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EXECUTIVE SUMMARY 

The Air Force has a large inventory of legacy FORTRAN software used to 

support Test and Evaluation as well as other missions. Software engineers need to be able 

to understand such software in order to maintain it or to reengineer it and thus keep it in 

step with changing mission requirements. Software Reconnaissance is a dynamic analysis 

methodology to aid in understanding old software by locating where specific user 

features are implemented. To use Reconnaissance, software is instrumented so that 

execution can be traced, and then test cases are executed with and without the desired 

feature. The resulting traces are analyzed to locate the feature in support of different 

software engineering tasks. Software Reconnaissance had previously been demonstrated 

successfully on fairly recent C programs. This project explores its application to legacy 

FORTRAN code typical of the Air Force Test and Evaluation inventory. 

The project developed the following software engineering tools which have now 

been made available on our web site (http://www.cs.uwf.edu/~wilde/recon3/): 

1. A FORTRAN 77 instrumentor, to facilitate tracing legacy FORTRAN code 

2. The TraceGraph visualization tool, which facilitates using Reconnaissance 

interactively 

A case study was carried out to illustrate the use of Software Reconnaissance on a 

typical example of legacy FORTRAN code from the Air Force inventory. The study 

showed that the method was effective in locating user features within a relatively small 

proportion of the code. The main difference with the earlier experiences using C was that 

the located code proved more difficult to understand, due to its lack of structure and to 

the presence of obsolete program plans. 



The project then developed a methodology based on Software Reconnaissance for 

reengineering legacy FORTRAN code into object-oriented C++. A domain class model is 

developed and elaborated by assigning the different features of the FORTRAN program 

to the object classes. Software Reconnaissance test cases are used both for feature 

location and to validate the correctness of the resulting C++ program. A case study 

showed that the method seems to be a workable approach to reengineering legacy 

FORTRAN, though the tangled nature of this old code still requires much effort to 

understand. 

In addition to the annual progress reports, the following intermediate technical 

reports have been submitted to AFOSR: 

1. Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, "Feature 
Location in Legacy Fortran Code", submitted June 29, 2000. 

2. Vaclav Rajlich, Kunrong Chen, Norman Wilde, Michelle Buckellew, Henry Page, 
"Software Evolution, Software Servicing, and Software Cultures", submitted 
November 13,2000. 

3. Norman Wilde, Michelle Buckellew, Vaclav Rajlich, "A Dynamic Analysis 
Methodology for Reengineering Fortran to C++", submitted May 25, 2001. 

The following publications have resulted from this research (others are pending): 

1. Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, "A Case Study 
of Feature Location in Unstructured Legacy Fortran Code", Proceedings 5th 
European Conference on Software Maintenance and Reengineering - CSMR 
2001, IEEE Computer Society Press, Los Alamitos, CA, March 2001, pp. 68-76. 

2. Vaclav Rajlich, Norman Wilde, Michelle Buckellew, Henry Page, "Software 
Cultures and Evolution", to appear in IEEE Computer. 

Participants in this research have included Michelle Buckellew, Vaclav Rajlich, 

Henry Page, LaTreva Pounds, Kazimiras Lukoit, Scott Stowell and Tim Hennessey. 
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CHAPTER I - INTRODUCTION 

The Air Force Development Test Center has a large inventory of software vital for the 

test and evaluation (T&E) mission that needs to be continually enhanced and validated. 

Much of this software is old, coded mostly in FORTRAN, often poorly documented, and 

difficult to understand, maintain and support. For such programs to continue in service, 

methods and techniques are needed to facilitate understanding and reengineering into 

more modern paradigms such as those provided by object orientation. 

To reengineer software, a programmer must understand not just "what" a code 

fragment does, but also "why". Old systems typically provide many different "features" 

to their end users. An optimization package, for example, may incorporate several 

different hill climbing strategies, handle several different classes of constraints, and 

provide many different input and output options. It can be very difficult for a programmer 

to understand which of these use cases a particular code fragment supports. 

The University of West Florida has developed a method for dynamic analysis of 

software called Software Reconnaissance, which can help programmers understand the 

purpose of code. It provides a novel view of software that maps each program statement 

to the user features or use cases it supports. The mapping is constructed by running test 

cases that exhibit different combinations of features and tracing the program statements 

that are executed in each case. The traces are then analyzed using set theoretic methods to 

develop the mappings between use cases and code. 

Software Reconnaissance was developed to work on C code and has been tested on 

systems at several companies including Bellcore, GTE and Northrop Grumman. The 



Software Engineering Research Center (SERC), an NSF-supported industry university 

cooperative research center, has provided funding for these trials. Results have been 

favorable; programmers indicate that Software Reconnaissance provides very good 

starting points for locating code in large systems and can often provide insights that 

would be very hard to obtain by other means. 

The purpose of this project was to see if Software Reconnaissance can be extended to 

the unstructured FORTRAN programs that are typical of the T & E code inventory. The 

project consisted of three parts: 

1. Development of Software Reconnaissance tools for FORTRAN 

2. Application of these tools to locate features in a sample of T&E FORTRAN 

software 

3. Development and trial of a methodology based on Software Reconnaissance for 

reengineering FORTRAN into object-oriented C++ 



CHAPTER II - REVIEW OF THE LITERATURE 

The literature on program comprehension is extensive. Koenemann and Robertson 

(1991) reported on an experiment they performed in which twelve expert programmers 

analyzed Pascal code and "thought aloud" to give the researchers an insight into their 

thought processes. The researchers concluded that programmers do not use a systematic 

strategy of comprehension, but generally proceed in a top-down fashion, ignoring 

documentation. They assert that good tools would be effective in aiding comprehension. 

Von Mayrhauser and Vans (1995) sought to analyze the cognitive processes of 

programmers as they went about the task of program comprehension. Their evaluation of 

cognition models concluded that most of these models do not apply to specialized 

maintenance tasks, and that more work is needed in this area. They combined several 

cognition models to create an 'Integrated Metamodel." Robson, Bennett, Cornelius, and 

Munro (1991) examined approaches to program comprehension and concluded that 

inverse engineering techniques could lead to greater program understanding. 

There is a lack of sufficient research on feature location, but several important 

papers have been written about this subject in the past decade. Biggerstaff, Mitbander, 

and Webster (1994) dealt with the process of recognizing concepts within a computer 

program to aid understanding. They suggested looking at descriptive data names, patterns 

of relationships between functions and data, and the use of tools to help in concept 

location. They determined that while a totally automated approach to feature location is 

not possible, a certain amount of automation is helpful. Lakhotia (1993) analyzed two 

programs, the GNU C compiler and the Wisconsin Program Integration Systems, and 
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discovered that one does not have to understand the entire program to make correct 

modifications. Chen and Rajlich (2000) outlined the problem of feature location. They 

advocated a Dependence Graph approach to feature location that involved a computer- 

assisted search process aiding the programmer in deciding whether a component is 

related to the feature being sought. Wilde and Scully (1995) introduced the Software 

Reconnaissance technique as a tool-based method of feature location. This technique is 

based on a comparison of traces of different test cases. The test cases are run "with" and 

"without" the feature being sought, then analyzed to determine which blocks or decisions 

are executed "with" the feature but not "without." An early test of the Software 

Reconnaissance technique found it to be effective in finding code at or near the feature 

being targeted (Wilde & Casey, 1996). This test also found it is important to use only a 

few simple test cases for effective feature location. 

Although it is generally well known that legacy systems tend to become 

progressively more difficult to update as they age (Belady & Lehman, 1976; Kaliski & 

Kaliski, 1991), there has not been a large amount of research concerning the maintenance 

of legacy FORTRAN code. A tool for modeling large FORTRAN programs was 

described by Rajlich, Damaskinos, Linos, and Silva (1988). The VIFOR tool displays a 

graphical representation of the FORTRAN code in order to enhance understanding and to 

aid in building and modifying the program. Blazy and Facon (1993) described a 

technique and a tool supporting partial evaluation of FORTRAN programs. The tool 

produces a complete reduced program to aid in program comprehension. Blazy and 

Facon (1994) also presented a tool that facilitates the comprehension of large, complex 

general-purpose FORTRAN programs by specialization. Rugaber, Stirewalt, and Wills 



(1995) described their experiences in detecting delocalized, overlapping fragments of 

code in a series of FORTRAN programs using analysis tools. They stated that such 

interleaving code compromises program comprehension, and that detecting this code and 

examining the individual fragments can improve understanding. An experience in 

restoring a legacy program, written partly in FORTRAN, was recounted by Rugaber and 

White (1998). The restoration team attempted to convert the FORTRAN code into C 

using a freeware tool set, but this resulted in unmanageable "spaghetti" code. Instead, 

they decided to increase the use of makefiles that would allow the languages to coexist. 

Ripple analysis (Yau, Collofello, & MacGregor, 1978) and impact analysis 

(Queille, Voidrot, Wilde, & Munro, 1994) are names given to a collection of techniques 

used to identify how changes in one component of a system may affect other 

components. Arnold and Bohner (1996) provide a collection of papers covering different 

impact analysis approaches. The majority of this work looks at the impacts of a change in 

one code component on another code component. However, the most general kind of 

impact analysis also follows requirements traceability links between documentation and 

code. Thus, generalized impact analysis may be useful to locate features mentioned in the 

requirements document. Turver and Munro (1994), for example, have described a 

technique for modeling documentation entities and their connections to code in a Ripple 

Propagation Graph and for identifying the impact set from a change request. Obviously, 

this method will only work if requirements traceability information for the program has 

been carefully maintained, and this is fairly rare in practice. 

Chikofsky and Cross (1990) attempted to clear up the confusion surrounding the 

terms "reengineering" and "reverse engineering." They define reengineering as "the 
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examination and alteration of a subject system to reconstitute it in a new form and the 

subsequent implementation of the new form." In contrast, reverse engineering is "the 

process of analyzing a subject system to identify the system's components and their 

interrelationships and create representations of the system in another form or at a higher 

level of abstraction." They emphasize that "reengineering generally includes some form 

of reverse engineering (to achieve a more abstract description) followed by some form of 

forward engineering or restructuring." Rugaber (1992) discussed why reverse engineering 

is difficult and outlined a methodology called Synchronized Refinement to help solve 

these problems. Synchronized Refinement analyzes a program and describes its behavior 

in the vocabulary of the application domain and its structure in terms of design decisions. 

A test of Synchronized Refinement showed that while it improved program 

comprehension and reverse engineering, it is extremely labor-intensive (Ornburn & 

Rugaber, 1992). DeBaud and Rugaber (1995) discussed a method for reengineering that 

uses an executable domain model to enhance understanding and an object-oriented 

framework to guide the reengineering. Their method seemed to speed the process, but the 

procedure of domain analysis and framework construction was time-consuming. 

Kozaczynski and Wilde (1992) described the problems inherent in reengineering 

transaction systems. They highlighted the difficulties caused by the necessity of an 

incremental approach and the problems caused by attempting to reengineer at the same 

time that the operational system continues to evolve. Wilde, Casey, Vandeville, Trio, and 

Hotz (1998) experimented with using Software Reconnaissance to aid in design recovery 

for a large multi-process system, JointSTARS. They found that using Software 

Reconnaissance on real-time systems was effective in recovering "design threads" from a 
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trace of inter-process messages. Linos et al. (1994) created a visual tool called CARE 

(Computer-Aided Re-Engineering) to facilitate the comprehension and reengineering of 

C programs. Their study on the use of CARE demonstrated that it reduced the average 

time needed to complete the maintenance task and helped their students make better- 

quality changes. Sneed and Majnar (1998) presented an attractive approach to 

reengineering which required "wrapping" the existing code, thus creating a large object 

component that a new object-oriented system can use. Wrapping has the advantage of 

requiring relatively little study of the legacy code, which is largely treated as a black box. 

However, there is still a considerable testing burden to make sure everything is working 

correctly and some of the benefits of recovering domain knowledge are lost since it is 

hidden inside the wrapped component. Given the wide range of situations that may be 

encountered even within a single system, Canfora, Cimitile, De Lucia, and Di Lucca 

(2001) suggested that tools and methods must depend on the specific system and 

advocated an eclectic approach in which a software engineer combines and tailors 

different methods for the problem at hand. 

One study specifically addressed reengineering Department of Defense legacy 

code. Bergey, Smith, and Weiderman (1999) presented a series of guidelines to follow 

when creating a reengineering strategy. They argued that reengineering should be 

managed more rigorously than the development of new systems. Their guidelines provide 

a starting point for establishing the discipline necessary to reengineer legacy code. The 

guidelines are based in part on an earlier study that identified some of the key reasons 

reengineering of legacy systems often fails (Bergey, Smith, Tilley, Weiderman, & 

Woods, 1999). 
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Lately, interest has increased in the identification of objects in legacy procedural 

code as an aid to comprehension or reengineering (Canfora, Cimitile, & Munro, 1996; 

Cimitile, De Lucia, Di Lucca, & Fasolino, 1999; Di Lucca, Fasolino, & De Carlini, 2000; 

Liu & Wilde, 1990; Livadas & Johnson, 1994). Most of the methods described in these 

papers involve tools that cluster code components in some way to search for patterns of 

interaction that may indicate a candidate object. Lakhotia (1997) has provided a 

framework for describing and comparing such techniques. If a tool is used, a fairly large 

degree of human interaction with the tool is usually needed to help make sure that the 

identified objects are really meaningful. Jerding and Rugaber (1997) used a visualization 

tool called ISVis to help determine the major components of a system and the ways these 

components interact to accomplish the program's goals. In a case study, they found it to 

be successful in aiding architectural understanding. Subramaniam and Byrne (1996) 

identified a nine-step method for examining FORTRAN code to extract an object model. 

Achee and Carver (1994) developed an algorithm to identify objects in imperative code, 

specifically FORTRAN. They chose a bottom-up approach. Their algorithm evaluates the 

subroutines of the program to determine a set of objects, and examines the relationships 

among the parameters to construct the attribute sets of the objects. The main problem 

with this method is that it does not take into account the lack of modularity typical of 

legacy programs. Cimitile, Tortorella, and Munro (1994) experimented with identifying 

abstract data types in existing code. Because these abstract data types are the basis of 

new, reusable modules of the program, they could be translated into objects. The 

algorithm presented by these researchers seemed to aid in improving program 
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comprehension but was found to be ineffectual in identifying abstract data types in legacy 

code that had been heavily modified. 

It is obvious from this previous research that a better method for reengineering 

legacy code into object-oriented code is necessary. Dynamic analysis tools should be 

evaluated to see if they assist in the tasks of feature location and program comprehension, 

which are so essential to reengineering. These tools should also be used for regression 

testing to provide some confidence that the new program effectively mimics the old. 
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CHAPTER III - TOOLS USED IN THIS WORK 

Figure 1 shows the overall tool architecture needed for Software Reconnaissance. 

The user's target source program is first run through an instrumentor that inserts 

subroutine calls to record trace events. It is then compiled and executed. As it runs, the 

trace events are captured by the trace manager, which writes out event records to trace 

files. Finally, an analysis program compares the traces with and without the feature to do 

the actual code localization. 

Fortunately, the analysis program used with the existing Recon2 tool for C 

(Wilde, 1996) could also be used for FORTRAN, so that only a new instrumentor and 

trace manager were needed. These were written and tested in the first phase of this 

project. The instrumentor and trace manager have now been made available on the web 

site of the Recon3 tool set at The University of West Florida. 

(http://www.cs.uwf.edu/~wilde/recon3/). 

The instrumentor processes FORTRAN 77 code, since that is the dialect most 

used in the Air Force's Air Armament Center software. It allows the user to choose any 

combination of the following: instrumentation of subroutine entry points, subroutine 

return points, basic blocks (sequences of statements with no branches), and decisions 

(specific paths from an IF or computed GOTO statement). 
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Figure 1. Software Reconnaissance tool architecture. 

The trace manager component was implemented as a simple collection of 

FORTRAN 77 subroutines that write each trace record directly to a trace file. These 

subroutines are linked together with the user's instrumented target program. One trace file 

is produced for each execution of the program, and the trace files from runs "with" and 

"without" the feature are then fed to the analysis program to locate the feature. 

Simultaneously with the development of the FORTRAN 77 tools, a new analysis 

tool called TraceGraph was written to make Software Reconnaissance easier to use. Up to 

now, a programmer using the technique has needed a cycle such as the one shown in 

Figure 2. The programmer has to switch back and forth between running tests, keeping 

track of trace files, setting up the analysis program so that it will know which traces 

exhibit each feature, and running the analysis program. While this process may be 



marginally adequate for batch programs, it is particularly awkward for long running or 

interactive programs such as a word processor or a web server. It takes considerable time 

to start up and terminate each test case, so the test-analyze cycle is quite time consuming. 
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Figure 2. Locating features using Software Reconnaissance. 

Accordingly we have developed a visually oriented feature location tool called 

TraceGraph that combines two concepts: 

1. Immediate feedback from a running program 

TraceGraph monitors the program as it executes; trace files are written and 

analyzed continuously. The maintainer of, for example, the word processor would only 

need to start it once. To locate the code for, say, the spell check feature, he would simply 

do the spell check operation in one window and immediately check the TraceGraph 

window to see what was executed. (Figure 3) 
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Figure 3. Locating Features Using TraceGraph 

2. Graphic display of results 

TraceGraph uses a display somewhat like an oscilloscope trace which slowly 

extends to the right as the program executes (see Figure 4). Each vertical column 

corresponds to a time period, say 5 seconds of execution, or to a different trace file. Each 

horizontal row corresponds to one software component. Each small rectangle is grey if 

the component was executed in that period or file, or blank if it was not. Red rectangles 

are used for emphasis the first time the component is executed. Figure 4 shows the 

display of traces from a FORTRAN 77 program where the programmer has traced tests 

for each feature. The red rectangles let him pick out quickly the code for a specific 

feature. 
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TraceGraph Beta 0.01 - June 12/2001 
FBe  View   Demos   Debug   Help 

Reorder The Frames Trace  Frames 
!■ ■■!■'■ WM'l 

■ «■■■■■I 

I^Sä^^^^S^^^^*ä^SMIC 
Read record- 874 ofTR005B.r2t 
Read record-1351 ofTR002.r2t 
Read record - 915 of T023A.r2t 
Read record-901 ofT021A.r2t 
Read record- 968 ofT019B.r2t 

Figure 4. A TraceGraph display from a FORTRAN 77 program 

Just as an engineer uses an oscilloscope to see how a circuit responds to different 

inputs, a programmer will be able to use TraceGraph to view how the program responds 

to different actions. TraceGraph also takes advantage of the human's ability to distinguish 

texture in images. It is easy for the eye to pick out a change in the execution of a 

component, even if it is represented only by a color change in a few pixels. 

The TraceGraph is now available on the Recon3 web site 

(http://www.cs.uwf.edu/~wilde/recon3/). 

As will be described in the following chapter, in our first case study the Software 

Reconnaissance method of feature location was compared against the Dependency Graph 

method proposed by Chen and Rajlich (2000). The Dependency Graph method is 

intended to be a computer-assisted search process, with different and alternating roles for 
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the computer and for the software engineer. An interactive tool for C is being developed 

at Wayne State University, but no FORTRAN tool was available for this study. In the 

absence of such a tool, the VIFORtool (Rajlich, Damaskinos, Linos, and Silva, 1988) 

was used. VIFOR parses FORTRAN 77 code and creates a database of program entities 

and modules and of the relationships between them. The user may then formulate queries 

on this database which are displayed graphically in a one or two column format. VIFOR 

graphs of the calling dependencies (Figure 5) and of COMMON usage (Figure 6) were 

used to help guide the case study. 

Figure 5. VIFOR screen shot of the calling relationships of the CONVERT3 program. 
Each icon represents a FORTRAN subroutine in the convert3.f module. The "hook lines" show the 

subroutines' calls. 
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Figure 6. VIFOR screen shot of COMMON usage by subroutines in CONVERT3. 
The subroutines appear in the left column and the named common blocks in the right column. A 

line indicates that the block is referenced by the subroutine. 
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CHAPTER IV - FEATURE LOCATION IN LEGACY FORTRAN CODE 

The FASTGEN System 

The FASTGEN geometric modeling system is a suite of programs that allows 

models of solid objects such as vehicles, aircraft, and so forth to be constructed from 

primitives such as triangles, spheres, cylinders, donuts, boxes, wedges, and rods. It is 

used by the Air Force to model the interactions between weapons and targets by tracing 

rays representing explosions or projectiles. The data used to describe individual 

components in a FASTGEN geometric model consist of three-dimensional coordinates, a 

component identification code name, a space code which identifies the area or 

compartment where the component resides, a material thickness, and a geometric code 

that defines the geometric primitive (triangle, sphere, and so forth) used in modeling the 

surfaces of the component. 

The FASTGEN program used in the case study was CONVERT, which is a small 

program (2,335 lines of code), but seems to be typical of the rest of the tool suite. 

CONVERT is a preprocessor to expand simplified geometric model input and to 

transform models into the formats required by other tools that perform ray tracing or 

model visualization. CONVERT provides a large number of options for processing model 

data, especially including transformation of some primitive shapes into a set of triangles. 

Aitken, Jones, and Dean (1993) pointed out that FASTGEN can approximate any type 

of surface by using triangles as primitives. 

This method allows any surface, flat or curved, exterior or interior, to be approximated by 

describing it as a series of one or more consecutively adjacent triangles whose points 

(vertices) are located in three-dimensional space. Flat surfaces can be described with 

large triangles and a few smaller ones if the surface is irregular. Curved surfaces can be 
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described using several small triangles, with the size of the triangle decreasing if 

increased accuracy is desired Any three consecutively sequenced points define a 

triangle. (Aitken, Jones, & Dean, 1993, p. 2) 

FASTGEN ray tracing tools accept component descriptions defined using triangle, 

sphere, cylinder, donut, and rod primitives. However, FASTGEN plot programs such as 

P1XPL (Brown, 1979) plot only those components described using triangle and rod 

primitives. CONVERT thus provides an option to transform components described with 

sphere, cylinder, and donut primitives to approximated components using triangle 

primitives. CONVERT always transforms components described with box and wedge 

primitives to equivalent components using triangle primitives. 

CONVERT has a long history. Falcon Research and Development of Denver, 

Colorado developed the original program in 1978 for the Naval Weapons Center (NWC) 

at China Lake, California. The program has been maintained and updated many times in 

efforts to keep pace with the introduction of different hardware platforms. In the 1980s, 

modifications were performed by the Vulnerability Assessment Branch (DLYV) of the 

Air Force Armament Laboratory (AFATL), now Air Force Research Laboratory (AFRL), 

Eglin Air Force Base, Florida for compatibility with a Control Data Corporation (CDC) 

6600 computer system. Later, it was adapted for use on the CDC Cyber 176, CRAY Y- 

MP 8/2128 and several Digital Corporation VAX-series computer systems. In 1994, 

CONVERT was modified and designated CONVERT3.0 (also known as CONVERT3) 

for operation on personal computers (PC) and UNIX workstations. 

CONVERT3 exhibits many of the characteristics common in legacy FORTRAN 

code. The subroutines tend to be quite large (See Table 1) and not necessarily cohesive. 

Variable and subroutine names are limited by the language to six characters and are thus 
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usually cryptic. Much of the data is held in a series of large named common blocks, 

which serve to couple the subroutines closely. Figure 6 is a VTFOR screen shot showing 

the use of common blocks (global data) by the subroutines in CONVERT3. As can be 

seen, most subroutines use almost all of the COMMON blocks. Tracing data flow 

through programs with this sort of structure is quite difficult. 

Table 1. Size of Main Program and Subroutines in CONVERT3 

Subroutine Number of lines 

CONVERT (main program) 675 

CTOBIN 219 

SOOT 60 

INFLUE 135 

BOXY 116 

WORK 96 

SPHERE 67 

THREAD 67 

CONCYL 240 

DONUT 234 

DNTWRK 77 

COMB 159 

DATA 190 

Note. Raw line count includes comments and blanks. 
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Another confusing aspect of CONVERT3 is the flow of control, which is optimized 

for an architecture that is now long obsolete. CONVERT3 was originally designed to run 

efficiently on a mid-70s mainframe. In this kind of machine, it was very important to 

batch together I/O operations and computations. The operating system would tend to 

swap out any job that was doing I/O, and thus interrupt computations. Execution was 

much more efficient if a large number of records could be read, then all processed 

together before doing any new I/O. 

For this reason, CONVERT3 reads and processes in batches of 200 records. The 

processing loops are implemented using unstructured GOTOs that jump both forward and 

backward, often a hundred lines or more. The resulting structure is complex and seems to 

be totally arbitrary unless the programmer is aware of the kinds of optimizations used in 

early code. 

The Case Study 

The case study involved independently applying the Software Reconnaissance and 

Dependency Graph methods to two different features of CONVERT3. Two teams 

consisting of researchers from The University of West Florida Department of Computer 

Science participated in the study, with each team being assigned a search method and 

working independently. The results from the two teams were then compared. 

Team A consisted of an experienced academic programmer and a graduate student, 

neither of whom had previous domain knowledge of the CONVERT3 program. This 

team used Software Reconnaissance to locate starting points in the code and then 

analyzed the code from these starting points. The Software Reconnaissance output was 
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supplemented in some cases by looking at the raw traces produced during each run to 

better understand the flow of control. 

Team B was an experienced programmer who had worked with the CONVERT3 

program almost 20 years earlier in the early 1980s. Team B was assigned the 

Dependency Graph search method for feature location but found that it needed some 

adaptation (described below) for legacy FORTRAN code. 

The goals of the case study were to establish: 

1. Any adaptations that might be needed in each method for use with legacy 

FORTRAN code. 

2. The possible benefits and drawbacks of each method as applied to this domain. 

3. Any inconsistencies between the results of the two methods that might give 

insight into their applicability. 

Obviously, since the two teams not only were of different sizes but also had different 

levels of experience with CONVERT3, it was not relevant to directly compare time and 

effort between the teams. 

For the study, two features of CONVERT3 were chosen that might plausibly need to 

be understood as part of future modifications. The program has a large number of 

switches and options representing different features that could have been selected. The 

two features finally chosen were a mirroring function and a sort function. 

CONVERT3 allows mirroring to simplify data entry of symmetric objects. The user 

can input one component of the object and specify that it will have a "mirror" component 

generated automatically by reversing the y-axis coordinate. Maintainers might wish to 

search for the mirroring function in order to modify it, for example to mirror components 
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on a different or additional plane (that is, adding the z-axis as well as the x-axis and y- 

axis). 

The sort function is related to another simplification of data entry. Often, one point 

may belong to several of the triangles making up a surface. CONVERT3 allows the user 

to enter such a point only once, but to assign it several sequence numbers indicating its 

participation in the different triangles. In the output file, the point is echoed several times 

to describe each triangle completely. The sort function guarantees that all of these points 

are in the right order, which is necessary for some of the other FASTGEN programs. A 

maintainer might need to locate this code to fix a bug or to change the sorting algorithm. 

The mirroring function proved to be the more complicated of the two features to find 

and understand. 

Team A used the Software Reconnaissance method that requires running one test 

"with" and one "without" the feature. It took around 20 minutes to set up the test data. In 

previous studies, it has been found that Software Reconnaissance works best with very 

simple test cases, using data "with" and "without" the feature that is as similar as 

possible. A very simple geometric model was created and run once with the mirroring 

flag set and once with it turned off. The results were then analyzed with Software 

Reconnaissance. The tool marked 5 areas as potentially related to mirroring, all between 

lines 400 and 500 of the program. 

The next stage was to try to understand the marked code and its relationship to the 

rest of the program. This proved to be difficult, because it turned out that the program 

makes several passes through this area of code to handle mirroring. When the mirroring 

flag is set, CONVERT3 writes the component to a scratch tape during initial processing. 
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Then it rewinds the scratch tape, reads in the component to the same data area used 

previously, and jumps back to make a second pass through the same code to process the 

mirrored components. Presumably, the original programmer was attempting to conserve 

memory and reuse code. A more modern approach would have been to call a subroutine 

twice. 

This program plan made comprehension difficult, since some of the code marked by 

Software Reconnaissance had been executed first time through while the rest was 

executed second time through. A direct reading of the marked code did not make sense. 

The team resorted to reading the raw trace file to learn the actual order in which 

statements were executed, and this eventually revealed the scratch tape program plan just 

described. Even with this assistance, the control variables governing the looping structure 

were not completely understood. 

Team B adapted the Dependency Graph search method to find the mirroring function. 

First the user documentation was reviewed to try to refresh understanding of the feature 

(Jones & Aitken, 1994). Since mirroring is not exclusive to a single primitive type (that 

is, triangles, box, wedges, and so forth), it was likely that the control flow analysis would 

lead to mirroring at a somewhat non-primitive-specific area in the code. This alone 

eliminated quite a bit of code. 

From here, Team B formalized these hypotheses: 

1.   since mirrored components are developed from other components in the target 

geometric model, some descriptive name or comment would lead Team B to the 

target geometric model internal data structure and variables; and 
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2.   despite the cryptic nature of the program variable names, the use of "MIRROR" 

or "MIR" would perhaps be an indication of whether or not a component is to be 

mirrored. 

Then, Team B broke the task into these sub-goals: 

1. locate the input data that tells CON VERT3 to mirror a component. The user 

documentation indicated that character positions 75 through 77 of an 80-character 

target geometric model (TGM) record contain the input mirror code (Jones & 

Aitken, 1994); and 

2. understand enough of the data structure from where the input data is located to 

follow the control flow to the mirroring functionality. 

Team B then read the code forward linearly from the place where the TGM record 

was read, looking for places where the mirror code was used. Aided by Team B's domain 

knowledge of CONVERT3, it was then able to locate and understand the mirroring 

function without much difficulty. 

The second part of the study examined the sort function, which sorts the sequence 

numbers of components. The individual components of a FASTGEN target geometric 

model are made up of primitive shapes: triangles, boxes, wedges, cylinders, donuts, 

spheres, and rods. These shapes are transformed by the CONVERT3 program into 

triangle primitives. The user creates a separate record for each component. Each point in 

the component is assigned up to eight sequence numbers that help identify how the points 

are connected to each other. 

A convenient mathematical form for describing a component surface is based on 

the fact that any surface, flat or curved, can be approximated by one or more flat 
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triangular surfaces. Triangles are formed by connecting three non-collinear points, 

thus forming a plane. If more than one triangle is required to describe a surface, 

then the triangles must be sequenced such that any three successive points define 

a triangle (not already described) or a straight line on the surface of the 

component. The proper selection of sequence [numbers] is critical. (Jones & 

Aitken, 1994, p. 21) 

CONVERT3 takes a record with several sequence numbers and outputs the record 

several times, once with each sequence number. With the sort option activated, these 

records are sorted in numerical order by sequence number. 

Team A adapted a sample geometric model that included sorting based from a figure 

in the user documentation (Jones & Aitken, 1994) to use with the Software 

Reconnaissance technique. To provide the two tests, the model was run with and without 

the sort function using the instrumented version of CONVERT3. The results were then 

analyzed with Software Reconnaissance. The tool marked only two areas: 

1. 5 lines at line 813 in the CTOBIN subroutine where SOOT is called and checks 

for duplicate sequence numbers; and 

2. the SOOT subroutine - comments indicate it is a shell sort. 

At first, Team A had difficulty in understanding exactly what the sort function is 

supposed to do. The descriptions in the user documentation (Jones & Aitken, 1994) and 

the FASTGEN user manual (Aitken, Jones, & Dean, 1993) were somewhat confusing. 

The user documentation states that CONVERT3 is able to "sort records in proper 

sequential order," but it was unclear whether this meant that CONVERT3 would "assign 

sequence numbers" or "use modeler assigned sequence numbers to sort the records of a 
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component" (Jones & Aitken, 1994). Adding to the confusion, the FASTGEN user 

manual says that CONVERT3 can "create properly sequenced approximations of a 

component when input for the component contains multiple sequence numbers and a 

triangle vertex assigned on a single record" (Aitken, Jones, & Dean, 1993). This could 

mean that CONVERT3 creates new sequence numbers; however, this feature is listed 

separately from the sort. Without domain knowledge, Team A found that their main 

problem was determining exactly what the sort function sorts! 

It took Team A 30 minutes to find the sort using Software Reconnaissance, including 

setup. An additional 60 minutes were spent studying the CTOBIN subroutine to 

understand when the sort function (in subroutine SOOT) is called. Team A finally 

decided that CTOBIN reads the input and performs replication of points having multiple 

sequence numbers. Just before it starts processing a new component, it jumps to the sort 

function in the SOOT subroutine to sort the old one. Afterwards, it goes back to process 

the first record of the new component, continuing in this manner. 

Team B used the Dependency Graph search method to find the sort feature following 

the same process used for mirroring. By consulting the user documentation (Jones & 

Aitken, 1994), Team B determined why sorting was needed. Team B also noted the use 

of the variable name 1SORT as a flag to toggle the sorting of sequence numbers. From 

the VIFOR calling hierarchy (Figure 5), it was apparent that the subroutine CTOBIN 

calls a subroutine named SOOT. Thanks to its domain knowledge, Team B realized that 

this is a sort with the name changed slightly so as not to duplicate a FORTRAN intrinsic 

sort subroutine. 
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Then, Team B broke the task into these sub-goals: 

1. locate where the input data tells CONVERT3 to sort sequence numbers (Team B 

believed this would be in the subroutine CTOBIN); and 

2. understand enough of the data structure from where the input data is located to 

follow the control flow from the input data to the sort subroutine. 

From here, Team B was able to locate and understand the sort feature with little trouble. 

Conclusions from the Case Study 

Software Reconnaissance and Dependency Graph search are two methods for 

locating code that needs to be modified. It should first be pointed out that Software 

Reconnaissance can only locate "features," that is, program functionalities that the user 

can control by varying the test data. For example, mirroring or sorting in CONVERT3 are 

turned on or off by appropriate user inputs. The Dependency Graph method is, in 

principle, somewhat more flexible since it involves a human-guided search of the 

program. It can thus be used to locate what Biggerstaff, Mitbander, and Webster (1994) 

called "concepts," human-oriented expressions of computational intent. While all features 

are concepts, not all concepts are features and thus appropriate for Software 

Reconnaissance. For example, a maintainer of CONVERT3 might want to change the 

size of the output record buffer. It would be difficult to use Software Reconnaissance to 

locate "writing an output record" since all test cases write output; this "concept" cannot 

be turned on and off and thus is not a "feature" suitable for Software Reconnaissance. 

However, a programmer could apply the Dependency Graph method to locate it by 

starting from WRITE statements and tracing data flow backwards. 
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Like most programs, CONVERT3 does have many features such as the mirroring and 

sorting used in this case study. For both of these features, the two methods found the 

same code and led to essentially the same understanding of the program. The 

Dependency Graph method perhaps had a slight advantage in the mirroring feature, since 

it was able to provide Team B with an understanding of the control variables that 

governed the complex looping while Team A, using Software Reconnaissance, was still 

somewhat confused. Either team would have been able to make a simple modification, 

such as changing the axis of mirroring. Either team would have had considerable 

difficulty with a more complex modification, such as introducing simultaneous mirroring 

on both axes, since that would require major modifications to the obscure flow of control. 

The Dependency Graph search method for feature location proved to be difficult to 

apply as originally described due to the lack of modularity in the code and the difficulty 

in interpreting the code as it was encountered. This method views the code as a graph of 

components that are visited systematically, with each one being completely understood 

before moving to another. Unfortunately, there are no clear components to understand in 

the CONVERT3 program. Most subroutines are large and do not follow modern 

conventions of cohesion and coupling so they do not constitute a meaningful "chunk" to 

be understood. Calling dependencies were thus not very useful. Hand tracing of data 

flows within subroutines proved a more useful, though tedious, approach. 

Team B thus had to adapt the Dependency Graph method by exploiting the user 

documentation and previously acquired domain knowledge. The data items relevant for 

the feature were identified from the documentation. Though cryptic, names such as MIR 

and ISORT did sometimes serve as "beacons" to identify the purpose of data (Brooks, 
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1983). Then the input statements for these data items were identified, and Team B traced 

data flow forward, systematically exploring most of the code but skipping some areas that 

were clearly irrelevant. This method was successful, but seems to require the exploration 

of a large fraction of the code. However, the effort expended on the first feature 

(mirroring) did pay dividends later. In studying the sort feature, Team B found that the 

mirroring study had already provided an understanding of a large fraction of the relevant 

subroutine (CTOB1N). 

The Software Reconnaissance method succeeded in locating the features in a 

relatively small area of the code. In previous studies of C code, it has generally (but not 

always) been fairly easy to understand a feature once it was located. However, with 

CONVERT3, understanding of located features was considerably more difficult due to: 

1. poor modularity; 

2. tight coupling through COMMON; 

3. complex unstructured control; 

4. cryptic variable names; 

5. idiosyncratic program plans dominated by efficiency considerations that are now 

obsolete; and 

6. lack of effective comments. 

The use of the trace file to aid comprehension was partially effective. It did reveal the 

"twice through" plan in the mirroring case but Team A was unable to understand how the 

looping was controlled because the trace does not show the data values at each point. 

Software Reconnaissance is effective in feature location, but that is only part of the job of 

feature comprehension. 
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Because the Dependency Graph search method forces the user into a better 

understanding of how the code functions, it might be the more suitable method for 

maintainers who have little domain knowledge but a need for better acquaintance with 

the code. The Software Reconnaissance method might be more appropriate for use by 

maintainers who already are partially familiar with the code. 

In general, both techniques were effective in locating the features, but there may be a 

trade-off: Software Reconnaissance locates features with less search through the code, 

while the Dependency Graph method requires more study, but results in more complete 

code comprehension. For large, infrequently changed programs, Software 

Reconnaissance may be the better alternative. For smaller, more frequently modified 

programs, where an investment in comprehension may have benefits later, the 

Dependency Graph method might be a better strategy. For both techniques, domain 

knowledge is a valuable aid, whether acquired from documentation, colleagues, or 

through long hours studying the code. 
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CHAPTER V - OBJECT-ORIENTED REENGINEERING 

The object-oriented language paradigm was an obvious choice for the reengineering 

of the CONVERT3 program, since the program deals with geometric models. The 

geometric shapes used in CONVERT3 are natural candidates for objects. 

It was hypothesized that reengineering the CONVERT3 program into object-oriented 

code would result in an effective methodology for reengineering using dynamic analysis 

techniques. The first goal for this methodology was that it be practical: it must not require 

excessive time, not require tools that are not widely available, and not require excessive 

time from a domain expert. The methodology should also be verifiable: all old features 

should have been identified and handled at the end of the process, and a sufficient set of 

tests should exhibit the same results with the old and new program. The third goal was 

that the methodology be incremental, with intermediate milestones possible. Finally, the 

new system should use established documentation techniques, such as the Unified 

Modeling Language (UML) described by Rumbaugh, Jacobson, and Booch (1999). 

As shown in Figure 7, the proposed methodology involved several phases. First, any 

available documentation and domain experts are consulted to prepare a feature list for the 

legacy program and an initial UML domain class model. Pairs of test cases are written for 

each identified feature, one case with the feature and another similar case without it. 

These test cases are used both for feature location and as a regression test set to validate 

the reengineered program. 



38 

Documents and 
Domain 

Knowledge 

Feature 
list 

1. Location 
and Analysis 

/\> Repeat for common 
\^/     code and for each 
  feature 

2. Design, 
Code, Unit 

Test 

^ 
+y 

3. Validate by 
Regression 

Test 

Domain 
Class 
Model 
(UML) 

and new 
C++ 

program 

2 
Legacy 

FORTRAN 
Program 

Figure 7. The reengineering methodology. 

An initial Software Reconnaissance analysis is then performed using this test set. One 

result is the identification of the so-called "common" code, which is executed in every 

test case (Wilde & Scully, 1995). Common code is typically scaffolding for the 

application, handling initializations, opening files, utility processing, and so on. This code 

must be reengineered first to create a minimal version of the new program that can 

actually run. The three steps involved are shown in Figure 7 and outlined below. 
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1. Location and Analysis: The software engineer locates the code using Software 

Reconnaissance and the test set and analyzes it to find out exactly what it does. 

Some functionality may be discarded as obsolete. Study of the code may also 

reveal previously unidentified features that need to be reengineered. These are 

added to the feature list and test cases are written for them. 

2. Design, Code, Unit Test: The software engineer decides which object classes will 

be involved in implementing this feature in the C++ program. Methods are 

designed, coded, and unit tested for the identified classes. In some cases the UML 

class design may be modified to reflect new knowledge acquired in the analysis. 

Tf object interactions are complex, the software engineer may choose to draw a 

UML sequence diagram for documentation. 

3. Validate by Regression Test: If sufficient new code has accumulated, the software 

engineer performs regression testing by running the test set against both the old 

and new programs. Any errors of design or coding are caught as early as possible. 

Once the common code has been reengineered, the rest of the process proceeds 

incrementally, feature by feature. A feature is chosen from the feature list and the three 

steps given above are again followed: 

1. Location and Analysis. 

2. Design, Code, Unit Test. 

3. Validate by Regression Test. 

The reengineering process ends when all desired features have been reengineered. 

If any code is still uncovered by the test set, it is examined to be sure that no important 

features have been missed. The finished products are a UML design and a cross-reference 
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between the UML design and the original code, a regression test set that covers all of the 

legacy program except features deemed unnecessary, and an object-oriented program that 

produces exactly the same output as the old program on the test set. It was theorized that 

this plan would cause reengineering to be faster and easier due to more effective feature 

location. 

A number of research and practical issues emerged during the preparation of the 

methodology. Among the research issues raised were: 

1. how much of the code would be common, how common code should be handled, 

and how to understand common code and allocate it to objects; 

2. how much of the code is obsolete, artifact, or dead; and 

3. how much help would be needed from the domain expert. 

The practical issues raised included: 

1. whether there are any things in FORTRAN 77 that cannot be converted to C++, 

such as the binary file or native function calls; 

2. whether the Recon2 tool is capable of doing the analysis of common code as 

needed; and 

3. whether tessalations and other aspects of geometric modeling should be studied, 

and whether this is essential for understanding CONVERT3. 

The answers to many of these research and practical issues would emerge during the 

reengineering process itself. 
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The Reengineering Process 

Following the reengineering methodology described in the previous section, the 

process began with reviewing the CONVERT3 user's manual (Jones & Aitken, 1994) and 

the FASTGEN user manual (Aitken, Jones, & Dean, 1993) to create an initial domain 

class model. Prospective classes were underlined in the text as it was read. This list of 

classes was used to make an initial UML class diagram, which would be revised as the 

project proceeded. The initial class model is shown in Figure 8. From this same source an 

initial list of 47 CONVERT3 features was prepared. The final list of features is shown in 

Appendix A. 

To apply Software Reconnaissance for feature location, and to provide regression 

tests to validate the C++ version, two test cases were identified for each feature, one 

"with" the feature and a similar case "without" the feature. A list of these test cases is 

given in Appendix B. C shell scripts were written that allowed all the test cases to be 

executed at once. 
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Figure 8. Initial UML domain class model for CONVERT3. 

CONVERT3 was instrumented using the Software Reconnaissance FORTRAN 

instrumentor to trace the following code parts: subroutine entry points, subroutine return 

points, and basic blocks. 

Running the initial test cases produced the statistics on CONVERT3 shown in 

Table 2. As shown, the initial tests provided a coverage of 63.4% of CONVERT3, fairly 

typical for a functional test set. Reengineering started with the 13.4% that is "common" 

code, executed on every invocation of CONVERT3. Examination of this code showed 

that much of it was related to reading 80 column records for a geometric model, and these 
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functions were assigned to loadRawRecords() methods in the Model and Component 

classes. The remaining common code performed initializations, such as opening files and 

setting parameters. This code was related to the particular CONVERT3 application, 

rather than to the domain of geometric modeling, so a Convert class was created to 

provide application-specific processing in static methods. 

Table 2 - Code Parts (entry points, return points, and basic blocks) in CONVERT3 

Type of part Number Percentage 

Parts executed in one or more test case 

Unexecuted parts 

Total number of code parts 

"Common" parts executed in all test cases 

Reengineering of the common code, one of the research issues raised, proved hard 

because of extreme difficulty in understanding CONVERT3's control flow. Eventually it 

proved necessary to hand flowchart the two large subroutines that contained most of the 

common code. The identification of the common code by Software Reconnaissance 

helped in program comprehension. This was because as each basic block in these 

subroutines was examined, it was known beforehand if the block was common or only 

executed for some features. However, even with the flowcharts and the Reconnaissance 

information, the analysis was still difficult and time consuming. Eventually, though, a 

shell of the new C++ program was completed that emulated the basic processing of the 

FORTRAN version. 

265 63.4 

153 36.6 

418 100.0 

56 13.4 
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One unanticipated reengineering problem was the difficulty in mapping FORTRAN'S 

input/output model into C++. For example, FORTRAN expects fixed width fields in 

fixed length records, with the length established in the FORMAT statement. If the actual 

input record is shorter, FORTRAN assumes that the remaining data are blanks, and 

assigns a value of zero to any numerical input fields. This behavior is hard to emulate 

using C++ streams, and special Fortranlnput and PrimitiveRecord classes were created to 

perform the mapping. Similarly, FORTRAN'S STOP statement, which writes a message 

to the console, does not map easily into C++. A Utility class was created to hold a fatal 

error handling method that emulates it. 

As code examination continued, certain additional features of CONVERT3 were 

identified. Some of these were error checks that had not been mentioned in the user 

manual, while others were features that had been missed during reading of the manual, 

but were found in reading the code. Tests for these features were added to the regression 

test set. 

Each feature in the feature list was then analyzed by first applying Software 

Reconnaissance to locate the "marker" code for the feature, analyzing that code, and then 

implementing a C++ version by adding methods to the domain class model. In some 

cases the analysis revealed similarities between classes that allowed generalizations. For 

example, the processing for Wedge and for Box classes proved to be almost identical, 

though handled in different subroutines in the original FORTRAN. Both classes were 

thus made into derived classes of an abstract Prism class. 

As soon as the common code and some basic input/output features had been 

implemented, the test set could be used to verify the reengineered version by regression 
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testing against the original version. Problems could thus be identified and resolved early. 

For example, one difficulty arose in the assignment of sequence numbers. All 

CONVERT3 input and output records have sequence numbers that indicate the order in 

which primitives, especially triangle vertices, should be interpreted in the geometric 

model. When CONVERT3 transforms, for example, a sphere into a set of triangles, it 

generates the sequence numbers using a very complicated algorithm that writes and reads 

a scratch tape, presumably to avoid overrunning a fixed-size array. This creates a 

dilemma in implementing the C++ version, which has no such array restrictions; complex 

and meaningless code would be needed to exactly replicate the sequence numbers. 

Instead it was decided to simply generate numbers in sequence, but then a filter program 

had to be added for regression testing to remove the numbers before comparing the 

output of the C++ and FORTRAN versions. 

At the point where reengineering stopped, the feature list had grown to 53 features of 

which 35 had been reengineered, one had been discarded as obsolete, and 17 remained 

pending (See Appendix A for a complete list of features). The features related to cylinder, 

donut, and rod primitives were left pending due to lack of time. 

Of the 60 regression tests, 36 ran correctly, with the remainder being related to the 

unimplemented features. Figure 9 shows the "as-built" UML class diagram, with the still 

unimplemented classes indicated by dotted boxes. Final products of the reengineering 

included this UML class diagram, a UML sequence diagram for one particularly complex 

feature, commented C++ source code for the classes making up both the domain model 

and the new CONVERT3 application, and the regression test set. The reengineered 
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product would be relatively easy to maintain or enhance, even by software engineers who 

had not participated in its creation. 

Conclusions from the Reengineering Process 

Expecting to be able to reach a complete understanding of the original code and 

reengineer it exactly into its new form is a bit naive. At the start of this study, it was 

hoped that in the long run, more sophisticated tools could be written to support exact 

reengineering. After the study, it is evident that any such approach would prove 

unproductive for programs like CONVERT3, since much of the CONVERT3 code 

should probably not be reengineered into the new version. Such code includes the 

previously mentioned obsolete program plans, such as the scratch tapes, reading and 

writing in 200 record blocks, and the complex assignment of sequence numbers. To 

produce a good program, the software engineer needs to reengineer away many such 

details. 
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Figure 9. "As-built" UML class diagram showing domain and application-specific 
classes. 

In fact, it is even an interesting question if complete understanding is really desirable 

in order to reengineer programs like CONVERT3. There were several examples of code 

that, though unintelligible, were certainly unnecessary. For example, there is code that 
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seems to be executed only when the FORTRAN program's arrays are almost full. Since 

the new version uses vector data structures that cannot overflow, a complete 

understanding of the FORTRAN processing is almost certainly a waste of time. 

Similarly, there is at least one large complex subroutine that was never executed in any of 

the tests, and seems to be used only when input flags are set to values that would be 

invalid according to the user manual. Apparently this code is for an obsolete feature. 

Since program comprehension is so time consuming for programs like CONVERT3, an 

efficient reengineering strategy should probably just disregard such subroutines. The 

dynamic analysis methodology helps identify them because they are not executed in the 

test set. 

Though tools for exact reengineering may be impossible for programs like this, 

certainly some tool support of a fairly simple kind would have been useful, especially if a 

larger program than CONVERT3 were to be reengineered. If a larger project were 

started, a simple database could be prepared to track features, test cases, and the mapping 

between features and basic blocks. The lists kept in text files during this study became 

quite complicated as the project continued. 

More ambitious would be a tool to help extract the fragments of FORTRAN for each 

feature to aid in their conversion to C++. The problem is that the whole mindset of the 

programmer has changed in the transition to object-orientation. The programmer of 

CONVERT3 clearly thought of the program as reading and writing groups of records; the 

outlook is entirely procedural and very low level. The new CONVERT3 instead 

constructs a structured geometric model of a solid object, stores it, transforms it, and then 

writes it out again. The large cognitive gap between these views means that the 
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reengineering of a feature is much more complex than simply extracting a few lines of 

code from one program and attaching them to another. However, some sort of specialized 

editor could well be useful to keep track of what has been done and to provide 

traceability between the old and new code. 

One important aspect of any reengineering process is the need to proceed 

incrementally to keep project risks at an acceptable level (Olsem, 1998). The FASTGEN 

system, of which CONVERT3 is a part, is relatively easy to approach incrementally since 

the different programs communicate via files and may execute independently of each 

other. Thus each program may be reengineered separately. 

Of the research and practical issues that were raised at the start of the reengineering 

process, a number were solved. The research issues raised included how to handle the 

common code; how much of the code is obsolete, artifact, or dead; and how much help 

would be needed from the domain expert. Although it comprised a relatively small 

percentage of the overall code, the common code proved the most difficult to reengineer 

due to the complicated control flow. Roughly one-third of the code was not executed in 

any test case, and was probably obsolete or dead. The domain expert was never 

consulted; most of the information needed was taken from reading the manuals and 

studying the code. 

The practical issues raised included whether there are any things in FORTRAN 77 

that cannot be converted to C++, such as the binary file or native function calls; whether 

the Recon2 tool is capable of doing the analysis of common code as needed; and whether 

tessalations and other aspects of geometric modeling should be studied, and whether this 

is essential for understanding CONVERT3. These issues were more easily solved. 
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FORTRAN proved difficult to convert to C++, especially the FORTRAN input/output 

model. The code was created to mimic the peculiarities of FORTRAN, but not without 

extra time and effort. The Recon2 tool was found to be capable of analyzing the common 

code. Finally, it was found that very little knowledge of computer graphics and 

geometric modeling was needed to understand the CONVERT3 program. 

Even for the CONVERT3 program considered by itself, the methodology is 

incremental by feature. The version completed in the case study could be used on those 

geometric models that do not include the rod, cylinder, and donut primitives that are still 

pending. If features are implemented beginning with the most commonly used the 

reengineered product may thus enter partial service well before the entire task is 

completed. 
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CHAPTER VI - RESULTS AND CONCLUSIONS 

We believe that the case study presented in Chapter IV shows that Software 

Reconnaissance is likely to be a useful technique for understanding and maintaining 

legacy FORTRAN programs. The method was successful in locating features that may 

need to be maintained, and probably requires considerably less study of code than the 

Dependency Graph technique. Just as had previously been found in studies of C code, 

Reconnaissance allows a software engineer to quickly focus on a part of the program that 

may need to be maintained. 

The difficulties, and the contrast to our studies of C, came in understanding the code 

for each feature once it had been located. Programs like CONVERT, with their 

extraordinarily convoluted control flow, do not yield their secrets easily. Because of the 

GOTO's that jumped a hundred or more lines at a time and the complicated program 

plans (e.g. the use of scratch tapes in mirroring) the work necessary after the feature had 

been located was considerably more than in our experience with more modern programs. 

The case study in Chapter V showed that the reengineering methodology may be a 

workable approach to creating an object-oriented version of badly structured legacy code. 

Its advantage is that it provides a systematic way of approaching the task. The test cases 

are used both as an aid to analysis and as a verification tool. Their coverage of the 

original code provides reasonable confidence that the reengineered product includes all 

needed functions of the original. This confidence is not, of course, the same as absolute 

certainty. It is well known that a program may still contain bugs, despite passing all the 

tests of a high-coverage test set. Similarly, the test set generated by this methodology 
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may not reveal differences between the old and new version that could be significant to 

its eventual users. The methodology is a compromise between the desire for perfect 

certainty and the reality of scarce software engineering time. 

The code produced by the methodology is fairly "clean" and should prove a good 

basis for further evolution. Obsolete program plans, such as the use of scratch tapes, have 

been eliminated. Obsolete gold plating, such as the indexing algorithm for the sequence 

numbers, has also been eliminated. New program plans, such as the emulation of 

FORTRAN input, are provided where essential to preserve compatibility. In addition, 

a UML design and a test set are available as support for future development. Most 

importantly, the method does not only reengineer the specific product, but also produces 

a domain class model to serve as a reusable component in other applications. 

However, the final and greatest lesson learned is that reengineering of code as 

complicated as CONVERT3 will always require a lot of human effort, especially if the 

software engineers do not have previous experience with the program. There seems to be 

no substitute for painstaking study to understand this kind of legacy code. 
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APPENDIX A - FINAL LIST OF CONVERT3 FEATURES 

This table shows which features were reengineered into the object-oriented version of 

CONVERT3 and which features were still pending at the completion of the reengineering 

process described in Chapter IV. The first table contains features identified at the 

beginning of the reengineering process; the second table contains features discovered 

during the reengineering process itself. 

Features Action Taken 
Transform sphere to triangles reengineered 
Transform cylinder to triangles pending 
Transform donut to triangles pending 
Create mirror image component description reengineered 
Create properly sequenced approximations reengineered 
Sort records for components reengineered 
Process box reengineered 
Process wedge reengineered 
Interactive mode reengineered 
Batch mode pending 
Process cylinder without transforming to triangles pending 
Process triangle reengineered 
Process donut without transforming to triangles pending 
Process sphere without transforming to triangles reengineered 
Process rod pending 
Process components with triangle primitives >2.99" 
thick ($NARM) 

pending 

Process components of normal thickness reengineered 
Convert all components to triangle primitives pending 
Print ASCII output file reengineered 
Do not print ASCII output file reengineered 
Print only 200th record in the block discarded feature 
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(obsolete) 
Print each entire block of 200 records reengineered 
Write binary file reengineered 
Do not write binary file reengineered 
Drop components from converted target deck reengineered 
Do not drop components from converted target deck reengineered 
Break long cylinders/cones pending 
Break long rods pending 
Use non-default break ratio pending 
Process intentional interference records 
($INTERFE) 

reengineered 

Process non-interfering records reengineered 
Process component codes ($CODE) reengineered 
Process component without component code reengineered 
Process cylinder in plate mode pending 
Process cylinder in volume mode pending 
Process donut in plate mode pending 
Process donut in volume mode pending 
Process box in plate mode reengineered 
Process box in volume mode reengineered 
Process wedge in plate mode reengineered 
Process wedge in volume mode reengineered 
Process sphere in plate mode reengineered 
Process sphere in volume mode reengineered 
Process triangle in plate mode reengineered 
Process triangle in volume mode reengineered 
Process component with target ID number 
($VEHICLE) 

reengineered 

Process component without target ID number reengineered 

Features Found During Reengineering Action Taken 
Error check for input file pending 
Error check for target deck file pending 
Drop more than 14 components from converted reengineered 
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target deck 
Error check for duplicate sequence numbers reengineered 
Create mirror image triangle component with -1 flag reengineered 
Process triangle without mirroring reengineered 
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APPENDIX B - LIST OF TEST CASES USED IN REENGINEERING CONVERT3 

This is the final list and descriptions of each test case used in reengineering the 

CONVERT3 program. 

Test Case Description 
T001A A sphere component to be transformed into triangles 
T001B A sphere component not transformed into triangles 
T002A A cylinder component to be transformed into triangles 
T002B A cylinder component not transformed into triangles 
T002C A cylinder component with L/R ratio greater than 10 
T002D A cylinder component with L/R ratio greater than FACT 
T003A A donut component to be transformed into triangles 
T003B A donut component not transformed into triangles 
T003C A donut component with all components transformed 
T004A A component to be mirrored 
T004B A component not to be mirrored 
T005A A component to have sequence numbers sorted 
T005B A component to have sequence numbers unsorted 
T006 A box component to be processed 
T007 A wedge component to be processed 
T008A A component to be processed in interactive mode 
T008B A component to be processed in batch mode 
T009 A triangle component to be processed 
T010A A rod mode component to be processed 
T010B A rod mode component with L/R ratio greater than 10 
T011A A component with thickness greater than 2.99" 
T011B A component with normal thickness 
T012A A component to be processed without an output file 
T012B A component to be processed with an output file 
T013A A component to be processed with only the 200th record in 

each block to be written 
T013B A component to be processed with each block of 200 records 

to be written 
T014A A component to be processed without a binary out file 
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T014B A component to be processed with a binary out file 
T015A Two cylinder components, one to be dropped 
T015B Two cylinder components, none to be dropped 
T016A Two box components, to be processed as intentional 

interference records 
T016B Two box components to be processed normally 
T017A A component to be processed with component code 
T017B A component to be processed without component code 
T018A A cylinder component in plate mode 
T018B A cylinder component in volume mode 
T019A A donut component in plate mode 
T019B A donut component in volume mode 
T020A A box component in plate mode 
T020B A box component in volume mode 
T021A A wedge component in plate mode 
T021B A wedge component in volume mode 
T022A A sphere component in plate mode 
T022B A sphere component in volume mode 
T023A A triangle component in plate mode 
T023B A triangle component in volume mode 
T024A A box component with target ID number 
T024B A box component with no target ID number 
TR001A A box component with an error in IV 
TR001B A box component with an error in IDONT 
TR001C A box component with an error in ISORT 
TR001D A box component with an error in IASCI 
TR001E A box component with an error in KPRNT 
TR001F A box component with an error in I BIN 
TR001G A box component with an error in FACT 
TR001H A box component with an error in PTSS 
TR001I A box component with an error in PSTT 
TR002 A box component with an error in target deck 
TR003 More than 14 components to be dropped 
TR004 Two triangle components with duplicate sequence numbers 
TR005A A triangle component with -1 mirroring 
TR005B A triangle component without mirroring 
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APPENDIX C - DESCRIPTION OF OBJECT-ORIENTED CONVERT3 CODE 

The object-oriented version of CONVERT3 was written in C++ and contains 5,367 

lines of code. The entire FORTRAN version of CONVERT3 was not reengineered, but 

most of the major features of the old program have been recreated in the new one. (See 

Appendix A for a complete list of reengineered features.) The files that make up the 

object-oriented version of CONVERT3 are as follows: Box.cc, Component.cc, 

Convert.cc, Fortranlnput.cc, Model.cc, Primitive.cc, Prism.cc, Sphere.cc, 

TriangleVertex.ee, Utility.ee, and Wedge.cc. Each executable .cc file has a corresponding 

header file with the same name. The main() subroutine is found in the Convert.cc file. 

The Component.cc file contains the implementation for a component object, each of 

which represents one component of a target geometric model. The Convert.cc file 

contains the main() subroutine and several related subroutines. Fortranlnput.cc partially 

implements the FORTRAN input routines. Model.cc is an implementation of the Model 

object, which represents a complete target geometric model. Primitive.cc contains 

implementation for the classes Primitive and PrimitiveRecord. The files named after 

geometric shapes, Box.cc, Prism.cc, Sphere.cc, TriangleVertex.cc, and Wedge.cc, 

implement the classes that deal with their namesake geometric figures. Utility.cc is used 

to generate error messages. 

Figure 9 shows the "as-built" UML class diagram, with the still unimplemented 

classes indicated by dotted boxes. A more detailed class diagram follows, also with the 

unimplemented classes, Donut, Rod, Cylinder, and Cone, indicated by dotted boxes. 



67 

Convert 

istream controlFile; 
ostream infoFile; 
istream targetDeckFile; 

main() 
openEssentialFilesO 
getControlFile() 
getInfoFiIe() 
getTargetDeckFile() 
setControlParametersO 
readTargetDeck() 

Component 

getComponentCode() 
loadRawRecords() 
ok() 
void 
writeASCII(ostream 
&os) 
void 
writeBinary(FILE 
♦stream) 

Model 

SetDropList() 
LoadRawTargetData() 
SetNARMList() 

Utility 

fatalErrorQ 

1 .. N 

Fortran Input 

FortranInput() 
readCharString() 
readDouble() 
readlnt() 
readRawComponentRecord() 

Primitive 
(abstract class) 

int typeCodes; 

int ok() 
int setComponentCodeO = 0 
int setSequenceNo() = 0 
void writeASCU(ostream &os) 
void \vriteBinary(FILE 
*stream) 

(see next page) 



68 

A 

TriangleVerlex 

PrimitiveRecord rec: 

TriangleVertex() 
int gelComponentCode() 
int getSequenceNo() 
int ok() 
void writeASCII(ostream &os) 
void \vriteBinary(FILE *stream) 

PrimitiveRecord 

double x; 
double y; 
double z; 
int descriptionCode; 
int componentCode; 
int sequenceNo; 

PrimitiveRecord() 
\vriteASCH(ostream &os) 
writeBinary(FILE *stream) 

Prism 

double originp]; 
double disp[3] [3]; 
int descriptionCode; 
int componentCode; 
int lowSeqNo; 
int highSeqNo; 

Prism() 
void asTriangles() 
int getComponentCode() 
int getLowSequenceNo() 
int getHighSequenceNo() 
int ok() 
int nPatterns() 
const double * Pattern VectorsQ 
void writeAscii() 
void writeBinary(FILE *stream) 

Box 

Box() 
int ok() 
int nPatterns() 
patternVectors() 

Wedge 

Wedge() 
int ok() 
int nPatterns() 
patternVectorsQ 

Donut 


