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Preface 

This effort was initiated under a DARPA/TTO Broad Agency Announcement #99-07 in the topic 
area of Trusted Computing under a Information Technology Expedition search. The proposal, 
named "Trustworthy Software: When Computers Serve as Proxies for Humans" was initially 
funded under the Software Enabled Control (SEC) program as contract F33615-99-C-1511 in 
September 1999. Funding was moved to the Program Composition for Embedded Systems 
(PCES) program in FY2000. The contract was terminated in August 2000 when it became 
apparent that the products were incompatible with the PCES efforts. Insufficient progress was 
accomplished to generate a complete final report, so a summary of work attempted referenced to 
the Statement of Work is being published as the final report along with it's ITO Program 
Summary for FY2000. The appendix contains five papers published by OGI faculty and students 
related to this effort. 

IV 



Trustworthy Software: 
When Computers Serve as Proxies for Humans 

Final Project Report 
September 28, 1999 through August 21, 2000 

Jan 15, 2001 

AFRL/JFSC 
Attn: Ron Szkody 
2241 Avionics Circle 
WPAFB, OH 45433-7318 

Re: Contract Number F33615-99-C-1511 

Dear Mr. Szkody: 

The following is the Final Report on 'Trustworthy Software: When Computers Serve as Proxies 
for Humans" concentrating on the period from March 31, 2000, until the termination 
of the project on August 21, 2000. 

Tasks: 

3.1 - Build a reflective meta-programming system for Haskell. This tool has two purposes. 
First, it supports the construction of staged programs that have good performance properties, and 
second it provides a high-level tool for the construction of formal property analyses in the same 
language as the programming environment. This tool shall be used to construct a program along 
the lines of the HOL-prover the contractor has built in MetaML. (CDRL Data Item #s A007 
Software user manual, A008, software design description, and A004, interim reports) 

Completed: 
• Designed a flexible datatype representation for Haskell programs. 
• Completed a parser that parses the complete Haskell Language, and produces an algebraic 

datatype that represents Haskell programs. 
• Completed design and implementation of a flexible type checker. 

Not Completed: 
• Interfaces to Haskell's class system not implemented. 
• A007, Software user manual. 
• A008, Software design description. 

3.2 - Develop facets of trust. The contractor shall concentrate on exploiting formal properties of 
programs and accountability issues. Other facets shall be developed as needed. For example, the 
contractor shall develop a theory of accountability to formalize tracking the dependency of 
answers on contributed inputs and allow for the delegation of accountability. The contractor shall 
also include a notion of adaptation. Whereby a system can identify when a problem occurs, hold 
someone else accountable, then adapt by exploiting that accountability. (CDRL Data Item # 
A004, interim reports) 



Completed: 
• Developed analysis that guarantee noninterference between processes that utilize separate 

partitions. 
• Began investigating model-based synthesis of trustworthy software by using Functional 

Reactive Programming (FRP) as a model for interactive systems. 
• Completed a design and implementation of FRP that runs on top of the Java Beans event 

based model. 

Not Completed: 
• Using Meta-Haskell tool to build an automatic translator to do the job, which was done by 

hand in the FRP implementation above. 

3.3 - Apply the tools and techniques of meta-programming, higher-order functional 
abstraction, and advanced type systems to represent and analyze facets of trust. This task shall 
investigate the following areas: 

3.3.1 - Develop encodings of important properties that are directly checkable by an 
extended Haskell type system. 

Completed: 
• Built generic framework for building Hindley-Milner plus constraint type systems, 

which can be reused in many contexts. 
• Implemented a for Haskell, that was designed to be extgended. 
• Devised a new method for representing programs that use the type system of the 

meta-language in a new and unique way that enforces the scoping discipline of the 
object language. 

3.3.2 Exploit monads to track the presence and absence of effects capabilities 

No work on sub-task completed. 

3.3.3 Use an extended Hindley-Milner type system such as the HMX system to track the 
correct use of physical "units" or other domain-specific properties of interest. 

No work on sub-task completed. 

3.3.4 Build an HOL-like theorem prover to track various levels of 'correctness', some of 
which might be applicable only to specific domains of interest, for example, termination. 

No work on sub-task completed. 

3.4 - Build a prototype, which demonstrates the technology within a concrete scenario. The 
scenario shall be both realistic and well developed within a rich domain of interest such as 
robotics or multi-sensor control systems. The contractor shall demonstrate the synthesis of 
trustworthy behaviors in the presence of untrustworthy information. The system shall include 
multiple sensors and agents of varying trustworthiness. The contractor shall also use meta- 
programming and dynamic functions to modify system functionality in a trustworthy manner as 
the system is running. (CDRL Data Item #s A007 Software user manual, A008, software design 
description, and A004, interim reports) 



Completed: 
• Developed a model for interactive systems based on Functional Reactive Programming. 
• Implemented parallel interactive systems using Haskell systems communicating via the Linda 

shared virtual memory. 
• Developed a method for creating Java programs (using Java Beans) from FRP-based models. 

Not Completed: 
• Demonstration within a concrete scenario. 
• A007, Software user manual. 
• A008, Software design description. 
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Name: Deborah    Golden-Eppelein 

Address: Oregon Graduate Institute 

20000 NW Walker Road 

City, State   Zip: Beaverton,  OR    97006-8921 

Phone: 503-748-1031 

Fax: 503-748-1387 

Email: dgolden@admin.ogi.edu 

Project URL: http://www.cse.ogi.edu/pacsoft/projects/TW/Default.htm 

Objective: To build and demonstrate a set of modern tools to ensure that tomorrow's 
software meets standards of trustworthiness and reliability. 

Approach: Trust is an informal idea that is part of a complicated metaphor. Trust is 
built, at some level, on faith. No one can completely trust any entity; yet 
(some) people make reliable decisions about who and what they can trust 
everyday. Surely software can do the same. A useful approach to the 
construction of trustworthy software is in part based upon the the 
following observation: Trust depends on Understanding. 

• Use a succinct and precise definition of a complex system to 
achieve trust. 

• A model describes a complete system, encompassing all elements 
(components or processes) at once. 

• Different models focus on different facets of trust. 

Models. A model captures the meaning (semantics) of a system in a 
declarative and composable way. The modeling language should 
represent the system in a way that promotes human understanding. An 
important way to accomplish this is to use the language of the underlying 
domain embedded in a domain specific language. This allows the 
inheritance of methods of formal analysis from existing known domains. 

Strategies. We have used the following strategies to build reliable, 
trustworthy systems: 

• Modeling. Trust by understanding. An abstraction prevents the 
implementation details from getting in the way of what it does, but 
provides a clean model to the user of how it behaves. When a 
component has an internal model of its interaction with other 
components it can use this model to make informed decisions on 
what and how to trust. 

• Composition. Large systems can only be built in an effective 
manner by composing them from smaller understood 
sub-components. Compositionality is the key to scaling. The 
meaning of a component must depend only on the meaning of its 
sub-components to minimize unintended component interaction. 

2of5 06 8/1/00 4:26 Pf 



Recent Accomplishments: 

http://www.dyncorp-is.com/ITO/Verify-treport.. 

The use of higher-order languages makes compositionality 
possible. 
Factoring. Separating concerns of functionality from concerns of 
accountability and trust. By using lifting operators that apply trust 
policies to functional components, trust is achieved in an 
orthogonal way from functionality. 
Generation. Trust is Ensured by the generation of components 
from abstract models where correctness is by observation. To 
separate functional concerns from concerns of trust, a "weaving" of 
separate specifications is necessary. This weaving is complex, and 
usually beyond the capability of humans to perform on large 
systems. Generation technology provides the tool to accomplish 
this. Generation technology can be made generic, and can be 
reused over the life of many systems. The generator must 
implement a faithful translation. In order to ensure that all 
properties of the model are maintained, It is necessary to reason 
about the generated code, only by inspecting the code of the 
generator. Models of how generators work are a necessary part of 
trustworthy systems. 

Meta-Programming semantics and implementation. We have 
implemented and released (March 2000) MetaML, a higher-order, 
typed programming languages that provides special support for the 
construction, manipulation, and execution of code. The release of 
the MetaML system can be found on the project web pages. 

Meta-programming systems provide a common, reusable solution 
to a number difficult problems that all program generators 
implementations must provide. For a brief overview of the issues 
involved see our Taxonomy of Meta-Programming Systems 
manifesto. 

FRP Semantics. We have developed a precise semantic model for 
FRP. And continues to investigate the core set of FRP constructs. 
Such a core provides a reference implementation of FRP for other 
researchers. This work is detailed in the paper: 

Functional Reactive Programming from First Principles, Zhanyong 
Wan and Paul Hudak . ACM SIGPLAN '00 Conference on 
Programming Language Design and Implementation (PLDI), June 
2000, ACM Press. 

Representing Object Programs. Programs are are data. But they 
are complex entities. How can programs be represented in way that 
hides unnecessary details, but make their important details easy to 
manipulate. We have developed a new method for representing 
programs with binding constructs. It is reported in the following 
paper: 

DALI: An Untyped, CBV Functional Language Supporting 
First-Order Datatypes with Binders. Tim Sheard, Walid Taha and 

3 of 5 07 
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Emir Pasalic. 

Modular Type Systems. We have developed a mechanism for 
constructing type systems from modular components. The ideas are 
developed in the following paper: Constructing Modular Type 
Systems. Chiyan Chen. 

The MetaHaskell System. We have been constructing 
MetaHaskell, a lazy meta-prograrnming system for the Haskell 
language. Our progress to data includes a full parser, a generic type 
checker, a generic type checking monad (which include reusable 
components for generic unification, tracking errors to point of 
cause, failure recovery and backtracking). Our progress to date can 
be found on the project web pages. 

Meta-programming: Restructuring parallel programs to 
increase throughput. Parallel Functional Reactive Programming, 
by J. Peterson, V. Trifonov, and A. Serjantov. Practical Aspects of 
Declarative Languages. (Jan. 17-18, 2000, Boston Massachusetts). 

Efficient Compilation of FRP programs. We have investigated 
FRP as a way of expressing interaction in Java. This Integration 
allows existing Java components to interact with the FRP 
framework and support composition of these Java objects. This 
system is currently restricted to first-order FRP (no dynamic 
behavior creation). This work is described in the paper: "Frappe: 
Functional Reactive Programming in Java" by Antony Courtney. 

Modelling Interaction: We have used Functional Reactive 
Programming (FRP) to model interactive systems. Examples we have 
built include control systems, vision, robotics, and reactive animation. 
FRP is a general framework for adding interaction and time dependent 
behavior in a modular and composable way. 

Research Areas Addressed in FRP: 

• Essential FRP semantics. We have defined the meaning of 
interactive systems using FRP by giving FRP a precise 
denotational semantics. We have also showed how to reason and 
compare an actual implementation to its denotation. 

• Analysis of FRP-based systems. We have adapted existing 
analysis tools to handle interaction. We have used FRP to construct 
models in specific domains. For example, web servers, and robot 
control systems. 

• Compilation techniques for FRP-based systems. We have 
realized FRP-based systems practically and reliably using 
higher-order programming languages, program generation and 
meta-programming. 

Meta-programming: Generating Solutions. We have used 
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meta-programming as a generic tool for generating solutions and 
verifying properties from high-level specifications. Example generated 
solutions include: compilers for DSLs and staged pattern matching. 
Example properties include extended type systems, and generic property 
maintenance and propagation. We have found meta-programming to be a 
generic framework for manipulating programs in a high-level and 
semantically coherent way. 

Research Areas Addressed in Generation. 

• Semantics. We have devised the first useful logic that can be used 
to compare whether two meta-programs compute the same thing. 
The logic can also be used to compare the equivalence of a 
program and its staged counterpart. 

• Type Systems. We have devised and implemented a type system 
for the meta-language MetaML that ensures safety properties of 
generated programs by typing the meta-programs themselves. 

• Representing Programs. Programs are are data. But they are 
complex entities. We have devised a new method for representing 
programs in way that hides unnecessary details (such as the actual 
names of local variables) but make their important details easy to 
manipulate. 

• Modular Composition. We have structured language 
implementations in a way that is easy to reuse by applying the the 
technologies of monads and staging. This makes it easier to build 
and prototype new language systems rapidly. 

Technology Transition: By making our systems public, we have encouraged other groups to use 
them as tools in their own work. The MetaML system has been publicly 
available since March 2000. 

Comments / Questions / 
Anything else you need: 

The Trustworthy Project is a collaboration between the Oregon Graduate 
Institute and Yale University. The Trustworthy personnel include: Tim 
Sheard, principal investigator at OGI, and John Peterson principal 
investigator at Yale. Postdoc, Zino Benaissa, OGI (departing July 31, 
2000), and Postdoc, Bill Harrison, OGI (just starting June 7, 2000). 
Students Chiyan Chen, OGI, Antony Courtney, Yale, and Zhanyong 
Wan, Yale. 

Please note that the above listed contract start date of 30 September, 
1999 is incorrect. The correct start date should be 28, September 1999. 
Notification was sent to ito-pi-help@darpa.mil but no response has been 
received to date. 

Submit Technical Report 
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APPENDIX A 

Functional Reactive Programming from First Principles 

Zhanyong Wan 
Yale University 

Department of Computer Science 
P.O. Box 208285 

New Haven, Connecticut 06520 
zhanyong.wan@yale.edu 

Paul Hudak 
Yale University 

Department of Computer Science 
P.O. Box 208285 

New Haven, Connecticut 06520 
paul.hudak@yale.edu 

ABSTRACT 
Functional Reactive Programming, or FRP, is a general frame- 
work for programming hybrid systems in a high-level, declar- 
ative manner. The key ideas in FRP are its notions of be- 
haviors and events. Behaviors are time-varying, reactive val- 
ues, while events are time-ordered sequences of discrete-time 
event occurrences. FRP is the essence of Fran, a domain- 
specific language embedded in Haskell for programming re- 
active animations, but FRP is now also being used in vision, 
robotics and other control systems applications. 

In this paper we explore the formal semantics of FRP and 
how it relates to an implementation based on streams that 
represent (and therefore only approximate) continuous be- 
haviors. We show that, in the limit as the sampling interval 
goes to zero, the implementation is faithful to the formal, 
continuous semantics, but only when certain constraints on 
behaviors are observed. We explore the nature of these con- 
straints, which vary amongst the FRP primitives. Our re- 
sults show both the power and limitations of this approach 
to language design and implementation. As an example of 
a limitation, we show that streams are incapable of repre- 
senting instantaneous predicate events over behaviors. 

1.    INTRODUCTION 
How does one show that a language implementation is cor- 
rect? In the programming language research community, 
we normally do this by showing that the implementation is 
faithful, in some formal sense, to an abstract denotational 
or operational semantics of the language. Indeed, if all goes 
well, we can formally derive the implementation from the 
semantics. Such is the nature of "provably correct compila- 
tion." 

However, in the case of Functional Reactive Progamming 
(FRP), a novel language involving continuous time-varying 
values as well as discrete events, the situation is not as clear, 
and several questions arise: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
PLDI 2000, Vancouver, British Columbia, Canada. 
Copyright 2000 ACM 1-58113-199-2/00/0006. .. $5.00. 

1. How does one express the formal semantics of FRP? 
We partially answered this question in a previous pa- 
per [7], and we refine that strategy here. 

2. How does one implement continuous time-varying be- 
haviors? In this paper we explore perhaps the most 
obvious technique, one based on streams that repre- 
sent sampled behaviors (in a signal processing sense). 
However, this representation is only an approximation 
to the continuous values, which leads to the next ques- 
tion. 

3. In what sense is an approximating stream-based im- 
plementation correct with respect to the formal se- 
mantics, and what are its limitations (for example, are 
there values that cannot be represented)? The inter- 
action of these issues with the reactive component of 
FRP makes this especially interesting. 

In this paper we provide answers to all of these questions. 
Specifically, we give a denotational semantics to FRP, and 
show that in the limit as the sampling interval goes to zero, 
a stream-based implementation corresponds precisely to the 
formal semantics, but only with suitable constraints on the 
nature of behaviors. The good news here is that most of the 
common things that we express with FRP programs are well 
behaved, and laws that we expect to hold in mathematics are 
justified, in the limit, when reasoning about FRP programs. 
For example, we can safely apply most FRP primitives, such 
as integration, to behaviors that are discontinuous (in a cer- 
tain way to be described later), which is critically important 
given that the reactive component of FRP creates disconti- 
nuities quite often. 

The bad news is that, since FRP is mathematically very 
rich, many ill behaved values can be expressed. As a result, 
an FRP term does not always have a meaningful seman- 
tics. In such cases we say that the term denotes _L (and 
is thus denotationally equivalent to non-termination or er- 
ror). Of course, this is not very informative. Even worse, 
it is possible to write egregious behaviors for which either 
the implementation does not converge when we increase the 
sampling rate, or it converges to something other than its 
semantics. However, we are able to identify a set of sufficient 
conditions which guarantees the fidelity of the implementa- 
tion. These conditions are neither complete nor decidable 
in general, which means the burden of "good behavior" is 
on the programmer. However, it is perhaps not surprising 
given such a rich mathematical language. 
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2.    AN INTRODUCTION TO FRP 
In this section we give a very brief introduction to FRP; see 
[5, 7] for more details. FRP is an example of an embed- 
ded domain-specific language [9]. In our case the "host" is 
Haskell [11], a higher-order, typed, polymorphic, lazy and 
purely functional language, and thus all of our examples (as 
well as our implementation) are in Haskell syntax. 

There are two key polymorphic data types in FRP: the 
Behavior and the Event. A value of type Behavior a is 
a value of type a that varies over continuous time. Con- 
stant behaviors include numbers (such as 1 : : Behavior 
Real), colors (such as red : : Behavior Color), and oth- 
ers. The most basic time-varying behavior is time itself: 
time :: Behavior Time, where Time is a synonym for Real. 
More interesting time-varying behaviors include animations 
of type Behavior Picture (which is the key idea behind 
Fran [5, 7], a language for functional reactive animations), 
sonar readings of type Behavior Sonar, velocity vectors of 
type Behavior (Real,Real), and so on (the latter two ex- 
amples are used in Frob [13, 14], an FRP-based language for 
controlling robots). (Note: In our implementation the type 
Real is approximated by Float.) 

A value of type Event a is a time-ordered sequence of event 
occurrences, each carrying a value of type a. Basic events in- 
clude left button presses and keyboard presses, represented 
by the values lbp : : Event 0 and key : : Event Char, 
respectively. The declarative reading of lbp (and key) is 
that it is an event sequence containing all of the left button 
presses (and key presses), not just one. 

Behaviors and events are both first-class values in FRP, and 
there is a rich set of operators (combinators) that the user 
can use to compose new behaviors and events from existing 
ones. An FRP program is just a set of mutually-recursive 
behaviors and events, each of them built up from static (non- 
time-varying) values and/or other behaviors and events. 

Suppose that we wish to generate a color behavior which 
starts out as red, and changes to blue when the left mouse 
button is pressed. In FRP we would write: 

Sometimes it is desirable to choose between two different 
behaviors based on user input. For example, this version of 
color: 

> color2 = red  'until' 
> (lbp -=> blue)   .|.   (key -=> yellow) 

will start off as red and change to blue if the left mouse 
button is pressed, or to yellow if a key is pressed. The . I . 
operator can be read as the "or" of its event arguments. 

The function when transforms a Boolean behavior into an 
event that occurs exactly "when" the Boolean behavior be- 
comes True; this is called a predicate event For example: 

> color3 = red 'until' 
> (when (time >* 5) -=> blue) 

defines a color that starts off as red and becomes blue after 
time is greater than 5. 

Sometimes it is desirable to "lift" an ordinary value or func- 
tion to an analogous behavior. The family of functions 

> liftO   ::   a -> Behavior  a 
> liftl   ::   (a -> b)   ->   (Behavior  a ->  Behavior b) 

and so on, perform such coercions in FRP. Sometimes Haskell 
overloading permits us to use the same name for lifted and 
unlifted functions, such as most of the arithmetic operators. 
When this is not possible, we use the convention of placing 
a "*" after the unlifted function name. For example, >* in 
the color3 example is the lifted version of >. 

Finally, one of the most useful operations in FRP is inte- 
gration of numeric behaviors over time. For example, the 
physical equations that describe the position of a mass un- 
der the influence of an accelerating force f can be written 

> color   ::   Behavior Color 
> color = red  'until'   (lbp -=> blue) 

> s,v   ::   Behavior Real 
> s = sO + integral v 
> v = vO + integral f 

This can be read "behave as red until the left button is 
pressed, then change to blue." We can then use color to 
color an animation, as follows: 

> ball   ::   Behavior Picture 
> ball = paint  color circ 
> 
> circ   ::   Behavior Region 
> circ  = translate   (cos time,   sin time)   (circle  1) 

Here circle 1 creates a circle with radius 1, and the trans- 
lation causes it to revolve about the center of the screen 
with period 2n seconds. Thus ball is a revolving circle 
that changes from red to blue when the left mouse button 
is pressed. 

where sO and vO are the initial position and velocity, respec- 
tively. Note the similarity of these equations to the mathe- 
matical equations describing the same physical system: 

s(t) 
v(t) 

so + Jo V(T) dr 
: ^o + /o f(r) dr 

This example demonstrates well the declarative nature of 
FRP. A major design goal for FRP is to free the program- 
mer from "presentation" details by providing the ability to 
think in terms of "modeling." It is common that an FRP 
program is concise enough to also serve as a specification for 
the problem it solves. 

There axe many other useful operations in FRP, but we in- 
troduce them only as needed in the remainder of the paper. 
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3. THE SEMANTIC FRAMEWORK 
In this section we present the semantic framework for be- 
haviors and events. The semantics of each FRP construct 
will be given individually in Section 6. 

FRP's notion of continuous time is denoted by the domain 
Time, which is a synonym for the set of real numbers E. Let 
(Behavior^) and (Events) denote the set of all FRP terms of 
type Behavior a and Event a respectively, where a is any 
Haskell data type. The meaning of behaviors and events is 
given by the following semantic functions: 

at     :     (BehaviorQ) —»■ Time —> Time —t a 

occ     :     (EventQ) —> Time —> Time -> [Time x a] 

where [—] is the list type constructor. 

Intuitively, the meaning of a behavior, as given by at, is a 
function mapping a start time and a time of interest to the 
value of the behavior at the given time of interest. Start 
times relate to the reactive nature of FRP. For example, 
in (b 'until' e), if an event occurrence (t,b') of e causes 
the overall behavior to switch to &', we say that b' starts at 
time t. A behavior is unaware of any event occurrences that 
happened before its start time. 

The meaning of an event, given by occ, is a function that 
takes also a start time T and a time of interest t, and returns 
a finite list of time-ascending occurrences of the event in the 
interval (T,i\. The start time of an event is analogous to 
the start time of a behavior. Note that the lower end of the 
interval is open, which means an occurrence precisely at the 
start time is not detected. 

Note that, for simplicity, we have omitted real-world events 
such as user input and general I/O from this semantic frame- 
work. However, predicate events such as described in the 
last section are still present, which are sufficient to demon- 
strate all interesting aspects of the semantics and implemen- 
tation. Nevertheless, for completeness, we describe how to 
add user input in Section 8. 

4. A STREAM IMPLEMENTATION OF FRP 
Our stream-based implementation of FRP is interesting in 
its own right, but because of space limitations we omit a 
detailed discussion of it here; the basic idea is outlined in [6] 
and elaborated in [10]. 

The core data types in FRP, Behavior and Event, are given 
by: 

> type Behavior  a =   [Time]   ->   [a] 
> type Event  a        =   [Time]   ->   [Maybe  a] 

Here Maybe a is a data type whose values are either Nothing 
or Just x, where x is some a. 

Intuitively, a behavior is a stream transformer: a function 
that takes an infinite stream of sample times, and yields an 
infinite stream of values representing its behavior. Similarly, 
an event is also a stream transformer, and can be thought 
of as a behavior where, at each time t, the event either 

occurs (indicated as Just x for some x), or does not occur 
(indicated as Nothing). Note that using this implementation 
strategy for events means that we must ensure that the time 
associated with each event occurrence actually appears in 
the time stream, but this is easily done. 

The implementation itself can be divided into two parts: (1) 
definitions of FRP's primitive behaviors, events, and combi- 
nators as stream transformers, and (2) a "run-time system" 
that interprets the behaviors and events by building an infi- 
nite stream of sample times and applying the behavior/event 
to the stream. The latter task is explained in the remainder 
of this section; we return to the former in Section 6. 

To simplify the presentation of the run-time system, we omit 
the interface to the operating system that extracts events, 
grabs the clock time, etc. The resulting abstract implemen- 
tation is captured by the following pair of "interpreters," 
one for behaviors, the other for events: 

at  :   (BehaviorQ) —> [Time] —¥ a 
~ Hef 
at[bj ts  =  last (L&J  ts) 

occ  :   (Eventa) —> [Time] —> [Time x a] 
  def 
occ[e] ts  = justValues ts ([ej  ts) 

where (1) we write [—J for the value (which could be a 
function) denoted by the Haskell term —, (2) last returns 
the last element of a list, and (3) the auxiliary function: 

justValues   :   [Time] —¥ [Maybea] —> [Time x a] 

time-stamps a stream of "Maybe" values while dropping the 
"Nothing's."  For example, 

justValues [0.0, 0.1, 0.2, 0.3, 0.4] 
[Nothing, Just False, Nothing, Nothing, Just True] 

returns [(0.1, False), (0.4, True)]. 

Intuitively, at takes a behavior and an ordered finite list of 
sample Time's, the first in the list being the start time of the 
behavior and the last being the time of interest. It returns 
as result the value of the behavior at the time of interest. 
Similar is occ, which returns all the occurrences detected 
up until the time of interest. In essence, at and occ define 
an operational semantics for FRP. (Note that & is a Haskell 
term of type [Time] -> [a], so [ftj is a function of type 
[Time] -> [a], and therefore [b\  ts is a value of type [a].) 

In this paper we are most interested in the limit of the op- 
erational semantics as the sampling interval goes to zero. 
Thus we define: 

at   : (BehaviorQ) —► Time -» Time -*■ a 

at irt-li T t 

5cc*{e\ Ttd= 

def  Jlimipt i_,0at[6] Py    such limit exists 

J_ otherwise 

-> Time —> [Time x a] 

+0 occfe] Pf    such limit exists 

-L otherwise 

(Eventc) —> Time 

limioi i 

where Py is a partition of [T, t]. 
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Definition 1. (Partition and norm of partition) A parti- 
tion P of a closed interval [a,b] is a non-empty finite list 
[xo,xi,..., x„], such that a — xo < x\ < ■ ■ ■ < xn — b, 
where n > 0. Such a partition is often written as P*. The 
norm of P, written as |P|, is defined as the maximum of the 
set {xt — Xi-i | 1 < i < n} when n > 1, or 0 when n = 0. 

Time 
The primitive behavior time is implemented as: 

> time   ::  Behavior Time 
> time  =  \ts  ->  ts 

(Note that we overload the notation [a, b] for both a closed 
interval and a list of two elements, and similarly (a, 6) for 
both an open interval and a tuple. However, the meaning is 
always clear from context.) 

5.    FAITHFUL IMPLEMENTATIONS AND 
UNIFORM CONVERGENCE 

In the next section we will give both the denotational se- 
mantics and stream-based implementation of each FRP con- 
struct in turn, and show in each case that the implementa- 
tion is faithful to the semantics, though possibly only under 
certain constraints, in the following formal sense: 

ät\b\Tt    =    at [6] Tt (1) 

occ*{e\Tt    =    occ[e] Tt 

In addition, we will identify the cases where the implemen- 
tation converges uniformly, a property (defined below) that 
is necessary to ensure that the integral of a numeric behavior 
is well defined. Analogous to the concept of uniform conver- 
gence for real number function series [1, page 393], we define 
uniform convergence for functions defined on partitions of 
real intervals: 

Definition 2. (Uniform Convergence) Given a set S, we 
say that a function F defined on VT, which is the set of 
all partitions whose left (i.e. smaller) end is T, converges 
uniformly to / on S if, for every e > 0, there exists a <5 > 0 
(depending only on e) such that for every t & S and Pf 
satisfying |Pf I < <*> 

|P(Pr) - /(Ol < « 

We denote this symbolically by writing 

F{PT) >-► fit) uniformly on S 

So, when possible, we will indicate when the following con- 
dition holds: 

at[bj PT >-> at[6J T t uniformly (2) 

Note that (2) implies (1), and for conciseness we will not 
write out (1) if we have already established (2). 

Because FRP is an "embedded" DSL, it is difficult to draw a 
clear line between FRP and Haskell. Thus a full treatment 
of the FRP "language" inevitably requires a treatment of 
all of Haskell. As this would obscure our main interest, we 
choose to discuss only the constructs specific to FRP. 

6.    CORRESPONDANCE BETWEEN SEMAN- 
TICS AND IMPLEMENTATION 

The proof of the important theorems in this section can be 
found in appendix A. 

and its semantics is given by: 

at [time] Tt = t 

We can show that the implementation of time is faithful to 
its semantics, and that its convergence is uniform: 

THEOREM 1. a£[time] Pf >-+ t uniformly on (—00,00). 

Lifting 
Here we show the correctness of the three most useful lift- 
ing operators: liftO, liftl and lift2. The result easily 
extends to any arity of lifting. The lifting operators are 
implemented as: 

> ($*)   ::   Behavior  (a -> b) 
> -> Behavior a -> Behavior b 
> ff $* fb = 
> \ts -> zipWith  ($)   (ff ts)   (fb ts) 
> 
> liftO   ::   a -> Behavior a 
> liftO x = map   (const x) 
> 
> liftl   ::   (a -> b)   ->   (Behavior a -> Behavior b) 
> liftl f bl = liftO f  $* bl 
> 
> lift2   : :   (a -> b ->  c) 
> ->   (Behavior a 
> -> Behavior b  -> Behavior  c) 
> lift2 f bl b2 = liftl  f bl  $* b2 

The semantics of liftO is given by: 

at[liftO c]T t= [c\ 

Unsurprisingly, the implementation converges to the seman- 
tics uniformly: 

THEOREM 2. o«[liftO c]   P£ 
(—00,00). 

[c\    uniformly   on 

The semantics of liftl is given by: 

at[liftl fb]Tt=[f\  (at[6] T t) 

The implementation of liftl is faithful to its semantics, 
but only when the lifted function is continuous: 

THEOREM 3. Ifat*[bj T t = bt, and |_/J is continuous at 
bt, then at*[liftl / 6] T t = \_f\  bt. 

It is worth noting that we only require [/J to be continuous 
at bt, not necessarily continuous everywhere.    Since most 
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functions we deal with in FRP axe either globally continuous 
or piecewise continuous, the theorem applies in most cases. 

To see whether the convergence of lif tl is uniform, we need 
a concept called uniform continuity[l, page 74], as found in 
most treatments of calculus: 

Definition 3. (Uniform Continuity) A function / is said 
to be uniformly continuous on a set S if for every e > 0, there 
exists a 5 > 0 (depending only on e) such that if x,y € S 
and \x-y\< 5, then \f(x) - f{y)\ < e. 

THEOREM 4. // at{b\ Pf >-> fb(t) uniformly on S, and 
L/J is uniformly continuous, then 

ai[liftl / 6] Pf >-► L/J  (/*>(*))  uniformly on S 

For example, the lifted sin function is defined as:1 

> instance Floating a =>  Floating   (Behavior a)  where 
> sin = liftl  sin 

Note that the sin on the right hand side of the definition is 
the static version as in the standard Haskell library: 

> sin   ::   Floating a =>  a -> a 

As an example, we can use theorem 4 to prove that the 
expression "sin time" in FRP actually denotes the mathe- 
matical notion of sin(t), where t is the current time. 

COROLLARY 1. aifsin timej Pf 
-co,oo). 

sin t uniformly on 

The semantics of lif t2 is given by: 

at[lift2 f bd]T t=[f]  (at [6] T t) (at[d] T t) 

Similar to liftl, we can show: 

THEOREM 5. If ät*{b\ T t = bt, ät"[d} T t - dt, and 
(uncurry  |_/J) is continuous at (bt,dt), then 

at*[lift2  / b d] T t = L/J  h dt. 

For example, we can use this theorem to verify the semantics 
of the lifted binary operator +: 

> instance Num a => Num  (Behavior a)  where 
> (+)   = lift2   (+) 

COROLLARY 2. ät\b + d] T t = at*[b] T t + ät*[d] T t 

Integration 
We use a very simply numerical algorithm to calculate the 
Riemann integration of numeric behaviors: 

> integral   ::  Behavior Real -> Behavior Real 
> integral fb = 
> \ts@(t:ts')   -> 0   :   loop t 0 ts'   (fb ts) 
> where  loop tO ace   (tl:ts)   (a:as) 
> =  let  ace'   =  ace  +   (tl-t0)*a 
> in ace'   :   loop tl  ace'   evs  ts  as 

The formal semantics of integral is given by: 

at[integral  f\Tt=  f (at[/] T r) dr 

As mentioned earlier, this stream-based integrator is only 
sound mathematically if the behavior to be integrated con- 
verges uniformly: 

THEOREM 7. If at[b] Pf >-» fb(r) uniformly on [T,t], 
then 

ai[integral 6] PT >-> /   fb(n) dr] 
JT 

uniformly on [T, t]. 

If at[b} Pf >—» fb(r) non-uniformly, we can say nothing 
about at [integral b] T t. As an instance, consider the 
behavior bizarre (inspired by [1, page 401]), which is non- 
uniformly convergent on [0,1], and is defined as: 

> bizarre   ::  Behavior Real 
> bizarre = 0  'until'   e ==> b 
> where e = when (time >* 0) 'snapshot' time 
> b = \(_,tl) -> c*c*time*(l - time)**c 
> where c = 1/tl 

as well as the following for uniform convergence: On time interval [0,1], the above is equivalent to: 

_ THEOREM 6. // at[b] Pf >-* fb(t) uniformly on S, 
at{dl Pf ^-> fd(t) uniformly on S, and (uncurry   L/J) *'* 
uniformly continuous, then 

ot[lift2  fbdjPf^ L/J   (/&(*)) (fd(t)) 

uniformly on S. 

'The instance declaration shown here is how, using HaskelFs 
type class system, functions are overloaded. In this case, 
sin is a method in the class Floating, and the instance 
declaration says that sin may now be used for values of 
type Behavior a, for any type a that is already an instance 
of the class Floating. 

> bizarre  =  \(t0:tl:ts)   -> 
> 0:0:   map   (let  c =  l/(tl  -  tO) 
> in \t  ->  c*c*t*(l  -  t)**c)   ts 

When t G [0,1], we have 

at [bizarre] 0 t 
=    limipii   0 last  (LbizarreJ  P0') 

=    limipt i^Q c2t(l — t)c, where 

1/c = the length of the first sub-interval of PQ 

=   0 
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Hence /J (at*[bizarre] 0 t) dt = 0. However, we have 

at* [integral  bizarre] 0 1 

=    lim|p0i|->oEr=i (LbizarreJ   Po)(i)-Ati 
where Pj = [to = 0, t\,..., tn = 1], and 
subscript (;) means the i-th element of a list 

=    lim|poi|_>0Er=2c2ii-i(1 -ti-i)c ■ Mi, 
where c = 1/Aii 

and 

lim   /   c2i(l - «)C dt  =   lim 

C-+O0   (C+  l)(c+2) 

Therefore 

oi [integral  bizarre] 0 1 

/     /    (aT [bizarre] 0 t) dt 

In other words, the limit of the integral doesn't agree with 
the integral of the limit for bizzare. 

It turns out that global uniform convergence is usually too 
strong a condition to achieve in practice, part of the reason 
being that the interplay of behaviors and events often re- 
sults in J_ at the point of behavior switching. The following 
theorem relaxes the requirement considerably: 

THEOREM 8. If at\b\ Pf >-* fb(r) uniformly on [T,t], 
except at n (finite) points n, T2, ■■■, rn, and at\b\ P^' is 
bounded as \P^ | —> 0 for every 1 < i < n, then 

ai[integral  6] P? >-> 

uniformly on [T,t], where 

IfKv) 

F(v) d?? 

F(V) = 
V 7^ Tifor every! < i < n 

I any finite value    otherwise 

Since most behaviors we encounter in practice are bounded 
on every finite interval, the above condition is not hard to 
satisfy. 

As shown in theorem 7, integration preserves the uniform 
convergence property. This allows us to safely calculate the 
second integral, the third, and so on: 

COROLLARY 3. If at[bj Pf >-> fb(r) uniformly on [T,t], 
then 

at[ integral   (integral   ...(integral    b).. .)\ P? 

>->     /     /     .../ /6(rn)drndr„_i ... dn 
JT JT JT 

uniformly on [T, t]. 

Event Mapping 
The ==> operator essentially maps a function over the event 
stream, and is implemented as: 

> (==>)   ::   Event  a ->   (a->b)   -> Event  b 
> fe ==> f = map  (map f)   .   fe 

Its semantics is given by: 

occ[e ==> f]Tt = 
[(ti,[fl  wi),(*2,L/J  v2),...,(tn,\.f\  «„)], where 
OCc[e]  T t = [(tl.Wl), {t2,V2), • • • , (tn, Vn)] 

THEOREM 9. Ifocc{e\ Tt = [{ti,vi),(t2,v2),... ,(tn,vn)], 
and [/J is continuous at vi for every 1 < i < n, then 

occ* [e ==> /] T t = 
[(*1.L/J    «l).(*2. L/J    W2),...,(*n,L/J    Vn)] 

The -=> operator we used previously is just syntactic sugar: 

e -=> 6     =f   e ==> \. -> b 

Choice 
. I . can be used to merge two events of the same type; it is 
implemented as: 

> (. I .)   : :   Event a -> Event  a -> Event  a 
> fel   .I.   fe2 = 
> \ts  -> zipWith aux  (fel ts)   (fe2 ts) 
> where  aux Nothing    Nothing    = Nothing 
> aux   (Just x)   _ = Just x 
> aux _ (Just x)   =  Just x 

The semantics of . I .  operator is given by: 

If occ[ei] T t = [(f i, ui), (t2, v2),..., (tn,vn)], occ[e2] T t = 
[(*'l, u'l)> (*2. V2), ■■■, (4."m)]i and tl, t2, . . . , tn, t\ , t'2, ■ . . , t'm 
are distinct, then 

occ[ei   . I.  e2] T t — [(n,iui), (r2, W2), ■ ■ • ,(Tn+m,wn+m)], 

where ts = {t\,t2,... ,tn, ti,t'2) • • • ,t'm}, and 

J (*j! vi)    tj is *he l_th smallest of ts 
\(t'k,v'k)    t'k is the i-th smallest of ts 

Note that we require the occurrence times are distinct, be- 
cause the result of merging two simultaneous occurrences is 
nondeterministic. 

We can show that the implementation of (. I .) converges 
to its semantics. To save space, we don't give the formal 
statement here. 

Behavior Switching 
The until operator is implemented as: 

> until   ::   Behavior a -> Event   (Behavior a) 
> -> Behavior  a 
> fb  'until'   fe = 
> \ts  -> loop ts   (fe ts)   (fb ts) 
> where  loop ts@(_:ts')   ~(e:es)   (b:bs)   = 
> b   :   case  e  of 
> Nothing    -> loop ts'   es bs 
> Just fb'   -> tail   (fb'   ts) 
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and its semantics is given by: 

if occ[e] T t = [(tu LfciJ),..., (tn, LM)],then for any T <= 

at[6 'until' e] T r : 
at [6] Tr      n = 0 or r < h 

at[&ij t\ T    otherwise 

This operator is precisely where behaviors interact with events, 
and thus its good behavior is critical to the goodness of FRP. 
We can show: 

THEOREM 10. If 5cc[e\ T t = [(U, [6iJ),... ,(tn, LM)], 
then for any r G [T, t] where r ^ t\, 

at\b 'until' e\T T = 

fat* [ft] T T n = 0orr<h 

Ilirrijj-K! a£*[6i] rj T    otherwise 

Most behaviors are continuous with respect to their start 
times (i.e. a small change in the start time only results in 
a small change in the result value); for example this is true 
of integral. Some behaviors are even independent of the 
start time, as with time. In such cases, the limit operator in 
the above theorem can be dropped, and the implementation 
becomes consistent with the semantics. 

> when : : Behavior Bool -> Event () 

> when fb = 
> \ts -> zipWith up (True : bs) bs 
> where bs = fb ts 
> up False True = Just () 
> up _    _   = Nothing 

We define the semantics of when as follows: Given T, t G 
Time, let fb(r) = at[6] T r. If there are ci,C2,...,c„ G 
Bool and a partition [to, t\,..., tn] of [T, t], such that: 

1. For all 1 < i < n — 1, et = ->c;+i; 

2. For all 1 < i < n - 1, r G (U-i,U) implies fb(r) = a; 

3. fb(T) # !. or Ci = False, and 

4. fb(t) / 1 or c„ = True. 

then occ[when b}T t — occs ^ J_, where occs is the shortest 
time-ascending list satisfying: 

1. If ci = True and fb(T) = False, then (T, ()) G occs; 

2. For 1 < i < n — 1, (U, ()) G occs if c, — False, and 

3. If cn = False and fb(t) = True, then (t, ()) G occs. 

Snapshot 
snapshot samples a behavior at the exact moments an event 
occurs. 

> snapshot   ::   Event  a -> Behavior b 
> -> Event   (a,b) 
> snapshot  fe  fb 
> = \ts  -> zipWith aux   (fe ts)   (fb ts) 
> where  aux   (Just  x)  y = Just   (x,y) 
> aux Mothing    _  = Nothing 

The semantics: 

If occfe] T t = [{h, oi), (t2,a2),..., (tn,an)] and at [6] TU = 
bi, then 

occ|e   'snapshot'   6] T t = 
[{ti, (ai,6i)), (t2, (a2,62)),..., (tn,(an,bn))] 

The implementation is faithful to the semantics uncondi- 
tionally: 

THEOREM 11. // occ*[e]  T t   =   [(ti,a1),(t2,a2),..., 
{tn,an)\ and at [6J T U = b,, then 

occ'\e   'snapshot'   b\T t = 
[(tu (01,61)), (t2, (02,62)), ■ • •, (tn, (ffln.M)] 

Predicate Events 
We can turn a Boolean behavior into an event that occurs 
every time the behavior changes from False to True. To do 
so we use the when combinator defined as: 

Otherwise occ[when 6] T t = _L. 

This may seem complicated, but it basically says that when 6 
has an occurrence at time r iff at [6] T rj (viewed as a func- 
tion of 77) jumps from False to True as 77 crosses point r 
from the left (i.e. the negative side). 

According to this rule, if fb(r) toggles its value back and 
forth instantaneously at some TO G (T, t), then 
occfwhen 6] T t = J_. To see why this is true, suppose 
occ[when t] T t / 1, then there must be ci,...,c„ and 
to,---,tn satisfying the above constraints. In addition, TO 

must be equal to tk for some 1 < k < n — 1, because fb(r) 
remains constant in each of (U-i,ti) where 1 < i < n. How- 
ever, this means Ck = Ck+i, which violates the constraint 
d = ->Cj+i. 

This rule implies that on any finite time interval, a predicate 
event can only occur a finite number of times (for the num- 
ber n above is finite). Therefore, if the Boolean behavior 
ever oscillates at an infinite frequency (we will see such an 
example later), the semantics of the event is _L. 

The implementation of when 6 is faithful to the semantics if 
the implementation of 6 converges uniformly: 

THEOREM  12.   Given a time interval [T,t], if at\b\ Pf >—> 
fb(r) uniformly on [T,t], then 

occ*[when b] T t - occfwhen b]T t. 

We require atfb] Pf >—> fb(r) uniformly on [T,t], because 
the meer existence of at |6] T T is not sufficient here.  For 
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example, given the behavior bizarre we discussed in Section 
6, at*[bizarre >* lj 0 T = False for every r € [0,1], and 
thus occ[when   (bizarre  >*  1)] 0 1 = [], but 

MC* [when   (bizarre  >*  1)J 0 1 = [(0, ())] # [] 

7. EGREGIOUS BEHAVIORS AND EVENTS 
As mentioned earlier, it is possible to define certain egregious 
behaviors and events in FRP, and a good understanding 
of them is helpful in understanding the semantic rules and 
theorems that we have introduced. Consider first this event: 

> sharp 
> sharp 

:   Event   0 
when   (time 1) 

This looks innocent enough, but the predicate is true only 
instantaneously at time =1. To sample sharp, let's con- 
sider a series of partitions {Pn | n G N} of [0, 2], where Pn = 

[°.3-rPi.2VTTT. ■••.&£. 2]- Obviously limn-^IPnl = 0, 
however none of the partitions divides [0, 2] at point 1. Hence 
our sampling based implementation could fail to find the 
event occurrence at time 1. This explains why our semantic 
rule for when gives J_ as the denotation of sharp. 

It is worth pointing out that one can write a well-behaved 
definition for sharp: 

> sharp2  = when   (time  >=*   1) 

Consider next this encoding of Zeno's Paradox: 

> zeno   ::   Event   () 
> zeno  = when   (liftl  f  time)   where 
> f  t = t  <  2 && even  (floor   (log2   (2 - t))) 

This example demonstrates an infinitely dense sequence of 
events at times to = 1, ti = 1.5, t? = 1.75, and in gen- 
eral tn+i = tn + 2~'n+1). This creates obvious problems 
with an implementation. But even if we could implement 
such event sequences, there is a more fundamental semantic 
problem. Suppose there is an electric light in a room, ini- 
tially off. A daemon comes in and turns the light on at time 
to, off at time ti, and so on. A simple calculation shows that 
limn->oo tn = 2, so the whole process comes to an end at time 
t = 2. Now the question is: is the light on or off after the 
daemon stops? The answer might be surprising: it could be 
either on or off; i.e., this is a natural expression of nondeter- 
minism. Our semantic rules give that occ[zeno] T t — J_ for 
any T < 2 < t, which provides no information about what 
the implementation will give us, and therefore is compatible 
with the nondeterministic semantics one might expect. 

Finally, consider this unpredictable behavior: 

> unpredictable :: Behavior Real 
> unpredictable = 
> 0 'until' (when (time >* 1) 
> 'snapshot'   sin   (l/(time  -  1)) 
> ==>   (\(_,x)   ->  liftO x)) 

In a stream-based implementation, we don't know what 
value unpredictable will yield at run time, since it depends 
on the sampling frequency and phase. For this example, the 
semantic rules give a value in terms of sin j^y where t = 1, 
which is undefined due to the discontinuity of the function. 

sharp, zeno and unpredictable are all examples where the 
semantics is _L. There are other egregious values where the 
semantics is not J_, but the implementation does not agree 
with it. integal bizarre is one of them. 

8.   INTERFACE WITH REAL WORLD 
As was mentioned earlier, behaviors and events can also re- 
act to user actions, which we can capture formally through 
the notion of an environment, which can be viewed as a fi- 
nite set of primitive behaviors and events. Thus, strictly 
speaking, the semantic functions should have type: 

at     :     (BehaviorQ) —> Env —> Time —> Time —¥ a 

occ      :      (Eventc) —> Env —> Time —> Time —► [Time x a] 

where Env is the abstract data type for all the input to the 
FRP system. 

For example, in Fran, the environment includes mouse move- 
ments, mouse button presses, and keyboard presses. Thus 
we can define Env = PBe/iintXint x PEvt() x PEvt^ x 
PEvtchir, where the four components of the tuple correspond 
to mouse position, left button press, right button press and 
keyboard press, respectively. Type of the form PBeha and 
PEvta are defined as: 

PBeha    =    Time —>• a 

PEvta    =    Time —> [Time x a] 

This idea can be justified by noting that primitive behaviors 
and events are in fact observations of physical signals outside 
of the FRP system. Their values at a particular time do not 
depend on when we start the observation. Therefore a value 
of type PBeha is just a mapping from the current time to 
the value, and a value of type PEvta is a mapping from 
current time to all the occurrences since the initialization of 
the system. 

The treatment of environment is almost orthogonal to the 
treatment of the individual FRP operators. This allows us 
to address the issue separately. To extend the stripped-down 
version of FRP to incorporate environments, we need only 
to: 

1. Define the semantics for the FRP constructs that rep- 
resent user actions. 

For mouse   ::   Behavior   (Int ,Int), we have: 

at[mouse] (mouse, lbp, rbp, key) T t = mouse t. 

For lbp  ::  Event   0, we have: 

occ[lbp] (mouse, lbp, rbp, key) T t — after T (lbp i), 

where after T list drops all elements in list whose 
time-stamp is less than or equal to T. 

2. Pass the environment parameter around in the seman- 
tic equations for composite behaviors/events.  For in- 
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stance, the meaning for lift2 is now given by: 

at{lift2 / bi b2] env T t - 
L/J  (at[bil env T <) (atl&2] env T t) 

9.    CONCLUSIONS AND RELATED WORK 
Although the signal processing literature is full of founda- 
tional work on the validity and accuracy of sampling tech- 
niques, we are not aware of any work attempting to define 
the semantics of a reactive programming language such as 
FRP. Also, most of the signal processing work shies away 
from discontinuous signals, whereas we have shown that un- 
der the right conditions values are still well behaved. 

In [7] we described a denotational semantics for Fran. The 
semantics given in this paper is different in that it parame- 
terizes the start time for behaviors and events, and contains 
a more precise characterization of events. Various imple- 
mentation techniques for Fran are discussed in [6], including 
the basic ideas behind a stream-based implementation; in 
[10] the particular implementation used in this paper is de- 
scribed in detail. 

It is worth noting that we concentrated here on just one im- 
plementation technique for FRP; it may well be that other 
techniques either have more or fewer constraints than those 
discovered for streams. In particular, it is worth pointing 
out that interval analysis can be used to safely capture in- 
stantaneous predicate events [6, 7]. 

Finally, we point out that all of our results depend on suffi- 
cient accuracy of the underlying number system implemen- 
tation. In the limit, of course, that requires an implementa- 
tion of exact real arithmetic. Numerical analysis techniques 
are ultimately needed to ensure the stability of any system 
based on floating-point numbers. 

CML (Concurrent ML) formalized synchronous operations 
as first-class, purely functional, values called "events" [15]. 
Our event combinators ". I ." and "==>" correspond to 
CML's choose and wrap functions. There are substantial 
differences, however, between the meaning given to "events" 
in these two approaches. In CML, events are ultimately used 
to perform an action, such as reading input from or writing 
output to a file or another process. In contrast, our events 
are used purely for the values they generate. These values 
often turn out to be behaviors, although they can also be 
new events, tuples, functions, etc. 

Concurrent Haskell [12] contains a small set of primitives 
for explicit concurrency, designed around Haskell's monadic 
support for I/O. While this system is purely functional in 
the technical sense, its semantics has a strongly imperative 
feel. That is, expressions are evaluated without side-effects 
to yield concurrent, imperative computations, which are ex- 
ecuted to perform the implied side-effects. In contrast, mod- 
eling entire behaviors as implicitly concurrent functions of 
continuous time yields what we consider a more declarative 
feel. 

Several languages have been proposed around the synchronous 
data-flow notion of computation. The general-purpose func- 
tional language Lucid [16] is an example of this style of lan- 
guage, but more importantly are the languages Signal [8], 

Lustre [4], and Esterel [2, 3] which were specifically designed 
for control of real-time systems. In Signal, the most funda- 
mental idea is that of a signal, a time-ordered sequence of 
values. Unlike FRP, however, time is not a value, but rather 
is implicit in the ordering of values in a signal. By its very 
nature time is thus discrete rather than continuous, with 
emphasis on the relative ordering of values in a data-flow- 
like framework. The designers of Signal have also developed 
a clock calculus with which one can reason about Signal pro- 
grams. Lustre is a language similar to Signal, rooted again 
in the notion of a sequence, and owing much of its nature 
to Lucid. 

Esterel is perhaps the most ambitious language in this class, 
for which compilers are available that translate Esterel pro- 
grams into finite state machines or digital circuits for em- 
bedded applications. More importantly in relation to our 
current work, a large effort has been made to develop a for- 
mal semantics for Esterel, including a constructive behav- 
ioral semantics, a constructive operational semantics, and an 
electrical semantics (in the form of digital circuits). These 
semantics are shown to correspond in a certain way, con- 
strained only by a notion of stability. 
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APPENDIX 
A.    PROOF OF THEOREMS 
We first point out the following useful property that every 
behavior and event observes: 

Definition 4- (n-equality)    Given an integer n and two 
lists l\ and h, if 

length l\ > n, length h > n, and 
take n h = take n h, 

then we say that li and h are n-equal, which we write as 
h = h. 

LEMMA  1. For anyb G (Behaviora), e € (Eventa),ts,ts' € 
[Time], and n 6 N, ts = ts' implies that: 

[6J  ts =  L&J ts', and 
[ej  is =  LeJ  ts'. 

This Lemma essentially says that the current value of a be- 
havior or event does not depend on the future. The proof 
of this lemma is an induction on the syntactic structure of 
an FRP expression. 

LEMMA 2.  [liftlj  f h ts — map f (b ts). 

PROOF. 

[liftlj  f bts 

([liftOj  /  [$*J  b) ts        (definition of lift 1) 

(Xts.zipWith [C$)J (Llif-tOj  f ts) {bts)) ts 

(definition of $*) 

zipWith [($)J  (LliftOj  fts)(bts) 

zipWith [($)J  {map {const f) ts) {b ts) 

(definition of lif tO) 

map f (b ts) 

D 

LEMMA 3. |_lift2j / &i b2 ts = zipWith f (b\ ts) (b2 ts). 

The proof is not hard and omitted. 

Theorem 1 
PROOF. For any e > 0, let 5 = 1, for any PT such that 

\PT | < 5, we have 

öi[timej Pr 

=    last ([timej  PT) (definition of at) 

=    last PT        (definition of time) 

=    t 

Hence |öt[time] PT - t\ =0 < e.    D 

Theorem 2 
PROOF.  For any e > 0, let 5 = 1, for any PT such that 

|Pi-1 < 5, we have 

öi[liftO c] PT 

=    last ([liftO c\  PT) 

=    last ([liftOj   [cj  PT) 

=    last  (map {const  [c\) PT) 

=    lc\ 

Hence |oi[lif tO c] PT - [cj | = 0 < e.    D 

Theorem 3 
PROOF. 

(definition of lif tO) 

bt    =       lim   at{ 
IF' |->O 

PT 

Thus 

L/J bt 

=    L/J   (, lim   ät[b] PT 

=    , lim    L/J   (ot[6] PT) 
\prh° 

(L/J is continuous at lim|pi i_,.0otM PT) 

=       lim    L/J   (last (L&J  Pr)) 
\P* Uo 
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lim   last  (map [f\  ([b\  PT)) 

lim   last  (LliftlJ   L/J   L&J  PT) 

(lemma 2) 

=    öi*[liftl / b\T t 

a 

Theorem 4 
PROOF. For any e > 0, since [f\ is uniformly continuous, 

there is an 77 > 0, such that for any v, v1, \v — v'\ < 77 implies 
I L/J  «-L/J  V\<e. 

Since at{b} Pr >—> fb(t) uniformly on S, for the above 77, 
there is a 5 > 0, such that for every t € S, \PT\ < 6 implies 
\ät[b] Pi-- fb(t)\ < r,. 

Hence for every t £ S, \PT\ < ä implies 

|ot[liftl / 6] /4 - L/J   (/&(*)) I 

=    I L/J   (a*M PT) - L/J   (/&(*)) | 
<    e 

D 

Corollary 1 
PROOF. Since 

atftime] PT >—► t uniformly on (—co,oo) 

(by theorem 1), and LsinJ = sin is uniformly continuous, we 
have 

ot|liftl  sin time] PT >—» sin t 

uniformly on ( — 00, 00) (by theorem 4). 

According to the definition of lifted sin: 

> instance  Floating a =>  Floating   (Behavior a)   where 
> sin = liftl  sin 

we have 

atjsin time] PT >—» sin* uniformly on (-co, 00). 

D 

Theorem 7 
PROOF. For any r e [T,t], 

lim    atfintegral f] F-f,    where Pf = [to.ti,... ,*„]. 
|pj|-»o 

=       lim    last ([integral /J  Pf) 
\
P

T\-*° 
n 

lim    V([/J  Pf)      'At;,        where At, =t,-t;_i. 

(definition of integral) 
n 

lim   YL{last  (L/JP)) • Ati> 
lpf H° t=i 

where P, = iafce i Pf. (lemma 1) 

=      lim   V fatf/] p) ■ AU 

Furthermore, 

lim    V fatf/] p) -AU- /    fa~t*[/] T 77) d7? pfh°f=tv y ^ V ' 
n 

lim    V fatf/] Pi) • Att- 

n 

lim   V fat* |/] Tti) ■ At 

n 

lim   Y (at[f] P - at*f/] T u) ■ At prh°tty ' 
n 

<       lim    7    ej ■ A£T, 

where e, = |atf/] P - a~i*f/] T u\. 

Since atf/] PT >—> at*f/] T r uniformly converges on [T,t], 
for every given e > 0, there is a 6 > 0, such that as long as 
|Pf | < 5, 

e; < e, for every 1 < i < length Pf. 

Thus when |Pf | < 5, for every r 6 [T, t] we have 
n n 

Y^ei-AU   <   ^e-At,   =  e-(r-r)   <   e-(t-T) 
i=l t=l 

Since e is arbitrary, atfintegral /] PT uniformly converges 
to/;(aT[/]T7))d77.    D 

Theorem 10^ 
PROOF. If occ*[e] T t = [}, then there is a <5 > 0 such that 

for every partition PT of [T,t] where \PT\ < 6, 
justValues PT ([ej PT) = []. Therefore 

lim   last  (L& 'until' ej  PT) 
|p«.|-n> 

lim   last (L&J  PT) 
\prh° 

(definition of until) 

=    a~t{b\Tt 

If occ*[e] T t = [(ti,L6iJ),.--,(*m,L6mJ)], where m > 0, 
then for a partition P = [770,771, • • •, rjn] of [T, t], when \P\ 
is small enough, justValues P (|_ej P) will have m ele- 
ments.   Let the first of the m elements be (77*,, L&'J), and 

Pk = [Vk,rik+i,---,rin], then 

lim  last (16 'until' el  P) 
|P|->0 

=      lim  last  (\b'\  Fk) 
|P|-+o VL   J        / 

(definition of until) 

=     lim at [61] 77 t 

D 

21 



APPENDIX B 

DALI: An Untyped, CBV Functional Language Supporting 
First-Order Datatypes with Binders 

( Summary*) 

Emir Pasalic, Tim Sheard, Walid Tahat 

ABSTRACT 
Writing (meta-)programs that manipulate other (object-) 
programs poses significant technical problems when the object- 
language itself has a notion of binders and variable occur- 
rences. Higher-order abstract syntax is a representation of 
object programs that has recently been the focus of several 
studies. This paper points out a number of limitations of 
using higher order syntax in a functional context, and ar- 
gues that DALl, a language based on a simple and elegant 
proposal made by Dale Miller ten years ago can provide 
superior support for manipulating such object-languages. 
Miller's original proposal, however, did not provide any for- 
mal treatment. To fill this gap, we present both a big-step 
and a reduction semantics for DALl, and summarize the re- 
sults of our extensive study of the semantics, including the 
rather involved proof of the soundness of the reduction se- 
mantics with respect to the big-step semantics. Because our 
formal development is carried out for the untyped version 
of the language, we hope it will serve as a solid basis for 
investigating type system(s) for DALl. 

1.    INTRODUCTION 
Programs are data. Nothing makes this point stronger than 
the ever increasing need for reliable programs with verified 
properties. As software systems become more complex, and 
play increasingly important roles in critical systems there is 
an ever increasing need for optimizing, analyzing, verifying 
and certifying software. 

Each one of these tasks involves automatic manipulation 

* The complete technical development appears in a technical 
report available online. This paper focuses on the describ- 
ing DALI from the point of view of language design and 
programming. 
t Sheard and Pasalic are supported by the USAF Air Ma- 
teriel Command, contract # F19628-96-C-0161, NSF Grants 
CCR-9803880 and IPJ-9625462, and the Department of De- 
fense. Taha is supported by a Postdoctoral Fellowship, 
funded by the Swedish Research Council for Engineering 
Sciences (TFR), grant number 221-96-403. 

of programs or, meta-programming. As with any kind of pro- 
gramming, effective meta-programming relies heavily on the 
presence of the appropriate support from the (meta-) pro- 
gramming language. The goal of this paper is to advocate a 
novel approach to representing programs in a manner supe- 
rior to the main contenders available today. Our approach 
gives rise to a simple equational theory that can be used to 
reason about the program equivalence of meta-programs. 

1.1    Meta-Programming as Programming 
It is our thesis that traditional programming language tech- 
niques, including those from the operational, categorical, ax- 
iomatic, and denotational traditions can be applied equally 
effectively to meta-programming languages [45]. In many 
instances, this means that the technical challenge is "inter- 
nalizing" various meta-level operations, such as quotation 
[49], evaluation [48; 29; 4; 45; 47], and type analysis [44; 
46], into a formal programming language, and subjecting 
them to the same high standards developed by the seman- 
tics community. This approach has numerous pragmatic 
benefits, including: 

1. We succeed in magnifying the subtle features of the 
operations under investigation, and, often times, in 
addressing them in a systematic and complete man- 
ner. From the software engineering point of view, this 
translates into enhanced safety and reliability. 

2. We succeed in assigning a uniform semantics to these 
operations that must otherwise be carried out in an 
ad hoc fashion. This can be done to the extent that 
we can provide mathematically verified reasoning prin- 
ciples for these operations in the form of equational 
theories. From the software engineering point of view, 
this translates into enhanced correctness. 

3. We make these operations available to the programmer 
in a uniform way, thus providing more him or her with 
more control over the behavior of the system. From 
the software engineering point of view, this translates 
into enhanced predictability. 

1.2   Synthesis vs. Analysis 
There are two different kinds of program manipulation: pro- 
gram synthesis, and program analysis. The combination of 
the two is necessary for expressing general program trans- 
formations. In what follows we outline the state of the art 
in language support for both synthesis and analysis, and ex- 
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plain how the present work on DALI fits in the context of 
analysis. 

1.2.1 Synthesis and Multi-Stage Programming 
Many recent studies have concentrated on language level 
support for program synthesis: works on multi-level [12; 11; 
30; 28] and multi-stage [49; 48; 29; 4; 45; 47] programming 
languages have investigated basic problems relating to lan- 
guage support needed for program synthesis such as how 
to build program fragments, how to combine smaller pro- 
gram fragments into larger ones, and how to execute such 
fragments in a user friendly, hygienic, and type-safe manner. 
But while multi-stage programming constructs provide good 
support for the construction and execution of object-code, 
they provide no support for analysis. In fact, adding con- 
structs for analyzing code fragments can severely weaken the 
notion of observational equivalence in such languages [47]. 

7.2.2 Analysis and Higher Order Syntax 
In contrast, substantially fewer studies have focused on lan- 
guage level support for program analysis [21; 39; 13]. With 
few exceptions (see for example Bjorner [5]), the most pop- 
ular tool for these studies has been higher order abstract 
syntax[38] (HOAS), and have taken place in the context of 
logic programming languages [1]. In the remainder of this 
paper we shall (without drawing too fine a distinction) re- 
fer to all approaches to syntax that represent object-level 
binding constructs by meta-language binding constructs in 
a uniform way as higher-order abstract syntax. 

A program analysis inspects the structure and environ- 
ment of an object-program and computes some value as a 
result. Results can be data- or control-flow graphs, or even 
another object-program with properties based on the prop- 
erties of the source object-program. Examples of these kinds 
of meta-systems are: program transformers, optimizers, and 
partial evaluation systems [22]. 

Program analyses are particularly difficult to write cor- 
rectly if they must manipulate terms that have a notion of 
statically scoped variables. The exact representation of the 
variable is generally uninteresting, and often requires sub- 
tle administrative changes so that it maintains its original 
"meaning". 

The primary example of such administrative changes is 
a renaming when the "direct" representation of variables is 
used, and "shift" and "lift" operations when de Bruijn in- 
dices are used. The first representation relies, typically, on 
the use of state, a "gensym" operation, and the second rep- 
resentation is generally considered "too human unfriendly". 
Because of this, representing object-programs using first or- 
der algebraic data structures which use strings or other 
atomic values to represent variables are notoriously hard to 
manipulate correctly. 

A more pressing concern is that implementing such oper- 
ations once is not enough: They need to be implemented for 
each object-language that has binding constructs. The basic 
problem is therefore pervasive, it appears in almost every 
interesting language. 

The basic idea that we advocate is to (uniformly) exploit 
the binding mechanism of the meta-language to implement 
the binding mechanism(s) of the object-language, i.e.   use 

functions in the meta-language to implement binding in the 
object-language. At first glance, this looks like a promising 
idea, but a number of subtle problems arise. We explicate 
these problems carefully in Section 3. The problems arise 
because the functions of the meta-language have two prop- 
erties which, while necessary for their use as functions, get 
in the way of their use as binding mechanisms. These prop- 
erties are: extensionality and delayed computation. Exten- 
sionality means that one cannot observe the structure of a 
function, other than by applying it to get a result. Delayed 
computation means that computations embodied in a func- 
tion do not occur until the function is applied. What we 
need is a new kind of binding, without these properties. 

In this paper, we develop such a binding mechanism by 
refining some ideas of Dale Miller's [23]. This new binding 
mechanism can be incorporated into a functional language 
with first-order datatypes, and together they can be used to 
represent variable binding in object-languages. This mecha- 
nism can be systematically reused. In addition, we develop a 
sound syntactic system for reasoning about the equivalence 
of functional programs that use this new binding mechanism. 

1.3    Contribution 
The contribution of this paper is simple and focused: a call- 
by-value operational semantics for an untyped functional 
programming language with an extension that supports first- 
order datatypes (FOD) with binders. 

We have applied the rigorous standards of language de- 
sign and semantic analysis to both the host language (the 
lambda calculus) and the extension and discovered that the 
two are mutually compatible. The combined language en- 
joys a non-trivial equational theory where beta convertibility 
is a congruence, and is therefore unlikely to invalidate known 
optimizations for a call-by-value functional language. 

We believe that our present operationally-based study 
complements the recent model-theoretic approach of Gab- 
bay and Pitts [17], Hofmann [20], and Fiore, Plotkin, and 
Turi [16]. For example, whereas Pitts and Gabbay's recent 
work emphasizes that a type system is required for their 
language to ensure that "namefulness" doesn't spread ev- 
erywhere, our language is untyped, and does not appear to 
give rise to any non-standard "namefulness" problems. 

2.    HOAS V.S. FIRST ORDER DATATYPES 
The precise semantics of (meia-)programs depends crucially 
on the basic properties of the representation of object-programs. 
This question of representation is the focus of the present 
study. 

The essence of the representation we propose goes back at 
least to Church [8]. The idea is to exploit the binding mech- 
anism of the meta-language to implement the binding mech- 
anism^) of the object-language. This is also the essence of 
Pfenning and Elliot [38] and Miller' [23; 25; 26] higher-order 
syntax (HOAS) representation. To illustrate the basic idea 
of higher-order syntax, consider the definitions of Term and 
Term' below. 
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data Term 
= App Term Term 
I Abs String Term 
I Const Int 
I Var String 

data Term' 
= App' Term' Term' 
| Abs' Term' -> Term' 
I Const' Int 

In Term' we represent the object-language lambda abstrac- 
tion (Abs') using the meta-language function abstraction. 
This way, functions such as id and app are represented by 
applying the Abs' constructor to a meta-language function: 

-- \ x -> x 
id = Abs  "x" (Var "x") 

— \f -> \ x -> f 
app = Abs "f" 

(Abs  "x" 
(App  (Var "f") 

(Var  "x"))) 

- \ 
id'  = 

- \f 
app'   = 

x -> 
■■ Abs' (\ x -> x) 

->  \ x -> f X 
Abs'   (\ f -> 
Abs'   (\ x -> 

(App'  f x))) 

The HOAS representation (Term') is elegant in that a con- 
crete representation for variables is not needed, and that it is 
not necessary to invent unique, new names when construct- 
ing lambda-expressions which one can only "hope" don't 
clash with other names. 

3.    CRITIQUE OF HOAS 
This flavor of HOAS seems like a great idea at first, but 
careful inspection reveals a few anomalies. It works fine for 
constructing statically known representations, but quickly 
breaks down when trying to construct or observe a represen- 
tation in a algorithmic way. We quickly provide a few small 
examples that illustrate the problems we have encountered. 

Pi Opaqueness: We cannot pattern match or observe 
the structure of the body of an Abs', or any object- 
level binding, because they are represented as func- 
tions in the meta-language, and meta-level functions 
are extensional. 

We can observe this by casting our Term' example 
above into a real program formulated in ML, and notic- 
ing that id prints as Abs'  f n. 

(* Actual ML Program Execution *) 

- datatype Term' 
= App'  of   (Term'* Term') 
|   Abs'   of   (Term'   -> Term') 
I   Const'   of int; 

- val id = Abs'(fn x => x); 
val id = Abs'  fn   :  Term' 

P2 Junk [7; 6] : I.e., there are terms in the meta-language 
with type Term' that do not represent any legal object- 
program. Consider: 

junk = Abs'(\ x -> case x of App' f y -> y 
; Const' n -> x 
;   Abs'   _ -> x) 

No legal object-program behaves in this way. 

Latent Divergence: Because functions delay com- 
putation, a non-terminating computation producing a 
Term' may delay non-termination until the Term' ob- 
ject is observed. This may be arbitrarily far from its 
construction, and can make things very hard to debug. 
Consider the function bad below: 

bad  (Const'  n)   = Const'   (n+1) 
bad  (App'   x y)  = App'   (bad x)   (bad y) 
bad  (Abs*  f)   = Abs'(\ x -> diverge(bad   (f x))) 

bad walks over a Term' increasing every explicit con- 
stant by one. Suppose the programmer made a mis- 
take and placed an erroneous divergent computation in 
the Abs' clause. Note that bad does not immediately 
diverge. 

Pi Expressivity: Using HOAS, there exist (too many) 
meta-functions over object-terms that cannot be ex- 
pressed. Consider writing a show function for Term' 
that turns a Term' into a string suitable for printing. 

show (App' f x) 
show (Const* n) 
show  (Abs'  f)  = 

=  (show f)  ++ 
= toString n 
"\\ "++ ?v ++ 

++  (show x) 

++  (show  (f ?v)) 

What legal meta-program value do we use for ?v? We 
need some sort of "variable" with type Term' but no 
such thing can be created. There are "tricks" for solv- 
ing this problem [14], but in the end, they only make 
matters worse. 

Our approach to these problems is to cast our search 
for solutions as an exercise in programming language de- 
sign. The following subsections offer an informal discussion 
of each problem and a potential solution by the introduc- 
tion of additional language features, and provide examples 
of how these language features might be used. Our biggest 
challenge is to discover features that interact well, both with 
each other, and with the existing features of the language 
we wish to add them to. 

3.1    Opaqueness 
To solve the opaqueness problem a number of researchers 
have investigated the use of higher-order pattern matching 
[32]. The basic idea is that programmers use a higher-order 
interface to the object-language because it is expressive and 
easy to use, but the actual underlying implementation is 
first order. 

One tries to supply an enriched interface that gives pro- 
grammers access to this first-order implementation in a safe 
manner, that still supports all the benefits of a higher-order 
implementation. To illustrate this consider the (not neces- 
sarily semantics-preserving) rewrite rule f for object-terms 
Term', which might be expressed as: 
f:    (Ax.(e'0))->(e'[0/x]). 

Here, we use the notation, that a primed variable is a 
meta-variable. Thus e' is a meta-variable of the rule, and 
e'[0/x] indicates the capture free substitution of 0 for x in 
e'. 

Higher-order pattern matching is a programming language 
mechanism, that allows us to express that we wish to observe 
the inner structure of meta-language abstraction, and that 
parts of the body of this abstraction (i.e. e') may have free 
occurrences of x inside. 

We use a higher-order pattern when we wish to analyze 
the structure of a constructor like Abs' which takes a meta- 
function as an argument.  Like all patterns, a higher order 
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pattern "binds" a meta-variable. The meta-variable bound 
by a higher-order pattern does not bind to an object-term, 
but instead binds to a function. This function captures the 
subtlety that e' might have free occurrences of x. Given 
the bound variable, as input, it reconstructs the body of the 
abstraction. Given a term as input, it substitutes the term 
for each free occurrence of the bound variable in the body. 

The bound meta-variable is a function from Term' -> 
Term'. We make this language mechanism concrete by ex- 
tending the notion of pattern in our meta-language. Pat- 
terns can now have explicit lambda abstractions, but any 
pattern-variables inside the body of the lambda abstraction 
are higher-order pattern-variables, i.e. will bind to func- 
tions. Consider below, an example implementing the rewrite 
rule above. 

f   (Abs'(\ x 
f x = x 

-> App'(e'   x)(Const  0)))   = e'(Const 0) 

In this example the meta-function f matches its argu- 
ment against an object-level abstraction (Abs' . ..) using 
an object-level pattern. The pattern specifies that the body 
of the matched abstraction must be an application (App') of 
a function term (e' x) to a constant (Const 0). The func- 
tion part of this object-application can be any term. This 
term may have free occurrences of the object-bound variable 
(which we write as x in the pattern, but which can have any 
name in the object-term it matches against). Because of 
this we use a higher-order pattern (e' x) which applies e to 
x to indicate that e' is a function whose argument is the 
object-bound variable x. 

This extension differs from normal pattern matching, in 
that neither meta-level abstractions (\ x -> ...) nor appli- 
cations of meta-variables (e' x) normally appear in regular 
patterns. 

If the underlying implementation is first order (like Term), 
patterns of this form have an efficient and decidable imple- 
mentation. The clause 
f (Abs'(\ x -> App'(e' x)(Const 0))) = e' (Const 0) 
would translate into an implementation using Term as fol- 
lows: 

f   (Abs x  (App e  (Const 0)))   = 
let e'  y = subst   [(x,y)]   e 
in e'   (Const 0) 

The key advantage of this approach is that users get to use 
the expressive and safe HOAS interface, and the substitution 
function need not be written by the programmer but can be 
supplied by the underlying implementation. 

The solution of using (a hidden) underlying first order 
implementation, but supplying a higher-order interface, ex- 
tends nicely to term construction as well as term observa- 
tion. 

A construction like: (Abs' f) :: Term'could be trans- 
lated into an underlying implementation based on first-order, 
observable, data-structures (i.e. Term) by using a gensym 
construct to provide a "fresh" name for the required object- 
bound variable: 
let y = gensym  ()   in Abs y  (f   (Var y)). 

Again both the gensym and the underlying first-order im- 
plementation is hidden from the user. 

3.2 Junk 
Junk is a serious problem in that it allows meta-programs to 
represent non-existent terms in the object-language. Junk 
arises because the body of an object-binding is a compu- 
tation (i.e. a suspended function), rather than a constant 
piece of data. This causes two kinds of problems: 

1. The computation can "observe" the bound variable, 
and do ill-advised things like pattern matching.    A 
valid object-binding only "builds" new structure around 
the variable. It does not observe the bound variable. 

2. The computation can introduce effects. In this case the 
computational effects of the meta-language, such as 
nontermination, are introduced into the purely syntac- 
tic representation of the object language. Even worse, 
the effects are only introduced when the object-term 
is observed. If a term is observed multiple times, it 
causes the effects to be introduced multiple times. 

3.3 Latent Divergence 
So we see that that junk and latent divergence are really 
two facets of the same problem. To fix these problems we 
need a binding construct which preserves static scoping (like 
normal meta-level functions) but which does not delay com- 
putation. What we need is a binding construct which forces 
computation "under the lambda" [45]. 

Ten years ago, Dale Miller proposed a new meta-level 
binding construct for implementing HOAS in ML [23] which 
did exactly this. He introduced a new binary type construc- 
tor (a => b) which names the type of an object level binding 
of a terms in b terms. The new type constructor was used in 
place of the function type constructor to denote object-level 
abstraction. 

We introduce DALI, a language based upon a refinement 
of Miller's idea. We compare it to HOAS, and illustrate its 
intended use by a number of examples. In DALI, the object- 
binding mechanism is separate from the function construct 
of the meta-language. This allows us to restrict the range 
of junk, and the introduction of erroneous effects. Consider 
our small lambda calculus example once again. 

datatype Term 
= App Term Term 
I   Abs Term => Term 
I   Const  Int 

Terms of type a => b are introduced using the meta- 
language construct for object-binding introduction. The 
expression level syntax of the meta-language, is analogous 
to the syntax of the type constructor for object-level bind- 
ings. For example: (#x => App(#x,Const 0)) :: (Term 
=> Term). Here we use the hash (#x) notation to distin- 
guish object-level variables from meta-level variables. An 
important property of object-variables, is that they can- 
not escape their scope. Like meta-level function binding, 
object-binding respects static scoping. The => introduction 
construct (#x => e) delimits the scope of #x to e. The key 
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property of object-binding is that evaluation proceeds under 
=>. 

Below are two different examples of constructing an object- 
language program. The first using meta-level functions as 
the binding mechanism, and the second using object-level 
abstraction: 

Abs'(\x -> bottom) Abs(#x => bottom) 

The expression on the left uses a meta-language bind- 
ing mechanism (A abstraction). It succeeds in constructing 
a representation of an object-language program which obvi- 
ously has no meaning. The expression on the right, however, 
does not represent any object-language program, since the 
expression never terminates. Note that the effect on the left 
has seeped into the object-language program representation 
(junk), while on the right non-termination occurs before the 
object-language program is constructed and thus is never 
present in the object-language program itself. 

A more sophisticated example is the copy function over 
Term 

meta-level function binding cannot express some functions. 
Object-level binding allows us to solve this problem. 

The solution is a new language construct discharge. The 
construct (discharge #x => el) introduces a new object- 
level variable (#x), whose scope is the body el. The value of 
the discharge construct is its body el. The body el can have 
any ground type, unlike an object-level binding (#x => e2), 
where e2 must be an object term. 

In addition, discharge incurs an obligation that the object 
variable (#x) does not appear in the value of the body (el). 
An implementation must raise an error if this occurs. 

For example consider a function which counts the number 
of Const subterms in a Term. 

count   : :  Term -> Int 
count   (Const  _)   = 1 
count (App f x) = (count f) + (count x) 
count (Abs(#x => e' #x)) = 

discharge #y => count (e' #y) 
count #_ = 0 

copy (App f x) = App (copy f) (copy y) 
copy (Const n) = Const n 
copy (Abs(#x => e' #x)) = Abs(#y => (copy (e' 
copy (x 9 #_) = x 

#y))) 

To those familiar with functional programming, the first 
two clauses should be clear. The third clause, uses the 
higher-order pattern matching introduced earlier, only ap- 
plied here in the context of the new object-level binding 
construct. Since evaluation passes under => diverging com- 
putations will not delayed. 

The fourth clause of the copy function is an artifact of 
the object-level binding mechanism. Object-variables (#x) 
introduced using the object-binding syntax: (#x => . . .), 
are a new type of constant. The actual name of such a 
constant is not accessible to the programmer. There are two 
operations that are necessary on object-variables, it should 
be possible to distinguish them from other object-terms, and 
it should be possible to compare them using equality, in 
order to tell them apart. 

Thus, functions over object-languages, must have a clause 
for object-bound variables. Object-bound variables are dis- 
tinct from all other constructors, and are common to all 
object-languages. The pattern #_ matches any object-variable, 
but fails to match other constructors. The binding says 
nothing about the name of the variable it binds to. The no- 
tation (x 9 #_) introduces a meta-level variable x, bound 
to the object-level variable matched by the object-pattern 

3.4   Expressivity 
It is sometimes necessary to eliminate object-bound vari- 
ables. This is done in one of two ways. First by applying 
a higher-order pattern variable to some value x :: Term, 
the occurrences of the bound variable will be replaced with 
x. 

This is not always sufficient since it does not provide any 
way of transforming a object-binding into anything other 
than another object-binding. This was the problem with 
the show function (Section 3).    This is why HOAS using 

Note how that the fourth clause conveniently replaces all 
introduced object-bound variables with 0, thus guaranteeing 
that no object-variable appears in the result. The obligation 
that the variable does not escape the body of the discharge 
construct may require a run-time check (though in this ex- 
ample, since the result has type Int, no such occurrence can 
happen). 

If a programmer needs to treat individual object-bound 
variables in different ways, he can use an environment pa- 
rameter. Consider the program below, which is the correct 
implementation of the function show. 

show x 
where 
sh n 
sh n 
sh n 
sh n 

= sh n [] x 

(App f x) = (sh n f) ++ 
(Const n) = toString n 
(x 9 #_) = lookup x n 
(Abs(#y => f #y)) = 

let x = len n 
v = x ++ (toString x) 

in discharge #x => 
"\\  "++ v ++  "  ->  " 

++  (show  ((#x,v):n) 

++   (sh n x) 

(f #x)) 

Here the environment n is a list of pairs mapping object- 
variables to strings. If the sh function is applied to an 
object-variable it looks up its name in the environment. For 
an object-abstraction, (Abs' (#x => f #x)), discharge in- 
troduces a new object-variable, adds it to the environment, 
and then applies the higher-order pattern variable f to the 
introduced variable, and recursively produces a string as the 
representation of the abstraction's body. 

Another example transforms a Term into its de Bruijn 
equivalent form. 

data DB 
= DApp DB DB 
I DAbs DB 
I DVar Int 
I DConst Int 

DeBruijn env (App f x) = 
DApp (DeBruijn env f) (DeBruijn env x) 
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DeBruijn env (Abs(#x => e' #x)) = 
discharge #y => DAbs(DeBruijn (ext env #y)(e' #y)) 
where ext env v u = 

if v=u then 0 else 1 + (env u) 
DeBruijn env (Const n) = DConst n 
DeBruijn env (z 0 #_) = env z 

4.    EXAMPLES 
In this section we use our language to express some classic 
manipulations on object-languages. 

• Lambda calculus syntax 

datatype Lterm = App Lterm Lterm 
I   Abs Lterm => Lterm 
I   Const Int 
I  Prod Lterm Lterm 

Call-by-name Big-step evaluator for untyped lambda 
calculus: 

eval   :  Lterm -> Lterm 
eval   (Abs body)   = Abs body 
eval   (App tl t2)= 
case eval tl  of 

(Abs   (#x => body #x))   -> eval   (body t2) 
eval   (Const n)   = Const n 
eval   (Prod x y)   = Prod  (eval x)   (eval y) 
eval   (x 9 #_)   = x 

• CBN lambda calculus (single step) reduction: 

beta  :  Lterm -> Lterm -> Lterm 
beta  (Abs   (#z => body #z))  t2 = body t2 

• Complete development: 

compdev : Lterm -> Lterm 
compdev (Abs(x# => body #x)) 

= Abs(#w => compdev (body #w)) 
compdev (App (Abs(#x => body #x)) y) 

= sub (Abs(#w => compdev(body #»))) (compdev y) 
where sub (Abs(#z => e #z)) x = e x 

compdev (App f x) = App(compdev f)(compdev x) 
compdev (Prod x y) = Prod(compdev x)(compdev y) 
compdev (Const n) = Const n 
compdev (x Q #_) = x 

• Substitution on Lterms. 

find x [] = Nothing 
find x ((y,v):ys) = if x==y 

then v 
else find x ys 

subst: Lterm -> [(Lterm,Lterm)] -> Lterm 
subst x env = 
case find x env 

Just t -> t 
Nothing -> 

case x of 
v Q #_ -> v 
Abs(#x => e #x) -> 

Abs(#w => subst env (e #w)) 
App x y -> App(subst env x)(subst env y) 
Prod x y -> Prod(subst env x)(subst env y) 
Const n -> Const n 

5. NEW FEATURES OF DALI 
The language DALI contains some features that behave in 
untraditional ways. It is useful to call attention to these 
features. 

• Object variable bindings: Unlike the meta-language 
binding construct, the evaluation of an object-level ab- 
straction ((#x => e)) proceeds "under" the =>. 

• Ground (or equality j values: such values can be com- 
pared for simple structural equality. The important 
property of ground values is that they do not contain 
functions. Only ground values are used to represent 
valid object languages. 

In order to compare object-language terms for equality 
it is necessary to compare object-variables for equal- 
ity. This must be a primitive in the language. Equality 
on object-language types is important for two reasons. 
First, it facilitates an important programming tech- 
nique, illustrated in our de Bruijn notation example 
above. Second, it makes possible higher-order pattern 
matching (see below). 

• Object-variable matching: Comparing object-language 
terms for equality is not enough for the meta-programs 
in our examples. We must be able to distinguish object- 
level variables from other object-level terms. This is 
the purpose of the ( #_ ) pattern. 

• Higher-order pattern matching: A higher order pat- 
tern variable (i.e. x in (\(#z => x #z)->e) is bound 
to a (meta-level) function that returns the body of 
the object-level abstraction after replacing the object- 
variable with its argument. This in effects internalizes 
substitution for bound object-level variables in object 
programs. In order to implement such a scheme, it 
is important that the object-abstraction body be an 
equality type. I.e. we must somehow disallow types 
of the form (a => (b -> c)). If we do not do this 
then interesting anomalies may occur. For example 
consider: 

f  (#z => x #z)  = x  (Const 0) 

w =   (#x =>   (\ y -> Prod #x  (Const  5))) 

If we apply f to w, we must build a meta-level function 
x which replaces all occurrences of #x in 
(\ y -> Prod #x  (Const 5)) with (Const 0).   It is 
unlikely we can do this if functions are only exten- 
sional. 

6. A NOTE ABOUT "DISCHARGE" 
In defining meta-programs, the use of discharge is often 
crucial, since it allows for eliminating an object-level binding 
and performing computations only on its body. However, 
the binding's body can be safely extracted only if there is 
a guarantee that a heretofore bound object-level variable 
cannot become free as a result of computation over its body. 
There are two ways of adding discharge to DALI: First, as 
a new language construct with appropriate reduction rules; 
and second, as a function defined by the user on a per- 
datatype basis. 
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In the present paper, we opt for the second design decision 
in order to keep the core calculus of DALI, and its technical 
development as small as possible. We present an example 
of a user defined discharge function for the lambda-term 
datatype (Lterm): 

discharge (#w => t #w) = 
case (#a => find #a (t #a)) of 

(#z => True ) -> t () 
(#z => False) -> diverge 

find var 
(find 

find var 

find var 
(find 

find var 
find var 

if x ■■ 

(App tl t2) = 
var tl) or (find var t2) 
(Abs(#w=>b #w)) = 
(#z => find var (b #z)) of 

(#z => True )  -> True 
(#z => False)  -> False 

(Prod tl t2) = 
var tl) or (find var t2) 
(Const n) = False 
(x 0 #_) = 

= var then True 
else False 

The function discharge simply searches the body of an 
object-level abstraction for the abstracted object-level vari- 
able. If the variable is not found in the body, the program 
simply returns the body itself. Otherwise, the computation 
diverges. 

It is important to note that in DALl, discharge, whether 
added as a language construct or defined as a function, can 
be used only on ground values, i.e., values that do not con- 
tain suspended computation. Extending discharge to ap- 
ply to values that contain abstraction causes confluence and 
soundness problems similar to those described in section 
8.1. 

However, there appear to be situations where such a more 
general version discharge is desirable. The example below, 
implements a kind of evaluation for the familiar encoding of 
untyped lambda terms, using an environment. 

data Value = Vint  Int 
I   Vprod Value Value 
I   Vfun    Value -> Value 

type Env =   [(Lterm * Value)] 

eval'   :  Env -> Lterm -> Value 
eval'   env  (Abs   (#x => b #x))  = 

discharge #w => 
Vfun(\ y -> eval'   (extend #x y env)   (b #w)) 

eval'   env  (App tl t2)   = 
case eval'   env tl  of 

Vfun f -> f   (eval'   env t2) 
eval'   env  (Const n)  = Vint n 
eval'   env   (Prod x y) 

= Prod(eval'   env x)(eval'   env y) 
eval'  env  (x @ #_)  = env x 

In the present version of the language it is impossible do 
define a discharge function needed for the second clause 
of eval', since it would involve detection of free object- 
bound variables in a term that contains an (extensional) 
meta-level function. On the other hand, the example is in- 
tuitively correct, and one can convincingly argue from the 

definition of the function eval' that the discharged object- 
level variables indeed never do appear in the values of eval'. 
Whether an appropriate mechanism can be introduced to ex- 
tend discharge to such cases remains a question yet to be 
fully addressed for DALl. 

7. FORMAL SEMANTICS OF CORE DALI 
7.1 Syntax 
Figure 1 defines the various syntactic categories used in spec- 
ifying Core DALl, including expressions E, ground values B, 
values V, and contexts C. 

Expressions in Core DALl include the lambda calculus 
with naturals. Further, the language incorporates datatypes 
(not necessarily just first-order), in addition to the following 
specialized mechanisms: 

• Object-level variables #2 and binders (#z => e), 

• Pattern matching over object-bindings \{#z =>• x).e. 

• Equality for object-bound variables -#z =# #z' 

• Test of whether an expression evaluates to an object- 
level variable (isOVar e). 

Values, ground values, and context are used in defining the 
reduction semantics. 

7.2 Core DALI vs. Example Language 
The Core DALl has two (more primitive) forms of pattern 
matching than the language used in the examples: one for 
tagged values, one for object-level bindings. A third form of 
pattern matching (for object-level variables) can be easily 
encoded using isOVar. 

Nested patterns are not allowed, nor are more complicated 
higher-order patterns directly supported: each constructor 
has one argument, and each higher-order pattern variable 
has exactly one possible free object variable in it. These 
simplifications make the formal development of Core DALl 
more manageable, without losing generality: programs in a 
more familiar language of our examples can be translated 
into equivalent, albeit more verbose Core DALl expressions. 

7.3 Big Step Semantics (\D) 
Figure 2 defines the call-by-value (CBV) big-step semantics 
for Core DALl. Note that this semantics does not require a 
gensym function or any freshness conditions on variables: 
All necessary variable renaming is handled by two stan- 
dard notions of substitution [2], one for object-level variables 
(#2 6 Z) and one for meta-level variables (x € X). 

7.4 Reduction Semantics (\d) 
Figure 1 defines the reduction semantics for Core DALL 

8. SUMMARY OF TECHNICAL DEVELOP- 
MENT 

The main technical result of our work to date is establish- 
ing the confluence property for the reduction semantics de- 
scribed above, and establishing (the rather non-trivial con- 
nection) between the reduction semantics and big-step se- 
mantics. In doing so, we have following closely Taha's de- 
velopment for the (substantially smaller) language X — U 
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Syntax: 

x ex Normal variables 
zel Object variables 
/6F Tags 
FcF Tag sets 
ee E Expressions l.e, 

C € C     Contexts 

Infinite set of names 
Infinite set of names 
Infinite set of names containing True and False 
Finite subsets of F 
() | x | Xx.e | e e | (e,e) | 7Ti e | 7T2 e | / e | XfeF(f xf) 
#2 | #z => e | A(#2 => z).e | isOVar e | e =# e 
0 | Ax.C|Ce|eC | (e,C) | (C,e) | ^ C | 7r2 C | 

A/^-i/'}((/,. Xi).ei) + +(/' *).<? | / C | (#z => C) | A(#z =► i).C 
isOVar C | C =# e | e =# C 

A(#2: 
b 6 B     Ground Values :=    ()\(b,b)\fb\#z |#2^6 
v G V     Values :=    () | Arc.c | (w,w) | / v | A' ̂ /x/.e/   |#Z|#2=> 

p £ R     Reductions :=    ßi\v1\iti\ßa\ß 3|# IsOVar 

Notions of Reduction: 

(Xx.e) v      — -*ßl e[x := v] 
7Tl  (v\,V2)         — ->T! Vl 

7T2 (vi,V2)         — ->JT2 V2 

(X^Fu^(fxf).ef)(kv)      - *ßl ek[xk ■= v] 
(Hit*' => x).e) (#* =»6)      - *H e[x := \y.(b[#z := „])] 

#* =# #*   - -*# True() 
#Zl  =# #22          — "*# False()  if z\ ^ z2 

isOVar #2    —> isOVar True() 
isOVar u    —► isOVar False()    iiv^#z 

Reduction Semantics: 

ei - ^               „ r- 10 
ei —► e2    e2 —>" e3 

C[ci C[e2] ei e3 

Figure 1:  Syntax and Reduction Semantics (Xd) of Core DALI 

[45; 47]. Taha's development is based on Takahashi parallel 
reduction and complete development methods for proving 
confluence [52], and Plotkin's "standardization" technique 
for showing that reductions preserve observational equiva- 
lence. 

This section summarizes our technical development and 
states our main result, and explains how they were useful 
to us in the process of designing the semantics for DALI. 
The full details cannot be included in this paper, and are 
presented instead in a technical report available on-line [36, 
40 pages]. 

8.1   Confluence 
The first result is confluence: 

THEOREM 1     (Xd Is CONFLUENT). Vei,e2,e e E. 

ei* <— e —>" e2 =>■ (3e' £ E. e\ —>' e" <— e2) 

First, we are not aware of a similar proof for a language with 
datatypes. Furthermore, this result establishes the existence 
of a confluent calculus for a language with notion of object- 
level binders, and analysis on these terms. In particular, 
this result means that DALI also provides a solution to the 
problem of introducing intensional analysis to MetaML in a 
"coherent" manner [47]. 

8.1.1    Role in Design O/DALI 

In addition to its technical role in arriving at our next re- 
sult, establishing the confluence property played an impor- 
tant role in our design process: It drew our attention to the 
need for introducing the notion of ground-values, thereby 
prohibiting any useful mixing of object-binder and function 
spaces in datatypes. 

In particular, analysis over object-level binders (ßz re- 
duction) without the restriction of the argument to ground 
values breaks the confluence, as is illustrated in the following 
example: 

Suppose the notion of reduction —>ß3 (Figure 1) were 
defined as follows (we emphasize the part different from the 
standard definition by placing it into a box): 

(A(#z' =S> x).e)  (#2 => v)   —>ß3 e[x := Xy.v[#z := y]] 

Now, consider the function / = (A(#w => x).x (Xu.u)). 
This function takes an object-level binding as its argument 
and returns the body of the binding in which the object- 
bound variable has been replaced with the identity function 
Xu.u. For the application of / to the object binding (#2 => 
(Ay.#2 = #2)), there are two possible reduction sequences: 

/ (#2 => (Xy.#z = #2)) 
and 

Xy.(Xu.u) = (Xu.u) 

f (#2 => (Ay.#2 = #2)) —>#    / (#2 => (Ay.TrueO)) 
—>ß3    Ay.TrueO 

Clearly, neither Ay.True(), nor Xy.(Xu.u) = (Xu.u) can be 
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ei -> Xx.e ei -> A/eFUW(/ x/).e/        d ->■ A(#z' => x).e 
e2 ■-> e3 e2^-> k e\ e2 ■-> #z => 63 
e[z := e3] ■-> e4   et[x := ei] ■-» e5        e[x := Aa;'.(63[#z := x'])] <-¥ e4 

() <-► () Az.e <-► Az.e    ei 02 <-> e< ei e2 ■->■ es 

ei <-> e3 e2 •-> e-t e<-^> (e3,e-i) e^(e3,e,i)   t\ ■-> e2 

ei e2 ■-> ed 

(ei,e2) ^ (e3,e4)      TTI e <-► e3       TT2 e ^> ei      fke1^fke2    XfeFfxf.ef^Xi^Ffxf.e 

e\ '-> e2 

ei ^#2 
e2 <-► #z 

/ 

ei •-* #2i 
e2 ■-> #22    Z\ ^ «2 

#z ■-» #z    #z => ei <-> #z => e2    A(z => x).e <-» A(z => z).e    ei =# e2 "->■ True()      ei =# e2 ■-> False() 

e «-> #z e4i)    v ^ #z 

isOVar e <-> True() isOVar e <-> False() 

Figure 2: Big-Step Semantics (AD) of Core DALI 

further reduced by Xd to a common reduct: a clear coun- 
terexample for confluence. 

Finally, note that the breakdown of confluence here pro- 
vides a concrete illustration of one of the wide range of diffi- 
culties that can arise from mixing function spaces with "syn- 
tax" . Other examples, such as the discussion of "covers" in 
the context of MetaML implementation [45] require much 
more infrastructure to present. 

8.2   Soundness 
We will consider two programs to be equivalent when they 
can be interchanged in any context without affecting the 
termination (or non-termination) of the full term in which 
they occur. This is known as observational (or contextual) 
equivalence, and is defined as follows: 

DEFINITION 2     (OBSERVATIONAL EQUIVALENCE).  We write 
e\ ä e2 if and only if 

VC € C. (3v e V. C[ei] *-> v) <=> {3v e V. C[e2] <-* v) 

Our soundness result can now be stated as simply: 

THEOREM 3     (SOUNDNESS). 

Vei,e2 € E.ei —► e2 ei ■ e2 

First, our proof for this theorem is the first operational ac- 
count known to us where the soundness of such reductions 
for an untyped CBV functional language with datatypes is 
established (Using bisimilarity techniques, Pitts does present 
a similar result, but for a typed CBN language supporting 
binary sum types [41].) 

Second, the soundness of these results establishes that 
extending the lambda calculus plus datatypes with DALl's 
constructs for introducing and analyzing object-level binders 
and free variables at runtime does not injure the notion of 
observational equivalence in a devastating way. Certainly, 
it may very well be that introducing the new constructs 
allows us to distinguish between more terms in the language 
(as does introducing exceptions, for example), and this is a 
question for future work. 

8.2.1    Role in Design of DALI 
The immediate technical benefit of this result is providing 
technical justification for using the reductions as semantics- 
preserving optimizations in an implementation. But there 
are other benefits that we are interested in from the point 
of view of language design: 

1. It provides us with a basic understanding of the no- 
tion of observational equivalence. In particular, in the 
case of this language (as is in the case for many deter- 
ministic languages), one arrives at a simple equational 
theory simply be changing reduction arrows into "con- 
vertibility" equalities. 

2. Taha's development [45; 47] emphasizes partitioning ex- 
pressions into values, workables, and stucks, and estab- 
lishing "monotonicity properties" from which, for ex- 
ample, Wright and Felleissen's "Uniform Evaluation" 
[53] follows. Thus, not only do we provide the basis 
for posing the question of "what is a type system for 
datatypes with binder", we already provide some of the 
technical properties needed in establishing type safety 
for any type system that we may wish to investigate. 

3. Attaining this result involves constructing a number 
of variations of the operational semantics, and relat- 
ing them formally. This process provides a substantial 
amount of cross-checking between various definitions, 
and gives a very accurate operational understanding 
of the kind of invariants that a type system will be 
expected to guarantee. 

9.    RELATED WORK 
DALI is a functional meta-programming language, and is 
related as such, to many other meta-systems. 

Meta-systems built with a functional programming base 
include MetaML [47; 51], AD[12] and A°[ll]. These differ 
from DALI in that they are homogeneous systems, where 
the meta- and object-languages are the same. None of these 
systems provide mechanisms for analyzing the structure of 
object-programs. 
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Theorem prover based meta-systems have been constructed 
for several kinds of logics. Implementations of classical log- 
ics include the HOL [18] theorem prover, Isabelle [35], and 
the Prototype Verification System (PVS) [34]. Implemen- 
tations of constructive (or intuitionistic) logics include Elf 
[37], Coq [10; 3], Nuprl [9] and Lego [42]. 

Finally, there are logic programming languages with meta- 
programming extensions, A-Prolog [31; 15; 27], and L\ [24]. 
These are prolog-like languages with extensions for repre- 
senting and analyzing object-programs whose representa- 
tions are based on the A-calculus. 

Of these systems, Isabelle, Elf, A-Prolog, and L\ use 
some sort of higher-order abstract syntax to represent object 
terms. Of these, all but L\, use higher order unification to 
implement intensional analysis of object terms. Higher order 
unification is in general undecidable, and does not guarantee 
a most general unifier. 

L\ implements a subset of lambda-Prolog, where inten- 
sional analysis is syntactically restricted to a form which is 
decidable using unification on higher-order patterns. It is 
this idea transferred to the functional programming world 
that is the basis for ML\ and DALI. 

The term higher-order abstract syntax was originated by 
Pfenning and Elliott [38]. This work provided a basis for au- 
tomating reasoning in LF[19], and was used as the basis for 
the implementation of Pfenning's Elf[37] and its successor 
Twelf[40]. 

9.1    DALI VS. MLA 
Dale Miller [23] describes ML*, a proposal to extend ML 
to handle bound variables in data-types. The idea of repre- 
senting object-level bindings, in a functional language, using 
a binding construct different from the function abstraction 
of the meta-language derives from this paper. While our 
work takes Miller's proposed extensions as its basis, there 
are some differences: 

• We distill the main ideas of Miller's MLj into a basic 
calculus of core DALI. We concentrate on the the 
reduction semantics and equational theories of such 
a language. To the authors' knowledge, this work is 
the first instance of a sound reduction semantics for a 
functional language supporting binding constructs in 
data-types. 

• We abandon the notion of function extension that al- 
lows extending the domain of arbitrary ML functions 
within the scope of an object-level variable. We find 
function extension needlessly difficult to model in a re- 
duction system, and seek to introduce an alternative 
construct: patterns that match object-level variables. 
We conjecture that, together with equality over object- 
level variables, one can circumvent function extension 
without loss of expressiveness or good programming 
style. 

• We abandon the notion of object-level application [23]. 
Rather, pattern matching on object-level bindings binds 
higher-order pattern variables to functions that per- 
form appropriate substitutions directly, thus further 
simplifying formal development, and, in practical terms, 

internalizing object-level variable substitution, which 
in [23] must be defined separately for each data-type. 

However, internalization of such object-level substitu- 
tion in presence of extensional function values is not 
without cost: we had to resort to a fine distinction be- 
tween ground (or equality) values and the more stan- 
dard notion of values in such calculi, and adjust eval- 
uation and reduction to restrict the analysis of object- 
language terms to preserve soundness and confluence 
of the calculus. 

DALI differs from most of the other work discussed above 
in following ways: 

• It is functional and deterministic, and is presented as 
an extension of a standard CBV functional language. 
It provides support for higher-order syntax by provid- 
ing a small number of new language constructs. 

• The formal properties we have proven about the lan- 
guage suggest that the new features integrate well with 
the host functional language. 

• The reduction semantics we provide gives rise to a sim- 
ple equational theory that can be used to reason about 
program equivalence. 

10.   CONCLUSIONS AND FUTURE WORK 
In this paper we have shown that a functional program- 
ming language with support for higher order abstract syn- 
tax through an additional object-level binding construct can 
be assigned a simple big-step semantics. We have defined 
a reduction semantics and presented important results of 
confluence and soundness w.r.t. evaluation of this reduction 
semantics for DALI. After this initial success much work 
remains to be done. In particular: 

• Developing a basic type system for DALI. In addition 
to the traditional notions of safety there are some ef- 
ficiency concerns that we expect that a type system 
could be used to alleviate. In particular, the discharge 
operation and the use of the ground-value restriction 
b in the semantics would incur significant run-time 
penalties in an implementation. We expect that an 
appropriate type system could help avoid these. 

• Integrating with multi-stage programming. In partic- 
ular, DALI meta-programming utility is orthogonal to 
that of multi-stage programming [49; 48; 48; 29; 4]: 
with DALI, the object language is allowed to vary, and 
intensional analysis is supported. Note, however, that 
DALI does support the hygienic synthesis of object 
code, although in a manner less concise than those of 
multi-stage programming languages. Finally, whereas 
it has been demonstrated that the former can guaran- 
tee that the synthesized code is type correct, the only 
guarantee that we have at the moment with DALI is 
that the synthesized code is syntactically correct. 

• An implementation of a full programming language en- 
vironment based on DALI. Although a full implemen- 
tation of DALI is missing at the moment, the mech- 
anisms of higher-order pattern matching and analysis 
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of object-level bindings has been implemented by Tim 
Sheard as an experimental feature of the MetaML in- 
terpreter [43]. 

Erom the point of view of semantic language design, in 
reproducing Taha's technical development of MetaML, we 
have found that all the proofs could be carried out in a 
systematic manner for the (considerably larger) language 
at hand, and that many of the proofs remain literally un- 
changed. This seems to be primarily due to the use of the 
notion of "workables" in parameterizing the various lem- 
mata. In future work, we intend to investigate the extent to 
which this development can be generalized. 
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'" APPENDIX C 

DALI: An Untyped CBV Operational Semantics and Equational Theory 
for Datatypes with Binders (Technical Development) 

Emir Pasalic, Tim Sheard*, Walid Taha** 

Oregon Graduate Institute and Chalmers University of Technology 

Abstract. This report presents the basic definitions and formal development of DALI, a novel extension of the 
CBV lambda calculus. DALI is based on a proposal by Miller, and provides an elegant and well-behaved notion 
of object-variables. The notion is elegant because it avoids any explicit need for a "gensym" or "newname" 
operation that is often needed in such systems. The notion is well-behaved in that it induces a computationally 
adequate equational theory. 
Our development follows the one employed in Taha's thesis [4] for MetaML[7, 5]. The development was easy 
to adapt, and some of the major lemmas and proofs remained essentially unchanged. This success is further 
evidence of the robustness of both the observations of Takahashi on the notion of parallel reduction and the 
original "standardisation" development by Plotkin for the CBV and CBN lambda calculus. 
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1     Preliminaries 

1.1 A Note Regarding the First Revision 

This document presents the technical development of a core calculus of DALI, a CBV language which provides 
support for datatypes with bindings. The proofs are given in as much detail as the space would allow it. 

Due to the time constraints, many typographical and stylistic changes we wished to make in order to make 
the document more readable and compact are still missing. We intend to address these problems regarding our 
presentation in a forthcoming revision, e.p. 

The document is organized as follows: Section 2 presents definitions of the various notions that will be used 
throughtout the proof. Section 3 proves various basic properties of those notions. Section 4 provides the general proof 
of confluence, taken directly from [5]. Section 5 proves necessary lemmas for DALI that are required for the general 
argument in section 4. Section 6 gives a general argument for soundness of DALI, adapted directly from [5]. Section 
7 provides proofs for DALI-specific lemmas required in Section 6. 

1.2 Notes on the Technical Development 

The development proceeds in a number of steps. Some of these steps introduce auxiliary constructs that are useful in 
constructing the proofs of properties in which we are interested. These constructs include well-known notions, such 
as complete development and parallel reduction, which are recast in the setting of DALI. 

Each new notion usually has certain basic properties associated with it, about which we prove lemmas (Section 
3). These basic properties, beside being useful in latter proofs, also ensure that the definitions of various notions are 
sensible and correspond to their equivalents in more well-known calculi. 

We introduce a big-step semantics (or evaluation function where the order of evaluation of subterms is determin- 
istic), and a reduction semantics (where the order in which the rales are applied is immaterial). 

The main result of this paper is that reduction preserves evalaution. That is, applying any sequence of reduction 
rules to a term does not change the value to which it evaluates. Thus the reduction calculus can be used to transform 
one program into another program with equivalent meaning. 

Our development includes the following steps: 

- We define a core language (DALI, Section 2) that exhibits only the essential features and properties we wish to 
develop theoretically. 

- We define a big-step semantics (<—)■), a deterministic partial function that defines the notion of evaluation of DALI 
programs. 

- We define a reduction semantics (Ad), based on primitive notions of reduction (e.g., /?), lifted into arbitrary 
contexts to obtain a compatible reduction relation (—>-),as well as its reflexive transitive closure (—>*). 

- We define parallel reduction^), for DALI, a relation between terms that allows multiple reductions to be per- 
formed at the same time, nondeterministically. 

- We define left reduction^—>), a function on terms that performs the work of big-step semantics in a number of 
small steps. 

- We prove important properties of these constructs: 
1. \d is equivalent to parallel reduction. This allows us to replace reduction semantics with parallel reductions 

in our proofs, since parallel reduction is considerably less dificult to reason about than A . 
2. We prove equivalence of the transitive closure of left reduction (i—>*) and big-step evaluation. Similarly 

to parallel reduction, this allows us to reason about i—i* instead of <-» in our proofs which simplifies the 
development. 

- The first major result of our work on DALI is the proof of confluence of Xd. (Sections 4 and 5) We prove that 
parallel reduction is confluent, which by equivalence of the transitive closures of Xd and parallel reduction allows 
us to conclude that \d is confluent as well. 

- Based on Taha's soundness proof of MetaML [5], the partiality of left reduction function induces a partitioning 
of the set of expressions, called expression classes. The three term classes are inductively defined and are called 
values, workables, and stucks. 

1. Workables are expressions on which left reduction is defined, i.e., can be advanced by left reduction. In other 
words, workables may left-reduce, in one or more steps, to either values, stucks or other workables. 
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2. Values are expressions to which workables may left-reduce in one or more steps but on which left reduction 
cannot proceed further. They correspond exactly to the set of values defined in Section 2. 

3. Stucks are expressions that cannot be advanced by left reduction, but are not values. 

A further development is to prove certain monotonic properties of parallel reduction with respect to term classes. 
In particular, values and stucks can be only further reduced to other values or stucks respectively, and most 
importantly, if a result of the parallel reduction is a value, it must have been obtained either from another value, 
or from a workable. 

Finally, the main result of this paper, the soundness of reduction semantics, is reduced to proving two goals 

1. A (terminating) evaluation of a term to a value implies a finite sequence of Xd steps in which the original 
term reduces to the same value. 

2. A finite sequence of reductions of a term e to a value v implies that there exists a value v' to which the 
original term evaluates, and which can be then reduced in some finite number of steps to the original value 
v. 

The first goal is not difficult to prove by straightforard induction. The second goal, however, requires several 
transformations: 

1. Using the equivalence of evaluation and left reduction's reflexive transitive closure, and the equivalence of A 
and parallel reduction, the goal is restated in terms of left reduction and parallel reduction. 

2. Three important lemmas are used in proving this goal: push-back,transition and permutation. These lemmas 
allow rearranging of the order of left and parallel reductions in finite reduction chains until the goal is reached. 

The formulation of the soundness proof technique is most directly due to Taha's work on MetaML[4,5]. In proving 
soundness of DALI, we were able to directly directly reuse both the structure and certain key lemmas of this proof. 
For others, it was necessary to re-prove them in the context of the new language, but their basic formulation remained 
unchanged. 

2    Definitions 

2.1 X,Z,F, E, C, V,E, W, §   Set Definitions 

We will use a BNF-like notation for specifying a number of inductively defined sets that will be used throughout 
this report. Two non-standard notations will be used for conciseness: 

- Lambda terms with patterns are written A-^^1'••■■/•>}(/ Xf).ej, meaning, a sequence of simple lambda 
abstractions Xx\.ei,..., Xxn.en corresponding to branches of a lambda abstraction indexed by the various tags 

fl, •••) fn- 

- Set difference is written V \v, meaning, all possible elements of V except the ones matching the pattern 
particular pattern v. For example, if N is the set of naturals, then n + 1 is a pattern that matches naturals greater 
than zero, and N \ (n + 1) is simply the natural number zero. This notation allows us to avoid having a definition 
of stuck terms § that is quadratic in the number of constructs in expressions E. 

We will make use of Barendregt's variable convention, and state the set of bound and free variables in 
expressions occurring in any formula or statement should be taken by the reader to be distinct. 
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Definition 1 

x G X Normal variables 
z£Z Object variables 
feW Tags 
FCF Tag sets 
e G E Expressions 

C G C Contexts 

6 G IB  Based Values 
ueV   Values 

w G W   [4/o?i"a6/es 

s£§ Stucks 

p G K   Reductions 

Infinite set of names 
Infinite set of names 
Infinite set of names containing True and False 
Finite subsets o/F 
()|a;| A:c.e | e e | (e, e) | 7Ti e | 7T2 e | / e | Xf€F{f xf).ef | 
#z | #z => e | A(#z =>■ i-).e | isOVar e | e =# e 
0 | Az.C | C* e | e C | (e, C*) 1 (C, e) j TTi C* | TT2 C | 
A/6F-{/'}((/. a-.j.e.) + +(// x).c | / C | (#z =*■ C) | A(#* = 

| isOVar C | C=# e | e=# C 
() 1(6,6) |/6|#z|#z^6 
() I Ax-.e \(v,v)\fv | X^F fxj.es \ #z \ #z => v | X(#z = 
(Aai.e) y | (A(#_ => ai).e) (#z => b) j tu e | v w | / u; | #2 => 
(ui,e) | (v,w) | 7T„ tu | TTn{v,v) 

w = e | #z = w | #z = #2' 
isOVar v | isOVar w 
I s e I v s I (s, e) | (v, s) | TT„ S | 7T„ (V \ (t>, v)) | / s 

(\'eFfxf.ef)(V\fv) I (#2=>s) 
(V\#z) = e |#z=(V\#z) |s = e \#z = s 
(A(#*=>z).e)(V\ (#*=>&)) 
(V\Ae) 1; where Ae = Az.e + A^€F/ xf.ef + A(#z =>■ z).e 
isOVar s 

A   I   71"!   I   7T2   I  /?2   I  A3   I   #   I  IsOVar 

a:).C 

x).e 

2.2 _[_]: C X E   Context filling 

Definition 2 

[ ][e'] = c'    {Xx.C)[e'} = Xx.{C[e'})    {X#z => x.C)[e'\ = (A#z => x.C[e'])    {C e)[e'] = C[e'] e    (e C)[e'} = e C[e'] 
(#z =* C)[e'] = (#*=> C[e'])    (C=#c)[e'] = C[eT = c    (e =# C)[e'] = e = C[e'] 

(e, C)[e') = (e, C[e'])    (C, e)[e'] = (C[e'], e)    (»n C)[e'] = 7n (C[e'])    (,r2 C)[e'] = n2 (C[e'])    (/ C)[e'] = / (C[e']) 
(A/^-{/'}((/ j.,.).^) + + (/' a-j.Otc'] = (A/^-{/'}((/ Xi).ei) + +(/' z).C[e']) 

(isOVar C)[e'] = isOVar C[e'] 

2.3      _[_: =.]:ExIxE->E   and   _[#_: =_]:lxZxX-*E   Substitution 

Definition 3 

x[x: ■ 
x'\x: ■ 

e3] = () 
e3] = e3 

e3  = x1, x ^ x' 
Xx' .e[x: = e3] = Xx'.(e[x: = e3]) 
ei e2[x: = e3] = (ei [z: = e3]) (e2[x: = e3]) 

(e1,e2)[K: = e3] = (eja;: = e3], e2[x-: = e3]) 
7Ti e [K: = e3] = TTI (e[a;: = e3]) 
7r2 e [z: = e3] = 7r2 (e[x: = e3]) 
f ei[x:= e3] = / (eja:: = e3]) 

A/eF(/x/).e/[x':=e3]=A^(/^).(e/[a;: = e3]) 

#z[*.: = e3] = #2 

#r'=>e[ar: = e3] = #^=>(e[a::=e3]) 
A(#_ => x-').e[3;: = e3] = A(#_ =>■ z')-(e[*: = e3]) 

ei =# e2[x: = e3] = (ei|>: = e3j) =# (e2[a;: = 
isOVar e[x: = e3] = isOVar(e[si: = e3]) 

/6[#z:=a.] = /(6[#z:=a;]) 
#z[#2: = a;] = a; 
#z'[#z:=x) = #z', #z'^#z 

#z<=>b[if:z: = x} = z'=>(b[#z:=x]) 

es}) 

Remark 4 Note that the above definition of substitution uses Barendregt's variable convention, and thus no explicit 
side-conditions on renaming substitutions over binding constructs are necessary. 
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2.4 jExtxE E Notions of Reduction 

Definition 5 

(Xx.e) v 

TI {vi,v2) 
7T2  {V1,V2) 

(X^L-W(fxi).ei)(kv) 
(A(#z=>a:).e) (#*=»&) 

#* =# #* 
#Zl =# #^2 

isOVar #2 
isOVar v 

e[x: = v] 

vi 

V2 

ek[xk:= e] 
e[x: — \x.(b[#z: = x])] 
True() 
False()   if z\ ^ z-i 

MsOVar TrueQ 
IsOVar False()     ifv ^ #z 

2.5 C E X E   and   _ _ C E X E   Compatible Reduction and the Reduction Relation 

Definition 6 

ei £2 

C[d] —► c[e2; 
rpeM 

ei —»e2    e2 —»   e3 

ei —►* e3 

2.6     Notation 

Notation 7 (Relation Composition) For any two relations 
(a ©6) A(b®c). 

and ®,  we write a © 6 <g> c as a shorthand for 

2.7 ».CExE   Parallel Reduction 

In order to prove the two key lemmas presented in this section, we will need to reason by induction on the "complexity" 
of parallel reduction. Thus, we will use the following definition of parallel reduction with an associated complexity 
measure. Where complexity is not relevant, we will simply omit it to avoid unnecessary clutter. 
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2.8 
M 
» _: E ->• E Parallel Reduction with Complexity 

JV 
ei » e2 

M                  JV 
ei > e3    e2 > e4 

M+7V 
ei e2   S>   e3 e4 

M                    JV 
ei » e3    ui > v2 

,    o   ,                 0 
() » ()         x » x 

AT 
Aai.ei » A.T.e2 

M+#(.r,e3)JV+l 
(Aa!.ei)t;i           »           e3[ai: = v2J 

ei » e2 

M                  JV 
e/; » efc    vi > v2 

M + #(x,e->)N+l 
(\(#z=>x).ei)(#z=>b)           »           e2 [a;: = \x.b[#z: = a;]] 

M + #(.rfc,e',.)JV + l 
(A'^/<a:i.c,-)(/ftWi)            »            e'k[xk:=v2] 

M                   JV 
e-\ > e3    e2 » e4 

M 
ei > e2 ei > e2 

JV                                                 JV 
^1 > v\                           v2 > v2 

/                    N   M+N    ,                    \ 
(ei,e2)    »    (e2,e4) 

M 
7Ti ei S> 7Ti e2 

M 
7T2 ei > 7T2 e2 

.  JV + 1     .                     .             , JV+1 
1"1 («i,v2)   >   ^          7T2(Ul,t;2)   »   V2 

M 
ey » e'f 

M                                                                         JV 
ei > e2                                            ei » e2 

/ ei >> / e2         A-^ fxf.ej   »A/^/ x7.e;f     #^>>#^ 
M                                                                     JV 

(#2 => ei) » (#z => e2)         A(#z =» i).ei > A(#z =► .< 

#*1 ± #Z2 
M 

ei » 
TV 

;2    e2 » e4 

#z =# #z >> True() #zi =# #Z2 » False()         e: =# e2 

M + N 
>   e2 =# e4 

A'     , 
„^#z 

isOVar e » isOVar e' isOVar v » False() 

isOVar #z » True() 

where #(x,e) is the number of free occurrences of the variable x in the term e. 

2.9 L:E -»• E 

Definition 8 

Complete Development 

!ai = x 
!(Ax'.e) = \x.\e 

{(Xx.e3)v4 

(X^Fu^(fxf.ef))(kv) 
(A(#z => x).e) (#z =► 6) 

!((Aar.e)t;) = !c[a;:=!w] 
!(ei,e2) = (!ei,!e2) 

!(7T„ e) = 7Tn !e    e ^ («i,^2) 
!(7T!  (ü!,^)) = -Vl 
!(7T2 (wi, H2)) = !v2 

!(/e)=/!e 
!((A/6fu^>/x7.e/) (feu)) = \ek[xk:=\v] 

\#z=#z 
l(#z^e) = #z^\e 

!((A(#z =*> z).e)(#z => 6)) = \e[x: = \x'.b[#z: = x'}} 

!(ei =# e2) = !ei =#!e2    z/ei,e20Z 
!(#* = #z) = True() 

!(#*! = #z2) = False()    */#zx ^ #z2 

!(isOVare) = isOVarle    z/e £ V 
!(isOVar#z) = True() 

!(isOVarv) = False()    ife # #z 

41 



2.10 e—> _: E —► E   Big-Step Semantics 

Definition 9 

ei^Ai.e ei ^A^Fu^>(/x7).e/ ci «^ A(#_ =» i).e 
e2 <->■ e3 e2 W- ft e4 e2 M- #z =>• 63 
e[a;: = e3] M-e4      e/Ja:: = e4] ■-> e5 e[x: = Ax-'.(63[#z: = a;'])] <^-> e4 

()<->()     Ax-.e <-> Asi.e         ei e2 ^ e4                     6i e2 H e5 ei e2 M- e4 

ei "^ e3    e2 ^ e4     e <->• (e3, e4)     e <-» (e3, e4) ei «^ e2 

(ei,e2) M-(e3,e4)       TTI e ^ e3        TT2 e ^ e4      A- ej <-► fk e2     \J€F f xf .ef ^ \ieF f xf .ef 

e; ^ e2 e2 <^-> #2 e2 <-» #22    21 7^ 22 

#^ <-> #z     #z => ei ^ #2 => e2     A(z =>• a;).e ^ A(z =>• x).e    ex =# e2 ^ TrueQ      ex =# e2 ^ FalseQ 

e ^-> #z e <—> v    1; 7^ #z 

isOVar e M- True() isOVar e <-» False() 

Remark 10 ./Vofe i/zni ifte use 0/6 in the definition of the semantics of the application of a case over object-binders 
is an expensive runtime check. However, we expect that it should be possible to eliminate the need for this check by 
an appropriate type system that restricts "analysable" terms to base values. 

2.11 _: E ->• E   Left Reduction 

The notion of left reduction is intended to capture precisely the reductions performed by the big-step semantics, in 
a small-step manner. Note that the simplicity of the definition depends on the fact that the partial function being 
defined is not defined on values. That is, we expect that there is no e such that v 1—> e. 

Lemma 22 says that the set of workables characterises exactly the set of terms that can be advanced by left 
reduction. 

Definition 11 

ei 1—> e'i e 1—> e' e\ 1—> e[ e 1—> e' 

(Xx.e) v 1—>e[x: = v] ei e2 1—>e!\^i v e2 1—> v e' (ei,e2)i—>-(ei,e2) (v,e)i—>(v,e') 

7T„ e < > 7T„e' 7Ti (^1,^2) '—► vi 

JT2(vi,W2)—>«2 (\'eLuW{fxf).ef){kv)^->ek[xk:=v] f e >—> f e' 

#2 =» e ,—► #2 => e1 (A(#z => x).e) (#2' => b) 1—► e[x: = \x.b{#z': = x}} 

ej .—► e[ e^ e> #z ? #z' 

ei =# e2 1—>■ e'i =# e2 #z' =# e 1—>■ #2' =# e' #z =# 2 1—> TrueQ #2 =# 2' 1—► False() 

e 1—> e' v 7^ #2 

isOVar e 1—>■ isOVar e' isOVar #2 >—» True() isOVar u 1—> False() 

3     Basic Properties 

3.1     Substitution 

Lemma 12 (Basic Properties of Substitution) Ve,ei,e2 G E. 
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1.  x ^ y Ai £ FV(e2) => 

e[a;:= ei][y:= e2] = e[y: = e2][a;:= ei[x:= e2]] 

e[#x: = ei][#y: = e2] = e[#y: = e2][#:r: = e, [#x: = e2]] 

Proof (Lemma 12). The proof easily follows by structural induction on the expression eG. 

3.2     Parallel Reduction 

Lemma 13 (Compatibility of Parallel Reduction) VC G C Vei, e2 G E. 

ei > e2   => C[ei] » C[e2] 

Proo/ (Lemma 13). Prof is by structural induction on the context C. 

i- DM »DM 
. CM » C[e2] 

(Az.C)[el]» (Aa:.C)M 
A   C[ei]»CM    e»e 

(Ce)[ei]»(Ce)[e2] 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

A    e » e    CM » CM 
],»1T   7—777—; ;—777—T '"■»■['] ^ 

(eC)[ei]»(eC)M 
.    e»e    C[ei]>C[e2] 

],»fr   7—,-,.,    , 7—„,r   n   '«.».[;] JJ- 
(e,C)[ei]»(e,C)[e2] 

C[ei]»CM    e»e „ 
].»1T   77;—7—; 77;—7—T '"■»•M-0- 

(C,e)[ei]»(C,e)[e2] 
C[ei) » C[e2] 

],»ir —— ; —77—r  /",».[;]-D- 
(TTI C)[ei] » (rri C)[e2] 

.             C[ei] » C[e2] 
].»1T   ^ 777—7 ; 777—r '«.»,[;]-V- 

C[ei] > C[e2 

(A/^-{/'}((/i a..).e.)"+ + (/' jJ.Otd] » (\'eF-U'H(fi Xi).ei) ++(/' x-).C)[e2] ].»1!    ,.„,,   f,M,,. :—......   , -■,,   ,..   »/IP-J/'X», ;—,..,,,    ,.u   ,  '».».1^ 

. C[ei] » C[e2] 

(/C)M» (/C)[e2J 
. CM » CM „ ,,>n (#^c)[ei]»(#^c)N '^^ 
 C[ei] » C[e2]  

]'>>lr   (A(#2=>x).C)[e1]»(A(#z^o;).C)[e2]   '"'^^ 

C[ci]»C[e2]    e»e 
],»tr   777 u    1 ..    ,r, 77^7" '".».U-V- 

(C =# e)[ei] » (C =# e)[e2] 
e»e    C[e1]»C'[e2] 

(e = #6)[e!] > (e = #C)[e2] 
C[ei] » C[e2] 

!'>>lr    (isOVar C)[ei] » (isOVar C)[e2]   '"^^ 

D [e.p.] 

Lemma 14 (Parallel Reduction Properties) Vei G E. 

1. V6 G 1, e G E. 6 » e => e = 6 
2. VeGEe» e. 
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3. V/o.Vei, e2 € E. t\ ■—>p e2 => ei > e2 
4- Ve2 € E. ei —>■ e2 => ex > e2 
5. Ve2 € E ei » e2 => ex —►* e2 
6. Ve3 G E. e2,e4 G E. ex » e3,e2 > e4   => ei[y:= e2] » e3[y:= e4]. 

Remark 15 Note that from 1 it follows that 

1. b —> e => e = b 
2. \b = b 
3. b K-+* e =► e = b 

Proof (Lemma Uf), 

Part 1 is by a simple induction over the derivation of b G B. Part 2 is by a simple structural induction on e. Part 
3 is by a case analysis over p. 

1. ßi 

2.    7T, 

3.   7T2 

e ^> e    v ^> v 
(Xx.e) v —>p. e[x:= v] and — -»,by 14.2JJ. 

(Xx.e) v 3> e[x: = v\ 

Ti («i,«2j —>>, ui and 
TTl  (fl,«2) »«1 

1^2 2> v2 
7T2 (vi,v2) —>7ri v2 and 

TI (^1,^2) > ^2 

4. # 

(A(#* => *).c) (#* =* b) -*„a e[x: = Xx.b[#z: = x]] and (A(#Z^ ,),e) (#z J^ e[,: = A,,6[#z: = a]] »■* ^ 

5. # '3 

(A*<*>"(/< .,)•«) (A «) -„ *[.*= e] and ^^^HA ^T> «-[«» = = vf* "^ 

6- # 

#?=##£—># True()    and   #z =# #z » True 

#z = #z/ __># FalseQ #z =# #*' » False() 4 

7.   IsOVar 

isOVar #z —>• True() and 

8-   IsOVar 

isOVar v —> False()  where v ^ #z, and 

isOVar #z » True 

isOVar v » False() 

Proof (Property 4 of Lemma 14)- If we look at the definition of —K we notice that if e\ —> e2, then there must 
exist some context C, so that e\ = C[e'], e2 = C[e"], and e' —>p e". 

Thus, to show that e\ —> e2 => e\ ^> e2, it is enough to prove that for any context C G C, C[e'] —>■ C[e"] => 
C[e'] ^> C[e"]. This, however, follows directly from Lemma 13 (Compatibility of Parallel Reduction). 
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Proof (Property 5 of Lemma 14). Vei  G E.Ve2  6 E.ei  » e2 

derivation ej » e2. 

l.()» ()and () —>° () 
2. x » .T and x —>-° x. 

3- »ft 

4. »ft 

ei  —>* e2 By induction on the height of the 

5- »ft 

e » e' IH e — -Ve' 
-•^ 

Ax.e » Ax'.e' Xx.e — ->'A*.e' COmp-" 

ei » e'j 
IH 

ei — ̂ ei 
e2 » e'2 

IH e2 — -f   e2 
-•■^ 

ei e3 » ei e'2 ei e2 — ,* .' .' COmp- -*■ ex e2 

u » i/ 
IH 

e »e' IH 

(Ax-.e) v » e'[x: = v'] (Ax-.e) w —>* (Xx.e') v —»* (Ax-.e') w' —>/3l e'fr: = «' 
— comp. —<■* |1 

6 »6' 
e»e' 

(A(#z => x-).e) (#z => b) » c'far: = \x'.b'[#z: = x']] 

6—s-* 6' 

(A(#z => x-).e) (#z => 6) —►* (A(#z =>• x-).e') (#z =>■ 6') —»^ e'[x: = Ax.6'[#z: = x] 
comp. —+• JJ. 

>ft 

e* » e'fc 
v » v' 

(X^F^fxj.ef)(kv)»e'k[x:=v'\ 
IH\} /ffJJ- 

efc —>* 4 

(X^F f xj.ef\k ' f xs.ef\kxk.ek) (k v) —>* [Xf€F f xf.ej\k xk.e'k) (k v') —>ßi e'k 

d » ei =^ ei —*•* ei 

ei,e2) »   ei,e'2 (ei,e2) —►* (ei,e'2) 

  comp. —• I}. 
[x: = v ] 

e » e' 

7Ti e » 7Ti e' 

e » e' 

9. »ft 

10. »ft 
7r2 e > 7T2 e' 

vi » v[ 
11. ft»  -^ r1. 

IH 

 T comp. —• JJ. 
ITi e —>   TT\ e 

e —y* e' 
comp. —>• JJ. 

7T2;e 
IH, 

T2;e 

   — comp ►• -Ij- 
7Ti  (Vi , V2) » «i Tl  [Vl , V2)  >ßni   Vi   >* V1 

Vo  » 1*9 
12- ft»        , .'     , 

T2 (^1,«2) » «2 

«2 
. * „,/ u2  f    V2 
 ir-r comp. —• Jj. 

7T2 (t)i,^2)  ^/3„,  V2 —>    t)2 

13. »ft 
e »e' 

IH. 

/ e » / e' / e —>■   / e' 

e; »e^ 
M- >ft   A/^'(/x/).e/»A/^(/x/).e} 

15. #z » #z and, #z ^° #r 

V^f/x;),;^^^!/«,)^    COmP-^' ^ 
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16. »i\ 
e »e'                =^ e—>*e' 

#z => e » #2 => e'               #2 =>• e —►* #2 => e' 

17. »1\ 
e»e' ^                         e - —>*e' 

-•^ 
A(#2 => x).e » A(#2 =^ x).e' A(#2 =>• z).e - —>* A(#2 => x).e'  """*" 

ex » e[               J2> p,      V*    p' 

18. »ft 
e2 » c'2               =^ e2 —►* e'2 

- comp ►• -Ij- 
„   ^ „'         „' V*    0'     —          c' 

19■  »ft     »       *1 ,*i,    n    and *z = *Z' ~+* False0 #^ = #^ » False() 

20-    »    #IT^T    n   and*z = *z' -># True() 
#2 = #2' » True() 

e » e' =!^> e —►* e; 
21   »fr      -comp.—>• i\ 

11    isOVar e » isOVare' isOVar e —►* isOVar e' 

22- ■   ^w »       ^   T 77     alld   'S0Var #Z  ~»W,   Tme0- isOVar #2 > lrue() 

23- • nw " **l ,    n    and isOVar t,—»aU0Vir False() 
isOVar v » False() 

D 

Proof (Property 6 of Lemma Ut). The property is stated as follows: 

Vei,e2,e3,e4 GEej» e3, e2 » e4 =>■ ei[y:= e2] » e3[y:= e4] 

The substitution property for parallel reduction without complexity follows directly from the substitution property 
for parallel reduction with complexity (Lemma 18 on page 14). 

Remark 16 From Lemma Ut, parts 4 and 5 above we can see that that ^>*=—y*. 

Proof (Remark 16). By induction on the derivations of —y* and ^>*, and has two parts. 

- ei —►* e2 => ei >* e2 

14.4 t\   > U    r=>    t\ 3> U 
u —>* e2 SEL   u »* e2      „ 

ei —>■* e2 ei »* e2 

- ei >* e2 => ei —>* e2 

Assuming that ei ^>* e2, it must be the case, by definition of 3>*, that there exists some «j, such that ei S> ui 
and MI ^>* e2. By previous property 14.5, then e\ —►* «i. But for that to be true, there must exist some v! such 
that t\ —> u' and u' —y* u\. 

To show that e\ —y* e2, there must exist some u, such that e\ —> u and u —>* e2. Let u' be this u. Now, we 
know that e\ —> u and u —y* u\. Since ui ~S>* e2, then u\ —y* e2 by the induction hypothesis. Since u —>* u\ 
and ui —y* e2, by transitivity of —>* we have that u —y* e2. Therefore u —y* e2 and we are done.D 

Remark 17 (Substitution with Complexity) We have already shown that parallel reduction without complexity 
is equivalent (in many steps) to normal reduction (in many steps). The same result applies to parallel reduction with 
complexity. 
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3.3     Substitution Lemma for Parallel Reduction with Complexity 

Lemma 18 (Substitution for Parallel Reduction with Complexity) Ve4, e5, e6, e7 G E, X, Y G N. 

e4 » e5 A e° » e7 => (3Z G N. e4[a:: = e°] » e5[a:: = e7] A Z < X + #{x, e5)y). 

y . y 
Proof (Lemma 18). Proof is by induction on the derivation e4 » e5. Assumption: e6 3> e7. 

and 3£ = 0.()[y: = e6] >> ()[y: = e7]AZ<0. 

0 >> 0 
2-  —r- 

x > a: 

(a) If 2: = jy then 3Z = y.x[y: = e6] » ai[y: = e7] A Z < y 

(b) If x 4 y then 3Z = 0.x[y: = e6] > x[y: = e7] A Z < 0 
N 

3.   By the induction hypothesis, 3Zi.ei[y: = e6] » e2[y: = e7]AZ < N + #(y, e2)Y' By Barendregt's 
Xx.ei 3> Aa:.e2 

assumption x g FV(e6,e7), so 3Z = Z1.Xx.ei[x: = x][y:= e6] » Xx.e2[x:= x][y:= e7] A Z < N + #(j/, Aai.e2)y 
M JV 

4.      . By the induction hypothesis, we obtain the following 
ei e2    3>   e3 e4 

7 
(a) 3Z1.e1[j/:=e6]»e3[j/: = e7]A^i <M + #(j/,e3) 

(b) 3Z2. e2[y: = e6] > e4[y: = e7] A Z2 < N + #(j/, e4) 

Then, 3Z = Zi + Z2.{eL e2)[y: = e6] J> (c3 e4)[y: = e7] A Z < (M + N) + #(j/, e3 e4)y 
M /V 

5.        By the induction hypothesis, we obtain: 
(A.r.ejt)! » e3[a;: = t)2j 

(a)  3Z1 .ei [y: = e6] » e3fo: = e7] A Zx < M + #{y, e3)Y 

{b) 3Z2.vl[y:=ee]^v2[y:=e7]AZ2<N + 7f{y,v2)Y 
Using the Barendregt's assumption and definition of substitution, the goal can be stated as follows: 3Z. 

(\x.ei[y:= e6]) {v1[y:= e6]) » e2[x: = v2][y: = e7] 

By property of substitution (Lemma 12) that is equivalent to: 3Z. 

(\x.ei[y. = e6]) (v[y: = e6]) » e2[?/: = e7][x-: = i/[y: = e7]] 

By Barendregt's assumption x is not free in any therms other than t\ and e2, and inparticular in v'. From this 
we can simplify the goal further, and by a series of arithmetical manipulations obtain: 3Z = Z\ + #(x,e')Z2 + 

1. ((Aar.ei) v)[y: = e6] J> e2[x: = v2)[y: = e7] A Z < M + #{x, e2)N + 1 + #(y, e'[x: = v'])Y. 
M 

 ei » e2  
M+i 

(A(#z =>• a:).ei) (#z => b)   »   e2[a:: = \x.b[#z: = a;]] 

By the induction hypothess: 3Z\.ei[y: = e6] > e2[y: = e7] A ,2q < M + #(y, e2)y. The goal is: 3Z. 

(((A#z => x).ei) (#z => 6)) > e2[a:: = A^'.6[#2: = x']][y: = e7}AZ<M + l + #(y, e2[a;: = A;c'.6[#2:: = a:']]) 

Since FV(6) = 0, this can be simplified to 

(((A#2=>a:).ei)(#z=J.6)) J 

Then further, by "permutation" of subsitution: 

(((A#2^a;).e1)(#2^6))»e: 

Now the goal follows easily when Z = Z\ + 1 

(((A#z => x-).ei) (#2 => 6)) » e2[x-: = A,x-'.6[#2: = i']][y: = c7] A Z < M + 1 + #(j/( e2) 

(((A#2 =► ij.ex) (#2 =*■ 6)) » e2[y: = e7][x: = Xx' .b[#z: = x'}} AZ<M + 1 + #(j/, e2) 

47 



M    t N 
k "    By the induction hypothesis we have 

M + #(xk,e'k)N+l 
(\feFuWfxf.eI)(fkv1) » e'k[xk:=v2] 

(a) 3Z1.ek[y:=e6}^e'k[y:=e7]AZ1<M + #(y,e'k)Y 

(b) 3Z2.vl[y: = e6] >> v2[y: = e7] A Zx < N + #{y, v2)Y 
Using Barendregt's assumption and the definition of substitution, the goal can be restated as follows: 3Z. 

{{y€Fu{k}f xjej) {fk Vi))[y. = Ce] |, e,k[x. = V2][y. = er]AZ<(M + #(*, e'k)N + 1) + #(y, e'k[x: = v2])Y 

By property of subsitution (Lemma 12), we obtain 3Z. 

((A.-efu{A-}/ Xf,ej) (/, Vl))[y: = e6] » e[.[y: = e7][x: = v2[y: = e7]] A Z < (M + #(z, e'k)N + 1) + #(y, e^as: = v2])Y 

By the induction hypothesis, properties of substitution and arithmetic the above goal follows when Z = Z\ + 
#(x,e'k)Z2 + l. 

M N 

8.    By the induction hypothesis, we obtain 
(ei,e2)    »    (e2,e4) 

(a) 3Z1.ei[2/:=e6]>e3[y:=:e7]A^i <M + #(y,e3)Y 

(b) 3Z2. e2[y: = e6] >> e4[y: = e7] A Z2 < N + #{y, e4)Y 

Then, it follows 3Z = Zx + Z2. (d, e2)[y: = e7] J> (e3 eA)[y: = e7] A Z < (M + JV) + #(2/, (e3, e4))y 
M 

9.    By the induction hypothesis we obtain 
71"! Ci > 7Ti e2 

iZi.ei[y:= e6] 
M + #(j/,e2)Y. 
3Zi.ei[y:= e6] » e2[y:= e7] A Zi < M + #(y,e2)Y. Then, 3Z = ^.(^ ei)[y:= e6] » (TTI e2)[y:= e7] A Z < 

M 
gi   ^§> 62 

10. For the derivation    —    By the induction hypothesis we obtain 
7T2 t\  > 7T2 e2 

BZi.e^y—ee] » e2[?/: = e7] A ^ < M + #(t/,e2)y. Then, 3Z = ZI.(TT2 ei)[j/:= e6] J> (TT2 e2)[y: = c7] A Z < 
M + #(y,e2)Y. 

N    / 
11. _^»"i 

x   iV+1      , 
Tl  (t'1,^2)    »    ^ 

By the induction hypothesis we obtain: 3Z\. v\[y: = e6] % v[[y: = e7] A Z\ < N + #(?/, v[)Y. 

Then 3Z = Zx + 1. (TTI («i, v2))[j/: = e6] » t/Jy: = e7] A Z < W + 1 + #{y,' «i)Y. 
w    / 

^2  » ^2 

T2 (^1,^2)    »    V2 

7 
By the induction hypothesis we obtain: 3Z\. v2[y: — e6] % v'2[y: = e7] A Z\ < N + #(j/, v'2)Y. 

Then 3Z = Zi + l. (TTJ (Wl, v2))[y: = e6] » u£[y: = e7] A Z < N + 1 + #(y/ v2)Y. 
M 

ei >• e2 
13-      M    : 

/ ei » / e2 

Z1 
By the induction hypothesis 3Zi.ei[y: = e6] > e2[j/: = e7] A 2i < M + #(y, e2)y. 

Then 3Z = Zi.(/ ei)[y: = e6] > (/ e2)[y: = e7] A Z < M + #(y, / e2)Y. 

e/ » e', 
14.     £ i  
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By the induction hypothesis V/ £ F. 

3Zf.ef[y:=e6} >> e'j[y: = e7] A Zf < Nf+#{y,e'f)Y 

Then 3Z = £/eF Zf.(\^
F f xf.ej[y:= e6}) » e^[y: = e7] A Z < £ ty + £ #(</> ^)y- 

15.     5    and3Z = 0.#z[2/:=e6]»#z[2/:=e7]AZ<0 + 0-y 
#2 » *z 

M 

16.     —    By the induction hypothesis, 3Zi.ei[y: = e6] > e2[y:= e7] A M + #(y, e2)Y. Then, 
(#£=>ei) »(#z=>e2) 

3Z = Zr.irtz => ei)[y:= e6]i> {#z => e2)[y:= e7] A Z < M + #(y,#z ^ e2). 
N 

17.    By the induction hypothesis, we obtain 3Zi. e\[y: = ee] % e2[y: = e7] l\Z\ < 
A(#2 => x).ei » A(#z => z).e2 

N + #(y,e2). 

Then 3Z = Zi. (#z => ej)[y: = e6] » (#z => e2)[y: = e7] A Z < AT + #(y, #z => e2)Y 

18.     -1  , 3Z = l.(#z =# z)[y: = e6] J> True()[y: = e7] A Z < 1 + #(y,True()) 
#z =# #z » True() 

19.     #i^#l  _ 3Z = 1(#z =# z/)[j/: = e6] I, Fa!se()[y: = e7] A Z < 1 + #(y, False()) 
#z =# #z' » False() 

M N 
 e_i_» e3    e2 » e4 

M + Af 
ei =# e2    >   e3 =# e4 

By the induction hypothesis we obtain 

(a) 3Z1.e1[y.= e6]y>e3[y:=e7]AZ1 <M + #{y,e3)Y 

(b) 3Z2.e2[y: = e6] >> e4[y: = e7] A Z2 < N + #(y, e4)y. 

Then 3Z = ^ + Z2. (ci =# e2)[y: = e6] J> (e3 =# e4)[y: = e7] A Z < (M + W) + #(y, (ee =# e4))Y. 
A'    , 

21.     —    By the induction hypothesis, 3Zi.e[y:= e6] > e'[y:= e6]  A Zx < X + #(y, e')Y. Then, 
isOVar e > isOVar e' 

3Z = Zi. (isOVar e)[j/:=e6]» (isOVar e')[y:=e7] A Z < X + #(y, isOVar e'). 

22.     .    and 3Z = 1. (isOVar #z)[y: = e6] J> True()[y: = e7] A Z< 1+ #(y,True())Y. 
isOVar #z » True() 

23. ■ ^#z    Then, 3Z = 1. (isOVar v)[y: = e6] J> False()[y: = e7] A Z < 1 + #(y, False())y. 
isOVar v > False() 

3.4 Big-Step Semantics 

Lemma 19 (Basic Property of Big-Step Semantics) // e t-> e' then e' £ V. 

Proof. Proof is straightforward by induction over the height of the derivation. G [e.p.] 

3.5 Classes 

Lemma 20 (Basic Properties of Classes) 

1. V,W,SCE 
2. V,W,§ partition E. 
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Proof. Proof is by structural induction on e, and then by pattern matching on e. The following table summarizes 

this rather tedious proof: 

e GE GVGW es 
0 Yes No No 
X No No Yes 
Xx.e Yes No No 

(Xx.e) v No Yes No 
(\{#z=>x).e)(#z=>b) No Yes No 
(X^fxj.ef)(fv) No Yes No 
w e No Yes No 
v w No Yes No 
(V\Xe)v No No Yes 
Si e No No Yes 
v s No No Yes 
(X(#z^x).e)(V\#z=>b) No No Yes 
(\'e*-fxj.eJ)(V\(fv)) No No Yes 
Exhaustive/Nonoverlapping: Yes 

(^1,^2) Yes No No 
(w,e) No Yes No 
(v,w) No Yes No 
(s, e) No No Yes 
{v,s) No No Yes 
Exhaustive/Nonoverlapping: Yes 

7Ti   (Vi, V2) No Yes No 
TTl   IV No Yes No 

Tl   (V\(U1,V2)) No No Yes 
7Ti  S No No Yes 
Exhaustive/Nonoverlapping: Yes 

e £E GV G W G§ 

7T2 (t>l,V2) No Yes No 
7T2 W No Yes No 

*2{V\{V1,V2)) No No Yes 
7T2  S No No Yes 
Exhaustive/Nonoverlapping: Yes 

fv Yes No No 
f w No Yes No 
fs No No Yes 
Exhaustive/Nonoverlapping: Yes 

\J^{fxj).ej Yes No No 
#z Yes No No 

#z=>v Yes No No 
#2 => W No Yes No 
#Z^S No No Yes 
Exhaustive/Nonoverlapping: Yes 

A(#z=>s).e Yes No No 
#z =# #z No Yes No 
w =# e No Yes No 
#z=# w No Yes No 
(V\#r)=#e No No Yes 
#z=#(V\#z) No No Yes 
s=#e No No Yes 

#z=# s No No Yes 
Exhaustive/Nonoverlapping: Yes 

isOVar v No Yes No 
isOVar w No Yes No 
isOVar s No No Yes 
Exhaustive/Nonoverlapping: Yes 

D[e.p.] 

3.6     Parallel Reduction and Classes 

There is a sense in which parallel reduction should respect the classes. The following lemma explicates these properties. 

Lemma 21 (Parallel Reduction and Classes) 

M 
1. Ve G E, teV.»»c=^e£l/ 

M 
2. Ve GE,s £S.S»C => e £S 

M 
3. VeeE,(o£W.e»«i=>e£ffi 

Proof (Lemma 21.1). By structural induction on v G V. 

1.  () G V and () » () G V 
e » e' 

2 
Aai.e ^> Xx.e' 

and Xx.e' G V. 
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i>i » ci ^       ei G V 

t>2 » e2 ^       e2€ V 
l' *       (vi,t;2)»(e1,e2) (ei,e2)GV  ^ 

„       A       v»e        =££.      eeV 

/ v » / e / t/ G V 
5. Xi€L ft Xi.a » Ai6L /i x-i.e< and AieL /,- ar.-.e; G V 
6. #z£V and #z»#z£V 

«»«' z^ i/gV 

8. A(#z =>• ,T).e' G V and A(#z =>■ x).e » A(#z =>• x).e' G V 

D 

Proof (Lemma 21.2). 

M 
VeeE,s£S.s»e=>eeS 

By structural induction on s£§. 

1. x£S and x 3> a; and iG§. 
ei » e2        =^>     e2 GE 

2. »ft ^ 
«1 ej > e3 e2 e3 e2 G § 

v»ei       ^> ejGV 
s » 69       ^ e2 G § 

3- »ft " 
1; s > ei e2 ei e2 G § 

(A(#2 => x).e) » (A(#z =► x).e') 
V5>v'    v£V\(#z=>b) ^2^      t)'£V\(#z^i>) 

4' >>fr    (A(#z =>• x).e) v » (A(#2 =► i).e) 1/ (A(#z => i).c) v' G §  €S 

v » 1/ 

* s>>s' =^        »'£§ 
'■ >>ft    (i>,s) >>(i>',s') {v',s')eS 

e » e' =^>       e' G E 

A si » 8i ^>       si£§ M 
D' >>ir  (Sl,e)»(s'l!e') K,e')es S^ 

s»s' ^       s'£§ 
7. »ft   r— e4 

,       A    v»t/    »£(V\(t,«))     ^    w'G(V\(t;,t»))       „ 
8. »ft    — ;   ——  esJJ- 

7T„   V > 7T„  t/ 7Tn  U'  G S 

9- »ft    ,    „   ,  , -7-7T^ e5^ 
s » s' =££.      «' G § 

f s » f s' /s'€§ 
X^Ffx}.ef^X^Ffxf.e'f 

v^v<   ve(v\fv) ^       v' e(v\fv) 
10. »ft  (^j^,^»^/^,^- (^/^.e^'es 6S^ 

a »a7 ^ s'£§ 
U- >>il   #z => s » #z => s' #^s'£§  ^ 

u > «'    1; G (V \ 1)     =££.     1/ G (V \ B) 
12- >>1]  #z^v^#z=> v< #*=>«' e § 6sU 
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e »e' 
io      A    »»«'    t;'e(V\#z)     ^    ^G(V\#z) 
13.  »ff    ; :   : , ,_ „      ssJj- 

#z» #z 

t      A    «»«'    uG(V\#z)     Zg    v'G(V\#z) 
14' »*      #, = t) » #z = „' #z = ,'G§   ^ 

e » e' =^>       e' G E 
s » s' ^        s'G§ 

15. »ft    ; T ^ — j—^r e4 
s = e » s'j = s'2 s' = e'£§ 

16. »ft 

17. »ft 

s » s' ^ s' G § 

#z =# fi » #z =# fi' #z =# s' G § 

u2»e2    v2GV >^>1 e2GV 
^»C!    t>iG(V\Ae)   w   eiG(V\Ae 

vi v2 » ei e2 ei e2 G § 

s»e ^ e G§ 
18' ^    isOVar s » isOVar e isOVar e G § 

D 

Proo/ (Lemma 21.3). 

Ve £E,w eW.e?2>w=> e€W. 

Property 3 follows directly from the previous two properties. D 

3.7     Left Reduction 

Lemma 22 (Left Reduction and Classes) 

1. Vu>G W.(3e' GE.UJ <—y e') 
2. Ve G E. (3e' eEeMe')=^e£ff 
5. VueV.-.(3c'6Ev .—>e') 
i VsG5.-.(3e' GE.s >—» e'). 

Proof (Lemma 22). We only need to prove the first two, and the second two follow. The first one is by straightforward 
induction on the judgement e G W. The second is also by straightforward induction on the derivation e i—y e'. 

Vu; G W. {Be' G E. w —> e') 

By structural induction on w. 

1. (A.ii.e) v i—y e[x: = v]a.nd e[x': = ti]6E 
2. (A(#_=>.x-).e) (#2=>6)H->e[x-:= Ax-'.6[#z: = x']] and e[x: = \x'.b[#z: = a:']] GE 

tu i—> ID' 
3. i—>ft   ;— //f,€E-tl 

w e i—>• w e 

w i—y w =££•      w'GE 
4. ~ft    r  7—=- e^ 

v w i—y v w v w G E 
u, ,—> u,'        -£^      to'eE 

5. —^fr 7—7 i—mä eE^ / w i—y f w f w G E 

w,—yw' J£ w' G E 
6'  "^    #z => w H-> #z =>• it/ #2=>u'eE  € 
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tu.—►«/ JZ,        W'GE 

11    (tu, e) i—>(u/, e) (w/,e)GE 
u, ,__> u/ =^>        u'eE 

8. —ft — j—— eitJJ- 
(w,w)i—>(v,w) (v,w)€.i£ 

W , ). u/ ^ ffi'GE 
9. ~1f 

w = e i—► w' = e w' = e € E 

' ~"    #z = w>—y#z = w' #z = iv'eE~~v 

11. #z = #z' i—y TrueQand True G E 
w i—>■ it)' ^Ä.       u/'eE 

12. ~fr    — T  TTF €E^ 7T„ UJ I > TTn w nn w   G JK 
13. 7Ti(ui, u2) 1—>■ «i and Di GE 
14. 7T2(ui, ^2) '—> V'2 and «2 G E 
15. isOVar #2 >—> True() and True() G E 
16. isOVar v <—y False() where v ^ #z, and FalseQ G E. 

w—tw' ^> u/GE 
17 A        €EN 

isOVar u> 1—> isOVar u/ isOVar w'£E 

Part 2 is proven by induction on the height of derivations of e 1—y e', and by case analysis on e 1—y e'. 

Ve G E(3e' G E. e H-> e') => e G W 

and (Az.e) »eW 
(Aai.e) v 1—y e[x: = v] 

2. ^A   _— 6W^ 
ei e2 1—> e\ e2 ei e2 G W 

ei—ye1       J^      e G W 

t; e 1—>■ v e' v e G W 

ei —► ei =*£        ei G W 
4. _► ft   ewJi 

(ei,e2)—>(ei,c2) (ellC2)eW 
e 1—>. e' =^>        e G W 

5. ■ ►-)>       swJL 
(«,e)H—>(v,e') (i>,e)€W 

e>—>e' ^       eGW 
6. e--.fr    — r  —— ewj; 

7Ti e 1—>■ 7rie 7Ti e G W 

eMe' ^       eGW 
7. _>ft  T  -— €w^ 

7r2 e 1—y 7r2e 7r2 e G W 

8.        and 7Ti (t)i,v2) G W 
7Ti (?>i,u2) '—> Vi 

9.    and 7r2 (^1,^2) G W 
7T2 [Vi, V-2) 1—>■ u2 

10. ,./£fu(tl/.     .     ...    . . r , and {\J^W (/ S/).e/) (b)eW 
(\JtruiKj ^ xj).ej) (k v) .—y ek[xk:= v] 

eMe'        J£<      eGW 
11. —►ft   r  ew^ 

/e—>/e' /eGW 
CH^e' ^ eGW 

12. —»ff    r   €wj| 

(A(#z => x).e) (#z' => b) 1—>■ e[x: = \x'.b[#z': = a;']] 
d ^ ei ^ e,6W 

14. _fr  ——J  =^   —- £w^ 
ei =# e2 1—>■ ei =# e2 ei =# e2 G W 
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e _► e' ^ e G W 
lr   #Z' =# e >-> #z' =# e' #*'=# eeW 

16- 37 ^-^7   and#z=##zGW 
#z=# 2_>.True() 

17- II *Z^*Z'  ,    »    and#z=##,€W 
#2 =# z' i—>• FalseQ 

18.        and isOVar #z G W. 
isOVar #z i—> True() 

19. —      vr*z       and jsOVar u G W. 
isOVar v i—y False() 

e _► e' =££. e G W 
20    _*-fr       ew-U- 

11    isOVar e ►—► isOVar e' isOVar e G W 

D[e.p] 

Remark 23 (Left Reduction Determinism) From, the above it easily follows that for any expression e G E,  if 
e i—> e', then there is only one derivation by which e i—>■ e'.D 

4 General Part of Confluence 

The Church-Rosser theorem  [1] for —> follows from Takahashi's property [9] (Theorem 27). The statement of 
Takahashi's property uses the notion of a complete development. 

4.1 Parallel Reduction is Diamond 

Lemma 24 (Parallel Reduction is Diamond) Vei,e,e2 G E. 

ei < e » e2 =>■ (3e' 6Eei»e'<< e2). 

4.2 Takahashi's Property 

Proof. Take e' =!e and use Takahashi's property (Theorem 27). □ 

4.3 Main Confluence Result 

Theorem 25 (Main Confluence Result) . 

Vei,e,e2GE.    ex <—*e—>•* e2 => Be1 G E.    ex —>* e' <—* e2 

Proof (Theorem 25). Follows directly from Lemma 24. Ü 

5 Special Part of Confluence 

Remark 26 By a simple induction on e, we can see that e ^>!e. 

5.1     Takahashi's Property 

Theorem 27 (Takahashi's Property) Vei,e2 G E. 

ei » e2 =>• e2 »!ei. 
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Proof (Takahashi's property for ~^>). 

Vei, e2 G E. ei > e2 => e2 »!e2 

By induction on the height of the derivation ei 3> e2. 

1. () » () and () »!(). 
2. For x ~S> x and a; ^>!a: 

e » e'      =^> e' >!e 
3' >>^ Aai.e » Az.e'        (Az.e') »!(Aa:.e)!'>V 

e»e'             =S-              e'»!e ,„«      „ 4   ^>f)-     ^ 14.6; »It 
" (Ai.e) u»e'[a;:=v']        e'[a;: = «'] »!((Aa:.e)v) 

5. 

e » e' =^> e' »!e 
» fr (\(#z => x).e) (#z => 6) » e'[z: = Ai'.6[#z: = a:']] e'[*: = \x'.b[#z: = x'}} » !((A(#z => a;).e) (#z =>■ 6)) 

14.6-IJ- 
ek » < ^ e'k »!efc 

(A/eFu{fc} yr aj/ e/) (/t r) >> e^a;:= „'] e'k[x: = v'] ^\((X^Fu^ f xf.ef) (k v)) 

e2 » e'2  => e'2 »!ei 
ei » ei  =££ ei »!ei 

(ei e'2) »!(ei e2f^ ei e2 > ei e'2 

e2 > e'2 ^>            e'2 »!e2 
ei » ei =*£.    ei »!ei 

7. »fr 

> 4 
"'"    (ei,e2)»(ei,e'2) {e[, e'2) »!(ei, e2)   " 

e » e'      jg>        e' »!e 

7Ti e > 7TJ e'        (7Tie') »!(7ne) 
e » e'      ^        e' »!e 

10. »fr         7 ^ r. r»,4 
7r2 e > 7r2 e' (7r2e'J >!(7T2e) 

Vl » w'j ^ i>j »!t>i 
11. »1r  ; :  — 7-, : —-rr»,!-lj- 

10 ^2  >>^2 ^ 4>^2 
i/. »fr —; : T        —,—r,—; vT^-v- 

7T2 (vi, v2) » v'2 v2^>\(ir2(vi,v2)) 
e > e'        ^ e' »!e 

/e>/e' /e'»!(/e) 

14      * e/ » e/ =^ e/ »!e/ 
>>U   X^Ffxf.ef^X^Ffxj.e'} X^F f xf.e'f »!(A^ / xj.ej) 

15. #2 » #z and #z >!#z 
e > e' ^g> e' »!e 

■ ^ #2 => e » #z => t> #z^e> »!(#* => e) >>,!^ 

e > e' ^ e' »!e 
17. »fr 

A(#z =4> x).e » A(#z =>• a;).e' A(#z => a;).e' »!(A(#z =^> x).e) 

TO      _A.e1»e'1    e2»e'2=^      ei »!ci    e'2 »!e2 
lo. »fr ; r        71 r\—Ti r»>!-U- 

ei = e2 > ei = e'2 (ei = e'2) »!(e! = e2) 
19. #2 = #, » True() and True() »!(#,- = #z) 
20. #z ^ #z'    #z =# z#z' » False() and FalseQ >!(#z =# #z') 
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21. isOVar #z » True and True() »!(isOVar #z). 

22.     v + *z         d F 1    Q >i(isOVar v). 
isOVar v » False() 

e»e' ^ e' »!e 
2'3' >>fr    isOVar e » isOVar e' isOVar e' »!(isOVar e)   ^ 

G[e.p.] 

6    General Part of Computational Adequacy of Reduction Semantics 

6.1     Main Soundness Theorem 

Definition 28 (Observational Equivalence) 

ex « e2 EVCeC. C[ei] J>» C[e2] 41 

Definition 29 (Termination) 

ei 4J-= BvGV.eiH» 

Theorem 30 (Soundness Theorem) 

Vei, e2 G E. ey —> e2 => ei « e2 

Proof (Theorem 30). By the definition of «, to prove our goal 

Vei, e2 G E. ei —>• e2 => ei « e2 

is to prove 

C G C. Vei, e2 G E. a —»■ e2 A C[ci], C[e2] G E => (C[ei] ^ <=> C[e2] JJ. ). 

Noting that by the compatibility of —>•, we know that C G C. Vei,e2 G E. t\  —>■ e2 => C\t{\ —> C[e2], it is 
sufficient to prove a stronger statement: 

CGC.Vei,e2GE.C[e1]^C[e2]AC*[e1],C
,[e2]GE=>(C,[e1]^ <^C[e2]H). 

Noting further that C G C Va, b G E. a = C[6] G E => a G E, it is sufficient to prove an even stronger statement: 

Vei,e2 G E. ei —> e2 => (ex Jj.  «=>• e2JJ- ). 

This goal can be broken down into two parts: 

SI 

Vei,e2 GE. ei —> e2 => (ei |L =>• e2-U-), 

and 
S2 

Vei,e2 G E. ex —> e2 => (e2-U- => ex41- )• 

Let us consider SI. By definition of termination, it says: 

Vei,e2 GE. ei —> e2 => ((3u G V.ej <-+v) => (3u £V.e2H«)). 

We will show that big-step evaluation is included in reduction (Lemma 34). Thus, to prove S2 it is enough to prove: 

Ve!,e2 GE.ei —> e2 => {{3v G V.ej —►* v) =>• {3v EV.e24i))). 
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Confluence (Theorem 25) tell us that any two reduction paths are joinable, so we can weaken our goal as follows: 

Vei ,e26E.ei —> e2 => {(3v G V, e3 G E. ej —►* v —y* e3 A e2 —y* e3) => (3v 6V,e24 v)) 

We will show (Lemmas 21 and Remark 16) that any reduction that starts from a value can only lead to a value (at 
the same level). Thus we can weaken further: 

Vei, e2 G E. ex —y e2 => ({3v, v3 G V. ex —>* v —y* v3 A e2 —► * v3) =>• {3v G V. e2 ^ a)) 

In other words, we already know that e2 reduces to a value, and the question is really whether it evaluates to a value. 

Formally: 

Ve!,e2 GE.ei —>■ e2 => ((3u3 G V.e2 —y* v3) => (3v G V.e2^u)). 

In fact, the original assumption is no longer necessary, and we will prove: 

Tl 

Ve2 GE. ((3V3 G V.e2—>* v3) => {3v £V .e2 ^ v)). 

Now consider S2. By definition of termination, it says: 

Vei,e2 G E. ei —> e2 => ((3v 6V.e2H») =!-(3D 6 V.ej c-^v)). 

again, by the inclusion of evaluation in reduction, we can weaken: 

Vei,e2 G E.ei —> e2 => ((3u G V.e2 —y* v) => (3v G V.ei ^-> «))• 

Given the first assumption in this statement we can also say: 

Vei, e2 G E. ei —y e2 => ((3v G V. ej —>■* i>) =>• (3u G V. ej M- v)), 

and we no longer need the assumption as it is sufficient to show: 

T2 

Vei 6Ep GV.ei—>* »)=*(3v6V.eiH«)). 

But note that Tl and T2 are identical goals. They state: 

T 

VeGE. ((3u G V.e-—*-*v) =^(3tieV.eHD)). 

This statement is a direct consequence of Lemma 31. □ 

It is easy to show that e <->• D => e —►* t), as it follows directly from Lemma 34. 

6.2     Reduction is in Evaluation 

Lemma 31 (Reduction is in Evaluation) Ve G E, v\ G V. 

e —y* v\ => (3^3 £V.e4«3 —>■* v\). 

Proof. We arrive at this result by an adaptation of Plotkin's proof for a similar result for the CBV and CBN lambda 
calculi [3]. The main steps in the development are: 

1. We strengthen our goal to become: 

e —y* vi => (3v3 £V.e4»3 —y* vy). 
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2. We define a left reduction function i—> (Section 2.11) such that (Lemma 36): VeGE,« G V. 

e i—y* v <=>• e <—} v 

and Vei, e2 G E. ei i—> e2 => ei —> e2 (Lemma 35). Thus, big-step evaluation (or simply evaluation) is exactly 
a chain of left reductions that ends in a value. 

3. Our goal is restated as: 

e —>* v\ =>• (3^3 G V.e i—►* % —>* v\). 

4. For technical reasons, the proofs are simpler if we use a parallel reduction relation ^> (Section 2.8) similar to the 
one introduced in the last section. Our goal is once again restated as: 

e »* vi => (3v3 G V. e i—>* v3 »* vi). 

5. The left reduction function induces a very fine classification (V,W, §) on terms. In particular, any term e G E 
must be exactly one of the following three (Lemma 20): 
(a) a value e G V, 
(b) a workable e G W, or 
(c) a stuck e G §, 
where membership in each of these three sets is defined inductively over the structure of the term. We write v,w 
and s to refer to a member of one of the three sets above, respectively. Left reduction at level n is a total function 
exactly on the members of the set W" (Lemma. 22). Thus, left reduction is strictly undefined on non-workables, 
that is, it is undefined on values and on stuck terms. Furthermore, if the result of any parallel reduction is a 
value, the source must have been either a value or a workable (Lemma 21). We will refer to this property of 
parallel reduction as monotonicity. 

6. Using the above classification, we break our goal into two cases, depending on whether the starting point is a 
value or a workable: 
Gl Mvx,v G V. 

v >* vi =*• (3v3 GV.v=t)3>   vi), 

G2 Vu>G W,v G V. 

w »* vi => (3^3 G V.iui—>+ v3 >* vi). 

It is obvious that Gl is true. Thus, G2 becomes the current goal. 
7. By the monotonicity of parallel reduction, it is clear that all the intermediate terms in the reduction chain 

w ^> v-j are either workables or values. Furthermore, workables and values do not interleave, and there is exactly 
one transition from workables to values in the chain. Thus, this chain can be visualised as follows: 

W\ > W2 » ...Wk-l > wk > v >    V\. 

We prove that the transition Wk~^> v can be replaced by an evaluation (Lemma 37): 
Rl Vw;G W,veV. 

w ^> v => (3«2 GV.K) I—>+ V2 3> v). 

With this lemma, we know that we can replace the chain above by one where the evaluation involved in going 
from the last workable to the first value is explicit: 

Wl > U>2 > ...Wk-l » Wk i—>+ v2 >* 1>1. 

What is left is then to "push back" this information about the last workable in the chain to the very first workable 
in the chain. This is achieved by a straightforward iteration (by induction over the number of k of workables in 
the chain) of a result that we prove (Lemma 32): 
R2 'iw1,w2 G W,vi G V. 

wi > u>2 i—>+ vi => (3?;2 G V.wi i—>+ v2 > vi). 
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With this result, we are able to move the predicate . i—>+ v3 >* v all the way back to the first workable in the 
chain. This step can be visualised as follows. With one application of R2 we have the chain: 

Wi > W2 » ...Wk-l >—>+ v3 »* vx, 

and with k — 2 applications of R2 we have: 

Wl i—>+ vk + 1 »* Vl, 

thus completing the proof. 
D 

6.3     Push Back 

Lemma 32 (Push Back) VX G N,wi, w2 G W, v2 G V. 

wi > w2 i—y+ vi => (3v2 G V.wi >—>+ v2 > vi). 

Proof. The assumption corresponds to a chain of reductions: 

Wi > W2 ' > W3 I >■ ...Wk-l '—> wk I—> Vl. 

Applying Permutation to wi » w2 i—Y w3 gives us (3e2' G E. wx i—>-+ e2' » w3). By the monotonicity of parallel 
reduction, we know that only a workable can reduce to a workable, that is, (3w2i G Wn.wi >—>+ w2> ^> w3). Now 
we have the chain: 

Wi I >+  W2' > W3 I > ...Wk-l I > Wk i—> Vl. 

Repeating this step k — 2 times we have: 

wi i—>+ w2i i—>+ w3< >—>+ ...Wk-v ~> Wk i—> vi. 

Applying Permutation to w^-v > wk >—> vi give us (3efc/ G E.Wk-v '—>+ ek> > vi). By the monotonicity of 
parallel reduction, we know that eki can only be a value or a workable. If it is a value then we have the chain: 

Wl 1—>+ W2i i—>+ W31 1—>+ ...wk-v 1—>+ Vki > Vi 

and we are done. If it is a workable, then applying Transition to wk* ^> Vi gives us (3v2 G V. wk* i—>+ v2 ^> vi). 
This means that we now have the chain: 

Wl I >+ W2i I >+ W3i I >+  ...Wk-li 1—>+ Wki 1—>+ v2 » Vl 

and we are done. □ 

7    Special Part of Computational Adequacy of Reduction Semantics 

Remark 33 (Non-termination and the Finiteness of Trees) The reader should be reminded here that all the 
structures that we ever construct in this development are finite trees. Thus, non-terminating computations are not 
modelled by infinite derivations, but rather, by the absence of a "conclusive" derivation. In particular, a big-step 
derivation is simply absent for a "non-terminating" computation, and thus, the big-step semantics identifies stuck and 
non-terminating computations. Similarly, a small-step derivation is ahvays defined on a non-terminating computation, 
but every finite sequence of small-step can be extended by another step. Thus, no finite sequence of small-steps leads 
to a value (or a stuck for that matter). Note, hoivever, that the small-step semantics alloivs us to distinguish between 
a stuck (which cannot be advanced by small-step reduction) and a workable (which can be advanced an arbitrarily 
large number of times by small-step reduction). 
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7.1     Evaluation is in Reduction 

Lemma 34 (Evaluation is in Reduction) Ve G E, v 6 V. 

e ^-> v => e —►* v. 

Proof. By a straightforward induction on the height of the judgement e c-> v. 

1. () -> () and () —>* (). 
2. Ax'.e c—>■ Aai.e and Aa;.e —>•* A.r.e 

3. #z <->• #2. obviously #z —►* #z 

4. A(#z => ,x').e <-» A(#2 => a:).e and A(#2 => x-).e —►* A(#z => x).e. 

5. A,€L / xi.ei ^ XieL f Xi.ei and X^L / z.-.e,- —►* XieL f i.-.e,- 
ei <-»• Ax'.e 

e2 ^ e3 

e[.?::= e3] <-► e4 
6.    

ei e2 '-*• e4 
By induction hypothesis,ei   —►*  Az.e, e2  —>■*  e3 and e[a;: = e3]  —►*  e4. Then, by compatibility of 

ei e2 —►* (Ax.e) e2 —►* (Xx.e) e3 —^ e[x: = e3] •—>■* e4. 

7. 

^ 

d <-► A(#_ =>• ai).e 

e2'-+#z=> b3 

e[x: = Aa;'.(63[#2: = a:'])] <-> e4 

ei e2 ^ e4 

/H-lj.  /fjJJ-  JffJJ- 

ei —>* A(#_ => a;).e 

e2 —►* #z =S> b3 

e[x: = As'.(63[#z: = a:'])] —>■* e4 

ei e2 —>* (A(#. => x).e) e2 —►* (A(#_ =>■ a;).e) (#2 =>• 63) —^3 e[ai: = Ax.63[#2: = a;']] —-»* e4 

d ->Al6Lu{fc}/i Xi.ei 

e2 <-» A- e4    fc < n 

eA,.[a;: = e4] ^ e5 

comp. 

ei e2 

ei e2 M- e5 

/H-JJ- /HJJ- ///JJ- 

ei —»* A*iu<fc>/,- x^- 

e2 —>* fk e4    & < n 

ek[x:=eA]—>* e5 

>* (\i€Fu{k} f. x._ei) e2 _>, (Ai6Fu{fc) /(. j..^.) (/fc e4) _^ e,[x-: = e4] —>* e5
C°mP' _"* ^ 

ei <-)■ «i ==>■ ei —►* ui 

e2 <-> t>2 ^> e2 —>* v2 
9. c-vfr 7 r -        7 r —: r —. -comp.^'JJ. 

(ei,e2) ^ {vi,v2)        (ei,e2) —>•* (vue2) —►* (VI,D2) 

in       .£'"-> (^1^2)      ^ e—»* («i,«2) ., 
10. -ft  r comp.—«^ 

7Ti  e ^ Vl TTX e  ►*  7Ti  («1 , v2)  —>Wi  Vl 

.e^{v1,v2)^> e—>'{vi,v2) 
11. -fT   -. r^ comp.-»'J). 

ir2 e <-?• t)2 7r2 e —>■* 7T2 (vi, v2) —>-^2 v2 

d^-ea       ^>       ex —>* e2 
12- -"fr 7 —}  1: 7^1 comp._>'j; 

fk ei ^ fk e2 /A.- ei —>* fk e2 

eiH« -^k t\ —>* v 
13. -ff    comp.-^JJ. 

#z => a <-> #z ^ v #z =$> e\ —>* #z =>• v 

ei^#z ^ ei—>*#z 

e2^#z J^       e2 -+* #z  
14. ^fr =—jr         —37 —-77 -77 —=—7-comp. _»• JJ. 

ei =# e2 ^-> True()        ex =# e2 —)•* #2 = e2 •—>* #z = #2 —>■# True() 
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ei M- #z =^ ex —►* #2 

e2 c-» #z'    #2 ^ #2' ^ e2 ^* #z' ^Qm 

15- ^      ei = e2 <-+ False() ei =# e2 —►• #z = e2 —»* #2 = #2' —+# False()COmP' ~* * 

e ^ #2 J^ e —►* #2 
16   ^i>   —   ; — comp.—►•Jl 

'      "    isOVar e <-+ True() isOVar e —>* isOVar #2 —>5il0V„ True() 

e ^ v    v + 4LZ       SK e —>* v    v ^ #2 
17. ^-fr    ZUL—   =^    ZUI _ comp.—► •Jvl 

isOVar e <-> False() isOVar e —>* isOVar u   —*-,5is0V„ False() 

What is harder to show is the "converse", that is, that e —►* v => (3v' G V.e ^ v'). It is a consequence of the 

stronger result of Lemma 31. 

In the rest of this section, we present the definitions and lemmas mentioned above. 

7.2    Left Reduction is in Reduction 

Lemma 35 (Left Reduction is in Reduction) Vei,e2 G E. 

e\ i—> e2 => ei —> e2. 

Proof (Lemma 35). Proof is straightforward, by induction on the height of the first judgement. 

1. If (Aa:.e) v i—> e[x: = v], and (Xx.e) v —>ßl e[x:= v]. 

d^ ei =^> ei —» ej 
2. ^fr    j       ,        comp—JJ- 

ei e2 i—>■ ex e2 d e2 —>■ ex e2 

e t—> e'       ^.       e —► e' 
3. —fT    r  T comp.—JJ. 

v e i—> v e v e —> v e 

ei M ei =^> ei —* ei 
4. — fT -j—— : —7-, r comp.—JJ 

(ei,e2)i—>-(ei,e2) (ei,e2)—Uei>e2j 

e i—y e' ^, e —► e' 
5- ^ 7—i 1—K        i—\—77—n comP-—U (v,e) i—>■ (v,e ) (v,e) —> U'>e ) 

e—>e'          ^ e—>e' 
6. — ft   r comp.—JJ. 

7T„ e i—> nn e nn e —> TT„ e 

7- TT\ (vi, v2) >—> v1, and TTI (UI, w2) —>w Vi 

8. 7r2 (vi,v2) >—> v2, and 7r2 (^1,^2) —>-TT VI 

9. (A,-eLu^> /,- aü.Cj) (/fc w) ^ ettifc^ «] and (AieLuW /,■ ^.e.) (/fc «) -^3 e,[x-,:= «]. 

e 1 ► e'        ^        e —> e' 
10. — fr  -7 r-y 7 IT comP—»JJ- 

f e 1—y f c f e —y f c 
11. (A(#z^>a;).e) (#z' => b) ^-+ e[x:= \x'.b[#z': = x']}, and (A(#z => i).c) (#*' => 6) —>^j, e[x-:= Az'.&[#*': = 

x-']]. 
g 1 ± g' ffJ.> e —^ g' 

12. —-ff      r comp.--»JL 

13. #2 =# 2 1—>- True(), and #z = #z —)■# True() 

#z ± #z> nd #^ + #z' 

■     #z =# z' __^ False()    an      #2 = #2' ^# False()   ' 

ei 1—>■ ei ^> ex —>■ ei 
15. ~ft J    =>    7  comp—4 

ei =# e2 1—> tx =# e2 ei = e2 —> e1 = e2 

i6- ~* #,'=#n#,'=#e' ^ #,'=n#2'=e'c°mp-^ 
17. isOVar #2 1—^ TrueQ and isOVar #2 —^ij0Var True() 

18. If v ^ #2, isOVar v 1—> True() and isOVar v —>sh0v,„ True() 

e 1 y e' =Ä. e —>■ e' 
19. —»-ff       comp ,-Jl. 

11    isOVar e .—»• isOVar e' isOVar e —-»■ isOVar e' 

D 
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7.3     Left Reduction is Evaluation 

Lemma 36 (Left Reduction and Big-step Semantics) Ve £ E, v G V. 

e i—y* v <=> e <—>• v. 

Proof. The forward direction: Ve £ E, v G V.e i—>* v =>■ e ^y v 

By induction on the length k of derivation e i—yk, and then by induction on the size of e. It proceeds by case 

analysis on e. 

- jfe = 0 
1. For all values v, v i—>■* v, since >—>•* is reflexive. For all other expressions e i—y* e, e is not a value, and the 

property holds by contradiction. 

- k-n+1. 
1. ei e2 i—►'   (Ax-.e) e2 '—^ (Aai.e) v' i—»-1 e[ai: = t/] i—yk v where i + j + k = n. Then, by induction hypothesis 

t\ <-)■ (Aai.e) 
e2 ^ v' 

e[x: = v'] <->■ u 

ei e2°4» 

2. ei e2 i—>!'   (A(#_=> x-).e) e2 i—yj (Az.e) (#£=>&') H—^ e[a:: = Az'.6'[#z: = a;']] >—>fc v where i + j + fc = n. 
Then, by induction hypothesis 

ei ^ A(#-=> x*).e 
e2 <-» #z => 6' 

e[:c: = Arc'.&'[#•?:=£']] ^-M; 

ei e2 <-» v 
4 

3. ei e2 .—►*'   (A'eFu^°5 /, z,.e,) e2 H-^' (A<eFuM /, i/.e,) (/„ v') i—>J e0[x: = v1} ^fc v where » + j + k = n. 
Then, by induction hypothesis 

ei <^ (\WW fi x,.ei) 

e2 <-> fo v' 
ei[x: — v'] <-> v 

ei e2 "—>■ D 

4. (ei,e2) i—>■' (^i,e2) '—^ {v\,v2), where i + j = n + 1. Then, by the induction hypothesis 

ei <-*vi    e2 <-> u2 

(ei,e2) ^ (ui,^)"* 

5. 7Ti e i—>n 7Ti (t)i, i>2) i—y1 v\. For each step in the n first reductions, clearly the same rule of the left reduction 
"e i ye' 

applies, namely . Thus it easily follows that e i—yn (vi, i>2). Applying the induction hypothesis 
■K\ e i—y Hi e' 

to this result, we obtain e 4 («i, u2). By definition of ^->-, from this follows it\ e ,L-y V\. 
6. 7r2 e i—yn -K-i (vi, V2) 1—y1 V2- For each step in the n first reductions, clearly the same rule of the left reduction 

e 1 ye' 
applies, namely  . Thus it easily follows that e 1—►" (vx,-^)- Applying the induction hypothesis 

7r2 e 1—y 7r2 e' 
to this result, we obtain e c-> (vi, v2). By definition of <-►, from this follows 7r2 e M- v2- 

7. 
ex >—>n+1 7;     JJk      ex^v 

fel^
n+lfv fex^fv 

ei 1—yn+1 v ^S> ei ^y v 

#z =>• ex 1—yn+l #z => i) #2 => ex ^ #z => v 
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9   ei = e2 i—>■' #2 = e2 i—Y3 #z = #2 i—»-1 True, where i + j — n. Then, by the induction hypothesis 

ei -->-#z 
e2^#z 

d = e2 
c-> True() 

10. Similarly, 
ei = e2 i—►' #z = e2 i—Y3 #z - #2' i—Y1 False, where i +j = n. Then, by the induction hypothesis 

ei M-#2 

ex = e2 '-Y False() 

11. isOVar e i—►' isOVar #2 1—Y1 True(), then e 1—►' #z. By the induction hypothesis e <-¥ #2. Then, isOVar e M- 

True(). 
12. isOVar e 1—>' isOVar v 1—Yl FalseQ, then e 1—►' v. By the induction hypothesis e <-Y v. Then, isOVar e <-)■ 

False(). 
The backward direction: Vc £E Vw £ V.e^u =>■ e 1—Y* v. By induction on the height of the derivation of 

e <-» u, and then by the size of e. 

,.—,„d0^„. 

2.   : and Xx.e >—Y   Xx.e. 
Xx.e <—$■ Xx.e 
ei c—>■ Ax'.e 

r 1 ei 1—>•   (Ax'.e) 

3.   : By induction hypothesis: e2 1—Y3 v . Then, ei e2 1—>■' (Ax\e) e2 1—>-J (Az.e) v 1—► 
1   J e[x-: = e3] 1—Yh e4 

e[x: — v] 1—Y   e4. 

e2^fcC4 eiH^.-A'e^{fc}(/;E/).e/ 

4. ^^—64j ^ 65 . By induction hypothesis: e2 1—*>' k e4 Then.d e2 .—►*' (A*'eLu<*>(/,- i,-).e,-) 
ei e2 

c->- e5 r ■,       ; eA[ai: = e4] 1—►  e5 

(A!eiu{/c}(/. 3..) e.) (fc e4) _>! efc[a:: = e4] —>' e5. 

ei "-» A(#_ => z).e 

62 ^ #2 => h 
e[x: = Aa;'.(&3[#z: = x'})] <^-Y e4 

5.   . 
ei e2H>e4 

ei 1—Y' A(#_=> z).e 
By the induction hypothesis e2 1—Y3 #2 => 63 

Then, ei e2 *—>•'' (A(#_ => z).e) e2 >—>j (A(#. =*• z).e) (#z =>• 63) •—>* e[x: = Xx'.b[#z: = x'}] .—>* e4. 
g,       C y    gq go     t y    ßA g1      | \}     gQ 

6. -7 : ;  By the induction hypothesis ,•       Then, (ei, e2) i—>'(e3,e2)i—>-?(e3,e4). 
(ei,e2) <-Y (e3,e4) e2 i—^ e4 

g  c y  \ P o    PA I 
7.   ■ . By the induction hypothesise i—Yn (e3,e4). Then, KI e >—Yn TT\ [e$, e4) i—Yl e$. 

it\ e <—Y e^ 

e c—Y (e-z C4) 
8.   • . By the induction hypothesis: e i—Yn (e3,e4). Then, 7r2 e i—Yn 7r2 (e3,e4) i—Y   e4. 

^e1-) e4 

9. By the induction hypothesis ei 1—Yn+1 e2. Then, / ex 1—Yn+1 f e2- 
fk ei <-> fk e2 

10. --77 rj^j-. and AieL/,- xi.ei H^° AieL/i i.-.c,-. 

11.        By the induction hypothesis e 1—Yn+1 v. Then, #z => e 1—>-n+1 #z ^> v. 

12. #2 ^ #2, and #2 1—>° #2. 

e-j 
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13. A(z => x).e c-> X(z => x).e, and \(z => a;).e i—>-° X(z =>• x).e. 
ei M-#z 
e2 C_^ #■* ,       •     , • , ,-61  ' >' #•?     „, i    u i 
 ———. By the induction hypothesis: ,•   „   . Ihen, t\ =# e2 i—>  #z =# e2 i—r 
d =# e2 <-> True() e2 >—V7 #z 

#2M! True(). 
ei ^ #z 

C2 ^ #*' 

 — —. By the induction hypothesis: ,•   ,,      Tt,on   "• — c- ■—v* *■>- — »" '—^ 
d =# e2 ^ True() e2 i—y #2 

15.   — 77-. By the induction hypothesis: j      ,. Then, e\ =# e2 1—y% #z =# e2 1—>J #z =# 

#z'>—>1 FalseQ. 
16. Rulee <—*■ #zisOVar e '-J- True() By the induction hypothesis: e 1—>* #z. Then, isOVar e 1—Y isOVar #z 

True(). 

17.    By the induction hypothesis: e 1—Y v (and v 77. #z). Then, isOVar e 1—>* isOVar v 
isOVar e ^ FalseQ 

FalseQ. 

7.4    Transition Lemma 

Lemma 37 (Transition) V.Y G N. Vtu G W> G V. 

A' , 
u; > v => 3v2 G V, Y G N. w 1—>+ v2 ^> v A Y < X. 

Prvof (Lemma 37(Transition)). Proof is by induction on the complexity X, and then on the structure of 

M JV 
e » e'    v^>v' 

1. For the workable (Aa:.e) v, 

w. 

M + #(x,e')N+l 
(Xx.e)v » e'[x: = v'] 

M N Z 
Since, e » e' and u > v', then by lemma 18, 3Z. e[x: = v] » e'[a;: = «'] A Z < M + #(x, e')N. Now, there are 
two possibilities. 
(a) First, if e[x:=v] is a workable, then since Z < M + #(x,e')N + 1, the induction hypothesis applies to 

e[x: — v], and therefore: 3d3Yi.e[x: — v] 1—>+ v\ jb> e'[x: = v'] A Y\ < Z Thus, we obtain our goal as follows: 
3v2 = v1.3Y = Y1. 

(Xx.e) v 1—y1 e[x: = v] 1—>+ v2 » e'[x: = v'] A Y < M + #(x, e')N + 1 

(b) Otherwise, if e[x: = v] is a value, then 3i>2 = e[x: = v]. 3Y = Z. 

{Xx.e) v 1—y1 e[x: = u] » e'[x: = v'] A Y < M + #(x, e')N + 1 

M 
e » e M   , 

2. For the workable (A(#_ => x).e) (#z ==> 6)    j—  . Since e > e' 
(A(#_ => x-).e) (#z => 6)   »   e'[a:: = Ax'.6[#z: = a:']] 

and Xx'.b[#z: = x'] J> Az'.6[#z: = a;'], by lemma 18 3Z. e[x: = Ax-'.6[#z: = x'}} » e'[a;: = Ax'.6[#z: = i']]AZ < M. 
Again, there are two possibilities 
(a) e[x:= Aa:'.6[#z:= x']] is a workable. Then, since Z < M + 1, the induction hypothesis applies and we 

•y 
obtain 3vi.3Yi.e[x:= Xx'.b[#z:- x')] 1—>+ vx » e'[x-:= Ax-'.6[#z:= a;']] A Yx < Z. Then, it easily follows 

3v2 = v13Y = Y1., 

(A(#_ =4> i).c) (#z => 6) >—^ e[i: = Aa;'.6[#z: = x']] <—>+ ^2 » e'[a;: = Xx'.b[#z: = x']] A Y < M + 1 

(b) Otherwise, e[x: = Aa;'.6[#z: = a;']] is a value. Then, 3v2 = e[x: = Aa;'.6[#z: = a;']]. 3Y = Z. 

(A(#_ ^ xj.e) (#* => 6) H—^! e[.r: = Aa:'.6[#z: = a:']] » e'[x: = Ai'.6[#r: = a;']] A Y < M + 1 
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3. The workable w e can never parallel-reduce to a value in one parallel reduction step, so the property vacuously 

nolds. 
4. Similarly, the workable v w can never parallel-reduce to a a value in one parallel reduction step, so the property 

vacuously holds. 
x 

w 3> v 
5. For the workable / w, — . 

A 
/ w 3> v 

y 
By the induction hypothesis 3vj. 3YX. w i—>+ v2 > v A Yi < X. Then, it easily follows that 3v2 = / vx. 1Y = Yy. 

f w ^+ fv2^fvAY<X 

M 
W ^> V 

6. For the workable #z =>• w,    —  . 

, Yi 
Then, by the induction hypothesis, 3v\.3Y\.w \—y v\ > v A Y\ < M. 

Then, it easily follows that 3v2 = #z => vx. 3Y = Yx. (#z => w) H—>+ v2 » (#z => v)  A Y < M. 
M N 

w 3> v\    e ~^> v2 
7. For the workable {w,e),    M+N  ' 

(w,e)    »   {vi,v2) 
Yi 

Then, by the induction hypothesis 3v3.3Yi.w 1—y v3 > v\  A Y\ < M. 
From this it easily follows: 3^4 = (v3, e). 3Y = Y\ + N. 

(w,e)>—>+ (v3,e)» (vuv2) A Y < M + N 

M N 
V ~^> V\      W^> V2 

8. For the workable (v,iv),   — 
/ ^ M+N , ^ (v,w)    »    (Vi,v2) 

, Yx 
Then, by the induction hypothesis: 3v3.3Y\. w 1—y v3 % v2 A Y < N. 
From this it easily follows: 3^3 = (v, v3). 3Y = M + Y\. 

{v, w) '—>+ (v, v3) ^>{vi,v2) A Y < M + N 

9. For the workable w = e, it is easy to show that it can never be parallel-reduced in one steps to a value, so the 
property holds vacuously. 

10. Similarly for the workable #z = w it is easy to show that it can never be parallel-reduced in one step to a value, 
so the property holds vacuously. 

11. For the workable #z = #z', #z = #z' » True() if #z = #z'. Then, obviously, 3v2 = True().3Y = 0. #z = 

#z' i—*1 TrueQ » True() A 0 < 1. 

12. For the workable #z = #z', #z = #z' » False() if #z / #z'. Then, obviously, 3v2 = False().3Y = 0.#z = 

#z' 1—►* False() » False() A 0 < 1. 
13. For the workable TT\ W, it is easy to show that they could never reduced in one step to values by a single parallel 

reduction step, so the property vacuously holds. 
14. For the workable TT2 W it is easy to show that they could never reduced in one step to values by a single parallel 

reduction step, so the property vacuously holds. 
M   t 

15. For the workable 7Ti (vuv2), *~  . Then, 3v2 = vi.3Y = M. TTI (VUV2) I—S-1 vx > v[AY < M+l. 
Tl   {V1,V2)     »     V[ 

M     / 

16. For the workable 7T2 (vi,v2), -^—  .Then, 3v2 = v2.3Y = M.n2 [v\,v2) 1—y v2 » v'2AY < M+l. 

T2 (vi,v2)   »   v'2 

17. For the workable isOVar #z, isOVar #z > True(). Then, 3D2 = True().3Y = 0. isOVar #z H-)-+ True()  » 
True()  A Y < 1. 
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18. For the workable isOVar v, where v ^ #z, isOVar v » False(). Then, 3v2 =  False().3Y = O.isOVar v i—►+ 

False() » False A F < 1. 
19. For the workable isOVar w it is easy to show that it could never be reduced to a value in a single parallel-reduction 

step, so the property vacuously holds. 

D[e.p.] 

7.5     Permutation Lemma 

Lemma 38 (Permutation ) MX G N.Vu>i,u>2 G W,ex G E. 

y 
wx » w2 '—> ei => (3e2 G E. iui \—>+ e2 3> ei). 

Proo/ (Lemma 38). MX G N.Vwj, w2 G IV, ej G E. 

x 
IUI » w2 '—> ei => (3e2 G E. u>i >—»+ e2 > e 

Proof is by induction on the complexity X of derivation w\ » u>i, and then my the size of wi. Proof proceeds by 
x 

case analysis over derivation of w\ S> w2. 

e » e'    x) » v' 
1. For the workable (Xx.e) v,    —--——  , and e'[x: = v   >—> ex. v M + #(x,e )N+1 

(Xx.e)v » e'[x:=v'] 
M + #(x,e')N .   . 

By Lemma 18, e[x: = v] » e'[.r: = t/]. Since M + #(K, e')iV < M + #(K, e')JV + 1, and by monotomcity 
properties e'[a:: = v'] is a workable, then the induction hypothesis can be applied to e[x: = v] to obtain: 3e2.e[a:: = 
v] i—>+ ei > t\. Then, it easily follows: 3e3 = e2.(Az.e) v >—J-1 e[x:= v] i—>+ e3 > t\. 

M 
e » e' 

2. For the workable (A(#_ => «).e) (#z => 6),    ^-^  ■ 
(A(#_=>i).e) (#£=>&)   »   e'[a;:=Aa:/.6[#«: = x/]]^->ei 

By Lemma 18, 3Z.e[x: = Xx'.b{#z: = x']] » e'[x: - Xx'.b[#z: = x']] A Z < M. Then, by the induction hypothesis: 
3e2. e[x: = Xx'.b[#z: = x'}] i—>+ e2 » ex. Then, it immediately follows 3e3 = e2. (A(#_ => x).e) (#z => b) \—>l 

e[x: = Xx'.b[#z: = x1}} ^+ e3 » ej. 
M N 

M+N »i > t»!    e > e 
3. For the workable w\ e   >>   to^  i—} e\,    M+N  ' 

u>i e   ;§>   w'1; e1 

There are five possibilities, and they all must be examined. 
X M 

(a) wi ei » w[ e[ i—> e2 e[ By definition of >, Wi > u/x, and w\ i—>• e2 Then, by the induction hypothesis: 
3e3.u;i i—>+ e3 2> e2. Then, 3e4 = e3 e\.wi e\ \—>+ e4 3> e2 e'j. 

(b) to e > « w' i—>■ v w" By definition of ^>, e ^> w', and by definition of i—>, also w' i—> w". Then, by 
monotonicity of >, e must be a workable, and the induction hypothesis can be applied to it: 3e3.e i—>+ 

e3 ^> w". Since w ^> v, then by transition lemma: 3v2.w <—>+ v2 3> v. Then, 3e4 = v2 e-^.w e i—> 

v2 e i—>+ v2 e3 > v w". 

(c) w e ^> (Aar.ei) v i—>• e\[x: — v] There are two possibilities: 
i. e  G V. Then, applying transition to w gives: 3u2 = Xx.64.10 1—>+  (Ax.64) 3> (A.x.ei). Then, 3e3 = 

(Ax.e4) e.w e 1—>+ (Ax*.e4) e ^> e\[x: = e], 
ii. e G W. Then, transition can be applied to both u; and e, to obtain 3ui = Xx.e4.1u <—>+ Xx.e4 3> A.x'.ei 

and 3v2.e 1—>+ v2 ^> v. Then 3e5 = i^i v2. w e 1—>-+ vi e 1—>+ vi v2 ~S> e[x: = v]. 

(d) we» (A(#2 => a;).ei) (#z => 6) 1—>■ ei[ar: = Ax'.6[#2:: = a;']] Similar to previous case. 

(e) u;e> (A-feFu^fc^ / xj.ej) (k v) 1—> e[x: = v] Similar to previous case. 
4. For the workable v w, there are four cases: 

(a)  v w    »    v' w' 1—> v' w" Then, by definition of S>, v S- v' and ID %> w'. By the induction hypothesis we 
have: 3e2.ti 1—>+ e2 » w". Then, 3e3 = v e2. v w <—>+ » c2 » 9' w". 
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(b) (Ax'.ei) w > (Ax-.ei) v i—y e[[x: = v] Since w > v, we can apply transition lemma. Thus, 3i>2.tt) i—>■+ 

l>2 » u. 
Now, 3e2  =  (Az.ei)  v2.(\x.ei) w i—>-+  (Az.ei)  D2 '—^  ei[x:= «2]- Then, by the subsituttion lemma: 
ei[x: = v2) » e[[x: = v], since ei > e^ and v2 > v. 

(c) (A(#z =4> x).ex) (#z => 10) > (A(#z => x).e[) (#2 => 6) 1—>■ ei[a;:= Aa;.6[#z:= a:']] Similar to previous 

case. 
(d) (A'feFu^' / xf.ef) {k w) » (A'eFu<fc> / xf.e'f) {k v) 1—>■ e'k[x: = D] Similar to previous case. 

X x 
5. / w » / it/ 1—>• / e Then, by the definition of 3>, 10 > to 1—>■ e. 

By the induction hypothesis, Be^.w 1—y+ e\ » e. Then, 3e2 = / t\. f w 1—y+ f ei > / e. 

6. #2 => to > #2 => u/ 1—>• #z => e. Then, by definition of >, w > it/ 1—»+ e. By the induction hypothesis 
3ei.w 1—►+ d » e. Then, 3e2 = #z => ei.#r => it) 1—>+ #z => ex » #2 => e. 

7. For the workable (u>,e) there are two possibilities: 

(a) (w,e)    >    {w',e') <—y (w",e') Then, by the induction hypothesis: 3e1.tt)i—>+ e\ > w". 

Then, 3e2 = (ex, e). (w, e) .—4+ (ei,e)» (u/',e'). 

(b) (10, e) > (t),u/) 1—> (v,w"). Then, e must be a workable, and e » u/ 1—y to". Thus, by the induction 
hypothesis 3e\.e >—>+ e\ ^> ID". Furthermore, by the transition lemma: 3v\.w 1—y+ V\ ^> v. 

Then 3e2 = (ei, t)i). {w, e) H—>+ (Wl)C)^-^+ («i,ci) »(«,«»"). 
8. For the workable (v,iv), where (t),tt)) > (t)',")') 1—>■ (v',w"). By the induction hypothesis 3ei.it) 1—)-+ ei > ID". 

Then 3e2 = (v,ei).(v,w) 1—►+ (u,ei) » (i/,it>"). 
9. For the workable tu = e, there are four possibilites: 

(a) w = e ^> to' = e' 1—► 10" = e' Then 10 3> w' 1—► it)". By the induction hypothesis: 3ei.tt> 1—y+ e\ > w". 

Then 3e2 = (ei = e). w = e 1—>+ t\ — e 3> w" = e'. 
(b) w = e ^> #z = w' 1—>■ #2 = e' By transition lemma BDI.IU I—>-+ «i ^> #z. Since e 3> w', by transitivity 

properties of ^>, e must also be a workable, and, as w' 1—>• e', the induction hypothesis applies: Bei.e 1—»+ 

ei > e'. Then 3e2 = («i = e\).w = e 1—>+ v\ = e 1—»+ DJ = ej 2> #z = e'. 
(c) w = e >> #z = #z 1—)■ True() By transition lemma and properties of parallel reduction, w 1—>+ #z and 

e 1—>+ #2. Then u; = e 1—>+ #2 = e .—y+ #z = #z » True(). 
(d) u; = e 3> #2 = #2' 1—► False() By transition lemma and properties of parallel reduction, w \—^+ #2 and 

e p—>•+ #2'. Then w = e .-^+ #2 = e .—>+ #2 = #2' » False(). 

10. For the workable #2 = w,there are three possibilities: 

(a) #2 = w 1—>• #2 = it;' 1—y #2 = tu". By the induction hypothesis, 3ei.w 1—>+ e\ ^> it)". Then 3e2 = (#z = 
ei).#z = iüi—>+ #z = ei »#2 = w". 

(b) #2 = u) 1—y #2 = #2 1—y True() By the transition lemman 3v.w 1—y+ v ^> #2.. But v must be #2, if it 

parallel reduces to #2. So, 3e2 = (#2 = #z).#z = w 1—y+ #2 = #2 3> TrueQ. 
(c) #2 = to 1—y #2 = #2' 1—^ False() By the transition lemman 3v.w 1—y+ v 3> #2'- But v must be #2', if it 

parallel reduces to #2'. So, 3e2 = (#2 = #z').#z = w 1—)■+ #2 = #z' » False(). 

11. For the workable #2 = #2', there are two possibilities: 

(a) #2 = #2' » #2 = #2' H-> TrueQ. Obviously 3ei = TrueQ. #2 = #2' ^-^+ TrueQ » TrueQ. 

(b) #2 = #2' » #2 = #2' —y FalseQ. Obviously 3ei = FalseQ. #2 = #2' K—>+ FalseQ > FalseQ. 

12. For the workable, 7ri it) there are two possibilities: 

(a) 7Ti w >• 7T! to' 1—y 7Ti it)". Then, by the induction hypothesis, 3ei.it) 1—y+ t\ 3> w". From this it easily 
follows 3e2 = 7Ti t\. 7Ti It) I >-+ 7Ti ei  3> 7Ti If". 

(b) 7Tj u) ^> 7Ti (DI,U2) 1—>-+ i)X. Then, by transition lemma, 3t)3.tt) 1—y+ (1)3,1)4) ^> (fi,D2). Then, 3e2 = 

7ri(D3,v4).7ri w 1—y+ 7Ti (1)3,1)4) » fi 
13. The case for 7r2 is symetrical to the case above. 
14. For the workable 7TI(DI,D2) ^> T2(«1,1)2) '—> v[. Then v\ ^> v[. 

3e2 = DI.TTI (v!,v2) 1—S-1 vi » Dp 
15. For the workable 7r2(i>i,t)2) 3> ^2(^1,^2) '—> v2- Then v2 > D2. 

3fi2 = D2. 7T2 (l)i , D2) 1 y1  D2 > D2. 

16. For the workable isOVar #2, isOVar #2 » isOVar #2 H^- TrueQ. Then 3e2 = TrueQ. isOVar #2 H—>+ e2 » 
TrueQ. 
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17. For the workable isOVar v,where v ^ #z, isOVar v » isOVar v' i—> False(). Then 3e2 = False(). isOVar v i—>-+ 

e2 > False(). 
18. For the workable isOVar w, there are three possibilities: 

(a) isOVar w » isOVar #2 1—> True(). By definition of », w > #z. By transition w 1—»+ #z. Then 3e2 = 
True. isOVar w 1—>-+ isOVar #z 1—>• e2 » True(). 

(b) isOVar to > isOVar ?; 1—> False(), where v ^ #2. By definition of », w » v. By transition 3?/. tu 1—>+ v' > v. 
Then 3e2 = False(). isOVar w ^^+ isOVar v' \—> e2 » False(). 

(c) isOVar u; > isOVar w' 1—>■ isOVar w". By definitions of > and 1—>■, IU > to' 1—> w". By the induction 
hypothesis, 3e. w <—>+ e > w". Then, 3e2 = isOVar e. isOVar w 1—>-+ isOVar e > isOVar w". 

D[e.p.] 
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Abstract 

The use of domain specific languages (DSLs) and advanced programming language type systems can 
have a significant effect on programmer productivity and software quality. However, the high cost of 
designing a type system and the limited user community of a DSL makes it economically infeasible for us 
to design typed DSLs and take the advantage of both. In this paper, we address this problem by reducing 
the effort that is needed to build type systems. 

Most current type systems are designed in a monolithic fashion—with several language features mixed 
up together in a single block—which can make them hard to understand, hard to reuse, and hard to extend. 
In this paper, we show a way of building type systems in a modular fashion by composing independent and 
reusable building blocks, each of which implements one particular type feature. Using this way, building 
type systems becomes as simple as properly selecting and composing building blocks. 

The work presented here is, to our knowledge, the first attempt to build type systems in a compositional 
style. Technical contributions of this work include a novel use of rank-2 polymorphism, and the introduction 
of a new form of map operator over abstract syntax. 

1    Introduction 

One of the goals of programming language research is to design languages that will enable programmers to 
develop code more efficiently, while also producing more reliable software systems. Domain specific languages 
(DSLs) and programming language type systems are two distinct threads of current research that potentially 
realize this goal. The strengths of DSLs are in allowing programmers to work at a higher level, using the 
familiar abstractions and notations with which they are already familiar instead of the constructs of a general 
purpose language. The strengths of programming language type systems are in helping to guarantee type-safe 
execution, to justify code optimizations, and to document programmers' intentions. Each of these can have 
a significant effect on programmer productivity and on the quality of the final product. It follows that typed 
DSLs, offering the benefits of both in a single language, would make particularly attractive tools for a wide 
range of programming tasks. However, DSLs usually only have a limited range of users, while building type 
systems usually require a lot of effort. So the high starting cost makes it economically infeasible to build a 

type system for each DSL. 

In this paper we propose a possible solution to address the problem by trying to reduce the efforts to build 
type systems. Traditionally, type systems are built in a monolithic fashion, with all the type features mix 
together in a single block. This way of building type system makes them hard to reuse and hard to extend. 
We propose an innovative approach to build reusable type systems in a modular fashion. The key idea is as 
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follows: we design some independent and reusable type system building blocks, each of which has a standard 
interface for extension, and each of which implements one particular type feature, such as primitive types, 
A-calculus[l], polymorphism^], etc; when we want to build a type system, we first select the type system 
building blocks that implement the type features we desire to have, and then compose them by their standard 
extension interface to obtain the type system as needed. By this means, it becomes more easier to build a 

type system, and makes it economically feasible to build typed DSLs. 

The approach of building modular type systems also brings other advantages besides the principle motivation 

of offering an economical way of building typed DSLs. 

• Modular type systems are easier to understand. It is often easier to understand several small simple 

blocks than to understand a big complicated one. 

• Modular type systems enhance reusability. The building blocks of a modular type system are designed 
with a standard interface for extension, so they can be easily reused in other settings. The type features in a 
monolithic type system are tightly coupled together, so it is hard to abstract them out of the framework and 

make them reused. 

• Modular type systems are easier to extend. To extend a modular type system, we just need to design 
a new building block for the newly added type feature, and compose it with the original type system using 
its standard extension interface; however, to extend a monolithic type system, we usually need to modify 
the overall system, and carefully fit the new type feature in such that it interacts correctly with the existing 

framework. 

• The framework of modular type systems can help to study the interaction between type 
features. The interaction between type features are reflected in the different results obtained by composing 

the same set of building blocks in different orders. 

In Section 2, we will show how to build a modular type system in a compositional style for a simple toy DSL; 
in Section 3 and Section 4, we will give a modular implementation for the type system described in Section 2, 
where Section 3 deal with syntactic problem and Section 4 deal with static semantics problem; in Section 5, 
we will discuss some related works of this paper; finally in Section 6, we draw a conclusion and sketch some 

future work. 

2    Type Systems in a Compositional Style 

We consider a programming language type system to be a combination of two components: syntax and static 
semantics. Syntax consists of expression syntax and type syntax of the programming language, and static 
semantics is a typing relationship between these two kinds of syntaxes. An expression is said to be well-typed 
if there exists a type associated with it in the static semantics; otherwise it is ill-typed. Normally the static 
semantics are delineated by a set of axioms and inference rules. An expression is said to be of a certain type 
if there exists a typing derivation using the typing rules asserting that. In this paper, we only consider the 
case that the typing relationship is functional from the expression syntax to the type syntax, so we will focus 

on type checking functions for static semantics. 

In this section we will show an example of building a modular type system for a simple toy language in 
a compositional style. This will be done in three steps, each of which is associated with a particular type 

feature. Then we will extract a pattern of modularity from the example. 
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2.1     A Type System for the Language of Integer Arithmetic 

We will first introduce the type system for a very simple language: integer arithmetic. In this language, 
there are only two kinds of expressions: integer constants and addition operations, and one type: Int. The 
expression syntax and type syntax are defined by context free grammar as follows: 

expression syntax :    E =    IntegerE 
IntegerE   =    n 

|    E + E 

type syntax : T =    IntegerT 
IntegerT    =    Int 

In these definitions, E stands for the expression syntax, while T stands for type syntax. Note that currently, 
E only includes IntegerE, which stands for the expression syntax for integer arithmetic; T only includes 
IntegerT, which stands for the type syntax for integer arithmetic. In later sections, we will see that both E 
and T will get extended with more syntax structures. In the definition of E, n stands for integer constants. 
Having shown the syntax, we show the inference rules for type checking the expression syntax constructs. 

[integer constant) 
r\-n:Int 

r\-Ex : Int    T\- E2: Int    ,,,... ..    ,      [addition operation) 
r H Ei + E2 : Int 

The integer constant rule means that any integer constant is of type Int; the addition operation rule means 
that an addition expression is of type Int if both of its two operands are of type Int. In this type system, we 
can have typing derivations like the following: 

\- 1: Int    \- 2 : Int 
\-1 + 2: Int 

Note that there are no ill-typed expressions in this type system. 

2.2     Adding Functions to the Language 

The type system we have just defined is for such a simple language that it has little practical use. In this 
section we make the language more interesting by extending the simple language of integer arithmetic with 
functions. Like in most functional languages, we adopt the use the A-calculus to express functions. So we 
extend the expression syntax with the A-calculus expression constructs: expression variables, A-abstractions 
and function applications; we also extend the type syntax with an function arrow construct. The expression 
syntax and type syntax of the new language is defined by context free grammar as follows: 
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expression syntax : 

type syntax : 

E =    IntegerE 
|     LambdaE 

LambdaE —    x 
|     Xx : T.E 

E E 

T 

LambdaT 

=    IntegerT 
|     LambdaT 

=   T-+T 

In these definitions, E and T still stand for expression syntax and type syntax respectively. E includes two 
kinds of expression syntaxes, IntegerE and LambdaE, while T includes two kinds of type syntaxes IntegerT 
and LambdaT. Both of them are extended with A-calculus constructs on the base of integer arithmetic 
constructs. Then we show the inference rules for type checking the A-calculus expression syntax constructs. 

(-T.T)e r 

r h x : T 

Tx,x:T'hE:T 

T h (Xx : T'.E) :T' -> T 

rh£i:r^T  rh£2:f 
rh£i£2:T 

U«7- 

(A — abstraction) 

(function application) 

Note that a type assignment context I\ which maps expression variable names to types, is introduced into 
the type checking rules by the extension of A-calculus. The var rule means that an expression variable is of 
the type that is assigned to it by the type assignment context; the A - abstraction rule means that Ax : T .E 
is of type T' -> T in the context r if E is typed T in the context Yx, x : T, where Tx, x : V specifies a type 
assignment context that maps all the expression variables to the same types as T but the variable x to the 
type T'• the function application rule means that the function application expression (El E2) is of type T 
in the context I\ if El is of type V -> T in the same context I\ and E2 is typed V in the same context T. 

The extension of functions to the original type system is static semantics preserving, in the sense that well- 
typed expressions in the original type system remain well-typed and ill-typed expressions in the original type 
systems remain ill-typed. Because there are new expression syntax constructs in the extended type system, 
there are more well-typed expressions, such as the following: 

x : Int h x : Int    x : Int \- 1 : Int 
x : Int\- x + l: Int   

h- (Xx : Int.x + 1) : Int -> Int  \-2 : Int 

h (A.T : Int.x + 1)2: Int 
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Also, there are more ill-typed expressions in the new type system, such as a; + l(unbounded variable), 
(2 1)(invalid application) and Ax : Int -» Int.x + 1 (type mismatch). 

2.3    Adding Polymorphism to the Language 

So far we have two type features in our type system: integer arithmetic and functions. In this section we 
make the use of functions more powerful by allowing polymorphism. The expression syntax is extended with 
new constructs for polymorphism: type abstractions and type applications; the type syntax is also extended 
with polymorphism constructs: type variables and polymorphic type schemes. The syntax of the this new 
language is given by context free grammars as follows: 

expression syntax :    E 

PolyE   = 

IntegerE 
LambdaE 
PolyE 
Aa.E 
ET 

type syntax T 

PolyT 

IntegerT 
LambdaT 
PolyT 
a 
Va.T 

Now there are three kinds of syntaxes in both E and T. E is extended with PolyE on the base of IntegerE 
and LambdaE, while T is extended with PolyT on the base of IntegerT and LambdaT. The inference rules 
for type checking the expression syntax constructs for polymorphism are shown as follows: 

F\-E:T    a(£FV(Y) 

r h Aa.E : Va.T 
(type abstraction) 

r h E : Va.T 
TY-ET': [T'/a]T 

(type application) 

The type abstraction rule means that Aa.E is of type Ma.T in context Y if E is of type T in the same context 
T and the type variable name a does not appear freely in F; the type application rule means that E V is of 
type [T'/a]T in context Y if E is of type Va.T in the same context I\ where [T'/a]T is the type obtained by 
substituting all the free occurrence of the type variable a in the type T with the type T. Like the extension 
of A-calculus, the extension of polymorphism is also static semantic preserving. There are more well-typed 
expressions related with the polymorphism expression syntax constructs, such as the following: 

x : a \- x : a 
r- Xx : a.x : a —>■ o 

h Aa.Ax : a.x : Va.a — a 

Also there are more ill-typed expressions, such as Aa.Aa; : a..T + l(type mismatch), 3 Int(b&d type application) 
and (Ac*.Ax : a.x) 1 (instantiation needed). 
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2.4    A Modular Pattern 

In the previous three sections, we define a type system consisting of three type features: integer arithmetic, 
A-calculus and polymorphism. This type system is developed in a compositional style by three steps. In the 
first step, we define the syntax for a simple language of integer arithmetic, and describe its static semantics 
by a set of type checking rules for its expressions; then in the second step, we extend the type system by 
adding A-calculus syntax constructs, together with the static semantics for the newly added expressions; 
finally in the last step, we extend the type system again with new syntax constructs for polymorphism, and 
the corresponding static semantics for the new expressions. If we consider the first step as extending an 
empty type system (a type system with no syntax at all and thus no static semantics) with integer arithmetic 
syntax and static semantics, then all of the three step can be seen as some kind of extension to an existing 
type system with new syntax structures and new static semantics. We name these extension parts "building 
blocks", for they are the components that build up the type system. By composing a building block with 
an existing type system, we will get a new type system extended with the type feature associated with the 
building block. In this sense, building blocks can also be seen as "type system transformers"- that transform 
a type system to another. With the notion of building blocks, we can review the construction of the type 
system we defined from another perspective: starting from an empty type system, we put in three building 
blocks one by one for the type features of integer arithmetic, A-calculus and polymorphism respectively. The 
idea can be captured using the following equation: 

my_ts = mkTS (integerBlock . lambdaBlock . polyBlock) 

where my_ts stands for the type system we built; " ." stands for some composition mechanism between 
building blocks; mkTS is a function that transforms the composition of building blocks to a type system. Later 
in Section 4, we will give the detailed implementation of "." and mkTS. 

This modular approach makes the construction of type systems very flexible. For example, if we observe that 
the type features of A-calculus and polymorphism can be combined together to form System F[l], in which 
integer type and values can be encoded, we may decide not to have the type feature of integer arithmetic in 
our type system. This can be done by simply taking away the building block for integer arithmetic from the 
construction of the type system: 

my .ts = mkTS  (lambdaBlock   .  polyBlock) 

For another example, if we only need a language that has the feature of integer arithmetic, logical operations 
and functions, we can design a new building block "boolBlock" for logical operations, and compose it with 
the building blocks for integer arithmetic and A-calculus to form the type system we need: 

my_ts = mkTS   (integerBlock   .   boolBlock   .   lambdaBlock) 

2.5     Summary 

From the discussion we have made, we understand that a big and complex type system with many type 
features can be built by composing some independent and reusable building blocks, each of which implements 
a particular type feature. Different type systems can be built from different set of building blocks with 
different composition orders. This makes it easier to build type systems for DSLs. We can design a large set 
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of building blocks in advance, which cover the type features that might be needed. When we need to build a 
type system, we just select and compose the building blocks that implement its type features. In case we need 
a novel type feature that is not implemented by any available building block, we can design a new building 
block for it and then make use of it. The cost of designing a new building block might be high. However, 

because the building blocks are reusable, we do it once and for all. 

3    Build Syntax for Modular Type Systems 

In the following two sections, we will give an implementation in Haskell for the modular type system introduced 
in the previous section. As stated, a type system is a combination of syntax and static semantics. So as to 
build a modular type system, we need to build both its syntax and static semantics in a modular fashion. 
These two problems will be addressed separately. In this section we show how to deal with syntax. Syntax 
includes expression syntax and type syntax. We will show how to construct the type syntax in a evolutionary 
manner, and then give the construction of the expression syntax directly using the same idea. 

3.1    Type Syntax 

We want to build the syntax for a type system that consists of three type features: integer arithmetic, 
A-calculus and polymorphism. A monolithic representation of type syntax is shown as follows: 

datatype = INT ~ constant type INT 
I   Fun Type Type — function arrow 
I  TVar String — type variable 
I   Forall String Type — polymorphic type 

If we want to represent the type syntax in a modular fashion, we need to break this monolithic definition 
into three pieces for the three type features respectively. First we show a method of decomposing the syntax 

directly: 

type Type        = IntType <+> LCType <+> FType 
data IntType = INT ~ type syntax for integer arithmetic 

data LCType    = Fun Type Type — type syntax for lambda calculus 
data FType      = TVar String — type syntax for polymorphism 

I   Forall String Type 

data a <+> b=La|Rb — a sum type constructor 

Here we literally break the monolithic definition of Type into three pieces, each of which captures the type 
syntax of one type feature. These three pieces are composed with a <+> operator to form a new definition of 
Type that is essentially equivalent to the original monolithic one. However, there is a problem in this method: 
the definitions of LCType and FType are mutually recursive with the definition of Type, which makes them 
depend on each other; as a result, it is hard for these definitions to appear independently in separate modules. 

To address this problem, we refine our decomposition by parameterization. We use type parameters to 
abstract away the dependence of LCType and FType on Type, and thus we reduce the coupling between these 

definitions. 
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type Type = (IntTypeGen Type) <+>  (LCTypeGen Type)  <+>  (FTypeGen Type) 
data IntTypeGen t = INT — open type syntax for integer arithmetic 
data LCTypeGen t    = Fun t t — open type syntax for lambda calculus 
data FTypeGen t      = TVar String — open type syntax for polymorphism 

I Forall String t 

We will call these parameterized constructors , such as IntTypeGen, LCTypeGen and FTypeGen, "open syntax", 
in the sense that they do not prematurely determine what the final type syntax should be, but leave the type 
parameter as an interface for extension. In this new method of decomposition, the definition of the three open 
syntax pieces do not involve recursion at all, so they can exist independently; the definition of Type becomes 
self recursive, which simplifies the definition structure. However, note that there are some redundancies in 

the definition of Type, in which we repeat the use of Type three times for recursion. 

To eliminate the redundancy, we lift the <+> operator to do the sum on two open syntaxes: 

data  (newTypeGen <+> oldTypeGen)  t 
= MewType   (newTypeGen t)   

I   OldType   (oldTypeGen t) 

Now we can use the new <+> to compose the open syntax pieces. 

type FinalTypeGen =  IntTypeGen <+> LCTypeGen <+> FTypeGen 

type Type = FinalTypeGen Type 

By this means, we eliminate the redundancy problem. Furthermore, we observe that Type is actually the fix 
point of the constructor FinalTypeGen. We capture this point and refine the way of defining Type with a fix 

point operator. 

data Tfix t  = MkType  (t   (Tfix t)) 
type Type      = Tfix FinalTypeGen 

The fix point operator Tfix shuts down the extension interface of an open syntax and turns it into a "closed 
syntax". With this approach of defining type syntax, we gain the ability of writing functions on type syntax 
structures with more flexible types. For example, consider a function to test the syntactic equality of two 
pieces of type syntax. Without the Tfix operator, we can only give the following form of type to it, 

Type -> Type -> Bool. 

Because Type is defined in an ad-hoc way, this function type only works for one kind of type syntax composed 
by a particular set of open syntax pieces. However, with the help of Tfix operator, we can have a more 

generic type: 

Tfix t -> Tfix t -> Bool. 
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Note that the type variable t is polymorphic in this type, so it can be instantiated to any composition of 
open syntaxes. As a result, the type of every function that test syntactic equality on type syntax can be an 

instance of this type. 

3.2    Expression Syntax 

We will use the same technique used to deal with type syntax to define expression syntax. First, we define 

three open syntax constructors. 

data IntExprGen e t = IntLit  Int ~ integer literals 
I   Add e e — addition expression 

data LCExprGen e t    = Var String — expression variable 
I   Lam String t e — lambda abstraction 
I   App e e — function application 

data FExprGen et       = TLam String e — explicit type abstraction 
I   TApp  et — type application 

A difference between the expression open syntax and the type open syntax is that it is parameterized with 
two type variables, one for expression syntax, the other for type syntax. This is because the construction of 
some expression syntax requires the use of type syntax. For example, the expression syntax of A-abstraction 

uses type syntax for the function parameter type. 

The definition of the <+> operator of the expression syntax is just like that of the type syntax. 

data (newExprGen <+> oldExprGen)  e t 
=    NewExpr  (newExprGen et) 

I     OldExpr   (oldExprGen et) 

The fix point operator of expression syntax is Ef ix, whose definition involves the Tf ix operator. For a similar 
reason, Ef ix also takes two parameters, like the expression open syntax. 

data Efix e t = MkExpr  (e  (Efix e t)   (Tfix t)) 

The datatype Expr is defined as follows: 

type FinalExprgen = IntExprGen <+> LCExprGen <+> FExprGen 
type Expr = Efix FinalExprGen FinalTypeGen 

4    Build Static Semantics for Modular Type System 

Having shown how to build syntax, we will now show how to build the static semantics for the modular type 

system. 
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4.1    Type Checking Function 

expressions to exist, so we need to ..« a context  n whch-- ™ «a JP u du        the 

process of type checking. For another example, we need to ma,eta " » rol tcxt °   ^ ^ into account 

Expr -> CM Type, 

where CM denotes some context monad. 

4.2     Open System, Closed System and Building Blocks 

In order to Ulu.tr*. our way of building modular static semantics, -^ to-int. ^^ee ,;oUc.s ^ 

open system, closed system and building Moc^ An ope,-™™?£ notZ?p]y any real type 
that has an standard interface for extension     Because it is incomp t and returns another 
checking facilities. A building block is a function thastate n P n ^^Ltension using the original 

open system extended with ^^»m»^/J^a^n^n system that exposes the same standard 
open system's standard extension interface, and generate a new p y transformers. So fai, we get open 
extension interface. Building blocks can also be thought of as °Pe*   ^ blocks to an 

systems and building blocks as open system transformers. BJ a?^ type checking facilities, 

to do type checking work 

4.2.1     Data Representation of Closed Systems 

We define a Haskell datatype for closed systems: 

data Closed exprGen typeGen conGen 
- Closed {topTypeChk  ::   (Ef ix exprGen typeGen)  -> Closed        p yP conGen  (Tf.x typeGen)   (Tfix typeGen) 

...   —  some auxiliary functions 

> 

The dat,ype C^ed is ^to repre^nta *-£..    «^Zt^f^ 

syntax, such as 
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syntax, such as (IntType <+> LCType); the envGen parameter specifies a parameterized monad that captures 
the type checking context. It is parameterized by a type closed syntax because some type checking contexts 
may be related with type structure of the type system. For example, the type assignment environment 
context for A-calculus can be considered as a finite function from a set of variable names to types. The 
Closed datatype is a record type that contains a topTypeChk function field. A closed system offers the 
type checking facility by its topTypeChk field. The topTypeChk function takes a expression closed syntax as 
argument and returns its type in a closed syntax form which is encapsulated in the type checking context 

monad. 

Besides the topTypeChk function, we also have some auxiliary fields, which will be introduced later as they 

are needed. 

4.2.2     Data Representation of Open Systems 

Also, we define a Haskell datatype for open systems: 

data Open exprGen typeGen conGen 
= Open {typeChk  ::  forall e t  c.ErrorMonad (c  (Tfix t))  => 

Closed e t  c -> 
SubType  (typeGen  (Tfix t))   (Tfix t)  -> 
LiftM  (conGen  (Tfix t))   (c  (Tfix t))  -> 
exprGen (Efix e t)   (Tfix t)  -> c  (Tfix t)   (Tfix t), 

...  — some auxiliary functions 

The datatype Open is also parameterized with variables, which have the same name and meaning as those 
of the datatype Closed. The Open datatype is also a record type. Its contains a typeChk function field. A 
value whose type is of the form Open exprGen typeGen envGen is an open system that exposes an extension 
interface by its typeChk function field. The function typeChk is explicitly defined to be polymorphic. Its 
type is universally quantified by three type variables e, t and a. This kind of definition is known as rank- 
2 polymorphism]/!]. The type variables e and t specify the top-level open syntaxes that are ready to be 
converted to closed syntaxes by fix point operators Efix and Tfix. The type variable c specifies the top-level 
parameterized context monad which will be use as the type checking context in the final closed system. These 
three type variables will be instantiated when an open system is transformed to a closed system. 

An open system offers the standard extension interface by its typeChk function field. The function typeChk 
has a type class predicate and three arguments. It returns a value whose type is also a function type. In the 
following, we will explain the meaning of the types of the arguments and the return value, and show their 
use. 

The type class predicate restricts the context monad to have the ability of raising an error during the process of 
type checking. Note that c (Tfix t)) specifies the top level type checking context monad. The constructor 
class ErrorMonad is defined as follows: 

class Monad m => ErrorMonad m where 
failE  ::  m a 
liftE  ::  Maybe a -> m a 
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The overloading function failE is to be used to raise an error; the overloading function liftE is to be used 

to lift a Maybe monad value to the an ErrorMonad value. 

The parameter of the type Closed e t c represents a top-level closed system that will be built on the base 
of the current level of open system. It is passed back from the top level down to the current level because we 
need the top level type checking facility to construct the current level typeChk function The use of rank-2 
po ym phism gives us the ability of using a closed system without prematurely determine the actual value 
of itfthree type parameters e, t and c. These values will be determined when the open system has developed 

full-fledged and is transformed to a closed system. 

The parameter of the tvpo SubType (typeGen (Tfix t)> (Tfix t) specifies a explicit subtyping relation- 

I ' teen the current, level oFtypc open syntax and the top level type closed syntax. It » n^ here 
because we do transformation between current level and top level type syntax in order to construct the 

typeChk function. The SubType relation is defined as follows: 

data SubType a b 
= SubType {inj   ::   a -> b, 

proj   ::   b -> Maybe a> 

The function inj injects a type open syntax of the current level into a top level type closed syntax; the 

function proj projects a top-level type closed syntax to a type open syntax of the current level. 

The parameter of type LiftM (envGen (Tfix t)) (a (Tfix t)) serves as a lift operator that lifts an oper- 
It on d fined in the current level context monad into the top level context monad. It ,s specially defined or 
Htog the operations of environment monads, because most type checking is done with in environment 

monads. The definition of the datatype LiftM is as follows: 

data LiftM m n 
= LiftM -CliftRdEnv  ::  forall a.m a -> n a, 

liftlnEnv   ::   forall a b.(a -> m b -> m b)   -> 
(a -> n b -> n b) 

> 

Normally, there are two non-standard operations^] in an environment monad, one of which is to read^out the 
current environment, the other is to enforce a computation to be done in a new environment. The func ion 
lift^SL the operation of reading the current environment; the function liftlnEnv lifts the operation 

of doing a computation in a new environment. 

The return value of the typeChk function is of the type exprGen (Efix e t) (Tfix t) -> a (Tfix t) The return value yp ^ ^ ^ rf ^ tQpTypeChk funct       defined ,„ the 

a atype Clls d The eturn vie can be considered as the current level type checking funct.cn It takes 

a vatePof^e current level open expression syntax as argument and returns its type in a close syntax form 

which is encapsulated in the top level context monad. 

Like closed systems, the datatype Open also has some corresponding auxiliary fields which will be introduced 

as needed. 
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4.2.3     Building Blocks, top and bot 

Building blocks are open system transformers, whose type will be of the form: 

Open e t c -> Open e'  t'   c'. 

Because building blocks are functions, we can simply use function composition to compose two building blocks 
to obtain a larger composite building block. For example, if we have a building block of type: 

Open e t c -> Open e'  t'   c', 

and another building block of type: 

Open e'  t'   c'  -> e"  t"   c" , 

then we can compose them using function composition to obtain a larger building block of type: 

Open e t  c -> Open e"   t"   c" . 

Till now we know that the composition between building blocks is right function composition. 

As indicated previously, we need to have a special function top whose type will be of the following form: 

Open e t  c -> Closed etc. 

The function top actually serves as a fix point operator, just like Ef ix and Tf ix. It transforms an open 
system to a closed one by computing its fix point. In our framework of modular type systems, every closed 

system is a fixed point of some open system. 

So far, we have only considered system transformers, besides which we also need an initial base open system to 
start with in order to finally construct a closed system. This base open system is called bot in our framework 

of modular type system. 

With all the notions defined in this section, the mechanism to build the static semantics for the modular type 
system is clear. Given a set of building blocks, bl, b2, b3, we first use function composition to compose them 
to obtain a big composite building block; then we apply this big building block to the base open system bot 
to get an open system; finally we apply top to the open system to get its fix point as a closed system. The 
final closed system includes the static semantics for type features associated with the building blocks bl, b2 

and b3. This idea can be shown by the following expression: 

my_ts = top  ((bl   .  b2   .  b3)  bot). 

The value my_ts stands for a modular type system. The (".") operator used here is just the built-in Haskell 
function composition operator. Now we can define the mkTS function as follows: 

mkTS x = top  (x bot) 
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Then we can rewrite the definition of my.ts as: 

my_ts = mkTS  (bl   .  b2   .  b3) 

4.3    Implementation of the Building Blocks 

Now we give the implementation of the three building blocks associated with the type features of integer 

arithmetic, A-calculus and polymorphism respectively. 

4.3.1     A Building Block for Integer Arithmetic 

We will start by showing the building block for integer arithmetic. 

integerBlock  ::   Open e t  c -> Open  (IntExprGen <+> c)   (IntTypeGen <+> t)   c 

integerBlock 1 
= let typeChk. =   ... — Definition of type checking function. 

in Open {typeChk = typeChk_> 

The integerBlock extends an open system with new syntax structures of integer arithmetic. The parameter- 
ized context monad c is not extended, because this building block does not add any new expression variable 
syntax into the expression syntax structure. The definition of the typeChk function can be divided into two 
parts, one for type checking the new expression syntax add by integerBlock, the other for type checking 
the old expression syntax inherited from the original open syntax. Here We show a sketch of the definition 
of the type checking function. This will be divided into two parts, one for type checking the new expression 
syntaxes added by the current building block, the other for type checking the old expression syntaxes in the 

original open system. 

typeChk. top s  _   (NewExpr nt) 
=  let te =   (topTypeEq top) ~ Closed type syntax equality comparison. 

topTC =  (topTypeChk top) — Top-level type checking. 

in case nt ot 
IntLit — TYPe check integer literals. 

-> return (((inj s).NewType) INT) 

Add tl t2 — TyPe check addition expression. 

-> do typl <- topTC tl ~ Type check first operand. 
typ2 <- topTC t2 ~ Type check second operand, 

if (typl 'te< (((inj s).NewType) INT)) && ~ If both of the two operands 
(tyP2 <te< (((inj s).NewType) INT))    ~ are typed INT, then return 

then return (((inj s).NewType) INT)     — INT, otherwise raise an 
else failE ~ error. 
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In type checking the new expressions, we implement the two typing rules for integer arithmetic expressions, 
one for type checking integer constants, the other for type checking addition expressions. In this definition, 
top specifies the top level closed system, and s specifies the encoding of the subtyping relationship between 
the current level open type syntax and the top level closed type syntax. Two local functions, te and topTC are 
defined to help the implementation. The function topTC represents the topTypeChk field of the argument top, 
which specifies the top level closed type checking function. The function te represents the topTypeEq function 
field of the argument top, which tests the syntactic equality of two pieces of top level closed type syntax. Note 
that there is actually an auxiliary function field typeEq in the open systems and a corresponding function 
field topTypeEq in the closed systems. This auxiliary function is designed to test the syntactic equality of 
the type syntaxes. Its definition is omitted in this paper because of the little relevance to the essential idea 
and the straightforward implementation. The phrase (inj s).NewType injects the current level open type 
syntax (INT here) to the top level closed type syntax. 

typeChk. top s  If   (OldExpr ot) 
= let subtype 

= let  inj_ =  (inj  s).01dType 

proj_ x 
= do xl <- (proj s) x 

case xl of 
OldType t -> return t 

-> failE 

in SubType {inj = inj_, 

proj = proj_> 

in (typeChk 1) top subtype If ot 

Inject lower level open type 

syntax to top level closed type 

syntax. 
Project top level closed type 

syntax to lower level open type 

syntax. 

— Subtype relation between 
— lower level and top level. 

— Call the lower level typeChk. 

In type checking the old expressions, we make use of the function integerBlock's argument 1, which specifies 
the original open system. Essentially, we use its typeChk function field to type check the old expression syntax 
inherited from the original open system. To call the lower level typeChk function, we just pass the argument 
top directly. However, we need to pass newly constructed subtyping encoding argument and lifting encoding 
argument to fit the type of the lower level typeChk function. Here the new subtyping encoding is defined 
on the base of the current level subtyping encoding, while the lifting encoding stays unchanged because this 
building block does not extend the parameterized context monad at all. 

From the definitions shown in this section, we can summarize a clear strategy to design the typeChk function 
field of open systems: implement the typing rules for type checking the new expression syntaxes added by 
the current building block, and use the lower level typeChk function field of the original open system to deal 
with the old expression syntaxes inherited from the original open system. 

4.3.2    A Building Block for A-Calculus 

We continue to show a more complex building block, which is for A-calculus. 
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data LCCon t = LCCon [(String, t)]  — New environment type: each pair 
— associates a type with a string 
— that represents a variable name. 

data EnvT r m t a = EnvT (r t -> m t a) — Environment monad transformer. 

applyEnvT (EnvT f) = f 

lambdaBlock :: (MonadGen c) => 
Open e t c -> Open (LCExprGen <+> e) (LCTypeGen <+> t) (EnvT LCCon c) 

lambdaBlock 1 

= let typeChk_ = ... 
in Open {typeChk = typeChk_> 

The lambdaBlock extends an open system with new syntax structures of A-calculus. Unlike the integerBlock, 
it also extends the parameterized context monad with a layer of environment monad using the monad trans- 
former EnvT. This is because a type assignment environment is needed to type checking the expressions in 
A-calculus. A datatype LCCon specifies the type assignment environment added by lambdaBlock. It is defined 
as a list of pairs of strings and type closed structures, where the strings specify expression variable names. 
The type class predicate MonadGen c restricts the type parameter c of the original open syntax to be a pa- 
rameterized monad. The detailed definition of the EnvT datatype and the MonadGen constructor class will 
attached in the appendix. 

The design of the typeChk function for lambdaBlock follows the basic strategy stated when constructing 
integerBlock. We divide the function into two parts. In type checking the new expressions syntaxes added 
by the current building block, we implement the typing rules for each of them; in type checking the old 
expression syntaxes inherited from the original open system, we make use of the lower level typeChk function. 
A sketch of the definition of the typeChk function is shown as follows. 

typeChk. top s  If   (NewExpr nt) 

Current level rdEnv. 
Current  level  inEnv. 

-- If  is the lift operator that lifts the two 
— nonstandard operations of  current  level  context 
— monad up to the top level 

let te =   (topTypeEq top) 
topTC =   (topTypeChk top) 
rdEnv = EnvT  (\(LCEnv r)  -> return r) 
inEnv r m = EnvT   (\rl -> applyEnvT m r) 
lookup =   ... 
match =   .. . 
update =   . . . 

in case nt of 
Var x 

-> do env <-   (liftRdEnv If)  rdEnv 
lookup x env 

Get current environment. 
Look up a expression variable's type. 

App el e2 
> do f <- topTC tl 

X <- topTC t2 
r <- liftE (match f x) 

return r 

Lam v t e 

— Type check the function. 
— Type  check the argument. 
— Match the argument type 
— against the function type. 
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-> do env <-  (liftRdEnv If)  rdEnv — Get current environment, 
r <-  ((liftlnEnv If)   inEnv) — TyPe check the function 

(LCEnv  (update  (v,  b)  env))    — body in an updated environment. 

(topTC t) 
return  (((inj  s).NewType)   (Fun b r)) 

In type checking the new expressions, the meaning of the arguments top and s is as same as in the definition 
of integerBlock. The argument If specifies the encoding of a lift operator which is used to lift the non- 
standard operations of the current level context monad into the top level context monad. The meaning of 
the local functions te and topTypeChk in this definition is as same as in the definition of integerBlock. The 
local functions rdEnv and inEnv are related with the type assignment context of the type checking. They 
are actually the two non-standard operations of the current level environment monad. The function rdEnv 
is used to read out the environment context at the point it is called; while the function inEnv is used to 
force a type checking to be done in a particular given type assignment context. The function rdEnv is used 
in type checking the expression variables and A-abstractions. When it is used, it has to be lifted using the 
phrase (liftRdEnv If) to fit the top level type checking context monad. The function inEnv is used in 
type checking A-abstractions. When it is used, it has to be lifted using the phrase (liftlnEvn If) to fit 
the top level type checking context monad. There are also three other local functions: lookup, match and 
update. The function lookup is used to lookup the type of a given expression variable in the type assignment 
environment. The function match is used to match a given type against the argument part of a function arrow 
type, and returns the result part of the same function arrow type. The function update is used to update the 
type assignment environment with new bindings of expression variables and types. The implementations of 
these three functions are omitted here because they are quite straightforward. 

typeChk. top s  If   (OldExpr ot) 
= let subtype =   ... 

newlf 
= let liftRdEnv_ re =  (liftRdEnv If)   (EnvT  (\_ -> re)) 

liftlnEnv. ine 
=  (liftlnEnv If)   (\r m ->   (EnvT  (\rl  ->  ine r  (applyEnvT m rl)))) 

in LiftM {liftRdEnv =  liftRdEnv., 
liftlnEnv = liftlnEnv.} 

in  (typeChk 1)  top subtype newlf ot 

The part of type checking the old expressions of the current building block is similar as that of integerBlock, 
except that besides making a new encoding of the subtyping relationship, we also need to make a new encoding 
of the lift operation to be passed as an argument to the lower level typeChk function. This is because the 
current building block extends the context monad with a layer of environment monad by applying a monad 
transformer to it, so the operations in the lower layer monads need to be lifted through this monad transformer. 
The local value newlf specifies the newly constructed encoding of the lift operation. To lift the lower level 
operations to the top level, we first lift them through the monad transformer EnvT to the current level, and 
then use the current level lift operator to lift them up to the top level. 

4.3.3     A Building Block for Polymorphism 

Finally, we show an interesting building block, which is for polymorphism. Before giving the definition, we 
state some important problems that do not show up in the former two building blocks but appear here. The 
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polymorphism building block will introduce two pieces of new expression syntax: explicit type abstraction 
and explicit type application. In the typical rule of type checking type abstraction expressions, we need to 
judge whether a type variable name appears freely in the type checking context; in the typical rule of type 
checking type application expressions, we need to do substitutions on type structures in order to instantiate 
a polymorphic type. So, the building block for polymorphism must have functionality to accomplish these 

two tasks. We add an auxiliary function mapT to the datatype of open systems to achieve this. 

data Open exprGen typeGen envGen 

= Open {... 
mapT   ::   forall m t  v.Monad m => 

(t  -> m v)  -> 
(typeGen t -> m  (typeGen v)), 

> 

The function mapT is explicitly defined as polymorphic a function. This is the use of rank-2 polymorphism 

again. In its types, the universally quantified type variable t specifies the top-level type syntax structure; the 
type variable m specifies an arbitrary monad, as constrained by the type class predicate Monad m; the type 
variable v specifies the return type of the function to be mapped onto the type structure. One thing to note is 
that, the mapT function is not as usual map functions for algebraic datatypes. Normal map functions should 

have the type of the following form: 

(a -> b)   ->   (C a -> C b), 

where C is the datatype constructor. The mapT function has a type of the following form: 

(a -> M b)   ->   (C a -> M   (C b)) 

where C is still the datatype constructor, while M is a monad. So mapT actually maps a Kleisli function[6] onto 
an algebraic datatype. It does the mapping with a side effect encoded in a monad. If we take the monad as 
the identity monad, then the mapT function will be degraded to a normal map function. The side effect allows 
us to define many useful functions using mapT. As will be shown later, both the free type variable checking 
function and the type variable substitution function can be defined by using the facility offered here. 

Now we can begin to show the definition of the building block for polymorphism. 

polyBlock   ::   Open e t  a -> Open  (FExprGen <+>  e)   (FTypeGen <+> t)   a 

polyBlock 1 
= let typeChk_ =   . . . 

in Open {typeChk = typeChk_> 

The polyBlock extends an open system with new syntax structures of polymorphism. It does not extend 
the parameterized context monad, because there is no new expression variables syntax introduced by this 

building block. 

The definition of the typeChk function for this building block also follows the basic strategy. We will only 
show a sketch of type checking the new expressions. The type checking of the old expressions is as same as 

that of integerBlock. 
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typeChk_ top s _ (NewExpr nt) 

let st   = ... 

ftEnv = ... 

in case nt of 

TApp e t -> . . (st) .. 

TLam t e -> . . (ftEnv) 

type substitution 

free type variable checking 

type check type application 

type check type abstraction 

Note that two functions, st and ftEnv, are used to do type substitution and free variable checking respectively. 
In the implementation of the typing rule of type application expressions, the function st is used to instantiate 
polymorphic types; in the implementation of the typing rule of type abstraction, the function ftEnv is used 
to compute the type variables that appear freely in the environment context. These two functions are both 
implemented using the auxiliary function mapT. 

st (v, t) typ 
= case (proj s) typ of 

Just (NewType (TVar x)) 

-> if x == v 

then return t 

else return typ 

Just (NewType (Forall x tt)) 

-> if x == v 

then return typ 
else do y -> st (v, t) tt 

return  (((inj  s).NewType)   (Forall x y)) 
-> do x <-  (topMapT top)   (st  (v,  t))  typ 

return  (MkType x) 

In this code segment, (proj s) and (inj s) are the projection and injection functions encoded in the 
argument of the typeChk function that specifies the subtyping relationship between the current level type 
structure and the top-level type structure. The topMapT function is the counterpart of mapT in a closed 
system. It can be seen as the fix point of the mapT function of an open system. We use the topMapT 
function to recursively map the st function down to the whole structure of a type syntax in order to do 
a type substitution on it. Here the mapT function does not have any side effects. Note that there are no 
non-standard operations of the monad used in the definition of st. When put into use, the polymorphic 
monad in the type of mapT will be instantiated to an identity monad. 

ftTyp typ 
= case (proj s) typ of 

Just (NewType (TVar v)) 

-> do 1 -> gets 

puts (1 'setU' [v]) 

Just (NewType (Forall v t)) 

-> do ftTyp t 
1 -> gets 

puts (1 *setDif< [v]) 

-> do (topMapT top) ftTyp typ 

return () 
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ftEnv a =   ...  ftType   ... 

The essence of ftEnv is the function ftType defined in this code segment. It collects all the type variables that 
appear freely in a type syntax structure. In defining ftType, the side effects of the mapT operator becomes 
important. During the process of traversing a type structure, we need to "remember" the free type variables 
that have been found. So the polymorphic monad is instantiated to a state monad. The gets function and 
puts function are the two non-standard operations of the state monad, where getS used to read out the 
current state of the computation and puts is used to update the state. Note that the return value of ftType 
function becomes trivial (a void value is always returned). The result of this function focus on the side effect 

is produces. 

4.4    Build a Closed System 

So far we have finished the definitions of the three building blocks. In this section we will show how these 
building block can be composed to form a closed system with real checking facility. As mentioned, we need 
to have a special function top that transforms an open system to a closed one, and an initial open system 
bot as the base open system for the modular type system. Here we show the sketch of top and bot. 

top   ::   ErrorMonad  (c   (Tfix t))   => Open e t  c -> Closed etc 

top 1 
= let typeChk_   (MkExpr t) 

=   (typeChk 1)   (top 1)   ...   t —  compute the fix point of  typeChk function 

in Closed {topTypeChk = typeChk_> 

data BotExprGen e t  = Unit — a single expression 
data BotTypeGen t = Void ~ a single type 
data BotEnvGen t a = Ok a   I  Error — context monad is  set to be an error monad 

bot   ::   Open BotExprGen BotTypeGen BotEnvGen 

bot = Open {typeChk    =   ...} 

The function top takes an open system as argument and returns a closed system. The type class predi- 
cate ErrorMonad (c (Tfix t)) restricts the context monad to have the ability of raising an error. The 
topTypeChk function field computes the fix point of the original open system's typeChk function. So the 
function top shuts off the extension interface of an open system and generate a close system that supplies 

the type checking facility by the topTypeChk function field. 

The value bot is an open system. It only contains one single expression and one single type, which is like the 
unit expression and unit type in Haskell. In this initial open system, we set the base of the context monad 
to be an error monad, so any open system built on the base of bot will be able to raise an error in its type 

checking context. 

Now we can finally finish the construction of the static semantics of our modular type system that contains 

the type feature of integer arithmetic, A-calculus and polymorphism: 

my_ts = mkTS  (integerBlock  .   lambdaBlock.  polyBlock) 

mkTS x = top  (x bot) 

20 

88 



4.5     Some Running Results 

All the codes can be found at the URL: 

http://www.cse.ogi.edu/~chiyan/mainpage/research_proj ect/codes 

These codes can be run under Hugs98 interpreter by loading the file test.hs. In test.hs, we define some 
values that represent type systems: 

intSys        = mkTypeSys  (integerBlock) 
lambdaSys = mkTypeSys  (integerBlock  .   lambdaBlock) 
polySys      = mkTypeSys  (integerBlock  .lambdaBlock  .  polyBlock) 

Some running results are shown as follows: 

— (tc intSys)   "0" 
"Int" 

— (tc intSys)   "1  +  (2 + 3)" 
"Int" 

— (tc lambdaSys)   "/x:Int -> x +  1" 
"Int -> Int" 

— (tc lambdaSys)   "(/x:Int -> x +  1)  2" 
"Int" 

— (tc lambdaSys)   "(2 1)" 
"bad type!" 

— (tc polySys)   "#a ->  /x:a ->  x" 
forall a.(a -> a) 

— (tc polySys)   "((#a -> /x:a -> x)   [Int])   1" 
Int 

— (tc polySys)   "#a -> /x:a -> x +  1" 
"bad type!" 

Here tc is the composition of the topTypeChk function field of the closed system and some parsing func- 
tion that parses the character inputs to the abstract datatype of an expression closed syntax. The symbol 
"/" stands for the expression variable abstraction symbol A. The symbol "#" stands for the type variable 
abstraction symbol A. All the running results are as expected. 
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5 Related Work 

There are some other works related with the topic in this paper, such as Levin and Pierce's work of Tinker 
Type[7], and research on pure type systems[l]. However, they solve different problems from what we are 
dealing with here. Tinker Type focuses on modular specifications of type systems, while we focus on mod- 
ular static semantics of type systems. In this sense, our work is more similar to Liang, Hudak and Jones' 
work of modular interpreters^], except that their work is to explore the modularity of dynamic semantic of 
programming languages. The work of pure type systems defines a generic framework for type systems, allows 
the construction of type systems by switching parameters. It is different from our work because it does not 
build type systems in a compositional style, and does not divide the static semantics of type systems into 

independent and reusable building blocks as we do in this paper. 

The essential idea of our method to decompose type systems is similar to Duponcheel[9] and Sheng Liang's 
work to decompose interpreters. However, we propose a totally different way of implementation in this paper. 

They make extensive use of constructor classes, while make use of rank-2 polymorphism. 

The strength of their approach is that all the building blocks are define as an instance of a constructor class, 
so they can be implicitly composed by the type system and overloading mechanism of the language they use 
to do the implementation. However, they have to explicitly compose the open syntax pieces for expression 
structures and type structures. Also, they hide those subtyping relationships and lift operators for monad 
transformers using constructor classes. This makes their building blocks look elegant, without having those 
complex detail appearing explicitly. The price they pay is that all their building blocks depend on each other, 
so they must be organized in such a way that they are visible to anyone else. This prevent the building blocks 

from being separately compiled. 

The strength of our approach is that we don't have to explicitly compose the open syntax pieces, because 
those types are strongly polymorphic so that they are implicitly composed when we do the composition of 
building blocks. However, we have to define explicit mechanism to compose the building blocks. Also, we 
don't rely on the implicit passing mechanism of constructor classes and all our subtyping relationships and lift 
operators are explicitly passed as function parameters, so our building blocks exist independently and can be 
separately complied. The price we pay is that we lose the elegant presentation of building blocks, because the 
subtyping relationship and lift operators are explicit passed as function parameters, and all of their details 

need to be redefined in every building block repeatedly. 

So it is about a trade-off here. Using their approach, it would be easier to add in dynamic features, because 
dynamic features can be encoded into monads and implemented using constructor classes. However, it will 
be inconvenient for them to add in a building block because that requires their overall implementation to be 
modified and recompiled. Using our approach, it would be easier to add in a building block, because all our 
building block exist independently and the newly added building block does not affect others at alb However, 
we meet trouble if we want to extends the system with some dynamic features. That would require radical 

changes to our overall framework because we need to add more parameters to the some functions 

6 Conclusion and Future Work 

In this paper we show a way to construct a modular type system by defining and composing reusable and 
independent building blocks'. Although we only show three building blocks in this presentation, we actually 
make seven building blocks for the following type system features: integer arithmetic, logical expression, 
variable definition, first order functions, A-calculus, Hindley-Milner features, and polymorphism.   We make 
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a novel use of rank-2 polymorphism, which plays a important role in the framework of our modular type 
system; and we define a new kind of map operator that maps a Kleisli function onto an algebraic datatype, 
which makes the map operator more powerful. 

This paper is only a starting attempt to construct modular type systems, and there are lots of opportunities 

for future work. 

The framework needs to be refined. We are not satisfied with the means we currently use to deal with the 
subtype relation and the lift operator. We want to remove those explicit parameters from the interface of the 
type checking function to have a more elegant solution. This might involve the use of constructor classes[10]. 

The framework needs to be extended to accommodate new features. For example, if we want to include 
the feature of Aw[l] into our modular type system framework, and thus a kind system, we must extend the 
framework to accommodate kinds besides expressions and types. 

Also, we need to develop more building blocks in order to study the interaction between type system features, 
such as how qualified type[ll] interferes with Hindley Milner polymorphism[12]. 

Another possible direction of this work is to develop higher order abstractions for modular type systems. 
We observe that there are similarities between some of the building blocks we have developed. We want to 
capture the similarities and design generic building blocks. 

7    Appendix 

7.1     The Definition of Constructor Class MonadGen 

The constructor class MonadGen defines a class of parameterized monads. If m is a parameterized monad, then 
for any type t, (m t) is a monad. 

class MonadGen m where 

returnG :: a -> m t a 

bindG  :: m t a -> (a -> m t b) -> m t b 

instance MonadGen m => Monad (m t) where 

return = returnG 

(»=)  = bindG 
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7.2    The Definition of Datatype EnvT 

The datatype EnvT is a parameterized monad transformer. It transforms a parameterized monad to another 

by adding a layer of environment monad feature. 

data EnvT r m t a = EnvT (r t -> m t a) 

applyEnvT (EnvT f) a = f a 

instance MonadGen m => MonadGen (EnvT r m) where 

returnG x = EnvT (\r -> returnG x) 

m 'bindG' k 
= EnvT (\r -> applyEnvT m r 'bindG' (\x -> 

applyEnvT (k x) r)) 

Any ErrorMonad can be lifted through the EnvT transformer. If (m t) is an ErrorMonad, so is (EnvT r m 

t). 

instance (ErrorMonad (m t), Monad (EnvT r m t)) => ErrorMonad (EnvT r m t) where 

failE = EnvT (\r -> failE) 
liftE m = EnvT (\r -> liftE m) 
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Abstract 

Functional Reactive Programming (FRP) is a declarative program- 
ming model for constructing interactive applications based on a 
continuous model of time. FRP programs are described in terms of 
behaviors (continuous, time-varying, reactive values), and events 
(conditions that occur at discrete points in time). 

This paper presents Frappe\ an implementation of FRP in the 
Java progamming language. The primary contribution of Frappe 
is its integration of the FRP event/behavior model with the Java 
Beans event/property model. At the interface level, any Java Beans 
component may be used as a source or sink for the FRP event and 
behavior combinators. This provides a mechanism for extending 
Frappe' with new kinds of I/O connections and allows FRP to be 
used as a high-level declarative model for composing applications 
from Java Beans components. At the implementation level, the Java 
Beans event model is used internally by Frappe to propagate FRP 
events and changes to FRP behaviors. This allows Frapp6 applica- 
tions to be packaged as Java Beans components for use in other ap- 
plications, and yields an implementation of FRP well-suited to the 
requirements of event-driven applications (such as graphical user 
interfaces). 

1    Introduction 

Recent work in in the functional programming community has pro- 
posed Functional Reactive Programming (FRP) as a declarative 
programming model for constructing interactive applications. FRP 
programs are described in terms of behaviors (continuous, time- 
varying, reactive values), and events (conditions that occur at dis- 
crete points in time). The FRP style was first proposed in Fran [5], 
a domain-specific language for computer animation embedded in 
Haskell. The motivation for developing Fran was to enable the pro- 
grammer to focus on modelling of the problem domain rather than 
on presentation details required to produce sequential frames of an 
animation. Since then, FRP has been adapted for numerous other 
application domains, including robotics [14, 13], vision [16] and 
graphical user interfaces [17]. 

All previous implementations of FRP have been embedded in 
the Haskell programming language [15]. As discussed in [8], 
Haskell's lazy evaluation, rich type system, and higher-order func- 
tions make it an excellent basis for development of new domain- 
specific languages and new programming paradigms such as FRP. 
Haskell has served as a basis for more than a half dozen implemen- 
tations of FRP [4, 9, 17]. 

"This material is based upon work supported under a National Science Foundation 
Graduate Research Fellowship. Any opinions, findings, conclusions or recommenda- 
tions expressed in this publication are those of the author and do not necessarily reflect 
the views of the National Science Foundation. 

In the Java community, recent work has produced the Java 
Beans component model [2]. The Java Beans component model 
prescribes a set of programming conventions for writing re-usable 
"components" for use in an Integrated Development Environment 
(IDE) or other, similar tool (such as a web page authoring tool). 
A programmer writes a Java Beans component by defining a Java 
class that specifies a set of events ("interesting" conditions which 
result in notifying other objects of their occurence) and properties 
(named mutable attributes of the component that may be read or 
written with appropriate methods). A visual builder tool uses Java's 
introspection facilities [ 11 ] to discover the events and properties ex- 
ported by the component class. Many of the classes in the standard 
Java class libraries (such as those of AWT and Swing) are defined 
as Java Beans components. 

The FRP and Java Beans programming models have very dif- 
ferent goals and appear, at first glance, to be completely unrelated. 
The goal of FRP is to enable the programmer to write concise 
descriptions of interactive applications in a declarative modelling 
style, whereas the goal of Java Beans is to provide a component 
framework for visual builder tools. However, the two models also 
have some alluring similarities: both have a notion of events, and 
both have a notion of values that change over time (behaviors in 
FRP, properties in Java Beans). Our primary motivation for devel- 
oping Frapp6 was to to explore the relationship between the two 
models. 

As a secondary motivation, we developed Frapp6 to explore us- 
ing FRP for composing interactive applications from Java Beans 
components. All of the commerically available IDEs for Java al- 
low the programmer to compose user interface layouts in a declar- 
ative, visual, direct manipulation style, but require the programmer 
to write (imperative) Java code to make this interface actually do 
anything. This approach raises a number of difficult issues for de- 
velopers and users of IDEs, such as requiring every component of 
the UI to be exposed as a public field, ensuring that user-written 
Java code isn't lost when the UI layout code is regenerated, and 
managing all of the Java code attached to the UI to ensure that every 
event handler leaves the program in a consistent state. We believe 
that many of these problems could be redressed by specifying event 
handlers using some high-level declarative programming model in- 
stead of writing Java code directly. Providing an implementation 
of FRP in Java provides just such a model for Java application pro- 
grammers and IDE developers. 

This paper presents Frappe, an implementation of FRP in Java. 
Our implementation is based on a correspondence between the FRP 
and Java Beans programming models, and our implementation in- 
tegrates the two models very closely. There are two aspects to this 
integration: First, any Java Beans component may be used as a 
source or sink for the FRP event and behavior combinators. Sec- 
ond, the Java Beans event model is used internally by Frappfi for 
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propagation of FRP events and changes to FRP behaviors. Allow- 
ing any Java Beans component to be used as a source or sink for the 
FRP event and behavior combinators allows the Java programmer 
to use FRP as a high-level declarative model for composing interac- 
tive applications from Java Beans components, and allows FrappS 
to be extended with new kinds of I/O connections without modi- 
fying the Frappä implementation. Using the the Java Beans event 
model internally allows Java Beans components connected by FRP 
combinators to be packaged as larger Java Beans components for 
use by other Beans-aware Java tools, and yields a "push" model for 
propagation of behavior and event values that is well-suited to the 
requirements of graphical user interfaces. 

The remainder of this paper is organized as follows. Section 2 
gives a brief review of the FRP and Java Beans models. Sec- 
tion 3 describes an existing implementation of FRP in Haskell, and 
states some observations about the properties of this implementa- 
tion. Section 4 presents our implementation of Frappe\ using the 
observations presented in section 3 to justify the derivation, and 
also describes how Java Beans components can be used directly as 
sources or sinks for the FRP combinators. Section 5 summarizes 
the status of the implementation. Section 6 discusses some lim- 
itations of our implementation. Section 7 describes related work. 
Section 8 summarizes our contributions, and briefly discusses some 
open questions and plans for future work. 

2   Preliminaries 

2.1    Functional Reactive Programming 

Functional Reactive Programming (FRP) is a high-level declara- 
tive programming model for constructing interactive applications. 
In this section, we give a very brief introduction to the aspects of 
FRP needed to understand the rest of the paper; see [5, 9] for more 
details. For concision, FRP examples presented in this section are 
given in Haskell [15], and, to keep the discussion grounded in con- 
crete examples, many examples are taken from the problem domain 
of computer animation. 

The principal idea that distinguishes FRP from most other pro- 
gramming models is that it presents a continuous model of time 
to the application programmer. Of course, actual implementations 
of FRP on real computers will only approximate the continuous 
model by some form of discrete sampling, but this implementation 
complexity is (mostly) hidden from the application programmer. 

There are two key polymorphic data types in FRP: the Behav- 
ior and the Event. Conceptually, a Behavior is a time-varying 
continuous value. One can think of type Behavior a as having 
the Haskell definition: 

type Behavior a  =  Time     >  a 

That is, a value of type Behavior a is a function from Time to 
a. Given this definition, we can think of sampling a behavior as 
simply applying the behavior to some sample time. The simplest 
examples of behaviors are constant behaviors: those that ignore 
their time argument and evaluate to some constant value. For ex- 
ample, constB red has type Behavior Color. It evaluates to 
red regardless of the sample time. An example of a time-varying 
behavior (taken from a binding of FRP for computer animation [5]) 
is mouse (of type Behavior Point). When sampled, mouse 
yields a representation of the mouse position at the given sample 
time. Sampling the mouse at different times may yield a different 
Point depending on whether the user has moved the mouse. 

Conceptually, an Event is some condition that occurs at a dis- 
crete point in time. In Haskell, we write the type Event a for an 
event source capable of producing a sequnce of occurences, where 
each occurence carries a value of type a. For example: 

lbp 
key 

Event 
Event 

0 
Char 

declare the types of two primitive event sources defined in the FRP 
binding for computer animation. The first event source, lbp, 
generates an event occurence every time the left mouse button is 
pressed. Each occurence carries a value of type () (read "unit"), 
meaning that there is no data carried with this event other than the 
fact that it occured. The second event source, key, generates an 
event occurence every time a key is pressed on the keyboard. Each 
occurence carries a value of type Char representing the key that 
was pressed. 

An implementation of FRP provides the programmer with a set 
of primitive behaviors and event sources, and a library of combi- 
nators for creating new behaviors and event sources from existing 
ones. For example, the expression: 

lbp =>  red 

uses the -=> combinator (of type Event a -> b -> Event b) 
to produce an event source of type Event Color. The event oc- 
curs whenever lbp occurs (i.e. every time the left mouse button is 
pressed), but each occurence carries the value red. More complex 
event sources and behaviors are produced by nested applications of 
combinators. For example, the expression: 

(lbp  -=>  red   .|.   rbp  -=> blue) 

uses the merge operator ( . | .) to produce an an event source (of 
type Event Color) that occurs whenever the left or right mouse 
button is pressed. When the left button is pressed, an occurence is 
generated carrying the value red; when the right button is pressed, 
an occurence is generated carrying the value blue. 

The FRP model defines a combinator, switcher, for convert- 
ing an event source to a behavior. The type of switcher is given 
as: 

switcher :: Behavior 
> Behavior a 

-> Event (Behavior a) 

Informally, switcher produces a behavior that initially follows its 
first argument. However, every time an event occurs on the event 
source given as the second argument, switcher "switches" to fol- 
low the behavior carried in that event occurence. For example: 

switcher red   (lbp  -=>  red rbp => blue) 

uses switcher to define c as a behavior with type Behavior 
Color1. When the application starts, c will initially be red. When 
the left mouse button is pressed, c changes to red, and when the 
right mouse button is pressed, c changes to blue. 

Complete applications are written in FRP by defining reactive 
behaviors. Reactive behaviors are behaviors that change in re- 
sponse to user input, such as the definition of c just given. A 
binding of FRP for a particular problem domain will usually define 
a type for a top-level behavior that represents the output of the ap- 
plication. A complete application is defined simply by using the 
FRP combinators to write an expression for a behavior of this type. 
For example, in computer animation, the output of an application 
is of type Behavior Picture. An example, then, of a complete 
FRP application for computer animation is: 

exampleApp = withColor c circle 
where c = switcher red (lbp -=> red .|. 

rbp -=> blue) 

Here we use implicit lifting of constants to Behaviors. Strictly speaking, we should 
have written constB red instead of just red, but the Haskell implementations 
of FRP use instance declarations to perform this translation automatically. 
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this application renders a circle of unit size in an output window. 
The circle will be initially red, but the color will change between 
red and blue as the left and right mouse button are pressed. 

2.2   Java Beans 

This section gives a brief summary of the Java Beans programming 
model. For a more complete account, the reader is referred to the 
Java Beans Specification [2]. 

2.2.1 What Is a Bean? 

The Java Beans Specification defines a Java Bean informally as "a 
reusable software component that can be manipulated visually in a 
builder tool".2 For example, all of the Swing user interface compo- 
nents (buttons, sliders, windows, etc.) are Beans. However, Beans 
need not have any visual appearance at run-time. For example, a 
software component that takes a ticker symbol as input and peri- 
odically delivers stock quotes for the ticker symbol could easily be 
packaged as a Bean. 

More concretely, then, a Bean is a Java class that conforms 
to certain programming conventions prescribed by the Java Beans 
specification. These conventions specify that a Bean should make 
its functionality available to clients through: 

• Properties-mutable named attributes of the object that can be 
read or written by calling appropriate accessor methods. 

• Events-k named set of "interesting" things that may happen 
to the Bean instance. Clients may register to be notified when 
an event occurs by implementing a listener interface. When 
the event occurs, the component notifies the client by invok- 
ing a method defined in the listener interface. 

• A/<??/;otf.s-Ordinary Java methods, invoked for their side- 
effects on the Bean instance or its environment. 

The Beans model does not require a separate interface defini- 
tion language for specifying the interface to a Java Beans compo- 
nent. Instead, the Beans model prescribes that a Java Bean can be 
written as an orindary Java class in the Java language, and can be 
packaged for use by a builder tool simply by compiling the source 
file to the standard Java class file format. The "builder tools" use 
reflection [ 11 ] on the class file to recover information about the fea- 
tures exported by the particular Bean, and the standard Java library 
provides a set of helper classes in the java.beans package for 
use by builder tools. These helper classes perform the low-level re- 
flection operations to recover information about events, properties 
and methods supported by a Bean. 

2.2.2 Properties 

Properties are mutable, named attributes of a component. For ex- 
ample, each of the graphical user interface components in the Java 
Swing library defines width and height properties that represent the 
bounding box of the component's visual representation. Conceptu- 
ally, a property is similar to a field of an object, and properties are 
often implemented by storing the property value in a field. How- 
ever, a property need not be implemented this way; a component 
implementation could instead compute a property's value dynami- 
cally when the property is read. 

Properties are accessed by means of accessor methods, which 
are used to read and write values of the property. A property may 

2In the remainder this paper, we use the terms "Java Beans component" and "Bean" 
interchangeably. 

be readable or writable (or both), which determines whether the 
property supports get or set accessor methods. The Java Beans 
specification defines programming conventions that component au- 
thors must follow when writing accessor methods. The convention 
for get accessor methods is: 

public  PropertyType getPropertyNameO ; 

and the convention for set accessor methods is: 

public  void  setPropertyName(PropertyType  arg) ; 

where PropertyName is the (appropriately capitalized) name of the 
property, and PropertyType is the Java type of the property. Con- 
tinuing with the previous example, the class jcomponent of Java 
Swing defines get and set accessors for its width and height prop- 
erties as: 

public  class  JComponent   { 

public   int  getWidth(); 
public  void setwidth(int  arg); 

public   int  getHeight(); 
public  void setHeight(int  arg); 

Invoking getwidth () will return the width of the component (in 
pixels); Invoking setwidth () will set the component's width (in 
pixels). 

2.2.3   Events 

Conceptually, events in the Java Beans component model are a 
mechanism used by a source component to notify one or more tar- 
get listeners of some state change in the source object. For exam- 
ple, a Button user interface object might define an action event 
that is used to notify listeners when the button has been pressed by 
the user. The Java Beans specification requires component authors 
to adhere to the following conventions: 

• The programmer must specify an event class to encapsulate 
the information about a single event occurence. This event 
class should be a subclass of java.beans.Event named 
event-nameEvent, where event-name is a logical name for the 
event chosen by the component author.3 

• The programmer must specify a listener interface, that defines 
one or more notification methods. A listener interface has the 
form: 

public   interface event-namehistener   { 
public void notifyMethod(event-nameEvent   arg) ; 

} 

where event-name is as before, and notifyMethod is a method 
name (chosen by the component author) to be invoked when 
the event occurs. 

• The programmer must add a pair of listener registration meth- 
ods to the component acting as the event source. These lis- 
tener registration methods have the form: 

technically, event-name identifies a set of related events rather than a single event, 
but this distinction is not important here. 
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public void 
addevenl-namehistener {evenl-namehistener  lis- 

tener) ; 

public  void 
removeevent-nameL i s t ener (event- 

numcListener  listener); 

The former method registers a listener object to be notified 
when the given event occurs; the latter removes a previously 
registered listener. 

An example of a Java Beans event is the action event defined by 
the JButton class from Java Swing. An application arranges to 
be notified when a JButton is pressed by implementing the AC- 
tionListener interface and passing a reference to an instance of 
this interface to the addActionListener () method of JButton. 
The implementation of JButton records the listener registration in 
its listener list. Later, when the button is pressed by the user, the 
JButton notifies each registered listener by invoking the listener's 
actionPerformedO method, passing it a reference to an Ac- 
tionEvent with information about the event occurence. 

2.2.4   Bound Properties 

A particularly important aspect of the Java Beans specification is its 
provision for bound properties. A component author may specify 
that a property is a bound property, meaning that interested clients 
can register to be notified whenever the property's value changes. 
A property's value might change either as a direct result of the ap- 
plication program invoking a set accessor method, or as an indirect 
result of some user action. For example, a text entry widget might 
have a text property representing the text entered into the field by 
the user. If implemented as a bound property, an application could 
register to be notified whenever the user changed the contents of 
the text entry component. 

The Java Beans specification defines a Property- 
ChangeEvent that carries information about a change to a 
bound property (such as its old value and new value), and a 
PropertyChangeListener interface that must be implemented 
by client objects that wish to be notified of changes. As we will see 
shortly, bound properties play a critical role in the implementation 
of FRP Behaviors in Frappe\ 

3   Analysis of Stream-Based FRP 

To date, there have been numerous implementations of FRP in 
Haskell. Some of the design alternatives (and their associated en- 
gineering tradeoffs) are explored in [4]. An efficient, robust imple- 
mentation of the FRP model that is both faithful to the formal se- 
mantics and does not suffer from space leaks or other performance 
problems has remained an elusive goal, and we do not expect that 
this situation will change in the near future. 

One recent implementation of FRP that has received particular 
scrutiny is the so-called stream-based implementation, described 
in [9].4 A related paper [18] analyzes this implementation formally, 
showing that, with one caveat5, as the sample time approaches 0, 
the implementation is faithful to the formal semantics. 

We present our design by first describing the stream-based FRP 
implementation in Haskell. Then we state some simple, informal 
observations about the stream-based implementation. In the next 

4In fact, there have been multiple independent stream-based implementations of 
FRP. In this paper, "the stream-based implementation (of FRP)" refers only to the 
implementation by Hudak [9]. 

5Namely, that the implementation is unable to detect instantaneous predicate 
events. This issue is discussed more fully in section 6. 

section, we will use these observations to derive an event-driven 
implementation of FRP in Java. 

3.1    Stream-Based Implementation of FRP 

The stream-based implementation defines FRP Behaviors and 
Events as stream transformers (in the signal processing sense) with 
the following Haskell definitions6: 

type Behavior a = [(Maybe UA,Time)] -> [a] 
type Event a = [(Maybe UA.Time)] -> [Maybe a] 

Here UA is a type that represents a user action as obtained from the 
Operating System, such as a mouse event or a key being pressed. 
The type Maybe UA is a possible user action; its value is either 
Nothing or just x, where x is some UA. Another important detail 
is that because Haskell uses lazy evaluation, lists and streams have 
exactly the same representation. Hence, for our purposes, we can 
read [a] as "stream of a". 

A Behavior, then, takes an input stream consisting of pairs 
of possible user actions and sample times, and produces an output 
stream of behavior values. An Event source takes the same input 
stream as a Behavior, but produces an output stream consisting 
of possible event occurences. 

The FRP model defines a set of combinators (such as 
switcher, -=>, etc.) for composing new behaviors and events 
from existing ones. An FRP program is an expression composed 
from nested applications of these combinators to other combina- 
tors or to primitive behaviors and events provided by the imple- 
mentation. The stream-based implementation (and all of the other 
Haskell implementations, for that matter) implement these combi- 
nators directly as Haskell functions. However, as with all Haskell 
programs, Haskell's lazy evaluation semantics result in the implicit 
construction of a graph at runtime, where each node in the graph 
is an FRP combinator, and each edge represents the application of 
that combinator to some other Behavior or Event. This is illustrated 
in figure 1. 

This figure illustrates a stream-based implementation of the 
FRP model for computer animation7. The user program is a graph 
structure, the inputs to the graph are streams of sample times and 
user actions, and the output of the graph is a stream of Pic- 
ture values (one for each sample time fed as input). Because of 
lazy evaluation, control flow starts at the outputs, and successive 
picture values are "pulled" from the graph by the application of 
MapM, drawPic on the right to the output of the user program. 
Applying MapM. drawPic to the output stream forces the compu- 
tation of the first Picture of the output stream (i.e. the head of 
the list). To compute this picture, the outermost combinator node 
in the graph of the user program must compute a value. Typically 
this will force the computation of the inputs to this outermost node 
(i.e. the combinator nodes to which this node was applied when 
defining the user program.) 

Control flow proceeds in this way (from outputs to inputs of 
each node) until some combinator in the graph forces the computa- 
tion of the next (Time.UserAction) pair from the input stream. 
When this happens, the implementation will make one blocking 
call to the Operating System's event loop, returning only when ei- 
ther a user action event has occurred or one sample interval has 
passed. In either case, the implementation provides values for the 
heads of the input streams of the graph, and control flow works its 
way back through the graph until the computation of the current 
Picture value is complete. The Picture value is then rendered on 

6Up to an isomorphism. The actual types have been massaged slightly to simplify 
the exposition. 

7Hence the type of user program as Behavior  Picture. 
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Primitive Events / Behaviors FRP combinators 

Figure 1: Stream-based implementation of FRP 

the screen by drawPic, MapM. forces the computation of the next 
picture value of the output stream, and the whole process repeats. 

3.2   Observations 

From the preceding description, we can make the following obser- 
vations about the stream-based implementation: 

1. FRP Programs are really directed graphs at runtime} Each 
node in this graph corresponds to an FRP combinator, and 
each edge corresponds to an application of the combinator 
to some other combinator or a primitive event or behavior. 
The graph is constructed implicitly as a by-product of lazy 
evaluation, and is completely hidden from the user, but the 
graph structure must exist in some form at runtime to provide 
accurate lazy evaluation semantics. 

2. Sample times increase monotonically. Each time a new Pic- 
ture value is computed, it results in reading the next user- 
Action or Time value from the program's input stream, 
which in turn results in a single pass through the operating 
system's event loop. 
Regardless of whether the call to the event loop returns a 
UserAction or times out, the Time value passed to the pro- 
gram's input stream is greater than or equal to the time on the 
input stream when the previous frame was computed. Most 
of the FRP combinators in the implementation depend on this 
monotonicity property. 

3. Each FRP combinator only examines the head of the input 
stream. There are two requirements on the implementation 
that validate this observation. The first is that FRP combina- 
tors do not retain any history of previous (Maybe UA,Time) 
value pairs. If an FRP combinator did retain such values, this 
could lead to a space leak, as described in [4]. 

The second requirement is that each combinator must pro- 
duce a value on its output stream every time a new (Maybe 
UA,Time) value is delivered on its input stream. This latter 
requirement is necessary because each (Maybe UA.Time) 
value demanded from the input stream results in a blocking 
call to the operating system's event loop. If any FRP com- 
binator demanded another value from its input stream before 
producing any output, then, in the presence of nested and re- 
cursive combinators, this could result in arbitrarily long de- 
lays before the program produced any output. 

4. The stream-based implementation performs sampling even 
for purely event-driven applications. Consider the following 
Behavior: 

"This is true of any Haskell program, but is critical to understanding the sequence 
of actions in the stream-based FRP implementation. 

mycolor 
mycolor 

: Behavior Color 
red 'until1 (lbp -» blue) 

This defines a behavior (of type color) that will be red un- 
til the left mouse button is pressed, and then will change to 
blue. Behaviors such as this one (common in graphical user 
interfaces) are purely event-driven in the sense that, while 
their value changes over time, their value depends solely on 
user input events, not on the sample time. Contrast this with 
a definition such as: 

wiggle 
wiggle 

:   Behavior  float 
sin  time 

which is an example of a time-dependent behavior. 

In the stream-based implementation of FRP, the implementa- 
tion performs sampling regardless of whether or not the FRP 
program actually has any time-dependent behaviors. That 
is, even if the user program is purely event-driven, the im- 
plementation will still produce a new (Maybe UA,Time) 
pair on the program's input stream every sample interval, and 
compute a value to place on the output stream of every combi- 
nator in the graph. We refer to this as the "sampling overhead" 
of the stream-based implementation. 

4   Implementing FRP in Java 

In this section, we present our implementation of FRP in Java. We 
use the observations about the stream-based implementation pre- 
sented in the previous section to justify the validity of our design. 
Since the derivation is based on the observations about the stream- 
based implementation, and since the stream-based implementation 
has been shown to implement the formal semantics of FRP, we 
claim that our event-driven design is also faithful to the formal se- 
mantics. With a suitable framework for formalizing the observa- 
tions in the last section, and for describing the Java constructs used 
in our implementation, it should be possible to give an operational 
semantics of Frappä in terms of the stream-based implementation 
of FRP in Haskell. 

4.1    Behaviors 

Recall the first three observations of section 3.2: 

1. FRP Programs are really directed graphs at runtime. 
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public interface Behavior { 
/** Accessor to read the current value of this Behavior 
*/ 

public Object getValueO; 

/** Add a PropertyChangeListener to be notified when 
*  the value of this Behavior changes. 
*/ 

public void 
addPropertyChangeListener(PropertyChangeListener 1); 

/** Remove a PropertyChangeListener from the list of listeners. 
*/ 

public void 
removePropertyChangeListener(PropertyChangeListener 1) ; 

Figure 2: Java encoding of Behaviors 

2. Sample times increase monotonically. 

3. Each FRP combinator only examines the head of the input 
stream. 

Since Java does not have lazy evaluation, we must construct 
the graph of combinator applications explicitly. We achieve this by 
defining a Java class for each FRP combinator. Each node in the 
combinator graph is represented by an object instance at runtime, 
and each edge is represented by a field with a reference to another 
object. 

What operations must each node in the combinator graph sup- 
port? We can combine observations (2) and (3) above to reach a 
somewhat surprising conclusion: 

• Each Behavior node in the FRP combinator graph can be 
modelled as an object that has just one operation: get the 
value of the Behavior at the current time. 

We can implement this model by defining a Behavior as a Java 
Bean with a single, readable property (called "value"). The Behav- 
ior's value at the current time is obtained by reading the Behavior's 
"value" property. 

Individual Behavior objects might be connected as inputs to 
other nodes in the combinator graph, and those nodes will need 
to be informed when a Behavior's value has changed. Hence, we 
make value a bound property, so that other nodes can register for 
a PropertyChangeEvent when the value of the Behavior changes. 
Our implementation uses such events to propagate behavior values 
through the system. 

This leads to the Java encoding illustrated in figure 2. While 
the syntax is somewhat verbose, this can be read simply as "Every 
Behavior is a Bean that provides a bound property named value!' 

An implementation of the Behavior interface supports reg- 
istration of listeners, as required of bound properties. All output 
connections for a node are stored in this listener list. If an FRP 
combinator class uses a Behavior as one of its inputs, the com- 
binator class must implement the PropertyChangeListener in- 
terface in order to be notified of changes in its input behavior. We 
will see an example of this shortly. 

Since the Haskell definition of Behavior is a polymorphic type, 
we declare the return type of getvaluel) as object. The value 
returned must be converted to an instance of the appropriate type 
using a cast, and the cast will be checked at runtime. This is quite 
inefficient for behaviors of primitive types, since each value of a 
primitive type must be wrapped in an instance of the appropriate 
wrapper class ( integer, Float, etc.) before it can be returned 
as an   object.   To help avoid this inefficiency, and to provide 

rudimentary static type checking, we have defined a set of sub- 
interfaces that specialize Behavior at all of the primitive types by 
providing an accessor method specialized to the primitive type. For 
example: 

public  interface FloatB  extends  Behavior   { 
public   float  getFloatValuef); 

} 

is the specialization of Behavior at the primitive type float. If 
a client of the Behavior interface knows the type of a Behavior's 
value ahead of time, specialized interfaces like FloatB can be used 
instead of Behavior to avoid creating the intermediary wrapper 
object and the corresponding runtime type check. 

4.2   Events 

We implement FRP Events by mapping the FRP notion of "event" 
directly to a Bean Event named FRPEvent. Frappe' defines one 
class and two interfaces for event handling, shown in figure 3. 

The class FRPEvent represents a single event occurence. It ex- 
tends java.util .Eventobject, as required by the Java Beans 
specification. As defined here, the only information carried with an 
event occurence is a reference to the FRPEventsource that gen- 
erated the event. In the FRP model, however, each event occurence 
may carry a data value of some type. We accomodate this by defin- 
ing a subclass of FRPEvent called objectEvent that carries a 
single value (of type Object). For convenience, we also define 
several subclasses of ObjectEvent specialized at various types. 
For example, we define a BehaviorEvent class for events that 
carry a Behavior reference on each occurence. 

The FRPEventsource interface is implemented by every class 
that generates FRP Events. This interface corresponds directly 
with the Haskell type Event a that identifies an event source in 
the stream-based implementation. The methods defined in FR- 
PEventsource are those prescribed by the Java Beans conven- 
tions for registering event listeners. This interface declaration can 
be read as stating that "Every FRP Event Source is a Bean event 
source for the event named FRPEvent." 

The FRPEventListener interface is implemented by any 
class that wishes to be notified when an FRPEvent occurs on some 
source. A listener is registered with the event source by passing a 
reference to the listener to the source's addFRPEventListener () 
method. Then, at some point later when the event occurs, the event 
source will notify all registered listeners by invoking each listener's 
eventOccurred () method, passing it an FRPEvent instance rep- 
resenting the event occurence. 
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/** Class representing a single event occurence */ 
public class FRPEvent extends EventObject { 

public FRPEvent(FRPEventSource source) { 

) 
} 

/**   Interface  implemented by  interested listeners   */ 
public   interface  FRPEventListener extends  EventListener   { 

/**   Invoked when  the given  FRPEvent  has  occured  */ 
public  void eventOccured(FRPEvent  event); 

} 

/**   Source  of  FRP  events;   provides methods   for  registering 
*   listeners  to  be notified of  occurences. 
*/ 

public   interface  FRPEventSource   { 
public  void addFRPEventListener(FRPEventListener listener); 
public  void removeFRPEventListener(FRPEventListener listener); 

} 

Figure 3: Java Encoding of FRP Events 

4.3   Defining Combinators 

In our implementation, every FRP combinator is implemented as a 
Java class. Each combinator class implements one of the standard 
FRP interfaces ( Behavior or FRPEventSource) appropriate to 
the result type of the combinator. The arguments to the combinator 
are typically passed as arguments to the constructor. 

For example, in Haskell, we might define an overPic com- 
binator for compositing two animations (of type Behavior Pic- 
ture, or, more succinctly, PictureB) into a single animation. In 
Haskell, this combinator would have the following signature: 

overPic   ::   PictureB  ->  PictureB  ->  PictureB 

In our Java implementation, we would implement this as: 

public  class  OverPic 
implements  Behavior, 

PropertyChangeListener   { 
public  OverPic(Behavior picl, 

Behavior pic2) 

//   invoked when picl  or pic2  changes: 
public  void propertyChangedf...)   { 

to OverPic. Otherwise a runtime error will result when Over- 
Pic attempts to cast the result of, say, picl. getvalue () to type 
Picture. 

4.4   Propagation of Event and Behavior Values 

Propagation of event and behavior values in Frappä is purely event- 
driven. To execute an FRP specification, a user program simply 
constructs an explicit graph of FRP combinators (initialization), 
and relinquishes control to the main event loop in the Java runtime 
library. When there is input to the application (for example, when 
the user presses a mouse button), the Java runtime will invoke an 
event handler of some object in the Frappe1 implementation that im- 
plements a primitive FRP event source or behavior. This primitive 
event handler, in turn, will invoke the appropriate event handler of 
each registered listener: 

• For an event source, each event listener implements the 
FRPEventListener interface. The listener's eventOc- 
cured () method is invoked to propagate the event occurence. 

• For a behavior, each event listener implements the Proper- 
tyChangeListener interface. The listener's property- 
changed () method is invoked to propagate the change in the 
behavior's value. 

} 

//  get   the  composition of  picl  and pic2 : 
public  Object  getvalue(...)    { 

//  not   shown:   addPropertyChangeListener, 
// removePropertyChangeListener. 

Note that OverPic implements two interfaces: Behavior (since 
the combinator produces a Behavior) and PropertyChangeLis- 
tener. This latter interface, defined in the Java Beans Specifica- 
tion, requires that the object implement the propertychanged () 
method. Implementing this interface allows OverPic to register it- 
self as a PropertyChangeListener on picl and pic2, which 
will invoke OverPic's propertychanged!) method when either 
picture changes. 

Of course, as noted, this encoding requires the programmer to 
pass Behaviors that carry values of the appropriate type ( Picture) 

Each registered listener for a primitive event or behavior is an FRP 
combinator. The combinator's event handler will compute any 
changes to its output and invoke an event handler method on each 
of its registered listeners. Propagation of events continues in this 
way until some "output" listener is reached. 

(Maybe have a diagram here??) 

4.5   Where did the Time Go? 

In the stream-based implementation, every Behavior has access to 
an input stream of user actions and sample times. However, as 
observation (3) of section 3.2 makes clear, the only time value that 
is actually accessible to a combinator from this input stream is the 
current time. Of course, this could just as easily be accessed from 
the global Behavior time defined by the FRP implementation. 

Like other FRP implementations, Frapp6 provides user pro- 
grams with a Behavior that represents the current time: 
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public class Animator { 

public FloatB getTimelnstance(); 
} 

The behavior returned from getTimelnstance () is equivalent 
to the global Behavior time in other Haskell-based implementa- 
tions. This primitive behavior is implemented by a software timer 
(our implementation uses an instance of j avax. swing. Timer in- 
ternally). The implementation maintains an internal floating point 
value that represents the current time (in seconds) since the ap- 
plication started. The software timer causes an event handler on 
the time implementation to be invoked at regular sample intervals. 
Each time this event handler is invoked it updates its notion of the 
current time, and propagates a PropertyChangeEvent to all reg- 
istered listeners. 

Our treatment of time differs from the previous Haskell-based 
implementations in that combinators that need access to the time 
instance must have the time instance passed in explicitly. To illus- 
trate this difference, consider, for example, an integrator that im- 
plements a numerical approximation of the mathematical function 
defined as 

integrator(v,t) 
Jo 

(0 
The stream-based implementation (as well as other Haskell-based 
implementations) define a combinator integral with the Haskell 
signature: 

integral FloatB -> FloatB 

The expression integral x, when applied to some x (of type 
FloatB) yields another FloatB equal to integrator(x, time), 
where time is the current time. That is, the stream-based imple- 
mentation does not require that time be passed in explicitly to 
integral. 

Our implementation also provides approximate numerical inte- 
gration. However, we require that the time instance be passed in 
explicitly: 

FloatB x, time, ix; 

time = animator.getTimelnstance(); 
ix = new Integral(x,time); 

Requiring that time be passed explicitly enables an impor- 
tant optimization: the implementation can eliminate the "sam- 
pling overhead" of the stream-based implementation described 
in section 3. All combinators that are time dependent must 
be explicitly passed the time instance returned from Anima- 
tor .getTimelnstance!). Such time-dependent combinators 
will then register to be notified every time the sample time changes 
by calling the addPropertyChangeListener () method of 
time. If an application is purely event driven, then there will be no 
registered listeners on the time instance. In this case, the Frappe 
implementation turns off the software timer used internally, which 
allows the Java runtime to perform an indefinite (i.e. no timeout) 
blocking call to the operating system's event loop, putting the ap- 
plication to sleep until some user action occurs. 

This treatment of time has an important effect on how time 
transformations are handled in Frappe\ The Haskell-based imple- 
mentations of FRP provide a generalized time transformation com- 
binator for transformation of local time-frames: 

t imeTrans form 
ior a 

Behavior a -> TimeB -> Behav- 

This could be use to transform a Behavior without knowing the 
time-dependencies of the behavior. For example: 

timeTransform x   (time/2) 

produces a version of x that is slowed by a factor of 2, regardless 
of how x is defined. 

In Frappd, it is still possible to perform time transforms, al- 
beit in a substantially limited form. The programmer may only 
transform time-dependent behaviors, and must do so by interpos- 
ing the appropriate transformation between the combinator and its 
time source. So, for example, to speed up an animation by a factor 
of two we must replace: 

with: 

new BouncingBall(time) 

new BouncingBall(new DoubleArg(time)) ; 

where DoubleArg represents some combinator that doubles its 
argument behavior. 

Since our encoding of FRP events does not explicitly time 
stamp each event, there is no direct mechanism for applying time 
transforms to event sources or to behaviors that are driven by event 
sources other than time. 

4.6   Connecting to Java Beans 

The stream-based implementation of FRP defines a fixed set of 
"primitive" behaviors and events that are available to user pro- 
grams. These primitives typically represent I/O connections avail- 
able to the application. For example, mouse is a primitive behavior 
corresponding to the current mouse position, and lbp is a primitive 
event source whose event occurences correspond to the left mouse 
button being pressed. Because this set of primitives is implemented 
by interfacing directly with the Operating System, adding a new 
kind of I/O connection to the FRP implementation requires source- 
level changes to the FRP implementation. 

In contrast, Frappä allows any Java Bean to be used as a source 
or sink for the FRP combinators. Recall from section 4.1 that a 
Behavior is just a Java Bean with a bound property named value, 
of type object. We can treat any bound property of any Java 
Bean as a Behavior simply by constructing a Behavior that changes 
whenever the named property of the Bean changes. We provide a 
PropertyObserver class for this purpose: 

public  class  PropertyObserver 
implements Behavior, 

PropertyChangeListener   { 

public  PropertyObserver(Object  target, 
String propName)   { 

} 

} 

PropertyObserver uses reflection on the target object to obtain 
Method objects that represent the target's addPropertyChange- 
Listener () and getpropwame () methods. The former is used 
in the constructor of PropertyObserver so that the observer in- 
stance will be notified when the target property changes, and can 
propagate the change to its registered listeners. The latter is used in 
the implementation of getValueO in PropertyObserver, so 
that all invocations of getvalue () on the observer are forwarded 
to the appropriate accessor method of the named property on the 
target object. 

On the output side, we have defined a similar utility class for 
connecting a Behavior to a writable bean property: 

101 



public class BehaviorConnector 
implements PropertyChangeListener { 

BehaviorConnector(Behavior src, 
Object target, 
String propName) { 

} 
} 

A BehaviorConnector registers itself as a PropertyChangeLis- 
tener on the source behavior src, and uses reflection to look up 
the write method for the property name propName on the Bean 
target. Every time the source behavior changes, the Behavior- 
Connector instance obtains the value of src and uses the write 
method to set the value of the named property of target. 

5 Current Status 

We have working implementations of all of the core combinators 
given in [12], using the encoding of behaviors and events presented 
in the preceding section. For the most part, the implementation 
of these combinators is a straightforward translation of the formal 
definition into the Java language using the types and propagation 
model presented here. The code for a prototypical example combi- 
nator ( Switcher) is given in Appendix A. 

We have tested our implementation by rewriting many of the 
examples from [12] in Java. The code for a typical example is 
given in Appendix B. Our experience thus far is that the library 
is quite easy to use, but (unsurprisingly) the syntax for composing 
FRP specifications is exceedingly verbose compared to the embed- 
ding of FRP in Haskell. However, since we plan to use Frappd pri- 
marily as the back-end for a higher-level visual composition tool, 
this syntactic overhead is not too much of a concern. 

6 Limitations 

Because Java lacks a polymorphic type system, our implementa- 
tion of FRP is not statically type-safe. Since we plan to use our 
implementation primarily as a compilation target for some other 
high-level tool, this is not too much of a concern; we expect tools 
that generate Frapp6 combinator graphs to be aware of the poly- 
morphic nature of the FRP model, and to only generate combinator 
graphs that will not have type errors at runtime. Nevertheless, it 
would be an interesting excercise to rewrite Frappe' using GJ [1]. 

Frapp6 assumes that event processing is single-threaded and 
synchronous. That is, all primitive Java Beans events used as 
event or behavior sources for Frappä must be fired from the sys- 
tem's event dispatching thread, and each event must completely 
propagate through the FRP combinator graph before the next event 
is handled. This single-threaded, synchronous event processing 
model is also required by Java Swing, and Frapp6 does not im- 
pose any further restrictions than those already required for event 
handling in Swing. 

Like the stream-based implementation from which it derives, 
our implementation of FRP is unable to detect instantaneous pred- 
icate events. An instantaneous predicate event is one that happens 
only at some specific instantaneous point in time. For example: 

sharp 
sharp 

: Event () 
when (time==*l) 

is only true instantaneously at time=l. An event such as sharp can 
not be detected simply by monotonic sampling; accurate detection 
of predicate events requires interval analysis, as discussed in [5,4]. 

In many ways, the inability to detect instantaneous predicate events 
is similar to the problem of comparing two floating point numbers 
for equality using ==, lifted to the time domain. 

Finally, as discussed in section 4.5, Frapp6 only provides an ex- 
tremely limited form of time transformation, and this limited form 
of time transformation violates the principle of temporal modular- 
ity proposed for Fran [5]. While time transform is undoubtedly use- 
ful for the specific domain of computer animation, it is less clear 
how useful generalized time transforms are when using FRP for 
other problem domains (such as graphical user interfaces). 

We feel that there has simply not been enough experience using 
FRP to write real applications to know how significant these latter 
two limitations are in practice. 

7 Related Work 

Elliot [4] has done much of the pioneering work on implemen- 
tations of the FRP model in Haskell, and reported on the design 
tradeoffs of various implementation strategies. Hudak [9] provides 
a completely annotated description of a stream-based implementa- 
tion of FRP from which our implementation is derived. 

Recent work in the functional programming community has 
produced ways to make component objects and library code writ- 
ten in imperative languages available from Haskell [7, 6, 10]. Our 
work and this previous work share the common goal of providing 
programmers with a declarative model for connecting component 
objects written in imperative languages. However, our approach 
can be viewed as the "inverse" of these efforts: instead of embed- 
ding calls to component objects written in an imperative language 
into a declarative programming model, FrappS takes a declarative 
programming model and embeds it in an imperative language that 
supports component objects. 

Elliot's work on declarative event-oriented programming [3] 
showed that FRP's event model (implemented in Fran) could be 
used to compose interactive event-driven user interfaces in a declar- 
ative style, and compared this to the conventional imperative ap- 
proaches for programming user interfaces. FranTk [17] is a com- 
plete binding of the FRP programming model to the Tk user inter- 
face toolkit. FranTk demonstrates the viability of using FRP for 
user interfaces, and inspired us to explore how we might adapt the 
FRP model for use with the Java Swing toolkit. 

8 Conclusions and Future Work 

We have presented an implementation of FRP in the Java program- 
ming language. The most significant aspect of our implementa- 
tion is that it is based on a close correspondence between the FRP 
event/behavior model and the Java Beans event/property model. 
Our implementation imposes some limitations on the FRP model, 
but preserves FRP's declarative nature and continuous model of 
time. 

Our motivation for implementing Frapp6 was to make the rich 
FRP model available to Java programmers and, in particular, to 
IDE implementers. We believe that, with a suitable visual nota- 
tion, it should be possible to substantially improve on existing user 
interface builder tools included in most IDEs. We are currently de- 
veloping a new visual application builder tool on top of Frappe' to 
explore this hypothesis. This tool allows the user to compose entire 
applications (not just user interface layout) in a visual, declarative, 
direct manipulation style, by connecting individual user interface 
components through a diagrammatic representation of FRP combi- 
nators. The tool generates Java code to instantiate the user interface 
components and the Frappö objects connecting those components. 
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As stated in section 6, our current implementation of Frappe" 
imposes some limitations on the FRP model. An interesting area 
for future research will be examination of whether these limitations 
can be removed in the Java implementation. 

One of the unique aspects of Frappa is its ability to use Java 
Beans components as sources or sinks for FRP combinators. In 
principle there is no reason why this features needs to be limited to 
our Java implementation of FRP. It would be interesting to explore 
adding a similar feature to one of the Haskell-based implementa- 
tions of FRP using COM objects as components. 
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A   Implementation of Switcher 

/** 
* Switcher is the fundamental combinator for converting an Event into a 
* Behavior.  Switcher takes a Behavior b and a BehaviorEvent e, and 
* produces a new behavior.  The new behavior initially folows b.  But on 
* every event occurence, the switcher 'switches' to following the 
* behavior carried in e. 
*/ 

public class Switcher 
implements FRPEventListener, Behavior, PropertyChangeListener { 

/** behavior we are watching: */ 
private Behavior target = null; 
/** Delegate who handles listener lists: */ 
PropertyChangeSupport listenerManager; 

/** 
* Construct a new switcher from the given behavior and Event source. 
* ©param behavior Behavior to follow initially 
* Sparam source FRPEventSource. This Event source should produce 
* BehaviorEvent's on each occurence. 
*/ 

public Switcher(Behavior behavior, 
FRPEventSource source) { 

listenerManager = new PropertyChangeSupport(this); 
setTarget(behavior); 
source.addFRPEventListener(this); 

} 

/** Accessor to read the current value of this Behavior.  *. 
public Object getValuef) { 

// just forward to behavior we are observing: 
return target.getValue(); 

} 

/** invoked whenever the target property changes: */ 
public void propertyChange(PropertyChangeEvent e) { 

// propagate change from target property by notifying 
// all registered listeners: 
listenerManager.firePropertyChange("value", 

e.getOldValuef), 
e.getNewValue ()); 

} 

/** invoked when event occurs on event source */ 
public void eventOccured(FRPEvent event) { 

BehaviorEvent be = (BehaviorEvent) event; 

// switch behavior being observed to behavior carried in 
// event occurence. 
setTarget(be.getBehavior()); 

} 

/** Set the target behavior to observe.  We first de-register with 
* the current target, and then register with the new target. 
*/ 

protected void setTarget(Behavior newTarget) { 
if (target!=null) { 

target.removePropertyChangeListener(this); 
listenerManager.firePropertyChange("value", 

target.getValue(), 
newTarget.getValue()); 

} 
target = newTarget; 
target.addPropertyChangeListener(this); 

} 

// omitted: addPropertyChangeListener, removePropertyChangeListener 

Figure 4: Typical FRP Combinator implementation 
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B   Example Application Using Frappe 

/** 
* Display a circle that changes color from red to blue depending on which 
* mouse button is pressed. 
*/ 

public class FranTest5 { 
protected CircleBean circle; 
protected FranFrame frame; 

FranTest5() { 
frame = new FranFrame(); 
Franimator franimator = frame.getFranimator(); 
Time time = franimator.getTimelnstance(); 

try { 
FRPEventSource lbpEventSource = 

FRPUtilities.makeFRPEvent(franimator, 
"franMouse", 
"lbp"); 

FRPEventSource lbpWithRed = new EventBinddbpEventSource, 
new ConstB(Color.red)); 

FRPEventSource rbpEventSource = 
FRPUtilities.makeFRPEvent(franimator, 

"franMouse", 
"rbp"); 

FRPEventSource rbpWithBlue = new EventBind(rbpEventSource, 
new ConstB(Color.blue)); 

// now merge the two events streams: 
FRPEventSource mouseColorEvents = new EventMerge(lbpWithRed, 

rbpWithBlue); 

// create a circle at the origin with radius 50: 
circle = new CircleBean (0, 0, 50); 

// Shapelmage is a Bean that renders an image in a 
// target JComponent whenever its "shape" property changes. 
Shapelmage renderer = new Shapelmage(400, 400, franimator); 

// connect circle property to Tenderer's shape property: 
Behavior circleB = new PropertyObserver(circle,"shape"); 
new BehaviorConnector(circleB, renderer, "shape"); 

Behavior colorB = new Switcherfnew ConstB(Color.blue), 
mouseColorEvents); 

// connect colorB to Tenderer's "fillColor" property: 
new BehaviorConnector(colorB, renderer, "fillColor"); 

// finally, obtain a Behavior from renderer, and set this 
//as the ImageB to be rendered: 
Behavior imgB = 

FRPUtilities.makeBehavior(renderer, "image"); 
franimator.setlmageB(imgB); 

} catch (Exception e) { 
System.err.printlnf"Exception connecting behaviors to properties:"), 
e.printStackTrace(); 

} 

// and start the animation: 
frame.start(); 

} 

public static void main(String args[]) { 
FranTest5 ftest = new FranTest5(); 

Figure 5: Example application using Frappe 
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