the picture of intensity modulation can be explained with interaction of the two orthogonal 
polarized waves, ordinary and extraordinary ones, which go the same way with different rates and 
amplitudes. This interaction depends on such parameters as birefringence, optical activity and the 
optical length of the light way. But it can be supposed that the main role in transformation of 
polarization of laser beam plays the features of structure of the measured crystals. 
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Abstract 

The temperature dependence of the refractive indices for ordinary and extraordinary rays of 
mercury spectrum three lines and laser line independently one from the other were 
measured in temperature interval 20-600°,C. It was obtained that the refractive indices 
increase along with the temperature growth and this dependence has quasilinear character. 
Emerald has quite low birefringence values that increases slightly along with the 
temperature growth and decreases with wavelength growth. The thermooptical coefficients 
for every wavelength were calculated. They have greater values for the extraordinary 
beams than for the ordinary ones. The dispersion curve for refractive indices was obtained. 

1. Introduction 

Emerald is a green beryl with the following chemical formula: Be3 Al2 Si6 Ojg with Cr impurity 
responsible for its green color. The crystal belongs to the hexagonal system and is optically positive. 
Si60i8 rings form structure channels, which are parallel to unique axis. Octahedral positions occupied 
by Al in the beryl structure, may be substituted by Cr, Fe3+, Fe2+, Mg and Li; alcali and alcaline earth 
ions occupy the centers of Si6Oi8 rings and water molecules lie centrally between the Si60]8. The 
limited amount of Cr is necessary for creation gem quality emerald (0,2 - 0,3%) [1]. 

The filling of the channels in the beryl structure with alcali ions and water molecules is the 
main cause of the variation in refractive index and density of natural beryl and emerald. 

The increase of activity in the area on synthetic emerald appears to be due both to its utility as a 
gemstone and its reported use as a solid state maser crystal. Besides emerald can be used in low-noise 
microwave amplifiers as well as serve as the most effective laser medium in the range 450-600nm. 

2. Crystal Growth 

Single crystals of emerald were grown from flux melt [2] on oriented seeds in dynamical regime. 
Double system oxides of lead and vanadium was used as a flux. As numerous experiments on crystal 
growth in flux melt with correlation V205 / PbO from 8/2 to 2/8 showed, it is preferably to use 
solvents with the equal or slightly shifted to the side V205 ratio of oxides. The cuts of single crystals, 
grown by the method of spontaneous crystallization, parallel to the natural prism (1 0 TO) and (1 1 2 
0) faces and pinacoid (0 0 0 1) faces served as seeds. The seeds were arranged parallel each other in 
the planes oriented perpendicular to the flux melt surface and fixed to specially shaped platinum 
holders. Such configuration provides continuous washing of the growing crystal face and stirring of 
the melt at optimal rotation rate 30rs/min. The total area of the seed plates varied from 600mm2 to 
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2000mm2 depending on the crucible volume and the flux melt mass. The optimal experiment cycle 
lasted, in the average, for 3-4 months. The best single crystals grown in the experiment were almost 
perfect in terms of the optical parameters weighting as much as 150 carats. 

3. Experimental 

Refractive indices of the ordinary and extraordinary rays were measured during continuous heating or 
cooling of prisms cut out from crystals in such a way that the optic axis was parallel to the prism edge 
and the light beam propagated through the prism perpendicular to the optical axis. The size of prism 
was nearly 6x6x7x4mm, where 6 and 7mm was the sides of the triangular basis of prism and 4mm 
was its height. The least deviation method is used. He-Ne laser and a mercury lamp were sources of 
light. The temperature dependence of the refractive indices of mercury spectrum three lines and laser 
line independently one from the other was measured. The measurements were performed for the next 
wavelengths of mercury emission lines: violet, 4647Ä; green, 5461Ä; yellow, 5852Ä and for laser 
line, 6328Ä with a step 4°- 5° using a GS-5 goniometer-spectrometer. The heating (cooling) rate did 
not exceed 0,5K/min and the sample temperature was measured with a platinum-rhodium 
thermocouple with an accuracy of 0,1 K. 

4. Results 

Temperature dependences of refractive indices for ordinary and extraordinary rays at different 
wavelenghts are shown in Fig. 1. 

1,560 
100   200   300  400   500 

Temperature, °C 

Fig. 1 Temperature dependence of refractive indices of ordinary and extraordinary rays for four 
different wavelengths. Curve nl belongs to ordinary rays of red laser line, and curve n2 
belongs to extraordinary rays of red laser line; curves n3, n5 and n7 reflect the temperature 
dependence of refractive indices of ordinary rays for green, yellow and violet lines of mercury 
spectrum, and curves n4, n6 and n8 are the temperature dependence of refractive indices of 
extraordinary rays for green, yellow and violet lines of mercury spectrum. 
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It is obtained that the refractive indices increase along with the temperature growth and this 
dependence has quasilinear character. Emerald possesses the following refractive indices at the room 
temperature: for X = 464,7nm ne = 1,5770; n0= 1,5731; for X = 546,lnm ne= 1,5673; n0= 1,5635; 
for X = 585,2nm ne = 1,565,6; n0= 1,5619; for X = 632,8nm ne = 1,5646; n0 = 1,5612, where n0 and 
ne - ordinary and extraordinary refractive indices. 
We should note that emerald refractive indices just slightly change along with the temperature 
growth. The temperature dependence curves (images of collimator slit) for all the spectral lines are 
practically parallel. That means that the thermooptical coefficients are almost the same for all wave 
lengths of both ordinary and extraordinary rays. They are slightly greater for the extraordinary rays 
than for the ordinary ones, 1,45 - 1,5 • 10"5 and 1,2 - 1,4 10"5 accordingly. 

Emerald has a very low birefringence value which does not change while temperature grows. 
Fig. 2 shows the graph of the temperature dependence of the birefringence. 
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Fig. 2 Temperature dependence of birefringence ( ne-n0 )    value, where n0 - refractive index of 
ordinary rays and ne- refractive index of extraordinary rays. 

The birefringence value does not practically change while the wave length increases, i.e. the 
birefringence dispersion is absent. At the time the dispersion for refractive indices appears normal 
because refractive indices decrease along with wave length incease, Fig. 3. 
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Fig. 3   Dispersion of the extraordinary rays refractive index. 
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5. Conclusion 

We should note that emerald's behaviour is quite similar to one of the inert gases or noble metalls i.e. 
it does not practically interact with external medium if compared to other crystals such as 
ferroelectrics, nonlinear crystals, semiconductors and quartz. The slight increase of refractive indices 
monitored while temperature increases is likely to be caused by the thermal expansion of the lattice. 

We believe the main particularity of this crystal is the absence of any particularities in the 
optical properties measured by us. We can consider that absence as the main positive attraction of 
emerald upon its employing in dirreferent optical devices as the sinthetical emerald is much cheaper 
than the natural one. 
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Abstract 

The development of wireless communication techniques has increased, as a consequence, 
the use of positioning systems. Concerning to this, GSM providers have predicted that 
position location will be an integrated service in the 3rd generation cellular phones. The 
techniques that are used by each one of the current positioning systems are well-known; 
they include time-difference-of-arrival measures, angle-of-arrival measures and power- 
of-arrival measures. In this paper we propose a new method, which is based on the 
transmission of several frames with different frequencies in order to determine the 
transmitter/receiver distance. 

1. Introduction 

Unlike wired communication systems that are static and easily characterized, radio channels are highly 
random, time varying and difficult to predict. The propagation path in a wireless communication 
system can vary in real-time from close range, stationary, line of sight to a heavily obstructed mobile 
path due to both moving and stationary objects [1]. Needless to say, although wireless communication 
systems share the radio channel as a common limiting factor, the channel can be extremely random in 
nature [2] and thus plays a major role in the design of many radio frequency communication systems. 

One of the new uses of these systems is to provide accurate user position location (PL) information, 
and that is the reason why several different position location technologies have been developed in the 
last few years [3]. As it is well-known, the behavior of electromagnetic waves through random media 
is modified by several factors that appear in the environment [4]. If we know the limiting factors that 
restrict the propagation of the waves, the medium will be properly characterized and, as a result, a 
relationship between the propagation velocity and the frequency of transmission will be defined. 

In this work, we propose a new method to determine the distance between the transmitter and the 
receiver by solving a system of non-linear equations, that depends on the physical model of the 
medium in which the wave is propagated. In Section 2, the theoretical basis of our method is 
described. Consequently, a system with a transmitter, a microscopic model of the channel and a 
receiver is simulated in MATLAB. The results are shown in Section 3. Finally, some conclusions are 
remarked in Section 4. 

2. Previous Concepts of the Multi-Frequency Model 

The propagation of electromagnetic waves depends on internal factors related to its nature and external 
factors that are characterized by means of the medium in which the wave is propagated. There are 
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many developments in this field: some measures of the GPS propagation principles can be found in 
[5], where reception delays due to atmospheric phenomena are estimated. Concerning to this, the 
ionospheric delays are considered in [6]. In both cases, the delays not only depend on the medium 
itself, but also on the signal frequency. 

Taking into account these studies, a method which uses a multi-frequency technique, that is, the 
transmission of several frames with different frequencies, is proposed. Let us consider the general 
relationship: 

vi = g(wi,k1,...,kJ) (1) 

where v, is the propagation velocity and depends on the frequency, g is some function which must be 
determined, w, is the frequency, and ku...,kj are the factors related to the medium of propagation. 
From Eq. (1), the distance between the transmitter and the receiver can be estimated by using a system 
of non-linear equations [7]. These equations are obtained regarding these assumptions: 

• If we suppose that a frame consisting of n frequencies is transmitted, then n equations like the 
following ones are obtained: 

vl-t1 = d 

: (2) 

v„ ' tn = d 

where tu...,tn are the times of arrival for each frequency and d is the distance between the 
transmitter and the receiver. 

• If the time difference of arrival for the different frequencies is calculated, c„ then we will 
have n-1 equations, where the delay between each one of the frequencies is determined: 

(3) 

h-tn=Cn-\ 

•    Finally, if we know the relationship between the velocities/frequencies, n equations like these 
ones can be found: 

i (4) 

V„   =  £(*„,*!,...,*;) 

Therefore, the distance d, the n propagation velocities, the n times and the factors that represent 
the medium must be calculated. We have, then, a system with 3n-l equations and 2n+l+j unknown 
quantities, and, as a consequence, n=j + 2. 

3. Position Location using the Multi-Frequency Model 

In a common way, when the transmitter/receiver distance is found out, the equations system to 
determine the proper position of an object/person can be obtained as: 

(Xi-Rj+(Yi-Ry} + {zi-Rzf = d> (5) 
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where (Rx, Ry, Rz) is the receiver position, (X„ Yh Zi) are the n transmitters position, and dt are the 
distances to each one of the n transmitters. 

The parameters of the model that characterizes the medium can vary when the link conditions 
change. That is the reason why the positioning system will have to update the model in real-time. 
Following these requirements, a MATLAB simulation to calculate the distance in a satellite-earth link 
has been made. Considering the Drude-Lorentz's model for the ionosphere [8], we have: 

,2 

k-\   = 
wr 

2 2 
Wr,    -   W 

(6) 

where kr is the real part of the dielectric constant of the medium, wp is the plasma frequency and w0 is 
the natural frequency. If the refractive index is n = yjkr , the propagation velocity will be: 

v   = g{w,kx,k2) = - = 

1 + - 
w„ 

wn-w 

When a two-parameter model is used, the equations system will be: 

(7) 

■t;=d 

1 + - *. 
k2   -  W; 

(8) 

where / = 1,2,3,4. The time differences can be calculated as: 

?i     h — c2 

f i - f 4 = c3 

(9) 

We see that the unknown quantities are [tu t2, t3, t4, ku k2, d]. As a result, we can deduce that the 
frames must be sent including four frequencies. We have to point out that we have used the Newton's 
method to solve the non-linear equations system. That is, the starting equations system is: 

/] {x1,x2,x3yx4,x5) — 0 

Jl \x\ > x2 > -"-3 > x4 > x5 ) ~ " 

Using the Taylor's expansion of Eq. (10), we obtain: 

F(x) = 

rM^ 

fAx) 

(10) 

F(x)« F(x0) + J(x0) ■ (x - x0) (11) 

where J(x0) is the Jacobian matrix in the initial point x0= [t\0, t2o, h0, ?4o, ^io> ^20, d0]. 
As a consequence, the following conditions must be considered: 

1.   A vector with some initial values for the variables of the system must be introduced. 
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2. After that, the Jacobian matrix   /(3C0(,_D)   for the current solution vector  *0(M)   is 

calculated. The new solution vector is determined as: 

*ot = *0(,-l) -■/~1(*0(,-1))-'P(*0(,-1)) (12) 

where J"1 (x0(t_})) is the inverse matrix of /(x0«-i)) • 

3. x0, is replaced in F(x) and the error value is obtained. The variation of the error is revised 
to establish whether the solution is correct or not, and, then, if the algorithm is finished. 

Table 1 shows the error in the calculation of the distance, for some different examples. 

Distance 500 1000 5000 

Two-parameter error 1.2% 0.1 % 0.01 % 

Table 1: Variation of the error and distance 

4. Conclusion 

In this paper we have explained a new method to reach a complete position location service. We have 
shown in a theoretical way that scattering phenomena can be used to estimate the transmitter/receiver 
distance in a radio frequency link. Moreover, any electromagnetic communication in which scattering 
appears could be considered in the same way. Some of the advantages of this system are, on the one 
hand, that there are no measures in absolute time and, on the other hand, that it is not necessary to 
synchronize the receiving antennas (see [7]). 

As a future work, we propose to combine this method with a power-of-arrival one so as to avoid 
the wrong distance estimations. Finally, the design of the whole positioning system, hardware and 
software, will be considered as well. 
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Abstract 

The attempt is made to extent the applicability of dynamic spectroscopy methods, that are 
commonly used to investigate media with relatively low concentrations of light scattering 
particles, for analyzing media with high volume content of scatters where there is established the 
so-called multiple scattering regime. The whole blood of a person under normal and pathological 
state is chosen as a model medium. The dependence of characteristics of the spectrum of the 
temporal fluctuations of light scattered intensity on parameters of particles (the concentration, their 
shape, absorption coefficient, aggregation degree) is studied. It was found that the fluctuation 
spectrum of multiply scattered light under high concentrations of scattering particles is mainly 
influenced by their optical characteristics, rather than by geometrical ones. 

1. Introduction 

In various fields of science and technology there arise problems associated with the determination or 
control of the characteristics of small particles: their sizes, shapes, degree of aggregation, 
concentration. 

Applications of methods of the light scattering media optics for solving these problems is 
based on their high accuracy as well as on the fact that they are not time consuming and do not exert 
any action on the investigated object. Thus, these methods are most actively used to investigate the 
characteristics of biological objects in medicine and biophysics. 

One of the most important optical methods is the method of the correlation spectroscopy [1]. 
In contrast to other optical methods, this method is based not on the analysis of the spatial distribution 
of the scattered radiation field but on the analysis of its temporal fluctuations. In other words, this 
method is based on the fact that the statistic characteristics of scattered radiation are related to the 
dynamic characteristics of particles: their sizes, shape, relief of the surface. 

In modern practice the method of correlation spectroscopy is successfully used for solving 
various problems: determination of the diffusion coefficient, drift velocity, dynamics of muscle 
contractions, sizes and asphericity of particles. However, it should be noted that in all applications of 
this method the determination of the characteristics of scatters is possible only in the case that the 
distance between the particles is much greater that their sizes. 

There is a sufficiently great number of media with a high concentration of particles. Because 
of this, the necessity arose for extending the method of correlation spectroscopy to determine the 
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characteristics of scatters at high concentrations. The advantages of the correlation spectroscopy 
method make it possible to determine the characteristics of particles without the dilution of the 
medium, i.e., in their natural state. For a number of media, such as biological, this is the matter of 

pnncip e.^ ^ ^^ medium we took the whole blood, i.e., the undiluted blood. First, this is the 

most important biological medium. Second, its all characteristics are clearly understood. Third, the 
shape of the main blood elements, erythrocites, can be relatively easily changed. 

2. Experimental Results 

Since erythrocytes are in the aggregate state in the whole blood, the influence of aggregation on the 
experimentally measured spectrum of temporal fluctuations of scattered radiation  S(co)  can be 

investigated. .   -, o   i        u       t *u 
The diameter of the healthy erythrocyte in the natural condition is 7-8mkm, that or the 

spheroidal one (i.e. its shape was changed from the disc-like to spherical) was 10-20 mkm. The use of 
special methods was made it possible to change the erythrocyte shape without affecting its volume. 
The sphericity coefficient is 3-4, the erythrocyte concentration in 1 mm - 5 10", and the relative 

volume concentration is 46%. 
Thus, using one and the same object, we managed to investigate the potentialities of the 

method of correlation spectroscopy for determining various characteristics of scattering particles: size, 
shape, surface microrelief, of aggregation degree. 

And it should be noted that this has been done in the conditions of "nontraditional " use of the 
method of correlation spectroscopy, at multiple scattering of light. 

We investigated the influence of the change in the eruthrocyte characteristics on the spectrum 
line width of intensity fluctuations of multiple scattered radiation Aco. 

The scattered radiation spectrum was measured according to the scheme of self-pulsings [1]. 
The laser radiation wavelength is 0.63 mkm. Intensity fluctuations of the speckle-pattern were 
recorded in the direction of 170 degree from the direction of laser radiation incidence. The spectrum 
width Aco was analyzed by a spectrum analyzer. 

In the Table 1 the results of the measurements of the spectrum width Aco depending on the 
shape of the erythrocytes in the human blood are given. 

Table 1  The spectrum width A© for different shapes of particles 

shape 
Aco, Hz 

discs 
323 ±23 

discs with relief 
429 ±30 

spheroids 
375 ±26 

spheres 
273 ±19 

Since the particle size remained constant, the change in the spectrum width is due to the 
change in the shape of the particle. 

This, solving the inverse problem, we can determine the shape of scattering particles at 

multiple scattering. 
It is evident that the change in the erythrocyte shape leads to a change in the width of the 

recorded spectrum S((0). Thus, it was shown, that, as in the case of small concentrations, the 

correlation spectroscopy methods could be used for determining the form of scatters. And in this case 
the method is sensitive not only to the change in the shape of particles, but to the relief of their surface 

as well. . 
Theoretical and experimental investigations of the concentration dependence of the coefficient 

of diffusion D show that in the region of relatively small concentrations (C < 10%) marked changes 
are observed for spherical particles and relatively small changes for disk-shaped particles. It was 
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shown that value of D spheroidal erythrocytes is greater than for disk-shaped ones with the same 
volume (Fig. 1). 

o 

Q 

Fig. 1 Dependence of the diffusion coefficient D of disk-shaped (curve 1) and spherical particles 
(curve 2) on the volume concentration Cv at a constant volume. The dashed lines denote the 
theoretical calculation for a diluted medium. 

Analogous measurements of Aco have been made for erythrocytes at large concentrations. The 
results are diametrically opposite. The spectrum width for disc-shaped erythrocytes is smaller than for 
spheroidal ones. The explanation of this result is given below where the influence of optical 
characteristics of particles on the fluctuation spectrum of radiation scattered by them is investigated. 

The result of the investigation of the influence of the optical characteristics of scattering 
particles (absorption and scattering coefficients) on temporal fluctuations of scattered radiation S(0)) 
was unexpected. It was found that in the region of high concentrations of weakly absorbing biological 
particles, the function S(CO) is dependent not only on their geometrical characteristics, but on the 
optical ones as well. 

It is seen from the table (Table 2) that if the value of E/K is great (absorption coefficient is 
small). 

Table 2 Dependence of the halfwidth of the scattered radiation spectrum on the form of 

scattering particles at different values of £ I k . 

Shape of particle Act), Hz elk 

Spheres 429 870 

Disk with relief 716 870 

Disk 665 2330 

Disk 377 28 
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The broadening of the spectrum for nonspherical particles is observed. If the absorption of the disperse 
phase is significant, on additional broadening of the spectrum for nonspherical particles is not 
observed as compared with spherical particles. 

Thus, this offers possibilities of investigating not only the dynamics, but also the optical 
parameters of biological particles. 

In this connection the question arises about the possible influence of the close packed media 
effects on the characteristics of scattered radiation. To solve, this problem, theoretical and 
experimental 

CO 

Aco, [Hz] 

Fig.2. Spectra of fluctuations of the intensity S(a>) of the radiation scattered by the blood samples 
with a great (curve 1) and small (curve 2) degree of aggregation. 

investigations of the influence of the volume concentrations of disk-shaped and spheroidal particles on 
the coefficient of the diffuse reflection R were performed at the wavelength A = 0.63/xm. It was 
found that this value practically does not depend on the volume concentration of particles for optically 
thick layers (semi - infinite media). 

The possibility of the application of the correlation spectroscopy method to the estimation of 
the degree of aggregation of particles was investigated for two cases: weak aggregation - the sizes of 
the aggregates were < 50[im and strong aggregation - sizes of the aggregates were < 300|im. The 
width of the measured spectrum S((0) in this case was two times less, than in the case of weak 

aggregation [2] (Fig. 2). 
Thus, the possibility of the application of the correlation spectroscopy method to the 

investigation not only of sizes, shape, surface of particles and the degree of aggregation, but also their 
optical characteristics was demonstrated. 
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Abstract 

Optical second harmonic light scattering, or hyper-Rayleigh light scattering which is char- 
acterized by the electromagnetic radiation at the double frequency of an incident light in 
magnetic crystal with the single straight edge dislocation have been phenomenologically in- 
vestigated by adopting a nonlinear photoelastic and a nonlinear magneto-optic interactions. 
The polarization dependencies of the light scattered at the double frequency of an incident 
light for the different scattering geometries are analyzed. 

1. Introduction 

The methods of nonlinear magneto-optics are well developed for investigating the domains in the 
magnetic films [1,2]. It is well known that real crystals and films contain the structural defects, 
for example, the dislocations [3]. The dislocations are the sources of the long-range strain field in 
a crystal, or in a film [3]. This strain changes the optical properties of a crystal via photoelastic 
interaction [3]. In magnetic films and crystals it is the magnetoelastic (ME) interaction plays 
very important role [4]. For example, in a magnetic crystal with a dislocation the ME interaction 
leads to the formation the specific kind of domain sructure, so called dislocation domains [5]. 
These dislocation domains are characterized by a special distribution of magnetization around 
a dislocation core [5]. 

In this communication we consider the nonlinear elastic light scattering, or hyper-Rayleigh 
light scattering (HRLS) by single edge dislocation in magnetic crystal. Similar to second har- 
monic generation (SHG), the HRLS is characterized by the electromagnertic radiation scattered 
at the double frequency of incident light. The nature of the HRLS phenomenon is very close to 
the origin of the SHG, because both these three-photon effects are described by the quadratic 
nonlinear polarization. However, the radiation, corresponding to the HRLS, propagates in an 
arbitrary direction (non-specular scattering), while for the SHG is necessary to satisfy the phase- 
matching conditions[6], or specular reflection (in the case of a surfaces, or thin non-transparent 
films). 

2. Magnetization in Crystal with Dislocation 

Let us consider a cubic crystal magnetized along the Y axis without an inversion center (the 
point symmetry 43m - Td) with the edge dislocation oriented along the Z axis with Burgers 
vector b = (6,0,0). In the crystallographic coordinate basis XYZ, the dislocation strain is 
characterized by the following non-zero components of the strain tensor uik(r)[S]: 
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, , _ b       y[x2(3-2I/)+y2(l-2t/)] 
Uxx(-T) ~ 4TT(1 - u)              (z2+y2)2              '                                 ^ ' 

, , _ 6       y[a;2(l + 2i/) + y2(l-2i/)] 
%!/W ~ 4TT(1 -1/)              (x2 + y2)2             '                                  V ' 

i \ -       b     x^2 ~y2) (S\ 
Uxy[T)   ~   47r(l-i/)(x2 + y2)2' V ' 

where v is the Poisson's coefficient. 
As mentioned above, due the ME interaction magnetization vector Mo changes orientation 

in XY plane and additional components of magnetization can be presented in the following form 
[5]: 

.. bM0  r27 + 7r(l-2i/) /       a m m*(r)  =  !Ty[    2(1-,)     +/3]lnVRTW (4) 

/ \ 6M0(1 - 2i/)x ,_, 
" 27r(l — i/)(ar+ JT)^ 

where a and /fare the constants of nonuniform exchange interaction and uniaxial magnetic 
anisotropy, respectively, and 7 is the constant of ME interaction. 

3. Second Harmonic Light Scattering 

The second-order nonlinear optical polarization ~P
NL

^{2OJ) at the double frequency of the inci- 
dent light in the dipole approximation can be written in the well known form [6]: 

jfL(2w) = x$(-2w : u,,u,)E3(u>)Ek(u>), (6) 

where Xrl 1S *^e second-order nonlinear optical suceptibility (NOS) tensor and E(u;) is the 
electric field of the incident light at the frequency u>. Within the phenomenological approach an 
influence of strain and magnetization on the second-order nonlinear polarization can be described 
by the nonlinear photoelastic and nonlinear magneto-optic tensors. 

Xijl = X$fc0) + PijklmUim + ifijkimi (7) 

where xf^ 1S *^e second-order NOS tensor of unstrained crystal in paramagnetic phase, Pijkim is 
the nonlinear photoelastic tensor, and faki [1] is the linear on magnetization nonlinear magneto- 
optic tensor. 

Let us determine the polarization of light scattered at the second harmonic frequency. Within 
the slowly varing amplitude approximation the wave equation for the second harmonic electric 
field can be written as [6] 

2 

2ik2WilVlEi(2u, q) = -^xi$(r)£iM£fc(w)e:cp(iq • r), (8) 

where q = 21^ - k2W is the scattering wave vector while k^ and k2w are the wave vectors 
of the fundamental and second harmonic light, respectively. Using the infinite plane wave 
approximation, we obtain from Eq. (21) 

Etfu, <Ü = £f X$(r)#i(w)tffc(u;)«Fp(tq • r)dr, (9) 
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where 

A = — ■ 

The integral in Eq. (22) is taken over the interaction volume V, and n^ is the refractive index 
of the crystal at the second harmonic frequency. 

Substituting the non-zero components of the nonlinear phootoelastic and nonlinear magneto- 
optic tensors for the point symmetry group 43m [7] and the dislocation stran tensor determined 
by Eqs. (18)-(20) into Eq. (22), we obtain the values of the electric fields at the second harmonic 
frequency for the s- and p-polarized incident light as follows: 

i)s(uj) —► S(2UJ) 

Es(2w, q) = A\pyyyxyuxy(q) + ifyyyXmx(q)]E2(u)), (10) 

ii) p(ui) -¥ s(2u)) 

Es(2u,q)    =   A{\pyxxxyE
2

x{u)+pyzzxyE
2

z{u)\uxy{q) 

+i[fyxxxE2
x(u>) + fyzzxE

2
z(u)]mx(q)}, 

iii) s(u)) -> p(2uj) 

(11) 

Ex(2u>, q) = Aifyyyymy{q)E2(oj) (12) 

Ez(2u>, q) = Alxifflfiq) + pzyyxxuxx(q) + PzyyyyUyy(q)]E2{uj). (13) 

iv) p(u) -> p(2u>) 

Ex(2uJ, q)    =    AUix&y + X^)/(q) + (Pxxzxx + PXzxXX)uxx(q) 

+ (Pxxzyy+Pxzxyy)uyy(q)]Ex{uj)Ez(ü}) (14) 

+i[fxxxyE
2(uj) + fXzzyE

2(u})]my(q)} 

Ez(2u,q)    =   A{\xz2
xi

)f(q)+pzxxxxuxx(q)+pzxxyyUyy(q)]E2((Jj) 

+\Xz2zzf(q) + PzzzxXUxx(q) +PzzzyyUyy(q)]E2.(u;) (15) 

+ifzxzymy(q)Ex(uj)Ez(u)} 

The Fourier transform of the dislocation strain tensor components ujm(q), magnetization 
vector m(q) and factor /(q) are determined as follows: 

uim(q)   =    y J uim{r)exp(iq-r)dr, (16) 

m(q)   =    y j  m{r)exp{iq • r)dr, (17) 

/(q)   =   ^Jvexp(iq.r)dr = 2^^sinc(q-^), (18) 

where Ji(x) is the first-order Bessel function, R is the diameter of the laser spot, q± is the 
in-plane component of the scattering wave vector q, sinc(x) = sin(x)/x , and h is the thickness 
of the crystal. 
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As follows from Eqs. (10)-(12), the s-polarized component of second harmonic radiation 
depends on x—component of magnetization which is induced by ME interction for both s(cv) ->■ 
s(2u}) and p(u>) -¥ s(2w)scattering geometries. For the p-polarized second harmonic radiation, 
from Eqs.(13) - (15) we obtaine that only y-component of the magnetization vector contributes 
to the effect for both s(u) -+ p{2u) and p(oj) -¥ p(2w)scattering geometries. 

4. Conclusions 

In conculsion, we shown that magnetization-induced nonlinear light scattering is sensitive to a 
change of orientation of magnetization in crystal. Particularly, in magnetic crystal with disloca- 
tion ME interaction leads to the change in magnetization orientation. It is possible to observe 
this new magnetization component via polarization analysis of reflected light at the second har- 
monic frequency. As mentioned above, s-polarized second harmonic radiation depends on the 
a;—component of magnetization as well as p-polarized second harmonic radiation depends on the 
y—component of magnetization. This dependence can be observe via measurements of magnetic 
anisotropy of second harmonic sygnal whichis determined as folows 

Ia,,(M)-JM-M) 

I2u,(M)+I2u(-MY ^(M)=r™:rrs- (i9) 
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Abstract 

An electrodynamic description of bianisotropic particles on the base of strip-line-coupled 
magnetostatic wave (MSW) resonators is developed and analytical closed-form expressions for 
their tensor polarizabilities are obtained for an arbitrary direction of a magnetizing field and an 
arbitrary resonator shape. Numerical calculations are performed for a normally magnetized thin- 
ferrite-film disk resonator with a metal strip on its surface. 

1. Introduction 

Recently proposed composite non-reciprocal bianisotropic materials [1] represent ensembles of 
magnetized thin-ferrite-film magnetostatic wave resonators with surface metallization. Induced 
electric and magnetic dipole moments pe and pm of such artificial particles are related to the external 

electric and magnetic fields as 

Pe -äeeE + äewH ,     pm-ameE + ämmH, (1) 

where aee, o.em, aweand ccmm are corresponding tensor polarizabilities. Although a nature and 

qualitative physical picture of magnetoelectric coupling in these elements is quite obvious and an 
experimental evidence of the effect has been obtained [2], the electrodynamic description of the 

particles and quantitative evaluation of magnetoelectric 
coupling till the present time has not been performed. In 
this paper we consider a thin-ferrite-film resonator with a 
linear metal strip of the width b on its surface, as shown 
in the Fig.l for a disk resonator magnetized by the field 
H0 in an arbitrary direction T|. Dimensions of the 
resonator are much less than a wavelength in the 
surrounding media with the permittivity e, so electric and 
magnetic fields in (1) can be assumed uniform and quasi- 
static. Magnetization of oscillation modes mq for the type 
q and corresponding eigenfrequencies a^ are supposed to 
be known, as well the ferromagnetic resonance linewidths 

AHq. The approach is based on the earlier obtained solutions of self-consistent electrodynamic 
problems of the excitation of one-port [3] and two-port [4] MSW resonators. In this formulation, in 
particular, dipole moments of a particle, induced by an external magnetic field are found through a 
resonator high-frequency magnetization, which is determined taking into account the "back" influence 
of the current in the strip on this magnetization. Neglecting of this interaction results in the non- 
accurate determination of the polarizabilities äem ,&mm and their resonant frequency. Presented 

electrodynamic description of magnetoelectric particles enables to obtain constitutive relations for 
composite media in a closed form. 

Fig.l 
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2.     Self-Consistent    Electrodynamic    Problem    for     äem     and     amm 

Determination 

Tensor polarizabilities aem and ämm are calculated in the assumption that E = 0 in (1). 
Magnetization induced by a given magnetic field H is found as an expansion into the series of 
eigenmodes 

where 

Qa 

„ 2  
q C02-(o2-/0)20-l   ' ** = 

i((Ü + Gig\ Ico M <S>q=\[nqxmq]dV , 

Hn 

2tHn 

;     coM = TM-o^o ' Yis tne gyromagnetic ratio, |io is the permeability of free space, M0 

is the saturation magnetization, and V is the resonator volume. The "back" influence of a strip current 
on the magnetization is taken into account by including the magnetic field h^ in (2), which can be 
found as a field of a transmission line excited by an equivalent given magnetic current icoM 

hn =cil{x)Hr
Vi +c_li(x)Hr_il , (3) 

with 

^W = -^J^J(M-H:^5,    c_^W = -^2.JdxJ(M-H^>iS 
H    0     s 

/coco 

N H    x      S 

where H^=HR+r2H_^, H^=H_^+r,H^, ^=(1-^^)^, 

H±|I = H±Vio(y,z)exp(+ißx) is the magnetic field of a dominant wave in a strip-line (in the absence 

of ferrite) with the propagation constant ß, Nn is a normalization coefficient [4], H and T2 are the 
reflection coefficients for a strip current at x = 0 and x = L (T\ = -1 and T2 = -exp(-2ißL) for our case 
of an open transmission line), and S is the cross section of the line. The system of integral equations 
(2), (3), formulating a self-consistent electrodynamic problem, has the following solution for 
amplitudes of electromagnetic waves in the transmission line 

v(,) = [(.* -1)-r,(.-* -i)k.,   c_„(,) = [[.-*• -.-*■)-r,(J* -.«*) :|i0' (4) 

where  c^0 = - IOO^O 

N„ 
i^-r^his^^ i*M<?qj{n-™q)dv, iM=j{nil0.m*q)ds 

and parameter s, depending on the line length, is given in [4] (s ~ 2/ßZ, for a special case ßL«\). 
Substituting (4) in (3) and using Ampere's law (an integration extends over an arbitrary contour C in 
the cross section yz which includes the strip) 

JVM = /(*), 

one can find an induced electric dipole moment and using (2) - a magnetic dipole moment 

1      L 

Ve =—*x\J(x)dx, Vm =y^Cl\midV ■ 
1(0 

(5) 
o 

Polarizabilities can be written in a tensor form 
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aem~A' 

*       *       * 
mqx   mqy   mqz 

' ^mm ~ " ' 

mqxm*qx mqxm*qy ™qxmqz 

myxm*qx mqym*qy ^qy^qz 

mqzmqx     mqzm*qy     ™qzm*qz 

(6) 

where for the case ßZ,« 1 coefficients A and B are the following 

A = - ^o 

V^T 
9,CVß2L- 

5 = (p^2+(p5y2|/M 

3r4 i2 tO|a0ß L' 

3N„ 
itti-r^hisylij^ 

-1-1 

M, 

(7) 

(8) 

and W is a characteristic impedance of a transmission line, which can be calculated as [5] 
„.    120 f,  2,21     > 

For a normally magnetized ferrite disk and a fundamental uniform mode of magnetization (when its 
components can be assumed to be mqx = 1, mqy = -i, mqz = 0) calculated polarizability coefficients A 
(7) are shown in the Fig.2. Note that in this case an internal biasing magnetic field is uniform. The 
diameter of the resonator is taken equal to the length of a strip and the particle is characterized by the 
following set of parameters: L = 0.5mm, b = 20p.m, 47tM0 = 1750 Oe, H0 = 5320 Oe, 2AH0 = 0.5 Oe, 
e=10. 

ML.uf1* 

1*10 -18 

1 

- 

10 

a) 

10.2 GHz 10.2 GHz 

Fig. 2 Polarizability coefficient \A\ (ferrite film thickness: a) 10 pn, b) 50 \xm). Solid curve: Self- 
consistent solution; Dotted: "Back" coupling neglected. 

3. Calculation of Tensor Polarizabilities öUand amo 

Tensor polarizabilities äee and äme are calculated in the assumption that H = 0 in (1). A current 
distribution along a narrow strip in an external longitudinal electric field E is known from the antenna 
theory [5] 

j{x) = j(L/2)f(x), (10) 

where j(L/2) = 2/E f1 QL 
 j-   I-cos1—- 
$Wcos$L/2){ 2 

\       . s    cos$(x-L/2)-cos($L/2) 
, f[x) =  v L . Induced electric 

) l-cos(QL/2) 

dipole moment pe is obtained by integrating the current J(x) according (5). A magnetic dipole moment 
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pm of the ferrite resonator is excited by the current (10) and can be calculated using (5) with the 
amplitude coefficients cq being obtained from (2) for H = 0. It can be easily seen that the magnetic 
field of the transmission line is related to the current as 

J{x) 
H no (11) 

where   Jc = iü^d 1 (for  this   value   the  following  relationship   is   valid   Jc = ^N^/feW)). 

c 
Performing calculations we come to the following polarizabilities for the case ßL«\ 

1 ÜL3 

where C = —- 
6®W 

D = 

**ee ~ ^' 

/ßL3  ^qJM
V 

6W      Jr 

"1 0 0" 

0 0 0 

0 0 0 
a me --D 

mqx 0 0 

mqy 0 0 
mqz 0 0 

(12) 

4. Conclusion 

Derived explicit expressions for polarizabilities show that all non-zero tensor elements, except aee, 
have resonant character with resonance frequencies close, but not equal, to the MSW resonator 
eigenfrequencies. Elements of tensors of magnetoelectric coupling äem, äme are proportional to the 
saturation magnetization M0 of ferrite and to the third power of the strip length Ü and increase with 
the growth of the resonator quality factor Q. For low magnetic losses these tensors are related as 

a0„ « linSlt ■ Elements of the tensor amm are proportional to the resonator volume V. The tensor 
ägghas no frequency dependence and is proportional to the third power of the strip length L . In the 
case when a ferrite resonator has a non-elliptic form (e.g., a straight-edge MSW resonator with a film 
of a rectangular form), calculations of polarizabilities must be carried out taking into account the 
influence of nonuniformity of the internal biasing magnetic field [6]. 
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Abstract 
A brief outline of the mathematical technique of scalar Hertz potentials is provided. It is 
shown that the technique can be successfully implemented if all four constitutive dyadics of 
a linear bianisotropic medium have a gyrotropic structure. A medium of that nature is a 
so-called Faraday chiral medium, and it may even be nonhomogeneous but of a restricted 
form. 

1. Introduction 

Approaches to solve electromagnetic field problems can be roughly divided into two categories: 
direct and indirect. While the former deal directly with the Maxwell equations for the electro- 
magnetic field vectors, the latter aim to derive, and consequently solve, alternative differential 
equations that are fulfilled by certain functions — scalar, vector or dyadic. The field vectors 
themselves then follow from these functions through (relatively simple) manipulations such as 
differentiations and integrations. 

Two of the most prominent indirect solution techniques are (i) Green function methods 
and (ii) potential methods. In this contribution we shall focus on potentials, and specifically 
on scalar Hertz potentials and their role in the solution of electromagnetic field problems in 
complex mediums. 

Vector, scalar and Hertz potentials, in their application to (achiral) isotropic mediums, have 
been prominent mathematical tools since the early stages of the development of the Maxwellian 
formalism — a fact easily betrayed by their inclusion in the vast majority of standard textbooks 
on electromagnetic theory. But only in the last two decades has it been possible to extend 
the concept of scalar Hertz potentials into the realm of more complex mediums, which may be 
anisotropic, bianisotropic, nonhomogeneous, in their nature. 

Here, an outline of the scalar Hertz potential method is given, necessarily short due to the 
limited available space. Full details including a comprehensive listing of references of the relevant 
research literature can be found in a recent book chapter [1]. 

2. Analysis 

The Maxwell equations for a general, linear bianisotropic medium are1 

iu [g • E(x) +1 • H(x)] + V x H(x) = Je(x), (1) 

V x E(x) - iu> [£ • E(x) + g • H(x)] = -Jm(x). (2) 

'Vectors are in bold face whereas dyadics are in normal face and underlined twice. Contraction of indices is 
symbolized by a dot and ab is a dyadic product; the unit dyadic is /. 
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E(x) and H(x) are the electric and magnetic field vectors, whereas Je(x) and Jm(x) are the 
prescribed electric and magnetic current densities (a time-dependence of exp(-iujt) is implicit). 
At this stage no restrictions are imposed on the specific form of the four constitutive dyadics in 

M> (2)- -i • i      ,   ■   *• To develop a field representation in terms of scalar Hertz potentials, a partial scalanzation 
of the differential equations (1), (2), is carried out with respect to an arbitrarily chosen direction 
specified by a unit vector c — once again, full mathematical details can be found in [1]. The 
decompositions 

E = Et + £cc,        H = Ht + #cc, (3) 

are introduced, whereby Et • c = 0 and Ht • c = 0; Ef and Ht being called the transverse, Ec 

and Hc the longitudinal components of the field vectors. Similarly, for the electric and magnetic 
current density: 

J e = Jet + Jec C , J m = Jrat + Jmc c > V*) 

and also for the derivative operations: 

v = v'+<=^    v2 = v? + 5' (6) 

wherein V2 is the Laplace operator. 
The c-components of (1), (2) provide two scalar expression for the components Ec and Hc 

and one finds, after some algebra, 

Ec = Pee-Bt + Peh'Ht + Ke, (6) 

jyc = PÄe'Et + PftÄ-Ht + ürfc, (7) 

where Pee, Peh, Phe and PÄ/l are 2x2 dyadic operators while Ke and Kh are source terms. 
Now, a system for the transverse components Et and Ht is derived in the form 

—^+twMee'Et + iwMeh
,Ht = qte, (8) 

dHt 
+ iuM,   •Et + iwMi.i, *Ht = q*ft- (9) dxc ^""=he    ~*  '   -=hh 

where M , M L, M, and M,. are 2x2 dyadic differential operators of second order and qte 

and qth are 2-vector source terms. 
The crucial step is now the introduction of scalar potentials through 

Et = VtHV(X0c, (10) 
Ht = Vtn + Vtx tfc. (11) 

Straightforward manipulation of (6), (7), then leads to formulas for the longitudinal components 
Ec and Hc, in symbolic form: 

Ec = Ec(*,e,n,*;Jec,Jmc), (12) 

flc = ffc(*,e,n,^;jec,jmc). (13) 

The expressions (10)-(13) constitute a representation of all field components in terms of the four 
scalar functions $, 6, II and #; substitution into the available differential equations produces a 
system of four differential equations for the four scalar potentials. At that stage no direct gain 
has been achieved as one has simply exchanged solving a system of partial differential equations 
of second order for Et and Ht with solving a corresponding system for the four scalar potentials. 
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The question is therefore: can two of the four scalar potentials be eliminated in a simple 
manner so that the field vectors E and H can be represented in full by two scalar Hertz potentials 
plus, perhaps, some auxiliary functions that are required to deal with specific source terms? 

The answer to that question is that such an elimination is not possible for the general, 
linear bianisotropic medium characterized by g, £, £ and ß. Conditions on the structure of 
these constitutive dyadics must be imposed and The desired reduction is possible only if the 
constitutive dyadics are of the form 

£   =   crtI_+ (ac — at) cc — iogC x £ 

^    at      iag    0  ^ 

=        -iag    at     0       ,        £. = Iii>£>M- (14) 
V     0        0     ac ) 

All four constitutive dyadics are of gyrotropic form, and a medium of that nature is called 
a Faraday chiral medium [2]. In the dyadics (14), at and ac characterize the uniaxiality of 
the medium whereas ag is responsible for the gyrotropic or gyrotropic-like nature. The scalar 
Hertz potential formalism for homogeneous Faraday chiral mediums has been outlined in detail 
elsewhere [2]. The field representation, for all the types of mediums for which the scalar Hertz 
potential technique is then applicable, can symbolically be given by 

E = E (6, *; Jec, ue, ve , Jmc, um, vm) , (15) 

H = H (6, *; Jec, ue , ve, Jmc, um , vm) , (16) 

because usually the two potentials that get eliminated are $ and n. 
Typically, the two functions 0 and * — the scalar Hertz potentials — fulfil a system of 

differential equations of the structure 

L1e + L2V = s1, (17) 

L3e + L4V = s2 , (18) 

where the exact form of the second order partial differential operators Li, L2, L3 and L4 depends 
on the specific type of bianisotropic medium being analysed; si and s2 are source terms. In 
general, thus, G and Vl> are coupled but decoupling occurs if the medium becomes sufficiently 
simple (as happens, for example, for a uniaxial dielectric medium [3]). 

Finally, what is the significance of the functions ue, um, ve and vm that have entered the 
field representation (15), (16)? These are auxiliary functions defined by 

Jet = Vtue + V* x vec, (19) 

Jmt = Vt um + Vt x vm c. (20) 

Consequently, the four auxiliary functions are calculated from the differential equations 

Vt«,, = Vt • Jpt,    V?Vp = Vt • (c x Jpt) ,    p = e,m, (21) 

and it is immediately clear from these expressions that they have nothing to do with the medium 
as such but are simply generated by the mathematical formalism to accommodate transverse 
current densities. 

3. Discussion 

The brief outline of the scalar Hertz potential technique is concluded here with a number of 
observations; see [1] for more detailed discussions of the individual points. 
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• Not mentioned previously is the possible generalization to nonhomogeneous mediums, 
where the nonhomogeneity is of a restricted kind. Namely, all constitutive parameters 
can depend on xc(= x • c), the coordinate parallel to the distinguished axis c. Thus, the 
most general type of medium that is amenable to the scalar Hertz potential technique is 
characterized by constitutive dyadics of the form 

g(xc) = et(xc)l+ [ec(xc) - et(xc)]cc -ieg(a;c)c x I, (22) 

|(*c) = Zt(xc)l+ [Uxc) - £t(*c)]cc - i£g{xc)c x I, (23) 

£(*c) = tt(xc)l+ [Cc(^c) - Ct(0]cc - Kg(xc) c x I, (24) 

g(xc) = nt(xe) 1+ [nc(xc)-Ht{xc)]cc-ing(xc)cxL- (25) 

All constitutive dyadics have a gyrotropic structure and are spatially nonhomogeneous 
through the dependence on xc and are thus nonhomogeneous Faraday chiral mediums [2]. 

• The auxiliary functions ue, «mi ve and vm are determined by (19)-(21); it is noted that 

Jet = 0    =»    «e = 0, ue = 0, (26) 

Jmt = 0    =>    um = 0,vm = 0. (27) 

Consequently, they can be completely omitted from the mathematical formalism if the 
medium is free of sources, i.e., Je = 0, Jm = 0, or if the current densities are purely 
longitudinal, i.e., Je = Jecc, Jm = Jmcc- 

• With the fundamental system of differential equations (that for the scalar Hertz potentials) 
that needs to be solved being a scalar problem, Green functions that may be introduced 
subsequently can be of the simpler scalar rather than much more complicated dyadic 
nature. 

• The introduction of the scalar Hertz potentials is not a unique process. New scalar Hertz 
potentials 0neu,(x) and *neu'(x) may be defined via 

enetu(x) = 7i 0(x) + 72 *(x), ^neu;(x) = 73 e(x) + 74 *(x), (28) 

where 7„, n = 1,2,3,4, are arbitrary complex constants (provided 7174 ^ 7273)- 

In conclusion, the scalar Hertz potential technique provides a very successful mathematical 
method to deal with electromagnetic field problems in complex mediums. 
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Abstract 

In this paper, we study the effects of a semi-infinite matrix disperse system on the external 
electromagnetic radiation in the electrostatic approximation. With the help of our previous 
technique, we obtain general expressions for the multipole expansion coefficients of the electric 
potential for a sphere accounting for the interaction between ambient particles and the substrate. 
The polarizability tensor and resonant frequencies of a single sphere show anisotropy due to the 
influence of a substrate. 

1. Introduction 

Interest in matrix disperse systems (MDS) is stimulated, first of all, by the possibility of 
manufacturing materials with predicted optical properties. At the same time, the properties of MDS 
may strongly differ from those of the materials used for the formation of MDS [1]. In the theoretical 
studies, MDS are usually considered as infinite systems. 

In this work, we take into consideration the effects of an MDS interface. Namely, the MDS is 
considered as a half space of dielectric matrix with a plane interface separating it from another half 
space of homogeneous dielectric. The matrix is filled with spherical inclusions of different diameters 
that are randomly located. The results [2] obtained for the system of spheres on a dielectric substrate 
can be obtained from our model as a particular case. Basically, this work is a generalization of [3,4]. 

2. Theory 

We consider the semi-infinite MDS consisting of dielectric spheres with different diameters 
embedded in a homogeneous dielectric (ambient) as shown in Fig. 1. The remainder of the half space 
is filled with another homogeneous dielectric (substrate). The system is placed in the electric field 
proportional to em. Let £a {a), £s {(o) and e.(fl)) be the dielectric functions of the ambient, 
substrate and the /* sphere, respectively, and /?, be the radius of the i* sphere. 
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Figure 1 Geometry of the semi-infinite matrix disperse system. 

Let the wavelength of the external electromagnetic field be much larger than radii of the spheres 
and the distances between them. In other words, we use the electrostatic approximation. In such a 
case, the potential of the electric field is a result of the interaction of the external field with the MDS 
and the substrate and satisfies the Laplace equation 

Ay/(r) = 0 (1) 
in regions: I - inside MDS (outside of the spheres), H - inside the spheres, m - inside the substrate. We 
seek a solution of (1) in the following form: 

= -E0r+JJAbnlFbai(pl) + 2,AllFlml(p;) V'^L+'LV'i-iHMre+V1 
substrate 

Urn Urn 

(2) 

(3) 

(4) 

(5) 

Urn 

WL =-E0r = -{Eoxx + Eoyy + Eozz) 

Vf, = -E'07 = -{aE0Xx + bEoyy + cE„z) 

where Flm (r) = r"'"' Ylm (r);    Glm (?) = r' Ylm (?);      p,=r-r(;     p[ = r - r?; r, is a radius-vector of 

the center of the i* sphere ; r' is a radius-vector of the image of the center of the i* sphere. 

The coefficients Almi, A'lmi, Blmi, Clmi, a, b, c are obtained after applying the boundary conditions 

for the continuity of the potential and its normal derivative on the limiting surfaces of regions I-II and 
I-rn. This leads to the expressions 

a= — \ b = c = \, 

£„ -£, 
A™=(-i)'+mAm;^Tr; ^, = /(AJ; clmi = Almi 

2e„ 

e +e e„+e. 
and to the equation defining A, Hmi 

V bi '2m2' -i- #■ w \A     -v 
il2m2 
l,*0 

where 

^»■«^ft ^fe-öJ+t-^^TT^fe-o) 

(6) 

(7) 

(8a) 
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__^-fj_D2, 
Or     = — '■ RJ,+] ■ 

w    /1ey.+(/1+l)ea   >    ' 

H£=(-l) (2+mi 
4K 

2L+1 (L+ M)!(L- M)!) 

(2/, + 1)(2L +1)' (2/, +1)!(2Z, -1) !(2/2 +1) !(2/2 -1)! 

F^\f(-rj), i*j 

0, 1 = 7 
L = Zi+Z2.  M^n^-^F^-r)^^ 

v™ - £o«;i;^{V2cos0o5;;; +sin0oe'^5;; -sinews,;;}, 

E0 = [Eox. £0y. 
£oz) = Eo (sin 0o cos % >sin 0o sin <Po»cos 0o) • 

(8b) 

(8c) 

(8d) 

(8e) 

(8d) 

The explicit form of the function/in (6) is not needed for further consideration. 

Equation (7) can be written in the matrix form MA = V or A = M~lV, that allows us to interpret 

M"1 = [l + N]'1 (9) 
as the multipole polarizability matrix of the MDS spheres. 

2.1 A single sphere on the substrate; The resonant frequencies. 

For the single sphere on the substrate, we can obtain the polarizability tensor in the dipole-dipole 
approximation using (9) and taking into account (6) 

ä = -7cR3ea(e-ea) 

a, 0    o\ 
0    a„     0 

0     0    a± 

(10) 

where a,. =[ea+L,.(e-efl)]"1; (/ = //,!);   L, = \ 1 + /.SL_A}■ l, = ntx 
{      ''e8+ej 

*l=1 
77   - V 

L 
Jl± = /4 

x = R/a is the dimensionless radius of the sphere (a is a typical scale of length). 

Let us consider the case of Lorentz's dielectric functions and Sa = 1 (vacuum): 

(11) 

e(co) = 1 + 
cot 

ojg -co2 -iyco 
;    e.(ö)) = l + 

CO ps 

<-oo-irsoo (12) 

The resonant frequency is obtained by using the conditiona,;(cores) = oo. in our case it reduces to the 
following algebraic equation with respect to the frequency 

where 
co4 + a3co3 + a2co2 + axco + a0 = 0, 

«3=*"(r+y,) 

(13) 
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a, =-i 
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ps 

1 .2^2 
pi a0=co2
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0s +\<<o2

P +\o>2
0co2

ps + ^M» 

A solution to (13) neglecting damping (7 = 7,= °)is 

(<)2 = ^{J. + y2 ± iü^H)^} (14) 

1 
where )>,= — + y2 = 

CO, 
V 

'Os 

yVpj 

1 
+- 

2 

f      \2 

\°>P) 
^ = 3 

CO V 
ps 

K^PJ 

Particularly, for a metallic sphere on the dielectric substrate from (14), using the inequality 
(0   1(0  «1, we obtain the following approximate expressions 

ps j      p 

,2 

'P/    +li/(02 <7),(i)\2 -top,    T ., 
yy^res)  ~   /3 ^ /6~P

S 

(co%)2=co2
s+y2co I 

(15) 

%< 
for the two resonant frequencies. 

3. Conclusion 

We obtained the general expression for the resonant frequency of the model system, which is a 
dielectric sphere in vacuum on a dielectric substrate. The latter results in splitting and shifting of the 
resonant frequency depending on a direction of the external field according to (15). This allows one to 
suggest that mono-layers of small particles on a substrate possess anisotropic electrodynamical 
properties. 
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Abstract 

The problem of steady field distribution in double-strip conductor having the electric contact in 
interface is studied. The interface is orthogonal to magnetic field. The peculiarity is that 
components are hyrotropic due to an action of magnetic field. Some new approaches for this 
problem are discussed. The analysis is based on the phenomenological macroscopic equations for 
steady field including the hypothesis of existence of transverse current in every strip. The 
expression for effective resistivity is obtained as an intermediate case between two limit 
geometries of the single conductor on the one hand and disk conductor on the other hand. 

1. Introduction 

Pure aluminum is a popular material for stabilizing of large current superconductors on the reason that 
aluminum shows lower resistivity and lower magnetoresistance than copper. The combination of low 
resistive aluminum and mechanically strong and heat conductive copper may improve the recovery 
currents and total functioning of superconductor. However the enhancement of magnetoresistance due 
to Hall currents take place because the polarity of the Hall effect in aluminum is opposite to that in 
copper. Here the problem of resistivity enhancement in double strip composite conductor consisted of 
components having opposite polarities of Hall coefficients is discussed [1,2]. Composite components 
have the electric contact in the interface being orthogonal to an external magnetic field. The own 
magnetic field is neglected. 

2. Approach 

Some new approaches for this problem are developed. That is the hypothesis of an existence of 
transverse current similar to Corbino current in disk shaped samples is applied for this problem [3]. 
For the simplicity of analysis the model type of conductor is used as a conductor consisted of 
components having similar type of conductivity and resistivity tensor including the fact that one of 
component is usual aluminum conductor with hole type of conductivity (Al+) but another component 
is a hypothetical quasi-aluminum conductor having electron type of conductivity (Al"). As a result the 
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conductivity and resistivity tensors of these components are the same in modulo excluding of diagonal 
linear on magnetic field components being opposite in sign. 

Fig. 1 Composite double strip conductor and its arrangement in an external magnetic field. 

Double strip composite conductor model is displayed in Fig. 1. The conductor is uniform along 
transport X-direction and a primary electric field is applied along this direction. The magnetic field is 
oriented along Z-axis. The strips of conductor have the same dimensions. In steady state the equations 
that govern the transport process and transverse Hall mechanism generation are 

Vx£ = 0;  j = oE;  E = pj (1) 

Here E is electric field vector, j is current density vector, a is conductivity tensor being equal to the 
reciprocal of resistivity tensor p. In this task 

r xx       r xv       r 

P = r yx 

r zx 

r yy       r yz 

Pzy        Pzz 

;  p(Al+) = p+;  p(Al") = p-; 
(2) 

yx -p+
xy=RB;   p-yx=-p-xy=-RB 

All other components of p+ and p" are the same order of resistivity in zero magnetic field. The basic 
suggestion is that primary transport electric field component Ex is uniform through the double strip 
conductor. The total problem of this approach is to define the effective resistivity of composite 
conductor pef being the coefficient of proportionality between electric field Ex and averaged transport 
current density through strips </>. 

Peff=- 
<Jx> 

(3) 

3. Calculation and Results 

On the base of tensor relations between current density and electric field components it is clear that the 
conditions for an existence of transverse current of Hall nature take place. Really the electric Hall field 
due to gyrotropy of one component is shorten by conducting medium of another component. 
Respectively the electric Hall field of another component is shorten by the conducting medium of the 
first component. So for the any closed counter in the plane ZX (for instance abed, Fig.l) the 
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summarizing of Hall electromotive forces takes place and as a result the circular current along this 
counter exists. The circular current is similar to Corbino current along closed circular counter but the 
difference is that the current under discussion is generated in the counter being parallel to magnetic 
field but Corbino current is generated in the counter being orthogonal to magnetic field. Of course the 
transverse current is zero if the components of double strip conductor are the same in conductivity or 
under conditions of magnetic field absence. Using an integral form of equation for electric field 
circulation along closed counter of double strip conductor it is possible to get the expression for the 
magnetostimulated current. As a result the transverse component of this current is 

Jy=- 
yx 

ryy   '   r zy 

(4) 

Here b is a width of strips, z is any coordinate defining the distance from interface. In this expression 
the mechanism of involvement of carriers along z-direction under an action of external magnetic field 
is neglected because the level of a of current generation along z-direction is very small in comparison 
with the scope of transverse and transport current. Actually the Hall components of resistivity tensor in 
strong magnetic field are much higher of all other components and such an approximation is rather 
valid. Following equation (4) the values of current jy and transport current jx are the functions of 
geometric parameters b and z. When the ratio zlb is large the transverse current is small and for the 
counter having small ratio zlb the transverse current has definite non-small magnitude. For comparison 
Corbino current for aluminum conductor under neglecting of involvement of charge along z-direction 
is equal 

.     _       r yx    ■ 
Jy Jx 

Pyy 
(5) 

This equation takes place for the thin disk samples placed in coaxial magnetic field which acts on 
radial carrier movements between current contacts on inner and outer diameters of disk. Taking into 
account tensor relations between electric field and current density vector the connection for transport 
current density jx distribution with an electric field component along transport direction Ex can be 
obtained 

1 1 

b 
xyryx 

1 + ^~ 

(6) 

Oyy(Pyy- + P1y) 
z 

Applying the procedure of averaging of transport current through the thickness of strip the final 
expression for the effective resistivity is the next 

Peff=- 

1- 
t 

1 + 
(p V rxx 

RB 

-i-i 

■ + 1 

(7) 

Here the diagonal component of resistivity tensor p^ may be not only constant as in former 
suggestions but this component is allowed to have more complicated behavior close to real that of 
polycrystalline aluminum when not very strong linear dependence on magnetic field takes place. 
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Fig. 2 Effective resistance as a function of ratio bit at different B, T: 3(1); 5(2); 10(3); pxx = 5-10" Q.m 

In accordance with the Eq.(7) the effective resistivity is a function of ratio b/t where t is the thickness 
of strips. So for one limit case when b/t -> 0 the effective resistivity of composite conductor is equal to 
diagonal component of resistivity tensor p«. Physically it means that the main part of current flows far 
from the conductor interface so in accordance with the principle of the minimum of entropy generation 
the systems trends to such a state that ensures the minimal resistance at definite level of current 
flowing through cross section. The transport current density jx and transverse current density^ are zero 
near interface of conductor. Other limit case when b/t -> °° means that the thickness of every strip is 
so small in comparison with width that the process of shortening of transverse electric Hall field of 
every component with each other is a single process that can ensure the potentiality of steady electric 
field. As a result the transverse Hall current is generated and the path of carriers along transport 
direction is occupated with transverse drift so that on the unit length on path along transport direction 
the charge carrier has time to drift in transverse direction and the transverse path is of Pyjp^ higher 
than the path in transport direction. As a result the collisions of charge carriers with crystal structure 
imperfections generate a respective resistivity being higher of that mentioned above. For this second 
limit case the effective resistivity trends to the resistivity of Corbino that. Essentially at more realistic 
conditions of tlb ratio magnitude some interval case of resistivity have to take place (Fig.2). 

4. Conclusion 

The accepted expression for effective resistivity is rather idealized one as it operates with model 
composite conductor. However the approaches developed for this task here seems to be rather reliable 
as these allow to construct a real physical picture under the presence of opposite types of 
magnetostimulated gyrotropy in composite conductor consisted of double strips. The father steps in 
the study of this problem should be done in the direction of understanding the averaging procedure 
along transverse direction, the analysis of non-symmetric task on geometry and on conductive 
properties of components. The last thesis is adequate to the situation of real double-strip composite 
conductor consisted of aluminum and copper components. 
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Abstract 

Charge transfer is discussed for the case when gyrotropy parameter (Hall coefficient) 
varies along transport ^-direction and inverses its sign. This situation takes place in 
contacts of the serially joined materials having electron and hole types of conductivity. 
Spatial inhomogeneity of conductivity and inversion of Hall coefficient sign are analyzed 
in terms of electric potential and current density distribution. It is shown that under 
inhomogeneous magnetic field the steady current skinning takes place in plate sample. 

1. Introduction 

Metal heterocontact between the conductors having electron and hole types of conductivity (for 
example contact similar to conjunction of Al and Cu plate sample) is an example of bianisotropic 
medium especially under the action of an external magnetic field. Bianisotropy is a result of opposite 
signs of Hall coefficients in Al and Cu. As a result such a contact has a transformation of conducting 
properties from the electron type to the hole that along transport direction and may be represented as 
an inhomogeneous medium having gradient type of conductivity. The inhomogeneity is not 
determined with only the electron structure via contact. The magnetic field itself is a reason of 
magnetostimulated inhomogeneity of conductivity and respective the potential picture rearrangement. 
As a result the current density redistribution through cross section of sample takes place [1, 2]. So the 
excessive resistance connected with current line redistribution is a result of conductivity 
inhomogeneity stimulated with magnetic field and heterogeneous electron conducting properties in 
such a conjunction. In this paper the double type of electric conductivity inhomogeneity stimulated by 
bianysotropy and by magnetic field is investigated. In other words the processes taking place in metal 
heterocontacts placed in inhomogeneous magnetic field are modeled and analysed. 

2. Experimental and Theoretical Approach 

The procedure of modeling of magnetic field inhomogeneity is based on the method of curving of 
current lines so that the normal local component of magnetic field has a variation along the transport 
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direction in accordance with definite law. For simplicity the heterocontact under the investigation have 
been chosen as a symmetric one consisted of materials not Al-Cu but A1+-A1" type. Here Al is an 
usual widely used aluminum of hole type of conductivity and Al' is an farfetched electron analogue of 
Al+ which has an electron type of conductivity in magnetic field. That is Al" has an electron type of 
conductivity so that its Hall coefficient R is equal -\R\ instead of R for usual aluminum. So Al+ and Al" 
type components used in experimental modeling process have the same electric resistivity tensors 
excluding the sign of Hall coefficient. Both components are realized on the base of usual aluminum. 

3. Results and Analysis 

In experiment two types of magnetic field inhomogeneity in bianisotropy contact medium are 
modeled. The first type of magnetic field structure is represented in Fig. 1-a) and the second type of 
magnetic field spatial structure is represented in Fig. 1-b). 
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Fig. 1    The topology of magnetic field: a) The inversion type of inhomogeneity; b) The symmetric 
type of inhomogeneity. 

L, mm 

Fig. 2 The potential picture along sample length on opposite sides (solid and dashed lines) in 
inhomogeneous magnetic field: a) Field topology Fig. 1-a) where the maximal field B, T: 0.14 
(diamonds), 1.4 (triangles), 4.3 (squares), 7.1 (circles); b) Field topology Fig. 1-b) where the 
maximal field is 7.5 T. 
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Here the potential distribution has been measured on opposite sides of sample in accordance with 
scheme of potential probes arrangement. Electric field potential picture is represented in Fig. 2 where 
the potential distribution on opposite Hall sides is shown along sample length L in contact region and 
close to it. It is interesting that for inversion type of inhomogeneity of magnetic field the potential 
picture is symmetric respectively zero field point. The strong and weak spatial dependence of potential 
on L takes place. For symmetric type of magnetic field inhomogeneity the potential dependence on 
opposite sides is different on behavior. One side has abrupt jump of potential in contact region but 
another side shows very weak dependence on coordinate along transport direction including the 
contact region. To analyze this behavior the discontinuity conditions for current density have been 
used to write the equation for electric potential (p. Taking into account that the thickness of samples 
directed along the magnetic field is rather small in comparison with other dimensions the 
approximation had been used that the current flow picture does not influence on potential distribution 
along z-direction. The carrier motion along magnetic field is neglected and the electric potential is not 
a function of z-coordinate. So for the two-dimensional geometry the potential equation is 
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Here (p'x , cp"x , (...)'x and so on are the derivatives of respective order, ß' = dß/dx ; ß= an, co is 
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Here a0 is the conductivity in zero magnetic field. The component p^ = 1//J2 + alß has such view 
after taking into account of the existence of a layer of open electron orbits. The term responsible for 
this layer is alß which must be accepted in modulo. Following such a presentation the 
magnetoresistance of aluminum p^lladl+aß) that is has not very strong slope in linear dependence 
on magnetic field because the parameter alß describing the quantity of open electron trajectory is 
rather small. Respectively the magnetoresistance p^ for copper may be represented as the same 
expression where the linear Kapitza law takes place because the same parameter describing the width 
of open electron trajectories is closed to unit. The separation of variables allows to get the total 
decision of equation for some particular cases: 

Htf aß 
-dx exp ß' 

1 

l+aß y + c, (3) 

Here this expression is valid when ß'/(l+aß) = const. So for the limit case a->0 one can obtain the 
potential distribution in approximation of free electron gas and at nonzero a the potential picture for 
aluminum and copper separately and for the contact of these materials can be obtained. Following 
Eq.(3) the potential dependence on sides of sample placed in inhomogeneous magnetic field has strong 
(at y = b, where b is the sample width) and weak (at y = 0) dependence on coordinate along transport 
direction. The direction of magnetic field gradient plays very important role in the potential 
distribution on the reason that magnetic gradient participates in the governing of transport process via 
strong exponential dependence on transverse y-coordinate. The transverse dependence of potential on 
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v-coordinate is much higher of that along transport x-coordinate. Here under inhomogeneity the 
correspondence between transport electric field and Hall field is similar to homogeneous situation. So 
for particular case of aluminum type conductor having very small width of elongated trajectories the 
potential picture and respective current density distribution along transport direction are: 

<p = Cljß
2dxexp{ß'y)+C2;  jx = Cß'expiß'y);   ß'= const (4) 

Following this expression the potential dependence on coordinate in transverse magnetic field is rather 
complicated than that belonging to the homogeneous magnetic field actions which is (p = C(x+ßy). 
Respectively the steady current skinning takes place. Namely near one of side the current density is 
large and near opposite side the current density is small. Magnetic field gradient inversion transforms 
the potential picture and the current skinning center to opposite side. This type of dependence takes 
place in Fig.2a where the effective inversion of magnetic field gradient sign occurs near zero point 
because the conductivity is opposite on Hall effect. For Fig.2b the dependence of (p is governed with 
the effective magnetic field gradient which has the same sign via total sample. The opposite type of 
conductivity near zero point transforms the effective magnetic actions and the abrupt increase of 
potential corresponds to an action of exponent in Eq.(4) whereas the weak potential growth on 
opposite side is a result of decrease of exponential include. As to copper type conductor in 
heterocontact (experimental results we have no yet), the analysis of Eq.(3) allows to conclude that the 
potential picture redistribution due to double inhomogeneity also can be estimated. So for copper type 
conductor the width of layer of open trajectories is to be taken into account and the expressions for the 
potential dependence is: 
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The analysis shows that for copper type conductor the potential redistribution due to inhomogeneity is 
not so high as in aluminum type conductor. The reason of this is the large number of elongated orbits 
on isoenergetic surface. The carriers of these orbits are not so free to drift in gradient magnetic field 
and as a result more complicated movement of carriers leads to more weak degree of electric potential 
and current skinning. 

4. Conclusion 

The method of modeling of magnetic field inhomogeneity via curving of current lines allowed to 
create a physical picture of current flow through the aluminum based heterocontact. Aluminum based 
heterocontact consists of pure aluminum sample have been bent in such manner that an effective 
magnetic field action is equal to the presence of two heterocomponents having opposite Hall 
coefficient. Double type of inhomogeneity due to heteroconductivity in magnetic field and due to 
magnetic field action itself generates current density redistribution via contact region. This 
redistribution depends strongly on the topology of magnetic field and the excessive heat generation 
due to current skinning can be taken into account on the base of data have been analyzed here. 
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Abstract 

The research of optical activity in some uniaxial crystals was done based on the spectropolarimeter 
method. The measurements were conducted on the plates cut perpendicularly to and parallel to 
axis in visible spectrum range. Dispersion of all components of gyration pseudotensor for a 
number of uniaxial crystals was determined for the first time from these measurements. The 
absorption spectra and circular dichroism of crystals of gallogermanate Sr3Ga2Ge40i4, undoped 
and doped by chromium were investigated. 

1. Introduction 

The special place among optical properties of crystals occupies a phenomenon of optical activity, or 
gyrotropy [1,2]. Two circular polarized waves propagate in absorptive isotropic media and in 
anisotropic crystals in the direction of optical axis. That results in rotation of the plane of polarization 
and circular dichroism. In directions different from optical axis two elliptically polarized waves 
propagate. In that case it is possible to talk about elliptical birefringence and elliptical dichroism. The 
optical activity is described by a gyration pseudotensor of the second rank, (a prefix pseudo we will 
omit). By measuring rotation of the plane of polarization it is possible to determine only one 
component. Other components can be determined if measurements are conducted on plates cut in 
directions different from optical axis. That is not a simple problem, because it is necessary to 
determine small components of a gyration tensor on a background of rather large birefringence. 
Therefore to the present time very few crystals are known, for which all components of a gyration 
tensor are determined even though these values are relevant characteristic of crystals. 

The purpose of the present article is the research of an optical activity and also determination 
of components of a gyration tensor in some uniaxial crystals of a different symmetry class in 
directions different from direction from optical axis. 

2. Theoretical Relations 

All values describing optical properties of crystals are complex in absorptive gyrotropic crystals: 

Ni.2 = n,,2 + iKu, G = G' + iG", k = k' + ik", (1) 

where Ni, N2- complex refractive indices, ni n2 - refractive indices, K] , K2 - absorption coefficients, G 
- scalar parameter gyration, which is determined by components of a gyration tensor and depends on a 
symmetry of crystal and propagation direction of light in crystal, ellipticity of eigen waves 
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propagating in crystal (b/a = tgy) and angle of non-orthogonality (ß) are determined from relation 

[2'3]' sin2Y=2k7(l+k'2 + k"2),tg2ß = 2k7(l -k'2-k"2). (2) 

In transparent crystals ellipticity of eigen waves is equal k = k'. 
In uniaxial crystals in direction parallel to optical axis eigen waves are circular polarized and we 

have ... 
k' = ±l,k" = 0,G = g'33 + ig"33. (3) 

Component of gyration tensor g'33 is calculated from measurement of an angle p of rotation of 
polarization plane on a spectropolarimeter: g'33 = pWrc. Component g"33 is calculated from a relation 
g"33 = AE 5ino/47tc, where, Ae = AD/d, AD is optical density recorded on dichrograph, c is concentration 
of dope, d is thickness of investigated plate, X is wavelength of incident light. 

In directions perpendicular to direction of optical axis in uniaxial crystals G= g'n + ig"n, the 
values k' and k' are small and they are equal [3]: 

k' = [g'„8n, + g"„8K,]/[2 n0(8n,2 + 8K,
2
)], (4a) 

k" = [g"„8n, - g,
11G'8K1]/[2 n0(8n,2 + 8K,

2
)], (4b) 

where 8n,= (n2 - n,) is linear birefringence, 8K, = (K2-K,) is linear dichroism, 8nc= g'ii/n0 is a circular 
birefringence, 8KC = g"n/n0 is a circular dichroism, n0is an average value of refractive indexes. 

In directions, different from optical axis we can obtain the most informative expressions for the 
azimuth % of passed light in cases, when the incident wave with azimuth a is linearly polarized in 
direction parallel to (II) (a = 0°) or perpendicular to (_L) (a = 90°) principal plane (that is plane, in 
which optical axis and normal to the surface are located). Unlike inactive crystal in these cases the 
light propagated through a plate is not linear but elliptically polarized with azimuth %. When k' and k" 
are small we have for azimuth of transmitted light %l±: 

tg2jtiijL = - 2 [e±5 k' sinA ± k"( 1 + e±8 cosA)], (5) 

where A = 27td 8n A, 8 = 2rcd 8K,M.. 
The values of tg2x± * tg2%n for different a wavelength of an incident light and they oscillate, 

since the periodic functions sinA and cosA change. It is possible to measure the azimuth of transmitted 
light Xn,i on a spectropolarimeter for different wavelengths of an incident light. Thus it is necessary to 
know values of a birefringence and dichroism, which one can be calculate from the same experiment. 
In most cases k'> k", then it is possible to consider that 

tg2xn,x = - 2 e*5 k' sinA. (6) 

In transparent crystals the value 8 = 0. Then expression (5) becomes simpler. In these cases envelope 
of a curve of oscillating functions i\\ = X± and we can determine the value k' and accordingly to 
calculate component g',, = 2k' n0 8n,. 

3. Determination of Components of Gyration Tensor in Uniaxial Crystals 

We conduct the research of an optical activity of the following crystals: undoped and Cr-doped 
Sr3Ga2Ge40,4 and also KH2P04(KDP), NH4H2P04(ADP), K2S206, SrS206- 4H20. 

The crystals Sr3Ga2Ge40,4, K2S206, SrS206- 4H20 and Sr3Ga2Ge4014 have symmetry classes 32, 
3 and 6 accordingly. Crystals of these classes of symmetry can rotate plane of polarization. The 
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investigated plates were cut parallel to and perpendicular to the c-axis of crystals with dimensions 
10x10 mm2 with thickness varying from 0.5 to 1.5 mm. 

We conduct measurements of relations %n,i (X) for all investigated plates on spectropolarimeter 
[4] using method, described in [3]. The dependence of azimuth %iu for crystal Sr3Ga2Ge40i4:Cr is 
shown on Fig. 1. According to relation (6), enveloped curve of oscillations is determined by e±8k'. 
After determination of dispersion of an ellipticity of eigen waves k' and value 8 it is possible to 
calculate dispersion of components of a gyration tensor g'n. In order to calculate the value g'n except 
for measured values k' it is necessary to know values of birefringence, average refractive indices and 
value 8. Values g'33 and g'n for crystal Sr3Ga2Ge4014 are shown in Fig.2. 
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Fig. 1 Dependence of azimuth of transmitted 
light % from wavelength X for a plate 
cut from a crystal Sr3Ga2Ge40i4: 
Cr3+parallel to optical axis for two 
polarization of incident light (d = 0.96 
mm) 

Fig. 2 A dispersion of components of gyration 
pseudotensor g'n and g'33 for crystal 
Sr3Ga2Ge4014: Cr3+ 

Absorption spectra for crystals Sr3Ga2Ge40i4 :Cr were measured in the range 250 - 800 nm. In 
absorption spectra of these crystals three bands connected with ions Cr3+ in octahedral coordination are 
found. The circular dichroism (CD) spectra were studied in the range 250 - 800 nm on dichrograph, 
constructed and made in Institute of Crystallography of RAS [5]. In order to calculate components of 
g"33 correctly, it is necessary to take into account concentration c of doped Cr. Since value c is not 
determined precisely, we present only dependence Ae of crystal Sr3Ga2Ge4Oi4 :Cr on Fig. 3. It is found 
that CD is present in all three broad absorption bands of spectra and in the narrow R-line (~ 700nm) of 
Cr3+ ions. In spectra of circular dichroism of doped crystals the bands of absorptions connected with 
ions Cr3+ were also found. Besides that in spectra of circular dichroism the additional bands are 
observed. These bands are not associated with ions Cr3+. In spectra circular dichroism of undoped 
crystals the same bands CD were also found (curve 2). Probably all bands observed in the spectra of 
circular dichroism of undoped crystals can be attributed to defects generated during crystal growth. 

Crystals KDP, ADP and K2S2C"6, SrS206- 4H20 were transparent in visible range of spectra. The 
crystals KDP and ADP belong to a symmetry class 42 m and do not have optical activity in the 
direction optical axis of a crystal. However, in crystals of given symmetry class the gyrotropy can 
appear in directions different from optical axis. In order to determine the components of gyration 
tensor the plates were cut in crystallographic directions X and Y. 

Dependences of azimuth X\u were obtained for these crystals. Now we have X\\ = %±- From these 
dependences we calculated dispersion of components g'n, which is shown in Fig. 4. Research was 
done for KDP crystals and ADP crystals on plates X and Y - cut of identical thickness. IN this case 
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azimuths % (k) have opposite phases. Therefore g'„ = - g'22. This is how it should be in crystals of this 
symmetry class. The value of component of gyration tensor g'„ for KDP crystal is larger than in ADP 

crystal. 
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Fig. 3 Circular dichroism spectra of undoped 
crystal Sr3Ga2Ge40 ]4: (curve 1) and Cr- 
doped crystal Sr3Ga2Ge4Oi4 (curve 2) 

Fig. 4 A dispersion of components of gyration 
pseudotensor g'n for crystals: 1- 
KH2P04(KDP), 2-NH4H2P04(ADP) 3 - 
K2S206, 4 - SrS206- 4H2Q 

The component g'n for KDP crystal was determined in [6] for two wavelengths X = 462 nm and 
506 nm. The values g'n, obtained in this article is larger than these obtained by us. At the same time in 
more recent article of the same authors [7] values of g'n are much less than values obtained by them in 
[6] and values obtained by us. 

Dispersion of gyration tensor components gn is obtained for crystals Sr3Ga2Ge4Oi4, KDP, ADP, 
K2S206, SrS206 4H20 for the first time. 

The absorption spectra and circular dichroism of gallogermanate crystals Sr3Ga2Ge40i4, 
undoped and Cr-doped are investigated. 
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Abstract 

In this work the polarization absorption spectrum of homeotropically oriented comb-shaped liquid 
crystal polymer (LCP) film interposed in the electrooptical cell was investigated. The optical 
parameters of electrodes and polymer were estimated from the observed absorption spectra of the 
cell with and without polymer film using the method of interferometric extrema envelopes. This 
method enabled us to re-establish the true polarization absorption spectrum of the polymer. For 
this purpose the refractive index dispersion data of the substrates and the polymer obtained by 
independent investigations were used. From the dichroic ratio for the absorption band at 
A = 405 nm the order parameter 5 was estimated taking into account the effects of local fields. 

1. Introduction 

Recently the oriented liquid crystal (LC) and liquid crystal polymer (LCP) films have occupied an 
important position in modern technologies and have been widely used as a material of integral optic 
elements, in optical recording and optical information systems including the polarization holography 
also [1-5]. 

The important characteristic of the oriented films is the orientation degree of the anisotropic 
molecules in LC films or mesogenic groups in LCP films. One of the methods of orientation degree 
estimation is the measurements of light absorption anisotropy (optical dichroism) of the polymer itself 
or dye absorption bands. The method is widely used for the films with planar orientation when the 
crystal optical axis is situated in the film's plane [6,7,8]. For such film orientation the dichroic ratio is 
easily obtained as the absorption coefficients ratio for the light polarization parallel and perpendicular 
to the crystal optical axis. However the producing of sufficiently large homogenous LCP films with 
planar orientation is connected with essential technical difficulties. Therefore for LCP films the 
homeotropical orientation is used when the crystal optical axis is directed perpendicular to the film 
plane. In this case for dichroic ratio estimation it is necessary to use the oblique polarized light 
incidence for the absorption coefficient measurements in the samples under study. To obtain the 
homeotropical orientation of the LCP sample the latter is placed in the electrooptical cell. The 
electrooptical cell is a multilayer system (sandwich) consisting of two substrates with thin 
electroconducting semiconductor films (electrodes) between which a thin layer of the polymer 
investigated is placed. When the oblique beam incidence is used the observed polarization absorption 
spectra are depending on Fresnel reflection losses at all layer boundaries of the cell and besides that on 
the absorption of these layers. The problem is reduced to LCP absorption coefficient estimation from 
the experimentally observed transmission spectra for the cell with and without the polymer film 
investigated using the light beam with different polarization. 
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2. The Theory of Method 

Let us consider the case of Isotropie absorbing film (electrode) placed between two isotropic 
transparent infinite dielectric layers (air - glass). If the refractive indices of dielectric, the complex 
refractive index of the electrode film and its thickness are known, the energetic transmission T and 
reflection R coefficients may be calculated from the expression, formulated in [9] both for the case of 
TE wave (s - polarization ) and TM wave (p - polarization). In our case the thickness of the dielectrics 
is finite and the cell as a whole is a symmetrical system - air (1) - substrate (3) - electrode (2) - air (4) 
- electrode (2) - substrate (3) - air (1). In this case the transmission Io of the cell without polymer may 
be expressed by the following formula [10]. 

I0 = J0
2 = (T34T31f /(I- R34R3,f , (1) 

where the transmission T3, and reflection R3i are calculated for the infinite layers [9] and T34 and R34 

are the Fresnel energetic transmission and reflection coefficients on the boundary of the substrate 
material (glass (3) - air (4)). As the calculations show the denominator in formula (1) differs from the 
unity by « 1% and therefore later on we shall neglect this difference. Also we shall assume the 
absorption in the electrode to be sufficiently small to neglect the k2 quantity compared with k in the 
expression of electrode complex refractive index n2 = n2(l-ik). In this case the quantity J0 may be 
transformed to the following form: 

J0=(64a2b2c2exp(-y2)/[(a+cf(b+c)2exp(Y2)+(a-c)2(b-c)2 (2) 

where a = cos i0 (io - external angle of light incidence on the cell); b±
2 = n2 - sin i0; b // = bx / n3 (n3 

is the refractive index of substrate material (glass)); c± = n2 - sin i0; c\\-c±/n2 (_L is s - 
polarization and 11 is p - polarization). The absorption in the electrode is defined by the expression 
y2=(pn2

2 /cj2, where (p =47vhc±/X(h is the electrode thickness, A - light wavelength). So for any angle 
i0 (if the parameters of substrate n3, electrode n2 and y2 and its thickness h are known) we can calculate 
the relative intensity of the polarized light transmitted though the cell. However the inverse problem 
solution - that is the estimation of the optical characteristics of substrate and electrode from the 
experimentally obtained transmission spectrum - is related to certain difficulties. In general case for 
the absorbing substrate and absorbing electrode this problem has not any analytical solution. For the 
approximate solution the most known method is the spectrophotometrical one of interferometric 
extrema envelops, which for the first time was suggested for transmission spectra by Valeev [11] and 
elaborated by Rakov [10]. The reflection spectra was worked out in detail by Filippov [12,13]. 

The point of the method consists in employing the interferometric extrema envelops for 
obtaining the wavelengths and light intensity for the maxima J+ and minima J. of the experimental 
quasi-periodic spectrum. The extremum arises at the condition (see (2)) cos (p = (-If (m - being an 
integer). In this case the expression (2) may be essentially simplified. Multiplying the numerator and 
the denominator by exp(-Y2) and extracting the square root we see that the denominator is a product of 
two perfect squares. Further introducing the denomination 

A' = (I+(a+b)f25/8ab (3a) 

A" = (I.(a+b))°-25/8ab (3b) 

F = (a+b)+(A '-A ")/2A 'A ", (3c) 

we obtain: 

c = 0.5(F) + (0.25F2 - ab)0'5 (4a) 
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exp(y2) = [c-A '(a-c)(c-b)] /A '(a+c)(c+b), (4b) 

where the values c and exp(y2) are defined only for the extrema wavelengths. The thickness of the 
electrodes h may be calculated from the condition 4h = m,A; / c,. To obtain the values c(X) and y2(X) 
for all wavelengths it is possible to use the dispersion dependence model of Chandrasekhar-Drude: 

n2
2 -1= AX2 / {X2 - Xi) (5a) 

n2
2k = Xcy2 /4nh = BX3 / (X2 - XQ

2
)
2
. (5b) 

Having the values of h and n2k for the extrema, A,B, and Xo parameters may be obtained and functions 
c(X) and y2(X) accordingly. 

Let us consider the second part of the problem - that is the absorption indicatrix components 
estimation for the LCP investigated. For this purpose we shall transform the expression (2) for the case 
of the cell filled with LCP 

JLcp=[64adb2c2exp(-y2)exp(-YLCpf5] / [exp(y2)(d+c)2(b+c)2+exp(-y2)(d-cf(b-c)2 + 

+2(d2-c2)(c2-b2)cos(p](a+bf (6) 

where the d parameter was obtained from the independent measurement N0, Ne [14,15]. This parameter 
is characterizing LCP as an uniaxial crystal and its value depends on incident light polarization [9,16]: 
d± = (N0

2 - sin 2i0f'
5 (for s - polarization) and d\\= (n2 - sin2i0)°'5 / n2 (for p - polarization), where 

N0, Ne are the principle refractive indices of LCP, and 

n/= NB
2+l(N2-N2)sin2io1/N2. (7) 

Dividing the equation (6) on (2) we solve the resulting equation relatively y2 for both types of 
incident light polarization. Further, using the relation yLCP = aLCphLcp we obtain the values a/"*' and 
a if8' . Extracting the imaginary part from the Fresnel equation [9,16] for the uniaxial absorbing 
crystals we obtain absorption ellipsoid principal values a± and a if .The ratio of absorption indicatrix 
principal values (for maximum of absorption band) N = a\f / a± is termed the dichroic ratio. 

3. Experimental Results and Discussion 

The object of investigation in our work was the aery I copolymer containing easily oriented in the 
external electric field cyanbiphenil mesogenic groups. The structural formula and some optical 
properties of this LCP are presented in [14,15]. 

After the statistical processing of the quasi-periodical transmission spectra of the empty cell 
recorded for TE and TM waves at i0 = 0 and /o=45° the following electrode parameters were evaluated 
by the above mentioned technique: 
A = 1,79±0,01; B = 0,000810,0005; X0 = 0,219+0,003 iim and h = 0,45 |xm.. From the transmission 
spectra of the cell with the polymer, using the data of the refractive index dispersion obtained in 
[14,15], the true polymer absorption spectra aif(X) and af(X) were re-established. The both spectra 
have shown a pronounced maximum in the vicinity of A?=0,405 nm. For this maximum the dichroic 
ratio N = 2,67 was obtained. As it is known [6,7,8] the orientational order parameter S is related to the 
effective dichroic ratio value N* by the following expression S = (N* - 1) / (N*+2). The dichroic 
effective value differs from the true one by the correction factor g, define by the local field model 
chosen [17]. For the simplest Vuks-Chandrasekhar-Madhusudana model [6] g = N/N0. In this case 
N*=gN = 3,32 and hence S = 0,44. This value of parameter S essentially differs from the value S 
obtained by us formerly [15] for the same polymer from the refractometrical data. This unexpected 
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result has motivated us to reconsider the method of refractive index temperature dependence 
approximation used in [15]. These new researches carried out have led to the new value of S = 0,42 
[18] which is satisfactory coinciding with the value obtained from the dichroic ratio in the present 

investigation. 
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Abstract 

Operator formalism is employed for introduction of effective constitutive tensors of bian- 
isotropic multilayered periodic strucures in a wide wave band. It is based on the approxi- 
mate calculation of the characteristic matrix of the unit cell of the system with the help of 
Campbell-Hausdorff series [1]. In this paper we show that effective constitutive tensors can 
be correctly introdused for a greate variety of mediums. 

1. Introduction 

One of the most fruitful approaches in the theory of propagation of waves in multilayered media is 
the operator formalism based on the use of intrinsic representation of vectors and operators (see 
[2], [3], for example). It enables one to find compact coordinate-free formulae for very complex 
systems and to avoid the cumbersome calculations required by usual components techniques and 
caused mainly by the necessity of adopting a different coordinate system for each different layer. 

In this paper we use this formalism to find the effective constitutive tensors of the medium 
formed by a periodic set of plane bianisotropic layers with different thicknesses /„ (n = 1,2,... JV, 
where N is the number of the layers which constitute the unit cell). 

In what follows we assume the constitutive relations 

D„ = enEn + anHn, Bn = /3nE„ + //nHn, (1) 

for layer's materials, where en,/in and an,ßn are the dielectric permittivity, the magnetic per- 
meability tensors and the pseudotensors of gyrotropy, respectively. These equations can be also 
written in matrix form, as 

(£)-«■(£)■ «■-(£:)■ (2) 

If £n, Pn, Oin, ßn (n = 1,2,... JV) are complex nonsymmetric tensors, then equations (1) or (2) 
describe an absorbing anisotropic and gyrotropic medium, subject to the influence of external 
electric and magnetic fields and elastic deformations. 

The main purpose of this paper is to introduce the medium's effective material tensors, 
feasible for the use in the wide wave band. 
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2. Effective Constitutive Tensors in Wide Wave Band 

To treat this problem we use here an approach to introduce the effective material parameters, 
proposed in [4]. It is based on the approximate calculation of the characteristic matrix P of the 
unit cell of the system with the help of Campbell-Hausdorff series [1]. 

The characteristic matrix P = exp (ik0lM) of a layer with thickness I relates the six-vectors 
(E,H)T at the layer boundaries (k0 = w/c). The matrix M can be written in the form [5] 

M = TqQx{n-Bx)Tg, (3) 

<2x = , Bx = (4) 

T„ = £-Ma,  S = Afg = 1i;lQ{K- By).. 

where operator Tl~l is the inverse to the operator 

(5) 

Kg-[ßgl      /JLql 
£ql (6) 

£g = qeq, pg = q/uq, ag = qaq, ßg = q/?q, 

q* is the antisymmetric dyadic dual to the unit normal of the boundaries q, b is the tangential 
component of refraction vector m [2],[3], q ® q is the dyad and 1 is the unit dyadic. 

In the case of a medium formed by two alternate layers with different thicknesses /„ and 
different sets of tensor constants en,/j,n,an,ßn (n = 1,2), the characteristic matrix of the unit 
cell has the form 

P = exp (ik0LM) = exp (ik0l2M2) exp {ik0hMi), (7) 

where L = h + h is the system period and M is some matrix. This matrix can be expressed in 
terms of the layers parameters with the help of Campbell-Hausdorff series as follows 

M   = 
■Kh = /iMi + /2M2 + */i^ [M2, Mi] - (8) 

where /„ = ln/L is the relative thickness of the n-th layer, ££L=i /„ = 1, [M2,My] = M2Mi - 
MiM2. If 7r/„/A < 1, then the series (8) quickly converges and one can drop the remainder of it 
after the fc-th term. Here for the sake of simplicity we have limited our consideration by three 
terms of series. The first and the second terms correspond to the long wavelength limit. 

The tensor parameters A,B,C,D can be directly used for the analysis of the wave propa- 
gation in the considered system, for example for finding the reflection and transmission tensors 
[3]. 

For the sake of simplicity we assume q to be the left and the right eigenvector of each of 
the tensors en, //„, a„, ßn (enq = q^n = e^q, • • •) • Besides, we shall use in (7)-(8) the matrices 
M/,Mi/,M2/, describing the transformation of the tangential components of the field vectors, 
instead of M,Mi,M2, describing the transformation of the full six-vectors. In the majority of 
applications this would be ample. Under above-mentioned conditions: 

Mm = Qy 7?  T?T 

Kn    ön    nq r, (9) 
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r i o 
o / , I = 1 - q ® q, 

where TZ^q is the transposed operator, a = bqx, 

where 

Ai 

A(a) = AL 

K2IQX-^ 

[M2I,M1I] = Qx[K21-A(&)}T, 

n2l=n2Qxnl-1llQx'll2, 

+ a(8>a       0 
0       a<g»a 

a(8)a       0 
0       a(S>a 

*i/Qx^ 
02 

, AÄ = 
02 öl 

(10) 

(11) 

(12) 

(13) 

(14) 

smdKni = TnnT,n= 1,2. 
For the correct introduction of permittivity, permeability and gyrotropy tensors of the 

medium equivalent in the considered approximation to the system at hand, the matrix Mj 
is bound to depend on the effective tensors, angle and plane of incidence in the same way as in 
the homogeneous medium. From (8)—(13) it follows that these conditions are met if A(a) = 0. 
In this case we can find the effective material tensors in the same way as in [6] 

n = £ 

ß :M /ifti + SiHi + *, *T*«) T + KgQ, 

with 
,-i 

^ = (/i^r9
1+/2^2-g

1) 

For example, A (a) = 0 if Ax, = AÄ = 0. That takes place provided [6] 

T^2lT^2q = T^llT^lq-,   T^2q^2I = T^lg^lJ, 

(15) 

(16) 

(17) 

Note, that both relations (17) are equivalent if on = ßi = 0. Even so it is rigid enough require- 
ment, signifying that tensors eu and £27, A*i7 and ß2i bound to have the same eigenvectors. 

Of course, above mentioned conditions need not be met exactly having regard to approximate 
nature of method. We can find valuations ||Ax,|| and ||7^2i|| instead. It should be more than 
sufficient if ||AL||, ||Aä|| far less than ||7^2i||- In what follows we shall use Euclidean valuation 

\\x\\ = [(xxt)t]i, (18) 

where X^ is Hermitian transposed tensor and (XX^)t is a trace of tensor XX^. 
By way of example let us consider nongyrotropic, nonmagnetic layers with real symmetric 

tensors £». In this instance 

IIALII
2
 =   -^ 

£2+      £1+ 

£lg        £2g 
+ £2- 

£lff e2gJ 
— I   +2sin</»2'£l+ _£-       £H±_£-    ,        (19) 

£lg £lg /   V £2q> £-2q 1 

\\n2i\\2 = 2 [(£2+ - £i+)2 + (£2- - £i-)2 + 2sin^.2 (e1+ - £l_) (e2+ - £2_)] , (20) 

where (j) is the angle between the preferred axes of crystals, £*+, £j_ (i = 1,2) are the eigenvalues 
of tensors £*7 = Ietf. Formulae for magnetic crystals are similarly to (19),(20).  Since usually 
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IKIUIAII < INI. 11/-^ Hi corresponding formulas are valid also for analysis of the gyrotropic 

layers. 
Inasmuch a2 ~ E{q, from (19), (20), (13) it follows that for identical layers (ex+ = £2+,£i- = 

e2_) values ||A(a)|| and ||7£2i|| are approximately equal. Situation changes in the case of 
different parameters of the layers. In this case it is possible to choose parameters of the crystals 

providing the fulfillment of condition 

||A(a)||«||7e21||. (21) 

Relation (21) can be provided much easier for structures comprising more then three layers in 

the unit cell. Then 

M   = /iMi + /2M2 + /3M3 + (22) 

y {hh [M3>M2] + M [M3,Mi] 4- hh [M2,Mx)} + ..., 

and instead of || A (a) ||, ||7£2i|| (12)-(14) we shall have more complicated but more versatile 
expressions, which can be changed by varying thicknesses of the layers. It should be noted that 
sometimes the "wide wave band approximation" reduces to the long wavelength approximation. 
In particular, if 711 = TZ3, h=l2 = h, then [M3, Mi] = 0, [M3, M2] = - [M2, ML] and structure 
do not possess properties of form gyrotropy [6]. 

Formulas (15), (9)-(12) are valid for arbitrary material parameters of the layers for a small 
enough angles of incidence and, of course, in the case of normal incidence ( a = 0). 

3. Conclusion 

It is shown that effective constitutive tensors, not depending on the angle and plane of incidence 
(true constitutive tensors), can be introduced in the wide wave band for the great variety of 
anisotropic periodic mediums. Formulas, which enable one to determine whether it is possible to 
introduce true constitutive tensors for the structure at hand or not, are obtained. In the frame 
of considered approximation it is hardly probable to introduce correctly constitutive tensors for 
an arbitrary parameters of the layers. From the other hand, at normal incidence there are no 
limitations on the parameters of the layers and obtained effective tensors may be very useful for 
synthesis of new materials. 
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Abstract 

A method of introduction of the effective material tensors of bianisotropic multilayered peri- 
odic structures based on the approximate calculation of the characteristic matrix of the unit 
cell of the system with the help of Campbell-Hausdorff series [1] is developed. Obtained 
effective tensors are valid for the use in a wide wave band. This paper is primarily concerned 
with a comparison of the accuracy of different approximations, namely, a long wavelength 
approximation and approximations, using three and five terms of Campbell-Hausdorff series. 

1. Introduction 

Attention now frequently focuses on the study of the effective properties of plane stratified 
periodic media. In doing so most often a long wavelength approximation is used. For example, 
in [2] the coordinate-free formulae for the effective tensors of permittivity e, permeability fi and 
pseudotensors of gyrotropy a, ß of the plane stratified periodic bianisotropic systems of the 
most general type were obtained. But it is well known [3], [4] that some systems composed 
from nongyrotropic layers can possess gyrotropic properties due to their specific structure (i.e. 
possess form gyrotropy). Phenomena of this kind can't be explained in the framework of a long 
wavelength approximation. To treat such problems it is necessary to extend the wave band, in 
which the effective tensors can be used. One way of doing this is to employ an approach [5], 
based on the approximate calculation of the characteristic matrix of the unit cell with the help of 
Campbell-Hausdorff series. Recently it was shown that by using this approach the effects of form 
gyrotropy (bianisotropy) can be really explained in terms of the theory of effective parameters 
(see [6], for example). In [6], [7] our consideration was limited by the three terms of this series. 

Here we obtain more accurate formulas using the forth and fifth terms of Campbell-Hausdorff 
series. 

We consider systems formed by a periodic set of plane bianisotropic layers with different 
thicknesses ln (n = 1,2,... N, where N is the number of the layers forming the unit cell). The 
layers are characterized by the constitutive relations 

Dn = enEn + a„Hn, B„ = ßnEn + MnH„, (1) 

where en,pn and an,ßn are the dielectric permittivity, the magnetic permeability tensors and 
the pseudotensors of gyrotropy, respectively. 

2. Effective Material Tensor Parameters 

The characteristic matrix P = exp (ik0lM) of a layer with thickness / relates the six-vectors 
(E,H)    at the layer boundaries (fco = u/c).   M is some matrix depending on the parame- 
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ters of the layers, angle and plane of incidence. Matrix M is given in an explicit form in [7]. 
Henceforward we shall follow notation used in [7]. 

Let us consider the system formed by two alternate layers with different thicknesses ln and 
different sets of tensor constants en,fj,n,an,ßn (n = 1,2). In this instance the characteristic 
matrix of the unit cell has the form 

P = exp (ikQLM) = exp (ik0l2M2) exp (ikohMi), (2) 

where L = h + l2 is the system period and M is the matrix to be found. This matrix can 
be expressed in terms of the layers parameters with the help of Campbell-Hausdorff series as 
follows 

M = /1M1 + /2M2 + z71^[M2,M1]-^{/1[[M2,M1],M1] + /2[[M1,M2],M2]} + --- (3) 

where [M2, Mi] = M2My - MXM2. If TTZ„/A < 1, then the series (3) quickly converges and one 
can drop the remainder of it after the fc-th term. The first and the second terms correspond to 
the long wavelength limit. The possibilities of introduction of the effective constitutive tensors 
having regard the third term are discussed in [7]. In what follows we shall break the series after 
the fifth term. 

In perfect analogy with [7] we shall use in (2)-(3) the matrices M/,Mi/,M2/, describing 
the transformation of the tangential components of the field vectors, instead of M,Mi,M2, 
and we assume q to be the left and the right eigenvector of each of the tensors en, pn, an, ßn 

To compare the accuracy of different approximations, namely, long wavelength approxima- 
tion and approximations, using three and five terms of Campbell-Hausdorff series, let us consider 
the most simple case of normal incidence onto the nongyrotropic nonabsorbing layers of the same 
thickness h = h = I- As this takes place (3) reduces to 

Mi = i (M17 + M2I) + i^{[M2T, Mu] + i^ [[M2T, MlT], Mu - M2,]} + • • • (4) 

Generally speaking, Campbell-Hausdorff series 

Z = X + Y +±[X,Y} + ±[X,[X,Y)] + ±[Y,[Y,X}] + ■■■ (5) 

converges provided ||X|| < l-f-, \\Y\\ < l-f, where ||X|| = [trace (XX^] * is Euclidean valuation 
of X. In our case series converges if 

7rmax(li,l2) ln2 ,„. 
Ä -4max(||M17||,||M27||) 

For example, in the case of nonmagnetic crystals with ||e/|| ~ 4.5 (eigenvalues of £/ ~ 3.0) 
f < 0.039. 

After simple calculation we find the effective material tensors of the system at hand 

ai = ß\ = i^Rc Ra = (euqXAfir - AerqxßU), (7) 

' = *2T OS) ^' R'e = -iWAe/" Ae/qX^' (9) 
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where Ae/ = e2/ - £17, A/u/ = /x2/ - Pu- 
lt is worth noting that third term of Campbell-Hausdorff series give rise to the effective "ten- 

sors of gyrotropy" otj, ßi while forth and fifth terms contribute only in the effective permittivity 
and permeability tensors (terms e',p' in (8)). 

iProm (7),(9), (10) it follows that 

\\Ra\\ < 2(||£i/||||AM/|| + ||A£/||||m/||), (11) 

||^||<2(||£l/||||AM/|| + ||A£/||||m/||), (12) 

KH< 2 11^11(11^11 +11^,11), (13) 

\\R'ti\\<2\\AßI\\(\\Ra\\ + \\Rß\\). (14) 

^From above estimations and formulae (7)- (10) it is clear that in the convergence range the 
contribution of the forth and fifth terms of Campbell-Hausdorff series in effective tensors is far 
less than the contribution of third term, and usually may be thought of as negligibly small if 
compared with the contribution of the first and second terms. But if in the long wavelength 
approximation the system under hand has transversely isotropic permittivity and permeability 
tensors, then contribution of the forth and fifth terms can be noticeable. The latter case is of 
great concern in investigation of form bianisotropy (gyrotropy), because the manifestations of 
gyrotropy are often suppressed due to the permeability(permittivity) being tensors, especially 
in the optical wave region [9]. 

3. Conclusion 

In this paper we discussed primarily the comparative contribution of different terms of 
Campbell-Hausdorff series in the effective tensors of "permittivity, permeability" and "gy- 
rotropy" , analyzing the simple case of normal incidence onto the system of nongyrotropic layers. 
Obtained estimations holds true for gyrotropic layers too, at least for the short enough wave- 
lengths. At normal incidence generalization of formulae (7)-(10) to the case of bianisotropic 
layers is not a particular problem. 

Of course, derived effective tensors are not true constitutive tensors because generally they 
are valid only in the immediate vicinity of normal incidence. It is possible to introduce true 
constitutive tensors (i.e. not depending on the angle and plane of incidence) even having regard 
to five terms in Campbell-Hausdorff series, but only for some systems with the specific relation 
between the layers parameters. Therefore, proposed method is more convenient for analysis 
of the effective properties of systems at normal incidence, when there is no restrictions on the 
parameters of the layers. Extensive computations made with the use of exact and approximate 
formulas are in good accordance. 
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Abstract 
Effective properties of plain stratified bianisotropic structures are found on the basis of 4x4 matrix 
method without restriction on the ratio of the period of structure and the wavelength of incident 
radiation. The effective permittivity, magnetic permeability and magnetoelectric dyadics are 
obtained for isotropic two-layer and anisotropic helicoidal structures in resonant case. 

1. Introduction 

The problem of effective properties of stratified media is known in optics for a long time [1]. The 
effective properties of an inhomogeneous plane stratified structure are defined as the properties of a 
certain homogeneous layer which cannot be distinguished from the investigated inhomogeneous 
structure by optical means. As a rule, periodic structures with large number of periods are considered 
in long wave approximation, i.e. in the case when the length of electromagnetic wave is much greater 
than the period of the structure. Such structures exhibit anisotropic, chiral and, generally, bianisotropic 
properties [1-3]. 

In case when the wavelength of light is approximately equal to the period of structure, the 
resonant interaction of light with the structure is observed. This problem is solved by various methods, 
for example, by the method of coupling waves or Bloch functions formalism [4]. The method of 
effective properties was not earlier used in this case, being limited in application by media with short 
period. 

The purpose of the present work is to find the effective properties of periodic bianisotropic 
structures having the period approximately equal to the wavelength of propagating light, and also non- 
periodic structures made of a few layers. For solution of the given problem we apply a modification of 
the Berreman 4x4 matrix method. 

2. Method of 4x4 Matrices; Matrix of Material Properties 

Consider a medium consisting of bianisotropic layers parallel to XY plane. A plane electromagnetic 
monochromatic wave propagates in the medium. Its wave vector k is parallel to XZ plane. Maxwell 
equation can be transformed to the following 4x4 differential matrix equation: 

^ = -ik0G(e,fi,ä,ß)g,. (1) 

where k0 is the wave number in vacuum; the four dyadics of permittivity e, permeability ß and 

magnetoelectric a , ß describe the relations between electric and magnetic fields; a four-component 

vector g = (EX, -Ey, HX,HZ} is composed of tangential components of the fields. Here the 4x4 matrix 

of material properties (MMP) G is determined by local properties of the medium and the incidence 
angle. It is constructed on the basis of the four constitutive dyadics and allows in general way taking 
into account bianisotropic properties of the medium. MMP consists of the sum of three matrices which 
are proportional to zero, first and second degrees of the tangential component of the wave vector kx: 

0 = 00+-^ +-fG2. (2) 
*o kl 
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For a homogeneous medium MMP does not depend on z, and the solution of the matrix 
equation (1) in this case is a superposition of eigen waves: 

g = Xc/l;exP(-'V)'    7=l.-4 (3) 
where c . is the amplitudes of the waves corresponding to the eigen vectors qy of matrix G. The eigen 

numbers of this matrix ny. = k^/k0 are the solutions of the dispersion equation det(G - nz\), where I 

is the unit matrix. As follows from (3), there are four eigen waves with various polarizations 
determined by the fourth order equation with respect to ny.. 

If the structure contains several homogeneous layers, the investigation of propagation of 
electromagnetic waves turns into the solution of a boundary problem. The continuity conditions for 
tangential electrical and magnetic field components must be satisfied on the boundaries of adjoining 
layers, that is identical to the continuity of the four-component vector g. Let a wave described by 
vector g(zm) is incident on m-th layer. The vector g(zm+1) of the wave transmitted through the layer 

is determined by the matrix relation: 

g(zm+x) = Sim)g(zm), (4) 

where the transformation matrix for m-th layer of thickness Azm has the form: 

S(m)=exp[-^0G(zm)Azm]. (5) 

Here the exponential function is applied to a 4x4matrix. It is known from the theory of matrices that 
for arbitrary matrix A and function/the following relation is satisfied: 

/(QAQ) = Q/XA)Q, (6) 

where Q is the matrix inverse for Q. Let's take Q as a matrix which are formed by columns of eigen 

vectors of G: Qjk=(qk)j- Then the lines of Q are the vectors qy complimentary to qk 

(q ,qt =SJk). We substitute MMP in (5) as: G = QQGQQ. Taking into account that 

qGqA.=q,na(:qyt the transformation matrix of m-th layer can by presented as: 

4m) =2>?)5*< expC-Äo»?^«)^ • (7) 
*,/ 

For a system consisting of p -1 layers (a wave is incident from medium n = 0 , passes p boundaries 
and propagates to the medium   m = p) the resulting transformation matrix is the product of 
transformation matrices of separate layers: 

s = s(/»s(/>-i)LS(i) (8) 

For inhomogeneous medium MMP is a continuous function of z, and the resulting transformation 
matrix can be found as the product of transformation matrices of indefinitesimal layers, into which the 
medium is divided. When the thickness of these layers tends to zero we obtain the transformation 
matrix as a multiplicative integral: 

s = um rre-*oGu,)Az = r -ttoGw* t (9) 
Az-»0A.A J 

J 

where multiplicative integral is designated as: 

\A(z)dz = lim rj[l + A(z)Az]= lim UMZJ)^ ■ 
J J 

The same result can be obtained by separating the variables and integrating the basic equation (1). 
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3. Effective Matrix of Material Properties 

Arbitrary stratified bianisotropic structure accordingly to (8) can be described by a transformation 
matrix S, which contains the complete information on all optical characteristics of the structure as 
whole. This allows replacing such structure by a certain homogeneous layer with effective properties 
so that the transformation matrix does not changes. Thus, in order to find the effective properties of 
the structure it is necessary at first to find the transformation matrix from the properties of the 
inhomogeneous structure, then to solve the inverse problem and find effective MMP assuming the 
structure to be a homogeneous layer. From MMP it is possible to obtain permittivity, permeability and 
magnetoelectric dyadics. 

Equating the transmission matrices of a homogeneous layer (5) and an inhomogeneous structure 
with arbitrary function G(z) (9) and taking the logarithm we obtain the effective MMP: 

~L 

Geff= ln 

k0L 
e-ik0G(z)dz (10) 

where L is the whole thickness of the structure. The obtained expression is exact. It allows calculating 
effective properties of structures both with large number of layers and few layers, for example, two or 
three-layer structures. For periodic medium it is enough to take integral over the period of the 
structure. 

It is known that the logarithmic function is multivalued, in particular, for scalars it is determined 
up to Inim, where m is an integer number. The multyvaluedness of logarithmic function is the result 
of the periodicity of exponential function. For a matrix of dimension 5X5 there exist s1 independent 
integer numbers m,,K ,ms, varying which it is possible to obtain new matrices so that the exponential 
function upon these matrices is a constant: 

fml      0       0 } 
A' = A + 2mQMQ,   M = 0O0 

0       0      mc 

(11) 

where the matrix Q is made of the columns of eigen vectors of the matrix A. Thus, the logarithm of a 
matrix is a set of counted number of matrices. Ambiguity of determination of MMP follows from this 
fact. Determination of MMP is ambiguous not only when we find effective MMP for inhomogeneous 
structure but also for usual homogeneous medium. Really, let we transform G —> G' so that 
exp(-/£0G) = exp(-i£0G'). Then the matrix S (5) and, therefore, and reflection and transmission 
coefficients will not change. Hence, the determination of constitutive dyadics of medium is ambiguous 
at fixed optical characteristics. 

The effective MMP for an inhomogeneous medium is a complex function of kx, and, generally, 

it cannot be presented in the form of (2) when G, is independent on kx. Therefore the effective 

dyadics e, ft, a and p at any splitting of G into three summands depend on kx and on the direction 
of wave propagation. Hence, such medium exhibit spatial dispersion. 

4. Examples of Stratified Structures 

Consider two most typical examples demonstrating application of the general approach of calculation 
of effective properties of layered bianisotropic media. 

4.1 Two-layer structure 

We consider a structure which consists of two dielectric layers with permittivities e, 2 = e ± Ae/2 

(Ae = e) and thickness dl2. Non-zero components of the effective dyadics of such structure can be 

written as: 
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eu=e,   ^=1,   a^=-^=-/a7
(-^sin2/1^+i| 

(12) 

£,A:0 

'■o 

where 
i -z  Ac f     h2 \ i—      , k1 

v(r) = J(yir) sin /,) - A/2, r(p's) = =*-    .2   ,2 ml . A/ = w - /, - /2, /,- = *<A<We., o] = 1      * 

The propagation constants of p and s polarized waves in such medium k[p's) = ±o^£\\-ivi'p's) ln)k 

describe attenuating waves. The positive direction wave propagating in such medium attenuates and 
transfers its energy to the negative direction wave, i.e. Bragg reflection of light from periodic structure 
takes place. The penetration depth of the wave in the structure is determined by the parameter v and 

equals 7c/(2avips)k0yfe). The effective medium exhibits the property of strong spatial dispersion, 

since constitutive dyadics are functions of kx, i.e. functions of the wave vector. This is consisted with 
the fact that the contribution of spatial dispersion is essential when the relation between the period of 
structure and the wavelength is close to unit. 

4.2 Helicoidal structure 

A Helicoidal structure represents a twisted medium in which there is a rotation of anisotropy axes 
around Z axis at displacement along its direction. The effective properties of such medium correspond 
to a chiral medium with 

a„=ayy,=-ßxx=-ßn,:  a/I^, (13) 

where L is the period of the structure; A is the wavelength of the incident radiation. 

5. Conclusion 

On the basis of 4x4 matrix method the exact equation for effective MMP of arbitrary bianisotropic 
structure is obtained without restriction on the relation between the wavelength and the thicknesses of 
the layers constituting the structure. 

The effective constitutive dyadics for a two-layer isotropic dielectric structure are found in the 
resonant case. It is shown that the effective magnetoelectric dyadics contain off-diagonal components 
which were absent for the isotropic layers of the structure. At this conditions the permittivity and 
permeability become complex quantities, that results in strong Bragg reflection of a wave from such 
structure. The effective constitutive dyadics for helicoidal medium are found. It is shown that such 
medium is chiral. 

MMP and constitutive dyadics of any medium are determined ambiguously. The transformation 
for MMP which completely conserves the optical characteristic of the layered structure is found. 
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Abstract 

The magnetization and giant magnetoresistance (GMR) of nanosized magnetic particles em- 
bedded in a nonmagnetic metallic matrix axe numerically investigated. By considering the 
classical dipolar interactions, we apply a Monte-Carlo simulation technique to calculate M 
vs H, GMR vs H, and GMR vs (M/Ma) with M, the average magnetization along the nor- 
mal to the layer, Ms, the saturated magnetization, and H, the applied magnetic field. It is 
shown that the interfacial spin-dependent scattering of conductance electrons is dominant in 
GMR effect and the distance between the neighboring particles is an important parameter 
to obtain the GMR effect, while the size distribution only modify the shape of the curve of 
GMR versus H. 

1. Introduction 

The discovery of the giant magnetoresistance (GMR) effect in inhomogeneous alloys of magnetic 
and nonmagnetic metals [1] has attracted a great deal of attention to these materials. They 
consist of nanosized particles or clusters (e.g., Co, Fe, Ni) embedded in a nonmagnetic metallic 
matrix (typically Cu, Ag). The magnetic transport properties of granular metals are concerned 
with the size and spatial distributions of the fine particles or clusters and the interaction between 
the particles. Previous works studied the dependence of GMR on the size distributions [2] and 
successfully explained some experimental results. The interactions between particles can have 
a dipolar, Ruderman-Kittel-Kasuya-Yosida (RKKY), or a superexchange character, depending 
on the magnetic properties of the matrix. Altbir et al. [3] found that the classical dipolar 
interactions are dominant in Co-Cu systems. 

2. Theory 

In the present work we study the magnetization and GMR effect of the assembly of single- 
domain spherical ferromagnetic particles, Each particle is a saturated single domain and its 
magnetic moment /7j, and the direction of its uniaxial anisotropy axis is random in space. The 
particles are placed in a square array consisting of 12x12 cells. The diameter of the particle i 
is di and the distance between two neighboring particles is TQ. After considering the classical 
dipolar interaction and crystalline anisotropy energy, the total energy of the system for a given 
configuration {ßi} of the magnetic moments is 
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N 

E{ßi) = 53E Ea + KuVi sin2 ai ~ &' ^' (1) 

i=l j>i 

with J5?y, the energy of the dipolar interaction, Ku, the effective anisotropy constant, Vi, the 
volume of a particle i, and a*, the angle between the direction of the crystalline axis and fi{. 
For a given temperature, the reduced magnetization < m > can be calculated by averaging 
m = M/Ms = \12ißi\/(NiJt) over cluster configurations after thermal equilibrium has been 
reached. The crucial factor for GMR in granular system is the average value < cosöjj >, where 
Oil is the relative angle between the magnetic moments in sites i and j [4]. It implies that the 
magnetic transport properties are primarily caused by the spin-dependent scattering process 
of conductance electrons between magnetic particles. Namely, the spin-dependent scattering at 
interfaces between the magnetic particles gives rise to the GMR to a greater extent than the 
scattering within the magnetic particles would do [5]. In the case that the distance between the 
neighboring particles does not far exceed the electronic mean free path A [6], the variation in 
resistivity of a granular system with the degree of field-induced magnetic order may be simply 
pictured as p = po - k < cosöj^ >, where po and k are constants. Assuming that there are 
no correlations between the magnetic moments of particles, the magnetoresistance Ap/p can be 
written as Ap/p = -(k/po) < COB6^ >2= -{k/po)m2. Such a quadratic dependence of Ap/p 
on m is actually found by some experiments [1]. However, other experiments [2] showed that 
Ap/p does not vary quadratically with m because of the size distribution of magnetic particles 
and interaction between them. 

For the system involving coupling between magnetic particles, the assumption, that the av- 
erage value < cos 6$ >o for H = 0 is not vanished, gives 

Ap/p = (< coseff >o - < cose\f >){Q- < coso\? >o), (2) 

where Q = po/k is the field-independent constant. 
The thermal averages of the system above are obtained using the standard MC procedure and 

the Metropolis algorithm [7]. The system is assumed to have reached thermal equilibrium after 
104 Monte-Carlo steps per spin. Then, we are able to get the thermal averages as an arithmetic 
average over the accepted configurations (500 accepted configurations for ensemble averages), 
and to calculate the < m > and GMR. Data for our MC simulation is generated and calculated 
as follows. Each particle is assigned a random crystalline anisotropy (Ku = 4.0 x 106erg/cm ) 
and a random direction of magnetic moment at initial state. These particles are placed in the 
magnetic field H applied along the normal to the array. The distance ro between the particles 
was taken as 6.0 nm (except for the up triangles in Fig. 1) which is comparable in magnitude with 
A [6]. Single-domain ferromagnetic particles exhibit the phenomenon of superparamagnetism 
and the blocking temperature T^0' for H = 0 of a particle of diameter d=4 nm is equal to 38 K 

[8]. So we choose T=40 K close to 2]J0). 

3. Results 

First, for simplicity, we choose the same diameter d,-(=3 nm) of all the magnetic particles, which 
is the typical average size of particles for granular materials [6]. In Fig. 1 we plot the graph of 
magnetization M/MQ vs H. Four different sets of data are shown that correspond to a system 
of particles with random anisotropy only (squares; r0 = 6 nm), a moderate dipolar system 
with random anisotropy (circles; ro = 6 nm), a system with moderate dipolar interaction only 
(triangles down; Ku = 0, ro = 6 nm), and a strong dipolar system with random anisotropy 
(triangles up; ro = 3 nm). We notice that M exhibits the different field dependence, depending 
on the interplay of the single-particle anisotropy and the dipolar interaction effects. E.g., for a 
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Fig.1. The dependence of M/M> on H for T=40 K. The symbles are 
obtained when we do not consider the dipolar interaction(DI) 
(squares), or do not include the crystalline anisotropy (CA) 
(down triangles). The circles and up triangles are obtained by 
considering both the Dl and CA when the r equals 6nm and 
3nm respectively. 
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Fig.2. The dependenc of GMR on H for T=40 K. The symbles are obtained when 
r(=6nm, d=3nm (circles), d=2-4nm(squares), d=0~6nm( down triangles), and 
r..=3nm, d=3nm (up triangles). 

system with random anisotropy only the magnetization reversal of the assembly of particles is 
well described by both a coherent rotation of ßi from the easy axes to the direction of H and 
by a thermally activated process over the anisotropy barrier. 

A pure dipolar system (Ku = 0) For H = 0 possesses the interaction-induced anisotropy. 
Out-of-plane orientation M has a large energy due to the demagnetization effect. Therefore 
in-plane configuration of ßi is realized. For the free boundary conditions accepted here the 
ground state is antifferromagnetic due to the demagnetization effect of the lateral boundaries. 
This effect is not so strong compared with the demagnetization effect of the surface. Once again, 
if a field is applied to the array the magnetic moments ßi rotate coherent to the direction of H. 

If both the dipolar interaction and the random uniaxial anisotropy of particles are involved it 
is more difficult for M to reach saturation since these effects impede the collinear ordering of ßi 
and reduce the magnetization of the system. The anisotropy induced by dipolar interactions is 
very sensitive to the spatial arrangement of the particles (average distance between the particles 
and their size) and it is enhanced with decreasing TQ. Therefore in a strong dipolar system 
(triangles up; ro = 3 nm) the M is harder to be saturated in comparison with a moderate 
dipolar system (circles; ro = 6 nm). 

In Fig. 2 we plot the field dependence of Ap/p for T—40 K. All curves are calculated in terms 
of Eq. (2) with Q=5.2 after considering both the effects of anisotropy and interactions when 
the system reaches the equilibrium state. To investigate the influence of the distance ro and the 
particle-size distribution on the GMR four different sets of data are shown that correspond to 
particles of fixed diameter with strong (up triangles; dj=3 nm, ro=3 nm) and weak (circles; dj=3 
nm, ro=6 nm) dipolar interactions, a narrow particle-size distribution from 2 to 4 nm (squares; 
d—3 nm, ro=6 nm), and a wide particle-size distribution from 0 to 6 nm (down triangles; J=3 
nm, ro=6 nm) with d is the average particle size. From Fig. 2 it follows that the GMR effect 
depends crucially on the particle density. If the dipolar interaction are strong (d{—3 nm, ro=3 
nm) all the particles are coupled to each other, and the negative GMR disappears. For a narrow 
particle-size distribution from 2 to 4 nm (squares) the field dependence of Ap/p is closed to 
that for the system of particles with fixed diameter and a weak dipolar interection (circles). In 
this case the blocking temperature of the maximum particle T& «38 K, and all the particles are 
superparamagnetic. This result was observed in [5]. For a wide particle-size distribution from 
0 to 6 nm, certain of large particles are blocked at 40 K in the region of strong magnetic fields, 
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whereas the rest small particles are still in the superparamagnetic state. Then the modulus of 
\Ap\/p is substantially reduced relative to the case 
of a narrow particle-size distribution. This effect 
was observed and explained in [2] for the systems 
with a wide particle-size distribution. So we be- 
lieve that the size distribution strongly affects the 
shape of the curves of GMR vs H. 

In order to investigate in more detail the role of a 
particle-size distribution in GMR effects, we show 
in Fig. 3 the dependence of Ap/p vs M/Ms for 
a narrow (hollow squares) and wide (up triangles) 
particle-size distributions. From Fig. 3 it follows 
that for a narrow particle-size distribution from 2 to 
4 nm, the behavior of GMR vs (M/Ms) is close to 
the parabolic line, whereas for a wide particle-size 
distribution from 0 to 6 nm, it is deviated essen- 
tially from the parabolic law. It indicates that the 
wide distribution of magnetic particles may explain 
the noncompliance with the parabolic law for the 
GMR as a function of the M [2]. 

if—u—o run 
* trie parabolic line 

o.a 1.0 

M/M. 

Fig.3. The dependence of GMR on M/M, for T=40 K. The hollow 
squares and up triangles are obtained by varing of r. from 
2 to 4 nm and 0 to 6 nm respectively. The solid line Is the 
parabolic line. 

4. Conclusion 

In conclusion, we have presented the results for the field dependence of M and GMR of a granular 
magnetic film. We demonstrate that the magnetic properties of the system depends essentially 
on the particle-size distribution and the average distance between the magnetic particles. To 
discuss experimental data the state of single-domain magnetic particles is usually assumed to 
be blocked or collective at low temperatures and to be superparamagnetic at high temperatures. 
Within our MC approach, there is no need for making a priori assumptions about the particle 
state. However, it is likely that the high density regime favours the collective state, and the 
low density, wide particle-size distribution and strong magnetic field regime favours the blocked 
state. The collective behaviour at high particle density reveals itself in the disappearance of the 
negative GMR effect. A manifestation of the blocked state effects is a substantial decrease in 
\Ap\/p for the low density and wide particle-size distribution in the region of strong magnetic 

field. 
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Abstract 

Optical model of a photochromic medium with spiral spatial microstructure of centres distribution, 
which is formed at the record in photoactive materials of polarization state and intensity of two 
interfering light beams, is developed. The expressions for dielectric permittivity tensor are derived 
and the corresponding boundary problem for the photochromic layer is investigated. Some 
possibilities of bistability and multistability regimes for such layers are considered. 

1. Creation of Systems with Photoinduced Spiral Spatial Microstructure 

Important examples of media with spiral spatial microstructure are cholesteric liquid crystals (CLC). 
On the other hand, there is a possibility of creating spiral symmetric structures by the optical method: 
at interference of opposing coherent beams in layers from photochemically active materials. Such 
materials are polymeric solid solutions of photochromic dyes (indigoide colours, anthracenes, 
spiropirans, etc.) in polymeric glass (polymethyl methacrylate, polystyrene, etc.) [1,2]. Under 
polarized optical excitation owing to various photophysical and photochemical processes (saturation 
of metastable states, photoisomeric change, photoreduction, and others), in these materials dichroism 
and (or) birefringence is photoinduced. Thus, systems with optically controllable character of the 
anisotropy arise. The change of the polarized radiation characteristics allows gaining materials with 
given properties of optical anisotropy, which are not masked by the natural anisotropy (as a rule, 
initially the samples are isotropic). In this connection, it is interesting to use CLC optics methods and 
results for the investigation of optical properties of the photochromic layers. 

The aims of the paper are: 1) development of optical model of a medium with spiral spatial 
microstructure of photochromic centres distribution, which is formed at the record in the material of 
polarization state and intensity of two interfering coherent light beams; 2) investigation of linear and 
nonlinear interaction of polarized optical radiation with layers from such materials. 

Let us accept the following kinetic scheme describing dynamics of photophysical and 
photochemical processes in a plane-parallel photochromic layer: 1) excitation of molecules of 
photosensitive component D with rate R(Q.d) due to absorption of photons; 2) the later conversion of 
the molecules D to a photoproduct DP (at monochromatic excitation R=<yD(Q.d)I, where aD(Q,d) is the 

interaction cross-section on the excitation frequency of the dipole oscillator with orientation Cld, /is 
photons flux density). Solving kinetic equations describing such scheme and making the 
corresponding averaging on the ensemble, one can derive dependencies of concentrations 
[D](t,Q.d),[DP](t,Q.d) on time and orientation. Function of distribution f{Q.d) of non-rotating 

photochromic centres on orientations Q.d of the transitions dipole moments can be written in the form 

/(Q„) = [D](t,£ld)/[D](0,Qd) = f(aD(ad)It). (1) 
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According to quantum mechanics representations: IaD (Q) ~ cD |E • d|2, where E is the strength of the 
recording electric field in the medium, d is unit vector of the transition dipole moment of the 
photochromic center (in the spherical coordinate system d = (sintf cos<p,sin#cos<p,cos0)). 

Let us make the consideration in frames of the following assumptions: 1) optical density of 
photochromic layer on the record frequency is small, that corresponds to the optically thin layer; 2) 
absorption of photon by the photoactive center occurs due to dipole-dipole transition between the main 
and electronically excited states; 3) initial photochromic layer is homogeneous and optically isotropic, 
with scalar permittivity £b- 

The recording field in the medium is E = E+ +E_, where vectors E+ and E_ characterize plane 

elliptically polarized waves with wave vectors k+ =k(-sma,0,cosa) H k_ = fc(-sina,0,-cosoO 
(axis Z of the square coordinate system is perpendicular to the layer boundaries), and 

E+ = -£0 (cos a,-z'2>, sin a) exp(-/k+ -r),   E_ =-rE 0 (cos a, ib,-sina)exp(-/k_   r). (2) 

In Eq. (2) a is the angle of waves incident on the layer, E0=E(\+b2)'m, b is the ellipticity parameter 
(b = Oat linear and b = +1 at circular polarizations); Eis amplitude of wave E+; r is the relation of 

amplitudes of waves E_ and E+. 

2. Optical Properties of the Structure: Boundary Problem 

Permittivity tensor of the considered system can be written in the form (i,j = 1,2,3 ) 

£, =e0 + ^jdidjf(Qd)dQa =e0 + ^-JJ\dldJam(H){aD(aA)laD)
m dnA, (3) 

0 m=I   o 

where function f(Q.d) in Eq. (1) has been expanded in the Taylor series about factor aD(Q.d)^>It with 

coefficients am = f{m)(0)Hm/ml which do not depend on angle Q.d , H = <JDI<pt is the exposure and 
Ae is depth of permittivity modulation; (f> is quantum yield of conversion. 

The general form of the expression determining dependence of quantity <7D(Q.d)laD on the 
angles of the spherical coordinate system is relatively awkward 

<JD(ClA)/oD =cos2/:((l-r)2cos2i?sin2a + (l-r2)cost?sin^cos9)sin2a)+ 

+ sin2 tf ((1 + rf cos2 a cos2 (p + b2 (1 - r)2 sin2 q>)+ 

+ sin2 K((\ + r)2 cos2 #sin2 a + (l-r2)cost?sinT?cos^sin2a)+ 

+ sin2 #((1 - r)2 cos2 a cos2 (p + b2 (1 + rf sin2 <p)+ 2br cosa sin 2K sin2 #sin 20, 

where K = kzcosa. So let us consider important particular cases when Eq. (4) is significantly 
simplified. At linear on exposure H expansion of function f(Cld) substitution of Eq. (4) to Eq. (3) 

gives 
£„ =e0 +(Ae/l5)[(\ + r2)(2 + b2 +cos2a) + 2rcos(2K)(l-b2 +2cos2a)Ja,, 

e12 =e21 =e0+(4Ae/15)(&rsin(2tf)cosa)a„    e,3 =e3I =e0-(Ae/15)((r2-l)sin(2a))a, 

^22 — ^0 "*" 

^33 — ^0 

£23 - £32 — ^ • 

(Ac /15)[(1 + r2 )(1 + 3b2) + 2r cos(2ü:)(cos(2a) - 3b2 )Jz,, (5) 

+ (Ae/15)[(l + r2)(2 + 62 -cos(2a))-2rcos(2A:Xl + 62 - 2cos(2a))j3!, 
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In case of arbitrary parameters describing the recording waves, tensor £ form depends on the 
photoreaction type and transformation extent. Even in simple model situations the derived expressions 
are very awkward. Moreover, analysis of Eq. (5) leads to some general conclusions: 1) £23=£32=0; 2) 
£i3=£3i*0 if rtO, and quantities £13 H £31 do not depend on z; 3) at c&O there is a harmonic dependence 
e33(z), which can be absent at the relations between parameters r, b, a: b = y2cos(2a)-1 or r=0. 

In another particular case of a=0, b=l, r=l (opposing propagation of the circularly polarized 

waves with the equal amplitudes) we have from Eq. (4): <7D(ßd)/(TD = (cos(/C + ^)sin(t?))2. 
Substitution of Eq. (4) in Eq. (3) gives ((2/15)Ae(H) -> Ae at H -» °° ) 

£ = 

(e0+(2-cos(2Jfe))A£(/0 Ae(H)sm(2kz) 0} 

Ae{H) sin(2>b) £0 + (2 + cos(2*z)) Ae(H)    0 

0 0 £n 

(6) 

Due to specific dependence of relation aD (ßd) / aD on angles t? and (p the form of the permittivity 
tensor in Eq. (6) does not depend on particular mechanism of the photoreaction which leads to the 
record of the electromagnetic field state and extent of photochemical transformations in the medium. 

The form of Eq. (6) corresponds exactly to the permittivity tensor of uniaxial CLC with the spiral 
step H = l/(2Ar) [3]. This analogy allows to use the known analytical expressions for the proper waves 
and solutions of the boundary problems for CLC [3] at analysis of optical properties of the exposed 
photochromic layers. In particular, one can show that the circularly polarized proper waves in the layer 
experience a selective diffractional reflection. In general case, it is represented to be possible 
investigation of the polarized waves transmission and reflection in a wide frequency range (and not 
only near the Bragg frequency, as at the traditional approach to investigations of polarization 
holograms [4]), and with account of the multiple reflections on the layer boundaries. 

The calculated at using results [3] dependencies of the transmissivity of the circularly polarized 
light incident on the layer with thicknesses 50Ao (1), IOOAQ (2), 430A<, (3), and 730Ao (4) on 
wavelength X are shown in Fig. 1 (Ao=0.44|xm). The parameters values £0 =3, A£ = 0.01, b=\ are 
taken, indexes of refraction beyond the layer are equal to 1. It is seen from Fig. 1, that with increasing 
the layer thickness and at small tunes from A0 the system is similar to the Fabry-Perot interferometer, 
despite of small Fresnel's reflectivities on the layer boundaries. Mutual influence of the multibeam 
interference and diffraction on the periodic structure cause such behaviour of the system. 

Obviously, the permittivity tensor characterizing the structure, has the form similar to Eq. (6) not 
only in the case of parallel propagation of the recording beams (a = 0). For example, as it follows 
from Eq. (5), at b2 = 2cos2a-1 and r = 1 this tensor has the form as in Eq. (6) with the structure 
period H = l/(2£cosa). That allows to control the structure period at a choice of the record geometry. 

The nonlinear properties of the Fabry-Perot interferometers were studied enough explicitly. One 
of the most interesting features of such systems is bistable and multistable responses at high incident 
intensities. In connection with the marked similarity of the explored system to the Fabry-Perot 
interferometer, it is interesting to investigate opportunities of occurrence of multistable regimes in our 
system. Taking into account, that the photochromic layer with spiral spatial microstructure has specific 
polarization properties, the analysis of the mentioned problem can have a practical interest. 

Let under incident of the probe radiation on the layer of material characterized by the tensor Eq. 
(6) the averaged permittivity £ varies on quantity Aenl = e2P , where P is intensity, and parameter £2 

is determined by the concrete mechanism of a nonlinearity. Figure 2 illustrates the graphical solution 
of the transcendental equation determining transmittance of the layer T(e): 

T(e)=(e-£o)/(e2P). (7) 
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The wavelength of the radiation differed from quantity A0, determining the spiral microstructure 

period, on quantity A0<5/3, where Ö = 4Ae/(15£0 +8Ae) (see Fig. 1). From Fig. 2 it is seen, that at 
various intensities (straight lines 1, 2, 3, 4 correspond to increasing intensity) of incident radiation, 
Eq.(9) has a various number of the solutions. That corresponds to the multistable response of the 
system in the range of intensities relevant to curves 1-3 (Fig. 2). Taking e2 = \0'3cm21kW (typical 
value for the thermal nonlinearity [5]), from Fig. 2 one can estimate the minimal intensity for 
observation of the bistability and multistability effects in the considered layers: P = 5kW/cm2. 

O 0.8 
C 

H 0.4 

0.9991    0.9994   0.9997 1     1.0003    1.0005    1.0008    1.0011    1.0014    1.0017    1.002 

X/X.Q, probe beam wavelength in units of X0 

Fig.l 
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Fig. 2   e0 = 3; Ae=0.01; 6 = 1; Aen,=0.0053 (1), 0.0071 (2), 0.0112 (3), 0.045 (4) 
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Abstract 

During the past years we have intensively studied basic properties and field solutions 
in homogeneous bianisotropic media. We started from simple isotropic media to ever more 
general bianisotropic media. This study has led to some classification of bianisotropic media, 
which resembles a pedigree. The pedigree contains two branches. The first branch are so- 
called self-dual media, these are generalisations of the chiral medium. The second branch 
are factorizable media, these are generalisations of the uniaxial anisotropic media. We think 
to have reached some consensus with respect to the pedigree, i.e. we think to have found the 
most general media in each of the two branches. 

1. Introduction 

In this contribution we want to report on some of the findings we obtained during the past eight 
years. During this period we have been investigating homogeneous bianisotropic media with 
constitutive relations of the form 

D = e  E + £  H, B = C-E + //-H, (1) 

where e, ß, £ and £ are the medium dyadics. 
We were interested in finding basic field solutions in these media. The fields for any given 

source can be found by integration from the fields of an elementary dipole source, i.e. from the 
Green dyadics. In general it is not possible to obtain the Green dyadics into closed form. Other 
basic solutions are plane waves. Sometimes an electromagnetic field problem can be simplified 
by decomposing the fields in two components. Each of these components then propagate in a 
"simpler" medium for which the Green dyadics are known. Another way to solve field problems 
is the use of duality transformations which allow us to transform field solutions in one medium to 
those in another medium. Our aim was to find the most general media for which decomposition 
of the fields was possible, for which we could find the plane wave solutions and for which the 
Green dyadics could be obtained in closed form. It turned out that these three problems are 
intimately interrelated. The common backbone behind these problems is the possibility to 
factorize the fourth order "Helmholtz determinant operator". 

This study resulted in a hierarchical ordening - which we call a pedigree - of ever more 
general bianisotropic media. Basically this pedigree consists of two separate branches. In the 
present contribution we will first discuss some basics such as Green dyadics, factorization, plane 
waves, decomposition and duality. Then we will focus on the the two branches of the pedigree. 

This paper gives only a small overview of the subject, a more rigorous historical overview 
with more references can be found in [1]. 
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2. Green Dyadics and Factorization 

The electric Green dyadic Gge(r) is defined as the relation between the electric current density 
J(r) and the electric field E(r): 

E(r) = -juJjJG^ir - r') • J(r')dV. (2) 
V 

In a bianisotropic medium this Green dyadic satisfies the equation 

&.(V)-fie.(r) = -J*(p), (3) 

with £Ue(V) the vector Helmholtz operator given by [2] 

See(V) = -(V X / - M) ■fTl-(Vxl + jUQ + lA. (4) 

To solve (3) it suffices to find a scalar Green function G(r) that is solution of 

detiUV)G(r) = -<5(r), (5) 

with det:ffee(V) the Helmholtz determinant operator. The solution of (3) then follows from 

Gee(r)=[^e(V)]TG(r), (6) 

with KeeCV) the adjoint operator of the vector Helmholtz operator. The Helmholtz determinant 
operator turns out to be a fourth order operator, which makes, in general, a closed form solution 
of (5) impossible. For some classes of media it is possible to factorize this operator as a product 
of two second order operators, i.e. 

detfUCV) = Ha(V)Hb(V). (7) 

A medium for which this is possible is called factorizable. Factorizability does not necessarily 
mean that we can solve (5) in closed form. However, often a closed form solution is possible or 
an elegant series or integral representation. 

Sometimes one can factorize the second order dyadic Helmholtz operator: 

iU(V)=Sa(v)-S6(V) (8) 

where J^V) and Kb(V) are first order dyadic operators. For these media it is possible to write 
Ggg in closed form. 

3. Plane Waves 

For a plane wave of the form E(r) = Eo exp(—j'k • r) the vector Eo satisfies the equation 

See(-jk).E0=0. (9) 

A solution different from zero is only possible when k satisfies the dispersion equation 

detHee(-jk) = 0. (10) 

If we write k as ku with u a unit vector defining the phase velocity propagation direction then 
(10) is a fourth order polynomial equation in k and the dispersion surface will be a fourth order 
surface. When detH£e is factorizable the dispersion surface consists of two second order surfaces, 
i.e. of two quadrics. For a given value of k the solution of equation (9) gives the polarization of 
the plane waves. 
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4. Decomposition 

With decomposition we mean that the fields can be split in two components as 

E = Ea + E6, H = Ha + H6. (11) 

Both a and b are solution of Maxwell equations for simpler media than the original medium. 
These simpler media are called the equivalent media. The most well known field decomposition is 
the TE and TM decomposition for uniaxial anisotropic media [3] for which the equivalent media 
are isotropic media. This can be generalised to media where the decomposed fields satisfy the 
conditions 

a1-Ea + a2-Ha = 0, bi • E6+ b2 • H6 = 0, (12) 

where ai, a2, bi and b2 are arbitrary vectors. 
Another way to decompose the fields is the Bohren decomposition [4]. In this case the fields 

are decomposed as 
E = E+ + E_, H = H+ + H_, (13) 

with 
E± = Y±H±, (14) 

with Y± some scalar constants. The most well known medium that allows such a decomposition 
is the isotropic chiral medium. Also in this case there are much more general media that allow 
a Bohren decomposition. 

5. Duality 

A duality transformation transforms original fields E and H into dual fields Ed and Hd as 

/ Ed \      /i   B\/E\ 
Hd \ C   D } I  H (15) 

with A, B, C and D arbitrary constants. The dual fields satisfy Maxwell equations in a dual 
medium defined by its medium dyadics as 

.£l)=-(-)(--)(ci)(-r     w» 
Using the duality transformation it is possible to transform field solutions from the original 
medium to the dual medium or vice versa. For example the Green dyadics between both media 
are related through [5] 

(  G~4      ßeM   ) = (
A    B \(   &e      G,m   \  (    0       1  \( A    B  Y" ,_ 

V Gme,d   Gmmid )      { C   D ){ Gme   Gmm ) { -1   0 ) [ C   D )     "       ^ 

When a medium is invariant under a duality transformation we say it is a self-dual medium. 
Only a restricted class of bianisotropic media are self-dual. 

6. The First Branch 

It turns out that the class of media that are self-dual or that allow a Bohren decomposition or 
that allow a factorization of the vector Helmholtz operator is one and the same. These media 
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have been studied in [6]-[ll]. The isotropic chiral medium is the simpliest representative of this 
class. The most general medium of this class is given by 

e = ea,       /£ = Ata,       £ = (X« + 3ü) Vw,       £ = (XS ~ j&) yfiß, (18) 

with a and K arbitrary dyadics. 
The Green dyadics for this medium can be written in closed form [11] as follows 

JTj exp (fca+ • r) /exp (-jkD+) \ 
^(r) = 2^0 L+(V)l 4irkD+ 

jrj exp (fca_ • r) 
2cos0 ^(=^)- <19> 

with 

k = Uy/iß,    V = J^,    D± = ^det§±^r-Sg1-r,    cos9 = y/l-x2, (20) 

4t (V) = VV ± k(V • £±) x J + tfS^detS^ (21) 

and where £± and a± follow from a decomposition of cos 9a ± K in a symmetric and an asym- 
metric part of the form 

cos Ög±K = 5± + a±x7. (22) 

For more information on the media in this branch we also refer to another paper in these 
proceedings [12]. 

7. The Second Branch 

The second branch is much more complicated. This branch contains the media that are decom- 
posable. It turns out that these media are also factorizable. It took us a long while to find 
the medium that has all decomposable and factorisable media as special cases. This medium is 
described by rather complicated medium parameters [13] 

e = a(z x I + SLibi + biai) + r?(-BT + a2bx + l^ai), (23) 

( = !)(xxJ + a2b2 + b2a2) + a(B + aib2 + bia2), (24) 

£ = r(z x I + aibi + biai) - a(-BT + a2bi + b2ai), (25) 

/x = -a(x x J + a2b2 + b2a2) + T(B + aib2 + bia2), (26) 

where ct, 77, r, ai, a2, bi, b2, x, z and B are arbitrary scalars, vectors and dyadics. It turns out 
that this medium is also closed with respect to duality transformations. This means that it is not 
possible to generalize this medium further using a duality transformation. These observations 
made us conclude that (23)-(26) is the most general medium that allows decomposition and 
factorisation. 

Special cases of the medium (23)-(26) were studied in [14]-[34]. An important special case 
are the anisotropic media. The most general anisotropic medium that allows factorization and 
decomposition is e = r\jF + ab [24], with as special case the uniaxial anisotropic medium. 

Another interesting class of media are the equivalent media of the medium (23)-(26). These 
are of the form [13] 

e = -r}BT + a(x x J),       \sL = rB- a(x x J), (27) 

£ = aB + 77(xx/),       C = a5T + r(z x 7). (28) 
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Without loss of generality we assume that TTJ + a2 = 1. The Helmholtz determinant operator 
for these media can be written as a square. This allows a closed form Green dyadic given by 

Gee(r-) = {-^-[(oV x I - juB) ■ (rV - jwx)] x I 

—^[foV + JWZ)(TV - jux) + a2 VV + juaV{BTxI) +1 x (V • B) - u2 (Brlf detB}} 
JUJ 

eJwcRr1re-jkD 

julTty/MEs/D' ^ 

with 

& = 9 («2 + Trj){B + BT),   c = -[rjB -x + rz-5-azxx + a(detg)(B-l)T*I\, (30) 

and  _^_   

k = uy/x -B-X + detB - c • iT1 • c,    D = yr • R~l ■ r, (31) 

where A^7 is shorthand for Ua; x A ■ ux + uy x A ■ uy + uz x A ■ uz. The fact that the Helmholtz 
determinant operator is a square also means that the two second order dispersion surfaces 
coincide. Each of the equivalent media of a certain original medium have as coinciding dispersion 
surfaces one of the two dispersion surfaces of the original medium. 
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Abstract 

In this paper we establish relation between the microscopic and macroscopic Onsager- 
Casimir principles. It is demonstrated that because of certain symmetries with respect 
to the space reversal operation, which are intrinsic to any form of the linear constitutive re- 
lations, it follows that the symmetries under time reversal expressed by the Onsager-Casimir 
principle are valid both on the microscopic and macroscopic levels. As one of the possible 
applications we show that the property of the general bi-anisotropic media to be reciprocal 
or non-reciprocal does not depend on the constitutive formalism. 

1. Introduction 

In the electromagnetic theory there is a well-established Onsager-Casimir principle or the prin- 
ciple of the symmetry of kinetic coefficients [1, 2, 3] which provides certain symmetry relations 
for microscopic polarizabilities and macroscopic constitutive parameters. The principle is based 
on the time-reversal symmetry properties of electromagnetic processes. In this paper we show 
that quite general and important conclusions can be drawn from the fact that microscopic and 
macroscopic electromagnetic processes possess both time-reversal symmetry (manifested in the 
Onsager-Casimir principle) and space-reversal symmetry. The latter is manifested by the fact 
that linear kinetic equations or, in electromagnetics, linear constitutive relations can connect 
quantities of different mathematical nature. For example, electric polarization is an even vector 
with respect to the space-reversal operation (polar vector), but magnetic field is odd under this 
operation (axial vector). Thus, the polarizability coefficient must possess certain mathematical 
properties, so that operation on an axial vector gives a polar vector. In this paper we con- 
sider the two symmetry principles dictated by the time-reversal symmetries and space-reversal 
symmetries together. In particular, we find that the space-inversion symmetry imposes certain 
restrictions on the mixing rules which connect microscopic and macroscopic parameters of elec- 
tromagnetic systems. As one of the applications, we consider the Onsager-Casimir principle 
for the material parameters of bi-anisotropic media. Here we show that the Onsager-Casimir 
principle leads always to the same conclusions in all possible formal descriptions of bi-anisotropic 
media. In particular, if a medium is seen to be reciprocal in one set of material parameters, it 
is found to be reciprocal in any other set. 
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2. Theory 

2.1 Microscopic and macroscopic Onsager-Casimir principles 

On the microscopic level a small bi-anisotropic particle is described by linear relations between 
the induced electric pe and magnetic pm dipole moments and external electric E and magnetic 
B fields (in the frequency domain): 

p = A.e=f!ee    JhVe,    where   p = ( Pe V    e = ( * ) (1) 
\ ame   amm J V Pm / V       / 

(A small particle is in free space, so B = /ioH). The Onsager-Casimir relations for the polariz- 
abilities [3, Eqs. (125.14), (125.16)] read: 

*fee(H0) = öee(-Ho),        Ümm(H0) = ömm(-H0),        Ime(H0) =-öem(-H0) (2) 

Here Ho denotes a medium parameter (or a set of several parameters) which is odd under the 
time reversal operation. 

On the macroscopic level, we deal with the averaged quantities - constitutive parameters - 
which connect the four field quantities as in 

D=? E + f H,        B = p H + cf E (3) 

The Onsager-Casimir principle [1, 2, 3] was extended to the constitutive parameters of bi- 
anisotropic media in [4, 5]1. Probably the most general proof can be based on the fluctuation- 
dissipation theorem [3, §124-125]. The proof is straightforward for the constitutive relations (in 
the frequency domain) written in the following form (for perturbations cased by small fields D 
and B): _ 

e = F.d,        where    d=(g),        F=(!   |) (4) 

The time-derivative of the energy density is 

dW d6 
-df=e-di (5) 

Thus, the same relations follow for the macroscopic parameters as well [4, 5, 8]: 

i(H0) = ^(-Ho),       E(H0) = f (-H0),       f(H0) = -f(-Ho) (6) 

For simple dielectrics described in terms of the permittivity tensor only, it is obvious that the 
same symmetry relation as (6) is also valid for the permittivity [9, §96], because the symmetry 
properties of the inverse tensor are the same as that of the original tensor. 

2.2 Different formalisms 

Several forms of material relations can be used to characterize bi-anisotropic media (in the 
frequency domain). In particular, two such forms are considered in [8]: 

E = f-D + /-B,        H = f-D + I-B (7) 

'Probably the first formulation for bi-anisotropic media was published in [6], but an equivalent result in terms 
of the quantum statistics was published as early as in 1952, see Eqs. (5.3,4) in [7]. 
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(Equations (8) in [8]) and relations (3) 

D = fE + f-H,        B = £-E + pH (8) 

The Onsager-Casimir principle written in terms of the parameters in (7) reads (6). On the other 
hand, if relations (8) are used, which means that the macroscopic problem is such that E and 
H can be considered as the primary fields, the same principle gives 

f(w,Ho) = Fr(w,-H0),        p(w,H0)=Fr(a;,-Ho),        f(w,Ho) = -f (u>, -Ho)     (9) 

Although the Onsager-Casimir relations look differently for different formalisms, it can be proven 
that one of them automatically implies the other. Indeed, let us express the material parameters 
from one set in terms of the other [10]. Consider, for example, 

^(-Ho) (e(-n0)-f(-H0)-h  '(-HoJ-^-Ho))   * 

(10) 

(11) 

=  ^(-H0)-f(-U0)-(h Vf-HoJ-TVHo) 

Using (6) we rewrite this as 

^(-Ho) = (f(H0) - 7(H0) • r't-Ho). £(H0)) "' = f(Ho) 

Similarly, one can prove that the other relations in (6) follow from (9). Erom this we find that, 
in contrast to the main conclusion of [8], it is impossible that one of the symmetry relations is 
satisfied but the other one is not. The same conclusion is true for the Post relations. Effectively, 
this means that the notion of reciprocity or non-reciprocity always has a clear sense which is 
independent on the material description formalism. 

2.3 Time-reversal and space-reversal symmetries 

Artificial bi-anisotropic materials are designed as mixtures of many bi-anisotropic inclusions. 
Because the composite properties depend on that of the inclusions, we can say that the macro- 
scopic symmetry relations (9) are "inherited" from the microscopic relations (2). Several mixture 
rules exist which allow to find estimates of the macroscopic parameters from the properties of 
inclusions. For simple mixture rules, such as the Maxwell Garnett rule, the macroscopic Onsager- 
Casimir principle can be proved directly from the microscopic relations, because the symmetry 
properties of the microscopic dyadics dictate the same properties of the macroscopic dyadics. 
The reason is that different coefficients in (1) and (3) are of different mathematical nature: they 
behave differently under mirror reflection of spatial coordinates. And this distinction must be 
preserved in the averaging process which leads to macroscopic constitutive relations. 

3. Conclusion 

On the microscopic level of consideration we have the fields E and B which act on charged par- 
ticles and cause their displacements. On this level, the fundamental principles such as causality 
or the symmetry of kinetic coefficients (Onsager-Casimir principle) should be applied to the 
parameters which connect microscopic responses (such as molecular dipole moments) with the 
microscopic fields E and B. Thus, the Fourier transform of the molecular polarizability is sub- 
ject to the Kramers-Kronig relations, etc.   To describe a macroscopic object we average the 
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fields and introduce the notions of so called induction fields D and H. Instead of the molecular 
polarizabilities we deal with constitutive parameters which are in a certain sense averaged val- 
ues of their microscopic counterparts. Naturally, we expect that the same principles of causality 
and symmetry should also apply to the macroscopic parameters. If not, we would actually con- 
clude that the way of introducing the macroscopic parameters is non-physical. From the above 
considerations of this paper we in fact can draw an important conclusion that all considered 
bi-anisotropic material relations are compatible with the Onsager-Casimir principle. 

It is important for the macroscopic electromagnetics since at the macroscopic level we cannot 
any more distinguish between primary and induction fields as the source and reaction fields. In 
different situations one or the other field can be fixed by the sources and we have to treat 
that as the primary source field. Causality requirement leads to the conclusion that both the 
permittivity e and its inverse e_1 satisfy the Kramers-Kronig relations. Similarly, both these 
quantities are even with respect to the time reversal, according to the Onsager-Casimir principle. 
In the more general case we see that these principles can be universally applied to any of the 
sets of the bi-anisotropic parameters. If that would not be so, that would actually mean that 

one or more sets have no physical meaning. 
Finally, we have found that the microscopic and macroscopic Onsager-Casimir principles 

(symmetries with respect to the time inversion) are related, since the macroscopic parameters are 
introduced as a result of a certain averaging procedure. In this procedure, correct mathematical 
relations between variables of different mathematical nature should be always maintained. 
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Abstract 
The class of self-dual linear bi-anisotropic media can be defined in three different ways. 
It consists of media which are invariant in a duality transformation, allow factorization of 
the second-order dyadic Helmholtz operator in terms of two first-order dyadic operators 
and allow decomposition of fields and sources in a way that is an extension of the Bohren 
decomposition for chiral media. It is shown that the Green dyadic can be solved in closed 
analytic form for any self-dual bi-anisotropic medium and its general expression is given in 
terms of the self-dual decomposition. 

1. Introduction 

The Green dyadic corresponding to the homogeneous space of a bi-anisotropic medium gives the 
field from an arbitrary point source in that medium and forms the basis for all computations of 
electromagnetic field problems. It characterizes the dependence of the electromagnetic field on 
the medium in question. Presently, an analytic expression of the Green dyadic is known for a 
very limited number of linear bi-anisotropic media. It is of interest to increase the number of 
media with analytic Green dyadic solutions. 

The media under consideration in this study are defined by the four medium dyadics ap- 
pearing in the constitutive equations 

(1) 

restricted by the general form 

.y/jüesinö ^""'W?";1)^*-      <2> 
Here, the dimensionless dyadics a and Kr are arbitrary. For convenience we also denote r\ = 
\fjlje and k = co^/JIe. The class of bi-anisotropic media (2) under consideration appears quite 
interesting because it can be derived in three different ways considered below. 

2. Self-Dual Media 

Defining the duality transformation for the electromagnetic fields as the linear mapping 

AD - BC + 0, (3) 
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for the medium dyadics it induces the transformation [1] 

z* 
\ßd J 

AD-BC 

(   D2 

-BD 
-BD 
B2 V 

-CD 
AD 
BC 
-AB 

C2 -CD 
BC -AC 
AD -AC 
-AB A2 

| 
c 

(4) 

\P/ 

It can now be shown that (2) describes the class of media invariant in the duality transformation, 
by assuming first that the four medium dyadics satisfy the self-dual conditions Id = %£d~ £' 
Cd = £ and ]Üd = p in a particular duality transformation defined by four parameters A - D. 
This leads to two independent equations 

(A-D)t + Cg + () = 0,      (D-A)ji + B(Z + O = 0 (5) 

implying that the dyadics !,J! and £ + C must be multiples of the same dyadic, say, Ö7. There is 
no condition to the dyadic f - C, which can be chosen independently as a multiple of another 
dyadic ^r. Thus, the medium dyadics of a bi-anisotropic medium self dual in a specific duality 
transformation must be of the form (2) which is why the class is labeled as that of self-dual 
media. 

3. Factorizable Helmholtz Operator 

A second way to define the class of media (2) is by requiring that the second-order dyadic 
Helmholtz operator [2] 

Ie(V) = -(Vx7- jul) •?_1-(Vx7 + ju%) + a;2* (6) 

be factorizable in terms of two first-order dyadic operators. For two operators to be the same, 
they have to coincide termwise in all orders of differentiation. Let us look for a factorization of 
the form _    _ _      

Ie(V) = -(VxJ + I)-p-1-(Vx7 + S), (7) 

because in this case the second-order terms of (6) and (7) are identically the same. By equating 
the first-order terms of (6) and (7) one finds the dyadics must be of the form B = aß + jurf;, 
if = ftp - jj£ with ß = -a. Equating the zeroth-order terms of (6) and (7) leads to a dyadic 
equation for the scalar a: 

a2p + ju)ag + :0-u>2t = 0. (8) 

Now it is obvious that this has no solution unless the three dyadics % I and 1+C are multiples of 
the same dyadic and, again, f - C can be any dyadic. Thus, we have rearrived at the class of self- 
dual media. Assuming medium dyadic expressions of the form (2), the solution can be written 
as a = u)y/ej]l e~je and the electric Helmholtz operator dyadic has the simple factorization 

i?e(V) = -H+(V) -T1 -#-(V) = -#-(V) -/T1 -#+(V), 

in terms of two first-order operators defined by 

F±(V) = VXJT^±,      f± =cos6 ü±Wr. 

(9) 

(10) 
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4. Decomposable Fields 

Finally, the same class of self-dual media can be defined by requiring that the fields be decom- 
posable in two independent electromagnetic fields as 

E(r) = E+(r) + E_(r),      H(r) = H+(r) + H_(r), (11) 

with scalar admittance relations necessary for the decomposition 

H+(r) = Y+E+(r),      H_(r) = Y_E_(r). (12) 

Inserting E and H in terms of E+ and E_ in the Maxwell equations and requiring that there be 
no coupling between E+ and E_, leads to two quadratic dyadic equations for the admittances 
y+'y-: 

y|p+yT(e + o+?=o (13) 
similar to (8). To be solvable, they require that the medium be of the self-dual type (2). In this 
notation, the admittances can be solved as Y± = ±j/r)± with r)± = rje^6, and the decomposed 
fields become 

E± = 07^^® ^H)'     H± = ^(e^H ± iE). (14) 2cos0v * s i   » =c     2cosö 
T) 

This approach has led us to the decomposition in bi-isotropic media alternatively labeled as 
the Bohren decomposition [3], self-dual decomposition or wavefield decomposition [4]. It splits 
the Maxwell equations in two independent sets: 

V x E± = -jJp± • H± - M±, (15) 

V x H± = jJi± ■ E± + J±, (16) 

when the decomposed electric and magnetic currents are defined as 

and the equivalent permittivity and permeability dyadics as f± = ee±jef±, ß± = fie^ef±, with 
the dyadics f± defined in (10). The decomposed fields and sources obey the relations, 

E± = =B'??±H±,       M± = ±jr)±J±. (18) 

5. Green Dyadics 

The fields generated by arbitrary electric and magnetic sources in a homogeneous linear bi- 
anisotropic medium can be expressed as integrals of four Green dyadics Wee{r), Üee(r), Üee(r) 
and Gmm(r) satisfying 

0 . Vx7)-WZ f -vx/    o   )   Mc p 
G««W    G™W )_( I   0\ 
5.W BL.wJ-U 1   H)-     <19) 

For the decomposed fields in a self-dual medium we only need to consider two Green dyadics 
G+(r) and G_(r), which can be defined in terms of fields due to the decomposed point sources. 
They satisfy 

5±(V) • Ü±(r) = (V x 7 T k¥±) ■ Sf±(r) = Tjr]e^876(r). (20) 
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Relations between the different Green dyadics are 

8-M = 2^9 (■*8+W + e"'8-(r)) '      5™W = 2^9 P+W - 8"(r)) '     (21) 

5m,(r)=^(^5+(r)-e-'»S_(r)),       5„m(r) = JL (5+(r) + B_(r)) .        (22) 

To find the solutions for (20), the dyadics 7± are first expressed in terms of their symmetric 
and antisymmetric parts as 7± = S± + a± x 7. The equation (20) then becomes 

[I±(V) =F fca± x J] • ü±(r) = ^'^'^(r),      7J±(V) = V x 7 T fcl±. (23) 

The Green dyadics G±(r) can now be expressed in terms of two scalar Green functions g±(r) 
satisfying a second-order equation (for details see [6]) 

S±(r) = ±jr?e^'öe±fca±-rI±)T(V)9±(r),    detZ±(V)s±(r) = -6(r). (24) 

The solutions for g±(r) are obtained through an affine transformation [2] as 

p—jkD± I —      /=—1 
9±{r) = TkkDZ'       D±(r) = y/detS±]IS±  : rr. (25) 

Thus, the two Green dyadics obey the expressions 

S±(r) - -jtfVJ-^m (g^) . (26) 

Finally, the four basic Green dyadics Gee • • • Gmm are obtained by substituting (26) in (21) 
- (22). For example, the expression for the electric-electric Green dyadic becomes 

= jr,ek»+-*=(2)T       (e-*D+\     jye-**-* =(2)T       (e^kD-\ 
Gee(r) = "^o7FL+    iV){4^kD;)-    2cosö   L-    W{*KkD-)- (27) 

As a simple check we can consider the bi-isotropic special case by choosing ä = I and Kr = nrI. 
These imply kf± = kS± = k±I, kD± = k±r and k± = k{cos9 ± Kr), whence the well-known 
expression for Gee(r), as originally presented in [5], can be obtained. 

6. Conclusion 

The class of self-dual bi-anisotropic medium defined by two arbitrary dyadics (2) was shown to 
be definable in three different basic ways. It was shown that the Green dyadic corresponding to 
any bi-anisotropic medium in this class can be found in explicit analytic form by applying the 
decomposition method. 
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Abstract 

Developments that took place in the area of sculptured-thin-film technology after Bian- 
isotropics '98 are reviewed here. Devices addressed include: optical filters of various kinds, 
laser mirrors, gas-concentration sensors, optical interconnects, interlayer dielectrics, and 
biosensors. Pulse bleeding is related to the circular Bragg phenomenon in chiral sculptured 
thin films. Acoustic research is also identified. 

Light from a fluorescent street lamp filtered through the soft rain, and the leaves of an 
ornamental maple tree on the other side of Baker Street cast muted shadows on the wall opposite 
the bay window in the cavernous living room of 221 B. The September night was in full glory, as 
Sherlock Holmes smoked a meerschaum pipe another people's princess had sent him as a token 
of her gratitude more than a century ago. He sat quietly, absorbed in some deep thoughts. Only 
the frequency with which he released smoke rings indicated his phrenetic turmoil. 

* - * - * 

But, what's time in our state now? Having left aside our mortal accouterments, Holmes and 
I still inhabit our beloved apartments in the metropolis. I continue to organize many of the cases 
that Conan Doyle, our literary agent in our former life, never published because they were then 
deemed inimical to public order. Not nowadays, however. Holmes often tells me of particularly 
horrid instances of murder that the modern criminal has the means and the desire to commit 
and does. That of a little girl in Boulder and that of a big girl in Los Angeles come to mind. 
Occasionally, Holmes is sufficiently intrigued to solve particularly infamous crimes, but Conan 
Doyle is no longer able to bring the criminals to book. 

The great love of Holmes these days, however, is not crime but the science of materials. No 
longer able to experiment himself as he once did on the ashes of cigars of 34 different provenances 
and the herbs used by the Moluccans to shrink other people's heads, he spends many a night at 
the Imperial College library, poring over the pages of thousands of journals and other scientific 
and technological proceedings. He has an astonishing capacity to memorize diverse facts, and 
he synthesizes new constructs with uncommon fecundity. I have always felt that the gain of 
Victorian crime-fighters was the loss of Victorian natural philosophers. The recent discovery 
of materials with Möbiated bianisotropy — a truly bizarre material structure that promises 
a thorough rewrite of plane waves in physics textbooks — came of a suggestion Holmes had 
whispered in the ears of a visiting San Doggo del High physicist as he slept late one evening, 
in the Imperial College library, about two years ago. More often than not, he is unable to 
find a competent medium for his ingenious ideas; though Holmes did manage to masquerade as 
Daedalus for several years in the pages of New Scientist. 
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I remember clearly that in 1959 he came across a report in Nature by two Nottingham 
engineers working for a Swedish company.1 These worthies had sought fit to outsmart nature by 
depositing a twisted film of fluorite on a flat glass substrate. Their method of inducing the twist 
was simplicity itself: just rotate the substrate while the fluorite adatoms fall obliquely on it. A 
stationary substrate results in columnar thin films that can act like biaxial crystals; a rotating 
substrate can give rise to sculptured thin films that are ever more complex. 

Neither one of the Nottingham duo could have verified the true nature of their films as 
scanning electron microscopes had yet not made their debut, though they did have an inkling 
that the microstructure was some limiting case of a Sole filter. Holmes, who can see matters 
more clearly than scanning electron microscopes because he can perform wavelet transforms 
on his nebular personal wavefunction, returned that January dawn from the Imperial College 
library, declaring that he knew the microstructure. 

"Filamentary, my dear Watson," he had loudly shouted for all to hear — but no person then 
alive did. The Nottingham paper gathered dust for many decades. Only two reports were filed 
over 35 years by the Baker Street Irregulars, now no longer confined to their corporeal sheaths 
but clad in black instead: A Scotsman living in Arizona once mentioned the paper during an 
antipodean seminar, and a Louisiana physicist wrote of something similar. And then in 1995, an 
engineer from Pencilmania and a mathematician from the nether Caledonia discussed the films 
in a Royal Society paper, not at all aware of the Nottingham paper. Shortly thereafter, impelled 
by the Pencilmaniac engineer, a Canadian undergraduate student was able to duplicate the 1959 
feat and scrutinize the arrays of parallel straight curls that chiral sculptured thin films are. Two 
years later, the Nottingham report came to light again, and today occupies its rightful place in 
the scientific literature on thin films. What an amazing confirmation of Holmes' foresight! 

* - * • 

Cogitating for over an hour in complete silence, Holmes said out aloud: "What do you make 
of the prospects of sculptured thin films, my esteemed Watson?" 

Taken aback, I mumbled: "How the deuce did you know that?" 
"You know my methods, Watson. Apply them. After the last gawking humans left our 

abode in the evening, you were nowhere to be found. Looking at your desk, I saw the letters W 
I L Y traced in the dust on your table, and an American envelope with a coyote stamp lying 
on the floor. Clearly, our transatlantic friend John had communicated with you through an 
infernal countryman of his who spent almost the whole day here in 221 B. I called one of my 
men in black, who confirmed that you had been seen crossing the Brooklyn Bridge. On your 
return, I detected perfume clinging to you. You must have been looking over the shoulder of a 
copy-editor in New York." 

"Yes, but how did you know that John's missive concerned sculptured thin films?" 
"Obsessed with these films you have been for some months, haven't you?" 
"Yes. It does sound so simple, Holmes, when you explain it. Anyhow, there is this new 

book being published,2 and I sneaked a preview of Chapter 5, just to apprise you of the latest 
developments." 

"Pray do," quoth he, as he slowly floated up to the top of the ottoman. 
I began: "Well, it seems that matters have advanced quite considerably during the past two 

years. You may recall, Holmes, the addresses that the Pencilmaniac engineer had delivered at 
Bianisotropics'97 in Glasgow and Bianisotropics '98 in Braunschweig. In his first address, he 

'N.O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105, 1959. 
2O.N. Singh and A. Lakhtakia (eds), Electromagnetic Fields in Unconventional Materials and Structures (Wi- 

ley, New York, 2000). 
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was quite speculative about sculptured thin films. Reliable methods of producing them were still 
in their infancy; and the optical rotation spectrum of only one chiral sculptured thin film had 
been measured by then — and that too was crude and incomplete. The Pencilmaniac engineer's 
group took many theoretical strides following the Glaswegian meeting, which were duly reported 
in Germany. The theoretical basis of optical devices — such as circular polarization filters, laser 
mirrors, and gas-concentration sensors — was also firmed up between those two meetings. 

"Several developments took place after Bianisotropics '98, many of which are reported in 
Chapter 5 of this new book. Optical interconnects as well as interlayer dielectrics are among 
the emerging applications of the sculptured-thin-film nanotechnology. Some acoustics research 
has also taken place, but it is definitely in the theoretical stage only. Most importantly, at least 
three types of optical devices have been made with the new serial bideposition technique in New 
Zealand, in collaboration with the Pencilmania group. 

"The first optical device is a circular polarization filter that allows either left- or right- 
handed plane waves to pass through, but not both. Of course, on enquiry both Williams bragged 
that they have known from Wilhelm's time that such filters can work only in relatively narrow 
wavelength-regimes. 

"The next device combines the filtering action with polarization-inversion. The circular 
polarization filter is capped by a columnar thin film which functions as a half-wave plate at 
a certain wavelength within the Bragg regime. The device thus is really the first two-section 
sculptured thin film ever made, and fully justifies your confidence in the concept of sculptured 
thin films. 

"Finally, the third device is a spectral hole filter. While a chiral sculptured thin films is 
being deposited, the substrate rotation is temporarily stopped and then resumed after a while. 
This results in the production of a reflection hole that punctures the Bragg regime, when all 
parameters are properly chosen. The bandwidth of the hole is 11 nm, which is comparable to 
the 10 nm holes produced commercially by holographic techniques." 

Holmes interjected: "That is a three-section sculptured thin film then, isn't it? But they 
have done even better with reflection holes. Instead of stopping the rotation of the substrate, 
they now simply give a quick orthogonal twist. They have achieved the same type of hole with 
a two-section sculptured thin film." 

"How do you know about that?" I asked, to which Holmes replied that he had sneaked into 
an editorial office at a London physics department. He was also tickled pink to find that an 
Imperial College lecturer had joined the Pencilmania-NZ collaboration. 

Holmes continued: "I can see the possibilities of highly sensitive gas-concentration sensors in 
those spectral holes. Did you find any evidence in the book chapter?" My reply in the negative 
made him pensive for a while. "Anything else in that book?" he questioned, and I mentioned 
that the Pencilmania group had undertaken the incorporation of further verisimilitude in their 
research by assuming Lorentzian dependencies for the constitutive parameters. "Good," he went 
on, "Hendrik will be pleased. But we must find more on what's afoot in Pencilmania." 

Dawn was about to break as he uttered those words. Soon the fog would roll out of Heathrow 
and aeroplanes would begin landing there, bringing another clutch of Holmesians to 221 B. It 
was time to retire for the day, but Holmes went out to speak to one of his men in black. 

The great merit of disembodiment is that the Baker Street Irregulars can travel quite fast. 
While speeds close to or more than a tenth of the speed of light are not advised, lest a blue glow 
be emitted, during the last few years the men in black have been able to go to almost anywhere 
in the world with the help of the Internet. Constantly bumping into copper atoms used to be a 
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hazard, but optical fibers now provide them with a smooth Alpine slide, even to Papua Niugini. 
Holmes and I also use the same mode of travel, incidentally. 

As the shadows filtered in again, ushering a new twilight, Holmes began to receive reports 
from the Baker Street Irregulars who had combed through the editorial offices of a multitude of 
physics and engineering journals. That the Lorentzian route had been taken by the Pencilmaniac 
was confirmed not only from France but also from Germany and Italy. No less than three editorial 
outfits from the three countries had become the Pencilmaniacs' accomplices, so to say. Sound 
research had been conducted and reported. 

An interesting development was the modeling of individual columns in chiral sculptured thin 
films as ensembles of inclusions laid out end-to-end, not unlike strings of sausages. Spectral 
maximums of various observable properties had been examined as functions of inclusion shape, 
volume fraction and orientation — for eventual use in computer-aided design. 

Even more astonishingly, research had spilled over from the frequency into the time domain. 
After solving the Maxwell equations directly in the time domain, the spatio-temporal anatomy 
of the circular Bragg phenomenon exhibited by chiral sculptured thin films had been bared, 
much to the delight of the doctor in me. Pulse bleeding had been shown to occur in the 
Bragg regime under certain circumstances. Holmes rubbed his hands with glee, as he wondered 
about the encounter of femtosecond pulses with chiral sculptured thin films, and cautioned me 
to be careful: if these new materials were to be used for wavelength division multiplexing and 
demultiplexing, we would have to choose suitable polarizations for future Internet travel. "Better 
pack a few extra polarizations, Joseph, just to stand out from the hoi polloi." In some of his 
lighter moments, Holmes fancies himself as Sir Andrew Lloyd Webber giving stage directions! 

"Watson, the Pencilmaniac engineer is moving just too fast. I fear I am unable to delve into 
his brain, because he never puts on the virtual reality headset I had surreptitiously suggested the 
head of his department to provide him with. But his thoughts cannot elude detection. Unable 
to remember anything for too long, he commits all his ideas to writing. Somewhere in his office, 
a blueprint of his plans must be hidden; and I must lay a trap for him." Holmes pronounced 
each word with deliberation, in his usual calm manner. Every comma and every semi-colon, 
not to mention full stops, were marked by pauses of the right duration. I could almost feel that 
gears were whirring and lights were flashing inside that powerful intellect of his. And then he 
went out with one of his men in black. 

* — * — * 

Holmes did not come back in the morning, and was away the next night as well. Late in the 
following afternoon, as I reposed on a horsehair sofa in the attic away from the prying throngs 
of visitors, I became aware of a tall cylindrical object with a faint green glow making its way 
towards me. If I had a skin, I would have jumped out of it. Golly, whatever could that dreadful 
apparition be? I froze in terror, as peals of laughter rang out. 

"What's up, Doc?" a guttural patois issued from that object. But Holmes couldn't fool me. 
He is certainly a master of mimicry, but long association with him helped me see right through 
him. 

"What are you disguised as?" 
"What else? A Pencil, of course." 
"Aha! A pencil for the Pencilmaniac!!" 
"Exactly! Let's be off to Pencilmania, where the day is just about middle-aged now. Our 

quarry must be working in his office, where we must corner him." 
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Hitching a ride on the telephone cable, we exited 221B. Milliseconds later, we swung over 
to a British Telecom fiber. A skip over the splicing with an MCI fiber, and we negotiated the 
Atlantic via a satellite faster than you can say 'WorldCom.' 

As we were landing on the desk of the Pencilmaniac engineer through his computer, he began 
to raise his right hand from his lap. He opened the side-drawer. Nimble as a humming bird, 
Holmes slid into the pencil case lying inside the drawer. A piece of paper lay on the desk, covered 
with chemical symbols such as [Ru(2,2'-bipyridine)3]Cl2 and [Ru(l,10-phenantholine)3]Cl2, and 
with the letters A, T, C, G and U strewn all over. A firefly had been doodled in a corner, with 
the words Lucifer — Son of Morning written below in a cursive hand. 

The Pencilmaniac's left hand took out a pencil and drew several parallel lines on another 
sheet of paper. Those lines glowed green! Holmes had been able to get inside the engineer's 
brain! The Pencilmaniac continued to make a schematic, occasionally labeling certain layers. I 
did not understand the diagram, but Holmes did. 

* — * — * 

An hour later, after the Pencilmaniac engineer had closed shop for the day, and his office was 
bathed in vivacious darkness, Holmes emerged from the pencil case. Triumphantly, he declared, 
"I just want to say one word to you Biosensors." 

Author's note: If you enjoyed the story, please write or call for the following publications: 
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Abstract 

The effective boundary condition method is extended to nano-scale mesoscopic systems. 
The EBCs appear as a result of the 2D-homogenezation procedure and have the form of 
two-side anisotropic impedance boundary conditions stated on the structure's surface. The 
surface impedance tensor has been evaluated for a set of typical nanostructures. It has been 
shown that, unlike to macroscopic electrodynamics, the surface impedance tensor exhibits 
sharp oscillations at frequencies of optical transitions. The EBC method supplemented with 
well-developed mathematical techniques of classical electrodynamics creates unified basis for 
solution of boundary-value problems in electrodynamics of nanostructures. A generalization 
of the EBC method to the quantum electrodynamics is also presented, 

1. Introduction 

Rapid progress in the synthesis of a variety of different kinds of spatially confined nanostruc- 
tures with fascinating electronic and optical properties irreducible to properties of bulk media 
symbolizes a fundamental breakthrough in solid state physics. The key peculiarities of such 
structures are related to spatial confinement of the charge carrier motion and their nanoscale 
spatial inhomogeneity. Since the inhomogeneity scale is much less than the optical wavelength, 
in many cases it turns out to be possible under analysis to reduce the dimensionality of struc- 
ture (low-dimensional structure). In this contribution we present a method of evaluation of the 
electromagnetic response of low-dimensional nanostructures formed by thin layers with intrinsic 
2D periodicity with characteristic period much less than the optical wavelength, e.g., carbon 
nanotubes (CNs) [1], planar arrays of quantum dot (QDs) [2]. 

This method, conventionally referred to as the effective boundary condition (EBC) method, 
has been originally developed for microwaves and antenna theory [3]-[5], and has found a wide 
application in these fields, e. g., for the design of semi-transparent grid screens and helical 
sheaths in traveling wave tubes1. In essence, the EBC method is modification of the effective 
medium theory as applied to 2D-confined structures. The basic idea of the EBC method is that 
a smooth homogeneous surface is considered instead a periodic structure, and appropriate EBCs 
for the electromagnetic field are stated for this surface. These conditions are chosen in such a 
way that the spatial structures of the electromagnetic field due to an effective current induced 
on the homogeneous surface, and the electromagnetic field of the real current in the lattice turn 
out to be identical some distance away from the surface. The lattice parameters are included 
in coefficients of the EBCs. The applicability of the EBCs is restricted by the requirement that 
the lattice period be small compared with the free-space wavelength. The effectiveness of the 

1Similar approaches have been developed in acoustics, hydrodynamics, elasticity theory. 
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EBC method is determined by a possibility its extension to more complicated situations. Such 
an extension is only possible when the parameters involved in the EBCs do not depend on the 
spatial structure of the irradiating field, or, in another words, the EBCs must be local, i.e., 
they must couple field components and their spatial derivatives at a given point of space. In 
the simplest case, the EBCs have the form of two-side impedance boundary conditions on the 
surface S: 

[n[n,HI-Hn]] = -^[n,E]> (1) 

[n,EI-En] = 0 (2) 

where c is the speed of light. The unit vector n is normal to the surface S and is directed from 
region I to region II. The effective conductivity tensor a contains information about geometrical 
configuration and constitutive parameters of the lattice. EBCs in the form given by Eqs. (l)-(2) 
are obtained neglecting (i) polarization of the structure in the n direction, and (ii) contribution 
of spatial dispersion into conductivity. 

2. Formulation of the EBCs for Planar Nanostructures 

In order to derive the EBCs, a kernel problem must be solved in each particular case. For 
example, this problem is formulated for grid screens as the problem of plane wave scattering by 
the infinite plane screen [4]. Below we consider the kernel problems for two particular cases of 
low-dimensional nanostructures. 

A) Carbon nanotubes. 
As applied to CNs, the kernel problem is to derive the EBCs for an isolated infinitely long regular 
CN with an arbitrary index (m, n), i. e., to derive the EBCs for a cylindrical surface of the radius 
R with JR as the CN radius. Neglecting indirect interband transitions in the 7r-electrons' motion, 
the conductivity tensor of the CN is given by [6] 

<7 = (3) 

where azz is the axial conductivity of CN; this quantity appears in coupling of the microscopic 
properties of the CN and its macroscopic electromagnetic response. The treatment of the axial 
dynamical conductivity of an isolated CN has been given in Refs. [7], [8]. Both semi-classical and 
quantum-mechanical analyses of the conductivity have been presented in the above references. 
In some cases, the role of spatial dispersion for CNs turns out to be essential. In that cases, Eq. 
(2) keeps validity while Eq. (1) is transformed to 

Ä[n[n,HI-HII]] = --[n,E], (4) 
o 

where 

xJ 
0   1 + In &       , (5) 

Z~o is the spatial dispersion parameter and v is the relaxation frequency. In a general case, the 
quantities azz and k are evaluated using the quantum-mechanical transport theory. Though 
the CN surface possesses a periodic crystalline structure, Eqs. (4)-(5) incorporate only constant 
coefficients (i.e., azz and l0), and are devoid of any periodic functions.   This is because the 
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technique of deriving the EBCs is equivalent to the averaging of microscopic fields over an 
infinitesimally small volume. 

The conductivity was assumed to be quasi-one-dimensional while az^ G$Z and a^ were 
ignored in the derivation of the EBCs. As a consequence, we obtained conditions (2), (4) and 
(5) for the electromagnetic field across the CN surface. The polar conductivity a^ is due to 
indirect interband transitions neglected in our model and will surely modify the stated EBCs. 
The role of azip and o^z is expected to be important, for example, in chiral CNs in relation to 
the effect of natural optical activity exhibited by such CNs. 

B) 2D-lattice of QDs. 
In QDs, apart from the charge carrier confinement [2], there exist a class of electrodynamic 
effects related to light diffraction by QDs and QD ensembles, which strongly influence the 
electromagnetic response properties of such systems [9] -[11]. Here we consider 2D arrays of 
QDs to establish correlation between properties of such systems and homogeneous 2D structures 
like quantum wells. The key problem here is the diffraction by infinite planar quadratic lattice 
constituted by identical QDs imbedded in a host medium. The host medium is assumed to 
be dispersionless and transparent. Conventional phenomenological model of the dispersion and 
the gain of a single QD is as follows: e(ui) = e^ + go/(v — ^o + *'/T). Here e^ is the host 
medium permittivity while the quantity go is the phenomenological parameter proportional to 
the oscillator strength of the transition; <7o > 0 in an inverted medium. 

Let the normal n be directed along the z-axis and let the incident planewave be polarized 
along the x-axis. Further we restrict ourselves to the dipole approximation of the diffraction 
theory. In that case, the scattering field from an isolated QD can be expressed in terms of Hertz 
potentials by 

E 
oo 

=   £   (vv-+fc?)nfm, (6) 
l,m= 

H = -ikeh    J2    Vxnfm, (7) 
l,m=—oo 

where 
Utm = *xCXxx£x(0) exp{ikiPlm}/plm , (8) 

h = ky/eJi, pim = [{ld-x)2 + {md-y)2 + z2]ll2, axx is the QD polarizability tensor component, 
d is the lattice period, and £x(0) is the electric field inside QD. This field is related to the mean 
field in the layer, Ex(0), by £^(0) = (1 + 5iaII/d2)5I(0), where <5i is the lattice parameter: 

rf/2    d/2 

J WTyWdxdy"~VTd- (9) 
-d/2-d/2 

After some manipulations with Eqs. (6), (7) (see, e.g., [12]), in the limit z -> ±0 we come to 
Eqs. (1), (2) with the xOy plane as the S surface and 

a=l^ra{l+ia)  ■ (10) 
Here I is the unit tensor. Second term in the brackets is due to the depolarization related to 
the difference between mean and acting fields. 

It should be noted that the assumption (i) which neglect polarization of the structure in the 
n direction, holds true only for QDs with planar configuration in xOy plane, e. g., discs, islands, 
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flattened pyramids, etc. For QDs with comparable extensions in all directions, the derivation of 
EBCs presented above should be generalized. Derivation method remains the same: scattered 
fields are described by Eqs. (6), (7), but Hertz potentials are given by 

nfm = [exaxx£x{0) + ezazz£z(0)} exp{ikipim}/pim , (u) 

where azz stands for the QD polarizability in the z direction. Contribution of the transverse 
polarizability qualitatively modifies the EBCs: tangential components of the electric field exhibit 
discontinuity at the S surface. 

In that case, relation between z-components of internal field of QD and mean field is given 
by El

z(0) + E?{0) = 2(1 + azz62/d?)£{0), where 

,1 = li   T J l^-f-y' dxdy^. (12) z->o J     J    (x2 + y2 + z^f'1 a 
-d/2 -d/2 

Then, carrying out with Eqs. (6), (7) the manipulations analogous to the described above, we 
come to the generalized EBCs as follows: 

[n[n,HT - H"]] = -^[r^E1 + En], (13) 

[n, E1 - En] = -£[n, V(n, E1 + E11)] (14) 

with the conductivity tensor a defined by Eq. (10) and £ = 2-nazz/{d2 + Ö2(xzz)- 
The above equations constitute the complete system of EBCs for electromagnetic field in low- 

dimensional nanostructures. They have been obtained in the ordinary way, by the averaging of a 
microscopic field over a physically infinitesimal volume. The technique of macroscopic averaging 
is similar to one of introducing constitutive parameters for bulk media, but differing in that 
the averaging occurs in boundary conditions, but not in field equations. Correspondingly, the 
averaging was carried out over the 2-D surface (cylindrical for CNs or plane for QD sheets) but 
not over the 3-D spatial element. Thus, in electrodynamics of low-dimensional structures the 
EBCs play the same role as constitutive relations in electrodynamics of balk media. 

3. EBCs in Quantum Electrodynamics of Nanostructures 

As different from macroscopic microwave lattices, in nanostructures effects become valid related 
to quantum nature of the electromagnetic radiation (spontaneous irradiation, Kazimir forces, 
electromagnetic fluctuations, etc.). Obviously, quantum electrodynamics (QED) should be ap- 
plied for description of such effects. In Ref. [13] a procedure of the electromagnetic field quan- 
tization in mhomogeneous Kramers-Kronig bulk dielectrics. In the framework of this approach, 
the electric field operator is introduced by 

00 

E(r) = fdw E(r, u) + H.c. (15) 
o 

Analogous expression can be written for the magnetic field. The Maxwell equations with a source 
term corresponding to the dissipation-assisted quantum noise have been formulated in Ref. [13] 
for the operators E(r,w), H(r,aO. Physically observable quantities are found by averaging of 
corresponding field operators. The above mentioned source term provides necessary commuta- 
tive relations for these operators. Our analysis has shown that the basic ideas presented in Ref. 
[13] in combination with the EBC method can be extended to the case of spatially mhomoge- 
neous low-dimensional structures. For simplicity we neglect both the medium polarization in 
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the z-direction and the spatial dispersion. The conductivity tensor is assumed to be given in its 
eigenbasis. In such a case, the field operators E(r,u>), H(r,o;) satisfy to the vacuum Maxwell 
equations and the EBCs as follows 

Hnj'-H^—lnJ]-^, (16) 

[n^-E^O (17) 

where Jjy is the operator of the surface noise current density which can be presented by 

t = l,2.        (18) jNi(R,u) = y ^»{*«} [em&ü})fifaf>) + ®(-ntu})f? (R,w)] 

Here R € S and 6(-) stands for the unit step function; /j(R, u>) and f* (R, UJ) are the annihilation 
and creation operators, respectively, of the 2D bosonic field. This field satisfies to the Heisenberg 
equations of motions and is analogous to the 3D bosonic field described in Ref. [13]. It can 
easily be found that the second term in brackets in right-hand part of Eq. (18) disappears for 
thermodynamically equilibrium systems. 

The key feature of QED EBCs (16)-(17) which distinguishes them from the classical EBCs 
(l)-(2) is the presence of the surface noise current Jjy. This current makes it possible to satisfy 
the commutation relations for the field operators. Corresponding proofs will be given separately 
elsewhere. The fundamental difference between quantum electromagnetic field and the classical 
one is the presence in the quantum field of zero-point vacuum oscillations. Similar to classi- 
cal electromagnetic field, zero-point vacuum oscillations will diffract by spatial inhomogeneities 
(nanostructure). The diffraction distorts the spatial structure of zero-point oscillations as com- 
pared with the virtual photons in vacuum. This diffraction process is described by the EBC 
operators (16)-(17). 

4. Utilization of EBCs 

Potentiality of utilization of the EBCs method under consideration of particular electrodynam- 
ical problems is provided by applying the solution of the kernel problem to a variety of much 
more complicated situations: curved and/or bounded screens, screens placed in the vicinity of 
dielectric or metallic surfaces, etc. For example, EBCs (4)-(5) has been derived for an isolated 
infinitely long CN. Nevertheless, our formalism can be utilized for consideration of diffraction 
problems in different types of nanotubes, viz., CNs of finite length (first results in this field have 
been presented in Ref. [14]), bent and corrugated CNs, CNs with junctions, multi-shell CNs with 
hexagonal cross-section, CN-based composites, etc. The derived effective boundary conditions 
can also serve as the basis for description of interaction of CNs with beams of electrons and 
other charged particles. The investigation of guided surface wave propagation in single- and 
multi-shell CNs carried out in [7], [8] exemplifies the application of the formalism developed, 
and it is of significance in its own right too. Such waves can be excited by directing laser or 
electron beams along a CN axis. These surface waves are characterized by strong retardation 
and, consequently, have large field gradients in the transverse plane. As the result, such surface 
waves must manifest a strong pondermotive effect. 

As applied to 2D lattices of QDs, the EBC method allows us to analyze electromagnetic 
response of such layers (or multilayer structures) placed in microcavity: this is of importance 
for the design of QD-based semiconductor lasers [2]. EBCs given by Eqs. (13), (14) state 
mathematical equivalence of 2D periodical layer of QDs and an isolated quantum well. It should 
be stressed that the mechanisms of transport processes and oscillator strengths in each case 
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are essentially different. Nevertheless, the equivalence makes it possible to extend to QD-based 
planar structures the well-developed mathematical formalism of investigation of quantum wells. 
In particular, starting conditions for QD-based lasers can be evaluated by analogy with solution 
of the corresponding problem for the quantum well [15]. 

It should be emphasized that the extension of the EBC method to deformed or complicated 
structures is only possible when the modification of geometrical parameters of the structure does 
not change the electron transport properties in it; otherwise, modification of EBC is required. 
For example, too close location of two planar layers with QDs will change the energy spectrum 
because of overlapping of exciton wave functions, tunneling, etc. Analogously, too strong bend 
of CN will distort quasi-free motion of 7r-electrons in it and, consequently, may change the con- 
ductivity character. Thus, justification of applicability of EBCs must be given in each particular 

case. 
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Abstract 

Waveguiding in a thin-film helicoidal bianistropic medium (TFHBM) layer is investigated. 
A dielectric TFHBM layer bounded by isotropic dielectric half-spaces is shown to support 
guided wave propagation with guide wavenumbers dependent on the direction of signal prop- 
agation, thus signalling potential use as a space-guide. The modal fields and power transmis- 
sion distributions associated with the guided modes in the proposed TFHBM interconnects 
are detailed. 

1. Introduction 

Implementation of optoelectronic devices requires the development of optical interconnects 
which, in addition to providing effective signal transmission, must be simple to fabricate on 
integrated circuitry. In this paper, we present a theoretical study which indicates that dielectric 
thin-film helicoidal bianisotropic mediums (TFHBMs) are very suitable for realizing optical in- 
terconnects. In fact, the adoption of dielectric TFHBM interconnects may result in efficient use 
of semiconductor real-estate in electronic chips. 

2. Theory in Brief 

Suppose a linear, dielectric TFHBM layer completely fills the region \z\ < D/2, while the 
halfspaces z < -D/2 and z > D/2 are filled by an isotropic dielectric medium whose rela- 
tive permittivity scalar at angular frequency u> is denoted by er(w). The constitutive relation 
D(r,u;) = e0g(z,w) • E(r,u;) of the TFHBM layer contains the relative permittivity dyadic 

£(*,W) = gz{z - f) • s,(x). £/(u,). gw • £■(, - q). (1) 

Here, the reference relative permittivity dyadic 

£,/M = eaMu*uz + eb(w)uxux + ec(Lü)uyUy , (2) 

where uXiy>z are the cartesian unit vectors and eaj6,cM are frequency-dependent scalars. The ro- 
tational non-homogeneity (along the z axis) of a structurally right-handed TFHBM is expressed 
by the dyadic 

Iz(*0    =   (u*"z + %"j/) cos f^J + (uyux - uxuy) sin [J^- j -f uzu, (3) 
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with 2Ü as the structural period. The so-called angle of rise x appears in the tilt dyadic 

S (x) = Kuj + uzuz) cos x + (u^i - ii%) sinx + Uj,Uj,; (4) 

typically x > 20° for the sculptured thin films. Guided wave propagation is ensured if cr < 
mm{ea, £{,, ec}, with both mediums assumed non-dissipative at the frequency of interest. 

Knowing the constitutive relations of the chosen TFHBM layer, we can determine the guide 
wavenumbers which enable guided wave propagation. A specific guided wave mode can be 
delineated with the following equations: 

E(r)    =   exp[zK(xcosi/> + yshn/>)]   e{z,K,ip) 1        -00<z<00. (5) 
H(r)    =   exp[zK(2:cosi/; + ysmV>)]    h(z,K,ip)  j ' _    ~~ 

Here, the angle V denotes the propagation direction u^ = ux cos ip + Uj,sin^, while n is the 
modal guide wavenumber whose values have to be determined. 

The leakage fields accompanying a guided wave mode are represented by 

E(r)    =     (6ss + 6pP_) exp [tk_ • (r + §uz)]    1        ^ < _D . 

H(r)   =   |(6sp_ - bps) exp [zk_ • (r + §uz)]  J '    * ~     2 

in the lower halfspace, and 

E(r)    =     (cas + Cpp+) exp [»k+ • (r - §uz)]    1 ^ £ 

H(r)    =    |(csp+ - Cps)exp [zk+ • (r - §uz)]   J  '        
_ 2 ' 

in the upper halfspace, with bs,bp,cs, and Cp as the amplitudes of the perpendicular- and the 
parallel-polarized components. The various vectors introduced in (6) and (7) are given by 

s = uz x ue, p-t = T [l - («A)2]      U£ + («A)u* 1 k± = KUe ± (fe2 _ K
2
)      

nz >       (8) 

where fc = fc0\/^ri V = Vo/\^r, K = wv/i^üö = 27r/A0 is the free-space wavenumber, A0 is the 
free-space wavelength, and 770 = vVoAo is the intrinsic impedance of free space. Guided wave 
propagation is possible only if K > k; otherwise, energy launched into the TFHBM layer must 
leak into the two halfspaces. 

On substituting the constitutive relations and the field expressions above into the time- 
harmonic Maxwell curl equations V x E(r) = zwB(r) and V x H(r) = — iue0 g(z,u) • E(r), a 
4x4 matrix ordinary differential equation emerges for the TFHBM layer. Its solution requires 
the prescription of boundary values through (6) and (7). Our interest lies in determining pairs of 
(K, ip) such that not all of the coefficients bs, bp, cs and Cp are null-valued; thereby the dispersion 
equation is obtained. For guided wave propagation, values of K denoted by /c^,, (r = 1, 2, 3,...), 
that satisfy the dispersion equation have to be numerically determined, the roots being indexed 
by the integer r in descending order of their magnitudes. 

3. Guide Wavenumbers 

We implemented the foregoing procedure using the C programming language and the IMSL 
C numerical library subroutines for complex linear algebra. The wavelength A0 was fixed at 
600 nm for all calculations. We tested our computer program for the case of an isotropic, 
homogeneous, dielectric slab waveguide. Analytical solutions to the dispersion equation of this 
simple waveguide are well-documented - see, e.g., [1]. Setting er = 1, we simulated homogeneity 
and isotropy by choosing ea = e& = ec and taking the limit 1/fi -* 0.   The roots Kr that we 
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obtained corresponded exactly with the analytical results. Furthermore, the calculated mode 
shapes and power transmission characteristics of the waveguide also matched the expected power 
transmission and mode shape plots. 

Now let us proceed to the proposed TFHBM interconnect. Most calculations were made with 
{e0 = 3.8, ei, = 4.6, ec = 3.0}, in accordance with data from [2]. In general, the guide wavenum- 
bers show a strong dependence on the propagation direction (see [3,4] for more details). This is 
illustrated in Figure 1, where the guide wavenumbers are indicated for various ip for a specific 
TFHBM interconnect. Thus, the proposed TFHBM interconnect functions as a space-guide 
through which signals can be simultaneously transported in different directions with different 
phase velocities. This feature emerges from the anisotropic and non-homogeneous nature of 
TFHBMs, and may be exploited for efficient use of semiconductor real-estate in optoelectronic 
circuitry. 
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Figure 1: Roots of dispersion equation for directions of propagation denoted by the angle i/>; 
A0 = 600 nm, ea = 3.0, eb = 4.6, ec = 3.8, x = 30°, Ü = 200 nm, D = 8 Ü = 1600 nm. 

Independently of all parameters, the guide wavenumbers KL for propagation directions u^ 
and — ue are the same. When the TFHBM layer consists of an integral number of periods (i.e., 
the ratio D/fl is an even integer), the additional relation KL = K

T
V_^ holds. This arises because 

all three principal axes of g(z, w) rotate through an integral number of turns between the planes 
z — —D/2 and z = D/2, thereby imposing a symmetry constraint. 

The variability of K^ with ip is most pronounced around the lower values of KL (where 
solutions of the dispersion equation are more widely spaced). Additionally, the directional- 
dependence of KL persists for smaller values of D/tt, including D/tt « 1. Parenthetically, we 
also studied the directional-dependence of the guide wavenumbers for a locally uniaxial TFHBM 
layer with {e0 = ec = 3.8, e;, = 4.6}; The guide wavenumbers K^, still exhibit a dependence on tp, 
but the dependence is weaker than for the biaxial case illustrated in Figure 1. 

The number density of guided wave modes is less when D is small. The mode number density 
appears to be predominantly determined by the overall thickness D, and is largely unaffected 
by the half-period ft. Thus, the availability of guided wave modes can be tailored by properly 
choosing the layer thickness D. 

In TFHBM interconnects, «£, has an upper bound which varies with i/>. For instance, KL < 
2.049 &o for V> = 0°, whereas K^ < 1.981 k0 for tp = 90°, in Figure 1. The upper bound decreases 
monotonically as ip increases from 0° to 90°. The upper bound on KL varies with x> i>, D, and 
Q for given e0, e&, and ec. 
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4. Space-Guide Modes 

The modal fields and power transmission associated with the guided wave modes were also 
studied. The time-averaged power flow in the propagation direction is given by Pe{z) = 
±u£ • Re[e(z,/c,^) x h*(z,/e,V0], where the asterisk denotes the complex conjugate. Detailed 
numerical study of the modal fields and power distributions revealed that each mode of propaga- 
tion inside a TFHBM interconnect can be classified into one of two groups: hybrid electric (HE) 
and hybrid magnetic (HM). The modes are hybrid, because electric and magnetic field compo- 
nents are present in all directions, along the axial (uz) direction, as well as in the longitudinal 
and perpendicular directions in the xy plane. This is unlike the modes in an isotropic, dielectric, 
planar interconnect, wherein the modes are either transverse electric (TE) or transverse mag- 
netic (TM). Another distinction between the HE and HM modes in the TFHBM interconnect 
and TE and TM modes in the isotropic interconnect is that there appears to be no apparent 
ordering to the occurence of the HE and HM modes, while the TE and TM modes alternate 

with r = 1,2,3,.... 
For both the HE and the HM modes, the power transmission distributions Pt(z) are quite 

similar to those of the TE and the TM modes, respectively. In fact, for propagation in any 
direction, it is possible to order the guided modes HEn and HMn, (n = 1,2,3,...), based upon 
the similarity of Pe(z), respectively, to Pe{z) for TEn and TMn modes. P£(z) for a given mode 
(HEn or HMn) does not vary much with respect to ^ in the space-guide. Regarding modal field 
plots, however, there are distinct differences between the HE and the HM modes. 

The variation of ej_ = e • u^ with respect to z for the HEn mode is similar in all directions; 
and, in general, the ej_ vs. z curves for all HEn modes resemble those for a TEn mode in 
an isotropic interconnect. Thus, all HE„ modes propagating in any direction u^ in a space- 
guide have similar modal characteristics. However, the hx vs. z plots for the HMn modes do 
not display these characteristics. Not only are the h± vs. z plots for an HMn mode different 
from that of the TMn mode, but also the h± vs. z plots are distinctly dissimilar for the various 
propagation directions. Thus, the dielectric anisotropy and non-homogeneity of the space-guide 
impart more significant directional dependence to the mode shapes of the HM modes and less 

to the HE modes. 
Clearly, the HEn mode launched in one direction will not interfere with the HEn mode 

launched in some other direction; and the same holds true for any HM„ mode, at least for 
small values of n. Indeed, several HE and HM modes of low order can be launched in different 
directions, while taking care that their guide wavenumbers are all different. The space-guide 
concept is thus well-founded. Obviously, however, hardware requirements will put a limit on 
the number of channels a TFHBM space-guide can realistically support in actual circuitry. 
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Abstract 
This invited presentation discusses the connection between geometry and matter. The theme 
of the paper, ubi materia, ibi geometria, is illuminated from the point of view of history of 
post-Renaissance science and also in terms of modern bi-anisotropic electromagnetics re- 
search. The citation is pinpointed in Johannes Kepler's philosophical texts, and an attempt 
is made to understand its meaning. The validity of 'ubi materia, ibi geometria' for the elec- 
tromagnetic bi-anisotropics research is reconfirmed and a modified interpretation is proposed 
for it. 

1. Preliminaries 

Johannes Kepler declared 'Ubi materia, ibi geometria'. It is not difficult to imagine that a 
modern researcher in the field of chiral and bi-anisotropic electromagnetics concurs with this 
statement; 'where there is matter, there is geometry'. Matter and geometry, Nature and math- 
ematics are intimately connected. 

Ubi materia, ibi geometria. Citations to this formula appears often in scientific literature, 
sometimes with a reference to Kepler, sometimes just as it reads.1 But it is difficult to find 
an exact citation from where and in what context in Kepler's writings this statement can be 
found. It seems to be well hidden; the only2 place I have seen it is in the small tractate [6] De 
fundamentis astrologiae certioribus, shown with the surrounding text in Figure l.3 Where there 
is matter, there is geometry. 

The observation of the connectedness of nature and mathematics was essential with the 
scientific revolution in the 16th and 17th centuries. In today's world where apparently nothing 
else than change is permanent, knowledge is said to be short-lived, and postmodernism is claimed 
to have replaced modernity.4 But is it really so? Is Millennium the opening to a New Age? 
I would hesitate to agree. It is one of the aims of the present paper to defend Kepler's ethos 
which pronounces the reality of geometry in matter. If we are now going towards a new age, it 
should and could rather be a Renaissance of modernity. 

lUbi materia, ibi geometria can be found as a motto for chapters in mathematics books (for example, [1]), in 
general studies of the birth of new physics and astronomy, and as contribution to obscure rhetoric in speculative 
quantum physics texts. In fact, not only mathematicians and physicists use this slogan. It can be found in other 
environments, like of course philosophy and history, but also surveying [2], linguistics [3], and even jurisprudence 
[4]. A search in the world-wide-web with the string <ubi materia, ibi geometria> returns several virtual sites in 
rather unexpected places, most of them confusing. In the hunt for the origins of the title of the present paper, 
more interesting hints can be found using the digitally stored scholarly journal archive JSTOR [5]. 

2With this I do not imply that Kepler may not have written it also elsewhere in his great books (e.g., Mysterium 
Cosmographicum, Astronomia Nova, Harmonices Mund.%). 

3See footnote 12 on page 400 of [7]. 
4Physicists at large, of course, tend to have another opinion; see, for example, the delightful [8]. 
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2. Matter and Geometry: Kepler's Platonism 

Johannes Kepler (1571-1630) is rightfully seen as a central figure in the birth of the new physics. 
It is often said that the Copernican revolution5 marks the end of Medieval times, and there 
indeed, Kepler's contribution was very essential in giving support to heliocentric cosmology 
and replacing the Aristotelian concepts in mechanics by new ones. For Kepler and Galileo, 
not to mention Newton, mathematics had to be included in the correct description of natural 

phenomena. 
But in the case of Kepler the importance of mathematics was not only in arithmetic. Surely 

he was able to calculate tolerable approximations for the positions of planets. However, Kepler 
was in the sense Platonist that he believed in the rigorous and perfect structure of the universe. 
His celestial world had—at least in his early writings—a geometrically exact, nearly Pythagorean 
form, "his God [was] a geometer, and not an aritmetician" [7, p. 139]. This view is reflected in his 
models for the sizes of the planetary spheres that had harmonic ratios.6 Kepler made ample use 
of various polyhedric volumes and it can be seen in the illustrations of his books, cf., e.g. Figure 2. 
The young Kepler was advised by Tycho Brahe to abandon his aprioristic speculations for more 
fruitful observational work. The incompatibility between the two approaches, the empiristic 
Tychonian on one hand, and geometrically ideal on the other, caused probably certain tension 
for Kepler during his later studies. 

Primam contrarietatem Aristoteles in metaphysicis recipit illam, quae est 
inter idem et aliud: volens supra geometriam altius et generalius philoso- 
phari. Mihi alteritas in creatis nutta aliunde esse videtur, quam ex materia 
aut occasione materiae, out ubi materia, ibi geometria. Itaque quam 
Aristoteles dixit primam contrarietatem sine medio inter idem et aliud, 
earn ego in geometricis, philosophice consideratis, invenio esse primam 
quidem contrarietatem, sed cum medio, sic quidem, ut quod Aristoteli fuit 
aliud, unus terminus, eum nos plus et minus, duos terminos dirimamus. 

Figure 1:   Part of Johannes Kepler's Thesis xx from De fundamentis astrologiae certioribus; 
(Opera Omnia, Vol. 1, p. 423). What is Kepler's intention in the second sentence? 

Aside from astronomical and astrological theories, also in his Earth-bound studies Kepler 
was seeking causes for the form of matter. There he can be seen to follow more faithfully the 
metaphysics of Aristoteles.7 For example, in his study of the snowflake (Strena seu de Nive 
sexangula ([10]),8 Kepler searches the reason and cause for the sixfold symmetry, obvious in 
snow crystals (see, for example, Figure 3). His conclusion is that the cause for of the six-sided 
shape of a snowflake is a formative faculty already present in water in the liquid state and in 
vapour. 

BThe term 'revolution' may have overtones that pertain to certain schools of the philosophy of science; by this 
choice of words I am not attaching myself to any of these, nor criticising them. The reader fluent in Finnish finds 
the discussion in [9] enlightening in respect how literally the metaphor of revolution can be taken in connection 
of Copernicanism. 

6Kepler saw that there had to be six planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn) because only then 
the five regular polyhedra can be circumscribed between their spheres. In the earlier Ptolemaic system, there was 
place for seven planets (Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn); hence the Copernican system has to 
be valid {Mysterium Cosmographicum). (One might, however, with justification doubt that the system presented 
by Copernicus in his book De Revolutionibus Orbium Coelestium was simpler or aesthetically more pleasing than 
the theory in Ptolemy's Almagest.) 

7According to the classical Aristotelian analysis, there are four causes for entities (things): material, formal, 

efficient, and final. 
8See also [11, 12]. 
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a)   —        .... b)       ■   ■ 

Figure 2: Archimedean polyhedra, used by Kepler in Harmonice Mundi. 

What, then, did Kepler mean by his Ubi materia, ibi geometria? The citation, Figure 1 — 
Mihi alteritas in creatis nvlla aiiunde esse videtur, quam ex materia aut occasione materiae, aut 
ubi materia, ibi geometria — is not perfectly apparent. Somehow Kepler is saying that matter, 
and its emergence (occasione) is the cause of a certain property in created objects: alteritas. 
'Alteritas' might be 'variety' or 'otherness', and this is an essential concept which in some sense 
in Kepler's mind gets connected with geometry, as the conclusion of the sentence ('in other 
words, where there is matter, there is geometry') shows. One reasonable interpretation might 
be just to guess that Kepler emphasises his idealistic belief in perfect shapes immanent within all 
matter.9 It is probably not too bold to presume that Kepler would have loved today's solid-state 
physics classes, and would have much preferred them over semiconductor engineering textbooks 
where impurities and defects ruin the clean symmetries in solid matter. 

3. Geometry and Matter: Bi-Anisotropics in the 21th Century 

Ubi materia, ibi geometria. These words can a materials scientist safely speak out in the Bian- 
isotropics 2000 meeting in Lisbon. To calculate the effective dielectric and magnetic medium 
parameters of simple or complex materials, knowledge about their geometrical structure has to 
be made use of. The macroscopic properties of solid materials are connected to their micro- 
scopic crystallography. Kepler's maxim has even been reworded more strongly in the form of 
Neumann's principle: No asymmetry may be exhibited by any property of the crystal which is 
not possessed by the crystal itself [15]. In other words, the special characteristics of the geomet- 
rical constellation of solid matter "shine through" in the properties of its measurable properties. 

9I welcome competing interpretations! 
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Pierre Curie has expressed the principle in the form 'C'est la dissymetrie, qui cree le phenomena 
(It is asymmetry which creates the phenomenon). 

Figure 3: The togetherness of matter and geometry was obvious for Kepler also in his studies 
of snow [10]. On the left, one of his favourites, icosahedron in Platonic dodecahedron. To the 
right side, one of Wilson A. Bentley's snowflake photographs. (Spending decades during the 
early last century, W.A. Bentley of Jericho, Vermont (New England), patiently and skillfully 
took thousands of photographic images of snow crystals. These can be admired in the Dover 
edition [13] of his book and nowadays also on a CD-rom [14].) Note the sixfold symmetry in the 

snowflake. 

Indeed, where a physicist or an electrical engineer needs to find out ab initio the effective 
properties'of matter, the presence or absence of symmetry, that is geometry, has to be dealt 
with. But could Kepler's watchword be approached from another direction? What about un- 
derstanding it in a way such that the role of geometry is stressed more; so that geometry begets 
matter? In such a reading of the principle, we in some sense surpass the Neumann-Curie inter- 
pretation. The properties of matter are determined by its geometrical description; this is then 
true but trivial: what is essential is that these properties can be very varied and unexpected. 
Why? We only need to think about engineering applications such as chirality, photonic band 
gap structures, or liquid crystals. 

More technical support to such an interpretation for the interplay between geometry and 
matter is provided by the basic material relations of bi-anisotropic electromagnetics: 

(1) 
(2) 

D   =   e«E + £«H 

B   =   C#E + A«#H 

The field vectors are denoted here by E (electric) and H (magnetic), and the responses in this 
representation are the flux densities D (electric) and B (magnetic). The relations between 
these vectors are given by the material parameters, permittivity e, permeability p, and the two 
magnetoelectric cross terms £ and C-10 The geometry of matter determines the character of the 

10I am not discussing here the question which one of the magnetic fields (H or B) is primary and should appear 
on the right-hand side of the constitutive relations (to read a sharp-worded argument against the above use, look 
[16]) Also I am well aware of the fact that one has to be careful with the order of the magnitude and balance 
of electric and magnetic polarisation terms on the right-hand side of these relations (see, for example, [17]). In 
terms of the focus of the paper, these points are not crucial; also, the form of the relations (l)-(2) is familiar and 

much-used in Bianisotropics meetings [18]. 
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quantities e, /z, £, and (, and the nature of the product marked by • in (l)-(2). For the simplest 
isotropic case, the product is a plain multiplication by a scalar. The other extreme is that all 
four medium "parameters" are full dyadics (alternatively, tensors of second rank) and then the 
number of degrees of freedom in the bi-anisotropic description of such matter is 4 x 9 = 36.n 

If the medium is anisotropic, its material dyadics, for example the permittivity f, have a 
structure which reflects faithfully the internal geometry of the matter, according to the Neumann 
principle. But how do the magnetoelectric effects arise? Obviously through geometry. 

Chirality is one reciprocal type of these magnetoelectric effects. Chirality can be said to 
be present in materials that have a handed microstructure. If the medium is predominantly 
right- or left-handed, macroscopic effects of chirality can be observed. One observable optical 
or electromagnetic effect of chiral media is their ability to rotate the polarisation plane of the 
incident wave, and on the level of dipole moments in the medium the effect is electrically caused 
magnetic polarisation density and vice versa. But these effects take place because of the left- 
right symmetry is broken.12 

Another affirmation for the strong interpretation of the Kepler principle is artificial mag- 
netism. 'Natural' magnetism is present in certain materials, like iron, and in electromagnetics 
applications this property is taken into account by the B — H relation. The origin of the mag- 
netic properties is not important. It is not easy to talk about the geometrical cause of magnetic 
permeability in quantum mechanics. But because macroscopic electric loops act as magnetic 
moments, it is possible to synthetise a medium with magnetic permeability. Also in modelling 
of chiral, bi-anisotropic, and other complex materials, the observation of the appearance of mag- 
netic properties for materials with non-magnetic constituents has been emphasised [21, 22, 23]. 
If interested in "artificial" magnetism in natural media, see [24] for the diamagnetic effect of wet 
snow due to the funicularly circling water phase in the ice matrix. 

Finally, it is perhaps proper to remind of one important electromagnetics application that 
hinges on the geometry-matter interaction. This is the field with many names: photonic band 
gaps, electromagnetic or photonic superlattices, photonic crystals, periodic quasicrystal struc- 
tures, etc. [25]. There, the geometry of the structure is built in such a way that from the 
electromagnetic point of view the medium looks transparent or opaque depending on the wave- 
length, thus giving access to a whole new range of material properties. With such prospects in 
sight, it is not overoptimistic to foresee a revival for Kepler's credo. Ubi materia, ibi geometria. 
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Abstract 

Definition of the notion of reaction in bianisotropic media is not so trivial. In this paper, we 
consider some important aspects of the physical admissibility to use the notion of the reaction 
as a "physical observable" in bianisotropic media. The questions also arise: For what kinds 
of the known bianisotropic media the reciprocity theorem is physically applicable? Based 
on what kind of the bianisotropic media, nonreciprocal microwave devices can be realized? 
We will show that a novel class of microwave bianisotropic materials - magnetostatically 
controlled bianisotropic materials (the MCBMs) - are "physically justified" materials. The 
Onsager-Casimir principle and the notion of reciprocity are applicable in this case. New 
nonreciprocal microwave devices based on the MCBMs can be realized. 

1. Introduction 

There are many attempts to generalize the reciprocity theorem for bianisotropic media. Gy- 
rotropic (gyromagnetic or gyroelectric) media with non-symmetrical constitutive tensors caused 
by an applied dc magnetic field have been called "nonreciprocal" media because the usual reci- 
procity theorem [1] does not apply to them. Rumsey has introduced a quantity called the 
"reaction" and interpreted it as a "physical observable" [2]. This made it possible to obtain a 
modified reciprocity theorem based on the property of gyrotropic media that non-symmetrical 
constitutive tensors of permittivity or permeability are transposed by reversing the dc magnetic 
field [3]. Physically, the applicability of the reciprocity theorem for gyrotropic media is based 
on the time-reversal invariance which is described by the Onsager principle [4,5]. With formal 
introduction of the notion of reaction for bianisotropic media, one can formulate reciprocity 
conditions for medium parameters [6]. One can also extend the procedure used for a gyrotropic 
medium and consider the complementary [7], or the Lorentz-adjoint [8] bianisotropic medium 
which satisfies the reciprocity theorem. It was shown [8] that for the monochromatic electro- 
magnetic field in the lossless bianisotropic medium, the time-reversed constitutive matrix may 
correspond to the Lorentz-adjoint constitutive matrix. 

The questions, however, arise: Whether the time-reversal operations used for bianisotropic 
media are physically admissible? For what kinds of the known bianisotropic media the reci- 
procity theorem is physically applicable? One cannot a priori characterize bianisotropic media 
as reciprocal or non-reciprocal materials until a convincing analysis will show that microscopic 
properties "permit" time-reversal operations. 

Recently, we have conceptualized a novel class of microwave bianisotropic materials based on 
a composition of ferrite magnetostatic wave (MSW) resonators with special-form surface metal- 
izations - the magnetostatically controlled bianisotropic materials (MCBMs) [9]. The proposed 
MCBMs becomes not hypothetical materials after recent experimental results have verified the 
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fact that ferrite magnetostatic-wave resonators with special-form surface metahzations exhibit 
properties of bianisotropic particles [10,11]. A very important aspect arises from the fundamen- 
tal point of view. The MCBMs are local temporally dispersive bianisotropic media in comparison 
with helix or ft-particle composites characterized as media with nonlocal properties [12,13]. 

2. Reciprocity Theorem for Bianisoropic Media 

Reciprocity theorem shows that nonreciprocal bianisotropic media with constitutive parameters 
altered by reversing the dc magnetic field H0 are described as 

<->T 

++T «-+ .       -i . +?T 

£ (w,Jff0)   =   -C    (w,-#o),  CO".#«>) = -£    (w,--ffo) (1) 

The microscopic aspects of relations (1) will be discussed in section 4. 
Reciprocity theorem is an example of quadratic relations in electrodynamics of bianisotropic 

media. Energy relations are another important example of quadratic relations. It is clear that 
these two forms of quadratic relations should not be considered independently. In particular, the 
correct definition of the reaction in bianisotropic media should be made, taking into account the 
energy balance equation. The energy relations for bianisotropic media were carefully analyzed 
in [14] and also discussed in [13]. One can see that energetic relations for bianisotropic media 
cannot be considered just as an extension of the similar relations for anisotropic media. In 
bianisotropic media, variation of the energy should be realized due to both types of sources, 
both types of currents - the electric and magnetic currents. 

3. Network Reciprocity 

Let us consider now some general properties of waveguide junctions containing bianisotropic 
samples. It is not so difficult to show that for two sets of the fields due to sources a and b we 

can write 

f (Ha xEb-Hbx Ea)-ndS-iuj [j%-(t -Ea) - K ■ (t -Eb) + 

s v 

+   Ha-(ß-Hb)-Hb-(ß-Ha)+Eb-(^-Ha^ +#«■(?■■&) - 

-    Ea-(l-äb)-Hb.(^.Ea)}  ^ = ±J(H^xE^-H^xE^).n^ds = 
sP 

i» I [2Eb ■ (?as -Ea) - 2Hb ■ (Haa -Ha) +Eb.(A -Ha) - Ea - (2 -Hb)} dV = K    (2) 10J 

V 

where S is a surface that restricts the volume V, ft is the unit vector along the external normal to 
the surface S, V is a part of a volume V filled by the bianisotropic medium. We chose volume V 
as the volume restricted by a joint of several waveguides and cross sections of these waveguides 
and supposed that sources are placed beyond the volume V. We also took into account that a 
surface integral over metallic walls is equal to zero. 

In Expr. (2) p is a number of a port, Sp and n^ are, respectively, a cross-section of port p 

and the unit normal vector to this cross-section, 7as and /xas are antisymmetric parts of tensors 

*t and £, respectively, and A= £ + C   • Besides a trivial case of *e as=/t0S=A= 0, the quantity 
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K may become equal to zero for some particular cases of the field structure and the geometry 
of a problem when eas^ 0, ßas^ 0 and A^ 0. We suppose that, in a general case, K ^ 0 for 
"e as^ 0, ßas^O, and A^O. 

Let all ports, besides ports p and q, be short-circuited. In this case, the left-hand side of 
(2) may be rewritten in terms of normalized voltages applied to ports p and q and in terms of 
admittance matrix [Y] [15]. As a result, we have for (2): 

(VJ*V6
(9) - V« V«) (Ypg - Yqp) = K (3) 

Normalized voltages Va , V^ , Vj and Va are arbitrary. Therefore, the nonreciprocal differ- 
ence for parameters of the admittance matrix, Ypg — Ygp, is defined by integral K. 

Taking into account correlation between the admittance matrix [Y] and scattering matrix 
[S] [15], one can rewrite (3) as follows: 

Q(Spg-Sqp)=K, (4) 

where term Q is a coefficient determined by amplitudes of the fields. Since coefficient Q is 
arbitrary, nonreciprocal difference for parameters of the scattering matrix, Spg — Sgp, is defined 
by integral K. 

Now the main question arises: When devices with integral K ^ 0 can be really characterized 
as nonreciprocal devices? Let us suppose that we have an Y-circulator constructed as a three- 
port waveguide junction with enclosed a sample of a bianisotropic material. When in (4) K ^ 0, 
one can realize a matched nonreciprocal three-port junction [15,16]. In a case of ferrite devices, 
we have an example of the magnetic group of symmetry of a system: "a waveguide junction + dc 
magnetic field" [17]. One of the main principle of the known nonreciprocal devices [3] sounds as: 
simultaneous exchange of ports and dc magnetic field direction does not alter the transmission 
properties. This principle follows from relation (4) if K alters its sign with alteration of dc 
magnetic field direction. The sign of K, in turn, will be changed when tensors, £as, A*as and 
A change their signs for opposite dc magnetic field direction. It is evident that we satisfy 
these conditions when relations (1) take place. Is one able to realize an Y-circulation without 
satisfaction to the principle of nonreciprocal devices mentioned above? When an answer to this 
question is positive, one will have enantiomorphic devices: left- or right-handed Y-circulators. 
The MCBMs give an example of nonreciprocal bianisotropic materials that allow to realize 
devices which satisfy the principle of nonreciprocal devices mentioned above. In comparison 
with the known gyrotropic media where the effect of nonreciprocity is due to the time-reversal 
invariance of microscopic equations of motion in ferrites or plasmas, in the MCBMs we have the 
effect of nonreciprocal magnetoelectric coupling between electric and magnetic dipoles in every 
bianisotropic particle. This, our standpoints, is based on consideration of microscopic properties 
of the MCBM-particles [13,18]. 

4. Discussion and Conclusion 

To ensure "physicality", we have to rely on the generalized principle of kinetic coefficient sym- 
metry for bianisotropic media - the Onsager-Casimir principle. It was shown in [13,18] that, in 
a general case, reciprocity relations (1) may not correspond to dynamical constitutive symmetry 
obtained from Onsager-Casimir principle. The answer to the question: Whether the microscopic 
properties of a bianisotropic medium "permit" the time-reversal operations, should be found 
from an analysis of the symmetry of the dynamical processes in the MCBM-particles under the 
time-reverse operations. Nonsymmetry of the constitutive matrix is a measure of nonreciprocity 
in the MCBMs.  In accordance with (4), we can characterize a measure of nonreciprocity for 
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a bianisotropic medium by the matrix parameter A=£ + £ • Our analysis of the network 
reciprocity shows that the MCBM-devices should satisfy one of the main principle of the known 
nonreciprocal devices: simultaneous exchange of ports and dc magnetic field direction does not 

alter the transmission properties. 
Can chiroferrites (chiroplasmas) be considered as nonreciprocal bianisotropic materials? Re- 

ally, in this case, one has a composite medium based on the gyrotropic host material. Constitu- 
tive parameters of such media should be dependent on the external dc magnetic field. But, the 
question is still open: How can one consider the time-reversal operation in media with a lack 
of symmetry (chiral inclusions)? Any physical justifications based on dynamical constitutive 
symmetry (the Onsager-Casimir principle) are not applicable in this case. 
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Abstract 

We consider and compare three different cases of anisotropy compensation in chiral media. 
The first case concerns natural crystals or nonmagnetic superlattices, the second case is the 
class of stratified-periodic structures, which are homogeneous media in the long-wave ap- 
proximation and have simultaneously dielectric and magnetic properties. The third possible 
case can be realized as inhomogeneous structures with spiral anisotropy of dielectric and 
magnetic properties. 

1. Natural Crystals and Nonmagnetic Superlattices 

Effect of compensation of dielectric anisotropy of natural gyrotropic crystals AgGaS2 (silver 
gallium sulphide) and CdGa2S4 (cadmium gallium sulphide) was observed for the first time by 
M.V. Hobden in 1967 and 1968 [1, 2]. For these crystals the dispersion curves of the main values 
of the uniaxial tensor of permittivity £i(w) and £2(<*>) cross each other at a certain frequency. 
For the light of this frequency crystal becomes isotropic and its chiral properties are not masked 
by linear birefringence. The crystal AgGaS2 (class 42m) is optically isotropic at the wavelength 
Ao = 4970 Angström, the rotatory power is equal to 522 degrees/mm [1]. The crystal CdGa2S4 
of class 4 has the isotropic point at the wavelength Ao = 4872 Angstrom. This crystal shows 
the rotatory power of 17.3 degrees/mm and 11.6 degrees/mm for different directions of light 
propagation [2]. 

Effect of compensation of dielectric anisotropy is possible also in nonmagnetic stratified- 
periodic media (superlattices), where the "isotropic point" can be shifted under the action of 
external magnetic fields or under elastic deformation of crystal. 

Media with new optical properties can be created by combination of crystals possessing 
necessary features. Modern technology allows to manufacture multilayered periodic systems 
(superlattices) with a period from 10 to 1000 Angström [3]. Electromagnetic properties of 
superlattices are easily modelled in the long wavelength approximation, which is valid if the 
wavelength of electromagnetic or ultrasonic waves propagating in the lattice is large compared 
to the period of the structure. In this case it is possible to consider a superlattice as a uniform 
medium characterised by a set of effective parameters. Thereby, properties of superlattices can 
combine useful properties of their constituents, that is, crystals, from which these lattices are 
formed. The important property of superlattices is the difference between their crystallographic 
symmetry and the symmetry of crystals used as layers.  For example, if layers are isotropic, 
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superlattice as a whole is a uniaxial crystal [4, 5]. Due to such changing of symmetry, interesting 
effects are possible in superlattices, for instance, acousto-optical interactions [6, 7]. In the last 
years effective elastic moduli of superlattices with arbitrary crystallographic symmetry of the 
layers [3, 8], as well as elastooptical [3, 4], piezo-electric [9, 10], electro-optical [11] and nonlinear 
optical [12, 13] coefficients were theoretically estimated. 

Alongside with dielectric, elastic, elasto-optic, piezo-electric and nonlinear properties of su- 
perlattices [3]-[13] also their chiral properties arise interest. In particular, it is possible to create 
superlattices which are dielectrically isotropic for the light at a certain frequency [14, 15]. 

The electromagnetic properties of chiral superlattices can be described by the constitutive 
relations [16, 17] 

rp 

D = eo?ff-E-Jv/Ä5fff-H,    B = /z0p
eff-H + jyi^(leff)   -E (1) 

with effective tensors of permittivity f60, chirality "K , and permeability p6 . Here the values 
with index "eff" correspond to the effective medium, and the primed and nonprimed values 
correspond to the two layers which form the superlattice. The effect of compensation of dielectric 
anisotropy is possible in nonmagnetic superlattices (p = p = n =1) formed by two crystals 
with uniaxial symmetry, whose optical axes are orthogonal to the boundaries of the layers. The 
condition of isotropy of the effective permittivity of a multilayered periodic structure has the 
following form: 

I ,       / J   \         £33£33  i<)\ 
£,, + x{eu -fin) = ; Ti \ W II v £33 + x (e33 - £33) 

The axis number 3 is orthogonal to the boundaries of the layers. The period of the structure V 
is connected with the thicknesses of the layers by the relation V = d + d'. The notations for the 
relative thickness of each layer have been introduced: x = d/V, 1 - x = flI'D. 

As the graphical method shows, equation (2) has a real root on the interval 0 < x < 1, if the 
first layer is a positive crystal, but the second one is a negative crystal. This means that relation 
sgn(en - £33) = -sgn(e'n — £33) holds. In this case mutual compensation of the anisotropy of 
the permittivity of layers takes place, and the properties of the superlattice with respect to the 
light of corresponding frequency are described by an effective scalar parameter of permittivity 
and by the effective tensor of chirality. 

2. Superlattices with Dielectric and Magnetic Properties 

Effect of mutual compensation of dielectric and magnetic anisotropy in nongyrotropic media was 
predicted by F.I. Fedorov [16]. This effect becomes possible in the medium if the tensors of its 
permittivity and permeability are proportional to each other at a certain frequency of fight. This 
condition can be reached in periodic stratified structures, whose effective parameters combine 
dielectric and magnetic properties of the layers. In the long-wave approximation propagation of 
light in such media can be described by effective tensors of permittivity and permeability. 

We have averaged the vectors of electromagnetic field in the volume of the crystal in ac- 
cordance with the methods developed in paper [3], which allows to determine the effective 
parameters, characterising the optical properties of the chiral superlattice [14, 15]: 
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£33 £33 £33 /*33 M33 M33 

«33 

£33/^33 £33 
(4) 

1    / Mm3\ 1    / „    £m3\ 
—    «3m-«33 J,      — |Km3-K33— ) 
33   V M33 / /"33  V £33 / 

£m3 / „    £m3\ ßnZ (t-\  «3n -    «m3 ~ «33— J — W 
£33 \ £33/  /^33 



199 

^c 

^d= 
£ ?% 

„di 
o o 
~   O 

^n 
o o o o o o 

^17 

3 
3    _ 

|3b 

p* 

Figure 1: Geometry of the problem. The axes of the spirals are oriented along the x axis. The 
incident wave propagates along the z axis. 

We have to substitute all these values in the generic relation 

AeS = xA + (l-x)Ä (6) 

where indices z, k, m, n take values 1 and 2. By means of expressions (3) and relation (6) it is 
possible to determine the components of the effective tensor of permittivity and permeability, 
and by means of (4), (5), and (6) we can find the components of the effective tensor of chirality 
for a superlattice with arbitrary crystallographic symmetry of layers. Let us consider the case 
when a superlattice is formed by uniaxial crystals with the optical axes oriented perpendicularly 
to the boundaries of layers, i.e. along the z-axis (unit vector zo). The ^-components are marked 
by index 3. The tensors of the permittivity and permeability of the first layer can be written as 

e = en I + (e33 - en) z0z0,    ß = i*i\ I + (M33 - £*n) zozo (7) 

where en = £22, Pu = M22- Tensors e and p of the second layer have a similar type. In this 
case, as follows from relations (3) and (6), the superlattice is also a uniaxial crystal with the 
effective tensors of permittivity and permeability 

geff -Mlj_ fceS e^I+(e^-e^)z0z0,    f* = tfgl + faf-MSf) ZQZO (8) 

where eff = e^, Pn = ^22 • Mutual compensation of dielectric and magnetic anisotropies in 
the superlattice takes place at the condition 

sli 
-eff 
-33 

..eff       ..eff 
Pll       A*33 

By means of relations (3) and (6), condition (9) can be presented in the following form: 

sen + (1 - x) e'n _ £33£33 [^33 + (1 - a?) M33] 
27x11 + (1 - x) fx'n     //33M33 [X£33 + (1 - aO £33] 

Let us introduce notations for the mean values of the permittivity and permeability: 

<£>=- (£n + £33) ,      < /i >= - (fln + /X33) 

and notations for the anisotropy of tensors f and JI: 

A£ = - (£n - £33),    A/x = - (/in - M33) 

(9) 

(10) 

(11) 

(12) 
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Figure 2: The scheme of the device. 1 is a polarizer, 2 is an analyzer. 

Similar notations are used also for the primed and effective values. It is easy to prove (graphi- 
cally) that equation (10) has a real root x on interval 0 < x < 1, if the following conditions hold 
simultaneously: 

Ae' Aß' Ae    ^    Aß ^ 
< > 

< e' >      < fi' >'        <e> '   <n> 

Inequalities (13) mean that for the first layer the relative anisotropy of the permittivity exceeds 
the relative anisotropy of the permeability. For the other layer the inverse relation is true and 
the anisotropy of magnetic properties dominates. For instance, this case is possible if the first 
layer is a nonmagnetic crystal with parameters en > £33) A*n = /^33 = 1- At the same time the 
second layer is a crystal possessing only magnetic anisotropy: /z'u > //33, £n = e33 = 1. 

Using condition (9) in the first-order approximation on parameters Ae and A/x, we find the 
following relation: 

Ae& A»** (14) 

<eeff > <//eff > 
This formula means that the anisotropy of dielectric properties compensates the anisotropy of 
magnetic properties. Because of the frequency dispersion of the parameters of the crystals the 
considered effect of mutual compensation of dielectric and magnetic anisotropies can exist for 
a certain light frequency only. Thus, superlattices with the specified properties can be used in 
devices with frequency-selective transmission of light. 

Anisotropie chiral media with pronounced magnetic properties can be realized as a periodic 
superlattice (period V) in which every period consists of two layers (see Figure 1). One layer is an 
array of parallel spirals, and this layer exhibits only anisotropic dielectric and chiral properties 
(manufacture of such media is described in [18]). The other layer has anisotropic magnetic 
properties (it can be a weakly magnetized ferrite such that off-diagonal components of the 
permeability dyadic are small, but diagonal components are electrically controlled, and losses 
can be neglected). The scheme of the device is presented in Figure 2 [19] for the case when optical 
axes of each layer and of superlattices as a whole are oriented parallelly to the boundaries of 
layers. Also in this case the effect of compensation of dielectric anisotropy is possible which is 
similar to the case considered above when the optical axes were oriented perpendicularly to the 
boundaries of layers. 

Similar selective effects take place also in isotropic chiral slabs, since chirality parameter is 
frequency dependent. We see that due to anisotropy of permittivity and permeability, selec- 
tivity can be improved. Indeed, at the point of anisotropy compensation, difference between 
wavenumbers of two eigenmodes has a minimum. When the balance (14) is not fulfilled (due to 
changed frequency), this difference increases sharply. The thickness of the sample is chosen as 

L- — L~26 
(15) 

where 6 = Jfcb/en/2 is the specific rotation of the polarization plane. The angle between the planes 
of the polarizer and analyser is 7r/2. On Figure 3 we demonstrate a typical dependence of the 
rotation angle on the effective permittivity. For the chosen parameter values the compensation 
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„eff Figure 3: The rotation of the polarization ellipsis of the reflected wave as a function of m. 
The incident wave polarization is perpendicular to the direction of the helix axes (along vector 
b), eff = 3.9, eff = 3, «f? = 0.45, pf? = 1, W/(2TT) = 14 GHz. 

point (14) corresponds to //^ = 1-3. We observe that close to this point the rotational power is 
indeed very sensitive to the material parameter values. This supports our expectation that the 
use of magnetically anisotropic structures can give a possibility to improve frequency selectivity 
of microwave and optical filters. 

3. Spirally Inhomogeneous Media 

Mutual compensation of dielectric and magnetic anisotropy is possible also in spirally inhomo- 
geneous media. In the first case, investigated by Hobden, compensation of anisotropy leads to 
disappearance of linear birefringence of light. Now, in media with a spiral structure, disap- 
pearance of diffraction of waves becomes possible at the condition £u. = £22. or AL. = —AE. 
Z Mil M22 <e> </!> 
[20, 21]. In all three cases the properties of eigenwaves of media are considerably changed 
near the "isotropic point", which can be used for the design of devices for transformation of 
polarization of electromagnetic waves. 
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Abstract 

We consider one of the key problems of bianisotropic materials for electromagnetic applications- 
constitutive relations. The discussion will be restricted to macroscopic level of the tensor 
description. We will discuss the constitutive tensors under the following assumptions: the media 
under consideration are linear, homogeneous and in general lossy, possessing space and time 
dispersion and in general anisotropic. Description in terms of complex field variables and complex 
parameters of the constitutive tensors allows one to take into account noninstantaneous and 
nonlocal interaction between electromagnetic fields and matter. In the case of homogeneous media 
(long-wave approximation), macroscopic properties of the media are described by tensors which 
are not changed from point to point. This allows one to exclude from consideration translational 
symmetry and to characterize the properties of the media (and consequently the properties of the 
electromagnetic field) by tensors in an arbitrary space point. But the point symmetry of the 
medium in such a description is preserved. Material descriptors are tensor quantities of known 
symmetry but of unknown numerical values. The symmetry structure of them is frequency and 
model-independent. The numerical values can be calculated by some physical theories or by 
experimentation. We will use phenomenological approach based on the first physical principles: 
Onsager's relations and space-time symmetry. 

1.   Introduction 

The functional dependence D=D(E,B), H=H(E,B) in the constitutive relations may be involved and 
in general contains integral-differential operators. Our discussion will be restricted to macroscopic 
level of the tensor description. We will consider the constitutive tensors under the following 
assumptions: the media under consideration are linear, homogeneous and in general lossy. Description 
in terms of complex field variables and complex parameters of the tensors allows one to take into 
account non-instantaneous and nonlocal interaction between electromagnetic fields and matter. In the 
case of homogeneous media (long-wave approximation), macroscopic properties of the media are 
described by the tensors which are not changed from point to point. This allows one to exclude 
translational symmetry from consideration and to characterize the properties of the media (and 
consequently the properties of the electromagnetic field) by the tensors in an arbitrary space point. But 
the point symmetry of the medium in such a formulation is preserved. Therefore, material descriptors 
are tensors of known symmetry but of unknown numerical values. The symmetry structure of them is 
frequency and model-independent. The numerical values can be calculated by some physical theories 
or by experimentation. 

The following discussion will be based on the Tables of the second-rank constitutive tensors 
for bianisotropic media presented in [1,2]. These tensors have been calculated using the first physical 
principles: Onsager's relations and space-time symmetry (the point magnetic groups). Notice that by 
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virtue of the duality between the antisymmetric tensors of the third rank (polar or axial) and of the 
tensors of the second rank (axial or polar, respectively), we can use these Tables in the case of the 
media described by antisymmetric tensors of the third rank as well. 

We will consider the following phenomenological form of the constitutive relations in the 
frequency domain: 

D=[e]E+[a]B (1) 

H=[ß]E+[M-]"1B (2) 

where the 3x3 tensors [a] and [ß] describe the cross-coupling between the electric and magnetic 
fields. We will call [a] and [ß] as crosscoupling tensors preserving the term "magnetoelectric tensor" 
to a special case of the magnetoelectric effect. Notice that the magnetoelectric tensors are a particular 
case of those published in [1,2]. The magnetoelectric tensors can be obtained using the Tables of [1,2] 
with an additional constraint [a]=-[ß]' where the superscript ' means transposition. 

The counterparts of (1) and (2) in the time-domain can be obtained by Fourier superposition. 
The relations (1), (2) describe a broad class of media with spatial and frequency dispersion. 

2.   Equivalence of Different Forms of the Constititutive Relations 

Different forms of the constitutive relations can be met in literature [3]. We will use the DH(EB) 
presentation (1) and (2) where the fields D and H are written as linear functions of the fields E and B. 
Another form of the relations is the presentation DB(EH): 

D=[e]E+ß]H (3) 

B=[|X]E+[QH (4) 

It is not difficult to express the tensors of (1) and (2) in terms of (3) and (4) and vice versa. Moreover, 
from general properties of the tensors we know that any relation between the tensors expressed as a 
sum or a product of them, is invariant with respect to the group of the permissible coordinate 
transformations [4]. It means that if the tensors of the DB(EH)-system (3), (4) have been calculated by 
symmetry principles, the corresponding tensors of the system DH(EB) will have the same structure. 
Therefore the tensor for example, [a] of (1) expressed in terms of the tensors of (3) and (4) will have 
the same structure as the corresponding tensor [£], the tensor [ß] will have the structure of the tensor 
[Q, etc. Thus the tensor structure obtained by symmetry principles is invariant with respect to the 
presentations DB(EH) or DH(EB). The same is valid for the presentation EH(DB). Therefore, we can 
use the Tables of [1,2] for all these repersentations. 

3.   Decomposition of the Constitutive Tensors 

Some of the medium properties can be deduced from the tensor decomposition. We can decompose a 
tensor into a sum of its symmetric and antisymmetric parts, then the symmetric part can be decompose 
into a sum of a spherical (scalar) one and a deviator, etc. The antisymmetric part of the tensor [ii] for 
example may describe an axial vector (dc magnetic field), the deviator of the tensor [e] may present 
the quadrupole electrical moment, etc. Thus we can evaluate the multipole contributions in the 
constitutive tensors and obtain additional information about the medium. One simple example of the 
tensor decomposition will be given in Section V. 



205 

4.   Post's Constraint 

During the last decade, we witnessed a strong controversy about interpretation and validity of the 
Post's constraint [5]. In terms of the tensors [a] and [ß] of (1) and (2), the Post's condition [6] can be 
written as follows: 

Trace [a] =Trace [ß] (5) 

In order to discuss this constraint, we apply first to a well-recognized condition of reciprocity [3] for 
the crosscoupling tensors [a] and [ß]: 

[a]=[ß]' (6) 

The tensors [a] and    [ß] may always be decomposed into a sum of reciprocal and 
nonreciprocal parts as follows [7]: 

[a]= [a]r + [a], = ([a] + [ß]*)/2 + ([a] - [ß]')/2 (7) 

[ß]= [ß]r + [ßL = ([ß] + [a]')/2 + ([ß] - [a]')/2 (8) 

where the subscript r denotes reciprocal part and the subscript „ stands for nonreciprocal part of the 
tensor. Comparing (7) and (8) we see that the reciprocal parts of the crosscoupling tensors are coupled 
by the relation 

[CC]r= [ß]'r (9) 

However for the nonreciprocal parts, we obtain another relation: 

[ak =-$]'„, (10) 

Analogous expressions obtained by quantum-mechanical calculations in the electric quadrupole- 
magnetic dipole approximation [8, p. 168,169, eqs. 58, 59] coincide structurally (in the sense of 
symmetry) with (9) and (10). Notice, that each of the magnetoelectric tensors [a] and [ß] may contain: 
1) only reciprocal part, 2) only nonreciprocal part, 3) both reciprocal and nonreciprocal ones. 

Now let us analyse the relations (9) and (10). First of all, there is no restriction on dispersion 
properties of [a] and [ß] in these identities. The relations (9) and (10) follow trivially from the 
condition of reciprocity (6) which is in its turn a consequence of time-reversal symmetry of the 
medium. Secondly, we did not make any restrictions on the losses in the medium, i.e. it may be lossy 
or lossless. Thirdly, we did not use in these relations any space rotation-reflection symmetry. 
Taking into account that the diagonal elements of the tensors [ß]r and [ß]„r in the right-hand sides of 
(9) and (10) after transposition of the matrices remain in their positions, we obtain 

(Oii)r=(ßii)r (11) 

(<Xii)nr=-(ßii)„r (12) 

where the subscript i=l, 2, 3. The relation (11) means that the diagonal elements of the reciprocal parts 
of the tensors [a] and [ß], namely (Oü)r and (ßü)r are equal in pairs. Analogously, the diagonal 
elements of the nonreciprocal parts of [a] and [ß] in (12), i. e., (a*)™ and Cßii)^ are equal in pairs with 
opposite signs. 
If the diagonal elements of two matrices are equal in pairs, the traces of these matrices (i.e. the sums of 
their diagonal elements) must be equal as well. Therefore from (11) and (12), it follows immediately 
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Trace [a]r=Trace[ß]r (13) 

Trace [a]m = - Trace [$)m (14) 

Comparing (13) and (14) with (5) we see that the Post's constrant is fulfilled for reciprocal parts of [a] 
and [ß]. But for nonreciprocal parts, this constraint is valid if only we extract from the tensors [a^and 
[ß]nr their spherical (isotropic or scalar) parts. It means that the tensors [ah and [ßj^must be traceless, 
i.e. 

Trace [a]nr= Trace [ß]„ = 0 (15) 

It corresponds to the obvious fact that the isotropic media cannot be nonreciprocal. 
From the above discussion we see that the Post's constraint is a simple consequence of the 

more strong relations (9) and (10) between the elements of the tensors [a] and [ß]. 

5.   Examples of the Constitutive Tensors for Some Artificial Media 

5.1 Omegaferrites 

Recently, a new artificial material which is a combination of a ferrite and chiral particles has been 
proposed [9]. This material has been called chiroferrite. Earliear, media based on omega-particles 
embedded in a dielectric host material have been suggested in [10]. Here, we will discuss a new 
medium with omega elements in the form of a hat embedded periodically or randomly in a magnetized 
ferrite. The axes of the elements are oriented along the z-axis. One of such elements is shown in Fig. 
1. 

Fig. 1 Omega-element in the form of a hat 

Let us first define the magnetic group of symmetry of the omegaferrite medium. The omega 
element has one four-fold axis of symmetry coinciding with the z-axis. This element possesses also the 
four plane of symmetry passing through the z-axis. If the omega elements are arranged in a three- 
dimensional square array with the axes of the elements along the z-axis, the resultant symmetry of the 
nonmagnetic medium will be CMV (in Shoenflies notations), because the four-fold axis is transformed 
in the axis of infinite order. A uniform dc magnetic field directed along the z-axis has the magnetic 
symmetry C„,v(C„,)- Using the Curie principle of symmetry superposition, we define the resultant 
symmetry of the omegaferrite medium as C„V(C„). The constitutive tensors for media with such a 
symmetry calculated by the group-theoretical method of [1] are in Table 1. 
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[Hi [e] [a] [31 

Omegaferrite 
fill       Hl2       0 

-Hl2    M-ll       ° 
0       0    p.33 

£,,      £12      0 
-£12    £u      0 

0      0    E33 

an    a12    0 
-a12   <xn    0 

0       0    a33 

-a,,   -a12      0 
«12    -«ii       0 

0        0     -(X33 

Any of the tensors [a] and [ß] in accord with (7) and (8) can be decomposed into reciprocal and 
nonreciprocal part. Consider for example the tensor [a]: 

[«]=[«!+[«L = 
u     a12 

-a12    0    0 
0       0    0 

a «11 0 0 
0 «11 0 
0 0 a 33 

(16) 

This decomposition s easily obtained using the condition of reciprocity (6). Analogous decomposition 
is valid for the tensor [ß]. Therefore the tensors [a] and [ß] for omegaferrites contain both reciprocal 
and nonreciprocal parts. We see from (16) that the nonreciprocity of omegaferrites is defined (along 
with the tensors [e] and [|J.]) by diagonal elements of the tensors [a] and [ß] while the nondiagonal 
elements of them stipulate reciprocal crosscoupling effect. Also we see from (16) and Table 1 that the 
reciprocal and nonreciprocal parts of the tensors [a] and [ß] satisfy the conditions (9) and (10). 
As the next step in the tensor decomposition, we can calculate the spherical (scalar) parts of the 
diagonal tensors [a],,,, and [jßh . These parts defined by 

+. 
(2an+a33) 0 0 

0 (2an+a33) 0 
0 0 (2an+a33) 

(17) 

correspond to an isotropic nonreciprocal medium which is nonphysical. Therefore, they can be 
extracted from the tensors. As a result we obtain a relation between the elements of the crosscoupling 
tensors for omegaferrites: 

a33=-2au 

This condition means that both [a] and [ß] must be traceless. 

(18) 

5.2 Ziolkowskii's media 

We will demonstrate here how to determine the structure of the constitutive tensors of the media 
formed by artificial Ziolkowski's moleculas [11]. These moleculas are linear electric and/or magnetic 
dipole antennas loaded with some combination of passive and/or active electronic elements. The 
electronic elements are assumed to be nonradiative and the host material is isotropic. 

First, consider the moleculas which can be presented by two-ports, i.e. every molecula has 
only one antenna. The simplest variant is a random distribution of such moleculas in a dilectric matrix 
which leads to the group of the first category K. If such moleculas are oriented along a certain axis, the 
medium acquires the symmetry C«,v of the first category in the case of the electric dipole antennas and 
the symmetry D^Ch) for the magnetic dipole antennas. 

The moleculas can have two antennas and therefore can be considered as four-ports. Several 
variants of the antenna-type combinations with different orientations and the corresponding symmetry 
groups are presented in Fig. 2. The single arrow in Fig.2 denotes the electric dipole antenna and the 
double arrow stands for the magnetic dipole antenna. Notice that if the host material is anisotropic 
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and/or magnetic, the resultant symmetry group can be defined by Curie^s principle of symmetry 
superposition. The constitutive tensors for all the symmetries in Fig.2 are written in [1]. 
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6.   Conclusions 

The symmetry analysis presented here is essentially model-independent. Using some electromagnetic 
models, we can perhaps simplify the structure of the constitutive tensors. But in any case, the structure 
of them calculated by making use of physical models cannot be more complex that those obtained by 

symmetry methods. 
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Abstract 
In 1948, R. C. Jones showed that uniaxial media can in general show four different funda- 
mental optical phenomena, each of which appears in refraction and absorption. Three of 
them are well-known: isotropic refraction and absorption, linear birefringence and dichro- 
ism, circular birefringence and dichroism. The fourth effect has remained unobserved so far. 
It represents an additional linear birefringence (and dichroism) with its fast and slow axes 
tilted by 45 degrees with respect to the axes of the standard linear birefringence. Jones 
birefringence should occur in several uniaxial crystal classes, and isotropic media subjected 
to external parallel magnetic and electric fields perpendicular to the direction of the light; 
Anj = n+45° — n_45« = kjXE • B. We report the first experimental observation of the 
magneto-electric Jones birefringence, induced in liquids. 

1. Introduction 

Many linear optical effects in homogeneous uniaxial media are known, either intrinsic ones due to 
the symmetry properties of the medium, or effects induced by external influences like magnetic 
field, electric field, pressure etc. Jones developed a matrix formalism to classify these effects 
[1]. By a completeness argument, he deduced the existence of a fundamentally new effect in 
addition to the three known effects cited above. This fourth effect, appearing in refraction and 
absorption, is called Jones birefringence and Jones dichroism. Jones showed that this new effect 
can only exist in uniaxial media and that it represents an additional linear birefringence (with 
its corresponding dichroism), the optical axes of which bisect the optical axes of the standard 
linear birefringence. Later theoretical work on the basis of symmetry arguments [2] [3] and 
of generalized polarizability tensor calculations [2] showed that the Jones birefringence occurs 
intrinsically in many uniaxial crystal classes and can be induced in all media by simultaneously 
applying parallel magnetic and electric fields perpendicular to the direction of light propagation. 
This magneto-electric Jones birefringence Anj is predicted to be [2] [3]: 

Anj = n+45° - n_45o = kj\ E-B (1) 

where A is the wavelength, E and B the external applied electric and magnetic fields. As the 
external fields can be modulated, the experimental search for the induced Jones birefringence 
allows high sensitivity (phase sensitive detection) and good discrimination against other effects, 
in particular the standard linear birefringence An = ny — n± that always accompanies the 
Jones birefringence. In liquids and gases subjected to electric and magnetic fields, this standard 
birefringence is present in the form of the Cotton-Mouton effect (An oc B2) and the Kerr effect 
(An oc E2). These birefringences will in general be much stronger. 
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2. Theory 

In the following modification of a much more complete treatment of Graham et al [2] [6] we 
will show that Jones birefringence is a bianisotropic effect. In the expressions for D and H we 
retain the dominant terms of the light-matter interaction: 

Da = e0Ea + aaßEß + GaßBß       Ha = fx0 Ba- XaßBß - GaßEß (2) 

In a liquid subjected to parallel electric and magnetic fields along the x-axis, Eext, Bext, the 
tensors become field distorted, for example: Gaß(Eext, Bext) = Gaß + ö5^Bext + s^-^exH • 
The multipole polarization densities are statistical averages over the molecular orientations in 
the external fields. We consider only polar diamagnetic molecules and only averages proportional 
to Eext • Bext [2]. The dominant polar contribution is given by: 

(Gaß(EexUBext)) = -Ev&MLfaSfc) (3) 

Analogous for {Qaß}, but (e0Saß + aaß) = e0<5a/j and (^0 
1Saß + Xaß) - Po X<W- We rewrite: 

Da = e0SaßEß + ™*^(ßx°^)Bß       Ha = ^HaßBß - M^^{/jLx^L)Eß      (4) 

We assume plane wave eigenmodes Ea = E0ae
_ia;^_ = z^ and use the Maxwell equations Ea = 

^azßBß and Da = -±eazßHß . This leads, with §%£ = |^. [2], to the wave equation: 

w - n NE'ftB"'i(a..l?^- - j?ff** )) 

■^—rkr     WXKZBI^     VBZTt'i 

dGy 

n 

The eigenvectors are linearly polarized light at ± 45° with Anj = ^ —^ 

)U;H£;)<5> 
<*.(£fe-fe)>. 

3. Experiment 

The experimental setup is shown in figure 1. It is 
a modification of a setup to measure magnetic linear 
birefringence, the Cotton-Mouton effect [4]. It con- 
sists of a HeNe-laser L, polarizer p, photoelastic mod- 
ulator PEM, Pockels' cellPC, Presnel rhomb FR, sample 
cell s, analyzer A and photodiode PD. Phase-sensitive 
feedback loop drives the Pockels' cell to compensate 
the sample birefringence. Sample lengths varied from 
5 to 25 mm. Applied are a static magnetic field B and 
a low frequency alternating electric field E • cos £lt. 
A phase sensitive detection of the resulting birefrin- 
gence at the electric field frequency d (« 60s-1) is 
performed. The angle <f> of the polarization of the 
light incident on the sample with respect to the mag- 
netic field can be chosen with the Presnel rhomb. The 
angle 6 between B and E can be chosen by rotating 
the electrode assembly. By a proper choice of <j) and 6 
and the external fields, the setup can measure electric 
linear (Kerr), magnetic linear (Cotton-Mouton) and Fl^Te 1: Experimental setup 
magneto-electric Jones birefringence. The resolution is Anj « 2 • 10"12 with applied fields of 
17 T and 2,5 -105^ and a pathlength of 25 mm. 
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The samples were pure molecular liquids 
or concentrated molecular solutions and non- 
absorbing at the laser wavelength of 632 nm. 
They were selected based on the presence of 
low-lying, high oscillator strength optical tran- 
sitions and the possibility to have high concen- 
trations. Dipolar 1,2, quadrupolar 3, tetrahe- 
dral 4-9 and octahedral 10,11 molecules (the 
symmetries being only approximate) have been 
examined, see figure 2. Only 8, 9 and 10 
showed a significant Jones birefringence. Typ- 
ical results for 8 are shown in figure 3, demon- 
strating explicitly the linear dependence of Anj 
on E, B and cos0, thereby proving the exis- 
tence of the Jones birefringence and confirming 
equation 1. The table summarizes the results 
for the molecules 8, 9 and 10 (the electric field 
and Anj in the last column are rms values). 
It was further checked that the observed Anj 
is independent of the sample length. The tem- 
perature dependence of Anj for molecule 8 was 

measured to be kj{T) ex T~x,x = 0.8 ± 0.2. This is consistent with the alignment of a perma- 
nent molecular dipole moment by an external field, which would give x = 1. We suppose this 
moment to be the static electric dipole moment. 

A further test for the validity of our ex- 
perimental results consisted of measuring 
the magneto-electric linear birefringence of 
8 and 10 in crossed magnetic and electric 
fields, both perpendicular to the direction 
of light propagation. This birefringence, 
which has the same optical axes as the Kerr and Cotton-Mouton effects, was predicted to have 
the same magnitude as the Jones birefringence [3] [5]. We found this to be indeed the case. 

We can heuristically summarize our results by noting that a relatively large Jones birefrin- 
gence is observed in molecules having a low-lying strong charge transfer transition of approxi- 
mately octupolar symmetry and a permanent electric dipole moment. Note that all liquids must 
exhibit the magneto-electric Jones birefringence, but the effect is below our detection limit for 
the other molecules. 

Graham and Raab estimated the strength of the Jones birefringence for spherical atoms. 
They found the following relation between Jones, Cotton-Mouton and Kerr birefringence [2]: 

Figure 2: Investigated molecules 

MD] ßmlMs] MvW An17T/l)9.10 

8 «4 1,7 4,7-HT11 9,6-10-n 

9 fti 4 r**j  O 2,2-HT11 4,5 • 10-11 

10 ^o ?»0 5,1 • 10"12 1,0-lQ-11 

V 

V = 
Anj 

y/AnKAncM 

kj 

Vk>K kcM 
= 0.016 (6) 

The results of Ross et al. [3] would imply that 77 is of the order of a, the fine structure 
constant (« 0.0073). The values we have observed so far are 77 = 0.0036 for 8 and 10 and 
77 = 0.0019 for 9 . This is within one order of magnitude of both predictions. However, values 
for 77 that are at least two orders of magnitude smaller than this were found for other molecules. 
The relation between 77 and the molecular structure is not yet understood. 
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Estimates of the absolute strength of Jones bire- 
fringence have been made for hydrogen atoms [5]. 
kj = 6 • 10-17^ was calculated at 1 atm. pres- 
sure, which translates to kj « lO-14^ for the den- 
sities of our molecular liquids. Electrostatic align- 
ment of permanent dipole moments at room tem- 
perature increases this by two orders of magnitude 
[2], thus kj w lO-12^. Resonance enhancement 
due to the low-lying optical transitions may give an- 
other order of magnitude, leading to an estimate of 
kj fa 10-11^p, which is in reasonable agreement 
with our experimental results for kj on 8, 9 and 
10. Empirically, this extrapolation seems only to be 
valid for those molecules that have optical transi- 
tions that involve truly three-dimensional motion of 
electrons, as is also the case for the hydrogen atom. 

4. Conclusion 

We have for the first time experimentally observed 
the Jones birefringence, induced by an electric and a 
magnetic field in molecular liquids. This observation 
provides the final validation of the Jones formalism 
in polarization optics. Our results confirm all qual- 
itative predictions made for the effect. However our 
understanding of the relation between Jones bire- 
fringence and molecular structure is still incomplete. 
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Abstract 

The use of statistical techniques to characterize composite materials systems and their use 
in complex electromagnetic environments is discussed. Examples of the calculation of uncer- 
tainties and distribution functions of wave statistics are given. 

1 Introduction 

Heterogeneous media which consist of discrete inclusions of various kinds and configured in cer- 
tain arrangements inside a host medium can be considered as complex electromagnetic (EM) 
material systems. A rigorous deterministic analytical or computational approach to their anal- 
ysis is of almost forbidding complexity. Hence one usually takes recourse to simplified effective 
medium theories. Typically, only mean values (first-order moments) are considered, but this 
tends to be a significant oversimplification when correlating theoretically predicted characteris- 
tics of a composite with measured results for a realistic sample. In particular, variability between 
different realizations of samples proves to be a dominant factor in the uncertainty budget for the 
macroscopic constitutive parameters. The resulting uncertainties are furthermore important in 
assessing the accuracy of the measurement itself, in order to decide on the significance of certain 
measured effects (e.g. nonreciprocity or chirality), or on the relevant truncation point in any 
series expansion for their characterization in the long-wavelength regime. In crystal physics, the 
number of scattering centers is usually very large so as to warrant a negligible level of uncer- 
tainty. However for synthetic composites containing a relatively small number of inclusions, this 
is generally not the case. The uncertainty associated with sample realizations calls for new or 
improved methods for their characterization. Statistical characterization proves to be an espe- 
cially powerful method, because the uncertainties decrease with increasing degree of complexity 
of the material system. The results find application, for example, in the characterization of 
adaptive material systems in active or passive mode of operation [1]. 

Secondly, a growing trend exists towards the use of complex EM environments as alternative 
measurement techniques, in order to characterize materials in their operational environment 
more realistically and accurately. Here, realistic excitation and illumination conditions are be- 
ing generated, as opposed to the idealized case of single plane-wave illumination. The incident 
wave must then be considered as quasi-statistical, for the measured effect is due to an ensemble 
average of a multitude of different directions of incidence or polarization. The same is usually 
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true for the internal field inside the medium even if the externally incident wave is deterministic. 
One such complex EM environment simulator is the NPL stadium reverberation chamber, in 
which an ensemble of illuminations is being generated for the EMC testing of equipment or 
characterization of EM materials or systems [2, 3]. The most general case is of course the one 
of complex media subjected to complex fields. 

2 Statistics of Waves and Media 

2.1 Moments 

In the general case of complex media subject to complex waves, both the excitation and the 
constitutive parameters exhibit statistical fluctuations. Sample variability can be taken into 
account by incorporating a continuous or discrete realization parameter r. For example, in the 
Lorenz-Lorentz formula the number of inclusions and their dipolarizabilities a thus become 
random variables. At a given frequency a»: 

/     N -W(T) a(r;u}) ,,. 

The average of the macroscopic electric polarization Pe — Na/[1 — Na/(3e0)]E then satisfies: 

{Na)E + Na(E) + ^Pe 
\-re) — 1        Na W 

where (•) signifies ensemble averaging. Its variance then follows from Opt = {P2) — (Pe)
2, 

which also takes the deviation of the spatial distribution of the inclusions from a pure random 
distribution into account. With D — e0E + P^ we can calculate a2

D. Its expression for gen- 
eral bianisotropic media has been obtained but is cumbersome. For the case of an anisotropic 
dielectric: 

o\   =   {D}-D)-{D}).{D) 

=   (& • (lf> • (g)-E) + (<#) .gt .g. (E)) +2 (g ■ (gt) •£• (£)) - (& -|t) .(g.E) (3) 

A similar relation exist for o\. For an isotropic medium, (3) can be simplified to: 

d  = (D2)-(D)2 = a2
eE

2 + e2a%-2eE(e){E) (4) 

where ae represents the standard deviation resulting from differences in material processing 
conditions, as well as differences or uncertainties in the number, spatial distribution, size, shape, 
etc. of the inclusions. 

2.2 Distributions 

A full characterization of the wave or medium ensemble requires knowledge of all higher-order 
statistical moments or, equivalently, the associated probability density function (pdf). Provided 
the pdf of the constitutive effective medium parameters is known a priori (which is often the 
case owing to the central limit theorem), wave statistics such as field correlation, wave number, 
wave impedance, power spectral density etc. can be derived. If the medium can be considered 
as 'random', which presumes that the number of inclusions is sufficiently large, the ensemble 
permittivity and permeability exhibit an approximately Gauss normal distribution, on physical 
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grounds. For the random wavenumber K or random refractive index JV, the resulting distribution 
is then obtained upon the subsequent variate transformations x = fie and n = %/x as: 

fN(n) = K0 
nVfiVe        l^n^e 

n2 

(5) 

where KQ(-) is the modified Bessel functions of the 2nd kind of order zero. For the wave random 
impedance Z, the transformations y = n/e, z = y/y yield: 

\fz 
fzW = ~T(—/   x2 ■ (    i    w (6) 

For the mean-normalized, statistically isotropic, homogeneous and unpolarized field, whose three 
complex components exhibit a circular Gauss normal distribution, the real (r) and imaginary 
(i) parts of D and B are distributed as: 

fDr,i{dT>1) = {iraecrE)-lKQ 
d1--' 

0"eO"E 
(7) 

The random power density 5 associated with this isotropic field satisfies, for deterministic con- 
stitutive parameters, a xL Pdf: 

, , ,     sP-1 exp(-s/2) 
MS) =     2P (p - 1)! (8) 

with p = 1 for a Cartesian component and p = 3 for the total rms power. For the field magnitude, 
a X2p pdf applies: 

f     (,    ,s _ leal»"1 exp(-|eal2/2) 
J\Ea\\\z*\) - 2P-1 (p-1)! ^9^ 

Other wave statistics are obtained along similar lines, starting from basic normal random com- 
ponents with a Gauss normal distribution. 

2.3 Spatial dispersion 

Finite-size effects manifest themselves not only in the size of the material sample, but also in 
that of the inclusions themselves. For random fields, the effect of the latter on the effective 
properties can be taken into account by applying theoretical results for general local averaging 
[2]. The analysis then shows that finite size effects give rise to an decrease in the uncertainty of 
the constitutive parameters, but to an increase in the perceived (i.e. measured ) randomness of 
the medium, as measured by its normalized spectral bandwidth. Typically, for sufficiently small 
size of the inclusions, the uncertainty will vary according the square of the characteristic length 
of the inclusion, or with the square of the averaging distance for the statistical field. 
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Abstract 

In this paper we present a method to calculate optical properties of small fractal clusters of spheres 
constructed in a recursive manner in the quasistatic approximation. To calculate optical properties 
of octahedral generator of six spheres we used the dipole-dipole approximation developed in 
Shalaev theory. After 5 iterations we received a fractal cluster of N particles with determined 
optical properties. 

1. Introduction 

Electromagnetic phenomena in random metal-insulator composites, such as rough thin films, cermets, 
colloidal aggregates and other, have been intensively studied for the last two decades [1]. These media 
typically include small nanometer - scale particles or roughness features. Often nanocomposites, 
within a certain interval of length-scale, are characterized by a random fractal, i.e. scale - invariant 
structure. Fractals look similar at different scales; in other words, a part of the object resembles the 
whole [2]. In this paper we study optical absorption by deterministic, recursively constructed three - 
dimensional fractal aggregates consisting of spherical metallic particles. Usually, it is quite difficult to 
calculate optical properties of fractal clusters containing a large number of particles. The most 
convenient way is to use the scale - invariant properties of the fractal structure. To illustrate the 
geometrical construction of the fractal, consider a cluster of TV = 6 spheres as shown in Fig.l. Here 
we depict how the first two stages of such a construction can be built from individual spherical 
particles. First we calculate the optical properties of a small cluster - generator of six spheres. Further 
we shall use these aggregates as generators for an iterative procedure to obtain the fractal system after 
a number of recursive iterations. The optical parameters of these generated clusters are assigned to a 
new "effective particle", which instead will participate in the iteration process. Finally, after S 
iterations, we receive a fractal cluster of N particles with determined optical parameters. For 
generators containing six spheres we have applied a method of taking into account pair dipole-dipole 
interactions between particles within the cluster, developed in the works of Shalaev [3-4]. 

2. Polarizability of a Cluster and Recursive Approach 

We assume that the fractal cluster is located in a continuous dielectric matrix with permittivity E0 = 1. 
We also assume that the size of generator and of the all cluster after S iterations is small compared 
with the wavelength of incident radiation. This fact will allow us to neglect retardation effects and 
describe whole system in quasi-static limit. Following the results of previous works [3-4], we can 
write induced dipole moments of the generator in the form: 
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^/,a ~ a0 

%aß=HWl-/'ß) = 

( ^ 

8aß-3- 

(1) 

(2) 

where W^ aß is a quasi-static interaction operator between each pair of particles; a, ß = x, y, z are the 

coordinates of particles in three dimensional space; rtj =|r, -r;| is a distance between particles; r, 

and rj are the origins of spheres i and ;', respectively. 

0 E + 2e0 

(3) 

is the usual dipole polarizability of the spherical particle with radius a . The polarizability tensor of the 
i-th particle interacting with all neighboring j ± i particles can be found from Eq. (1-2) [3-4]: 

ai.aß(<°) = £ 
<ia|n)(n|yß> 

j,n a0 
1(fo)+wn 

(4) 

where   wn    and   (ia|rt)(n|./'ß)      are   eigenvalues   and   eigenvectors   of  the   interaction   matrix 

W respectively, i.e. W\n) = wn\n) . The average polarizability of the generator is given by: 

«M=KyvE^tS) (5) 

where N is a number of particles in generator. 
Consider now the octahedral cluster with N = 6 spheres shown in Fig. 1 with sphere radius a and 
distance between nearest neighbors R = 2aa. According to the iteration scheme [5], the radius of the 
equivalent sphere after the first step of iteration (S = 1) is a(i)=R/2 + a = a(l + a). The same 
procedure can be applied, for example, to the octahedral generator with N=l spheres, where after the 
first iteration the equivalent radius becomes a(l)=a(l + V2o). Taking into account self-similar 
properties of fractal cluster, we can assume that after 5 iterations the radius of the single "effective 
sphere" in the final cluster is [6] 

a(s)=a(l + a)s (6) 

for the N = 6 generator. After S steps of the iteration process for N = 6 generator, the recursive relation 

for B^, which should be used for calculation of "effective sphere" polarization, has a form: 

5^ = (l + a)-32 
(ia\n)(n\j$) 

r{B^Y+wna'(l + c)*-l) 
(7) 

Therefore, the extinction cross-section of the fractal cluster with generator N = 6 after S iterations 
should be: 

a® = 4nkNslm 
Tip^Y+wHa

3(l + af^\ 
(8) 
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where it = 1% and X denotes the wavelength of incident radiation in the system. 

N=6   S=l N=6   S=l N=36   S=2 

Fig. 1 .The iterative procedure of cluster construction when a cluster of spheres N=6 is replaced by a 
single equivalent sphere, which is used to construct a larger cluster in a self-similar manner. The fractal 

dimension of the resulting fractal cluster is D =    ^ j/ ^      \ 

3. Results and Discussion 

We have applied this theory to the deterministic fractal of metallic particles N = 6 depicted in Fig. 1 
for the S = 1, 2 iteration steps. In Fig. 2 we present the results of our calculations by plotting the 

extinction efficiency of the fractal cluster N = 6 as a function of co= <V   , where co    is a plasma 
/    p 

frequency of metallic particles. We have specified the properties of the particle material by the values 
o 

The  average   size  of particles   a = 30 A   and  diameter (Op = 1.37-10
16

J
_1 y = 7.14-101V1. 

d = 61A , gives us the parameter a = 1.017. We observe that the main features of the spectra are 
present already in the dipolar approximation of the Shalaev theory [3-4]. Our results show that the 
response of the system is strongly dependent on the volume fraction of particles in cluster, which 
decreases rapidly with arising number S of iterations. This is very interesting, because in the normal 
non-fractal structures the volume fraction of particles should be approximately constant with 
increasing number of iterations (i.e. number of particles in the cluster N -> ~). In the same time the 
magnitude of spectra also decreases with arising number 5. Indeed, the self-similar properties of 
fractal clusters, which save its geometrical structure, after S iterations make them more "transparent". 
We have also observed that, in particular, the low frequency peak shift to lower frequencies as 
parameter or decreases. It should be noted that the two peaks in Fig.2. are in qualitative agreement 
with theoretical results obtained by application of Ausloos theory [7]. In experiments on random 
fractal metal aggregates, a two-peak absorption, qualitatively similar to Fig.2 has been observed [8- 
11]. We are not aware of any data on the behavior of these peaks as a function of aggregate size or 
particle separation. For linear chains, the low frequency peak shift to low frequency with increasing 
number of particles [12]. It would be interesting to investigate whether this is the case for anisotropic 
fractals also. Our method could, in principle, be used for two-scale anisotropic fractal structures. The 
present method has large similarities with Discrete Dipole Approximation [13] largely used by 
astrophysicists. This may point a way to extend the method to large particle clusters beyond the 
quasistatic limit. 
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Fig. 2. The logarithm of the extinction efficiency as a function of 
normalized frequency for the generator of 6 spheres (Fig. 1.) at 
o~ =1.017.  For comparison the results at the first (s=l), second (s=2) 
and third (s=3) stages of iteration process are shown. The dot-dashed 
curve gives results of direct application of Mie theory to given cluster 
of 6 spheres considered as a one spherical particle. 
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Abstract 

Analytical and numerical modeling of tensor characteristics of nonlinear optical activity for 
layered-periodic crystal structures (superlattices) is carried out. Calculations are executed in 
frames of the long wavelength approximation for electromagnetic field at neglecting of the 
harmonics generation and effect of the probe wave on the effective medium optical characteristics. 
The relations determining nonlinear optical activity, electrogyration effective tensors for the 
structures from bianisotropic layers are derived. The detailed analysis is made for the superlattices 
formed by cubic crystals of GaAs-type. Domains of parameters values at which the effective 
nonlinear gyrotropy characteristics exceed ones for the monocrystal components of the 
superlattices are ascertained. 

1. General Relations 

Effects of parametric crystal optics of layered-periodic structures or superlattices (SL) are intensively 
investigated last time. Even in frames of the long wavelength approximation for electromagnetic field 
(the case of short-period SL) these structures can exhibit electrooptical, gyrotropic, magnetooptical 
properties which are distinguished from ones for the monocrystals forming SL [1-3]. The aim of the 
paper is investigation of nonlinear optical activity (NLOA) and electrogyration in short-period SL. For 
the description of electromagnetic properties of SL with account of NLOA one can use material 
equations [4] 

Dq = [£qi ]Ej + i[a^ }Hj,       Bq = iiqjHj - i[ajq ]£,, (1) 

where i2=-\, and the quantities 

[ej = e* +Z#El +eqJklE°kEl       [cc^a^ +V(ü,E
0

k + rw,,E°kEf (2) 

are the tensors of dielectric permittivity and optical activity depending on the field of the 

monochromatic controlling wave E°, q,j,k,l= 1,2,3. In Eqs. (2) tensors x and 6 describing nonlinear 
dielectric properties are real and symmetric relatively to any permutation of the indexes that 
corresponds to non-absorbing media. The forms of characterizing NLOA real pseudotensors v and T 

are determined by the crystallographic symmetry of the medium [4]. We will assume satisfying Eqs. 
(1) and (2) for the monocrystal layers and for the short-period SL at substitution of the corresponding 
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material tensors for the effective tensors. According to Eqs. (1), components of magnetic permeability 
tensor ft are supposed to be not depending on the controlling electric field E°. 

The general forms of effective tensors e'e>, f\ 6fe) and pseudotensor a(e> of linear optical activity 
were determined (see Refs. in [1,2]). Analogically to [4], let us consider NLOA in the given field 
approximation, at neglecting: 1) generation of harmonics in the effective medium, 2) effect of the 
probe wave with a low intensity on the material characteristics of SL. Moreover, the following 
assumptions will be used: 1) tensors s (non-disturbed by field E°) and ft are diagonal, 2) fi»ax, 
T»ad, that takes place in a wide range of parameters values [5,6]. 

Then the methods described in [2,3] and Eqs. (1) and (2) lead to the expressions 

Qi33£»Ylv33j>     0^33*33 )"'v333.     e*vw>     (ejjC^r'Vj,,,     n;lvnj, 
(3) 

(ßzA) v,3„     viJn,     (e^)-'v#3, 

(e^ylt3mV,     (£334)"' *,„,>     £»(£»T2Tw     tä^r     (ß33e»rl*.™> (4) 

<ß3rf3r
lTmV3,     ^'(O"2^,     TiJmn,     (e°ny

lTij3m,     (£33 rV,     (4)"^ i/33> 

where i,j,m,n=\,2. Here e and e° are the permittivity tensors corresponding to the frequencies of the 
probe and controlling electric fields. At averaging of the form 

Aw=xAm+Q-x)Am, (5) 

where x=d1]/D is the relative thickness of the first layer in the SL period D, upper indexes e,l,2 here 
and below denote the quantities characterizing the effective medium, the first and the second crystal 
layers in the SL period, expressions (3,4) determine all the components of effective tensors v<e>, i?e> 

describing NLOA. Expressions (3,4) are also true in the case of the constant controlling electric field 
E°. Then tensors vw and ife) describe linear and quadratic electrogyration [5] in the considered media. 

2. The Structures from GaAs-Type Crystals 

Let us determine the form of tensor -ie) in the practically important case of SL formed by cubic 
crystals of class 43/rc (GaAs-type). According to [7,8], these crystals are characterized by the 
following nonzero components of tensor r (the axes of the orthogonal coordinate system are parallel to 

the axes 4): 

T3311 = T1122 = T2233 = ~T2211  = ~T3322 = _T1133 = ^> T2323 = T3131  = T1212 = ~T3232 = ~T1313 = ~T2121  = ^ > 

(6) 
T3223  =-ri331   =T2112   = ~'J'2in  =_T3I13  = _T122l   = ^   ' 

where X, X', X" are real independent parameters. From expressions (4)-(6) we have (axis Z is 
perpendicular to the boundaries of the layers) 

rM      rw       <VW>        rw —T«>       <*/(££")>        Tw = _Te> =  <^"/(££°)> 
T"'1=_T"22-<1/M><l/£>'     

T3,31_ rm2~<\/ex\/e°>'      3223       3"3    <l/e><l/£°>' 
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-(«) -. -(«) <A"/(^°)> 
<l/>xl/e0>' 

rW rW =<A'>, -(e) -T(e)   =</L"> 41221  -^-A   ^5 (7) 

-(0 = -T(e)    = ►nil 
<A'/ÜI£°)> 

<l/n><l/e°>: ''1122 "T2211  -<^>5 
T(«)     __T(0    _ 
''2233 ''1133  — 

<A/(£°)2 

<l/e°>2 

In Eqs. (7) and below the angular brackets denote averaging according to Eq. (5). It is seen from Eqs. 
(6) and (7) that the transition from monocrystals to SL is accompanied by increasing threefold the 
number of independent components of tensor x. In this case the indexes of the nonzero components of 
Tdo not change. According to [7,8], the general form of this tensor in Eq. (7) has no analogues among 
monocrystal media. That determines the main characteristic properties of exhibition of NLOA and 
electrogyration in the considered SL and points to wide opportunities of creating new NLOA materials 
on the basis of SL. 

Values of some components of ie) in Eqs. (7) can exceed the values of the analogical quantities of 
the monocrystals originating the SL. These components, besides ones which are equal to quantities 
±<A>, ±<X'>, ±<X">, can be written in the form 

<l/axl/b>' 
(8) 

where X and a, b are scalar parameters taking on values X, X', X" and \x, e, e° correspondingly. Then a 
domain of the parameters values, satisfying the condition X(e>>X(2)>X(1), is determined by the system of 
inequalities 

l<\,    0<x<\,    a>0,     ß>0,    (I - ä)(l - ß)(\ - x)> I-1, (9) 

where l=X(1)/X(2), a=v<J>/a<2>, ß=b">/bf2>. 
According to system (9) an amplification of the considered induced gyrotropy properties at 

forming SL can take place at a small difference between the NLOA constants (/ = 1) and a strong 
difference between the dielectric (e, d0>) and magnetic (ji) constants (a ± 1, ß * 1) of the SL 
components. In particular, at nonmagnetic layers satisfying the condition X(e>>X(2)>X(1) is not possible 
for all the components of tensor ie) in Eqs. (7), besides T^3 = -t^ . 

X(e)/X(2) 

3~~1 

2~/£$6G 

ß 1 
1 a 

ß = 0.5, / = 0.99 
Fig.l 

x = 0.3, / = 0.99 
Fig. 2 
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Relations (8,9) determine also the analogical domains of parameters values for the considered SL 
at quadratic electrooptical and induced magnetooptical effects [2,3]. 

Graphs calculated on Eqs. (8) and (9) illustrate possibilities of realization of the condition 
X(e>>X(2)>Xa> at various values of the parameters. 

1.4T äW> 

=0.99 

a = ß = 0.5 
Fig. 3 

a = ß = 0.5 
Fig. 4 
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Abstract 

The problem is considered of the diffraction of a circularly polarized wave by an anisotropically 
conductive cylinder of small radius with a thin longitudinal slot. It is shown that, for a certain 
relation between the pitch angle of the helical conductive lines and the angular dimension of the 
slot, one can observe resonance phenomenon that manifests itself in a sharp increase in the 
scattering cross-section; for a right-handed helix, this resonance phenomenon occurs only when 
the incident wave is left circularly polarized. At the resonance frequency, the scattered field is left- 
circularly polarized and has a uniform directional pattern. 

1. Introduction 

It is known that certain cylindrical objects of small cross dimensions have resonance properties. These 
are, for instance, a metal cylinder with a longitudinal slot [1] and anisotropically conductive strip 
where the direction of conductivity makes a small angle with the edges of the strip [2]. The fields 
scattered by these objects are linearly polarized. In [3], a low frequency chiral resonance was observed 
in a hollow cylinder with the pitch angle of the helical conductive lines close to 7t/2 . For right-handed 

helices, the resonance appears for right circularly polarized wave. The scattered field at the resonance 
is right circularly polarized and its angular directivity can be described by cos cp. 

Fig. 1 Anisotropically conductive cylinder with a longitudinal slot. 
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2. Theory 

In this work, we investigate a new electromagnetic object, which is a non-closed cylindrical surface 
with helical conductivity. We considered the diffraction of a circularly polarized plane wave 
propagating perpendicular to the z axis by the surface r = a, |<p| < 9 with the following anisotropic- 

conductivity boundary conditions: 

E+
Z=E~Z, (la) 

E;=E-, (ib) 

£zsina + £(pCosa = 0, (lc) 

(//z"-#z-)sina + (#+-//~)cosa = 0, (Id) 

where a is the pitch angle of the helix. The z -components of the incident electromagnetic field is 
given by the formulas 

H°z = exp[- ikr cos((p - cp0 )\ (2a) 

E®=±i exp[- ikr cos (cp - cp0 )]. (2b) 

Here and below, the upper and lower indices correspond to the right and left hand circular polarized 
waves. 

The problem is reduced to an integral-differential equation for the surface current /(<p), which 
is related to the jump in the tangential component of the magnetic field by the formulas 

H\ - H~ = -/((p)cos a, (3a) 

H;-H-=f(<p)sina. (3b) 

The equation for /((p) is as follows: 

^1 fA(9-9WV<p' + -f [ß(9-<p')/(<p'V<p'+ Jc((p-9WMP' = ^(<P) (4) 

The kernels A, B, and C are determined by the Green function for open space, 

G(r,(P,r',(P') = ^?){4'-2+'-'2-2'-r'cos((p-(p')]^ }, (5) 

as follows: 

A = ^-^- G{a, <p, a, (p')cos(9 - q>'), (6a) 
ka 
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B = 
cos2 a 

ka 
G(a, 9, a, <p')+a—G(a, 9, a, 9') sin((p-(p')> 

C = £asin   aG(a,9,0,9')+tocos2 aG(a,(p,a,(p')cos((p-(p'). 

The left-hand side of equation (4) is determined by the expression 

F(q>) = [icos acos(9 - 90) + sin a]exp[- ika cos(9 - 90)]. 

The current f(<p) obeys the conditions 

/(e)=/(-e)=o. 

For the asymptotic case 

ka «1, [I = tga «1, Tt - 0 «1, 

an analytical solution is derived in the following form: 

/(<p)=zy0(q>), 

where 

/o(<p)=ln 9 cos —+ 
2 

29      2 e y2 
COS   —-cos   — 

2 2 
-In cos—, 

2 

D = - 2ka(ka + 2\x) 

l + (to)2|2-/|[(to)2+4|x2]|lncos| 

(6b) 

(6c) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

3. Scattering Cross-Section 

The total scattering cross-section a calculated from the current (10) is determined by the formula 

kc = ^-(ka)2[(kaf+4AD\2ln2 

8 
cos- 

e 
(13) 

As it follows from (12), just as in the case of the problem for a metal cylinder with a 
longitudinal slot, the resonant frequency is determined by the formula 

ka = 6 2 In cos — 
2 

-Yi (14) 

Note that, at the frequency 

ka = 2ju., (15) 
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a right circularly polarized wave does not interact with the cylinder. Therefore, a cylinder with the 
geometrical parameters |X and 6 related by the formula 

^2=1/ In cos - (16) 

exhibits ideal chiral properties at the resonant frequency (14). It does not interact with a right 
circularly polarized wave and strongly scatters a left circularly polarized wave. Figure 2 shows the 

scattering cross-sections versus frequency for the left and right circularly polarized waves for 0 = 175° 

and a = 12°. 

Fig. 2   Scattering cross-sections for left (resonance curve) and right circularly polarized 

waves for 6 = 175°, a = 12°. 

Thus, an anisotropically conductive cylinder with a longitudinal slot manifests strong 
polarization selectivity with respect to left and right circularly polarized waves. This fact makes it 
possible to use such cylinders for the design of artificial chiral media and structures [4]. 
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Abstract 

An efficient solution to the 3-D scattering and absorption problems of chirality and biisotropy is 
developed using various types of expansion functions. The necessary conditions to obtain the most 
optimal solution are outlined. The program complex to compute and visualize scattering, 
absorption, polarization, energetic, and directive properties of biisotropic and chiral objects is 
described and applied to solve some applied scattering and antenna problems. 

1. Introduction 

The problems of microwave behavior of the objects of complicated shape and complex material 
filling, such as chiral and biisotropic, are to be important both from theoretical and applied viewpoints 
[1-6]. In this regard, much effort has been devoted in last few years to develop and justify new 
techniques and codes to solve 2D and 3D problems on chirality and biisotropy. However, most of the 
results declared for the time being, is restricted to the geometry of objects, the range of material 
parameters, the type of primary excitation and the accuracy attained and thus no longer satisfy the 
present-day practical needs. 

In this contribution, based on the Method of Auxiliary Sources (MAS) [4-6], an efficient 
solution to the 3-D scattering and absorption problems of chirality and biisotropy is developed using 
various types of expansion functions. Farther, the necessary conditions to obtain the most optimal 
solution are outlined. The program complex to compute and visualize scattering, absorption, 
polarization, energetic, and directive properties of biisotropic and chiral objects is described. 
Application of the created computer code to solve the practical problems of interest is illustrated. 

2. Brief Description of the Method 

The problem discussed here is to find the electromagnetic response of an arbitrary homogeneous 
biisotropic (including, chiral) object to be excited from outside or within by the given field of primary 
electromagnetic sources. From the mathematical point of view, this problem can be obviously reduced 
to solving wave equations 

§e'(U(r) = 0 (1) 

for unknown potential function of scattered field Ü(r), with providing the radiation conditions at 
infinity and satisfying the following boundary conditions on the surface S enclosing the object 

W$(r)+Ü0(r)\r = rs =0, M(rs )e S (2) 

Hereinafter, superscripts e and i concern to the exterior and interior domains, respectively, U0(r) is a 
given function of incident field, and W is an operator of boundary conditions ensuring the fields 
conjugation on the boundary surface S. 
Various techniques to solve the boundary problem (l)-(2) differ actually by the method to construct 
the solution to the equation (1) and to determine the unknown coefficients arising from satisfying the 
boundary conditions (2). The MAS, in contrast to most other methods, constructs the solutions to (1) 
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as non-orthogonal expansions in terms of fundamental solutions of (1) with singularities out of the 
described domain [6] 

U(7) = ^4^(7,7^), 7eDie (3) 
n=l 

The sets of points fcf Jw=; to be distributed at the auxiliary surfaces 

Sl'e (Fig. 1) can be interpreted as the centers of auxiliary sources 

associated with fundamental solutions Un(r,r^e). The amplitudes a'/ 
of these sources should be determined from the boundary conditions (2) 
by any numerical procedure, in particular, by the collocation method. 

Fig.l 

3. Application to the Problems of Chirality and Biisotropy 

Application of the described scheme to the problems of chirality and biisotropy is of the simplest one 
if using constitutive relations in Post notations 

D = eE + iaB, H=i$E + \i~1B, (4) 
where   e   and   |i  are the medium permittivity and permeability, respectively,   oc = £-i\|/   and 
ß = £ + ivir   are magnetoelectric admittances,   £   is chirality admittance and  \|/is nonreciprocity 

susceptance. 
To determine now fundamental solutions of wave equation (1) for constitutive relations (4), it is 
necessary first choose the type of the potential function U . As such a function, any function can be 
employed which identically define the vectors of electromagnetic field, e.g., electric and magnetic 
vector potentials Ae'm, Debye scalar potentials e'mU, Hertz vectors Ze'm, spinor dyad of Hertz 

potential Z , spinor dyad of electromagnetic field F or any field vector -JE, H, D, B). It is 
convenient, however, to choose such a potential function, which leads to the simpler form of wave 

operator 3 and the relations to the field vectors. 
Thus, when choosing E or H as potential function U , wave operator 3 is of the form 

3=(V2+Ä:2J/+Cü|i(a + ß,)Vx/,       k = (ajeii, (5) 
and fundamental solutions of wave equation (1) are found to be as follows 

^(r,r)=^rGr(\r-r])-yeGt(\r-r])]sKx(jcf), (6) 

where f'1 = Vx7 ±it^VV ±itr>/7 are vector differential operators for right-hand (r) and left-hand 

(I) wavefields, 91 = —L-r2r is normalized coefficient, 7 is a unit matrix, 

Gr'*=- 1 
ik   Xf-r'\ 

„    r,l\        ' 

4n\r - r'l 

are scalar Green's functions for outgoing waves with wavenumbers 
krj=k{[l + r\2(a. + P)2/4]l,2±T](a + p)/2},   r| = V^/e, 

1/2 
and wave impedances 

T\rc'
e=T\/{l + y\2(a + V)2/4]uz±r)(a-$)/2}, 

x(r') is a unit vector tangential to the auxiliary surface at the point M'(r'). 

(7) 

(8) 

(9) 
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If introducing as potential function the spinor dyad of electromagnetic field Ü = F, wave 

operator § is of the form 

3 = Vx/-Jfe/ (10) 
and the fundamental solutions of (1) are obtained to be as follows 

V(7-r')=yG(r-r')tft (11) 

where k 
fkr 0      ^ 

0      -k, . Y = 
y   o ^ 

and G 
( \ 
G'        0 
0       G' 

are the matrices of wave-numbers, 

vector differential operators and Green's functions for right- and left-hand wavefields, respectively. 
The field vectors E and H can be found over the potential function via relations 

E = %% H=Zf, (12) 
with rows of parameters 

Z = (ftlc .-frlc). £ = (U) (13) 
The knowledge of fundamental solutions of wave equation (1) for biisotropic (including, chiral) 

medium formally completes the construction of solution (3) to the stated boundary problem (l)-(2). 

4. Numerical Results 

To numerically calculate electromagnetic characteristics of chiral or biisotropic objects by the present 

method, it is necessary to determine the coefficients alf of expansions (3) from the boundary 
conditions (2). To provide the quick convergence and minimal discrepancy of the solution to be 
sought, the proper choice of the auxiliary parameters, such as the shape and dimensions of auxiliary 
surface, distribution of the points on the boundary and auxiliary surfaces, etc., is required. It is 
especially important to properly account for the character and situation of the singularities of 
continuously extended scattered field across the boundary of the domain to be described. 

All the aspects above have been considered to produce the program complex for calculating and 
visualizing scattering, absorption, polarization, energetic, and directive characteristics of 3-D chiral 
and biisotropic objects. In the code performed, both isolated and integrated auxiliary sources have 
been utilized to obtain the optimized and effective solutions. We illustrate here some possibilities of 
the created code to calculate and visualize radiation, propagation and scattering problems of interest. 

Fig. 2 and 3 compare the radiation processes produced by a linear current source placed in a 
back focus of biisotropic ellipsoid of revolution along (Fig. 2) and perpendicular (Fig. 3) to the axis of 
revolution. The geometry of ellipsoid is determined by its semi-axises: a = 0.5, b = 0.4, and medium 
parameters are: er =2.00006, [ir =2.02502, ocr|0 =0.1885 + /0.754, ßr|0 =0.1885 -i 0.754 
(TJ0 =120n). We are interested in distribution of energy density of right-hand (a) and left-hand (b) 
wavefields outside the ellipsoid for wavenumber k = 32. The parameters of biisotropic medium are 
chosen so, that mainly left-hand polarization is focused along the axis of ellipsoid. The comparison of 
Fig. 2 and 3 also shows, that the transverse current source manifests more focusing properties. 

Fig. 4 shows the 3-D radiation pattern of ellipsoid of revolution of Fig. 2 and 3 with longitudinal 
(a) and transverse (b) excitation. From comparison of Fig. 4-a) and 4-b), it is obvious, that transverse 
current excitation leads to better directive pattern with weaker lobes. It is also clear, that this pattern is 
not omnidirectional, and thus one of polarization (left-hand) is dominant. Fig. 5 calculated for 
situation of Fig. 4-a), but with k = 400, shows the increase of directivity and decrease of radiation 
lobes with growing wavenumber (frequency). 

It should be noted, that Fig. 2-5 have been calculated with rather high accuracy (about 0.5%) 
and only thus allow studying in detail electromagnetic properties of scattering biisotropic objects. 
Thus, the proper use of the method described allows one to obtain numerical results with predesigned 
accuracy and to study the practical problems of interest. 
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Abstract 

We explore the conceptualization of biaxial composite mediums through the process of ho- 
mogenization. Biaxiality is found to arise when the component mediums undergoing homog- 
enization present two non-collinear distinguished axes. Two possible sources of directionality 
in the component mediums are considered: (a) topological and (b) electromagnetic. Exam- 
ples of these are investigated by considering the homogenization of particulate components 
with (a) non-spherical topologies and isotropic electromagnetic properties and (b) uniaxial 
electromagnetic properties and spherical topologies. 

1. Introduction 

In the context of electromagnetic material properties, the concept of homogenization is both sci- 
entifically and technologically important. Composite mediums with complex properties may be 
conceptualized through homogenizing relatively simple constituent mediums. Biaxial symmetry 
in such homogenized composite mediums (HCMs) is our primary concern here. We build upon 
the foundation laid by earlier studies of non-dissipative dielectric [1] and dissipative dielectric- 
magnetic [2] biaxial HCMs (wherein further background details may be found) and generalize 
to the bianisotropic case. By considering only component mediums of the simplest forms, we 
demonstrate that an elaborate HCM form can arise; and through illustrative parametric studies, 
we delineate symmetries in the HCM structure. 

2. Preliminaries 

We consider HCMs derived from only two (distinct) component mediums, each being envisioned 
in particulate form; we refer to them as the host medium and inclusion medium. Of the many 
formalisms which have been developed in order to estimate the electromagnetic constitutive 
properties of HCMs, here we adopt the Bruggeman formalism [3, 4, 5]. The HCMs emerging 
from the numerical calculations may be characterized by the bianisotropic constitutive relations1 

D(x)   =   *0|HCArE(x) + v^!HCAf-H(x), (1) 
B(x)   =   V^£HCM-E(X) + „0^CM.H(X). (2) 

Sector quantities are in boldface while dyadics are double underlined. The unit dyadic is denoted by J and 
(ux, uy, uB) is the triad of cartesian unit vectors. The permittivity and permeability of free space are denoted by 
e0 and fi0, respectively. 
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The HCM constitutive dyadics have a biaxial form which we represent as [1, 2, 6] 

=    aT
Tl + ^«XT + <r<r) + « [4l + 4(<XT + "Irir)] , (3) 

(r = e, £, Ci M)i 
LHCM 

where a^'* and 6T'' are real-valued scalars and we describe the real-valued unit vectors in terms 
of spherical polar coordinates as 

u*T   =   sinexTcoB^Tua. + sin^T8in^Tuy + cos^ruz, (4) 

(X = r,i;  K = m,n;  r = e,£,C,M)- 

With one exception, we consider here only constituent mediums with distinguished axes lying 
in the xy plane. Consequently, our calculations reveal that the HCM unit vector pairs u&c and 
u£c always lie in planes perpendicular to the xy plane with the xy plane bisecting the angle 
between u&c and u£c- The following identities therefore hold 

0*T = 7r-0*T = 0*,        ^T = #ST = #>        (X = r,<;  r = e,e,C,/x). (5) 

The one exception occurs when we consider ellipsoidal inclusions of varying eccentricity; in this 
case one distinguished axis can lie along the z axis and we shall treat this as a special case in 
Section 3.1. Furthermore, since all component mediums we consider are reciprocal, results for 
the magnetoelectric dyadic £ need not be explicitly presented as we find £     M = ~*LHCM- 

All graphs are presented~with reference to the key given in Table 1. A volumetric proportion 
of inclusion medium to host medium of 0.3 is taken for all calculations. 

3. Numerical Homogenization Calculations 

3.1 Dielectric case 

We homogenize a host medium of permittivity ghost = 1.2 X and spherical topology with an 
inclusion medium of permittivity ginc = (3 + 3z) | and ellipsoidal geometry characterized by the 
shape dyadic Uinc = diag(2,1,7). For this particular example (and no others) the identities (5) 
do not hold; instead we take 0J& = 6T/ and #& = $•* and plot these angles as a function of 7 
in Figure 1. At points where the inclusion shape becomes spheroidal, the unit vectors ujAle,ne all 
lie on a common axis and the HCM becomes uniaxial. For all values of 7 we find that gHCM 

is diagonal and hence the HCM belongs to the biaxial orthorhombic class [7]. This reflects the 
fact that in this case biaxiality arises from a geometrical structure based on three mutually 
perpendicular principal axes, namely those of the inclusion ellipsoid. 

3.2 Dielectric-magnetic case 

Here we consider constituents in which the distinguished axes have an electromagnetic, rather 
than topological, origin. We homogenize a host medium with constitutive dyadics ghost = ^ost = 

diag(3,1,1) and an inclusion medium specified by |inc = (1 + i) A and gnc = (2 + i) A where 

A = 
3cos2A + sin2A       2sinAcosA       0 

2sinAcosA       3sin2A + cos2A   0 
0 0 1 

(6) 

and both host and inclusion mediums have a spherical topology. Plotted in Figures 2 and 3 as 
functions of A are, respectively, the defining angles for the unit vector pairs \ine,ne,mn,nn and the 
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corresponding permittivity (ar
e'
1 and bT

e'
1) and permeability scalars (eft1 and 6£l) . A uniaxial 

dielectric-magnetic HCM results when the distinguished axes of the constituent mediums are 
aligned. With the exception of the special cases A = 0,7r/2 and ir, all eight angles 0^ and 
(fän and all eight scalars ar

e'^, and br
e'^ have distinct values and the biaxial HCM is of the 

monoclinic/triclinic type as regards both gHCM and ß [7]. 
We repeat the homogenizations of Figures 2 and 3 but now with a more general host medium 

characterized by ^l0St = jJ103* — diag(3+3z'5, l+i6,1+iö) and with a fixed angle for the inclusion 

distinguished axis of A = 50°. The angles 6^ are plotted against <5 in Figure 4. Our findings 
for this example may be summarized by: 

Rezhost=PTimZh09t,  Bezinc = pTl™Zinc   =*   0r
T = 0\,  <j>rT = 4>    0" = e, p),    (7) 

where p£i/1 are proportionality scalars. Thus, the biaxial HCM structure becomes orthorhombic 
with respect to permittivity (permeability) when ratios of real and imaginary parts of e'108* and 
gtnc (phost an(j jjinc^ ^ eqna\^ despite the distinguished axes of the constituent mediums being 

non-perpendicular. 

3.3 Bianisotropic case 

Finally we consider the general bianisotropic case: the homogenization of an inclusion medium 
characterized by ginc = 2(1+*) 4, Pinc = 1.5(l+t) A and £nc = ~Cnc = (1+04 where A = 50°> 

with a host medium described by f°st = ^°st = Zhost = -£oat = diag{S+3iS, l+z<J, 1+iS); and 
spherical topology is chosen for both component mediums. The computed biaxial bianisotropic 
HCM structure is of the generalized monoclinic/triclinic type with angles 6rA    and (f>TA „, and 

scalars ar
e'l and b*'^ , all taking distinct values, in general. The corresponding polar HCM 

unit vector angles are displayed as functions of S in Figure 5 (the azimuthal angles behave 
similarly). At the point S = 1 we find that the HCM is orthorhombic biaxial with respect to all 
four constitutive dyadics and, as in Section 3.2, the orthorhombic state is not associated with 
perpendicularity of the distinguished axes in the component mediums. 

Acknowledgement 
The work of TGM is supported by the Carnegie Trust for the Universities of Scotland. WSW 
is the holder of a RSE/SOEID Research Support Fellowship of the Royal Society of Edinburgh. 

References 

[1] T. G. Mackay and W. S. Weiglhofer, "Homogenized biaxial materials: dielectric properties," De- 
partment of Mathematics, University of Glasgow, preprint 2000/06, February 2000. 

[2] T. G. Mackay and W. S. Weiglhofer, "Homogenization of biaxial composite materials: dissipative 
anisotropic properties," J. Opt. A.: Pure Appl. Opt. 2, 2000, in press. 

[3] A. Lakhtakia (ed.), Selected Papers on Linear Optical Composite Materials. Bellingham, WA: SPBE 
Opt. Engg. Press, 1996. 

[4] W. S. Weiglhofer, A. Lakhtakia, and B. Michel, "Maxwell Garnett and Bruggeman formalisms for a 
particulate composite with bianisotropic host medium," Microwave Opt. Technol. Lett. 15, 263-266, 
1997; erratum 22, 221, 1999. 

[5] B. Michel, A. Lakhtakia, and W. S Weiglhofer, "Homogenization of linear bianisotropic particulate 
composite media — Numerical studies," Int. J. Appl. Electromag. Mech. 9,167-178,1998; erratum 
10, 537-538,1999. 

[6] W. S. Weiglhofer and A. Lakhtakia, "On electromagnetic waves in biaxial bianisotropic media," 
Electromagnetics 19, 351-362,1999. 

[7] M. Born and E. Wolf, Principles of Optics. Cambridge, UK: Cambridge University Press, 1997. 



240 

150 

100 

50 

0 

-50 

^ s e 

y1 

^4 =^ ̂  

■ 

           x» 

          xi 
^ 

        x,; L-i—^—.— 
1 1.5 

7 
2 2.5 3 O.b 

Tablel: Key for Figures 1-5. X - a, 6,0 or <f>. Figure 1: HCM angles 0*'* and 4>r/ vs.  inclusion 
ellipsoid semi-axis 7. ( X = 0, <j> in Table 1). 

150 

100 

25   50   75   100  125  150  175 

1.5 

0.5 

Figure 2: HCM angles 0[£ and #;*, vs. inclusion     Figure 3: HCM scalars <;), and ¥£ vs. inclusion 
distinguished axis angle A. ( X = 0, </> in Table 1).     distinguished axis angle A. ( X = a, b in Table 1). 

2.5 

Figure 4: HCM angles 0£* vs.  host medium pa-     Figure 5: HCM angles 6r
t'^ß vs. host medium pa- 

rameter S. (X = 9in Table 1). rameter «5. ( X = 6 in Table 1). 



241 

Eigen Waves of Periodic Layered Structure 
of Complex Arrays 

S. L. Prosvirnin and T. D. Vasilyeva 

Institute of Radio Astronomy of National Academy of Sciences of Ukraine 
Krasnoznamennaya Street 4, 61002 Kharkov, Ukraine 
Fax: + 38-0572-476506; email: prosvirnin@rian.kharkov.ua 

Abstract 

The characteristics of eigen waves of periodical structures consist of 2-D arrays of strip 
particles, in particular having the shape of letters C, S and fi are studied. Analytical and 
numerical results are presented. Study of eigen waves can be used for analyze property of 
polarization transformation by single complex array and multi-layered one. 

1. Introduction 

The layered periodic structure can be used as transformer of polarization of reflected and trans- 
mitted electromagnetic fields, absorber in the case a loss medium are placed between layers, and 
polarized and frequency selective surfaces. They has properties typical for photonic band-gap 
crystals. Analysis of characteristics of structure that has finite number of layers and semi infi- 
nite structure also can be carried by using the characteristics of eigen waves of infinite periodic 
structure [1], [2]. 

Let's consider an infinite layered periodic 
structure that is shown in the Fig. 1. Each 
layer represents a plane periodic on two di- 
rections array of strip particles. The particles 
have a complex shape, in particular, the shape 
of letters C, S and ti. Mirror non-symmetric 
particles, such as S-shaped, are called plano- 
chiral [3]. All layers of structure are identical. 

If the operators of reflection and transmis- 
sion of a single layer are known it is easy to de- 
rive a homogeneous system of linear algebraic 
equations concerning vectors of amplitudes of 
plane waves that are propagated towards each 
other in every gap between layers. These form field of the eigen waves of an infinite structure. 
The condition of nonzero solution of a homogeneous system of equations is dispersing equation 
to which satisfy propagation constants of eigen waves. The distribution of electromagnetic field 
amplitude of an eigen wave and its polarization in gaps between layers can be derived from a 
solution of the system of equations. 

Eigen wave I 

1 Lj 

u(+1 

\ 
h 

i- L(j+2) 

UJ+1 

Figure 1: Infinite periodic layered structure of 
2-D arrays 

2. Equations of Eigen Waves 

For the sake of simplicity we shall confine to the most important case for applications. This case 
is one-wave scattering by single array on the assumption that both its periods are less than a 
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wavelength. Under these conditions reflection and transmission operators of a single layer can be 
presented by the second order square matrices. The solution of the problem of electromagnetic 
wave scattering by a single array of strip particles of the complex shape is known [4], [5]. 

Electromagnetic field of eigen wave is the field of plane waves inside layered structure that 
propagated along axis Oz in positive and negative directions between the boundaries of neighbor 
layers. The field is represented in the j gap between layers as following 

w> = u{ + uj_,        Lj + h<z< L(j + 1) (1) 

where _.      ,,,.,, 

L is the structure period along Oz axis, h is the thickness of layer, it is assumed field time 
dependence e~iwt. The wave amplitudes of eigen wave between neighbor gaps are transformed 
in accordance with formula 

4+1 = e^Ii (2) 
where ß is propagation constant of eigen wave. Wave amplitudes in a neighbor gaps are con- 
nected by two vector equations 

A?1 = r eikAA% + r+eifcAAi+1 (3) 

Äi = r-eikAÄ{ + t+eikAÄ^_+1 (4) 

Here A = L-h,r± and t* are reflection and transmission operators of single layer for the cases 
of incident of electromagnetic wave in positive "+" and negative "-" directions of axis Oz. After 
take into account the Floquet condition (2) we can rewrite these equations for amplitudes plane 
waves that forming eigen wave of structure in the gap between layers as following 

(j _ reikAe-ißL)Ä{ - r+eikAÄ{_ = 0 (5) 

r-eikAÄ{ - (I - t+eikAeißL)$_ = 0 (6) 

System of equations are invariant respect to change indexes "±" by "T" and change the sign 
of constant of propagation ß of eigen wave simultaneously. This property is consequence of the 
invariant of structure properties respect to choosing of direction of axis Oz. 

Let us assume that layers of structure have not non-reciprocal elements and as consequence 
the matrix of operator reflection and transmission are symmetrical. In this case and so as we 
take into account only propagated partial waves the operators t+ and t~ are equal. If the layer 
is symmetric regard to its average plane the matrices of operators r+ and r~ are equal also. We 
shall restrict for simplicity this case only. The system of equations regard to amplitudes of eigen 
wave in this case is follow 

(I-ie-if}L)A%-rAj_ = 0 (7) 

fÄ{ -(I- teißL)$_ = 0 (8) 

where t = teikA, r = reikA. 

3. Analytical Results 

If non-diagonal elements of matrices f and t are equal to zero there are two independent systems 
of equations regard to amplitudes of two line polarized along axis Ox and axis Oy eigen waves. 
Dispersion equations have the form 

2txxcosßL = l+Pxx-r2
xx (9) 



243 

2iyyC0SßL=l+Pyy-fly (10) 

Two eigen waves have different phase velocities in general case. 
Let us now suggest that elements of reflection and transmission matrices are in accord with 

equations 
fxx = ryy, txx = tyyi rxy = txy 

Dispersion equations can be wrote in the form 

2(ixx + rxy) cos ßL = l + i?xx-rxx- 2fxy(fxx - txx) (11) 

2(«xx - fxy) cos ßL = 1 + Pxx - f2
xx + 2fxy{rxx - txx) (12) 

Solutions of equations 11 and 12 are accordingly ß+ and /3_ 

eiß±L = o(7   i-   ^ f1 + %* ~ f™ ± 2fW&* - rxx) + y/SZ] (13) Z(txx ± rxy) L J 

where S± = 1 - 2PXX - 2r2
xx + ixx + fxx - 2&xxr

2
xx T 4fxy{ixx + fxx + fxxPxx + txxflx - Pxx - r*x) + 

4rXy\txx + rxx — 2,txxrxx — 1). 
Eigen waves of structure are line polarized. Polarizations of eigen waves are mutually orthog- 

onal. Amplitudes of field of eigen wave that correspond to solution ß± of dispersion equation 
have values 

A\x = ±A{y = c±,    ALX = ±ALy = 
C* [l + f2

xx - Pxx T 2rxy(txx - fxx) ± y/S^] 
"\Txx ^ ' xy) J 

(14) 
Value c± is arbitrary constant. 

4. Numerical Results 

There are line polarized eigen waves only in the more complicated structures consist of arrays 
with C, S or fi-shaped strip particles also. Two eigen waves are orthogonal polarized and have 
different phase velocities and different stop band frequencies. 

Dependence of propagation constants of eigen waves in the structure of S-shaped strip par- 
ticles from distance between layers is shown in Fig. 2. Directions of polarization of eigen waves 
don't vary when distance between arrays is varied. 

One eigen wave is polarized at the angle approximately equal to 56.7 degrees regard to Ox 
axis. The wave has strong dependence of propagation constant from distance between arrays 
at resonant frequency region. There are stop band zones of this wave. The width of zone is 
increased with increasing reflection of single array. If frequency lower than resonant frequency 
a phase velocity of this wave is more than light velocity and it is smaller than light velocity in 
opposite case. 

Other eigen wave marked by sign ± in Fig. 2 is polarized at the angle approximately equal 
to -33.3 degrees in regard to Ox axis. This wave has propagation constant the same as one in 
free space. 

Similar characteristics have eigen waves of C-shaped and fi-shaped layered structures. Both 
eigen waves of these structures can have stop band frequency zones. 

5. Conclusion 

If sizes of array cell are little than wave length in free space only two eigen waves can propagate 
in periodic structures of complex arrays of plane particles having any shape. The eigen waves 
have linearly polarized mutually orthogonal fields. 
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■*   dx    ->J 

Figure 2: Propagation constant ß versus distance between layers: array without substrate h = 0, 
dx = dy = 10 mm, a = 3 mm, fa = TT/2, <£2 = 0, u> = 0.05 mm, dx/A0 « 0.58 is resonant value. 

The field of the one eigen wave in the plano-chiral structure of S-shaped strips is polarized 
linearly along an average direct line that is similar to the segment of the straight line in a symbol 
$. The field of another eigen wave is polarized orthogonal to this direction. The polarization of 
eigen waves don't vary if a distance between layers is varied. The stop band zones is extended at 
increasing of the single array reflection. The phase velocity of eigen wave can be both more or 
less than the light velocity depending on the frequency that is lower or higher than the resonance 
frequency of a strip element of array. 

Transformation of polarization doesn't occur at reflection and transmission of normal incident 
plane wave from single array or multi-layer array if incident wave has line polarization coincident 
with polarization of eigen wave of infinite structure. 

Array of any plane particles has property to transform polarization of normal incident wave 
the same as an array of cross-shaped plane particles oriented along directions of polarizations of 
eigen waves on condition that reflection and transmission coefficients of both arrays are equal 

in selected frequency. 
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Abstract 

The phenomenon of light confinement in an isolated quantum dot, provided by the resonant 
nature of exciton in QD and diffraction of electromagnetic waves at the dot boundary, is 
discussed. It has been shown that at a certain condition the quantum dot behaves as a 
microcavity those eigenmodes manifest themselves as additional, geometrical, resonances in 
the quantum dot electromagnetic response. The effect of induced magnetization of quantum 
dot is predicted and illustrated by the example of magnetic resonances in spherical quantum 
dots. 

1. Introduction 

A fundamental breakthrough in semiconductor device physics is connected with the recent 
progress in the synthesis of sheets of nano-scale 3D confined narrow-gap insertions in a host 
semiconductor, quantum dots (QDs). In particular, it was predicted that lasers based on QDs 
will show radically changed characteristics as compared to conventional quantum well lasers 
[1, 2]. The large body of recent results on physical properties of QDs and their utilization for 
the QD laser design has been accumulated in a monograph [3]. 

The key peculiarity of QDs emerges from the 3D confinement of the charge carriers deter- 
mined by QD size and shape. However, there exists a class of effects governed by the QD size 
and shape, which have not received much attention so far. These effects are related to resonant 
nature of the exciton which provides a dramatic resonant discontinuity of the dielectric function 
at the QD boundary and, consequently, gives rise inhomogeneity of the electromagnetic field 
both inside and outside QD. By analogy with charge carrier confinement, redistribution of the 
electromagnetic field energy between the QD interior and exterior under effect of the QD bound- 
ary can be referred to as light confinement. Owing to this effect, diffraction of light by QDs are 
expected to contribute significantly to the electromagnetic response properties of QDs. In many 
cases the role of diffraction can be properly accounted for the formation in QD of depolarization 
electromagnetic field, e.g., in dipole approximation of the diffraction theory. 

To our knowledge, some physical consequences of the light confinement in an individual 
QD first time were considered by Schmitt-Rink et al.   [4].  Manifestation of this phenomenon 
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in relation to the scanning near-field optical microscopy was discussed by Martin et al. [5] for 
geometrically complex mesoscopic systems and by Hanewinkel et al. [6] for QDs. An asymmetry 
of optical absorption and gain spectra in single QD because of depolarization field has been 
mentioned in Ref. [6]. Recently it has been predicted and experimentally verified that the 
light confinement in QD arrays constituted by anisotropically shaped QDs manifests itself as 
polarization splitting of the gain band [7] and, in more general case, as the fine structure of 
this band [8]. A concept of active composite has been introduced by Ref. [7]. A set of new 
effects related to the light confinement in QDs is analyzed in Ref. [9]. One of them, excitation 
of geometrical resonances in QD arrays, we consider here in more detail. 

2. Electromagnetic Response of a Single QD 

Conventional phenomenological model of the gain in a QD is based on semi-classical the- 
ory of two-level systems which gives the well-known Lorentzian polarizability of QD: a(u) = 
(g0/eh)[u -U1Q + */T]

_1
, and e(w) = eh[l + a(w)]. Here w0 is the exciton resonant frequency 

and r is the exciton dephasing time in QD, eh is the frequency-independent complex-valued 
permittivity of the host medium. The phenomenological parameter go is proportional to the 
oscillator strength of the transition. Such a primitive model does not take into account effect 
of depolarization field which makes the polarizability tensorial for anisotropically shaped QDs 
and shifts exciton resonance [7], [8] (for spherical QDs u)N = UJQ - goßeh). The depolarization 
field approximation is applicable when the condition K(U) = kR^e(uj) -C 1 holds true. Beyond 
the scope of this condition, when the wavelength inside QD becomes comparable with its linear 
extension, the role of diffraction by QD is irreducible to the effect of depolarization. Below we 
discuss this effect restricting ourselves to the spherical QD for simplicity. 

Let an isolated spherical QD of the radius R be exposed to external electromagnetic field. 
The problem of wave diffraction by a sphere has been exactly solved in the early of century by 
using the variable separation in the spherical basis. In view of the condition kRy/Eh -C 1, which 
is valid for any realistic QDs, this solution is essentially simplified [10] and presents the field 
outside the sphere by: 

{E}=(vv.+^){5:}+*vx{_^e},      w 
where Hertz potentials are given by: 

(S)=S|äH»' (2) 

and the electric and magnetic polarizabilities of the sphere, ae,m(u;), are as follows: 

e(  s _ o eM^W ~ g/t  (ft 
a {U}) ~   [e(uj)F(K) + 2efc](l - ikR^) + i(kReh?F(K) ' v ; 

nmi. ,\ _ o F(K) -1 (4) 
01  [u) ~ V(«) + 2](1 -ikR) + i{kR)*F(K)' V } 

The function 

F(K) = 1, ., shl* 7K C0S K  (5) 
(K   — 1) sm K + K COS K 

is responsible for the diffraction effect. 
It can easily be found that the depolarization field approximation comes into play in the 

limit F(K) -» 1. At \K\ > 1 the wavelength inside the QD becomes comparable with its linear 
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extension, and, as follows from Eqs. (3)-(5), scattered wave field is generated by irradiation 
of both electric and magnetic dipoles indicating thus induced magnetism of QDs. Physical 
mechanism of magnetization of dielectrics with linear extension compared with the internal 
wavelength is related to the excitation of internal TEigi cavity modes (q = ±1, ±2,... are the 
polar indices of the modes) in scattering object, which thus behaves itself as a microcavity. 
Such modes give rise to a curl electric current in its turn inducing nonzero magnetic moment 
of the object [11]. The given effect is known in macroscopic electrodynamics; it is observed in 
macroscopic dielectric composite materials [12]. A peculiarity of the magnetism in QDs is its 
pronounced resonant nature. The eigenmodes indicated are called geometrical resonances. The 
term "geometrical" [10] is related to that the resonances occur exceptionally owing to a certain 
geometrical configuration of the QD. 

The resonant conditions for electric and magnetic geometrical resonances are completely de- 
termined by the properties of the function F(K). This function demonstrates a set of resonances 
in the vicinity of the exciton frequency, whereas F(K) -4 1 at |w—UQ\ -4 oo reducing the problem 
to that considered in Refs. [7], [8]. Thus, the geometrical resonances can manifest themselves in 
the vicinity of the exciton frequency UJQ and certainly disappear far away this frequency region. 
However, concerning electrical geometrical resonances we have to conclude that they are not of 
interest because they can not be excited separately from the main exciton resonance wjy. This is 
because both types of electric resonances are excited by electric component of the external field. 
Since the intensity of electrical geometrical resonance is a small portion of the main resonance 
intensity, its contribution results in small-amplitude beatings on the main line slope. Thus, 
higher electrical eigenmodes practically do not influence the main (depolarization) resonance. 
Unlike to electric resonances, magnetic ones are excited by magnetic component of the external 
field; in such situation placement of a QD in a microcavity in an antinode of magnetic field 
creates a possibility to make the effect evident without excitation of the main resonance. 

Note also that the magnetic resonance exhibits much longer radiative lifetime as compared 
to the main resonance [9]. Furthermore, this lifetime is extremely longer than the intrinsic 
dephasing time, which therefore is crucial for possibility to observe the magnetic resonance. 

3. Magnetization of QD Arrays 

Occurrence of the magnetic geometrical resonance in isolated QDs must lead to magnetization of 
a QD array in the vicinity of the exciton frequency, essentially shifted to the blue with respect 
to the main resonance observable in experiments. Electromagnetic properties of composites 
are usually modeled in the framework of the effective-medium approach using the well-known 
Mossotti-Clausius formalism [12]. A homogeneous medium with effective constitutive parame- 
ters — such as conductivity, susceptibility and permittivity — is said to replace the composite. 
Following to conventional procedure, we present the homogenization of a QD-based composite 
with induced magnetic polarizabilities of inclusions. 

General expression for the effective permiability tensor of a dilute composite medium com- 
prising a regular ensemble of identical, electrically small magnetic inclusions dispersed in a host 
dielectric material is as follows: 

£e//M = i+47rfva
m(u) [i + fvs am(u)}-1, (6) 

where 6 is the lattice tensor completely determined by geometry of the array, Sm is the magnetic 
polarizability tensor of a single inclusion (for spherical QDs this tensor reduces to scalar quantity 
am (4)), fv is the volume fraction of inclusions. The notation Öam stands for the inner tensor 
product. Rigorous derivation of this expression based on the integral equations of macroscopic 
electrodynamics has been presented by Khiznjak [10]. An estimate of the array permeability can 
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be obtained from equation (6). Using realistic parameters, one can find ß - 1 ~ 0.05 - 0.1. This 
is available for observation. For more correct estimate, effects of inhomogeneous broadening has 
to be involved in the analysis. Thus, we can conclude that the electromagnetic wave diffraction 
by QDs may result in manifestation by QD arrays of magnetic properties although both QD 

and surrounding materials are dielectric. 

4. Conclusion 

In this paper occurrence of magnetic geometrical resonances caused by the excitation of eigen- 
modes in QDs, which thus behave themselves as microcavities, is predicted. Having much 
smaller intensity as compared to the main exciton peak, these resonances can be evident owing 
to their shifts with respect to the main exciton peak and can be excited by placing of QD in a 
microcavity in the magnetic field antinode, where the main peak is suppressed. Measurement 
of the frequency shift between main exciton and magnetic resonances can be used for direct 
determination of the oscillator strength in QDs. In our paper we restricted ourselves to the 
spherical model of QD. Different QD configurations like disks or pyramids can be investigated 
using direct computation on the basis of the well-developed method of classical electrodynamics 

[13]. 
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Abstract 

A theoretical model and computations of the I-V characteristics of both doped and undoped 
long carbon nanotubes in a strong axial dc-fields at room temperatures have been presented. 
Negative differential conductivity has been predicted. It has been shown that \dI/dV\ for 
metal carbon nanotubes in the region of the negative differential conductivity significantly 
exceeds corresponding values for semiconducting ones. The predicted effect makes possible 
the design of wave-generating nanotube-based diods for submillimeter and infrared ranges. 

1. Introduction 

Since the discovery by Iijima of carbon nanotubes (CNs), a great deal of interest has been 
focused on these quasi-one-dimensional monomolecular structures because of their unique phys- 
ical properties (mechanical, electrical, optical, etc.) and the rapid experimental progress in the 
controlled preparation. Processes of electron transport in strong external fields when nonlinear 
effects are constitutive are of a great interest for potential applications in nanoelectronics and 
for experimental diagnostic of CN themselves. 

The current-voltage (I-V) characteristics for tunnelling electrons in individual single-wall 
CNs at law temperatures were measured in Refs.[l, 2]. At such temperatures kßT <C £C,A£ 
and conduction occurs through well separated discrete electron states; here kß is the Boltzmann 
constant, T is the temperature, £c is charging energy, A£ = -KTIVF/L is the energy level spacing 
with VF as the Fermi speed and L as the CN length. At the above condition the current 
is produced by the electrons tunneling through CN in the presence of the Coulomb blockade 
induced by the long-ranged (unscreened) Coulomb interaction. 

Current instability in CNs is of great interest. The instability appears due to the negative 
differential conductivity (NDC) in I-V curves of CNs. Nonlinear coherent transport through 
doped nanotube junctions was considered in Ref. [3]. It was also shown the possibility of NDC for 
tunelling electrons. In Ref.[4] a theoretical phenomenological analysis of the I-V characteristics 
of undoped CNs at room temperatures, when kßT > £c, A£. The current was produced by 
free charge carriers (quasiparticles) which are 7r-electrons moving in the field of the crystalline 
lattice. The nonlinearity of the I-V characteristic appears due to the nonlinear properties of 
the quasiparticle gas . The negative differential conductivity region with dl/dV < 0 in CNs aws 
predicted in a certain range of the field strength. 

2. Theory 

This report extends Ref.[4] for the case of doped CNs. Let us consider an doped single-wall 
zigzag CN (m,0) exposed to a homogeneous axial de-field Ez, Ez = V/L, where V is the voltage 
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between the CN ends. We shall apply the semi-classical approximation considering the motion 
of 7r-electrons as a classical motion of free quasi-particles with dispersion law extracted from the 
quantum theory in the tight-binding approximation [5]. 

The motion of quasi-particles in an external axial electric de-field is described by the Boltz- 
mann kinetic equation 

eEz
d-M =-l-[f(P) - F(P)l (1) 

OPz T 

where e is the electron charge, F(p) is the equilibrium Fermi distribution function and r is 
the relaxation time. The relaxation term of the equation (1) describes the electron-phonon 
scattering [6, 7], electron-electron collisions etc. 

Utilizing the method originally developed in the theory of quantum semiconductor super- 
lattices [8] we can construct an exact solution of kinetic equation (1) without assuming the 
electric field to be weak. First, note that the distribution function /(p) is periodic inpz with 
period 2ir/a, a = 36/2ft, b = 1,42Ä. Then, taking into account the transverse quantization, the 
distribution function can be presented by: 

m 

/(p) = Ap^ £ 6(P4> - sAP4>) £ Use™", (2) 
s=l r^O 

where fT3 are coefficients to be found, S(x) is the Dirac delta-function, Ap^ = ir\/3/am. The 
equilibrium distribution function F(p) can be expanded in the analogous series with the coeffi- 
cients as follows 

2JT/O r . „•„„, 
a     r   r e-tarP* e~tarVz 

47T    J FrS ~ 47T 1 + exp{(£s(p,) - n)/kBT)     1 + exp{(-5s(p,) - ii)/kBT} 
dpz-       (3) 

In this equation first term descirebes the contribution of conduction band and the second one 
of valence band. Here p is a chemical potential of CN. It describes doping (fi=0 for undoped 
CNs [4]). n can be varied within wide range of values. Accordingly to [3] // ~ 0.3 eV for 
dopping by Au substrate, -0.5 eV < /z < 0.5 eV for doping by typical alcali and halogen atoms. 
For the KC8 doped CNs fi ~ 2.0 eV [9]. Substitution of both expansions into Eq. (1) gives 
/„ = Frs/(l + irrtt), where tt = aeEz is the Stark frequency. 

The surface current density is defined by 

*^-^gi^S^- (4) 

Here 70 ~ 3.0eV is the overlapping integral. This equation states the basis for the evaluation of I- 
V characteristics. As it has been stated above, the quasi-particles motion is described classically. 
Thus, both interband transitions and quantum-mechanical corrections to the intraband motion 
are left out of account in this model. This imposes the limitation on the external electric field 
strength: \EZ\ < -y0/2eR. 

The Coulomb electron-electron interaction has been also left out of account in our approach. 
The role of this mechanism as applied to CNs was considered in a number of papers, see [10] for 
example. It has been established that the short-range electron-electron interaction, typical for 
CN arrays ('ropes'), have only a weak effects at high temperatures. 

3. Numerical Results 

The I-V characteristics obtained via numerical calculation of Eq.(4) are presented in Fig.l and 
Fig. 2 for metal (m = 3g, q is an integer) and Fig. 3 and Fig. 4 for semiconducting (m ^ 3q) 
zigzag CNs. 
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2,0 

E 1(T,V/cm 

Fig. 1 Undoped metall zigzag CNs. 
T=287,50K,T=3*10"12 

Fig. 2 Doped zigzag CNs with m=3q (q is an integer). 
H=0.2 eV, T=287,5°K, T=3*1Cr12. 

The figures show the linear dependence of jz on Ez at weak strengths of the external field 
both for doped and undoped CNs; it corresponds to the region of ohmic conductivity. As Ez 

increases, the value djz/dEz growth smaller and at Ez = E^"1"^ the current density reaches the 
maximum value j™ax- Further increase of Ez results in the decrease of jz. Thus, predicted in [4] 
the region with the negative differential conductivity (djz/dEz < 0), in the I-V characteristics 
of undoped CNs can be also observed in the case of doped CNs. 

Fig.l and Fig. 3 demonstrate that Ez
max> depends on neither number m nor the conductivity 

type (metal or semiconductor), whereas, j™ax shows the different dependencies on m for undoped 
metal and semiconducting CNs. For metal CNs, j™ax decreases with m while it increases for 
semiconducting ones. As m -¥ oo, j™™ for metal and semiconducting CNs tends to the same 
limit from opposite sides. Generally, at large m, the I-V characteristics of different CNs are 
coming close and in the limit case m ->• oo they reduce to I-V characteristic of the plane graphite 
monolayer. It should be noted that the metal CNs exhibit much lager NDC as compared to 
semiconducting ones. Fig. 2 shows that the doping of metal CNs makes J^ax some times 
larger. Doping of semiconducting CNs with small m does not lead to noticeable changes but as 
m increses, current through doped doped semiconducting CNs increases and values of current 
density become one order with ones for conducting undoped CNs (Fig. 4). 

4. Conclusion 

In Summary, we have predicted the NDC effect in both doped and undoped CNs, which is 
expected to be observable in sufficiently long CNs at room temperatures. I-V curves are expected 
to be effectevely controlled due to doping. 
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Fig. 3. Undopped semiconducting zigzag CNs. 

T=287,5°K,t=3*10"12. 
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Fig. 4. Doped zigzag CNs with m=3q+1 (q is an integer). 
H=0.2 eV, T=287,5°K, x=3*10'12. 
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Abstract 

Scattering of a time-harmonic electromagnetic field by the edge of a semi-infinite, single- 
wall, zigzag carbon nanotube (CN) is considered. The Wiener-Hopf technique is applied 
to determine the exact solution of the problem, and the scattering pattern is numerically 
calculated in the vicinity of the main plasmon resonance frequency. 

1. Introduction 

Since the discovery by Iijima of quasi-one-dimensional cylindrical crystalline structures of car- 
bon atoms, generally referred to as carbon nanotubes (CNs), many unique physical properties 
of theirs have been predicted theoretically and detected experimentally [1]. In particular, with 
reference to their optical properties, thin films comprising aligned CNs have been described 
theoretically as composite mediums [3, 4]. 

A composite medium consists of a homogeneous host medium with periodically or randomly 
dispersed inclusions. The inclusions must be electrically small for local homogenization to be 
possible, for which purpose each inclusion is represented by a polarizability tensor [5]. Fur- 
thermore, macroscopic samples of a composite medium are supposed to contain a huge number 
of inclusions, so that the composite medium can be replaced by an effectively homogeneous 
medium. 

The polarizability tensor of a single CN in isolation has been treated approximately by several 
researchers. For instance, the 3-D polarizability tensor of a zigzag CN was calculated by Ma & 
Yang [6] when its length L and cross-sectional radius R are small compared to the free-space 
wavelength A = 2n/k (i.e., kL < 1 and kR < 1). The 2-D polarizability tensor (per unit 
length) of infinitely long CNs has also been treated [3, 4, 7]. However, in the optical frequency 
range, the typical geometric parameters of actual CNs satisfy the following conditions: 

fci?«l,    L»ii,    feL~l. (1) 

Such conditions are characteristic of wire antennas at microwave frequencies [8]. A wire 
antenna cannot be characterized by a polarizability tensor, because the contribution of the 
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high-order multipoles to the scattered field is strong due to the last condition in Eqs. (1). 
Scattering by a long wire is much too complicated to be expressed via a dipole, and arrays of 
many long wires can not therefore be homogenized in the same way as arrays of electrically 
small inclusions can be [5]. The essential quantity required is the scattering matrix (or its 
equivalent) of a single wire [9]. Prom this quantity, the scattering pattern of a wire array can 
be calculated [10]. Analogously, the key problem for the optical response of CN arrays in the 
optical regime defined by Eqs. (1) is the calculation of the scattering pattern of an isolated CN 
of finite length. Of course, care must be exercised because CNs can not be necessarily assumed 
as perfect conductors — unlike wire antennas. 

The effective boundary conditions for a CN are non-trivial [11]. Accordingly, the responses 
of CNs are different from those of wire antennas. For example, strongly attenuated surface 
polaritons [11] and plasmons [2] appear in CNs, instead of the weakly attenuated waves of 
longitudinal current in wire antennas. Yet the universality of macroscopic electrodynamics 
means that certain common effects are possible. In particular, we expect resonance effects, 
which can arise as a result of the interactions between the edges of a CN. 

This paper addresses the electromagnetic scattering properties of CNs. We use the Wiener- 
Hopf technique [12] and the effective impedance boundary conditions [11] for a semi-infinite, 
single-ishell, zigzag CN. The scattering amplitude of a finite-length CN can be expressed in 
terms of the scattering response of a semi-infinite CN, using the edge-wave method. 

2. Theoretical Framework 

Consider a CN aligned parallel to the z axis of a circular cylindrical coordinate system (r, <£, z) 
whose origin is located at the center of the circular cross-section of the CN. The edge of the 
CN can be either closed or open. If closed, the edge is almost hemispherical. However, the 
oxidation of CNs makes the open-edge configuration more probable — which is fortuitous, as 
that configuration is the more suitable of the two for theoretical analysis. But the scattered 
field is almost independent of the edge configuration if the first of Eqs. (1) holds true, in direct 
analogy with hollow and dense wire antennas [12]. Hence, we restrict ourselves to the open-edge 
configuration. 

Let the incident field be E-polarized, with harmonic time-dependence of e_Iü;t, and propa- 
gating at an angle 0Q with respect to the z axis. This field is represented by the Hertz potential 
■0W. The total potential V>s = V^ + V^> where ip^ corresponds to the scattered field as per 

E<s) = 

H(a) = - 
r 

1 dVs)      ,    1  d2V>(s)„        1  (d2^ 
ik dzdr 

1 #V>(s)..       ö^w 

ikr dzdcj> ik dz2 + k2^ u* 

Ur - U^,. 
d(f>     '        dr 

The boundary conditions satisfied are as follows (in Gaussian units) [11]: 

(2) 

(3) 

} + &&*) 

Ö^W 

'0V(s) 

dr 
9^(s) 

r-R+0 
dr 

_ 47rerz 

iu) 

r=R-0S 

/ay«) 
\ dz2 

dr 
dv(s) 

r=A-0 
dr 

V'(s)|r=Ä+O = '0(s)|r=Ä-O, 

+ fc2v>(s) J + $(<M , 
0 < z < oo, 

—oo < z < oo 
=Ä+0 

(4) 

Here, $(<£, z) — ^fkäzz^
l\R^,z) sin20o emerges from the incident field; c is the speed of 

light in vacuum; the parameter IQ takes spatial dispersion into account [11]; and äzz is the axial 
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conductivity of an isolated CN. Both azz and IQ have been calculated via quantum transport 
theory [11]. The boundary conditions (4) have to be complemented by radiation conditions as 
well as by edge conditions [12]. 

The boundary value problem may be solved with the Wiener-Hopf technique, with the Jones 
method employed to derive Wiener-Hopf functional equation: 

J+{a)G(a) = V-(a)-%^. (5) 

Here, $(</>, a) is the spatial 1-D Fourier transform of <&(0, z) with a as the (complex-valued) 
spatial frequency corresponding to z; Ki(-) and Ij(-) are modified Bessel functions of order 
I > 0; G(a) = Ki(-fR)Ii{jR)R -T^1^2, £ = -4iTräzz/u, T = l- lQa

2k~2 and 7 = Va2-k2; 
while J+{a) and \I/_(a) are two unknown functions to be determined as per the Wiener-Hopf 
technique. In order to solve Eq. (5) analytically, one has to apply the usual factorization and 
decomposition procedures, and the exact analytical expression for the scattered Hertz potential 
is then obtained by the inverse spatial Fourier transform. 

In the far zone, application of the saddle point method leads to 

Bi\4'^meo)j^=^, (6) 

where 0 = it — tan-1(r/z) and 

F,(0 9 ) =        ^(fcflsinflp) cos(0/2) Jt(kRsine)e~^4 

l{ '  o;     G+(fccos0o)(l + cos0o)     sin(0/2)      (cos0 + cos0o) G_(fccos0) ' [) 

H\ '(■) is the cylindrical Hankel function and Jj(-) the cylindrical Bessel function of order I; 
while G(a) = G+(a)G-(a). The function ^(0,00) is the scattering pattern of the edge. The 
full scattering pattern of a CN includes additional components accounting for surface polaritons. 

3. Numerical Results and Discussion 

We calculated the far-zone scattered power density P(0) ~ \F0(6,9Q)\
2
, with I = 0 sufficing 

for most realistic incident fields. Following Ref. [11], we set the inverse relaxation time v — 
0.33 x 1012 s_1, which is in good agreement with the recent measurements of dynamic room- 
temperature conductivity of mats of single-wall CNs [13]. 

Let us examine P(0) in the vicinity of ß = 1, where ß — hufe'yQ = 1, h is the Planck 
constant, and 70 is the so-called overlap integral [11]. This case is of special interest since it 
corresponds to the main plasmon condition [2] for all types of CNs. All other resonant lines are 
interpreted as its satellites. Sample plots of P(0) calculated in the regime 0 < 0 < n - 0O are 
presented in Figure 1. Let us point out here that the saddle point method is inapplicable in the 
vicinity of 0 = 7r — 6Q. 

It is clear from Figure 1 that a relatively weak deviation from the exact resonance condition 
ß = 1 leads to a significant decrease in the scattered field intensity; and we deduce thereby that 
scattering by a semi-infinite CN is essentially due to plasmon propagation. We also infer from 
Figure 1 that forward scattering is stronger by 2 to 3 orders in magnitude than backscattering. 
This effect persists for all types of CNs in a wide frequency range. 

To conclude, we have investigated the scattering of a time-harmonic electromagnetic field 
by a semi-infinite, single-shell, zigzag CN. We have found an exact analytical solution in the 
framework of the Wiener-Hopf technique. The solution found will serve as the basis of the 
theory of light scattering by single CNs and CN-based composites. 
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Figure 1: Sample plots of the scattered power density P(9) for semi-infinite, single-shell, zizgag 
CNs (m, n = 0), when 0O = TT/4. For comparison, the results for £ = oo (i.e., perfect conduction) 

are also shown. 
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Abstract 

It is known [1-3], that mode spectrum degenerations take place for modes in chiral optical 
waveguides. Dispersion characteristics (curves) cross one another in the degeneration 
points, where propagation constants of two modes have the same values on some 
frequency. However, the more accurate analysis shows, that degeneration points are not 
exact but approximate only. In reality they are quasi-degeneration points. The dispersion 
curves do not cross one another, they close up near quasi-degeneration points. In this 
place, circular polarization of the modes converts: the right-handed polarization changes 
into left handed and on the contrary. 

1. Theory 

This paper deals with polarization transformations of modes in isotropic and anisotropic planar chiral 
optical waveguides and optical fibers. The general theory of spectral degenerations and quasi- 
degenerations and mode transformations is given in [4]. 

Let's have the dispersion equation for even modes in a symmetrical chiral planar waveguide 
[2,3] 

(b - C+ tan C+vXb - C_ tan C_V)- A2C+C_t tan C+V tan C_V = 0, (1) 
where 

b = 
fj-kn0 V 

kn0A 
(2a) 

l 
V = kngR(2A)2, (2b) 

k=-, (2c) 
c 

n   -n 
A = -^ -«1, (2d) 

n8 
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C± ={l + 2KV-b2ft, K = 2—_t 

2R(2A3p 

(2e) 

y is a propagational constant, (0 is a circular frequency, c is a velocity of light; «g and n0 are 

refraction coefficients of the inside and outside media, p is a chirality, Ris a half-thickness of the 
guiding layer. In [3] we used approximation A * 0, and the dispersion curves were solutions of 
equations 

b - C+ tan C+V = 0, 

b - C_ tan C_V = 0. 

(3a) 

(3b) 

For the solution b = bq, V = Vq , where bq and V, satisfy both equations (3) simultaneously, we had a 

degeneration point. Now the dispersion equation (1) can be presented approximately near this point as 

where 
A±=(l + 2KV(?Xl + ^vJ, 

B± = (l + 2KV? \c
2

q± + KVq )+ Kbq, 

Cq±=(l + 2KVq-b2j2. 

Due to (4) that point bq,Vq is quasi-degeneration point [4]. 

K = 0.1,A = 0.01 

(4) 

(5) 
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It is possible to reconstruct the fine structure of dispersion curves that defines them near the 
points of quasi-degeneration from those results. 

2. Discussion 

It is interesting to consider the polarization evolution of both modes related to these curves. 
According to Fig. 1 while frequency increases and mode curves are passing the quasi-degeneration 

point of bq,Vq the mode CPQ with right-handed polarization converts into CP^ with left handed 

polarization. And how can a circular polarized mode change the direction of field rotation? It seems at 
first sight that it is necessary for this kind of transformation that the speed of rotation has to slow down 
to zero and only after this the polarization handiness changes. But this process is impossible. The 
frequency of rotation of a field vector and wave length of a circular polarized mode cannot change 
essentially on a respectively small frequency interval near the quasidegeneration point. That is why 
only the following process of polarization conversion can take place. Both polarizations are 
approximately circular they are slightly elliptical. The ellipticity grows while the dispersion curve 
approaches the quasi-degeneration point. In the nearest area the polarization appears to be linear and 
parallel to the boundary for the upper curve with a smaller phase velocity and perpendicular for the 
lower curve with greater phase velocity. Having passed those area the polarization becomes elliptical 
but with an opposite direction of field vector rotation and then approximately circular again. This takes 
place for optical chiral waveguides with a little difference of refraction coefficients of a guiding and 
external media. 

Although all mentioned above dealt with even modes of a planar chiral waveguide the same 
relates to odd modes. But the dispersion curves' intersection points for even and odd modes are strictly 
degenerational because the dispersion equations for even and odd modes are exactly independent. 

5      V 

Fig. 2 

We have the similar results for modes in chiral optical fiber with the same angular variations of 
fields (Fig. 2), 

K = 0.1, A = 0.01 

and for modes in anisotropic planar chiral waveguide (Fig. 3), where modes always have elliptical 

polarization [5]. In Fig. 3 a = e/4A, ex = eg(l + e), zy =ez = eg = n2
g, where x,y are transverse 

and 2 is longitudinal coordinates, x is parallel to the boundaries of the waveguide and in (2) 
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C± = l + C+(K2V2+G2p-b7 , K = - 
Px+Py 

AR (2A3)^ 

(6) 

K = 0.1,C = 0.5,A = 0.01 

Fig. 3 
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Abstract 

Plane wave reflection from soft and hard surfaces coated by chiral material has recently been 
analyzed for normal incidence. In this study, the plane wave reflection from a uniaxial chiral slab 
backed by soft and hard surfaces is formulated for normal incidence and the polarization properties 
of the reflected field are investigated. 

1. Introduction 

The chiral medium is a subclass of bianisotropic media. A special type of bianisotropic chiral media is 
the axially chiral uniaxial medium. A uniaxial bianisotropic chiral slab can be realized by doping 
miniature chiral objects (such as wire spirals) into an anisotropic host medium as explained in [l]-[2]. 
The orientation of the chiral objects must be parallel to a unique preferred direction. 

Soft and hard surface (SHS) boundaries are well known from acoustics. They have been also 
defined for dually polarized electromagnetic waves. Kildal [3] explained the concept of SHS in detail 
by considering different geometries. A common characteristic of both soft and hard surfaces is that 
they do not create cross polarization by geometrical optics reflection. For example, a right circularly 
polarized wave for a hard conducting surface is still right cicularly polarized after reflection and for a 
smooth conducting surface it is left circularly polarized. 

In a previous paper [4], an isotropic chiral slab backed by SHS and its application to polarization 
transformer have been analyzed. In this study, a plane wave reflected from an infinite uniaxial chiral 
slab of thickness d, sandwiched between air and SHS, with axis parallel to the interfaces is considered. 
This characteristic of SHS and easy construction of the uniaxial chiral slab might make the study of 
this problem worthwhile. 

2. Fields at the Interface and Reflection Dyadic 

It is known that in the uniaxial chiral medium, the electromagnetic fields satisfy the constitutive 
relations 

with the medium parameter dyadics 

D = S.E-A/^KH (l.a) 

B^.H + A/^E (l.b) 

£ = £MÜÜ + £,(VV + ZZ) (2.a) 

H = |X„üü + n,(vv + zz) (2.b) 

K = KUÜ . (2.C) 
where K is the chirality parameter and the nonreciprocity parameter % of [5] is assumed zero. In Eq. 
(2), u and v are the transverse axes to z-axis with ü = z x v. They are chosen such that they are the 
natural coordinates from the geometrical optics point of view. Moreover, the direction of corrugation 
on SHS is along v-axis. 
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To find the reflection coefficient of the plane wave for normal incidence, consider a uniaxial 
slab which is confined between two infinitely extended planes at z = -d and z = 0, as shown in Figure 
1 The plane wave solutions of the Maxwell's equations for the chiral medium are [2] 

(3.a) 

(3.b) 

E±(r) = E±e-Jk*z 

H+(r)=-^MxE+(r) 
ktr\, 

where + and - indicate the right-hand and left-hand polarization, respectively. In Eq. (3), the 
corresponding propagation factors are given by 

k±=ktJÄ^ (4.a) 

where   

kt =(AJ\J^, rj, =^,/e, , A+=- -H-+"" 
1 ik 
[to 

\2 

(4.b) 

After writing the fields inside the uniaxial chiral slab and using boundary conditions at z=-d and 
z = 0 the following equation can be obtained: _ 

Er=R E1 

where 

R = 
R„ 

= eJ2k°d 

U-X 

Y + X 
T 

Y + X 

Y + X 
S-X 

Y + X    . 

In Eq. (6) 

S = -AD(k++k_f + J   ,T1' (A + D)(k+ + k_) sin(£+ +k_)d + 
k2n2 

^-sin2 (k++k_)d 

T = j2(k_B - k+C)-±^Lsin(k+ + k_)d 
T\o 

U=-AD(k++k_y-j , Mr 
2„2 kW 

 (A + D)(k. + k_) sin(*+ +k_)d+ -J-f- 
n0 < 

X=(B2+ C2)k+k_ - BC{kl + k2) 

•sin2(fc+ +k_)d 

9     9 

Y = AD(k+ +k_f+j^L(A-D)(k+ +k_)sin(k+ + k_)d+-^-sin2 (k++k_)d 

Z = j2(k+B-k_C)^Lsin(k+ + k_)d 
1\o 

r\l 

(5) 

(6) 

(7.a) 

(7.b) 

(7.c) 

(7.d) 

(7.e) 

(7.f) 

where 
A = sin k+d sin k_d , B = sin k+d cos fc_d (8a) 

C = cos k+d sin £_<i, D = cos k+d cos fc_d (8b) 

For the isotropic achiral slab, k+ = k_ = kt = k , and therefore Z = T = X = 0 which contributes to 

the vanishing of the crosspolarized reflection coefficients. The copolarized reflection coefficients are 

Ku=
e -J2Kd 

U2   A 
sin 2kd - j2 —- 

10 

A 
sin2iW-; —2cos2fof 

*10 

'4 
andi?vv=,W?-^r 

sin 2fcd + j 2 
Tl0 

(9) 

TIS 
sin2JW-;* — 2cos2kd 
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Thus, the incident field does not change polarization after it is reflected, but the phases of the field 
components are shifted as expected. 

For the uniaxial chiral slab there is not always such simple expressions. If we consider a special 
case for the uniaxial chiral slab with (k+ + k_ )d = % and (k+ - k_ )d = n 12, then Ruv = Rvu = 0 and 

Ruu=Rvv=_em,ä2k+k_Hic++k_f 

2k+k_-(k++k_)2 

Hence, in this case, as for the isotropic achiral slab, linearly polarized wave is reflected as linearly 
polarized wave. 

3. Polarization Transformer 

Let us study the possibility of defining the uniaxial medium backed by SHS as polarization 
transformer, by appropriate choice of the medium parameter values and thickness of the slab. Assume 
that the incident field linearly polarized along ü, reflects right-hand circularly polarized, and that 
polarized along v, reflects left-hand circularly polarized. Then R • ü will be parallel to -ü + jv and 

R • v will be parallel to - ü - j\. These lead to 

Re 
U-X 

Im 

Y + X 

U-X 

Re 

= lm< 

KY + X) 

T 

, and Re 

Y + X\      u<y + x), 
to be more explicit these equations give 

= 0, and Im 

Y + X 

Z 
Y + X 

Re<- 
S-X 

KY + X) 

= ImJ__l^U = 0 KY + X), 

cos(k++ k_)d = 0  and sm(k+-k_)d = ± 

2k+k_   _2kIJh_ + k+_k_^ 

M/Ai«     n0 
k+ +k_ 

With the conditions in Eq. (12), the reflection dyadic will be 

R = e j2k0d j= (-u + jfv)ü + -= ;(-ü - j\) v Rn 

(11.a) 

(ll.b) 

(12) 

(13) 

where 

V2" 
R0=- 

(k+k.Y Mr, 
'l\o 

4\ 

(k+k_f+4(k+k_) fM„ \2    ( 

%J 
Mf/ 

\4 (14) 

XJ 
As can be deduced from Eq. (13), the incident polarization ü gives rise to right-hand circularly 
polarized, and v to left-hand circularly polarized reflected field. 

k k_ 
The ratio —.  in Eq.(12) is not arbitrary. We can impose some conditions on it. From the 

(MwAU 
expression in Eq. (12) 

-1< 

2k+k    _2kftL + k     k 

k+ +k_ 
■<1 (15) 

and hence 
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'Vs-r k+k_ 

Mr, 

'V5+5' 

X 
rCo./C_ 

(16) 

is shown in Figure The graph of the reflection coefficient, \R0\, as a function of Ratio = 

2. When the Ratio is one, \R0\ vanishes and hence there is no reflection at this point. With the condition 
in Eq. (16), a highly efficient polarization transformer cannot be achieved by using a uniaxial chiral 

slab. 

4. Conclusion 

In this study, the normal incidence of the electromagnetic waves to lossless uniaxial chiral slab backed 
by SHS is analyzed. The reflection dyadic is derived. It is shown that the slab can be used as 
polarization transformer if the suitable medium parameters and slab thickness are chosen. 

Air 

E 

Er 

Uniaxial 
chiral slab 

El 

SHS 

n =z 

z = -d z = 0 

Fig. 1   Geometry of the problem. Fig. 2   The reflection coefficient R as a function of 
k+k_ 

the Ratio = 
(ktr\t/T\oy 
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Abstract 

Experimental data of the permittivity of RF sputtered Ni-Al203 thin films were studied 
in the wavelength region from 300 to 2500 nanometers [1]. The data were analyzed in the 
framework of the Bergman-Milton theory and it was shown that they lie inside the Hashin- 
Shtrikman bounds, but outside the Bergman-Milton bounds. The latter indicates a strong 
electromagnetic anisotropy of the composite thin film. For a more detailed theoretical study, 
we performed calculations using the Maxwell Garnett, Bruggeman and Incremental Maxwell 
Garnett homogenization formalisms for uniaxial dielectric composites [2-4]. A comparison 
between the calculated and measured permittivities was made on the basis of a least-square 
fit. In this paper, we interpret the results and suggest models for the microstructures of the 
Ni-Al203 thin films. 

1. Introduction 

The dielectric properties of composite thin films made of a mixture of two particulate materials 
are of great practical interest with potential applications in many disciplines of science and 
technology. Composite thin films can be fabricated by a variety of vacuum techniques. In order 
to obtain the desired optical properties, the film microstructure has to be optimized in terms 
of concentration, size and shape of the inclusions. If the nonhomogeneities of the composite 
thin film are electrically small, homogenization theory can be used to obtain estimates of its 
effective permittivity, provided the permittivities of the component materials and some details 
about its microstructure are known ("direct problem"). Conversely, if the effective permittivity 
of the composite thin film has been determined experimentally, homogenization formalisms can 
be applied for microstructural characterization ("inverse problem"). 

The Bergman-Milton theory [5, 6] provides rigorous bounds for the effective permittivity in 
the complex plane [7] and therefore is an important tool for a preliminary analysis of experimen- 
tal data [8]. Homogenization formalisms, such as the Maxwell Garnett and Bruggeman formula 
and their extensions, can be used for more detailed studies. 

Due to the axial symmetry of the thin film geometry, we expect its effective permittivitiy 
dyadic |eff to be uniaxial 

£* = 6o [ef uu +(l-uu) ef] , (1) 

with the free-space permittivity eo, the unit dyadic £, and the unit vector u perpendicular to 
the surface of the thin film; e„ff and e*   are the axial and transverse components of the relative 
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effective permittivity dyadic, respectively. The electromagnetic anisotropy of the film may be 
caused by an anisotropic growth of the film on the substrate, by the non-spherical shape of the 
particulates the film is made of, and by an anisotropic spatial arrangement of these particulates. 
Homogenization formalisms that are able to take the anisotropy into account have become 
available only recently; see [9] for a review. The main intention of this paper is to interpret 
measured permittivities obtained for Ni-Al203 composite thin films in the framework of these 

formalisms. 

2. Theory 

The A1203 host material of the thin film is taken to be uniaxial dielectric with a permittivity 

dyadic e_a of the form 
|° = eoea [7MM + (l ~ MIL)] , (2) 

where the parameter 7 specifies the degree of anisotropy. The permittivity dyadic |6 of the 
inclusions (Ni particulates in our case) is isotropic: 

gb = eQebI=. (3) 

For the reasons discussed before, the effective permittivity dyadic geff of the composite thin film 
is assumed to be uniaxial, having the form specified in (1). 

Let us first assume that the host material is isotropic (7 = 1 in equation (2)). The Bergman- 
Milton theory is then applicable. Accordingly, the scalar relative permittivities ef and ef must 
lie inside a region of the complex permittivity plane which is bounded by the so-called Hashin- 
Shtrikman (HS) bounds. Failure of measured permittivities to fulfill this constraint indicates 
serious inconsistencies of the data. If the microstructure of the composite medium is isotropic, 
the effective permittivity will be isotropic too (ef = ef). The value of the effective permittivity 
can then be further restricted by the so-called Bergman-Milton (BM) bounds. If the measured 
effective permittivities lie outside the BM bounds, the thin film must be anisotropic. 

Homogenization formalisms can be used to get a more detailed description of the experi- 
mental data. For dilute composites in which one component exists as inclusions embedded in 
the other one, the Maxwell Garnett (MG) formalism is expected to produce good results. For 
non-dilute, mutually isolated inclusions, the Incremental Maxwell Garnett (IMG) formalism (or, 
alternatively, the Differential Maxwell Garnett formalism) is an appropriate choice [4], whereas 
for composites with percolated inclusions the Bruggeman (Br) formalism is recommendable. In 
these homogenization formalisms, anisotropy can be implemented in two ways: by using uniaxial 
permittivity dyadics for the component materials (7 / 0 in eq. (2)), and by assigning the host 
and inclusion particulates a spheroidal effective shape with a certain aspect ratio a : b, the latter 
quantitiy being > 1 for prolate and < 1 for oblate spheroids (and 1 for spheres). The effective 
shape is a parametrization of both shape and relative spatial arrangment of the particulates. 

3. Experiment 

The Ni-Al203 composite films were deposited in a planar magnetron assisted EF sputtering 
system. The fill factor / of Ni was found to be 0.21, 0.42 and 0.61 in the examples studied here. 
Detailed reports on the experimental set-up and characterization techniques have been given 
elsewhere [10]. The optical constants n and k of the composite films in the wavelength range 
from 300 to 2500 nm were calculated from the measured near-normal incidence reflectance (R), 
transmittance (T) and thickness (t) values as described elsewhere [1]. Because of the near-normal 
incidence technique used, the electromagnetic field is approximately parallel to the surface of 
the film; therefore only the transverse component of the relative permittivity ef can be deduced 
from this experiment. The relation between n, k, and ef is ef = (n + ik) . 
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4. Results and Discussion 

For all fill factors and wavelengths, the measured permittivities were compared with the HS and 
BM bounds. All experimental data lie within the HS bounds, but outside the BM bounds. The 
latter provides evidence that the composite is anisotropic. Typical results for various fill factors 
/ are shown in Figure 1, where we used the optical constants for Ni and AI2O3 at wavelength 
A = 500 nm. Assuming isotropy (7=1, a:b=l), we computed the MG, Br, IMG estimates, which 
turned out to he far off the experimental results (Figure 1). Allowing for an oblate spheroidal 
effective shape of the particulates (a : 6 < 1), the agreement between theory and experiment is 
greatly improved. This is also shown in Figure 1 in the case of the IMG estimate. 

A further comparison between the calculated and measured permittivites of the thin film 
was made on the basis of a least-square fit, minimizing the quantity 

x2=shf(^)-erp(Ai)|2, (4) 

where the sum extends over all measured wavelengths Aj, e%ep is the measured and e|ff the 
computed value of the transverse component of the permittitivity. Assuming that the AI2O3 
host material is anisotropic (7 7^ 0 in equation (2)) does not lead to a significant improvement 
of the fit between experiment and calculations. The effective shape of the particulates, however, 
significantly influences the quality of the fit. 

For / = 0.21 and / = 0.42 the IMG formalism performs best while for / = 0.61 the Br forma- 
lism leads to the smallest x2-values (Figure 2). The best fit is obtained, when the effective shape 
of the particulates is oblate spheroidal with aspect ratios in the range from 0.1 to 0.6, depending 
on the fill factor. This strong dependence on the fill factor cannot be explained by assuming 
a non-spherical shape of the particulates itself. Rather it must be due to their anisotropic 
arrangement in the film. A possible interpretation of these findings is that the Ni inclusions 
form planar structures parallel to the surface of the thin film. For larger fill factors (/ = 0.62) 
percolation sets in and therefore the Br estimate is in better agreement with experiment. 
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Figure 1:    Comparison of experimental 
data (exp.), HS and BM bounds, and var- 
ious homogenization estimates calculated 
for different aspect ratios a : b. 
a) / = 0.21, b)/ = 0.42, c) / = 0.61. 

Figure 2: x2 as function of the aspect ratio 
o : 6 for the MG, Br, and IMG homoge- 
nization formalisms, 
a) / = 0.21, b)/ = 0.42, c) / = 0.61. 
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Abstract 
The scattering of a plane eigenwave normally incident on a half-plane placed in a chiroplasma 
whose distinguished axis is parallel to the edge of the screen is considered. The formulation 
of the problem leads to the vector functional equation which is exactly solved by the Wiener- 
Hopf-Hilbert method. Some distinct properties of the diffraction problem are noted. 

1. Introduction 

Diffraction of waves as an item of bianisotropy research in electromagnetics is in need of a 
unimaginative but adequate model description. As for chiral media subjected to an external 
magnetic field, the constitutive relations of a chiroplasma [1] are rather simple. They differ 
favorably from a previous ones [2] by what properly furnish the transition to an isotropic chiral 
medium. Therefore we use the chiroplasma model in the attempt to obtain an exact analytical 
solution of a half-plane canonical diffraction problem with reference to complex birefringent 
medium. As opposed to its nonchiral [3], nongyrotropic chiral [4] and biisotropic [5] counterparts, 
the problem is led to the vector Wiener-Hopf equation. The matrix factorization is fulfilled by 
virtue of the Wiener-Hopf-Hilbert method. Some features of the obtained exact closed-form 
solution are discussed then. 

2. Statement of the Diffraction Problem 

A perfectly conducting screen x > 0, y = 0 is embedded in a chiroplasma whose distinguished z- 
axis is parallel to the edge. The medium is described by the constitutive relations (time-harmonic 
factor exp (—iut) is meant) 

D   =   f-E + ifB 

(1) 
H   =   i^E + Bf/i. 

The permittivity £ depends on the reduced frequencies ti and R, see explicit definition in [6]. 
One of two plane eigenwaves with the wave numbers x^2 where 

*?,2 = -f- [eJL + £z + a ± y/(e± + ez - a)2 + Aaez J ,    o = 4/i£~1f2,    koo = Uy/e^ß      (2) 
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propagates in the sagittal plane z = 0 and falls on the half-plane under an angle 9. In this 
case, the electromagnetic field may be described via the sum of two scalar functions <pj(x,y) 
(j = 1,2) representing the eigen polarizations with the wave numbers according to Eq. (2). The 
total field must satisfy the boundary conditions on the screen, where ey x E^fo 0) = 0, and on 
its sequel, where e^ x E^ and ey x E[W are continuous. The scattered field is subjected to the 
edge condition [7] and the radiation condition at infinity. 

The secondary field is sought in the form of the Fourier integral 

oo 

<p(x,y) = ± J $(a,y)eiaxda (3) 

where $(a,y) yields to the equation 

[(£♦*)][(£♦*) *(a,y) = 0 (4) 

with non-coincident jj = Ja2 - x2, j = 1,2. The solution of Eq. (4) is 

fA1(a)e-™ + £i(a)e-™ ify>0 
(a'V) ~ \     A2(a)e^y + B2{a)e™,        if y < 0 

where Aj(a), Bj(a) are amplitude functions to be found. Using Eqs. (3)-(5) we translate the 
boundary conditions into the spectral domain and present in the matrix form 

<?(a) • L(a) = E(a) + U(a) (6) 

where the two-element column-vectors U(a) and L(a) represent the functions of ex which are 
regular in the regions IIu, UL of the complex a-plane, respectively. The symbols Tlu (IIL) 

indicate the upper (lower) half-plane of a including the common regularity strip along the Re a- 
axis. The elements of U(a), L{a) include the unknown amplitude functions whereas the vector 
E(a) consists of elements relating to components of the transformed electric field of the incident 
plane wave E(i)(x,y). Eq. (6) is the vector Wiener-Hopf equation with the matrix kernel 

Q(a) = (Qij(a)) where 

Qu(<*) =   °°X7l ~        72        '    «12(a) = —(x!-^) 

n   i\      9(1        l\       n   f   s     „      ... fcgo£i- ~ *i      ff2«2    *?-*£ 

3. Solution of the Functional Vector Equations 

In order to perform the fundamental step in the Wiener-Hopf technique, that is to decompose 
the matrix Q(a) in the form of a product Q(a) = Qu(a) ■ QL(a) we use the Hurd idea [8] and 
re-formulate the homogeneous version of Eq. (6) as a vector Hilbert problem on the branch cuts 
r\2 due to the branch points a = xij2 in n^. Let the "+" and "-" subscripts indicate the 
values of functions at the opposite sides of T^. After elimination of U{a), one obtains a vector 
Hilbert problem 

L+(a) = If (a) • L_(a),    where 11(a) = ^+\a) • §_(«). (7) 
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The matrix H(a) has zero trace and contains only polynomial elements.   We have for the 
contours Ti and 1^ 

where 

and 

n    =   -2fa(«?-^)(Ä4e±-Äi) 

A(a) = £«»(*? - ^)2 - fol(£,ej. " ^) " T*(*ä,e.L - *?)]2. 

(8) 

(9) 

(10) 

According to the Wiener-Hopf-Hilbert method, we introduce another unknown vector V(a) = 
T(a) • L(a) in order to receive a new vector Hilbert problem for V(a). Due to special choice of 
T(a), the latter may be separated into two uncoupled standard Hilbert problems [9], whereupon 
the vectors V(a) and L(a) are found. These vectors should be regular in the domain IIj/ + 
IIx, — Ti — FV Farther, one may construct two vectors L^l'2\a) = (Li '   (a)) which fulfil the 

condition LMIP-ZPLM Y J->2   — ±JX J-I2   7^ 0. We use them in order to form the matrix QL (a) which also 

should satisfy Eq. (7). The matrices QL(O) and Qv (a) = Qi(a) ■ Q (a) have not branch 
points in HL and Uu, respectively, but temporarily have poles there. The next step is to cancel 
the undesirable singularities in these matrices using a properly chosen rational matrix F(a), 
namely 

~-i 
Qu (a) = F(a) ■ Qv (a),    QL(a) = F(a) ■ QL(a). (11) 

To define the elements of F(a) we have to take into account the number of roots of A(a) 
located on its branch, which is given via the conditions at infinity. It turns out, that at least 
four constants can be chosen arbitrary. The correct definition allows to simplify essentially the 
further complicated calculations. 

4. Completion and Analysis of the Solution 

When the matrix factors QuL(a) are found the solution of Eq. (6) is straightforward. It 
is rearranged so that to receive the left- and right-hand sides which are regular in Uu and 
IIx,, respectively, and define an integral function J(a). According to the edge condition, the 
asymptotic behaviour of both sides of the equation at \a\ -+ oo permits to put J(a) — 0. This 
makes it possible to find the spectral amplitudes Aj(a), Bj(a) and to complete the solution of 
the problem. 

It turns out that the integrand of Eq. (3) is quite cumbersome. Yet the related integrals 
are suitable for the asymptotic evaluation of far fields by the method of steepest descent. The 
singularities of the integrands give rise to the distinct wave species. The pole contributions 
are coupled with the geometrical optics field which in the illuminated region y > 0 consists of 
the reflected basic mode and the concominant mode excited due to reflection coupling between 
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modes. An additional pole originated from the dispersion relation A(a) = 0 (see Eq. (10)) 
contributes a surface-wave term. The unidirectional surface wave [6] propagates along a face of 
the half-plane. Reversion of the external magnetic field shifts it on the other face. The saddle- 
point contributions are interpreted as two congruences of diffracted rays. At last, in principle, 
one needs to consider the branch-point contributions that lead to the such manifestation of 

modal coupling and total reflection as lateral waves. 

5. Conclusion 

A problem of plane wave diffraction by a perfectly conducting screen in a homogeneous chiro- 
plasma is solved for the case of normal incidence on the edge which is parallel to the external 
magnetic field. The formulation leads to the vector Wiener-Hopf equation which is solved by 
the Wiener-Hopf-Hilbert method. Because of numerous wave species involved, the problem has 
certain versatility. An outline is conducted on the example of both propagating bulk eigenwaves 
of the medium. A unidirectional surface wave and lateral waves are the most notable features 

of the far field in the diffraction problem under consideration. 
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Abstract 
The scattering problem for an inhomogeneous two-dimensional biisotropic cylinder is solved 
in the frequency-domain by means of a hybrid method, in which finite difference equations 
in the interior region are combined with a mesh truncation in terms of a boundary integral 
equation. Numerical results for the bistatic echo widths are presented and compared with a 
reference solutions in the circular cylinder cases and it is found that the method yields more 
accurate results than what can be achieved with a local absorbing boundary condition. 

1. Introduction 

A scattering problem involving inhomogeneous media can be solved using a volume integral 
equation (VIE) that is discretized into a matrix equation by using the method of moments 
(MoM). However, a drawback with VIE is that the integral operator discretizes into a filled 
matrix, that becomes very large and exceedingly time consuming to invert if the geometry is 
several wavelengths in size. An alternative is to use a partial differential equation (PDE) method, 
in which the differential operator discretizes into a sparse matrix by using finite differences (FD) 
or by using the finite element method (FEM). However, when using FD or FEM in an open region 
a radiation condition must be supplemented by truncating the computational domain with an 
absorbing boundary condition (ABC), which can be either an approximate (local) ABC or an 
exact (global) ABC. One example of a local ABC is the perfectly matched layer (PML), which has 
been extended recently to include bianisotropic media [1]. A global ABC is usually formulated 
in terms of an integral operator on the boundary of the computational domain, which yields that 
the FD or FEM equations then must be solved in conjunction with a boundary integral equation 
(BIE). Examples of such combined methods, referred to as hybrid methods, are e.g. FEM-BIE 
[2] and FDTD-BIE [3]. In this paper, we consider a hybrid FD FrequencyDomain-BIE approach 
to a two-dimensional scattering problem for an inhomogeneous cylinder of a biisotropic material. 
Interior to the region containing the biisotropic cylinder, we use finite differences and on the 
boundary of the region we use a BIE, which reduces to a contour integral equation. 

2. The Scattering Problem 

Consider an in free space located biisotropic scatterer (see figure 1) described by the following 
constitutive relations in the frequency-domain: 

D(r) = e0e(r)E(r) + JeüIEt(r)H(r), B (r) = /i0/x (r) H (r) + VAC (r) E (r), (1) 

where the parameters e, ß, £ and £ are arbitrary functions of the position variable r. 
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E\tf 

/ 
ABC surface 

Figure 1: The scattering configuration. 

The scattering problem is to determine the scattered fields Es, Hs when the scatterer is excited 
by known incident fields E\H\ created by an extraneous time-harmonic (exp (jut)) current 
density J; see figure 1. Substituting the constitutive relations (1) into the Maxwell's equations, 
we eventually arrive at the following equations for the scattered fields: 

(2) 

(3) 

VxEs + jfco (woH5 + (Es) = -jfco ((M - 1) rioH'1 + C^) , 

V x rioH* - jfco (eEs + ^0IP) = jfc0 ((e - 1) E{ + £T?O*T) . 

3. The FDFD Equations in the Two-dimensional Case 

The 2D FDFD equations are derived in a similar way as in [4]. The region containing the scatterer 
is divided into square cells (see figure 2), in which the constitutive parameters are approximated 
as homogeneous and equal to their true values at the mid points. In the outermost layer of cells, 
the parameters are e = \i = 1,£ = C = 0- The FDFD approximation results in a linear system 
of equations for the everywhere continuous ^-components of the fields [5]: 

(4) MßE -^.inside + B^.outside + MEH#z,inside 

Miffl#!,inside + B-fff .outside + MHE^,inside = Ji 

-   T® "inside' 
H 
inside i (5) 

where E\ inside, H\ inside are evaluated at the interior FDFD points, indicated with filled circles 
in figure 2, and i^)0Utside, #|i0Utside are evaluated at the extruding FDFD points, indicated 
with blank circles in figure 2.' MEB,MEH,MHE and M^H are sparsely filled square matrices, 
describing the FDFD operators at the interior points and the matrix B describes the FDFD 
operators on the extruding points. J^side and J?s;de are excitation vectors, obtained as linear 
combinations of the components of the incident fields at the interior points. 

0 FDFD evaluation points 

Q FDFD extruding points 

^■■^ MoM contour segments 

X MoM matching points 

Figure 2: One corner region of the computational domain. T is the contour at which the global 
absorbing boundary condition is calculated. 
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4. Absorbing Boundary Condition in Terms of a BIE 

With all their sources inside the contour T, depicted with a thick solid line in figure 2, the 
^-component of the scattered fields satisfy the integral equation 

\*!lr)+£[G(r.*)**W-M«i-M dT' = 0,    r on T, (6) 

where F% denotes F?z or Hz and G(r,r') = -fHo (ko \r — r'\) is the 2D free space Green's 
function. After a simple MoM approximation using pulse functions and point-matching at the 
points indicated with crosses in figure 2, we obtain the following relation (the numerical ABC) 
between the scattered field and its normal derivative: 

PFJ = QdnFi, (7) 

where Ff and dnFj* are vectors containing the field and its normal derivative, respectively, and 
where P and Q are matrices. To connect the ABC to the FDFD scheme, the elements in Fj* 
and 9n.F| are approximated from the two nearest FDFD points on each side of T by linear 
interpolations and central differences, respectively, i.e. 

Eis ^     z,outside ~Jz.inside            n  j-,s      ^z.outside      Jz,inside /0N rz  ,        anrz , (S) 

where h (the mesh parameter) is the side-length of a cell. With (8) in (7), we obtain a matrix 
relation between the field values at the different side of T: 

•"-^.outside ~ ^Asjinside' -"-"^outside = ^-"z,inside' (9) 

where the square matrix D appears to be well-conditioned and hence invertible. Using (9) in 
(4) and (5), it thus follows that the fields at the interior points are obtained from the following 
matrix equation: 

MEE   MEH 

MHE   MRH 
_z,inside 
ITS 
-"z^nside 

inside w "inside 
(10) 

where 

MEE = MEE + BD-1C,        MHH = MiIH + BD-1C. (11) 

Note that since neither B nor C nor D depend on the properties of the scatterer, the operation 
BD_1C in (11) has to be carried out only once. Thus, for a given mesh and frequency the ABC 
can be precalculated and stored for further usage when considering different properties of the 
scatterer, as long as the scatterer is confined within the boundary Y. 

5. Numerical Example 

In this one example, consider a circular chiral cylinder with the radius = A, where A is the 
wavelength in free space. The constitutive parameters are chosen to be e = 2.6 — 0.2j,/u = 
1.5 — 0.1j,f = —C = —JK = —j (0.6 — O.lj). For the computational region we consider two 
different mesh sizes, 41 x 41 FDFD points with spacing h = 0.05A and 81 x 81 FDFD points 
with spacing h = 0.025A. The numerical results are compared with a reference solution obtained 
by means of an expansion in cylindrical eigenwaves. The cross-polarized bistatic echo width 
across = across for waves impinging in the direction <f> = 0 is depicted in figure 3, with the 
solid lines for the reference solution, the dotted lines for h = 0.05A and the dashed lines for 
h = 0.025A. The numerical results indicate convergence and are in good agreements with the 
reference solution. 
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Series solution 
FDFD-BIE h=0.05 X 
FDFD-BIE h=0.025X 

(c) 

-180 -135 -45 0 45 
Scattering angle <|> (degrees) 

90 135 180 

Figure 3: The cross-polarized bistatic echo width for a chiral circular cylinder with the radius 
= A and the parameters e = 2.6 - 0.2j, p = 1.5 - O.lj and K = 0.6 - O.lj. The cylinder is 

illuminated in the direction (f> = 0°. 

6. Conclusion 

The scattering problem for inhomogeneous two-dimensional biisotropic cylinders has been con- 
sidered. Finite difference equations for the interior region as well as a contour integral equation 
realizing a global absorbing boundary condition have been derived and implemented numerically. 

Computationally, the present FDFD-BIE method is much faster than a moment method 
using a filled matrix of the same size. Hence, the present method can be used for solving 2D 
scattering problems involving scatterers of intermediate sizes (i.e. a couple of wavelengths) in 
both directions whereas MoM under, the same computation time, only can be used for consid- 
erably smaller or thinner structures. 

Since our global ABC is unlikely to generate artifacts from the boundary in the solution, 
the usefulness of the hybrid method as a fast solver in an optimization approach for solving the 
corresponding inverse problem is of interest for forthcoming research. 
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Abstract 

Mode matching approach is applied to a rectangular waveguide containing a pseudochiral Q 
slab. Prom waveguide measurements carried over a few placement of the slab in the guide 
the constitutive parameters are extracted. The extraction is performed numerically by a 
algorithm minimizing the differences between theoretical and measured values of scattering 
parameters. 

1. Introduction 

The study of the pseudochiral tt guides is important for several reasons. Electromagnetic prop- 
erties introduced by ß media can enhance the guide performance [1] or provide some added field 
phenomena over the guide behaviour [2],[3]. Therefore it is important to predict the effect that 
the ft medium has on their propagation and scattering characteristics. This paper investigates 
the structure of the rectangular waveguide loaded with an fi slab as shown in Fig. 1. We assume 
that the fi slab is extended over the waveguide height and can be arbitrary placed in the guide. 
The excitation is chosen to be TEno modes of the input rectangular waveguides so that due to 
the localization of the O particles in the slab the scattered fields can be defined only by TEno 

waves [3]. Taking into account the above restrictions the problem is solved using the mode 
matching approach. It yields very reliable and accurate values for scattering parameters. The 
knowledge of this scattering characteristics for a few different localizations of the slab in the 
rectangular guide is basis for the extraction of the dispersive, complex Q medium parameters. 

1 

z 

I ^w n 

w    d 

WR, 

Figure 1: Itectangular waveguide with fi slab and geometry of the investigated structure. 
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Figure 2: (a) - An fi sample used in experiment, parameters: wn = 10mm, In = 10mm, 
/i = 10.2mm, r = 0.2mm; (b) - A single Q element, parameters: n = 0.915mm, r0 = 1.046mm, 
w = 0.131mm, d = 2 * rfi = 1.6mm, <p0 = 5.96rad 
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Figure 3: Material parameters computed for static capacity and inductance. 

2. Specification of the Slab 

Let us consider a three dimensional (3-D) slab of tt medium as shown in Fig. 1 whose the 
relative electric permittivity and magnetic permeability tensors are of the diagonal form: e = 

e(iJx + Uz) + £yh*y 8Jld Pc = /*(•**« + V») + ^****«- For the considered Pseudochhal slab 
the magnetoelectric coupling tensors have the following dyadic representation Q,yz — tiiyiz and 
üzy = Qizty, where Q. is a couphng admitance between electric and magnetic field along y and z 
axis respectively. This Ü sample is composed of unilaterally metallized duroid plates (e = 2.2) 
with chemically etched matrix of nine Ü particles as illustrated in Fig. 2a. To obtain the tt 
block the plates are stuck together using the polystyren glue (e ~ 2.4). 

To calculate the unknown material parameters we used the static method based on the 
equivalent L-C circuit from M. Saadoun Dr dissertation [2]. Fig. 3 shows plots of the set of 
material parameters as function of frequency.These values will be used in next steps of extraction 
as initial parameters. 

3. Transfer Matrices Formulation 

The problem is solved by using transfer matrix approach (TMA) presented in [3]. Here the 
TMA is modified to the cases where pseudochiral materials, such as Q media, are involved. In 
this paper we get a following transfer matrix equation that defines the relation between the 
tangential fields components F = (HZ, Ey)

T at the side interfaces xt = a and Xi-i = 0. 

Hz 

E„ 
TU   TU 
rpll      rpll L21 L22 

rpSl      rpQ 

2i   J: 21     J22 

Hz 
E„ (1) 

JO 

J<U fCI TI 
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where: T1 and Tn are tangential matrices in free space sectors (I) and (II); Tn is a tangential 
matrix in Q, slab designed in [3]. 

4. The Scattering Matrix 

The knowledge of the results obtained by TMA gives us a possibility calculation of the scattering 
parameters for the considered structure. The continuity of the transverse electric and magnetic 
fields over each aperture cross section (see Fig. 1) is expressed as follows: 

X)(°m + *>m)en   =   5](>ln + Bne-'1'fl»L)en„ 
n n 

X>m - bln)hn   =   ]£(An-Bne-™"'£')ftfin (2) 
n n 

X)(°2» + kn)e„   =   Y,(Ane~yanL+B")en" 
n n 

£(-a2n + &2Ä   =   £(A»e-7n"i-5Ä» (3) 
n n 

where: ain and b*», € = 1,2 are complex coefficients of the incident and reflected wave and en, 
hn are the transverse electric and magnetic field functions in WR\p. A^ and Bn are the forward 
and backward wave complex coefficients, 7nn is the propagation constant and ehn, hcin are the 
transverse field functions in the Clj section which can be solved by TMA described before. 
Equations (2) for z = -L/2 and (3) for z = L/2 are converted into a linear matrix form taking 
the inner products of both side of these equations with eigenfields of orthonormal set of modes 
in WR guides. In this approach the Clj fields are orthogonalized by eigenfields of WR guides. 
The resulting matrices, truncated to a total of N modes in each of the region, we manipulate so 
that the amplitudes of the fields in the tij are eliminated. Finally, the solution is expressed in 
the scattering matrix formulation as 

an   £12 
£21   £22 QL2 

(4) 

If the measured and calculated scattering parameters at fixed frequency for a few positions 
of pseudochiral slab in the guide are known we can use optimization method to determine the 
parameters of the Q medium investigated. 

5. Optimization 

For extraction of the tt material parameters we use a procedure based on a modified Levenberg- 
Marquardt algorithm. In this case the problem is stated as follows: 

1   m 

t=i 

where x is a search vector of the material dispersive parameters. The considered medium 
is characterized by three unknown complex values; permittivity ey = e — je'y, permeability 
ßz — Vz~ 3ßz asi^ coupling coefficient K = K — JK" . So we get: 

X=[£y,£y,Hz,/Jl,z,K,K  Y (6) 

Other material parameters (ex = ez = e and fix = ßy = fx) are taken from duroid param- 
eters used in experiment.   The goal of optimization procedure is minimization of (5) with 
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wi"=2mm wi=10,86mm 

Figure 4: Comparison between optimized and measured performance of the section for a two 
opposite positions (w) of the Q slab in the guide. 

Figure 5: The final material parameters with added noise characteristics. 

fi(x) = \SPi\ - \Sti\ where Sp[dB],St[dB] - are the measured and calculated scattering parame- 
ters, respectively. It is taken as a dominant mode reflection 5n and transmission S21 coefficients 
which are measured at fixed frequency and one position of the slab in the guide. Although six 
goal functions are sufficient for solution of the problem we used twenty six equations in order 
to correct the slab position errors. One should note from Fig. 4 that after optimization process 
good agreement between the theoretical and measured characteristics is obtained. In this case 
the extraction of the Q material parameters is performed. These results are shown in Fig. 5 as 
a function of frequency. 

6. Conclusion 

This paper present the theoretical and measured scattering characteristics of the rectangu- 
lar waveguide with slab of the Q medium. These characteristics are used in the Levenberg- 
Marquardt optimization algorithm to extract all three constitutive parameters of the Q material. 
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Abstract 

The classical inversion transformation in a sphere was originally introduced by Lord Kelvin 
to formulate the electrostatic image principle for the perfectly electrically conducting sphere. 
Here it shown that the inversion principle can be used as the basis of an extended electrostatic 
image principle for a perfectly magnetically conducting sphere and for a sphere with an 
impedance boundary condition. Any of these spheres may even reside in the most general 
linear isotropic medium, namely in the bi-isotropic medium, as will be shown. 

1. Introduction 

Inversion in a sphere (also called the Kelvin transformation) is one of the transformations that 
keep the Maxwell equations invariant in the static case. This conformal transformation involves 
one parameter—the radius a of the reference sphere. In spite of the basic limitation to statics, 
the inversion is applicable to time-harmonic problems, even at microwave frequencies. This 
requires that the region of interest be small enough in wavelengths, what is known as the quasi- 
static approximation. In this case the medium parameters are not the static ones but those 
taken at the frequency in question, in general with complex values. 

The inversion method was introduced by William Thomson (later known as Lord Kelvin) in 
1845 for solving static problems involving a perfectly electrically conducting (PEC) grounded 
sphere. The inversion method arises from the observation that one of the equi-potential surfaces 
(the one of zero potential) of two given point charges of different magnitude and opposite sign 
happens to be a sphere enclosing one of the charges, which can be seen through simple geomet- 
ric reasoning. Because the sphere of zero potential can be covered by PEC material without 
changing the fields on either side of it, this immediately leads to an image principle for a point 
charge either inside or outside the PEC sphere. 

In the present paper the inversion principle is first applied to the PEC sphere in an isotropic 
dielectric space for finding the classical Kelvin image priciple. Then, after some adjustment, it 
is applied to the perfectly magnetically conducting (PMC) sphere and to spherical surfaces with 
an impedance (mixed) boundary condition ('impedance spheres'). In these two cases the image 
of a point charge becomes a combination of point and line charges. The same approach is then 
used for an impedance sphere enclosed in bi-isotropic space. The result will include the images 
for the PEC and PMC spheres in bi-isotropic space and all types of spheres in isotropic space 
as special cases. 
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2. Kelvin's Inversion in Isotropie Dielectric Medium 

The potential </>(r) from a source g(r) satisfies in homogeneous dielectric medium the Poisson 
equation 

V2^(r) = _^£). (1) 
e 

It can be shown [1, Appendix] that the same charge and potential functions also satisfy the 
equation 

This is of the form (1) if we define the Kelvin-inverted potential and source functions as 

In the following discussion we assume the source function g(r) to be either completely outside 
or inside the spherical surface r = a. 

2.1 PEC sphere 

When r lies on the spherical surface r = a, we have from (3) 

0K(r)|r=a = ^(r)|r=o. (4) 

This means that the potential for the difference-charge gd(r) = g{r) - QK(T) vanishes on the 
sphere r = a: 

r 2 
AiWU = W')-*c(')l«=   <Kr)-^^r)        =0. (5) 

Jr=a 

Thus, the charge 
£PEc(r) = -QK(r) (6) 

is the image of the charge g(r) in a grounded (zero-potential) PEC sphere r = a. This is the 
classical Kelvin image principle. 

2.2 PMC sphere 

The PMC boundary condition requires vanishing of the normal component of the electric field 
or the normal derivative of the electrostatic potential. Let us denote d/dr by dr for brevity. For 
the combined sum-charge 

A(r) = g(r) + gK(r) (7) 

the normal derivative of the corresponding potential on the sphere r = a is (prime denotes the 
inverse radius r' = a2/r) 

dr<t>s{r)\r=a Ör^(r)-3^(r')-i9r^(r') 
*»2 ~ *•      ' tyO = -*MU (8) 

and, as we see, the right-hand side does not vanish in general. However, it can be canceled by 
adding the source (adr)

-1£K(r). For the new sum-source gs(r) = g(r) + {l + l/(adr))gK(r) the 
normal derivative of the total potential on the sphere r = a vanishes and the image of the charge 
function g(r) in the PMC sphere is thus 

0PMc(r) = (1 + ;^")0K(r)> (9) 
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where the operator l/dr must be understood as integration along the r coordinate: 

r 

0PMc(r) = 0K(r) + - / 0K(r) dr. (10) 
a J 

a 

Here the integration limit is chosen so that the image does not extend to the wrong side of the 
sphere r = a. 

For example, for a point charge g(r) = Q8(r — r0) outside the sphere we have an image 
source consisting of a point charge QK = QrKo/a at the Kelvin image point FRO = (a2/'"o)ro 
plus a line charge of density —QK/O> on the line connecting the Kelvin point to the center of the 
sphere. 

2.3 Impedance sphere 

A sphere with general linear boundary conditions is the impedance sphere on which the (total) 
potential satisfies 

(a + ßdr)Mr)\r=a = 0- (") 
Here a and ß axe parameters which may have complex values in the quasi-static approximation. 
Inspired by the preceding theory, and after some algebraic manipulation, we find the image of 
the source g(r) in the operational form 

0imp(r) 
ß - 2aa 

1 + 
a(a + ßdr) 

ßK(r)- (12) 

The PEC and PMC cases above are obtained for ß -> 0 and a ->• 0, respectively. The general 
impedance conditions of the form considered here are encountered, for example, in the radiation 
condition for time-harmonic potentials in the far zone where a/ß = jujy/JIöeö. 

An inverse operator expression of the form 

f(r)=g(r) (13) 
a + ßd, 

can be expressed as the integral 

r 

9(r) = ^fe^-rWf(q)dq. (14) 
a 

Again, the integration limit is chosen so that the image does not enter the wrong side of the 
sphere. 

3. Kelvin's Inversion in Bi—Isotropie Medium 

The most general linear and isotropic medium is characterized by a four-parameter constitutive 
equation of the form 

(s)-(z«)(;). 
and the medium is called bi-isotropic. It is worth noting that because there is no coupling for 
static fields, the following analysis must be understood in a quasi-static sense. 

The Poisson equations for the electric and magnetic scalar potential functions <f>e(r), <£m(r) 
and the corresponding charge densities ge(r), Qm{*) can be written in the matrix form 

V2f(r) = -M-Xg(r), (16) 
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Wliere / \ / \ / /    N      \ 

*»-(£$)■  -(cS)-  •w-(^)-      ,17) 

The Kelvin-inverted quantities are now 

«*»-( £8 )-?•£»■   -«-(:$)-££»•     <18> 
We shall study case of the impedance sphere directly, because it contains the previous PEC 

and PMC conditions as special cases. We combine two boundary operators in terms of two 
coefficients a and ß as was done for the sphere in the dielectric medium, and get the generalized 
operator 

( a + ßedr       ß(;dT     \ _ ( a   0 \      ( ß   0 \ (    , 

Applying the previous line of thought we assume an image of the form 

gimp(r)=i?gK(r) + B-1CgK(r). (20) 

When the boundary condition 

B [f(r) + tfk(r)]r=a + CfK(r)|r=a = 0 (21) 

is expanded, 77 and C can be solved as 

„_, c_(-2a + ße/a ß£,/a        \_       ( a   0 \      1 / ß   0\ 

Equation (20) is the most general image expression considered here and it gives all the other 
images as special cases. For example, setting a = 1 and ß = 0 leads to the PEC sphere case in 
a bi-isotropic medium, while setting £ = £ = 0 leads to the impedance sphere in a dielectric and 
magnetic medium. The result coincides with (12) of the previous section when the difference in 
the definition of the parameter ß is taken into account. 

4. Conclusion 

The inversion (Kelvin) transformation is known to produce the classical image principle for 
the PEC sphere even if in textbooks it is generally replaced by simpler geometric arguments 
allowing solving for the image of a point charge. However, the transformation is more applicable 
as it can produce images for the sphere with PMC and impedance boundary conditions. The 
latter result, given here, appears to be new. Also, as shown here, the method can be easily 
extended for generalizing a novel image principle to spheres in the bi-isotropic medium. Because 
the static approach can be used for time-harmonic problems as an approximation (quasi-static 
approximation), the image principle appears applicable whenever the radius of the sphere is 
small in terms of the wavelength. 
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Abstract 

FDTD modelling of dielectric PBG structures is considered. In this paper PBGs are as- 
sumed to be related to layered structures which are especially used in optical waveguiding 
applications. Many essential features can be modelled 2-dimensionally. 

1. Introduction 

Photonic bandgap (PBG) material is periodically inhomogeneous material, in which electromag- 
netic waves having frequency in the bandgap range, can't propagate. Due to the periodical 
structure, PBGs are often called photonic crystals, too [1]. An example of 2-D PBG material is a 
uniform lattice of cylindrical air holes inside dielectric host material. In real 3-D world this might 
correspond to a silicon plate having cylindrical air holes. Properly manufactured PBG material 
can be used as a frequency selective reflective surface. Potential applications are highly efficient 
optical lasers and sharp bends in optical waveguides, for example. In this paper purely dielectric 
PBG structures are considered, even though a PBG can also be manufactured using metal rods. 
The chosen PBG lattice is triangular, formed by cylindrical air holes in dielectric host medium 
(figure 1). The main interest is in 2-D modelling of the PBG waveguides and waveguide bends. 

The behaviour of EM fields in space-time in a PBG structure can be modelled using FDTD 
(Finite-Difference Time-Domain) which essentially means solving Maxwell's equations in dis- 
cretized space and time co-ordinates [2]. FDTD has been widely used in PBG research during 
the last few years, see [3], [4], for example. 

2. Modelling PBG Waveguides 

Modelling PBG structures requires some important properties from the FDTD software used: 

model for a dielectric cylinder • 

• freedom to describe complicated excitation fields i.e. the time-domain behaviour and the 
field distribution in space. 

• possibility to store "measured" fields, at certain points and time intervals, to hard disk. 
Stored time-dependent fields are analyzed later (F-transforms, power flow analysis etc.) 

The modelling scheme in general can be considered as a 'Virtual measurement setup". There 
must be a source i.e. a field excitation, for which time and spatial dependence is properly chosen. 
The space-time behaviour of EM fields is governed by Maxwell's equations which are solved using 
FDTD. Also, there must be measurement surfaces, on which time-dependent fields are sampled 
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and stored to hard disk for later analysis. Figure 1 shows measurement setup involving straight 
PBG waveguide. 

When analyzing the performance of a guiding structure, computing power flow, instead of 
just measuring field values, should be preferred. Just inspecting field strenght does not tell, how 
well the power is actually propagating. For example, with a standing or evanescent wave, field 
value near the output can be ^ 0 but power is not propagating. 

Power flow is computed by spatially integrating the normal poynting vector S. The in- 
tegration is done over a surface (3-D simulation) or over a fine (2-D). Using simple and fast 
trapezoidal rule integration leads to weighted sum of poynting vector values. For example, in 
2-D, when computing power flow in +x-direction through measurement line Ml (x - xi, y € 
foft.ift]) see figure 1), one uses stored fields Ey(xuy,t) and Hz(xi,y,t). Poynting Sx(xi,y,t) = 
Ey(xi,y,t)Hz(xi,y,t) and time-dependent power flow (per-unit-length) is 

V2 

P(t) = JSx(xuy,t)dy « Ay 
yi 

JV-l ■, 

i=2 l 

V2-Vi = (N-l)Ay,  (1) 

where the approximation corresponds to trapezoidal rule integration, and Ay is FDTD cell-size. 
By computing power flow in frequency domain, P{f), one can effectively obtain, for example, 

power transmission T(/) = Pzifl/Piif) for a certain waveguide bend. This requires stored 
fields Ei{ri,t) and Hi(ri,t), i = 1...M, where M is the number of measurement planes (often 
M — 2). Performing Fourier transform from time to frequency domain one gets Ei(n,f) and 
Hi(n, /). Then for every point n (essential field components of E and H depend on the plane i 
orientation), 

S{ri,f) = ^R[E(riJ)H*(riJ)] (2) 

is computed. Via integration of S, one gets power flow through measurement planes, Pi(f), 
i = 1...M. Power flow analysis in frequency domain is efficient, because only one simulation, 
using pulse-like excitation, is needed to get the transmission T(f). 

The absolute values are not needed for power flow at different frequencies or locations, because 
only the spectrum of power flow matters or T(f) = P2(f)/Pl(f), for example. Hence, formulas 
such as 1 and 2, are used without coefficients Ay and 1/2. Such simplifications are used also with 
3-D analysis. Also, the P(f)-functions are divided by the power spectrum of the input signal, to 
actually see the filtering effect caused by the waveguide itself. 

In the formulas above it was quietly assumed that E, H and S sharing the same co-ordinate 
(x,y,t) are also physically at the same point in space-time, which is not exactly true due to 
Yee's FDTD cell [2]. Additionally to numerical dispersion error, also this may cause some error 
at higher frequency range. 

3. Numerical Examples 

The numerical examples are done in 2-D and assuming TEZ polarisation i.e. H = H(x,y,t)uz 

and E = Ex(x, y,t)ux + Ey(x, y,t)uy. 
First example is a power flow analysis of a straight PBG waveguide (linear lattice defect). 

Figure 2 shows a Hz-Held snapshot at one time instant and figure 3 (left) P(f) at one measure- 
ment plane, with waveguide width w as a varying parameter. PBG material remains same i.e. 
frequency bandgap is same in every case. When / belongs to bandgap, PBG works as a reflecting 
surface or as a boundary as far as energy flow is conserned. A mode can't propagate power in 
the waveguide, if / < fcut-off- Cut-off frequency goes up as the waveguide is made narrower. 
This effect can be seen in figure 3. It may be practical solution to determine the channel width 
so that only fundamental mode propagates in the bandgap frequency region. 
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Second example deals with determining the wavelength A(/) of a propagating wave, in a 
straight PBG waveguide which can be approximately considered as a lossless periodic waveg- 
uide, when / is in the bandgap (small radiation loss). As in example 1, narrow-band pulse-like 
excitation was used, and F-transformed fields at two planes were computed. Using the field 
phase-difference between the planes (plane separation was a i.e. the waveguide period), wave- 
length A(/) was obtained. Figure 3 (right) shows the plot A(/), again w as a parameter. The 
results were checked at some frequencies using time-harmonic excitation. 

Note that in examples 1 and 2 a PEC-boundary at y = 0 (figure 2) was used to exclude 
the antisymmetric modes. So, when / is in the bandgap and small enough, the field roughly 
corresponds to fundamental mode. Willing to investigate antisymmetric modes, one should use 
PMC-boundary. 

Third example is a transmission analysis of a 60° waveguide bend. P(f) was computed at 
two planes. The Hz-&eld snapshot and transmission T(f) are shown in figure 4. 

Due to some unwanted reflections the field sampling time window must often be limited. This 
causes some decrease in accuracy in F-transformed fields, P(f) and T(f). Considering practical 
modelling and design, a complicated structure is much more easily descibed using integer-like 
dimensions. The results, a frequency response etc., can be easily transformed later into the 
frequency range of interest which corresponds to the real-world physical dimensions. 

4. Conclusion 

2-D modelling of PBG structures was demonstrated by way of few examples. Using pulse-like 
excitation and after the simulation F-transforming the fields at measurement planes, one can 
effectively study the features of a PBG structure. It seems that 2-D simulation is often suitable 
for design purposes, when dealing with layered structures where the field is mostly consentrated 
in one layer (PBG plate). Taking the third dimension into account often means just higher 
radiation loss and a bit frequency-shifted response, due to a different effective refraction index 
seen by the wave. 

airhole 

measurement 
plane Ml 

y2 
field excitation  ?j|^ss; 
plane ~~~^y^i 

Do 
waveguide 
width  w 

Figure 1: Triangular lattice PBG. Straight waveguide measurement setup. 
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Figure 2: ifz-field snapshot. Computation 
domain was halved using PEC-boundary 
at y = 0. Consequently only symmetric 
modes can exist. The excitation field was 
chosen to support 1. symm. mode i.e. the 
fundamental mode. 
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Power flow P(f) with different waveguide widths  (measurement plane x«60). 
wavelength along the bg-waveguide 
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Figure 3: Left: power flow at x = 60.      Right: wavelength in the PBG waveguide. 

Power transmission T(l) of a 6tf PBG waveguide bend 
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Figure 4: Left: ifz-field snapshot.      Right: power transmission of a 60° bend. 
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Abstract 

A smart sensor was fabricated using a carbon-epoxy composite laminate in which fibre Bragg 
gratings were embedded. These instrumented carbon fibre laminates can be used for reinforcement 
and protection of concrete/metallic structures, playing an important role in monitoring repaired or 
reinforced constructions. 

1. Introduction 

Fibre Bragg grating sensors (FBG) can be very useful in applications where layered materials, such as 
composites, are involved, because they provide a basis for the development of smart structures. These 
sensors allow measurement of parameters such as load/strain, vibration, temperature and detection of 
cracks and delamination phenomena tests [1], which are chiefly related with the monitoring of 
concrete loading/failure behaviour. Based on these properties we have conducted experiments by 
adhesively bonding smart sensors onto polymeric concrete samples, which where then submitted to 
standard loading tests. The work performed was aimed at the evaluation of stiffness and detection of 
fissures in carbon reinforced concrete, both through experimental tests and development of analytical 
models. Because of the recent interest in repairing metallic/concrete structures with composite 
laminates, it is safe to assume that such applications will be an appealing field for FBG sensors, since 
these are cases where monitoring is extremely important. 

2. FBG Theory 

An FBG is a periodic modulation of the refractive index of the core of a single mode optical fibre, 
written by exposure to UV light in the region around 248nm [2]. This fabrication process is based on 
the photosensitive mechanism, which is observed in Ge-doped optical fibres [3]. If broadband light is 
travelling through an optical fibre containing such a periodic structure, its diffractive properties 
promote that a very narrow wavelength band is reflected back. The centre wavelength of this band can 
be represented by well known the Bragg condition: 
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k„ = 2nrff A , (1) 

where XB is the centre wavelength, neff is the effective index of the guided mode and A is the period of 
the index modulation. The FBG ressonance wavelength will vary accordingly with temperature or 
strain changes experienced by the fibre. For a temperature change AT, the corresponding wavelength 
shift is given by: 

*-*-(X!K£>T-*>+ö"- (2) 

where a is the fibre thermal-expansion coefficient, and % is the fibre thermo-optic coefficient. The 
wavelength shift, induced by a longitudinal strain variation Ae is given by, 

A de    n de I 
(3) 

where pe is the photoelastic coefficient of the fibre. For a silica fibre, the wavelength-strain and 
wavelength-temperature sensitivities are ~13pm°C"' and ~1.15pmue"\ for a Bragg wavelength centred 
at 1555nm [4]. 

3. Smart Sensors Plate Fabrication and Characterization 

Two fibre Bragg gratings were embedded between 
layers of pre-impregnated carbon fibre/epoxy resin 
to produce a smart sensor plate. The laminate had 
three layers with dimensions of 150x70x1 mm3 and 
was cured inside an autoclave at 100°C during 1 
hour with 0.8xl05Pa pressure. The FBG, 
(A.Bi=1539nm) was used for measuring strain and 
temperature, while the FBG2 (XB2=1530nm) was 
only sensitive to temperature. The FBG2 sensor 
was properly isolated from strain inside a steel 

Fig.l Smart sensor plate with illustration of 
FBG sensor placement. 

capillary tube with 0ext=O.8 mm, 0int=O.5mm and length L=40mm. The characterization of the smart 
sensor consisted in temperature measurements holding strain constant (e=0) and strain measurements 
with constant temperature (T=20°C). Fig. 2-a) and 2-b) show the response of the two FBGs to 
temperature variation under constant strain and bending strain variation at constant temperature, 
respectively. 
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Fig. 2   Response of smart sensor plate to: a) Temperature; b) Inverse curvature radius (1/R). 
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As expected different sensitivities were obtained for strain, while similar ones were obtained for 
temperature. The small difference observed between the thermal sensitivities can be attributed mainly 
to the additional strain effect of the material's thermal expansion. Monitoring both Bragg grating 
wavelengths allow us to determine simultaneous temperature and bending strain. In fact, from data 
contained in Fig. 2 the following relationship can be expressed: 

AT 

AC 

K C2 

"T1 

-Kc 'A^B 

AX B2. 

= -336.3 
0.0000   -297.09 

-10.01       10.73 

AXE 

AX B2 
(4) 

where A = KTIKc2 -KclKT2, AT and AC are temperature and curvature variations. Based on this 
equation and from the experimental evaluation of AX-BI and AX.B2 we are then able to determine both 
AT and AC. 

4. Experimental Results 

Experiments were conducted on instrumented and/or reinforced polymer concrete plates, with 
dimensions of 600x 100x20mm3, using a test machine ESTSTRON Universal (mod. 4208). All three 
point bending tests performed had a span length of 500mm. Fig. 3 shows two types of plates tested. In 
a Fig. 3-a) we can observe a CFRP (Carbon Fibre Reinforced Polymer) concrete plate. The CFRP was 
used to increase the tension strength and reduce the crack propagation rate of the plate, and it 
contained 3 FBG sensors. One was located at the centre and the others two at 150mm to each side. In 
Fig. 3-b) it is shown a concrete plate instrumented with the smart sensor plate described in the 
previous section. 

Fig. 3   a) CFRP reinforced concrete plate containing FBG sensors, and b) smart sensor plate 
adhesively bonded to polymer concrete plate. 

The system used for monitoring the smart sensor plates is presented in Fig. 4. The system included an 
OSA - optical spectrum analyser (ANDO AQ 6330), an EBOS - erbium broadband optical source 
(PHOTONETICS), a 3 dB coupler and a computer data acquisition system. 

Smart sensor 

GPB //flln JB\ 

Fig. 4   Experimental set-up used for monitoring smart sensor plates. 

Fig. 5-a) and 5-b) show test results of reinforced and non-reinforced polymer concrete plates (strain 
vs. time). The temperature evolution measured through the sensor FBG2 during the test, in the smart 
sensor plate is also presented. The non-reinforced concrete plate showed no cracking before failure 
and presented an ultimate strain of 280u£ at the sensor location (see Fig. 5-a). The reinforced concrete 
plate, on the other hand, endured a much higher strain (about 7x) and failed in compression 
developing 4 compression cracks. The FBG monitoring system also allowed the detection of these 
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cracks as can be observed in peak (1) of Fig. 5-b) - here (2) denotes a failure of sensors 1 and 3 due 
rupture of the optical fibre containing FBG sensors. The crack detection is shown in detail in Fig. 6 
using data extracted from the peak (1) in Fig. 5-a). 
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Fig. 5   Test results of the strain and temperature evolution of the: a) Non-reinforced concrete plate; 
b) Reinforced concrete plate containing 3 FBG sensors. 

51 52 53 54 

Time (min) 

Fig. 6   Detail of crack detection and final failure extracted from peak (1) in Fig. 5-a). 

5. Conclusion 

FBG sensors showed the ability to detect strain and cracks in concrete plates. A 1mm thick CFRP 
laminate reinforcement allowed an increase of 7 times in strain and induced compressive cracking in 
the concrete polymer. The monitoring system failed when the optical fibres were forced to endure 
strain values in excess of 9000|xe, causing signal loss due to rupture of the optical fibres. The 
possibility of using fibre optic instrumented plates in rehabilitation of civil structures was 
demonstrated, since strain measurements and compressive cracking can be effectively detected. 
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Abstract 

The field propagation in soft sind hard surface waveguide, also called balanced corrugated 
waveguide, filled with chiral medium is considered. The eigenfields inside the waveguide are 
circularly polarized and are propagating separately. For small chirality parameter values the 
eigenfields are slightly coupled and the polarization of the propagating field is changed. This 
effect causes a mode transformation between TM and TE modes. 

1. Introduction 

Wave propagation in cylindrical corrugated waveguide filled with chiral medium is considered. 
The corrugation on the surface of the waveguide is such that the boundary condition is equal 
to the soft and hard surface boundary [1]. These kind of waveguides are used, for example, in 
antenna feed horns. It is known that the eigenfields associated to the soft and hard surfaces are 
circularly polarized. Also the eigenwaves propagating in chiral medium are circularly polarized, 
denoted by + and — waves [2] - [4]. When the corrugation in a waveguide structure is in 
transverse direction the waveguide is called soft surface waveguide, and when the corrugation 
is in axial direction it is called hard surface waveguide [1]. Inside the chiral soft and hard 
surface waveguide there are propagating + and — waves separately. However, when the chirality 
parameter of the medium is very small these two eigenwaves are propagating almost with the 
same propagation factor which results in a change in polarization of the propagating field. 

2. Theory 

The electric and magnetic fields in waveguide depend on z as e~^z where ß is the propagation 
factor. The waveguide is filled with chiral material with the constitutive relations [4] 

D = eE - JKy/ii0e0 H,     B = fiH + JK^poCo E, (1) 

where e, [i and « are permittivity, permeability and the chirality parameter of the medium, re- 
spectively. In the waveguide structure the electric and magnetic fields are written with transverse 
and axial parts as 

B = e + Ezuz,     U = h + Hzuz, (2) 

which are inserted into the Maxwell equations 

V x E = -juB,     V x H = juB. (3) 

On the other hand, the fields in chiral medium are expressed in terms of right hand and left 
hand circularly polarized waves denoted by + and — waves. After eliminating the transverse 
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fields e and h and using the decomposition into + and - parts the Maxwell equations reduce 
to the Helmholtz equation for axial field components 

[V? + *4]£Z±(P,¥>)=0, (4) 

where Ez± = \{EZ T JvHz), kc± = ^4 - Z?2 and k± = k ± k0K. The V* operator is the 
transverse part of V. The general solutions of the Helmholtz equation in cylindrical coordinates 
are Bessel functions of the first kind 

Ez±(p, <p) = A^Uk^p)^. (5) 

The all other field components can be expressed with these two axial field components. The 
partial transverse fields are obtained from the axial parts as 

e± = [-#-V* =F ^u* x Vt]Ez±. (6) 

The coefiicients kc± and An± are determined by the boundary and initial conditions. 
The two partial transverse fields e+ and e_ are elliptically polarized of opposite handedness 

with respect to the direction of propagation. The total fields are obtained as a combination of 
transverse and axial + and — waves as 

E = e+ + e_ + (Ez+ + EzJ)uz (7) 

and 

H = l[e+ - e_ + (Ez+ - Eg-)ut]. (8) 
V 

The parameters kc± are determined by the boundary condition for the soft and hard surface at 
p = a 

u • E = 0,      u • H = 0, (9) 

where u = uv for soft surface and u = uz for hard surface boundary [1]. For the soft surface 
waveguide with index n = 0 and for the hard surface waveguide with all index n the boundary 
conditions (9) lead to the eigenvalue equation [5] 

Jn(kc+a) Jn(kc-a) = 0. (10) 

The solution of the eigenvalue equation is 

kc±=^, (11) 
a 

where pns are the zeros of the Bessel functions. The propagation factors for + and - waves are 
now obtained 

fc-^-fc)'. (12) 

The value of the propagation factor is different for + and - waves when the waveguide is filled 

with chiral material In a nonchiral case these two values reduce to ß = \Jk2 - (pns/a) ■ 
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3. Mode Transformation 

The polarization properties of the propagating fields inside the chiral soft and hard surface 
waveguides are considered when the value of the chirality parameter of the medium is small. It 
will be shown that the small chirality value affects mainly to the polarization of the propagating 
field. Chiral media can be fabricated by incerting small helices into the base material and the 
chirality parameter is proportional to the density of chiral inclusions. High density of inclusions 
increases losses [6]. Now, the requered chirality parameter is small and is achieved with small 
density of inclusions and also the losses are small. 

Denoting the wave numbers of partial waves in chiral medium as 

fcfc = k(l ± Kr), (13) 

where Kr = K^/
1
*?^ and assuming that |/cr| •C 1, the propagation factors are approximated as 

At = ^»(1 ± Kr)
2 - (^)2 *ß±jKr. (14) 

Here, the parameters ß — ^k2 — k% and fcc = ^ are the same as for a nonchiral waveguide. 
The axial field components reduce now to the form 

■„•Jt* 
Ez±(p, ¥>, z) « An±Jn{kcp)e?n*e*3T^e-ißz (15) 

and, similarly, the transverse partial waves are approximated as 

iß k 
e±(p, f,z) « [—rjVt =F T^U2 X Vt]Ez±(p,<p, z). (16) 

Kc Kc 

The total axial field components are 

Eg = Ez+ + Ez- 

= [(An+ + An.) cos (jKrz) - j(An+ - An-) sin (jKrz)]Jn(kcp)^e-^z (17) 

and 
Hz = -[Ez+ — Eg-] 

= J-[(An+ - An.) cos (JKTZ) - j(An+ + An.) sin (jKrz)] Mkcp^e-iß*.        (i8) 

In these expressions the fields are written in terms of right hand and left hand circularly polarized 
components. The general field inside a waveguide can also be presented as a combination of TE 
and TM fields. Denoting at z — 0 the axial field components as 

and 

the axial electric field is 

Ez(0) = An+ + An_ = En (19) 

Hz(0) = 3-[An+-An4=Hn, (20) 

Ez(z) = [En cos (jKrz) - f}Hn sin (jKrz)]Jn(kcp)e>n*e-Mz (21) 
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and the axial magnetic field is 

<k   ..  _\   i   En   .,k   „    \i T /.   n\Jnip„-jßz H,(z) = KCOS(^K^) + ^sin(^K^)]Jn(M^e-^. (22) 

The coefiicients En and if„ are determined by the initial conditions. 
The mode transformation effect is clearly seen by considering the axial field components as 

a function of z. If, for example, at z = 0 we have Hn = 0, there exists the axial electric field but 
no axial magnetic field, we have then TMns fields. At the distance 

z = -^- (23) 

which is denoted by Ap/4, there exists the axial magnetic field but no axial electric field which 
means that we have TEns fields. So, after the distance z = Ap/4 the original TM mode is 

changed to TE mode. 
When the length of the chiral soft and hard surface waveguide is twice the value of (23), 

denoted by Ap/2, the field configuration is at 180° phase shift of its original value. This means 
that the chiral soft and hard surface waveguide of length Ap/2 works as a 180° phase shifter. In 
a general case, inside the soft and hard surface waveguide there can propagate a hybrid mode. 
With other choice of the length for the waveguide as done in the previous examples the original 
hybrid mode propagating inside the waveguide can be transformed to another hybrid mode. 

4. Conclusion 

The mode transformation effect in chiral soft and hard surface cylindrical waveguide are con- 
sidered. The soft and hard surface waveguide is filled with slightly chiral material. The small 
chirality affects to the polarization of the propagating field. The eigenvalue equation for the 
chiral hard surface waveguide is evaluated. Also, the eigenvalue equation for the chiral soft sur- 
face waveguide for the spherically symmetric mode is similar as for the hard surface waveguide. 
It is demonstrated that with a proper length of the chiral soft and hard surface waveguide the 
TM mode is changed to TE mode and vice versa. Also when the length is twice of this proper 
length the original field pattern is suffered a 180° phase shift. This kind of mode transformers 
and phase shifters may be used as matching elements between different kind of waveguides or 

between waveguides and antennas. 
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Abstract 

Using six-vector formalism, the polarisability problem of a layered bi-anisotropic ellipsoid is 
solved. The polarisability six-dyadic is explicitly calculated for the case of a two-component 

ellipsoid where the core is fully bi-anisotropic but the shell and the environment are 
bi-isotropic at most. It is reasonably straightforward to include more bi-isotropic layers on 

the ellipsoid. The limitation of the analysis is that all ellipsoidal boundaries for the 
composite structure have to be confocal. 

1. Introduction 

In this presentation we treat and analyse the calculation of the polarisability of a small scatterer. 
The polarisability is defined as the linear relation between the dipole moment and the uniform 
incident field that induces this moment. For anisotropic or non-spherical scatterers, the polar- 
isability is generally a dyadic: p = 5 • E, where p is the dipole moment and E is the incident 
electric field. In the present paper we will concentrate on the case of bi-anisotropic scatterers 
in which case the polarisability is a matrix relation between the induced electric and magnetic 
dipole moments and the incident electric and magnetic fields. The concept of polarisability is 
important in the low-frequency applications [1]: the size of the scatterer has to be small in 
comparison of the wavelength of the operating field. 

In the bi-anisotropic case we will use the six-vector formalism [2], The electric and magnetic 
vector quantities are collected into a six-vector, and the relation between two six-vectors is a 
six-dyadic. Thus, for example, the polarisability is a six-dyadic (consisting of four ordinary 
three-dyadics, or 36 scalar parameters): p = A -e, where the field and dipole moment six-vectors 
are 

-fc) - -© (i) 

In this presentation, the particular emphasis is on inhomogeneous scatterers; especially lay- 
ered ellipsoidal scatterers. We will show how the polarisability six-matrix of a layered ellipsoidal 
scatterer can be calculated with the six-matrix formalism: the equations are shown for the case 
of core-plus-shell ellipsoid but the method works for any number of ellipsoidal layers. There 
is, however, one limitation: all the ellipsoidal boundaries in the structure have to be confocal. 
In other words, the foci of the various ellipsoids have to coincide. The results allow the layers 
(and the environment) to be bi-isotropic; in addition, the core of the layered ellipsoid can be 
arbitrarily bi-anisotropic. 
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Figure 1: Layered ellipsoid with the core and shell 

The results form a considerable generalisation of the previous studies where the corresponding 
polarisability problem for layered ellipsoidal dielectric scatterers [3] and for the two-layer chiral 
sphere [4] was solved. 

2. Polarisability Six-Dyadic for the Core-Plus-Sheil Ellipsoid 

Consider the scatterer illustrated in Figure 1 where an ellipsoid is located in bi-isotropic envi- 
ronment. The ellipsoid consists of a bi-anisotropic core and a bi-isotropic layer (shell). It has to 
be remembered that the ellipsoidal boundaries have to be confocal, which roughly means that 
the core is less "rounded" than the whole scatterer. The material parameters in the problem 
are contained in the three material six-dyadics 

M e w ejy Ml=w^v u2=b y\      (2) 
How to calculate the six-dyadic polarisability for this ellipsoid? Using the three-vector anal- 

ysis as was done in [4] for the layered chiral sphere would lead to a large set of coupled vector 
equations from which the polarisability would be extremely tedious to solve. Here the six-vector 
analysis shows its power, because the analysis remains formally on the same level of complexity 
as in the three-vector case, and we can follow the steps in the layered dielectric studies. 

The result is that the polarisability six-dyadic 

A= (=ee    =em J (3) 

of a layered bi-anisotropic ellipsoid can be expressed in a compact form: 

A = VMe ■ {K • [(Mi-Me) • Li + Me] + to(M2-Mi) • k}"1 • [K • (Mi-Me) +w(M2-M1)]   (4) 

with the following definitions: 

K = (M2-Mi) • (L2-tuLi) • M^1 + I 

and the unit six-dyadic is defined obviously by 

(1 o\ 
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The depolarisation factors of the two ellipsoidal boundaries are contained in the six-dyadics 

Ll-(^    °)    and   L2=f^    °) 

and w is fraction of the core from the total volume V of the particle. 
The present analysis can be generalized to ellipsoids having more layers than the core and 

the sheD, as in [3, 5]. 

3. Special Cases 

3.1 Homogeneous sphere 

It is important to check the result with special cases known earlierly. A trivial test could be to 
have a homogeneous isotropic sphere in isotropic environment, for which the scalar polarisability 
is 

a=3^lrS (6) 

It is quite easy to see that (4) passes this test. 

3.2 Layered dielectric ellipsoid 

The second special case is the layered dielectric (or magnetic) ellipsoid (see [3]): £e = fi = £e = 

Ci = 0) £2 = C2 = 0, % = e2I, and ~ß2 = ß2I. In this case the polarisabihty six-dyadic reduces to 

A = (aee   =°   \ 

where the electric polarisabihty is 

S   =Ve    V (ei - e«)(ei +N2i(e2 - eQ) + tofa + Nu(€e - ei))(e2 - eQ 
6 J-^j (ee + Nu(ei - ee))(ei + N2i(e2 - £l)) + wNu(l - N^(€l - ee)(e2 - Cl) "iUi 

(6) 

and the magnetic polarisabihty o7mm is, mutatis mutandis, the same as See. Nu and N2{ are 
the depolarisation factors of the ellipsoids: 

L\ = Nixnx\ix + NiyUyUy + NXzuzuz     and     Z2 = iV^UxUa, + N2yuyuy + N2zuzuz. 

3.3 Other special cases 

Among the other possible special cases to test the result, the following ones can be considered: 
homogeneous chiral sphere and layered chiral sphere. The result (4) passes also these tests, but 
the resulting lengthy expressions are not shown here. 

4. Maxwell Gar nett Mixing Formula 

With (4) we can build the Maxwell Garnett (Clausius-Mossotti) mixing formula for aligned 
layered ellipsoids: 

Me// = Me + nMe- (Me-nA-LiJ     -A (7) 

where n is the number density of the layered ellipsoidal inclusions. 
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Figure 2: Effective relative permittivity (left) and chirality (right) of the mixture. 

Numerical Example 

Let us assume a mixture, which consists of layered chiral spheres in an isotropic background. 

The cores in the spheres are bi-isotropic: f2 = 2.0eoI, p2 = l-5^o^, and K2 = -1-0, so that 

f2 = 3\/ßÖ£oI and (f2 = -Jy/fiötol- Tlie shells are also bi-isotropic: fi = 2.0eoT, Pi = 1.5/zoJ, 
but KI = +1.0. In other words: the materials in the layered spheres are almost the same, but 
the cores are right-handed and the shells are left-handed. For the background medium: ee = e0 

and (i,e = /xo- 
It is a quite simple task to write a short Matlab-code and use (4) and (7), to calculate the 

effective material properties of the given mixture. In Figure 2 is shown the effective relative 
permittivity and chirality of the mixture. The volume fraction / is defined as f — riV, where n 
is the number density of the inclusions in the mixture and V is the total volume of an inclusion. 

Figure 2 shows that although both components of the spheres have the same electric per- 
mittivity, the mixture permittivity ee// is not the same in the case / = 1 (no background, 
everything just inclusions). The strange effect on permittivity is caused by the magnetoelectric 

coupling. 
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Abstract 

Here we study the scattering properties of the section of circular waveguide containing lossy 
isotropic chiral rod. The effects of the chirality on the polarisation state (electromagnetic 
field rotation and axial ratio) of fundamental mode propagate in the guide are discussed and 
verified experimentally. 

1. Introduction 

The effects of the chirality on the polarization state of the waves propagating in the circular 
guides filled with chiral medium have been intensively studied in the last few years [1] 4- [6]. 
Such an effect allows the determination of the chiral material parameters and can be utilized in 
a number of novel applications. The theoretical and experimental investigation of the scattering 
properties of the chiral guide section allows the development of inversion method to determine 
the constitutive chiral material parameters [3, 4, 5]. In this paper we investigate analytically the 
problem of the circular waveguide containing a lossy chiral rod. The relevant research includes 
the complete description of the modal spectrum. Furthermore the scattering matrix of the 
chiral section is derived using the mode matching approach. The analysed junction consists of 
the chiral section and two transitions connecting this section with empty circular waveguides. 
In our experiments we use the chiral rod for which the constitutive parameters are closed to 
reported in [3]. The scattering characteristics were investigated and subsequently applied to 
calculate the polarisation state parameters of the fundamental waves transmitted through the 
chiral section. In the proof of principle experiment the performance of a chiral structure was 
measured and good agreement with theory was obtained. 

2. Theory 

The cross section of the chiral circular guide here analysed is shown in Figure la. The structure 
consists of the helix loaded chiral rod of length 20 mm and radius 5 mm, which is introduced 
into teflon sleeve entirely filling the cylindrical guide of the radius 10 mm. The chiral rods were 
fabricated in Sowerby Research Centre British Aerospace, England by dispersing stainless steel 
helices in an epoxy resin matrix. The helices have three turns of 1mm outside diameter, and 
a pith of 0.5 mm. The wire gauge is 0.15 mm. The rod contains 70 helices in total giving the 
metallic fraction of 0.6 %. In our experiments we use the values of the chiral material parameters 
as permeability, permittivity and chirality shown in Figure 2. It is closed to presented in [3] 
where they are extracted for similar chiral medium. 



302 

a) b) 
symmetry plane 

chiral        I       teflon 

2 = 0 
20mm 

empty circular 
waveguide 

•«-V»£/ 

chiral, 

empty circular 
waveguide 

tossy card 

teflon 

Figure 1:   Cylindrical guide containing lossy chiral rod:   a) cross-section; b) investigated structure; 
c) experimental setup 

The transfer matrix procedure proposed in [6] for general solution of the circular waveguide 
containing chiroferrite rods has been applied to derive rigorous dispersion relation for the con- 
sidered guide. The dispersion characteristics of the two fundamental left (LCP)and right (RCP) 
circularly polarised modes appearing in the guide are shown in the Figure 3. The differences 
observed between the modes propagation coefficients indicate that chiral material responds dif- 
ferentially to left and right handed circularly polarised waves. It means that the polarisation 
state of the wave propagated along the chiral guide is changes. 

To determine the scattering matrix of a lossy chiral rod inside a circular waveguide the 
structure is subdivided as shown in Figure 16 into two transitions from the empty to the chiral 

10.5 11.0 

frtquaney [GHz] 

>   o   o—©-—< )—e—e—B—< >--f>    o    n -t 
1.01 ►» o -~e—e—( i—e—e—&—« >—e—e—o—i 
0.8 

0.6 •   " real pert           1 

0.2 

I—if—\f—v    4 1—»—«—♦—< >—«—o—e—- 

IGHz] 

10.5 11.0 

fraquancy [GHz] 

Figure 2: Constitutive parameters of the chiral material (data follows from [3]) 
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Figure 3: Dispersion characteristics of the funda-   Figure 4:  Transmission coefficients versus length 
mental modes in considered circular guide of the chiral section 

section at z = 0 and z = I and the connecting chiral guide. In the current problem we assume 
that only two circularly polarised modes can propagate in the chiral section and the empty 
waveguides can support only two orthogonal TE\\ modes being co-polar (even) and cross-polar 
(odd) with respect to the chosen symmetry plane of the guide cross-section. Imposing the 
boundary conditions for the tangential electric and magnetic fields at interfaces z = 0 and z = I 
and orthogonalizing the fields with respect to the modes of the lossless empty waveguide, leads 
to the set of eight linear algebraic equations from which the scattering matrix is obtained as: 

(1) 

Here the superscripts and the subscripts refer to the empty waveguide co-polar (e) and cross- 
polar (o) modes and port respectively. One should note from Figure 4 that in dependence of 
the chiral section length the variation of the transmission coefficients S|i aJ1^ <^Ii ^ observed. 
It means that the input of dominant co-polar TE\\ mode at port (1) causes the output at the 
port (2) both fundamental co- and cross-polar modes. This coupling effect is possible because 
the rotation phenomenon occurs in the chiral waveguide section. Moreover the equal values of 
S^l and 5^2 indicate the reciprocal behaviour of the considered structure. The knowledge 
of the iSfi and Sf£ elements allows to determine the polarization state parameters of the wave 
transmitted across the chiral section. From Stokes equations defined as [2, 7]: 
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the rotation angle is: 

0 = - arctan (I) 
and the axial ratio is written as: 

AR = tan - arcsm Kl)] 

(2) 

(3) 

(4) 

3. Numerical and Experimental Results 

Figure lc shows the experimental setup used for measurement of polarization state parameters 
of the wave propagated along the considered chiral guide. The section of chiral circular guide is 
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Figure 5: Characteristics of the rotation angle Figure 6: Characteristics of the axial ratio 

placed between two circular to rectangular waveguide transitions with tapered dielectric trans- 
formers matching the chiral rod. For characterization of the polarization state parameters of the 
wave transmitted across the chiral sample the measurement of co- and cross-polar transmission 
coefficients are required. The co-polar transmission coefficient is derived when the input and 
output rectangular waveguides are parallel. The cross-polar coefficient is measured when out- 
put waveguide is rotated 90° relative to the input waveguide. The setup (Hewlett-Packard) was 
calibrated using the TRL calibration in the co-polarization configuration. 

Figure 5 shows the theoretical and experimental frequency dependent characteristics of the 
angle of rotation for the considered chiral guide of the length 20 mm. The change of the 
sign of rotation angle above the resonance frequency is observed. The resonance occurs near 
the frequency 10.75 GHz. This frequency is in agreement to the half-wavelength resonance 
frequency 10.8 GHz of the current in the helix wire. As shown in Figure 6, where axial ratio 
characteristics are presented, near the resonance frequency the axial ratio approaches the value 
of 0.8. Here, the wave at the output of the chiral section is nearly circularly polarised. 

4. Conclusion 

The experimental results agree well with the theoretical prediction for both examined polariza- 
tion state parameters. It means that the proposed solution sufficiently describes the scattering 
properties of the considered chiral waveguide. 
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Abstract 

We have considered some peculiarities of light reflection by several types of fractal 
surfaces. The two-dimensional Weierstrass function for modeling of fractal surfaces was 
used. The computer simulation of real rough surfaces was performed by means of this 
function. The electromagnetic waves scattering indicatrix was obtained for the concrete 
fractal surfaces based on the scalar Kirchhoff theory. The computer simulation of light 
reflection by fractal surfaces was performed. 

1. Introduction 

All the surfaces are rough in some way or another. Therefore the studying of the scattering of 
electromagnetic waves by rough surfaces is an important and interesting theoretical and experimental 
task. The investigation of the peculiarities of such scattering is an important first of all for a non- 
destructive control of real surfaces. Real surfaces are most adequately described by fractal functions 
as they are neither pure deterministic nor pure casual. Last time the fractal nature of a number of 
different surfaces have been experimentally determined (sea surface and sea bottom, Earth relief, 
cloud surfaces, thin film surfaces, deposited on the substrate, etc.). 

The aim of this work was the simulation of the electromagnetic waves scattering indicatrix based 
on the scalar Kirchhoff theory for particular surfaces. The analogues calculations were performed by 
others authors [2], but our results have some distinctive features, particularly in the expression for the 
averaged scattering coefficient there are some additional terms which can significantly influence on 
the resulting scattering indicatrix at a certain geometry of the experiment. 

2. Theory 

We have chosen the two-dimensional Weierstrass function  z(x,y) for the simulation of rough 
surfaces 

AM M ( 
^y)=c„22^-3>"sin|v 

n=0m=l 

27tm        .   2nm 
*cos hysm  

M m + $nm h (1) 

were cw is  a normalizing factor; q > 1 is the fundamental spatial frequency; K is the fundamental 

wavenumber of the surface; D is the fractal dimension (2 < D < 3); N,M are numbers of tones; §nm 
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is a phase term. The example of a rough surface simulated using the function (1) is shown on Fig. 
1(a). 

Let us consider the wave falling on the rough surface 5 at an angle 0, and scattering at a polar 

angle 02 and at an azimuth angle G3. We will be finding the scattered fieldEs{r,t) based on the 

scalar Kirchhoff method [4]: 

EAr)= -ikrF(e1,e2e3)^2^ Uxp[imx0,y0)]dx0dy0+Ee(r), (2) 
2%r     « 

where it is the wavenumber of the incident wave, 

F(G1,G2,e3) = -^(A2+B2+C2) 

is the angle factor, R is the reflection coefficient, 

A = sin 0J - sin 62 cos 03, 

B =-sin 02 sin 63, 

C = -cos ©! - cos 02, 

<K*o, v0) = Ax0 + By0 + Ch(xQ, y0) 

is the phase function, 

is the bound term, 

Kxo>yo) = z(xo>yo)> 

E.e^m{AI  BI) 
C      A%r 

-Y 

= 
xj[e^oJ)_e^(^-y)]iXo, 

(3) 

h 
-X 

The above formalism is valid under the following conditions[4]: the incident wave is monochromatic 
and plane; the scattering surface is rough inside a certain square and smooth outside its; the surface 
dimensions are much large than the incident wavelength; all the surface points have finite gradient; 
the reflection coefficient is a constant across the surface area; the scattered field is observed far from 
the surface. 

After some transformations from Eq.(2) considering Eq.(l) we obtain the expression for the 
average scattering coefficient 

(pxH^r (4) 
in 
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u       h\    lv Z*\    i      (2kXYcosel where (Is) = lEsEs), 70 =  
L 

^2 

is the intensity of a wave reflected from the respective 

smooth surface. Neglecting the terms higher than £„(£„ = kcwCq^   3'u), this expression has the 
following approximate form 

<p,>- 
F(e„e2,e3)' 
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where, a is the root mean square height of the surface roughness, X and Y are the dimensions 
reflecting area 

Cj = kcwC = kaC 
2(D-3) _2_   \-q 

M'l-^N(D-3) 

sine x = - 
sin A: 

N-\ M 

nm     n=l m=0 

3. Numerical results 

We have calculated the averege reflected coefficient (p^) as a function of G2 and 03 (the scattering 

indicatrix) based on Eq. (5). We have assumed that R = 1, in other words we have not considered the 
real dependence of the reflectance R on the wavelength X and on the incident angle 6j. The 
example of the scattering indicatrix is shown on Fig. 1 (b). 

4. Conclusion 

The analysis of the obtained results leads to some inferences: 
• The waves scattering is symmetrical relatively the plane of incidence; 
• The most intensity of the scattered waves is observed in the specular direction; 
• There are others directions, where some splashes of intensity are observed; 
• The picture of the reflection complicates with increasing of the surface large scale 

homogeneity. 
These peculiarities are due to combination of chaotic character and self-similarity of the real surface 
relief. 
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ö 

Fig. 1 a) The simulation of the fractal surface by means of Weierstrass function K = 6.3, N = M = 5, 
D = 2.5; b) The reflection coefficient log(p^) for the fractal surface with D = 2.5, q = 1.8; 

N = M=10. 
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Abstract 

In this contribution we propose the use of general bianisotropic inhomogeneous materials for both 
radiating (i.e. microstrip antennas) and transmissive (i.e waveguides, transmission lines, filters, 
etc.) components in the microwave and millimetre wave frequency ranges. The analysis of such 
components is essentially developed via a rigorous full-wave approach in the spectral or in the 
spatial domain depending on the complexity of the boundary value problem to be solved and on 
the numerical technique to be used. For the transmissive components a fundamental mode 
approximate analysis is also employed in order to obtain very fast design formulas. 

1. Introduction 

Nowadays, materials with a continuous spatial variation of the refraction index can be easily 
synthesized in the optical field for graded index optical fibers and planar waveguides. Also in the 
solide - state applications we can control the carrier concentrations on the atomic scale, allowing, thus, 
the synthesis of components with an essentially continuous conductivity profile. Since in the 
microwave and millimetre wave frequency ranges the technological processes used in the optical and 
solid - state applications cannot be effective, the synthesis of such materials could be realized only by 
means of artificial dielectrics. 

Artificial dielectrics with electromagnetic properties varying with the spatial coordinates can 
be synthesized via non-uniform metallic inclusions in a host material. In addition, by using, for 
instance, omega metallisations, we can think to introduce an anisotropic behaviour together with a 
magneto-electric effect. In such a way, thus, we can obtain a general inhomogeneous bianisotropic 
material. 

The use of the inhomogeneous materials has been recently considered in some works [1-9] and, as 
shown, leads to some improvements both in circuit and in antennas applications. The dielectric 
inhomogeneity, for instance, can be used to control the filtering and matching properties of a 
transmission line [1-4] or the radiation properties of microstrip antennas (directivity, efficiency and 
bandwidth) [5-9]. 

The analysis of such components has been developed by means of the rigorous full-wave approach 
both in the spectral domain associated to the Method of Moments (MoM) and in the spatial domain 
associated to a variational formulation and a Finite Element Boundary Integral (FE-BI) numerical 
procedure. Moreover, in certain cases, especially when the propagation characteristics of a component 
are investigated an approximate approach based on the TEM or quasi-TEM propagation can be used 
together with the non-uniform transmission line theory. 
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The aim of this contribution is to extend the previous works [1-9] to the case of inhomogeneous 
bianisotropic materials leading to a closed form representation of the Green's dyads in the spectral 
domain and to a new variational formulation in the spatial domain. 

2. Theory 

The constitutive relations for an inhomogeneous bianisotropic material are: 

[D = e(r)«E+|(r)«H 

|B = C(r)»E + |i(r)»H 
(1) 

Assuming a harmonic time dependence exp[j(öt] the Maxwell equations in a source free region can be 
written as: 

V x E = -jft^(r) • E - jüO£(r) • H 

V x H = jcoe(r) • E+jto|(r) • H 

V«[e(r)«E + 4(r)«H] = 0 

V-[C(r)»E + jx(r)»H] = 0 

(2) 

Since the analysis of radiating and transmissive components is developed in different ways we will 
present it in two separate sub-sessions. 

2.1 Radiating components 

Here we consider planar integrated antennas of the kind depicted in Fig. 1. 

y 

r M * * * . ■ j f #TF""^" 

:"s¥^-'k-- 

(a) (b) 

Fig. 1    Microstrip patch antenna configuration: Open planar integrated patch antenna (a); Cavity backed patch 
antenna (b). 

The electromagnetic formulation of the antenna in Fig.la is based on the full-wave analysis in the 
spectral domain and the numerical solution of the associated boundary-value problem is obtained via 
the method of moments (MoM). The fundamental step in this approach is the derivation of the spectral 
Green's dyad for the planar structure. In this case we consider the variation of the electromagnetic 
parameters only along the stratification direction and, starting from the curl Maxwell equations, we 
obtain, after a change of the reference system [6], the following relations in the spectral domain: 
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^r^ = Cw(y).V(y)+CVI(y).I(y) 
dy 

^ =CIV(y).V(y) + Cn(y).I(y) 
(3) 

dy 

where V = [E„, Eu] , I = [HU, Hv] and the elements of the matrices Cvv(y),CVI(y),CIV(y),CI1(y) 

are complicate ratios involving the electromagnetic parameters. In order to decouple system (3) we 
impose Cvv(y) = 0 and Cn(y) = 0 obtaining, thus, after three derivative operations, the following 
fourth order decoupled differential equations: 

H4F d3F d2F dE 
+ Av3(y)^+Av2(y)^|!L + Avl(y)^ + Av0(y)Ev =0 

dy4 

d4E 
dy 

dyj 

d3E 
dy2 

d2E 

dy 
dE, 

r+Au3(y):rf-+Au2(y)-rTL+Au.(y)-rL+A
uo(y)Eu=o 

dy dy2   ■--■'"' dy 

where the non constant coefficient Au(y) and Av(y) depend on the elements of the matrices Cij(y). 
Once the solutions of such equations are found, the overall spectral electromagnetic field is also 
known in the grounded inhomogeneous slab and the Green's dyad can be easily determined. 
The application of the MoM in order to calculate the unknown current density on the patch, is now a 
straightforward matter [7-8]. 

On the other hand the electromagnetic formulation for the antenna in Fig. lb is based on a 
variational approach together with the implementation of the Finite Element Boundary Integral (FE- 
BI) numerical method. The functional F(E) that has to be stationary for arbitrary variations of the E 
field is given by: 

F(E)=<y.(r)a"'»(VxEa+j(ö|(r)*Ea),VxE+jcoC(r)»E>+(ö2<Ea,e(r)»E>- 

-<Ea,jtoJ>-<jCöJa,E>+2Q)^. f(nxEaf«  f   G(r,r>rzxE(r')ldS' dS 
(3) 

For the meaning of the apex a, of the vector J, of the surface Sap, please, refer to [5]. 
After discretizing the cavity into finite elements of proper shapes (in this case bricks are used), 

and after expanding the electric field by using the edge-based vector basis functions as in [5] we 
obtain an algebraic system to be solved of the form A • X = B. The solution of such a linear system 
returns the electromagnetic field in the cavity and on the aperture surface and, thus, the derivation of 
the antenna characteristics is, now, a straightforward matter. 

2.2 Transmissive components 

Here we consider both planar and not planar waveguides as shown in Fig.2. These waveguides have 
been studied by means of different approaches. When the variation of the electromagnetic parameters 
is only along the stratification axis striplines and microstriplines have been analyzed in the spectral 
domain by using the same approach previously shown simply introducing the z dependence exp[-jkzz] 
in the Maxwell equations. The integral equation written on the strip can be solved again via the MoM 
leading to an eigenvalue algebraic system whose solution returns the propagation characteristics of the 
waveguides. Striplines, microstriplines and rectangular waveguides with arbitrary variations of the 
parameters only on the cross sections have been analyzed by means of the full-wave approach in the 
spatial domain together with the Method of Lines (MoL) numerical procedure [10]. Finally, when the 
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parameter variation is only along the power flow direction, for the striplines and microstriplines the 
approximation of a TEM or quasi-TEM propagation has been used and the solution has been obtained 
by means of the non uniform transmission line theory as in [1-4]. 

(a) (b) (c> 
Fig. 2    Three different kinds of waveguides here considered: Microstripline (a); Stripline (b); Rectangular 

Waveguide (c). 

3. Conclusion 

In this contribution we have proposed the use of general bianisotropic inhomogeneous materials for 
both radiating and transmissive components in the microwave and millimetre wave frequency ranges. 
The analysis of such components has been essentially developed via a rigorous full-wave approach in 
the spectral or in the spatial domain together with different numerical techniques (MoM, FE-BI, MoL, 
etc.). Particularly, a new variational formulation for cavity backed microstrip patch antennas loaded 
with general inhomogeneous bianisotropic dielectrics and new analytical expressions of the spectral 
dyadic Green's functions for grounded slab loaded with the same materials have been derived as 
extensions of works previously published. 
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Abstract 
A comparison between measured and simulated characteristics of helix loaded media reveals a 
good agreement for the resonance frequency but significant differences with respect to the 
resonance bandwidth. This phenomenon is related to the geometrical variations of the 
commercially available helices due to tolerances. This is confirmed by two models developed to 
describe these effects. 

1. Introduction 

A good prediction of the effective constitutive parameters of artificial chiral materials is of basic 
importance for the development of applications. Because of the great number of inclusions involved 
this is, in principle, quite a demanding task. The tools developed so far model a large quantity of 
helices and/or use appropriate averaging procedures [1, 2]. In these studies, however, helices of a 
given type are always assumed to be identical. As could be observed in various experiments this 
allows to predict the resonance frequency but leads to significant discrepancies between the simulated 
and the measured resonant bandwidth. In the following, the causes of this phenomenon will be 
discussed and modeled. 

2. Measurements and Simulations 

The chiral material used in this study consists of commercially available 5-turn metal helices 
embedded in PU-foam spheres. It was fabricated by means of the foam injection procedure presented 
in [3]. The helices have a nominal radius r = 0.92 mm and pitch p = 0.37 mm. 

The three complex effective constitutive parameters z,, Ur and K (according to the Lindell- 
Sihvola notation [4]) were extracted using the circular waveguide setup described in [5]. With three 
waveguides of different diameter it was possible to cover the frequency range from 2.75 to 5.70 GHz 
that includes the chiral resonance at 4.2 GHz. As an example Fig. 1 displays the measured complex 
permittivity £,. 

A   M   :M—*,   M- 

lm{E,} 

—■—measurement 
—^—single helix 

simulation 

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

Fig. 1 Measured and simulated permittivity of the chiral material. The simulation assumes identical helices. 
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In addition, the average polarizabilities of a helix with nominal dimensions were calculated [2]. 
The constitutive parameters were computed using Maxwell-Garnett mixing rules [4]. As in the 
experiment the volume fraction of the chiral inclusions was set to 0.45. As can be seen from Fig. 1 
predicted and measured resonance frequencies are in good agreement while the resonance width and 
the magnitude differ significantly. 

a) 
DC 

3.5 4.0 4.5 5.0 

frequency [GHz] 

Fig. 2   Measured resonance bandwidth of a chiral material and resonance shift of a single helix due 
to geometrical tolerances 

This phenomenon is possibly caused by the tolerances of the helix dimensions: According to 
the manufacturer's data sheet the tolerances of helix radius and pitch are approximately ±2.5% and 
±10%, respectively. To check this assumption, the material parameters were calculated for different 
radius and pitch values within these limits. The computed resonance frequencies cover the measured 
resonance bandwidth. The highest (lowest) resonance frequency corresponds to the largest (smallest) 
pitch-to-radius ratio (Fig. 2). 

To substantiate the above hypothesis further investigations were necessary. A direct 
experimental check of the material simulation would call for a medium made of identical helices. As 
this is not available single helices were investigated, instead. To this end individual helices were 
placed in both a coaxial and a circular waveguide and fixed in a Rohacell™ plug. From the measured 
scattering parameters S„ and S21 the quantity a=IS1,l

2+IS2,l2 was calculated. This is a measure of the 
energy dissipated in the chiral object. It provides information on the resonance frequency and the 
resonance bandwidth. 

A single helix is only a small disturbance; therefore the measured reflection is generally small 
while the transmission is close to unity. Further, the scattering parameters are highly sensitive to the 
helix orientation. Still, the achievable measurement accuracy is satisfactory. For a further discussion, 
see [6]. Fig. 3 shows, as a representative example, a for a single helix. For comparison, the response 
obtained with a representative sample of bulk chiral material in the same waveguide is also included. 
For the latter the absorption bandwidth and the resonance bandwidth of the material parameters 
(Fig. 1) are in close agreement. The absorption bandwidth of the single helix fits the resonance 
bandwidth predicted for a material made of geometrically identical helices (Fig. 1). Measurements on 
different helices show that all resonance frequencies lie within the absorption bandwidth of the bulk 
material. 
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The above findings support the hypothesis concerning the tolerances. Still, a model is needed 
that allows to predict the resonance behavior of the bulk material. This is the scope of the following 
section which deals with the calculation of the effective constitutive parameters. 

o.o 

-chiral material 
-single helix 

T 1 1 1 1- 
2.5 3.0 3.5 4.0 4.5 5.0 

frequency [GHz] 
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CO 

+ 
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Fig. 3 Coaxial measurements: resonance bandwidth of a single helix and the chiral material 

3. Modeling the Effective Chiral Material 

As was shown in the previous section a chiral material is a mixture of helices with slightly differing 
geometry which leads to a noticeable shift of their resonance frequencies. The effective constitutive 
parameters follow from a superposition of the individual helix properties. Two approaches were 
developed to predict the material parameters. In the first one, a discrete set of helices with radius and 
pitch being equally distributed within the tolerance range was assumed. The average polarizabilities 
of each helix type were computed next. Finally, multi-phase mixing rules were applied to obtain the 
constitutive parameters [4]. The second method calculates the average polarizabilities for the helix of 
nominal dimensions, only. The results are then shifted along the frequency axis within the required 
resonance bandwidth. The latter can be determined either by measurements (provided the chiral 
material has already been realized) or by two additional calculations using the helices with smallest 
and largest pitch-to-radius ratio (see above). As long as the broadening of the resonance frequency is 
not too large both approaches yield almost identical results. Because the second method is much faster 
and easier to implement it was preferred in the following. 

Fig. 4 shows the computed and measured permittivity of the chiral material mentioned above. 
The resonance frequencies were assumed to be equally distributed. It can be seen that the model 
predicts well the measured response. The good fit of the resonance bandwidth is of course inherent to 
the model. But it is interesting to note how well the model renders the dispersion characteristic of the 
permittivity. Also the quantitative agreement is satisfactory. This holds for all other constitutive 
parameters as well. Still, some differences can be observed. For instance, the peak modeled at the low 
frequency end is not confirmed by the measurements. It may be due to several effects. First, the 
assumption that the resonances are equally distributed is probably unrealistic. A Gaussian distribution 
together with a finer discretization is likely to give a better fit, here. Second, the electromagnetic 
model of the chiral inclusion is based on (the usual) simplifications. Third, the mixing formulas are 
only approximate. And finally, also errors of the measurement procedure have to be taken into 
account. Indeed, because at resonance the material is quite lossy, only thin slabs could be 
characterized in the waveguide setup. As, then, the number of helices was too small to yield 
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statistically meaningful results the material was virtually homogenized and randomized by averaging 

measurement 
-■-Re{er} 
-0-lm{er} 
simulation 
-+- Re{er} 
-^-lm{er} 

2.5 3.0 6.0 4.5 5.0 

frequency [GHz] 

Fig. 4 Measured and simulated effective complex permittivity 

the measured responses of several samples with different chiral inclusions, as was suggested in [5]. 

4. Conclusion 

In this contribution fabrication effects on the resonance bandwidth of chiral materials were 
investigated. The calculated constitutive parameters of a chiral material consisting of helices with 
nominal pitch and radius were compared to the data extracted from circular waveguide measurements. 
It was observed that although the resonance frequency can be well predicted significant differences 
occur regarding the resonance bandwidth. It was shown that this discrepancy is related to tolerance 
effects of the pitch and the radius of the helices. Two models were developed that allow to accurately 
predict the constitutive parameters of a realistic chiral material. 
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Abstract 

In this paper we calculate the optimum parameters of a stratified periodic structure. We 
obtaine the dependences of intensity, ellipticity and angle of turn of the main axis of polariza- 
tion ellipse of reflected and transmitted waves on the quantity of the cells, on the frequency 
of the electromagnetic waves and on the magnetic field strength. We show there is the pos- 
sibility of use of such structure, having selective reflection of electromagnetic waves, as the 
polarization converter controlled by a magnetic field. 

1. Theory 

One of the possibilities of creation of controlled converters of electromagnetic waves polarization 
is the use of stratified periodic structures, combining the properties of their components. We 
consider stratified periodic structure, consisting of any quantity of repeating elementary cells, 
placed in an external magnetic field. It is supposed, that the first layer of such cell is isotropic, 
and does not possess the chiral properties. The second layer is also isotropic, but adsorbing and 
however possesses the magnetic gyrotropy, that brings about to circular birefringence of waves 
inside a layer. For a gyrotropic layer of such structure the constitutive equation have the form 

D= e E+i 9 x E 

B=nH 

(1) 

(2) 

where 9 is the vector of gyrotropy. 

d, ds di «fe d, da 

n, 
9=0 

E2 

9^0 

Figure 1: Schematic representation of stratified periodic medium. 
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For the description of absorbing gyrotropic crystals, except complex tensor of permittivity, it 
is necessary to introduce also complex tensor of gyrotropy. The real part of tensor of gyrotropy 
describes circular birefringence, and the imaginary part describes circular dichroism. Using 
boundary conditions for waves in each layer, we have calculated a matrix M, which connects a 
incident wave to transmitted and reflected waves [l]-[3] 

M = hiDJwD-z (3) 

where Iij is the matrix of transmission of wave through the boundary of media, Dj is the 
matrix of propagation of wave in medium. 

If the stratified periodic structure consist of N elementary cells, we have to raise the matrix 
M to power N. The matrix Meff for the whole stratified periodic structure can be written down 
as product 

Me" = IaM
NIb (4) 

where Ia and h are matrixes of transmission of electromagnetic wave through the bound- 
aries between air and structure. Through elements of this matrix the complex coefficients of 
transmission and reflection of waves for all layered structure are expressed 

1 M?& T = WT'S=I0- (6> M
(l,l) M(l,l) 

To obtain the maximum of reflection by each cell, the thicknesses of layers have to satisty 
to following relations 

2kidi = (2mi + 1)TT, 2k2d2 = (2m2 + l)*r (6) 

where mi and m,2 are integer numbers, k\ and k2 are wave numbers of right- or lefthanded 
circularly polarized waves in the first and the second layer. Selecting the thickness of gyrotropic 
layer, depending on frequency of electromagnetic waves and strength of a magnetic field we can 
obtain the maximum reflection for one circularly polarized wave and simultaneously minimum 
for opposite polarization. Then at increase of number of cells of structure the intensity of one 
reflected circularly polarized wave monotonously increases and reaches the saturation. The 
value of saturation of intesity depends on a sign of imaginary part of the tensor of gyrotropy. 
Intensity of other circularly polarized reflected wave oscillates, periodically accepting close to 
the zero value. It enables to obtain the polarization of a reflected wave close to circular. 

2. Numerical Calculation 

One can see on fig. 3, that the maximum of ellipticity both for reflected and transmitted waves 
take place at calculated value of external magnetic field strength. 

As is obvious on fig. 4, at the calculated value of the external magnetic field strength the 
intensity of reflected lefthanded wave is maximum, while the intensity of righthanded wave is 
close to the zero. When changing an external magnetic field or the frequency of electromagnetic 
waves the polarization properties change both of transmitted and of reflected waves. 

3. Conclusion 

As result there is the possibility of use of such structure, having selective reflection of electro- 
magnetic waves, as the polarization converter controlled by a magnetic field. 
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N 

Figure 2: Dependence of normalized intensity of reflected and transmitted waves on the number 
of cells. 

h,10°A/m 

Figure 3: Dependence of ellipticity of reflected and transmitted waves on the strength of an 
external magnetic field. 
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h,10bA/m 

Figure 4: Dependence of intensity of reflected left- and righthanded circularly polarized waves 
on the strength of an external magnetic field. 
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Abstract 

A widely spaced periodic array of defects in the photonic band gap crystal is studied with the goal 
of designing a waveguide with a prescribed narrow bandwidth. Tunnelling of radiation between 
the defect sites allows wave propagation along the line of the defects. A design procedure based on 
the weakly coupled cavity model is proposed. The frequency shift and the band structure of the 
periodic defect waveguide are linked by an analytic relationship to the distance between the defect 
sites and therefore can be tuned by varying the latter. Sections of such waveguides can be 
employed as ultra narrow band filters in optical routing devices. 

1. Introduction 

Photonic band gap materials attracted much attention in the context of designing optical and 
microwave devices. Recently numerical experiments have shown that line defects in photonic crystals 
can be used not only to guide but also to multiplex and demultiplex optical signals [1]. Most 
researchers studying the wave guiding by line defects employ photonic band waveguides obtained by 
removal or modification of consecutive posts in the periodic structure. The strong coupling between 
the adjacent defects produces relatively wideband waveguides. 

In this paper, we address the issue of designing photonic bandgap waveguides with a prescribed 
narrow bandwidth. Specifically, we concentrate on a problem of a waveguide formed by widely 
spaced periodic defects in the photonic band gap crystal. Tunnelling of radiation between the defect 
sites allows wave propagation along the line of defects. Sections of such waveguides can be employed 
as ultra narrow band filters in optical routing devices. Here, we propose a design procedure based on 
the weakly coupled cavity model. This approach resembles the tight binding perturbation theory of the 
solid-state physics. A single defect mode with a resonant frequency in the band gap is analyzed first. 
Coupling between the periodic defects causes a discrete spectral line to turn into a narrow band of 
guided frequencies shifted from the original frequency of a single defect. The perturbation theory 
facilitates an approximate calculation of both the frequency shift and the band structure of the periodic 
defect waveguide. Furthermore, these parameters are linked by an analytic relationship to the distance 
between the defect sites. Consequently, the latter distance can be directly tuned to achieve the 
desirable waveguide properties. The design results are verified by a comparison with numerically 
rigorous computations employing the current model technique [2]. 
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2.   Formulation 

Consider a problem of designing a narrow band waveguide formed by widely spaced periodic defects 
in the photonic band gap crystal. The time harmonic electromagnetic problem in an inhomogeneous 
dielectric can be cast in an eigenvalue form for the magnetic field H [3]: 

SH (r) = («)\2 

H{r) (1) 

where co is the frequency, c is the free space speed of light, and 0 denotes a Hermitian operator 
defined by 

0# = Vx 
f 1 

e(r) 
-VxH 

\ 
(2) 

In (2), £(r) denotes the relative permittivity. Alternatively, the eigen-frequencies can be expressed in 

the variational form: 

(a>^ = (H,GH) 

where (•, •) denote the inner product defined by 

(F,G) = JF*-Gdr 

(3) 

(4) 

The unperturbed crystal is characterized by a periodic relative permittivity £p(r).  First, consider a 

single defect within the periodic structure arbitrarily centered at the origin of the coordinate system. 
The localized defect can be characterized by the change in the reciprocal permittivity 
J(r) = l/£d(r)-l/ep(r), where £d(r) denotes the permittivity of the photonic crystal with a single 

defect. We assume that this defect allows for a localized modtH0(r) with a frequency (00 falling in 

the band gap of the unperturbed crystal.   Specifically by analogy to (1), 

(     V 
(0p + 0o )//„(/■)= ^ jtf.GO (5) 

0   is the operator of the periodic structure and 0O is the defect operator. The operators 0p and 

0O are defined by analogy to (2) via replacing l/e(r) by l/ep(r) and d(r), respectively. 

Now, we turn to the case of a linear array of defects obtained by a periodic repetition of the 
defect. The reciprocal permittivity of the photonic crystal with the linear array of non-overlapping 
defects is given by 

e(r)    ep(r) 
+ J^d(r-nb) (6) 
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where the vector b is assumed to be an integral multiple of the lattice vector a, b — Ha, £e N. The 
operator 0, 

0 = 0,+X0« (7) 

which comprises a superposition of 0   and shifted operators 0n defined by analogy with (2) via 

replacing l/e(r) by d{r-nb) for ne Z . 
Following the strong binding perturbation theory [4] for the linear array, we seek a modal 

solution of the form 

fl(r)=XWO (8) 

where Hn(r) = H0{r-nb) and {\ } is a set of yet to be determined coefficients. Substitution of (7) 

and (8) in (3) yields 

where 

and 

CO X X KAJn- 
n=-«o m=- 

}    X X 44Ä- 

H m „—( H„, H„) n—m       \      n'       m I 

Tn_m=(Hn,eHm) 

(9) 

(10) 

(11) 

Note that due to the periodicity of the array the integrals in (10) and (11) depend only on n-m. 
According to variational principle the frequency expressed by (9) is stationary with respect to the 
coefficients {\}. We have 

V« 

(0 

*\ 
■ = 0 T    - n-m 

•'■ 
A„=o (12) 

Discrete shift invariant nature of (12) suggest that modal solution of the form \ = Aejkm whose use 
in (12) yields 

71- 
fcoX 

\c j 

H_ ejkm=0 (13) 

Using (5), we have 

r.-ft V 
m m (14) 
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where 

K=\K- £ enH0 dr=Z(Hm,GnH0) (15) 
n=-~ n= 
n*0 n*0 

Substituting (14) in (13) we obtain 

(16) 

namely, an expression for the frequency shift of the linear array mode with wavenumber klb relative to 
the frequency of the localized mode. For sufficiently spaced defects we can make the first order 
approximation by retaining only the nearest neighbor interactions. Specifically, we have 

Vm#0   |/fj«|#0|   and   V|m|>l   |rm'|«|ro1. On the other hand,   T(   and   T0'  can be 

comparable in magnitude. With this approximations and assuming |ö)-6)0|« (00 we obtain 

co-coo =-?!—[T;+2T1'cos(k)] (17) 
MOM* lJo110 

The total bandwidth of the waveguide formed by the periodic array for propagating modes 0 < k < K 
is given by 

A6) = ^-r; (18) 

Furthermore due to weak coupling and Hermitian property of 0,, 

T;~2(Hl,eiH0) = 2(GlHl,H0) = 2J(Q1HiyH0dr (19) 

Once the localized modal solution is known, equations (18)-(19) allow for straightforward estimation 
of the waveguide bandwidth for various spacings between defects, b = £a. Note that in (19), 
//,(/•) = H0(r-b) and 0, is a local operator. For sufficiently large r, the localized magnetic field 

H0{r) is decaying exponentially away from the origin. Thus, (19) indicates that increasing £ can 
reduce the waveguide bandwidth. The bandwidth control by varying defect spacing will be 
demonstrated via numerical examples. 
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Abstract 

In this paper, we analyse the radiation on a step discontinuity of a grounded chiral slab, and we 
show that it can be enhanced due to the effect of chirality. In addition to the surface modes, the 
continuous spectrum of radiation modes is also taken into account. In fact, it is the coupling 
between these two types of modes that is responsible for the radiation occurring on the step. We 
show that chirality may increase such coupling and, therefore, improve radiation. The complete 
spectral representation includes two subsets of continuous hybrid modes: Incident Transverse 
Electric (ITE) and Incident Transverse Magnetic (ITM) radiation modes. The scattering matrix of 
the step is determined by minimizing the boundary residual error in the sense of the least squares. 
The influence of chirality on the characterization of the step is demonstrated and we show that 
some control on the radiation pattern is achieved, mainly in the angle and width of the radiation 
beam. 

1.  Introduction 

Step discontinuities play an important role in optical and millimeter wave components, as constituent 
blocks of several interacting structures. In dielectric planar waveguides involving chiral media, such 
discontinuities have been already analyzed, either isolated [1-2], or in periodic structures [3]. 

This paper extends the previous analysis to consider the radiation effect, and shows that the 
radiation of the step discontinuity can be enhanced due to the inclusion of chirality. Since the 
grounded chiral slab is an open structure, in addition to the surface modes, the continuous spectrum of 
radiation modes must be taken into account. Moreover, appreciable coupling may take place between 
the surface and the radiation modes of the waveguide, and so the continuous spectrum will be 
responsible for the radiation from the step. Chirality may affect such coupling and increase radiation 
from the step. 

In order to calculate the radiated field, a rigorous description of the problem must be achieved, 
by selecting a complete spectral field representation. Two subsets of continuous hybrid modes may be 
considered: (i) a pair of Incident Transverse Electric (ITE) and Incident Transverse Magnetic (ITM) 
radiation modes; (ii) a pair of Reflected Transverse Electric (RTE) and Reflected Transverse 
Magnetic (RTM) radiation modes. These sets of modes were found to be mutually orthogonal and 
have the advantage of presenting a clear physical interpretation [4]. To apply a discrete mode 
matching technique, the continuous spectral amplitudes are discretized and the residual error in the 
boundary conditions is minimized in the sense of the least squares. Finally, the accuracy of the 
solution is checked by means of a power balance criterion. 

The reflection and transmission coefficients of the incident fundamental surface mode, as well 
as the fully characterization of the radiation effect are presented. The analysis includes the influence 
of the chirality on the radiation control of the step. Finally, by using the saddle-point technique, the 
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radiation pattern is calculated. The effect of the chiral parameter on both the angle and width of the 
radiation beam is also considered. 

2. Problem Formulation and Solution 

The step discontinuity in a grounded chiral slab, shown in Fig. 1, is considered. By introducing 
normalized fields 31 = D/e0, SB = Z0B /\i0 and ST = Z0H, the constitutive relations in the chiral 

medium, for time-harmonic fields (ejm), may be written as [5] 

& = jxE+\i#r 

where % is the chirality parameter, £ is the permittivity and \i is the permeability. 

(la) 

(lb) 

Fig. 1   Step discontinuity a grounded planar chiral slab. 

According to the boundary conditions at the discontinuity plane, the transverse field 
components must be continuous. In this case, since all the modes are six-component hybrid modes, it 
is very convenient to introduce the two following transverse state vectors: 

<|> = [Er jßTy]
r 

V = [ßTx, -jEx]
T, 

(2.a) 

(2.b) 

where <|> is the transverse field supporting vector. In addition, we may introduce the boundary residual 

vector as 

£ = 

a(\|/7 -\|/7/) 

(3) 

where a represents a dimensionless weighting factor between the two boundary residual components. 
This residual can be minimized according to the least squares method. However, in order to apply this 
discrete mode matching technique, the spectral amplitudes of the radiation mode must be discretized 
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within a complete set of orthogonal basis functions. Legendre polynomials and Gauss-Laguerre 
functions have been used in this procedure. 

The complete spectral field representation includes two types of radiation modes. In the present 
analysis, Incident Transverse Electric (ITE) and Incident Transverse Magnetic (ITM) radiation modes 
were considered [4]. The radiation pattern of the chiral step was calculated by the use of the steepest 
descent method. 

3. Numerical Results and Discussion 

For numerical simplicity we have considered monomodal slabs on each side of the step discontinuity 
(waveguides I and II), which means that we will only have the fundamental surface mode propagating 
on the structure. Fig. 2 shows the variation of the reflection and transmission coefficients T0 and T0 of 
the fundamental incident surface mode, as a function of the chirality parameter %. The suddenly 
decrease of the value of IT0 I for % near 1.8, is due to the fact that the fundamental mode propagating 
in waveguide II is approaching cutoff. 

The variation of the reflected and radiated power Pr and Prad with chirality parameter %, is 
depicted in Fig. 3. The radiated power is much higher than the reflected power, which shows that, due 
to the discontinuity, there is a strong coupling between the incident surface mode and the continuous 
spectrum of radiation modes. Moreover, one should note the monotonous increase in the value of 
radiated power, whenever the chirality is increased. This value may reach 80% of the total incident 
power, which proves that, on any circumstance, one may disregard the contribution of the radiation 
modes to the total fields. Only when the surface mode in waveguide II approaches cutoff, the reflected 
power becomes significant. 

• ■ 0.09 

ir.i 

0.07 

0.03 

Fig. 2 Reflection and transmission coefficients 
for the incident surface mode as a 
function of the chirality parameter %. 
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Fig. 3 Reflected and radiated power in a chiral 
step discontinuity as a function of the 
chirality parameter %. 

The forward radiation pattern of the chiral step is depicted, in Fig. 4, for different values of the 
chirality parameter %. A strong increase in the radiation intensity can be clearly seen, as far as chirality 
is raised. Meanwhile, the beam angle observes a slightly decrease. Backward radiation pattern does 
not differ significantly in shape of the forward pattern, although being considerably small. Forward- 
backward ration is about 20 dB, which shows that, in the present case, radiation is mainly in the 
propagation direction. 
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Finally, Fig. 5 shows the variation of the beam angle e^x and the 3dB beam width A03dB, as a 
function of %. For small values of the chirality parameter, 0mx and A83(IB suffer a linear increase with 
%. As far as the fundamental mode in waveguide II approaches cutoff, those values suddenly decay. 

Fig. 4   Forward radiation pattern for different 
values of the chirality parameter %. 

Fig. 5   Beam angle and 3 dB beam width as a 
function of the chirality parameter %. 

4. Conclusion 

We have shown that the power radiated from a step discontinuity in a planar dielectric slab can be 
significantly increased with the inclusion of chirality in the dielectric substrate. On the other hand, 
this may cause a slightly decrease in the beam radiation angle as well as a reduction of its width. 
Therefore, we have proven that chirality represents an extra degree of freedom for the radiation 
control of a step discontinuity in a planar dielectric waveguide. 
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Abstract 

The problem of soliton propagation in nonlinearity Kerr medium with linear optical activity 
and cubic anisotropy is considered. It is shown that the balance between the nonlinearity 
and linear girotropic results in the existence of spatial polarized solitons with fixed states of 
polarization. The chirality effect is characterized through the Born-Fedorov formalism and 
the results show modifications of the attenuation and nonlinear coefficient compared with 
the tipical coefficients in a nonlinear Schrödinger equation for a normal fiber in a regime of 
1,55 and 1,3 /xm. 

1. Introduction 

Chirality was firstly observed as optical activity and it corresponds to the rotation of the po- 
larization plane, in a linear isotropic material. Phenomenonlogical studies establishes that the 
polarization plane rotation may be predicted by Maxwell's equations adding to the polarization 
P an additional term proportional to V x E. The Drude-Born-Fedorov equations by satisfy- 
ing the edge conditions [1], allows us to characterize the nonlinear chiral media through by the 
equations D = enE + e£V x E and B = n0(H + £V x H), where en is the permittivity and £ is 
the chiral coefficient. The pseudo scalar £ represent the measure of chilarity and it has length 
units. [2]-[3]. It should also be considered the non local character of theses equations, since the 
polarization P (magnetization M) depent not only of E (H) but also of the rotor of E (rotor 
of H). Even though from an electromagnetic point of view a homogeneous chiral material may 
be discrete by different specific equations [3], in this work we will use the Drude-Born-Fedorov 
equations in optical fiber since they are the most adequate for the applications of our interest. 

2. Basic Propagation Equation 

Using equations the above equations, the corresponding Maxwell's equations are 

_     d(enE)        ^     ß      . .      €QE        _ QE 

dB dH d(Vx#) 
v x E = -at = -">-* -ßoC    at (2) 

If we make the follow considerations: 

• The chiral media has a Kerr type non-linearity characterized by the refraction index such 
I -*l2 

that the permittivity is e„ = e0 + €2 \E\   [4], were e0 is the lineal part and ti is the non 
linear part, respectively, of en. 
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That the optical electric field E represent a located wave propagating in the direction 

E (f, t) = (x + jy)V (f, t) c-i^—ot) = $e-J(kz-w0t) (3) 

were $ represents the complex envelop. 

That the condition of a slowly variant envelop conditions its may be 

Ö2* 

dz2 «C *£ a# 
at « b'w0* ; 

o 1 ->|2 -* 

< 
ö|#|2# 

<c 
at2 JWo   at 

l-|2 -» 
(4) 

That the phenomenon of dispersion is included in heuristic form through the relation 

«5t      5ÖJ5t •?2ä^3F    ^oa^SF wo M 

we obtain the following wave equation 

+ lk"^--i-k'"-  + 2ft at2  V at3 
,fl»* 

f(l-C*o) 
JUJOL 

</>- 
ßu% 

2k0 ^     (2ko¥ \<f>U +(1- 

where fc'=£ = 
(5) 

; k" = §-|; k'" = §$. Equation (5) describes the propagation of pulses 
in a chiral dispersive and nonlinear optical fiber. The analysis of each term is has follows [4]: 
The first term represent the evolution of pulse with distance; The second, third and fourth 
terms represent the dispersion of the optical fiber k'(= l/vg) and k" correspond to the chro- 
matic dispersion; k' indicates that the pulses moving which the group velocity, while that the 
dispersion of the group velocity (GVD) is represented by k", which alters the relative phases of 
the frequency components of pulses producing its temporal widening, k" is null in the region of 
1.3 fj,m, For values of A less than 1.3 //m, k" is positive (normal dispersion region) and for values 
higher than 1.3 /xm, is negative (anomalous dispersion region), k'" represent the slope of the 
group velocity dispersion, also denominated cubic dispersion and correspond to a higher order 
dispersion; important in ultra short pulses and in the second optical window where k" is null 
(1.3 /itm region). The cubic dispersion, besides, is important in fiber with shifted dispersion to 
the region of 1.5 /aa. The fifth term is associated with the attenuation of the fiber (a), in this 
case those losses are weighed by the chirality of the fiber. |0|2<£ represent the nonlinear effect, 
and are due to the Kerr effect, which is characterized by having a refraction index depending 
on the intensity of the applied field. An index of this type for the case of optical fiber, means 
that there is a phase shift depending on the intensity and since the temporal changes of phase 
are also temporal changes of frequency, Its have that the Kerr type non linearity may alter and 
widening frequency spectrum of the pulse. This term also depends on the chirality of the fiber. 
The last term is highly associated to the chirality of the fiber. 

3. Nonlinear Schrödinger Equation 

In order to ease up the solution of the propagation equation the following changes of variables 
is introduced: t' = < - §- and z' = z* , thus the original reference system will be t = t' + ^ and 
z* = z' the equation (5) takes the form 

dz>  2   at* J6   at'3 ,J2k0 

Cfco 

(2fc0) 8(1-C*to)l*f*+C*«(l-Y)*! 0(6) 



331 

Defining the new variables 

9   =   S^'    C=^''    T= T2kok> FM*',    dr^J^dt»,    dr* =        "* 
2kQk'i (2fc0fc")3/2 at'3 

/W      1 r_i_sL    r_ wa 

and operating algebraically we get the non linear Schrödinger equation for a chiral optical fiber. 

%+ffi-*>&+*<*-°rf<+wi(*-*)-<> 
. dq     1 d2q     .   cfiq 

1d^ + 2d^~tld^ ßlß (7) 

4. Analysis of Results 

The equation (7) represents the basic modeling of the pulse propagations in a chiral optical fiber 
dispersive and nonlinear. This is applicable both in the second and third optical windows. For 
the numerical calculation we use k" = —17,4 ps2/km, 7 = 0, T = 0, which correspond to the 
anomalous region for a fiber length equal to 2.9 km . Fig. 1 and Fig. 2 correspond to one-order 
soliton with input power peak PQ = 0,87 W and C=0,85 and 1,15 respectively. Fig. 2 shows an 
increasse of the intensity when the pulse propagates. This effect appears when £fco is negative 
so if the losses (r) are included the chirality factor can compensate the typical decrease of the 
power pulse of the normal optical fiber. Fig. 3 and Fig. 4 correspond to the second-order 
solitons. Here we put PQ = 3,49 W, this peak power is required to sopport the second order 
soliton. If we compare Fig. 3 and Fig. 4 , we see that with (ko positive the signal is less 
distorted. Finally, Figs. 5 and 6 shows the behavior of the third-order solitons, PQ = 7,86 W. 
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Fig. 1 Fig. 2 

5. Conclusion 

In this work we have obtain the nonlinear Schrödinger equation for an optical fiber whose core 
is chiral dispersive and have nonlinear behavior. The effect of chirality is shown over the term 
associate to fiber lossy and to the nonlinear coefficient. The phenomenons that produce the 
dispersive effect and nonlinear in a non-chiral optical fiber (which produce the soliton propagar 
tion for example), are affected in case of using a chiral fiber, since to produce the same effect 
it will be necessary to operate the fiber in the normal dispersion regimen. The most important 
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result in our work it the possibility to use the chirality of the fiber to cancel out losses and non 
linearitys of the optic fiber, which would allow to modify radically their behavior as channel of 

communications. 

*T\ 

Fig. 3 Fig. 4 

Fig. 5 Fig. 6 
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Abstract 

This work is devoted to the problem of the electromagnetic wave reflection from regular 
two-dimensional infinite array of bianisotropic particles situated near the surface of a 
dielectric shield (a metal-backed dielectric layer). We have to study the individual particle 
response separately in terms of the particle polarizabilities using antenna model. Then we 
study the analytical model of electromagnetic interaction between particles and between 
particles and dielectric shield. Finally we express dipole moments of arbitrary particle via 
an incident plane electromagnetic wave using self-consistency model and it leads us to 
reflection coefficient of structure. The numerical calculations are made for the structure 
with omega-particles. 

1. Introduction 

The problem of the plane electromagnetic wave reflection from various arrays (grids) of scatterers 
substrated by dielectric half-space or multilayer dielectric or dielectric-metal structures has been 
studied in the abundant literature. These works have a common feature: the problem can be strictly 
solved numerically within the frame of the so-called cell formulation. This formulation is based on the 
periodicity of the grid and yields to the boundary integral equations (BIE) for a unit cell. However, if 
one deals with the grids of bianisotropic particles or particles with three-dimensional geometry this 
problem hardly be explicitly solved using boundary conditions for the scatterer surface together with 
the boundary conditions for the shield. This way is very complicated for numerical solving therefore 
we propose to consider particles as dipoles and to study analytically the electromagnetic interaction in 
the grid in the presence of shield to evaluate their dipole moments and then to evaluate reflection 
coefficient of structure. 

2. Theory 

To solve the problem consider the particles as a couple of electric p and magnetic m dipoles with four 
known polarizabilities, expressing p and m via local fields E and H (If the particles are small 
compared to the wavelength but have a complex shape their response can be described by a couple of 
an electric dipole and magnetic dipole): 

lp=a_eeE + aemH 

m = ameE + ammH 
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In the theory of the arrays in free-space, that we developed in [3,4], the local fields can be splitted in 
two parts: the incident wave fields E0, H0 and the fields Eg, Hg produced by all other particles: 

fE = E0+Eg 

H = H0+Hg 

(2) 

for Eg,Hg we obtain: 

-H*> +« 

Eg= j>r+ xEr 
m,n=-°° m,n=—°° 

Hg= xHr+ SHmn 
(3) 

m,n=- 

9 9 
there upper index is the position of particle in array (we exclude zero-particle, so m  + n   * 0), and 
lower index is the type of dipole produced field. 

In the case of the normal incidence the dipole moments of different particles are simply equal to 
each other. In the case of oblique incidence we have a phase shift between fields acting on particles. It 
allows to express Eg, Hg via p, m: 

Eg =AeeP + Aemm 

Hg = AmeP + Ammm 
(4) 

there Aap are double sums of fields of dipoles. And then, solving an algebraic set, to evaluate p, m 

through E0,H0: 

IP = FeeE0 +FemH0 

m = FmeE0 +FmmH0 

Then we can easily obtain reflection coefficient of structure [4]: 

R = Ze TF^ + ZeTiTFem S +Ze
m

m
e 11L+ Z™11 fiyf ^ 

f = I + ZeTFee +ZeTVTFemS -Ze
m

m
eSFme -Ze

m^SFmeS 

(5) 

(6) 

where Ze, Zm, Z^, T, S are known constants and dyadics [4]. 
For the structures that we consider in present work (array substrated by dielectric shield) we 

apply the same procedure to solve the problem. 
Split the fields E, H in (1) on three parts: the incident wave fields E0,H0, the fields Eg,Hg 

produced by all the grid particles except the reference one and the fields ES,HS produced by the 

shield: 
[E = E0+Eg+E sh 

|H = H0 +Hg +Hsh 
(21) 

Here Esh, Hsh are results of the shield polarization by the incident wave and by particles of the grid, 

so: 
|Esh =E!+E2 

|Hsh =H,+H2 

(7) 
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Here the first terms are fields of the first part of the shield polarization, induced by incident wave: 

Ei — RCE s^O 
(8) 

H, -RSH0 

where Rs is the known reflection coefficient of the shield (see [2]). E2,H2 are fields produced by 

second part of the shield polarization (induced by all the particles of the grid). We can split E2, H2 

into two parts: 
[E2=Eg.+Es 

H, =H„.+HC 
(9) 

there Eg.,Hg. are the fields of the shield polarization induced by all the particles of the grid except 

zero-particle and Es, Hs are the fields of the shield polarization induced by zero-particle. 
Substituting (7)-(9) into (2') we obtain: 

[E = E0+(Eg+Eg.) + RsE0+Es 

|H = H0+(Hg+Hg.) + RsH0+Hs 
(2") 

For (E„ +Eg), (Hg +Hg.) we can write the following expression: 

m,n=-<*> m,n=-=° 

Hg+Hg.=    2fipm'n+   Zfimn 
(31) 

m,n=- 

there Epm,Hpm are the fields of dipoles in presence of dielectric shield. Analytical expressions for 

Epm,Hpm we can obtain from [1]. In this work we find out the analytical expression for ES,HS 

(so called self-action field) through p, m: 

Es(z) = - ^O     2ik„z 

4nkr 

ikr 

2z    4z2    8k0z3 
-e 

ik, 1   ^ 

2z' 
+ e' 

ik0(2e+l) l_ 

Z(E+1) 2z2    4k0z3 

So, finally substituting (2") with (3') and (9) into (1) we express induced dipole moments of the 
particle via incident wave (5). The wave reflected from the structure is considered as a sum of re- 
radiation of the electric and magnetic dipoles of the array particles and re-radiation of the shield. 
Though the shield is excited by all the spatial harmonics produced by the grid the shield contribution 
into the reflected wave is results from the wave transmitting through the grid. Therefore we obtain for 
the reflection coefficient: 

RQ=R + TRse 2jkh (10) 

where R and T are grid reflection and transmission coefficients, h is the grid altitude. 
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3. Numerical Calculations 

The numerical calculation based on the formulae given above have been carried out for grid of omega- 
particles over metal-backed dielectric layer with following parameters (see Fig.l): grid periods 
a=b=15 mm, h=1..15 mm, 1=1 mm, £ = 5+2j (relative permittivity). Geometrical parameters of 
particles: R=2 mm (radius of loop), 1=2 mm (length of the stem), r=0.05 mm (wire radius). The 
individual polarizabilities of particles calculated with use of antenna model and results [5]. On Figure 
2 we present the absolute value of reflection coefficient of structure for h=l (mark as 1), 5 (2), 10 (3) 
mm for frequency band f=5..15 GHz. Notice that the self-action model describe the resonance 
frequency shift (well-known experimental effect). Also we see that the reflectance from the shield 
(with weak attenuation) is reduced by the grid to 20-25% of initial value. 

x10" 

Fig. 1 Grid of omega-particles over dielectric shield. Fig. 2 Reflection coefficient depending on frequency. 

4. Conclusion 

We obtain analytical describing of reflection coefficients and induced dipole moment of structures 
consisting of regular two-dimensional infinite array of bianisotropic particles situated near the surface 
of a dielectric shield (a metal-backed dielectric layer). The theory taking into account electromagnetic 
interaction between scatterers and dielectric. 
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Abstract 

Interaction of bianisotropic particles in plane regular arrays is under investigation in this 
paper. We give a recipe on how to use the particle polarizabilities and the interaction 
constants obtained from approximate models so that the energy balance is satisfied and 
the physics of the phenomena is kept. Numerical examples are given for arrays of omega 
particles. 

1. Introduction 

To solve a diffraction problem for an array of scattering particles one should, at first, know 
the properties of an isolated inclusion given by its polarizability and, second, how the inclu- 
sions interact in the array. The polarizabilities as well as the interaction fields often cannot 
be calculated exactly. The aim of this paper is to give a method which will allow us to use 
the polarizabilities and the interaction coefficients obtained by approximate models so that the 
reflection and transmission coefficients will satisfy the energy conservation principle. 

2. Energy Conservation in Bianisotropic Arrays 

Consider a plane regular array of scattering particles. We will assume that the particles may be 
represented as combinations of electric and magnetic dipoles. Thus, every particle is character- 
ized by its dyadic polarizability factors 57: 

P     =    <*ee • Eioc + Oem • Hioc /. x 
m   =   Sme • Eloc + <Smm • Hioc 

We assume that the array is excited by a normally incident plane wave with the fields Eext and 
Hext. Every particle is excited by the local fields 

Eioc = Eext + ße 
- P) Hioc = Hext + ßm ' m (2) 

Here ße and ßm are the interaction dyadics. These dyadics take into account interaction of the 
particles in the array. Under our assumptions the array of electric dipoles does not produce 
any magnetic interaction field and the array of magnetic dipoles does not produce any electric 
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interaction field. Due to this there are no cross terms in (2). As it was shown in our recent work 
[1] the interaction dyadics for the considered problem can be represented as 

&=Refc)+i^-;^,   1=^+^-^ (3) 

Here 50 is unit cell area. As one can see, the last terms in the above relations correspond to 
the plane wave field contribution. We can express the local fields in terms of the induced dipole 
moments: 

Eloc     =     («ee - «em ' OLmm ' ame)       ' (P ~ «em * (*mm ' m) 

Hioc    =     (smm - §me • a~e  ■ ^em)      • (m - Sme • äee  -p) 

The external fields, as follows from (2), can be written as 

Eext     =    («ee ~ «em • S'Jn • ame)      • (p - Ö-em -ämm ■ m) - ße ■ p 

Hext    =     (Smm-Ime-Oee1-^)      • (m - ame • 5^ • p) - ßm ' m 

The total averaged fields (plane wave fields) in the array plane read 

(4) 

(5) 

E 'tot =    Eext-Jif/fP " «I + ^em " **T 

Htot    =   Hext-i^^-ft-m = Zmp- 3 + Zmm- J 

ee ' " ~r ^em " °m 

me ' •* T" ^mm ' «*m 
(6) 

Here, the currents J and Jm are not the average surface electric and magnetic currents. These 
vectors can be arbitrarily directed and they represent the normalized electric and magnetic 
dipole moments. The dyadic coefficients in (6) can be easily identified from the above formulas: 

Zee - -3-± 

^mm —     3 

^        So 
Zem=3 — 

w 

Zme =3 — 

"/_ _ __!      _     \-l      = ,))W = 
(aee - aem ■ amm ■ amej     - pe ~3 jj ~<f It 

1= =      =-i   =    N"1    =§        . 1 w = 
[<Xmm - "me ' «ee  " aem)       ~ Pm ~ J ^~ ■g~1 

\Üee — Wem • &mm ' "mej      " «em ' ämr 

Oimm      ame ' 
=-l   =     \ aee  ' aemJ •a„„ 

(7) 

(8) 

(9) 

(10) 

Although different terms have different dimensions, we use the same notation Z for all of them. 
Indeed, only ~Zee has the meaning of impedance. 

Let us now suppose that the particles have no dissipation losses. Then, the energy conser- 
vation condition 

Re{EtofJ* + Jm-Ht*ot} = 0 (11) 

can be written in the dyadic form as 

^ee + Zee       Zem + Z 

=^T        =*        ==T = 
Zarr, + Zmo   Zmrr, + z, 

me 

Jem Jme mm mm 
m / 

0 

Since this should be valid identically for all currents, we find that in lossless arrays 

■Zee + Zee — 0, + Zmm — 0 

(12) 

(13) 
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Zem + z]ne = 0 (14) 

where f denotes the Hermite conjugate. Consider reciprocal particles. Then Zee and Zmm 

are symmetric dyadics. Thus, (13) means that these dyadics are purely imaginary (and the 
bracketed expressions are purely real). In other words, 

T    f/=       =      =-i    =   \-x\     Wow*f /1(rt Im j [aee - dem ■ amm • ameJ     > = —^—1 (Lo) 

Im | (ümm - Eme ■ Ü"1 • ÜemJ    | = 7 (16) 

and similarly from (14): 

Re | (5ee - Sem ' 5^L • ^me)      ' Sem ■ S~m J = 0 (17) 

Re I {Ümm - Sme • 5«.1 ' &em)      ' &me ' %l J = 0 (18) 

The last two relations are equivalent since in reciprocal media Zme — —Zem. For a special case 
of omega particles with 

Üee = afg X0X0 + O^yoYo,     &mm = O.mmZ02.0,     5me = ameZ0yo,      5em = -OmeYoZO        (19) 

relations (15) and (16) give 

En f  1  ] - WoPM? ^ f        amm        1 _ rmi*&P 
lagfj 67T      ' I alfamm + «me J 67r fofVl 

Im «g ) _ W«2 m 

I ayelamm + ame J 6TTJ? 

Conditions (17) and (18) lead to the same result, which reads 

**\  yy   
Qml   a   }=0 (21) 

L ÜeeO-mm T ame J 

3. Reflection and Transmission Coefficients 

Let us now make the final step. Our main goal is to find the reflection and transmission 
coefficients. It is easy to see that they can be found in terms of the introduced parameters 
(7)-(10). The parameters are expressed via the particle polarizabilities. In the usual practice 
we have the polarizabilities dyadics found from the antenna model or numerically. This gives 
approximate results and the values of alphas are not quite correct. We should somehow "correct" 
the polarizabilities to find the reflection and transmission coefficients which satisfy the energy 
conservation law. 

From the other hand, the correction should not lead to significant difference in the array 
reflective properties. If we simply skip the scattering terms from the polarizabilities and the 
interaction dyadics, i.e. we take aee and amm as purely real, aem and ame as purely imaginary, 
and leave only plane wave contribution in the imaginary parts of betas, we easily satisfy the 
energy conservation conditions (15)-(18). But the frequency behaviour of the array reflection 
will change dramatically. It follows from (7)-(8): equating the scattering terms in the alphas 
to zero we change the values of dyadics Z.  It suggests us to apply additional conditions to 
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avoid that. These conditions will keep the non-scattering terms of (7)-(8) unchanged when the 
scattering terms in alphas and betas are skipped. Doing so we obtain a system of equations on 
the new "corrected" polarizabilities aee, amm, aem, and ame. In more detail, the system is 

and 

Im(«ee) = Im(amm) = 0,        Re(otJ = 0 

(Ke ~ Km • amm~l ■ 4)   X = Rß { (See - Sem • &mm " ^me)      } 
(ä^ra - ame -aee~l- Km)       = Re { i^mm ~ «me • Ke  ' «em)      J 

• f=> ^        ='       _1    ='     ^_1    W        7v        _1 = 3 \aee ~~ aem ' amm      ' ame)       ' "em * amm 

-Im i (ojee - 3?em ' Knm ' «me)       ' «em • ämm j 

(22) 

(23) 

The "corrected" polarizabilities together with the "corrected" betas (only plane wave contri- 
bution is included) will give the reflection and transmission satisfying the energy conservation 

law. 

4. Numerical Results 

We have numerically investigated the case of a double array of omega particles under the plane 
wave excitation. The polarizabilities were obtained from the antenna model described in [2]. 
The reflection coefficient values via the frequency together with the energy balance plot are 
given on Figure 1 and Figure 2. The solid lines correspond to the corrected alphas and betas, 
the dashed lines correspond to the original ones. 
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Abstract 

We have used a Mie-type theory to study the light scattering from an annular anisotropic 
layer around a spherical colloidal particle. We have derived an exact solution of the scattering 
problem in the case when the distribution of the optical axes around the particles posses some 
special transformation properties under rotation and, outside of the layer, the ambient medium 
is isotropic. We have then calculated the dependence of the the scattering cross-section on 
particle size, anisotropy parameter, and layer thickness for different optical axis distributions. 
We find that the scattering cross-section is strongly affected by the type of anisotropy. The 
presence of disclinations enhances scattering efficiency. We determine the region of validity of 
Rayleigh-Gans approximation by comparing approximate values of the scattering cross-section 
with the results computed from the exact solution. As an additional effect specific to anisotropic 
scatterer, it is found that for structures with broken central symmetry there is the phase shift 
proportional to the logarithm of layer thickness that enters the scattering amplitudes. 

In order to study the case of anisotropic ambient medium, approximate theory has been 
developed. The phase shift is found to affect the scattering amplitudes even if the central 
symmetry is unbroken. 

1. Introduction 

There are a large number of physical contexts in which it is useful to understand light scattering 
by impurities [1]. A particular example of recent interest concerns liquid crystal devices. There 
are now a number of systems in which liquid crystal droplets are suspended in a polymer matrix 
- the so-called PDLC systems - or the inverse system, involving colloids now with a nematic 
liquid crystal solvent. The latter systems are commonly known as filled nematics [2, 3]. 

In such systems it is required to calculate the scattering of light by composite anisotropic 
particles embedded in an isotropic matrix. In this paper we discuss some model cases of light 
scattering by such particles, which may be supposed to represent local liquid crystalline director 
structures, using both the Mie and the Rayleigh-Gans (R-G) approaches. 
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The large majority of exact solutions of the single-scattering problem have been derived for 
isotropic scatterers [4]. However, there are a few cases for which Mie theory has been extended 
to the case of anisotropic scatterers[5, 6, 7, 8]. 

In order that the problem have an analytic solution, we find it necessary to restrict consid- 
eration to cases in which the optical axis distributions within the anisotropic layer around the 
core possess some special symmetry properties under rotation. The analysis is then based on a 
systematic expansion of the electromagnetic field over vector spherical harmonics [9, 10]. The 
specific form of the expansions is known as the T-matrix ansatz. This has been widely used in 
the related problem of light scattering by nonspherical particles [11]. 

In this study we investigate the dependence of light scattering from the layer on the internal 
structure of the optical tensor, and implicitly on the liquid crystal director texture. We also 
compare our exact results with those obtained by the simpler but less accurate R-G method. For 
brevity, in what follows we shall leave aside the details on this comparison and do not discuss 
extensions of the theory. 

2. Scatterers 

We consider scattering by a spherical particle of radius Ri embedded in a uniform isotropic 
dielectric medium with dielectric constant ey = eSij and magnetic permeability Mj = fiSij. The 
scattering particle consists of an inner isotropic core of radius _R2, surrounded by an anisotropic 
annular layer of thickness d — R\ — R-2- 

Within the inner core of the scatterer the dielectric tensor e, and the magnetic permittivity 
fj, take the values ey = e2<%, /*y = prfij- The dielectric tensor within the annular layer is 
locally uniaxial. The optical axis distribution is defined by the vector field n. (Hats will denote 
unit vectors.) Then within the annular layer ey(r) = eitfy + Aei(n(r)®n(r))ij and ptj = /xi<5jj. 
The unit vector n corresponds to a liquid crystal director for material within the annular region. 

We shall suppose that the director field can be written in the following form 

n = nrf -I- ritpcp + n,?i9, (1) 

where f is the unit radial vector and ip, ti are the vectors tangential to the unit sphere. The 
components nr,n^,n^ are constants. 

3. Generalized Mie Theory 

The electromagnetic field can be expanded using the vector spherical harmonic basis, Yj+sjm(<f>, 0) = 
YHSjm(r) {6 = 0,±1) [9] as follows: 

E = EEi- = £ [P>)Y^(V) + $ (r)Y«(*) +p£?(r)Y<£(*)] , (2a) 
jm jm 

H = ^Hjm = £ [$>(r)Y$(f) +$(r)YjJ<*) + $?(r)Yg>(*)] , (2b) 

where YJ# = Yjjm and Y$ = \j/(2j + l)]1/^^ + [(j + l)/(2j + l)]l/2Y^ljm are 

electrical and magnetic harmonics respectively, and Y}^ = \j/(2j+l)]1/2Yj-ijm-[(j+l)/(2j+ 

l)]1/2Yj+iJTn are longitudinal harmonics. 
Outside the scatterer pj^(r) and ^(r) can be expressed in terms of linear combinations of 

spherical Bessel functions and spherical Hankel functions. For the incident and scattered waves 
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in the far field region we have: 

Eine = £ («ffijWff + &%? ^iiWYg) . (3) 
jm 

Vsca = £ (/SJIT^WYff + ^ ^OOYg) , (4) 
jm 

where p — kr and Df(x) = x~l—(xf(x)). Since the scattering problem is linear, the coefficients 
dx 

{fl^i^jiT*} axe hearty related to {a^c),c$£c)} though the elements of the T-matrix. 
In order to derive the T-matrix, we need to find the general expressions for the electro- 

magnetic field inside the anisotropic layer and the isotropic core. The ingoing and outgoing 
waves then can be related by using continuity of the tangential components of the electric and 
magnetic fields at r = i?2 and r = Ri as boundary conditions. 

Substituting the expansions (2) into the Maxwell equations gives a system of equations for 
the components p^ and <n°'. For the distributions (1) we have found that the system can be 

reduced to a system of coupled Bessel equations for the magnetic components: {PjmiQjmS- ^or 

the structures n = & and n = cos 7? + sin 70 solutions of this system can be obtained in the 
closed form. The result for transverse components is 

PfS = aJm3j{pe) + ßjmhf (pe) ,      «jjj = «e//*l Dp%£ (pe) , (5a) 
(m)   ~iSj ~(m)       ~iSj 

9im  =Pe'q)J=Pe3 
i]m        re   ijm äjmj-jipe) + ßjmhf)(pe)] ,    pfi = -fn/ne ßej Dq$ (pe),        (5b) 

M + 1)=    n"1.,    o\? M + l)i    SJ = üirh2
ey/j(jTT)nvnr, (5c) 

A    / 2 l + «i -2     l+«i(l-n|) ,_,. 
Bi5Aei/£1' ro'=i+«l(i-^r ml=  i+«xn» ' (5d) 

where ajm and /3j-m are integration constants; pe = mePi = mek\r and pe = mep\. For brevity, 
the corresponding rather cumbersome expressions for the T-matrix have been omitted. It is seen, 
that anisotropy affects the analytical expressions in the following manner: (a) it renormalizes 
the order of corresponding Bessel functions; (b) it changes the arguments of the functions by 
replacing fei with ke; (c) it leads to the appearance of the geometric factor oc ptS> for the tilted 
configuration. 

4. Scattering Efficiency 

In this section we discuss briefly the results concerning the scattering efficiency, Q, that is the 
ratio of the total scattering cross section Csca and area of the composite particle, S = irR\. 

Dependence of the scattering efficiency Q on the dimensionless size parameter kR2, is de- 
picted in Figs. 1. It is assumed that refractive indexes of the surrounding medium and the 
isotropic core are equal, n = «2- Clearly, the scattering cross section is strongly affected by the 
type of anisotropy characterizing by the unit vector n. Fig. 1 shows that the structure n = Cp 
has the largest value of Q at small A;i?2, whereas the least scattering efficiency corresponds to the 
configuration with n = ■ß. We found that the helical structure h = (p remains the most efficient 
scatterer with increase in the anisotropy parameter ui for sufficiently small particle size. On the 
other hand, Fig. 1 reveals that the configuration n = & becomes the most efficient scatterer as 
size of the scatterer increases. 
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FIGURE 1: Dependence of Q on the size parameter kR2 at «i = 0.5 and d/Rv = 0.2 for different 
types of anisotropy. It is shown that the scattering efficiency reveals crossover behaviour in this 

range of size parameters. 
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Abstract 

The existence of surface polaritons in an insulator at its boundary with an ideal metal or a 
superconductor in a constant electric or magnetic field is predicted. The modes of these surface 
polaritons appreciably differ in opposite directions of the field, so that a change in the direction of 
the field signifies "switching on" or "switching off" of surface polaritons. In the presence of a 
magnetic field polaritons of a given frequency propagate only in one direction with respect to the 
magnetic field, which is the effect of rectification. The existence of a radiant surface polariton 
modes is predicted. 

1. Introduction 

It is well known that in massive insulator at its boundary with an ideal metal, surface polaritons do not 
exist [1]. We have shown that surface polaritons appear in the presence of a constant electric field 
directed along a normal to the contact plane [2] or in a magnetic field oriented in a contact plane [3]. 
Surface phonon polaritons appear due to a dynamic magnetoelectric (ME) interaction [4] and their 
penetration depth is inversely proportional to the value of the field. The modes of these polaritons 
belong to IR or optical regions of the spectrum and substantially depend on the directions of the fields 
and the propagation of the wave. 

2. The Energy of Optical Phonons 

For definiteness, we assume the insulator to be uniaxial (Z is the easy axis). The energy density W of 
optical phonons in external electric E and magnetic H fields can be written as 

w=£ip2+£i(/>/+p2)+IIl_pf+_LprnxHl (i) 
2   z     2 v *      y'    2p cp   L J 

Here P is the electric polarization, ft is the momentum density, E = E0 + e, H = H0 + h; E0,H0 are 

constant fields, e and h are alternating electric and magnetic fields; c is velocity of light; p = m/V0, 
where m is the mass of a charge, V0 is the elementary cell volume. Generally the electric polarization 
consists of ion and electron parts. In the IR region of the spectrum the contribution of ions to the 
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polarization is predominant, then mis the reduced mass of an ion-cation pair and II is the 
elementary-cell moment. In the optical region of the spectrum the electron contribution to the 
polarization is much greater than the ionic one, then m is the electron mass and ft is the electron 
momentum. The last term in (1) corresponds to the dynamic ME energy [4]. This energy is a scalar so 
it is present in the energy of any crystal. 

ME energy gives the contribution in an electric (d ) and magnetic {b ) inductions, 

where ME susceptibility 

%ik~dhk    
[%ki)     [de; t 

(3) 

3. Surface Phonon Polaritons in Electric Field 

We consider a semi-infinite insulator (z>0) which is in contact with an ideal metal (z<0) in a 

constant electric field E0 directed along the Zaxis. Polaritons propagate along the X axis. The 
solution of the Maxwell equations for an insulator with inductions (2) and \iik = 81/t in the absence of 

damping we take in the form 

e,h ~ exp[i(kx-(üt)-k0z], k0>0, z>0 (4) 

where it"1 = 6£ is the depth of penetration of the field. At the boundary with an ideal metal ex = ey = 0 

and without ME susceptibility surface polaritons do not exist because dx = 0. In the presence of a 

constant electric field E0 directed along a normal to a contact plane the ME susceptibility %7 appears 

and takes the contribution in electric induction dx, 

i(QgP0 
c«(0 

co2-to; 

(co2-«2,) 
em _    twSJ 0        p  _C- Ir      g     _. 

3U  " ..,2      „2 . 'S " ^1*0. °£ Wgpo (5) 

Oüß = G&OTQ. g = elmc, &>l=e2/mV0. 

Surface polaritons appear with the penetration depth 8£ which is inversely proportional to the value of 

electric field E0. For these polaritons only components of fields ez and hy are not zero. In our case 

b =h = 0, therefore all the results will be also hold true when an insulator is in a contact with a 
superconductor. The dispersion relation has the same form as for volume polaritons in the case of 
absence of electric field (Fig. 1) 

k1 =4*«».e- =4^. aa = <tf+4«ag. ^=sWc; (6) c2 oae-(02 

The figure 1 corresponds to electron excitations (the optical region, g < 0, m is the electron 
mass). The modes of surface polaritons are different for opposite orientations of the electric field, hi a 
field directed into the insulator, the lower branch is excited, while in a field with opposite orientation 
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the upper branch is excited. The situation is reversed for ionic excitations (g < 0). Thus surface 
polaritons with a fixed frequency can be "switched on and off by changing the direction of the static 
electric field. 

4. Surface Polaritons in Magnetic Field 

In the presence of magnetic constant field H0, directed in the contact plane along Y axis the dynamic 
ME interaction induces the non-diagonal component of a dielectric tensor e^ . 

e„=-ie' = - 
i87EGXOwS>o 

(tf-cnfXtf-a*) 
. «H = gH0y 

2 1 oj2, + ©2 + 2a£ + ^(cog - co2 )2 + 8a£ (cog + ©2) 

(7) 

The penetration depth of polaritons 8W is inversely proportional to the value of magnetic H0y. The 

dispersion relation and the depth of penetration are following: 

,2    (o
2(co2-Qf)(co2-^) c\ 

x    c2 (W
2-oof)(co2-^)'   "    ooV(co) 

(8) 

where the expressions for fl, 2 we obtain from (7) by the replacement co£ on Cie. Surface polariton 

modes in magnetic field are shown in Fig. 2. 
In optical region (g < 0 ) for H0y > 0 the polariton modes are thick solid curves. The modes are 

not close to each other and the spectrum is strongly nonreciprocal: there are two modes for polaritons 
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running to the left and one mode for polaritons running to the right. Surface polaritons with a given 
frequency propagate only in one direction with respect to magnetic field. This is the effect of the 
rectification. The substitution of -kx for kx in Fig. 2 corresponds to the inversion of the magnetic 

field H0  -> -H0y. In this case, the dashed curves are the modes of surface polaritons. 

5. Conclusions 

Thus, in the presence of a constant electric or magnetic fields the surface polaritons exist in a semi- 
infinite insulator, which is in contact with an ideal metal or a superconductor. The depth of penetration 
of polariton field into the insulator is inversely proportional to the value of the field and it is less in 
optical region than the one for IR region. So, in the optical region of the spectrum 8W «= c/gH0. If 

H0=10T, 8 = 10~2cm. 
The frequency regions in which surface polaritons exist depend strongly on the direction of the 

field so a change of the sign of the field signifies the "switching off or "switching on" of polaritons 
with a given frequency. In the presence of magnetic field the spectrum is a strong nonreciprocal: 
surface polaritons propagate only in one direction with respect to magnetic field (the effect of 
rectification). 

The upper modes are radiant modes and may be excited by a direct interaction with 
electromagnetic wave. 
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Abstract 

We investigate the physical validity of the claims about chiral microwave absorbers which 
have appeared in the engineering literature of the last decade. These assert that the perfor- 
mance of synthetic microwave absorbing materials (RAM) may be significantly enhanced by 
the addition of chiral inclusions, such as wire helices. We compare the performance of chiral, 
non-chiral and racemic absorbers by embedding unit cells—which are designed to be geo- 
metrically closely related—in an absorbing dielectric. We have found no physical mechanism 
to support the assertions that chirality is the key to improved microwave absorbers. Instead, 
in synthetic composites which employ thin metal wires in a lossy dielectric or magnetic host, 
it is the half-wave resonance of the inclusions—not their geometric shape—which plays the 
crucial role in absorption. 

1. Jagadis Chunder Bose and the First Artificial Chiral Materials 

Last year we became aware of the work done more than a century ago, in about 1897, on optical 
activity by the Indian scientist Jagadis Chunder1 Bose [1, 2]. Until then we—like many others 
who have been working on artificial chiral materials during the past decade or so—mistakenly 
gave Lindman [3, 4] the credit for the first microwave experiments on artificial chiral materials. 

Priority, however, belongs by about two decades to Bose whose remarkable experiments were 
conducted in the centimeter and millimeter regime [2]. A reading of his original paper leaves us 
in no doubt that Bose fully appreciated the role of chirality in optical activity, and that he built 
artificial chiral and racemic materials to simulate optical activity. A photograph of one of his 
jute elements is shown in [2, Figure 12]. 

2. Chiral Microwave Absorbers—Champions and Skeptics 

Bose and Lindman, and subsequently Tinoco and Freeman [5], were interested in that most 
familiar of chiral phenomena—the rotation of the polarisation plane of linearly polarised waves. 

Instead, much of the recent attention of microwave and antenna engineers to synthetic chiral 
materials was attracted by claims in refereed journals which promised microwave absorbers 
endowed with significantly improved properties. For example "... the possibility of designing 
anti-reflection coatings using chiral composites" [6]; "It is concluded that chirality can be used as 
a sensitive parameter to control EM wave propagation characteristics in dielectric composites" 
[7]; "... a novel material which reduces target RCS, through electromagnetic chirality, and makes 
it invisible to radar" [8]; "By incorporating electromagnetic chirality these screens offer unique 

'Also spelled Chandra in the literature. 



354 

advantages, such as increased absorption in thin layers for a relatively wide range of frequencies, 
over conventional designs" [9]. A number of patents were issued in the same period. 

In 1992 Bohren et al. challenged these claims about the efficacy of chiral absorbers [10]. 
After studying the effect of chirality on the reflection coefficient of a chiral slab backed by 
a conducting surface—the chiral Dällenbach layer—for normal incidence, they conclude that 
"while chiral inclusions may be advantageous, any absorber performance that can be obtained 
from a chiral composite may be obtained from its non-chiral counterpart." In 1994 Brewitt-Taylor 
independently came to a similar conclusion after an optimization study. He found "that the shape 
of the reflection curve is not much affected by the aspect ratio of the included helices, including 
the non-chiral extreme cases of a straight wire and a flat loop. Thus by this test the introduction 
of chirality by wire helices has not yielded any improvement" [11]. In a study, conducted between 
1993 and 1997 and which used Kuehl's [12] mass production technique for helical inclusions, 
Cloete et al. find that "tiny copper helices can somewhat enhance the performance of dielectric 
absorbers about the frequency where the helices are one half-wave resonant, and that a racemic 
absorber is as effective as its purely chiral counterpart." They also find "that, unlike straight 
filaments (chaff), the helix makes a conveniently compact resonator." However, like Bohren et al. 
and Brewitt-Taylor they conjecture that chirality does not play an essential role in absorbers [13]. 
Recent network theoretical studies by Rozanov [14] and Brewitt-Taylor [15] on the fundamental 
limits of the bandwidth of layered absorbers are also relevant because they imply that chirality 
can not improve on the performance of an optimally designed dielectric-magnetic absorber. 

A round table discussion, with participation from the audience, was held in June 1997 at 
Bianisotropics'97 in Glasgow to review whether or not chiral absorbers could yield superior per- 
formance to conventional dielectric-magnetic absorbing materials. (It is unfortunate that none 
of the chiral absorbing material protagonists were present2.) The outcome of this discussion is 
summarized by Weiglhofer: "There seemed to be general consensus—certainly as far as techno- 
logical significance is concerned—that chirality has not delivered the superior radar-absorption 
capabilities that some researchers had promised" [16]. 

We, however, did not consider the matter to be closed after this meeting. Also, to the best 
of our knowledge, none of the original claims in the refereed literature [6, 7, 8, 9] have been 
retracted. Fundamental questions remain to be answered—and consensus opinions by panels 
of scientists and engineers have sometimes turned out to be wrong in the past. Weiglhofer 
continues: "Yet, at the same time, one must recognize that the number of research groups 
involved in experimental research on chiral composites is comparatively small, so that many 
avenues that can lead to the proverbial "pot of gold at the end of the rainbow" still need to be 
explored" [16]. 

In this light—despite our negative findings and those of others—we decided in 1996 to 
embark on a more fundamental theoretical and experimental investigation. Our goal was to find 
a link—if any—between chirality and enhanced absorption. 

The key phrases of Pasteur's scientific thinking are inscribed on the chapel walls of the 
Pasteur Institute in Paris—among them are the words dissymetrie moleculaire [17]. Geometry 
is the essence of chirality. Both Bohren et al. and Brewitt-Taylor had considered the geometry 
of the individual inclusions as a parameter. Bohren et al. compared an array of three-turn 
helices with an array of non-chiral inclusions made of three coaxial loops, presumably connected 
by a straight wire. Brewitt-Taylor varied the geometry of a wire parametrically from a straight 
wire (dipole) to a helix to a broken loop. In previous experimental work the chiral absorbers 
were invariably composed of randomly oriented helical resonators, which explains the emphasis 
on helical inclusions in the studies of Bohren et al. and Brewitt-Taylor. 

2Members of the panel were inter alia Arne Jacob, Colin Brewitt-Taylor, Udo Unrau, Akhlesh Lakhtakia and 
Johannes Cloete. 
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3. Anisotropie Absorbers: Chiral, Racemic and Non-chiral 

Instead, in search of deeper physical understanding, we decided to study periodic arrays of 
thin, bent wires, of resonant length, embedded in a dielectric host [18]. The resulting synthetic 
anisotropic media are amenable to deterministic numerical analysis, to simple physical realisa- 
tion, and to microwave experiments. Most important is the clarification of the role of chirality 
in microwave absorbers which the new "crystalline" systems allow. 

The three segment wire hook [20] was chosen as the basic element, instead of the helix, 
because of the simple geometrical relationship between the chiral enantiomorphs and the non- 
chiral structures depicted in Figure 1. Rotation of one of the outside segments in steps of 7r/2, 
in the plane normal to the central segment, transforms the non-chiral staple into a chiral crank; 
then a non-chiral crank; then a chiral crank of opposite hand; and back to the non-chiral staple. 
An obvious feature of this simple topological relationship between them is that the unwrapped 
length of the wire remains invariant. This turns out to be an important property because it 
is known that the unwrapped length of thin wires is a dominant parameter in determining 
their resonant scattering frequencies. As will be seen, resonance—not chirality—is the key to 
enhanced absorption in our systems. 

Four uniaxial unit cells—one chiral, two non-chiral, and one racemic—were invented and 
classified according to their point group symmetry [18]. Two of them are shown in Figures 2 
and 3. The unit cells were designed to fit into rectangular or square waveguide, with their optic 
axes parallel to the waveguide axis. This allows accurate measurement of their reflection and 
transmission coefficients for comparison with numerically simulated data. 

x z 

V- iz   V    V\ 
Figure 1: Basic wire structures. Two chiral cranks of opposite handedness (enantiomorphs), a 
non-chiral staple and a non-chiral crank. 

The cells were especially studied around resonance. Because the hooks do not each occupy 
an electrically small volume in their resonant regime, a constitutive parameter description of 
the "crystals" cannot be used [21]. This does not matter, because we wished to make a direct 
physical study of absorption—the phenomenon of interest. This was done by using the measured 
or computed scattering parameters for a unit cell of the synthetic material, and the law of energy 
conservation, to determine the absorption spectrum. (The metal walls of the waveguide provide a 
well-defined and controlled environment for this approach, in contrast to a free space illumination 

Figure 2: Chiral unit cell of point group 
422 symmetry. 

Figure 3:   Non-chiral unit cell of point 
group 4/m symmetry. 



356 

system where out-of-beam scattering may occur.) 
A finite-difference time-domain (FDTD) code was developed for the full-Maxwellian nu- 

merical analysis of thin-wire structures—with finite conductivity—embedded in an absorbing 
dielectric host in a rectangular or square waveguide [18]. The code was validated against phys- 
ical experiments in the S-band (2-4 GHz). Figure 4 shows the results for the chiral (422 point 
group) unit cell of Figure 2. The measured data were obtained with an HP 8510C automatic 
network analyzer [18]. Agreement between the measured and simulated data for wires, made of 
both copper and steel, is sufficiently accurate for our purpose. 

Further numerical experiments were then confidently performed in a square waveguide on 
the chiral, non-chiral, and racemic wire unit cells to study their absorption properties. Square 
waveguide was chosen so as to impose no constraints on the propagation of the cross-polarised 
TEoi mode. 

4. Resonant Copper Wire Unit Cells Embedded in a Microwave Absorber 

Synthetic chiral microwave absorbers usually consist of a conventional microwave absorber which 
contains suitable macroscopic chiral objects, such as our hooks or the more fashionable wire helix. 

During the experiments to validate the FDTD code it was found that copper hooks embedded 
in a microwave absorber are just as effective as steel hooks3 [18]. Therefore only the interaction 
between copper wire unit cells and the microwave absorbing host was studied in the square 
waveguide by means of the FDTD code. The microwave absorber had material parameters 
er = 1.67 and a = 0.04 S/m, and an effective thickness of 18 mm. Each hook had a total length 
of L = 48 mm = 3 x 16 mm (/o « 2.4 GHz for a deeply embedded, isolated hook), and the 
centre legs of the hooks were separated by 24 mm in a unit cell. The wire conductivity was 
5.7 x 107 S/m. 

The absorption spectra of the four uniaxial unit cells are compared in Figure 5. The mi- 
crowave absorber, without any wire inclusions, absorbs on average about 25 % of the power 
across the band. The absorption is strikingly enhanced by the inclusion of resonant wire struc- 
tures in the microwave absorber. This is observed whether the inclusions are chiral, non-chiral 
or racemic. Half-wave resonance of the wires, in the case of the chiral cell, is associated with 
the Cotton effect—circular dichroism—as also observed by Lindman, and Tinoco and Freeman 
[3, 5]. Maximum circular dichroism usually coincides with peak absorption [19], but nevertheless 
absorption at the Cotton frequencies of our chiral unit cell is not superior to absorption at the 
half-wave resonance of the non-chiral (cranks) or racemic unit cells. Evidently the unit cell of 
non-chiral cranks couples the incident field to the loss mechanisms of the host as effectively as 
the chiral and racemic unit cells. 

5. Chirality is not a Geometrical Requirement for Absorption 

Our experiments show that absorption by a lossy host is significantly enhanced by the inclusion 
of resonant metal-wire structures—whether the inclusions are chiral or non-chiral. Although 
there were differences in the enhancement of absorption by the four unit cells, the important 
insight is that the unit cell of non-chiral cranks couples the incident field to the loss mechanisms 
of the host just as effectively as does the unit cell of chiral hooks and the racemic unit cell of 
enantiomorphous hooks. 

The essence of the claims about chiral absorbers is that the chirality of the inclusions affords 
an additional degree of freedom for the design of composite materials with enhanced microwave 
absorption. The implication is that chirality somehow provides the key to improved absorbers. 

3There is however a marked and important difference when the hooks are embedded in a low loss host. The 
steel hooks, as expected, make much more efficient absorbers than the copper hooks. 
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Figure 4: Point group 422 chiral unit cell 
in an absorber, in rectangular waveguide. 
Comparison of the percentage power ab- 
sorbed by a copper and a steel unit cell, 
measured and predicted. 
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Figure 5: Theoretical absorption spectra 
of the four uniaxial copper wire unit cells 
embedded in a microwave absorber, in a 
square waveguide. 

We have found no evidence in support of this. Although—as is well known—chirality is a 
geometrical requirement for optical activity, we assert that chirality is not a relevant geometrical 
requirement for absorption. 

Instead we propose that in synthetic absorbers, which employ thin metal wires in a lossy 
dielectric or magnetic host, it is the half-wave resonance of the inclusions, not their shape, which 
plays the crucial role in absorption. The inclusion of conducting wire structures, whether chiral 
or not, in a microwave absorber serves only to couple the incident field to the local ohmic, 
dielectric and magnetic loss mechanisms of the host [13]. Unlike straight chaff-like filaments, 
the helix makes a conveniently compact resonator, but its chirality does not play a fundamental 
role in absorption. This contention is supported by the work of Brewitt-Taylor [11], which also 
provides evidence of enhanced absorption in the region of half-wave resonance for helices. 

We recognize that our comparative study of chiral, non-chiral and racemic unit cells is 
thorough but not exhaustive. However, if a chiral absorber can significantly outperform an 
equivalent non-chiral counterpart we think that our experiments would reveal this. We are also 
unaware of any convincing experimental evidence from other researchers that chiral inclusions 
can markedly improve the performance of an a priori well-designed physical absorber using 
non-chiral conductive, dielectric and magnetic ingredients. Significantly, despite the patent 
applications made between September 1988 and June 1992, chiral microwave absorbers are 
apparently not yet available from commercial manufacturers. 
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Abstract 

The mode spectrum of a circular waveguide resonator filled with chiral material is calculated. For 
verification purposes the model is fed with chiral material parameters extracted from standard 
waveguide measurements. The resonance frequencies computed for different lengths of the 
resonator are in good agreement with those obtained from an experimental resonator setup. 

1. Introduction 

Cavity resonators are in general well suited for high precision material characterization. This is 
because their resonant frequency and quality factor depend sensitively on the electromagnetic 
properties of the enclosed material. To extract the constitutive parameters of chiral media from such 
experiments, however, is a complicated and demanding task, both experimentally and theoretically [1]. 
An alternative use of the resonator is therefore proposed here. Considering a completely filled cavity 
the material parameters cannot be extracted because the measurement does not provide enough 
information. The measured resonator characteristics, however, can still be used to accurately verify the 
material parameters obtained from other experiments. This has to be done indirectly by comparing the 
measured and the computed responses of the resonator. For an accurate check a field theoretical 
description of the resonator must be used. This model is fed with the data to be verified. 

A full-wave theory of circular waveguide resonators filled with chiral material was developed in 
[2]. In this contribution the model is extended to cover the whole mode spectrum, in particular the 
modes with no length dependence. Next, the experimental setup is described and, finally, both the 
computed and the measured resonant frequencies are compared for different lengths of the resonator. 

2. Theory 

The resonator consists of a lossless circular waveguide of length / and radius a. It is short-circuited at 
both ends and filled with chiral material. As was explained in [2] the non-degeneracy of left and right 
circulating modes in circular chirowaveguides calls for a mode expansion at the short-circuited ends of 
the resonator. Since modes of different azimuthal order m are decoupled they can be treated 
separately. On a round-trip through the resonator the eigenmodes must be transmitted self-consistently 
at resonance. The characteristic equation can be formulated from this condition. For a given geometry 
of the resonator and a known material its solutions are the complex resonance frequencies/=f+jf of 
modes Cmnq. The subscripts denote the azimuthal (m), the radial (w), and the longitudinal (q) order. 
Alternatively, for instance, /' may be set, / and f" being the unknowns [2]. This approach offers 
numerical advantages as the number of time-consuming mode expansions at the short-circuits is 
reduced by about 50%. However, it only works for length-dependent modes. An in-depth discussion of 
the results is found in [2] for modes with m = 1. 

For completeness and in order to fully understand experimental findings it is necessary to 
explore the whole mode spectrum in the considered frequency range, including, in particular, the 
length-independent modes. As these are purely transversal fc+ = kz~ = 0 must be fulfilled. Here, kz and 
K are the (longitudinal) propagation constants of the underlying left and right circulating waveguides 
modes. Interestingly, only modes with no azimuthal dependence, i.e. with m=0 satisfy the above 
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condition This becomes clear from a look at the dispersion characteristics of circular chirowaveguides 
[31 Because of mode-splitting the conditions kz

+ = 0 and */ = 0 cannot be satisfied simultaneously, i.e. 
at the same frequency, except for the degenerate modes: These have no azimuthal dependence that is 
m = 0 and are the only ones that give rise to length-independent resonator modes (g = U). Ihe 
characteristic equation then reads: I fel = I fcl = 0. It is solved for the complex frequency. The 
unloaded quality factor is given by Q =f'/2f. 

Fig 1 depicts as a typical numerical result the dependence between the resonator length and the 
real part of the resonance frequency/* for different values of the chirality parameter ß (Drude-Born- 
Fedorov notation). The permittivity and permeability were set to ^ = 1-jO.OOl and #-1-jO.OOl, 
respectively. The radius a is 0.025 m. The figure displays Cllq-modes of different longitudinal order 
and shows how the mode coupling at the short-circuits increases with the chirality parameter when the 
next higher order waveguide mode (C12) becomes propagating [1]. The cutoff frequencies of the 
fundamental C„- and the C12-mode of the chirowaveguide are indicated for reference. Fig.2 shows the 
Q-factor of the Cnq-mode. It decreases with increasing chirality parameter and exhibits strong 
variations in the vicinity of the C]2-cutoff. 

f/GHz' 

Fig. 1 Resonator length vs. frequency for different chiral parameters and longitudinal orders. 

600 

f/GHz 

Fig. 2 Resonator quality factor Q for different values of the chirality parameter 
(longitudinal order q = 2) 
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3. Experimental Setup 

The experimental setup is shown in Fig.3. It consists of a short-circuited piece of circular waveguide 
of radius a = 0.025 m. To allow a verification over a broad frequency range rather than at only a few 
discrete frequencies one of the shorts is realized as movable plunger. The length can be extended up to 
/ = 0.5 m. The resonator is operated in transmission mode. To this end a microstrip antenna (22 mm 
long) is mounted radially on each short. This flat design allows to rotate the antennas azimuthally for 
optimum measurement sensitivity without damaging them or the chiral material. 

© connecting cable 
(2) short with antenna 1 
(3) chiral material 

(4) short with antenna 2 
(|) circular waveguide 

movable plunger 

Fig. 3 Experimental setup. 

4. Experimental Results 

To validate the apparatus it was filled with a composite, non-chiral medium, i.e. spheres of PU-foam. 
The resonator was characterized with respect to its first four modes. Their resonance frequency is 
shown in Fig.4 versus the length of the resonator. The measured results correlate well with the values 
calculated on the basis of the dielectric constant ($ = 1.11-j 0.003) of the foam, that was obtained from 
an independent precision resonator measurement. In general, only slight variations can be observed. 
They are randomly distributed and are due to local changes of the density. They become reproducible 
only for the rM0io-mode at very short resonator length when the disturbance caused by the antennas 
becomes noticeable. 

Next the resonator was filled with the chiral material of [4], and the resonator characteristics 
were recorded versus its length. The results are marked by crosses in Fig.4. They display a noticeable 
uncertainty which is attributable to the inhomogeneity of the material. Still, the general behavior is 
qualitatively in good agreement with the theoretical results presented above. The setup was then 
simulated with the model sketched above. The parameters of the (same) chiral material were taken 
from waveguide measurements as in [4]. Six different sets of data were used. When computing the 
resonance frequency of the C0io-mode one has to take into account the dispersion of the material 
parameters. The results are displayed as solid lines in Fig.4. The difference of the measured and the 
computed resonant frequencies remains within a few percent. Because of the comparably high 
sensitivity of the resonator measurement, this confirms the quality of the waveguide experiments. Due 
to larger measurement uncertainties the agreement is less pronounced in the cases where the samples 
used for the waveguide measurement had small differences in length [4]. The uncertainties observed in 
[4] when determining £ and fa of the chiral material do not appear, here. They were related to the 
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measurement errors on the ratio /V£r, a quantity that does not affect the characteristic equation of the 
resonator. 

The results obtained for the quality factor are less satisfactory. On the one hand, the values 
calculated from the measured material parameters decrease in average from 120 to 25 with the 
wavelength. On the other hand, the measured results exhibit a rather erratic behavior. They vary 
between 100 and 250 and show no significant frequency dependence. This is only to some extent 
attributable to the uncertain assessment of losses inherent to transmission measurements as in [4]. The 
measured Q appears to be much more sensitive to material inhomogeneities. 

— O   PU-foam spheres 
— +   chiral material 

3,4 3,8 4,2 4,6     f/GHz      5,0 

Fig. 4 Resonator length vs. measured and simulated resonance frequencies 
for PU-foam spheres and chiral material (modes of different order). 

5. Conclusion 

A resonator experiment was proposed to partially validate the constitutive parameters of a chiral 
material determined from waveguide measurements. To this end the resonator theory was extended to 
also include length-independent modes. These turn out to have no azimuthal dependence. The good 
correlation between the measured resonance frequencies and the ones calculated from the constitutive 
parameters confirms the quality of the waveguide experiments. 
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Abstract 

We show that a fundamental limitation exists on the integral of the dB-reflection coefficient 
over wavelength for a passive metal-backed absorber, whose value is determined by the low- 
frequency behaviour only. This limit is the same for dielectric absorbers, and for chiral and 
omega absorbers. 

1. Introduction 

Standard designs of radar absorbing material on a conducting backplane become inconveniently 
thick for the absorption of longer wavelength radiation. Attempts to reduce the thickness of the 
absorber, for example by increasing the dielectric constant of the materials, often also result in a 
decrease of the bandwidth of good absorption, proportional to the thickness reduction achieved 
(figure 1). 

A possible method of overcoming this problem is the use of artificial materials. Both chiral 
and omega materials have been proposed to provide improved absorbers. We have previously 
performed broadband numerical optimisations of various composite material absorbers, includ- 
ing helix loaded chiral composites. As a comparison, we also performed similar optimisations 
using a material loaded with straight dipoles or circular loops, which give a frequency-dependent 
dielectric constant (and permeability, for loops), but are not chiral. These optimisations incor- 
porated a method-of-moments analysis of the polarisabilities of a single included object, to 
ensure that the constitutive parameters used were physically realisable. The general validity of 
the modelling has been tested against measurements of the constitutive parameters of various 
helix-loaded composites [1]. 

In these optimisations it was found that for a fixed layer thickness the curve of absorption 
with frequency was quite similar for various aspect ratios of helix, including the degenerate cases 
of a straight dipole and an (almost) flat loop (see figure 2). Variations of the composite allow the 
shape of the absorption-frequency curve to be adjusted, but do not allow the area enclosed by 
the curve to be increased without limit. No great advantage was found for a chiral medium [2]. 
Similar computations have been performed by Wallace [3] for magnetic materials: he also raised 
the possibility that there is fundamental limitation arising from the Kramers-Kronig relations. 

To see how such a limitation might arise, consider a single-layer absorber with frequency- 
dependent dielectric constant e(/). An ideal frequency variation can be found by computing at 
each frequency what value of e(/) gives zero reflection for a fixed layer thickness. The real part is 
roughly proportional to l//2, and the imaginary part to 1//. This preserves phase relationships 
between the front and rear of the layer and attenuation through the layer. But since any real 
material is causal (it cannot react to an electromagnetic pulse before the pulse arrives), the real 
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and imaginary parts of its dielectric constant are connected by the Kramers-Kronig relations. 
We cannot independently specify the real and imaginary parts, as our ideal frequency variation 
requires, and so this variation may be unrealisable. 

2. Derivation of the Limit 

It has been known for a long time that a similar limitation on broadband performance exists in 
the design of matching circuits (e.g. [4]). We originally adapted that theory to the problem of a 
Salisbury screen radar absorber [5]. We construct a transmission line model of the electromag- 
netic problem, with a frequency-dependent shunt impedance Z(f) to represent the absorbing 
layer, and terminated with a short circuit for the metal backplane. We also approximated the 
transmission line representing the spacer material by a single-stage of an LC ladder network. 
Using a contour integral method similar to that to be described shortly, we obtained an upper 
limit on the reflection coefficient of: 

LjyM<_^, (i) 

where /o and Ao are the frequency and wavelength at the centre of the absorption band, and 
h is the thickness of the layer. A Salisbury screen has an infinite series of absorption bands 
(figure 3), and the integral of the dB-reflection coefficient is clearly infinite. So this limitation 
cannot be rigorously true. But the approximation of using only a single step of ladder network 
has the effect of confining attention to the first absorption band of a Salisbury screen, and the 
limitation does work with this restriction. We found that in all our optimisations of dielectric 
and chiral materials, this limit was never violated, and integrals of up to 70% of the limit could 
be achieved. A scaling argument shows that if the magnetic materials were involved, the limit 
increases by the permeability /x. 

At the PIERS-98 Conference, K. N. Rozanov published an independent paper on this topic 
[6]. He wrote the integral over frequency rather than wavelength. This overcomes the problem 
of the infinite frequency integral. Thus the method will be described here in wavelength terms. 

Consider a planar absorber, with a frequency-dependent field reflection coefficient -R/(/), 
which can also be expressed as a function of wavelength R\{\). We calculate the integral 
/0°°ln[l/.ßA(A)]dA around a contour in the complex plane, consisting of the entire real axis, 
closed by a large-radius semi-circle in the positive imaginary half-plane. Since Rf(f) is the 
Fourier transform of a real and causal impulse response, it is analytic in the lower half-plane, 
and has the symmetry Rf(-f*) = R){f)- The wavelength reflection coefficient R\{\) has the 
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same symmetry, and is analytic in the upper half-plane. Using the symmetry, the integral 
along the real axis is equal to 2 f£° hi[l/\R\(\)\]d\. This is proportional to the integral of the 
magnitude of the reflection coefficient measured in dB. 

To compute the integral around the large semicircle, we expand ha[l/R\] as a power series 
Y^° AnX~n. Any positive or zero powers of A are excluded since \R\\ -)-las/-40(A-»oo). 
The integral around the large semicircle is then iirAi, with contributions for n > 1 vanishing as 
the radius of the semicircle tends to infinity. 

We wish to use Cauchy's theorem around the contour. But singularities can arise within 
the contour if R\(\) is either zero or infinite. An infinity is excluded because the absorber is 
causal and passive. But the reflection coefficient can be zero, say at some wavelength Xz. By 
the symmetry in the complex plane, there is another zero at —\*z. These two zeros are removed 
by multiplying the reflection coefficient by a factor (A — A*)(A + AZ)/(A — AZ)(A + A*) for each 
such zero point \z. This factor moves the two zeros into the lower half of the complex plane, 
outside the contour. The factor has unit magnitude for wavelengths along the real axis, and so 
does not modify the real-axis integral. It does introduce an extra term in the integral around 
the large semicircle. Having done this, Cauchy's theorem gives: 

I ln[l/|ÄA(A)|] dX = -iirAi/2 - 4TT £ Im Xz . (2) 

Since Xz is in the upper half-plane, the last term is always negative. Then we have: 
> 
]n[l/|J2A(A)|]dA<-MrAi/2. (3) 

Jo 

Since the left-hand side is clearly real and positive, this equation only makes sense if Ai is 
positive imaginary. We have obtained an upper limit on an integral of the reflection coefficient, 
which depends only on the first term of its low-frequency expansion. 

3. Application to Chiral Materials 

The reflection coefficient at normal incidence of a single-layer absorber can be written: 

_ iZi tan(fci/i) - Z0 

iZitan(fci/i) + Z0* ^ ' 

Here ZQ is the impedance of free space, Z\ is the impedance in the medium, and k\ is the 
wavenumber in the medium. With low-frequency approximations, this becomes R « — 1 + 
Airifiih/X. This gives the value of Ai in the expansion, and leads to the limit quoted by Rozanov: 

n 
Jo 

]n[l/\Rx(X)\]dX<27c2fi1h. (5) 

He also remarks that for a narrow-band absorber the factor of 2-K
2
 should be replaced by 

16. If this is done, and the variable changed from A to /, we recover our limitation above. In 
a wavelength integral, the absorption bands of a Salisbury screen have decreasing width with a 
finite sum (figure 3), and they account for the difference between 16 and 2ir2. 

The calculation can be generalised to a multi-layer absorber, using a standard recursive 
process of computing the upward and downward going waves in each layer, starting at the 
back with the zero electric field boundary condition, and applying suitable propagation factors 
through each layer and field continuity conditions at each interface. At each stage one makes 
low-frequency approximations, keeping only the first order term. The algebra is lengthy, and 
the result is the same as for a single layer, except that we have a sum over the layers ]T) ßihi 
instead of a single term. 
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Figure 3: Reflection from single-layer absorber 
((a) Function of frequency, (b) function of wavelength) 

Turning to chiral materials, the details depend on the formalism used. If we use the form 
generally used by Lindell and Sihvola, we find that the reflection is given by equation 4, and 
the chirality does not appear [7]. Thus we immediately obtain the same value of Ay, and the 
same limit, as for a non-chiral medium. If we use the Post-Jaggard or the Lakhtakia-Varadan 
formalism, we find that the chirality only enters in the second order in frequency. Again, it does 
not affect the value of the first-order coefficient Ay, and we arrive at the same limit. 

The omega medium (e.g. [8]) contains wires shaped like a Greek letter ti, and provides a 
different electric-magnetic coupling than the usual chiral effect. However, taking the formulae for 
the reflection coefficient, and making low-frequency approximations, we find that that coupling 
parameter only enters in the second order in frequency. Again, it does not affect the value of 
the first-order coefficient Ay, and we arrive at the same limit. 

4. Conclusions 

We have shown that there is a fundamental limit on the broadband performance of a planar 
absorbing structure on a metal back, proportional to the total thickness and the permeability 
only. The same limit is found for chiral and omega materials as for purely dielectric materials. 
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Abstract 

A model for the direct calculation of the dipole polarizability tensors of a helix with spherical 
core based on the exact field solution is introduced. Motivated by this model, an approximate 
one relying on the dipole moments of the core is developed. Results obtained with both 
models are compared and verified by measurements. 

1. Introduction 

Recently, chiral materials consisting of complex inclusions — for example perfectly electrically 
conducting (PEC) thin wire helices with a dielectric and/or magnetic core different from the host 
material — were proposed and investigated [1]. In this paper the essentially exact model of a helix 
with spherical core used for the calculations in [1] is outlined. Because the governing equations are 
lengthy and their derivation mathematically involved only the Ansatz is displayed here. It reveals 
a problem concerning cores with both dielectric and magnetic properties. The (approximate) 
solution of this problem motivates a second model relying on a dipole approximation of the core. 
This model is developed in the following. Note, that cartesian coordinates are used throughout 
the whole paper. 

2. Model 

Consider a helix with spherical core both centered at the coordinate origin. The current flowing 
on the helix wire can be calculated from a Method of Moments (MoM) solution of the scattering 
problem [2]. If a thin-wire Galerking MoM is employed, the (symmetric) system matrix Z and 
the exciation vector V_ read for plane wave incidence (electric field i?°) 

Zmn=ju» f f t(u)(G° + Gf)t'(u')Bm{u')Bn(u)du'du 
Jv Ju' ~        ~~ 

Vn = f t(u)H + §iu))E° exp{-jkr} Bn(u) du   . 
Ju 

(1) 

Here, 7 is the unity tensor, G° stands for the free space dyadic Greens function, Gf describes 
the scattering correction caused by the spherical core [3], t (£') is the tangential vector on the 
wire in the observation (source) point, and B stands for the basis/testing functions. The term §_ 
that describes the plane wave scattering of the spherical core can be derived from the scattering 
correction Ga by plane wave normalization as described in [4, 5]; it is, in essence, identical to the 
Mie solution for the scattering of a plane wave by a sphere [6, 7]. 

The total field scattered by this helix with core can be split into four parts, each corresponding 
to an individual multipole series. These parts are: 1) The field scattered by the wire caused by 
the incident plane wave, 2) the field scattered by the core caused by the incident plane wave, 3) 
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the field scattered by the wire caused by the diffraction field of the core, and 4) the field scattered 
by the core caused by the diffraction field of the wire. 

Following the procedure introduced in [8], the incident plane wave in (1) can be expanded into 
a Taylor series and the different terms arising can be separated into their electric and magnetic 
origin. This procedure gives results identical to those obtained with the method of counter- 
propagating waves [9], but removes the information on the direction of incidence analytically 
instead of using different angles of incidence to separate the polarizabilities. The Taylor series 
expansion produces unambiguous results if the spherical core is either purely dielectric or purely 
magnetic. If it possesses both properties, the tight coupling of magnetic and electric fields within 
the core prohibits an exact solution. One way to circumvent this problem is the following: The 
inclusion under investigation is intended to form the basic building block of a chiral material; 
thus, the inclusion itself and all of its constituents must be electrically small. Then, electric and 
magnetic effects are decoupled nearly entirely (static limit) and can be treated separately by 
applying the series expansion of the excitation vector V (see above). 

This idea leads directly to a further simplification of the problem: As the core is electrically 
small, only the first term of the infinite series defining Gs contributes significantly [3]. This term 
represents the dipole contributions to the scattered field. This means that for the description of 
the interaction between wire and core the latter can effectively be replaced by its electric and 
magnetic dipole moments in the origin. The expression for the total electric field together with 
the boundary condition on the PEC wire surface then reads 

Zmn=ju f [ {fiotG0 £ - u2nlXG°(0,u')? -YV x £°(0,u')*') Bm{u) Bn{u') du' du 
Ju Ju' 

Vn = f (t£° exp{-jkr} + u2fi0 Xg>{0) - ju Y ^(O)) Bn(u) du ^ 
Ju 

X = tQ°{u,0)ze    ,    Y = tVxGz°(u,0)am   , 

where ge and ^.m are the symmetric electric and magnetic dipole polarizability tensors of the 
core, respectively.  To ensure reciprocity, the identities t(u) = t'(u) and r(u) = r'(w) must be 
fulfilled when considering Vn as derived in [8]. 

Together with the abbreviations 

r = ]T Bm(u) Z~i Bn(u')    ,     </(u, u')} = [ f f(u, u') du' du 
m,n Ju •'«' 

the expansion of the plane wave contained in (2) now leads to the following dipole polarizabilities 
of the inclusion (the numbering refers to the different scattered fields discussed above): 

JU —* L 

g?e = ^<(r x t) T t') ,   z™m = -^<(r x t) T (r' x t')) 

^e=ge,   g™m = Qm 

ge
3
e = -jufiottrx!),       ge

3
m = -(try'} 

gne = ^((E x t)ri') ,   g£m = -^((r x t)TY!) 
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.2,,2 

ge; = -jum&rfi -i^(irx'),   ^ = -^(ir(r' x f)> -U,VOQLr Y'> 

Note, that 

Summing up all these individual contributions, the polarizability tensors of the whole inclu- 
sion are obtained. It can be proved, that the resulting tensors represent a reciprocal inclusion, 
i.e. aee = (aee)T, ame = -{aem)T, amm = (gmm)T. 

3. Verification 
If the core is purely magnetic or purely dielectric the approximate model can be directly compared 
to the exact solution. Furthermore, results derived from the system matrix Z of eq.(l) — for 
example the resonance frequency of the inclusion — are exact, even for cores with both dielectric 
and magnetic properties. Thus, these quantities can be compared to the approximate ones 
obtained from eq.(2) for a partial check of the accuracy. All tests performed showed, that the 
results calculated from the exact and the approximate model are in very good agreement. As an 
example, the change in resonance frequency due to a spherical core (diameter: 2a = 3 mm, helix 
dimensions: diameter 4 mm, height 4 mm, three turns) with magnetic and/or electric properties 
is displayed in Fig. 1. As can be seen, the errors occurring in the curves for either purely 
dielectric or purely magnetic cores add up for cores with both properties. As expected, the error 
increases with electrically larger cores. As a consequence of the neglected electric quadrupole 
moment this is more pronounced for dielectric cores. Although for er, /xr > 5 the cores are no 
longer electrically small (0.2 < ka < 0.91), the results are in good agreement, too (maximum 
difference: 0.04 GHz). 

Fig. 2 displays the scattering parameter Sn of a helix (dimensions as above) with a spherical 
dielectric core (er = 4.7 — j 1.6, diameter: 3 mm). It was measured using the method described 
in [10] and calculated using the approximate model. Apart from a small shift in the resonance 
frequency (see [11] for explanations) the results fit quite well, in particular if one takes into 
account the measurement accuracy [10]. 

4. Conclusion 
The approximate model for helices with spherical core developed above produces meaningful 
results, both theoretically (reciprocity) and numerically. Although the model has its origin in 
the exact solution of the helix/spherical core problem, it contains no restrictions regarding the 
geometry of the core or the wire. The inclusion should only be electrically small so that higher 
order multipole moments of the core can be neglected. Thus, the model should be able to handle 
other than spherical cores, provided their electric and magnetic polarizability tensors are known, 
either analytically or from numerical calculations. 
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Figure 1:  Change in resonance frequency due to a spherical dielectric 
and/or magnetic core. ( ) Approximate model, ( ) exact model. 
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Figure 2: Scattering parameter Sn of a helix with dielectric core. Mea- 
sured ( ) and theoretical ( ) response (approximate model). 
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Abstract 

The well-known surface densities of bound charge a — P • n and current K = M x n, which 
give rise to discontinuities in fields at a surface, are inconsistent in their multipole order. 
The electric quadrupole contribution is missing from each. A consequence of including this 
is the appearance of a surface density of electric dipole moment V. Its effect on the boundary 
conditions is derived, and a reflection experiment on a bianisotropic crystal is proposed, which 
in conjunction with a transmission experiment, allows the V contribution to be measured. 

1. Introduction 

The contribution to a physical effect of electric quadrupoles induced in matter by long wavelength 
radiation is known to compare in magnitude with that of induced magnetic dipoles [1, 2, 3]. 
Consequently, there is an inconsistency in the surface densities of bound charge and current [4] 

a = P • n,      K = M x n, (1) 

where n is the outward unit normal at a macroscopic point on the surface and P and M are 
the electric and magnetic dipole moments per unit macroscopic volume. An electric quadrupole 
term should be included in K alongside M, and also one in o. 

This paper derives these two contributions and then shows their effect on the boundary 
conditions on the fields at a vacuum-dielectric interface. In particular, the electric dipole surface 
density also emerges and its role is examined, as well as its contribution to a physical effect. 

2. Theory of Bound Source Contributions 

The retarded vector potential outside a bounded distribution of currents in vacuum is [4] 

A(7M = 0W47r) [j(r,t-\(K-r\/c)/\(n-T\dv. (2) 
Jv 

By expanding J for TZ >• r, applying the condition A>Ä and averaging over a macroscopic 
volume element dV, we obtain the macroscopic vector potential due to a bounded dielectric of 
volume V and surface area S. To order electric quadrupole (E2)-magnetic dipole (Ml) it is [5] 

Aa(R,t) = (/io/47r){ / (l/R){Pa- hVßQ«ß + taß-yVßMjdV+ f (l/R)^Qaß-€aßlM^nßda}. 
Jv Js 

(3) 
In this R = —H is the displacement of dV from the field point and Qaß = ]£ qrarß/dV is the 
electric quadrupole moment per unit volume. The multipole moment densities PQ, Ma, Qaß are 
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relative to an arbitrary origin in dV at the time t - R/c. Similarly for the scalar potential [5] 

0(R,t)   =   l/(4*reo) (fv(l/R)Va(-Pa + hVßQaßW 

+    I [(l/R){(Pa - \VßQaß)n* + V||-P,|} + (Rx/J^)V±]daj , (4) 

where Vn denotes differentiation parallel to the surface element da and 

V« = -hQaßnß (5) 

is a contribution of E2 order. Prom the volume integrals in (3) and (4), with their 1/R depen- 
dence, the bound source volume densities of current and charge are 

Ja=Pa- YVßQaß + €aßlVßM^    p = -VQPa + k^o^ßQaß- (6) 

These satisfy the equation of continuity for bound sources V • J = -p. Prom the 1/R terms in 
the surface integrals in (3) and (4) the surface densities of bound current and charge are 

Ka = {\Qaß - eaßyMjnß,   a = {PQ- \VßQaß)na + V\{P\\. (7) 

There still remains in the surface integral in (4) the term with a K/R3 dependence. As this 
is characteristic of the potential due to an electric dipole, we interpret V in (4) as the surface 
density of electric dipole moment due to bound charge on the surface. 

If the bound sources in (6) are used in the two inhomogeneous Maxwell equations 

V • E = (pc + p)/e0,    V x B = //0(eoE + Jc + J), (8) 

where pc and Jc are the corresponding free source terms, one obtains by comparison with 

V-D = pc,    VxH = D + Jc, (9) 

the multipole expressions for D and H to order E2-M1 

Da = e0Ea + Pa-$VßQaß,    Ha = Ba/po-Ma. (10) 

The densities Pa, Ma, Qaß are induced by the wave fields and their space and time derivatives 

Ea, Ea, VßEa, VßEa,  ...;    Ba, Ba, VßBa, VßBa,  .... (11) 

Then to E2-M1 order 

Pa   =   aaßEß + u-^ßEß + laafhV7Eß + \üj-la'aßlV^Eß + GaßBß + u^G'^Bß,(12) 

Qaß    =    ÜyaßEj+U^a'^ßEß, (13) 

Ma   =   GßaEß-u-lG'ßaEß, (14) 

where u> is the angular frequency. From their definitions E, V, P, Qaß are time-even and B, 
M time-odd. Thus a'aß, a'aßv Gaß are time-odd and belong only to magnetic crystals. With 
(13)-(14) in (10), constitutive relations for D and H are obtained. However, these do not satisfy 
Post's covariance requirement for a plane time-harmonic wave for negligible absorption [6] 

Da = AaßEß+TaßBß,   HQ = UaßEß+XaßBß, Aaß = A*ßa,   Xaß = X*ßa,   Uaß = -T$a. (15) 
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From V x E = —B and with (10), (12)-(14) substituted into (9), one can show that 

Pa   =   OaßEß + oTl [a'aß]Eß + luT1 [a'aßy + a'ßia + a'7aß]V^Eß 

+    [Gaß ~ k^aßG-rf - hutß-ysa'ySalBß + w~ (G'aß ~ ^ßjS^S^Bß, (16) 
Qaß   =   -\Lü~ [a'aßl + a'ßia + a!^aß]E1 = -SaßlE1, (17) 

Ma   =   [Gßa - \öaßGyi - %u)€aysa'7Sß]Eß - uTl(Gßa - ^oj€ar/sa7sß)Eß. (18) 

Terms in brackets [ ] are time-odd. Prom (10), (16)—(18) and with E = Eo exp{—i(u)t — k • r)} 
the covariant forms in (15) are satisfied. Then from (6) the Ampere-Maxwell equation in (8) is 

taßJJßBi + iu}\iQtaßEß = 0 (19) 

for a dielectric, where eaß is the dynamic permittivity tensor, which to order E2-M1 is 

eaß   =   co8aß + ataß-ic/'aß + u)~1kr(Aaßy-iAl10r), (20) 

Aaßy   =   -eßysGas-e(VrsGß8 +^{a'aß^ + a'ßai), (21) 

■A-aßi   —   ~ eßjsGas + €arfsGßS — ^u}(aaß7 — aßay). (22) 

We now show that the surface discontinuities in (7) alter the usual Maxwell boundary conditions. 

3. The Boundary Conditions 

To derive these, unit step functions are used instead of the integral forms of Maxwell's equation. 
With the surface element in the xy plane and +z axis into the medium, these functions and 
their derivatives are, using the Dirac 5-function and its derivative <5', 

f v      / 1 for z > 0        .     .      f 0 for z > 0     du{±z)       ,..       &u{±z) , 
uW = |ofcrz<0   ' tt(-*) = \ lfor*<0   •-&- = **(*). "^ = ±*M.   (23) 

The total bound current and charge densities are then 

Jt(R)   =   u(*)Ji(R) + ti(-*)J2(R) + *(2)K(r), (24) 
Pt(R)   =   u(z)p1(R)+u(-z)p2(R) + S{z)(T(r) + 6'(z)z-V{r), (25) 

where medium 2 is the vacuum, n = —z, and r lies in the xy plane. Using (23)-(25) in V-J = — p 
and equating the coefficients of S(z) one obtains a in (7) and of 8'(z) one finds 

Kz = -Vz = $Q„, (26) 

which is K in (7) for a = z. Since these two results confirm (24) and (25), we similarly take 

E(R)   =   u(z)E1(K) + u{-z)E2(R) + 6(z)e(r), (27) 

B(R)   =   u(*)Bi(R) + ti(-«)B2(R) + *(z)8(r), (28) 

where £(r) and B(r) are surface fields. With these in (8) one obtains the boundary conditions 

E\.x-E2x   =   Vx£z,   Ely-Eiy = S7y£z,   EXz - E2z = (a - elazV^a£z)/tQ, (29) 

Bix-B2x   =   fio(Ky + elyz£z),   (Bly - B2y) = -//<)(#* + elxz£z),   Blz = B2z,     (30) 

£z = Vz/elzz = -±Qzz/elzz. (31) 

Thus to order E2-M1 the tangential components of E are no longer continuous across a boundary, 
whereas the normal component of B is. 
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4. The Role of the Surface Density of Electric Dipole Moment 

As is evident from (29)-(31) the boundary conditions reduce to the Maxwell forms when V (or 
Qaß) is zero. In the electric dipole (El) order Qaß = 0. Thus the Maxwell conditions are an 
approximation, applying only in the El order. Prom (5) and (17), V exists only for magnetic 
media. Also, the tensor Saßl in (17) may vanish for symmetry reasons, as for propagation along 
the main axis of antiferromagnetic Cr203, even though it possesses the time-odd tensor a'aßr 

5. Application 

The simplest magnetic crystal is an antiferromagnet (since <x'aß = 0) that is centrosymmetric 
(since its time-even odd-rank polar tensor aaßl and even-rank axial tensor G'aß vanish). The only 
such symmetry for which an effect exists at normal incidence is 4/mmm. Its Fresnel reflection 
matrix for normal incidence parallel to its C2 axis can be shown to be [7] 

R = 
{n0 - l)/(n0 + 1) rps 

rsp -(»e - !)/(«« + !) 
(32) 

where n0 and ne are the ordinary and extraordinary refractive indices, 

rsp = rps = p0c[Kne/(no + ne) - Si23]/(n0 + l)(ne + 1),   K = 2Gn + w(a'123 + a312),    (33) 

and S123 is the only component that exists of the tensor in (17) which, because of (5), is the 
surface electric dipole term. The components in (33) are relative to crystallographic axes. The 
matrix in (32) is identical in form to that of Cr203 for the same geometry. The effect in Cr203 is 
a rotation of the plane of linearly polarized light, which has previously been measured, yielding 
an experimental value of rsp. Thus rsp should be measurable for a 4/mmm crystal. A different 
combination of K and Si23 enters the birefringence in transmission 

n+ -n-= cpo(3Si23 - K). (34) 

Prom these reflection and transmission experiments a value can be obtained of Si23 and hence of 
the contribution of the surface density of electric dipole moment V to the boundary conditions. 
This would provide a test of our theory. 
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Abstract 
In this paper a method for the analysis of a frequency selective surface (FSS) supported by 
a bianisotropic substrate is presented. The frequency selective structure is a thin metallic 
pattern—the actual FSS—on a plane supporting substrate. Integral representations of the 
fields in combination with the method of moments carried out in the spatial Fourier domain 
are shown to be a fruitful way of analyzing the problem with a complex substrate. 

1. General Equations 

The geometry of interest in this paper is depicted in Figure 1. The sources of the problem are 
assumed to be confined to a region located to the left of the bianisotropic slab, which extends 
from z = z\ to z = ZN-I- The depth parameter z is defined by the normal of the interfaces as 
shown in the figure. The scatterer is a periodic pattern of metal—frequency selective surface 
(FSS)—located at z = ZQ on the left hand side of the slab. The space outside the slab is 
assumed to be homogeneous, lossless and isotropic with relative permittivity e, permeability fj,, 
and relative impedance 7? = y/fi/e- 

The integral representation of the solution to the Maxwell equations in an isotropic region 
is used to characterize the electric field in the region outside the slab and the scatterer. The 
stratified geometry also suggest that an expansion of the Green's dyadic in plane vector waves 
is pertinent [1]. A systematic use of these two concept gives the following representations of the 
scattered electric field [3] (570 = i//ioAo and k = ^/ejkj/co): 

Es(r) = < 

00 

" 5? // (^P+(fct)' JW>e~ikmM0) «*•**** 
—00 

00 

-zjpff {r ■ r(fc<) • F+(fe» z^kzZ1) 
—00 

00 

—00 

+ 'y-(kt)-T(kt)-F+(kuz1)e
ik"1) 

dkv 

eikt.P-ikzz dkx dk      Zo<z<zi 

,ihfp—ikzz 
OiKx Qtfö; ■y,        Z < ZQ 
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FSS - e ]i Stratified biaauaotropk slab e u 

Z =   Z0 Z -   Zi Z =   ZN _ x 

Figure 1: The geometry of the problem. 

where the Fourier variable in the s-y-plane is denoted kt and the normal (longitudinal) wave 

number, kz, is defined by kz = (k2 - k?)1/2, (Lmfc, > 0). J(kt) denotes the Fourier transformed 
surface currents of the plane z = z0, and the projection dyadic P±(kt) is defined by [3] 

P^fct) = feilen + exe± T ^ (*«« + ««*) + ^** 

and the reflection dyadic r(kt) of the slab and 

where I2 is the identity dyadic in the x-y-plane. The two (real) unit vectors in the x-y-plane 

e,|(fet) = kt/kt,        &±(kt) = z x e||(fet) 

and the split field F+(kt, z) at the interface is [6] 

F+(kuz) = ^Exy(kt,z) - ^ (e||e||^- + united A -zx Hxy(kt,z) 

2. Integral Equation for the Surface Current 

We employ the Floquet's theorem [2] to the surface current J(r) on the FSS and the Fourier 
transform of this current is [5] 

A   2       °° 
J(kt) = ^-     J2     JE(kmn)S2(kt-kmn),      kt€M2 

m,n=—oo 

where AE is the area of the unit cell (sides a and b with the angle fi between the axis) and 
fcmn = xam + yßmn with 

1-nm     , i _ 27m       2irm { 

€* = — + %,     P™ = b^n-—C0tn + ky 

where fcj. and ky are the x- and the y-components of the wave vector of the incident field, 
respectively, and where JB(femn) is the Fourier transform of J(r) over the unit cell E evaluated 

at Krnn- 
The boundary conditions on the FSS imply that 

00 

(l2 + r(koo)e™>°°h) • Eiy(r)\z=zo =    £    (l2 + r(fcmn)e2ifc—A) • xmneih-" 
min——oo 
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Figure 2: Power transmission (in dB scale) of the co-polarization for a hexagonal pattern of 
loaded tripoles on an isotropic slab as a function of frequency (GHz). The angle of incidence is 
0 = 60° and <f> — 0°, and the polarization is TE. The tripoles are 9 mm long with 3 mm long 
ends. The width of the metallic strips is 0.5 mm. The elements are arranged in an equilateral 
lattice with side 16.5 mm. The polarization of the incident field perpendicular with one of the 
sides in the hexagonal pattern. The thickness of the isotropic substrate is d — 0.12 mm and the 
permittivity is e = 4.3(1 + «0.021). The dashed line shows the computed values and the solid 
line shows the measurements. 

where h = z\ — ZQ > 0 and where kzmn 

introduced the vector field 

krjov 
•"mn — 

= (k2 — |fcmn|2)     , (Imfczmn > 0) and where we have 

( fcf 6llell + g-i-e-J-) ' JE(kmn) 2.A.EkZTrvn 

to simplify the notation. This relation is the basic equation used for the determination of the 
unknown quantity xmn, which is solved by a method of moments technique in the spatial Fourier 
domain [3]. Once this quantity is determined, all other fields can be obtained. 

3. Results 

We illustrate the effect of an isotropic, homogeneous dielectric substrate on the transmission 
properties of the FSS in Figure 2. The effect of a bianisotropic substrate is illustrated in Figure 
3. The constitutive relations used here are [6] 

D = €Q {e • E + rjo£ • H}, 

The material parameters of the slab is [4] 

0 
eyy 

co 
E + r]oß- H] 

£ = 
<0   0    0 

o o in 
L0   0    0 

C = 
0 0     0 
0 0     0 
0 -in o 

(1) 
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Figure 3: The same element and unit cell geometry as in Figure 2 but the substrate is bian- 
isotropic. The material parameters is given in (1) and the thickness of the substrate is d = 6 mm. 
The curves that correspond to the co-polarization are given by lines without crosses and the 
cross-polarization curves are given by lines with crosses. The solid lines show the cases where 
eyy = 3 and Ü = 0 (i.e., an isotropic substrate), and the dashed lines show the cases where 
eyy = 10 and n = 0.9. The angle of incidence is 6 = 30° and <p = 0°, and the polarization is 

TM. 
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Abstract 
Waves with linearly distance-dependent amplitude (singular waves) directed by one and two 
plane boundaries in a chiroplasma are investigated for the Voigt geometrical configuration. 
Specially selected values of the chirality parameter give a transparent and an opaque version 
of the medium with twofold wave numbers for bulk eigenwaves. Dispersion relations are 
derived and solved with respect to electric or magnetic walls and an interface of two media. 

1. Introduction 

Waves with distance-dependent amplitude (so-called singular waves) correspond to multiple 
roots of the related secular equation. They are known in optics of absorbing and transparent 
crystals (see e.g. [1], [2]). Such a form of solution is suitable especially well for waves guided 
by different boundaries. In particular, singular surface polaritons and magnetoplasmons may 
propagate along the plane surface of an anisotropic crystal [3] and a magnetoplasma interface in 
the Faraday geometric configuration [4]. We consider singular guided waves in a chiroplasma in 
the case of the Voigt configuration, when these waves do not exist in a nonchiral magnetoplasma 
[5]. 

2. Transverse Propagating Singular Eigenwaves 

A chiroplasma is the gyroelectric version of the Faraday chiral media described by the well-known 
constitutive relations [6] 

{ 
D   =   e-E + i£B 

(1) 
H   =   i£E + B/n 

where 

f = £oo I   i9     £      0    I (2) 
V 0      0     ez ) 

is the permittivity tensor for the biasing magnetostatic field directed along the 2-axis. Its 
elements depend on reduced frequency parameters fi and R as usual [7]. The time-harmonic 
exp(—iojt) dependence is meant. 
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We study transverse to the z-axis eigenwave propagation. In this case, one can introduce a 
scalar function <p(x, y) satisfying the fourth-order wave equation 

{ Ai + [*£> (ex + ez) + 4u;V£2] Ax + A&,exe,} V (*. v) = ° (3) 

where Aj. = &/da? + &/dy2, k^ = u^/e^ß, and e± = e- g2/e is the Voigt permittivity. The 
differential operator allows to fulfil the factorisation procedure 

[(A± + 4,4) (Aj. + kin2.)) <p(x,y) = 0 (4) 

where the eigenvalues 

2 1 e± + ez + 4a2 ± yj(ex -ez + 4a2)2 + 16a2ez (5) 

define two possible kinds of field polarization, a = Zy/iZJeZ is the normalized chirality admit- 
tance. Unlike an isotropic chiral medium, the wave numbers n+ and K_ can be equal here under 
condition that the square root in Eq. (5) is zero. This gives critical values of a = ±ai)2 where 

aifl = ^(y/=e^±V=eI) (6) 

if both e± and ez are negative. It is valid inside the frequency range 

0 < fi2 < | [R
2
 + 2 - y/mW+4j] . (7) 

Both values of a (6) make possible to consider a chiroplasma as a nonchiral gyroelectric unire- 
fringent medium characterized by the wave equation 

[(A± + k2
ooK

2)2}<p(x,y)=0 (8) 

with the twofold wave number K = «i = ^eTel (this is the geometric mean between the indices 
of the ordinary and extraordinary waves in a nonchiral magnetoplasma) or rc = K2 = i^eJeT- 

The general form of solution of Eq. (8) differs from the usual homogeneous plane-wave 
representation in respect of the amplitude factor which is now distance-dependent. Hereafter, 
we intend to concentrate on waves guided along the x-axis (it is referred to as the Voigt geometric 
configuration), therefore we prefer to write down the partial solution of Eq. (8) as follows: 

<p(x,y) = (Zl + Z2y)exp[ik00(ax + ßy)],        a2 + ß2 = K
2 (9) 

where Z\ and Zi do not depend on the coordinates. Expressions for the singular-wave compo- 
nents of E and H are derived from the Maxwell and Hehnholtz equations in conjunction with 
Eq. (1). 

3. Singular Surface Waves Guided by a Boundary or an Interface 

Let the half-space of the medium y > 0 be bounded by a plane screen or an interface of infinite 
extent. The boundary is able to trap a singular surface wave having real a and pure imaginary 
ß because the exponential attenuation exceeds the linear growth in the y direction. 

An electric wall.    The boundary condition e„xE (x, 0) = 0 leads to the set of linear 
algebraic equations 

f Z2 + k00{*a + iß)Z1        =   0 
(10) 

k 2ißZ2 + fcoo (ex - K2) Zi   =   0. 
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To find nontrivial solutions of Eq. (10) its determinant should be set equal to zero. This allows 
to obtain the secular equation 

ej. - K2 - 2iß (?-a +iß) = 0 . (11) 

This equation is solved exactly. A unidirectional surface wave exists only if e > 0 and it 
propagates with the coefficient a = |a|sgn<7 where 

O = \ [(v^^+v^il)2- (v^ilTv^I)2]172- (12) 

Eq. (12) is valid for the case of the transparent medium (K = «i). Option K = K-I (the case of 
the opaque medium) needs to interchange \a\ and the decrement \ß\. 

It is worthwhile to compare this hybrid singular wave with the unidirectional TEM surface 
wave on a perfectly conducting electric screen placed in a magnetoplasma [5]. That wave has 
|a| = y/e, its low-frequency branch exists for ft < R where bulk waves do not propagate (n = y/e± 
is purely imaginary). 

A magnetic wall. Applying the boundary condition ey x H (x, 0) = 0 we receive the 
dispersion equation 

2 (v/=il± 3V^iI) ß2 T v/=il(e± - et) - 1i9- (v^fl± ^55-a/? = 0 (13) 

which describes also a unidirectional singular surface wave. Here the upper sign corresponds to 
K = KI and the lower one to K = «2- After a hyperbolic substitution, Eq. (13) is transformed 
to a quadratic equation. For n = «i, the direction of propagation is defined according to 
sgn(<7£a) = 1, and the wave exists inside the band (7). For K = K?, there is a gap in the 
dispersion diagram if R is small. 

An interface of two enantiomorphous media. In order to find the dispersion relation 
in the case of an interface of two mirror-conjugate media 

(l±^)(V^±v^)V + ^x-£*)2-^ (14) 

(where the upper and lower signs correspond to the transparent and nontransparent media, 
respectively) one has to require continuity of tangential electric and magnetic fields at the 
interface y = 0. Singular surface wave propagates symmetrically in both directions within the 
band (7). In the opaque medium the pass band has the lower cut off bound if R2 < 4(4 + 3^)- 

4. Singular Waves of a Parallel—Plate Waveguide 

Let us consider two parallel electric or magnetic walls y = 0 and y = d bounding the waveguide 
region entirely filled by chiroplasma. In order to describe the singular field one needs to take a 
superposition of two countersolutions in the form of Eq. (9). Transcendental dispersion relations 

2 
£± Ö^c+«^+1-[sraiJ 0 (15) 

(for electric walls) and 

22/32 [(e± + o2)2 - a4£] - (e± + a2) (£jL + K
2
) (e± + 2a2 - «2) + 2a4£«2 

8/3  

+ 1- *"/M   j]   =0    (16) sin(fcoojSd) 
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(for magnetic walls) contain a common trigonometric part. Dispersion features of singular waves 
are quite different in the cases with K = «i and K = K2- For the opaque medium, the waveguide 
slightly resembles the appropriate perfectly conducting screen, however an additional frequency 
stop-band appears for the variant with magnetic walls. The behaviour of singular guided waves 
in the transparent medium is more complicated because their transverse wave numbers may 
have real values. Under certain conditions, a singular waveguide supports one slow and a few 

fast waves. 

5. Conclusion 

The singular surface electromagnetic waves are guided by a plane boundary of a chiroplasma 
half-space if chirality and plasma parameters are properly matched. They form a complete set 
of surface polaritons jointly with the Rayleigh surface waves and generalized surface waves [7], 
[8] in the Voigt geometry. It is shown that a parallel-plate waveguide supports under certain 
conditions singular propagating modes whose characteristics drastically depend on the type of 

the boundary conditions. 
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Abstract 

The results of the numerical analysis of reflecting find transmitting properties of multi-layered 
structures composed of doubly periodic arrays of metallic strips are presented in the paper. 
Strip elements have been selected, having a shape of letters C, S and fi. The strips of the 
arrays are placed on a thin dielectric substrate. Strip elements can have bulk impedance 
loading, included in the break of strip. The interference of multi-layered array systems, due 
to multiple reflections of waves between layers, combined with the resonance properties of 
single layers lead the structure to acquire properties typical for photonic band gap crystals 
(PBG). 

1. Introduction 

Photonic band gap (PBG) crystals made with a few layers of periodic arrays of metal strip 
particles placed on thin dielectric substrate are useful for a wide range of applications in the 
microwave region such as novel antenna structures, frequency selective surfaces, filters with al- 
ternate frequency stop bands and pass bands. Frequent PBG structures are constructed with 
arrays of thin PEC disks [1] and thin metal rods [2]. A complex shape of strip particles of 
PBG structures gives various new resources. First of all, a complex shape particle can have a 
total length greater than the size of array's unit cell. This is important for making substrates 
of tiny microwave devices. Secondly, PBG consisting of complex shape particles can effectively 
transform the polarization of reflected wave in comparison with polarization of incident wave. 
Structures of plano-chiral elements such as strip having the shape of letter S have properties 
similar to true chiral structures [3]. Third of advantages of complex shaped particles is con- 
trollability of their electromagnetic properties by connecting active electronic loads such as PIN 
diodes to the complex particles. 

The reflection properties of complex layered metal strip arrays placed in free space was 
studied recently [4]. Now our main goal is the study of reflection of more practical PBG layered 
array structures on dielectric substrates and arrays consisting of strip particles having bulk 
impedance loading, included in the break of strip. 
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2. Operators of Reflection and Transmission of Single Array Layer 

Let us assume a plane electromagnetic wave incident on an plane double periodic array. The 
reflected and transmitted fields can be represented as superposition of partial waves of TE and 
TM polarizations. It is convenient to confront set of amplitudes of reflected partial waves and 
transmitted ones with a set of amplitudes of incident field by using operators rf and tx of 
reflection and transmission a single array placed on dielectric substrate. The indices plus and 
minus respectively are denoted the operators for the wave incident from the side of metal strip 
and opposite side of dielectric slab. Method of moments was used practically in the cases of 
wave scattering by arrays of thin narrow strips. The method of works [5], [6] was modified for 
simulation wave scattering by array on substrate. 

3. Operators of Reflection and Transmission of a Finite Number of Arrays 

A system of a finite number of arrays is shown 
in Fig. 1. The structure is assumed to be 
equidistant and to consist of identical arrays 
having identical orientations of the elements. 
Electromagnetic field in each gap between pla- 
nar arrays may be represented in the form of a 
set of partial TE - and TM - waves propagat- 
ing or exponentially decaying from one array 
plane to another. Amplitudes of the trans- 
verse components of the partial waves are de- 
noted as following: q for the incident field, r+q 
for the reflected field, t+q for the transmitted 

(n-2)L 

Figure 1: Layered structure 

field, and A, B for the fields in the gap between the next to the last array and the last array of 
the structure, see Fig. 1. 

Let us assume operators rf, if for a single array to be known, as well as r*_ls t*^ for the 
system of (n - 1) arrays, and show that the operators for the whole system can then be found 
recursively. The amplitudes of the partial waves satisfy equations 

f A 

B 

=   t+_ig + r-_ieB 

=   rfeA 

=   tfeA 

(1) 

where operator e is the plane-wave propagator operator from the plane of one array to the next 
array plane along the direction of propagation. The quite similar equations can be wrote in the 
case of electromagnetic wave incidence from right side of layered structure. After elimination of 
vectors A and B from (1) and the corresponding vectors of second set of equations one obtains 
recurrent expressions which allow to find operators r„ and t„ in the form 

rt   =   »•*_! +derfetJ-r^crfe)-1^.! 

tt    =   ^(J-r^erfe)-1*^! 
(2) 

In this way we can find any scattering characteristics of the array system, i.e.  amplitudes of 
partial waves reflected and transmitted by the layered system using operators r± and t±. 
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Figure 2:  Absolute values of the reflection coefficients:  C-shaped particles, 4 layers, e = 3, 
h = 0.25 mm, dx = dy = 3 mm, a = 1.25 mm, (f>y = 10°, fe = 0, w = 0.05 mm, L = 2.5 mm 
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Figure 3: Absolute values of the transmission coefficients: S-shaped particles, 3 layers, e = 3, 
h = 0.25 mm, dx = dy = 3 mm, a = 1 mm, <f>i = 120°, ^2 = 0, w; = 0.05 mm, L = 2.5 mm 

4. Numerical Results and Discussion 

A system with two wide zones of full reflection can be made using a 4-layer structure with 
C-shaped particles on substrate. Its frequency characteristics are shown on Fig. 2. The first 
reflection zone is in the low frequency area. It is the first resonance (polarization along axis Oy) 
depending on the element length with the resonance between the first and the fourth layers. The 
second zone is the second length resonance with resonances between layers: layer 1 and layer 2 
(L12 « A/2), layer 1 and layer 3 (L13 « A), layer 1 and layer 4 {Lu ~ 3A/2), when dx/\ ta 0.6. 

Similar behavior of frequency dependence of the reflection coefficient is observed in the case 
of a 4-layer structure with O-shaped elements. 

Layered arrays of plano-chiral S-shaped particles have ability of effective transformation of 
polarization of incident wave near resonant frequency of strip particle. There is a wide frequency 
zone of equal levels of absolute values of transmission and reflection coefficients, see Fig. 3. 

Frequency dependencies of reflection coefficients of layered arrays of loaded particles are 
shown on Fig. 4. Inductive loading leads to increase the electric length of particle. The resulting 
particle resonances and the resonances due to interference between layers give a complex system 
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Figure 4: Absolute values of the reflection coefficients: C-shaped loaded particles, array without 
substrate, dx = dy = 6 mm, a = 2.5 mm, fa = 10°, fa = 0, w = 0.1 mm, L = 5 mm, parameters 

of load are i* = 0.136 Ü, L = 1.2 pH, C = 0 F 

of reflection and transmission zones. There is possibility to control frequency characteristics of 
structure by using active electronic devices as load. 

4. Conclusion 

Using layered structures instead of single array of complex shape particles enable to give the 
opportunity to have more sharp and wide band frequency zones of full reflection and polarization 
transformation. Controlling the frequency characteristics of layered arrays can be achieved by 
associating electronic loads to the array particles. 
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Abstract 

We present an overview of the electromagnetic theory of wire media. One can conceptually 
envision this class of media as composite media composed of thin wire inclusions that need not be 
necessarily electrically short, but can be from a fraction of a wavelength in length to multiple 
wavelengths in length. One can suggest several different forms and geometries for these wire 
inclusions; as one example of these media, we have considered the case of a medium that could be 
synthesized by embedding many identical, finite-length (with some arbitrary identical length), 
parallel, thin wire inclusions within an otherwise isotropic host medium. In this talk, we review the 
modeling and analysis of electromagnetic wave propagation in such media, present some results of 
such analysis, discuss their salient features and physical justifications, and mention some other 
novel inclusion geometries and shapes for wire media. 

1. Introduction 

The investigation of wave interaction with complex electromagnetic materials has been a subject of 
great interest over the past several years. Such interest has arisen from various perspectives—from 
mathematical, analytical, and computational techniques in treating radiation, scattering, and guidance 
of electromagnetic waves in complex media, to suggestions for potential applications, and to ideas for 
fabrication of some types of complex media, especially as connected to experimental verifications of 
their electromagnetic properties. Application of novel electromagnetic complex materials in future 
devices may provide new opportunities to solve some of the challenges in various fields such as 
wireless personal communication systems and mobile services. 

Traditionally, analysis of the electromagnetic features of complex media has been more focused 
on realizations where the dispersed inclusions have been assumed to be small compared to the 
operating wavelength. However, can one suggest novel geometries for material inclusions such that 
while they would not necessarily be electrically short the entire ensemble may still be macroscopically 
considered as a medium'? One possible scenario would be to imagine a class of artificial materials in 
which the inclusions are permitted to be electrically long in one dimension and yet still electrically 
small in the other two dimensions (i.e., the inclusions have small transverse cross sections that might 
vary along their length). Such inclusions can then all be positioned in parallel and in close proximity to 
each other so the entire structure may be macroscopically regarded as a medium. How then do we 
analyze and model electromagnetic wave propagation in such complex media? 
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2. Modeling 

As an illustrative case, we consider one conceptualization of these media in which the wire inclusions 
are taken to be identical, but arbitrary finite-length, parallel, thin wire inclusions within an otherwise 
isotropic host medium. This case is an example of a larger class of complex media in which the 
inclusions are permitted to be electrically long in one dimension but still electrically small in the other 
two dimensions (e.g., the feedforward-feedbackward (FFFB) medium [1]). Furthermore, for the sake 
of mathematical simplicity in our analysis, we assume that these wire inclusions have been positioned 
on a 3-D periodic structure. However, since we want to allow the wire inclusions to have arbitrary (but 
identical) electrical length and at the same time we want to keep the spatial periodicities of the 
structure small (so an ensemble of such wires would form a macroscopic medium), the wire axes 
should be titled away from the lattice axis. 

The theoretical approach we use here considers the medium as concatenation of many closely- 
spaced elementary planes, each of which contains a distribution of parallel identical wire inclusions 
located on a 2-D periodic lattice. (The types of surfaces resembling these elementary planes have been 
called Super-Dense dipole surfaces or Gangbuster surfaces in the context of frequency-selective 
surfaces (FSS) by Schneider and Munk [2], Larson and Munk [3], Kornbau [4].) The interaction of 
electromagnetic waves with the elementary planes is studied numerically using the standard periodic 
method of moments (MoM), and then, from knowledge of the wave interaction with a single 
elementary plane, periodic-structure theory is used to analyze wave propagation within the entire 
medium. Our theoretical studies have shown some interesting features connected to plane wave 
propagation in these media. Here we present some sample results. More results and details of our 
analysis of wire media are reported in [5, 6]. 

3. Reflection Properties of a Single Plane 

Consider, as an example, an elementary plane where parallel identical wire inclusions are positioned 
on a 2-D periodic lattice as shown in Fig. 1. The periodicities of the square lattice structure is chosen 
as D = 0.13A where A is some reference length (not the wavelength) that may be selected to scale 
this surface to any desired physical size. The length and radius of these identical wires are selected as 
L = 0.533A and a = 0.001A, respectively. The "tilt angle" for this example is « = 14°. The 
operating wavelength X0 can be chosen from a fraction of the reference length A to multiples of A. 

After going through a series of mathematical steps and MoM analyses [5, 6], one can find the 
reflection coefficient of this elementary plane when illuminated by an incident plane wave. In our 
investigation, we noticed that the variation of the reflection coefficient was greater as a function of 
angle of incidence in the E-plane (i.e., where the plane of incidence is parallel with the wire 
inclusions) than in the H-plane (where the plane of incidence is perpendicular to the wire inclusions) 
[5], so here, in the interest of space, we only present the results for the E-plane. More results can be 
found in [5]. 

Furthermore, we only consider TMZ waves (where the z-axis is parallel with the wire axes), 
because for these waves the incident electric field interacts appreciably with the thin wire inclusions. 
For the TEZ waves the thin wires do not interact with the incident wave since the incident electric 
field is perpendicular to the wires (the wire medium is effectively transparent to TEZ waves). Figure 
2a shows the reflection coefficient of this elementary plane as a function of X01A for a normally 

incident TMZ wave in the E-plane [5, 6]. At the smallest relative wavelength in this figure, 
Ao/A = 0.25, the wires are just over two wavelengths long (i.e., L = 2.13A0) and at the largest 

relative wavelength in this figure, X01A = 2, the wires are about L = 0.27X0. 
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Fig. 1 An example of an elementary plane of a wire medium. The radius of these wires is taken to be 
very thin in our analysis. However, in this illustration, the wire radius is exaggerated five 
times in order to make it visible in print. See the text for the geometrical parameters for this 
example. 

Note that grating lobes are not present for normal incidence throughout this range of 
relative wavelengths because the periodicities of the structure are chosen short enough to prevent this 
effect. Some of the interesting features of this figure, which are expected for the FSS, should be 
mentioned. (1) Two points on the reflection curve reach the point of complete reflection, i.e., R = — 1. 
The first point occurs at Ao/A = 0.83 (which indicates that L = 0.64Ao), and the second point at 

Ao/A = 0.34   (i.e.,   L = \.51X0);  (2)  a deep null  occurs near the point   X0IA = 0.39   (i.e., 

L = 1.37X0), and this is between the two wavelengths for complete reflection. 

0    10   20   30   40   50   60   70   80   90 
6[°] 

(a) (b) 

Fig. 2   (a) Reflection coefficient of the example of single elementary plane (in Fig. 1) for a normally 
incident TMZ wave, as a function of relative wavelength, X01A ; (b) the E-plane specular 
plane wave reflection coefficient as a function of incidence angle for the same elementary 
plane, with the wavelength fixed at X0 = 0.41 A . 
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This phenomenon is known in the literature as a modal interaction null [3]. Figure 2b shows the 

reflection coefficient as a function of incidence angle in the E-plane when the wavelength of the TMz 

incident wave is kept fixed (here at X01A = 0.41). As expected, the reflection coefficient is large for 

angles near normal incidence, and vanishes near 0 = 57° and again at grazing (i.e., 6 = 90°). 

4.   Wave Propagation in a Wire Medium 

To extend the above example to a medium, the elementary surface described above is used as the 
elementary plane of a wire medium. In our study, these planes are assumed to be separated far enough 
apart that the evanescent waves of neighboring planes do not significantly interact, but close enough 
that the period is small compared to the wavelength. Taking into account these points, the interplanar 

spacing for the example here is chosen to be at Dx = A/15 [5]. We then model the medium as a 

periodically loaded transmission line with the elementary planes accounted for by appropriate 
equivalent sheet admittances. By applying the Floquet theorem to the analysis of the periodically 
loaded transmission line [7], we find the propagation constant and the effective transverse impedance 
at the midpoint between any two adjacent elementary planes [5, 6]. 

To illustrate some interesting characteristics of wave propagation in this example wire medium, 

consider the case where a TMz plane wave is illuminating the interface of a semi-infinite slab of this 
wire medium. The wire inclusions are taken to be all parallel with the z-axis. The electric field vector 
of the incident plane wave is in the x-z plane. (The x-axis is normal to the interface of the medium.) 
One of the interesting quantities to analyze is the propagation constant inside the wire medium, 
particularly its component normal to the interface, denoted by K. Owing to the phase-matching 
requirements, the tangential components (i.e., the y and z components) of the vector wave number 
inside the medium are the same as those components of the incident vector wave number. Figure 3a 
shows the normalized x-component of wave vector inside this medium as a function of relative 
wavelength Xa1A, for a normally incident plane wave when the interplanar spacing is taken to be 

£>X=A/15. 

In addition, this figure shows the corresponding x-component of wavenumber as determined by 
the effective media theory [5, 6]. We see from this figure that the normalized x-component of the 
wave vector in this sample wire medium is purely real for X01A > 1.3. In this region, the equivalent 

sheet reactance for each elementary plane is large and negative. As the wavelength decreases and 

reaches the range 0.8< X0/A< 1.3, the x-component of wavenumber becomes complex. In this 

region, the equivalent sheet reactance is small and negative, but the wave is experiencing the bandgap 
effect of periodic media, mainly due to the change in the equivalent sheet reactance. In such regions, 
there is significant coupling between the traveling wave and the backward wave and so the energy of 
the forward wave is mainly transferred into the backward wave. 

For this reason, the effective-media approximations are not valid in these regions (as can be seen 
from Fig. 3a) and, as is done here, the full periodic-media approach must be utilized. As the 
wavelength decreases further, K is eventually purely imaginary for 0.4 < X01A < 0.8. In this region, 

the equivalent sheet reactance becomes positive, and hence it represents inductive loading. Here, the 
wave evanescence is not due to the band-gap phenomena, but instead it is due to the heavy inductive 
loading of the medium. Both effective-media theory and periodic-structure theory are applicable for 
this region. As the wavelength continues to become shorter, one may speculate that this progression 
repeats, and also that the bandgap effects of the periodic lattice may appear. Figure 3b presents the 
normalized x-component of vector wavenumber inside this medium in the E-plane, as a function of 

angle of incidence of the TMZ plane wave when the wavelength is kept at Xg IA - 0.41. 
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In this case, the interior wave in the E-plane is evanescent for the incidence angles in the E-plane 
between 0=0° and 8 D 52°. However, for the incidence angles greater than 6 □ 52°, the wave can 
penetrate into the wire medium. Thus, it is evident that there is exclusion of wave propagation from 
certain angular regions in such a medium; essentially, wave propagation is restricted to certain 
"angular windows" that depend upon the chosen design parameters (e.g., number density, orientation, 
length, and volume fraction of inclusions). 

Furthermore, these media, as expected, are frequency dependent and polarization dependent. In 
other words, wire media effectively behave as angle-selective, frequency-selective, and polarization- 
selective media. There are several other interesting features, which we obtained through our analysis 
of this sample, and which are mentioned in [5, 6]. 
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Fig. 3 (a) Normalized x-component of vector wave number, K lk0, obtained from the periodic- 

structure theory and its effective-media counterpart, Kelk0, inside our example of wire 

media, as a function of relative wavelength, A0/Afor a normally incident wave. The 

interplanar spacing between the elementary surfaces is taken to be Dx = A/15; (b) The 

quantities KI k0 and Ke I k0 in the E-plane as a function of angle of incidence of a TMz plane 

wave in the E-plane, at the wavelength X01A = 0.41. 

5. Summary 

The conceptualization of wire media presents an idea for a class of complex media in which the 
inclusions may, under certain constraints, be chosen to be electrically long. We have presented some 
of the results of our analysis for a case of wire media in which inclusions are taken to be identical, 
arbitrary finite-length, parallel, thin wires. It is important to note that even though there seems to be 
many wire inclusions on each elementary plane, the volume fraction is still very small, since the wires 
are taken to be very thin. For instance, for the example wire medium discussed here, the volume 
fraction is just less than 0.15%. Despite the small volume fraction of the metal inclusions, the resulting 
medium may have significantly different electromagnetic properties than the host medium. 

If one were to compare two blocks of dielectric—one with wire inclusions and the other without- 
-substantial differences in the electromagnetic properties would be noticed, even though they may 
have almost identical weight. Owing to the interesting features of electromagnetic wave propagation in 
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such media, wire media, or media similar to wire media, may find some potential applications in the 
design of future microwave devices and components; examples include substrates for micromachined 
and miniature antennas, radome for beam shaping, and waveguides for mode selection. 
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Abstract 

We present here the experimental results about some features of the microwave resonant "effects 
which can be excited in chiro-ferrite media under a constant magnetic field. These results are 
obtained from the measurement of the transmission, reflection and absorption coefficients in 
rectangular waveguides, using cylindrical samples of many isolated oriented multistart helices with 
ferrite core inside. Here we show that in the case of the FMR excitation the resonant effects are 
displayed as two coupled resonances (the main chiral resonance and the FMR), which interfere 
with each other. If the conditions of the Chiro-FMR excitation are fulfilled, the chiral resonance is 
controlled in a limited frequency band. For a certain value of the constant magnetic field the Chiro- 
FMR experiences bifurcation with large frequency separation, which can be more than one order 
larger than the chiral resonance width. The reflection anti-resonance and absorption decrease are 
observed under bifurcation. The resonant response to governing magnetic field depends essentially 
on the ferrite concentration. 

1. Introduction 

As it was shown in [1], the chiro-ferrite composite media, which combine the properties of chiral and 
ferrite components, are considerably more complicated than originally envisioned. 
Indeed, the resonant effects are specific. Even the well-known ferromagnetic resonance (FMR), 
resonant interaction of the microwave magnetic field with a magnetized ferrite, is unusual because of 
the influence of the chiral resonance (ChR). Chiro-FMR is 
the resonant interaction of the magnetic moment of a chiral 
inclusion   (induced   by   the   microwave   fields)   with   a 
magnetized ferrite. Chiro-FMR is unique as it excited only 
in chiro-ferrite media. In our previous works [2,3] we 
investigated the excitation conditions and the possibility to FMU«»(«as■».)•> 
separately observe FMR and Chiro-FMR, using cylindrical 
samples with oriented multistart helical structures with 
ferrite core inside. Here we use similar samples. The 
samples (Figure 1) were made, rolling a piece of material Fig. 1 
with parallel copper (tungsten) threads to helical tube 
around the O-axis. Each of the threads forms the isolated helix, and one-dimensional chiral medium of 
many oriented multistart helices (much less than wavelength) with common O-axis is created. When 
we add ferrite core inside helical tube, the chiro-ferrite is formed. 

2. Chiro-FMR 

The Chiro-FMR features are investigated in rectangular waveguides for two cases of chiral resonance 
excitation. The first case is H-excitation, when the microwave magnetic field h is parallel to the O- 
axis, and the resonant losses are displayed as magnetic losses. The second case is E-excitation, when 
the microwave electric field E is parallel to the O-axis of helices, and the resonant losses are 
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displayed as dielectric losses. To observe the Chiro-FMR it is necessary to apply the constant 
magnetic field H0 perpendicular to the O-axis 

Figure 2 shows evolution of frequency dependencies of Transmission (a) and Reflection (b) 
with variations of the constant magnetic field in the case of H-excitation. We see that main chiral 
resonance moves away from the primary resonant frequency to high frequencies, and its intensity (the 
resonance level) decreases. Under a certain value of the constant magnetic field (#B = 3200 Oe) the 
Chiro-FMR experiences bifurcation, and two identical weak resonances can be observed: previous 
first resonance at high frequency and a new, second resonance. The second resonance appears at low 
frequency about a primary resonance and moves to the primary frequency with increasing intensity, 
while the first resonance continues to weak and becomes invisible at all. It is observed coexistence of 
two resonances in a limited area of a constant magnetic field about the bifurcation field: Hcoex = HB ± 
200 Oe. Under bifurcation we see a deep minimum of the Reflection resonance instead of traditional 
maximum (anti-resonance in presence of absorption). 

In Figures 3 and 4, dependencies of resonance intensity (Fig. 3a), resonance frequency (Fig. 
3b), and resonant absorption (Fig. 4) on the constant magnetic field H0 are demonstrated in the form 
of two branches connected with both the first resonance (before bifurcation) and the second resonance 
(under bifurcation and after it). In Figure 3b, frequency dependence of the FMR for single ferrite core 
(without the chiral sample, but in Chiro-FMR geometry, H0 -L to the core axis and H0 -L to the h-field) 
is presented also. Analyzing frequency dependencies of the Chiro-FMR and the FMR (Fig. 3b), one 
can note the correlation between bifurcation field (#B = 3200 Oe) and the FMR field of single ferrite 
at the frequency equal to the primary chiral resonance,/= 10,4 GHz at H0 = 0. 

3. FMR 

The FMR features are investigated in the case of E-excitation, when one can observe separately the 
FMR under H0 ± to the h-field (|| to the O-axis). In Figure 5 we illustrate the frequency dependence of 
Transmission at different values of the constant magnetic field H0. When H0= 0, only chiral resonance 
(ChR) is observed. Applying a constant magnetic field, the FMR is excited and moves to high 
frequencies. Till frequencies of the FMR and the ChR are far from each other, influence of ChR on 
FMR is very weak. When the FMR is near the ChR, two coupled resonances and interaction between 
them are observed, as Figure 6 confirms. When the FMR approaches the ChR, its intensity decreases 
while ChR intensifies. Next, increasing the constant magnetic field, we observe intensification of the 
FMR and decrease of the ChR intensity (Fig. 6a). Frequency shift of ChR caused by the FMR 
influence is weak, as Figure 6(b) shows. 

4. Conclusion 

The Chiro-FMR Features 

1. Controlled ChR in limited frequency band. 
Strong frequency shift. 

2. Bifurcation    effect,    coexistence    of    two 
resonances. Decrease of resonant absorption. 

3. Correlation between  bifurcation  and  FMR 
fields. 

4. Influence     of     ferrite     concentration     on 
frequency band. 

The FMR Features 

1. Two   resonances:   main   ChR  and  moving 
FMR. 

2. Interaction between FMR and ChR near the 
main resonance frequency. 

3. Weak frequency shift of ChR. 
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Abstract 

The influence of the size of particles on the circular dichroism (CD) and optical rotatory 
dispersion (ORD) spectra of turbid layers with spherical globules of chiral substances is 
studied. Simple equations for the values of CD and ORD of dispersed slabs with optically 
soft large spheres are obtained and analyzed. Equations derived can be used for the 
solution of the inverse problem, namely for deriving intrinsic spectra of substances inside 
small particles from measurements of spectra for turbid layers. 

1. Introduction 

Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra are fingerprints of molecular 
asymmetries of chiral substances [1,2]. They have already been studied both for homogeneous [2] and 
paniculate [3-8] media. It was found, in particular, that both ORD and CD spectra of turbid layers with 
Rayleigh-Gans particles coincide with correspondent spectra of chiral molecules in solutions. This is 

~    , . ,        . ,        ,               , . ,.     m   +2  ,_    m, +mR . . , 
not the case for Rayleigh particles, where a multiplier  (m =—- —), mL =nL +IXL 

an° 

mR=nR+ i%R are the relative refractive indices for left-handed and right-handed circularly polarized 
beams) should be used to relate the intrinsic spectra of substances to the spectra measured for turbid 
layers. 

One  should  expect  even  more  profound  distortion  of spectra  in  the case  of large 
In 

(JC »1, x = ka, k= ——, a is the radius of particles,    X is the wavelength of the incident wave) chiral 
A 

particles. The task of this paper is to relate intrinsic CD and ORD spectra of substances inside large 
particles to spectra measured for dispersed layers. It is assumed that the refractive index of a host 
medium is close to the refractive index of particles, which is usually the case for bio-liquids. It should 
be pointed out that the refractive index of a surrounding medium could be always adjusted to satisfy 
the criteria of the optical softness: Im — l!«1. 

2.   Large Optically Soft Chiral Spheres 

For the sake of simplicity we will consider turbid layers with spherical optically active particles. Also 
we combine ORD (p{Ä) and CD 6(A) spectra in one complex function: 
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¥(A) = fl>(A) + /0(A). (!) 

This function can be found with the following equation in the case of turbid layers with chiral spheres 
[3,4]: 

y¥(X) = ^jSa,a)f(a)da, (2) 
k    o 

where N is the number concentration of particles, f(a) is the particle size distribution and 

5(A,a)=£(2/ + l>/. (3) 
/=i 

Amplitude coefficients c, are complex functions of the refractive index and size of particles [3,4]. 

These coefficients rapidly decrease at / > M, where M ~ x. Functions S{X,a) depend on the intrinsic 

ORD <p0(A) and CD 0O(A) spectra of chiral substances bounded in small particles. Thus, Eqs. (l)-(3) 

can be used for the derivation of intrinsic spectra (p0(X) and 0O(A) from measurements of the 
complex function *P(A), provided that the information on the particle size distribution and 

concentration of particles N is available. 
The solution of the inverse problem is simplified for optically soft (\m -1|«l) large (x »l) 

particles, where simple expressions for the amplitude function S(X,a) can be obtained. Let us show it. 
It follows for the amplitude coefficients of large soft spherical particles in the framework of the 

van de Hülst approximation [4]: 

c, =—x sin zAm exp(/p sin T), (4) 

where 

p = 2x(m - l),T = arccos  — \Am = mL-mR. 
x 

\ ) 

The value of p is called the phase shift. Eq. (4) allows to evaluate series (3) for the amplitude 

function  S(X,a)  analytically. Namely, replacing the sum in Eq. (3) by integral [4]:   £->Jd/, 
/=i     o 

where I + — = xCOST and dl = -xsintdT , one obtains: 
2 

S(X,a) = x3Amja2 exp(ipcr)do 

or 

S(X,a) = ^H(p), (5) 

where the complex function H(p) = v(p) + iw(p) has the following simple form: 
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H(p) = - 
6i(\-eip)    6eip    3ieip 

p3 P2        P   ' (6) 

The expansion of the function H(p) as p->0 for monodispersed spheres is given by: 

ff(p) = l-—p2 +—p4 +/-p-—p3 + —p5 |+o(p6). (7) 
10 56 I 4       12K      320      ' 

It follows from Eqs. (2), (5): 

where 

va)=H(P)%a), (8) 

]H(p)f(p)p3dp 
//(p)-° 

J/(P)P> 
o 

v0a)=(p0a)+ie0a), (PQ{X)=
7
^^-, 

e0(Xh^^,An(X)=nL-nR,AX(X)=XL-XR 

and c  is the volumetric concentration of a chiral substance in a turbid layer. 
Eq. (8) is the main result of this paper. It follows from Eq. (8) that 

v0a)=H~\p)va). (9) 

Thus, the solution of the inverse problem is greatly simplified. It follows at small values of the phase 
shift (see Eq.(7)): //(p)->l and *F(A)-»*F0(A) as it should be in the framework of the Born 
approximation [8]. 

Eq. (8) can be used for studies of the dependence of spectra *F(A) on the size of chiral particles. 
Spectra ^(A) depend on the substance in question. They can be measured or found from quantum 
mechanical calculations. 

3.   Conclusion 

Turbid bio-liquids and other light scattering chiral media can be characterized by their ORD and CD 
spectra. It was shown here how to relate ORD and CD spectra of disperse media with intrinsic spectra 
of particles using simple approximate equations. This could be of importance for monitoring bio- 
particles during their life cycles. 

The case of large soft spherical particles was studied in detail. However, results can be easily 
generalized on the more important and practically relevant case of nonspherical particles. The 
diameter of a spherical particle should be changed to the maximal length of an incident beam inside of 
a nonspherical particle to approximately account for the effects of nonsphericity. The account for 
inhomogenity and internal structure of particles is also straightforward in the framework of the 
approximation proposed. 
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Abstract 

In this work we give new results in the framework of a research on the macroscopic optical 
properties of crystals whose period p is shorter than the light wavelength but large on the 
molecular scale, so that they can be treated in the framework of a continuum theory. More 
precisely, we assume that the optical properties of the crystal are fully defined by a perfectly 
periodic function e(r), representing the local permittivity of the medium (assumption of locality). 
To define the effective permittivity tensor e we use a method based on the analysis of the normal 
modes for the electromagnetic field propagating within of the periodic medium (Bloch waves). 

1. Introduction 

A perfect crystal is generally treated in optics as a homogeneous medium, despite the fact that 
in crystals the time harmonic solutions of Maxwell equations (i.e. the normal modes of the 
electromagnetic field) are Bloch waves, whereas in homogeneous media they are plane waves. 
We recall that a Bloch wave can be considered as a plane wave whose amplitude is a periodic 
function of f, or equivalently as a superposition of plane waves, obtained by expanding the 
amplitude in a Fourier series. The dielectric tensor e of the homogeneous (macroscopic) model 
for crystals is defined by considering as a starting point the Bloch wave, and neglecting the 
space dependence of its amplitude. This means that only the plane wave component with q = 6, 
that defines the macroscopic field [1, 2, 3], is taken into account, and considered as the best 
'plane wave approximation' of the actual Bloch wave. The homogeneous medium, where this 
plane wave can freely propagate, is the effective macroscopic medium. Its tensor e is therefore 
implicitly defined by the equation 

D5^e(eQE5), (1) 

where DQ, EQ define the zeroth order Fourier components of the Bloch wave and eo is the vacuum 
permittivity. 

Here we discuss the application of the Bloch wave method to the study of a short period 
crystal whose optical properties are assumed as perfectly known and fully defined by a peri- 
odic tensor field e(r). This field represents a mesoscopic model for the actual crystal, where 
its molecular (microscopic) structure is neglected, and the assumption of locality is explicitly 
made. Despite this last assumption, the spatial dispersion plays a main role in our theory, 
since e explicitly depends on the wave vector k of the internal plane wave, i.e. e = e(k). The 
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tensor field e(r) is well known for many periodic liquid crystal (LC) phases and for artificially 
made structures (as for instance Reusch piles). Our problem reduces therefore to the search 
of equations relating e(k) to e(r). Fully analytic expressions for e(k) will be given, that allow 
for a quantitative analysis of the approximations required to define homogeneous models for 
non-homogeneous and periodic media. This is the main motivation of our research. The found 
equations will be applied to the particularly interesting and simple case of cholesteric liquid 
crystals. 

2. Theory 

The effective dielectric tensor e of the macroscopic model is expressed as a function of the Fourier 
components e^ of the tensor field e(r): 

£(r) = £ £g exP (w*8)- (2) 
9 

The component of order zero is the space average of e(f), i.e. eg = e, and constitutes a first 
rough approximation for e. The other approximations are obtained by adding to e terms having 
the general structure: 

egi^-9ieg2^-(9l+92)-"^-(?l+»-+9iv-l)e9N' (3) 

where 

<?,-= | [(fc + $)2i-(£+$)(£+$)-*]~\ (4) 

I is the 3 x 3 identity matrix, (k + q)(k + q) is a dyadic product, and the vectors qn satisfy the 
following relations: 

N' 

qi + ...+fa=0,   £?n^0   ViV'<iV. (5) 
n=l 

The terms given by Eq. (3) can be interpreted as the effect of the multiple scattering within the 
periodic structure, and the equation (5) states that only the forward scattering with multiplicity 
N > 2 gives a contribution to e. The formal expression of e can be written as: 

oo 

£ = £+ E E-  E e9iG-9ie92G-(9i+g2)-"G-(9l+---+9N-i)e-(9i+---+9AT-l)- (6) 
N—2 qi        qN-l 

The dependence of e on k comes from the tensors Gg-, as shown by Eq. (4). The dominant 
contribution to e is given in general by the terms with N = 2, i.e. by the double scattering 
(two-photon scattering), a fact that allows to greatly simplify Eq. (6). A further simplification 
is obtained by expanding Gg in power series of p/A, where p is an average period of the crys- 
tal lattice, since only the first terms of such expansion are expected to give a non-negligible 
contribution to e(k). This gives 

2 

e = S + gw + 
(!)*"♦(!)!M+-- (7> 
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For the simple case of crystals periodic in only one direction, say x$ (ID crystals), the vectors 
q depend on a single index r, and: 

qr = rqx3,   e^ ' = 2^erG)_T'eT; 

where: 

G(°)   = 
0   0   0 \ 

-— I 0  0  0 
£33 0   0   1 

c« 1 1 I f 0 0 n\ ^ 

  Ü Ü n2 
f"£33 \ ̂ ni W2 933 ) 

(8) 

(r = 0,±1,±2,...), q = 2ir/p, n = k/ko, gzz = -^(ei3«i + £23^2), and only the two-photon 
scattering has been considered. For chiral structures, the most important term is the one 
containing e^1) and scaling as p/X, since it is related to the optical activity of the structure. 
Interestingly, it is identically zero for light propagating along the periodicity axis of ID crystals, 
i.e. for n = 713x3, as clearly shown by the expression of Gr, Eq. (8). The higher order terms 
give in general small corrections to the preceding ones, but in some particular case they can 
give qualitatively new effects. This actually occurs in cubic crystals (and in particular in the 
blue phases), because the term scaling as (p/A)2 gives a small anisotropy to the structure. This 
also occurs along the periodicity axis of ID crystals, whose optical rotation is related to a term 
scaling as (p/A)3, since the term scaling as p/X is zero. In fact, for real e(r) only the terms 
scaling as (p/A)m with odd m-values give a contribution to the optical activity. 

3. Discussion 

(i) The method developed here allows to easily obtain e(k) in all the cases where the function 
e(r) has only few non-zero Fourier components, a fact that actually occurs in many liquid crystal 
phases. The simplest and most important one is the choelsteric phase, where only the Fourier 
components er with r = 0, ±1 are different from zero. For such crystals: 

gPW 
( 1   0   0 \ 

0   1   0 
0   0   0 

e<3Wn3 (9) 

nl)/8 and e" and e*1) = 0, where e0 = (e0 + £e)ß, £e = ee, £' = (£e - £0)2(2£0 - n\ 
i(ee — e0)2(2e0 — n\ — n|)/(4e0). The pedices o and e refer to ordinary and extraordinary, 
respectively. We recall that cholesteric liquid crystals are locally uniaxial, with the optic axis 
orthogonal to £3, and that the pitch of their helical structure is equal to 2p, where p is the 
lattice period. The Eqs. (9) show that effective medium is still uniaxial, but with the optic axis 
parallel to X3. The term scaling as (p/A) is identically zero for any direction of the light beam: 
the optical activity of cholesteric is therefore given by the term scaling as (p/A)3. This unusual 
property constitutes a further demonstration of the unique optical properties of the cholesteric 
phase. 

One may notice that the equations given here can straightforwardly give the expression of 
eup to terms scaling as (p/A)3, whereas the standard effective-medium theories generally only 
give terms scaling as (p/A)° and (p/A)1. 

(ii) The presence of fc-dependent terms give non-easy problems for the search of plane wave 
solutions and for the boundary conditions. In fact for any given direction of k the dispersion 
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relation becomes a polynomial that could have, in principle, any number of roots. However, only 
four solutions, ±ki and ±fc2, corresponding to plane waves with different polarization states, 
have physical meaning. The difficulty for the boundary conditions is due to the fact that the 
terms of e{k) depending on the m-power of k come from the space derivatives of order m of the 
electric field. The constitutive equations, written in the Landau form, are in fact: 

en = eg5 + -Yijkd/dxk + xwtf/dxkdxi + ...;     ß ßo- 

Interestingly, the Bloch wave method gives the actual expression of e(k) without any use of 
higher order tensors. In the presence of derivative-depending terms, the usual conditions of 
continuity for the tangential components of E and H are no more valid. The problem has been 
at least partially solved only for the simple case of first-order derivatives [5], by writing the 
constitutive equations in the Post or Tellegen form [6]. 

(Hi) The limits of validity of the macroscopic model have been carefully tested. For achiral 
crystals, the approximation e(k) « e(0), where all the fe-dependentjterms are omitted, is in 
most cases good enough up to p/X « 0.1. The full expression of e(k) allows to extend these 
limits up to p/X « 0.5, except for the optical properties directly related to the spatial dispersion 
(as, for instance, the rotatory power). Such properties require a more careful analysis, that has 
been partially given on the basis of a different approach in Ref. [7]. The limit p/X « 0.5 is due 
to the fact that for higher p-values the periodic medium can give Bragg diffraction, where the 
dispersion curves show forbidden bands. Obviously, homogeneous models are not able to account 
for the Bragg diffraction bands, even though they could still give approximated expressions for 
some optical properties at higher p-values. 
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Abstract 

We regard the transition layer near the bound of inhomogeneous media on the base of the 
introduced here concept of the generalized wave modes (GWM). We show in present work that 
previously described one-dimensional nonlocal model of inhomogeneous media [1] is a two-wave 
approximation for electrodynamic properties of the medium. The second, evanescent, wave in the 
model represents a sum of wide spectrum of GWM and can be used for approximate description of 
the transition layer. 

1. Introduction 

The transition layer is relatively thin area near the bound of medium, where electrodynamic property 
cannot be described adequately in terms of £,fl parameters. Usually, inhomogeneous media, such as 

composite materials, have a depth of the transition layer approximately the same as a characteristic 
size a of the structure. But one can expect that in special cases this depth can be considerably larger 
than a, at least for the materials with sufficiently strong interaction between the inclusions. 

Taking into account the presence of the transition layer for inhomogeneous materials, one can 

provide the general conclusion that the measured effective parameters £e, ße of them must always 

differ from those of £e, ße, which one can calculate for the infinite (boundless) medium. 

The most transparent example for this conclusion can be the finely stratified medium (the Rytov 
solution [2]), which contain dielectric and metal layers. Let us consider only TM modes in it. There 
exist only one propagating (principal) wave mode in such a structure and all higher order modes are 

evanescent in the quasi-static case. Acher et al [3] used formulas for the £e, \ie parameters, which 

correspond to the principal wave in such a structure, for calculation the intrinsic permeability of thin 

metal films. In the limit of strong skin effect those formulas give the result £e = £,    fle—l, which is 

not correct, because do not reflects the diamagnetic properties of such a structure. Our theoretical 
analysis and the experimental examination permit us to found the correct formulas for the considered 
case: 

e        I e    d 
£e =£->£,   Lie=-<1 (a) 

a 1 

where / is a period of the layers and d is the width of dielectric layers. The difference between the first 
and the second formulas can be explained by the fact of excitation the wide spectrum of evanescent 
modes near the plane boundary of this medium. These modes form the transition layer, which depth is 
close to the skin depth. Therefore, the formulas in [3] are not correct, if the skin effect is noticeable. 
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2. Determination of the Generalized Wave Modes in Inhomogeneous 

Medium 

Let us consider arbitrary inhomogeneous, but statistically homogeneous and isotropic in x and y 
directions medium. It is conveniently to regard the transition layer on the boundary on the base of 
conception of the generalized wave modes (GWM). Such a mode we determine as a generalized wave 
process in the medium, when the spatially mean constituents E0 and H0 of the electromagnetic field in 
it spread as a plane wave (factor exp(iO)t) is omitted) 

E0(z) = E0$0exp(-ikz),   H0(z) = H0fi0exp(-ikz),   fio=bxeo] (1) 

This definition is consistent with the theory of the space dispersion [4] where only spatially means 
constituents of the field are taken into consideration. In present work we shall take into account the 
spatially inhomogeneous constituents of the field also. For this purpose we provide decomposition of 
tangential components of the whole electromagnetic field in arbitrary plane (x, y) in form of finite 
series of the spatial harmonics (SH). For example, it can be done with help of 2D FFT, but we suppose 
that each SH is a sum of both elementary plane waves in the (x, y) plane with the same wavenumber. 
Further we shall apply one-dimension, rather then two-dimensions indexing of SH for the simplicity. 
Providing transformations of the Maxwell's equations by analogy to the method, have been described 
in [1], one can obtain the followed system of equations 

N-l 

kEn=coß0JdßnmHm 

-o , n = 0,...,N-l (2) 
kHn=(oe0JJenmEm 

Here we use SI system, £„, Hn are the amplitudes of the spatial harmonics, N - the number of the 
harmonics, £„m,ßnm are complex parameters, which depend one,/i distribution in the (x, y) plane 
and polarization of the SH only. Naturally, the zero index corresponds to the spatially homogeneous 
constituents of the field. One can show with help of the Maxwell's equations that for the defined 
polarization of the E0, H0 constituents, polarization of the fields of each SH in the defined (x, y) plane 
do not depend on the wavenumber k of the mode (1). Hence the same is true for the parameters 
£ . U . Moreover, it seems natural that those parameters do not depend on z for statistically 
homogeneous media although we have no proof of it at present time. Nevertheless, if there are some 
fluctuations of those parameters in z direction, we always can take the mean values of them. 

Therefore, the system (2) is a linear system of equations. It can be rewritten in the equivalent and 
a more convenient form, as a combination of two matrix equations: 

N-l 

A*E = n2-E,   A = [anm],   anm=^J\ink-ekm,   K = {E0,El,...,En,...,EN_,) 
k=0 

B*H = n2-H,   B = [b„J,   bnm=^enk-ßkm,   H = (H0,Hlt...tHn1...,HN^) 
k=0 

Here n = £/£0 is a refractive index of the GWM, which can be obtained as a solution to the two 

equivalent dispersion equation 

det(^-n2/)=0odet^-n2/)=0 (4) 
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where / is a unite matrix. It is clearly that the eigenvectors E, H of the corresponding matrixes A, B 

describe the spatially spectrum of SH for respective GWM. Therefore, in contradistinction to the 
conventional concept of wave mode, the GWM, travelling trough the inhomogeneous medium, keeps 
only the spatial spectrum of transversal distribution of the electromagnetic field. 

If we pass to the limit of the continuous spatially spectrum, the characteristic polynomial 
dety - n2 IJ transfer to an entire function [5], which have isolated zeros only. Hence the spectrum of 

GWM for the medium, which is described by the equation (4), is always discreet. It is clear that 
similar to the finely stratified medium [2], the only principal GWM is usually propagating and all 
higher order modes are evanescent in quasi-static case. Now we can conclude that by analogy to the 
Rytov solution, the transition layer is formed by a series of evanescent generalized modes, which are 
excited by an incident wave. 

3. Two-Wave Approach to Description of the Transition Layer 

Let us show that one-dimensional nonlocal model of the inhomogeneous medium [1] corresponds to a 
two-wave approximation for electrodynamic description of the medium. For the uniformity, we 
rename the 8 constitutive parameters introduced in [1] to e^, fl^. Then we can present 4 equations 

obtained in [1] in the next form 

kE0=Q)ji0(ß00H0+n0XHx)        k-H0=o)£0{e00E0+£0XEx) 

k-Ex=(op0(ßxoH0+ßxxHx) k-Hx=(O£0(£x0E0+£xxEx) 

Here E\ and H\ are the effective complex amplitudes of the spatially inhomogeneous constituents of 
the tangential components of the field [1]. These amplitudes can be express in the amplitudes of 
spatial harmonics (2) 

!N-T~ JAM   ~ 
£.= It #i=JX#2 (6) 

V m=l V m=l 

Parameters £km,ßkm can be calculated by formulas, which followed from [1], where functions of 

distribution of the inhomogeneous constituents of the field correspond to the principal wave in the 
media. 

We can rewrite the system (5) in form of two systems by analogy to eq.(3): 

\a00E0 +a0XEx = n2 -E0 \b00H0 +b0xHx=n2 H0 

\aX0E0+anEx=n2 -Ex lAo#o +bxxHx =n2 Hx 

Here coefficients üW and b^ are depended on parameters E^, /J.^ in similar way to (3): 

aoo = Mooeoo + ^oieio > aoi = A* ooeoi+ ^01£l 1 
aio =^io£oo+/iiieiO' an =Mioeoi + /iiien 

^00 = eoo Moo + eoi Mio > ^01 = eoo ^01 + £01 Ml 1 

^io =eioMoo +eiiMio> ^n =eioMoi +£llMll 

Solution of Eq.(7) can be obtained by analogy to Eq. (4) through dispersion equations 

(7) 

(8) 
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det(A2-n2l2)=0&det(B2-n2l2)=0 (9) 

where index 2 corresponds to 2x2 matrixes of Eq.(7). Hence the equations (9) have two solutions for 
the value n. Naturally, the first root of (9) must correspond to the principal wave in the medium. The 
second solution represents an effective GMW, which is a superposition of all higher evanescent 
generalized modes in it. Therefore one can expect that the second wave of the one-dimensional model 
can be used for the approximate description of the transition layer of inhomogeneous media. We mean 
here the case of plane boundary of the medium and plane wave, which normally fall on it. 

The model of medium, where two wave modes can be excited, are well-known from theory of the 
spatial dispersion [4], although only propagating waves was taken into consideration there. The 
principal point of this problem is to find the additional bound condition, which is necessary for sewing 
together tangential components of electromagnetic fields on the boundary for incident wave and both 
modes. The same problem arises, when we consider the transition layer in two-wave approximation. 
As an additional boundary condition, we can use in this case the continuity of tangential components 
of the spatial inhomogeneous constituent on the plane boundary. This requirement is equivalent to the 
introducing of the complex effective characteristic impedance Zoi for the spatial inhomogeneous 
constituent of the field, which spread outside the bound. Then, if the bound lies at z = 0, we can write 

the additional bound condition in the form of Ex (0)/Hx (0) = Z01. The value of Z01 = Z0^ßn/en 

can be obtained from the formulas in [1], where one must use values £ = 1, ß = 1 for the free space. 
We have examined the two-wave approach in particular for the case of the finely stratified medium 
and get good results. For example, if such a structure contains both dielectric and metal layers, we 
have the correct result (a) for the limit of strong skin effect in metal layers. 

4. Conclusion 

The transition layer in inhomogeneous media can be described with help of series of the GWM. But 
we think that the simple two-wave approach for this problem is quite adequate in many cases. Such an 
approach is seemed more acceptable, especially in case, when we investigate both theoretically and 
experimentally the influence of the transition layer on electromagnetic properties of complex 
composite materials. 
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Abstract 

Important ingredients in both exact and approximative treatments that aim to establish 
the electromagnetic response of an individual scatterer are so-called depolarization dyadics. 
Here, the focus shall be on both the derivation of closed-form expressions for as well as 
numerical evaluations of the depolarization dyadics. It will be shown how — from the initial 
approaches to the subject for isotropic mediums — important results have been derived for 
the general anisotropic and general bianisotropic regime in recent years. 

1. Introduction 

In order to motivate our approach to the topic of depolarization dyadics, we shall consider 
an applicational area of electromagnetics in which they play a significant role. That topic 
is homogenization, where two or more component mediums (often envisioned in particulate 
form) are mixed together to form a composite material. The aim of homogenization theories is 
then to extract the constitutive parameters of the composite material from a knowledge of the 
constitutive and geometrical properties of the constituent mediums. The research literature on 
homogenization is vast. The interested reader will find many important historical works in an 
anthology [1] and a comprehensive review of new developments in the homogenization of linear 
bianisotropic materials in a recent book chapter [2]. 

The first step towards the derivation/estimation of the composite's constitutive properties 
requires the solution of an electromagnetic scattering problem in which the electromagnetic re- 
sponse of an individual scatterer must be determined. This task can be achieved by adopting 
direct or indirect scattering approaches. For a detailed discussion of merits, difficulties and 
limitations of these approaches, the reader is referred to an up-to-date conceptual review by 
Lakhtakia [3]. While the direct scattering approach usually consists of numerical implementa- 
tions, some analytical progress can often be made in the indirect scattering approaches, especially 
when certain approximations are introduced where appropriate. In particular, in the so-called 
Rayleigh estimate, the complete information about the electromagnetic response is contained in 
the depolarization dyadics. 

In the present review the topic of depolarization dyadics is developed through a complete 
and exact representation of the electromagnetic field that is applicable even when the field point 
is contained within the source region. Alternatively, it is shown how the depolarization dyadics 
of a general, linear bianisotropic medium can be extracted with a Fourier technique in the form 
of surface integrals. Also, a detailed discussion focusses on the types of mediums for which these 
integrals can be explicitly evaluated. The basis of this review on depolarization dyadics is a 
recent review paper on fields in the source region [4] which may be consulted for further details. 
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2. Theoretical Background 

Time-harmonic electromagnetic fields are being considered and a time-dependence of exp(-iut) 
of field quantities is assumed throughout and suppressed (w is the angular frequency). In 6- 
vector notation, the complex-valued field and source phasors are defined by1 

a--(SS)-   **-(£&)■ 
where E(x) and H(x) are standard electric and magnetic field phasors and Je(x) and Jm(x) 
are the electric and magnetic current densities, respectively. The most general linear medium, 
commonly referred to as a bianisotropic medium, is described by the frequency-dependent con- 
stitutive relations 

(fg)=K-Efe), E=(jy. p) 
where D(x) is the dielectric displacement and B(x) is the magnetic induction. As for the 3x3 
constituent dyadics of £, | and p are the well-known permittivity and permeability dyadics, 
whereas £ and ( are the two magnitoelectric dyadics. The medium parameters will normally be 
complex "scalars" or pseudoscalars and it will be assumed that they fulfil the general covariance 
constraint: Trace U ' (±~l + ß'1 ' £) = °> [5L dictated by the structure of modern electromag- 
netic theory. 

Consequently, the Maxwell equations can be given in the compact form: 

[L(V) + VJK] • Pfe) = Qfe),        L(V) = ( _v=x L   V * = J (3) 

where 7 is the 3x3 unit dyadic. Because the differential operator ^(V) and the constitutive 
dyadic K are both linear, (3) permits a solution representation of the form 

F(x) = Fh(x) + f   fife, x') • Q(x') d3x', (4) 
Jy 

wherein V is a volume such that Q(x) = 0 for x £ V. The field Fh(x) is a solution of (3) for 
Q(^) = fi? i-e-, mathematically speaking it is the complementary function. The entity Gjx,x') 
ÜT generally called the dyadic Green function, abbreviated DGF henceforth. It contains the 
standard 3x3 DGFs G   , G    ,G     and G     .It now follows from (3) and (4) that the DGF =ee' =em1 =me =zmTn 
fulfils the dyadic differential equation 

[L(V) + ia;K] -Q{x,x') = 6(x-x')l, (5) 

where S(x - x!) is the Dirac delta function and I is the unit dyadic. 
The field representation (4) holds for all x. While it can be applied directly in the case 

x ^ V', special care is required when xeV because of singularities in the integrand. That case 
is of special interest in this context as it leads to the concept of the depolarization dyadics. 

3. Field Representation with the Fikioris Technique 

Two broad approaches for dealing with the problem of correctly evaluating the integral in (4) 
for x € V have been developed. The first of these was pioneered by Van Bladel [6, 7], and it was 

'3-vectors (6-vectors) axe in normal (bold) face and underlined whereas 3x3 dyadics (6x6 dyadics) are in 
normal (bold) face and underlined twice. 
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later systematically generalized by Yaghjian [8]. Their work and that of others during the 1980s 
relates to isotropic dielectric-magnetic mediums only, i.e., for | = el, f = Q> C = Ö> f£ = ßL- 

More recent work, based upon the principles of electromagnetostatics, reported some progress 
in the application of that technique to uniaxial [9] and general, homogeneous bianisotropic 
mediums [10]. The essence of the Van Bladel/Yaghjian technique is that the integral in (4) is 
treated by excluding a small convex region (often called exclusion region or exclusion volume) 
surrounding the source point of the integration region. The integral can then be evaluated and, 
eventually, the linear dimensions of the exclusion region are shrunk to zero — a procedure that 
effectively amounts to principal value integration. 

An alternative approach was developed by Fikioris [11] in which the volume of the exclusion 
region is not required to be infinitesimally small in size. As a consequence, estimates for the 
electromagnetic field in the source region thus obtained differ from those arising from the Van 
Bladel/Yaghjian technique. In particular, the Fikioris technique gives rise to a dependence on 
the electrical size of the exclusion region in addition to that on its shape; see [12] for further 
information. Thus, the Fikioris technique amounts to the regularization of a divergent integral 
[13]. It is also worth noting that the Fikioris technique simplifies to the Van Bladel/Yaghjian 
technique when the exclusion volume is made infinitesimally small. 

While these developments concerning the Fikioris technique also related to isotropic medi- 
ums only, recent years have seen significant extensions of the method to more complicated, 
linear homogeneous mediums. Initial application of this approach for a bi-isotropic medium 
[14] was followed by an extension to a simple uniaxial bianisotropic medium (i.e., an affinely 
transformed bi-isotropic medium) [15]. The Fikioris technique was also applied to an uniax- 
ial dielectric-magnetic medium [16], an axially uniaxial bianisotropic medium (AUBM) [17], a 
simple symmetric bianisotropic medium [18] and an affinely transformable AUBM [19]. Results 
may be extended to mediums related to these by affine or other field transformations [20]. 

The essence of the Fikioris technique can be outlined in a straightforward way. In order to 
transform (4) into a suitable format, a volume V" is defined in such a way that it constitutes a 
convex region surrounding x = x[. Also, an auxiliary dyadic Green function Q_p(x,x'), called 
the Poisson dyadic, must be introduced. Hence, (4) may be rewritten as 

F(x) = Fh{x) + f G(x, x') • Q{x') dV + 
Jv'-v" — — 

/ /; [gfe x') • Q(x') - £pfe x!) • Q(x) ] dV + U(x) • Q(x). (6) 

This representation is an exact formula without any simplifications, applicable to a general, 
linear bianisotropic medium as described by the constitutive dyadic in (2). In connection with 
the field representation (6) it must be observed that an explicit formula for the infinite-medium 
DGF Q_(x, x') — and consequently also for the Poisson dyadic Q.p(x,x') — of a general, linear, 
homogeneous bianisotropic medium is not available at this time (see [21, 22] for review works on 
infinite-medium DGFs for complex mediums). This entails then that the dyadic function D(x) 
in (6), which is called the depolarization dyadic, and which is given by 

D(x)= f    Gp(x,x')<*V, (7) 
— Jv" — 

can also not be derived for a general, linear bianisotropic medium. 
While the foregoing developments have fully defined the depolarization dyadic ~Q.{x), it is in 

approximations of (6) that its role and significance receives further illumination. One may as- 
sume, for example, that V is itself convex in shape and also electrically small, i.e., its maximum 
chord length is smaller than a tenth of the principal wavelengths in the medium, say. Then, as 
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the Fikioris technique does not require V" to be infinitesimally small, one can set V = V". As 
a consequence, the representation of the field simplifies to the extent that the integral over the 
region V - V" on the right-hand side of (6) vanishes. 

If one makes the additional assumption that the current density distribution Q(x) is uniform 
inside V = V", one obtains the long-wavelength estimate from the Fikioris technique as 

Flw(x) SJ Fh(x) + [M(x) + D(x)]  • Q(x), (8) 

for x € V, where 
M(x) = 17 [fife*') - ap(x, x')] dV. (9) 

If, finally, the term involving M(x) is ignored, the Rayleigh estimate of the electromagnetic field 
in the source region arises in the form 

Ea^ÖO^EftfeJ+ßCÖ-QUO- (10) 

In this last relation we can now directly recognize the significance of the depolarization dyadic 
as a mapping from the source Q(x) to the scattered field F^x) - Fh(x). Thus, the complete 
response of the individual scatterer is seen to be contained in the depolarization dyadic DJs). 

4. The Depolarization Dyadic 

As far as the depolarization dyadic gfe) is concerned, the situation appears now like this: if, 
for a specific type of medium the dyadic Green function G_(x, x') is known, one can obtain the 
Poisson dyadic G=p(x, x') and thus finds a representation of the depolarization dyadic in terms 
of a volume integral by virtue of (7). Due to the structure of G_p(x,x'), that volume integral 
can always be transformed into a surface integral with the help of Gauss' theorem. 

Consider, for example (see [16] for mathematical details), an uniaxial, dielectric-magnetic 
medium, defined by constitutive dyadics 

!=etX+(ec-et)cc,        | = Q,        £=Q,        g = Vtl+ (ßc~ ßt)cc, (11) 

where c is a unit vector. After convenient decomposition of D_(x) according to 

into 3x3 component dyadics, we find 

1      ~       -1 1=0,        D     =0,        D      =— ,... -em      =' =me       =' =mm       »V, *"'=m    ^ L4«4T'.      D=£>     £me = P=>      D=-r-*mkm'!Ll>     <13) IU 

where qe = ec/et and qm = Hc/ßt- The dyadics £e m can be explicitly evaluated as 

L   _ = J (— + A(qe,m)) (i-cc) -A(qe,m)cc, (14) 
2   \qe,m ) v_ ' =e,m 

A<'» = r^(1-(7Tiptan"1^Tj- (16) 

However, as an alternative to the route taken thus far, it turns out that D_(x) may be obtained 
independently through a Fourier space analysis which does not require a complete knowledge of 
the infinite-medium DGF of the medium. The procedure was first implemented for a general 
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anisotropic dielectric medium [23] (for a spherical exclusion volume) and then generalized to 
the most general, linear, homogeneous bianisotropic medium with constitutive dyadic as given 
by (2) (for an ellipsoidal exclusion volume) [24]. Following [24], let the surface of an ellipsoidal 
region V' be parametrized as ^,(0, (f>) = 5U. ' t(8,4>) where x(6, <f>) is the radial unit vector in 
a spherical coordinate system (with angular coordinates 0 and 4>) located at the centre of V; S 
is a linear measure of the size of V, and U. is the symmetric shape dyadic (U. = L when V' is 
spherical). 

Then, the 3x3 depolarization dyadics in (12) are given by 

Rxx>=Ur1'iLxx>'W1>   (A,A' = e,m). (16) 

The 3x3 dyadic J^A, is calculated as the double integral 

{ = ur1 • c • ur1,  e'=ur1 • c • ur1,  C=ur1 • c • ur1, tf=ur1 • p • tr1, (is) 

£*v = TW      
rf^ /      M sing V-   if   ,   '   ,    .w.    ,,    M , 17 —AA      Amu J^o      Je=o {x'§!' x){x • n' • x) - {x • C • x){x • £ • x) 

r   = „',    r     = _£',    r     =-£*,    T      =e'. (19) 

It is clear that in general the double integral in (17) needs to be evaluated numerically. 
Explicit, closed-form evaluations (for ellipsoidal, spherical, cylindrical and cubical exclusion 
volumes) exist for the isotropic case: both for achiral isotropic mediums [8] as well as for chiral 
mediums [14]. For uniaxial dielectric-magnetic and for uniaxial bianisotropic mediums where 
at least one of the medium dyadics g, £, £, fi is of the form &= ac2_ + accc (c is again a unit 
vector) explicit expressions (in terms of inverse trigonometric functions) are also available [23], 
[16], [25]; [17], [26]. The most recently obtained results in closed form relate to a biaxial dielectric 
anisotropic medium with g = exMxUa; + CyUyUy + CzUzUz » £ = =' £ = =' H = ^ = ' where Man 
Uy, Uz are the unit vectors of a cartesian coordinate system. The depolarization dyadic ß(x) 
is given in terms of elliptic functions of the first and second kind [27]. Finally, the closed-form 
results obtained for isotropic/uniaxial/biaxial mediums can be trivially extended to mediums 
which contain arbitrary skew-symmetric elements in their 3x3 constitutive dyadics, see [24], 
[27], because any skew-symmetry is filtered out in the integral representation (17). 

5. Concluding Remarks 

It was shown that depolarization dyadics play an important role in electromagnetic field rep- 
resentations. They arise through regularization procedures which guarantee that the field rep- 
resentations also remain valid when the field point is in the source region. Their significance 
can be interpreted in a straightforward way, namely that within certain well-defined approxi- 
mations, particularly the Rayleigh estimate, they provide the complete information about the 
electromagnetic response of an individual scatterer. 

The depolarization dyadics of a general, linear bianisotropic medium can be represented in 
terms of a two-dimensional integral. There are many special cases for which the integrations can 
be performed explicitly to yield closed-form expressions. In general, however, these integrals lend 
themselves easily to numerical treatment that require only small computational resources. Such a 
numerical approach is also economic because in their most important application, depolarization 
dyadics are used in homogenization calculations that are necessarily numerical by nature. 
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