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WORK SUMMARY 

The Correlated Hopping Enhanced Spread Spectrum (CHESS) radio is an adaptive, fast 
frequency-hopping, digital radio technology that has been developed by BAE SYSTEMS 
(formerly Sanders) through its Independent Research and Development (IR&D) efforts [1]. 
CHESS achieves the desirable performance features of non-interfering spread spectrum 
operation, spectral re-use, multipath fading mitigation, and interference resistance. 

In CHESS, data is encoded using a technique called differential frequency hopping (DFH). This 
can be defined in the following manner: Given a data symbol XN and frequency of the previous 
hop FN.i, the frequency of the next hop is defined as: 

FN= G(FM-I , Xfj) 

where the function G can be viewed as a directed graph whose nodes are frequencies and whose 
vertices are labeled with data patterns. In CHESS, for a set of M frequencies (the nominal CHESS 
hop set), the graph will have M nodes, and each node will have some number of vertices/= 2 , 
where k is the number of bits/hop being coded. The parameter/is called the fanout of the graph 
because it refers to the number of vertices emanating from each node. For example, for a CHESS 
system using a hopset size of 16 frequencies to encode 2 bits/hop, each of the 16 nodes in the 
trellis will have four vertices, one associated with each of the four possible inputs. A block of 
data is encoded by breaking it into words of k bits, and traversing the graph starting as some 
random node. This is done by executing a hop at each node to the next frequency specified by 
that node. 

AFRL has commissioned BAE SYSTEMS to conduct a trade study on the CHESS system [1]. 
The goal of the CHESS study is to identify and quantify the ways in which a CHESS or CHESS- 
type waveform outperforms other waveforms, particularly with respect to LPD/LPI/AJ properties. 
Additionally, enhancements have been proposed, and the effects of those enhancements will be 
studied. As part of this study, the BAE SYSTEMS team has arrived at a series of conjectures 
about CHESS which we intend to verify, either analytically or by simulation [2]. This final report 
presents the results of our efforts to verify the conjectures, lists the conjectures and summarizes 
the efforts made to verify the conjectures. 

A brief summary of the technical progress follows. We have considered CHESS operation in both 
the added white Gaussian noise (AWGN) channel and the Rayleigh-fading channel. The focus of 
the study was on analyzing CHESS performance, with simple verification provided via a Matlab 
simulation. Care was taken to develop results that are independent of frequency band. Preliminary 
results have been for several of the conjectures previously made. It was shown that CHESS 
outperforms standard frequency hopping (FH) and direct sequence spread spectrum (DSSS) under 
a variety of conditions. 

• CHESS demonstrates better LPD/LPI than fixed FH. 
• CHESS and CDMA over the same BW have the similar LPD/LPI characteristics 
• CHESS has better AJ performance than CDMA for NB jammers 
• CHESS and CDMA have similar AJ performance for WB jammers 
• CHESS performs better than CDMA in presence of repeat jammers 
• The overall LPD/LPI performance of CHESS is better than TCM 
• CHESS allows conferenced users as a feature of its waveform, i.e. a MAC is not 

required 



• CHESS can correct missed hops and false detections 
• Chess has potential for self-synchronization 
• Practical implementation of CHESS is easier than CDMA 

A more detailed summary of results is contained in the remainder of this report. 



Results 

The study effort quantified the coding gains possible from a CHESS system as well as provides 
analyses and simulations to determine the LPI/LPD properties of CHESS and proposed CHESS 
enhancements. A number of methods and approaches, including previously developed 
convolutional coding results and multiuser detection results, were applied. To attain the goal of 
the study, the following tasks were originally proposed. 

Task 1.1: Study the implementation details and design impact of changing the frequency 
coverage of the CHESS brassboard. 

Task 1.2: Study the issues related to increasing the hop rate of the basic CHESS system. 

Task 1.3: Study the performance enhancements and impact to the basic CHESS system of 
increasing the hop set. 

Task 1.4: Study the application of techniques developed for error correction codes to the hop 
patterns. 

Task 1.5: Study the efficacy of modulating the chip frequencies as a means of increasing the data 
carrying capacity of the CHESS system. 

Task 1.6: Examine methods for supporting asynchronous operation and conferencing with 
CHESS without the use of a preamble in the message. 

Task 1.7: Look at methods of data packing (multiple concurrent users) via unique DFH 
structures for each transmission. 

Task 1.8:  Study CHESS'S sensitivity to fast follow-on jammers. 

Task 1.9: Evaluate the computational complexity of the enhanced CHESS algorithm and we shall 
consider the effect of the proposed enhancements with regard to practical implementation. 

It was recognized that a common theme was contained in the above tests: determine the CHESS 
performance under a variety of circumstances, and, if possible, compare that performance to other 
spread spectrum systems. To that end, the following conjectures were developed, which we set 
out to prove. The effects of the changing parameters, such as hop set size or hop rate were then 
studied within the context of each conjecture. 



Introduction 

The methodology employed in this study generated results that were independent of specific 
system parameters in order to find a universal means for comparison. For example, the 
communications performance results assume no coding of the transmit waveform. Coding gain 
can easily be incorporated into the results presented herein. 

Several approaches to processing the CHESS waveform at the receiver are considered in this 
study. K-ary frequency hopping provides a lower bound on the hard decision (HD) CHESS bit 
error rate (BER) in that the receiver makes hard decisions assuming that the last symbol (bit) is 
known. M-ary frequency hopping provides an upper bound on the HD CHESS BER in that the 
receiver makes hard decisions assuming that the last symbol (bit) is not known. The exact HD 
CHESS probability of a bit error is an exact equation derived in the course of this study. The soft- 
decision (SD) union bound provides an upper bound on the SD CHESS BER and accounts for use 
of the trellis to recover missed hops. 

All of the CHESS analysis assumes 1 bit per hop unless otherwise specified and the direct 
sequence spread spectrum (DSSS) is of the BPSK-BPSK type with the communications 
bandwidth exactly equal to the inverse of the chip rate, i.e. WTC = 1. The processing gain (PG) for 
all of the waveforms considered is the ratio of the signal bandwidth to the data bandwidth (W/Rb), 
which is equivalent to the ratio of the bit duration to the chip duration (Tb/Tc) for BPSK DSSS. 
Therefore, the given value for PG implies the "spread" of the system under consideration. One 
equation that lends to the universality of these results and allows for the communications BER 
performance presentation format is 

in which Eb/N0 is the SNR per bit and S/N is the signal-to-noise power ratio. When PG = l(OdB), 
the communications system is not "spread" and S/N = Eb/N0. This situation corresponds to the 
rightmost curve in each communications performance plot. This relationship is clearly evident 
when comparing the lines superimposed on Figures Bl and B2. 

The only detectors used in this analysis are the radiometer (wide-band energy detector) and 
likelihood ratio test implementations for both frequency-hopped and direct sequence spread 
spectrum signals. Detectors that exploit the cyclostationary properties of these waveforms were 
not considered because of the added complexity that would have been introduced into this study. 
It should be noted that the CHESS waveform can be modified just as any other frequency-hopped 
waveform to combat these cyclostationary detectors at the price of increased processing. 



Conjectures and Verifications 

• CHESS is more energy efficient than fixed FH for same spreading factor, which implies 
that CHESS demonstrates better LPD/LPI than fixed FH. 

For a fixed frequency hopping system with 1 bit per hop in an AWGN channel and using non- 
coherent demodulation of binary FSK, the formula for the probability of error Pe is given in Table 
Bl. In this same table is the formula for the SD CHESS union bound symbol error probability in 
an AWGN channel. In the analyzed case of 1 bit per symbol (equivalent to 1 bph), the SNR per 
symbol in the SD CHESS formulation is equivalent to the SNR per bit in the BFSK equation so 
that 

E       S 

"     N0     N 
Making this substitution into both bit error probability equations allows for the creation of a 
family of theoretical performance curves for both modulation/demodulation approaches. These 
curves are shown in Figure B5 for BFSK, and in Figures B9, BIO, and Bll for SD CHESS with 
M equal to 16, 64, and 16,384, respectively. 

Upon comparing performance curves in Figures B5 and BIO, it is seen that BFSK requires 
approximately 6 dB more signal-to-noise power ratio (SNPR) than the SD CHESS union bound 
with M = 64 to achieve bit error probabilities between 10"3 and 10"6. This difference increases 
with increasing M to approximately an 8dB difference between BFSK and SD CHESS with M = 
16,384. 

Therefore, lower energy is required by CHESS than by a fixed BFSK system with the same error 
performance when 1 data bit is transmitted per hop. That is, CHESS is more energy efficient than 
fixed FH for the same spreading factor, which implies that CHESS demonstrates better potential 
for LPD/LPI than fixed FH. 

• CHESS and DSSS over the same BW have the same LPD/LPI characteristics when the 
threat is a radiometer 

To evaluate this conjecture, the LPI margin metric is used. This MOE is discussed in Appendix A 
and can be denoted informally in mathematical terms as 

Input SNR (/>   = x) 
LPI Margin = —- ^  . 

Input SNR (Pe = y) 

It is expected that the LPI margin will be less than unity (or negative when using dB) because a 
waveform should be easier to detect than to demodulate. 

For a BPSK DSSS system in an AWGN channel, the formula for the probability of a bit error Pe 

is given in Table Bl. In this same table is the formula for the SD CHESS union bound symbol 
error probability in an AWGN channel used in the previous conjecture. The families of 
communications performance curves are shown in Figure B2 for BPSK DSSS, and again in 
Figures B9, BIO, and Bl 1 for SD CHESS with M equal to 16, 64, and 16,384, respectively. 

Upon comparing performance curves in Figures B2 and BIO, it is seen that BPSK DSSS requires 
between 1.5 and 2.5 dB more SNPR than the SD CHESS union bound with M = 64 to achieve bit 
error probabilities between 10"3 and 10"6. This difference increases with increasing M to the 3.5 to 
4.5 dB range between BPSK DSSS and SD CHESS with M = 16,384. The BPSK DSSS 



performance is marginally better when the bit error probability is on the order of 10'1 but this is 
an unacceptable operating regime. 

The wide-band energy detector or radiometer is the most elementary and easy to implement 
detector. The processing block diagram for the radiometer is shown in Figure 1. A single 
performance equation is given for the radiometer in Table Cl with some corresponding 
performance curves in Figures Cl through C4. The reason for this single equation is that, for 
large time-bandwidth product (TW > 1000) signals in AWGN, its performance is the same for all 
frequency hopped and direct sequence spread spectrum waveforms. 

THRESHOLD 

Figure 1. Radiometer Processing Block Diagram 

Therefore, any differences in the LPI margin between BPSK DSSS and SD CHESS result from 
differences in the communications performance. Then, based on the discussion above, SD 
CHESS is slightly more energy efficient than BPSK DSSS (between 1.5 and 4.5 dB) over the 
same BW so that it has similar or better LPD/LPI characteristics when the threat is a radiometer. 
An example value for the LPI margin for SD CHESS (M = 64) can be taken from Figures BIO 
and C2. With PG = 27 dB, Pe = Pfa = 10"6, TW = 106, and PD = 0.9, the theoretical LPI margin is 
approximately - 22dB - (-18dB) = -4dB . 

An additional result identified in this study is that SD CHESS has better LPD/LPI characteristics 
than BPSK DSSS over the same bandwidth when the threat is an optimum detector in that it 
implements a likelihood ratio test (LRT). The LRT detector for frequency hopped waveforms is 
termed the optimum multichannel FH pulse matched ED and its processing block diagram is 
shown in Figure 2. The performance equation is given in Table Cl with some corresponding 
performance curves in Figures C5 through C8. This equation holds when the waveform contains 
greater than 100 hops and the individual hop time bandwidth product is unity. 

CMX NNEL. I 

BPF 
1    1* 

7h 

f 1    \<tt yT- 

T %% 
/0( > 

CHANNEL 2 
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Figure 2. Optimum Multichannel FH Pulse Matched ED Processing Block Diagram 



The LRT detector for DSSS waveforms is termed the synchronous coherent detector. The 
assumption behind this detector is that the signal phase is known to the interceptor. The 
performance equation is given in Table Cl with some corresponding performance curves in 
Figures C9 through C12. 

Because the performance of these two LRT detectors differs, the LPI margin for BPSK DSSS and 
SD CHESS (M = 64) needs to be calculated using Figures B2, BIO, and C4 through C12. An 
example set of LPI margins is shown in Table 1. The calculated values for SD CHESS (M = 64) 
are on the order of 4.5 dB higher than the corresponding values for BPSK DSSS. So, CHESS 
exhibits better LPD/LPI potential. 

LPI Margin, dB (PG = 27, TW = 10", IS IT =400) 

LRT Detector 
SDC HESS DSSS 

Pe=10"3 pe=io-6 Pe= 10'3 Pe= 1(T 

Pfa= lO"3 Pd = 0.9 -2.5 -5.4 -6.3 -10.0 

Pd = 0.1 -5.7 -8.6 -10.2 -13.9 

Pfa= lO"6 Pd = 0.9 -1.8 -4.7 -4.8 -9.5 

Pd = 0.1 -3.3 -6.2 -7.5 -11.2 

Table 1. Likelihood Ratio Test Detectors LPI Margin Example 

•    CHESS and DSSS have similar AJ performance for WB jammers 

The model used for wide-band jamming in this analysis assumes a spectrally-flat barrage jammer 
across the entire communications bandwidth. In this case, the total jammer power can be 
calculated as J = J0W in which J0 is the jammer PSD and W is the signaling bandwidth. 

For a BPSK DSSS system in the presence of this form of WB jamming, it can be shown [3] that 
the error probability is 

Pe=-erfc\ 
JJ(a) 

1      tA — erfc 
2 J 1(a) 

PG 

as given in Table Bl where 

/(a) = 2j(l-£) sin^x 

TtX 

and a = WTC. The assumptions used in this study yield a s 1 and 1(a) = 3/4. This approximate 
value is taken from Figure B3. 

It is normally assumed that the jammer PSD is considerably stronger than the noise PSD, e.g. 
greater than lOdB. In this case, the SD CHESS union bound symbol error probability in an 
AWGN channel can be used with the modification that S IN -> S /(N + J)~ SIJ . Making 
this substitution allows for the creation of a family of theoretical performance curves for both 
modulation/demodulation approaches. These curves are shown in Figure B4 for BPSK DSSS, and 
in Figures B9, BIO, and Bll for SD CHESS with M equal to 16, 64, and 16,384, respectively. 

Upon comparing performance curves in Figures B5 and BIO, it is seen that BPSK DSSS requires 
only approximately 0.4 dB more SNPR than the SD CHESS union bound with M = 64 to achieve 
a bit error probability of 10"3 and approximately 1.3 dB more SNRP to achieve Pe = 10'6. This 
difference increases with increasing M to approximately 2.4 and 3.3 dB for SD CHESS with M = 



16,384. . The BPSK DSSS performance is marginally better when the bit error probability is on 
the order of 10"' but this is an unacceptable operating regime. 

Therefore, a little less energy is required by CHESS than by BPSK DSSS with the same error 
performance in the presence of WB jamming. This demonstrates that CHESS and DSSS have 
similar anti-jam performance for WB jammers. 

•    CHESS has better LPD/LPI characteristics than DSSS over the same BW in a Rayleigh- 
fading channel 

The Rayleigh fading channel is a more appropriate model for signals that propagate with 
multipath and fading. With this model, the received signal r(t) is of the form 

r(t) = ae-j*s(t) + w(t) 

in which the amplitude a is a Gaussian distributed random variable, the phase (p is a uniformally 
distributed random variable, s(t) is the transmitted signal, and w(t) is AWGN. In this case, the 
expected SNR per bit is used and is calculated as 

■C'/i T-, r 71   "j y0=^L.E{a2}^--PG-E{a2}. 
N0 N 

It is well known that diversity at the receiver can be used in Rayleigh fading channels to gain 
back as much as possible of the communications performance loss relative to that of the AWGN. 
The CHESS waveform has built in diversity due to the DFH modulation. 

For a BPSK DSSS system in a Rayleigh fading channel, the formula for the probability of a bit 
error Pe is given in Table Bl. In this same table is the formula for the SD CHESS union bound 
symbol error probability in a Rayleigh fading channel. In the analyzed case of 1 bit per symbol 
(equivalent to 1 bph), the SNR per symbol in the SD CHESS formulation is equivalent to the 
average SNR per bit in the BPSK DSSS based on the previous equation with f - fb. Making this 

substitution allows for the creation of a family of theoretical performance curves for both 
modulation/demodulation approaches. These curves are shown in Figure B12 for BPSK DSSS, 
and in Figures B17, B18, B19, and B20 for SD CHESS with M equal to 16, 64, 1024, and 16,384, 
respectively. 

Upon comparing performance curves in Figures B12 and B17, it is seen that BPSK DSSS 
requires approximately 13 dB more SNPR than the SD CHESS union bound with M = 16 to 
achieve a bit error probability of 10"3 and approximately 21 dB more SNRP to achieve Pe = 10"4. 
This difference increases with increasing M to approximately 17 and 24 dB for SD CHESS with 
M = 64, and to approximately 19 and 27 dB for M = 16,384. 

Therefore, lower energy is required by CHESS than by a BPSK DSSS system with the same error 
performance. Assuming that the detector performance is identical for both waveforms implies 
that CHESS demonstrates significantly better potential for LPD/LPI than BPSK DSSS in a 
Rayleigh fading channel. 

•     CHESS performs better than DSSS in presence of repeat jammers 

If a narrow-band repeat jammer follows quickly enough to transmit at the CHESS frequency 
during the hop dwell time, the received energy at the receiver will actually increase, which 
increases the detection capabilities of the intended receiver instead of blocking the reception of 
the tone. Even if the jammer is slow enough that it tries to jam the transmission frequency for a 



previous interval, a RAKE filter can be used at the CHESS receiver to harvest the energy of the 
jamming signal and increase the detection capabilities. That is, the jamming signal will appear as 
a strong multipath signal that has been recovered by the RAKE receiver. If a RAKE filter is not 
used for the delayed jamming case, the jamming signal can either be considered a false "hit" by 
the receiver or can be considered a repetition of the message. 

Using informal mathematical notation, the above can be expressed as follows. In the absence of a 
repeat jammer, the CHESS bit error probability is a function of the SNR per bit so that 

Pe=f(Eb/NQ). 

Remember that the bit error probability decreases with increasing SNR per bit. If the jammer 
repeats with no lag from the CHESS signal, then the SNR per bit is increased by the jammer 
power spectral density, which has the effect of reducing the bit error probability and can be 
shown mathematically as 

Pe=f((Eb+J0)/N0). 

When the jammer lags the CHESS system by a percentage a of the dwell time, then the 
performance becomes 

lf([Eb+(l-a)J0]/N0),        a<\ 

*    {max{/(^/yV0),/(70/yV0)}, a>\ 

Making the reasonable assumption that J0 » Eb, then, based on this simple analysis, the worst 

CHESS performance in the presence of a repeat jammer is equal to the CHESS performance 
when no jammer is present. 

For a BPSK DSSS system, the jamming signal will be included in the received signal after it is 
de-spread by the receiver, thus corrupting information. This degradation in performance can be 
analyzed using the case of a pulsed noise jammer that is on for a percentage p of the time. While 
this assumption does not exactly match the repeat jammer case, it can easily be argued that the 
pulsed noise jammer is conceptually close to a repeated signal with corruption, e.g. phase, 
amplitude. The bit error probability equation for BPSK in the presence of a pulsed noise jammer 
is approximately 

pe=a-p)Q 
2Eb 

I(a)N0 j 
+ pQ 

2Eb 

I(a)(N0+J0/p)j 

This equation is plotted in Figure 3 for 0 < p < 1, PG = 27dB, and Jo/N0 = lOdB. BPSK DSSS 

performance in the presence of continuous wide-band jamming is characterized by both the p = 0 
and p = 1 curves. The difference between these two curves is the additional lOdB of jamming 
power spectral density, i.e. Jo/N0 = lOdB. Therefore, the separation between these two curves will 
track the Jo/N0 ratio. The remaining five curves in Figure 3 exhibit the performance characteristics 
induced by the "repeat" jammer. They track the p = 0 curve when the signal power is low, flatten 
out at approximately Pe = p/2 (i.e. random guesses during the jamming which in a sense occurs 
every 1/p bits) for transitional values of the signal power, and then fall off with high-amplitude 
signals. So for example, at an operating point of Pe = 10"\ BPSK DSSS in the presence of a repeat 
jammer can require as little as 0.5dB more SNR (p = .0001) or as much as 30dB more SNR (p = 
.001) over the same signal in the absence of a repeat jammer. 



PG = 27 dB, JQ/NQ = 10 dB 
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Figure 3. BPSK DSSS Performance in Pulsed-Noise Jamming 

•    Even though CHESS is less energy efficient than TCM, it occupies significantly greater 
bandwidth, so the overall LPD/LPI performance of CHESS is better. 

To examine the trellis coded modulation (TCM) bit error performance as a function of SNR, we 
first considered the bit error expression for an M-ary QAM system, given by [3] 

>*-l 

Pe = 
2k-\ i-fr-^ 

P/F=2(l-l/VF)ß(V3/(M-l)f) 
k -\og2M 

We then recall that the coding gains in going from QAM to TCM range from 3.6-5.7 dB [3], and 
assume a gain of 4 dB for the system under comparison. The plot of the resulting curve for M=64 
is shown in Figure 4, along with the previously calculated bounds for CHESS. Comparing the 
curves, we can see that K-ary CHESS (the original hardware implementation) is less energy 
efficient than TCM, but soft-decision CHESS (current simulation) is more energy efficient than 
TCM. 

It is assumed that a sub-optimal implementation will produce a curve between the K-ary and soft- 
decision CHESS curves, indicating that a sub-optimally implemented system will have energy 
efficiency similar to that of TCM. Given the nature of the two approaches, it is immediately 
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obvious that the bandwidth of CHESS is wider than the bandwidth of TCM, leading us to the 
conclusion that the overall LPD/LPI performance of CHESS is better than TCM. 
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Figure 4. Comparison of CHESS and TCM Energy Efficiencies 

•    CHESS has the potential to allow conferenced users 

We determined that CHESS can allow up to M / 2h conferenced users at any time, without the 
additional imposition TDMA or power control. The conferencing allowed is a multipoint-to- 
multipoint, with the only requirements being that each conferenced user know the underlying 
trellis for the other users in the conference and that each conferenced user possess the processing 
capability to follow multiple trellisses. Each conferenced user must have a different trellis. 

To verify that M / 2h conferenced users are possible, consider a stage in the trellis in which all 
states are possible valid transmissions.. This is the maximally occupied situation. Each occupied 
state represents a unique user. At the previous stage, each occupied state contains only one unique 
user. Because each state has 2h branches from it, M/2h is the maximum number of users allowed 
to have this configuration. 

It is expected that if conferencing is permitted, the missed-hop performance will degrade. It is 
hypothesized that if conferencing is allowed, the number of missed consecutive hops that are 
guaranteed to be correctable is (log2M/h)/Nc, in which Nc is the number of conferenced users,. 
Other unique "signatures" associated with each user (besides their unique trellises) can be used 
to increase resolvability, thereby regaining possible losses in missed hopped corrections. 
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A plot showing the maximum number of conferenced users as a function of bits-per-hop (h) and 
parameterized by hop set size (M) is shown in Figure 5. 
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Figure 5. Maximum Number of CHESS Conferenced Users 

• A better hop-pattern choice will improve the BER of CHESS by improving the error- 
correcting capability of the trellis (i.e. increasing the number of misses and false hits 
that can be corrected), thereby also improving the energy efficiency and AJ 
performance. 

The capability to correctly determine missed hops is an important feature of CHESS. With this 
capability, CHESS is able to provide the user with burst error correction capability with no loss in 
information rate and resistance to narrow-band jamming. 

First, it was determined that the number of correctable consecutive missed hops is 
floor(log2(M)/h)-l. To understand this, consider a CHESS trellis in which the last transmitted 
state was correctly received. At that point, there are K = 2h possible paths from the last known 
state, and each path is distinct. After 2 hops, there are 22h paths, all distinct. Continuing on, the 
maximum number of possible distinct paths is M, reached after log2M/h steps. If the log2M/h-th 
state is not known, the paths interleave and it is not possible to correct the missed hops. Therefore 
up to log2M/h-l hops can be lost and subsequently corrected. 
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Figure 6. Number of Correctable Consecutive CHESS Missed Hops 

Figure 6 shows the number of correctable consecutive missed hops as a function of h and M. An 
example showing the trellis for a hop set size of 8 and one bit per hop is shown in Figure 7. Two 
consecutive hops are missed, but the trellis structure allows the receiver to determine what the 
missing transmissions were. 

A standard notation for rate k/n convolutional codes is (n,k,m), where the number of shift 
registers on each of the k input lines is m, , i=l to k, and the memory order m= max(mi ). The 
number of states in the associated trellis is then 2 Asum (m,). Only CHESS systems which encode 
one bit per hop (i.e. k=l) are considered in this preliminary analysis. The analysis will be 
extended to k>l at a future date. The current CHESS system has a hop pattern that may be 
modeled by a shift-register (log2(M),l,log2(M)) convolutional code with the n-bit output 
associated with each transition each to the state on which the transition terminates at the next 
stage. For example, the trellis associated with the (3,1,3) CHESS hop pattern is shown in Figure 
8. It has M=8 states. Examining the trellis, it can be seen that the free distance is 3. For a general 
(log2 (M), 1, log2 (M)) CHESS hop pattern (with the shift register -based hop pattern ) the free 
distance will be log2(M), the number of shifts that are required to clear the first deviation from 
the all-zero path. From the free distance, we can approximate the bit error probability for soft 
decoding using an upper bound on the first error event probability. 
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Figure 7. Missed Hop Correction Example for Hop Set Size of 8 and One BPH 

Figure 8. Convolutional Code Trellis with Error Path 

An approximate upper bound on the error probability for a convolutional code with free distance 
d_free is [3,4] 

Pub ~ 0-IZ)'SLd=d_freead * X      \x=exp(-RrE_blNo) 
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in which ad is the number of codewords of weight d. Preliminary work indicates that the above 
equation can be simplified for the shift-register hopping pattern of the CHESS system, but the 
work remains to be verified. Even from the general equation presented above, it can be seen that 
the first term is the dominating term, indicating the importance of d_free as a performance 
parameter. 

As a concrete example of a case for which a better hopping pattern is available, consider the rate 
Vi convolutional code with 4 state, 2 shift-register, [4] lists the encoding matrices for the (M,l, 
log2(M)) codes with the following free distances. The free distances from [4] are compared to the 
CHESS shift-register free distances in Table 2. 

M Log2(M) d_free (CHESS) d_free (achieved with other 
codes) 

4 2 2 5 

8 3 3 10 
16 4 4 16 

Table 2. Free Distance Comparison Between CHESS and the (M,l, log2(M)) Codes 

The increase from a free distance of 4 for the 16 state (4,1,4) shift-register encoder and a free 
distance of 16 for the optimal (4,1,4) encoder results in significantly improved error performance. 
For larger M, we can use the Plotkin bound (d free <= (n(n+h)/2)*2Ahk/(2Ahk-l)) , h=l,2 for a 
rate k/n code) to give an upper bound on dfree. (Note: The Plotkin bound loosens as n increases. It 
is likely that tighter bounds are published in the literature.) The values for the Plotkin bound are 
compared to the free distance for shift-register CHESS in Table 3. 

M Log2(M) d_free (CHESS) d_free (Plotkin bound) 

4 2 2 5 
8 3 3 10 

16 4 4 16 

32 5 5 22 

64 6 6 30 

128 7 7 40 

Table 3. Free Distance Comparison Between CHESS and the Plotkin Bound 

The larger values for the free distance indicate that significant gains can be made by carefully 
choosing a hopping pattern. It should be remembered that the above values for d_plotkin are 
upper bounds on the free distance, and that the bounds loosen as n increases. Even if the bounds 
are loose, the bounds (for larger values of M) and the codes that achieve optimal distance (for 
lower values of M) indicate that significant improvement in error performance, and therefore in 
missed and false hop correction, can be achieved with a different choice of trellis structure. Note 
that if a hopping pattern is chosen based on a more powerful convolutional code with the same 
rate and memory order, the decoding of the improved trellis has not gained in complexity. The 
exact codes that achieve or approach the upper bounds must still be found. It is expected that the 
optimal codes for rate 1/n codes with larger values of n have been tabulated in the literature, but a 
source has not yet been identified. Note that if a hopping pattern is chosen based on a more 
powerful convolutional code with the same rate and memory order, the decoding of the improved 
trellis has not gained in complexity. 
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•    CHESS has better AJ performance than DSSS for NB jammers 

The correctable missed hop feature of CHESS detailed in the previous conjecture and 
summarized by Figure 6 provides excellent resistance to narrow-band (NB) jamming by offering 
a burst error correction capability with no loss in the information rate. Based on this feature, it 
can be assumed that a narrow-band (NB) jammer has little to no effect on CHESS waveform 
performance. 

In the presence of NB jamming, the equation in Table Bl for DSSS in AWGN still holds if the 
ratio Eb/No is replaced with Eb/(N0+ Jo). It is normally assumed that the jammer PSD is 
considerably stronger than the noise PSD, e.g. greater than lOdB. Therefore, BPSK DSSS in the 
presence of NB jamming requires [Jo/N0]dB more SNR to achieve the equivalent performance of 
BPSK DSSS in the absence of NB jamming. 

To compare the AJ performance of CHESS and BPSK DSSS, consider the black vertical lines in 
Figures 9 and 10. These lines indicate the intersection of the PG = 18dB curves with the Pe = 10"3 

line for BPSK DSSS plus a lOdB NB jammer (at SNRP = -2dB ) and for SD-CHESS with M = 
64 (at SNRP ~ -13dB ), respectively. So, in this example BPSK DSSS requires approximately 
1 ldB more SNPR to achieve the equivalent performance of CHESS. 

BPSK DSSS: AWGN + 10dB Narrow-Band Jammer 

"-30 -25 -20 -15 -10 -5 0 5 
Signal-to-noise power ratio iß/N), dB 

10 15 

Figure 9. BPSK DSSS Performance in AWGN with a lOdB NB Jammer 
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Soft Decision CHESS Union Bound (M - 64) 
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Figure 10. SD CHESS (M = 64) Performance in AWGN 

• CHESS has potential for self-synchronization (vs pilot tone synch for DSSS, and sync 
for fixed FH) 

The potential for self-synchronization is a result of the trellis structure of CHESS and its ability to 
correct missed hops. A self-synchronizing system is less likely to be detected by an interceptor 
because the cyclic synch sequence is not required. DSSS requires a pilot tone and fixed FH 
requires periodic synch sequences. The CHESS systems uses the actual transmitted data (not a 
synch sequence) and the trellis nature of the waveform to converge to the correct path on the 
trellis. Based on rules-of-thumb for the convergence of convolutional codes using Viterbi 
decoding, the CHESS system could require up to 10*log2(M) transmission intervals before 
converging to the correct path. However, if the information is stored, once the decoder has 
converged, it can go back to the ambiguous portion of the trellis and use the missed-hop 
correction capabilities to "fill-in" portions of the sequence. It should be noted that systems that 
rely on synch sequences lose the opportunity to transmit information bits during the synch 
intervals. 

• Practical implementation of CHESS is easier than DSSS 

Several characteristics of the CHESS waveform indicate that practical implementation of CHESS 
should be less costly than that of DSSS. For instance, CHESS has a (much) smaller instantaneous 
bandwidth when compared to DSSS with same spreading factor. The smaller instantaneous 
bandwidth allows the designer to specify a retuneable, narrower BW antenna for CHESS (and 
other single-tone FH waveforms); DSSS would require an antenna with a "wide-enough" BW. 
Typical instantaneous bandwidth for a tactical antenna is 5-10% of frequency band center, e.g. at 
4 MHz, IBW-40 kHz, which are numbers that work easily with CHESS and other FH 
waveforms. 
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A narrower instantaneous bandwidth is also desirable when considering A/D converters (ADCs). 
For CHESS and other FH waveforms, several ADCs for the narrower bands are less expensive 
than a single ADC with wide phase coherence, as required by DSSS. The CHESS algorithm, as 
implemented in the simulation, consists mainly of FFTs and Viterbi decoding, lending itself to 
straightforward FPGA implementation. Additionally, multiple trellisses for conferenced systems 
could then be modularly implemented. The computational complexity of the algorithm as 
implemented increases exponentially as M and h increase due to the Viterbi decoding. The 
complexity results not from the different types of operations (primarily add and compares) but 
from the large number of them. An FPGA implementation is one way to address this issue, but 
might not be sufficient for extremely large values of M. If a sub-optimal decoding method is 
developed at a later date to reduce the computational complexity, the ease of FPGA 
implementation of the revised algorithm should be considered. Finally, CHESS does not require a 
modulated signal, which keeps the complexity and cost of circuit boards relatively low. 



MATLAB Simulation Results 

A MATLAB simulation of a CHESS system as shown in Figure 11 has been implemented. The 
user may define the hopset size, the frequency range of the hopset, the signal-to-noise ratio, the 
jamming signal level, and the size of the FFT used in the receiver. The receiver currently 
calculates an FFT of the received signal over the entire frequency range and then performs 
Viterbi decoding along the allowable paths through the trellis. This allows for both hard decision 
(trellis length of 1) and soft decision (trellis length greater than 1) CHESS processing. The code 
has been written in a modular form so that changes can be made to components with little 
disruption to the remaining code. 
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Figure 11. CHESS Matlab Simulation Block Diagram 

The simulation has been used to verify some of the basic CHESS analysis results in an AWGN 
channel. Figures 12 and 13 display the results of hard decision CHESS simulation runs relative to 
the corresponding theoretical curves for M = 16 and M = 64, respectively. Each plotted 
simulation point denotes the calculated bit error probability for 10,000 continuous message bits. 
The simulation results closely match the theoretical curves thereby verifying both the analysis 
and simulation for hard decision CHESS. 

Figures 14 and 15 display the results of soft decision CHESS simulation runs relative to the 
corresponding theoretical curves for M = 16 and M = 64, respectively. The differences between 
the simulation results and the theoretical union bound curves show that the curves do indeed 
bound the performance of the Viterbi decoder and that this theoretical bound gets looser with 
increasing M and with increasing processing gain (PG). 
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Figure 12. HD CHESS (M = 16) Simulation Results 
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Figure 13. HD CHESS (M = 64) Simulation Results 
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Sott Dsdsion CHESS (M - 16) 
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Figure 14. SD CHESS (M = 16) Simulation Results 

Simulation (dotted) curves correspond to PG values of 27,21,15,9 and 3 dB. 
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Figure 15. SD CHESS (M = 64) Simulation Results. 

Simulation (dotted) curves correspond to PG values of 27,21,15,9 and 3 dB. 
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Conclusion 

This study identified and quantified the advantages of CHESS and enhanced-CHESS systems in 
AWGN and fading channels. Performance was compared to DSSS and fixed FH systems. The 
basic CHESS digital radio technology exhibits many desirable performance characteristics. These 
are itemized below. 

• Low Probability of Detection and Intercept (LPD/LPI) 

• Low Probability of Intercept (LPI). 

• Anti-Jam in both A WGN and fading channels. 

• Error Detection and Correction {EDAC). 

• Self-synchronizing 

• Supports conferencing 

• Multiple bits per symbol without modulation. 

• Insensitive to repeat jammers 

Figure 16 summarizes the results of performance comparisons between CHESS, DSSS and FH. 
As summarized in Figure 16, CHESS outperforms DSSS and FH under a variety of conditions, 
with the exception of computational complexity. For instance, the CHESS anti-jam performance 
in AWGN is similar to the DSSS anti-jam performance and superior to the FH anti-jam 
performance. Furthermore, the LPD/LPI performance of CHESS is better than DSS and FH in 
both AWGN and fading channels. Compared to FH, CHESS is more tolerant of co-channel 
interference; CHESS is much more tolerant of co-channel interference than DSSS. When 
considering antenna energy efficiency, CHESS is similar to FH and 6 dB better than DSSS. 
Similarly, the receiver cost of both CHESS and FH are lower than the receiver cost of DSSS. It is 
possible to implement CHESS so that it is self-synchronizing, which neither DSSS nor FH can 
do. Additionally, while DSSS and FH allow conferencing when additional algorithms or 
protocols are overlaid on them, CHESS allows conferencing without requiring any additional 
infrastructure. Overall, CHESS outperforms both DSSS and FH. 

CHESS Wins Performance Comparison 

Feature CHESS DSSS FH 

Anti-Jam, AWGN Channel 

LPI/LPD Margin (fading channel) >19 6 0 

LPD/LPI Margin (AWGN) 6 4 2 

Computational Complexity 

Co-Channel Interference 

Antenna Energy Efficiency 6 0 6 

Receiver Cost 

Self-synchronization 

Conferencing 

Note: -values are relative, In dB 

Figure 16. CHESS outperforms DSSS and FH 
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To extend and exploit these results, it is suggested that analysis and implementation of CHESS 
continue. 
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Appendix A: Performance Measures 

Specific performance metrics are calculated to provide the structure for the evaluation of the 
conjectures in this report. The measures-of-effectiveness (MOEs) that we use are: 

• Probability of a symbol error (Pe) 
• Probability of detection (Pd) 
• LPI margin 
• Jamming margin 

Pe is defined as P(Sk *Sk)'m which {Sk} is an estimated symbol sequence based on the 

transmitted symbol sequence {Sk}. Obviously, the goal is to design for this value to be as low as 

possible. 

Pd is a simple concept on a single transmission basis. From the viewpoint of intercept resistance, 
the goal is to design for this value to be as low as possible for the interceptor. However, 
calculating the probability that an interceptor is successful during a particular operation becomes 
much more complicated. Quantifying this measure requires detailed knowledge about the 
operational concepts for both the intercept and communications systems. 

The low probability of intercept (LPI) margin measure compares the signal strength needed for a 
specified level of intercept success to the signal strength needed for a specified level of 
communications performance. An LPI communicator desires a large LPI margin so the larger this 
LPI margin ratio becomes, the more resistant to intercept is the communications system. We use 
an alternative approach and evaluate the LPI margin as the ratio of input signal-to-noise ratio 
(SNR) needed for intercept success to the input SNR needed for communications success. This 
allows for the separate evaluation of both communications (BER) and intercept (operating 
characteristics) performance, and for their combination into an LPI margin. 

The jamming margin is defined as the ratio of jammer power to signal power that can be tolerated 
without reducing performance below a desired level. It can be shown that the jamming margin 
(for a wideband jammer) is 

'/>/ 

V   s J dB dB 

(E ^ 

dB 

where Pj is the power of the jamming signal, Ps is the power of the desired signal, W is the 
transmission bandwidth, and R is the data rate in bits per second. The quantity Ei/J0 is the SNR 
per bit. This equation assumes that the jammer PSD is much greater than that of the noise. An 
anti-jam communicator desires a large jamming margin. 
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Appendix B: Communications Bit Error Performance 

Bit/symbol error probability formulas 

Modulation / 
Processing 
Approach 

DSSS BPSK 

Channel 
Additive White Gaussian Noise 

■crfc(jEb/N0) 

DSSS BPSK 
(WB Jammer) 

BFSK 

K-ary CHESS 

M-ary CHESS 

Hard-Decsion 
CHESS 

Soft-Decision 
CHESS 

-erfc 
JJioc) 

lexp(-V2AÜ 

r*r-\\ 
——y(-ir 

n v J 

1 
n + l 

txp(-ny/(n + l)) 

K 

2(K-i)t: £(-D"+ (M-i 

V J 
n + l 

exp(-n^/(n + l)) 

ÖM/(2((K-l) + (M-K)8))* 

^r,m S "-»aL-iWL^" 
n=0 "'     *=0 

Rayleigh-Fading 

n 
'i + r» 

2+n 

#-     /f-i /'AT-A 
A:   .£(_i)-f/c  [] 

2(£-l)£f Kn      , (n + l) + nyb 

2{K-l)<t, V. J (n + l) + nyb 

SM/(2((K-l) + (M-K)S))* 

See Proakis, Digital Communications, 
McGraw Hill, 2001 (p. 834) 

Table Bl. Bit/Symbol Error Probability Formulas 

* 8 is the appropriate K-ary CHESS symbol error probability. 
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AWGN Channel Performance Curves 
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Figure Bl. BPSK DSSS Performance in AWGN as a Function of SNR per Bit 
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Figure B2. BPSK DSSS Performance in AWGN (also for NB Jamming) 
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Figure B3. BPSK DSSS Wide-Band Jamming Function 
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Figure B4. BPSK DSSS Performance in WB Jamming 
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BFSK 
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Figure B5. BFSK Performance in AWGN 
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Figure B6. K-ary CHESS Performance in AWGN 
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Hard Decision CHESS (M - 16) 
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Figure B7. Hard Decision CHESS (M = 16) Performance in AWGN 

Hard Decision CHESS (M = 64) 
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Figure B8. Hard Decision CHESS (M = 64) Performance in AWGN 
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Sott Decision CHESS Union Bound (M » 16) 
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Figure B9. Soft Decision CHESS Union Bound (M = 16) Performance in AWGN 
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Figure BIO. Soft Decision CHESS Union Bound (M = 64) Performance in AWGN 
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Soft Decision CHESS: AWGN Channel (M . 16384) 
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Figure Bll. Soft Decision CHESS Union Bound (M = 16384) Performance in AWGN 
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Rayleigh-Fading Channel Performance Curves 

BPSK DSSS: Rayleigh Fading Channel 
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Figure B12. BPSK DSSS Performance in a Rayleigh Fading Channel 
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Figure B13. BFSK Performance in a Rayleigh Fading Channel 
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Figure B14. K-ary CHESS Performance in a Rayleigh Fading Channel 
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Figure B15. Hard Decision CHESS (M = 64) Performance in a Rayleigh Fading Channel 
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Hard Decision CHESS: Raylelgh Fading Channel (M .1024) 
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Figure B16. Hard Decision CHESS (M = 1024) Performance in a Rayleigh Fading Channel 

Soft Decision CHESS: Rayleigh Fading Channel (M - 16) 
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Figure B17. Soft Decision CHESS Union Bound (M = 16) 
Performance in a Rayleigh Fading Channel 
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Sott Decision CHESS: Rayleigh Fading Channel (M - 64) 
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Figure B18. Soft Decision CHESS Union Bound (M = 64) 
Performance in a Rayleigh Fading Channel 

Sott Decision CHESS: Rayleigh Fading Channel (M = 1024) 
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Figure B19. Soft Decision CHESS Union Bound (M = 1024) 
Performance in a Rayleigh Fading Channel 
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Soft Decision CHESS: Raylelgh Fading Channel (M • 16384) 
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Figure B20. Soft Decision CHESS Union Bound (M = 16384) 
Performance in a Rayleigh Fading Channel 
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Appendix C: Intercept Performance in AWGN 

Receiver Operating Characteristics (ROC) formulas 

Detector Type 

Radiometer 

Optimum 
Multichannel 

FH Pulse 
Matched ED 
Synchronous 

Coherent 
Detector 

Basic Equation 

1 

N     2NT 
-/„" l-NT+NT exp 

rd2NT^ 

WT 

Comments 

Provides lower bound on intercept 
performance 
Most elementary and easy to 
implement receiver 
Holds for large TW products (> 1000) 
Independent of waveform type  

LRT receiver for FH waveforms 
Holds for > 100 hops 
Assumes WhTh = 1 

LRT receiver for DSSS waveforms 
Assumes signal phase is known to the 
interceptor  

Table Cl. Intercept Performance Formulas 
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Figure Cl. Radiometer Probability of Detection for Pfa = 10"6 
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Figure C2. Radiometer Signal-to-Noise Power Ratio for Pfa = 10"' 
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Wideband Radiometer (Pfa = 1 e-3) 
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Figure C3. Radiometer Probability of Detection for Pfa = 10'3 
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Figure C4. Radiometer Signal-to-Noise Power Ratio for Pfa = 10" 
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Optimum Multichannel FH Pulse Matched ED 
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Probability of Detection for Pfa = 10"6 
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Signal-to-Noise Power Ratio for Pfa = 10"6 
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Optimum Multichannel FH Pulse-Matched ED (NT = 400, Pfa « 1e-3) 
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Figure C7. Optimum Multichannel FH Pulse-Matched Energy Detector 
Probability of Detection for Pfa = 10'3 
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Figure C8. Optimum Multichannel FH Pulse-Matched Energy Detector 
Signal-to-Noise Power Ratio for Pfa = 10'3 
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Synchronous Coherent Detector 
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Figure C9. Synchronous Coherent Detector Probability of Detection for Pfa = 10'6 

Optimum DSSS Intercept - Synchronous Coherent Detector (Pfa = 1 e-6) 
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Figure C10. Synchronous Coherent Detector Signal-to-Noise Power Ratio for Pfa = 10"6 
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Figure Cll. Synchronous Coherent Detector Probability of Detection for Pfa = 10'3 

Optmum DSSS Intercept - Synchronous Coherent Detector (Pfa = 1 e-3) 
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Figure C12. Synchronous Coherent Detector Signal-to-Noise Power Ratio for Pfa = 10" 
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Notation / Acronyms 

A 
ADCs 
AJ 
AWGN 

Analog-to-Digital Converters 
Anti-Jam 
Additive White Gaussian Noise 

B 
bph 
bps 
BER 
BPSK 
BW 

Bits Per Hop 
Bits Per Second 
Bit Error Rate 
Binary Phase Shift Keying 
Bandwidth 

C 
CDMA 
CG 
CHESS 

D 
d 
.      H 

Omin 

DACs 
dB 
DFH 
DSSS 

E 
Eb 

Es 
ECC 
ED 

F 
fo 
FDMA 
FH 
FHSS 

G 
Y 

Yb 

h 

Code-Division Multiple Access 
Coding Gain 
Correlated Hopping Enhanced Spread Spectrum 

Deflection Coefficient 
Minimum Hamming Distance 
Digital-to-Analog Converters 
Decibel 
Differential Frequency Hopping 
Direct Sequence Spread Spectrum 

Energy per Bit 
Energy per Symbol 
Error Control Coding 
Energy Detector 

Center Frequency 
Frequency-Division Multiple Access 
Frequency Hopped 
Frequency Hopped Spread Spectrum 

SNR per Symbol 
SNR per Bit 

Average SNR per Bit 

H 
h 
HD 
Hz 

Bits per Hop 
Hard Decision 
Hertz 
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I 
IBW Instantaneous Bandwidth 

J 
J Jammer Power 
J0 Jammer PSD 

xr 

K Number of Trellis Branches (2bph) 
kbps Kilo Bits Per Second 
kHz KiloHertz 

L 
L Diversity Order (logKM) 
Lc Processing Gain, Spreading Factor 
LPD Low Probability of Detection 
LPI Low Probability of Interception 
LRT Likelihood Ratio Test 

M 
M Number of Frequencies 
MAC Multi-Access Control 
MFSK Multiple Frequency Shift Keying 
MHz MegaHertz 
MOEs Measures of Effectiveness 
ms Millisecond 

N 
N Noise Power 
N0 Noise PSD 
Nc Number of Conferenced Users 
NT Number of Detector Channels 
NB Narrow-Band 

O 
OFDM Orthogonal Frequency Division Multiplexing 

P 
pD Probability of Detection 
pe Probability of a bit error 
pfa Probability of False Alarm 
Pj Jammer Power 
pN Noise Power 
ps Signal Power 
PG Processing Gain 
PSD Power Spectral Density 
PSK Phase Shift Keying 

Q 
QAM Quadrature Amplitude Modulation 
QPSK Quadrature Phase Shift Keying 
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R 
R 
Rb 

Re 
Rs 
ROC 

Data Rate in bps 
Data Rate in bps 
Code Rate 
Data Rate in sps 
Receiver Operating Characteristics 

S 
s 
S 
SD 
SNPR 
SNR 
sps 

Seconds 
Signal Power 
Soft Decision 
Signal-to-Noise Power Ratio (S/N) 
Signal-to-Noise Ratio 
Symbols per Second 

T 
T 
Tb 

Tc 

Th 

TCM 
TW 

Message (Signal) Duration 
Bit Duration 
Chip Duration 
Hop Duration 
Trellis Coded Modulation 
Time-Bandwidth 

W 
w 
wh 
wss 
WB 

Communications Signal Bandwidth 
Hop Bandwidth 
Communications Signal Bandwidth 
Wide-Band 
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