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ABSTRACT 
 
 
 

There is a need for computationally efficient methods to determine surface 

radiation in the Arctic based on surface parameters such as cloud presence, sun 

angle, temperature and other easily measured variables.  

This study uses data from the SHEBA project to verify simple radiation 

parameterizations and to compare with other locations.  Skies during SHEBA 

were usually either totally clear or totally overcast, with low clouds predominating, 

especially in the non-winter seasons.  This resulted in large changes in radiation 

every time the cloud coverage changed. 

There was a large range in the skill of the parametric equations.  The most 

accurate equations had average total errors of 9 Wm-2, 14 Wm-2, 22 Wm-2 and 59 

Wm-2 for downwelling longwave in clear skies, cloudy skies, shortwave clear and 

cloudy skies respectively.  Compared to the Weddell Sea (Antarctic) the average 

downward longwave radiation was greater for all sky conditions.  Shortwave 

values were comparable to the Weddell Sea, although there was large variability.  
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I.  INTRODUCTION  

 Polar regions are expected to have an amplified response to global 

warming.  However, many of the important processes in polar regions are poorly 

understood, including the effects of clouds on surface radiation.  There is a need 

to develop and verify computationally efficient radiation parameterizations for 

polar regions.  Several such parameterizations have been published but the 

amount of testing on these parameterizations varies. 

Because of their simplicity, computationally efficient parameterizations are 

not expected to perform as well as multi-level radiation models.  These relatively 

simple equations utilize a minimum of measured variables, such as temperature 

near the surface, relative humidity, relative humidity with respect to ice, and 

vapor pressure in order to predict the downward radiation.  Some require only the 

input of temperature (longwave), sun angle (shortwave), and cloud fraction (all 

radiation).  Despite the creation of increasingly complex models, there is still a 

need for these simple equations.  They can be used by researchers with limited 

computing access, in desktop models and incorporated in the newer high-level 

models.   

 The parameterizations are based, in many cases, on limited data sets, 

often from a single location.  Early equations were developed with equipment 

now antiquated and others were developed only for specific applications.  Many 

have never been tested with data sets of recent origin or covering long time 

periods.  

To investigate the quality, accuracy and ease of use of a wide variety of 

previously published parameterizations, a large Arctic data set of recent 

acquisition was needed.  During the time period between October 1997 and 

October 1998, the Surface Heat Budget of the Arctic Ocean Experiment 

(SHEBA), established a drift camp in the Beaufort Sea where an extensive array 

of meteorological measurements were taken (Figure 1) (Persson et al., 2001).  
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These measurements created the data set used in this investigation of 

parametric equations for longwave and shortwave downward radiation. 

Equations formulated for use specifically in the Antarctic were also 

compared with this Arctic data set to estimate their suitability for the Arctic and to 

compare Arctic vs. Antarctic radiation characteristics.   

The primary focus of the investigation was to perform an evaluation of 

parametric equations, however a summary of net radiation is also of value here.  

Since clouds affect the longwave and shortwave radiation to such a high degree, 

a survey of the cloud coverage for the SHEBA drift camp is compared with 

another recent study (Makshtas et al., 1998).   

Results of this investigation would be of use to those formulating new 

models and improving the accuracy of existing ones by incorporating the best of 

the parametric equations.  The cloud fraction and height data, added to the 

existing modern body of work, provides an additional source for characterizing 

the climate of the Arctic.   

 

Figure  1.  SHEBA drift camp path. Taken from SHEBA web site. 
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II.  MEASUREMENT AND DATA ORGANIZATION 

Data were collected during the SHEBA project over a period covering 

slightly more than eleven months.  SHEBA’s drift camp and site included 

individual sites and measurements taken by various groups participating in the 

project, each of which is named with their measurements in the following chapter.   

All data used in this paper were pre-screened for quality by members of 

the SHEBA Atmospheric Surface Flux Group (ASFG) and Environmental 

Technology Laboratory (ETL).  Many instruments and their measurements were 

redundant and comparison between them assisted in the quality control as well 

as standard calibrations and instrument maintenance. 

The dates of the experiment overlapped two calendar years.  To facilitate 

ease of handling the data, Julian dates after December 31, 1997 were added to 

day 365 for the year 1997.  The final date of measurement is 638.9167, which 

equates to Julian date 273.9167 of 1998.  All graphs reflect this extended Julian 

date system.   

A. CLOUD MEASUREMENTS 

Continuous measurements of cloud-base height and the presence of 

cloud above the sensors were taken during the SHEBA measurement phase. 

Measurements were taken with both LIDAR and a laser ceilometer. This data set 

was compiled using a LIDAR at the Atmospheric Radiation Measurement (ARM) 

site, which was on the SHEBA vessel, until it permanently malfunctioned in 

August of 1998 (C. Fairall, pers. com.).  After August, ceilometer measurements 

taken at the NOAA ETL site, also on the SHEBA ship, were used. 

All data were averaged into hourly measurements using the following 

method.  Cloud fraction was obtained by dividing the total number of readings in 

an hour in which cloudiness was detected by the total number of measurements 

in an hour.  Cloud-base height is an average of all cloud-base heights registered 

during the course of an hour.  
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In total, there were 7,452 individual hours of measurement. Of that 

number, 121 readings were unusable leaving 7,331 useful measurements.  All 

7,331 measurements were used for quantifying cloud base height and cloud 

fraction, although significantly fewer measurements in this data set were used to 

study the longwave and shortwave radiation properties. The lower number of 

measurements included in those sections are due to editing processes with those 

data as explained in the corresponding sections. 
B.       LONGWAVE RADIATION 

Longwave radiation measurements were taken with Eppley Precision 

Infrared Radiometer (PIR) hemispheric flux pyrgeometers in both the upward and 

downward directions (Figure 2).  The sampling interval was 5 seconds with a final 

measurement provided by averaging the data for one-hour intervals (Persson et 

al., 2001).   

Discussion regarding the specifics of equipment maintenance, 

topographical changes and anomalous weather or shadowing is given in Persson 

et al. (2001).   The radiometers at the ASFG site were placed at a height of 1.5-

2.0 meters above the snow surface.  Longwave radiometers were affixed to a 

mast located approximately 25 meters horizontally from the 20-meter high 

meteorological tower (Persson et al., 2001).  

During the month of July 1998, a melt pond formed within the view area 

for the downward facing radiometers, which remained until late August.  A time 

coincident malfunction in the sensor at this time caused several days of missing 

data during this period.   

The nearby meteorological tower also cast a shadow in low sun angles.  

This shadow appeared during the local mid-morning periods in winter 

(approximately 1800-1900 UTC).   By installing fans and maintaining a frequent 

cleaning cycle, the radiometers experienced nearly ice-free conditions throughout 

the measurement cycle. (Persson et al., 2001). 

After averaging, there were 8,114 hourly measurements of longwave 

radiation.  Due to missing measurements in the cloud data set, specifically the 

2300 UTC measurement for each day, and days in which there were equipment 



  5 

malfunctions, the longwave radiation data set was edited to eliminate 

measurement periods not included in the cloud data set. 

Some longwave radiation measurements were eliminated due to 

questionable measurements during periods of icing or missing measurements 

due to power losses.  A secondary editing process took place that eliminated any 

radiation measurement in one direction in which the opposing direction 

measurement for that period was missing.  For example, if the downward was 

missing due to icing, then the upward was eliminated for that time period as well.   

A final editing process eliminated hourly measurements in which a 

meteorological variable required for the parametric equations or the shortwave 

measurement was missing, also due to power losses or equipment failure. After 

this editing process there remained 5,927 hourly measurements of upward and 

downward longwave radiation. 

 

 

 

Figure 2. Eppley Precision Infrared Radiometers (PIR) and Eppley Precision 
Solar Radiometers (PSP) measuring the upward and downward 
longwave and shortwave radiation at the SHEBA drift camp. 
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C.       SHORTWAVE RADIATION 
Shortwave radiation in both the upward and downward directions was 

measured with Eppley Precision Solar pyranometers (PSP) at a 5 second 

sampling interval (Persson et al., 2001).  Each sensor was located 1.5-2.0 

meters above the surface of the snow (Figure 2).  Averaging to a period of one 

hour was also done to achieve a final set of 8,114 measurements.   

Further editing was done in the same manner as described for the 

longwave measurements, leaving a data set consisting of 5,927 measurements, 

each representing one hour for an eleven month period.  

D.       METEOROLOGICAL VARIABLES 
All of the parametric equations for longwave radiation used in this study 

required an air temperature input close to the surface.  Some equations also 

required variables such as relative humidity, RH, relative humidity with respect to 

ice, RHi, vapor pressure, e, or variables needed to calculate e, pressure, p, and 

absolute humidity, q.  

Equipment mounted on a 20-meter meteorological tower near the 

radiometer site collected all the required variables at five levels (figure 3).  The 

lowest level of tower measurements was used for this study to be consistent with 

previous measurements that the tested parameterizations were developed from.  

Usually there was little variation in the temperature at different levels.  

The exact height of the instruments above the snow surface varied in 

accordance with the snow depth, however the height varied between 1.9-3.0 

meters with an average height of 2.2 meters (Persson et al., 2001).   

The difference between temperature at the surface (Tsfc) and at the lowest 

level of the tower (T1) averaged only 0.51 °C in absolute value, with T1 being the 

higher of the two.  This is important because remote sensing of surface 

temperature allows for wider use of these parametric equations.  The small 

difference between the two measurements on an average basis means that 

remotely sensed surface temperatures would not strongly affect the skill level of 

these parametric equations.  The editing process was the same as that for the 

longwave and shortwave radiation measurements. 
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Figure 3.   Meteorological tower at the SHEBA drift camp. 
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III.  RESULTS AND DISCUSSION  

A. CLOUDS 
The performance of any thermodynamic sea ice or polar atmosphere 

model depends upon the ability to accurately depict the clouds in the same 

region.  The presence of clouds, their heights, thicknesses and types all 

significantly affect the radiation balance 

There is a strong relationship between the presence of clouds and the 

amount of downward longwave and shortwave radiation reaching the surface.  

Clouds scatter and absorb shortwave radiation, causing less to reach the 

surface.  Longwave radiation in the downward direction is enhanced by the 

presence of clouds, which are effective infrared radiators.  Therefore, the 

evolution of clouds in the area of the SHEBA measurement site is crucial for 

understanding radiative properties. 

 Areal coverage, height, ice/liquid water content and a number of other 

cloud-related variables also affect surface radiation (Curry and Ebert, 1990). This 

brings up some of the limitations inherent to the SHEBA data set. Cloud 

measurements were taken from a single site in the drift camp, so the areal 

coverage was limited to the region of drift. Only cloud base height is available 

and there is no coinciding data set that provides thickness measurements for the 

clouds. Hence, the simple parameterizations examined in this study cannot be 

expected to account for all the variations in radiation that were observed during 

SHEBA, but only characterize them in a limited manner.  

The U-shaped distribution of clouds for the entire 11-month SHEBA 

measurement period (Figure 4), mirrors the results found by other investigators 

(e.g. Makshtas et al., 1998). Although the SHEBA period is just shy of an entire 

year, it is clear that cloud coverage mainly falls in the 0-2 tenths and 8-10 tenths 

categories, similar to the known climatology. 
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Figure 5 compares results from different seasons.  It illustrates that in 

spring, summer and fall the U-shaped distribution is lopsided with most cases 

having high coverage. In winter, however, there are more clear cases, making 

the U-shape more symmetric. During this season there are more instances of 

clear skies with less than 2 tenths cloud coverage than overcast skies with 

greater than 8 tenths of coverage by a small margin, resulting in a nearly equal 

U-shaped distribution. This is in obvious contrast to the other seasons where 

overcast skies dominate.  

 

 

Figure 4.  Cloud coverage in tenths for entire SHEBA data collection period of 
11 months indicating number of occurrences for each reading. 
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The numerical breakdown of these graphs (Table 1) shows that the 

number of readings for the winter in total does not significantly differ from the 

spring or summer amounts. Fall has fewer measurements due to the small 

number of readings available for October 1997. Given the sheer number of 

observations in all seasons, their ranges, and the consistency of their distribution, 

the results shown in the table and graphs appears reliable even without many 

October readings. While these results were obtained using the seasons as 

defined by the calendar rather than extending the winter season from November 

to April and shifting summer to include June through September, these results 

are consistent with those found by Makshtas et al. (1998). 
 

Figure 5.  Cloud coverage by seasons. Counts indicate the number of readings 
in each tenths category. 
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Count <0.3 0.3-0.499 0.5-0.699 0.7-0.899 0.9-1.0 No Data
Winter
    Count 1817 826 31 61 78 762 59
    Percent 45.5 1.7 3.4 4.3 41.9 3.2

Spring
    Count 2139 247 39 72 91 1662 28
    Percent 11.6 1.8 3.4 4.3 77.7 1.3

Summer
    Count 2139 169 43 48 94 1785 0
    Percent 7.9 2.0 2.2 434.0 86.5 0.0

Fall
    Count 1357 338 29 35 54 867 34
    Percent 24.9 2.1 2.6 4.0 63.9 2.5

Cloud Coverage (any height clouds) by season and coverage in tenths

 

Monthly results show that the winter trend of nearly equal distributions of 

clear and overcast sky readings is present in December, January and February 

(Figure 6).  Clear skies begin to decrease in frequency after February until a 

minimum is reached in August, continuing in September (Figure 7). 

Unfortunately, the lack of data during October doesn’t permit any conclusion 

about the cloudiness during that month, but of the 22 readings, it is notable that 

there are no readings below 8 tenths (Figure 8).  Clear sky occurrences begin to 

increase again in November (Figure 8).  A histogram of cloud coverage for the 

entire year, broken down by month, illustrates this distribution well (Figure 9). 

Table 1.  Cloud coverage for the four season during the entire SHEBA 
measurement period. 
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Figure 6.  Cloud coverage by month depicting number of occurrences for each 
cloud coverage level in tenths. 

Figure 7.  Cloud coverage by month depicting number of occurrences for
each cloud coverage level in tenths. 
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Figure 8.  Cloud coverage by month depicting number of occurrences for 
each cloud coverage level in tenths. 

Figure 9.  Histogram of cloud coverage for all cloud heights by month 
and tenths for entire SHEBA measurement period. 
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The occurrences of low clouds, considered to be those at less than 5000 ft 

(1524 m) as measured to the cloud base-height, have a slightly different 

distribution (Figure 10).  In the winter months there are fewer instances of low 

clouds than in spring and summer months. These values are close, though lower 

in winter and higher in summer compared to Makshtas et al. (1998). 

 

 

The above results can be misleading however, as there are far fewer 

instances of clouds, regardless of height, in the winter months as demonstrated 

above. When the percentage of readings where clouds are present is compared 

with the percentage of low clouds, there is a different distribution (Figure 11).  

Figure 11 illustrates only those readings in which there was some cloud 

coverage registered. Completely clear days are not included in this graph.  

Figure 10.   Cloud coverage by month for entire SHEBA measurement cycle, 
depicting number of cloud measurements taken and those that were low 
clouds (cloud base height less than 5000 feet or 1524 meters). 
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Figure 11 shows that when low clouds were present, at least 78% of the readings 

showed overcast skies of at least 9 tenths coverage (Figure 11).  In other 

 

words, when low clouds were present at all, the skies were predominantly 

overcast, regardless of how many days during a month were clear of clouds, or 

the month of the year.  This matches the visual observations of those present 

during the collection of the SHEBA data and personal experience from those who 

have been in the Arctic region in this area. Table 2 gives the number and 

percentage of observations for low-level cloud in several categories of cloud 

fraction. 

Division of the cloud heights into four groups, depicting the distribution of 

cloud bottom height, shows the relative occurrences for low, mid-level, high and 

very high clouds against the frequency of clear skies for the entire measurement 

period (Figure 12). This graph also shows that low clouds occur more than 

Figure 11. Percent of low cloud coverage in non-clear conditions (defined as 
cloud coverage greater than 0). 
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twice as often as clear skies with mid and upper level clouds being the least 

observed base cloud height. 

 

Total Counts <0.3 0.3-0.499 0.5-0.699 0.7-0.899 0.9-1.0 No Data
January
    Count 713 413 5 10 24 261 0
Percent(low) 44.2 57.9 0.7 1.4 3.4 36.6 0.0
February
    Count 414 251 2 7 11 143 0
Percent(low) 41.8 60.6 0.5 1.7 2.7 34.5 0.0
March
    Count 713 350 6 14 17 326 0
Percent(low) 52.5 49.1 0.8 2.0 2.4 45.7 0.0
April
    Count 690 264 8 9 21 388 0
Percent(low) 62.3 38.3 1.2 1.3 3.0 56.2 0.0
May
    Count 713 217 5 10 7 474 0
Percent(low) 69.8 30.4 0.7 1.4 1.0 66.5 0.0
June
    Count 690 182 7 24 21 456 0
Percent(low) 74.5 26.4 1.0 3.5 3.0 66.1 0.0
July
    Count 713 252 16 9 25 411 0
Percent(low) 73.5 35.4 2.2 1.3 3.5 57.6 0.0
August
    Count 713 82 3 9 10 609 0
Percent(low) 90.9 11.5 0.4 1.3 1.4 85.4 0.0
September
    Count 690 157 6 3 13 511 0
Percent(low) 78.7 22.8 0.8 0.4 1.9 74.1 0.0
October
    Count 22 0 0 0 1 21 0
Percent(low) 100.0 0.0 0.0 0.0 4.5 95.5 0.0
November
    Count 668 285 7 16 13 347 0
Percent(low) 60.0 42.7 1.0 2.4 1.9 51.9 0.0
December
    Count 713 486 6 11 16 194 0
Percent(low) 32.5 68.2 0.8 1.5 2.2 27.2 0.0

Cloud Coverage (low clouds <5000 ft) by month and coverage in tenths

 

Table 2.  Cloud coverage in count and percent for low clouds.  Each count is one reading of cloud 
base height by ceilometer or LIDAR for that month.  Total count is the number of total 
readings, regardless of amount of coverage. 
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Again, the limitations of the SHEBA data are that the cloud measurements 

are restricted to coverage and cloud base height. There are no data available 

giving cloud thicknesses; therefore multiple levels of clouds are not accounted for 

in theses graphs and tables. It is quite likely that mid and upper level clouds were 

present in many instances but were not registered due to the overcast nature of 

the skies at the low cloud level.  

Of concern is that the SHEBA drift camp was drifting over a large area 

during the measurement period, and that the results may not reflect any specific 

area accurately.  In Makshtas et al. (1998), the area of coverage includes much 

of the SHEBA area, and some of the surrounding areas (Figures 1 & 13).  

Figure 12.   Histogram of the number of occurrences of clouds by cloud 
height. 
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Because the results presented here are consistent with their results, the 

SHEBA data appears to be representative of a large area of the western Arctic 

that is away from continental and open-ocean influences. Since the nature of the 

surface tends toward homogeneity on large scales, with snow and ice in winter 

and melt ponds, leads and fractures appearing in summer throughout much of 

the central basin, it is reasonable to expect that measurements will be applicable 

to a larger area than that immediately surrounding the instruments performing the 

measurements.  

B.  LONGWAVE RADIATION 
A time series of the net longwave radiation for the 11-month SHEBA 

measurement period shows many rapid jumps associated with variations in sky 

conditions (Figure 14).  Sky conditions often changed from cloudless to 

completely overcast or vice versa from one hour to the next.   

Figure 13.  From Makshtas et al., (1998), depicting area of study. Limits 
of study  are bounded by dashed line.  SHEBA study area, 
shown in Figure 1., was in much the same area. 
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The convention of signs in this study is such that a positive net radiation 

indicates a surface heat loss (i.e. positive upwards).  Mean net longwave 

radiation, LW  for the entire period was 18.91 W/m², which included all sky 

conditions.  Completely overcast skies occurred 67.9% (4,026 hours) of the time 

with a mean LW  of 10.06 W/m².  Completely clear skies occurred 19.6% (1,159 

hours) of the time with a mean LW  of 44.71 W/m².  Partially cloudy skies 

occurred 12.5% (742 hours) of the time with a mean LW  25.13 W/m².    

These net longwave radiation values are significantly lower than those 

reported during the Antarctic ANZFLUX experiment, which took place in the 

austral winter (Guest, 1998).   For each sky condition, ANZFLUX measurements 

reported nearly twice the amount recorded here even though the relative 

frequency of the sky conditions was very similar (Guest, 1998).   

An examination of the net longwave radiation flux by sky condition shows 

the distribution of the net flux (Figure 15).  Of all clear sky readings, 84.5% 

occurred during the cool half of the year, (October-April), with an average LW  of 

40.60 W/m2.  The remaining 15.5% of clear sky readings occurred in the warm 

half of the year, (May-September), and had an average LW  of 67.04 W/m2.  For 

completely overcast readings, 47.7% occurred in the cool half of the year with an 

average LW  of 12.81 W/m2 and 52.3% occurred in the warm half with an 

average LW  of 7.56 W/m2.  Of those readings in which the sky was between 

clear and completely overcast, 55.9% occurred in the cool half an averaged LW  

of 28.58 W/m2 and 44.1% occurred in the warm half with an average LW  of 

20.75 W/m2.   

Even comparing only the flux averages for the cool half of the year with 

those reported for ANZFLUX during the austral winter, the net flux is still only 

approximately half of those southern hemisphere averages (Guest, 1998). 

Differences between the net values reported here and those reported 

during ANZFLUX are not an unexpected result.  For comparison, ANZFLUX 

gathered their measurements over the Weddell Sea in the Antarctic (Guest, 

1998).  The Weddell Sea has a very different character, despite them both being 
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in polar regions, than the SHEBA area in the Beaufort Sea.  The Weddell Sea is 

characterized by warmer waters just below the surface, contributing thermal 

energy to the surface of the water and inhibiting the formation and thickening of 

sea ice there.  The Beaufort Sea, in the SHEBA measurement area, is an area of 

thick ice development and year round ice coverage in many areas (Guest, 1998 

& Persson, 2001).   

In the height of cloud bases, there is a difference in these areas as well.  

As was discussed in the cloud chapter, the cloud bases in the Beaufort Sea tend 

to be low (Makshtas et. al., 1998).  In the Weddell Sea, especially in winter, the 

cloud bases tend to be higher than those recorded in the Arctic (Guest, 1998).  

Since the downward component of the longwave radiation depends on 

temperature, a higher cloud base results in lower temperatures, decreasing the 

downward longwave radiation.  Given this relationship, it is natural to expect a 

greater positive net longwave radiation, indicating a greater surface heat loss in 

the Antarctic than in the Arctic.  

While an in depth explanation of the differences between these two areas 

is not feasible here, the above differences do lead to the expectation that 

measurements of many meteorological variables as well as net longwave and 

shortwave radiation totals would be significantly different.  Other possible 

explanations, proof of which is beyond the scope of this paper, include the 

potential for greater aerosols in the Arctic.  Whether in the form of diamond dust 

or pollution from North America and the Russian states, this may account for an 

artificial increase in downward longwave radiation values resulting in a net lower 

longwave radiation flux (Overland and Guest, 1991).  
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Figure 14.  Time series of the net measured radiation flux (W/m2).  January 1, 
1998 is given the Julian date of 366. 

Figure 15.  Net longwave radiation flux by cloudiness level.  Net flux is calculated by 
longwave upward-downward.  Partly cloudy skies have cloudiness 
percentages >0% and <100%. 
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The correlations between cloud cover, air temperature and downward 

longwave radiation, LW↓, lend themselves to inclusion in parametric equations 

(Guest, 1998).  This correlation is well depicted through a scatter plot of surface 

temperature expressed as blackbody radiation and LW  (Figure 16).   All 

measurements were divided into cases in which the sky was completely free of 

clouds, completely overcast and skies with cloudiness fractions between the two 

extremes for comparison with the results of the parametric equations tested in 

this study.  

At the lower temperature and longwave downward radiation values, there 

is a great deal of overlap (Figure 16).  This indicates that the impact of cloud 

coverage means less at the lowest temperatures.   

 

 

Figure 16.   Surface temperature expressed as blackbody radiation (σTair
4) vs. 

measured longwave radiation for completely clear skies, completely 
overcast skies and partly cloudy skies. 
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1. Clear Sky Downwelling Longwave Radiation 

 
Fifteen published parametric formulas for longwave downwelling radiation 

under clear sky conditions were tested with the SHEBA dataset (Table 3).  In the 

tables, statistical entries for the “Mean Error” refer to the mean of all 1,159 

differences between the predicted and measured values for longwave downward 

radiation, LW↓, and represents bias errors.  “Standard Deviation” refers to the 

standard deviation of the difference between observed and predicted values and 

represents scatter or random-like errors.  “Total Error” is the root-mean squared 

(rms) value of the differences and includes both bias-type and random-type 

errors (Table 4).   
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Table 3.  Various parameterizations for clear sky downwelling longwave 
radiation. 
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Clear Sky LWd - All Seasons
1159 points
Efimova 1961 0.949 8.928 8.978
Maykut and Church 1973 7.325 8.708 11.379
Marshunova 1966 -7.108 10.287 12.504
Idso 1981 -10.019 9.231 13.623
Ohmura 1981 -16.277 8.964 18.581
Idso and Jackson 1969 21.140 14.662 25.727
Guest 1998 (*constant) -24.536 11.017 26.896
Andreas and Ackley 1982 -25.951 9.033 27.478
Guest 1998 (e ) -23.373 22.679 32.567
Guest 1998 (-constant) -34.070 12.819 36.402
Guest 1998 (RHi) -33.485 15.444 36.875
Guest 1998 (RH) -33.887 15.331 37.194
Swinbanks second 1963 -36.326 10.664 37.859
Zillman 1972 -38.409 10.303 39.767
Swinbanks first 1963 -79.183 19.943 81.656

Mean 
Error

Standard 
Deviation Total Error

 

 
Of the fifteen formulas, there was a great deal of variation in the total 

error, with Maykut & Church (1973), Efimova (1961) and Marshunova (1966) 

having the least total error.  Some of the formulas used in this paper were not 

formulated with data from the Arctic, specifically those from the recent ANZFLUX 

experiment in the Antarctic (Guest, 1998) and those taken from Zillman (Zillman, 

1972).  The relative performance of these equations with data from the Arctic 

was of interest for this study and, as shown in Table 4, their performance was of 

similar, or better, accuracy than some Arctic derived formulas.  

The three best performing parametric formulas were all formulated for the 

Arctic.  Scatter error patterns for each of the three best formulas resemble each 

other closely, as do their error statistics (Figure 17 & Table 4).  Efimova’s (1961) 

and Marshunova’s (1966) formulas, which were the first and third best of all 

clear sky parametric formulas, used vapor pressure (e) along with blackbody 

Table 4.  Mean Error, Standard Deviation and Total Error between measured longwave 
radiation and parametric equations for completely clear skies. Bold indicates the 
best three formulas. Negative values indicate predicted values were less than 
measured values. 
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temperature in the formula.  Maykut & Church’s (1973) used only a simple 

numerical modifier of temperature and was almost equally accurate in predicting 

LW .  All equations assumed knowledge that skies were completely clear of 

clouds. 

A time series of those three formulas shows how close these formulas 

predicted the actual measured LW↓ on a daily basis throughout the 

measurement cycle (Figure 18).  Graphs of the scatter plots for error and the 

time series graphs for all fifteen clear sky parametric formulas are found in 

Appendix A (Figures A1-A8). 
 

 
 

Figure 17.  Measured and parameterized LW↓ (LWd) from the three 
most accurate parametric equations during completely clear 
skies with 1159 hourly points. 
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2. Overcast Sky Longwave Downwelling Radiation 
During periods in which the cloud coverage was 100%, (completely 

overcast), measured longwave downwelling radiation was compared with ten 

previously published parametric formulas (Table 5).  A total of 4,026 points out of 

5,927 total points represented overcast periods, and were included in this portion 

of the study.  

Of the ten formulas tested, the four most accurate were Maykut & Church 

(1973), Key et al. (1996), Guest (using RH) and Guest (using RHi) (1998) (Figure 

19).  Unlike the clear sky parametric equations, there wasn’t a great deal of 

variation in the accuracy of the formulas (Tables 4 & 6). Comparison of the “Total 

Error” for both cases describes these differences.  

 

Figure 18.  Time series showing the predicted LW  and the measured 
LW  for the three best performing parametric equations. 
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Overcast Sky LWd 
4026 Points
Key et al. 1996 2.660 14.399 14.643
Guest 1998 (RHi) -3.580 14.203 14.647
Guest 1998 (RH) -3.463 14.490 14.898
Maykut & Church 1973 0.308 15.717 15.720
Guest 1998 (e ) -8.417 14.203 16.510
Zillman 1972 7.089 15.049 16.635
Guest 1998 (- constant) -7.710 14.939 16.811
Guest 1998 (* constant) -7.598 16.390 18.065
Marshunova 1966 -10.278 17.403 20.212
Parkinson & Washington 1979 13.244 23.784 27.223

Mean 
Error

Standard 
Deviation Total Error

 
  

Table 5.  Parametric equations tested for overcast skies. 

Table 6.  Mean Error, Standard Deviation and Total Error between measured 
longwave radiation and parametric equations for occurrences of completely 
overcast skies.  Bold indicates the best four parametric formulas. 
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Of note is that the Guest (1998) equations were formulated with data from 

the Antarctic while the other two were created from Arctic data sets. Guest’s 

formulas use the relative humidity with respect to ice or the relative humidity 

along with a modifier to the air temperature (Guest, 1998).  Key et al. (1996) uses 

e with air temperature.  Of the four best, only Maykut & Church’s uses only a 

modifier of air temperature near the surface.  All formulas assumed knowledge 

that the cloud coverage was completely overcast. 

With all the formulas tested one might expect that the more variables that 

are included, the more accurate the equation will be.   However, this wasn’t the 

case under overcast skies.  The improvement in skill of the equations using 

variables other than surface temperature and cloud cover did not result in a 

significant improvement in accuracy.  The difficulties associated with measuring, 

on a consistent basis, any variable near the surface in the Arctic using remote 

means makes many of the parametric formulas unwieldy for use with a model.  

For this reason, Maykut & Church’s (1973) equation, which uses only a linear 

Figure 19.  Most accurate parametric equations for LW  during 
completely overcast skies with 4026 hourly points. 
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modifier of surface temperature, remains the best in terms of accuracy and ease 

of use with models. 

This is especially true in view of the very small differences between the 

accuracies of the best four formulas regardless of the number of measured 

variables included in the formula.  A time series showing the predicted and 

measured LW↓ throughout the measurement cycle for these formulas depicts the 

successful daily predictions they were capable of (Figure 20). A full set of graphs 

depicting the error scatter plots and the time series graphs of the overcast 

measurements for all eleven parametric equations is included in Appendix A 

(Figures A9-A14).   
 

 

    

Figure 20.  Time series of the four best parametric formulas under overcast 
conditions.  Each graph has the predicted LW  (red +) and the measured 
LW  (blue *) for each hourly measurement. 
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3.  Partly Cloudy Sky Longwave Downwelling Radiation 
Five formulas were evaluated testing with partly cloudy skies (Table 7).  

For purposes of this study, any cloud coverage percentage greater than zero, but 

less than 100% is termed as partly cloudy.  In total, 742 out of 5,927 hourly 

measurements were classified in this category.  Percentages of cloud cover 

ranged from 0.4% to 99.5%.   

The variation in the prediction accuracy of the tested equations was not 

great (Table 8).  The range of accuracies was more like that of overcast rather 

than clear skies. 

The best three performing of the formulas were Maykut & Church (1973), 

Efimova (with the Jacobs cloud correction as recommended by Key et. al. 1996) 

(1961) and Marshunova (1966) (Table 5).  All three were formulated for the 

Arctic. Scatter of the error for the three best give an indication of how well the 

formulas predict the measured LW↓ overall, but that individual readings may be 

more than 50 W/m2 in error (Figure 21).  Examination of the scatter plots and 

time series shows that, like the overcast data, the spread of error is relatively 

evenly distributed on both sides of zero (Figures 21 & 22).  The size of the error, 

as shown in the standard deviations, is greater than that recorded for overcast 

skies (Table 5).  This is likely due to the wide range of values that fall into the 

partly cloudy range and the fact that an entire yearly cycle passed during the 

measurements. 

For the three best formulas, only Maykut & Church’s (1973) equation uses 

only air temperature, (expressed as a blackbody radiation), and a percentage of 

cloud cover.  This is precisely the same result arrived at for overcast and clear 

skies. Full sets of graphs showing the scatter error plots and time series graphs 

for all five parametric is included in Appendix A (Figures A15-A18).  
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Party Cloudy Sky Longwave
742 points
Marshunova 1966 -6.029 19.474 20.386
Efimova 1961 (with Jacobs 
cloud correction from Key et. al. 
1996) 5.579 20.213 20.969
Maykut & Church 1973 -3.702 21.644 21.958
Zillman 1972 -4.006 26.118 26.423
Parkinson & Washington 1979 15.549 29.877 33.681

Mean 
Error

Standard 
Deviation Total Error

 

    
 

Table 7.  Parametric equations for partly cloudy skies. 

Table 8.  Mean Error, Standard Deviation and Total Error between 
measured longwave radiation and parametric equations for 
occurrences of partly cloudy skies.  The three best of the 
formulas are in bold. 
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Figure 21.  Scatter plot of error for three best prediction equations for 
LW  under partly cloudy sky conditions. 

Figure 22.  Time series of predicted and measured LW  for the three 
best prediction equations under partly cloudy skies. 
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C.  SHORTWAVE RADIATION 
A time series of net shortwave radiation, SW , throughout the 

measurement period shows the annual cycle of solar radiation for this Arctic 

region (Figure 14).  Mean SW  for the period for clear sky conditions was –17.76 

W/m2.  Completely overcast skies had a mean SW  of –23.33 W/m2.  Under 

partly cloudy conditions, in which the cloud percentage ranged from 0.4% to 

99.5%, the mean SW  was  –46.49 W/m2.  These net shortwave radiation means 

included the polar night period when no shortwave radiation was included in the 

mean.   

Under partly cloudy conditions, the cool half of the year (October-April) 

mean SW  was  –8.03 W/m2 and the warm half (May-September) was –75.80 

W/m2.  For clear skies the cool half mean SW  was  –2.86 W/m2 and the warm 

half was –83.40 W/m2.  During completely overcast conditions, the mean SW  

was  –5.85 W/m2 during the cool half and –41.52 W/m2 for the warm half.  

Because the amount of radiation reaching the surface depends on the 

angle of the rays, it is natural that there be a strong correlation between the solar 

zenith angle and SW↓ (Figure 23).  It is clearly seen that there is a strong line of 

best fit for SW↓ under clear skies, which lies along a line at the top of all values 

(Figure 23).  Under overcast skies there is a great deal of scatter that increases 

as the angle of the sun above the horizon decreases, meaning the sun shining 

more overhead (Figure 23).  As the sun rises higher in the sky, the more direct 

the path the light takes through the layers of clouds, thereby being less affected 

by the scattering effects of the clouds.  

Figure 24 depicts the relationship between the SW↓ and the cloud 

amount.  It illustrates the rapidly changing nature of the sky conditions throughout 

the measurement cycle.  Though there is light visible after the sun has passed 

the 90° angle, (i.e. sunset), any solar zenith angle greater than 90° was omitted 

from use in the parametric equations which follow.  The solar constant, s0, used 

in the parametric equations was 1367 W/m2 (Garratt, 1992).   
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In a world without an atmosphere or any matter between the sun and the 

surface, calculation of the downward shortwave radiation could be accurately 

calculated for any time and location.  In the presence of our atmosphere and its 

clouds, aerosols and wind blown debris, the problem is much more complicated.  

Each of the parametric equations tested required knowledge of the latitude and 

longitude as well as a time in order to calculated the solar zenith angle.  Some of 

the equations required other variables such as e (vapor pressure) while others 

make only a numerical modification of the solar constant using the solar zenith 

angle. 

 

 

Figure 23.  Scatter plot of the angle of the sun above the horizon and 
measured downward shortwave radiation. 
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1.       Clear Sky Downwelling Shortwave Radiation 
Nine previously published parametric equations were tested using the 

SHEBA data set (Table 9).  Error parameters are the same as those described 

for longwave radiation tables.  Like the results for clear sky LW↓, SW↓ error 

statistics showed a great deal of variation (Table 10).  

Figure 24.   Time series of the measured SW  (W/m2) by sky condition. 
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Clear sky downward SW

Zillman 1972 -0.665 21.716 21.726
Shine 1984 -4.230 23.552 23.929
Bennett 1982 -3.013 25.384 25.562
Guest (pers. com.) (*constant) 1.710 27.274 27.327
Moritz 1978 13.797 38.940 41.311
Guest (pers. com.) (e) -24.106 42.658 48.998
Guest (pers. com.) (RH) -19.411 46.377 50.275
Guest (pers. com.) (quadratic) -35.257 61.027 70.479
Guest (pers. com.) (RHi) 36.498 68.968 78.030

Mean 
Error

Standard 
Deviation Total Error

 

  

Table 9.    Parametric equations for shortwave radiation under clear 
skies. 

Table 10. Mean Error, Standard Deviation and Total Error between 
measured longwave radiation and parametric equations for 
occurrences of clear skies.  The three best formulas are in bold. 
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The three most accurate predictors were Zillman (1972), Shine (1984) and 

Bennett (1982).  Scatter error plots for the three best formulas show very similar 

patterns, with Zillman’s (1972) remaining most linearly about the zero line (Figure 

25).  Both Shine (1984) and Bennett (1982) begin to have greater magnitude 

errors, bending away from the zero line, at higher values of SW↓ (Figure 25). 

This bending away from the zero line may give the impression of a lesser 

overall accuracy for the equations, however an examination of their ‘Total Error’ 

shows that there is less than 4 W/m2 difference in error between the top three 

equations.  It is only at the extreme values of SW↓ during summer that the error 

begins to be greater (Figure 26).    

 

   

Figure 25.  Scatter error plots for the three best SW↓ (SWd) parametric 
formulas under clear skies.  Error is calculated from predicted SW  - 
measured SW . 
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Of the three best predictors, both Zillman (1972) and Shine (1984) 

required e for the calculations, which significantly complicates the use of these 

equations without on site measuring instruments.  Only Bennett (1982) requires 

only clear sky condition in order to achieve a predicted value.  While the errors 

increase with increasing SW↓, the overall error is not significantly greater than 

the other two best predictors, making Bennett’s (1982) equation the most 

desirable for use in prediction models. 

Not all of the parametric equations tested were exclusively formulated for 

Arctic situations, specifically those formulated by Guest (Weddell Sea) and 

Zillman, which was for general Antarctic applications.  Despite this, the 

performance of Zillman’s equation was the best in terms of accuracy. 

Plots of the scatter error and time series for all nine parametric equations 

are located in Appendix A (Figures A19 to A27).   

2.     Overcast Sky Shortwave Downwelling Radiation 
For skies with 100% cloud cover, again using the term overcast, there 

were only three previously published equations that could be tested (Table 11).  

Figure 26.  Time series of predicted (blue *) and measured (red +) for the 
three best parametric formulas under clear skies. 
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In addition, a simple linear best fit equation was formulated to ascertain if the 

total error value could be improved upon from the tested equations (Table 12).   

Of the three tested equations and one best fit to the data, there was not a 

large variation in the total error and no significant improvement made by creating 

a best fit to the data (Table 12).  As shown, Guest’s (pers. com.) quadratic 

parametric formula was the best of all predictors by a small margin, even over a 

linear one fitted precisely to the data.  Of interest is that Guest’s equation was 

created using data from the Antarctic (Guest, pers. com.).   Guest’s formula uses 

no other measured variable than knowledge that the skies are completely 

overcast, making it the simplest as well as the most accurate of the formulas.  

Bennett’s (1982) formula, which ranked as the third most accurate of the 

equations, also required only knowledge of sky condition but was 15 W/m2 less 

accurate for all tested points.  
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Overcast Sky downward SW

Guest (pers. Com.) (Quadratic) -16.143 55.518 57.817
Bryant (Linear Fit to Data) -0.004 58.407 58.407
Bennett 1982 24.202 68.835 72.966
Guest (pers.com.) (* constant) 26.089 69.967 74.673

Mean 
Error

Standard 
Deviation Total Error

 

Table  11.  Parametric equations for shortwave downward radiation 
under overcast skies. 

Table 12.  Downward shortwave parametric equation error statistics.  
Bold indicates  best performers. 
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Scatter plots of error and a time series for the formulas for Guest’s 

(pers.com.) quadratic and the best fit created for this data show the variations in 

the accuracy of the parametric formulas (Figure 27).  The best fit for this data set 

was created using a simple polynomial, which was then reduced to a single 

constant multiplied by the solar constant modified by the solar zenith angle.  

While the best fit lost some accuracy in the reduction process, it was reduced in 

order to be linear like the simplest of the parametric equations.   

 

 

A time series of the two best performing equations shows a similar pattern 

to that observed under clear skies with the greatest error occurring when SW↓ 

(Figure 28).  The difference between the linear fit created for this data and the 

quadratic equation results from Guest (pers.com.) is apparent in the time series 

(Figure 28).   

 

Figure 27.  Scatter error plots for best parametric equation and a best fit 
(linear) for shortwave downward radiation under overcast skies. 
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Scatter error plots and time series diagrams for all four parametric 

equations and the best fit are included in Appendix A (Figures A28-A32). 

3.        Partly Cloudy Sky Shortwave Downwelling Radiation 
For partly cloudy skies in which the hourly averaged cloud fraction ranged 

from 0.4% to 99.5% there were only two parametric equations that were tested 

plus a quadratic best fit to these data (Table 13).  Error statistics for these 

equations showed a similar range of error to their longwave counterparts though 

the overall magnitude of the error was greater (Table 14).   

Both of the parametric equations tested required only knowledge of sky 

condition in addition to sun angle in order to be used.  A best fit to the data was 

created using a polynomial that wasn’t reduced to a simple linear multiplier in 

order to obtain comparative accuracies.  Though it was fit precisely to this data 

set, it didn’t perform significantly better than Bennett’s (1982) equation (Table 8 & 

Figure A26).  A time series of the two best performing equations depicts a similar 

pattern to that seen under clear and overcast conditions, with the greatest values 

of SW↓ having the greatest error (Figure A27).   

 

 

 

Figure 28.  Time series of downward shortwave for the best parametric 
equation and a linear best fit to the data under overcast skies. 
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Partly Cloudy Sky SWd

Bryant (Best Fit) 0.000 60.786 60.786
Bennett 1982 17.640 68.906 71.128
Guest (pers.com.) (Quadratic -29.458 72.567 78.318

Mean Error Standard 
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In part, the greater error can be attributed to the wide range of cloud 

fraction values included under partly skies.  In none of the equations is the 

thickness of clouds or multiple layers accounted for, both of which will affect the 

amount of downward shortwave radiation significantly.  

 
 
 
 
 
 
 
 

Table 13.  Parametric equations for shortwave radiation under partly 
cloudy skies. 

Table 14.  Error statistics for parametric shortwave downward radiation 
equations under partly cloudy skies and a quadratic best fit to the data. 
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IV.  CONCLUSIONS 

Cloud coverage and base height reflected a distinct U-shaped distribution 

with a greater percentage of overcast skies than clear, consistent with previously 

published surveys of cloud coverage in the area (Makshtas et al., 1998).  

Wintertime cloud coverage shows a more even distribution becoming particularly 

even during December and January.  Overcast percentages gradually increaseto 

a peak in August and September (Figures 5-8).   

For each hourly average in which clouds were detected during the hour, 

the base height of the clouds was less than 1524 meters for most months (Table 

2 & Figure 12).   In cases in which the cloud bases were low, skies were overcast 

(9 tenths or greater coverage) 78% of the time, with fewer cases of low clouds 

and overcast skies in winter (Figure 11).   

Net longwave radiation values were significantly less (i.e. less surface 

cooling) than recent values for the Weddell Sea (Guest, 1998).  The thicker and 

more constant ice cover in the Arctic, as compared with the subsurface heat 

sources in the Antarctic and a greater aerosol burden, are possible sources for 

this difference.   

The difference in the performance of equations formulated for the Arctic 

and the Antarctic was greater during clear skies for both longwave and 

shortwave downward radiation.  Antarctic formulas had better error statistics 

when skies were completely overcast in parameterizing the downward flux for 

this Arctic data set.   

In consistently under-predicting the downward radiation flux under clear 

skies for both longwave and shortwave radiation, the expectation is for lower 

downward radiation values in the Antarctic.  Under clear skies, where cloud 

height is no longer a factor, several explanations have been put forward in recent 

publications.  The presence of a greater concentration of aerosols, blowing 

particles or snow, or diamond dust in the Arctic may be sources of additional 

downward radiation.  
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Fifteen parametric equations were tested for acquiring downward 

longwave radiation against the SHEBA dataset.  Of the fifteen, the three best 

were formulated for Arctic conditions, but only Maykut & Church’s (1973) 

required no other meteorological variable in the equation except temperature.  

Given the close range of skill shown in the top three performing equations, 

Maykut & Church’s (1973) equation is the best equation according to this data 

set.   

Eleven equations were tested for completely overcast skies, and five 

tested for partly cloudy skies.  For both of these sky conditions, Maykut & 

Church’s (1973) equation was in the top performers and required no other 

variables, unlike any other top performing equation.  For longwave downward 

radiation, for any cloud coverage, Maykut & Church’s (1973) is recommended as 

the most accurate and simplest to use.   

Shortwave downward radiation parametric equations were tested against 

the SHEBA data set with nine clear sky, four overcast sky and two partly cloudy 

formulas.  Under clear sky conditions, Bennett (1982) was the only equation in 

the top three that required no meteorological variables at all other than the cloud 

fraction, though Zillman (1972) was the best in terms of accuracy.  The 

differences between the skill levels of Zillman (1972) and Bennett (1982) were 

insignificant so Bennett (1982) is recommended as the best under clear sky 

conditions. 

Under overcast conditions, Guest’s (pers. com.) formula performed the 

best of the four formulas and a simple linear fit to the data didn’t perform with any 

greater accuracy than Guest’s (pers. com.) quadratic equation.  Bennett (1982) 

did not perform as well under these conditions as Guest’s (pers. com.).  Guest’s 

(pers. com.) quadratic formula was formulated for Antarctic conditions.  

Under partly cloudy skies only two previously published equations could 

be tested with the SHEBA data with Bennett (1982) performing the best under 

these conditions.  A quadratic fit to the data was created for reference and it’s 
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performance, though obviously better in mean error, did not have a significantly 

better total error due to a similarly large standard deviation.  

Given that Bennett (1982) performed best under clear and partly cloudy 

conditions and second best under overcast conditions, and also required no 

meteorological variables, this one is recommended for use with applications in for 

all sky conditions in the Arctic.  If a choice of equations by cloud coverage is 

feasible, then Guest’s (pers. com.) quadratic is best for use in completely 

overcast conditions. 
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APPENDIX A.  GRAPHS OF TESTED EQUATIONS 

 

Figure A1.  Scatter error diagrams for LW  under clear skies. 

 

Figure A2.  Scatter error diagrams for LW  under clear skies. 
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Figure A3.  Scatter error diagrams for LW  under clear skies. 

 

 

Figure A4.  Scatter error diagrams for LW  under clear skies. 
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Figure A5.  Time series diagrams for LW  under clear skies. Red + show  

measured LW , blue * depict results of parametric equation. 

 

 

Figure A6.  Time series diagrams for LW  under clear skies. Red + show  

measured LW , blue * depict results of parametric equation. 

 

250 
h 

200 

a)Swinbank*1 1963 
T- 

00 400 500 600 700 
Julian Date 

c)Zillman1972 

00 400 500 600 700 
Julian Date 

b)Swinbank»21963 

7 1 TT^- 

*t ♦ 
.«■ 

.*  » 

300 400 500 600 700 
Julian Date 

dIMaykutS Church 1973 

300 400 500 600 700 
Julian Date 

e) Ohmura 1981 f) Guest 1998 (-const) 

400 500 600 700 
Julian Date 

g| Guest 1998 |-const) 

300 400 500 600 700 
Julian Date 

300 400 500 600 700 
Julian Date 

h) Efimova 1961 

~ 

' I*"* 

300 

250 
i 

200 

: 150 

100 

50 
300 400 500 600 700 

Julian Date 



  52 

 

 

Figure A7.  Time series diagrams for LW  under clear skies. Red + show  

measured LW , blue * depict results of parametric equation. 

 

 

Figure A8.  Time series diagrams for LW  under clear skies. Red + show  

measured LW , blue * depict results of parametric equation. 
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Figure A9.  Scatter error diagrams for LW  under overcast skies. 

 

 

Figure A10.  Scatter error diagrams for LW  under overcast skies. 
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Figure A11.  Scatter error diagrams for LW  under overcast skies. 

 

 

Figure A12.  Time series diagrams for LW  under overcast skies. Red + show  

measured LW , blue * depict results of parametric equation. 
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Figure A13.  Time series diagrams for LW  under overcast skies. Red + show  

measured LW , blue * depict results of parametric equation. 

 

 

Figure A14.  Time series diagrams for LW  under overcast skies. Red + show  

measured LW , blue * depict results of parametric equation. 
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Figure A15.  Scatter error diagrams for LW  under partly cloudy skies. 

 

 

Figure A16.  Scatter error diagrams for LW  under partly cloudy skies. 
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Figure A17.  Time series diagrams for LW  under partly cloudy skies. Red + show  

measured LW , blue * depict results of parametric equation. 

 

 

Figure A18.  Time series diagrams for LW  under partly cloudy skies. Red + show  

measured LW , blue * depict results of parametric equation. 
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Figure A18.  Scatter error diagrams for SW  under clear skies. 

 

 

Figure A19.  Scatter error diagrams for SW  under clear skies. 
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Figure A20.  Scatter error diagrams for SW  under clear skies. 

 

 

Figure A21.  Time series diagrams for SW  under clear skies. Red + show  

measured SW , blue * depict results of parametric equation. 
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Figure A22.  Time series diagrams for SW  under clear skies. Red + show  

measured SW , blue * depict results of parametric equation. 

 

 

Figure A23.  Time series diagrams for SW  under clear skies. Red + show  

measured SW , blue * depict results of parametric equation. 
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Figure A24.  Scatter error diagrams for SW  under overcast skies. 

 

Figure A25.  Time series diagrams for SW  under overcast skies. Red + show  

measured SW , blue * depict results of parametric equation. 
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Figure A26.  Scatter error diagrams for SW  under partly cloudy skies. 

 

Figure A27.  Time series diagrams for SW  under partly cloudy skies. Red + show  

measured SW , blue * depict results of parametric equation. 
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