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The research described in this report was performed during the 2000-2001 fiscal years 
as part of an effort supported by the Office of Naval Research funding document numbers 
N0001401WR20168 and N0001400WR20063 to improve radar classification and 
identification capabilities for noncooperative airborne targets. This continues to be a 
primary goal of radar research programs and considerable effort has been expended within 
the last few decades. The accuracy of any radar imaging method depends in a sensitive 
way upon available radar resolution and signal-to-noise ratio. 

The current work describes an algorithm for determining the position and strength of 
radar target scattering centers from low resolution and noise corrupted data. The technique 
is remarkably stable against very poor signal-to-noise ratios and offers good super 
resolution capabilities. 
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INTRODUCTION 

In the past few decades, considerable attention has been paid to the problem of obtaining 
accurate and high resolution radar images of complex targets (cf, References 1 through 3, and 
references cited therein). When the ultimate goal is radar-based target recognition, however, even 
high quality radar images generally contain enough erroneous and surplus information to prevent 
the use of practical template-based matching algorithms (References 4 and 5). In this situation, 
the conventional heuristic remedy truncates these images into a small set of basic image "features," 
including points, plates, dihedrals, single and doubly curved surfaces, edges, and corners (References 
2 and 4 through 7). In noisy and data-limited environments, practical considerations preclude 
distinguishing these scattering mechanisms (References 1, 6, and 8), and the most common set of 
image features is formed from estimates of the position and strength of target scattering centers 
(assumed to behave as noninteracting point subtargets). 

But, when the radar image is of low resolution and contaminated with noise-induced artifacts, it 
can also be very difficult to accurately estimate either the position or strength of the scattering 
centers. Of course, this estimation error is directly related to the efficacy of template-based 
target identification methods and can preclude such systems from application in many real-world 
environments for which radar is the only otherwise viable sensor. 

Below, we will briefly review the problem of radar image formation. This review will serve to 
define the problem and establish notational conventions. Using this framework, we will then describe 
a method for accurately estimating the position and strength of target scattering centers directly 
from measured radar data. Examples of dependence on noise, resolution, and scatterer number 
assumptions are also presented. 

RADAR DATA AND THE LINEAR SCATTERING MODEL 

For notational simplicity, we consider a monostatic scattering configuration in which the radar 
transmitter is co-located with the receiver. Denote by sT(t) the signal received by the radar at time 
t and let s^«.^) be the response signal of the target to an incident interrogating signal sinc(t). The 
original radar signal processing problem is that of optimal detection in (additive) noise so that the 
received data are of the form: sr(t) = sscatt(t) + n(t), where n(t) is a random noise process. 

In conventional radar systems, "optimal detection" has been accomplished through maximum 
likelihood methods that compare sT(t) to an idealized family of signals predicted using a model M. 
We assume that M is unique and let PSid<,„,|Sr(Al) denote the a posteriori conditional probability 
density of SjdeaiW given srM (*ne a posteriori density is determined by the statistics of n(t) and a 
priori target estimates (Reference 9)). Then the maximum likelihood model satisfies 

^ML = arI c  max      PSldMl|s» (1) 
u€model space     ■»""■> 

It is usual to parameterize the model space to facilitate the search for .MML. In active radar, 
the natural parameterization is based on the scattering interaction between the interrogating field 
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and the target's reflectivity behavior.   The simplest version of this interaction is the linear radar 
(weak-scatterer) scattering model that relates sscatt(t) to smc(t) by 

*«att(*)= /  e.(t',i/)*inc(«-*')el,''(t-t')d*/di/ (2) 

where ga(t, v) is the target reflectivity density defined in such a way that gs(t, v)dtdv is proportional 
to the field reflected from the target at range between ct/2 and c(t+dt)/2 with Doppler shift between 
v and v + du. In general, the reflectivity density actually depends upon the incident field. But when 
these nonlinear effects can be neglected, the ML model also yields the maximum detection signal- 
to-noise ratio and, in the Gaussian white noise and no prior target information case, correlation 
receivers (References 9 through 11) attempt to find the t and v that maximize the real part of 

r)(t, ')=  ( atf)slc{i>-t)e-W-*tf (3) 

To understand just what it is that the correlation receiver "sees,"  substitute the model of 
Equation 2 into Equation 3 to yield 

t){t,u) I  Qs{t' ,v')X{t -t' ,v - v^J^'^-^^dt'dv1 (4) 

where 

X(t, i/) = / s*nc(t' - \t) sinc(t> + It) e-^'dt' (5) 

and we have suppressed an additive noise function (for the present). 

Equation 4 is an imaging equation in which ga(t,v) is the object function and the remaining 
factors in the integrand represent an imaging kernel (a point-spread function). Consequently, r)(t,i/) 
is an estimate of gs(t, v) and we can write gs(t, u) = rj(t, v). The ideal imaging kernel would be given 
by x(t, v) = ^(*)^(")i but there is a well-known limit to the "narrowness" of the peak of \x(t, v)\ that 
can be (simultaneously) attained in the t and v directions. This ambiguity relation means that an 
interrogating signal sinc(t) that leads to good resolution in the t-direction will generally have poor 
resolution in the iz-direction, and vice versa. 

A method for getting around this fundamental limitation selects a family of signals se(t), 
parameterized by 0, which lead to x#(^ ") that are independently localized along different directions 
with respect to target orientation. In Inverse Synthetic Aperture Radar (ISAR) imaging, for example, 
the parameter 9 is target angular aspect, which varies in time if the target is rotating. The radar is 
(usually) configured to transmit a series of pulses s(t—jAt), j = 1,..., 0, with good range resolution 
but poor cross-range (Doppler) resolution. Assume, for simplicity, a constant target rotation rate 
9 = Q.  Assume also that the scattering components that make up the target are persistent (i.e., 
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independent of 6 over the aperture A0 = (0 - l)Atfi). Then the jth pulse will interrogate the 
rotated object function g6 (t,v) = p(t cos 0^ + a~x u sin Qi, -at sin 6j + v cos 6^) where Qi =jAtSl and 
a oc Q is a scale factor relating target dimensions in t to those in v. Equation 4 becomes 

r)e\t,v)= /   />(i'cos0+a Vsinöj, -at'sinö^ + i/cosö^) 
3 JR2 (6) 

x ei(^W)(t-f )/2 x(i _*',„_ ,/) dt'dl/ 

Substituting the idealization x(*> ") = ^(t) yields 

%&*)=[        P(?,v')dl (7) 

where dZ is the differential arc length along the line L(t;0,-) = {(*'X) |t'cos^ + j/'sinöj- = £}• 
Equation 7 is the idealized range profile of the target at aspect 6 and it is easy to see the relationship 
between ISAR imagery and tomographic reconstruction from this expression (note that Equation 7 
is actually independent of v). 

Realizable measurement systems will obtain finite and band-limited data, of course, and will be 
unable to generate true J-functions in the time-domain. This situation has an idealization that uses 
incident radar signals of the (frequency-domain) form 

5(«)=^{s}(o;) = i/^-rect   —r-£ u/€K,w2) (8) 

where F denotes the Fourier transform operation, Aw = w2 - u>i, w0 = \{wx + w2), and rect(x) = 1 
if x € (-|, \) and 0 otherwise. The x(t, v) associated with this signal is 

x(t> „) = ^L_H ei(-o+,/2)t ginc ji (Aw _ (l/|)tj f I^I ^ Aw (9) 

where sinc(x) = sinx/x. 

By increasing the bandwidth Aw, the kernel x(£, ") given by Equation 9 can be made to more 
closely approximate 6(t). The cross-range resolution, which is determined by A0, cannot generally 
be specified as part of the radar system design and ISAR imaging systems must often spend 
unpractically long time intervals waiting for the target to rotate. More typically, ISAR imaging 
practitioners simply resign themselves to low cross-range image resolutions. 
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TARGET MODEL BASED SIMPLIFICATION 

Considerable further simplification occurs when the object function can also be replaced by a 
lower dimension parameterization. Heuristic arguments (References 1 through 8) have been made 
for replacing the weak scatterer reflectivity density by the scattering behavior associated with a 
collection of non-interacting characteristic shapes. The simplest, and most common, choice for 
these shapes is point scatterers (or, more correctly, point scatterer behavior over the range of 
frequencies and aspects of the observation). In limited and noisy data situations, the point scatterer 
model is a practical expedient—and may be a necessity (Reference 6 and 8). Assuming this model 
approximation is accurate, we can write 

N 

e(t,") = £ a«^ ~ *»W ~ y») (10) 
n=l 

where an € C is the local scatterer strength and the sum is over all N scattering centers. 

Substituting the model 10 into Equation 6 (with the rotated object function) yields 

N 

%c,") = Ea«^-u»','-t'«)ei(H"n)(t""")/2   for * = *i,*2...,0€ (ii) 
n=l 

where un(0) = -xnsin0 + t/ncos0, and vjfi) = xncos6 + ynsm0. To simplify our notation, we 
consider sr, sscatt, and n to be members of L2{T) where Id. Let [x]n = xn, [y]n = yn, and 
define the matrix 

[X,(x,y)]t,n = X(t - un,u - vn)eiC+«»)(«-«-)/2 (12) 

If we construct the concatenated matrices 

X(x, y) = 

xei(x,y) 
Xe2(x,y) 

xee(
x>y). 

and ?7 = 
^e2 

Ve6 

(13) 

where [r]g]t — r]e(t,v), then Equation 11 can be written as 

V = X(x, y) a + n (14) 

where [a]n = an and we have re-introduced the noise function term for completeness. 
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An effective method for estimating the model parameters {an,xn,yn}n=1<N is to separate the 
linear components an from the xn,yn (Reference 12). Formally, we can write the least squares 
solution to Equation 14 as 

ä = (x+ (x, y )x(x, y)) ~ V (x, y) r? = x~ (x, y) f? (15) 

where x1 = (x*)T and x~(x,y) = (xt(x,y)x(x,y))    X+(x,y) is the pseudoinverse of x(x,y). 
Consequently, the a can be eliminated and an estimate of x and y can be determined by minimizing 

\\n - x(x, y) a||2 = \\v - x(x, y) x"(x, y) >7||2 = II (I - P(x, y)) rj||2 (16) 

where 

P(x,y) = x(x,y)x"(x,y) (17) 

is the orthogonal projection on the linear subspace spanned by the columns of the matrix x(x,y)- 

Once the scattering center position estimates x, y are obtained, the scatterer strength can then 
be estimated using Equation 15. 

NUMERICAL ALGORITHM 

When the image is to be used for identification purposes, the dimension N of model parameters 
will usually be selected to be small (in comparison with the dimension M of the data collected). 
The problem of finding the minimum of Equation 16 can be efficiently handled in terms of the QR 
decomposition (Reference 13). 

By construction, the rank of x G CMxN is N. In this case, we can write 

x = Q (18) 

where Q e cMxM is unitary, R £ cNxN is a nonsingular upper triangular matrix, and the lower 
partition is the (M — N) x N zero matrix. 

In terms of this decomposition, the pseudoinverse of x can be expressed as 

X" = [R-1|0]Qt (19) 
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Substituting the decomposition of Equation 18 into 17, it is easy to show that 

P = Q 0     0 
Qf        and       I - P = Q 

0        0 

0   IM-JV 
(20) 

where IN is the N x N identity matrix. Because Q is unitary, then ||Qw|| 
and, consequently, from Equations 16 and 20 we have 

;|w|| for all vectors w 

x, y = arg mm 
x,y 

0 0 
0    I M-N. 

Qfr? (21) 

The gradient of r(x,y) = ||r(x,y)||2 = ||(I - P(x,y))77||2 is given by (Reference 12) 

Vr(x, y) = -2Re {J (I - P)D*(x, y) X~ (x, y)r]} (22) 

where 

[Dxli,fcj = [VXiJk (23) 

and Xi j = [x]i y In terms of Equations 18 through 20, we can write 

Vr(x,y) = -2ReHQ 0        0 
0   I M-N 

QS)  Dx(x,y) [R-MOJQ^ (24) 

If we denote the number of time samples per aspect by T (so that M = T x 0) then from 
Equations 12 and 13 we have 

Vxi,j=(-^|^-^' + 2,J)x(*',.')) 

X  eW+*>i)t'/2 (_£ sinö + y COS0) 

x eK»'+*vi)t'/2 (x cosÖ + y sin«) 

(25) 

' —*l + (i-l)modT —«j(öl+lnt(i/T)) 
J/'=iy-t,J(e1+int(i/T)) 
8=9 l+lnt(i/T) 
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where int(w) denotes the integer part of w and x and y are the unit direction vectors. 

The gradient of r (Equation 22) can be used in standard iterative schemes for finding argminx r. 

Quasi-Newton methods, for example, set the j +1 estimate z^J+1^ in terms of the previous estimate 
z^') by (cf, Reference 14) 

z O+i) = z0) _ aU)jj-i 0) vr<*> (26) 

where H-1^ = H_1(z^) is the inverse of the Hessian, Vr^ = Vr(z^), and aS^ > 0 defines a 
step size. Usually, the Hessian is estimated numerically and a^ is chosen so that r achieves a local 
minimum along the direction —H-1^Vr^ from z^\ 

An efficient implementation of Equations 16, 24 and 25, using Householder transformations, 
is presented in the Appendix. Most of the elements of the tensor Dx will have zero value and 
the routine accounts for this by tracking only the nonzero terms: it has memory requirements of 
approximately (3AT +1) x M complex values plus an additional 2M complex workspace requirement. 
The algorithm-specific computational demands are dominated by the QR decomposition, which 
requires 0(N2(M — N/3)) floating point operations. Of course, the calculation of Dx generally 
depends on the form of x and the implementation (and approximations) that best match its 
evaluation. (In our case, the straightforward calculation of Vx that we employed (cf the Appendix) 
accounts for more than 98% of the CPU usage—implementations more appropriate to real time 
environments are straightforward (e.g., lookup tables).) 

SAMPLE RESULTS 

We generated synthetic data »7SNR from Equation 14 using a point target model characterized 
by x, y, and a. The additive noise term was fabricated using a Gaussian noise generator and had 
energy determined by a signal-to-noise ratio (SNR) defined so that 

SNR = (X(x,y)a)tx(x,y)a (27) 
tvn 

All of our examples were formed from data constructed with the scaled parameter values: v = 0, 
t G (—.5, .5), 8 € (—4°, 4°), Au> = 47T, and u>0 = lOAw (e.g., roughly consistent with a 3-meter sized 
target interrogated with a signal bandwidth equal to 10% of a center frequency equal to 2 GHz). 
The radar ambiguity function was modeled by Equation 9. 

A variety of nonlinear optimization approaches were tried and all yielded similar results. The 
figures below were created from the solutions found using the iteration scheme of Equation 26 with 
a Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian updating scheme and an Armijo's rule fine 
search for determining a^') (Reference 14). 

Figure 1 displays the estimates for four different values of SNR (SNR = 10,1,0.1,0.01). The 
baseplane (x-y plane) of each figure contains the (gray-scale encoded) intensity values of the 
traditional (ISAR) image, IISAR(

X
>V)' ionaed by applying the standard convolution-backprojection 

algorithm to the ?7SNR. The peak values of JiSAR are plotted against the back walls of the figure: 
Px(y) = maxx|JiSAR(x,y)| is displayed in the x = 0.5 plane; and Py(x) = max^ |7ISAR(x,y)| is 
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kl    I 

SNR-O.: SNRMJ.01 

la! 

_A 

v     \ 

rv\ - 
lit  ft nil) yi 

FIGURE 1. A Simple Example of Scattering Center Estimation in Noisy, Low 
Resolution Situations Based on Simulated Radar Data. The traditional ISAR image 
is displayed in the baseplane, while the projected ISAR image intensity is displayed 
in the backplanes. The actual scattering centers are marked with the symbol "0>" 
while the estimates values are plotted using "x." Iteration starting points are marked 
with "+." 

displayed in the y = 0.5 plane. The true values of {xn,yn,\an\} are plotted using the symbol "O," 
while the estimated values are plotted using "x." The seed values for x and y are displayed using 
"+" in the base plane. 

The results shown in Figure 1 are typical of all the tests we performed and reflect a graceful 
localization failure with increasing noise contamination. Our experience is that noise contamination 
generally does not significantly alter the character of the hypersurface r but, instead, only moves the 
local minimum (of course, it also introduces a constant offset). Figure 2 illustrates this behavior and 
is a plot of a one-dimensional cut through the surface r for different values of SNR. (The strength 
and location of the scattering centers in Figure 2 are the same as those used in Figure 1.) Because of 
this graceful localization failure with increasing noise, the practical limitation of the method results 
from the effects of noise on the traditional ISAR image, because a low quality image can prevent an 
estimate of N and the seed values for x and y. (In general, we found the algorithm to be robust 
against seed value choice, although solution speed was somewhat altered.) 
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I I        I ^(Xj-P-Pd*!,...,*»_!,*,**+!,....*W],W)fjB
a 

4420r 560r 

4380- 

I, 
4360- 

4300L 420L 

FIGURE 2. The Cost Function for Various SNRs. Plotted are 1-D cuts through r. 

When the SNR is favorable, however, the method can be an effective localizer and will usually 
surpass the standard resolution limitations of an ISAR image. Figure 3(a) shows the "super- 
resolution" capabilities of the algorithm. The x and y resolution cells associated with these data 
are Ax « 2irc(u>0A6)~1 « 0.36 and Ay w 7rc(2Au>)-1 « 0.12, respectively. The actual scatterers 
were separated by x1—x2 = 0.05 « Ax/7 and y1-y2 = 0.03 » Ay/4. Of course, super-resolution 
requires that the user have some prior reason to suspect that there is more than one scatterer in a 
particular target region—this information surely cannot be divined from the raw ISAR image, and 
the model order N must be set in advance (along with seed guesses). Figure 3(b) shows the results 
of estimating N to be larger than its correct value (in this case, iVest = 2, ATactual = 1). Observe that 
the algorithm correctly fits one of the scatterers to the data and assigns a strength of \a2\ = 0 to 
the other. (It is possible for the method to converge to different results, but the behavior of Figure 
3(b) was the most commonly observed.) 

CONCLUSION 

Traditionally, even the simple problem of fitting a point scatterer model to ISAR data has 
frequently proven impracticable when time and computer assets are limited. By taking advantage of 
the separability of the problem, we have shown how the computational complexity can be significantly 
reduced. Moreover, we have constructed a memory-efficient implementation and demonstrated it 
using synthetic data. 

The method is robust against noise contamination and displays good super-resolution 
capabilities.  The number of scattering centers to be localized is a user defined input (along with 
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SNR*10 

(a) (6) 

FIGURE 3. Super-Resolved Scattering Centers. In Figure 3(a) the point scatterers 
are separated by approximately 0.14Ax and 0.25Ay (where the resolution cell is 
Ax x Aj/ in size). Figure 3(b) shows the results of inappropriately associating two 
scatterers to a location where only one true scatterer actually exists. 

seed estimates based on low resolution ISAR images) and the "best fit" location and strength of the 
scatterers are estimated according to Equations 15 and 21. Consequently, the approach appears to 
be well-suited to radar-based target identification problems that rely on template matching schemes 
in which only the information associated with the N strongest scatterers are used. 

Throughout, we have concentrated on the point scatterer model, but the method can be easily 
modified to include more complex cases (References 6 through 8). In many practical situations, 
however, data limitations and noise contamination issues can be expected to make such modifications 
ineffectual. 

10 
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Appendix 

COMPUTER CODE FOR CALCULATING r AND Vr 

The following computer code was implemented in MATLAB and evaluates Equations 16, 24, 
and 25 for \ defined by Equation 9. The algorithm is: 

1.   Find x = QR and set V = Q^V, r = \\1>{N + 1 : M)||2. 

0       0 

0    ?M-N 
yj>. 2. Calculate x=\R~x\ 0]^ and < = Q 

3. $ = ?VX 

4. Vr = -2Re($x). 

function [r, Vr] = r^dr(z) 
global T) N MT6 Awuoa 

0 = [öi, O2,.. .]T vector of angles 
T = number of time measurements at each <?_, 
N = number of scattering centers 
M = number of observations (= T x length (Ö)) 

z = [xi,X2,...,XN,yi,y2,...,yN]T 

Vx = M x 2/V array of derivatives 
Note, only the nonzero components are stored. 

X = zeros(M, N)\ Vx = zeros(M, 2N); 
v = zeros(M, 1); ß = zeros(N, 1); i = zeros(7V, 1); Vr = zeros(2iV, 1); 

|    Obtain the orthogonal factorization of x as Q* X = R and V> = Q^ V- 

[X. Vx] = chi.Dchi{z, x, Vx); V> = »?; 
for i = 1 : N 

[v(i : M),/3(i)] = house(x{i ■ M,i)); 
X(i '■ M,i : N) = rowJiouse{x(i : M,i : N),v(i : M),ß(i)); 
ip(i : M) = rowJiouse(il>(i : M),v(i : M),/3(i)); 

|   Save the Householder vectors in the lower triangle of x (f°r later use) 

X(i + 1 :M,i) = t>(i + l : M)\ 
end 

I   Calculate the residual. 

r=||V(Ar + l:M)||2; 

Computation of a (by Backsubstitution): 
o = [R(l :N,1: N)'1 i/>(l : AT);zeros(M - N, 1)]; 
(a(l : N) is also the scatterer strengths.) 

a(N)=^(N)/X(N,N); 
for i = N - 1 : -1 : 1 

a(t) = (V>(i) - x(». i + 1 : N) a(t + 1 : AT))/x(», 0; 
end 

C = (/ - P)n = Q [zeros(W, 1); V(N + 1 : M)]. 

Note, Q is stored in factored form: Q — Q\ x Q2 x Q3 ... Q^r, 

12 
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|       soQt = g]v...Qt xQtxQt 

C = [zeros(AT, 1); 4>(N + 1 : M)]; 
for i = N : -1 : 1 

t)(i) = 1; t»(i + 1 : Af) = x(* + 1 = M> 0; 
C(i : M) = roiuJiouse«(i: M),u(i: M),conj(/3(t))); 

end 

|    * = CfVX 

* = zeros(2N,JV); 
for i = 1 : AT 

*(i,i) = CfVx(:,t); *(i + iV,i) = CtVX(:,i + N); 
end 

I   Finally, put it all together to calculate the gradient. 

Vr = -2real(*a); 

function [v, ß] = house(x) 

Compute the Householder vector. 
(cf. §5.2.10 of Golub and Van Loan, third ed.) 

s = ||x|| (sign(x(l)) + (x(l) == 0));     |   require sign(0) = 1. 
v = x; 
if s == 0, ß = 1; return, end 
v(l)=t;(l) + s; 
/3=l/(St„(l)); 

function A = rowJiouse(A, v, ß) 

I   Overwrites A with QVA where Qv = I — ßw*. 

w = A^ v; 
A = A — ß v to* j 

function [x, Vx] = chi-Dchi(z, x, Vx) 
global T) N MT 6 Aui wo 

I    Calculate x and Vx- 

ct = cos(ö); st = sin(0); 
U = -z{l:N) stT + z(N + l: 2N) ctT; V = z(l : N) ctT + z(N + 1 : 2N) stT; 

for fc = 1 : AT 
for j = 1 : M 

je = ceilÜ/T); 
t = (1 + mod(i - 1,T))/T - .5 - U(k,je); 
u = -V(k,j,); 
[X. ox] = amb-Damb{t,v); 

e = exp(—\ut/2)\     |    note: v + 2v = v (= —v) 

xO'.fc) = xe; 

o=-£»x(l) + ^x/2; 
6=-I»x(2) + itx/2; 
VxO'.fc) = (-ast(je) +bct(je))e; 
Vx(j, N + k) = -(act(js) + bst(jg))e; 

end 
end 

function [x, Dx] = amb.Damb(t, v) 
global T) N MT0 Aw u>o 

I   Calculate x, öx/öt and d\/dv 

S = Aw — |i/|; spn„ = sign(i/) + (v =— 0); 

13 
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if <5 < 0, x = 0; D\ = 0; return, end 

arg = St/2; e = exp(i(u>n + v/2)t); 
C = eS/Au/; sine — sinc(arg); 

I    Determine the ambiguity function 

X = C sine; 

I   Determine the derivatives 

if \arg\ > 0 
sind = (cos(orp) — sincj/arg; 

else 
sine' = 0; 

end 

if <S > 0 

Dx(l) = i(wo + f/2)X + C5sinc'/2; 
Dx(2) = (it/2 - sgnv/S)x - C sgnu t sine'/2; 

else 

Dx(l) = 0; 
Dx(2) = -esgn„/Aw\ 

end 

14 
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