
REPORT DOCUMENTATION PAGJi
Public reporting burden for this collection of information is estimated to average 1 hour per response, inclut
data needed, and completing and reviewing this collection of information. Send comments regarding
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be iRbject
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

ise, including the til
ding this 'jirden esi
ation Op Jations a'
shall be Abject to a

e tim e for reviewin -r-.xy "V
estimate or any ot \J* JSJ-1'

Reports (070
any'penaltyforfa.

1. REPORT DATE (DD-MM-YYYY)
August 13, 2001

2. REPORT TYPE
Final technical report

,- COVERED (From - To)
December 1998 - July 2001

ngthe
lucing

^202-
, iui display a currently

4. TITLE AND SUBTITLE
Dynamic Analysis of Test and Evaluation Software

5a. CONTRACT NUMBER
F49620-99-1-0057
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Wilde, Norman

5d. PROJECT NUMBER

5e. TASK NUMBER
2304/TE
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of West Florida

Office of Research Department of Computer Science
Bldg.77, Room 131 Bldg. 79, Room 116
11000 University Parkway 11000 University Parkway
Pensacola, FL 32514-5751 Pensacola, FL 32514-5751

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
801 N. Randolph St., Room 732
Arlington, VA 22203-1977

10. SPONSOR/MONITOR'S ACRONYM(S)
AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for p^Hc release,
rHsiribiiuon unlimited

13. SUPPLEMENTARY NOTES 20011005 131
14. ABSTRACT
Large legacy software systems are extremely difficult to keep up to date because they are so difficult to understand. Software
Reconnaissance is a technique to aid in the understanding of such software by locating where each user "feature" is implemented. This
project explored the application of Software Reconnaissance to the legacy FORTRAN 77 code that forms a large part of the Air Force Test
and Evaluation software inventory. Two software tools, a FORTRAN 77 instrumentor and the TraceGraph visualization tool, were
developed and are now publicly available on the internet. A case study was performed showing how the Reconnaissance could be used to
aid in understanding and maintaining the CONVERT3 program which is typical of legacy FORTRAN code. A systematic methodology for
reengineering such code into object-oriented C++ was then developed. The methodology prepares a domain class model and elaborates it
by assigning features of the old program to the new object classes. Test cases are used both for Software Reconnaissance feature location
and to validate the correctness of the new C++ version. A case study was performed showing how the methodology could be applied to
CONVERT3, and providing several insights into this kind of reengineering task.

15. SUBJECT TERMS
program comprehension, dynamic analysis, software reengineering, FORTRAN, object-oriented
programming

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

C. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

68

19a. NAME OF RESPONSIBLE PERSON
Norman Wilde
19b. TELEPHONE NUMBER (include area
code)
850-474-2542

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

DYNAMIC ANALYSIS OF TEST AND EVALUATION SOFTWARE

Final Report to the

Air Force Office of Scientific Research (AFOSR)

Grant Number: F49620-99-1 -0057

Norman Wilde*

Department of Computer Science

University of West Florida

Pensacola, FL 32514

August 13, 2001

Electronic mail: nwilde@uwf.edu, URL: http://www.cs.uwf.edu/~wilde

EXECUTIVE SUMMARY

The Air Force has a large inventory of legacy FORTRAN software used to

support Test and Evaluation as well as other missions. Software engineers need to be able

to understand such software in order to maintain it or to reengineer it and thus keep it in

step with changing mission requirements. Software Reconnaissance is a dynamic analysis

methodology to aid in understanding old software by locating where specific user

features are implemented. To use Reconnaissance, software is instrumented so that

execution can be traced, and then test cases are executed with and without the desired

feature. The resulting traces are analyzed to locate the feature in support of different

software engineering tasks. Software Reconnaissance had previously been demonstrated

successfully on fairly recent C programs. This project explores its application to legacy

FORTRAN code typical of the Air Force Test and Evaluation inventory.

The project developed the following software engineering tools which have now

been made available on our web site (http://www.cs.uwf.edu/~wilde/recon3/):

1. A FORTRAN 77 instrumentor, to facilitate tracing legacy FORTRAN code

2. The TraceGraph visualization tool, which facilitates using Reconnaissance

interactively

A case study was carried out to illustrate the use of Software Reconnaissance on a

typical example of legacy FORTRAN code from the Air Force inventory. The study

showed that the method was effective in locating user features within a relatively small

proportion of the code. The main difference with the earlier experiences using C was that

the located code proved more difficult to understand, due to its lack of structure and to

the presence of obsolete program plans.

The project then developed a methodology based on Software Reconnaissance for

reengineering legacy FORTRAN code into object-oriented C++. A domain class model is

developed and elaborated by assigning the different features of the FORTRAN program

to the object classes. Software Reconnaissance test cases are used both for feature

location and to validate the correctness of the resulting C++ program. A case study

showed that the method seems to be a workable approach to reengineering legacy

FORTRAN, though the tangled nature of this old code still requires much effort to

understand.

In addition to the annual progress reports, the following intermediate technical

reports have been submitted to AFOSR:

1. Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, "Feature
Location in Legacy Fortran Code", submitted June 29, 2000.

2. Vaclav Rajlich, Kunrong Chen, Norman Wilde, Michelle Buckellew, Henry Page,
"Software Evolution, Software Servicing, and Software Cultures", submitted
November 13,2000.

3. Norman Wilde, Michelle Buckellew, Vaclav Rajlich, "A Dynamic Analysis
Methodology for Reengineering Fortran to C++", submitted May 25, 2001.

The following publications have resulted from this research (others are pending):

1. Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, "A Case Study
of Feature Location in Unstructured Legacy Fortran Code", Proceedings 5th
European Conference on Software Maintenance and Reengineering - CSMR
2001, IEEE Computer Society Press, Los Alamitos, CA, March 2001, pp. 68-76.

2. Vaclav Rajlich, Norman Wilde, Michelle Buckellew, Henry Page, "Software
Cultures and Evolution", to appear in IEEE Computer.

Participants in this research have included Michelle Buckellew, Vaclav Rajlich,

Henry Page, LaTreva Pounds, Kazimiras Lukoit, Scott Stowell and Tim Hennessey.

TABLE OF CONTENTS

LIST OF TABLES 5

LIST OF FIGURES 6

CHAPTER I - INTRODUCTION 7

CHAPTER II - REVIEW OF THE LITERATURE 9

CHAPTER III - TOOLS USED IN THIS WORK 16

CHAPTER IV - FEATURE LOCATION IN LEGACY FORTRAN CODE 23

CHAPTER V - OBJECT-ORIENTED REENGINEERING 37

CHAPTER VI - RESULTS AND CONCLUSIONS 51

ACKNOWLEDGEMENTS 53

REFERENCES 54

APPENDIX A - FINAL LIST OF CONVERT3 FEATURES 61

APPENDIX B - LIST OF TEST CASES USED IN REENGINEERING CONVERT3..64

APPENDIX C - DESCRIPTION OF OBJECT-ORIENTED CONVERT3 CODE 66

LIST OF TABLES

Page

Table 1. Size of Main Program and Subroutines in CONVERT3 25

Table 2 - Code Parts (entry points, return points, and basic blocks) in CONVERT3 43

LIST OF FIGURES

Page

Figure 1. Software Reconnaissance tool architecture 17

Figure 2. Locating features using Software Reconnaissance 18

Figure 3. Locating Features Using TraceGraph 19

Figure 4. A TraceGraph display from a FORTRAN 77 program 20

Figure 5. VIFOR screen shot of the calling relationships of the CONVERT3 program...21

Figure 6. VIFOR screen shot of COMMON usage by subroutines in CONVERT3 22

Figure 7. The reengineering methodology 38

Figure 8. Initial UML domain class model for CONVERT3 42

Figure 9. "As-built" UML class diagram showing domain and application-specific
classes 47

CHAPTER I - INTRODUCTION

The Air Force Development Test Center has a large inventory of software vital for the

test and evaluation (T&E) mission that needs to be continually enhanced and validated.

Much of this software is old, coded mostly in FORTRAN, often poorly documented, and

difficult to understand, maintain and support. For such programs to continue in service,

methods and techniques are needed to facilitate understanding and reengineering into

more modern paradigms such as those provided by object orientation.

To reengineer software, a programmer must understand not just "what" a code

fragment does, but also "why". Old systems typically provide many different "features"

to their end users. An optimization package, for example, may incorporate several

different hill climbing strategies, handle several different classes of constraints, and

provide many different input and output options. It can be very difficult for a programmer

to understand which of these use cases a particular code fragment supports.

The University of West Florida has developed a method for dynamic analysis of

software called Software Reconnaissance, which can help programmers understand the

purpose of code. It provides a novel view of software that maps each program statement

to the user features or use cases it supports. The mapping is constructed by running test

cases that exhibit different combinations of features and tracing the program statements

that are executed in each case. The traces are then analyzed using set theoretic methods to

develop the mappings between use cases and code.

Software Reconnaissance was developed to work on C code and has been tested on

systems at several companies including Bellcore, GTE and Northrop Grumman. The

Software Engineering Research Center (SERC), an NSF-supported industry university

cooperative research center, has provided funding for these trials. Results have been

favorable; programmers indicate that Software Reconnaissance provides very good

starting points for locating code in large systems and can often provide insights that

would be very hard to obtain by other means.

The purpose of this project was to see if Software Reconnaissance can be extended to

the unstructured FORTRAN programs that are typical of the T & E code inventory. The

project consisted of three parts:

1. Development of Software Reconnaissance tools for FORTRAN

2. Application of these tools to locate features in a sample of T&E FORTRAN

software

3. Development and trial of a methodology based on Software Reconnaissance for

reengineering FORTRAN into object-oriented C++

CHAPTER II - REVIEW OF THE LITERATURE

The literature on program comprehension is extensive. Koenemann and Robertson

(1991) reported on an experiment they performed in which twelve expert programmers

analyzed Pascal code and "thought aloud" to give the researchers an insight into their

thought processes. The researchers concluded that programmers do not use a systematic

strategy of comprehension, but generally proceed in a top-down fashion, ignoring

documentation. They assert that good tools would be effective in aiding comprehension.

Von Mayrhauser and Vans (1995) sought to analyze the cognitive processes of

programmers as they went about the task of program comprehension. Their evaluation of

cognition models concluded that most of these models do not apply to specialized

maintenance tasks, and that more work is needed in this area. They combined several

cognition models to create an 'Integrated Metamodel." Robson, Bennett, Cornelius, and

Munro (1991) examined approaches to program comprehension and concluded that

inverse engineering techniques could lead to greater program understanding.

There is a lack of sufficient research on feature location, but several important

papers have been written about this subject in the past decade. Biggerstaff, Mitbander,

and Webster (1994) dealt with the process of recognizing concepts within a computer

program to aid understanding. They suggested looking at descriptive data names, patterns

of relationships between functions and data, and the use of tools to help in concept

location. They determined that while a totally automated approach to feature location is

not possible, a certain amount of automation is helpful. Lakhotia (1993) analyzed two

programs, the GNU C compiler and the Wisconsin Program Integration Systems, and

10

discovered that one does not have to understand the entire program to make correct

modifications. Chen and Rajlich (2000) outlined the problem of feature location. They

advocated a Dependence Graph approach to feature location that involved a computer-

assisted search process aiding the programmer in deciding whether a component is

related to the feature being sought. Wilde and Scully (1995) introduced the Software

Reconnaissance technique as a tool-based method of feature location. This technique is

based on a comparison of traces of different test cases. The test cases are run "with" and

"without" the feature being sought, then analyzed to determine which blocks or decisions

are executed "with" the feature but not "without." An early test of the Software

Reconnaissance technique found it to be effective in finding code at or near the feature

being targeted (Wilde & Casey, 1996). This test also found it is important to use only a

few simple test cases for effective feature location.

Although it is generally well known that legacy systems tend to become

progressively more difficult to update as they age (Belady & Lehman, 1976; Kaliski &

Kaliski, 1991), there has not been a large amount of research concerning the maintenance

of legacy FORTRAN code. A tool for modeling large FORTRAN programs was

described by Rajlich, Damaskinos, Linos, and Silva (1988). The VIFOR tool displays a

graphical representation of the FORTRAN code in order to enhance understanding and to

aid in building and modifying the program. Blazy and Facon (1993) described a

technique and a tool supporting partial evaluation of FORTRAN programs. The tool

produces a complete reduced program to aid in program comprehension. Blazy and

Facon (1994) also presented a tool that facilitates the comprehension of large, complex

general-purpose FORTRAN programs by specialization. Rugaber, Stirewalt, and Wills

(1995) described their experiences in detecting delocalized, overlapping fragments of

code in a series of FORTRAN programs using analysis tools. They stated that such

interleaving code compromises program comprehension, and that detecting this code and

examining the individual fragments can improve understanding. An experience in

restoring a legacy program, written partly in FORTRAN, was recounted by Rugaber and

White (1998). The restoration team attempted to convert the FORTRAN code into C

using a freeware tool set, but this resulted in unmanageable "spaghetti" code. Instead,

they decided to increase the use of makefiles that would allow the languages to coexist.

Ripple analysis (Yau, Collofello, & MacGregor, 1978) and impact analysis

(Queille, Voidrot, Wilde, & Munro, 1994) are names given to a collection of techniques

used to identify how changes in one component of a system may affect other

components. Arnold and Bohner (1996) provide a collection of papers covering different

impact analysis approaches. The majority of this work looks at the impacts of a change in

one code component on another code component. However, the most general kind of

impact analysis also follows requirements traceability links between documentation and

code. Thus, generalized impact analysis may be useful to locate features mentioned in the

requirements document. Turver and Munro (1994), for example, have described a

technique for modeling documentation entities and their connections to code in a Ripple

Propagation Graph and for identifying the impact set from a change request. Obviously,

this method will only work if requirements traceability information for the program has

been carefully maintained, and this is fairly rare in practice.

Chikofsky and Cross (1990) attempted to clear up the confusion surrounding the

terms "reengineering" and "reverse engineering." They define reengineering as "the

12

examination and alteration of a subject system to reconstitute it in a new form and the

subsequent implementation of the new form." In contrast, reverse engineering is "the

process of analyzing a subject system to identify the system's components and their

interrelationships and create representations of the system in another form or at a higher

level of abstraction." They emphasize that "reengineering generally includes some form

of reverse engineering (to achieve a more abstract description) followed by some form of

forward engineering or restructuring." Rugaber (1992) discussed why reverse engineering

is difficult and outlined a methodology called Synchronized Refinement to help solve

these problems. Synchronized Refinement analyzes a program and describes its behavior

in the vocabulary of the application domain and its structure in terms of design decisions.

A test of Synchronized Refinement showed that while it improved program

comprehension and reverse engineering, it is extremely labor-intensive (Ornburn &

Rugaber, 1992). DeBaud and Rugaber (1995) discussed a method for reengineering that

uses an executable domain model to enhance understanding and an object-oriented

framework to guide the reengineering. Their method seemed to speed the process, but the

procedure of domain analysis and framework construction was time-consuming.

Kozaczynski and Wilde (1992) described the problems inherent in reengineering

transaction systems. They highlighted the difficulties caused by the necessity of an

incremental approach and the problems caused by attempting to reengineer at the same

time that the operational system continues to evolve. Wilde, Casey, Vandeville, Trio, and

Hotz (1998) experimented with using Software Reconnaissance to aid in design recovery

for a large multi-process system, JointSTARS. They found that using Software

Reconnaissance on real-time systems was effective in recovering "design threads" from a

13

trace of inter-process messages. Linos et al. (1994) created a visual tool called CARE

(Computer-Aided Re-Engineering) to facilitate the comprehension and reengineering of

C programs. Their study on the use of CARE demonstrated that it reduced the average

time needed to complete the maintenance task and helped their students make better-

quality changes. Sneed and Majnar (1998) presented an attractive approach to

reengineering which required "wrapping" the existing code, thus creating a large object

component that a new object-oriented system can use. Wrapping has the advantage of

requiring relatively little study of the legacy code, which is largely treated as a black box.

However, there is still a considerable testing burden to make sure everything is working

correctly and some of the benefits of recovering domain knowledge are lost since it is

hidden inside the wrapped component. Given the wide range of situations that may be

encountered even within a single system, Canfora, Cimitile, De Lucia, and Di Lucca

(2001) suggested that tools and methods must depend on the specific system and

advocated an eclectic approach in which a software engineer combines and tailors

different methods for the problem at hand.

One study specifically addressed reengineering Department of Defense legacy

code. Bergey, Smith, and Weiderman (1999) presented a series of guidelines to follow

when creating a reengineering strategy. They argued that reengineering should be

managed more rigorously than the development of new systems. Their guidelines provide

a starting point for establishing the discipline necessary to reengineer legacy code. The

guidelines are based in part on an earlier study that identified some of the key reasons

reengineering of legacy systems often fails (Bergey, Smith, Tilley, Weiderman, &

Woods, 1999).

14

Lately, interest has increased in the identification of objects in legacy procedural

code as an aid to comprehension or reengineering (Canfora, Cimitile, & Munro, 1996;

Cimitile, De Lucia, Di Lucca, & Fasolino, 1999; Di Lucca, Fasolino, & De Carlini, 2000;

Liu & Wilde, 1990; Livadas & Johnson, 1994). Most of the methods described in these

papers involve tools that cluster code components in some way to search for patterns of

interaction that may indicate a candidate object. Lakhotia (1997) has provided a

framework for describing and comparing such techniques. If a tool is used, a fairly large

degree of human interaction with the tool is usually needed to help make sure that the

identified objects are really meaningful. Jerding and Rugaber (1997) used a visualization

tool called ISVis to help determine the major components of a system and the ways these

components interact to accomplish the program's goals. In a case study, they found it to

be successful in aiding architectural understanding. Subramaniam and Byrne (1996)

identified a nine-step method for examining FORTRAN code to extract an object model.

Achee and Carver (1994) developed an algorithm to identify objects in imperative code,

specifically FORTRAN. They chose a bottom-up approach. Their algorithm evaluates the

subroutines of the program to determine a set of objects, and examines the relationships

among the parameters to construct the attribute sets of the objects. The main problem

with this method is that it does not take into account the lack of modularity typical of

legacy programs. Cimitile, Tortorella, and Munro (1994) experimented with identifying

abstract data types in existing code. Because these abstract data types are the basis of

new, reusable modules of the program, they could be translated into objects. The

algorithm presented by these researchers seemed to aid in improving program

15

comprehension but was found to be ineffectual in identifying abstract data types in legacy

code that had been heavily modified.

It is obvious from this previous research that a better method for reengineering

legacy code into object-oriented code is necessary. Dynamic analysis tools should be

evaluated to see if they assist in the tasks of feature location and program comprehension,

which are so essential to reengineering. These tools should also be used for regression

testing to provide some confidence that the new program effectively mimics the old.

16

CHAPTER III - TOOLS USED IN THIS WORK

Figure 1 shows the overall tool architecture needed for Software Reconnaissance.

The user's target source program is first run through an instrumentor that inserts

subroutine calls to record trace events. It is then compiled and executed. As it runs, the

trace events are captured by the trace manager, which writes out event records to trace

files. Finally, an analysis program compares the traces with and without the feature to do

the actual code localization.

Fortunately, the analysis program used with the existing Recon2 tool for C

(Wilde, 1996) could also be used for FORTRAN, so that only a new instrumentor and

trace manager were needed. These were written and tested in the first phase of this

project. The instrumentor and trace manager have now been made available on the web

site of the Recon3 tool set at The University of West Florida.

(http://www.cs.uwf.edu/~wilde/recon3/).

The instrumentor processes FORTRAN 77 code, since that is the dialect most

used in the Air Force's Air Armament Center software. It allows the user to choose any

combination of the following: instrumentation of subroutine entry points, subroutine

return points, basic blocks (sequences of statements with no branches), and decisions

(specific paths from an IF or computed GOTO statement).

17

Figure 1. Software Reconnaissance tool architecture.

The trace manager component was implemented as a simple collection of

FORTRAN 77 subroutines that write each trace record directly to a trace file. These

subroutines are linked together with the user's instrumented target program. One trace file

is produced for each execution of the program, and the trace files from runs "with" and

"without" the feature are then fed to the analysis program to locate the feature.

Simultaneously with the development of the FORTRAN 77 tools, a new analysis

tool called TraceGraph was written to make Software Reconnaissance easier to use. Up to

now, a programmer using the technique has needed a cycle such as the one shown in

Figure 2. The programmer has to switch back and forth between running tests, keeping

track of trace files, setting up the analysis program so that it will know which traces

exhibit each feature, and running the analysis program. While this process may be

marginally adequate for batch programs, it is particularly awkward for long running or

interactive programs such as a word processor or a web server. It takes considerable time

to start up and terminate each test case, so the test-analyze cycle is quite time consuming.

r
1. Instrument
& compile

target

program

1

 b.
2. Run test
of target

program

3. Save
trace file w

li.

y

V
/ A \ '

5. Run
analvsis ■A

4. Setup
analysis
program prog ram

Figure 2. Locating features using Software Reconnaissance.

Accordingly we have developed a visually oriented feature location tool called

TraceGraph that combines two concepts:

1. Immediate feedback from a running program

TraceGraph monitors the program as it executes; trace files are written and

analyzed continuously. The maintainer of, for example, the word processor would only

need to start it once. To locate the code for, say, the spell check feature, he would simply

do the spell check operation in one window and immediately check the TraceGraph

window to see what was executed. (Figure 3)

19

1. Instrument,
compile &

start target
program

2. Perform
desired

feature

3. View
changes in

trace

\ ~ /

Figure 3. Locating Features Using TraceGraph

2. Graphic display of results

TraceGraph uses a display somewhat like an oscilloscope trace which slowly

extends to the right as the program executes (see Figure 4). Each vertical column

corresponds to a time period, say 5 seconds of execution, or to a different trace file. Each

horizontal row corresponds to one software component. Each small rectangle is grey if

the component was executed in that period or file, or blank if it was not. Red rectangles

are used for emphasis the first time the component is executed. Figure 4 shows the

display of traces from a FORTRAN 77 program where the programmer has traced tests

for each feature. The red rectangles let him pick out quickly the code for a specific

feature.

20

TraceGraph Beta 0.01 - June 12/2001
FBe View Demos Debug Help

Reorder The Frames Trace Frames
!■ ■■!■'■ WM'l

■ «■■■■■I

I^Sä^^^^S^^^^*ä^SMIC
Read record- 874 ofTR005B.r2t
Read record-1351 ofTR002.r2t
Read record - 915 of T023A.r2t
Read record-901 ofT021A.r2t
Read record- 968 ofT019B.r2t

Figure 4. A TraceGraph display from a FORTRAN 77 program

Just as an engineer uses an oscilloscope to see how a circuit responds to different

inputs, a programmer will be able to use TraceGraph to view how the program responds

to different actions. TraceGraph also takes advantage of the human's ability to distinguish

texture in images. It is easy for the eye to pick out a change in the execution of a

component, even if it is represented only by a color change in a few pixels.

The TraceGraph is now available on the Recon3 web site

(http://www.cs.uwf.edu/~wilde/recon3/).

As will be described in the following chapter, in our first case study the Software

Reconnaissance method of feature location was compared against the Dependency Graph

method proposed by Chen and Rajlich (2000). The Dependency Graph method is

intended to be a computer-assisted search process, with different and alternating roles for

21

the computer and for the software engineer. An interactive tool for C is being developed

at Wayne State University, but no FORTRAN tool was available for this study. In the

absence of such a tool, the VIFORtool (Rajlich, Damaskinos, Linos, and Silva, 1988)

was used. VIFOR parses FORTRAN 77 code and creates a database of program entities

and modules and of the relationships between them. The user may then formulate queries

on this database which are displayed graphically in a one or two column format. VIFOR

graphs of the calling dependencies (Figure 5) and of COMMON usage (Figure 6) were

used to help guide the case study.

Figure 5. VIFOR screen shot of the calling relationships of the CONVERT3 program.
Each icon represents a FORTRAN subroutine in the convert3.f module. The "hook lines" show the

subroutines' calls.

22

Figure 6. VIFOR screen shot of COMMON usage by subroutines in CONVERT3.
The subroutines appear in the left column and the named common blocks in the right column. A

line indicates that the block is referenced by the subroutine.

23

CHAPTER IV - FEATURE LOCATION IN LEGACY FORTRAN CODE

The FASTGEN System

The FASTGEN geometric modeling system is a suite of programs that allows

models of solid objects such as vehicles, aircraft, and so forth to be constructed from

primitives such as triangles, spheres, cylinders, donuts, boxes, wedges, and rods. It is

used by the Air Force to model the interactions between weapons and targets by tracing

rays representing explosions or projectiles. The data used to describe individual

components in a FASTGEN geometric model consist of three-dimensional coordinates, a

component identification code name, a space code which identifies the area or

compartment where the component resides, a material thickness, and a geometric code

that defines the geometric primitive (triangle, sphere, and so forth) used in modeling the

surfaces of the component.

The FASTGEN program used in the case study was CONVERT, which is a small

program (2,335 lines of code), but seems to be typical of the rest of the tool suite.

CONVERT is a preprocessor to expand simplified geometric model input and to

transform models into the formats required by other tools that perform ray tracing or

model visualization. CONVERT provides a large number of options for processing model

data, especially including transformation of some primitive shapes into a set of triangles.

Aitken, Jones, and Dean (1993) pointed out that FASTGEN can approximate any type

of surface by using triangles as primitives.

This method allows any surface, flat or curved, exterior or interior, to be approximated by

describing it as a series of one or more consecutively adjacent triangles whose points

(vertices) are located in three-dimensional space. Flat surfaces can be described with

large triangles and a few smaller ones if the surface is irregular. Curved surfaces can be

24

described using several small triangles, with the size of the triangle decreasing if

increased accuracy is desired Any three consecutively sequenced points define a

triangle. (Aitken, Jones, & Dean, 1993, p. 2)

FASTGEN ray tracing tools accept component descriptions defined using triangle,

sphere, cylinder, donut, and rod primitives. However, FASTGEN plot programs such as

P1XPL (Brown, 1979) plot only those components described using triangle and rod

primitives. CONVERT thus provides an option to transform components described with

sphere, cylinder, and donut primitives to approximated components using triangle

primitives. CONVERT always transforms components described with box and wedge

primitives to equivalent components using triangle primitives.

CONVERT has a long history. Falcon Research and Development of Denver,

Colorado developed the original program in 1978 for the Naval Weapons Center (NWC)

at China Lake, California. The program has been maintained and updated many times in

efforts to keep pace with the introduction of different hardware platforms. In the 1980s,

modifications were performed by the Vulnerability Assessment Branch (DLYV) of the

Air Force Armament Laboratory (AFATL), now Air Force Research Laboratory (AFRL),

Eglin Air Force Base, Florida for compatibility with a Control Data Corporation (CDC)

6600 computer system. Later, it was adapted for use on the CDC Cyber 176, CRAY Y-

MP 8/2128 and several Digital Corporation VAX-series computer systems. In 1994,

CONVERT was modified and designated CONVERT3.0 (also known as CONVERT3)

for operation on personal computers (PC) and UNIX workstations.

CONVERT3 exhibits many of the characteristics common in legacy FORTRAN

code. The subroutines tend to be quite large (See Table 1) and not necessarily cohesive.

Variable and subroutine names are limited by the language to six characters and are thus

25

usually cryptic. Much of the data is held in a series of large named common blocks,

which serve to couple the subroutines closely. Figure 6 is a VTFOR screen shot showing

the use of common blocks (global data) by the subroutines in CONVERT3. As can be

seen, most subroutines use almost all of the COMMON blocks. Tracing data flow

through programs with this sort of structure is quite difficult.

Table 1. Size of Main Program and Subroutines in CONVERT3

Subroutine Number of lines

CONVERT (main program) 675

CTOBIN 219

SOOT 60

INFLUE 135

BOXY 116

WORK 96

SPHERE 67

THREAD 67

CONCYL 240

DONUT 234

DNTWRK 77

COMB 159

DATA 190

Note. Raw line count includes comments and blanks.

26

Another confusing aspect of CONVERT3 is the flow of control, which is optimized

for an architecture that is now long obsolete. CONVERT3 was originally designed to run

efficiently on a mid-70s mainframe. In this kind of machine, it was very important to

batch together I/O operations and computations. The operating system would tend to

swap out any job that was doing I/O, and thus interrupt computations. Execution was

much more efficient if a large number of records could be read, then all processed

together before doing any new I/O.

For this reason, CONVERT3 reads and processes in batches of 200 records. The

processing loops are implemented using unstructured GOTOs that jump both forward and

backward, often a hundred lines or more. The resulting structure is complex and seems to

be totally arbitrary unless the programmer is aware of the kinds of optimizations used in

early code.

The Case Study

The case study involved independently applying the Software Reconnaissance and

Dependency Graph methods to two different features of CONVERT3. Two teams

consisting of researchers from The University of West Florida Department of Computer

Science participated in the study, with each team being assigned a search method and

working independently. The results from the two teams were then compared.

Team A consisted of an experienced academic programmer and a graduate student,

neither of whom had previous domain knowledge of the CONVERT3 program. This

team used Software Reconnaissance to locate starting points in the code and then

analyzed the code from these starting points. The Software Reconnaissance output was

27

supplemented in some cases by looking at the raw traces produced during each run to

better understand the flow of control.

Team B was an experienced programmer who had worked with the CONVERT3

program almost 20 years earlier in the early 1980s. Team B was assigned the

Dependency Graph search method for feature location but found that it needed some

adaptation (described below) for legacy FORTRAN code.

The goals of the case study were to establish:

1. Any adaptations that might be needed in each method for use with legacy

FORTRAN code.

2. The possible benefits and drawbacks of each method as applied to this domain.

3. Any inconsistencies between the results of the two methods that might give

insight into their applicability.

Obviously, since the two teams not only were of different sizes but also had different

levels of experience with CONVERT3, it was not relevant to directly compare time and

effort between the teams.

For the study, two features of CONVERT3 were chosen that might plausibly need to

be understood as part of future modifications. The program has a large number of

switches and options representing different features that could have been selected. The

two features finally chosen were a mirroring function and a sort function.

CONVERT3 allows mirroring to simplify data entry of symmetric objects. The user

can input one component of the object and specify that it will have a "mirror" component

generated automatically by reversing the y-axis coordinate. Maintainers might wish to

search for the mirroring function in order to modify it, for example to mirror components

28

on a different or additional plane (that is, adding the z-axis as well as the x-axis and y-

axis).

The sort function is related to another simplification of data entry. Often, one point

may belong to several of the triangles making up a surface. CONVERT3 allows the user

to enter such a point only once, but to assign it several sequence numbers indicating its

participation in the different triangles. In the output file, the point is echoed several times

to describe each triangle completely. The sort function guarantees that all of these points

are in the right order, which is necessary for some of the other FASTGEN programs. A

maintainer might need to locate this code to fix a bug or to change the sorting algorithm.

The mirroring function proved to be the more complicated of the two features to find

and understand.

Team A used the Software Reconnaissance method that requires running one test

"with" and one "without" the feature. It took around 20 minutes to set up the test data. In

previous studies, it has been found that Software Reconnaissance works best with very

simple test cases, using data "with" and "without" the feature that is as similar as

possible. A very simple geometric model was created and run once with the mirroring

flag set and once with it turned off. The results were then analyzed with Software

Reconnaissance. The tool marked 5 areas as potentially related to mirroring, all between

lines 400 and 500 of the program.

The next stage was to try to understand the marked code and its relationship to the

rest of the program. This proved to be difficult, because it turned out that the program

makes several passes through this area of code to handle mirroring. When the mirroring

flag is set, CONVERT3 writes the component to a scratch tape during initial processing.

29

Then it rewinds the scratch tape, reads in the component to the same data area used

previously, and jumps back to make a second pass through the same code to process the

mirrored components. Presumably, the original programmer was attempting to conserve

memory and reuse code. A more modern approach would have been to call a subroutine

twice.

This program plan made comprehension difficult, since some of the code marked by

Software Reconnaissance had been executed first time through while the rest was

executed second time through. A direct reading of the marked code did not make sense.

The team resorted to reading the raw trace file to learn the actual order in which

statements were executed, and this eventually revealed the scratch tape program plan just

described. Even with this assistance, the control variables governing the looping structure

were not completely understood.

Team B adapted the Dependency Graph search method to find the mirroring function.

First the user documentation was reviewed to try to refresh understanding of the feature

(Jones & Aitken, 1994). Since mirroring is not exclusive to a single primitive type (that

is, triangles, box, wedges, and so forth), it was likely that the control flow analysis would

lead to mirroring at a somewhat non-primitive-specific area in the code. This alone

eliminated quite a bit of code.

From here, Team B formalized these hypotheses:

1. since mirrored components are developed from other components in the target

geometric model, some descriptive name or comment would lead Team B to the

target geometric model internal data structure and variables; and

30

2. despite the cryptic nature of the program variable names, the use of "MIRROR"

or "MIR" would perhaps be an indication of whether or not a component is to be

mirrored.

Then, Team B broke the task into these sub-goals:

1. locate the input data that tells CON VERT3 to mirror a component. The user

documentation indicated that character positions 75 through 77 of an 80-character

target geometric model (TGM) record contain the input mirror code (Jones &

Aitken, 1994); and

2. understand enough of the data structure from where the input data is located to

follow the control flow to the mirroring functionality.

Team B then read the code forward linearly from the place where the TGM record

was read, looking for places where the mirror code was used. Aided by Team B's domain

knowledge of CONVERT3, it was then able to locate and understand the mirroring

function without much difficulty.

The second part of the study examined the sort function, which sorts the sequence

numbers of components. The individual components of a FASTGEN target geometric

model are made up of primitive shapes: triangles, boxes, wedges, cylinders, donuts,

spheres, and rods. These shapes are transformed by the CONVERT3 program into

triangle primitives. The user creates a separate record for each component. Each point in

the component is assigned up to eight sequence numbers that help identify how the points

are connected to each other.

A convenient mathematical form for describing a component surface is based on

the fact that any surface, flat or curved, can be approximated by one or more flat

31

triangular surfaces. Triangles are formed by connecting three non-collinear points,

thus forming a plane. If more than one triangle is required to describe a surface,

then the triangles must be sequenced such that any three successive points define

a triangle (not already described) or a straight line on the surface of the

component. The proper selection of sequence [numbers] is critical. (Jones &

Aitken, 1994, p. 21)

CONVERT3 takes a record with several sequence numbers and outputs the record

several times, once with each sequence number. With the sort option activated, these

records are sorted in numerical order by sequence number.

Team A adapted a sample geometric model that included sorting based from a figure

in the user documentation (Jones & Aitken, 1994) to use with the Software

Reconnaissance technique. To provide the two tests, the model was run with and without

the sort function using the instrumented version of CONVERT3. The results were then

analyzed with Software Reconnaissance. The tool marked only two areas:

1. 5 lines at line 813 in the CTOBIN subroutine where SOOT is called and checks

for duplicate sequence numbers; and

2. the SOOT subroutine - comments indicate it is a shell sort.

At first, Team A had difficulty in understanding exactly what the sort function is

supposed to do. The descriptions in the user documentation (Jones & Aitken, 1994) and

the FASTGEN user manual (Aitken, Jones, & Dean, 1993) were somewhat confusing.

The user documentation states that CONVERT3 is able to "sort records in proper

sequential order," but it was unclear whether this meant that CONVERT3 would "assign

sequence numbers" or "use modeler assigned sequence numbers to sort the records of a

32

component" (Jones & Aitken, 1994). Adding to the confusion, the FASTGEN user

manual says that CONVERT3 can "create properly sequenced approximations of a

component when input for the component contains multiple sequence numbers and a

triangle vertex assigned on a single record" (Aitken, Jones, & Dean, 1993). This could

mean that CONVERT3 creates new sequence numbers; however, this feature is listed

separately from the sort. Without domain knowledge, Team A found that their main

problem was determining exactly what the sort function sorts!

It took Team A 30 minutes to find the sort using Software Reconnaissance, including

setup. An additional 60 minutes were spent studying the CTOBIN subroutine to

understand when the sort function (in subroutine SOOT) is called. Team A finally

decided that CTOBIN reads the input and performs replication of points having multiple

sequence numbers. Just before it starts processing a new component, it jumps to the sort

function in the SOOT subroutine to sort the old one. Afterwards, it goes back to process

the first record of the new component, continuing in this manner.

Team B used the Dependency Graph search method to find the sort feature following

the same process used for mirroring. By consulting the user documentation (Jones &

Aitken, 1994), Team B determined why sorting was needed. Team B also noted the use

of the variable name 1SORT as a flag to toggle the sorting of sequence numbers. From

the VIFOR calling hierarchy (Figure 5), it was apparent that the subroutine CTOBIN

calls a subroutine named SOOT. Thanks to its domain knowledge, Team B realized that

this is a sort with the name changed slightly so as not to duplicate a FORTRAN intrinsic

sort subroutine.

33

Then, Team B broke the task into these sub-goals:

1. locate where the input data tells CONVERT3 to sort sequence numbers (Team B

believed this would be in the subroutine CTOBIN); and

2. understand enough of the data structure from where the input data is located to

follow the control flow from the input data to the sort subroutine.

From here, Team B was able to locate and understand the sort feature with little trouble.

Conclusions from the Case Study

Software Reconnaissance and Dependency Graph search are two methods for

locating code that needs to be modified. It should first be pointed out that Software

Reconnaissance can only locate "features," that is, program functionalities that the user

can control by varying the test data. For example, mirroring or sorting in CONVERT3 are

turned on or off by appropriate user inputs. The Dependency Graph method is, in

principle, somewhat more flexible since it involves a human-guided search of the

program. It can thus be used to locate what Biggerstaff, Mitbander, and Webster (1994)

called "concepts," human-oriented expressions of computational intent. While all features

are concepts, not all concepts are features and thus appropriate for Software

Reconnaissance. For example, a maintainer of CONVERT3 might want to change the

size of the output record buffer. It would be difficult to use Software Reconnaissance to

locate "writing an output record" since all test cases write output; this "concept" cannot

be turned on and off and thus is not a "feature" suitable for Software Reconnaissance.

However, a programmer could apply the Dependency Graph method to locate it by

starting from WRITE statements and tracing data flow backwards.

34

Like most programs, CONVERT3 does have many features such as the mirroring and

sorting used in this case study. For both of these features, the two methods found the

same code and led to essentially the same understanding of the program. The

Dependency Graph method perhaps had a slight advantage in the mirroring feature, since

it was able to provide Team B with an understanding of the control variables that

governed the complex looping while Team A, using Software Reconnaissance, was still

somewhat confused. Either team would have been able to make a simple modification,

such as changing the axis of mirroring. Either team would have had considerable

difficulty with a more complex modification, such as introducing simultaneous mirroring

on both axes, since that would require major modifications to the obscure flow of control.

The Dependency Graph search method for feature location proved to be difficult to

apply as originally described due to the lack of modularity in the code and the difficulty

in interpreting the code as it was encountered. This method views the code as a graph of

components that are visited systematically, with each one being completely understood

before moving to another. Unfortunately, there are no clear components to understand in

the CONVERT3 program. Most subroutines are large and do not follow modern

conventions of cohesion and coupling so they do not constitute a meaningful "chunk" to

be understood. Calling dependencies were thus not very useful. Hand tracing of data

flows within subroutines proved a more useful, though tedious, approach.

Team B thus had to adapt the Dependency Graph method by exploiting the user

documentation and previously acquired domain knowledge. The data items relevant for

the feature were identified from the documentation. Though cryptic, names such as MIR

and ISORT did sometimes serve as "beacons" to identify the purpose of data (Brooks,

35

1983). Then the input statements for these data items were identified, and Team B traced

data flow forward, systematically exploring most of the code but skipping some areas that

were clearly irrelevant. This method was successful, but seems to require the exploration

of a large fraction of the code. However, the effort expended on the first feature

(mirroring) did pay dividends later. In studying the sort feature, Team B found that the

mirroring study had already provided an understanding of a large fraction of the relevant

subroutine (CTOB1N).

The Software Reconnaissance method succeeded in locating the features in a

relatively small area of the code. In previous studies of C code, it has generally (but not

always) been fairly easy to understand a feature once it was located. However, with

CONVERT3, understanding of located features was considerably more difficult due to:

1. poor modularity;

2. tight coupling through COMMON;

3. complex unstructured control;

4. cryptic variable names;

5. idiosyncratic program plans dominated by efficiency considerations that are now

obsolete; and

6. lack of effective comments.

The use of the trace file to aid comprehension was partially effective. It did reveal the

"twice through" plan in the mirroring case but Team A was unable to understand how the

looping was controlled because the trace does not show the data values at each point.

Software Reconnaissance is effective in feature location, but that is only part of the job of

feature comprehension.

36

Because the Dependency Graph search method forces the user into a better

understanding of how the code functions, it might be the more suitable method for

maintainers who have little domain knowledge but a need for better acquaintance with

the code. The Software Reconnaissance method might be more appropriate for use by

maintainers who already are partially familiar with the code.

In general, both techniques were effective in locating the features, but there may be a

trade-off: Software Reconnaissance locates features with less search through the code,

while the Dependency Graph method requires more study, but results in more complete

code comprehension. For large, infrequently changed programs, Software

Reconnaissance may be the better alternative. For smaller, more frequently modified

programs, where an investment in comprehension may have benefits later, the

Dependency Graph method might be a better strategy. For both techniques, domain

knowledge is a valuable aid, whether acquired from documentation, colleagues, or

through long hours studying the code.

37

CHAPTER V - OBJECT-ORIENTED REENGINEERING

The object-oriented language paradigm was an obvious choice for the reengineering

of the CONVERT3 program, since the program deals with geometric models. The

geometric shapes used in CONVERT3 are natural candidates for objects.

It was hypothesized that reengineering the CONVERT3 program into object-oriented

code would result in an effective methodology for reengineering using dynamic analysis

techniques. The first goal for this methodology was that it be practical: it must not require

excessive time, not require tools that are not widely available, and not require excessive

time from a domain expert. The methodology should also be verifiable: all old features

should have been identified and handled at the end of the process, and a sufficient set of

tests should exhibit the same results with the old and new program. The third goal was

that the methodology be incremental, with intermediate milestones possible. Finally, the

new system should use established documentation techniques, such as the Unified

Modeling Language (UML) described by Rumbaugh, Jacobson, and Booch (1999).

As shown in Figure 7, the proposed methodology involved several phases. First, any

available documentation and domain experts are consulted to prepare a feature list for the

legacy program and an initial UML domain class model. Pairs of test cases are written for

each identified feature, one case with the feature and another similar case without it.

These test cases are used both for feature location and as a regression test set to validate

the reengineered program.

38

Documents and
Domain

Knowledge

Feature
list

1. Location
and Analysis

/\> Repeat for common
\^/ code and for each
 feature

2. Design,
Code, Unit

Test

^
+y

3. Validate by
Regression

Test

Domain
Class
Model
(UML)

and new
C++

program

2
Legacy

FORTRAN
Program

Figure 7. The reengineering methodology.

An initial Software Reconnaissance analysis is then performed using this test set. One

result is the identification of the so-called "common" code, which is executed in every

test case (Wilde & Scully, 1995). Common code is typically scaffolding for the

application, handling initializations, opening files, utility processing, and so on. This code

must be reengineered first to create a minimal version of the new program that can

actually run. The three steps involved are shown in Figure 7 and outlined below.

39

1. Location and Analysis: The software engineer locates the code using Software

Reconnaissance and the test set and analyzes it to find out exactly what it does.

Some functionality may be discarded as obsolete. Study of the code may also

reveal previously unidentified features that need to be reengineered. These are

added to the feature list and test cases are written for them.

2. Design, Code, Unit Test: The software engineer decides which object classes will

be involved in implementing this feature in the C++ program. Methods are

designed, coded, and unit tested for the identified classes. In some cases the UML

class design may be modified to reflect new knowledge acquired in the analysis.

Tf object interactions are complex, the software engineer may choose to draw a

UML sequence diagram for documentation.

3. Validate by Regression Test: If sufficient new code has accumulated, the software

engineer performs regression testing by running the test set against both the old

and new programs. Any errors of design or coding are caught as early as possible.

Once the common code has been reengineered, the rest of the process proceeds

incrementally, feature by feature. A feature is chosen from the feature list and the three

steps given above are again followed:

1. Location and Analysis.

2. Design, Code, Unit Test.

3. Validate by Regression Test.

The reengineering process ends when all desired features have been reengineered.

If any code is still uncovered by the test set, it is examined to be sure that no important

features have been missed. The finished products are a UML design and a cross-reference

40

between the UML design and the original code, a regression test set that covers all of the

legacy program except features deemed unnecessary, and an object-oriented program that

produces exactly the same output as the old program on the test set. It was theorized that

this plan would cause reengineering to be faster and easier due to more effective feature

location.

A number of research and practical issues emerged during the preparation of the

methodology. Among the research issues raised were:

1. how much of the code would be common, how common code should be handled,

and how to understand common code and allocate it to objects;

2. how much of the code is obsolete, artifact, or dead; and

3. how much help would be needed from the domain expert.

The practical issues raised included:

1. whether there are any things in FORTRAN 77 that cannot be converted to C++,

such as the binary file or native function calls;

2. whether the Recon2 tool is capable of doing the analysis of common code as

needed; and

3. whether tessalations and other aspects of geometric modeling should be studied,

and whether this is essential for understanding CONVERT3.

The answers to many of these research and practical issues would emerge during the

reengineering process itself.

41

The Reengineering Process

Following the reengineering methodology described in the previous section, the

process began with reviewing the CONVERT3 user's manual (Jones & Aitken, 1994) and

the FASTGEN user manual (Aitken, Jones, & Dean, 1993) to create an initial domain

class model. Prospective classes were underlined in the text as it was read. This list of

classes was used to make an initial UML class diagram, which would be revised as the

project proceeded. The initial class model is shown in Figure 8. From this same source an

initial list of 47 CONVERT3 features was prepared. The final list of features is shown in

Appendix A.

To apply Software Reconnaissance for feature location, and to provide regression

tests to validate the C++ version, two test cases were identified for each feature, one

"with" the feature and a similar case "without" the feature. A list of these test cases is

given in Appendix B. C shell scripts were written that allowed all the test cases to be

executed at once.

42

Model

Component
list

Component
Primitive
list

1 ..N

Primitive

Triangle
Vertex

Box

Donut

I
Wedge

Sphere

Cylinder

Rod

Figure 8. Initial UML domain class model for CONVERT3.

CONVERT3 was instrumented using the Software Reconnaissance FORTRAN

instrumentor to trace the following code parts: subroutine entry points, subroutine return

points, and basic blocks.

Running the initial test cases produced the statistics on CONVERT3 shown in

Table 2. As shown, the initial tests provided a coverage of 63.4% of CONVERT3, fairly

typical for a functional test set. Reengineering started with the 13.4% that is "common"

code, executed on every invocation of CONVERT3. Examination of this code showed

that much of it was related to reading 80 column records for a geometric model, and these

43

functions were assigned to loadRawRecords() methods in the Model and Component

classes. The remaining common code performed initializations, such as opening files and

setting parameters. This code was related to the particular CONVERT3 application,

rather than to the domain of geometric modeling, so a Convert class was created to

provide application-specific processing in static methods.

Table 2 - Code Parts (entry points, return points, and basic blocks) in CONVERT3

Type of part Number Percentage

Parts executed in one or more test case

Unexecuted parts

Total number of code parts

"Common" parts executed in all test cases

Reengineering of the common code, one of the research issues raised, proved hard

because of extreme difficulty in understanding CONVERT3's control flow. Eventually it

proved necessary to hand flowchart the two large subroutines that contained most of the

common code. The identification of the common code by Software Reconnaissance

helped in program comprehension. This was because as each basic block in these

subroutines was examined, it was known beforehand if the block was common or only

executed for some features. However, even with the flowcharts and the Reconnaissance

information, the analysis was still difficult and time consuming. Eventually, though, a

shell of the new C++ program was completed that emulated the basic processing of the

FORTRAN version.

265 63.4

153 36.6

418 100.0

56 13.4

44

One unanticipated reengineering problem was the difficulty in mapping FORTRAN'S

input/output model into C++. For example, FORTRAN expects fixed width fields in

fixed length records, with the length established in the FORMAT statement. If the actual

input record is shorter, FORTRAN assumes that the remaining data are blanks, and

assigns a value of zero to any numerical input fields. This behavior is hard to emulate

using C++ streams, and special Fortranlnput and PrimitiveRecord classes were created to

perform the mapping. Similarly, FORTRAN'S STOP statement, which writes a message

to the console, does not map easily into C++. A Utility class was created to hold a fatal

error handling method that emulates it.

As code examination continued, certain additional features of CONVERT3 were

identified. Some of these were error checks that had not been mentioned in the user

manual, while others were features that had been missed during reading of the manual,

but were found in reading the code. Tests for these features were added to the regression

test set.

Each feature in the feature list was then analyzed by first applying Software

Reconnaissance to locate the "marker" code for the feature, analyzing that code, and then

implementing a C++ version by adding methods to the domain class model. In some

cases the analysis revealed similarities between classes that allowed generalizations. For

example, the processing for Wedge and for Box classes proved to be almost identical,

though handled in different subroutines in the original FORTRAN. Both classes were

thus made into derived classes of an abstract Prism class.

As soon as the common code and some basic input/output features had been

implemented, the test set could be used to verify the reengineered version by regression

45

testing against the original version. Problems could thus be identified and resolved early.

For example, one difficulty arose in the assignment of sequence numbers. All

CONVERT3 input and output records have sequence numbers that indicate the order in

which primitives, especially triangle vertices, should be interpreted in the geometric

model. When CONVERT3 transforms, for example, a sphere into a set of triangles, it

generates the sequence numbers using a very complicated algorithm that writes and reads

a scratch tape, presumably to avoid overrunning a fixed-size array. This creates a

dilemma in implementing the C++ version, which has no such array restrictions; complex

and meaningless code would be needed to exactly replicate the sequence numbers.

Instead it was decided to simply generate numbers in sequence, but then a filter program

had to be added for regression testing to remove the numbers before comparing the

output of the C++ and FORTRAN versions.

At the point where reengineering stopped, the feature list had grown to 53 features of

which 35 had been reengineered, one had been discarded as obsolete, and 17 remained

pending (See Appendix A for a complete list of features). The features related to cylinder,

donut, and rod primitives were left pending due to lack of time.

Of the 60 regression tests, 36 ran correctly, with the remainder being related to the

unimplemented features. Figure 9 shows the "as-built" UML class diagram, with the still

unimplemented classes indicated by dotted boxes. Final products of the reengineering

included this UML class diagram, a UML sequence diagram for one particularly complex

feature, commented C++ source code for the classes making up both the domain model

and the new CONVERT3 application, and the regression test set. The reengineered

46

product would be relatively easy to maintain or enhance, even by software engineers who

had not participated in its creation.

Conclusions from the Reengineering Process

Expecting to be able to reach a complete understanding of the original code and

reengineer it exactly into its new form is a bit naive. At the start of this study, it was

hoped that in the long run, more sophisticated tools could be written to support exact

reengineering. After the study, it is evident that any such approach would prove

unproductive for programs like CONVERT3, since much of the CONVERT3 code

should probably not be reengineered into the new version. Such code includes the

previously mentioned obsolete program plans, such as the scratch tapes, reading and

writing in 200 record blocks, and the complex assignment of sequence numbers. To

produce a good program, the software engineer needs to reengineer away many such

details.

Convert

Application Class

Model

Component
list

Component
Primitive
list

1 ..N

Primitive

Triangle
Vertex

I
Prism

T
Box Wedge

47

Fortran
Input

Primitive
Record

Utility

Fortran I/O Classes

.....1......
Cylinder

Sphere

Donut
i

Rod

Figure 9. "As-built" UML class diagram showing domain and application-specific
classes.

In fact, it is even an interesting question if complete understanding is really desirable

in order to reengineer programs like CONVERT3. There were several examples of code

that, though unintelligible, were certainly unnecessary. For example, there is code that

48

seems to be executed only when the FORTRAN program's arrays are almost full. Since

the new version uses vector data structures that cannot overflow, a complete

understanding of the FORTRAN processing is almost certainly a waste of time.

Similarly, there is at least one large complex subroutine that was never executed in any of

the tests, and seems to be used only when input flags are set to values that would be

invalid according to the user manual. Apparently this code is for an obsolete feature.

Since program comprehension is so time consuming for programs like CONVERT3, an

efficient reengineering strategy should probably just disregard such subroutines. The

dynamic analysis methodology helps identify them because they are not executed in the

test set.

Though tools for exact reengineering may be impossible for programs like this,

certainly some tool support of a fairly simple kind would have been useful, especially if a

larger program than CONVERT3 were to be reengineered. If a larger project were

started, a simple database could be prepared to track features, test cases, and the mapping

between features and basic blocks. The lists kept in text files during this study became

quite complicated as the project continued.

More ambitious would be a tool to help extract the fragments of FORTRAN for each

feature to aid in their conversion to C++. The problem is that the whole mindset of the

programmer has changed in the transition to object-orientation. The programmer of

CONVERT3 clearly thought of the program as reading and writing groups of records; the

outlook is entirely procedural and very low level. The new CONVERT3 instead

constructs a structured geometric model of a solid object, stores it, transforms it, and then

writes it out again. The large cognitive gap between these views means that the

49

reengineering of a feature is much more complex than simply extracting a few lines of

code from one program and attaching them to another. However, some sort of specialized

editor could well be useful to keep track of what has been done and to provide

traceability between the old and new code.

One important aspect of any reengineering process is the need to proceed

incrementally to keep project risks at an acceptable level (Olsem, 1998). The FASTGEN

system, of which CONVERT3 is a part, is relatively easy to approach incrementally since

the different programs communicate via files and may execute independently of each

other. Thus each program may be reengineered separately.

Of the research and practical issues that were raised at the start of the reengineering

process, a number were solved. The research issues raised included how to handle the

common code; how much of the code is obsolete, artifact, or dead; and how much help

would be needed from the domain expert. Although it comprised a relatively small

percentage of the overall code, the common code proved the most difficult to reengineer

due to the complicated control flow. Roughly one-third of the code was not executed in

any test case, and was probably obsolete or dead. The domain expert was never

consulted; most of the information needed was taken from reading the manuals and

studying the code.

The practical issues raised included whether there are any things in FORTRAN 77

that cannot be converted to C++, such as the binary file or native function calls; whether

the Recon2 tool is capable of doing the analysis of common code as needed; and whether

tessalations and other aspects of geometric modeling should be studied, and whether this

is essential for understanding CONVERT3. These issues were more easily solved.

50

FORTRAN proved difficult to convert to C++, especially the FORTRAN input/output

model. The code was created to mimic the peculiarities of FORTRAN, but not without

extra time and effort. The Recon2 tool was found to be capable of analyzing the common

code. Finally, it was found that very little knowledge of computer graphics and

geometric modeling was needed to understand the CONVERT3 program.

Even for the CONVERT3 program considered by itself, the methodology is

incremental by feature. The version completed in the case study could be used on those

geometric models that do not include the rod, cylinder, and donut primitives that are still

pending. If features are implemented beginning with the most commonly used the

reengineered product may thus enter partial service well before the entire task is

completed.

51

CHAPTER VI - RESULTS AND CONCLUSIONS

We believe that the case study presented in Chapter IV shows that Software

Reconnaissance is likely to be a useful technique for understanding and maintaining

legacy FORTRAN programs. The method was successful in locating features that may

need to be maintained, and probably requires considerably less study of code than the

Dependency Graph technique. Just as had previously been found in studies of C code,

Reconnaissance allows a software engineer to quickly focus on a part of the program that

may need to be maintained.

The difficulties, and the contrast to our studies of C, came in understanding the code

for each feature once it had been located. Programs like CONVERT, with their

extraordinarily convoluted control flow, do not yield their secrets easily. Because of the

GOTO's that jumped a hundred or more lines at a time and the complicated program

plans (e.g. the use of scratch tapes in mirroring) the work necessary after the feature had

been located was considerably more than in our experience with more modern programs.

The case study in Chapter V showed that the reengineering methodology may be a

workable approach to creating an object-oriented version of badly structured legacy code.

Its advantage is that it provides a systematic way of approaching the task. The test cases

are used both as an aid to analysis and as a verification tool. Their coverage of the

original code provides reasonable confidence that the reengineered product includes all

needed functions of the original. This confidence is not, of course, the same as absolute

certainty. It is well known that a program may still contain bugs, despite passing all the

tests of a high-coverage test set. Similarly, the test set generated by this methodology

52

may not reveal differences between the old and new version that could be significant to

its eventual users. The methodology is a compromise between the desire for perfect

certainty and the reality of scarce software engineering time.

The code produced by the methodology is fairly "clean" and should prove a good

basis for further evolution. Obsolete program plans, such as the use of scratch tapes, have

been eliminated. Obsolete gold plating, such as the indexing algorithm for the sequence

numbers, has also been eliminated. New program plans, such as the emulation of

FORTRAN input, are provided where essential to preserve compatibility. In addition,

a UML design and a test set are available as support for future development. Most

importantly, the method does not only reengineer the specific product, but also produces

a domain class model to serve as a reusable component in other applications.

However, the final and greatest lesson learned is that reengineering of code as

complicated as CONVERT3 will always require a lot of human effort, especially if the

software engineers do not have previous experience with the program. There seems to be

no substitute for painstaking study to understand this kind of legacy code.

53

ACKNOWLEDGEMENTS

We would like to thank the many people, both at the University of West Florida

and elsewhere, who have contributed to this work. Dr. Vaclav Rajlich of Wayne State

University contributed both the VIFOR tool and the Dependency Graph method of

feature location. His assistance in designing the case study of Chapter IV was invaluable.

Ms. Michelle Buckellew was the main research assistant in this work at the University of

West Florida and contributed endless hours to both case studies as well as to the

documentation of their results. Henry Page and LaTreva Pounds, former UWF students

currently working in the Northwest Florida region, contributed their experience with

FASTGEN and CONVERT to our case studies; this work probably would not have

possible without them. Finally, Kazimiras Lukoit, Scott Stowell and Tim Hennessey

developed and tested the first prototype of the TraceGraph tool, which we expect to be

the main analysis tool for performing Software Reconnaissance in the future.

REFERENCES

Achee, B.L., & Carver, D. (1994). A greedy approach to object identification in

imperative code. Proceedings of the IEEE Third Workshop on Program Comprehension.

Washington. DC. 3. 4-11.

Agrawal, H., Alberi, J., Horgan, J., Li, J. J., London, S., Wong, W. E., Ghosh, S.,

& Wilde, N. (1998). Mining system tests to aid software maintenance. IEEE Computer.

3_i (7), 64-73.

Aitken, E. D., Jones, S. L., & Dean, A. W. (1993). A guide to FASTGEN target

geometric modeling: User's manual. Fort Walton Beach, FL: ASI Systems International.

Arnold, R., & Bohner, S. (1996). Software change impact analysis. Piscataway,

NJ: IEEE Computer Society.

Belady, L., & Lehman, M. (1976). A model of large program development. IBM

Systems Journal. 15 (3), 225-252.

Bergey, J., Smith, D., Tilley, S., Weiderman, N., & Woods, S. (1999). Why

reengineering projects fail (Tech. Rep. No. CMU/SEI-99-TR-010). Pittsburgh, PA:

Carnegie Mellon University, Software Engineering Institute.

Bergey, J., Smith, D., & Weiderman, N. (1999). DoD legacy system migration

guidelines (Tech. Rep. No. CMU/SEI-99-TN-013). Pittsburgh, PA: Carnegie Mellon

University, Software Engineering Institute.

54

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. E. (1994). Program

understanding and the concept assignment problem. Communications of the ACM, 37

(5), 72-83.

Blazy, S., & Facon, P. (1993). Partial evaluation as an aid to the comprehension

of fortran programs. Proceedings of the IEEE Second Workshop on Program

Comprehension, Capri, Italy, 93, 48-54.

Blazy, S., & Facon, P. (1994). SFAC, a tool for program comprehension by

specialization. Proceedings of the IEEE Third Workshop on Program Comprehension,

Washington, DC, 3, 162-167.

Brooks, R. (1983). Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies, 18, 543-554.

Brown, G. A. (1979). PIXPL target plotting program (P7057) (Air Force

Armament Laboratory Tech. Rept. No. AFATL-TR-79-45). Eglin AFB, FL: Datatec, Inc.

Canfora, G., Cimitile, A., De Lucia, A., & Di Lucca, G. A. (2001). Decomposing

legacy systems into objects: an eclectic approach. Submitted to Information and Software

Technology.

Canfora, G., Cimitile, A., & Munro, M. (1996). An improved algorithm for

identifying objects in code. Software - Practice and Experience, 26 (1), 25-48.

55

Chen, K., & Rajlich, V. (2000). Case study of feature location using dependence

graph. Proceedings of the IEEE Eighth Workshop on Program Comprehension. Limerick.

Ireland. 8.241-247.

Chikofsky, E. J., & Cross, J. H., II. (1990). Reverse engineering and design

recovery: A taxonomy. IEEE Software. 7 (1), 13-17.

Cimitile, A., De Lucia, A., Di Lucca, G. A., & Fasolino, A. R. (1999). Identifying

objects in legacy systems using design metrics. Journal of Systems and Software. 44.

199-211.

Cimitile, A., Tortorella, M., & Munro, M. (1994). Program comprehension

through the identification of abstract data types. Proceedings of the IEEE Third

Workshop on Program Comprehension. Washington. DC. 3. 12-19.

Corbi, T. A. (1989). Program understanding: Challenge for the 1990s. IBM

Systems Journal. 28 (2), 294-306.

DeBaud, J. M., & Rugaber, S. (1995). A software re-engineering method using

domain models. Proceedings of the IEEE International Conference on Software

Maintenance. Seattle. WA. 95. 204-213.

Di Lucca, G. A., Fasolino, A. R., & De Carlini, U. (2000). Recovering class

diagrams from data-intensive legacy systems. Proceedings of the IEEE International

Conference on Software Engineering. San Jose. CA. 00. 52-63.

56

Jerding, D., & Rugaber, S. (1997). Using visualization for architectural

localization and extraction. Proceedings of the IEEE Fourth Working Conference on

Reverse Engineering. Amsterdam, the Netherlands, 4, 56-65.

Jones, S. L., & Aitken, E. D. (1994). Convert3.0 user's manual. Fort Walton

Beach, FL: ASI Systems International.

Kaliski, M. E., & Kaliski, B. S. (1991). The software sleuth. St. Paul, MN: West

Publishing Company.

Koenemann, J., & Robertson, S. P. (1991). Expert problem solving strategies for

program comprehension. Proceedings of the ACM Conference on Computer Human

Interaction. New Orleans, LA, 91, 125-130.

Kozaczynski, W., & Wilde, N. (1992). On the re-engineering of transaction

systems. Journal of Software Maintenance: Research and Practice, 4 (3), 143-162.

Lakhotia, A. (1993). Understanding someone else's code: Analysis of

experiences. Journal of Systems and Software, 23, 269-275.

Lakhotia, A. (1997). A unified framework for expressing software subsystem

classification techniques. Journal of Systems and Software, 36, 211-231.

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., LeJeune, P., & Tulula, P. (1994).

Visualizing program dependencies: An experimental study. Software - Practice and

Experience, 24 (4), 387-403.

57

Liu, S. S., & Wilde, N. (1990). Identifying objects in a conventional procedural

language: An example of data design recovery. Proceedings of the IEEE Conference on

Software Maintenance. Washington. DC. 90. 266-271.

Livadas, P. E., & Johnson, T. (1994). A new approach to finding objects in

programs. Journal of Software Maintenance: Research and Practice. 6 (5), 249-260.

Olsem, M. R. (1998). An incremental approach to software systems

reengineering. Journal of Software Maintenance: Research and Practice. 10 (3), 181-201.

Ornburn, S. B., & Rugaber, S. (1992). Reverse engineering: Resolving conflicts

between expected and actual software designs. Proceedings of the IEEE Conference on

Software Maintenance. Orlando. FL. 92. 32-40.

Queille, J. P., Voidrot, J. F., Wilde, N., & Munro, M. (1994). The impact analysis

task in software maintenance: A model and a case study. Proceedings of the IEEE

International Conference on Software Maintenance. Washington. DC. 3. 234-242.

Rajlich, V., Damaskinos, N., Linos, P., & Silva, J. (1988). Visual support for

programming-in-the-large. Proceedings of the IEEE International Conference on

Software Maintenance. Phoenix. AZ. 88. 92-99.

Robson, D. J., Bennett, K. H., Cornelius, B. J., & Munro, M. (1991). Approaches

to program comprehension. Journal of Systems and Software. 14 (2), 79-84.

58

Rugaber, S. (1992). Program comprehension for reverse engineering. Proceedings

of the AAAI Workshop on AT and Automated Program Understanding. San Jose. CA,

106-110.

Rugaber, S., Stirewalt, K., & Wills, L. (1995). Detecting interleaving.

Proceedings of the IEEE International Conference on Software Maintenance. Nice.

France. 95. 265-274.

Rugaber, S., & White, J. (1998). Restoring a legacy: Lessons learned. IEEE

Software. 15 (4), 28-33.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The unified modeling language.

Reading, MA: Addison Wesley.

Sneed, H. M., & Majnar, R. (1998). A case study in software wrapping.

Proceedings of the IEEE International Conference on Software Maintenance. Bethesda.

MD. 98. 86-93.

Subramaniam, G., & Byrne, E. (1996). Deriving an object model from legacy

fortran code. Proceedings of the IEEE International Conference on Software

Maintenance. Monterey. CA. 96. 3-12.

Turver, R. J., & Munro, M. (1994). An early impact analysis technique for

software maintenance. Journal of Software Maintenance: Research and Practice. 6(1),

35-52.

59

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during

software maintenance and evolution. IEEE Computer. 28 (8), 44-55.

Wilde, N. (1996). RECON - tool for C programmers [On-line]. Available:

http://www.cs.uwf.edu/~wilde/recon/

Wilde, N., & Casey, C. (1996). Early field experience with the software

reconnaissance technique for program comprehension. Proceedings of the IEEE

International Conference on Software Maintenance. Monterey. CA. 96. 312-318.

Wilde, N., Casey, C, Vandeville, J., Trio, G., & Hotz, D. (1998). Reverse

engineering of software threads: A design recovery technique for large multi-process

systems. The Journal of Systems and Software. 43. 11-17.

Wilde, N., & Scully, M. (1995). Software reconnaissance: Mapping program

features to code. Journal of Software Maintenance: Research and Practice. 7. 49-62.

Yau, S. S., Collofello, J. S., & MacGregor, T. (1978). Ripple effect analysis of

software maintenance. Proceedings of Compsac 78. New York. NY. 78. 60-65.

60

APPENDIX A - FINAL LIST OF CONVERT3 FEATURES

This table shows which features were reengineered into the object-oriented version of

CONVERT3 and which features were still pending at the completion of the reengineering

process described in Chapter IV. The first table contains features identified at the

beginning of the reengineering process; the second table contains features discovered

during the reengineering process itself.

Features Action Taken
Transform sphere to triangles reengineered
Transform cylinder to triangles pending
Transform donut to triangles pending
Create mirror image component description reengineered
Create properly sequenced approximations reengineered
Sort records for components reengineered
Process box reengineered
Process wedge reengineered
Interactive mode reengineered
Batch mode pending
Process cylinder without transforming to triangles pending
Process triangle reengineered
Process donut without transforming to triangles pending
Process sphere without transforming to triangles reengineered
Process rod pending
Process components with triangle primitives >2.99"
thick ($NARM)

pending

Process components of normal thickness reengineered
Convert all components to triangle primitives pending
Print ASCII output file reengineered
Do not print ASCII output file reengineered
Print only 200th record in the block discarded feature

61

(obsolete)
Print each entire block of 200 records reengineered
Write binary file reengineered
Do not write binary file reengineered
Drop components from converted target deck reengineered
Do not drop components from converted target deck reengineered
Break long cylinders/cones pending
Break long rods pending
Use non-default break ratio pending
Process intentional interference records
($INTERFE)

reengineered

Process non-interfering records reengineered
Process component codes ($CODE) reengineered
Process component without component code reengineered
Process cylinder in plate mode pending
Process cylinder in volume mode pending
Process donut in plate mode pending
Process donut in volume mode pending
Process box in plate mode reengineered
Process box in volume mode reengineered
Process wedge in plate mode reengineered
Process wedge in volume mode reengineered
Process sphere in plate mode reengineered
Process sphere in volume mode reengineered
Process triangle in plate mode reengineered
Process triangle in volume mode reengineered
Process component with target ID number
($VEHICLE)

reengineered

Process component without target ID number reengineered

Features Found During Reengineering Action Taken
Error check for input file pending
Error check for target deck file pending
Drop more than 14 components from converted reengineered

62

target deck
Error check for duplicate sequence numbers reengineered
Create mirror image triangle component with -1 flag reengineered
Process triangle without mirroring reengineered

63

APPENDIX B - LIST OF TEST CASES USED IN REENGINEERING CONVERT3

This is the final list and descriptions of each test case used in reengineering the

CONVERT3 program.

Test Case Description
T001A A sphere component to be transformed into triangles
T001B A sphere component not transformed into triangles
T002A A cylinder component to be transformed into triangles
T002B A cylinder component not transformed into triangles
T002C A cylinder component with L/R ratio greater than 10
T002D A cylinder component with L/R ratio greater than FACT
T003A A donut component to be transformed into triangles
T003B A donut component not transformed into triangles
T003C A donut component with all components transformed
T004A A component to be mirrored
T004B A component not to be mirrored
T005A A component to have sequence numbers sorted
T005B A component to have sequence numbers unsorted
T006 A box component to be processed
T007 A wedge component to be processed
T008A A component to be processed in interactive mode
T008B A component to be processed in batch mode
T009 A triangle component to be processed
T010A A rod mode component to be processed
T010B A rod mode component with L/R ratio greater than 10
T011A A component with thickness greater than 2.99"
T011B A component with normal thickness
T012A A component to be processed without an output file
T012B A component to be processed with an output file
T013A A component to be processed with only the 200th record in

each block to be written
T013B A component to be processed with each block of 200 records

to be written
T014A A component to be processed without a binary out file

64

T014B A component to be processed with a binary out file
T015A Two cylinder components, one to be dropped
T015B Two cylinder components, none to be dropped
T016A Two box components, to be processed as intentional

interference records
T016B Two box components to be processed normally
T017A A component to be processed with component code
T017B A component to be processed without component code
T018A A cylinder component in plate mode
T018B A cylinder component in volume mode
T019A A donut component in plate mode
T019B A donut component in volume mode
T020A A box component in plate mode
T020B A box component in volume mode
T021A A wedge component in plate mode
T021B A wedge component in volume mode
T022A A sphere component in plate mode
T022B A sphere component in volume mode
T023A A triangle component in plate mode
T023B A triangle component in volume mode
T024A A box component with target ID number
T024B A box component with no target ID number
TR001A A box component with an error in IV
TR001B A box component with an error in IDONT
TR001C A box component with an error in ISORT
TR001D A box component with an error in IASCI
TR001E A box component with an error in KPRNT
TR001F A box component with an error in I BIN
TR001G A box component with an error in FACT
TR001H A box component with an error in PTSS
TR001I A box component with an error in PSTT
TR002 A box component with an error in target deck
TR003 More than 14 components to be dropped
TR004 Two triangle components with duplicate sequence numbers
TR005A A triangle component with -1 mirroring
TR005B A triangle component without mirroring

65

66

APPENDIX C - DESCRIPTION OF OBJECT-ORIENTED CONVERT3 CODE

The object-oriented version of CONVERT3 was written in C++ and contains 5,367

lines of code. The entire FORTRAN version of CONVERT3 was not reengineered, but

most of the major features of the old program have been recreated in the new one. (See

Appendix A for a complete list of reengineered features.) The files that make up the

object-oriented version of CONVERT3 are as follows: Box.cc, Component.cc,

Convert.cc, Fortranlnput.cc, Model.cc, Primitive.cc, Prism.cc, Sphere.cc,

TriangleVertex.ee, Utility.ee, and Wedge.cc. Each executable .cc file has a corresponding

header file with the same name. The main() subroutine is found in the Convert.cc file.

The Component.cc file contains the implementation for a component object, each of

which represents one component of a target geometric model. The Convert.cc file

contains the main() subroutine and several related subroutines. Fortranlnput.cc partially

implements the FORTRAN input routines. Model.cc is an implementation of the Model

object, which represents a complete target geometric model. Primitive.cc contains

implementation for the classes Primitive and PrimitiveRecord. The files named after

geometric shapes, Box.cc, Prism.cc, Sphere.cc, TriangleVertex.cc, and Wedge.cc,

implement the classes that deal with their namesake geometric figures. Utility.cc is used

to generate error messages.

Figure 9 shows the "as-built" UML class diagram, with the still unimplemented

classes indicated by dotted boxes. A more detailed class diagram follows, also with the

unimplemented classes, Donut, Rod, Cylinder, and Cone, indicated by dotted boxes.

67

Convert

istream controlFile;
ostream infoFile;
istream targetDeckFile;

main()
openEssentialFilesO
getControlFile()
getInfoFiIe()
getTargetDeckFile()
setControlParametersO
readTargetDeck()

Component

getComponentCode()
loadRawRecords()
ok()
void
writeASCII(ostream
&os)
void
writeBinary(FILE
♦stream)

Model

SetDropList()
LoadRawTargetData()
SetNARMList()

Utility

fatalErrorQ

1 .. N

Fortran Input

FortranInput()
readCharString()
readDouble()
readlnt()
readRawComponentRecord()

Primitive
(abstract class)

int typeCodes;

int ok()
int setComponentCodeO = 0
int setSequenceNo() = 0
void writeASCU(ostream &os)
void \vriteBinary(FILE
*stream)

(see next page)

68

A

TriangleVerlex

PrimitiveRecord rec:

TriangleVertex()
int gelComponentCode()
int getSequenceNo()
int ok()
void writeASCII(ostream &os)
void \vriteBinary(FILE *stream)

PrimitiveRecord

double x;
double y;
double z;
int descriptionCode;
int componentCode;
int sequenceNo;

PrimitiveRecord()
\vriteASCH(ostream &os)
writeBinary(FILE *stream)

Prism

double originp];
double disp[3] [3];
int descriptionCode;
int componentCode;
int lowSeqNo;
int highSeqNo;

Prism()
void asTriangles()
int getComponentCode()
int getLowSequenceNo()
int getHighSequenceNo()
int ok()
int nPatterns()
const double * Pattern VectorsQ
void writeAscii()
void writeBinary(FILE *stream)

Box

Box()
int ok()
int nPatterns()
patternVectors()

Wedge

Wedge()
int ok()
int nPatterns()
patternVectorsQ

Donut

