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GaN-based Violet-blue Laser Diodes 

S. Hashimoto, H. Nakajima, K. Yanashima, T. Asatsuma, T. Yamaguchi, H. Yoshida, 
M. Ozawa, K. Funato, S. Tomiya*, T. Miyajima, T. Kobayashi, S. Uchida**, and M. Ikeda" 

Semiconductor Laser Division, Semiconductor Company, 
Sony Corporation Core Technology & Network Company 

2-1-1 Shinsakuragaoka, Hodogaya-ku, Yokohama, 240-0036, Japan 
'Environment & Analysis Technology Development, Technical Support Center, Sony Corporation 

2-1-1 Shinsakuragaoka, Hodogaya-ku, Yokohama, 240-0036, Japan 
"Development Center, Sony Shiroishi Semiconductor Incorporation 

3-53-2 Shiratori, Shiroishi, Miyagi-ken, 989-0734, Japan 

ABSTRACT 

High power GaN-based laser diodes (LDs) are very desirable for various applications such as optical storage systems. We 
have obtained GaN films of low dislocation density using epitaxial lateral overgrowth (ELO) technique and the raised- 
pressure metalorganic chemical vapor deposition (RP-MOCVD) technique. Dislocation density of the improved GaN is 
about lO'cm"2. Optimized GaN-based LDs fabricated on the improved GaN films have operated up to 35mW without any 
kink. The lifetime is more than 500 hours with a constant power of 20 mW at 25 °C under continuous wave (CW) conditions. 
Furthermore, we have introduced buried-ridge laser diode structure in order to control the optical transverse mode. The 
features of the far field patterns (FFPs) of LDs with AlGaN burying layers indicate their controllability. 

Keywords: GaN, LD, optical storage, ELO, MOCVD, buried-ridge, lifetime 

1. INTRODUCTION 

The violet-blue laser diode is a key device for the next generation of optical storage disc systems. High-power GaN-based 
violet-blue LDs are very desirable for various applications. Successful operation of GaN-based LDs has been reported by 
several groups0"9'. Recently there has been great progress in crystal growth of GaN-related materials. Using the epitaxial 
lateral overgrowth technique1"'1", GaN of lower dislocation density has been obtained. Progress in GaN-based LDs has 
realized a lifetime of over 10,000 hours'2'. For future applications, better controllability of optical-mode properties of GaN- 
based LDs is necessary. 

Here we first discuss the importance of reducing of input power and the dislocation density in order to improve the 
reliabilities of GaN-based LDs. The optimized superlattice (SL) cladding structures of p-type layers and the Pd/Pt/Au 
electrode of p-type ohmic metal has made the operation more reliable. Next, we report that the introduction of the buried- 
ridge structure to GaN-based LDs makes it easier to control optical transverse mode of GaN-based LDs. 

2. EXPERIMENTAL 

We have grown GaN by RP-MOCVD using a higher pressure than a conventional growth pressure. First, a 2-p,m-thick n- 
GaN layer was grown on a c-plane sapphire substrate using a buffer layer grown at 510 °C. The growth pressure was raised 
from 1 atm up to 1.6 atm. Trimethylgallium and ammonia was used as gallium and nitrogen source. The nominal growth 
conditions of growth temperature, V-III ratio and growth rate were 1050 °C, 7500 and 3 jim/h, respectively. Then 2(xm n- 
GaN was periodically etched using reactive ion etching (RIE). ELO of n-GaN was carried out at 1 atm using the patterned 
GaN as the seed layer13'. We fabricated laser structures on this re-grown Si-doped GaN layer. 

Figure 1 shows schematic structure of the GaN-based LDs. A 1.0-mm-thick n-AlGaN cladding layer was grown on re- 
grown GaN substrates, followed by a 0.1-um-thick n-GaN optical guiding layer, GalnN multiple quantum well activating 

Laser Optics 2000: Semiconductor Lasers and Optical Communication, Serguei A. Gurevich, 
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layers consisting of 3 pairs of GalnN well layers and GalnN barrier layers, a 20-nm-thick p-AlGaN layer to minimize 
electron overflow, a 0.1-fim-thick p-GaN optical guiding layer, 0.5-umi-thick modulation-doped AlGaN/GaN superlative 
cladding p-layers and a 0.1-u.m-thick p-GaN contact layer. The modulation-doped superlattice cladding layers consisted of 
100 pairs of 2.5-nm-thick undoped AlGaN layers and 2.5-nm-thick p-GaN layers. 2.0 to 3.5-um-width ridge stripes and the 
n-type electrode structures were formed using R1E. The ridge stripes were aligned just above the lateral re-grown n-GaN 
regions to prevent coalescent regions of lateral growth. The ohmic metals were Pd/Pt/Au or Ni/Pt/Au for p-type contacts 
and Ti/Pt/Au for n-type contacts. 

When we introduced buried-ridgc structures, the ridge stripes were buried by AlGaN before forming n-type electrode 
structures as shown in Fig. 2. The burying growth was carried out using a patterned Si02 mask at a lower growth 
temperature than 700 °C. In order to stabilize the optical transverse mode, the lateral index step (An), the difference in 
effective refractive index between the inside and outside of the lasing area, plays an important role. The Al contents of the 
burying layer were varied from x = 15% to 40% to control the refractive index of the AlGaN burying layer. The relatively 
low-temperature growth of AlGaN was not selective growth, and therefore etching to expose the p-GaN contact layer was 

required  '. ...,-,-.    j 
The cavity mirror was fabricated by cleaving after the thickness of the LD wafers with ridge stripes or buried ridges was 

reduced to about 100 urn. The length of the cavities was from 500 urn to 700 urn. The rear facet was coated with high- 
reflection film of 96% reflectivity and the front facet was coated with anti-reflection films of 10% reflectivity. 

In order to evaluate the optical quality, the threshold power density of stimulated emission from Si-doped GaN films by 
optical pumping was measured15). Optical pumping was carried out using a 337-nm N2 laser whose pulse width was 6ns. 

3.   RESULTS AND DISCUSSION 

Figure 3 shows the growth pressure dependence of the threshold power density of stimulated emission from Si-doped 
GaN GaN films grown under the growth pressure of 1.6 atm have much lower threshold power density than those grown 
under the conventional growth pressure of 1 atm. This result agrees with the tendency in the etch-pit densities of GaN films 
to be lower with higher pressure9'. These results suggest that the optical properties of GaN films can be improved by using 
RP-MOCVD Using these improved GaN-films, ELO was performed in order to obtain GaN film regions with reduced 
threading dislocation density. While there are threading dislocations of about 10 W in the seed regions, the lateral over- 
growth regions have no more than a lOW1 dislocation density (Fig. 4). These two techniques proved very effective in 
reducing the dislocation density of GaN grown on sapphire substrates. As for the effect of ELO, the cleaving facets of ELO- 
regrown GaN films were much better than that on sapphire. In fact, the slope efficiency of LDs on ELO-regrown GaN was 
20% higher than those on sapphire. This means that the cleaving of GaN films is severely inhibited by the difficulty in 
cleaving sapphire substrates. Removing the sapphire substrates from GaN films could make the cleaved facets of GaN- 

based LDs much better. ... ,  ,    T „   t     . 
GaN-based LD structures were fabricated on the improved GaN films. Through optimizations of the LD structure, we 

succeeded in reducing the input power16). Introducing SL cladding structures as p-type layers and a Pd/Pt/Au electrode as a 
p-type ohmic metal realized an operating voltage of 2 V at the output power of 30 mW, which required for the next 
generation of optical storage systems. The threshold current depends strongly on the stripe width (w), and the remaining 
etching depth (d), as defined in Fig. 5. Figure 6 shows typical light output power versus current (L-I) and voltage versus 
current (V-I) characteristics of a ridge-stripe laser with a 600-um cavity operated under CW condition at 20 °C. The 
threshold current was 61.2 mA. which corresponds to a threshold current density of 3.4 kA/cnr, and the threshold was 5.38 
V This typical LD was operated up to 35 mW without any kink, and the slope efficiency was 0.85 W/A. As shown in Fig. 7, 
the single-peak emission at 10-mW output power was observed. The FFP of this typical LD at an output power of 10 mW is 
shown in Fig. 8. Full-width-at-half-maximum (FWHM) angles parallel and perpendicular to the junction plane were 8.0 ° 
and ?7 0 ° respectively. These properties of the emission are appropriate for an application to optical storage systems. 

As" regard reliability, the results of an aging test of a 500-um-cavity LD grown on a ELO GaN film at 25 °C under CW 
conditions is shown in Fig. 9. The output power was maintained at 20 mW automatically through the experiment. The 20- 
mW emission was also obtained after 500 hours of operation. Figure 10 shows the relation between the dislocation density 
and the input power and lifetime. We confirmed that lower dislocation density leads to more reliable operation. Furthermore, 
we found that lifetime is strongly dependent on input power. Our optimization of the LD structure raises the reliability of 
operation at a high power of 30 mW. To achieve longer lifetime, it is important to reduce not only the dislocation density 
but also the input power at the operating voltage. 

Proc. SPIE Vol. 4354 



In the above work, both sides of the ridge stripe are covered by an insulator or metal layers. Because of this, the lateral 
index step (An) can be controlled by varying the remaining etching depth. As we have noted above, the remaining etching 
depth also strongly affects the threshold current. In order to tune An value independently from other LD properties, 
introducing the AlGaN burying process is one solution. Figure 11 shows the dependence of the threshold current on the Al 
contents of AlGaN burying layer. The threshold current of buried-ridge LDs decreases with increasing Al contents. 
Considering that the refractive index value of AlGaN is supposed to decrease with increasing the Al content, Fig. 11 reveals 
that the threshold current became lower with An increasing. Effective optical confinement with sufficient An must lead to 
lowering the threshold current, with less optical loss in the waveguide. The FWHM emission angles parallel to the junction 
plane (6//) also reflect the confinement. Figure 12 shows that the dependence of 8// on the Al contents changes significantly 
at the Al content of 30%. With lower Al contents, the properties of the gain-guided structure are dominant due to 
insufficient An. As the Al content becomes higher, the properties of the index-guided structure become more prominent. 
With the Al(,4Ga06N burying layer, 8,/ of the emission shows that an index-guided LD was obtained17'. This tendency also 
agrees with the results shown in Fig. 11. Comparing the experimental results with calculated 6,/ at different stripe widths, 
the values of An at the Al content of 30% and 40% are estimated as 0.007 and 0.010, respectively (Fig. 13). The 
experimental results at the Al contents of 15% are plotted far from the calculated lines. This indicates that buried-ridge LDs 
with Al(, i5Gaa8sN burying layers have gain-guiding characteristics. The optical transverse mode of GaN-based LDs is 
controllable when AlGaN buried-ridge structures are introduced. 

4.   CONCLUSION 

We have grown GaN films of low dislocation density using RP-MOCVD and the ELO technique. GaN-based LD with an 
optimized structure grown on the improved GaN has been operated up to 35 mW without any kink. Through the 
optimization of the LD structure, we found the importance not only of a low dislocation density but also the low input 
power at the operating voltage for the reliable operation. Furthermore, we have introduced AlGaN burying process to the 
fabrication of GaN-based LDs. AlGaN buried-ridge structures are effective for controlling the optical transverse mode. 
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ABSTRACT 
The optical confinement and related issues are considered of novel semiconductor laser structures based on 
Ill-group nitrides. The approach of normal modes is used in an analysis of the InGaN-based laser diode 
that is actually a set of coupled waveguides. Laser emission mode is found to be subjected to internal mode 
coupling. When phase velocities are close in coupled modes, the interaction is resonantly strong, and 
produces a significant modification of both the spatial mode configuration and laser threshold. Particularly, 
the modal gain can be quenched totally keeping the material gain at high level. Therefore such resonance is 
an important issue in the nitride-based laser designing. Also, the modeling of nitride-based VCSEL is 
performed using an effective frequency method and laser operation is simulated numerically. The thermal 
lens effect is shown to be important in the mode formation. 

Key words: Semiconductor lasers, nitrides, optical confinement, internal mode coupling, VCSEL 

modeling. 

1. INTRODUCTION 
The Ill-group nitride-based semiconductor structures are active materials for laser diodes in visible 

and UV wavelength ranses [1-3]. The laser science is quite matured now to propose numerical models and 
comprehensive numerical simulation of these lasers. It allows engineers to perform effectively the laser 
design optimization, including those types that are not yet practically realized, like nitride-based 
electrically-pumped vertical-cavity surface-emitting lasers (VCSELs). In comparison with more traditional 
semiconductor laser materials (GaAs, InGaAs), nitride-based structures have following features: 
1) they cover important short-wavelength range, including UV (practically, the range is 380-450 nm); 
2) they are chemical inert and mechanically robust. This seems to be useful to provide reliability of the 
laser devices. The chemical stability is important especially because of short-wave emission producing 
active species in the environment that can attack the laser diode surfaces; 
3) there is a rather low structural quality of material grown on heterogeneous substrates: the threading 
dislocation density of 108-1010 cm2 in ordinary structures on sapphire and <106 cm'2 in special epitaxial 
lateral overgrowth structures (ELOG, see below). Such a high defect content does not prevent efficient 
light emission from these materials; ELOG structures are shown to be more reliable [2]; 
4) there is a larger lattice mismatch in working heterojunctions AlGaN/GaN and InGaN/GaN. For a 
comparison, there are lattice parameter difference of -2.5% between A1N and GaN whereas it is only 
0 14% between the AlAs and GaAs. The misfit is resulted in dislocation networks, threading dislocations 
and residual stress in epitaxial layers. Typically the mismatched layers are grown rather thin to avoid 
micro-cracks and layer separation. Additional compensating layers are included sometimes m the structure 

for the same goal; 
5) the operation current in these laser structures is typically higher than in more traditional laser diodes (the 
threshold is in a range of 4-10 kA/cm2 at room temperature), and the specific resistivity of materials is 
higher that in GaAs-based structures. This results in a higher heat generation under the laser operation. So 
the temperature sensitivity of the structure is of crucial importance. 
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6) Due to shorter wavelength the light scattering is more prominent in nitride-based lasers. The scattering 
occurs on geometrical imperfections and on structural defects in the active region. Therefore the 
requirements on the geometrical parameters and interface flatness are more rigid. 

Typically, these structures include InGaN active region, namely single- or multi-quantum well, barrier 
layers of InGaN or GaN between active layers if any, some waveguide and cladding layers of GaN and 
AlGaN. Also GaN cap layer is provided at the top of the structure to reduce the diode resistance. The 
structure is grown on heterogeneous substrates (sapphire, silicon carbide) with some nitride 
buffer/substrate intermediate layers (typically, the 30-nm thick buffer layer of GaN immediately on the 
sapphire surface + 2-4-jim thick GaN layer). The total thickness of the nitride buffer/substrate layer is 
chosen to maintain optimized quality of the GaN surface that serves as a substrate for the multilayer laser 
structure. The ELOG technique is elaborated [4] to eliminate a majority of threading dislocations and to 
increase the thickness of the nitride buffer/substrate up to tens or even hundred micrometers. It is based on 
a possibility to restrict the heritage of large amount of threading dislocations that generated at the 
mismatched interface by an introducing the insulator mask. The mask allows the single crystal growth 
whereas the dislocations can enter above only through the windows in a mask. Thus some parts of the 
overgrown layer appear to be almost free from inherited dislocations. 

One of important issues of the laser design is the waveguiding optics in the multilayer epitaxial structures 
of both versions of diodes, namely, edge-emitting ones and vertical-cavity ones. The guiding is provided in 
edge-emitting lasers by the index steps at heterojunction interfaces (index-guiding). In vertical-cavity 
device, the heterojunction interfaces are normal to the optical flux and guiding is provided by profile of 
gain and absorption (gain-guiding). In this paper we consider the optical modeling of InGaN-based laser 
structures and analyze the optical confinement and resonant effects of internal mode coupling [5,6]. The 
effective index of coupled modes and modal gain is calculated in dependence of the size parameters of 
waveguides and of optical barriers (AlGaN cladding layers). It is found that the internal mode coupling can 
modify mode configuration and, if resonance occurs, it can depress substantially the modal gain and even 
stop laser action at all. These data are important for the laser designing as they give rules to control 

resonance behavior. 

2. REFRACTIVE INDEX 
The optical confinement in nitride-based structures is provided by a strong dispersion of the refractive 
index in vicinity of the intrinsic absorption edge. The refractive index of GaN is used from Sellmeier 
approximation of experimental data given in Ref. [7]: 

n2(X) = A+B/[l-(OX)2], (1) 

with fitting parameters A = 4.37; B = 1.0; C = 0.3 urn (the normal dispersion branch below the absorption 
edge was fitted between 370 and 600 ran). We also calculated the group index which is important for the 
interpretation of longitudinal mode spectrum: 

n*(X) = n + BI(nS), (2) 

where S = (XQ - (OX). Results are shown in Fig. 1. Calculations for AlGaN are made using data for 
Al0 ,Ga0,As in the same Ref. [7] with linear interpolation of Sellmeier parameters. There are several other 
publications on refractive index of GaN and AlGaN [8-10], but no direct measurements are found for 
InGaN. We assume that the InGaN alloy of the active region at the laser wavelength 400 nm is 
characterized the same index as GaN at its laser wavelength of -370 nm. We understand, that the index 
dispersion curve in narrower-bandgap InGaN is shifted as compared with one of GaN into longer 
wavelength side. On the other hand, the spectral operation point of the laser is placed at about the same 
distance from the index peak in both materials. The peak (as it is seen in Fig.l, by experimental points) is 
explained by Kramers-Kroenig dispersion relationship in a vicinity of the sharp intrinsic absorption edge. 
The index dispersion changes a sign somewhat above the edge. Usually the laser operates also above the 
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edge and rather close to this peak but at the normal dispersion edge (dn/dk < 0). This is typical for GaAs 
and other materials where group index is regularly larger than phase one, n* = n - Xdn/dX > n. The group 
index rules the longitudinal intermode spacing, 8X = X2/(2n*L), where L is the cavity length. In InGaN- 
based laser diode, according to Ref. [11] the intermode spacing of 0.042 nm in the 550-pm long cavity at 
wavelength of 405 nm corresponds to n* = 3.6. Such a value in bulk GaN is expected at X = 365 nm where 
the phase index is -2.75 (see Fig. 1). This wavelength is corresponding very closely to the energy bandgap 
of GaN (3.39 eV at room temperature), therefore, these parameters could be characteristic for laser action 
in GaN. When InGaN is used, the spectral point is shifted into longer wavelength, but using analogue to 
GaN one can expect the optical parameters of InGaN at this point rather close to that in GaN. This gives a 
reasonable estimation for parameters of InGaN active region at the laser wavelength (n = 2.75, n* = 3.6 

near X = 400 nm), certainly, for small amount (<20%) of indium in the alloy. 
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Fig. 1. Refractive index of GaN: circles 
are for experimental data [7] that are 
fitted by solid curve according to the 
Sellmeier approximation (1); dotted 
curve is for calculated group index (2). 
The group index at 365 nm is about 3.6 
which is -31% larger than phase index. 
The group index in InGaN-based laser 
diode is -3.6 from experimental study 
of longitudinal mode spacing [11]. 
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In general, the refractive index of InGaN quantum well material is different from the bulk value. 
Particularly, in stressed quantum well, the intrinsic absorption edge is substantially splitted by the stress 
giving a rise for three peaks of the index (due to three valence bands involved), and the individual 
magnitude is lowered by this splitting as compared to the bulk material. Theoretical calculation are 
performed in Ref. [12]. 

An important issue is a sensitivity of the refractive index to temperature Fand carrier density N. Both these 
factors are involved in the operation regime because of some thermal lens effect and strong optical 
nonlinearity effects (including the line broadening). The temperature coefficient is reported in GaN to be 
{\ln)dn/dT= 3.81X10"5 K"1 (see [13] and references there). Carrier density effect is known in terms of the 
linewidth enhancement factor a = (dReefdN)/(dIim/dN) where e is the relative dielectric constant. 
Theoretical calculations of a in bulk GaN are given in Ref. [14]. The results have been obtained using the 
model accounting for the Coulomb interaction of carriers. At room temperature, it is found the a factor in 
the range of 1.7-1.9 in the spectral peak of the gain and in the range of TV between 10I9and 1.4xl0'9 cm'3. 
This means relatively weak anti-guiding effect caused by free carriers in the active region of the lasers. An 
estimation can be given for dn/dN = 2.4X10'20 cm3. We see that reliable data on optical characteristics is 
available for GaN, but not for InGaN, and one has to get them by extrapolation from GaN to InGaN. The 
extrapolation is acceptable for small amount of indium in the alloy. A difficulty to measure the refractive 
index in InGaN is associated with a fact that InGaN exists only in thin layers and typically contains many 
defects and substantial deviations from composition homogeneity. The alloy is known to be subjected to 
the phase separation, therefore the composition homogeneity is not an easy problem. Therefore real InGaN 
samples are thin and ultra-thin layers with strong misfit stress (partially relaxed by dislocation formation) 
and with composition variations (depending on the thermal history of each sample). 
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3. OPTICAL CONFINEMENT 

Interface between InGaN active layer and GaN (both bulk material) can provide an estimated refractive 
index step of-0.17 at the laser wavelength of 400 nm. This means that the double-heterostructure can be 
made in this basis (with no adding aluminum containing layers). The first order cutoff thickness for 
corresponding InGaN layer should be -200 nm. Actually the InGaN-based laser structure are consisted 
with a single- or multi-wuantum-well active region whereas the waveguide region is formed by transparent 
GaN layers sandwiched between AlGaN claddings. For an design orientation, the cutoff thickness for 
AlGaN/GaN/AlGaN waveguide is expected to be -230 nm at 400 nm - wavelength and at aluminum 
content of-10%. Therefore 100-nm thick GaN waveguiding layers at both sides of the active region are 
suitable for a single-mode index-guiding in the vertical plane. The typical laser structure is presented in 
Table 1 and optical parameters have been assumed in our calculation of the optical confinement factor in 
dependence on various size parameters of the laser structure. 

Table 1. Assumed optical parameters of materials consisting the InGaN-based laser diode structure; n is 
real refractive index, k is extinction coefficient [6]. 

Material « k Thickness, nm Comments 

Au 1.5 1.7 oo Electrode material: data at 400 nm 

/?-GaN 2.55 0.000032 100-2000 /7-cap 

/>-Al007Ga09,N 2.50 0.000032 300-800 ^-cladding (optical barrier) 

/?-GaN 2.55 0.000032 100 ^-waveguide 

4xIn015Ga085N + 
3xInoo:Ga098N 

2.75 
2.63 

-0.0032 
0.000032 

4x3.5 
3x7 

MQW active region: gmat = 1000 cm"1 

barriers between active wells 

«-GaN 2.55 0.000032 100 «-waveguide — 
«-Al007Ga093N 2.50 0.000032 300-800 «-cladding (optical barrier) 

«-GaN 2.55 0.000032 100-4000 «-substrate 

a-AlA 1.77 0 oo sapphire substrate 

We assume the active region contains 4 quantum-well layers of In0,5Ga085N, providing a gain for the laser 
action at 400 nm. Active quantum wells are separated by IrwGao^N layers by 7 nm each. These seven 
layers with «- and p-waveguide layers of GaN forms 235-nm thick active waveguide (see Fig. 2). 
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Fig. 2. Profile of refractive 
index across the typical edge- 
emitting InGaN-AlGaN-GaN 
diode laser grown on the 
sapphire substrate (left end). 
Material of the metal 
electrode is Au (right end). 
AlGaN cladding layers at both 
sides of the active region 
provide optical barriers for 
photons. GaN buffer/substrate 
layer and GaN cap layer are 
both the parasitic waveguides 
for photons tunneling through 
the optical barriers. 
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4. RESONANT PHENOMENA AND GHOST MODE CONCEPT 

The nitride materials are formed as a multi-layer films on the sapphire or other heterogeneous substrate. 
The optical isolation between structure layers and between nitride film and substrate is usually not perfect, 

4> 
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Fig. 3. Dispersion curves of two 
normal modes near the resonant point. 
Dependence of the effective index on 
the thickness of the GaN cap layer is 
shown. The anti-crossing occurs at 
the synchronism point, and mode 1 is 
substituted by mode 2 as a dominant 
mode for the laser emission. 
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Fig. 4. Dependence of the modal gain 
on the GaN cap layer thickness of the 
same normal modes as shown in Fig. 
3. Mode 1 is substituted by mode 2 
after the resonant point, and model 
gain of -60 cm"1 is sufficient to 
maintain the laser oscillations in mode 
1 before the resonance and in mode 2 
after the resonance. However at very 
resonance the modal gain drops down 
to about zero. Therefore, no laser 
oscillation is expected under resonant 
conditions. 

particularly due to small thickness of confining layers. As a result, the laser emission penetrates into layers 
outside the active region and into substrate. It can be accumulated in guiding layers of the diode chip and 
reflected by remote surfaces, particularly, by the bottom surface of the substrate. An important property of 
the chip structure is the transparency of all layers for the laser emission. This property is the same as in 
InGaAs QW lasers grown at GaAs substrate. In Ref. [5], the model of coupled waveguides (active and 
passive) was developed and applied to InGaAs lasers. There are transparent dielectric waveguides for laser 
emission ("parasitic" waveguides: cap layer, stop-etch layers, substrate). Each waveguide contains a system 
of modes ("ghost" modes) which generally are rather different from excited mode (or modes) of active 
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region ("active mode"). However, ghost modes can interact with active mode and can consume energy 
from active mode. Such an interaction was called mode internal coupling [5]. The essence is that there are 
passive waveduides in the diode chip with own systems of guided (ghost) modes, which can interact with 
the mode of laser emission. The chip of these laser diodes is almost entirely transparent to the emission of 
InGaAs active region. The internal mode coupling is shown to modify the spatial profile of the emitted 
mode (including modification of near- and far-field patterns), to modify the spectral distribution 
(producing some spectral waving in the intensity of superluminescent modes), and to modify the modal 
gam even"to prevent laser action at all. Similar situation is in InGaN/AlGaN laser diodes where laser 
emission easily penetrates into all layers of the chip due to diffraction and scattering. It can be 
accumulated in the layers having guiding properties (GaN cap layer, etch-stop layers, GaN substrate, some 
auxiliary layers introduced to stabilize the epitaxial structure). The approach of normal modes of coupled 
waveguides (see, for example, [6]) allow us to understand the complex behavior of these modes which 
includes very strong effects at resonant conditions (see Figs. 3-5). Also, in spectral studies of blue laser 
diodes [1,15], it was found the waving in superluminescent spectrum resembling that in InGaAs lasers. It 
seems, the concept of ghost mode will be of practical importance in InGaN-based lasers. In the modeling of 
the waveguiding properties of InGaN-based lasers, it was noticed some resonant-like penetration of laser 
mode into passive regions [16]. Also in Ref. [17], it was also noticed that there are some resonant peaks of 
losses and minima of confinement factor in the laser emission mode along with variation of the parameters 
of the active waveguide region. These phenomena are of the same nature as above mentioned. 

Fig. 5. Modal gain of two 
normal modes in vicinity of 
the substitution point against 
the cap layer thickness. Three 
different values of the 
cladding layer thickness are 
assumed in calculations as 
shown (curves 1-3). The 
normal mode substitution 
occurs at cap layer thickness 
of 724 nm. A deep minimum 
of the modal gain leads to 
stopping of laser action when 
the cladding thickness is 400 
or 500 nm. Increase of the 
cladding thickness leads to 
narrowing and reducing of 
the gain dip. 
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There are a few reports on spatial distribution of the emission from InGaN-based laser diodes [18-20] and a 
complex character of the light directionality has been indicated. The coupled mode emission seems to be 
involved with a some portion of power coming from passive GaN parts. 

We can formulate our results as rules that is suitable to remember when the system under consideration is 
coupled waveguides. We associate these conclusions with the modal behavior along with an increase of the 
thickness d of parasitic waveguide. 

1) The effective index of normal modes nc{^d) follows almost the same curves as those of uncoupled 
modes except regions near crossing points: instead of crossing the anti-crossing occurs. As a result, there 
are no spatial mode degeneracy even if both uncoupled mode have the same phase velocity. 
2) According to anti-crossing behavior, mode of the active region {laser mode) is not a single normal 
mode, but it corresponds to different normal modes. Thus the "mode of laser emission" is actually one of a 
set of normal modes: they substitute each other and this occurs at every anti-crossing point. 
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3) Out of the anti-crossing vicinity, the modal profile of normal mode is close to the corresponding 
uncoupled mode, but it contains certain additional bumps at tails coming to other waveguide layers. In 
terms of supermodes, there are in-phase or anti-phase combinations of main mode and modes of parasitic 
waveguides. In-phase combination means that nearest bumps of partial (uncoupled) modes are of the same 
sign; anti-phase combination means opposite signs with a field node between. 
4) As an most important case, the laser mode contains in-phase components at wings corresponding to 
uncoupled modes with larger effective index and anti-phase components corresponding to uncoupled 
modes with smaller effective index. 
5) When phase velocities of uncoupled modes coincide, the resonant coupling takes place with a power 
flow shared between interacting components evenly. In such a case, the modal gain in both normal modes 
can be substantially depressed. 

5. VCSEL MODELING: GAIN BALANCE 
The vertical-cavity surface-emitting laser (VCSEL) is another important version of the diode lasers that is 
under intense researches as applied to nitride-based structures. There is report on optically-pumped 
vertical-cavity AlGaN/GaN/InGaN structure with Bragg reflectors [21], but not yet data on corresponding 
electrically-pumped nitride-based VCSEL. Usual problem of VCSEL design is to supply sufficient modal 
nain in the vertical direction that is much lower than that in horizontal direction of edge-emitting devices. 
This leads to a necessity to provide higher quality factor of the vertical cavity, usually using high- 
reflectivity Bragg reflectors. The active region in above-mentioned Ref. [21] has been consisted by 26 
InGaN quantum wells 3-nm thick each. There the spectral narrowing has been demonstrated to -0.1 nm at 
wavelength of 399 nm. In previous papers claiming observation of vertical-cavity lasing under optical 
pumping the results are less convincing for quantitative analysis. The issue is that there is an intense 
superluminescence along the active layer under strong pumping. It can be observed in the surface-emitted 
beam due to optical scattering in the active region. Sometimes such a scattering is produced by microcracks 
that can provide simultaneously some cavities for in-plane lasing. However, in a short-wavelength 
structures the geometrical irregularities of the in-plane waveguide can give a rise for a stronger scattering 
than one in more traditinal GaAs-based lasers. So even in absence of microcracks, the in-plane lasing 
would be seen in the surface-emitting geometry as a result of light scattering. Thus, in some publications 
the claimed surface-emitting lasing could be simply a result of scattering by non-flat interfaces of the in- 
plane superluminescence or in-plane lasing. In Ref. [22], a spectral narrowing is observed (to about 25 
meV at 16 K) of surface-emitted radiation with an estimate of the gain in InGaN of ~2xl05 cm"'. The gain 
seems to be overestimated as available gain in InGaN under pumping of 1 MW/cm2 is typically by 2-3 
orders lower. The overestimation follows from the assumption that the lasing threshold condition is 
fulfilled for a 150-nm thick InGaN active region of the vertical cavity. There are rather low reflectivity at 
both ends of supposed vertical cavity, namely 2.4% at the GaN/sapphire interface and 17% at the GaN/air 
interface. So the £>-factor seems to be much lower than in Bragg-reflector confined cavity in Ref. [21] 
where the reflectivity is at the level of 98 and 99.8% at the cavity ends, respectively. The narrowing 
observed in Ref. [22] do not indicate unambiguously the laser action: spectral bandwidth is more than the 
thermal energy k T. It can be, but not necessarily, the result of in-plane superluminescence that reaches the 
vertically-oriented photodetector by scattering under -90°. If one assume the gain in the active region as 
large as ~2xl05 cnV1 and the optical confinement factor of -0.1 for horizontal propagation in 150-nm thick 
active waveguide, the single-pass gain of the amplified spontaneous emission (ASE) along the illuminated 
spot (400-|am wide) would be exp(800) = 10347. Obviously, this huge gain would be undergone to strong 
saturation, so actual material gain should be much less than assumed value. The realistic magnitude is 
about (2-5)xl03 cm1, that gives in-plane single-pass amplification of >103. This material gain is not enough 
for vertical cavity lasing, but it provides in-plane ASE that is >1000 times stronger than vertical ASE. So 
scattered 0.1% of the in-plane ASE would be comparable with the direct vertical emission. The 
achievement of the vertical cavity lasing seems to be not easy task and requires rather high cavity-end 
reflectivity. According to Ref. [21], 98%-reflectivity is achievable with 43 pairs of quarter-lambda layers 
(each pair includes 38-nm thick GaN and 40-nm thick Al034Ga066N). Such a structure is placed on the 
buffer/substrate side and at top of the laser structure, the dielectric Bragg reflector is placed, namely 15- 
pair Si02/ZrO, structure providing reflectivity of 99.8% at 400 nm wavelength. 
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For the 1-um long vertical cavity with 78-nm total thickness of active region and geometric-mean 
reflectivity >98.5% (we assume internal attenuation coefficient of 10 cm'1) a sufficient material gain is ~ 
2xl03 cm'1 that seems to be quite realistic. The material gain as estimated in Ref. [21] is 890 cm"1 at room 
temperature. An estimated pumping rate (optical power absorbed in the active region) was about 250 
kW/cnr at wavelength of 367 run, and it corresponds to the injection current of 74 kA/cm2 in short pulses. 

6. VCSEL MODELING: 3-D NUMERICAL SIMULATOR 
We developed a computer program solving a 3-D boundary problem for following coupled systems: 
electrical system (electrical potential and vector of current density over whole semiconductor chip), 
electronic system (generation, diffusion and recombination of excess carriers in the actirve region), thermal 
system (temperature distribution and profiles of temperature sensitive refractive index over whole mode 
volume), optical system (distribution of electromagnetic field across the cavity according to light 
amplification, absorption and diffraction over whole vertical cavity). Some details of the numerical 
simulation are given in Refs. [23]. For this particular case of the nitride-based VCSEL modeling we use the 
cylindrical geometry with dielectric aperture of the current window. Because of the poor conductivity in 
Bragg reflectors, the inrra-cavity contacted version of the VCSEL is treated (see Fig. 6). The optical output 
is designed through the bottom of the structure (through the sapphire substrate), and the bottom of the 
sapphire substrate is assumed to be maintained at constant (room) temperature. The temperature 
dependencies are included for resistivity in all conducting layers, for optical bandgap, refractive index, heat 
conductivity, recombination coefficients and material gain. The optical model is based on the effective 
frequency method (EFM) [24] combined with the rate equations in the active region. The model of the 
optical gain is also developed for InGaN taking into account the band tails. The EFM is extended for the 
realistic situation of optical cavity parameters continuously dependent on the radius. The requirement of 
the EFM applicability is the change of parameters in the radial direction should be slow. On this basis, we 
include in the consideration following features: continuous radial dependence of the gain/absorption in 
active plane according to the distribution of excess carriers, continuous profile of refractive index across 
the vertical cavity according to the variation of temperature, presence of ring metal contacts outside the 
cavity aperture, non-uniform profile of the pumping current (strong current crowding at the periphery of 
the cavity aperture), non-uniform temperature-induced detuning of Bragg reflectors, radiation transport in 
the lateral direction, etc. 

GaN buffer 

Fig. 6. Structure of intra-cavity-contact VCSEL diode considered in this paper. A half of cross-section is 
shown of the cylindrically symmetric chip. 

Proc. SPIE Vol. 4354 19 



Combin.ng the optical modeling with electncal and thermal modeling over whole diode chip, and with 
diffusion/recombination model for the active plane, we obtain effective numerical simulator of nitride- 
based VCSEL that seems to be most complicated semiconductor device ever subjected to a comprehensive 
simulation Below we demonstrate particular results of optical modeling for VCSEL with multi-quantum- 
well act.ve region of 10 mm in diameter. The 3- or 4-A. long cavity is placed between Bragg reflectors, one 
(bottom one) composed by 43 pairs AlGaN/GaN layers and another (top one) composed by 7 pairs of 
TiO /SiCX layers The emission comes outside through the bottom Bragg reflector and sapphire substrate 
(see'Fie 6) The cuirent is assumed to be confined by dielectric (oxide) aperture and both electrodes are 
designed at the same side of the substrate. The current does not pass Bragg structures due to the: mtra- 
cavity-contact configuration used. Preliminary optimization of the design allows us to simulate CW laser 
action in the VCSEL and to analyze the influence of different parameters on the laser performance. 

Fig. 7. Radial temperature profiles in 
CW regime of two versions of 
nitride-based VCSEL. Solid line is 
for ring-contact diode that give a rise 
for a strong current crowding at the 
peripheral part of the current 
window (radis of 5 urn). This leads 
to a rise of the temperature peak 
near the edge of window. Dashed 
line is given for circular-contact 
diode. It differs by a metal 
semitransparent layer inserted on top 
surface of diode. The circular 

1 10 contact       remove       the       lateral 
Lateral Distance [urn] temperature peak. 

The lowest lasing threshold is expected at about 12 kA/cm2 and the output power is followed up to a 
thermal roll down at about 25 mW with rather high external efficiency. The predominant mode is a 
fundamental one LPm in the isothermal approach, whereas under CW operation the lasing occurs at LPU 

mode This change of the mode order is a result of the thermal lens effect that provides an enhancement of 
the index guiding whereas a weak initial lateral confinement has been provided by a gain guiding. I he 
temperature profiles in a normalized scale are shown in Fig. 7. Two cases are shown: ring-contact is 
labeled by re, circular contact is labeled cc. 

Fig. 8. Radial profiles of optical 
modes in ring-contact (re) and 
circular-contact (cc) diodes. A 
comparison is given for a 
fundamental mode LP0] that is 
influenced by the thermal lens. In 
pulse regime (isothermal condition) 
there is no thermal lense and mode 
is bell-shaped (quasi- Gaussian), 
whereas in CW regime the profile is 
distorted by the thermal lens: it is 
peaked at the edge of the current 
window in rc-case and narrowed to 
the center in cc-case. 2 4 6 8 

Radial distance [um] 

10 
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The thermal lens formed under CW condition is complicated: it has a temperature (and index) peak at the 
aperture edges in the rc-case, therefore, the central part of the aperture is undergone to thermal anti-guiding 
which acts to suppress the fundamental mode. Its profile can be simulated by special numerical experiment 
with exclusion of the LPn mode. It is seen that the profile of the fundamental mode becomes non- 
Gaussian, with out-of-axis peaks (see Fig. 8). In order to modify the heat sources distribution, we simulated 
an insertion of the semitransparent metal layer on the top of the diode chip (cc-case) to provide more 
uniform current distribution. In this case the cavity losses increases due to absorption in the metal, and the 
lasing threshold increases. However the selection of the fundamental mode is not easy at fixed aperture. If 

the aperture is decreased, the fundamental mode lasing is expected in 4-u.m wide cavity. 

Fig. 9. Radial profile of material gain at 
different diode voltage (ring-contact 
case). Peak of the gain is placed at the 
edge of active region, and it is 
depressed in the center due to a strong 
current crowding. Above the threshold 
(~9 V) the gain profile is distorted due 
to the spatial hole burning. Peak 
continues to grow but in central part 
there is some additional depression of 
gain to maintain almost constant modal 
gein. 

Radial distance [um] 

2 5 

Radial distance [urn] 

10 

Fig. 10. Radial profile of stimulated 
recombination rate (ring-contact 
case). Notice the value changes a sign 
beyond the edge of the current 
window (at radius of 5 urn). Inside the 
active region the rate is positive 
providing generation of photons of 
laser radiation. Outside the active 
region the rate is negative, the 
photons of the laser radiation are 
consumed to generate electron-hole 
pairs. Therefore, the mode of the laser 
oscillation provides certain radiation 
transport in the radial direction. 
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Current crowding in the case of ring-contact configuration leads to nonuniformity of material gain as it is 
seen in Fig. 9. The lasing threshold is about 9 V. It is seen that the gain curve above the threshold goes m 
such a manner that the gain drops down near the center while it continues to grow near the edge. As a 
result a curve for 11 V crosses one for 9 V. This behavior corresponds to a spatial hole burning when a 
overlapping of the gain and mode profiles is not optimal. Obviously, the increase of the gain near the edge 
of the current window makes possible excitation of higher-order modes. Therefore the suppression of the 
current crowding is desirable to get a stable single-mode laser operation. 
In Fit?. 10 wc show the calculated distribution of the stimulated recombination rate at different diode 
voltage. This rate can not be directly measured in lasers, but can be easily obtained in numerical 
simulation. The distribution indicates what parts of the active region gives a contribution into laser 
radiation The rate grows significantly as the pumping rate approaches the laser oscillation threshold. It is 
seen that main contribution goes from peripheral parts of the active region, and there is a depression in the 
center. Also, the election-hole pair generation occurs outside the active region. This is an illustration of the 
fact that vertical optical flow is accompanied with a lateral transport of the pumping power. 

7. DISCUSSION AND CONCLUSIONS 

The optical modeling of the nitride-based lasers is presented for both main laser configuration, edge- and 
surface-emitting ones. A normal mode approach is used for edge-emitting lasers, and most important 
finding is a complicated behavior of the emission mode when the size parameters are changes 
continuously. The laser emission goes by different normal modes that are modes of coupled system of 
waveguiding layers. Typical normal mode evolution along with an increase of the parasitic waveguide 
thickness is as follows. The "dark" mode appears in the parasitic waveguide above its cutoff; it has a small 
bump in the active region. When its propagation constant approaches one of the mode of laser emission, its 
intensity grows by consuming the gain in active region. So the mode becomes "bright" and competitive to 
lasing one. It substitutes the latter and serves as the lasing mode until another ghost mode replaces it. Then 
it goes again into a "dark" state. Substitution occurs in resonance points, and these points are characterized 
by a depression of the modal gain. There are several ways to avoid the resonant gain depression: 1) 
increase of the optical barriers (increase of AlGaN cladding-layer thickness and/or amount of Al in it); 2) 
increase of the effective index of the active mode above index of GaN; 3) choice of not-resonant thickness 
of all parasitic waveguides. Notice, that the resonance can occur due to change of the propagation constant 
of the active mode as a result of the free-carrier effect and temperature effect on the refractive index. This 
would lead to a negative differential gain or even to a stopping of the laser action. The detailed numerical 
modeling allows us to predict resonance behavior and avoid undesirable parameters of the structure. 

In VCSEL devices, we propose a most detailed numerical modeling that allows us to simulate the 
device that is not yet practically realized. The mode pattern and L-I curves are obtained along with 
distributions of all important parameters mapped over whole diode chip. This gives a tool for a prediction 
of behavior of various diode modification under different operation regimes and for an optimization of the 
laser design. A promising version of intra-cavity-contact VCSEL is considered in details. The laser 
threshold of -12 kA/cnr is predicted in a 10-um-in-diameter diode. Further wide scale numerical 

experiments are planned. 
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ABSTRACT 

A simple way to generate wavelength tunable (AX > 50 nm) semiconductor laser pulses with a width (FWHM) of a few 
hundred femtoseconds and a timing jitter well below 1 ps is self-seeding of a gain-switched Fabry-Perot laser diode with 
subsequent chirp compensation and soliton compression. The low timing jitter of the single mode laser pulses allows self- 
seeding to be used e.g. in high temporal resolution electro-optic sampling systems. Additionally, by controlling the electrical 
phase "delay between two self seeded laser diodes femtosecond pulses with electrically adjustable time delay can be 

generated. 

Keywords: self-seeding, wavelength tuning, semiconductor laser pulses, ultra short laser pulses, soliton compression 

1.   INTRODUCTION 
Ultrashort wavelength tunable laser pulses find an increasing range of quite different applications, like measurement 
techniques of ultrafast physical phenomena (e.g. electro-optical sampling), analysis of environmental data, and 
telecommunications A fundamental and at the same time low cost technique to generate wavelength tunable semiconductor 
laser pulses having a width (FWHM) of a few tens of picoseconds is self-seeding (SeSe) of a gain-switched Fabry-Perot 
(FP) laser diode U was first demonstrated by Andersson et al. ' and has been investigated in a number of different 
experimental configurations by several groups :'3'4 . This technique is particularly simple and low-cost. Neither highly 
sophisticated laser structures like, e.g. Tunable Twin Guide (TTG) or multi-section DBR lasers, nor anti-reflection coat.ng 
of the facet, as required for mode-locking, is needed. 

2.    PRINCIPLE OF SELF-SEEDING 
2.1 Experimental Set-up . 
A lot of different experimental self-seeding set-ups have been investigated. In Fig. 1 the commonly used set-up is shown. A 
Fabry-Perot laser diode is gain-switched by short electrical pulses (FWHM 200-400 ps). The laser pulses emitted by the 
diode are coupled into a single mode fiber coupler. Part of the light is wavelength selectively reflected by a grating and feed 
back into the laser diode. If the repetition rate of the electrical pulses equals an integer multiple of the fundamental 
frequency of the external cavity, then the laser switches from multi mode to single mode operation. Typical spectra with and 
without self-seeding are shown in Fig. 2. 
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Fig. 1: The common self-seeding set-up 
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2.2 Numerical Model 
The self-seeding process can be described by the well-known multi-mode rate equations with an additional feedback term, 

dN      I     N      ^ 

q   ts   1=.M 

M 

dt 
(1) 

dS; r ä ßN 
-+P«,,(t) (2) • = rv g.i l - s— > s, is, +J—- — 

Here N denotes the carrier number, Si the photon number of mode i, xs the carrier lifetime, 2M+1 the total number of modes, 
r the mode confinement factor, vg the group velocity, s the gain compression parameter, V the active layer volume, ß the 
spontaneous emission factor, and x,, the photon lifetime. For the input current I normally a gaussian pulse is assumed. The 
optical input term Pn,.i in Equ. 2 is zero for all modes except for the selected one (index k), where 

rAk=K-0.5-amvKS
,
l!0-Tk) (3) 

with S'k the emitted power in the k"' mode of the last pulse, ctm the mirror loss, and K the feedback efficiency. The time 
delay xk is chosen such as to result in a maximum side mode suppression. For the wavelength dependent gain a parabolic 
profile 

[X-*.„+X'(N-N0)] 

2-G„2 g,M = 
A„(N-N0) 

V 
(4) 

is assumed, where A0 is the differential gain, N0 the carrier number for transparency, Xn the peak wavelength, and G0 the 
modal gain factor. A.' accounts for the shift of the gain peak to higher photon energies with increasing carrier concentrations. 
All numerical simulations presented in this paper are based on these set of equations. 

3.   DYNAMICS OF SELF-SEEDING 
After switch-on of the self-seeding, the first pulse generated in such a scheme still shows the broad spectrum peculiar to 
gain-switched FP laser diodes, because it is not yet 'seeded' by a previous pulse. When the first pulse is fed back into the 
laser diode (after spectral filtering), the spectral output power of the next pulse increases in the selected longitudinal mode 
and decreases in the other modes. The accumulation of the spectral power in the selected mode continues until a stable state 
is reached. For a number of applications it is important to know how fast the stable state is reached. In mode locking 
schemes, the most commonly used wavelength tunable pulse generating set-up, stable pulse emission appears after about 
hundreds to thousands of roundtrips5'6, which is far too slow for some applications. In self-seeding set-ups the stable state 
is reached much faster 7. The results of time-resolved measurements of the evolution of the optical spectra during the 
switch-on of the self-seeding set-up are shown in Fig. 3 and Fig. 4. 
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Fig. 3: Evolution of the spectrum during the switch-on of a 
self-seeded FP laser diode 

Fig. 4: Evolution of the sidemode suppression ratio for 
different feedback wavelengths 

As can be seen, for wavelengths near the gain peak of the laser diode (in this case I300nm) the stable state is reached 
within about 5 roundtrips. A side mode suppression ration of more than 10 dB within the first 5 roundtrips can be reached 
within tuning range of about 30 nm. At the outer borders of the more than 40 nm wide tuning range 10 to 15 roundtrips are 
needed until the stable state is reached. These results show the potential of self-seeding for fast wavelength tuning, which 
will be discussed in the next section. 

Proc. SPIE Vol. 4354 25 



4.   FAST WAVELENGTH SWITCHING 
One of the most important advantages of self-seeding is the very simple way the wavelength can be tuned electrically. In a 
completely fiber-optical cavity without any wavelength selective elements a tuning range of 43 nm with a side mode 
suppression ratio better than 20 dB was obtained s. Further improvement of this set-up using a number of discrete fiber 
Bragg gratings " or a chirped fiber Bragg grating l() allows extremely fast wavelength switching with switching times 
between two wavelengths of less than 100 ns. 
The key component in all switching set-ups is a virtual multifold external cavity where different FP modes of the laser diode 
are reflected at different distances from the laser diode, leading to different round trip times for each wavelength. Here the 
distance between the different reflecting parts of the external cavity is the most critical parameter of the system. If the 
distance is too small, parts of both feedback pulses arrive back at the laser diode within the sensitive time window for the 
self-seeding process, and therefore emission in both modes will occur, leading to a decreased competing mode suppression 
ratio (CMSR). Therefore the influence of the grating distance on the competing mode suppression ratio and the switching 
behavior has been investigated ". The used experimental set-up is shown in Fig. 5 and is described in detail in    . 
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Fig. 5: Experimental set-up fast wavelength switching Fig. 6: Gain-switching spectrum of the laser diode with the 
laser modes chosen for the experiments indicated by arrows 

The laser switches to single mode operation defined by the feedback wavelength of one of the gratings, if the repetition 
frequency equals an integer multiple of one of the two feedback frequencies. Otherwise, the laser shows the free running 
multi mode spectrum peculiar to gain-switched FP laser diodes. To switch between the two wavelengths set by the gratings 
one only have to change the repetition frequency of the electrical pulses. 
A spectrum of the pulsed laser diode without feedback is shown in Fig. 6. The arrows indicate the modes which were later 
on selected for the wavelength switching experiments. 
Fi» 7 shows the competing mode suppression ratio (CMSR) between the desired mode and the mode excited by the second 
»ratin« for the 4 modes of Fig. 6. The influence of the second grating increases with decreasing difference between the 
fens-ths of the two cavities. When the spacing between the two gratings is too small it can happen that the laser emits pulses 
with more power in the undesired mode, and the desired mode is more or less suppressed, leading to a negative CMSR. The 
length difference range in which a second strong mode significantly influences the output of a weaker 'preselected one' is 
larger for larser gain differences. But a grating distance of about 10 mm is still large enough to ensure that no influence of 
theÖsecond grating can be seen, even in the worst cases like Fig. 7b. These results are independent of the average cavity 
length because the only significant parameter is the absolute time difference between the two feedback modes arriving back 
at the laser diode, and this"time difference is directly related to the cavity length difference and is independent of the total 
length of the cavity. . 
Fi«*" 8 shows the required roundtrip numbers during the switching process, until 99 % of the maximum power of the selected 
mode is reached. It can be seen that for cavity length differences of more than 10 mm switching occurs within less than 6 
round trips for the center wavelengths. Even for the wavelengths at the border of the gain curve switching takes less than 10 
round trips. For the case that the two modes show a large gain difference (as e.g. in Fig. 8b) the switching in the high gain 
mode occurs faster (4 round trips) than in the lower gain mode (10 round trips). 
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Fig. 9: Set-up for chirp compensation 

PULSE COMPRESSION BY CHIRP COMPENSATION 
The self-seeding set-up is based on gain-switching 
a semiconductor laser diode and thus the generated 
pulses are red chirped. Therefore pulse 
compression by chirp compensation in an optical 
fiber, similar to the well known compression of 
single mode DFB laser pulses, is possible '2. A 
typical experimental set-up for the compression of 
self-seeded laser pulses by chirp compensation is 
shown in Fig. 9. In this example the laser emits at 
1.55 urn and a dispersion compensating fiber 
(DCF) is used for chirp compensation. An example 
for a spectrum of a self-seeded laser pulse is shown 
in Fig. 10, the spectral width is 3.2 nm. The 
autocorrelation trace of the pulses is shown in Fig. 
11. 

polarization 
control 
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Fig. 10: Measured (-) and simulated (- - -)spectrum Fig. 11: Measured (—) and simulated (- - ^autocorrelation 

Usin" the multi mode rate equations, the measured spectrum and autocorrelation trace are fitted by varying the numerical 
value's of the parameters of the laser diode. The numerical calculated spectrum and autocorrelation trace are also shown in 
Fi"  10 and Fi»  11. The temporal width (FWHM) of the pulse is about 45 ps. 
With the information about the amplitude and phase of the optical pulses derived by the fitting procedure one can calculate 
the propagation (and pulse compression due to chirp compensation) of the pulses in a dispersive optical fiber by " 

(5) A(z,T) = FT~ expl-ß2co2zl-FT(A(0,T)) 

where A(0 T) is the complex amplitude of the optical pulse at the fiber position z, FT denotes the Fourier transformation, 
and ß, is the fiber dispersion. The calculated pulse shapes (with and without the additional filter) and the autocorrelation 
traces"aftcr chirp compensation are shown in Fig. 12 and Fig. 13, respectively. It can clearly be seen that the pulse structure 
improves significantly after filtering the pulse. The sub-pulses decrease and the large, slow tail of the pulse nearly vanishes. 
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Fig. 12: Calculated pulse shape traces of the chirp compensated 
self-seeded laser pulses after total fiber dispersion of 
D = -16 ps/nm 

Fig.  13: Calculated ( ) and measured (—) autocorrelation 
traces of the chirp compensated self-seeded laser pulses after 
total fiber dispersion of D = -16 ps/nm 

The pulse widths assuming a sech2-fit are 2.9 ps without filter and 3.1 ps with filter, respectively. The small increase in the 
pulse width after the filter is due to the small bandwidth of the used filter. The time-bandwidth-product of the pulses after 
the filter is 1.3 times the Fourier-limit. 
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6.   JITTER OF SELF-SEEDED LASER PULSES 
The timing jitter of gain switched laser diodes is caused by statistical fluctuations of the number of photons in the active 
area at the time when the carrier density in the laser diode reaches the threshold value. These fluctuations are, due to the 
statistical nature of the photon number, inverse proportional to the square root of the total number of photons. Due to the 
small number of photons in the mode of gain switched DFB laser diodes the pulses of these lasers show a large jitter of 
about 2 to 6 ps M. This is of the order of the pulse width of the compressed laser pulses and therefore significantly decreases 
the potential time resolution of possible measurements. 
Using self-seeding the jitter of single mode laser pulses could decisively be decreased. Here the photons in the active area of 
the laser diode when the carrier density reaches threshold is no longer determined by the spontaneous emitted photons but 
by the much larger number of photons fed back from the previously emitted pulse. Therefore the relative fluctuations and 
hence the timing jitter of the laser pulses should be smaller. In deed it has been shown in previous experiments that the jitter 
of single mode laser pulses generated by self-seeded laser diodes is about one order of magnitude smaller than the jitter of 
laser pulses generated by DFB laser diodes ' . 

7.    SET-UP FOR PUMP-AND-PROBE EXPERIMENTS 
For optical measurements which require a high time resolution very often a so-called pump-and-probe configuration is used. 
In these set-ups normally a ultra-short laser pulse is split into two pulses. One of these pulses is delayed via a variable delay 
line, mostly a mechanically movable retroreflector. Because the time delay between the two pulses can be controlled 
precisely, the time resolution is determined by the temporal width of the used optical pulses and the stability of the set-up. A 
drawback of these set-ups is the used mechanical delay line. Small shocks caused e.g. by sonic distortions can lead to small 
vibrations of the retroreflector which will change the time delay between the pulses. Although this effect can be minimized, 
another drawback can hardly be removed. The mechanical movement of the retroreflector is inherently slow and limits the 
minimal time needed to scan a certain time range. 

An electrically controllable time delay between the 
pump and the probe pulse will overcome all the 
mentioned problems. A previously demonstrated set- 
up consists of a mode-locked laser diode and a gain- 
switched DFB laser "\ Here the time delay between 
the optical pulses can easily be adjusted by 
controlling the phase difference between the 
electrical HF signals applied to the two laser diodes. 
This simple and reliable set-up suffers from the high 
timing jitter of the DFB laser pulses. Because the 
pump and the probe pulse are taken from two 
different sources, the timing jitter plays a significant 
role and, if the jitter is of the order or larger than the 
optical pulse width, could limit the possible time 
resolution. 
Self-seeded laser diodes are ideally suited for such a 
set-up due to their small timing jitter. A possible 
realization of such a configuration is shown in Fig. 
14. The sinusoidal HF signal, which is used to 
generate the short electrical pulses for the gain 
switching process, is split by a power divider. The 
phase of one of the two signals can be changed 
electrically by a phase shifter. By controlling the 

electrical phase in branch 1 in respect to the one in branch 2, the time delay between the two optical pulses emitted by the 
laser diodes can be controlled. Both laser diodes operate in self-seeding mode to ensure a small timing jitter of well below 
1 ps. The optical output of the two laser diodes is combined by a fiber coupler. The pulses are subsequently compressed by 
chirp compensation in a dispersive optical fiber. Because both pulses are compressed together in the same fiber, small 
length fluctuations of the optical fiber (caused e.g. by temperature changes) do not lead to time delay changes. 
The measured optical intensities at the end of the compression fiber are shown in Fig. 15. Here the output of self-seeding 
set-up number 1 is artificially damped to distinguish the two laser pulse sources. As expected the time delay between the 
two laser pulses can be controlled. Because this delay is controlled electrically and not mechanically, a high stability and a 
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Fig. 14: Set-up of a laser source for pump-and-probe experiments 
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hi<m scanning rate are possible. Despite the low timing jitter another advantage of using self-seeded laser diodes is the 
ability to tune the wavelength. Therefore it causes no problem to adjust the two output wavelengths of the self-seeding set- 
ups in a way that the pulses can easily be separated by spectral filters at the output, as shown in Fig. 14. The spectra and the 
time-resolved intensity behind one of the filters are shown in Fig. 16 and Fig. 17, resp. With this set-up a high reliable and 
easy to use source for pump-and-probe experiments is made available. In first experiments this set-up has proven its 
suitability as a source in an electro-optical sampling system n. 
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Fig. 15: Example for electrically controllable time delay between the two laser pulses 
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8.   ULTRA-SHORT PULSE GENERATION 
The laser pulses after chirp compensation have a pulse width of about 3 ps. These pulses could be further compressed using 
higher order soliton compression in standard single mode fibers '8. The used experimental set-up is shown in Fig. 18. 

After amplification in the EDFA the 
average output power is 50 mW. The 
pulse width is not significantly 
changed by the EDFAs. The actually 
measured autocorrelation pulse width 
as a function of the fiber length is 
shown in Fig. 19. The shortest 
achieved pulse width is 290 fs (seclf) 
for a fiber length of 25 m. From the 
initial pulse width of 3.1 ps and the 
repetition rate of 269 MHz one can 
calculate an input pulse peak power of 
53 W. Therefore the generated soliton 
is of order N = 4, and the expected 

compression factor for optimized fiber length is about 12 for idealized fibers '9. This leads to an expected pulse width of 
260 fs in good agreement with the experimental result. The autocorrelation trace of the shortest pulse, which shows the 
typical wings associated with higher order soliton compression, is shown in Fig. 20. 
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Fig. 18: Experimental sel-up for soliton compression 
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Fig. 19: Calculated (—) and measured (•) autocorrelation 
pulse width during the propagation through the optical 
fiber. 

Fig.   20:   Calculated   ( )   and   measured   (—)   auto- 
correlation trace of the shortest pulses (after 25 m fiber). 

We also simulated the soliton propagation and narrowing with the equation 
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describing the pulse propagation in real fibers, taking into account also the nonlinear effects '. This equation was solved 
numerically using the split-step Fourier method described in '\ As input pulse we used the calculated complex amplitude 
function from section 5 with a pulse energy of 3.36 pJ, as measured after the filter. For the simulation of the amplification in 
the 2"d EDFA a total fiber length of 24 m with a fiber diameter of 6 urn was assumed. Following the experiments a constant 
amplification of 0.725 dB/m was chosen. The calculated width of the autocorrelation trace is shown in Fig. 19, together with 
the experimentally retrieved data, and shows an excellent agreement. The measured and calculated autocorrelation traces for 
the point of optimal compression are shown in Fig. 20, which shows also a good agreement in the main part of the pulse. 
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9.    APPLICATIONS OF SELF-SEEDING ELECTRO-OPTICAL SAMPLING 
The ultra short laser pulses after pulse compression are ideally suited for use in optical sampling systems, like Electro- 
Optical Sampling (EOS)20. The ultra short laser pulses after higher order soliton compression were used in an EOS system 
for the characterization of high speed MSM photo detectors. Details of the EOS set-up are given in 20. A measured impulse 
response of the photo detector, together with the accessory frequency response, are presented in Fig. 21 and Fig. 22, 
respectively. Please note that the^frequency response is directly calculated from the impulse response without any 
deconvolution of the measurement system or the optical pulses. These results show that low jitter ultra short self-seeded 
laser pulses provide the possibility for ultrahigh frequency measurements up into the THz range. 
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Fig. 21: Measured response of a fast photo detector measured 
with an EOS system using ultra short optical pulses generated by 
self-seeding and soliton compression 
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Fig.   22:   Frequency   response   of  the   photo   detector.   The 
frequency response is calculated without any deconvolution 

10. CONCLUSION 
Self-seedin" of a gain-switched FP laser diodes is a simple and reliable concept for the generation of short, wavelength 
tunable laser pulses. Without any further compression, laser pulses with a width of 20 to 40 ps (FWHM) and a tuning range 
of more than 50 nm can easily be generated. With subsequent chirp compensation the pulses can be compressed to a width 
of a few picoseconds onlv. Further compression of these laser pulses exploiting nonlinear effects in optical fibers (soliton 
compression) allows the generation of laser pulses with a width (FWHM) of less than 300 fs. Due to the low timing jitter of 
the self-seeded laser pulses (less than 500 fs). self-seeding can be used in optical sampling systems with high temporal 
resolution. First results of electro-optical sampling system measurements using these laser system as a pulse source show 
the capability of these system for measurements up to the THz range. In a set-up consisting of two similar self-seeded laser 
diodes operating of slightly different wavelengths short laser pulses with electrically adjustable time delay and low jitter can 
be generated by~controlling the electrical phase delay between two self seeded laser diodes. 
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ABSTRACT 

We propose a relatively simple dynamic laser model based upon continuity equations for electron and hole concen- 
trations energy balance equation and a set of rate equations describing spectrally dependent photon density. These 
quätions are olved in a self-consistent way together with Po.sson equation. The model assumes tha character- 
s/of establishing the carrier temperature are shorter than those of carrier-to-phonon interaction^ Using 

this model the dynamic response of AlGaAs/CaAs double heterostructure laser is analyzed at current densities 

UD to ~ 6 x 104 A/cm2 It is shown that the reaction of carrier temperature to the appearance of optical pulse is 

spatially nonuniform and is determined by the balance of the heating induced by the stimulated emission and the 

cooling associated with carrier and heat transfer across the active layer. 

Keywords: heterostructure laser, dynamic model, hot carrier effects 

1.  INTRODUCTION 

Hot carrier effects in laser diodes have been extensively studied in a large number of experimental and theoretical 
works In general, in heterostructure lasers there are several sources of carrier heating, such as hot carrier injection 
from heterobamers,1.2 stimulated emission.3 Auger recombination and free carrier absorption of emitted photons. 
These effects have been shown to have strong impact on laser dynamic behavior via considerable temperature de- 
pendence of the optical gain. In some cases, carrier heating can be enhanced by external electric field or by optical 
pulse injection into the laser cavity.6 Since carrier heating and cooling are very fast processes, these techniques are 
promising for high-speed output modulation. On the other hand, the intrinsic carrier heating may be an adverse 
factor limiting the modulation response. Carrier heating associated with stimulated emission can suppress the gam 
dynamically, which is known to be an important contribution to nonlinear gain.3 Enhanced gam nonlinearity leads 
to excess damping of laser modulation response thus decreasing the modulation bandwidth.7 Several propositions 
were made in a wav to design specific laser structures containing tunnelling barriers in order to control either the 
energy of injected carriers8 or the energy-dependent carrier capture rate into the quantum well. In these structures 
hot carrier effects are employed for more effective gain switching operation and for substantional expansion of the 

modulation bandwidth. 

Several approaches to simulation of laser dynamics accounting for carrier heating were suggested. Some of them 
deal with carrier density and temperature averaged over the width of the active layer.3   Other, more sophisticated, 
models consider spatially nonuniform carrier concentration and temperature10 or employ Monte-Carlo technique 
However, the complexity of these models limits their use and often is unjustified for the description of experimental 

results. 
In this paper we propose a relatively simple dynamic model based upon continuity equations for electron and hole 

concentrations energy balance equation and a set of rate equations describing spectrally dependent photon density. 
These equations are solved in a self-consistent way together with Poisson equation. The use of Poisson equation rather 
than employing charge neutrality assumption makes the model applicable to the analysis of heterostructure lasers 
with bulk active layer of arbitrary thickness and even of more complicated structures with variable doping profile 
in the active layer The model assumes that characteristic times of establishing the carrier temperature are much 
shorter than those of carrier-to-phonon interaction, the condition which is satisfied for any practical concentrations 
in laser structures. Alongside with known temperature effects, this model enables to treat coordinate-dependent 

carrier heating as well as dynamic multimode laser behavior. 
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2.  DERIVATION OF THE MODEL 

2.1. Basic Equations 

The structure under analysis is a double heterostructure laser consisting of a weakly doped GaAs active layer 
sandwiched between N+ and P+ AlGaAs emitters. In equilibrium, the whole active layer is located within the 
space-charge region, and almost all the carriers are wiped. After the pumping current starts, the carrier accumulation 
can be seen as two successive processes. First, the barrier capacity of the p-n junction is charged. The majority of 
the carriers are involved in this process, and the current through the active layer is low. After all capacitances are 
charged, and the band bending disappears, carrier injection to the active layer comes to be significant. Disregarding 
the initial period of capacitance charging, high injection level approximation can be used to describe the device 
behavior. 

In lasers with Fabry-Perot resonator, the emission consists of several longitudinal modes with the energy of quanta 
hum separated by energy 6(hw) = rrhvg/L, where vg = c/n is the light group velocity, and L the cavity length. The 
model employs a number of spectral windows extending from the bandgap energy to an energy well exceeding the 
expected range of stimulated emission (1.424-1.45eV). Each of the windows encloses one longitudinal mode. In each 
mode, the deviation of photon intensity along the cavity is neglected, while photon distribution ^(x) across the 
active layer is determined by solving the TE-modes equation. This distribution is assumed independent of time and 
carrier concentrations. 

Let the x-axis be directed across the laser active layer of thickness d, x = 0 corresponding to the heterobarrier at 
the p-emitter Let n, p denote electron and hole concentrations, respectively; T the temperature of the electron-hole 
plasma measured in energy units, jn and jp electron and hole current densities. Then, the continuity equations are 
as follows: 

^    =       -^-Bspnp-vJd(hoj)G(n,p,T,hLo)Nph(hu;)y2(x), (1) 
at e ox J 

^    =    -^-B,pnp-vg[d(hu)G(n,p,T,hLj)Nph(hu)92(x). (2) 
at e ox J 

Here Bsp is the spontaneous emission factor, Nph(hui) is the number of photons in the laser mode with energy hw. 
y>2(x) is the photon distribution function along the «-axis. The fraction of photons within the active layer 

T= / dx^'-(x) I    I   dxV2( 

/IAJ 

I 
(Act. Layer) 

is the confinement factor. The local optical gain is of the following form: 

G{n, p, T, Aw) oc p(ftw) (h(E') + fv (E") - l), (3) 

where 
_ hu - Eg mr „ _ Jiui - Eg mr 

T       mc' T      mv 

are energies of electrons and holes recombining with emission of photon of the energy hu, fc and /„ are the Fermi 
functions, mc and mv the effective masses. mr the reduced mass, p is the reduced density of states. 

Note that in the continuity equations (1, 2) nonradiative recombination processes are not included. It is because 
Auger recombination in GaAs is still negligible at concentrations typical of generation. The linear mechanism, on 
the other hand, is important only at low concentrations. Consequently, all types of recombination can be neglected 
except for the radiative spontaneous recombinations which starts the stimulated recombination. 

Dividing the whole spectral range into narrow windows, the following equation is obtained for each spectral mode: 

J-JVpA(ftw) = -Nph{hijj) + VgNph(hu)(dxG(n,p,T,hu)y2{x) + + ß(hw) [dx Bspnp, (4) 
at Tph J J 

where rph is photon lifetime determined by the sum of the distributed and radiation optical losses. The second term 
in (4) corresponds to stimulated emission. It is a convolution of the local material gain with spatial photon density 
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distribution ßlhu) describes the fraction of spontaneously emitted photons that contribute to the lasing mode^ It 
is a product of two factors: one is connected with energy distribution of spontaneous photons and is proportional to 
y/lS-Egfc{E')ME"), while the second is the energy-independent probability that the emitted photon matches 

the cavitv mode. 
To be able to write the energy balance equation one needs to ensure that the carrier distribution function is nearly 

isotropic This condition holds since the characteristic electron-electron scattering time is very low (about 10 s) 
at concentrations necessary for lasing. Since electron-hole interaction time is also low, it is possible to describe he 
electron-hole plasma with temperature T equal for all types of carriers This temperature^ however differs from the 
lattice temperature TL due to the fact that interaction with phonons is much weaker The characteristic distance 
at which distribution function is established can be estimated as L * reetw < lO^cm, so temperature can be 

expressed as coordinate function. 

With these assumptions, the equation of energy balance can be written down as follows: 

£ = ü.+i)B-£-,,n,„n 
Here the energy density W is given by 

W = -T MT)*3/2(£)+M:n*3/2(^ T 

(5) 

(6) 

which is a general expression applicable to the case of degeneracy, Nc, K are densities of states in conduction and 

valence bands, respectively. Entering this expression, the Fermi integrals are 

*fc(0 = 
1 

r(A- TJT 
deek 

•exp(e-0 

The parameters C„. and (r are the Fermi quasi-levels for carriers. 

In Eq. 5, Q is energy flux density whose form will be considered in the next section; P describes energy variation 

due to interaction with LO-phonons, and owing to spontaneous and stimulated emission: 

P = Pnn + P,P + Pstim- 

For stimulated emission, we sum up the contributions from each spectral window: 

Pstlm = vgfd{tuj) [hu - Eg]g(n,p,T,hüj)Nph{hu)V2{x). 

For the two remaining terms in (7) we use the formulas derived in Ref. 3: 

\3/2 

P, sp = \TB. 
y/memv MT)K(T); 

du u3l2 

1      /_ -7=  
3vW  h + exp(uy/mv/mc - Q/T)   [l + exp(uy/mc/mv - (V/T)\ 

and 

Phn 
j-c,v 

Pncij, Pnnj = —(/fie - Jno) Tnj 

hü 1/2 
oo 
/du u 

[u + ihj] 
-In 1 + feien) 

f> He 

vnD 

VnD + VUE 

(?) 

(8) 

(9) 

(10) 

Here rn- are the characteristic carrier-phonon interaction times, usj are the plasma screening parameters, fe(ea) is 
the electron distribution function at energy en = »<*(« + l)2/(4"); he and /no are phonon distribution functions 
at carrier and lattice temperatures, respectively. Frequencies P^D and uaE describe decay and birth rates of LO- 

phonons. 
In our case both Psp and Pnn are considered as functions of coordinate. When using (10), interaction of electron- 

hole plasma with LO-phonons is described accounting for the bottleneck effects. The interaction is considered a 
two-step process.   First, hot carriers transfer energy to the lattice by emitting a phonon.  Since LO-phonons have 
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weak dispersion, and their decay time is relatively long, there occurs a local lattice heating which inhibits further 
carrier-to-lattice energy transfer. It can be proven from (10) that the widely used dependence P = n(T - T0)/r is 
not obeyed for practical concentrations. In particular, with concentrations increasing, the energy transfer rate can 

even decrease. 

To complete the system of equations, it should be supplemented with the Poisson equation: 

&■ <P -(p-n + ND -NA), 
dx'2        eeo 

where NJJ and NA are donor and acceptor concentrations, respectively. 

(11) 

2.2.  Current Density and Energy Flux 

In general, current densities and energy flux only depend on gradients of two dynamic characteristics: electrochemical 
potential and temperature, the latter being dependent on energy density. The current densities and energy flux can 

be written down as 

dx  \ e I OX 

d    {C, 

Q     =     Qn + Qp, 
6     (tn \ dT 

Qv 
dT d    (Q 

(12) 

(13) 

(14) 

(15) 

(16) 

Coefficients a, ß, X and K strongly depend on the type of carrier interaction with the lattice.   For the case of 
LO-phonons, the following expressions are obtained12 (presented here for electrons only): 

a„    =    e/jnKc(T)$1/2 ( y ) =eyinn, 

ß„    =    HnK(T) 

Xn      =      VnKc(T)T 

e 

|*3/2 (f) - |;*i/2 T 

35 
4 

3/2 I f)  -y*l/2 

*5/2 (£)  ~ 5^*3/2 (£) +  (f)    *1/2(^) 

(17) 

(18) 

(19) 

(20) 

The term proportional to gradient of electrochemical potential can then be transformed by extracting diffusion and 
drift components explicitly: 

9    fCn     <p)=ennnE + Dn^, (21) 
OX   \ e ) OX 

with the diffusion coefficient Dn related to mobility by the generalized Einstein relation: 

Hn        e d In n 

2.3. Initial and Boundary Conditions 

To solve this system of equations, it is also necessary to establish initial and boundary conditions. As was previously 
mentioned, initial conditions for carrier concentrations are 

n — p = 0. (22) 
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Within the high injection level approximation, currents flowing through heterobarriers are equal to the external 
current density jext which is supposed to be a given function of time. The leakage currents are neglected since they 
are small compared to jext owing to the extra factor of exp(-A^/AT) where AEjt j = c,v are discontinuities of 

conduction and valence bands, respectively. Thus, 

(23) 
JP 

x=0 
■■ 3n 

x=d 
■ Jext] In 

x=0 
= Jp x=d 

o. 

Disregarding leakage currents also leads to vanishing of the electron and hole energy flux at the p- and n-sides of 

the active layer: 

Qr. = 0, 
x-0 

QP\ 

At the same time, 

Qv 
x = 0 

Jcxt^eff p i Wn 
x~d 

= o. 

—      Jext^t 

(24) 

(25) 

where eeg , is the effective energy passed over by the injected carriers counted per one carrier.   To calculate this 

energy input, we consider the rate of carrier cooling during their "fall" from the heterobarner as 

It 
(26) 

no. 

This rate consists of two terms:   the first is the energy transfer to the plasma, and the other is associated with 
emission of LO-phonons. Integration of (26) over the time interval of carrier thermahzation yields 

which can be rewritten in terms of energy losses: 

dt, 

£o -C J   (# 
(§) dt ' ee 

\dt)eeJf~ \dt)hn 

de 

nn 

m dt !%n 

(d'tlee + \dt) 

-de (27) 
fin 

where e0 is the height of the heterobarrier.  In this expression, the first integral is eeff. The rate of cooling due to 

interaction with carriers (^f)ee is as follows 

4irne4 

me 
1 + ln 

e^/m 

2h\j2itne2 / KC 

(28) 

while (~f)^ is calculated using the procedure similar to that given by (10). 
V at / hit 

The boundary conditions for Poisson equation are established under the assumption that electric field at heter- 
oboundaries is a linear function of the pumping current. Neglecting the difference in permittivities of the active layer 

and the emitters leads to 

E 
_    jertjt) 

x=0 fJ.pP\x=0 x=d      Hnn\x=d 
(29) 

To make the initial and boundary conditions compatible, the integral concentration of donors and acceptors in 

the active layer should be equal: 
6     ' 'VD-NA)dx = 0. (30) 

ee0 
/<* 

Note that after the initial point, the carriers are injected and recombine in pairs, so the integral charge neutrality 

will hold. 
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3. RESULTS AND DISCUSSION 

The developed model has been applied to analyze the transient response of double heterostructure laser pumped 
by current pulse with short leading front. Simulations were performed for Alo.3Gao.7As/GaAs laser with undoped 
active layer 0.58 pm thick. The cavity length was taken 400 pm, and the stripe width 20 pm. The leading front of the 
pumping current was 100 ps, whereas the amplitude of current was varied in the range of 1-5 A which corresponds 

to current density of 1.25 x 104-6.25 x 104 A/cm2. 

Shown in Fig. 1 are the laser output responses simulated at the pumping current amplitude of 1A and 5 A. 
At each current, the responses were simulated both with carrier temperature taken into account and disregarding 
temperature effects. Quite naturally, increasing the current amplitude results in shortening of the switching-on delay 
and in suppression of relaxation oscillations after the optical pulse. However, as it is clearly seen in this figure, carrier 
heating results in longer delay times and considerably increased relaxation oscillation damping. The former effect is 
related to gain suppression by temperature so that a higher concentration is required to reach the threshold. The 
dynamic temperature rise associated with the onset of generation (which will be discussed below) is equivalent to 
additional contribution to nonlinear gain which is known to suppress the relaxation oscillations. 

The temporal evolution of laser emission spectrum simulated at current amplitude of 1 A is presented in Fig. 2. 
As one can see from this figure, the first optical spike has the maximum spectral width and in this spike the envelope 
of the emission spectrum is asymmetric. Following this spike, the total power oscillates, its spectrum shifting towards 
lower energy of quanta. This behavior is explained by depletion of population inversion during the first optical pulse, 
which leads to further shift of the gain spectrum to longer wavelengths. 

Alongside the appreciable difference in optical power, the laser behavior under low and high pumping levels is 
different in terms of the temperature of recombining carriers. The simulated temporal evolution of carrier temperature 
is shown in Fig. 3. It is readily seen that both at low and high pumping levels, the carrier temperature is enhanced 
in respect to the lattice temperature. Except for the short starting period when the carrier density is low and local 
charge neutrality condition has not been reached, at any time of interest the only source of carrier heating is their 
injection from the heterobarrier. When carriers fall down from the heterobarriers, a fraction of their excess energy 
is, as was discussed in previous section, transferred to the electron-hole plasma. Carrier heating is more intensive 
in the vicinity of heterojunctions and is proportional to the current density. Due to heat conduction, the energy 
introduced to the system of carriers spreads over the whole active layer, which leads to flattening of temperature 
profile. Since the number of carriers comprising the system rises in time, a gradual decrease of average temperature 
accompanies carrier accumulation in the active layer. As it is clear in these figures, the carrier temperature profile 
is inhomogeneous across the active area. The temperature is higher near the n-emitter because the conduction band 
discontinuity is greater than that of the valence band. Besides, the fractions of the energy transferred to the carrier 
system and to the lattice differ for electrons and holes: electrons offer a more pronounced heating. 

Another interesting feature of the temperature profiles is connected with appearance of laser generation. As one 
can see in Fig. 3a, while the optical pulse is developing at t RJ 1300 ps, the carrier temperature increases at the 
side of p-emitter and slightly drops at the opposite side. This behavior is explained as follows. Stimulated emission 
takes place mostly at the maximum of gain spectrum the energy of which is less than Fermi levels separation. Thus 
stimulated emission removes carriers whose energies are lower than the average one, and the heating/cooling balance 
is shifted towards carrier heating (see Eqs. 5, 8). However, the energy balance is also determined by energy flux 
gradient. At the development of laser generation the carrier density starts to diminish most rapidly in the center of 
the active layer where the mode shape ^2{x) has its maximum. This changes dramatically diffusion currents and 
energy fluxes at both sides of the active layer. As detailed analysis shows, the most pronounced effect is that energy 

flux gradient changes its sign at the side of n-emitter*. 

The comparison of Figs. 3a,b indicates that at higher current the carriers are more hot, and the temperature 
variation across the structure is more distinct. At the pumping current of 5 A (Fig. 3b), carrier temperature undergoes 
a sharp change at the onset of laser generation as well. At this current, however, the temperature rise is observed 
throughout the whole active layer. This shows that it is merely a quantitative effect that temperature response to 
the optical pulse may change its sign along the z-axis as was discussed above for the case of lower pumping. 

Fig. 4 displays carrier concentration vs. time and coordinate simulated at the pumping current of 5 A. As it is 
seen, there is a strong inhomogeneity in the carrier concentration which persists with time. The carrier density is 

*No such effect occurs at the side of p-emitter, apparently because of lower hole mobility. 
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higher at the side of p-emitter due to difference in mobilities. An interesting manifestation of such inhomogeneity is 
that the carrier density relaxation peak preceding the optical spike is somewhat delayed at the n-side with respect 

to that at the p-side. 

4.  CONCLUSION 

In this paper we have presented a model which allows to simulate dynamic response of heterostructure laser with 
bulk active layer under high pumping level, when carrier heating effects are important. An attractive feature if this 
model is that "it deals with coordinate-dependent carrier density and temperature. We believe the model provides a 
reasonable balance between relative simplicity of its approach and the possibility to describe various laser operation 
regimes. In particular, it can be applied to the analysis of gain-switching and (with subtle modifications) Q-switching 
operation modes. It can also be used in optimization of laser structure design aimed at the enhancement of optical 

pulse power. 

ACKNOWLEDGMENTS 

The authors are grateful to Prof. 1. N. Yassievich for her essential help in the development of the model. This work 
was supported by INTAS grant 97-OPEN-1609. 

REFERENCES 

1. O. Wada, S. Yamakoshi, and T. Sakurai, "Band-gap enhanced carrier heating in InGaAsP/InP double het- 
erostructure light-emitting diodes," Appl. Phys. Lett. 41(10), pp. 981-983, 1982. 

2. J. Shah, R. F. Leheny, R. E. Nahory, and H. Temkin, "Hot carrier effects in 1.3-^ Ini-rGa^AsyPi-y light 
emitting diodes," Appl. Phys. Lett. 39(8), pp. 618-620, 1981. 

3. V. I. Tolstikhin and M. Willander, "Carrier heating effects in dynamic-single-frequency GalnAsP-InP laser 
diodes," IEEE J. of Quantum Electron., 31(5), pp. 814-833, 1995. 

4. A. Mozer, K. M. Romanek, W. Schmidt, and M. Pilkuhn, "Evidence for Auger and free-carrier losses in 
GalnAsP/lnP lasers: Spectroscopy of a short wavelength emission," Appl. Phys. Lett., 41(10), pp. 964-966, 

1982. 
5. V. B. Gorfinkel, B. M. Gorbovitsky, and I. I. Filatov, "Hight frequency modulation of light output power m 

double-heterojunction laser," Int. J. Infrared Millim. Waves, 12, pp. 649-658, 1991. 
6. M. Elsässer, S. G. Hense, and M. Wegener, "Subpicosecond switch-off and switch-on of a semiconductor laser 

due. to transient hot carrier effects," Appl. Phys. Lett., 70(7), pp. 853-855, 1997. 
7. J. D. Ralston, S. Weisser, I. Esquivias, E. C. Larkins, J. Rosenzweig, P. J. Tasker, and J. Fleissner, "Control of 

differential gain, nonlinear gain, and damping factor for high-speed application of G a As- based MQW lasers," 
IEEE J. of Quantum Electron., 29(6), pp. 1648-1659, 1993. 

8. V. I. Tolstikhin and M. Willander, "Resonant-tunneling injection hot electron laser: An approach to picosecond 
gain-switching and pulse generation," Appl. Phys. Lett, 67(18), pp.2684-2686, 1995. 

9. L. Davis. H. C. Sun, H. Yoon, and P. K. Bhattacharya, "Small-signal modulation and temperature dependence 
of the tunneling injection laser," Appl. Phys. Lett., 64(24), pp. 3222-3224, 1994. 

10. M. Grupen and K. Hess, "Severe gain suppression due to dynamic carrier heating in quantum well lasers," 70(7), 
pp. 808-810, 1997 

11. V. I. Tolstikhin and G. Yu. Khrenov, "Mechanisms of carrier and energy injection in three-terminal laser struc- 
tures," Appl. Phys. Lett., 69(15), pp. 2157-2159, 1996. 

12. I. N. Yassievich, Doctoral thesis, loffe Institute, 1975. 

40 Proc. SPIE Vol. 4354 



12,5 

10.0 

<D 
7,5 

O 
Q_ 
—   5,0 
(D 

-i—' 

O 
h- 

2,5 I- 

0,0 

5A 

■  ■ f 

Heating included 
Without heating 

1A 

500 1000 

Time, ps 
1500 

Figure 1.  Laser output responses simulated at the pumping current amplitude of 1 A and 5 A. Solid lines — 
heating effects are taken into account, dashed lines — carrier and lattice temperatures are taken to be equal. 
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Figure 2. Temporal evolution of laser emission spectrum. 
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Figure 4. Temporal evolution of electron density at the pumping current of 5 A. 
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ABSTRACT 

Great differences were found between the spectral and power responses for two modes of a single-heterostructure laser 
operation, with the dynamic behaviour of each mode fitted to the traditional definition of the internal Q-switching 
phenomenon. The first mode is interpreted in terms of the most popular diffraction losses theory, while the other one is 
related to the practically important method of high-power picosecond optical pulse generation and interpreted in terms of a 
recent carrier heating and cooling model. This finding could obviate confusion in the interpretation of mechanisms of high- 
power picosecond pulse generation in the Q-switching mode. 
The generation of clean single 200W / 23ps pulses is demonstrated in the second Q-switching mode. An important role of 
the intrinsic tail-state absorption is shown for this operating regime. A mechanism of an intrinsic positive feedback is 
discussed which allows picosecond synchronisation in the absorber saturation instant to be achieved for the entire laser 
volume. This causes strong gain overshoot over the losses and the picosecond pulse generation by this means. 

Keywords: Semiconductor laser, picosecond pulses, Q-switching, carrier heating, saturable absorption. 

I. INTRODUCTION 

Generation of high-power (10-103W) single picosecond optical pulses by laser diodes, which fills the existing gap between 
ordinary nanosecond and the novel femtosecond range for semiconductor lasers1, is important for a number of practical 
applications. A method of transient mode filtering from a high-power (45 W) gain-switched laser2 allows a 16W / 25ps 
pulse to be generated. This method seems to be applicable for any type of laser diode, but the achievable peak power is only 
moderate. Another method which is makes use of Q-switched single-heterostructure (SH) lasers seems to be more 
effective3"6. Normalised to the emitting area, the optical power is higher by a factor of 20-100 than that achieved in Ref.2. 
Diodes of the same type were used in all these experiments3'6 (LD-62, Laser Diode Inc.), with standard peak power of 5W 
and the operating mode was ascribed to an internal Q-switching effect. An exception may be made for the experiments6 

where ion implantation was additionally used in order to form an ultra-fast saturable absorber within the diode mirrors. 
Two approaches were adopted to physical interpretation of the observed laser behaviour. The authors of papers3,4,6 followed 
the ideas of the most popular theory of the internal Q-switching phenomenon7, which consider the complicated dependence 
of the refractive index step within the homojunction on carrier concentration, gain and Joule heating in the active region. 
The refractive index step, in turn, dramatically affects the diffraction losses. Alternatively, the model5,8 considers saturable 
absorption via the tail states in heavily doped and compensated semiconductor materials, and also current-induced carrier 
heating. 7 
We report here on time-resolved spectral measurements corresponding to both conditions realised in Ref. and for high- 
power picosecond pulse generation. We aim to show the existence of two phenomena which fit the formal definition of 
internal Q-switching in SH laser diodes. 
Let us briefly discuss the formal definition of the phenomenon. Internal Q-switching in homojunction and SH lasers was 
first observed in the early 1960s and has been studied extensively for many years9. It consists of the appearance of 
stimulated emission immediately after the current pulse stops, which means that the current pulse reduction stimulates the 
lasing. A closely related phenomenon is the effect of a long lasing delay, which means that the onset of the stimulated 
emission takes much longer than is needed for population inversion to be achieved. Both phenomena have always been 
observed together for a laser diode within the same lattice temperature range at different amplitudes of the pumping current. 
A characteristic shape for the Q-switching region in the current-temperature plane, as measured for a homojunction laser in 
Ref.10, is shown in Fig. 1(a). This shape is similar for various homo and SH laser diodes, but the minimal (transition) lattice 
temperature at which the phenomenon appears varies from ~ 100 to ~ 350°K depending on the fabrication process9, and the 
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current range varies as well. Delayed lasing occurs at a high current, and the Q-switching mode manifests itself when the 
current is reduced, provided that the lattice temperature is higher than the transition value. 

Fig. 1. Regions of spontaneous emission (I), internal Q-switching 
(II) and normal lasing (III). The right-hand boundaries in both 
graphs define the dependence of the threshold current on 
temperature. 
(a): reproduced from work 9 for a 84 ns current pulse, (b): curves 
1-3 define the left-hand boundary of the Q-switching region for 
laser LD-62,4 depending on the minimal current pulse duration 
used in the experiment: 1-1.2 ns, 2-2.5 ns, 3-7 ns. 

100   150   200   250   300   350   400   450 

TEMPERATURE,'K 

We will thus regard the following criteria as constituting a traditional definition of Q-switching: stimulated emission occurs 
only within the end of the current pulse, and the Q-switching region has a characteristic shape in me current-latüce 
temperature plane similar to that shown in Fig. 1(a). We also show in Fig. 1(b), for the sake of comparison, the Q-switdung 
region for SH laser LD-62 from Ref.5, corresponding to a high-power, short pulsing mode. The region shapes m Fig.l(a,b 
are qualitatively similar in appearance despite the significant differences in laser structure, current pulse duration and actual 
operating mode (as we will see in our further discuss.ons). Together with the specific dynamic behaviour mentioned earlier, 
Ulis creates a strong impression that one is dealing with the same physical phenomenon in both cases. 

II. EXPERIMENTAL RESULTS 

II. 1. Two different types of the Internal Q-switching 
Two SH laser structures and two sets of pumping conditions were selected for our experiments in order to show the 
differences between the two types of Q-switching phenomena. Both types of laser diode had a structure 
AlGaAs(P+)-GaAs(p)-GaAs(n+). The active p-region of the first type was relatively narrow (-lfmi) with a moderate 
(~ 10"cm3) total doping concentration. These lasers were pumped with relatively long-duration current pulses (40-100 ns) 
in order to reproduce conditions typical of those used in earlier publications7'9'10. The second type was a LD-62 laser with a 
wider (~2um) heavily doped and compensated active region3. The total doping concentration in the active region can 
roughly be evaluated ,l12 as being over 110'8 cm3 from a spectrum for a quasi-steady-state lasing mode (curvel Fig.3(b)). 
This huge doping level is not particularly surprising for old-style technology, in which the active region was formed by 
acceptor compensation during the growing process of n+- material with an initial donor concentration of (2-4)10 cm Ihe 
current pulses with a duration of a few nanoseconds pumped this laser in order to fit the experimental condrüons of lugh- 
Dower picosecond pulse generation   ' . 
The pumping current pulses and optical responses are presented in Fig.2. Curves related to the first type of laser structure 
are shown in Fig 2(a b), and those presented in Fig.2(c,d) correspond to the second type. The optical responses m Fig.2(b,d) 
arc normalised in both cases with reference to the nominal power of the corresponding laser diode. The nominal power of 
the first laser type was ~ 4 W for a stripe 750 /jm wide and 200 fjm long with a pumping current density of 30 kA/cm at 
room temperature. For the second laser type the nominal power was ~ 5W for a stripe 150 pn wide and 380 m long with 

the same current density. . ... ,     •♦„ tv,„ 
One can see that the laser behaviour satisfies the formal definition for internal Q-switchmg in both cases despite the 
significant differences. The current pulse duration is an order of magnitude longer for the first laser type^ If the pulse 
duration was reduced to under 30 ns, no Q-switching was observed at current densities of up to 750 kA/cm at any lattice 
temperature Namely, laser emission disappeared at a high temperature. When the lattice temperature was reduced 
smoothly lasing appeared within the leading and trailing edges simultaneously and then spread over the whole current pulse 
duration at an even lower lattice temperature. Spikes appeared within the leading edge of the optical response when short 
current pulses (of a few nanoseconds) were used for pumping this first laser type with an amplitude of up to 250 kA/cm , but 
no Q-switching behaviour was observed at any lattice temperature. 
The laser diodes of the second type showed a much more intensive spike in the gain-switching mode when high-current 
pulses of a few nanoseconds were used. An increase in the lattice temperature caused a jump-like increase in both the lasing 
delay (which became equal to the current pulse duration), and the spike intensity 4'8. Q-switching behaviour was observed 
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Fig. 2. Pumping current and 
optical pulse waveforms for 
lasers of the first (a,b) and 
second (c,d) types. The 
responses shown in (b) and (d) 
were measured at diode lattice 
temperatures of 372 °K and 
413 °K respectively. The 
position of the leading edge of 
the current pulse corresponds 
to 0 ns in (c). 
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at this lattice temperature, (or higher), as illustrated for relatively low currents in Fig.2(c,d). For higher currents, the 
behaviour is qualitatively the same except that the optical spikes have a much higher intensity and shorter duration. 
Time-resolved spectra are shown in Fig.3. which presents the difference between quasi-steady-state lasing modes and Q- 
switching modes for both types of laser diode. All the transient spectra were measured by means of a streak-camera 
equipped with a spectrograph, so that onlv the spectrum of the mode under investigation was recorded. Curve 1 in Fig.3(a) 
shows the spectrum of the quasi-steady-state lasing mode for the first laser type. The spectrum was measured at a lattice 
temperature TL=364 °K at the end of a 100 ns current pulse immediately before the current decreased. The laser pulse 
duration was comparable to the current pulse duration at this temperature. The Q-switching mode was achieved when the 
temperature was increased to TL=372 °K (curve 4 in Fig.2(b)). The corresponding spectrum is represented by curve 2 in 
Fig. 3 (a). A trivial spectral shift caused by the temperature band-gap dependence is automatically corrected by the selection 
of the type of horizontal scale, and the resulting Q-switching mode shift towards low photon energy can be seen. It is worth 
noting that the spectral band in the experiment did not just shift towards the longer wavelength when the temperature was 
growing, but the emission band shown by curve 1 decreased in intensity and disappeared and that shown by curve 2 
appeared at the same time. 

Fig.3. Transient spectra for quasi-steady-state modes (curves 1) and Q- 
switching modes (curves 2) for laser diodes of the first (a) and second types 
(b). The horizontal axis presents the difference between the photon energy and 
band-gap of pure GaAs for a given lattice temperature. 
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A completely different spectral transformation was found for the second type 
of laser structure when changing to the Q-switching mode. Curve 1 in Fig.3(b) 
represents the lasing spectrum for a 10 ns optical pulse at a 30 kA/cm2 current 
pulse amplitude and a lattice temperature TL = 297 °K. The transient spectrum 
for a -30 ps high-power Q-switching pulse is represented by curve 2 in 
Fig.3(b), which corresponds to a 140 M/cm2 /2.2 ns (FWHM) pumping 
current pulse and a lattice temperature TL = 381 °K. The local signal 
oscillations in spectrum 2 (Fig. 3(b)) are caused by the features of the photo- 
cathode of the streak-camera. The signal is normalised for all the spectra by 
relating the integral under curve 1 in Fig. 3(b) to the 5 W peak power of the 
optical pulse and other integrals over the spectra to the peak power of the 
corresponding optical pulses. 

II. 2. Role of the saturable absorption in the second type of the Q-switching. 
We still have not answered the questions of when precisely lasing will occur around the trailing edge of the current pulse in 
the case of the second type of Q-switching, when picosecond optical pulse generation occurs and how short the trailing edge 
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of the current pulse should be in that case for the phenomenon to be observed. The answers will drastically affect the optical 
pulse intensity that can be achieved, as will follow from the discussion below. 
Considering quasi-steady-state conditions in the case of the first Q-switching type, when the current pulse is relatively long 
(Fig 2(a b)) lasing occurs when the carrier concentration reduces to a level which allows diffraction losses to be reduced 
sufficiently' The situation is more complicated in the case of the second Q-switching type, when the intensive optical pulse 
can be observed either within the trailing edge of the current pulse or a few nanoseconds after the current pulse stop. 
An investigation of transient spectrum relaxation undertaken to clarify this problem showed that the exact moment of lasing 
onset depends on the lattice temperature in the active region. Lasing delay with respect to the trailing edge of the current 
pulse grows as the lattice temperature rises (left column in Fig.4) and the amplitude of the optical spike diminishes at the 
same time (Fig4(bl-b4)) and the transient spectrum narrows (Fig.4(cl-c4)). This spectrum is measured by means of a 
spectrograph-equipped streak-camera and corresponds to the optical spike only in the laser response, thus ignoring the 
emission "tail" of low-intensity which appears after the picosecond pulse5 A correlation can be seen between the intensity 
of the picosecond optical pulse and its spectrum width together with the spectrum amplitude. 

Transient spectrum 

OH 

o 

X 

Fig.4. Trailing edge of the pumping 
current pulse (a), the optical response for 
the laser diode LD-62 (bl-M), and 
corresponding transient spectra for the 
short optical spike (cl-c4) measured for 
different lattice temperatures. 

We ascribe the observed behaviour to the 
simultaneous effects of absorber 
saturation, carrier energy relaxation and 
carrier recombination, and assume that 
carrier cooling takes place within the 
trailing edge of the current pulse, 
following the quantitative explanation for 
the second type of internal Q-switching5,8. 
The characteristic time for energy 
relaxation of the hot carriers in the band 
is very short (< 1 ps)13, as compared with 
the current pulse fall time (~1 ns). 
Investigations into energy relaxation 
within localised states in heavily doped 
GaAs14 have shown that the thermally 
activated multiple trapping mechanism is 
responsible for the relaxation in this case. 
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The characteristic time required for carrier relaxation in the tails is very sensitive to the lattice temperature, but for high 
lattice temperatures (of over 200 °K) the relaxation time is very short as well (< 0.5 ps)H The question thus arises of why 
the lasing delay with respect to the trailing edge of the current pulse can be as long as a few nanoseconds (Fig.4 (a,bl-b4)). 
We believe that this is caused by the saturable absorption via the tail states. The distribution of the injected earners across 
the active region is not homogeneous, the concentrations of both electrons and holes being high near the emitters and 
significantly lower in the centre of the base due to low carrier mobility. The exact moment when lasing occurs is defined by 
the competition between the gain for the optical transitions between the free carrier states and the absorption via the tail 
states in the centre of the base region. The gain becomes very high when the current pulse is stopped, but the absorption is 
also high since the tail states are essentially depopulated at a high lattice temperature. This absorption decreases in time due 
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to spontaneous emission re-absorption, which leads to a tail state population (absorber saturation) in the center of the active 
region. Lasing occurs after the tail states are filled. The corresponding delay rises as the lattice temperature increases. One 
should now take into account the fact that there is no pumping current during the delay time, and that earner recombination 
reduces the carrier density and thus the width of the carrier energy distribution. Accordingly, both the gain amplitude and 
the gain spectrum width should decrease as the lattice temperature rises. This is the case shown in Fig.4. The characteristic 
time required for carrier recombination can now be evaluated. Radiative recombination obviously predominates in the 
process and the recombination lifetime r ~ l/(n0' B), where n0 is the carrier concentration in the active region within the end 
of the current pulse, and B is the radiative recombination coefficient (for heavily doped GaAs B ~ 2.5 10 cm / s) . The 
value n0 was evaluated to be n0 ~ 2 ■ 10'8 cm3 from the width of the dynamic spectrum of spontaneous emission within the 
trailing edge of the current pulse. The resulting recombination lifetime value T~ 2 ns agrees well with a characteristic time 
of both amplitude and spectrum relaxation for the short optical pulse (Fig.4). 
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Fig. 5. Single optical pulse with linear (a) and logarithmic (b) 
intensity scales, derived by spectral filtering from the Q- 
switched LD-62 laser. The photon counting mode of a streak- 
camera was used in (b) in order to achieve a wide dynamic 
range. The optical signal is normalised to a 200 W peak value 
in this case. 

Optimal pumping and temperature conditions for the 
generation of highly intensive picosecond optical pulses can 
be formulated on the basic of this consideration. First, the 
current pulse amplitude must be sufficient for carrier heating. 
Then the lattice temperature should be so high that the 
localised tail states are efficiently depopulated by thermal 
activation. The pumping current pulse should be longer than 
the carrier lifetime (a few nanoseconds), so that a thick active 
region is efficiently optically pumped. The trailing edge of the 
current pulse should be shorter than the recombination time 
for a given carrier density at the end of current pumping 
(r ~ 2 ns in the case of LD-62 laser). Finally, the lattice 
temperature must be accurately adjusted in such a way that 
the delay in the optical pulse with respect to the trailing edge 
of the current pulse has its minimal value not longer than r . 

The optical pulse presented in Fig. 5 was achieved following these requirements, and making use of the transient spectrum 
filtering method 5 to suppress long-term emission after the pulse. Single pulses of 200 W / 23 ps were achieved with no pre- 
pulsing or after-pulsing signal with respect to the 20 mW level. The measurements were performed using a streak-camera 
(Hamamatsu C4742-95). The peak power was estimated from the measured average optical power after the band-pass 
filter. 

III. DISCUSSION 

III.1 Physical reasons for two types of the Q-switching behaviour. 
We interpret the Q-switching mode observed for the first type of laser diode (Fig.2(a,b), Fig. 3 (a)) in terms of the diffraction 
losses theory7, which considers the very sharp dependence of the diffraction losses on the value of a small refractive index 
step in the homojunction side of the diode wave-guide. This index step decreases as the carrier concentration increases, thus 
destroying the wave guiding effect at a high current (but not so high that gain guiding confinement can compensate for the 
reduction in the refractive index). Such assumption provides a means for understanding the situation when lasing does not 
occur during the whole duration of the current pulse except for its leading and trailing edges, i.e. when the current level is 
not high enough for strong diffraction losses to be induced. 
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Furthermore the time-dependent contribution to the refractive index step, considered in Ref. , is caused by Joule heating 
due to the passage of a current through the active region. The band gap of the active region material decreases relative to the 
value in the adjoining regions, since all the heat generation is limited to the active region for a -100 ns pulse. Fairly 
insignificant Joule heating in the active region (~a few °K) can compensate for the current-associated decrease in the 
refractive index step. . 
Theory7 allows both a long lasing delay and the Q-switching phenomena to be explained for long-duration current pulses 
(-100 ns) The long lasing delay can be interpreted as follows Lasing does not occur when optical losses exceed the gam 
for a high current amplitude. Joule heating in the active region can reduce the diffraction losses after an interval of several 
dozens of nanoseconds, which causes the onset of delayed laser generation. Otherwise, lasing may occur within both the 
leading and trailing edges of the current pulse due to lower diffraction losses at a low current, as we observed for the first 
laser type with a pulse duration less than -30 ns (Chapter II). Some increase in the losses with respect to gain, e.g. through 
the increase in lattice temperature in the whole laser structure, suppresses this emission, but it is still possible to achieve 
lasing at the end of the current pulse by increasing the current pulse duration. The diffraction losses become time-dependent 
in Ulis case and local Joule heating of the active area causes Q-switching behaviour (Fig.2(a,b)). 
The spectral features shown in Fig.3(a) can be easily understood in the framework of this model. The spectral maximum of 
the gain in the semiconductor lasers shifts towards low photon energies when the current is reduced . The Q-switchmg 
spectral band should thus be shifted towards lower photon energy with respect to the stationary lasing, since the current 
value decreases in the trailing edge. The spectral shift of -10 meV can be expected [11] when the current is reduced to about 
a half of its nominal value which is in reasonable accordance with the experimental data (Fig.3(a)). Note finally that the 
Joule heating of the active region was evaluated by the spectral shift in the emission band maximum during a 
100 ns/30A /cm 2 current pulse. The emission band maximum shifted by 1.1 nm towards a long wavelength from the 
beginning to the end of the optical pulse, which corresponds to an increase of ~ 3 °K in the temperature of the active region. 
An alternative qualitative model5'8 is used here to interpret Q-switching behaviour in the second laser type with pumping 
pulses of a few nanoseconds. Two basic assumptions are used in this model, which should be intrinsically inherent for a 
hcavilv doped and compensated active region. These are strong light absorption with the tail states involved and very low 
carrier mobility which allows a strong electric field, causing carrier heating to be achieved in a thick active region at high 
currents. The first assumption seems to have been well proved experimentally long ago as a reason for the long lasing 
delays in SH laser diodes13"15. 
The carrier heating hypothesis8 has not been directly proved so far, but it did allowed the time-resolved spectra observed in 
recent years to be explained5'8. The operation of the laser can be described in the framework of this model as follows. The 
distribution of the injected carriers across the active region is not homogeneous after the pumping current pulse is applied, 
the concentration of both electrons and holes being high near the emitters and significantly lower in the centre of the base 
due to the low carrier mobility. Lasing should in principle not occur in this structure, since light absorption predominates in 
the central part of the active region. Specific optical pumping nevertheless allows lasing to be achieved. Indeed, a certain 
fraction of die spontaneous photons generated near the emitters are absorbed in the whole active region of the diode, leading 
to a population of tail states. No carrier activation from the localised tail states occurs at a low temperature, and the gam at a 
given moment will exceed the optical losses for the photons, whose energy is significantly lower than the semiconductor 
band gap (curvel in Fig.3(b)). Abnormally long lasing delays can be expected for these lasers, since only a small fraction of 
the spontaneous photons which are generated around the emitters should be absorbed in the active region. Thermal 
activation from localised to delocalised states becomes possible at a higher lattice temperature, which leads to a widening of 
the carrier distribution towards higher energies and to a decrease in the population of lower energy states. This will increase 
the lasing delays which will become very sensitive to the lattice temperature8 due to widening of the earner energy 
distribution5 and corresponding gain suppression. Unlike the low temperature case, the high-energy transitions are involved 
in lasing at a high lattice temperature. The corresponding energy states are delocalised, and the earners which occupy these 
states participate in the conductivity. This makes it possible for the carrier energy distribution to be dependent on the current 
for a high cunent density, and this may cause Q-switching behaviour. 
The strong electric field in the central part of the active region (caused by low mobility) heats the earners, thus broadening 
the canier distribution and suppressing the gain. This causes an additional increase in the lasing delay and at the same time 
allows an increase in carrier concentration in the active region before lasing occurs. Instantaneous canier relaxation to the 
bottom of the energy band should be expected when the cunent pulse is broken off, which causes a very marked gam in the 
spectral range, conesponding to the transitions between the band edges. The exact moment when lasing occurs is defined by 
the competition between the gain for the optical transitions between the free carrier states and the absorption via the tail 
states The gain becomes very high when the cunent pulse is stopped, but the absorption is also high, since the tail states are 
essentially depopulated at a high lattice temperature. This absorption decreases in time due to spontaneous emission re- 
absorption, which also leads to a tail state population. When, after a certain delay, the tail states are filled, the optical peak 
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can be expected at the front of lasing ( Section II.2) with the intensity dependent on the falltime of the current pulse and the 
lattice temperature. 

An alternative explanation for short-pulse generation by LD-62 lasers3'4,6 accounts for the same idea of wave guide 
destruction by a high carrier concentration as in Ref.7. Although this approach can explain the long delays and carrier 
accumulation in the active region before the gain-guiding effect7 leads to lasing, the explanation of Q-switching behaviour 
may encounter difficulties in tins case since the Joule heating for short current pulses is negligible. Furthermore, this model 
should be able to explain the spectral peculiarities5,8 of the phenomenon. Finally, it is worth noting that Q-switching in the 
first laser type was not observed with short high-amplitude current pulses in our experiments (Chapter II), despite the effect 
of the carrier density on the refraction index step should play an even more important role in the case of a SH laser diode 
with a thin, low-doped active region. It is otherwise clear from the alternative model5,8 that Q-switching of the second type 
should not be observed in a laser diode with a moderate doping level in a relatively thin active region. 
We would further assume that certain contradictions in publications on the internal Q-switching effect from the 1960s and 
1970s might be associated with the investigation of different physical phenomena by different authors. This evidently 
concerns the physical nature of long lasing delays caused by diffraction losses, or alternatively by saturable absorption. We 
would assume, for example, that it was the first type of Q-switching that was investigated in Ref.10 and the second one in 
Ref. 15-n 

III.2. Automatic synchronisation of the absorber saturation in the second Q-switching mode. 
An important question which remains still open is: why the switching instant can be so well synchronised for entire active 
region of the laser diode that a high gain overshoot takes place? Indeed, a high local gain should take place when the 
absorber in a certain area of the laser diode has been saturated. This saturation is caused by the spontaneous photon 
generation near emitters and their absorption within the central part of the active region, and a characteristic time for tins 
process lies in the nanosecond range. Natural structure inhomogeneities should cause different instants of the absorber 
saturation for different parts of die laser structure. A synchronisation in these instants should not be as good as some 
picoseconds, which will reduce significantly the overshoot in the integral gain and should not allow the high-power 
picosecond generation to be achieved in a real structure. 

Fig.6. Illustration of an idea of the 
positive feedback which synchronizes 
the switching instants for different 
parts of the active region with 
inhomogeneities . 
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A simple idea of an intrinsic positive feedback could explain this contradiction (see illustration in Fig.6). Imagine that the 
absorber is saturated in a small region of the laser structure. This region becomes a source of superluminescent emission, 
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which will be limited within the waveguide, and will provide the means for the absorber saturation in the adjacent areas of 
the diode These new regions with the saturated absorber will provide further increase in the stimulated emission intensity, 
and finally whole the active region will have the absorber saturated within a picosecond time range. This avalanche-like 
process, which is an intrinsic property of the distributed absorber, will case a prompt increase in the integral gain over whole 
inhomogeneous active region. 

IV. CONCLUSIONS 

Two forms of spectral and power response behaviour were demonstrated experimentally for SH laser diodes operating in 
internal Q-switching mode. Both regimes fit the formal definition for the Q-switching phenomenon, but they can be 
attributed to different physical processes in the laser structure. The Q-switching observed for long current pulses (-100 ns) 
in a SH laser with a lightly doped thin active region is interpreted in terms of the diffraction losses theory . High-power 
picosecond pulse generation by a SH laser with a heavily doped thick active region pumped with short current pulses (~ a 
few nanosecond) is interpreted in terms of the carrier heating and cooling model5'8, accounting for the intrinsic saturable 
absorption in the structure. This intrinsic absorber should play very important role in the switching synchronisation in a real 

laser diode with structure inhomogeneities. 
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A compact laser diode based transmitter was designed and tested for laser radar and various laboratory applications. Single 
optical pulses with a peak power of up to 200 W. 23-65 ps pulse duration and a repetition rate of up to 50 kHz were 
measured. Transient mode spectral filtering suppressed afterpulsing modes by a factor of 104-105 with respect to the peak 
power. A control module was developed which provided a jitter value between electrical triggering and the optical pulses as 
low as 14 ps. Averaging of 103 events allows 1.5 ps stability between the triggering and the optical pulses to be achieved 
within a delay range from 5 to 250 ns. 

I.  INTRODUCTION 

A stable high-power picosecond light source is useful for a number of laboratory tests and for practical applications such as 
high resolution optical radars, precise 3 D imaging, lidars, laser tomography, time imaging spectroscopy, lifetime studies, 
etc. Low cost compact transmitters may find further industrial applications. 
We report here on a transmitter based on the Q-switching operation regime of a commercial single-heterostructure (SH) laser 
diode with intrinsic absorber1'2. A method of transient mode spectral filtering allows a clean single pulse to be derived from 
the Q-switched laser response3. The achievement of high optical power (> 100 W) together with short (picosecond range) 

pulse duration require the use of a high current (~ 100A) pulses a few nanoseconds in length for the pumping, and optimal 
temperature conditions '. Moreover, precise temperature control in the active region of the diode is necessary for achieving a 
highly reproducible waveform in the optical pulse, and also a stable pulse delay with respect to the triggering pulse. High 
stability of the current pulse amplitude and waveform are also important. 
Principles for precise local temperature stabilisation and the results of tests on a prototype of the picosecond pulse 
transmitter are presented. 

II. PUMPING AND TEMPERATURE CONDITIONS 

Internal Q-switching behaviour associated with high-power picosecond optical pulse generation in laser diode LD-60 (Laser 
Diode Inc) is illustrated in Fig.l. This phenomenon can be observed in a single4ieterostructure (SH) laser diode with a thick, 
heavily doped active region when a current pulse of a few nanosecond in length is used for pumping. The effect manifests 
itself at a sufficiently high current amplitude and lattice temperature in the laser diode. A slight increase in the current pulse 
amplitude or in the lattice temperature causes a jump-like increase in the lasing delay, a reduction in the duration of the gain- 
switching spike and a significant rise in spike intensity (Fig.l(a,b)). Fairly significant spectrum broadening (curves 2, 2' in 
Fig. 1 (c)) for the Q-switching pulse is observed in this case (curve 2 in Fig. 1 (b)). 
This phenomenon has lately been ascribed to the simultaneous effect of carrier heating and intrinsic absorption in the diode 
active region '"3. One should not confuse the behaviour illustrated here with another internal Q-switching phenomenon in SH 
lasers4"6 caused by the diffraction losses in the cavity. This concerns lasing near the trailing edge of a -100 ns current pulse 
in a SH diode with a thin, lightly doped active region, and the optical pulse intensity is very low in this case1. 

High-power picosecond pulse generation is caused by a high gain overshoot over the losses level. These conditions can be 
attained in a SH laser diode with a thick, heavily doped active region due to current-induced carrier heating and intrinsic tail- 
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Fig. 1.   Pumping current (a), optical pulse waveforms 
(b) and optical spectra (c) measured for laser diode 
LD-60 operating in gain-switching (curves 1) and Q- 
switching (curves 2,2') modes. Curves 1 and 2 in (c) 
present time-integrated spectra, and curve 2' presents 
the transient spectrum corresponding to the Q- 
switching spike. Optical waveforms and spectra are 
measured with a spectrograph-equipped streak camera. 
Lattice temperature of the laser diode TL: 1-306.27 °K; 
2,2'- 308.85 °K. The absolute accuracy of temperature 
measurement is about 1 °K and the relative accuracy 
about 0.01 °K. 

state absorption1 X1. Very low carrier mobility causes a 
strong electric field in the centre of the active region at a 
high pumping current, carrier heating allows carrier 
accumulation in the energy space to be achieved in the 
active region prior to lasing. High gain appears when the 
current pulse causing the carrier heating stops. A very 
high rate of carrier cooling should not in principle allow 
high gain to be achieved when the trailing edge of the 
current pulse lies in the nanosecond or subnanosecond 
range. Intrinsic tail-state absorption in the central part of 
the active region nevertheless makes this possible. 
Lasing occurs when the absorber is saturated and the 
saturation time, being dependent on the lattice 
temperature, varies in the nanosecond range. 

Camers cool down within the trailing edge of the current pulse and create high spatially localised gain, but lasing does not 
occur until the absorber is saturated, and the exact instant of the generation onset can be controlled by lattice temperature 
adjustment. This qualitative consideration allows optimal pumping and temperature conditions to be formulated. 

ThreeS'fransmitters were designed and tested, so that three types of laser diode which satisfy the listed requirements 
were used with the same structure. These lasers differ in the size of their emitting area: 2 X 75 urn (LD-60, Laser Diode 
Inc., standard peak power 3 W), 2 X 150 um (LD-62, standard peak power 5 W) and 2 X 225 um (LD-65, standard peak 

power 10 W). . . 
The following optimal (sufficient) pumping conditions can be specified for high-power picosecond optical pulse generation 

in the internal Q-switching mode. _ . 
First the dl/dt rate and amplitude of the current pulse should be successfully high in order for carrier heating to prevent 
lasing during pumping at a moderate lattice temperature (see below).The pulse duration is then a compromise between two 
factors Optical pumping of the central part of the active region2 requires the pulse duration to be longer than the radiative 
recombination lifetime (~2ns)' at an excess carrier concentration of 21018 cm"J. Contrariwise, an excessively long current 
pulse requires the use of a high lattice temperature for the Q-switching mode to be obtained2. An increase in the lattice 
temperature reduces the efficiency of radiative recombination, thus reducing the power in the Q-switching peak. Finally, the 
fall time of the current pulse should be shorter than the recombination lifetime1. 
A sufficient current density was found to be 1.5105 A/cm2 in all cases at a current pulse rise time of 2-3 ns. The optimal 
duration for the current pulse was found to be 2.5-3.5 ns, while its fall time should be as short as possible (preferably less 
than 0 ns) The required current density would mean current amplitudes of 43 A, 85A and 130A for the laser diodes LD-60, 
LD-62 and LD-65 respectively. A compromise was found between these requirements and simple realisation of the pumping 
circuit by using an avalanche transistor based switch. The original circuit design used here requires special analyses and will 

54 Proc. SPIE Vol. 4354 



be discussed elsewhere. This has allowed the current across the laser diode to be as high as 130 A with a maximum residual 
voltage across the avalanche switch of 85 V and a differential resistance of 0.2 Q in the switch. The values for the current 
pulse rise time were found to be 1.7, 2.0 and 2.7 ns for 43, 85 and 130A amplitudes respectively (Fig.2). 
The durations (2 5 4 3, 6.1 ns) and fall times (1.3, 2.6, 4.7 ns) of the pumping pulse were defined by the current oscillation 
in a circuit containing a full inductance of 3.4 nH and a capacitor C0 (0.33, 1, 2.2nF). The capacitor that served as the 
voltage source was preliminarily charged to 300 V. A shunting diode was used to defend the laser diode from negative 
current oscillation. The second (positive) oscillation of the current was damped to the extent that the corresponding laser 
pulse (if this appeared) had a much narrower spectral band than the Q-switching pulse, and the spectral filtering (see below) 
suppressed this emission completely. 
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Fig.2.   Current pulses generated by the avalanche 
transistor-based driver at various values of the voltage 
source capacitor C0, nF: 1-2.2, 2-1, 3-0.33. The current 
pulses were obtained by replacing the laser diode chip 
with a 0.94 Q load resistor with a parasitic inductance of 
0.7 nH. An iteration procedure was then used for 
deriving the current pulses from the voltage pulse across 
the load resistor. 
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Fig.3.   Illustration of the effect of spectral flittering on 
the optical pulse waveform of Q-switched laser diode 
LD-60. Waveform 3 is measured with a spectrograph- 
equipped streak camera without spectral filtering, and 
curves 1 and 2 correspond to the numerical filtering in 
the camera pattern with long cut-off wavelengths of 894 
and 904 nm respectively (compare with Fig. 1(c)). The 
peak power was evaluated from the optical energy 
measured with 904 nm interference filter3. The optical 
waveforms with a wide dynamic range (b) were 
obtained in photon counting mode. 

II.2.Temperature conditions and spectral filtering 
The highest intensity of the Q-switching peak was observed when the diode temperature exceeded the critical value 
corresponding to the transition from the gain switching to Q-switching mode by only a few°K. The transient spectrum width 
for the optical spike in this case (curve 2' in Fig. 1(c)) was an order of magnitude higher than that for the normal quasi-steady 
state mode (-30 nm against ~3nm). Any further increase in the lattice temperature caused a gradual rise in the lasing delay, a 
reduction in the power and transient spectrum width of the Q-switching pulse and an increase in its duration. Precise 
thermal stabilisation at a level of a few °K above the transition temperature should thus be required for the optimal operating 
mode to be achieved under given pumping conditions. 
A stimulated emission "tail" typically appears after the Q-switching spike, when the current pulse has already stopped \ This 
emission is caused by the transitions between the localised states, its intensity is lower than the Q-switching pulse by a factor 
of 10-50 (depending on pumping and the lattice temperature), and its duration can be as long as several dozens of 
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nanoseconds. Luckily this emission tail has a much narrower spectrum than the transient Q-switching mode, which allows 
spectral filtering to be used to derive the single picosecond pulse3. The interference optical filters used in the module were 
specially designed and fabricated by Chroma Technology Inc. and had a transparency of 75-80% and a steep spectral 
characteristic near cut-off (-1.5 nm/decade). Use of these filters allowed a clean single Q-switching pulse to be derived, 
with a reduction of 30-40% in the pulse amplitude due to the narrowing of the transient spectrum (Fig.3(a)), and an 
additional 20-25 % due to filter transparency. 
Spectral filtering can also be used to reduce the Q-switching pulse duration from ~ 45 to -23 ps by fine adjustment of the 
laser temperature. The method is based on chirping of 1.5 ps / nm as observed in the picosecond range spike". An increase in 
the lattice temperature shifts the transient spectrum towards a longer wavelength and the filter cuts off the modes with a 
longer switching delay (compare curves 1-3 in (Fig.3(a)). Furthermore, spectral filtering allows the emission after Q- 
switching spike To be suppressed by a factor of lO'-lO5 with respect to the peak power (Fig.3(b)). 

III. TRIGGERING AND TEMPERATURE CONTROL 

Block and timing diagrams which illustrate the principles of temperature, charging and triggering control are shown in 
Figures 4 and S.Vhe module is designed for operation with a streak camera and has an output for the sweep triggering (pulse 
"Sweep Trig.") before optical pulse generation (pulse "Laser Trig"). The timing of sweep triggering can be delayed relative 
to the "Ref/Trig." pulse by intervals ranging from 0 to 100 ns in 10 ns steps. The "Laser Trig." pulse used for laser driver 
triggering can be delayed by intervals ranging from 0 to 250 ns (in 25 ns steps) at a lowjitter FWHM value of 14 ps with 
respect to both "Ref. Trig." and "Sweep Trig." Tunnel diodes with precise thermocontrollers were used in fast comparators 
(Fig.4) in order to provide high stability between the pulses "Ref. Trig.", "Laser Trig" and "Sweep Trig." An additional 
facility is a "MCP Trig." pulse which serves as the preliminary (-200 ns before "Ref. Trig.") trigger for a pulse generator in 
the micro-channel plate of a streak-camera. 
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Fig.4.   Block diagram of the laser module. The thermocontroller loops are shown separately in Fig.6. 
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Fig. 5.   Diagram of the electrical pulses in 
the laser module. The pulses with high 
delay stability are shown on a nanosecond 
scale. 

Dynamic charging of the capacitor Q, 
which supplies an avalanche transistor 
switch, was used for stable driver 
operation at high repetition rates. The 
charging, controlled by the pulse "Lock 
Charge" (see diagrams), stops a few 
microseconds before laser pulse 
generation and further charging arises 
within ~ 2 u.s after the laser pulse. A 
simple but effective method was used for 
precise thermal stabilisation of the active 
region of the laser diode. This method is 
based on the fact that the threshold current 
of the laser (~ 104 A/cm2) is so high that 
moderate forward biasing (-300 A/cm") 
affects the lattice temperature in the active 
region rather than the laser pumping. This 
means for LD-62, for example, that a 
constant biasing current of 200 mA can 
heat the diode structure by a few dozens 
of °K and still remain lower than the 
threshold current by a factor of 25. 

The voltage drop across the laser diode at low current forward 2 mA biasing was used as a measure of the lattice temperature 
in the active region (Fig.6(a)). An additional 0-500mA biasing current was heating the active region all the time except in an 
interval controlled by the pulse "Lock Heat". Only the probe current flows through the diode during this time, and the 
voltage drop across the diode is measured during the pulse "sample T" duration. Variation in this voltage has a thermal 
coefficient of-1.8 mV/°K, and this voltage value is used for both heating current control and laser temperature indication. 
A standard fhermocontroller loop as used for the thermal stabilisation of all the fast comparators and avalanche transistors in 
the laser driver is shown in Fig.6(b). Peltier coolers were used for the thermal control, and package-free Si diodes as 
temperature sensors. Both the sensor diodes and the Peltier coolers had good thermal contact with the elements under 
stabilisation. 

IV. TEST RESULTS 

IV. 1. Optical power and pulse duration. 
As already been mentioned (curve 2 in Fig. 1(b)), a Q-switching optical pulse always has an emission tail of low intensity but 
very long duration. This tail creates difficulties in reliable power measurement since the contribution of the emission tail to 
the pulse energy exceeds that for the picosecond pulse. The problem becomes even more complicated since the emission tail 
has a different angle diagram from the Q-switching spike. Spectral filtering allows this problem to be overcome, since no 
optical signal except the Q-switching pulse contributes to the measured optical energy. 
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The measured optical energies for the optical pulses after the filter are 1.5-2.5 nJ, 3.5-4.5 nJ and 5.2-6.5 nJ for LD-60, LD- 
62 and LD-65 respectively with various pumping pulses and lattice temperature adjustments. The current pulse amplitude 
was controlled by adjusting the voltage across the capacitor in the laser driver, and temperature of the laser diode was 
optimised for each set of pumping conditions in order to achieve the maximum Q-switching spike amplitude. An alternative 
criterion for temperature optimisation can be selected in order to match the transient spectrum (curve 2' in Fig. 1(c)) to the 
spectral characteristic of the selected optical filter. An increase in the diode temperature shifts the spectrum towards a long 
wavelength, thus reducing the optical pulse duration (compare waveforms 1 and 2 in Fig.3(a,b)) together with a reduction in 
the "tail" emission and a certain decrease in peak power. Two alternative bandpass optical filters were used in our tests, both 
suppressing long-wavelength emission, with cut-off wavelengths of 904nm and 912 nm respectively. An appropriate filter 
was selected for each laser transmitter. The module allows simple, prompt adjustment of the optimal diode temperature 
according to the requirements of a specific application. 
The shortest pulse duration was found to be 23 ps for LD-60 and 30-45 ps for the others (optical pulse waveforms measured 

with a streak camera for LD-60 are shown in Fig.3). The full range of the peak optical power for all the transmitters in the 
output of the collimating optics and the spectral filter was measured to be 50-180 W. 
The peak power without" spectral filtering is typically 60-80% higher, but the FWHM of the pulse ranges from 40 to 70 ps 
and the long emission "tail" is not suppressed in this case. 
It is worth noting that use of a wider laser stripe allows a higher optical energy to be achieved in the single spike, but the 
pulse duration becomes longer and the eventual gain in peak power is not very significant due to structuralinhomogeneity. 

IV.2. Stability of the lasing onset. 
An optical "start" pulse is typically used in laser radars, and a stable delay between the electrical triggering and the optical 
pulse is not important in this case. It is very convenient, however, for this delay to be stable in laboratory tests and in various 
optical measurements when a dispersive medium is to be probed by the laser pulse. This especially concerns receiving 
channels with free-space optics which need triggering some dozens or hundreds of nanoseconds before the optical pulse is 
recorded. 
The normal deviation value of the jitter between the "Sweep Trig." and "Laser Trig" outputs was found to be 7 ps (14 ps 
FWHM). This value does not define the long-term stability of the laser pulse with respect to the electrical triggering, 
however, since averaging over 1000 shoots reduces jitter to a value under 1 ps. The main problem consists of a drift in the 
laser switching delay, 
which can be brought about by the following causes: 

fluctuation in the supply voltage of the avalanche transistor based laser driver 
variations in the temperature of the active region of the laser, associated with the instant of absorber saturation 
thermal fluctuations in various switching semiconductor devices such as avalanche transistors in the driver, tunnel 
diodes and RF transistors used in the fast comparators 
uncontrollable mechanical stresses in the optical construction and even in the RF cables 

Some of these causes were investigated and corresponding arrangements (voltage and temperature stabilisation) were 
undertaken in order to reduce the delay drift. It was found that an increase in the lasing delay by 1 ps could be caused by 

a reduction of 11 m V in the 3 00V supply voltage (stabilised with an accuracy of 2 m V) 
an increase of 0.018 CK in the lattice temperature of the active region of the laser diode (stabilised with an accuracy of 

0.01 CK) 
an increase of 0.096 CK in the temperature of the avalanche transistors (stabilised with an accuracy of 0.02 CK at 
repetition rates under 5 kHz) 
a change of 0.05 CK in the temperature of the tunnel diodes (stabilised with an accuracy of 0.01 CK). The temperature of 
the RF transistors was stabilised at the same level, while the thermal coefficient for the transistors was lower than that 
for the tunnel diodes. 

The stability of the laser pulse with respect to "sweep" triggering was found to be ± 1.5 ps within one hour, with averaging 

over 1000 shoots. This instability is higher than that expected from the above estimates, which means that some other factors 
affecting the delay have not been taken into account. The resulting stability is still fairly good for many applications, 
however, and apparently this corresponds to an accuracy of ± 0.25 mm in the distance measurements. 

IV.3. Maximum repetition rate 
Stable, long-term operation was observed with a maximum repetition rate of 50 kHz in the modules based on the laser 
diodes LD-60 and LD-62, and 10 kHz in that based on LD-65. The maximum repetition rate was limited by the avalanche 
transistor driver. The Peltier cooler used in the module allowed 10 W of the average power from the avalanche transistors to 
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be dissipated We assume, however, that the average power is not the only limit at a frequency close to 100 kHz. The 
repetition period becomes comparable to the characteristic time required for thermal diffusion across the transistor structure 
in this case, which should create a fundamental restriction. Operation of the LD-60 based module becomes unstable at 75-80 
kHz, which leads to prompt degradation of the transistors. 

CONCLUSIONS 

A transmitter module for laser radar and various laboratory applications was designed and tested. The module generates 
single optical pulses of length 23-45 ps with a peak power of 50- 180 W and an emission band 10-20nm wide with its centre 
at about 900 ran Operation is based on the Q-switching operation mode of low-cost commercial laser diodes. Transient 
mode spectral filtering is used to suppress the long emission tail and control the pulse duration. The repetition rate is limited 

by the driving circuit up to 50 kHz. , .      ,, ^ 
An original method for precise thermal control of the active region allowsl.5 ps stability to be achieved between the 
electrical triggering and the optical pulses within a delay range from 5 to 250 ns. 
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Pattern formation in a broad-area VCSEL 

N.A. Loiko, I.V. Babushkin 
Institute of Physics, National Academy of Sciences of Belarus, 

Skorina ave., 70, 220072, Minsk, Belarus, 

ABSTRACT 
We show that in addition to the dispersion mechanism of selection of tilted waves in a cavity of a broad-area VCSEL the 
dependence of the reflection from distributed Bragg reflectors on an incidence angle of the tilted waves leads to the mode 
selection and spatial periodic pattern formation. The mode competition may acquire even more diversity if the polarization 

of the laser field comes into play. 

Keywords: periodic spatial structures. Bragg reflector, VCSEL. polarization pattern. 

1.   INTRODUCTION 
Vertical-cavity surface emitting lasers (VCSELs) hold promise as m.crocavity light sources for optical parallel processing 
and h,eh capacity optical fiber communications due to inherent advantages, resulting from their unique device geometry ; . 
On the other hand, due to a designed transverse symmetry, field polarization properties in VCSELs are not so simple in 
comparison with conventional edge-emitting semiconductor lasers: in general the polarization of the fundamental transverse 
mode is free to be randomly oriented in the plane of the active layer3'5. The orientation of polarization can vary from one 
VCSEL to another depending on the directions of the crystal axes, stresses and geometrical asymmetries. Also , as has been 
shown in works6'7, the continuous wave (cw) transverse mode structure of VCSELs is relatively more dense than is typically 
encountered in edge-emitting devices. This impacts upon the polarization properties of the device where it has been found 
that the steady-state distribution of lasing power between polarization states changes markedly as higher order transverse 
modes are excited3'5'8'9. These aspects of cw properties of VCSELs can be anticipated as having a strong influence on the 
dynamical properties of the device. So polarization control and transverse-mode control are two linked practical problems 
which require a better fundamental understanding of the physical mechanisms of polarization and transverse-mode selection 

^^experiments in this direction display Hermite- or Laguerre- Gaussian modes3'5'8'13 that indicates the formation of 
waveguide in the device due to thermal-lensing effects. An aperture of lasers used in these experiments is considerably 
small Remarkable improvements in device performance have been attained in the last years using selective oxidation of 
high aluminum content in the VCSEL structure1416. These so-called "selectively oxidized" or "native-ox.de confined 
VCSELs can be design as broad-area devices opening new possibilities for their application on the basis of a rich variety of 
dynamical behavior inherent to a broad-area lasers17"23. One of them is formation of transverse field periodic structures 
corresponding to tilted waves. This phenomenon has been demonstrated by recent experiments . It has been shown that the 
shape of observed structures depends on the polarization of lasing field. 
Theoretical predictions of periodic pattern formation in a broad-area laser are based on the scalar Maxwell-Bloc*»equations 
for two-level atoms in a single- longitudinal mode planar cavity treated in the uniform field limit1821. In accordance with 
this theory a selection of transverse Fourier modes which correspond to tilted waves in a cavity occurs due to the gain 
dispersion mechanism. Nonuniform field profile is formed when the detuning 5=a)a-coc between the atomic resonance a>„ 
and the cavity frequency coc is positive. At that there arise waves travelling in the transverse direction if a system «infinite 
and standing waves in the case of finite transverse sizes. Similar and even richer behavior is found m models which take 
into account more closely the semiconductor nonlinearty25'26 and light polarization degrees of freedom . 
In this report we show that the dependence of the field reflection from distributed Bragg reflectors on an incidence angle ot 
tilted wave leads also to the mode selection. Due to this mechanism transverse standing waves appear even in an infinite 
system. Direction of these waves is determined by a direction of laser field polarization. These structures are similar to 
structures observed in experiments24 near the lasing threshold. 

2.   MODEL 
Our model is a modified version of the model developed in the work25 which takes into account the successive transmission 
of the lasing emission through cavity elements (the corresponding scheme is presented in figure 1). It is based on the fact 
that a thickness of the active layer in VCSEL is often much less than the light wavelength so we can neglect diffraction 
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effects within the thin layer and obtain expressions that relate the slowly varying amplitudes of the incident and transmitted 
fields. 

mtm***^^/«-- 

i     Braoc; reflector 

r   ^£~m~ms 
;Vi, DenocJs 

Figure 1. The model of VCSEL. The thin active layer is placed between Bragg reflectors on the distance L, from the first 
and L; from the second reflector. Each reflector comprises M, (i=l,2) periods, consisting in turn of quarter-wave layers 
nj" and nj°. A space between Bragg reflectors and active layer is filled by media with reflection coefficients n, and n2 

correspondingly. E,7, E,-2 are incoming waves and E;/, E,2 are waves transmitted through the active layer. 

The effective field inside the layer is composed from the incident fields E,,,, Eu and a secondary field created by the 
polarization of active medium28: 

E(r,r1) = E(,(r,r,) + E1,(r,r±) + -^-P(r,r±) 
c 

(1) 

Here E (E, ) and P - are slowly varying in time vector amplitudes for the fields and polarization with x- and y- polarized 
components; co- is the field frequency; / is the active layer thickness; rx =(x,y) determines a coordinate in the transverse 

section. Transmitted fields E„, El2 are related with the incident fields by the next expressions: 

E,L2(r,r1) = E„.2(r,r±) + ^P(r,r1). (2) 

Propagation of the radiation in the upper and lower parts of the cavity can be described in the operator form: 

Eil2{t,r±) = Fl2En2(t,r±) (3) 

with the propagation operator: 

Fl7 = p1,exp(/2/:L1,)exp(/—:LL1,)rÄ1,. 
A: 

(4) 
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Parameters p,2 determine losses in linear media between the active layer and reflectors; A, - is the transverse part of 
Laplacian. The propagation operator is obtained in the paraxial wave approximation. Note that A^ acts in such way that 

(k \ 
-is the transverse component of the full wave vector k, k = aVc=2n/X - is its module. T - is AjocikJ2, where k , = 

V*,, 

the 2x2 matrix determined by a linear anisotropies inside the cavity: 

'exp(yfl+iyj 0 
r o exp(-(yfl +iyp)) 

(5) 

Parameters % and yf determine an amplitude and phase anisotropy correspondingly. Operators Rl2 are determined in the k_ 

- space as 2x2 matrices R,, describing the reflection of a tilted plane wave with vector k_. To determine them we use the 
techniques developed in29: at first, we decompose the vector E(k_) in TE and TM - modes for which reflection coefficients 
from a Bragg reflector are known30, find the reflected TE and TM - modes, and using them compose the reflected vector 
field in the x-y basis. It should be noted that these matrices are not diagonal in a common case, which is due to polarization 
mixing by the reflectors. . . 
In view of the expressions (l)-(3), we can get the recurrent relation connecting the field in the active layer in a two moments 
of time t and t+x (T = z, + z2 is the photon round-trip time in the cavity, T, is twice the transit time of the radiation from the 

active layer to one of reflectors): 

E(f,r,) = 

F/2E(f-T,rJ + ^^^rL) + ^p('-Ti'r±) + ^P('-T2,rJ + F1F2P(f-T,r1). 
(6) 

To obtain the equation (6) we have taken into account that the operators /j H F2 are commutative. The times x, are 

determined by effective lengths of the upper and lower parts of the device with allowance for a penetration depth of the 
incident wave into the Bragg reflectors^1. . 
To find a reply of active medium on the radiation we use the model developed in the work -. This model is the vectonal 
extension of usual Bloch equations for two-level atoms. In its framework the active medium is separated in different spin 
classes each interacting with circularly polarized light of one specific handedness. The two transitions are coupled by spin- 
flip relaxation processes. The corresponding equations describing dynamics of these coupled two two-level systems are: 

dP 

dt 

dN 

dt 

dn 

dt 

1 d" 
-(_L + /S)P-J_L/AE, 
T, 3/7 

TV-7      /' 

2fi 
(E*P-C.C), (7) 

1 
-ysn + —(EP-c.c). 

In 

Here, A is 2x2 matrix: 

A = 
(N-Nn in 

■in      N-Nn 

(8) 

P' - is vector with components (Py,-Pxl N is the total population difference between the conduction and valence bands, N0 

is its value at transparency, n is the difference of the population differences for the two allowed transitions between 
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are magnetic sublevels, % is the decay rate for difference in the populations of the different magnetic sublevels, T, and 7 
the relaxation times for the total population difference and polarization correspondingly, Idl - is the module of dipole 
momentum of transition (we suppose that it is the same for both transitions), J- is the pump parameter. 

3.   THRESHOLD CONDITIONS AND NUMERICAL SIMULATIONS 
Evidently, with increasing the pump parameter, the trivial nonlasing solution loses its stability. For spatially uniform 
pumping, we seek a lasing solution in the form of a wave travelling in the transverse direction: 

E(r,r1)=eexp[-/(Q(kJ/-kLr1)J (9) 

P(r,r±) = pexp[-i(£l(k±)t -kxrx)] 

Wc suppose that the amplitudes e and p do not depend on time. A value Q. describes the frequency shift in the cavity. In 
general, it depends on the transverse wave vector because of different conditions for propagation of different tilted waves 

(equation (4)). 

If the linear amplitude anisotropy is very large so that only one from two orthogonally polarized components can be exited 
the problem is reduced to the "scalar" one. For example, if ya » 1, we can leave under consideration only x-polarized 
components of the field E and polarization P. 
In this case, the reflection coefficients are: 

R,(k±) = rSI(k1)£j+rpAk1)£sy\ 

k k 
where £    - - —L £    = —   rt and rp- are the reflection coefficients for TE and TM - modes, correspondingly. 

kx '  sy      k± '  " 
The solutions (9) can be determined from the next equations: 

l = r,(k1)r,(kx)+27r&)/'d'"r2La)(k1){(l+/«)D[l + ?1(k1)?2(kJ_)+?1(kx) + r2(k1)- 

iaD0[l + >\ (0)r2 (0) + r, (0) + r2 (0)]}, 

p = JALJl.L(a(k1)(i-a)De, 

3h2(J -D) 

Idl2 TfoLaD 

(10) 

(11) 

e~ =■ 

Here, D=N-N0, the pump parameter J has been correspondingly changed, L0,(k±) =l/[l+((5+£l(k_L) )T2) ] describes the 

shape of gain line. The parameters r/(k1) = r/(k_L)exp[/0_/(k_L)], where r,-(k±) - are modules of the reflection 

coefficients of Bragg reflectors, their phases iv(k±) enter in the expressions for the total phase: 

0.(k ) = i'(k ) + 2kL-\k_L\
2 Lt / k + Q(k1)ti. The parameter a describes relative changes in the index of 

refraction and gain accompanying changes in the population. In comparison with the two-level system in which a=$f2, this 
parameter for semiconductor media (so-called linewidth enhancement factor) does not depend from a sign of the detuning 
and is not equal to zero at 8 = 0. We take this fact into account in the following consideration. 
The last term has been introduced into the first equation of the system (11) to exclude the frequency shift of zero harmonic 
(k =0) at its threshold (D=D0) because of changes in the refractive index with changes in the population. When the active 

layer is in a maximum of the standing wave in the cavity the magnitude i',(0) + 2kLt = j,it, where;, - is integer numbers. 

Assuming also that the resonance conditions are fulfilled, \.t.j,+ h is an odd number and, correspondingly, Q.(0) = 0, we 

have: 
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Do 
3cÄ[l-r,(0)r2(0)] 

2K(ül I d I2 T2La (0)[1 + r, (0)r2 (0) + r, (0) + r2 (0)] 
(12) 

Values of D found from equations (11) determine the lasing threshold for every transverse Fourier mode. If the lowest 
threshold corresponds to the mode with non zero transverse wave vector, a pattern formation in the system is to be expected. 
The same threshold characteristics can be obtained by performing a linear stability analysis of the nonlasing state assuming 
a perturbation of the form (9). 
Using (11) we find the next relative threshold for a transverse mode excitement: 

D 

D7 
LJO) [1 - r, (k±)r2 (k±)][! + rx (0)/2 (0) + AJ (0) + r2 (0)] (13) 

/0 Lö,(k_L)[l-r1(0)r2(0)][l + r1(k1)r2(k1) + r1(k±) + r2(k1)] 

If the reflection coefficients are independent from an incidence angle the expression (13) describes the known gain 
dispersion mechanism of transverse mode selection1720. Pattern formation takes place at ö>0 because of transverse modes 
with Q(k±) = S have the minimal threshold. Note that in this case, a value of threshold is determined only by a value of 
module Ikil. An example of this is presented in figure 2a. With allowance for a dependence of the reflection coefficients on 
the transverse wave vector a value of threshold is determined also by a direction of k± It is clear evident in figure 2b. The 
threshold has a minimal value for harmonics orthogonal to the direction of the field polarization. Two symmetrical minima 
is shifted to A;v=0 and become deeper (compare the solid and dashed lines in figure 3). 
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0.2 
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-0.2 

-0.3 

-0.3    -0.2    -0.1 0.1      0.2      0.3 

-0.1 

-0.3     -0.2    -0.1 0.1      0.2      0.3 

Figure 2. Dependence of lasing threshold on the spatial harmonic k^. Values of threshold are ranged between 0.75D0 (black) 
and 1.0 (white). 

(a) Only gain dispersion mechanism are taking into account. 
(b) Gain dispersion and loss dispersion mechanisms acting cumulatively. 
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Figure 3. Cross-section (kx=0) of figure 2b (solid line) and 2a(dashed line) 

In result, periodical spatial patterns appear near the threshold. An example of a 10T, time-averaged distribution of the near- 
field (a) and far-field (b) intensities are shown in figure 4. The far-field exhibits a double spot at (kx, ky)= (0, ±ky,min) and the 
near-field is the corresponding standing wave. The stripes observed in the near-field are parallel to the direction of the field 
polarization. 

y .25 .5 .75 

.25 

k y         - . i5 0. .13 

15 * 

0. 

15 • 

.25 .5 .75 

(a) (b) 

Figure 4. Stripes in near field (a) and far field (b) at 7=0.8/0 (J0=J(k±=0)) 

When the amplitude anisotropy ya has a large negative value, only y-polarized components of the lasing field can be excited. 
Maximal reflection coefficients (minimal thresholds) correspond to transverse harmonics with wave vectors (±*x,m,-B,0), 
stripes in the near field are orthogonal to stripes presented in figure 4. This regime is stable while the pump parameter is 
increased in 1.5-2 times in comparison with its lasing threshold value. Further increasing of the pump leads to an excitement 
additional harmonics the wave vectors of which lie in the circle determined by local minima of the threshold due to the gain 
dispersion mechanism. Complicated transverse patterns appear in both considered above cases (see, for example figure 5). 
The field keeps the linearly polarized state. 
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Figure 5. Spatial structure in near field (a) and far field (b) obtained at J=2.J0 

In a common case, it is not possible to distinguish linearly polarized solutions of equations (11) because of a continuous 
mixing two orthogonally polarized components Ex and £,. by the reflectors. However, the laser behavior near threshold can 
be like to one described above. An example of dependence of the threshold on k± for small amplitude anisotropy is 
presented in figure 6 Figure 6a displays two pairs of minimal values of the threshold corresponding to two orthogonal wave 
vectors with kx or k, equal to zero. The minima are deeper for kx=0 (figure 6b). The corresponding wave are linearly 
polarized with £>0 at pump closed to its minimal value. So, near the lasing threshold only one of the orthogonal 
components is excited and transverse structures are similar to the structure shown in figure 4. This state is stable when the 
pump is slightly increased even at the value equal to the minimal threshold for the mode with orthogonal wave vector. As 
result a second pattern similar to the first after rotation through jt/2 is superimposed on the near field. This phenomenon is 
like to the experimentally observed24. A frequency difference between two orthogonally polarized fields is determined by 

the phase anisotropy parameter yp. 

0.2 _^ 
iüi§& 

0.1 Jill 
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'fllMÄ tiPiifll 
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-■K                                             .1 
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(b) 
0.1       0.2 

-0.2     -0.1 0 
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0.1       0.2 

Figure 6. Dependence of threshold on kj. for vectorial case and the amplitude anisotropy parameter % = 0.01. 
(a) Whole spatial picture: black color corresponds to D=0.75D0, whereas white corresponds to D=1.05D0 

(b) Cross-section through the line Jfc^O (solid line, x-polarized field) and through the line k}-0 (dashed line, y- 
polarized field). 

Further increasing of the pump parameter leads, at first, to a complication of two independent orthogonally polarized 
patterns. Then elliptically polarized harmonics enter into interplay. Regularities determining the laser behavior in this case 
will be considered in the future work. 

4.   CONCLUSIONS 
On the basis of the developed thin layers model of VCSEL which takes into account the dependence of reflection from 
distributed Bragg reflectors on the angle of incidence (on the transverse wave vector of tilted waves), we show that this 
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effect leads to two consequences. At first, it introduces the influence on the transverse Fourier-mode selection of a direction 
of the mode wave vector in comparison to the gain dispersion mechanism. Secondly, differences in the polarization 
anisotropy of different tilted waves appear. Interplay of these two tendencies causes the formation of independent 
orthogonal linearly polarized patterns near the lasing threshold and complex elliptically polarized structures under a higher 
level of pump. The linearly polarized structures are the standing waves direction of which is determined by the direction of 
polarization. This is in accordance with experimental data24. 
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ABSTRACT 

We find three types of complex polarization dynamics arising in VCSELs with polarized optical feedback when axes 
of the intrinsic and external anisotropies are aligned. Their appearance depends on the interplay between these 
anisotropies which determines the stability of modes polarized along the polarizer axis with respect to perturbations 
with the same and orthogonal polarization. The influence on the laser behavior of a rotation of the external polarizer 

is considered. 

Keywords: polarization chaos, VCSEL, anisotropic feedback 

1. INTRODUCTION 

Interest in controlling semiconductor laser nonlinear dynamics has been stimulated by the opportunity to achieve 
secure communication systems which exploit the properties of chaotic dynamical systems.1 Of particular interest 
are studies of the control of chaotic dynamics in external cavity laser diodes exhibiting coherence collapse. In 
the case of weakly anisotropic devices, such as vertical-cavity surface-emitting lasers (VCSELs), complex nonlinear 
behaviors may acquire even more diversity when the polarization of the laser field comes into play. The influence of 
the feedback on polarization dynamics is heightened if the optical elements that are incorporated in the laser-optical 
systems have their own anisotropy or polarization converting properties. Switching between orthogonal linearly 
polarized states was observed in experiments when external feedback enhanced one of two states and its phase was 
modulated.3'4 Corresponding behavior in theoretical models has been reported.4'5 The steady states and conditions 
of their stability were found in the case of polarized feedback. In our previous work,6 we considered the more general 
case of a misalignment of the axes of the feedback anisotropy with the axes of the intrinsic amplitude and phase 
anisotropies of the VCSEL. Modifications of the stability regions by the misalignment were elucidated. The external 
mode structure and changes in it due to the polarizer rotation were considered. 

The present work is devoted to investigations of the polarization dynamics in this system. We consider some types 
of complex polarization-dynamical regimes existing in the laser due to effects of the polarization-selective feedback, 
analyze mechanisms of their appearance, and investigate the influence of the intrinsic anisotropy parameters (the 
amplitude -ya and phase 7P linear anisotropy parameters), the relaxation rate 7« (nonlinear anisotropy), and the 
external anisotropy parameters (the strength a and phase ur of the feedback, and also the misalignment angle x 
between the polarizer axis and one of the intrinsic axis). 

2. MODEL 

The rate equations describing polarization dynamics in a quantum well VCSEL with eternal anisotropic feedback 
have the following form5'6 ( the axes x, y are aligned with the axes of intrinsic amplitude and phase anisotropies 
which are diagonalized by the same axes): 

^-E = G-E + ae-iu>rx-ET (1) 
at 
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±N = ß + S-\E\\ (2) 
dt '   ' 

where 7V± = TV ± n, 7 = 7„ + »7P, column vectors are denoted ' " ': E = (£7+, £L), |-E| = [\E+\ , \E-\ J> 

N = (JV, n), £r = E (* - r), ß = (/i - JV, -7,n); while matrices are ' ~': G = ^ * ^     ^ +
+

ia) (7V_ - l)7 J' and 

§ = - ( N+    N~~      ), and x is the polarization matrix for round-trip transmission through the external cavity. 

For the external cavity with a linear polarizer inserted in it with an angle of polarization \ with respect to the x- 
( 1 e2ix \ 

axis aligned with one of the intrinsic axis, x = H   c-2*    1        )■ E± = ^ (Ex ±iEv), where Ex and £„ are x 

- and y - polarized components of the slowly varying amplitude of the electromagnetic field; w is the solitary laser 
frequency; N is the total population difference between the conduction and valence bands; n is the difference of the 
population differences for the two allowed transitions between magnetic sublevels7; K is the mean of the decay rates 
of the two linearly polarized components of the field; 7« is the anisotropic field loss rate (positive 7« gives the y- 
polarized component a lower threshold); 7P represents the effect of linear birefringence of the medium (which gives 
the different linearly polarized field of the solitary laser opposite frequency shifts) which is commonly caused by 
anisotropic stress; a is the linewidth enhancement factor; ft is the normalized injection current, which takes the value 
1 at the lasing threshold; 7» is the decay rate for difference in the populations of the different magnetic sublevels, 
which accounts for its elimination by both spontaneous emission and spin-flip relaxation processes, and a is the 
feedback strength. The parameters K, 7a, 7P and 7« are normalized to the decay rate T of the total carrier population 
(we use the typical value of T = lOV"1); time t and the delay time r are normalized to r_1. 

3. DISCUSSION OF RESULTS 

Analysis of numerical results shows that three different dynamical regimes can arise in the system (l)-(2). These 
regimes differ in polarization, temporal and spectral characteristics. They are determined by different mechanisms 
and exist in various intervals of the feedback strength. These intervals are sensitive to the choice of the feedback 

phase. 
The first type of complex dynamics exists when the intrinsic and external anisotropies are comparable. The 

polarization-selective feedback partially compensates the intrinsic anisotropy of two optical subsystems generating 
orthogonally polarized light. This leads to instability of linearly polarized modes existing in the system with respect to 
orthogonally polarized perturbations and appearance of polarization pulsations. The mechanism of these oscillations 
is a dynamic synchronization of orthogonally polarized components nonlinearly coupled due to spin-flip processes. 
Increasing the relaxation rate 7., (up to the values about 300-500-1) or the intrinsic phase anisotropy parameter 7P 

(up to 7-1) leads to the disappearance of the first zone of polarization dynamics. 

In particular, for the parameters for the results shown in the figures 1, the external cavity x-mode with the maximal 
gain is stable with respect to static perturbations with the same polarization, but it is unstable with respect to static 
orthogonally polarized perturbations due to symmetry breaking (pitchfork) bifurcation. This instability depends on 
several factors: a small level of the intrinsic anisotropy 7P and relative importance of the spin-flip relaxation process 
(7sis small enough). The pair of symmetrical elliptically polarized modes created due to this bifurcation are unstable 
at these parameters as is the single y- mode (Details of the instability analysis are presented elsewhere5'6). As a 
result, all these instabilities can lead to complex homoclinic orbits near the x- mode with maximal gain. Trajectories 
go away from the x- mode along the unstable (with respect to orthogonally polarized perturbations) manifold and 
then go back, approaching the stable (to own perturbations) manifold and then turning round it as shown in the 
figure 1. 

Domains where the first type of pulsations exists intermix with synchronization windows of two frequencies: 
the frequency of the optical feedback (1/r), which is adjusted here to approximately coincide with the relaxation 
frequency of the x- mode, and the lower frequency of antiphased oscillations of the x- and y- polarized components 
appearing due to the static instability of x- mode to orthogonally polarized perturbations. 

Because of the inherent symmetry of the system (l)-(2) regimes, such as those presented in the figure 1, exist 
in pairs with the opposite signs of rj, ip and n.  As a is decreased to 1, these two symmetrical orbits tend to the 
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x- polarized mode with maximal gain, and then collide, creating a total atractor with more developed chaos. The 
chaotic attractor exists even for a < 1, where the y- polarized steady state is stable. With a further decrease in cr, 
the laser emission is constrained to the stable y- polarized mode. 

The polarization distortion caused by the rotation of the polarizer in the external resonator by the misalignment 
angle X/0 optically connects the polarization components of the solitary laser and thus can lead to strong synchro- 
nization of orthogonally polarized modes. As a consequence, misalignment of the polarizer may lead to widening of 
the synchronization windows or to desynchronization of periodic regimes, depending on the feedback phase. 

The second type of chaotic pulsations exists at larger values of the feedback strength when several x- polarized 
modes of the external cavity are exited. For a linearly polarized laser, it would correspond to a conventional form of 
chaos that occurs in an edge-emitting semiconductor laser with optical feedback.8 In this case the trajectory wanders 
in a vicinity of unstable external cavity modes. In our case, the introduction of the additional orthogonal degree of 
freedom destabilizeds the chaotic behavior with oscillations of only the Ex component (Ey = 0); perturbations of 
the othogonally polarized component induces oscillatoins in both components. Pecularities of this chaotic attractor 
can be connected with the types of instability of the x-polarized modes embeded in it. In this case the main x 
-polarized mode is unstable only with respect to perturbation with the same polarization, while x-polarized modes 
with a smaller gain are unstable also with respectto perturbation with orthogonal polarization. 

This type of pulsations can be excited at any value of 7, because of instabilities of the chaotic attractor with 
E = 0 in respect to orthogonal perturbations, which arise due to development of the structure with minimal 
loses. The level of intrinsic anisotropy must be small enough for this. Moreover, the appearance of the instabilities 
is sensitive to a choice of the external feedback phase. For instance, the chaotic attactor with Ey = 0 is stable 
with respect to orthogonally polarized perturbations at the phase LJT = 0.8TT. However, there are low frequency 
polarization oscillations with a long period of their decay (metastable polarization chaos) in the interval of a from 

3.5 up to 5.1. 
Examples of this kind behavior are presented in figure 2(left column). The corresponding spectrum (right column) 

shows that the chaotic pulsations in this zone have a low frequency component. A trajectory is located in a vicinity 
of the "scalar" chaotic set with Ey = Q for a long time. After this the trajectory rapidly goes away from it and there 
is a rapid increase in the y-polarized component of the lasing field which was about zero before. This is accompanied 
by a dropout in the intensity of the x-polarized component. Then the intensity of y- component disappears abruptly 
and the trajectory returns in the domain of "scalar" chaotic set with Ey = 0. As consequence of these spikes, a 
low frequency component appears in the spectra of intensity fluctuations of both polarized components of the lasing 
field. However they are very different. So, the maximum of the x- component corresponds to the frequency equal to 
0.05GHz, while the maximum of the y- component is situated near 0.012GHz. This difference is caused, obviously, by 
the more'complex structure of low frequency pulsations of the x- polarized component in which its own low frequency 
fluctuations (presented in the "scalar" manifold with Ev = 0) make a contribution as well as dropouts connected 
with spikes in the y- component. 

If the value of 7, is increased (which dimishes the nonlinear connection of the two orthogonally polarized subsys- 
tems), then the low frequency peak in the spectrum tends to the zero frequency (figure 3). The spectrum in the low 
frequency domain becomes similar to the 1// spectrum (flicker noise spectrum). The duration of the laminar phases 
rises. In the limit 7S ->• 00 the equations (l)-(2) are reduced to the Lang and Kobayashi ones9 describing dynamics 
of two orthogonally polarized components of a conventional semiconductor laser. However, the low frequency oscil- 
lations of the y- component in this case still exist. They are more similar to flashes consisting of a several spikes. 
Time intervals between these flashes can reach 300-400 ns. 

Misalignment of the polarizer in the external cavity strengthens the connection of the orthogonal components. 
Thus, at x = 0-027T (figure 4) the amplitude of the high frequency spectral component of the y- polarized field 
component is increased about threefold. Accordingly, the low frequency spectral maximum of the x- polarized 
component is increased twofold at x = °-00271" ^d fourfold at x = 0027r- Dropouts become more pronounced. 
The high frequency pulsations in the orthogonally polarized components become antiphased as do the low frequency 
dropouts. At larger values of x (about 0.05?r) the system typically reverts to a limit cycle oscillating at the feedback 

frequency. 
For large values of the feedback strength a the external anisotropy suppresses the intrinsic anisotropy and a 

scenario of dynamic chaos in certain intervals of a corresponds to the case of a one-mode semiconductor laser with 
optical feedback, i.e.   to the case Ey = 0.   A small misalignment x perturbs the chaotic structure significantly. 
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Along with the appearance of weak fast oscillations, strong low frequency spikes arise in the y- component. The low 
frequency component correspondingly is changed also in the spectrum of the x- polarized component. The peak of 
the low frequency spectral component is situated at zero frequency and the spectrum is similar to the 1// -noise 
spectra for very small values of the misalignment angle (less than about O.OOITT). At larger x, as shown in figure 5 

the peak is shifted. 
Thus we have shown that three types of complex polarization dynamics can be distinguished when the feedback 

strength is increased. Their appearance is caused by the competition among the external cavity modes as well as 
among orthogonally polarized modes. The competition depends on the value of the intrinsic and external anisotropies 
and on spin-flip relaxation processes. In its turn, the external anisotropy is determined by the feedback strength, 
phase and polarization distortion. 

4. ACKNOWLEDGEMENT 

The work has been funded in part by the Byelorussian Republic Fund for Fundamental Research. 

REFERENCES 

1. Pecora L.M., Carol T.L., Phys.Rev. 64 p. 821, 1990; Cuomo K.M., Oppennheim A.V., Phys.Rev. A 71, p. 65, 

1993. 
2. Mirasso C.R., Colet P. and Garcia-Fernandez P., Phot Tech Lett 8, p. 299, 1996; Sivaprakamsam S. and Shore 

K.A., Optics Lett. 24, p. 466, 1999. 
3. Robert F., Besnard P., Chares M.L. and Stephan G.M., Optical and Quantum Electron. 27, p. 805, 1995; IEE 

Proc.-Optoelectron. 143, p. 1041, 1996. 
4. Besnard P., Robert F., Chares M.L. and Stephan G.M., Phys. Rev. A 56, p. 3191, 1997. 
5. Loiko N.A., Naumenko A.V. and Abraham N.B., Quantum and Semiclass. Opt. 10, p. 125, 1998. 
6. Loiko N.A., Naumenko A.V. and Abraham N.B., in Laser Optics'98: Fundamental Problems of Laser Optics, 

N.N. Rosanov, Editor, Proc. of SPIE 3685, p. 2, 1999; Laser Physics (accepted). 
7. San Miguel M., Feng Q. and Moloney J.V., Phys. Rev. A 52, p. 1728, 1995. 
8. van Tartwijk G.H.M., Levin A.M. and Lenstra D., IEEE Sei. Top. Quantum Electron. 1, p. 466, 1995. 
9. Lang R. and Kobayashi K., IEEE J. Quantum Electron. 16, p. 347, 1980. 

72 Proc. SPIE Vol. 4354 



Trajectory 

1.005 

■z.        1 • 

0.995 

0.45 

0.4 

0.35 

0.3 

X 
■V 
I 

. I 

V        I) 

1». 
ft«' 

1 

v      v 

IA-I 

UJ 
n p 

/i 
i :   /I 1 t : A 

!/ 
:/ 

i; 
1; 
 1  

A 

/ 
y. 
r 

ii 

A 
.11 ..J 

1 
f     J 

/. ;.. 
i  i 
i  i 

/ 
/ 

J.. 
r 
i 

i 
/ 

/. 
i 
i 

/ 
J 

1 
J 
V 

1 
{ i: 

/ 
/. 
i 
i 

i 
\ 

f.. 
i 
i 

V 

100 110 120 130 

6 
Spectrum 

0.06 

0.04 

I 

>< 
LU 4 0.02 , J M kl, ii',™ L o 
Q 
en 2 

—t 

3           0.5 1            1.5 

18 

UJ_ 

o   q 
Q 
ÜJ 
Q- 

onfi 

0 04 

0.02 

|   I 

iill 
\ih. .. 

I 

I 
0           0.5 1            15 

0.5 1.5 

Figure 1. Evolution in time, trajectories in the plane (TV, v,) and corresponding power spectral densities of the 
amplitudes \EX\ and \Ey\. The parameters are K = 300, a = 3, js = 50, ß = 1.2, 7a = 0, 7p = 1, wr = 0.8TT, T - 0.6, 

X = 0, o = 2. 
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Cavity solitons in semiconductor microcavities: fundamental 
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ABSTRACT 

Cavity solitons appear as stationary, isolated peaks of light superimposed onto a homogeneous background field in 
the transverse profile of the coherent field transmitted or reflected by a non-linear resonator. These self-organised 
structures are theoretically predicted and simulated in a broad area multi-quantum-well vertical microresonator. We 
develop models suited to describe the macroscopic properties of the medium and the nonlinear interaction with the 
coherent field. Parametric domains and operational regimes for stable solitons are investigated along with some 
quantitative appreciation of their characteristics. Intrinsic stability properties of solitons are investigated by means 
of semi-analytical techniques and this allows to describe the destabilising mechanisms for solitons. mutual interaction 
properties, their response to perturbations and some of their dynamical features. 

Keywords: Cavity solitons, pattern formation, semiconductor microcavities 

1.  INTRODUCTION 

Cavity solitons arc self-organized light structures appearing as nondiffracting light peaks in the transverse profile of 
the coherent field propagating in a nonlinear resonator. They are somehow similar to spatial solitons but arise in 
dissipative systems, which bestows them with special properties. They are generated by shining short and narrow 
laser pulses into resonant cavities filled with nonlinear samples of large section, and driven by a cw coherent holding 
beam. The cavity soliton, persists after the passage of the pulse, until it. is switched off by another pulse. The motion 
of cavity solitons is governed by the transverse configuration of the holding beam; e.g. a modulated profile allows 
to realise arrays of spatial solitons which are easily reconfigurable, while constant gradients lead to a drift of the 
solitons with uniform velocity.1 In Section 2, we present the recent progress in the theoretical/numerical studies of 
cavity solitons in semiconductor microresonators, following the development of more refined models to adequately 
describe the complex physics of broad-area semiconductor microresonators. Section 3 containes a brief analysis of 
instabilities affecting the homogeneous steady state in the parameter space supplies the correct parametrical choices 
necessary for realising cavity solitons which are observed for different values of the frequency and intensity of the 
driving field. The stability properties of cavity solitons and their competition with other stable patterns are described 
in Section 4. We adopt a general semi-analytical approach, valid for any specific form of the nonlinear susceptivity.2 

The analysis of the eigenvalues and the associated eigenvectors yields a perspicuous insight about the destabilising 
mechanisms of the solitons and their response to local perturbations. The latter issue can be profitably applied 
to predict the short-time dynamics of solitons and to assess certain characteristics of their attraction basin, thus 
providing guidelines to experiments for successful cavity soliton observation. 

2.  MODEL 

The system we are considering consists of microcavity of the fabry-Perot type containing a nonlinear medium and 
driven by an external coherent field; the nonlinear medium can be either a Multiple Quantum Well (MQW) or a 
bulk sample of GaAs. In both cases the equations describing the evolution of the electric field inside the cavity and 
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the carrier density of the active material are formally identical. In the slowly varying envelope approximation and 
in the mean field limit the dynamical equations reduce to the following set of partial differential equations • : 

—    =    -{l+ti + i9)E + E, + iXxniE + iVlE (1) 
dt 

^    =    -~/[N + ßN2-Im(Xn,)\E\2-dVlN] (2) 
dt 

where E and E, are the normalized slowly varying amplitudes of the intracavity field and external driving field, 
respectively; 6 is the cavity detuning; r\ is the linear absorption coefficient due to the material in the regions between 
the semiconductor and the mirrors; S is the bistability parameter; N is the carrier density scaled to its transparency 
value; 7 and ß are the normalized decay rates of the carrier density that describe the nonradiative and radiative 
carrier recombination, respectively; d is the diffusion coefficient. 
The transverse Laplacian, which describes diffraction in the paraxial approximation, is defined as 

,       d2       O2       d2      1 d      1  a2 m 

L~dx2      diß      dr?      rdr     r284>2 

where (x,y) arc Cartesian and {r,4>) polar coordinates, in the transverse plane. Below we will consider for simplicity 
that the driving field E, is independent of the transverse coordinates, i.e. a plane wave. The results we derive will 
be approximately valid for cavitv solitons supported by an input beam much broader than the individual CS. 
The complex susceptibility Xm describes the nature of the radiation-matter interaction and can be satisfactorily 
modeled5'3'4 for both the MQW and the bulk cases. 
In MQW structures we consider an optical nonlinearity governed by an excitonic resonance and described via a 
Lorentzian curve. A linear dependence of Xni on the carrier density N is assumed. The radiation-matter interaction 

is therefore described by 

^W^ — STcej6^-1) (4) 

with 0 = (A + i')/(l + A2); here A = (we - OJ0)/7S is the excitonic detuning, where ue and ~/e are the central 
frequency and the halfwidth of the excitonic line respectively, and UJ0 is the frequency of the input field. Under this 
assumption and introducing C = E/(2 7m (0)) equations (1) and (2) recover the original form considered in5-3 . 
The case of bulk medium4'6 is interesting for several reasons. First of all, bulk samples are easier to grow and can 
be architectured with high accuracy; second, they offer the possibility of high levels of nonlinearity. Nevertheless the 
model is more complex and numerical simulations more demanding. Adopting the quasi-equilibrium approximation 

the complex susceptibility for the free carriers takes the form 

/^       ^ '       ^1      ,2fek(N) + fhk(N)-l (5) 

k 

where k is the carrier momentum, y.k is the dipole matrix element between the valence and the conduction band 
(calculated in7-8), 7P is the polarization decay rate (about lO13«"1), and Tujk = egap + h k2/2mR is the transition 
energy at the carrier momentum k, mR being the electron-heavy hole reduced mass.9 VA is the active volume. 
The fekhk(N) are Fermi-Dirac distributions for electrons and holes, respectively. Two elements are then intro- 
duced phenomenologically to properly describe the behaviour of the bulk medium in the regimes of interest; one is 
band-gap renormalization and the other is the Urbach tail. Similarly to the MQW case, we define the band-gap 
detuning parameter A = (ugap -uo)/yP where ugap is the band-edge frequency and w0 the frequency of the input field. 

As a further refinement we consider in this paper a first attempt to obtain a semi-empiric model which describes 
in a more complete way the nonlinear behaviour of a MQW. We describe the nonlinear susceptibility x(iV, w0) by a 
sum of two contributions: 

Xnl(N, Lü0) = x)?ee(N, w0) + x2fc(JV, wo) (6) 

where the first term is the free-carrier absorption, due to the transition between valence and conduction band, and 
the second term is the excitonic absorption, the most important contribution at room temperature. This approach, 
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Figure 1.  Real part, of the nonlinear susceptibility as given by (6). 

successfully considered in previous work,10   allows to have a good agreement with experimental absorption spectra 
at room temperature. The free carrier nonlinearity is given by: 

.JeKAW+fhKjN)-! 
X2A(A'."o) e0TiV, E 

K~± 

ßK±\ i{uiKL -wo) + 7P 
(7) 

where K± = {kT,ky) is the transverse carrier momentum, VA is the volume of a single QW, n the number of the QW 
in the device, hu, k± + Ee„ + E,H + Ec± + Eh±, where EeJl[] = h2Tv2/2meMllw

2, being w the QW width, and 

Ec hl - ti~K'i/2rncjl±; the /e,/,,, are 2D Fermi-Dirac distribution for electrons and hole, respectively. As for the 
bulk case, appropriate bidimcnsional band-gap renormalization and Urbach tail are introduced. 
The excitonic contribution is described by (4) being now 0 = A{i + A)exp(-§A2). This expression presents a 
gaussian shape and is justified by experimental observation. The excitonic absorption line, infact, presents a rapid 
decay from the resonance, different from the typical lorentzian decay and a gaussian line can reproduce in a better 
way than a lorcntian the experimental results. Here A = u;D - OJ0/^

D
 is the bidimcnsional excitonic detuning, A 

is the amplitude of the exciton absorption line and N is the carrier density normalized to the excitonic. saturation 

density. 
Although J2n, 7J:D and A have a theoretical expression we prefer to set phenomcnological values to have an expression 
nearer than'possible to experiments. Fig. 1 and 2 show the calcuated real and imaginary part of the susceptibility 
for a typical device. This last model represents an attempt to consider a full description of the susceptibility where 
bulk and MQW behaviour are considered together and in the following will be called hybrid model. We note that 
a complete description of the nonlinear response of a MQW can be derived in a more fundamental way by means 
of a many-body theory. This approach, though, is more demanding from a computational point of view and so the 
hybrid model can be seen as a first good approximation. The results obtained with a many-body model have been 
investigated elsewhere11 

3.  ANALYSIS OF THE HYBRID MODEL 

3.1.  Homogeneous steady state and linear stability analysis 

The homogeneous solution (ES,NS) of equations (1) and (2) is obtained by setting the time derivatives equals to 
zero and neglecting the Laplacian. We obtain: 

\E,\2    = \Esf {[1 + Zlm(xni)f + [0- ZRe(xni)}2} (8) 
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Im(x"i) 

Figure 2. Imaginary part of the nonlinear susceptibility as given by (6). 

\Es\2 

Im(Xni) 
(9) 

For appropriate choices of the parameters, the curve of \ES\2 as a function of |£/|2 turns out to be S shaped showing 
a bistable behaviour. 
We study now the instabilities of the homogeneous steady-state, which give rise either to another homogeneous state 
(plane-wave instability (PWI)) or to a spatially modulated pattern (MI). To this aim. we perform a linear stability 
analysis of the homogeneous solution and study the response of the system to small fluctuations around the steady 
state. To do this we consider 

E(x,y,t)   \       ( Es\ 
E'(x,y.,t)    \ = \   E*s    \ +exp[\t + i{Kxx + Kyy)] 
N(x,y,t)  J       \ Ns ) 

(10) 

where we have assumed that the fluctuations grow (or decay) exponentially in time and that they are modulated 
with transvers wave vector (Kx,Ky).  The set of equations obtained linearising (1) its complex conjiugate and (2) 

i6 using (10) admits nontrivial solutions only if the eigenvalues A satisfies the cubic equation 

A3 + a2A2 + aiA + an = 0 (11) 

where the coefficients en, i — 0,1,2 depend on the system parameters, on the input field and on the square modulus 
K2 of the transvers wave vector. Equation (11) has usually one real and two complex conjugate roots. It is possible 
to show that the two complex roots have always a negative real part4; thus, if present, any instability is related to 

the real eigenvalue. 
The instability associated with the real eigenvalue, called Turing instability, brings the system from the homogeneous 
state to a new non-homogeneous stationary state. The system passes from the stable to the unstable domain when 
the real eigenvalue changes its sign from negative to positive. Therefore, the stability boundary is assigned by the 
condition A = 0, or equivalent, a0 = 0. This last condition leads to a cubic equation for .ft"2.4 If we fix all the 
parameters characterizing our model, the boundary of the Turing domain can be drawn in the plane (\Es\,K2). 
The interval of unstable wave vectors corresponds to the internal region of the Turing curves. Then from the Turing 
domain we can determine the portion of the homogeneous solution |Es|2 that is unstable against a spatially modulated 
perturbation (MI instability). The intersection of the Turing domain with K'2 = 0 axis, if present, corresponds to an 
instability against a plane-wave perturbation (bistable behaviour). 
On the basis of our previous studies3'4 we are aware of some favorable or necessary conditions for the existence of 

CS, namely: 
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MI and PWI boudarics as function of the caity detuning 6.   Parameters are A = 0.5, 

1) A bi.st.able steady-state curve for the homogeneous fields; 

2) The stability of the lower homogeneous branch on which CS sit; 

3) A fairly large interval of values of the injected field for which the upper homogeneous branch is modulationally 

unstable!. 

Following the path outlined in"1 we performed a detailed ,study of the instabilities in the parameter space. Our 
analysis has showed that these three conditions can be met for different choices of parameters. To illustrate the 
procedure let us draw the attention to the case A = 0.5, corresponding to a self-focusing behaviour, and £ = 80 
which turns out to be close to the experimental value. From the inspection of Fig. 3 we see how it is possible to 
choose a value of the cavity detuning 6 which could lead to the formation of CS according to the previoues stated 
conditions. The range of interest is for -18 < 6 < -4; for these values the homogeneous curve is, infact, bistable, 
the upper branch is modulationally unstable and the lower branch is fully stable. A good compromise between the 
extension of the bistability region and that of the unstable upper branch is given by 6 ■ -10. 

3.2.  Numerical results 
The dynamical equations were integrated numerically using a split-step method with periodic boundary conditions. 
More details on the method and on the operating scheme can be found in.3 Here we present the results obtained 
for the following choice of parameters: A = 0.5, £ = 80, 6 = -10. 
As can be seen from Fig. 4 we have found roll solutions together with a CS branch. It is worth noting that on 
the right side of the branch CS loses stability exactly where the lower homogeneous branch terminates; this gives a 
confirmation of role of the lower homogeneous branch as a blackboard on which CS can written and erased. 

A series of simulations have been devoted to determining the possibility of controlling CS for all-optical information 
processing. We analysed the on-off switching of CS in any desired location in the transverse plane. The numerical 
technique adopted6 consists in superimposing upon the homogeneous background, a narrow Gaussian pulse, centered 
at the point (x0,yo) where we want to create or annihilate the CS. We investigated the minimum power required for 
switching a CS on as well as for erasing an existent CS; numerical results are reported in Tables 1 and 2. We have 
also analysed the interaction properties of CS; for the case under study two solitons are independent one from each 
other if their distance is greater than d = 20.48/;m (the width of a soliton is 14.9pm) and they merge together in 
one soliton for smaller peak to peak distances. 
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Table 1.  Self-focusing case A = 0.5: minimum power Pmin needed to excite a CS for different values of the width 
a of the addressing pulse. The phase <p of the addressing pulse is set to zero and its duration t = Ins. 

a(fim)        5.27 10.54 13.17 | 15.80 21.07 

Pmin(ßW) 120 283.75 406.9 548 931.3 

Table 2. Self-focusing case A = 0.5: minimum power Pmin required for erasing a CS for different values of the 
addressing pulse width a. The addressing pulse is centered on the CS peak; its phase relative to the homogeneous 
background is iß = ir and its duration is t = 117p.s. 

a(fim) 5.27 10.54 13.17 15.80 21.07 

PntinifJ-W) 9.4 29.6 43.3 60.6 105.6 
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Figure 5. ID MQW model. Steady-state curve of the homogeneous solution and results of numerical evaluations 
and of simulations for cavity soliton stationary solutions. Parameters are A = 0, C = 30. 6 = -3, d - 0.2, r/ - 0.25, 
ß = 1.6 and 7 = 0.002. T.P. indicates the turning point of the homogeneous steady-state curve. 

4.  STATIONARY SOLUTIONS AND STABILITY 

We look now for stationary solutions (d/dt = 0) of equations (1) and (2). We discretise the space variable(s) on TV 
grid points; on the assumption of periodic boundary conditions, valid for the model under investigation, we use a 
fast Fourier Transform (FFT) algorithm to numerically evaluate the spatial derivatives.2-12 This procedure gives a 
highly accurate, O(N), set of coupled nonlinear algebraic equations which can be solved using a Newton method. 
Given a suitably close initial guess, this method rapidly converges ,0 a stationary solution of the original equations. 
In particular CS arc found from initial isolated peaks of suitable width and amplitude. Once a stationary solution 
is located it can then be tracked in parameter space. The benefit of such a procedure is that it, yield all stationary 
solutions, not only those that are dynamically stable. 
The use of a Newton method is advantageous because, as a by-product of this process, we evaluate the Jacobian 
matrix of the linearisation around the solution found. The resultant eigenvalues A give the solutions' stability and 
the eigenvetors ü the associated modes. Using the method described above ID and cylindrically symmetric cavity 
soliton solutions have been found numerically for both MQW at resonance3 and bulk model.'1 

For ID, typical results are shown in Fig. 5 for a MQW. The stable soliton branch is represented by a thicker solid 
line and the unstable branch by a thicker dashed line. Diamonds correspond to direct dynamical simulations (only 
for stable CS). The stability assignation, as previously told, derives directly from the method used. 

In Fig. 6 we plot as a function of the input intensity some of the perturbation eigenvalues of the CS, to be precise 
the six least-negative eigenvalues. The CS negative slope branch is characterized throughout its existence range by 
the presence of a single eigenvalue with positive real part. Both CS branches always exhibit a zero eigenvalue, i.e. 
a neutral mode. This is characteristic of models with translational symmetry. The presence of this mode is of great 
importance for applications, as it will be discussed below. The inspection of eigenspectrum gives also a deeper insight 
on the mechanism by which CS loses stability when a second eigenvalue approaches zero.2 

It is worth noting here that the central part of the CS stable branch is the most desirable in view of optical 
processing applications. Here the magnitude of the largest eigenvalues is comparable to that of 7 and this means 
that any perturbation dies out in a few response time of the medium. As a consequence all internal degrees of freedom 
of CS are strongly damped; only translational symmetry is left out and this gives CS a particle-like character. 

For 2D other interesting features are found; in the bulk case the soliton branch shows a spiralling behaviour 
which might suggest a region of bistability between solitons of different intensity (see Fig. 7). 
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Figure 7. 2D bulk model. Parameters are A = 1, £ = 80, 9 = -9, d = 0.2, 77 = 0, ß = 0 and 7 = 0.0014. Stability 
assignations on the left refer to purely radial perturbations, those on the right include azimuthal perturbations also. 
The dynamical simulations agree only with the latter. 
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Figure 8. 2D bulk model. Perturbation eigenvalues as a function of the input field for a CS branch. Perturbations 

have azimnthal index: m = 0 (left); \m\ = 1 (centre); \m\ = 2 (right). 

I =        4200 t =      228900 t =      237300 

Figure 9.    2D bulk model.   Dynamical evolution of a soliton solution for input field \Ej\ 
destabilises via an m = 2 azimnthal instability.- 

38.6; the soliton 

We should also, however, consider azirnuthally varying perturbations of the form e = i?.(r)r|m|e,m*; m = 0 
correspond to purely radial perturbations. The stability analysis is easily generalized for non-zero m, yelding a 
separate eigenspectrum for each azimuhal index. Wc can see in Fig. 8 that for m^0,lwe have no unstable 
modes, but with a neutral mode for m = 1. It is easy to show that this neutral mode is again associated with the 
transitional symmetry of the governing equations. Finally for m = ±2 we see that the upper CS branch loses its 
stability at Ein = 38.5 in accordance with the dynamical simulations. 

In Fig. 9 wc display frames from a dynamical simulation which correspond to the dcstabilization of a cavity 
soliton for an input field slightly above Ein = 38.5 and we clearly see that it loses its stability via an asymmetric 

deformation of m = 2 type. 

4.1.  Response to perturbation 
Now we analyse the effect of perturbations on stationary CS solutions; this issue merits investigation in view of pos- 
sible applications to optical processing. We identify three types of perturbation: those due to imposed modifications 
to the external driving field, due to noise, and due to interactions between cavity solitons. The first can be used to 
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manipulate CS, the other two are undesirable in most cases. 
For a stable stationary solution, all eigenvalues have negative real part except the neutral mode u0. This means 
that as t -*• oc, its amplitude a0 dominates over all other a,. Thus the dynamical effect of any perturbation V on^a 
stationary stable state is primarily determined by its projection onto the neutral mode, which yields the equation : 

^ = -\-{v0\V) (12) 
at       (t>o|«o) 

Here v0 is the neutral mode of the corresponding adjoint problem. It can be shown that, being the neutral mode the 
gradient of the CS, the physical meaning of da0/dt is the translation^ velocity of the CS under the influence of the 

perturbation. . 
Among the various types of perturbation, three of particular relevance are a phase or amplitude gradient of the driving 
field, and perturbation of one soliton by another. In the case of a weak phase gradient imposed on the homogeneous 
background E0, the input field around a CS at x = 0 can be locally approximated by Ein = EQ(1 + ikx). Inserting 
the perturbation part E0ikx into (12) we can calculate the drift velocity of a cavity soliton due to the phase gradient 
(or, similarly, an amplitude gradient).   The results obtained are in very good agreement with direct dynamical 

simulations.2 

Consider now the perturbation of a soliton with respect to another soliton. The oscillations of the phase and 
amplitude of the CS field as it dies away into the background field can be regarded as somewhat equivalent, in 
their effects on a second nearby soliton, to imposition of varying gradients on the input field. The resulting induced 
relative motion of the two CS will be positive or negative depending on their separation. We can expect to find 
equilibrium positions where the relative velocity is zero, and that these define stable or unstable bound states of 
two CS. Such behaviour is indeed found in both semiconducotr models.2 Adopting the same technique, interaction 
of cavity solitons in a degenerate optical parametric oscillator has recently been investigated,13 showing one stable 

bound state for in-phase CS. 
Finally, an important result concerning the role of the unstable branch acting as a separatrix can be obtained 
exploiting the consideration developed so far. The dynamics of the unstable CS, both in MQW and in bulk model, is 
governed by a single eigenvalue, with a corresponding eigenvector whose shape is similar to the unstable soliton. We 
can infer that the unstable CS is metastable, in that it is an attractor for all nearby states of broadly similar shape 
and strength. These will reshape towards the unstable CS configuration along its stable manifold, before escaping 
along its one-dimensional unstable manifold. Given this essentially single-mode behaviour we can anticipate that 
the locus of the unstable CS will act as a separatrix of the two stable coexisting solutions: the homogeneous solution 
and the CS. Dynamical simulation confirm this, for both MQW and bulk, in ID snd in 2D.2 

n 

5.  CONCLUSIONS 

We have presented briefly the main results concerning new modelistic approaches to description of pattern and cavity 
soliton in semiconductor microresonators, the analysis of stability domains for such structures and we have set forth 
critieria to predict soliton stability, dynamics and interaction schemes. The reader is referred to the bibliography for 
more detailed, full-length publications, some of which will appear soon or are being completed at the moment. 
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Transformation of the light beams transverse structure upon coherent 
interaction in nonlinear interferometers 

O.G.Romanov* 
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ABSTRACT 

The theoretical and numerical modelling of the light beams transverse structure formation upon coherent interaction in the 
interferometers with resonant nonlinearity has been proposed. The analysis has been performed on the base of the modal 
theory for the scheme of counterpropagating beams in the ring cavity and for the scheme of oblique symmetrical incidence 
of two beams on the Fabry-Perot interferometer. Complex spatio-temporal evolution of the light beams structure, such as 
formation of bound states, symmetry breaking instability, asymmetrical self-oscillations has been demonstrated. 

Keywords: wave mixing, nonlinear interferometer, symmetry breaking instability. 

1. INTRODUCTION 

The theoretical modelling of self-oraanisation phenomena and co-operative processes in nonlinear optical systems is the fast 
developing area of investigation. Much attention has been paid to the effect of optical bistability in systems with external 
feedback under exciting of one or several light beams'"9. The coherent interaction of the light beams in the cavity volume 
provides an additional kind of feedback. This distributed feedback is due to dynamic gratings, nonlinearly formed in the 
medium volume. One of the effects that arises from longitudinal coupling of two light beams in the nonlinear interferometer 
is the symmetry breaking bifurcation2. In the process, intensity of two light beams is different on the output of the 
interferometer, while it is^equal on the input. Most investigations of the symmetry breaking instability have been related to 
the plane-wave limit2-4'57'8. However, transverse coupling (due to the diffraction of radiation) leads to a complicated 
transformation in a cross-section of the light beams . 

In this work the consideration is being given to the results of theoretical investigation into the interaction of two light 
beams counterpropagating in the ring cavity (RC) and in the scheme of oblique incidence on the Fabry-Perot interferometer 
(FPI) with a two-level resonant medium. Effects of intracavity distributed feedback and transverse coupling of the light 
beams have been included into consideration. The possibility for realisation of asymmetrical transverse profiles for two light 
beams has been demonstrated and the influence of geometry of the light beams interaction has been investigated. The paper 
is organised as follows. In Section II the results of theoretical modelling of two-beam interaction in RC are presented. The 
particular attention has been paid to the formation of asymmetrical intensity profiles under incidence of Gaussian light 
beams on the bistable interferometer. The problem of two-beam interaction under symmetrical oblique incidence on the FPI 
is studied in Section III. 

2. SYMMETRY BREAKING IN THE SCHEME OF TWO BEAMS INTERACTION IN RC 

The problem of symmetry breaking instability in RC has been studied for Kerr-like nonlinearity in the plane-wave limit2. In 
this Section we would like to recall some results of theoretical modelling of this task for the resonant type of nonlinearity 
and investigate the transverse structure of the output light beams. The process of two-beam interaction in the mean-field 
limit for high fineness RC10 can be described by the following set of coupled-mode equations9' 

oe. 

8t       ,u      ' B„   '    a 

<=>,,        ä 
e, +/A0e, +/C ——e] +—(Xoe\ + X^i)   +'ß — 

d'e, 

d! 
tR—

L = e20-e2+iA0e2+iC -^-e2 + — {yA]e2 + X\ e.)  +iß~ri 
B,j   '     a VDi dx1 

where  e1020  are the amplitudes of the pump fields, co-operative parameter C = K0(o))L/2T, cavity build-up time 

t   = L/vT , v = c/nQ is the light velocity in the medium, L - thickness of the cavity, T - transmission coefficient of 
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the cavity mirrors, dimensionless diffraction parameter ß = ÄL/4TTTXQ, transverse variable x is normalised to the input 

Gaussian intensity profile half-width .v0, A0 is the cavity detuning parameter, ä = a + ia = (&l2 +02, )/vp2] is a 
complex nonlinearity parameter for a two-level resonant medium, the real part of which determines a light-induced change 
in the refractive index, and the imaginary part characterises a change in the absorption coefficient"; 0,; = 0,; + iB,t, where 

the coefficients 0, (to) are related by the Kramers-Kronig (dispersion) relations to the Einstein coefficients ß,y(ö>), p2\ is 

the total probability of spontaneous and nonradiative transitions. n0 and K0 are the linear refraction and extinction 

coefficients. The coefficient a = (ßP + B-)])/ vp2} determines the saturation intensity of the resonant transition 

( / = a~] ). An expansion of nonlinear susceptibility in the Fourie series of dynamic gratings formed by 

counterpropa»ating waves has been used. In the inertialess limit the equations for the space harmonics of nonlinear 
susceptibility have the form : 

1 +a(l, + /->) a c,e-, 

An Ar, 
(2) 

where a = acnQ IM , A0 = 1 +2a(/l + /2) + a2(/,2 + /f). 

The steady-state equations for the intensity of the light beams /, 2 can be easily obtained from (1, 2), and with the 

assumption of coincident absorption and emission bands (0,21Bn = äla) and the incident intensity of beams 

/|0 = /1(, = /n they have the form: 

/,, = /,  (1+«/,,)}•   +M0 
Ah 

-—(1+a/,,) 
a A,, 

(3) 

Under the appropriate conditions8 the asymmetrical bistable solution of (3) can be obtained. Such an interaction mode is 
depicted in Fig. 1. It is characterised by the inequality of the output light beam intensities and arises from coherent 
intracavity interaction of the light beams. 

I.O-i 

100 

Fig. 1 Steady-state plane-wave transmission function in Fig.2    Steady-state    of    intensity    redistribution    in 
conditions     of    symmetry     breaking.      C(«12) = 70,        transverse profiles of the light beams counterpropagating in 

frequency detuning away from absorption band centre        RC. ß = \0 ', a/0 =5 . 
£ ={co-con)/r = ±2    (T    is   the   half-width   of  the 

Gaussian profiles of absorption band), A0 = ±15 . 

The formation of the light beam transverse profiles has been analysed by numerical modelling of the equations (1) with 
the use of the explicit two-layer finite-difference approximation. The modelling has been carried out for the defocusing 
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nonlinearity (long-wavelength region of the absorption band) and relatively wide light beams (small values of the diffraction 
parameter ß ). Typically, in the steady-state we observe two profiles with significantly different integral intensity (Fig.21 ). 

3. OBLIQUE INCIDENCE OF TWO LIGHT BEAMS ON FPI 

Let us consider the scheme of two-beam interaction upon oblique incidence on the front mirror of FPI with the small angle 
symmetrically relative to the normal4'7'9. Under oblique incidence the coupled-mode equations in the mean-field limit for 
high fineness FPI have the form : 

ci 

ct 

- <?| + /A0e, + iC 

~20 ■ iA0e2 + iC 
B 

-e, + — (Zoe\ +X\e2) 
a 

+ ,ß- 
dx2 

'<?2 +—(Z0e2 +Xle\) 
a 

.08-e1       ■ de, 
+ iß—f--a0-7^ 

(4) 

dx ox 

where the co-operative parameter C = K0(CO)L/T . cavity build-up time /„ = 2Z.'v7\ dimensionless diffraction parameter 

ß = XLIlnTxl, coefficient a0 = a0L/2rrTx0 is proportional to the small angle a0 between the wave vector and the normal 

to the front mirror of the interferometer. 

The numerical modelling of the system (4) has been carried out by the same method as for the case of RC. The 
parameters of resonator and radiation under which the symmetry breaking instability takes place have been used. Let us 
notice, that in the plane-wave limit these equations with re-scaling of the variables are equivalent to the system of coupled- 
mode equations, describing the process of two-beam interaction in RC. This similarity leads to the same steady-state 
transmission functions of different interferometers. In the case of symmetry breaking instability the output light beams 
intensity are significantly different. In this section we would like to point out, that transverse interaction due to diffraction 
and transverse "drift of radiation due to oblique incidence of the light beams on the FPI significantly change the character of 
energy exchange between the light beams. The results of numerical calculations are presented in Fig.3-6. 

x   o.o 

*    0.0 

Fig.3 Dynamics (a) and steady-state (b) of intensity redistribution in transverse profiles of the light beams for the scheme 

of oblique incidence on FPI. a0 =0.1, ß = 10"2, a!0 =5 . 

The symmetrical steady-state transverse profiles of two light beams are characterised by the mirror symmetry relative to 
the axis x = 0, edge front between the switch-on and switch-off parts of the profiles and equality of the integral intensity 
(Fie.3a). Moreover, each beam stays on the switch-on state in the half-plane from which the incidence takes place. To 
describe the formation of the mirror symmetrical intensity profiles let us consider the dynamics of the light beams formation 
in the FPI. The first stage is a quite typical process of switch-on of the light beams in the central zone (Fig.3b, t ~ 3tR). 

Then, the effect of symmetry breaking develops in all parts of transverse section. The reason of such a process is the 
transverse drift of beam intensity in the direction of propagation. Under oblique incidence each beam undergoes intensity 
redistribution in transverse section. When the incidence angle is rather small the more intensively part remains in the half- 
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plane from which the incidence takes place, while the less intensity part drifts in the direction of beam propagation. Since 
the structure with a little different values of intensity of two beams is unstable, the process of energy transfer between 
beams develops very fast (Fig.3b, / ~ 3 - 6//(). As a result the intensity of each beams increases significantly in the half- 

plane from which the incidence takes place. This steady-state, however, can be switched to the state with different integral 
intensity (similar to Fig.2) by applying the positive impulse on the input of one of the light beams. 

From the problem of oblique incidence of a single beam on the front mirror of the nonlinear FPI13 it follows that with the 
increasing of the incidence angle the maximum of the light beam intensity drifts in the direction of the wave vector and 

under some value of aQ intersects the axis x = 0. For the case of two-beam interaction it means that the modes opposite to 

the case of repulsion demonstrated previously should be realised. When the incidence angle and the velocity of transverse 
drift of radiation arc rather great the effective time of interaction and the energy exchange are decreasing. Thus, the energy 
transfer from one beam to the another one is almost absent. Let us consider these tasks in detail. 

Bv the numerical modelling of two-beam interaction has 

been established, that with the increasing of coefficient a0 

the steady-state intensity profiles undergo the following 
changes: at first, the switching front between beams in the 
area .v = 0 vanishes, at second, the formation of two intensity 
spikes for each beam takes place. One of them is located in 
the centre of beam, while the another one stays on the 
periphery of the transverse profile in the direction of beam 
propagation. At that, the light beams, as before, have the 
mirror symmetry relative to the axis x = 0, and they central 
spikes form the bound state. It is natural to suppose, that 

under some value of the parameter a0 the transformation of 
such a structure into the another one should occurs. This 
process is connected with drift of intensity spike of each beam 

(a) 

(c) 

Fig.4 Dynamics (a) and the snapshots in the moments  t = \0tR  (b) and  / = 100//(   (c) of intensity distribution in 

transverse profiles of two light beams. a0 = 1.27, ß - 10 ", al0 = 5 . 

in the another half-plane relative to the axis x = 0. As seen from Fig.4, the transverse structure from the bound state 
(Fig.4b), when the maximum of both beam near the axis x = 0 is practically coincident, transforms into the state of two 
independent beams, when the spikes separate on two half-width of Gaussian profiles (Fig.4c). In the process, the energy 
transfer from the central maximums to the peripheral ones of each beam takes place (Fig.4a). The steady-state transverse 
structure is rather stable relative to the initial difference in the input intensity of the light beams. The energy exchange 
between well separated spikes is almost absent. 

92 Proc. SPIE Vol. 4354 



X    0.0 
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Another mode of bound state transformation is 
demonstrated in Fig.5 for the higher values of the 
incidence angle. In the process of quasi steady-state 
structure destruction (Fig.Sa) the intensity spikes separate 
on sizeable smaller distance. In consequence of this energy 
exchange between beams should be rather effective and the 
steady-state transverse profiles have the considerable 
difference in integral intensity (Fig.5c). Under the 
intermediate values of the incidence angle the dynamics of 
the light beams interaction can be rather complicated. As 
seen from previous figures (Fig.4,5) there is two type of 
steady-state transverse structure, when the intensity spikes 
are separated on different distance. The intermediate 
state is characterised by pulsation between these two 
modes (Fig.6a). The time dependence of integral intensity 

(c) 

Fig.5 Dynamics (a) and the snapshots in the moments  t = \0tR   (b) and  t = \00tR  (c) of intensity distribution in 

transverse profiles of two light beams. a0 = 1.4, ß = 10"", al0 = 5 . 
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Fig.6 Dynamics of intensity distribution in transverse profiles of two light beams (a) and integral intensity (b). a0 = 1.3 , 

^ = 10"2, al0=5. 
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corresponds to asymmetrical antiphase oscillations (Fig.6b). With further increasing of the incidence angle the effective 
time of the light beams interaction decreases due to increasing of the transverse drift velocity of each beam. At that, the light 
beams pass through each other without any energy exchange due to symmetry breaking instability. The steady-state profiles 
are characterised by the great distance between two intensity spikes and equal integral intensity. 

4. CONCLUSION 

In conclusion the transverse interaction of the light beams due to diffraction of radiation and transverse drift due to oblique 
incidence lead to asymmetrical transverse profiles in the scheme of two beams interaction in the FPI. Under the smaller 
values of the incidence angle the symmetry breaking instability results to formation of bound states of light beams with 
mirror symmetrical relatively to the axis .v = 0 intensity profiles. With the increasing of the incidence angle the symmetry 
breaking of bound state takes place and the modes with equal or significantly different integral intensity as well as 
asymmetric self-oscillation have been demonstrated. 
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ABSTRACT 

Multiple pulse operation of passive mode-locked lasers with nonlinear refractive index of in- 
tracavity elements has been investigated. The hysteresis dependence of number of pulses in 
established regime on the pump power has been found. It is shown that this number depends 
also on initial condition of generation. The application of discovered multistabihty and hysteresis 
to optical communications and information processing is discussed. 

Keywords:   passive mode-locking, phase-modulation instability, multistabihty, propagation of 
ultrashort pulses through nonlinear dispersion media 

1. INTRODUCTION 

The evolution of the radiation in the ring laser cavity is described by the following normalized 

equation1: 

9 F - (1 + i9)— E + - ( 1 + \      - 1 + —L—2 \E\2 + iq \E\2\ E, (1) 

where E(z t) is the amplitude of the field, t is the time variable expressed in units of the decay 
time of the field in an empty cavitv. z is the coordinate expressed in units of the dispersion length 
(geometric-mean of the reciprocal of the decay time of the field in empty cavity and the frequency 
dispersion of the imaginary part of the permittivity), 6 is the ratio of the real and imaginary parts 
of the frequency dispersion of the intracavity medium. The first term m the second parentheses 
describes the gain, where a is the relative pump excess above threshold; b is the ratio of saturation 
intensities of nonlinear losses and amplification divided by the dimensionless cavity length, ihe 
saturation is determined by the total intracavity radiation energy and accordingly the integration 
is carried out over the whole cavity volume. The second term is due to the linear losses. The 
third term accounts for the decrease in the nonlinear losses connected with saturable absorption 
(or in the nonlinear diffraction losses). The last term describes the nonlinear refractive index. 

For sufficiently small pump excess above threshold, \E\2 < 1, the change in the nonlinear 
losses is defined by the expression 8a « p\E\2. In this case the passive mode-locking based on 
approximation of Eq. (1) with 0 = 0, q = 0 was analysed in papers2'3. The solution in the form 
of a sech pulse was found and the problem of its stability for small disturbances was solved. In 
the paper' it was shown with using Lyapunov functional that the transient evolution of passive 
mode-locking described by (1) with 6 = 0, q = 0 from any initial conditions passes into the 
steady-state single pulse mode. 

^e-mail: komarov<ö)iae.nsk.su 
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The passive mode-locking in the frame of Eq. (1) with nonlinear losses 8a « p \E\ and with 
regard to both frequency dispersion and nonlinearity of refractive index was analysed in papers1'5. 
It was found a solution "in the form of a sech pulse with a frequency chirp. 

The aim of our investigation is to determine regularities in the change of regimes of passive 
mode-locking due to phase-modulation instability in the frame of model described by Eq. (1). 
The investigation is based on the numerical simulation with using of various schemes. 

2. THE RESULTS OF NUMERICAL SIMULATION 

The necessary condition for stability of any stationary soliton solution of Eq. (1) is g = 
(1 + a)/(] + bf\E\2 dz) - 1 < 0. Otherwise the net gain g in the wings of the pulse is above zero, 
and small amplitude noise grows. The condition g < 0 is obeyed under the following restriction 
on parameters of nonlinearities ( = q/p and dispersions 9 6 

3./T+0* -29 + 292 K/T+F - 0 

\-d[y/r+6*-0 
>£> 

> 
3vTTö2 + 29 + 292 (vTT^ + 9 

1 + 9 (x/TT^+Tj 
(2) 

Our numerical simulation shows the following. If the condition (2) breaks down then in the 
course of transient process the whole laser cavity is filled with radiation, that is, the passive 
mode-locking is absent. In Fig. 1 the corresponding area on the plane £, 9 is indicated as the 
area 2. In Fig. 2 one can see the corresponding transient evolution with the single pulse initial 
condition. 

15 

10 

5 

-5 

-10 

-15 

^W         2 

1                     y^ 

!               i               I              I 

-4 

e 
Figure 1:  With parameters 6, £ from the area 1 the passive mode-locking is realized.  Otherwise (0, £ 
from the area 2) the passive mode-locking is suppressed. 

If the condition (2) is fulfilled the single pulse stationary regime is realized at small pump power 
(see Fig.   3a).   The multiple pulse initial condition with various amplitudes of pulses in Fig. 3 
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models the variance of amplitudes of initial noise pulses. If the pump power exceeds a certain 
threshold than this regime becomes unstable and the operation with two identical stationary 
pulses is established (see Fig. 3b). Further increase of the pump power leads to three-pulse 
regime (see Fig. 3c), then to four-pulse regime, and so on. The increase of number of pulses 
in established operation with increasing pump power is realized both with multiple pulse initial 
condition and with single initial pulse. The multiple pulse generation of this type are realized 
experimentally in Thsapphire lasers7'8 (see also paper6). 

I(z,t) 

0,2 

0,1 

0,2 

0,1 

100 

t 7000 500 

Figure 2:   The characteristic transient evolution and established operation with parameters 6, £ from 

the area 2 of Fig. 1. 

In Fig. 4 one can see the dependence of the number of pulses N in steady-state on the pump 
power a. This dependence has been found by us from numerical simulation. The increase of 
number of pulses is possible only in accordance with lower stepwise curve marked by corresponding 
arrows. The decrease of number of pulses is realized in accordance with upper stepwise curve. 
The horizontal lines show constancy of number of pulses under changes of pumping a. These 
horizontal lines in combination with stepwise curves form closed hysteresis loops. As can be seen 
from Fig. 4, the dependence of pulse number N on pumping a is many-valued function, that is, 
the laser operation is multistable. The number of pulses in established regime depends also on 
initial conditions. The number of possible steady states increases with increasing pump power. 

3. DISCUSSION 

The nonlinear losses play the role of a positive feedback. As is generally known, this positive 
feedback selects the most intensive pulse and suppresses pulses with lesser amplitudes. 

Owing to a nonlinear refractive index the frequency chirp occurs, and the spectrum of the 
pulse is broadened. As a result, the amplification efficiency in the active medium having the fi- 
nite amplification frequency band drops. By this means the negative feedback mechanism occurs: 
the greater amplitude of the pulse entails its less amplification in active medium. In contrast, the 
negative feedback levels amplitudes of pulses. (Notice that the response time of this negative feed- 
back is equal to the time of formation of the equilibrium frequency chirp for the given amplitude 
of the pulse. This equilibrium frequency chirp is determined by the balance between mecha- 
nisms inducing the pulse phase-modulation and causing its degradation. In a similar manner, the 
equilibrium duration of pulse is determined.) 

Playing of parameters determining positive and negative feedbacks determines the competition 
and the coexistence of pulses, and accordingly the type of established regime. 
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Figure 3: The increase of the number of pulses in steady-state with increasing pump power, (a) a = 0.6, 
(b) a = 1.2, (c) a = 2.0, (dj a = 2.5. (0 = 0.4, p = 0.2, q = 1.2, b = 0.1). 

Let us estimate quantitatively the net feedback. Here we use the following model approxi- 
mation of the nonlinearity of losses pef = p/(l -f \E\2) ZJ p/(l + \Eok\

2), where Eok is the peak 
amplitude of fc-th pulse. The solution of Eq. (1) is searched in the form several pulses with 
various amplitudes and with equilibrium duration and frequency chirp 

E(z,t) = ^Eok 

^(\k+iSujk)t 

cosh l + iak (ßkz) 
(3) 

where ak, ßk-, <W-, and \k are the equilibrium frequency chirp, the equilibrium inverse duration, 
the frequency shift, and the parameter of temporal increment for &-th pulse. Substituting (3) in 
(1) allows to receive algebraic equations determining these parameters of pulses. The equilibrium 
frequency chirp and the equilibrium inverse duration are determined as functions of the peak 
amplitude of pulse ak = ak{\Eok\

2), ßk = ßk(\E0k\2)- For the temporal increment of k-th pulse 
we have the following expression 

Pef 
2-at 

\Eok\2 (1 - a2
k) + g, (4) 
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Figure 4: The multistable operation and the hysteresis dependence of the number of pulses N in steady- 
state on pump power a. {9 = 0. p = 0.2. q - 0.3, b = 0.1). 

where the equilibrium frequency chirp ak is determining by the equation 

<*k 

9 - at 3Pe/ 

9 (1 + \Eok\ 

3^ 
(5) 

0.   The solution (3) is correct with Xkt < 1 when Hereinafter for simplicity assume that 6 
exp(2Xkt) ~ 1. 

The temporal increment A* can be treated as the net coefficient for amplification of fc-th pulse. 
With p, q satisfying the condition (2) the characteristic form of the dependence of 6Xk - Xk-g on 

the peak intensity is presented in Fig. 5 as the solid curve. At small peak intensity 70fc = l^ofcl 
this dependence is linear.   With increasing peak intensity the frequency chirp increases and at 

\E0k\ = 3p/q 1 it reaches the level a\ 1. Therewith 8Xh = 0. 

The form of the dependence of the amplification coefficient for pulse Xk on its peak intensity 
Iok allows understanding of absent of passive mode-locking (Fig. 2), of multiple pulse operation 
(Fig. 3), of hysteresis phenomena and multistability (Fig. 4). 

In the case that the condition (2) is fulfilled (that corresponds to the area 1 in Fig. 1 and 
the solid curve 1 in Fig. 5) at small pump power a for all peak intensities Iok < Icr2, and the 
greater intensity of pulse entails its greater amplification. As a result, the single pulse established 
operation is realized. With increasing pump power a the peak intensity of this single pulse in 
steady-state increases. When it becomes greater than Icrl the amplification for small amplitude 
pulses becomes positive and the second pulse arises in generation. For peak intensities Iok > Icr2 
the greater intensity of pulse entails its less amplification and accordingly amplitudes of these 
pulses are equalized. As this takes place, the peak intensities of these two pulses becomes less 
than 7cri because of energy balance. With further increasing pump power a the peak intensities of 
these two pulses increase and again reach the level Icrl and then third pulse arises in generation, 
and so on. This process is determined the lower stepwise curve in Fig. 4. 

In the case of multiple pulse operation with decreasing pump power a (the condition (2) 
is fulfilled) the peak intensities of all pulses are the same and decrease. As long as their peak 
intensities are remained greater than 7cr2, the number of these pulses doesn't change. This process 
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Figure 5: The amplification coefficient 6Xk for k-th pulse as function its peak intensity Iok (the solid 
curve corresponds to parameters 0, f from area 1 in Fig. f, the dashed curve does to ones from area 2). 

is described by horizontal lines in Fig. 4. When the peak intensities of pulses reach the value I„2 

then because of perturbations the peak intensity of one of them becomes less than 7cr2, and this 
pulse is suppressed. Thereafter the peak intensities of the remained pulses becomes greater than 
/ r2 because of energy balance. With further decreasing pump power the peak intensities of these 
pulses decrease and reach again the level Icr2 and then a successive pulse is suppressed, and so 
on. This process is determined the upper stepwise curve in Fig. 4. 

In the case that the condition (2) breaks down (that corresponds to the area 2 in Fig. 1 and 
the dashed curve 2 in Fig. 5) the amplification coefficient for pulse Xk decreases monotonously 
as the peak intensity Iok increases. Accordingly, the smaller intensity of pulse entails its greater 
amplification. As result, new and new light pulses formed originally from spontaneous radiation 
or from perturbations of stationary pulse) goes out to generation. This process lasts until the 

whole cavity is filled with the generated radiation (Fig. 2). In this case the passive mode-locking 
is not realized. 

4. THE POTENTIAL FOR APPLICATIONS 

The discovered multistability is of interest to storing of information in the form of sequence 
of ultrashort light pulses. 

This multistability is likely may be used for preparation of the pulse sequence carrying infor- 
mation. Pulses can be added to or subtracted from this pulse sequence. 

The described multistable system can be used for filtering of the pulse sequence. In such 
system the small-amplitude noise pulse are suppressed, and amplitudes of powerful pulses are 
equalized. In a similar manner, for this purpose the corresponding nonlinear elements can be 
inserted in communication line. 

5. CONCLUSION 

Thus, it has been found that in passive mode-locked lasers with a nonlinearity of losses de- 
creasing as radiation intensity increases the phase-modulation instability can result in multiple 
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pulse operation, multistability, hysteresis phenomena, and also in suppression of passive mode- 
locking The number of pulses in steady-state depends on the pump power and initial condition. 
The discovered peculiarities of passive mode-locking can be of interest for optical communications 
and information processing. 
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ABSTRACTS 

Paper presents the results of theoretical study and numerical simulations of the laser bullets - three-dimensional dissipative 
optical solitons in continuous media with saturable resonance amplification and absorption, constant (non-resonant) 
absorption, and quadratic frequency dispersion. We have performed bifurcation analysis of stationary symmetric bullets, 
have determined conditions of their existence in dependence of frequency detunings. investigated possibility of existence of 
topological three-dimensional dissipative solitons, and studied different regimes of interaction of two laser bullets. 

Keywords: optical solitons. dissipative solitons. optical and laser bullets, lasers with a saturable absorber. 

1. INTRODUCTION 

Three-dimensional optical solitons present not only purely scientific, but potential applied interest as natural units 
of information in optical information processing systems. Stability of conservative solitons in transparent media with 
saturating nonlinearity of refractive index was proved by Vakhitov and Kolokolov1. These solitons currently referred to as 
licht bullets2, have a continuous spectrum of parameters, including their maximum intensity. Therefore, under effect of noise 
the conservative soliton parameters change stochastically. Different type - the dissipative optical solitons - was predicted in 
optical nonlinear media and systems with considerable exchange of energy gain and losses"5, (see also reviews67 and 
monograph8). Because of requirement of energetic balance, the dissipative solitons have a discrete spectrum of their main 
parameters, contrary to the case of conservative solitons. This feature results in suppression of noise and drift of parameters, 
which makes the dissipative solitons promising for application in the systems with special requirements to operation 
reliability. The three-dimensional dissipative optical solitons. or "laser bullets" were predicted in continuous media with 
saturable gain and losses and linear frequency dispersion9-10 and demonstrated by means of numerical simulations in"'1'. In 
the present paper, recent results of the laser bullets theoretical and numerical study are presented, including their bifurcation 
analysis and regimes of their interaction. 

2. THE MODEL AND GOVERNING EQUATIONS 

For formulation of the "laser bullets" theoretical model, the following factors are essential. First, it is ratio of the 
"bullet" sizes to the light wavelength in a linear medium that determines a measure of soliton nonparaxiality. As the main 
variant we consider fairly wide solitons and neglect nonparaxial phenomena; the latter ones are studied in '4. The second 
factor is connected with the model of optical media, namely with the role of relaxation processes and finite width of spectral 
lines. These questions have been considered in up to present for ID laser solitons only15. In the main variant we adopt the 
model of fast optical nonlinearity with a simplified account for relaxation and finite width of spectral lines (by introduction 
of effective diffusion coefficient d, which moreover can be neglected in many cases). Therefore, the main model corresponds 
to paraxial solitons in media with fast nonlinearity. 

Under conditions indicated, approximation of paraxial equation for a slowly varying electric field E is 
appropriate. In dimensionless form it has the form 

d- 

Here we introduced 3D Laplacian 

-(i+d)A3E = f(\E\2)E. (1) 
dz 
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d2    d2    d2 m 

3x2     8y2     di2 

and a complex function of nonlinearity/for a medium with a constant (no resonant) absorption and saturating (resonant) 
amplification and absorption, and quadratic frequency dispersion of refractive index 

/■(/) = -!+ «5 ^  (3) 
n) (1 + ,A£)(1 + /) ( i + A2 ^ 

(1 + /Ag) \+bI        * 
1 + A2

fly 

Radiation propagates mainly along the longitudinal axis z, x,y are the transverse coordinates, variable x=l-zlvg 

represents time in coordinate frame moving along the axis z with group velocity vg , and it is scaled so that the coefficient of 

quadratic dispersion is equal to unity. Ag and Aö are frequency detunings. or differences between the radiation central 

frequency and central frequencies of spectral lines of amplification and absorption, correspondingly (in units of line width), 
g0 and a0 are linear coefficients of gain and absorption, b is a ratio of saturation intensities for amplification and 

absorption (intensity is expressed in units of amplification saturation intensity)- Coefficient of non-resonant absorption is 
taken in Eq. (3) as unity because of scaling of the longitudinal coordinate z. 

If we restrict our consideration by stationary spherically symmetric "bullets" only with the envelope of the form 

£ = /f(/-)exp(-/az), (4) 

then Eq. (1) is reduced to an ordinary differential equation (ODE) for the radial function A(r) and eigenvalue a - shift of 

soliton propagation constant 

^i+2fM+a/< + _L/(M|2)i4=0. (5) 
dr2      r dr i + d 

As mentioned above, unlike the conservative "light bullets" with a continuous spectrum of a , for the "laser bullets" this 
spectrum is a discrete one. Besides, the amplitude A(r) is complex now. It is possible to depress ODE (5) by introduction of 

real amplitude and phase and using symmetry feature of the initial equation with respect to phase shift. To determine the 
stability of stationary solitons found in such a way. it is necessary to study corresponding linearized equations. It is possible 
for ID and 2D solitons8'12, but involves difficulties for 3D solitons. In the latter case the stability can be checked by direct 
solution of Eq. (1). 

In the case of "laser bullets" the problem is multi-parameter and multi-dimensional ((3+1) problem). 
Dimensionality can be decreased in particular cases, when cylindrical or spherical field symmetry is realized. It is easier to 
find a structure with such symmetry and then to check its stability by solution of full Eq. (1). 

The most effective way of numerical solution of Eq. (1) with (3+1) dimensionality is based on splitting method 
with use of the fast Fourier transform algorithm. This approach gives a possibility to determine dynamics of "bullets" 
formation, their stability, interaction, and so on. For the problems with depressed dimensionality mentioned above, other 
methods are appropriate. In particular, in the problem with cylindrical symmetry it is convenient to use field decomposition 
in terms of function system, including Bessel functions. For solution of ODEs (the case of spherical symmetry, Eq. (5)) it is 
sufficient to use the standard finite difference methods. 

3. BIFURCATION ANALYSIS 

To analyze spherically symmetric (in the space x,y,z ) stationary "laser bullets", we will use Eq. (5) for the case of 

zero frequency detunings (function^/) is real). Because we study the case of hard (threshold-like) excitation, total absorption 
has to be greater than gain for a weak signal. Therefore 

/o=/(0)<0. (6) 

Boundary conditions to Eq. (5) consist of requirement of finiteness of the amplitude A at r = 0 and sufficiently fast 
decay of A (A(r)-+ 0 ) at  r-too. More precisely, for the field distributions of interest their asymptotic at infinity follows 
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from the equation itself with the replacement / -> f0 = const 

C 
A: exp(~-rj-a+if0).    /'->«. (7) 

Because the total phase is arbitrary, it is possible to take the constant C as real. 
Phase arbitrariness permits to depress ODE (5). To do so. let us introduce real amplitude and phase 

A(r) = a(r)exp(ie(r)) (8) 

and real variables 

1 da dB 
p = - — .    q = — 

a dr dr 

(we suppose that a * 0). Then we have the system of 3 real ODEs 

dp i      2    o P dcl 
dr r dr 

For the spherically symmetric soliton the following requirements have to be held 

/J(0) = 0.   </(0) = 0. (") 

These conditions, jointly with the conditions at infinity (7), permit to find from Eqs. (10) both eigenvalues a and radial 
profiles of the "bullets" characteristics. This problem was solved numerically. To do so. some values of parameters a and C 
were fixed, and for sufficiently large distance r = rx. the values a. p and q were defined by relations (8), (9). Then by the 

Runge-Kutta method of the 4,h order system (10) was solved and the values p(0) and q(Q) were determined (more exactly, 
because of singularity of Eqs. (10) at r = 0, numerical integration was performed from the two sides of the radial interval 
and matched at some intermediate value of/-). Subsequent applying of two conditions (11) permits to determine parameters 

a and C. 

da -2pq-2^ + f(a2)- 
r 

(9) 

(10) 
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Fig. 1. Dependence of spectral parameter of symmetrical "laser bullet" a on linear gain coefficient g0 

for three types of localized structures (corresponding amplitude radial profiles are given in upper inserts)' 
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Results of calculations performed for parameters a0 = 2 and b = 10, are given in Fig. 1. It turns out that there are 

a great number of branches (only three of them are shown in the figure) of symmetric localized structures with different type 
of amplitude radial profile (see the upper inserts at the figure). All the branches start from the same point on the plane a. g0 

(a =0. g0 =\ + a0 =3 , that corresponds to the stability boundary of non-lasing mode, A = 0). As follows from the 

calculations, all the branches have a tendency to last in the same point corresponding to the limiting point of similar spiral for 
ID and 2D laser localized structures). In this limiting point the width of localized structures tends to infinity, therefore the 
structure geometrical dimensionality is not essential. 

Next step of the analysis is check of the stability of localized structures found. It was done by numerical solution 
of Eq. (1). with substitution for z = 0 of corresponding solution of system (10) with additional small asymmetric 
perturbation. It was found that only for one of the branches (with a monotonic radial decrease of amplitude) there is interval 
corresponding to stable regimes'5. 

4. EFFECT OF FREQUENCY DETUNINGS 

In the previous study we supposed that frequency detunings Aa = Ag = 0 . In Fig. 2 we present the boundaries 

of the "laser bullets" existence and the stability on the plane of two parameters - detunings Ag and Aa between radiation 

frequency and central frequencies of spectral lines of amplification and absorption. Single bullets are stable inside the 

domain marked by label S including case of absence of detunings Aa = Ag = 0 . When the parameters change crossing 

stability boundary, two different scenario of stability lost were found. Near the boundary part marked by C, the bullet 
collapse and disappears, while there are also cases of the bullet unrestricted widening marked by B. 
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Fig. 2. Domain of stability S of the "spherical laser bullets" on the plane of frequency detunings Ag, Aa for g0 =2.156, 

a0=2, 6 = 10, d = 0 . C is the domain of soliton collapse, B is the domain of their unrestricted widening15. 
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5. TOPOLOGICAL LASER BULLETS 

In the numerical simulations in this section we fix the parameters Afl = Ag 

field envelope of a single stationary laser bullet has the form 

0, d = 0, a0 =2 and ß =10. The 

(12) 

The localized solution of Eq. (1) in the form of the topological soliton was found near the "Maxwellian value" of 

the gain, where velocity of switching waves v = 0   '. It can be described as 

£/(/-,(p,T.z)=£,(/',T)exp(/cp)exp(-/a,-),    x = rcoscp,    >■ = /-sincp (13) 

According to (13). if one follows round the point x = v = 0 in the plane x,y along a reserved contour the field phase changes 

on 2TT (topological charge m = 1 ), in the central point of the topological soliton the field turns into zero. It turned out that 

topological (toroidal) soliton exists only for such values of the parameter g0 when the symmetric 2-dimensional soliton 

exists, satisfying to equation 

dE_ 

8z 
■iAjE + fQEl^E,    A2=-T + -T 

(14) 

ay 

Eq. (14) is the same equation as Eq. (1 but without the variable X . Solution (13) was obtained by fixing field azimuthal 

dependence, i.e. by exclusion azimuth perturbations. The intensity distribution of radiation in various sections of the 
topological soliton is shown in Fig. 3. One may say. that the topological (toroidal) soliton is the 2-dimensional soliton, 
prolonged into 3-dimensional space and bended into the ring (toroid), with matched phase shifts and local field profiles. 

■15 15 ■15 15 

Fig. 3. Intensity profiles of stationary topological (toroidal) soliton. a: xy - section (T =0), 

b: XT - section ( v = 0 ), c: yx - section (x = 0), g0 = 2.11 ' . 

Let's remind that the topological soliton was obtained by fixing azimuthal dependence of the field. The numerical 
simulation shows that even weak perturbations with another azimuthal dependence destroy such soliton, so the topological 
solitons are unstable. After switching-on of perturbations, the topological soliton is preserved during quite a large interval of 
z. Then it decays to "non-topological" structures, which disappear soon, as it is shown in Fig. 4, since the fundamental 

solitons do not exist as localized solutions of Eq. (I) for g0 = 2.11. 
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Fig. 4. Intensity profiles for various values of the longitudinal coordinate z for decay 
of 3-dimensional topological soliton (xy - section, x = 0, g0 = 2.11) 

15 

6. INTERACTION OF TWO LASER BULLETS 

If the distance between centers of bullets exceeds significantly theirs characteristic width then interaction of 
bullets is negligibly small. So the field envelope of two laser bullets moving one towards another with relative velocity 2v 

(in lateral direction) has the following form: 

where 

E(2){x,y,x,z)= £(~*°-v){x, v.x,z) + £(*o--v)(x,y,z,r)exp(/0), 

E(x°-v)(x,y,x,z)=E{3ß){x-x0+vz,y.x,z)exp(-ivz/2)exp «3.0 

(15) 

(16) 

and the field envelope of a single stationary laser bullet has the form 

E{m(x,y,x,z)=E{3-0)(x,y,x)exp(-ia3.0z). (17) 

For the main (fundamental) laser bullet the function E{m(x,y,x) is spherically symmetric with appropriate scaling of the 

coordinates. 
The result of collision depends on velocity V most of all and also it depends on gain g0 and phase difference 6 . 

The following typical scenarios of collision are obtained (other parameters are fixed as in the previous section): 

1. passing of "bullets'" one through another (g0 = 2.156, v = 2.0,9 =0); 

2. repulsion (g0 = 2.156, v = 1.0,9 =7t); 
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3. generation of a new (third) "bullet" (g0 = 2.156, v = 1.0,6 =0); 

4. generation of switching waves in result of the collision, with progressive filling out all the space by radiation 
(g0=2.l6,v = 1.0,9 =0). 

Scenarios 1-3 are not unexpected; the similar regimes were obtained earlier for 1-dimensional and 2-dimensional 
solitons6'8. The most non-trivial results of collisions - scenarios 3 and 4 - are represented on Fig. 5. Scenario 4 (formation 
and propagation of switching wave after collision) was obtained for the first time for 3-dimensional solitons. The existence 
of such solution may be explained as follows. The parameter value g0 =2.16, for which the switching wave is generated, 

exceeds significantly the "Maxwellian value" g0 * 2.111, for which the velocity of switching wave is equal to zero68. For 

g{) = 2.16 , 1-dimensional and 2-dimensional localized solutions do not exist really. 
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Fie. 5. Intensity distributions in the section xi    (y = 0) for various values of longitudinal coordinate z for two scenarios of 
interaction of two laser bullets: A - generation of 3rdsoliton, B - generation of a switching wave16. 

7. CONCLUSION 

We have performed further theoretical analysis and numerical simulations of three-dimensional dissipative optical 
solitons - the "laser bullets". The results confirm possibility to form such the solitons in a continuous medium with constant 
(non-resonant) absorption, saturable (resonant) absorption and gain, and quadratic frequency dispersion. Bifurcation analysis 
reveals existence of a number of branches of localized solutions of the governing equation with different radial shape of the 
envelope, but only one of the branches includes stable solitons. Requirements on the frequency detunings are determined 
necessary for existence of stable laser bullets. Regimes of interaction of two laser bullets were investigated that include a 
new scenario with formation of switching wave. 

Among other topics, we could mention non-paraxial effects14, which are important for extremely narrow laser 
bullets, and effect of finite relaxation rates'7"'9, when new types of dissipative solitons arise. These effects can be important 
for the'laser bullets also, and they will be the subjects of further investigations. Further study is necessary also for choice of 
the concrete medium with features described above that are optimal for experimental demonstration and investigations of the 

laser bullets. 
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ABSTRACT 

The features of spatial and temporal evolution of two short laser pulses propagating in three-level medium under 
conditions of coherent population trapping and adiabatic population transfer is investigated in adiabatic approxima- 
tion. It is shown that in both cases pulses can penetrate into a medium at a distance considerably exceeding the 
length of linear absorption of a single weak probe pulse in absence of a coupling pulse at adjacent transition. The 
difference of spatial and temporal evolution of level populations in processes of coherent population trapping and 
adiabatic population transfer is demonstrated. Also we show that the concept of dressed-field pulses is consequence 

of Manley-Raw relation. 

Keywords: adiabatic population transfer, coherent population trapping, electromagnetically induced transparency, 

counterintuitive pulse sequence 

1. INTRODUCTION 

The possibility to render optically thick media transparent for coherent laser radiation via electromagnetically induced 
transparency (EIT) gained considerable interest over last years. The EIT is achieved using quantum interference 
effects such as nonlinear interference effect,1 coherent population trapping (CPT),2'3 adiabatic population transfer 
(APT).4 These effects cardinally change optical characteristics of a matter and allow to manipulate them. Many 
interesting proposed applications were in part experimentally realized.2- 

Quantum interference phenomena lead to interesting and curious effects at propagation of laser pulses in resonant 
three-level medium. The pulses propagating in conditions of EIT were investigated.6"11 As a rule, the situations 
are considered, when both pulses have an identical form, and their duration is more than the relaxation time of 
an intermediate resonant state (matched pulses6; dressed field pulses7'8) or the duration of a coupling radiation 
considerably exceeds the duration of probe (adiabatons10,11). 

The process of APT is closely connected to the formation of trapped states (and therefore with CPT) and produces 
complete population transfer between two quantum states of atom or molecule. Such states lead to dark resonances 
when the sum of frequencies of two radiation fields is tuned to the two-photon resonance in a three-level system. The 
temporal evolution of APT is well investigated theoretically and experimentally.4,12-16 

Here we study the propagation of two short laser pulses in resonant three-level medium under conditions of 
CPT and APT, using the adiabatic approximation. It is assumed that envelopes of pulses satisfy the criterion of 

adiabaticity3: 

|Gl,2|Ti,2 » 1, (1) 

The Rabi frequencies Gj.,2 are of comparable strength; Ti|2 are the durations of interacting pulses. 

This adiabaticity condition can be achieved for strong enough pulses even if the pulse duration is short (IY/Ti.o « 
l).3'15 Physically, this means that the pulse envelopes should vary slowly in a time interval equal to the reciprocal 
of the effective Rabi frequency G = y/\Gi\2 + \G2\2. The condition (1) can be fulfilled for cases of pulse switching 
depicted on Fig.lb.c. An interaction of pulses with such temporal configuration can lead to CPT. The effect of APT 
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takes place for pulses of counterintuitive sequence (Fig.lb), when coupling pulse with envelope G2(t) is switched on 
and off earlier than the probe pulse G\[t). 

For both cases the theoretical model consists of a system of coupled Schrödinger equations and reduced wave 
equations, describing simultaneously temporal and space evolution of atomic system and radiation. In adiabatic 
approximation (1) the analytic solution is constructed. It is shown, that the probe pulse can propagate over a 
distance considerably exceeding the length of linear absorption, but finally it is completely transferred into the 
coupling pulse. The difference of spatial and temporal evolution of level population in processes of CPT and APT is 
also demonstrated. 

2.  BASIC EQUATIONS 

We consider the three-level A system shown schematically in Fig.la. Transition |2)-|1) is driven by a strong field 
with Rabi frequency G2(t) (coupling field). The second strong field (probe) with Rabi frequency Gi(t) is applied on 
the transition |0)-|1). The waves are assumed to be plane with time envelopes, satisfying the adiabatic criterion (1). 
They propagate in the medium in the same direction. All atoms are initially in the ground state |0). The intermediate 
state |1) is one-photon resonant to both fields. Each field interacts only with the correspondent transition. 

The equations that describe the spatial and temporal evolution of two pulses in a medium of three-level atoms 
of A-configuration are: 

— = iGlbiexpi-ikiz),     -^- = iG*bi exp (-ik2z), —^ = iGib0 exp {ikxz) + iG2b2 exp (ik2z), (2) 
dr or or 

-—^- = iKibib*0exp(ikiz),     —^- = iK2b1b*2exp(ik2z). (3) 
OZ OZ 

Here 60,i,2 - the probability amplitudes of states |0 >, |1 > and |2 >, respectively; A'i,2 = TTU>I |dio,i2| N/cfi - the 
propagation coefficients; TV - the atom concentration, d,-j - the dipole transition matrix elements; Arli2 - the absolute 
values of wave vectors of interacting waves in vacuum; r = t- z/c- the local time. All the dynamical variables are 
functions of both z and r. 

In terms a0 = b0exp{ik}z), a2 = b2exp{ik2z), aY = ibi, the equations (2) and (3) can be written as: 

da0      n, da2 dax ... 
—— =&,ai,     —— = G2ai,     -5— — -triao - L,2a2, {<i) 
dr OT OT 

dG\ „      oG2      T,       » /c\ 
-5—= Aiaia0,     ——= A2aia2. (0) 
oz az 

In adiabatic approximation the solution of the system (4) has the form: 

G2 Gi 1  d(G2/G) 1 d(Gi/G) . . 
a0~^,    a2~- —,    ai~^- —^-—~- — —Br-, W 

where G = y/G'{ + G\. In the given approximation this solution does not depend on specific form of pulses. 

Substituting the solution (6) in the field equations (5), we obtain a system of the connected nonlinear equations: 

dGx /r/(Gi/G) dG2 _ ,r)d(G2/G) _ = _(Al/G)___ ___(A2/G)__. (7) 

If A'i = A2 = A, the equations (7) can be solved analytically, for example, by characteristic method. The exact 
solutions are: 

Gl-G(0'r)G(M'     G2-G{0'T)-GWW {} 
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Here p = Z~
1
{Z{T) - z), Z{r) = K~l f_^ rfr'G2(0,r'), Z~l{z) - inverse function of Z(r). 

It is seen from (8), that the sum G2(r, Z) + G\{T, Z) does not depend on coordinate z and is equal to G2(r,0) = 
G\{r, Z = 0) + G\{T, Z = 0). It is not difficult to show that y/G\(r, z) + G\{T, Z) coincides with definition of dressed 
field pulses7'8: G_ = a0G2 - a2G\. Thus, in this case the pulses may be identified as dressed field states. Let's 
notice that the other combination G+ = a0Gi + a2G2 = 0 (see also7). When Ki ^ A"2 it is not true. However in 
both cases the Manley-Raw relation take place, because its formulation is more general. 

One can show from (7), that the value A2G
2(r, z) + KIGI{T,Z) does not depend on coordinate z and is equal 

to G
2
{T) = A'2G

2(r, z = 0) + KIGI(T, 2 = 0). It is not difficult to show that K2G\(T, Z) + A'iG|(r, z) = n^r, z) + 
n2(r, z) = F(r) - does not depend on z, where n1|2(r, z) is the photons density. It is the Manley-Raw relation. Let's 
mark, that an integral f^ dr[A2G

2(r, z) + I<IG
2

2{T, Z)\ = constant. 

3. DISCUSSION OF RESULTS 

3.1. The case of coherent population trapping 
For demonstration of the main features of propagation of pulses under conditions of CPT we used gaussian envelope 
at the entrance of the medium: GI,2{T) = G?i2exp(-r2/2T1

2
2), 7\ > T2 (fig.   l,b).   Here the coupling pulse with 

envelope G2(t) switches on earlier and switches off later than the probe pulse G\(t). 

The expression for a.\ can be reduced in a form: 

al = (G2Gl-G1G2)/G3. (9) 

It is easy to show, that in approximation (1) |ai| « 1, i.e. the population of an intermediate state |1) is negligible 
during all time of interaction with pulses. The last physically means, that the resonant absorption of pulses is low. It 
is the electromagnetically induced transparency. Thus pulses will propagate over the distance essentially exceeding 
the length of linear absorption of a single weak probe radiation. 

The population is distributed between initial |0 > and final |2 > states. So, there is an approximate equality: 

|a0|
2+M2-l. (10) 

And solution for probability amplitudes a0,2 is convenient to be presented as: 

a0 = cos#,        a2 = —sinö, (11) 

where cos 0 = ^£, sin 6 — ^f. 

It is interesting to remark, that the equality (10) also reflects the fact, that atoms are trapped in a state of 
coherent population trapping with probability amplitude a_ = (G2/G)a0 - (G\/G)a2 — cos (0)ao - sin(0)a2 = 1. 
Thus the reduction of resonance absorption of interacting pulses is due to coherent population trapping. 

The atomic coherence of nonallowed transition |0)-|2) p2o = a2a*Q is 

^ = -^ = -1^20 (12) 

If pulses have the same amplitude, then in the time moment r = 0 it reaches value p2o(r = 0) = -\ corresponding 
to the maximum coherence. 

In Fig.2 and Fig.3 the level populations />0,2 = |ao,2J2 and the atomic coherence |/>2o| = l^aol versus time 
and length of medium are shown. It is seen that populations are varied nonmonotonously with the length. This 
spatial dependence is similar to the temporal dependence. Thus, we can speak about spatio-temporal analogy at 
propagation of such pulses. Fig.3 demonstrates that maximal atomic coherence is conserved over the length of a 
medium, considerably exceeding the length of linear absorption of a single probe pulse. 

Fig.4 shows the normalizes Rabi frequencies #lj2 = G\t2T\ versus time and length of a medium calculated from 
(8). The dependencies illustrate that in resonant medium the pulses can propagate over a distance, which is several 
orders greater than the length of the linear absorption of weak probe pulse. 
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3.2.  The case of adiabatic population transfer 
Here we also used gaussian pulses, but with the counterintuitive sequence: G\{T) = G'?exp(-r2/2T2), G2{r) = 
QO exp[_(r _ T0)

2/2T2}, T0 - the delay time between pulses. It follows from (6) that in the tail of the coupling pulse 
|a0|

2 ~ 0, and |o2|
2 ~ 1- In other words, the population of the ground state |0) is transferred into state |2). 

In Fig.5 the normalized Rabi frequencies glj2 = Gi^T versus time and depth of penetration of radiation in a 
medium calculated from formula (8) are shown. They demonstrate, that in a resonant medium the probe pulse can 
propagate over a distance, which is several orders greater than the length of linear absorption of weak probe pulse. 
However the energy of the leading edge of the probe pulse is partially absorbed, and the energy of the coupling pulse 
is amplified. The absorbed energy is used for the adiabatic transfer of the atomic system to an excited state and for 
amplification of the coupling pulse. Eventually the probe pulse is completely transferred into the coupling pulse. 

In Fig.6 the populations /?0,2 = |ao,2|2 versus time and length of medium are shown. APT thus makes it possible 
to achieve practically 100% inversion on dipole-forbidden transition in extensive media. 

In both cases obtained analytic results coincide with the results of the numeric analysis of system of equations 

(4) and (5) (see also17). 

4.  CONCLUSION 

We have presented the results of analytical calculation of spatial propagation of short laser pulses pairs in absorbing 
three-level media under conditions of coherent population trapping and adiabatic population transfer. The results 
show that in both cases a transparency can be maintained over several thousands one-photon absorption lengths. 
But complete transfer of energy from probe pulse to coupling pulse takes place at some pre-defined optical length. 
When the propagation coefficients are equal, i.e. A'i = Ä"2, the process can be understood in terms of dressed fields 
pulses. For the case A'i ^ K2 it is not true, but the pulses comply with Manley-Raw relation which have more 
general character than conception of dressed fields pulses. 

It is shown also how the population in initial and target states can evolve spatially, i.e. in the course of pulses 
propagation. APT leads to practically complete inversion at dipole-forbidden transition at a characteristic propaga- 
tion distance of the probe pulse which can be over several thousands Beers lengths. In the case of CPT the maximal 
atomic coherence is also maintained on the large length. In this sense our results provide additional information on 
EIT propagation in case of short pulses with duration much less than atomic relaxation times. 
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Fig.l. Configurations of energy levels in atom (a), Rabi frequencies at an input of a medium (b,c). 

a»! 2 —carrier frequencies of probe Gx and coupling G2 pulses, consequently: (b) —case of coherent 

population trapping (the duration of coupling pulse is more, than the duration of probe (T2 > 7*,)), (c) - 

case of adiabatic population transfer. 

X "10 

Fig.2. The dependencies of level populations  p0>2 - «0>2 

penetration of radiation into a medium. The parameters are as follows:  T2/Ty=3,  C,^, =10, 

r10r, = o.i,r127; = o.i, KX = K2. 

from the time and the depth of 
o 
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Fig.3. The dependencies of an atomic coherence \p20\ = \a2a*0\ from the time and the length of a 

medium. The parameters are the same as in fig.2 
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Fig.4. The dependencies of envelopes of Rabi frequencies gl2 - G12Tt from the time and the depth 

of penetration of radiation into a medium. The parameters are the same as in fig.2 
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Fig.5. The normalized Rabi frequencies g± = G{T (a) and g2 = G2T (b) versus time and length of 

a medium. The parameters are as follows: t0/T = 2, G^T = 10, G^T = 10 ((?i>2— value of Rabi 

frequency Gl2 in a maximum); rlQT = 0.1, rl2T = 0.1, Kt = K2 .The time t is measured in terms 

of pulse duration T, and length of a medium E, — in terms of the length of linear absorption of a probe 

radiation with frequency a^ 

Fig. 6. The level populations p^2 = 

the same as in Fig.5. 

versus time and length of a medium. The parameters are 
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with regard to the dispersion of non-linear susceptibility. 
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ABSTRACT 

System of evolution equations describing ultra-short optical pulse propagation in quadratic non-linear medium is derived 
with taking into account the dispersion of the non-linear susceptibility and second-order group-velocity dispersion. Both 
type I and type II of phase matching were considered. The case of a finite phase mismatch was analysed by an analytical 
method. The steady state pulses of the fundamental and second harmonic waves were found. There are new kinds of ultra- 
short pulses propagating in quadratic medium in the anomalous and normal dispersion regime. 

Keywords: second harmonic, anharmonic oscillator, phase matching, quasi-harmonic electromagnetic waves 

1. INTRODUCTIOM 

Second harmonic generation (SHG) was one of the effects that give rise to the development of nonlinear optics. In the last 
years this phenomenon newly attracts great attention1. The point is that solitary wave propagation and soliton phenomena in 
quadratic nonlinear medium can be investigated with less energy consumption that in the case of cubic nonlinear medium. If 
the width of an electromagnetic pulse is much larger than the period of the optical cycle, the pulse can be naturally de- 
scribed by means of its slowly varying envelope. This approximation is adequate for pulses of 10' - 10" second region. 
However, this approximation should be upgrade if we remove to consideration of the pulse duration of 10"" - 10" seconds 
interval. The modification of slowly varying envelope approximation can be done in framework of some relevant model of 
nonlinear medium. The nonlinear dynamics of the medium driven by the electromagnetic filed is frequently modelled in 
terms of anharmonic oscillators2. In particular, the propagation of a linearly polarised ultra-short pulse (USP) was consid- 
ered in the framework of the material model based on the Duffing oscillators3,4, with the non-linear response of the medium 
being cubic. The propagation of a linearly polarised USP in a dispersive medium was modeled by means of quadratically 
non-linear oscillators The propagation of femtosecond pulses in a medium with the nonlinearity determined by both elec- 
tronic and ionic (Raman-scattering) degrees of freedom was considered in Ref. 7. 

An objective of the present work is to derive the modified system of equations describing the evolution of the USPs of 
fundamental and second harmonic radiation. Some approximate solutions of these equations will be obtained. 

2. CONSTITUENT MODEL 

Let us consider the model in where the non-resonant medium is represented by ensemble of anharmonic oscillator that de- 
scribed by Hamiltonian: 

H = {mll){(dx0ldt)2 +(dxeldt)2} + y0xl+yexl + 

+ (1 l3){Axl + 3Bx2xe + 3Cx0xl + Dx]} - mß0x0E0 - mßexeEe 
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Normal coordinates x0 and xe are corresponded to ordinary and extraordinary axes. Polarization components are deter- 

mined by expressions P0=Nexo, Pe=Nexe. Eigenfrequencies of oscillator are determined by parameters 

2y =m(i>l, 2ye=m<S>2e, Let us introduce the notations for anharmonic parameters Xijk as A = mXm, 

B = mX     , C = mXn2, D = mX222. The Hamiltonian under consideration leads to the following equations 

d'x 

dt2 ̂
 + co*x0 +Xmx; +2Xn2x0xe + XX22x

2
e = $0E0, (la) 

^x.A   +1      r2 +71....X x   +X^x2=QE.. (lb) 
dt2 

e- + &]xe + Xu2x
2

0 + 2XU2x0xe + X222xe = ße£ 

As usually, we consider the quasi-harmonic electromagnetic waves: 

Ej = SXJ(r,0exp(-/co^ + /*,_,::) + S2, (-,0exp(-2/(öL/ + z*2y-) + c.c., 

/>, = g>. (r, 0 exp(-/<»£r + /\.r) + <P2y (r, /) exp(-2/©^ + ik2Jz) + c.c., 

where & (zj) and ®a (z,t) are slowly varying envelopes of electric field of the pulse and polarization of medium 

(a = 1,2 is frequency index, J' = 0,e polarization index, ordinary or extraordinary waves). The normal coordinates of 

oscillator are represented in like manner 

x0 = &0(~,Oexp(-/oV + <*,0-) + Ö2o(-V)exp(-2/üV + '*2o-) + cc, 
xe = Qu(z,t)exp(-mLt + ikuz) + Q2e{zJ)tx^{-2mLt + ik2ez) + c.c. 

Thus, i?a- (Är.CO) = NQa(k, CO) . The solutions of the equations (1) can find as series in terms of power of Xijk 

For the functions x{
0
n) and X("] it leads to infinite coupled equations 

a2    (0) P2rt0) 

^4-+°^0) - ß*£-   ^-+<x™=ßA- (2a) 

g2
-x»)   , »2y(») -    l     YWX(0)-?X    x{0)x{0) -X    X(0,JC(0) (2b)  —+ C0o*o     --^Hl^o    Xo ZKU2Xo    Xe /V122Ae    Ae     > v     ' 

^4V,Jv(i).    *      v(0)r(0)     ?}      y<0>r
(0)-}L     r<0)r<0) 

or 

The expansion of the normal coordinates in terms of the anharmonicity parameters allows us to represent the Fourier com- 

ponents of slowly varying envelope of polarisation % (*,©) = NeQaj (k, CO) as a power series 

W=0 
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From (2a) it follows that &ai
(0)(k,(ö) = Mxy(COa + (i))&aJ(k,(0) , where OCy(co) is linear susceptibility. Thus we can 

introduce a linear penetration S . (CO) = 1 + 4nNa.j(G>) and represent the dispersion relation for electromagnetic waves in 

form: 

(kaj + k)2&aJ(k,(d) + (o)fl + (o)2Zj(<oa + co)c^.(/:,(o) - 

= -(47t/c2)(coa+o))2^,)(^(ö), 
(3) 

If we take into account inequalities k « k ■ and CO « C0U then relation (3) leads to dynamical equations for the ultra- 

short pulse envelo 

following system: 

short pulse envelopes of the fundamental and second-harmonic waves8. In the second order of (co/co   ) we can obtain 

Dai   d
2    _ 

2neNca, 

^Zji®«) 

inO) 

0?(O + 
2/ dQ$      1   FQ$ 

co„    dt      co2    dr 

(4) 

Where the group-velocity and dispersion parameter of fundamental and harmonic solitary waves were introduced as 
vg.aJ =VÄ/(cöJ = (d/co/^y)(CO(,) and DaJ ^{2kaj)-\d

2k]./JC02)(C0J respectively. 

Equations for oscillator variables QlJ/(t) can be simplified if it take into account phase-matching conditions. There 

are two kinds of relations between wave vectors of the interacting waves. Second harmonic generation in scheme 

0 + 0->e is high effective under conditions 2klo « k2e. It was referred to type I phase matching. Interaction of three 

waves corresponding scheme O + e —> e is high effective under condition £lo + kio « k2e that corresponds to type II 

phase matching. 
If we consider type I phase matching, then the reduced equations describing slowly varying oscillator variables in this 

case can be written as follows 

2i(£> ' '"2      ~2^(])-    ^      nWnW) 
dr 

e2Q% 

+ (co2 -cof )Q^ =-2Xu2QX>- exp[fe(*2, -2*IO)]. 
dt 

2/(0, r^L + (coe
2 - co2 )Q^ = -Xn2Q™Q™ exp[ir(2*l0 - k2e)]. dQ£ 

dt2 '   l    dt 

In the case of the type II phase matching the oscillator variables are satisfied the system of equations: 

52^ 
dt 

d2QV 
dt2 

2       2/co, ^ + (co2 -co2)^' =-2Xl22Q£>Qr exp[is(*2. - *„ -klo)]. 
dt 

2/co, ^ + (co2 - cof )Ö1
(
1:) = -2Xl22Q

(X>* exp[/z(>t2e - *,. - kl0)], 
dt 

(i) 

dt 
lim ^ + (co

2 _ co2 ^(o = ^^Ö^ exp[«(*10 + *,. - **)]. 
dt 
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Solution of these systems of equations with taking into account J] = (®Ltp )_1 «1 leads to generalized equations of Sec- 

ond-Harmonic Generation in ultra-short pulses under consideration. For the case of the type I phase matching we have 

f d        1     ^ 
+ 

v 
dz    v  i dt J l dt 

&f2K 1       .cr*. I 

h     I CO] 
OC-     Ö(%* cr*  S&2 2^77~^77 >exp{iAkz} 

\dz + vgadtj 

s      D2    d       - /       ^ 

2  5/ 

_^U   ii^Lp(-,, 
a>i      dt j 

iAkz) 

(5.1) 

(5.2) 

where Ak - £,„ - 2k, „   and 2e       ^"-lo 

2m2c26)x      c
z c 

Here we introduce nonlinear susceptibilities of second order to obtain results, which are independent from model. For the 
case of the type II phase matching SHG equations has the following form 
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where Ak = k2e - kXo - ku, and 

m c (£>\       c c 

Thus, we obtain the system of equation to describe the propagation of the two connected fundamental and second harmonic 

waves. It takes into account corrections of the first order {d>Ltp )     only. 

3. SOME EXAMPL 

Let  consider the  pulse propagation  of fundamental  and  harmonic  radiation  under  condition  of phase  mismatch 

A = ML »1. If one introduce the new variables as 

with 

&x = A0qx ,    &2 = A0q2 exp{-/Mr} 

A? =2AT1a>f /*,, 

then the equations of the pulse propagation in quadratic non-linear medium at type I phase matching can be rewritten 
in the following form 

d      _ d 
— - o — 
dC,       dx 

d      . d — + 5 — 
5C       3x 

52q, 

ox 

dq'x dq2 2q2 - gx -— 
dx dx 

-«2 r 

q2 - °2 -z-t + Mi = -Y 
ox' 

qf - 4ir\qx 
dqL 

"dx 

(7.1) 

(7.2) 

where o, = Sgn Dx, o2 = D2 11 Dx |, y = 2*, / £2 and r) = (©/, )" 

From second equation, at order 1 / A, we can get approximately 

<?2*-- q2 - 4ix\q 
dx 

(8) 

Substitution of this expression into first equation gives 

/ a-a 
dC 

d2q   YI„I2 

dx2     A 
?l   ?-2// 5\q 

dq     d(\q\2q) 

dx dx 
(9) 

where x = {t-zlv , )f' , £ = z / L , / = Try / A and <?(§, l) = ^j (z, 0 is normalized envelope of the fundamental 

radiation pulse. It is generation of Nonlinear Schrödinger equation with derivative nonlinearity and shock-like nonlinearity. 
By proposing that 

q(^,x) = a(y)-exp(4) y = x-a^ 

we can find the exact solutions of the resulting equations. There are two solutions exponentially decaying at X -» ±oo 
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a\{y)- 
2b, 

^b^Tbfcosh^-jb, (7-Ml±Ib2 I 

and the new "algebraic" (algebraic decaying) solution 

al(y): 
bi+bl(y-yQY 

The phase of complex envelope can be written as 

du 

Jb2+4bA   -» cosh w +cos 9' 

(10) 

(11) 

(12) 

where COS 9 = b2 (b\ + 4blbi)'' '2. In these expressions we used parameters 

&i=(a2/4_^)>    62=(2a/-cyY/2A) = (Y/2A)(4a-n-o)>   63=7/2/3, 

and free constant K Sings plus or minus indicate the region of dispersion: "plus" correspond to anormal dispersion 
(a = -1) and A = AkL <0 or to normal dispersion (o = +1) and A = ML >0. The sign "minus" correspond anormal 
dispersion (a = -1) and A = ML >0. The complex envelope of second harmonic can be expressed in term of the real 

envelope and phase of fundamental wave as 

q2 x-lL2
±(y)[l -2aari + 4ortfa2

±(y)]- 2rr\—^'^-  exp(/2c|>). (13) 

Fig.l. Envelope of steady state pulses of pump (a) and harmonic (b) in the anomalous dispersion region (C = -l) 
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Fig. 1 shows the square of real envelopes, which are corresponded to fundamental and harmonic USP propagating in 
media under condition of anomalous group-velocity dispersion. These USPs exist in usually case of SHG and in the Kerr- 
like medium. If pulses propagate in medium with normal group-velocity dispersion, soliton-like USP can be obtained from 
(8), (10), and.(13) too. Some example of these USPs are represented in Fig.2. 

Fig. 2. Envelope of steady state pulses of pump (a) and harmonic (b) in the normal dispersion region (CT = +1) 

It is noteworthy that if the correction terms in equations (7) were omitted, the solution for the case of normal dispersion re- 
gion would convert into singular one. 

4. CONCLUSION 

We have introduced and analyzed a model for the propagation of ultra-short pulses of the electromagnetic field in a material 
medium represented by quadratic anharmonic oscillators. In frame of this model new systems of equations of SHG were 
derived. It was found that the dispersion of second order nonlinear susceptibility of the medium results in new regime of 
ultra-short pulse propagation. Furthermore, there is new "algebraic" steady state pulse. 
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ABSTRACT 

We observed and investigated self-starting quasi-periodic pulsation in Er-doped fiber laser at 30-100 mW pump power. 
Pulses with duration ofl(T- 50 ns (FWHM) and peak power of 50-200 W are generated at a quite stable repetition rate m the 
ran°e of 300-500 us. In contrast with previous experiments the pump level in our experiment is significantly lower. At this 
low°pump power we found no nonlinear effect except SBS influencing on the laser dynamics. The experimental results were 
explained by a theoretical model based on cooperative dynamics of Rayleigh backscattering (RS) and Stimulated Bnllouin 
Scattering (SBS). Using digital oscilloscope, we traced in details different stages of Q-switching pulse formation process: 
orowth of the spontaneous radiation, lasing due to Rayleigh backscattering, appearance and growth of the first order SBS 
Stokes radiation and the second order Stokes radiation, lasing suppression due to saturation of the population inversion in 
Er-doped fiber by the SBS Stokes radiation. Good agreement between theory and experiment have been demonstrated. 

Keywords: Q-switched fiber lasers, Er-doped fiber lasers, Rayleigh scattering, stimulated Brillouin scattering, 
nonlinearities in fibers, distributed feedback. 

1.   INTRODUCTION 

Recently a novel mechanism for passive Q-switching in fiber lasers based on cooperative dynamics of linear Rayleigh 
backscattering (RS) and Stimulated Brillouin Scattering (SBS) has been reported12. The matter of the mechanism00 is the 
following. Rayleigh backscattering of the light propagating in the laser cavity creates additional distributed feedback in the 
fiber cavity leading to a very effective linewidth narrowing. This in turn creates the conditions for SBS in the fiber. The 
growth of SBS then causes a series of avalanche processes leading to Q-switching. 

In the experiments1'2 passive Q-switching caused by the above-mentioned mechanism has been investigated 
experimentally but only with pump powers higher than 2 W. In a self-Q-switched Yb-doped fiber laser, generation of short, 
2 - 15 ns pulses was observed at a repetition rate in the range of 1-20 kHz, which was different from relaxation oscillation 
pulsation.1 A prelasing pulse with duration about ~ 50 ns and peak power -40 W followed by gigantic 2-ns pulses with 
record high peak powers exceeding 10 kW were produced from a single-mode fiber laser with the use of 2-3 W diode 
pumping°Such extremely high peak powers in single-mode fiber, followed -20 ns later by the secondary echo pulse, 
produced extreme spectral broadening from 0.8 to 2.3 urn with the involvement of literally all possible nonlinear processes 

Other author information: A.A.F.: Tel: +07 (812) 515-66-60; Fax: + 07 (812) 5156747; E-mail: A.Fotiadi@shuvpop.ioffe.rssi.ru 
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in silica optical fibers, including four-wave mixing, Raman scattering, etc. Such a rich laser dynamics at high pump power 
which is caused by a multiplicity of competing nonlinear phenomena's impeded both the recognition of initial process 
leading to Q-switching and direct comparison of experimental and theoretical results. 

In this paper, we report our experiments with Er-doped fiber lasers pumped by low-power 980 nm laser diode. Pulsation 
operational mode caused by RS-SBS mechanism was successfully observed at pump power levels of 30 - 80 mW. Self- 
starting pulses generation occurred at a quite stable repetition rate in the range of 300-500 us and peak power of 50-200 W 
with ~&50 % fluctuation. In contrast with previous experiments, the laser dynamics was more simple and slower. Using 
digital oscilloscope we could recognize different stages of the Q-switching pulse formation process and investigated each of 
them experimentally in details. Commonly we observed a small pulse with duration of 50 - 200 ns and peak power of 0.5 - 
5 W followed by gigantic Q-switched pulse with duration of 10 - 50 ns. No extra echo pulses following the main pulse were 
observed It was concluded that no nonlinear effect except SBS6'7 influenced on the laser dynamics. Therefore, we could 
compare in details the experimentally observed laser dynamics with the theoretical behavior as predicted by the RS-SBS 
model3-5 Fine structures of small and gigantic pulses were investigated for number of laser configurations. On this way 
certain relations between fine structure of the pulses and laser parameters were found. In a complete agreement with 
theoretical predictions, by varying the laser cavity length we observed two qualitatively different laser behaviors in pulsed 
mode. In the experiment with ~8 m cavity configuration, gigantic pulse had duration of 40 - 80 ns and peak power of less 
than 50 W. Leading edges of the small and gigantic pulses were separated in time by the cavity round-trip time. When the 
length of cavity was increased up to -44 m, leading edges of the small and gigantic pulses were separated by a period, 
which was smaller than the cavity round-trip time, and gigantic pulses became more powerful with peak power of 200 W 
and duration of 10- 15 ns. 

Numerical simulations of the laser behavior were based on the set of dynamical equations for cooperative RS-SBS 
process8 in fiber laser. Comparison of experimental and theoretical results allowed us to recognize different stages of pulse 
formation process, namely, growth of the spontaneous radiation, lasing due to Rayleigh backscattering, appearance and 
orowth of the first order SBS Stokes radiation and the second order Stokes radiation, lasing suppression due to saturation of 
the population inversion in Er-doped fiber by the SBS Stokes radiation. By this way, we explained the difference in laser 
behavior for different laser configurations and proved that pulsation was caused by the RS-SBS Q-switching mechanism.J 

Er-doped fiber 
~7m 

Single mode fiber 
-1m 

Extra fiber 
-1m 

Output 1 Output 2 

90% Fiber Bragg 
grating 

10/90 Coupler 

]   Pump laser diode 
-fiber splicing 

Figure 1. Experimental setup (lengths of fibers are indicated for the basic configuration). 

2.   EXPERIMENT 

1.    Experimental setup 

In our experiment, the laser configuration employed in refs. I>5 was realized with the use of an Er-doped fiber pumped by 
980 nm laser diode with maximal output power of 100 mW. The basic experimental setup is shown in Fig.l. The laser 
consists of a linear fiber cavity, comprising 90% reflecting fiber Bragg grating (FBG), Er-doped fiber, piece of single-mode 
fiber (SMF), and a single-mode fiber ring resonator (RR) attached to the cavity through a 10/90 single-mode fiber coupler. 
The laser is pumped by a laser diode through a WDM coupler, which is inserted between Er-doped fiber and SMF. 
Typically, a piece of extra single-mode fiber (EF) is spliced with the free end of the 10/90 coupler. If the output end of the 
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extra fiber is protected from backreflection, feedback in the linear fiber cavity occurs due to reflection from FBG and 
backreflection caused by RS or SBS in the fiber ring resonator. The laser output radiation from both cavity ends (output 1 
and output 2) is detected simultaneously by two photodiodes. The signals from photodiodes are digitized and recorded by 
oscilloscope for further comparison and analysis. The temporal resolution of the detection system is less than ~ 1 ns. Optical 
spectra of the output 2 radiation was monitored by optical spectrum analyzer. 

2.    Laser in the basic configuration 

In a first experiment we investigated the laser behavior in the basic configuration shown in Fig.l. The lengths of all fibers 
are indicated in Fig.l. At pump power level in the range of 10- 100 mW, lasing caused by backreflection from the free 
fiber end (2-4%) of the extra fiber takes place. The central wavelength of the laser radiation was 1532 nm. No regular 
pulsation, except relaxation oscillations, was observed in oscilloscope traces above the noise level. 

Output 1 Output 2 

3 
TO 

o 
a. 

3 
as 

0) 
5 o 
a. 

-400    -300 -200    -100       0        100 -400    -300    -200    -100 

Time, us Time, us 

Figure 2. Typical oscilloscope traces recorded at 90 mW pump power (basic cavity configuration). 

When the free end of the extra fiber (EF) was cut at angle to eliminate backreflection from this fiber end, the laser could 
operate in pulsed mode. At pump power of 90 mW, self-starting generation of pulses occurred (Fig. 2) at a quite stable 
repetition rate in the range of 300-500 us and peak power estimated to 10 W with -50% fluctuation. There was a correlation 
between the amplitude of pulse and its temporal delay. Pulses with higher delay were generally more powerful. Besides, the 
double-pass amplified pulses from output 2 demonstrated higher stability of their amplitude than single-pass amplified 
pulses recorded from output 1. The typical duration of the pulse was -40-50 ns. It was much more stable in comparison 
with other pulse characteristics. Similar self-starting behavior of the laser could be observed at pump powers lower than 

90 mW. 

We found that the coefficient of backreflection from the angled fiber end influenced the pump power threshold at which 
repeating pulsation became self-starting. Careful angled cutting of the fiber end allowed us to reduce backreflection from 
the fiberend and to decrease the threshold down to 70 mW. It was found that the environmental noise, unavoidably present 
in the room could decrease the threshold when pulsations appear. When the laser was entirely protected from 
environmental perturbations by a foam plastic box the threshold of process could not be attained for pump power less than 
100 mW. However, the pulse generation was achieved with threshold pump power as low as 30 mW when the laser was 
affected by a weak'acoustic signal. It is important to note that the way of starting did not influence the pulsation behavior 
and its parameters (peak power, repetition rate, pulse duration), which were mainly determined by the laser configuration 

and pump power level. 

3.    Specific features of laser dynamic behavior in basic configuration 

Typical oscilloscope traces of laser pulses recorded from both laser outputs are shown in Fig. 3. They were recorded at 
pump power level of 80 mW. Fig. 3 (a) shows the behavior of the gigantic pulse. At the output 1, a gigantic pulse of-30 ns 
FWHM duration is seen on a CW background. At the output 2, an additional small hump precedes a gigantic pulse of-40 ns 
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FWHM duration. From the CW background estimated to about 10 mW, the peak power of the gigantic pulse at the output 2 
is estimated to -10 - 20 W from average output power measurements. 
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Figure 3. Typical oscilloscope traces recorded at 80 mW pump power (basic cavity configuration). 
(a - large scale, b - small scale on y-axis). 

Oscilloscope traces with expanded y-axis scale are shown in Fig. 3(b). Several stages of the pulse formation can be 
clearly recognized in the oscilloscope traces of the output 2. Initially, the power grows exponentially with a characteristic 
time of- 70 ns. Then inflection in the curve happens and the growth becomes slower. At the time indicated by arrow l in 
fig.3(b) (point l), a small pulse is generated before the gigantic pulse that appears at point 2. It is important to note that all 
the above-mentioned stages were always present in all traces that were recorded at pump power of 80 mW. The growth time 
of the exponential part at the output 2 was the same for all the recorded traces. Point 1 where small pulse starts and point 2 
where gigantic pulse starts were always separated in time with a delay exactly equal to ~ 80 ns, that is the round trip time 
through the SMF and the Er-doped fiber. 

4.    Laser configuration with long linear part of the cavity 

In a second experiment, the length of the linear part of the cavity was increased to 44 m. We used 12.5 m of Er-doped fiber 
and 32 m of single-mode fiber (SMF), instead of 7 m and 1 m in the basic configuration respectively. Self-starting pulsation 
in this long cavity configuration was observed at pump power level in the range of 50 - 80 mW. We found that the output 
pulse from the laser became much more intense and shorter than in the previous experiment. The typical duration of the 
gigantic pulse was ~ 10-20 ns. The peak power was estimated to ~ 100-200 W. Typical oscilloscope traces recorded at 
pump power of 80 mW are shown in Fig. 4. In general, they reproduce the temporal behavior we observed in the basic 
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configuration. Fig. 4 (a) shows the behavior of the gigantic pulse. In contrast with previous experiment (see Fig. 3 (a)), the 
pulse shape at the output 2 is considerably different from that at the output 1. The first pulse has a FWHM duration of 
~ 50 ns while the second has a FWHM duration of ~ 15 ns. It is surprising because the signal from output 2 should be the 
same as the signal from output 1, the former being the same as the later but only reflected from mirror and amplified in Er- 
doped fiber. The reason of this disparity could be the saturation of the population inversion in amplifier, which could lead to 
the sharp trailing edge of the pulse from output 2. However, this pulse demonstrates also some specific features on its 
leading edge, which can not be connected with saturation effect. Fig. 4 (b) shows that several stages are present in the 
temporal behavior of output 2 (slowly growing part, small pulse and gigantic pulse), which are likely the same as those 
shown in Fig. 3(b). Starting points of small and gigantic pulses (points 1 and 2 respectively) are separated in time by 
- 200 ns. which is significantly smaller than the time that light takes to travel a round trip through SMF and Er-doped fiber 
(-440 ns). 
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Figure 4. Typical oscilloscope traces recorded at pump power of 80 mW (configuration with long linear part of the cavity). 
(a - large scale, b - small scale on y-axis). 

3.   DISCUSSION OF THE RESULTS 

1.    Brief description of laser model. 

In our experiments, we observed the Q-switching behavior of the Er-doped fiber laser shown in Fig. 1. This Q-switching 
behavior of the laser and the observed fine temporal structure of the pulses can be explained by the model""3 that we early 
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exploited for high power lasers. According with this model Q-switching occurs due to cascaded Rayleigh and stimulated 
Brillouin scattering dynamical process rising in the laser cavity. For the experiment in the basic configuration this 
mechanism is following. 

Because feedback caused by reflection from the fiber end at the laser output 2 is suppressed by angled cutting of the 
fiber end. the lasing is caused by feedback due to Rayleigh scattering in the ring resonator. Although the Rayleigh 
backscattering coefficient A for single-mode optical fiber is rather low (commonly, it is about 1/600 part from Rayleigh 
losses), backreflection coefficient R (on intensity) from the ring is enhanced at resonance frequencies of the ring resonator 
vr =m(c/nLl.) (where c- light velocity, «-refractive index, LR - ring interferometer length, m- arbitrary integer). 

Resulting reflection coefficient at the resonant frequencies vK is R ~ Q2ALK , where Q is Q-factor of the ring resonator. In 
our experiment Q is about -38. Thanks to this backreflection enhancement the double-pass gain of the Er-doped fiber is 
sufficiently high to provide lasing. The lasing frequency vA have to coincide simultaneously with both one of the resonant 

frequency of the ring resonator vR and one of the resonant frequency of the linear cavity v, . The linear cavity is formed by 

FBG mirror and Rayleigh backreflection from ring resonator. Thanks to the high spectral selectivity of Rayleigh scattering 
only one of all possible frequencies vK is selected. So, the laser radiation is single frequency at vA with very narrow 

linewidth. At the beginning of the cycle, the population inversion in the Er-doped fiber is growing and lasing in the cavity 
builds up exponentially with characteristic time in the microsecond's range. Growing laser radiation circulates in the ring m 
both directions. However, the clockwise circulating radiation is due to Rayleigh backscattering of the counterclockwise one 
and the intensity of the former much lower than intensity of the latter. 

When SBS amplification along the length LR of the ring becomes greater then losses in the ring thanks to growing of 
the counterclockwise radiation intensity, the threshold of SBS is reached and a first order Stokes pulse of hundreds 
nanosecond duration is generated in the ring resonator. The frequency of the pulse vB is downshifted by about 

Av. . - WGHziv, «v, -Avm) The frequency vu is coincident with one of the resonance frequencies of the ring 

resonator. This SBS process causes the depletion of the counterclockwise radiation in the ring resonator which leads to the 
reduction of Rayleigh reflection from the ring resonator and, eventually, to suppression of the lasing at vA . The Stokes 

pulse propagates in the clockwise direction in the ring resonator. It is partly extracted from the ring through the coupler and 
experiences°strong amplification through double pass the linear part of the cavity. Then, the amplified Stokes pulse is again 
injected into the ring resonator and circulates in the counterclockwise direction. Part of the amplified Stokes pulse is 
extracted from the cavity through the coupler. 

A new SBS process is initiated by this Stokes pulse propagating in the ring in counterclockwise direction. A second 
order Stokes (at frequency v(. * vA-2AsliS) is generated in the ring while the initiating first order Stokes pulse is depleted. 
The depletion of the first order Stokes in the ring leads as dynamical response to the appearance of low-power pulse directed 
toward output 2 and is detected at output 2 as small hump (point 1 in oscilloscope traces). The second order Stokes pulse 
propagates in the clockwise direction in the ring resonator and is extracted from the ring through the coupler. Then it passes 
through SMF, experiences strong double-pass amplification in the Er-doped fiber, depleting the population inversion and 
extracting most of the energy stored in the cavity, once more passes SMF and results in a gigantic pulse at the output 2 of 
the laser&(point 2 in oscilloscope traces). This last stage of the process turns the system back to the initial state. It is clear 
that, in this case, starting points of small hump and gigantic pulse in output 2 (points 1 and 2 respectively) are separated in 
time by exactly the time that light takes to travel a round trip through SMF and Er-doped fiber. 

In the experiment with a long linear part of the cavity, the third stage of the Q-switching process (i.e. generation of the 
second Stokes pulse) is modified. In this case, due to the long length of the linear part of the cavity, generation of the second 
order Stokes occurs in the linear part of the cavity before the first order Stokes reaches the coupler after a round-trip in 
linear cavity and is injected into the ring. Therefore, in this case, the second Stokes pulses reaches output 2 of a time (point 
2) that is shorter then a round trip of the linear cavity. On the other hand, as the depletion of the first order Stokes occurs in 
the SMF the small hump appears after depleted part of the first order Stokes reaches the coupler. For these reasons, the 
delay between the small hump and the gigantic pulse (points 1 and 2, Fig. 5) is smaller than the time that light takes to make 
a round-trip through the linear part of the cavity. 
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2.    Numerical simulations. 

Computer simulation of the RS/SBS process for different laser configurations were performed. Simulations were based on 
the set of dynamical SBS/RS equations8 for complex amplitudes of all waves are involved to the process: 
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where, EA(z,t), EA(z,t), E„(z,t), Eh(z,t), Er(z,t), E,(z,t) - complex amplitudes ofcounterclockw.se and 

clockwise propagating light waves at frequencies vA, vB and vc, respectively; pA-, ph., pAH , pm-. - complex amplitudes 

of hypersound waves, generating by the pairs of light waves; Kt and K2 are Brillouin coupling constants; T2 - hypersound 

lifetime. // is the linear loss coefficient; 77,(2) are the Rayleigh backscattering coefficients. These scattering coefficients 

are considered as S -correlated Gaussian random complex functions with zero mean and dispersion (77, 77,*) = k y., where k 

is backward Rayleigh capture fraction, which is determined by fiber geometry and estimated to be about 1/600. The 
Langevin noise sources f,(z,t) is 5-correlated in space-time and Gaussian random process with zero mean. It describes the 

thermal fluctuations of the medium density that lead to spontaneous Brillouin scattering. Numerical calculation were 
performed with use of 4-order Runge-Kutta algorithm. Fiber amplifier was assumed to be linear with linear temporal 

growing of the field, gain G(t) = 20 tjSQ/is . 
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Figure 5. Computer simulated traces of the lasing radiation at vA , the first-order Stokes radiation at v„ (a), the first-order 

Stokes at vH and the second-order Stokes radiation at vr (b) calculated at output 2 for basic configuration. 

The calculations were performed for both laser configurations exploited in the experiment. The calculated radiations at 
the output 2 for basic configuration are shown in Figs. 5, 6. The components that form the total output radiation are shown 
separately in Fig. 5. Fig. 5(a) demonstrates the mutual dynamics of the lasing radiation and the first order Stokes radiation at 
the first and second stages of the process. One can see that the threshold of SBS in the ring resonator is reached at a very 
small lasing intensity of ~ 4 mW. Therefore, we did not observe lasing due to Rayleigh feedback in the experiment, simply 
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because it was below the noise level (~ 10 mW). What we observed in the experiment was the mutual dynamics of the first 
and the second order Stokes pulses mutual dynamics, which is shown in Fig. 5(b). Initially, the first order Stokes builds up 
slowly in the laser cavity with a characteristic time of about 70 ns. When output Stokes radiation reaches -0.25 W the 
generation of second Stokes pulse at vr occurs in the ring and simultaneously the first order Stokes is depleted in the ring, 

leading to generation of dynamical response pulse at vH. The starting points of small hump and gigantic pulse (points 1 and 

2 respectively) at the output 2 are separated by -80 ns, which is exactly the time that light takes to travel a round trip 
through SMF and Er-doped fiber. Fig.6 demonstrates the dynamics of the total laser radiation calculated for output 2. The 
peak "power of gigantic pulse is about 17 W. There is a very good qualitative agreement Fig.6 with experimental 
oscilloscope traces shown in Fig.3. 
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Figure 6. Computer simulated traces of the total radiation from output 2 for basic configuration 
(a - large scale, b - zoom on y-axis). 
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Figure 7. Computer simulated traces of the total output radiation from output 2 for configuration with long linear cavity 
(a - large scale, b - zoom on y-axis). 

The calculated total radiation at the output 2 for laser configuration with long linear cavity is shown in Fig.7. Similar to 
previous case at beginning, the first order Stokes builds up slowly in the laser cavity with characteristic time of about 70 ns. 
When output Stokes radiation reaches -O.l W generation of second Stokes pulse at vr occurs in the SMF and 
simultaneously the first order Stokes in the ring is depleted. Depleted part of the first Stokes propagates toward output 2 and 
causes generation of the dynamical response pulse at vK when reaches the coupler. The starting points of small hump and 
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Mantle pulse (points 1 and 2 respectively) in output 2 are separated in time by -200 ns, which is much smaller than the 
time that liaht akes to travel a round trip through SMF and Er-doPed fiber (-440 ns). The peak power of gigantic pulse is 
about ~200°W. There is a very good qualitative agreement between calculations in Fig.7 and experimental osc.lloscope 

traces shown in Fig.4. 

1000 4000 1000 2000 3000 
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4000 
2000 3000 
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Figure 8. Computer simulated dependencies of the delay between small and gigantic pulses (a) 
and peak power of the gigantic pulse (b) on the length of the linear cavity. 

Experimental results are indicated by squares. 

Theoretical dependencies of the delay between small and gigantic pulses and peak power of the gigantic pulse on the 
length of the linear part of the cavity are shown on Fig. 8 (a) and Fig. 8 (b), respectively. These dependences are obtained 
by computer simulation. Due to stochastic nature of the SBS process a number of simulations was earned out for each 
length of the linear part of the cavity. Dependencies on Fig. 8 are averaged on the number of realizations^ Two experimental 
points are shown on the same figures. Increasing the length of linear part of the cavity moves the second Stokes generation 
fiom the ring resonator to linear part of the cavity (SMF). As result, temporal delay between small hump and g.ganfc pu se 
is equal to the round-trip time in the linear part of the cavity for short lengths and becomes less than this round-trip time for 
longer lengths. As it is demonstrated in Fig. 8 (b), much higher peak power of the gigantic pulse can be obtained w,th longer 
length of the linear part of the cavity. The optimal length is about 20 m. 

4.   CONCLUSION 

In conclusion we have successfully demonstrated passive Q-switching in a Er-doped fiber laser configuration at very 
low pump power. We have investigated the laser dynamics and described a number of specific features of the temporal 
behavior that accompanied the generation of gigantic pulse. Comparison of the experimental and theoretical osc.loscope 
traces allowed us to recognize different stages of pulse formation process and to obtain important information about its key 
parameters We proved that pulsation was caused by the RS-SBS Q-switching mechanism that was exploited early but only 
with hi.h-power fiber lasers. More than 100 W peak power pulses with duration of - 10 ns have been observed .n Er-doped 
fiber laser at pump power of only 80 mW. Such a light source, which could be very flexible, may be useful for many 
applications Of course, these are preliminary experiments and some important issues such as laser instabilities, influence of 
polarization, noise fluctuations and back reflection from cleaved fiber end should be investigated in future. 
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ABSTRACT 

We report the evidence a novel phenomenon which is observed in VCSELs working in a bistable region, that we 
have called Noise Assisted Binary Information Transmission: the addition of noise to the pump current up to an 
optimal value leads to a strong improvement of the transmission quality, measured by the Bit Error Rate. We analyze 
different indicators to define the output string and the comparison of the input with the output signal is eventually 
reduced to a comparison of binary strings and can treated by means of standard methods of information theory. 
These results represent the first experimental evidence of Aperiodic Stochastic Resonance. We analyse the possible 
application to optical communications and compare it to a standard amplitude modulation scheme. 

Keywords: vcsel, binary transmission, polarization, stochastic process, optical communication 

1. INTRODUCTION 

Vertical Cavity Surface Emitting Lasers (VCSELs) are commonly used in optical communications, and their impact in 
telecom industry should be even more important in the future. This is due to their on-chip test ability, low threshold 
current, good spatial structure of the output beam and single longitudinal frequency operation. By contrast, due to 
their quasi circular transverse symetry, they can emit in two perpendicular linear polarizations. It is then possible to 
observe a bistable behaviour between the two polarization modes. The bistable operation of VCSELs in some critical 
current regions is a well established phenomenon.1'2 It has also been studied theoretically by several authors.3 In 
the bistable current region, noise induced jumps can occur. The dynamics of noise-driven jumps has been studied for 
single mode lasers,4 for multi-transverse mode VCSELs5"7 and even for laser sources characterized by a complicated 
transverse pattern caused by gain and cavity spatial inhomogeneities.8'9 

More importantly from a signal processing point of view. Stochastic Resonance (SR) has been reported for the 
first time in VCSELs in.8 SR can be defined as the specific response of a bistable system to a small modulation in 
the presence of noise.12'13 The small modulation is amplified up to a maximum for a non-zero input noise, giving a 
resonant-like behaviour versus noise of the Signal to Noise Ratio. 

In this paper, we study the response of VCSELs to a small amplitude pseudo-random binary signal in the presence 
of noise.10 This system could prove very interesting with respect to data communications11 , and is of fundamental 
importance in the study of Aperiodic Stochastic Resonance14'15 (ASR) - a term coined to describe SR-type behaviours 
with non periodic or stochastic inputs. 

2.  EXPERIMENTAL SETUP 

We employ a commercial, quantum-well VCSEL. lasing at 840 nm with distributed-Bragg reflectors. The emission 
window has a diameter of about 15(i m; the current confinement and isolation is provided by proton implantation. 
The laser is thermally stabilized (better than 1 mK) and the pump current is carefully controlled with a noise of 
about 70 pA/\/Sz in the range 1kHz to 3 MHz. The overall stability allows long time measurements, even in presence 
of critical behaviors. An optical isolator prevents from optical feedback effects, while an half-wave plate before the 
input polarizer permits to select a linear polarization. The experimental setup is shown in Fig.l. 

In our laser, the critical current region is characterized by a complex transverse spatial structure (see Fig.2). 
The laser emits in several laser spots, having different optical frequencies.   For some value of the pump current, 
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a polarization switch is observed, accompanied by a change in spatial structure and optical spectrum. The total 
intensity remains almost constant, due to a strong anticorrelation between the two polarizations. Selecting a spatial 
region in the transverse section, or choosing a polarization, it is possible to observe the switches as light intensity 

hops. 
Scanning the pump current we can identify several bistable regions. In such regions, the laser performs polarization 

jumps induced by internal noise according to the Kramers law16: the probability distribution P(T) of the residence 
time T in one state has an exponential behavior, with a mean residence time TK (Kramers time) decreasing with 
the noise strength. In our experiment, the Kramers time can range from a few seconds to a few tens of nanoseconds. 

Since we wish to control the statistics of the jumps, we choose a bistable region characterized by very rare hops. 
In this way we can control the residence times by adding a suitable amount of noise to the laser current. In particular, 
the results presented in this paper have been obtained by operating the laser at a pump current 1=11.2 raA. The 
bistable region has a width of 0.5 raA; the average residence time, due to the internal noise alone, is of a few seconds. 
The corresponding hysteresis cycle, obtained by sweeping the pump current, is shown on Fig. 3. 

The signals from a variable intensity, white noise generator (10 MHz bandwidth) and a pseudo-random binary 
sequence generator are summed and coupled into the laser input current. The binary sequence is a 16,000 bit word 
with a bit duration of 4 //s (bit. rate: 250 kbit/s). Its amplitude is 0.4 mA, smaller that the width of the bistable 
region. As a consequence, the current steps alone are not large enough to induce a jump of the laser state. 

The laser intensity is monitored by a fast avalanche detector whose signal is acquired by a digital scope. The 
output signal is then' low-pass filtered with a bandwidth of 350 kHz, acquired by the digital scope at a sampling 
rate of 5 MSamples/s and processed. The analog bandwidth of the filter is chosen in order to optimally detect the 
transmitted signal. Indeed, the behavior of the laser can be described in terms of a linear response when close to a 
stable state and a nonlinear response (hopping between the stable states). The linear response gives rise to intensity 
fluctuations and tends to deteriorate the signal-to-noise ratio. 

3.  EXPERIMENTAL RESULTS AND DISCUSSION 

The signal detected by the photodiode. for different values of the input noise strength, is shown in Fig. 4. For low 
noise (Fig. 4a) the laser mainly remains in its initial state, even if a small amplitude modulation is visible. For an 
input noise around 0.30 mA-rms, the output follows very well the input signal (Fig. 4b). For larger noise strengths, 
the laser dynamics is determined by the noise more than by the input string, with a strong decorrelation between 

input and output (Fig. 4c). 
To quantify how-well the input string is reproduced in the output string, a commonly used indicator is the Bit 

Error Rate (BER), defined as the percentage of wrong transmitted bits. The output bit is obtained by averaging the 
output signal over'the bit duration and then comparing the result with a threshold to assign the 0 or 1 value for the 
output bit. The threshold is set halfway between the two output intensity levels. 

The result is shown on Fig.5. At low noise intensity, the BER is close to 0.5, a value for which the input and 
output string are completely uncorrelated. As the noise increases, the BER decreases dramatically up to a minimum 
value of 3 x 10~3, and then increases again as the noise further increases. 

The noise-induced modulation-free dynamics can be described by the overdamped motion of a particle in a 
symmetric bistable potential, as happens in standard SR. In our case, the potential can be retrieved experimentally. 
The stable points of the bistable potential represent a polarized intensity level of the laser. The time-varying 
modulation can be included in the potential providing that the laser can follow it adiabatically. The situation is 
schematized on Fig. 6. To a given input bit (0 or 1) corresponds two output stable states ('+' and '-')• However, 
since the potential is asymmetric, the two output states have different energies. In the case of a symmetric binary 
modulation, we have then two very different time scales TK, and TKs, which correspond respectively to a long and a 
short Kramers time, associated with a high (resp. low) activation energy. The two times can be directly related to 

the potential barrier height by 

fAV + A 
Tia oc exp 

D 

and 
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TKs OC exp 
D 

where AV is the modulation-free barrier height. -4 is the amplitude of the modulation and D is the noise intensity. 
These times are to be compared with the bit duration Tb. If the noise is low, then TKi and TKs arc bigger than T,„ 
hence the laser remains for a long period in its initial state. In such case, the BER is very high since the system 
doesn't follow the input modulation. On the other hand, for a rather high noise the two times tend to equalize and 
eventually become both smaller that Tb. In that case the system randomly switches between the two output states 
whatever input is present. The BER is also very high in that case. We have shown that it exists an intermediate 
situation for which the noise is such that the inequalities 

TKi »7), and TKs «Tb (1) 

hold. As a consequence, if the system starts in the right (lower energy) state, it has a high probability to remain 
there for a time longer than the bit duration. If it starts in the wrong (higher energy) state, it has also a high 
probability to jump in the right one during a bit, and then to remain in that state. In this noise regime, the BER 
decreases up to its minimal value. 

In standard SR. the resonance coincide with a noise such that the time matching condition holds approximatevely 
27V - Tn, where TQ is the period of the harmonic modulation. Although a more precise condition can be derived 
depending on the indicator used to characterize SR, this condition always gives a good approximation. By contrast 
in Binary ASR, the time matching condition is replaced by the inequalities (1). 

4.  APPLICATIONS TO OPTICAL DATA COMMUNICATION 

In this section we briefly discuss the features that can lead to prefer our method in some applications, instead of 
using the standard, linear, amplitude modulation scheme. A key point in optical communication is the possibility to 
generate a strong optical signal, with a large contrast, starting from a weak current modulation. As an example, for 
the system investigated here, the contrast between the two states is 

t-  — (I'max ~ Vrnin)/ \vmax + vmin) — v.J\f 

, where v is the detector signal. A standard amplitude modulation in the linear regime, with the same modulation 

depth, yields a value of C - 0.03. 

By contrast to a the standard amplitude modulation, the minimum obtainable BER is limited by random jumps, 
rather than by the Gaussian noise. As a consequence, it can be kept constant even if the laser light is attenuated 
down to very "low levels, as can be checked by attenuating the laser beam before the detection. In Fig. 5 we report 
the curves of the BER versus input noise for two different values of attenuation, down to a minimum detected power 
of -65 dBm. The curves are roughly the same, even if for low intensity levels (i.e. for higher relative noise) the 
setting of the binarization threshold is more critical. 

On Fig. 7 we show the degradation of the BER versus input noise and detected intensity in the linear case, using 
the same averaging procedure as before. For a -5.5 dBm detected intensity, the BER is very low (and indeed we 
don't have enough statistics in our input string to actually have a reasonable estimate of its value). However, it 
monotonically increases with noise. The same happens for a much lower detected intensity (-45 dBm), although the 
minimum BER is in that case quite high, yet 1.5 x 10~2. This has to be compared with the BER obtained with the 
same detection, in the presence of noise at an intensity of -65 dBm. using the polarization selection of 3 x 10  3. 

The attenuation values correspond approximatively to the minimum attenuation achievable before we detect only 
the detector noise. For illustration purposes, we show on Fig.8 the actual shape of the signals in both schemes at the 
two minimum detectedd intensity levels, before the averaging procedure. The input signal is clearly recognizable in 
the polarized intensity, while in the other case the signal is masked by the noise. Nevertheless, the averaging procedure 
combined to a carefuil choice of the binarization threshold let us retrieve part of the input string information. 

An estimation of the optimal BER we can get in both cases can be made on the basis of the classical formula 
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BER=1-(erfc(^)+erfc(Vd-V0 

4 V Ä \/2(J0 

where v(, and c0,i are respectively the output levels associated to the binarization threshold and to the '0' or T 
bits. Eq. (ref{eq:BER}) predicts that the threshold leading to the minimum BER is 

a0vi + (J\v0 
I'd = 

(Jo +<?i 

We find (see10) a BER of 8 x 10~3, to be compared with the measured value of 3 x 10~3. The agreement is 
satisfactory, considering the fast dependence of the BER on the variances and that the averaging procedure over the 
bit duration leads to a reduction of the effective noise bandwidth. 

The same calculation can be carried out in the standard amplitude modulation scheme, a-45 clBm input laser 
power and a contrast C = 0.03. The shot-noise limited BER calculation yields 0.8 x 10"2, close to the value of 
1.5 x 10~'J that we have measured. Our detection scheme is in this case close to optimal. 

5.  CONCLUSION 

The phenomenon presented here can be of great interest in the case of strongly attenuated transmissions or for 
nonlinear optical amplification. Although the minimum BER attained is still too high for many practical applications 
(because we restricted ourselves to very small input modulation amplitude), we wish to point to the fact that this 
scheme is rather insensitive to the amplitude of the input message and to the detected laser power, and therefore 
proves to be much superior to a standard amplitude modulation in terms of BER or contrast for very low input 
current modulation. A crucial point for applications is the maximum bit rate reachable. It is closely related to the 
physics of the polarization switch itself, and is currently under investigation. 
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Figure 1.   Experimental setup.   CS: current source; TC: temperature controller; SG: signal generator; NG: noise 
generator; HWP: half wave plate; OI: optical isolator; PD: photodiode; S: digital scope. 
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Figure 2. Polarized optical spectrum and transverse structure in a bistable region. The two stable states correspond 
to the left and right columns. The optical spectrum is obtained with a Fabry-Perot interferometer after polarization 
selection (the free spectral range is 6 divisions on the scope and equals 1.5 GHz). On the two bottom figures are also 
shown the polarized intensities corresponding to the two levels (straight line). 
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Figure 3.   Hysteresis cycle of the polarized intensity I(t).  In the abscissa we report the input modulation signal, 
while the output laser intensity is plotted in the ordinate axis. The laser current increases from right to left. 
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Figure 4. Output signal from the photodetector in the bistable case. The input noise intensity is: a) 0.07 mArms, 
b) 0.30 mArms and c) 0.78 mArms- The input power on the photodetector is -10 dBm. In b) is also shown (thin 
line)thc input sequence. 
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Figure 5. Bit Error Rate as a function of the input noise in the bistable case. The input power on the photodetector 
is -10 dBm (full circles) and -65 dBm(empty circles). 
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Figure 6.   Potential V versus polarized intensity I for an input bit 0 (left) and 1 (right). The bottom figure is a 
schematic representation of the binary modulation sent to the laser. 
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Figure 7. BER in the linear case versus input noise intensity. The detected intensity is: -10 dBm (empty circles), 

and -45dBni (filled circles). 

100 

time ((is) 

Figure 8. Polarized laser intensity signal: a) linear case (detected power -45 dBm), b) bistable case (detected power 
-65 dBm). The input noise is 0.06 mArms in a) and 0.30 mArms in b). 
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ABSTRACT 

Cancellation of excess noise of quantum optical solitons is based on successive passage of a soliton through an optical 
fiber with positive nonlinearity and negative dispersion and then through a near-resonant two-level system with 
negative nonlinearity and positive dispersion. An evolution of a quantum fluctuation in one medium will be reversed 
in the other In such a way, the unwanted excess noise due to self-phase modulation in optical fibers can be fully 
suppressed leading to a radical improvement of accuracy of quantum nondemolition measurements of optical solitons. 
A detailed discussion of the compensation method with thorough numerical estimations for existing resonant media 

is provided. 

Keywords: quantum soliton, optical fiber, Gordon-Haus effect, quantum measurement, self-induced transparency 

1. INTRODUCTION 

During the last dozen years quantum optical solitons attract considerable attention. Three basic reasons underlie 
the interest- 1) the development of laser sources generating solitons with noise properties at the quantum limit; 2) 
the manufacturing of silica fibers with small losses; and 3) the availability of photodetectors with high efficiency. 
Quantum properties of optical solitons propagating through nonlinear fibers were already probed in experiments on 
soliton squeezing and quantum-nondemolition (QND) measurements. 

The excess noise owing to self-phase modulation is accumulated during propagation of solitons in fibers. The 
extra fluctuations build up a correlation between photon number and phase giving rise to a squeezing of the soliton's 
quantum state. The positive role of the excess noise in squeezing experiments is inverse in the QND measurements, 
where a desirable information gained through cross-phase modulation of two solitons appears to be hidden under the 

self-phase modulation noise. 

Whether positive or negative, the quantum properties of optical solitons emerge from the same origin. Descrip- 
tion of quantum solitons is based on a quantum version of nonlinear Schrödinger equation. The evolution of the 
soliton's initial state, i.e. an accumulation of the excess noise, is governed by group-velocity dispersion and Kerr-type 
nonlinearity. A control over those effects simultaneously provides the tool for managing quantum fluctuations. 

The article proposes a general method for such kind of control, and particularly treats the cases when there is 
a need to suppress the unwanted excess quantum noise. This is accomplished by use of a near-resonant two-level 
system (NRTLS). A pulse detuned above the resonance, will experience a negative x(3)-nonlinearity and positive 
group-velocity dispersion, i.e. the medium in regard of its properties behaves as a mirror reflection of an optical 
fiber Thus, an evolution of fields including accumulation of excess quantum fluctuations in one medium will be 
reversed in the other. A proper combination of the NRTLS and the fiber may form an "effective vacuum" for 
propagating pulse, such that the overall evolution through the system will eventually recover the same quantum 

state as it was at the entrance. 

The concept of the cancellation of the excess quantum noise was first proposed in1 and2 and called as "compen- 
sation method". Here, we further develop the concept concentrating on its realizability and applicability. 
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2. QUANTUM DESCRIPTION OF OPTICAL SOLITONS 

Propagation of classical solitons in nonlinear fibers is well described by nonlinear Schrödinger equation (NLSE), 
which accounts for x(3)-nonlinearity and group-velocity dispersion of the fiber. Then, it is quite natural to expect 
that the behavior of a quantum soliton is governed by a corresponding quantized form of the NLSE where field 
amplitude <p(x,t) is replaced by a field operator d>(x,t): 

i^=sga(Df)^ + 2c,M\ (1) 

with x - i - (n,f/c)z as time coordinate in the frame moving with the group-velocity, t = \D/\z as normalized 
propagation distance, and cs - Nf/2\Df\ as the halved ratio of nonlinearity Ar/ = hu)2n2/AfC and the absolute 
value of the group-velocity dispersion Df = (l/2)ft". Here, i is real time, nf is the host refractive index, n2 is the 
Kerr coefficient, and Aj is the effective fiber core area. As it is required by quantum-mechanical laws, the optical 

field operator <j>(x,t) must obey equal-time commutation relations 

[t(x,t'),#(x,t)] =6{t-t'), 

x,t'),4>(x,t)]=0. (2) 

Indeed, the intuitive correctness of (1) with (2) is formally proved by Drummond and Carter in.3 The authors use 
the lossless approximation, which is expected to work reasonably well for description of an experiment with optical 
fibers up to 1 - 2-km in length. 

It is quite useful to pose phenomenological equal-space commutation relations 

\<t>(x',t), 4>1(xJ}] =6(x-x'), 

[j>(x,t'),4>(x,t)]=0 (3) 

instead of canonical equal-time commutators (2). This way out has been proposed in4'6 for the case of optical 
solitons. Then, classical methods for treating optical solitons become easily extendable to the quantum domain. 
Recent investigation in7 proves the validity of use of phenomenological commutation relations (3) in the field of fiber 
quantum optics. Basing on the conclusion, from here on we shall solve the quantum NLSE (1) with equal-space 
commutators (3). 

We now reproduce essential elements of the perturbation theory for quantum solitons, which has been proposed 
in4 and gained further development in5 and.6 Our main interest is in quantum fluctuations of the soliton with a 
large average photon number n0 and a well-defined mean field. Typically, a picosecond soliton carries 108 photons. 
Then the field operator can be decomposed into its mean value (po(x,t) and a remainder v(x,t) responsible for the 

quantum fluctuations: 
4>(x,t)=4>0{x,t)+v(x,t). (4) 

The perturbation operator v carries the full quantum character of the soliton, and obeys the same commutation 
relations as the original field operator <j>: 

[v(x',t), tf(x,t.j] -6{x-x'), 

[Ö(z,O>w0M)]=0. (5) 

The quantum field is a solution of the perturbed linearized operator equation 

zft = sgn(D}) 0 + 4cf\cp0\*v2 + 2cf<fitf . (6) 

The linearization approximation remains up to phase shifts of the order of nj/4.8'9 This limit corresponds to nonlinear 
phase shifts ~ 307r for a 1-ps soliton in a conventional fiber. Accumulation of such large shifts requires a fairly long 
distance of the order of 10 km. Thus the linearization approximation perfectly fits our starting assumption, where 
we have restricted ourselves to 1 - 2-km fiber lengths. 

144 Proc. SPIE Vol. 4354 



In the following, our basic interest concerns quantum evolution of a single soliton propagating through nonlinear 
fibers. The corresponding classical description is given by fundamental soliton solution: 

*>M(x-Xo-2p0t) M*,t)    =    -^-^sech 

exp [ipo{x - x0) - ip2
0t + id0 + i8spm] ■ (7) 

Since the nonlinearity of optical fibers is always positive, the soliton can be realized only in the region of negative 

dispersion, i.e. sgn(L>/) = -1 and c, > 0 in (1) and (6). Nonlinear phase shift 

n2
0\cf\2 (8) 

appears due to self-phase modulation (SPM) in nonlinear fibers. 

The derivatives of classical fundamental soliton (7) with respect to n0, 0o, po, and x0 are all solutions of the 

linearized equation (6). Then, v{x,t) can be expanded as 

« = *b.An0 + ^Aöo + ^APO + %*■Aio + öc, 0) 
dn0 d60 opo oxo 

where the first four terms account for quantum perturbations localized within the soliton, while the last term vc 

describes the continuum part of the noise operator v. The four quantum operators An0, A0O, Ap0, and Ax0 have 
the simple physical meaning in that they describe small initial quantum perturbations of the collective coordinates 
associated with classical intensity n0, classical phase 90, classical momentum p0, and classical position x0 of the 

soliton. 
The anzatz (9) is a general form of evolution of a quantum perturbation v{x,t) starting from initial quantum 

uncertainties An0 = An(0), A0O = Afl(O), Ap0 = Ap(0), and vc(x,0). Skipping details of the derivation, which can 
be found in,6 we jump to the final result — the formulation of a set of equations for quantum evolution of the four 

collective soliton operators: 

Ah{t)    =    An0, (10) 

A6(t)    =    Aöo + ^^tAno, (11) 

Ap(t)    =    Ap0, <12) 
Ax(t)    =   Ax0 + 2tAp0, (13) 

with the following commutation relations: 

[An, Aöj = i,    [Ax, n0Ap] = i. (14) 

These are among the usual forms of commutation relations for photon number and phase, and momentum and 
position. All other pairs of operators commute with each other. 

Eqs (10)-(13) show that the photon number and momentum do not change (integrals of motion). However, their 
initial fluctuations cause a spread of the phase and position. On one side, it is these spreads that are used for gen- 
erating number-phase and momentum-position quadrature squeezing. On the other side, in the QND measurements 
they appear as the sources of extra noise which veil desirable information encoded into the soliton. Control over the 
extra uncertainties, their decrease and cancellation, is the goal of the rest of the paper. 

3   PROPAGATION OF A SOLITON THROUGH A NEAR-RESONANT TWO-LEVEL 
MEDIUM 

A observation of the structure of Eqs. (10)-(13) immediately reveals the way how to reverse the extra noise back. For 
that one has to reverse the sign of distance t. It is formally equivalent to simultaneous change of signs of dispersion 
and nonlinearity in Eq. (1). A NLS soliton, propagating through such medium would accumulate phase and position 
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fluctuations according to (11) and (13), but now with negative signs prior to the evolution terms. A combination of 
the optical fiber and such hypothetical medium would allow us a decrease or full cancellation of the extra noise. In 
the latter case, the soliton experiences neither classical nor quantum changes, as if it propagated through vacuum. 
It is the essence of the compensation method. 

The mathematical formulation of the compensation concept is quite clear. However, a practical implementation 
of the idea needs a suggestion of a real medium. Optical fibers are not good candidates for that. Though regions of 
positive dispersion are available in silica fibers, the negative sign of the Kerr nonlinearity is not possible. A solution 
comes with use of a NRTLS. 

A resonant interaction is described by a coupled wave equation for the field and Bloch equations for the medium. 
When a pulse shorter than polarization and population decay times enters the medium the self-induced transparency 
(SIT)10'11 effect arises. If area of the pulse exceeds a value of 7r, the pulse will form a SIT soliton (27r-pulse) or break 
into a sequence of SIT solitons. The soliton emerges due to a self-consistent coherent dynamics between resonantly 
absorbing medium and specially shaped optical field: the leading edge of the pulse is absorbed exciting the two-level 
system, while the trailing edge induces stimulated emission from the upper level, thus returning all the absorbed 
energy back to the soliton. The complete absorption-reemission cycle occurs for the unique pulse with area of 2ir 

and with sech-shape envelope. 

SIT and NLS solitons are different in regard of their interaction with nonlinear media. Thus, NLS solitons are 
shaped by a balance between group-velocity dispersion in fibers and conservative nonlinearity of x(3)-type. The 
interaction is a virtual one occurring through a far-distanced resonant transition without populating an excited state 
of the medium. Contrary, SIT solitons are shaped through a real energy transfer from the optical field to atoms and 
back. Such mechanism of nonlinearity is classified as a dissipative one. 

The interesting feature of SIT solitons is that they can be formed at any value of detuning of the carrier frequency 
from exact resonance. With moving away from the resonance the field-matter interaction weakens, the upper level 
is populated at the lesser extent, and the resonant dissipative response of the medium is gradually transformed 
into a conservative type of interaction. The intuitive picture can be formally justified by an expansion of Bloch 
equations into asymptotic series on powers of small parameter {&Tpy

l with TP as soliton's duration and 6 as frequency 
detuning. Indeed, as shown in,12 the Maxwell-Bloch equations describing the propagation of a short pulse in a two- 
level system are reduced to a NLSE in the limit of large detunings. Group-velocity dispersion £>nrtis and x(3)-type 
of nonlinearity JVnrtis of the NRTLS give the largest contribution when compared to the other, higher order, near- 
resonant nonlinearities and dispersion. The higher order corrections appear only in the next order of the perturbation 
theory. The main advantage of NRTLS is that it exhibits a negative nonlinearity and positive group-velocity dispersion 
for pulses detuned above (below, for the case of amplifier) the resonance and that is not available with conventional 
fibers. Formally, the NLS equations for the fiber and NRTLS are almost equivalent, differing only in signs of 
propagation distance. It is this difference that constitutes the key point of our analysis. 

The transformation of Maxwell-Bloch equations into NLSE in the NRTLS immediately provides the corresponding 
transformation of solitons from SIT-type to NLS-type. In that sense, NLS solitons appear as the limiting case of SIT 
solitons for large values of detuning. The more carrier frequency is shifted off the resonance, the better the SIT-to- 
NLS transformation is. Thus, the perfect NLS soliton appears relatively far from the resonance line. Practically, the 
value of detuning solely depends on a particular application. 

Without going into details of the asymptotic expansion of Maxwell-Bloch equations, we borrow from12 the final 
result in the form of classical NLSE. A generalization of it to the description of quantized fields can be justified by 
a phenomenological reference to the corresponding principle of quantum mechanics, and to the rigorous derivation 
of Hillery and Mlodinow in.13 There, the authors performed quantization of the two-level system, and derived a 
quantized NLSE in the limit of large detunings. So, we are in position to write 

ig=sgn(A,rtlg)0+2crt„0V. (15) 

Here t' = \Dnrtis\z is normalized distance and x' = i - (nnrtis/c)z is retarded time. Near-resonant dispersion and 
nonlinearity are determined through the medium parameters as 

S _      fd\       hu     S 
c6 nrtls \hj    Artls cS Dnrtls = —      and     JVnrtls = ~ [ X\     ^~ 77 ' (16) 
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nnrtis is the nonresonant refractive index, d is the dipole moment, -4nrtis is the cross-sectional area of the beam in 
the resonant medium, and S is the coupling strength, 

_ 2irLOahNd2 (17j 

he0nnTtisö2 ' 

where uab is the frequency of the optical transition and N is the concentration of two-level systems.  Similarly to 
the case°of optical fibers, cnrtis is given by the half of ratio of the nonlinearity and absolute value of dispersion, 

Cnrtls = Ar
nrtis/2|.C)nrtls|- 

Definitions (16) clearly demonstrates that nonlinearity and dispersion of a NRTLS always have opposite signs, 
and, hence, the medium supports soliton propagation for any sign of detuning. Here, we are interested in the case 
of negative nonlinearity and positive dispersion, which are possible with the carrier frequency of the pulse detuned 
above (below, for the amplifier) the frequency of the resonant transition. Such choice gives sgn(Z?nrtis) > 0 and 
Cnrtis < 0, that is opposite to the case of optical fibers. Then, two NLSE (1) and (15) look identically differing only 

in signs prior to distances t and t'. 

Formal identity of the master equation for quantized fields in NRTLS and quantum NLSE allows us to apply the 
soliton perturbation theory developed for the case of optical fibers in the previous section. Eq. (15) has a solution 

in the form of fundamental soliton: 

<A)(x',*')    =    —^~ sech 
«0 Cnrtls I >' -X0+ 2p0t') 

exp \ip0(x' - x0) + iplt' + i0o + «önrtisj • (18) 

with parameters n0, p0Jo, and xa introduced in the same way as for the solution (7). Nonlinear phase shift evolves 

with distance as _2u      |2 

önrtls 
W0|Cnrtls|   ti Q9) 

An{t') = An0 

Akt') - Ac?o- 
«olCnrtlsl2^^ 

2 

Ap(t') — Ap0, 

Ax(i') — Ax0 - 2t'Ap0. 

Similarly to (14), the operators obey commutation relations: 

1 An, t \e\ = j, 1 Ax, n0Ap| = 

4 
Performing linearization of quantum field <p near the classical solution ip0 and formulating four collective operators 
associated with initial quantum perturbations of photon number, phase, position, and momentum, we end up with 
definitions of four soliton operators at a given point t' as 

(20) 

(21) 

(22) 

(23) 

(24) 

4. ON COMPATABILITY OF FIBERS AND RESONANT SYSTEMS 

The above analysis considers propagation of quantized fields through optical fibers and near-resonant two-level 
systems. For the fields detuned above the resonant transition, the two media appear as mirror reflections of each 
other. That is, any evolution of an optical pulse in one medium will be reversed when afterwards the pulse enters the 
other medium! The combination of these two systems offers a unique possibility of control over classical, and what 
is more important, over quantum properties of optical pulses.1'2 In order to achieve the goal, we have to formulate 
proper matching conditions for linking fibers with resonant media particularly concentrating on transmission of 

solitons rather than pulses of arbitrary shape. 

First of all, assuming a lossless interconnection between the two media, we must satisfy the obvious requirement 
that the soliton at the output of the fiber simultaneously appears as a soliton at the input of the resonant medium. 
Therefore the number of photons, durations, and frequencies of both pulses should be equal: 

n0 = n0 ,    n0\cf\ = no|cnrtis| ,    Po — Pa ■ (25) 
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Thus, we derive \c;\ - |cnrtis|, which can be rewritten as the requirement for the dipole moment: 

J t       /  A Nf %      /Artls   27T     n2 /^ 

A similar requirement for the dipole moment appears in,14'15 where the NLS-SIT-soliton propagation in ion-doped 
fibers has been discussed. The mixed propagation medium implies an equality between cross-sectional areas, and 
then (26) turns into the rigid condition which leaves no realistic possibility of finding an atom with a prescribed value 
of dipole moment. Contrary, our scheme suggests the use of the two media as spatially separated blocks. Therefore 
we gain an additional "degree of freedom" associated with the possibility of controlling the ratio of the cross-sectional 
areas Af and Artis- Obviously, this is hardly possible when the resonant impurities are embedded directly into the 

optical fiber. 

Now, we turn to next requirement.  The description of NRTLS in the form of NLSE (15) is valid only if pulse 

duration T„ satisfies the inequality 
1<T;1<S, (27) 

where 7 is the half width at half maximum (HWHM) of the absorption linewidth. The left inequality in (27) provides 
the coherent type of the field-matter interaction, which is necessary for a SIT experiment. Typical soliton's duration 
lies in range of 1 -r 10 ps, therefore (27) becomes possible for resonant media with relatively narrow linewidths, 
< 1 THz. The right inequality in (27) is the key element of the asymptotic technique for making a reduction of 
original Maxwell-Bloch equations to NLSE. 

The restriction on the value of detuning is not too rigid. Indeed, a NLS soliton simultaneously appears as a SIT 
soliton in a NRTLS, such that the solution (18) also satisfies the full system of Maxwell-Bloch equations. The only 
difference appears in the dispersion relation, namely in frequency and photon number dependence of phase 6>nrtis 
and group velocity vg. So, operating close to a resonance, which involves higher order nonlinearities and dispersion, 
does not perturb the soliton shape, as shown in.12 However, an additional phase noise arises due to the frequency 
uncertainty, and an additional position noise is induced by uncertainty in the photon number.16 

There is a practical advantage for detuning relatively far from the resonance, where NLSE by its own, without 
higher order corrections, gives an adequate description. The problem with operating close to the resonance is that 
a short pulse typically interacts with more than two states of an atom. Fine and hyperfine splittings of each of 
two atomic electronic levels make the picture more complicated than a simple two-level model. The pulse appears 
to be simultaneously involved into resonant interactions with several transitions between the sublevels of the two 
manifolds. Since in general, the transitions have different oscillator strengths, it becomes unrealistic to satisfy 
transparency conditions (pulse area is an integer of 2?r) for all of them. However, the condition of transparency 
weakens for the far detuned pulses, when the dissipative nonlinearity with real excitation-deexcitation cycles changes 
to the conservative x(3)-nonlinearity with virtual population of upper states. Then, (15) will keep the same form 
with nonlinearity and dispersion redefined as 

Sm ,      „, ftW     v-^ / dm \      bn 

m "I 

where, index m numerates the transition with dipole moment dm detuned by Sm from the carrier frequency of the 
pulse, and M stands for the total number of the transitions. Thus, NRTLS appears to be insensitive to a particular 
structure of energy levels provided a pulse is far detuned from any of the resonant transitions. 

We now address the problem of losses inevitably appearing in any dispersive medium. This issue gains a particular 
importance in experiments with quantum solitons, where unitary evolution of the quantum field must be preserved. 
The intensity loss coefficient for a NRTLS is derived in,12 

2rnrtls = 275/c, (29) 

and for the total loss on length /nrtis we get 

LOSS [dB] = 4.343(75)|DnrtlsHnrtls ■ (3°) 
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We have summarized the desirable properties of the resonant medium in terms of the requirements on the three 
parameters: cross-sectional area Anis, detuning <5, and polarization decay rate 7; and now present some practical 
numerical estimations of those values for different types of resonant media. Orienting to fiber optical communications, 
we shall consider only those media which absorb (emit) the radiation in the transparency window around 1.5/an 
wavelength region. So we come up with two examples: atomic medium — barium {Qshd1D2 - 6s6p P2 transition 
with A = 1 5pm) and 1.5/«n excitonic transitions in InGaAs. With typical values of dispersion k" = -12 ps /km 
at 1.5 fim and nonlinearity as n2 = 1.2 x 10"22 m2/V2, we rewrite (26) as the equation for the cross-section of the 

beam in NRTLS: 2 
AnMs=[5.2xW28d(Cm)]2A}. (31) 

Excitonic transitions in InGaAs at liquid helium temperatures decay radiatively with time constant Tx = 500 ps,,17 

corresponding to the dipole moment, d = 76 D= 2.3 x HT2S Cm. For cross-sectional area in the fiber A{ = 50ym- 
with 4um in radius we get a radius in InGaAs sample of 48 /wn, which is 12 times larger than that in the fiber. The 
same calculations for the radius in a barium cell with T, = 200 ns and d = 3.6 D= 1.1 x Kr29Cm,18  yields 2.4/mi. 

Another critical issue arises as a requirement on small losses inside a NRTLS. Contrary to the common belief 
that for large dispersion/nonlinearity one has to pay a high price in the form of substantial losses, our numerical 
examples show comparable or even smaller attenuation in the NRTLS than that in a fiber with minimum losses of 
~ 0.2 dB/km. A soliton propagating lf = 1 km in the fiber experiences a total loss of 0.2 dB. On the other hand, 
for the full compensation of dispersion one needs a sample of Ino.53Gao.47As of length lnrtls = 250 nm or a cell with 
barium vapors of length /nrtls = 630/mi with total losses of ~ 0.3 dB and < 0.01 dB, correspondingly (detuning is 
taken as <5 = 1 THz). For the calculation we use (30) where the compensation condition (40) is substituted. The 
necessary numerical values for Ino.53Gao.47 As: 7 = 140 GHz (HFHM) and electron concentration of N = 1015 cm 3 

are borrowed from.17 The values for barium vapors: 7 < 20 GHz and atomic concentration of the lower excited 

state TV = 5 x 1014 cm-3 are taken from.18 

Along with resonant absorption, the propagation of an optical pulse through a semiconductor waveguide is 
inevitably accompanied by nonresonant loss of various origin, the majority of which are free-carrier absorption, 
surface and interface scattering, and radiation leakage. Experimental measurements of propagation losses (rs in our 
notations) in GaAs/AlGaAs,19 give a value of 0.19 dB/cm. So, the total propagation losses in a semiconductor 
NRTLS of 250 nm in length are as small as 5 x 10-6 dB, that is definitely negligibly small. 

The parameters of the semiconductor sample considered in the above example are far from ideal. The state of 
the art of growing semiconductor structures allows us to further decrease resonant losses. The value of 7 = 140 GHz 
(HFHM) for InGaAs lattice used in our calculations is already of the order of the homogeneous linewidth20 and hence 
is close to the limit of narrowness. However, the recent photoluminescence measurements of the linewidth of the 
bound-exciton transition in a high-purity n-type InP epilayer have overcome the limit, giving a much smaller value 
of 7 = 14 GHz (HFHM).21 Further dramatic narrowing in linewidth becomes possible with semiconductor quantum 
dots The elastic scattering of carriers, which is responsible for the rapid dephasing process in two-dimensional and 
bulk systems, becomes inefficient in a zero-dimension structure. It is due to the discrete density-of-states and the 
absence of energy versus momentum dispersion, such that no elastic process to flip the electron spin can occur because 
there is no state available between the levels. A study on the spin relaxation in the zero-dimensional nanostructure 
(in InGaAs quantum disk) gives a value of T2 = 900 ps,17 which is two orders of magnitude less than that in bulk and 
two-dimensional structures. Promising results with densely packed and self-organized semiconductor dots in GaAs 
have been reported,22 where the bound-exciton absorption line is estimated to be as narrow as 8 GHz (HFHM), and 
the measured homogeneous lifetime is T2 = 300 ps. 

The list of examples of atomic systems is also not complete. Along with barium, noble gases possessing large 
dipole moments, ~ 1 D, and narrow absorption lines, ~ 1 GHz, can be considered good candidates for a NRTLS in 
soliton transmission lines. At least 20 transitions between excited states of argon, krypton and neon in the 1.3- and 
1 5-Mm regions23 are suitable for this purpose. We note here, that typical companions of fibers — rare-earth ions, are 
impractical. Their dipole moments are 1000 times smaller, and then, condition (31) requires an unrealizable focusing 
a light beam emerging from a single-mode fiber into the million times smaller spot. 

The requirements are not so severe for purposes other than fiber communications, for example for quantum optical 
experiments with solitons. The range of wavelengths becomes wider and media other than silica fibers, i.e. photonic 

band-gap structures, can be used. 
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Figure 1. A schematic picture of quantum nondemolition measurements of solitons via collision of solitons in a 
fiber. An information about photon number of the signal soliton (solid line) is recorded into the phase of the probe 
soliton (dash-dot line). After emerging from the fiber, the solitons are separated. The phase of the probe soliton is 
measured my the detector. The signal soliton remains undisturbed and can be directed to a line for a further use. 

5.  QUANTUM NONDEMOLITION MEASUREMENTS OF OPTICAL SOLITONS 

Usually an act of quantum measurement disturbs the system being observed. However, every quantum measurement 
does not necessarily disturb the variable being measured, and, if it occurs, the measurement satisfies the requirements 
for a QND measurement.24'25 Such a measurement affects only a conjugate variable, leaving the QND observable 

unperturbed. 

Measuring the photon number using collisions of coherent solitons in optical fibers5'26"28 is a new technique for 
performing a QND measurement, see Fig. 1. If two solitons in an optical fiber have different center frequencies and/or 
photon numbers, they move with different velocities and can eventually collide. After a collision the two solitons 
experience only timing and phase shifts, retaining their shapes, velocities and energies. If the phase shift of one soliton 
(probe soliton) is measured, it is possible to determine the photon number of the other soliton (signal soliton). Since 
the photon number of a soliton changes neither with propagation nor by interaction with other solitons, the photon 
number of the signal soliton is a QND observable — noise is introduced only into the soliton's phase. This implies, 
in principle, that a signal soliton can be observed by an infinite number of QND receivers. 

As a general rule, a sensitivity of a QND scheme is limited by so-called back-action noise.29 In a QND measure- 
ment with optical solitons the phase of the probe soliton is correlated with photon number of the signal soliton, due 
to cross phase modulation, and simultaneously carries unwanted information about its own photon number, due to 
self-phase modulation. The latter effect severely limits the correlations, since an uncertainty of the probe soliton is 
recorded onto the probe phase along with the useful information. This back-action noise due to self-phase modulation 
is caused by a nonlinear evolution of initial quantum fluctuations in soliton parameters. Though the initial noise 
is stochastic by nature, for example caused by spontaneous emission while generating the soliton, its evolution in 
the fiber is governed by the deterministic equation — quantum NLSE. Therefore, in principle, the extra fluctuations 
accumulated during the propagation in nonlinear fibers can, in principle, be overcome. To our knowledge, two ways 
were proposed to cancel the unwanted probe excess noise. 

One strategy, described by Drummond, Breslin and Shelby in,30 exploits the fact, that the excess phase noise 
of the probe is correlated to the photon number of the probe. The authors show, that it is possible to measure 
an appropriate output quadrature variable which is a combination of phase and amplitude and thus reveal the 
correlation. While being a promising candidate for a QND measurement, this technique, nevertheless, does not 
compensate the back-action noise in full. The detection scheme in use is essentially linear and, thus, cannot remove 
a part of the back-action noise arised beyond the linearization approximation. Also, the technique proposes the 
method for measuring an alternative quadrature, while the original QND of number of photons does not gain an 

improvement. 

The other strategy, proposed in,31 utilizes a scheme where two SIT-solitons collide in a resonant medium. An 
important advantage of this technique is that it implies that the probe soliton being tuned to the exact resonance, 
where self-phase modulation is zero, exhibits a phase shift, which is dependent on the signal soliton's photon number 
and does not depend on number of photons in the probe soliton. However, as can be easily deduced from the 
formalism developed by Lai and Haus in,16  the phase of a resonant SIT-soliton always carries unwanted information 
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signal  probe 

Figure 2. The compensation method applied for quantum nondemolition measurements of solitons. The setup in 
Fig. 1 is supplemented by a near-resonant two-level medium placed prior to detection of the probe soliton. In such 
a way, a self-phase modulation noise of the probe soliton accumulated while propagation in the fiber is canceled. 

about the uncertainty of the soliton carrier frequency. This introduces a new source of back-action noise into the 
QND measurement with resonant solitons. The noise does not allow a real improvement in accuracy of the QND 
measurement, since its intensity is of approximately the same value as that of the noise due to self-phase modulation. 

We here present a new method to cancel the back-action noise due to self-phase modulation in an optical fiber. 
This is accomplished by inserting a NRTLS prior to the detector of the probe soliton in the conventional collisional 
QND scheme,5'26 as shown in Fig. 2. A mathematical description of dynamics of the solitons can be developed 
on the basis of the soliton perturbation theory after an appropriate generalization of it to the case of two-soliton 
collision. Instead of the detailed and rigorous formalism we better choose brief and more illustrative way. Though 
being less formal, it will give us correct results. 

Let us consider in detail the modified collisional QND scheme. Signal and probe solitons collide in a single- 
mode optical fiber. After the collision the probe soliton experiences a phase shift, which includes two different 

contributions,32   öxpmand#spm, 
8{lf) =Ö0+ 0xpm + öspm , (32) 

where lf is the length of the optical fiber. The first term is the initial phase, which we put to zero without a loss 
of generality. The second term in (32) carries useful information about the parameters of the signal soliton, which 
is transcribed onto 0xpm due to cross-phase modulation. The third term, 0spm, appears as a result of self-phase 
modulation and contains unwanted information about the probe soliton itself. 

Any soliton inevitably possesses initial uncertainties in photon number An0 introduced on the stage of the 
soliton's preparation. As a result of the fiber nonlinearity the phase of the soliton depends on the photon number, 
and linearly increases with propagation distance, as in (11). For an initially coherent probe soliton the uncertainty in 
phase due to self-phase modulation becomes comparable with the initial phase uncertainty 00 at a distance as small 
as zsp/8n, where zsp is the soliton period. Since a collisional scheme requires well separated solitons at the input 
and output, the fiber length must necessarily exceed one soliton period. At such lengths, the noise due to self-phase 
modulation becomes more than 25 times larger than the shot-noise limit. The enormous extra noise makes senseless 
all advantages of the QND scheme, which potentially might perform a nondestructive measurement of the photon 
number with the accuracy beyond the shot-noise limit. This points up the seriousness of the self-induced phase noise 
in soliton propagation, as noted in.5 

Now the modified QND scheme implies that after the collision the probe soliton enters a NRTLS with negative 
X(3)-nonlinearity acquiring a new phase shift #nrtis- Phase rotation goes in the reverse direction and the self-induced 
phase shift in the fiber 9spm can be completely canceled by a proper choice of the length of the NRTLS lnTt\s, such 
that a final phase shift measured by a detector 

9{lf + Znrtls) = 00 + #xpm + #spm('/) + önrtlsOnrtls) (33) 

becomes 
9(1 f + /nrtls) — $0 + 0xpm • (34) 
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when compensation condition 9spm(lf) = -0„rtis(/nrtis) is held. So, the backaction noise due to self-phase modulation 
is avoided, while keeping the information about the signal (0xpm) unchanged. The proposed method of noise filtration 
is essentially nonlinear in the sense that it does not rely on a linearization procedure, and therefore it allows us to 
cancel the backaction noise in full. Additionally, we use the system far from the resonance, and an uncertainty in 
frequency does not contribute to the phase, like it happens for the case of resonant SIT solitons. 

After a collision the probe soliton retains its shape and photon number, 

"V    {X -X0- Zxpm - 2po0 

exp [ipo{x - x0 - rr.xpm) - ip\t + i(8o + #xpm + 0spm)J 

(35) 

[parameters of the probe(signal) soliton are supplied with index "0"("s")], where the phase shift 0xpm and position 
shift a;xpm of the probe soliton due to the scattering is given by32 

.      {Oxpm\ _ *ns\Cf\(p0-ps) m) 
tan'     -    ,~(no-n5)2|c/|2+4(p0-ps)2' 

(37) _      -      ,     («o - ns)
2jc/|

2+4(pl 
bxpm 

«o jc/| _(n0 + ns)
2|c/r

2 + 4(po-ps)
2 

where ns and ps are the photon number and the momentum per photon (frequency) of the signal soliton. The phase 
shift due to self-modulation in the optical fiber 6spm is determined by (8). 

The soliton of the form of (35) then enters a NRTLS, where the master equation (15) supports its own fundamental 
soliton solution (18) with nonlinear phase shift given by (19). The soliton at the output of the fiber simultaneously 
appears as a soliton at the input of the NRTLS, if matching conditions (25) are satisfied. Also, the initial values of 
position and phase, t„ and 60, obviously coincide with the corresponding values of those at the fiber output: 

to    =    to-txpm-2Po\Df\lf, (38) 

e"o   =  e0'dxpm-espm(if). (39) 

Finally, at the output of the NRTLS, i.e. for the whole transmission line of length I = lf + /„rtis, the accumulated 
phase shift (34) contains only initial phase 00 and useful information about the signal photon number encoded in 
öx m. The total compensation of nonlinear noise takes place for properly adjusted length of the NRTLS as 

Znrtls = J^L/,, (40) 

Eq. (40) implies only knowledge of values of dispersion of both media, so that the proposed QND setup can be 
constructed without a priori knowledge of the parameters of the solitons in use. 

The above discussion is very simple and presented in purely classical terms. However, it remains valid even 
in quantum domain. Indeed, if the initial perturbation of photon number An0 is an operator, the corresponding 
quantum phase 6 at any distance t can be expanded (in linear approximation) as 

§(t) = e + A§=[e0 + Ä!f) + (A^O + ^A/M) , (41) 

just as in (11). Matching conditions (25) have a straightforward generalization to the operator equalities 

Ano = An0 ,    An0|c/| = An0|cnrtis| ,    Ap0 - Ap0 , (42) 

and all the above reasoning on the cancellation of accumulated nonlinear phase is readily reproducible, now in terms 
of quantum fluctuations. Obviously, all the conclusions remain valid beyond the linearization. 

There is one important issue, which should not be forgotten in the above extension of the results into quantum 
domain.   It is that number and phase operators do not commute, see (14), and therefore obey a corresponding 
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Heisenberg uncertainty relation. Thus, contrary to a classical consideration the number and phase uncertainties 

cannot simultaneously vanish. 
A close look at the structure of cross-phase modulation term (36) reveals its dependence not only on signal photon 

number n„ but also on momenta p0 and ps of the two solitons. Therefore, while measuring 0xpm fluctuations of the 
frequencies deteriorate the accuracy of inference of ns. Typically, this noise is rather small and can be decreased 
farther by a proper choice of parameters of the probe soliton.30 The cross-phase Bxpm also contains n0. The 
dependence is of self-phase modulation origin, and n0 together with its fluctuations can be eliminated from 0xpm by 
use of the compensation technique, in the similar manner as it is done for elimination of 0spm. So instead of zero 
path-average dispersion which provides the exact cancellation of 0spm, one needs now to detune slightly from the 

zero point. 
It is worth to mention a possibility of a QND measurement of momentum (frequency) of a soliton in close analogy 

with the above-described measurement of the photon number. The compensation technique will again provide an 
improved accuracy by eliminating the extra-noise caused by the group-velocity dispersion. 

6. CONCLUSION 

We present the method of cancellation of the extra noise, which is accumulated by a soliton of NLSE while propagating 
in nonlinear fibers. The extra noise appears in the soliton's phase due to its dependence on photon number through 
the effect of self-phase modulation. The method is based on the fact, that a NRTLS is formally described by a 
NLSE and can exhibit negative nonlinearity and positive group-velocity dispersion, that is impossible in silica.fibers. 
So a fluctuation with positive sign accumulated in one medium will evolve in reverse direction in the other. A 
combination of the two media allows us a control over the sign and value of nonlinearity and dispersion (and hence, 
over fluctuations), for example in such a way that the path-average nonlinearity and dispersion of the combination 
may turn into zero. It is this combination that effectively acts as a vacuum for a soliton and is at the heart of the 

compensation method. 
QND measurement of a soliton is based on cross-phase modulation appearing when two solitons collide in a 

nonlinear fiber Through the cross-talk, the information about the number of photons in one soliton is recorded into 
the phase of the other (probe) soliton. Together with this useful information, an extra noise is accumulated in phase 
of the probe soliton due to self-phase modulation. The extra noise can be compensated, if the probe soliton after 
the fiber passes through the NRTLS, thus canceling the overall path-average nonlinearity. Then, the fluctuations 
due to self-phase modulation disappear completely, while the cross-phase modulation term remains unchanged. The 
accuracy of the QND in such setup reaches its maximum. Numerical estimations with existing gaseous media and 
semiconductor structures are provided. The media are proved to be good candidates as NRTLS for the compensation 

method demonstrating compatibility with optical fibers. 
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Polarization dynamics in non-linear birefringent active fibers 

S.O. Elyutin and A.I. Maimistov 

Moscow State Engineering Physics Institute, 115409, Moscow, Russia 

ABSTRACT 
Numerical solutions are obtained of the full self-consistent system of equations for the counter rotating polarization com- 
ponents of the field of short optical pulse propagating in birefringent non-linear fiber and the ensemble of the energy level 
degenerated dopant resonance atoms implanted in fiber material. In every cross-section of fiber the ellipticity of the polar- 
ized wave experiences a complex evolution in time accompanied by rapid changes of the azimuth angle due to interplay of 
dispersion and Kerr non-linear self- and cross-modulation. The reciprocal effect of the impurities on the traveling pulse 
causes the oscillations of the pulse envelope able to distort completely the shape of the input signal, while the resonance 
absorption can drive the birefringence from the non-linear back to linear regime. 

Keywords: numerical simulation, polarization, non-linear fiber, resonance impurities, birefringence, short pulse 

1. THE MODEL 
The quasi-monochromatic field, which propagates along the doped fiber is the sum of two counter-rotating right and left 
handed circularly polarized modes ex (£, x) and e2 (£, x) correspondingly. The complex normalised amplitudes obey the 

non-linear coupled equations 

8C      I, dx     iddx2     ic   
2    3^V UoJ 

d£     lg dx    td dx2    ic      3«/ -' A    Uy 
P,=0,. (lb) 

In equations (1) /> and P2 is resonance polarization, x = (t - z/v)t~], z = C,L, V1 = (v,_1 + v2
l)/2, I is a 

characteristic spatial scale, A0 is an amplitude scale. 

Group-velocity mismatch effect ^ = LL'g
l = 2" V^V - v'1), linear coupling tc

x = LL~J = AßL, Kerr-effect 

r; = ZT,1 = LXeffAi{col 12c2£)- dispersion rj = LIT] = Ltf \a\, where 

= 2v1vA J_ _2A^ /L (2) 
8     v2-v,      c    A/T co\XeffAl H 

5 = Sgn O , q = 27tOi0nadeff I cn(a)0) , na is the concentration of the impurity atoms, C00 is the carrier frequency, 

a is the linear dispersion parameter, ßx=ß + Aß and ßy=ß-Lß, where ßx(ßy) is the linear propagation con- 

stant of the slow (fast) principal axis of the birefringent fiber. 
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The resonance polarization is defined by the elements of the density matrix of an ensemble of two-level atoms, whose lev- 
els are degenerated over the projections of angular momenta ja and jb . For the sake of definiteness we will consider the 

casc j = 1 -» /' = 0. The resonance transition is characterised by the element of dipole momentum operator 

d    -d   - d\x - d*i2 - deff. Following1, we write the Bloch equations in the form: 

'VPa'tf Xea-ma-a-
ean (3a) 

^ = M<Pa-eaPa), (A) 

W J 
dm„. 

dx 

^- = -tfi:{eaPa-<Pa\   «,«'= 1,2, (30 
O T 

where \a,m> = \ja =l,w=±l> and \b > = \jb = 0, m = 0> .m2x =< a- 11 p \a,+ 1 >, 

mxx =<a-\\p\a-\>. mn =<a,+ l \p \a,+ \ >,  n=<b\p\b>, px =-<a-\\p\b>, 

P2-~< a>+11P I ^ > ■ 
Initial conditions are w(o) = 1, m12(o) = mxx(o) = 0, mlx(o) = px(o) =p2(0)=0. The dimensionless quantities pa 

in (3) correspond to the polarization terms in (1) by the relationship 

^V = Pa&™,nadeff Icn(a>0)A0)=<pa>j- = j-<pa>, (4) 

where Lr = cnA0i(2.7r63nadeff)\ The latter Quantity corresponds to the characteristic length of resonance interaction 

L{?"] = (crihind^ü)0nJ0Y by a relationship Lr = A^A^L^, where AlJt = 2hd£t? is the amplitude of the 2n- 

pulse of SIT effect. In the system of equations (3) / = deffAjJCx jl is an effective normalized frequency of oscillation 

of the material variables of resonance subsystem, affected by the field of amplitude A^ , note that Lr = fLr 
n . 

The coupled system of the Maxwell-Bloch equations (1) and (3) provides the mathematical basis for the numerical 
simulation of the propagation of short pulses of circular polarized light in a nonlinear waveguide doped by resonance im- 
purities. The solution of the field equations (1) were obtained by means of one of the popular finite difference implicit- 
explicit Crank-Nicolson numerical scheme2 where the desired accuracy 0.001 was reached by iterations. The Bloch equa- 
tions (3) coupled to the field equations (1) by the resonance polarization terms were solved by the predictor-corrector pro- 
cedure. The predictor-corrector ran at every iteration in Crank-Nicolson algorithm until the accuracy about 0.001 for po- 
larization components p in (3) was achieved. Though the code was able to produce the integration over the inhomoge- 

neously broadened line of resonance absorption, on this stage of numerical simulation we restrict to only homogeneous 
case and exact resonance, i.e. V =0 in (3a). The results of calculations were the absolute value of the complex amplitudes 
ex 2(C,T) of the counter-rotating right and left-handed oppositely polarized fields. Following Winful3, we examined the 

polarization state of the field in the optical pulse in terms of azimuth angle 0{£, r) = arg(^)/2 and ellipticity 

S(C,T) = (J£|- l)(J£| + l) ', where complex quantity S, = e}e~l. The characteristic values of 8are: £=0 for the linear 

polarized light. e=+l for the purely right hand circularly polarized light, and e=-l for the purely left hand circularly po- 
larized light. Parameter 6 is an angle between the axis of the polarization ellipse and the slow principal axis of the bire- 
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fringent fiber. It may vary within the interval (-45° - +45°). The launched pulses are assumed having the sech form: 
e   (O, z) = emX 2 sech((r -rü)5'x), where S = tp0t0

], T0 is the temporal co-ordinate of the centre of the input pulse. 

2. THE NUMERICAL ESTIMATES 

We let the silica-based monomode fiber host material group velocity dispersion4 D = AncaX^ at ^>=T,55um be typically 

D=15 ps-nm'-km1. the non-linear index n2 * 1(T13esu. then o = \d2 ß dü)2\/2*W2h2-cmA. The effective nonlinear 

interaction parameter Xeff 
x ninlln -2.3-10Hesu. We adopt the value of deff * 5 • KT21 esu (transition %^ha in 

Er" ions) and the impurity concentration na«1018cm"3 that complies the realistic samples5. 
With the input pulse duration tp0 = t0 =0.1ps the dispersion length is Ld = t\o~x *102cm. The polarization modes 

coupling effect reveals at the distance Lc = (Aß)~l * A0 {inAn)'1 »25cm. Here we let6 An~W6. The effect of group ve- 

locities mismatch becomes noticeable at the characteristic distance Lg = 2v, v, (v2 - v,)   t0 « 2ct0 An   ~6- 104cm. The 

spatial scale of the Kerr self- and cross-modulation process Lk depends on the field amplitude A0: Lk « nl^Xeff^ ) ■ 

The balance between the fiber group-velocity dispersion and non-linear pulse compression achieves when Lk = Ld. That 

gives the value of the one-soliton solution amplitude of a single non-linear Schrödinger (NLS) equation 

ANIS = (onÄ0)
m(7itlxeff)'

V2 *0.5-104esu for a O.lps pulse duration. The corresponded length scale is D"LS «70cm. 

The non-linear Schrödinger one-soliton peak intensity can be estimated as INLS = C\ANLS) /8;r s4-109W/cm . 

Another balance equality Lk = Lc yields an electric field strength Ac = (inAnxJ2 known as a characteristic 

light wave field for a switch of nonlinear directional cw-waves coupler\. Ac ~ 104esu, the intensity Ic «1.5-10 W/cnr. 

This is broadly means that with the exceeding of Ac in the input field the nonlinear birefringence, initiated by Kerr proc- 

esses, begins to have a noticeable effect. 

The quantity L^n) = {ptiX^Ln1 nad]fft^ *5-102cm is the distance in resonance sample, where the reciprocal re- 

action of the medium in the form of polarization and population differences develops to produce a number of coherent 
transients such as self-induced transparency (SIT)8, photon-echo910, optical nutations, breather waves11. For the signals 

with small pulse area11 0 parameter I^n) serves as a length of absorption. The pulse area of the NLS soliton is extremely 

small 6NLS = ndefffr
lt0ANLS =3-10"Vin comparing with 6sn = In . 

The amplitude of a O.lps 2^-pulse is Aln = 2fa/^,*4-106 esu. The peak intensity of the pulse reaches the mag- 

nitude of I2x «2-1015W/cm2. This well-known result implies that the SIT soliton requires a power approximately 6 orders 

of magnitude larger than that for the NLS soliton, or that one 2;rSIT-pulse corresponds to the hundreds of NLS solitons by 
power. 

3. POLARISATION STATES EVOLUTION IN FIBRE. NUMERICAL ANALYSIS 

We can proceed now to examine typical numerical results. We aim on the diagnostic of the temporal profile of the field 
amplitude and polarization parameters s and 9 at every cross-section of the nonlinear birefringent fiber. We assume the 
light wave to be in exact resonance with the homogeneously broadened atomic transition, i.e. V =0. In order not to over 
complicate the problem we also ignore the walk-off effect in this paper, though we observed some of it obvious results in 
our preliminary computations. In the numerical simulations demonstrated below in figs.(l-5) the amplitudes of the input 

pulses were chosen as eml = yfl/l, em2 = 1/2, while initial phases were 0 and n correspondingly. We also set 

/ =0.0015, thus assuming the resonance interaction being not a strong perturbation process to the fiber effects. 
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The propagation of the light pulse in undoped birefringent fiber is accompanied by the back and forth coupling 

between the orthogonal counter-rotating polarization modes with the spatial beat period 2nkß~x. No dispersion is in- 
volved in the numerical simulation at this stage. For the linear fiber (i.e., when the contribution of the Kerr self- and cross- 
modulation effect can be yet neglected) the solution of (1) is quite simple (fig.l(a.b)). The period of the partial energy 
transfer between the modes is f.h=7dc.\\ is seen from the 3D plot of azimuth 9 and the ellipticity s (fig.l(c,d)) that 
both functions are uniform across pulse duration and oscillate in the course of propagation inside the fiber3. It is worth to 
note that if the launched pulse amplitudes were emX = 1, em2 = 0. the azimuth angle 6 would change from -TT/4 to n/4 

and the polarization state - from a linear polarization (f=0) to a circular polarization of the opposite direction (£=+1). 
When both polarization modes are excited in the asymmetrical manner, the ellipticity oscillates between elliptical 

clockwise and elliptical anti-clockwise polarization. It is well seen from the gray scale modular surface of 0{£, T) and 

e(C, T) .(fig. 1 (e) and figl (f))- The dark gray up to black corresponds to the maxima of the plotted function while the 

light gray down to white - to the minima. The phase trajectories on the £ vsf? plane (£ and 9 are calculated at the mo- 
ments of peak intensity of the pulse), parameterized by C,  are the closed circles (fig. 1(g)). Each trajectory in this picture 

associates with the different T) = (em]e^2)
2 ratio. The outer curve relates to 7=999. The subsequent cycles corresponds 

to 77=99, 9. 3, 15. and 1.22. The biggest circle is the ultimate trajectory related to a nearly net circularly right hand 
polarized light while small circles corresponds to a nearly linear polarized light. The circle in open dotes corresponds to 

the case which was numerically investigated eml = fi/2, em2 = 1/2 . This numerical picture is in a good accord with 

one presented in3 for the cw-waves. 
The mutual action of linear birefringence (£c =0.25) and dispersion (I d =1.0) (all other terms responsible for fiber 

effects are omitted in (1)) provides a well interpretable effect of the intensity humps spreading (fig.2(a,b)) in the depth of 
fiber as it well seen in the gray scale map (fig.2(c.d)). The polarization properties of the travelling field (fig.2(e,f)) in this 
case are quite similar to those in fig.l. The fields of spikes by both sides of the central area in fig.2(e.f) is the result of the 
numerical fluctuations provoking the random switchovers of ellipticity £ and azimuth 9 on the wings of a propagating 
pulse, where the field in both polarizations is extremely weak. In fig.2(g) we display the phase plane (£ vs 9 ) for the cou- 
pling plus dispersion case for parameters 77 = 999, 9, 3, 1.22. The value 77=3 corresponds to the case under numerical 

simulations. The plotted curves are quite similar to those depicted in fig. 1(g). 
The interference of the linear coupling and the non-linear phase modulation yields the picture not anticipated from 

the first sight (fig3.). We injected in fiber the pulses of the counter rotating polarization, whose amplitudes in physical 
units satisfied the conditions Aml *2Ac, Am2 *Ac. That corresponds to the choice £c=0.25 and ^=0.05 for the 

characteristic lengths. What one could expect in this case is the Kerr compressing every time when energy couples back to 
the mode from the conjugate polarization state. Instead, we observe the interference between the coupling processes with 
different beat periods. The coupling reveals in the form of the inserted cycles when every new growth of the amplitude 
begins at the time when the previous one have not yet finished. The physical explanation may be found if to note that both 
input amplitudes are chosen to be of the order of the critical switching (for cw-waves) strength of the electrical field Ac. 

For such intensities Kerr cross-modulation becomes sufficiently strong to make the birefringence a non-linear process 
when the beat period may even grow unlimited1213. Attention should be drawn to that the periodicity of the onsets of the 
back and forth coupling cycles approaches the value prescribed by the choice ^c=0.25 (compare with fig.l). The linear 

behaviour reveals only on the slopes of the pulse envelope, where the field intensity has not reached the critical value yet. 
The further growth of the pulse field strength in a pulse envelope forces the beat period to increase as well. The result is 
seen in fig3(a. b and c, d), where the 3D picture and the gray scale map of the polarization modes dynamics are depicted. 
The envelopes of the field in both polarization modes experience temporal counter phase modulation in the central part of 
the propagating waveform (fig.3(h)). The modulation of the amplitudes of the counter rotating polarization modes leads to 
the oscillation of the £ and 9 over r in the propagating light wave that is clearly seen from the gray scale maps fig.3 (e 
and f) and on the comparative plots of the fields, ellipticity, and azimuth at the exit from fiber placed in fig.3 (h). Picture 
(g) on the top of fig.3 shows the (E,9) phase plane for the same values of parameter 77 as it was done above. Unlike the 

158 Proc. SPIE Vol. 4354 



previous cases, the ultimate circle is distorted that agrees with3 analysis. This cycle is smeared owing to the complex char- 
acter of a spatial modulation of the peak intensity of the polarization components. 

Our calculations, presented in fig.4. illustrate the combined action of linear birefringence, Kerr nonhnearity, and 

dispersion. The dispersion length £ d=\ serves as a scale length, while the coupling length £c and the Kerr length £k are 

shorter: I =0.1 and £c =0,25. The choice of parameters dictates the values of the amplitudes of polarization modes at the 

entrance to fiber Am} * 4lAc * 21A^ , Am2 - 0.84 * 1 -
6

AVLS • The weak ripples at the edges of computational 

grid are due to the time boundary conditions. 
The current case is not a completely integrable problem because of the inter-mode coupling. The propagating pulse 

can not find a stable form at least over the distance considered here. In one of our preliminary computations under the 

conditions similar to fig.4, but with £ k « 0.05 (i.e., for greater amplitude) we observed the breaking up of the input pulses 

of both polarizations into two separate subpulses subsequently scattering aside. 
The periodical squeezing of the pulse shape, being a trace of a high order NLS solutions, produces new oscillations 

on the wings of the pulse (fig.4(a, b)) as Kerr processes and dispersion are spatially mismatched. The dispersion spreading 
is noticeable on several (~4) length when the dispersion chirp fills almost whole time window (fig.4(c, d)). Like in fig.3(h) 
the oscillations of the field in polarization modes remain out of phase (fig.4(e)). It is natural then that polarization proper- 
ties of the light wave (i.e. the alternation of the dark and light shades of the gray) map the broadening area of the spatial- 
temporal oscillation of the polarization components (fig.4 (f. g)), caused by dispersion, thus making the whole picture 
rather complicated. We note that there are less coupling periods in fig.4(a, b) than in fig.1 or fig.2. Clearly, the nonlinear 
narrowing and peak amplification drives the propagation of the pulse into a non-linear birefringence regime. The further 

growth of the pulse input amplitudes will strengthen the inequality £k < £d , so making the process be somewhat analo- 

gous to that in fig.3 plus dispersion originated oscillations spreading away from the sharp central peak. 
Let now the resonance interaction of a short pulse with the ensemble of resonance atoms is added to the conven- 

tional fiber effects as it has been suggested in (1), (3), and (4). The evolutionary behaviour of the counter circularly polar- 

ized components with the input amplitudes 4, * 2AC « 4ANLS, Aml * Ae * 2ANLS is plotted in fig.5 (a, b and c, d). 

We assume the resonance interaction to be weak by setting / =0.0015. Under this condition the population differences 

deviate insignificantly from their initial values. The spatial scale of the process is ^=1.0, whereas ^=0.05, £e=0.25, 

and £ =0.01. The value of resonance interaction length L^} can be estimated as (see (5)) lrr
K « lLd. That means the 

total length of the fiber in fig.5 is about 0.6 Z^ or <\Ld . The resonance interaction process more effectively than the 

dispersion transfers energy off the pulse to the radiation born by the reciprocal reaction of the medium in the pulse after 
action region. It is clear then that in comparison with fig.4 the amplitudes of the humps rapidly decrease in the propaga- 

tion direction (fig. 5 (a, b)). 
Attention should be called to two humps in the center of fig.5(e). These are the above-mentioned relics of the NLS 

N-soliton break up. The visible asymmetry of the pattern relative to the initial pulse position results from the delayed re- 
sponse of the resonance subset. Generally, we may forecast that at the longer distance inside the doped fiber the well- 
evolved effects of dispersion and coherent 'ring' can hardly be distinguished. 

The polarization properties of the light pulse are displayed in the gray scale maps fig.5(f,g). It is interesting to note 
that these pictures still keep the periodic alternation of the regions with the opposite ellipticity and azimuth angle owing to 

the linear coupling (see fig.2(e.f)). In our further computations (not shown), when we set £r =0.001 for the ten times 

larger concentration of impurities, we saw resonance oscillations fill the whole {% ,T) computational area already at the 

early stage of pulse propagation. It was interesting to observe how the increase of the dopant concentration developed the 
generic picture of periodic azimuth and ellipticity variations seen yet in fig.l and 2 with the same beat period. Qualita- 
tively speaking, that may be regarded as a result of resonance absorption when the progressive dumping of the field humps 

decreases the field amplitude below the critical value of the electrical field strength Ac, so driving the process back into 

the linear regime, when £c begins to be shorter than £k. Anyway, dispersion and resonance interaction being the time 

dependent processes introduce the temporal modulation to the basic polarization picture constituted by a linear birefrin- 

gence. 
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4. CONCLUSION 
We have considered the propagation of the pulse of elliptically polarized light in a non-linear doped birefringent fiber. The 
resonance impurities in the form of two-level atoms were included in the model in addition to the whole set of non-linear 
fiber effects. Our main concern was time-dependent polarization effects in the field of resonant optical pulse propagating 
in fiber This problem was approached earlier separately in pure fiber" and in degenerated self-induced transparency . In 
this paper the dynamics of the pulse was considered in full as a self-consistent problem. We have concentrated on the case 
of weak input field when the amplitude of the pulse was about the amplitude of a single NLS pulse, so the coupling to the 
resonance system was not strong. Even within this approximation the general picture proved to be rather complex. The 
polarization properties of the pulsed light are nonstationary across the pulse width and they can drastically change also in 
space Our numerical simulations showed that the polarization dynamics is basically featured by the interplay between the 
Kerr non-linear self- and cross-modulation and dispersion, while linear birefringence brings regular spatial modulation of 
azimuth angle and ellipticity. There is a range of the input amplitudes where the birefringence becomes a non-linear power 
dependent process due to Kerr cross-phase modulation, so the power beat period may grow. At the same time, when the 
spatial scale of the resonance interaction is less or comparable with the characteristic lengths of fiber effects, the propa- 
gating pulse experiences a strong distortion and resonance absorption. The intensity dumping leads to the restoration of 
the linear beat period thus converting the propagation process from nonlinear to linear regime. 
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ABSTRACT 

We model upconversion and migration in an ensemble of inhomogeneously distributed erbium ions. 
Treating Er-clusters as fractal objects we find the dependence of the upconversion rate on the population inver- 
sion for different fractal dimensions. 
Keywords: Upconversion, migration, erbium, amplifier, clustering, fractals 

1.   INTRODUCTION 

The recent interest in £r-doped planar amplifiers is motivated by their potential use for integrated active 
devices in optical communication systems at the 1.5 urn transmission window. In order to obtain sufficiently large 
gain in a short planar device two orders of magnitude higher ^/--concentrations (1020- 102' cm'3) are required in 
comparison with a typical fiber amplifier. However, at high concentrations parasitic interactions between Er-ions 
are strongly enhanced. The resulting upconversion processes l-2 reduce achievable gain and have to be properly 
taken into account while modelling the amplifier performance. It has been observed that the dependence of the 
upconversion rate (W) on the population inversion (n) is approximately linear for small population inversions 
[n^0) whereas it becomes nonlinear when the population inversion increases ''2. 

Previously the nonlinear behavior has been explained by contribution from clustered Er ions ''2. However, 
strong nonlinearity was also observed in Er-doped fibers co-doped with A1203 where percentage of clustered Er 
ions is low3. 

First theories explaining the nonlinear dependence of the homogeneous upconversion (HUC) rate for sta- 
tistically uniformly distributed centers (no excess of clusters) have been proposed by: Slobodyanyuk4'5 for dye 
molecules in solution, and by Philipsen6 for Er ions in silica matrix. However, in Refs. 4,5 the migration is not 
correctly described which leads to understimation of the resulted upconversion rate. The model of Ref. 6, in turn, 
uses approximations that are not proved to be justified, and it requires Monte Carlo simulations. Nevertheless, the 
main features predicted by this model have qualitatively been confirmed by our experiments • ' . 

Recently, we proposed10 a statistical model for the HUC in Er-doped silica waveguides. The model is 
based on well established theories" with known maximum error due to the involved approximations. The model 
provides analytical solutions in the case of continuos wave (CW) excitation. In the dynamic case an integral 
equation has to be solved, however, we obtained analytical expressions for the asymptotes at: t->0, t-*x> (n-tf)) . 
By fitting the asymptotes to the experimental results8 we find the critical distance for the upconversion be Rup 

=10.5 A, and its ratio r with the migration critical distance be r= (RJRupf=60. The result are in a good agree- 
ment with the corresponding measured values: Rup =9 -10 A    , (RJRup) =60   . 

In the present work we extend our model developed for HUC to include Er clusters. The extension, pre- 
sented for the CW case, is based on the fractal dimension concept14. It is well known that Er in a glass matrix 
tends to cluster15 and that gain from the cluster ions is totally quenched. We believe that the proposed model will 
be a useful tool for both characterization and design of realistic Er-doped waveguide amplifiers. 
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2.   UPCONVERSION AND MIGRATION IN THE ENSEMBLE OF CLUSTERED ERBIUM IONS. 

We treat the upconversion process by analogy to the self-quenching processes11 , where the excitation 
can migrate and can be quenched by another excited center of the same type. The theory of self-quenchuig shows 
that donors and acceptors can be treated as uncorrelated ensembles when the ratio of migration-to-self-quenching 
critical distances is large: r=(RJRupf»L Since this condition is satisfied for Er-doped glasses we consider ex- 
cited ions and all the ions as two subsystems. The density distribution of Er-ions incorporated in a glass matrix by 
deposition processes can be described by the expression used for the process of diffusion-limited aggregation 

(DLA)14'16',7-18: m 

p(R)=   cDR 
Here R is the distance between ions, cD is the concentration of the erbium ions on the fractal cluster, d is the 
Euclidean dimension, D is the fractal dimension14. ]Q 

The balance equation has the same form as in our model for HUC  : 

^l2hl = i\-n(Si,S2))a-n(S„S2)(l + S]+S2) + (n(S„S2))s^S2 (2) 
dt 

Where time t is normalized with respect to the fluorescence lifetime r2 of the metastable level, n(S,,S2) is a local 
00 00 

probability of ion excitation, (n{S„S2))s^ = \\n{S„S2)dSxdS2 is the population inversion of the metastable 
o o 

level, a is the normalized pumping rate ofthe metastable level,  S,=2>*/.   S2^
W»    are the stochastic 

variables which for the dipole-dipole mechanism of energy transfer and in the presence ofthe fractal clusters have 

the following distributions n : 
£l/(l-D/6) A 

/(5/) = Ä(51.,A/)-^exp 
(6/D) 

,1/(1-0/6)   c £>/(6-D) 
i = l,2 

with: 

R(Sl,kl) = 24-Sir
m6-D) 

where k = V(l-D/6)(cD /cup),    c 

D \ 
-1 

r 

up ~ 

{- 

nDI2 

6-D ^ 6/(D-6) k^kiniS^))^,    k2=k\- 

(3) 

(4) 

f(l + D/2) 
-R up 

the cluster with the fractal dimension D ,  r = 
'*   ' 

\R«pJ 

fi\ 

\^J 

is the critical concentration for the upconversion in 

3 is the Huber correction " taking into account the 

migration reversibility, f(x) is the complete gamma function. 

We consider CW excitation: dn^'S^ = 0 . For averaging Eq. 2 with the distributions (3) we use the 
dt 

following identities: 

Yl^&^i^'-üH-' 
(5, +S2)t 

\ + a 
f{Sx )f(S2 )dSl dS2dt = F(k, a, D, r)     (5) 
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where   : 

F{k,a,D,r)- Jexp -t-Y 
f    *    \ 

\\+<Zj 
T(l-D/6) 

(AT 
n+  — 

v 

dt 

J) 

Finally, we arrive at the following transcendental equation for the population inversion: 

a(n + (r/2)D/6) F{k,a,D,r) 
n = (n(S],S2))s c  =■ 

\ + a n+{rl2)Dl(,F{k,a,D,ry 

10. The rate of upconversion for the CW case takes the following form   : 

„,cw     <"(5i'52)'5i>s1,s,     a(l-n) 
up 

(n(SltS2))s r 

(6) 

(7) 

(8) 

Using (7) and (8) we calculated the CW upconversion rate in the presence of clustered ions. The resulting de- 
pendence on the population inversion is shown in Fig. 1: 

WupT2  1 1-    1      1      1      1      1      1      II 

I'2- 
/,' 

I'.1" 

A-'' 

 V""f"     i        i         i         I         I        i 
0 0-1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1 

Figl. Upconversion rate Wup as function of 
population inversion nfor different values of 
fractal dimension D. 
D=3 (1), D=2 5 (2), D=3 (3) 
Rup=10.5Ä, r=60, CEr^.öxlO25 ions/m3 

z2 - liftime of the metastable level 
n - population inversion of the metastable 
level 

From (7) and (8) we also find an analytic expression for the upconversion rate in the limit n->0: 

W. cw 
,6/0 f    V1-Ö/6X6/D-1) 
k     n r 

v2y up     r(i + 6/D) 

Eq. 9 could be used for determining an average fractal dimension of erbium clusters. 

(9) 
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3.   DISCUSSION 

The presented model describes behavior of the upconversion process in the presence of Er clusters. The 
main results can be interpreted as follows: 

1) For high population inversion the effect of migration is weak and it cannot efficiently smooth out the 
excitation distribution. Each of the excited ions sees different surrounding of other excited ions, hence 
the rate of upconversion is not proportional to the population inversion (Fig.l). 

2) The more nonuniform ion distribution (i. e. the lower fractal dimension) the larger percentage of the 
excited ions have closely located excited neighbors. Therefore, for high population inversion the en- 
hancement of the upconversion becomes larger with decreasing fractal dimension (compare the 
curves: 1,2, 3 in Fig.l). 

3) For low population inversion the migration is very fast and can efficiently equalize the distribution of 
the excited ions. As a result the rate of upconversion becomes proportional to the population inver- 
sion (Fig.l, Eq. 9). 

4) It can also be seen from Fig. 1 and Eq. 9 that at low population inversions the upconversion is weaker 
for lower fractal dimensions. This is because the distance between the ions outside the clusters be- 
comes larger and the migration slower refills holes that the upconversion "burned" in the excitation 
distribution within the clusters. 

The concentration dependence of the upconversion rate for small population inversion can be used for 
calculation of the fractal dimension of the erbium cluster. 

4.   REFERENCES 

' Ä.S.Quimby, W.J.Miniscalo and B.Thompson, "Clustering in erbium-doped silica glass fibers analyzed using 
980 nm excited-state absorption", J.Appl. Phys., Vol. 76, No. 8, pp. 4472-4478 (1994) 

3+ 2 J. Nilsson, P. Blixt, B. Jaskorzynska and J. Babonas, "Evaluation of parasitic upconversion mechanisms Er    - 
doped silica glass fibers by analysis of fluorescence at 980 nm", J. Lightwave Technol. Vol.13, pp.341-349 (1995) 
3 B.J.Ainslie, "A reveiw of the fabrication and properties of erbium-doped fibers for optical amplifies", J. Light- 
wave Technol, Vol. 9, No. 2, pp. 220-227 (1991) 

A.I. Slobodyanyuk , "Short wavelength luminescence of complex molecules in solutions under two photon ex- 
citation", PhD thesis, Department of Physics, Belarusian State University, Minsk (1988) 
5 V.A. Gaisenok and A.I. Slobodyanyuk, "Effect of energy cumulation of singlet-excited molecules on lumines- 
cence of dye solutions," Opt.Spektrosk., Vol. 65, No. 1, pp. 39-41 (1988) 

J.L.Philipsen, A.Bjarklev, "Monte Carlo simulation of homogeneous upconversion in erbium-doped silica 
glasses" IEEE J. Quant.Electron., Vol. 33, No. 5, pp.845-854 (1997) 
7 Marcin Swillo, Dan Bremberg, Bozena Jaskorzynska, Sten Helmfrid, and Jacob L. Philipsen, "Method for char- 
acterization of clustering and homogeneous upconversion in Er-doped waveguides", in Integrated Photonic Re- 
search, OS A Technical Digest (Optical Society of America, Washington DC, 1999), pp.73-75 
8 J. Philipsen, J. Broeng, A. Bjarklev, S. Helmfrid, D. Bremberg, B. Jaskorzynska, and B. Palsdottir," Observa- 
tion of Strongly Nonquadratic Homogeneous Upconversion in Er3+-Doped Silica Fibers and Reevaluation of the 
Degree of Clustering", IEEE J. Quantum Electron., Vol 35, No. 11, pp.1741- 1749 (1999) 

4 

6 

Proc. SPIE Vol. 4354 169 



9 D. Bremberg, S. Helmfrid, B. Jaskorzynska, M. Swillo, J. L. Philipsen, and B. Palsdottir, "Observation of en- 
ergy-distribution-dependent homogeneous upconversion in erbium-doped silica glass fibers", Electron. Lett., Vol 
14, pp.1189-1191 (1999) 
10 S.V.Sergeyev, and B Jaskorzynska /'Analytical model for homogeneous upconversion in Er3+-doped 
waveguides", accepted for CLEO Europe 2000, S.V.Sergeyev, and B.Jaskorzynska /'Theory for concentration 
dependent homogeneous upconversion in Er3+-doped glasses", prepared for publication (2000) 
11 E.N.Bodunov, "Approximate methods in the theory of nonradiative energy transfer of localized excitations in 
disordered media: A review," Opt. Spektrosc, Vol. 74, No. 3, pp. 311-327 (1993) 
12 M.Hemstead, J.E.Roman, C.Ye, J.S.Wilkinson, P.Camy, P.Laborde, and C.Lerminiaux, "Anomalously high 
uniform upconversion in an erbium-doped waveguide amplifier" Proc. 7lh Eur. Conf. Integrated Optics 
(ECIO'95), pp. 233-236(1995) 
13 J.E.Roman, M.Hemstead, C. Ye, and S.Nouh, P. Camy, P. Laborde, and C. Lerminiaux, "1.7 um excited state 
absorption measurement in erbium-doped glasses," Appl. Phys. Lett,. Vol 67, No. 4, pp. 470-472 (1995) 
14 J.F. Gouyet /'Physics and Fractal Structures", Springer, pp. 130-146 (1996) 
15 M.W.Sckerl, S.Guldberg-Kjaer, M.Rysholt Poulsen, P.Shi and J.Chevallier, "Precipitate coarsening and self 
organization in erbium-doped silica," Phys. Rev. B, Vol. 59, No. 21, PP. 13494-13497 (1999) 
16 J.Klafter, A.Blumen, "Fractal behavior in trapping and reaction," J. Chem. Phys., Vol. 80, No. 2, pp. 875-877 
(1984) 
17 Ö. Peksan, "Inverted Klafter-Blumen equation for fractal analysis with interpenetrating network morphology," 
Chem. Phys. Lett., Vol.198, No. 1,2, pp. 20-24 (1992) 
18 M.N. Berberan-Santos, E.N.Bodunov, J.M.M.Martinho, "Luminescence quenching in fractal media accelerated 
by migration," Opt. Spectrosc, Vol. 81, No.2, pp. 217-221 (1996) 

170 Proc. SPIE Vol. 4354 



Actively mode-locked Er-doped fiber laser incorporating Bragg gratings 
written in polarization-maintaining fiber 

O. Deparis*, R. Kiyan, P. Megret, M. Blondel 
Advanced Research in Optics group, Electromagnetism & Telecommunications Department, 

Faculte Polytechnique de Mons, 31 blvd Dolez, B-7000 Mons, Belgium 

S.A. Vasiliev, O.I. Medvedkov 
Fibre Optics Research Center at General Physics Institute, 38 Vavilov Street, 117756 Moscow, Russia 

ABSTRACT 

Bragg gratings were written in unloaded polarization-maintaining fiber (PM-FBGs) and inserted in an actively mode- 
locked Ewloped fiber laser. The use of PM-FBG in sigma laser cavity allows to effectively build all polarization- 
maintaining fiber laser. Long term stabilization of the laser was ensured by a feedback loop that controlled the cavity length. 
Peak wavelengths, reflection bandwidths and reflectivity values of the gratings were equal to 1545.5 nm and 1540.5 nm, 
1 6-nm and 0.8-nm, of 99% and 90%, respectively. At a 3-GHz repetition rate, pulses of 9.4-ps and 27.9-ps duration were 
generated with first and second gratings, respectively. By inserting additional long piece of dispersion-shifted fiber in the 
cavity nonlinear pulse shortening was observed due to formation of average soliton inside the cavity. In this case, pulses of 
7 8-ps'and 22 7-ps duration were generated with first and second gratings, respectively. With the first grating, generated 
pulses were close to transform limit for hyperbolic secant pulse shape. Longer pulse duration obtained with second grating 
is attributed to narrower bandwidth and residual chirp of the grating. 

Keywords: Fiber lasers, active mode locking, fiber Bragg gratings, polarization-maintaining fibers 

1.   INTRODUCTION 

Actively mode-locked Er-doped fiber lasers are stable sources of short optical pulse trains at repetition rates in the 
GHz range.1 In order to select the lasing wavelength, tunable bandpass filters having bandwidths of several nanometers are 
commonly used. On the other hand, it has been soon recognized that fiber Bragg gratings (FBG) offer great flexibility for 
controlling the wavelength and bandwidth of the pulses generated from actively mode-locked Er-doped fiber lasers." 
Moreover several gratings can be combined in the laser cavity in order to obtain multiple-wavelength mode-locked pulses/ 
By incorporating two wide-bandwidth nonchirped fiber Bragg gratings in an actively mode-locked Er-doped fiber laser, we 
recently demonstrated transform-limited dual-wavelength pulses of 16-ps and 13-ps durations at 1547 nm and 1562 nm 
respectively, at a repetition rate of 3 GHz only limited by the bandwidth of the modulator. To date, only Bragg gratmgs 
written in H?-loaded standard fiber or photosensitive Ge-doped fiber have been used in actively mode-locked Er-doped fiber 
lasers On the other hand, it is well known that single-polarization operation of fiber lasers reduces considerably their 
sensitivity to environmental perturbations. For this purpose polarization-maintaining (PM) laser configurations are often 
preferred. Because they preserve single-polarization operation of the laser, polarization-maintaining fiber Bragg gratings 
(PM-FBG) appear to be ideal candidates for wavelength selection in actively mode-locked Er-doped fiber lasers. In 
addition, they offer cheap, flexible and low-loss alternative to expensive fiber-pigtailed bulk optics components. For 
generation of short optical pulses through active mode locking, the intracavity filter should have a bell-shaped spectrum 
with sufficiently wide bandwidth to accommodate the pulse spectrum (duration of 10 ps corresponds to spectral width of 
0.25 nm for transform-limited sech2 pulses). In addition, the filter should not impart chirp on the pulse. All these 
requirements can be met with a proper design of the fiber Bragg grating. 

In this paper, we present for the first time an actively mode-locked Er-doped fiber laser incorporating Bragg gratings 
written in polarization-maintaining fiber. Two PM-FBGs were fabricated especially for the experiments in H2-loaded 
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polarization-maintaining  PANDA   fiber.   Pulses  generated  from   the   laser  in   different   cavity   configurations  were 
characterized in time and frequency domains in order to assess the influence of grating parameters on pulse characteristics. 

2.   EXPERIMENTAL SET-UP 

2.1  LASER CAVITY CONFIGURATIONS 

For experiments, we used an actively-mode-locked Er-doped fiber laser in sigma configuration (Figure 1). The laser 
and its stabilization feedback loop have been described elsewhere.5 Basically, it consists of a polarization-maintaining ring 
and a double-pass single-mode section ended by Faraday rotation mirror. The PM-FBG is connected to the ring through a 
single polarization circulator. Functionally, such a configuration is equivalent to polarization-maintaining unidirectional 
ring. Laser output is extracted from a 50:50 PM coupler (only PM coupler available at that time in the lab). Because the 
circulator acts itself as isolator, the PM isolator is not strictly necessary in the ring. However, it becomes necessary if 
circulator is removed and replaced by another type of filter in the cavity. 

Stabilization 
feedback loop 

»mo« 
iezo !  DSF   j   EDF    7 piezo !  DSF 

Drum i . 

WDM 
Coupler 

DC    RF 

Laser output 

Figure 1. Actively mode-locked Er-doped fiber laser: FRM - Faraday rotation mirror, DSF - dispersion-shifted fiber (removed in basic 
laser cavity configuration). EDF - erbium-doped fiber, PBS - polarization beam splitter, MZM : Mach-Zehnder modulator, PM-FBG : 

polarization-maintaining fiber Bragg grating. All other elements in the laser ring are polarization-maintaining type. Feedback loop 
performs active stabilization of laser cavity length. Feedback signal is applied to piezoelectric drum on which a piece of single-mode fiber 

is wound. 

Amplifying medium is 9.7-m Er-doped fiber (Lucent MP980) pumped by 980-nm laser diode (90 mW max. power). 
Active mode locking is achieved through dual-output Mach-Zehnder electro-optic modulator (3 GHz bandwidth). Light 
emerging from second output of modulator is detected and used by feedback loop for active stabilization of cavity length. 
When modulation frequency is perfectly tuned, average output power at second output is minimal. 

In order to observe nonlinear pulse shortening, piece of L-200 m of dispersion-shifted fiber (DSF) was inserted in the 
double-pass section (effective length 2x1). Dispersion parameter D and slope of DSF were «1 ps/(nmxkm) at 1550 nm and 
«0.071 ps/(nm2xkm) respectively. In the following, what is called 'long' ('basic') cavity is the cavity that does (not) contain 
additional piece of DSF. Cavity lengths (534 m and 127 m respectively) were determined from measurements of free 
spectral range (387 kHz and 1.63 MHz respectively). 
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2.2.  POLARIZATION-MAINTAINING FIBER BRAGG GRATINGS 

From theoretical point of view, UV-induced refractive index modulation in a high-birefringence fiber gives rise to dual 
peak Bragg resonance at wavelengths defined by ÄBraggA/) = 2neffAf)A , were nejr,s(j) is the effective refractive index along 

the slow (fast) axis of the high-birefringence fiber and A is the grating pitch. When measuring spectral responses of Bragg 
gratings written in high-birefringence fiber, it is therefore necessary to specify if linearly polarized light is launched along 

either the slow or fast axis of the fiber. 

For experiment two different PM-FBGs were tested: the first (#F0RC1) was fabricated at Fibre Optics Research 
Center Russia and the second (#HW1) was supplied by Highwave Optical Technologies, France. Both gratings were 
written by exposing high-birefrinsence fiber (PANDA type) to CW 244-nm radiation from frequency-doubled Ar-ion laser 
using interferometer technique. Prior inscription, fibers were loaded with H2 in order to increase their otherwise low 
photosensitivity. For inscription of FORC1 grating, fiber was first loaded at 125 bars (100 °C) during 16 hours and then 
irradiated at power density of about 80 W/cm2 during 20 min. In both cases, gratings were written with constant pitch (i.e. 
no chirp) and without apodization. High reflectivity (> 90 %) of gratings was required for low insertion loss in cavity. 

Reflection and transmission spectra of FORC1 and HW1 are shown in Figure 2 and Figure 3 respectively (polarization 
of the light aligned along the slow axis). Characteristics of the gratings are listed in Table 1. Both gratings have similar 
characteristics except that FORC1 has a FWHM bandwidth (determined from reflection spectrum measurement) which is 

about twice larger than that of HW1. 

1540    1542    1544    1546    1548    1550 
Wavelength (nm) 

1540    1542    1544    1546    1548    1550 
Wavelength (nm) 

Figure 2. Normalized reflection spectrum (left) and transmission spectrum (right) of polarization-maintaining fiber Bragg grating 
FORC1. For measurements, linearly polarized light was launched along the slow axis of the fiber. 

Table 1. Characteristics of PM-FBGs (measured using polarized light aligned along the slow axis): R - reflectivity, T- transmission dip, 
FWHM - full width at half maximum. 

PM-FBG 
FORC1 
HW1 

Peak wavelength (nm) 
1545.5 
1540.5 

R = 1-T (%) 
99 
90 

FWHM reflection bandwidth (nm) 
1.6 
0.8 
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Figure 3. Normalized reflection spectrum (left) and transmission spectrum (right) of polarization-maintaining fiber Bragg grating HW1. 
For measurements, linearly polarized light was launched along the slow axis of the fiber. 

3.   RESULTS 

Two sets of measurements were carried on with each PM-FBG : the first set with PM-FBG inserted in basic laser 
cavity and the second set with PM-FBG inserted in long laser cavity (i.e. with additional piece of DSF). For each 
experiment, pulse spectrum and autocorrelation were measured using optical spectrum analyzer (0.1 nm resolution) and 
second harmonic generation (SHG) autocorrelator, respectively. Temporal waveform and electrical spectrum of pulse train 
(detected by 20 GHz photodiode) were also recorded using digital sampling oscilloscope (rise time 50 ps) and electrical 
spectrum analyzer (22 GHz bandwidth), respectively. In all experiments, modulation frequency was tuned precisely around 
3 GHz for harmonic mode locking and feedback loop was turned on for long-term stable operation. 

Optical spectra (normalized to peak) and autocorrelation traces obtained with FORC1 and HW1 gratings inserted in 
basic cavity are shown in Figure 4 and Figure 5, respectively. Corresponding data obtained in long cavity are shown in 
Figure 6 and Figure 7, respectively. Together with pulse spectra are shown grating reflection spectra (normalized to peak). 
Autocorrelation traces were fitted using seek- function. Pulse duration (FWHM) is given by r= TJ\.543, where rac is 
FWHM width of autocorrelation trace. Radio-frequency (RF) spectra, which contain information on noises affecting the 
pulse train, are shown in Figure 8 and Figure 9 for basic and long cavities respectively. Peak wavelength, spectral width, 
duration and time-bandwidth product of the pulses are listed in Table 2. 
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Figure 4 Normalized pulse spectrum (left) and pulse autocorrelation (right) obtained when FORC1 fiber Bragg grating was inserted in 
basic laser cavity Normalized reflection spectrum of FORC1 fiber Bragg grating (dashed line) is shown together with pulse spectrum 

(left) Measured autocorrelation trace (dots) is fitted using sech' function (line). SHG : second harmonic generation. 
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0 
-40 -20 0 20 40 

Delay (ps) 

Fieure 5 Normalized pulse spectrum (left) and pulse autocorrelation (right) obtained when HW1 fiber Bragg grating was inserted m 
basic laser cavity Normalized reflection spectrum of HW1 fiber Bragg grating (dashed line) is shown together with pulse spectrum (left). 

Measured autocorrelation trace (dots) is fitted using sech2 function (line). SHG : second harmonic generation. 
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Figure 6. Normalized pulse spectrum (left) and pulse autocorrelation (right) obtained when HW1 fiber Bragg grating was inserted in laser 
long cavity. Normalized reflection spectrum of HW1 fiber Bragg grating (dashed line) is shown together with pulse spectrum (left). 

Measured autocorrelation trace (dots) is fitted using sech2 function (line). SHG : second harmonic generation. 

1540 1541 
Wavelength (nm) 

1542 -20 0 20 
Delay (ps) 

40 

Figure 7. Normalized pulse spectrum (left) and pulse autocorrelation (right) obtained when HW1 fiber Bragg grating was inserted in long 
laser cavity. Normalized reflection spectrum of HW1 fiber Bragg grating (dashed line) is shown together with pulse spectrum (left). 

Measured autocorrelation trace (dots) is fitted using sech1 function (line). SHG : second harmonic generation. 
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Fisure 8 Normalized RF power spectrum of detected pulse train when FORC1 (left) or HW1 (right) was inserted in basic laser cavity. 
Center frequency corresponds to repetition rate of pulse train (left :/m=3.000251046 GHz, right :/m=3.000025481 GHz). Resolut.on is 
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Figure 9 Normalized RF power spectrum of detected pulse train when FORC1 (left) or HW1 (right) was inserted in long laser cavity. 
Center frequency corresponds to repetition rate of pulse train (left :/m=3.000312313 GHz, right :/m=3.000663193 GHz). Resolut.on is 

3 kHz. Free spectral range of laser cavity is a 387 kHz. 

For both gratings, pulses generated from the long cavity are shorter than those from the basic cavity (7.8 ps versus 
9 4 ps with FORC1 and 22.7 ps versus 27.9 ps with HW1). This result is attributed to enhanced nonlinear pulse shortening 
in the Ion« cavity As discussed in next paragraph, pulse peak power is well above threshold of fundamental sohton, which 
is about three times lower in long cavity than in basic cavity. On the other hand it is clear that pulses circulating m the 
cavity are affected by grating reflection spectrum. In both cavity configurations, pulses generated with FORC1 grating are 
about three times shorter than those generated with HW1 grating. With FORC1 grating, pulses are near transform limit for 
seek2 pulses (time-bandwidth product is 0.32-0.34) while they are chirped with HW1 (0.44-0.46), possibly due to unwanted 
chirp imparted during grating inscription. Longer pulse duration obtained with HW1 grating is attributed to its narrower 
reflection bandwidth and residual chirp. 

PM-FBG 

FORC1 
HWl 
FORC1 
HWl 

^■pulse,peak 

(nm) 
1545.4 
1540.5 
1545.0 
1540.6 

Table 2. Summary of measured pulse characteristics. 

FWHM pulse 
bandwidth (nm) 
0.27 
0.12 
0.34 
0.16 

FWHM pulse 
duration (ps) 
9.4 
27.9 
7.8 
22.7 

Time-bandwidth 
product 
0.32 
0.44 
0.34 
0.46 

Cavity configuration 

Basic 
Basic 
Long 
Long 
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4.   DISCUSSION 

Comparison of pulse autocorrelation and spectra obtained from basic cavity on one hand (Figure 4 & Figure 5), and 
from long cavity on the other hand (Figure 6 & Figure 7), shows that, for both gratings, pulses are shorter in the latter 
configuration. This shortening is attributed to average soliton effect inside the cavity. To verify this, it is interesting to 
calculate the peak power P, required to support fundamental soliton inside the cavity : 

3.11     DA3A# 

n2c(27t)        T~ 

where D : average intracavity dispersion parameter, r: FWHM duration of soliton, A : wavelength, n2 = 3.2 10"   cm2/W, 
nonlinear Kerr index, c : light velocity, Acff: effective core area (typical value Aeff= 57 ^m2 is used in calculation). 

Total intracavity dispersion (ps/nm) was measured for both cavity configurations and divided by cavity length to 
obtain average intracavity dispersion parameter. At A = 1545 nm, D = 9.2 ps/(nmxkm) for basic cavity (127 m) and D = 
2.9 ps/(nmxkm) for long cavity (534 m). For a soliton duration r = 10 ps, we find P, = 158.3 mW and P, = 50.4 mW in 

basic and long cavities, respectively. Note that the soliton period 6, Z0 = 0.322 x f"/^), is ~ 4.3 km and * 13.7 km in 

basic and long cavities, respectively. Insertion of DSF in cavity reduces threshold for fundamental soliton by a factor «3. 
Average power PLm. that would correspond to a train of 10-ps solitons with peak power equal to P, at repetition rate TR~ can 
be calculated from : 

Play =1.136 xP,— 

At repetition rate r/ = 3 GHz, we find P,,m. = 5.4 mW and P,,m = 1.7 mW in basic and long cavities, respectively. We can 
now compare these values with average intracavity power, Pcav. We estimate Pcm at some reference point in longest section 

of cavity (loss between reference point and output is noted rout) using Pcm = \GST0U,)'
X
 Poul where Poa is average output 

power, T is total cavity loss and Gs = T~ 2 is single-pass gain. In present experimental conditions (Gs = 3.5, rout = 0.4), 
Pm„ was measured to be * 8 mW, which leads Pcav = 5.7 mW. According to this estimation, threshold for formation of 
fundamental soliton is well reached in long cavity (Pcav « 335xPlav) while it is just reached in basic cavity (Pcm * 
1.05x/>/ov). Pedestals that are observed in autocorrelation trace of Figure 6 are attributed to nonlinear regime well above 
soliton threshold. Actually, when we decreased pump power, pedestals disappeared. Further experiments are needed to 
confirm this dependence on pump power. 

Comparison of RF spectra obtained from basic and long cavities (Figure 8 and Figure 9, respectively), shows that 
supermode beat noise is strongly reduced in the latter configuration (same result was obtained with HW1 grating too). 
Reduction of the supermode beat noise is a known effect of the interplay between self phase modulation (SPM) and spectral 
filtering.7 Observation of supermode noise reduction confirms that nonlinear pulse propagation does occur in long cavity. 

5.   CONCLUSION 

Two Bragg gratings (1545.5 nm and 1540.5 nm, 1.6-nm and 0.8-nm reflection bandwidths, 99% and 90%, reflectivity) 
were written in H2-loaded polarization-maintaining fiber and inserted in an actively-mode-locked Er-doped fiber laser. At a 
3-GHz repetition rate, pulses of 9.4-ps and 27.9-ps duration were generated with first and second gratings, respectively. By 
inserting additional long piece of dispersion-shifted fiber in the cavity, nonlinear pulse shortening was observed due to 
formation of average soliton inside the cavity. Pulses of 7.8-ps and 22.7-ps duration were generated with first and second 
gratings in this case. With the first grating, generated pulses were close to transform limit for hyperbolic secant pulse shape. 
Longer pulse duration obtained with second grating is attributed to narrower bandwidth and residual chirp of the grating. 
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Properties of the pulse train generated by an actively mode-locked Er- 
doped fiber laser in the rational-harmonic repetition-rate-doubling 

regime 
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ABSTRACT 

We demonstrate for the first time that pulse-to-pulse amplitude fluctuations occurring in the rational-harmonic repetition- 
rate-doubling regime of actively mode-locked fiber laser are eliminated when modulation frequency is properly tuned. 
Irregularity of the pulse position in the train is found to be the only drawback of this technique. The irregularity can be 
reduced to value acceptable for applications by a proper laser design. 

Keywords: Fiber lasers, active mode locking 

1.   INTRODUCTION 
Actively mode-locked Er-doped fiber lasers in rational harmonic mode locking (RHML) regime [1] are potentially attractive 
sources for applications in high-speed fiber optic communication. An optical pulse train with repetition rate of 
(np± l)//..w can be produced by rational harmonic mode-locked fiber laser when the modulation frequency is equal to 

(« ± \/p)fFSR , where n and p are integer, fFSR is the free spectral range of the laser cavity. An important advantage of 
the RHML technique is its ability to generate a pulse train with a repetition rate significantly higher than the modulation 
frequency. Repetition rate multiplication up to factor 22 was successfully demonstrated [2]. Unfortunately, an inherent 
drawback of the rational harmonic mode locking with multiplication factor p > 3 is the strong pulse-to-pulse amplitude 
fluctuation caused by unmatched harmonics of the modulation frequency [3]. Such a fluctuation can be eliminated only by 
special pulse amplitude equalization techniques [4, 5] that involve optical nonlinearities and, therefore, are rather 
complicated and/or intrinsically set a limit to the maximal repetition rate through available pump power. On the other hand, 
repetition-rate-doubling (p = 2) by rational harmonic mode locking does not suffer from this drawback and, for this reason, 

is the most attractive for applications. Although the repetition rate of the pulse train is increased only twofold with respect to 
the modulation frequency fA/ in repetition-rate-doubling rational-harmonic mode-locking (RRD-RHML) regime, better 

quality of the pulse train is obtained in comparison with multiplication by a factor higher than two. Indeed, in RRD-RHML 
regime, about 35 dB suppression of an unmatched component at the modulation frequency fM in the radio-frequency (RF) 
spectrum of the pulse train was observed experimentally [6] when the modulation frequency detuning, 
s fu = fhi I fi-sR - n - \/2, was equal to zero. However, the nature of the fM - component is not completely 
elucidated and ultimate limitations on the parameters of the pulse train in RRD-RHML regime are not determined. 

It is a commonly held idea that, in RHML regime, pulse passes through the modulator at its maximum transmission every 
p round trips. In the case of RRD-RHML it was assumed that optical pulse circulating in the laser cavity passes through the 
modulator at its maximum transmission every second round trips and at every other second round trips the pulse passes 
through the modulator at its minimum transmission. According to this model, the unwanted component at fM in RF 
spectrum of the laser output in RRD-RHML regime is attributed to pulse-to-pulse amplitude fluctuations. Furthermore, 
pulse-to-pulse amplitude fluctuations are thought to be unavoidable, which is in contradiction with experimental 
observations [6], Theoretical and experimental results presented in this paper will show that simplified explanation of 
RHML must be reconsidered. In this paper, a detailed experimental and theoretical investigation of the parameters of the 
pulse train in RRD-RHML regime of Er-doped fiber lasers is presented for the first time. For the reason of clarity we 
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consider the case of a dispersion compensated laser cavity and we do not take into account Kerr nonlineanty in the opt.ca 
fiber Although Kerr nonlinearity is of importance in fiber lasers, we believe that the results presented here are significant 
because they demonstrate some properties of Er-doped fiber lasers in RRD-RHML regime that were not previously noticed 
In the experiment, the relative temporal position of the pulse circulating in the laser cavity (with respect to cavity loss 
modulation), pulse-to-pulse amplitude fluctuations and pulse width were measured. The theoretical model is based on the 
^-consistency of the pulse after two round-trips in the laser cavity and analytical solution is obtained for d.spers.on- 
comoensated Er-doped fiber laser in RRD-RHML regime. Unlike previously reported models [1, 7] we do not made any 
assumption on the pulse train parameters, including the pulse timing in the cavity. All pulse parameters are derived from the 

self-consistency condition. 

1    THFORY 
For theoretical analysis we consider an actively mode-löcked fiber laser in unidirectional ring configuration Jown in Fig ^ 
The laser cavity is formed by Mach-Zehnder modulator (MZM) followed by output coupler, Fabry-Perot filter (FPF) and 
Er-doped fiber as amplification medium. All elements are connected by optical fiber to form a ring. It can be shown that 
only the total cavity dispersion influences the parameters of the generated pulse train rather than dispersion of each 
individual piece of optical fiber. As mentioned above, we consider the case of a dispersion-compensated cavity. The 
saturated gain of the Er-doped fiber is assumed to be equal to intracavity loss, spectrally flat within the FPF's transrn.ss.on 
bandwidth and time independent. The transfer function of the tft is 

F(v) = 2F0 F^F^F^ (F0-F,) exp(-2xi (v-v0)/v^j)"1 where v is optical frequency, v0 is optical 

frequency at maximal transmission of the FPF, vFSR is FPF's free spectral range, F0 and f, are FPF's maximal and 

minimal transmissions, respectively. Finesse of the FPF is kF = vFSR/Av, where A, is FPF's FWHM bandwidth. The 

time dependent transfer function of the MZM is M{t) = M0 sin( Wo +**sin(0)), where 6 = 2TT fM t is normalized 

time, M0 is MZM's maximal transmission, Wo is the phase factor, R = VKt \Vn , V „ is ;r-voltage of the MZM, Vu is 

amplitude of the modulation voltage. For RRD-RHML, two conditions must be satisfied: 0 < ^0 < njl and 

0 < K R < min(y/0; n/2 - Wo)- 

Mach-Zehnder 
Modulator 

Laser 
Output 

V=7iRsin(2 7ifMt) 

Optical 
Isolator 

Fabry-Perot 
Filter 

Er-doped 
Optical Fiber 

A 
Figure 1. Schematic drawing of the actively mode-locked Er-doped fiber laser used for theoretical model. 

For analysis of RRD-RHML, Kuizenga and Siegman's theory [8] is applied, assuming a Gaussian pulse circulating inside 
the laser cavity Both MZM's transmission in time and FPF's transmission in frequency are approximated by Gaussian 
functions usin^ quadratic expansions. A self-consistent steady-state solution is obtained after two complete cavity round- 
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trips. For two sequential cavity round-trips, electrical field of the optical pulse at MZM's output is expressed in the 
following form: 

Em{t) = EQmexp(2xiv0(t-tm)) exp(-21n2(/ -tm)2/r (l) 

where m = 1,2 corresponds to the first and the second cavity round-trips, E0m is complex amplitude of the pulse, tm is 

temporal position of the pulse peak and r„, is FWHM pulse width. Normalized time 0O  = x\{t2 +I\)/
T

M -n-\\2) is 

introduced that represents temporal position of the middle point between pulse positions at first and second round trips. 
Temporal shift of the pulse from this middle point is described by dimensionless parameter 
A0 = n{{t2 -t\)lThl -H-I/2).      Pulse-to-pulse      amplitude      fluctuation      is      characterized      by      parameter 

SI =     £0, Ecn\   +    £f . Simple analytical expressions can be obtained in first order on small 

parameter k = /A//Av for pulse train parameters at the MZM output, namely: 

k     R sin(2^0) cos(#0) 
Ar? = 

SI = 

71 

2a J a Hm 

ctg(Vo) tg(xR sin(0o)) 1 - 
k      n2R2cos2(00) 

"4 a A/12 

(2) 

(3) 

21n2 
r,„ = n    \   ksfMAv^ a v/12 

a Mm 

Jäs v/12 

(4) 

where ks = sin(^ k,.-/2)/{x kF/2), a = M{&Q)M(0O +^)/MQ , aMU = aAI] + aM2, aAn = aM(d0), 

aAI2 = aM[0o+ff), aA! = - (l/2) (d2 \n(M(ß))/d02). Temporal parameter 6>0 can be calculated from the following 

transcendental equation: 

R cos(ö0) sin(2^/?sin(ö0)) 
8fu 

2a/ 
(5) 

a A/12 

It is easy to show from the eq. (5) that temporal parameter 0O is equal to zero for zero modulation frequency detuning. It 

means that optical pulse circulating in the cavity passes through the MZM at the instants of about half of its maximal 
transmission for both first and second roundtrips as it shown in Fig. 2, a. For variable definitions used in this paper, pulse 
passes through the MZM at the first and second cavity round trips when MZM's transmission is rising and falling, 
respectively. At both roundtrips pulse experiences the same loss when it passes through the MZM. As a consequence, there 
are no pulse-to-pulse amplitude fluctuations if 5fAj =0. Eq. (3) supports this conclusion. Pulse timing in the cavity is 

changed if modulation frequency detuning is differ from zero as it is shown in Fig. 2 b, c for negative and positive detuning, 
respectively. In these cases, losses caused by MZM are different at the first and second round trips, that causes pulse-to- 
pulse amplitude fluctuations. The temporal parameter A0 is always negative and it is minimal when 8 fM = 0. However, 

it is never equal to zero. Nonzero parameter Ad cause pulse timing irregularity illustrated in Fig. 2. 
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3.   EXPERIMENT 
For experimental investigation of the RRD-RHML regime, we used an actively mode-locked Er-doped fiber laser in sigma 
configuration as shown in Fig. 3. 9.7 m-long Er-doped fibre is placed in the single-mode (SM) part of the sigma-laser and 
pumped by a pigtailed 980 nm laser diode (~ 90 mW maximum output power). The mode locker is a lithium-niobate dual 
output intensity Mach-Zehnder modulator with an insertion loss of ~ 3 dB and a 3 dB bandwidth of ~ 3 GHz. The MZM is 
optically biased in such a way that input optical radiation is about equally divided between optical outputs 1 and 2 for zero 
voltage at its DC input and no signal at its RF input. There was no DC bias voltage applied to MZM so that it operated in 
the linear part of its modulation characteristic. The phase factor y/0 was measured to be about 0.19 /r for the MZM 

output 1. The tunable optical filter (TOF) installed in SM part of the laser, was tuned to run the laser at -1545 nm. All 
measurements were carried out at 1545 nm. The tunable optical filter was not a Fabry-Perot filter. Optical transmission of 

the actual filter was fitted by function ^(v))2 to obtain filter parameters that are compatible with the presented theory. 

Fitting of filter's transmission spectrum led to FWHM bandwidth Av = 2.2 nm and ks = 1. To be consistent with the 

theoretical model, intracavity dispersion was compensated by inserting a 6.3-m piece of dispersion compensating fiber 
(DCF dispersion of ~- 80 ps/km/nm at 1550 nm) into the single-mode part of the cavity. The total intracavity dispersion 
was estimated to be about (0.01 ±0.01) ps/nm at 1545 nm by measurement of the dependence of mode-locking frequency on 
operational wavelength. Free spectral range of the laser cavity was about 1.567443 MHz. In present experiment, value of the 
small parameter was k = 0.065. 

Optical Power 
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FRM 

UTJ 
SM-fiber    DCF 

TOF 

t a WDM 
Coupler 

Output 2 

DC    RF 

Er-doped 
Fiber 

PBS   90° ,     , 
SpliceV-K J^-l 

Output 1 

Pump 
Input 

f-£ 
Dual output 
MZM 

Laser output 

Figures. Actively mode-locked Er-doped fiber sigma-laser. DCF - dispersion compensating fiber; OI-Optical Isolator; 
PBS - Polarization Beam Splitter; FRM - Faraday Rotation Mirror; TOF - tunable optical filter. 

Laser output was detected by photo-receiver with 25-GHz bandwidth and monitored by a 20-GHz sampling oscilloscope 
HP54120B. Oscilloscope was triggered by the modulating signal applied to the MZM. In order to allow measurement of the 
pulse timing in the cavity with respect to cavity loss modulation, additional time delay was introduced for triggering signal. 
This additional delay was tuned to equalize total delay of measured signal (optical delay plus electrical delay after photo- 
receiver) and delay of triggering signal. In order to determine the instant corresponding to maximal transmission of the 
MZM, modulation frequency was tuned for harmonic mode locking (HML) at fM = 2.699614627 GHz. For optimally 

tuned HML, pulses circulating in the cavity are synchronized with instants of the MZM's maximal transmission, providing 
with reference points in oscilloscope trace. In the presented theoretical model, these instants correspond to 
6 = njl + 2x1 where / is integer. Then modulation frequency was detuned by half of the laser cavity's FSR to achieve 

RRD-RHML regime. For both HML and RRD-RHML the average optical power at the second MZM output was monitored 
to determine modulation frequency corresponding to optimal tuning for HML [9] and 5 fu - 0 for RRD-RHML [6]. 

Oscilloscope traces recorded for optimally tuned HML and RRD-RHML with no detuning (S fM  = O) are shown in 
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Figure 4. Oscilloscope traces recorded at the laser output for normalized modulation amplitude R = 0.14. a) - HML 
regime; b) - RRD-RHML regime with no modulation frequency detuning, c) - negative modulation frequency 
detuning ks SfM/k = - 0.39; d) - positive modulation frequency detuning ks SfM/k = 0.39. 
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Figure 6. Experimental and theoretical dependencies of the pulse width (solid squares and solid line) and time-bandwidth 
product (open circles and dash line) on the normalised modulation amplitude for 8 fM  = 0. 
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Fig 4 a b Oscilloscope traces for RRD-RHML with positive and negative detuning are shown in the same figure 
(Fi° 4 c d) These experimental results demonstrate that optical pulses do not pass through MZM when its transmission 
minimal'or maximal. For RRD-RHML with no detuning, pulses circulating in the cavity are timed in such a way that they 
pass through modulator at about middle between instants of the minimal and maximal transmissions of the MZM. In this 
case there are no pulse-to-pulse amplitude fluctuations (Fig. 4 b). Modulation frequency detunig causes shifts of the pulses 
from the middle positions. Furthermore, shifts are different for every first and second round trips. In another words pulse 
position irregularity appears in the pulse train. In addition, strong pulse-to-pulse amplitude fluctuations appear due to 
modulation frequency detuning. Oscilloscope traces are in qualitative agreement with pulse timing shown in Fig. 2. 

For quantitative comparison between theoretical and experimental pulse train parameters oscilloscope traces were recorded 
for different values of the modulation frequency detuning 8 fA! . Pulse-to-pulse amplitude fluctuation 81 and temporal 

parameters 0Q, A0 were measured from the oscilloscope traces. Resulting experimental dependencies are shown in Fig. 5 

for normalized modulation amplitudes R = 0.07, 0.10, 0.14. The theoretical dependencies calculated for actual laser 

parameters are shown in the same figures. Experimental and theoretical dependencies of the pulse duration (averaged on 
two round-trips) and time-bandwidth product on normalized modulation amplitude for 8 fM = 0 are shown in Fig. 6. 

Quite good agreement between experimental results and theoretical model is observed. Some discrepancy is due to 
increasing error of the theoretical model with increasing modulation frequency detuning. On the other hand, generated pulse 
train became unstable and noisy for large modulation frequency detuning, that increased experimental error for large values 
of the detuning. However, only small values of the detuning are interesting for applications. 

4.   DISCUSSIONS 
Main properties of the pulse train in RRD-RHML regime are summarized in the following. According to our approach and 
as it is experimentally confirmed the pulse train results from the superposition of two temporally shifted pulse trains both at 
the same repetition rate fkl (Fig. 7). The temporal shift between these pulse trains is about half of modulation period 

TM = yfM . Therefore, the repetition rate of the resulting pulse train is 2fM . A component at fM appears in the RF 

spectrum if any of the pulse parameters is different at the first and the second round-trips or if the temporal shift between the 

two superposed trains is different from the ideal value TKI /2 . 

T21 = TM/2 + A6TM/n 

Time 

Figure 7. Schematic drawing of the pulse train at the laser output in RRD-RHML regime. 

The instants at which the circulating pulse passes through the modulator at the first and the second round-trips depend on 
SfM as shown in Fig. 5. For any value of 8 fM , however, the pulse never passes through the modulator when its 

transmission is maximal or minimal, as it was assumed in ref. [1]. In case of 8 fM = 0, at both the first and the second 

round-trips, the pulse passes through the modulator when its transmission is about at the middle between minimum and 
maximum (i.e. 0O = 0 when 8 fM  = 0 as shown in Fig 5). The temporal shift between the two superposed pulse trains, 
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Ti] = ,2 _ ^ _ „ fhl, is always different from its optimal value TA1/2 . The higher the value of 8 fM the higher the 

difference AT = T2]-TM/2 = TAf AO/x (Fig. 5). When SfM=0, the difference A7 is minimal and 

AT = - cos(i//0)/{xks Av). The resulting pulse train suffers from irregularity of the relative temporal position of the 

pulses in the train. This irregularity is strongly reduced when 8 fM = 0, although it can not be completely eliminated. 

Nevertheless, this irregularity may be reduced by increasing the optical filter bandwidth which in turns also reduces pulse 
duration. 

The pulse amplitudes at the first and the second round-trips depend on 8 fM as shown in Fig. 5 and, in general, are not 

equal. However, they are strictly equal when 8 fh! = 0 . It means that pulse-to-pulse amplitude fluctuations are completely 

suppressed when 8 fM = 0. This result is important and contrasts with general belief that pulse-to-pulse amplitude 

fluctuations are unavoidable in RHML. 

5.   CONCLUSION 
In conclusion, we have demonstrated for the first time experimentally and theoretically that pulse-to-pulse amplitude 
fluctuations occurring in the repetition-rate-doubling rational-harmonic regime of actively mode-locked fiber lasers are 
eliminated if the modulation frequency is properly tuned. However, a component at modulation frequency is still present in 
the RF spectrum due to the irregularity of the pulse's temporal position in the train. This irregularity can be reduced to value 
acceptable for applications, but it can not be completely eliminated. 
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Abstract 

The initial field amplitude a0, normalized to the amplitude of a fundamental soliton, and the ratio r of the dis- 

persion distance to the loss distance are successfully used to classify the areas of originating the "light" solitary 
waves of the first order in optical systems belonging to Landau-Ginzburg type. We analyze the model, described by 
the complex cubic Landau-Ginzburg equation in a reduced form, and demonstrate for the first time that the guid- 
mg-center solitons, associated usually with the interval of a0 e [l.0;1.5], T > 7, can exist even if r < 1. The 

application of peculiarities inherent in picosecond optical guiding -center_ solitons of the first order to the problem 
of creating a fiber network for a precise synchronization is proposed and discussed. 

Key words: guiding-center soliton, complex Landau-Ginzburg equation, picosecond optical solitons in single-mode 
fiber, optical fiber network for synchronization 

1. Introduction 

Modern theoretical study of solitary waves in the media with weak cubic-law nonlinearity has its origin in the well- 
known exact solution to the cubic Schroedinger equation, found by V.E.Zakharov and A.B.Shabat [1]. This basic 
result forms the foundation for nonlinear optics in fibers, where the cubic Schroedinger equation plays a key role. 
Applying that solution, the fundamental optical solitons [2], the asymptotic solitons [3], and the adiabatically per- 
turbed fundamental solitons [4] in optical fibers were distinguished and investigated in succession. The "light" 
guiding-center solitons were associated initially with one of generalizations to the cubic Schroedinger equation, 
taking into account linear losses in a medium. In fact, such a form of generalization to this equation leads to con- 
sidering the complex cubic Landau-Ginzburg equation, reduced in a special manner. For the first time, the guiding- 
center solitons had studied by A.Hasegawa and Y.Kodama [5,6]. Originally the area of existence for such solitary 
waves was estimated by the condition r»l, where r is the ratio of the dispersion distance to the loss distance. 
Then A S.Shcherbakov and E.I.Andreeva [7,8] had discovered both theoretically and experimentally that origi- 
nating and developing the guiding-center solitons is possible when r > 1. The subject of the paper under presen- 
tation is the substantiation of sufficiently enlarged area where the guiding-center solitons, inherent in the systems 
described by the complex cubic Landau-Ginzburg equation, can be shaped. Actually, we are making an attempt to 
show that the area of their existence can be enlarged in the region r < 1. For this purpose a clear criterion for 
extracting the guiding-center solitons from a family of "light" solitary waves is put into operation. In our opinion, 
the formulation of such a problem is urgent, because now the guiding-center solitons are under consideration as 
ultrashort carriers of binary encoded signals in lengthy span optical fiber transmission systems. However, this area 
of exploitation is, evidently, not alone in applying similar soliton-like optical pulses. In particular, we consider an 
opportunity of using the peculiarities intrinsic in picosecond optical guiding-center solitons of the first order to the 
problem of creating a fiber network for a precise synchronization. For this purpose, two types of sohton-hke pulses, 
being potentially suitable to be the sync-signal carriers in a medium-base fiber network, are distinguished and com- 
pared with each other. It is shown that the guiding-center soliton offers the advantage of less energetic sync-signal 
carrier over another soliton-like pulses. 
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2. General consideration and computer simulations 

Evolution of "light" solitary waves in the media with a weakly focusing cubic-law nonlinearity, anomalous disper- 
sion of the group velocity, and the losses y is described by the complex cubic Landau-Ginzburg equation in the 

reduced form 
.dA    Id2 A 

dz    2 dr2 
-\A\'A + irA = 0. (1) 

Here A is the field amplitude normalized to the amplitude of a fundamental soliton in the case of y = 0 . The nor- 

malized independent variables z and r are connected with the propagation distance x and the retarded time t in 

tracking coordinate system as z = xZ'J and r = tr~0'; where ZD = r2\k2\ is the dispersion distance, k, is the 

dispersion coefficient {k2 <0 in the anomalous dispersion region), and T0 is the initial width of solitary wave, 

determined by the level of sech 1 = 0.65 . Because of the losses, the dynamics of developing the "light" pulse is 

conditioned by the factor r = yZD. The reduction of the complex cubic Landau-Ginzburg equation to Eq.(l) lies 

in the fact that both the spectral filtering and the nonlinear absorption processes are neglected, so the coefficients in 
the second and third terms are real-valued in Eq.(l). We assume that initially the solitary waves do not have the 
frequency chirp b and satisfy the following boundary conditions 

A{z = 0,r) = a0sechr; b{z = 0,r)=0. (2) 

Here the normalized initial amplitude a0 determines an initial excess of the pulse amplitude over the magnitude of 

A for corresponding fundamental soliton. Having in mind the only solitary waves of the first order, we restrict 

ourselves to considering the interval 1.0 <a0< 1.5 [3]. Using a pair of perfectly measured values a0 and r as 

the parameters, one can create the diagram, see Fig.l, displaying the areas where various types of the first order 
"light" solitary waves inherent in the complex cubic Landau-Ginzburg equation in the form of Eq.(l) exist under 
the limitation of a0 e [l.0;1.5] with the boundary conditions, pointed by Eq.(2). 

Fig.l The areas of existence for the first order solutions, having the form of "light" solitary waves, to the complex 
cubic Landau-Ginzburg equation reduced to Eq.(l) 
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Applying the computer simulations we succeeded in finding that at least five zones, reflecting the difference in 
behavior of evolving the "light" solitary waves, can be marked out, see Fig.2. Besides the zones I - III, illustrating 
the areas of existence for the fundamental solitons and the asymptotic solitons in the absence of losses as well as 
the fundamental solitons adiabatically perturbed by low losses, respectively, one can separate still two another 
zones in this diagram. The zone IV corresponds to originating a set of solutions to Eq.(l), oscillating in a compli- 
cated manner, while the zone V, determined by the boundary curve r = ro(a0), meets an area of shaping the 

guiding-center solitons in a medium with losses. 

During the computer simulations, our main concern was with the evolution of such basic parameters as the ampli- 
tude, width, frequency chirp, and the shape of envelope for "light" solitary waves, belonging to the zones IV and V. 
The findings of our simulations make it possible to conclude that the conventional boundary between the zones IV 
and V may be defined as a function of the normalized amplitude a0, and this function increases as a0 increases. 

Some results of the calculations, reflecting the development of the peak amplitude Ap = A(Z,T = 6), the pulse 

width TP(Z) at half a maximum, and the frequency chirp b(z,T = O) for a0 = 1.4 and various values of the factor 

r are presented in Figs.3a - 3c. It is clearly seen from Figs.3a - 3c that as pulses are passing through a dissipative 
medium their peak amplitudes exhibit a natural tendency for decreasing while initially spectrally pure wave packets 
acquire the frequency chirp. 

The case T = 0.005 corresponds to the oscillating solutions from deep within the zone IV, see the curves 1 in 
Figs.3a-3c. In this case the normalized pulse width stops short of reaching its own initial value and then exhibits 
spatial oscillations, as it is shown in Fig.3b. The peak amplitude and the frequency chirp also oscillate in a compli- 
cated manner. The curve 2 (with r = 0.03) in Fig.3b reaches in its peak the value of the initial pulse width and in 
doing so it represents the transition stage between the zones IV and V. The spatial dependences for both the am- 
plitude and the chirp show an evident tendency for smoothing, see Figs.3a and 3c. Finally, the curves 3, 4, and 5 
conform to the guiding-center solitons. These curves illustrate the main properties of the guiding-center solitons, 
primarily the effect of returning the pulse width to its own initial value after a passage of the distance z = LR, see 
Fig.3b. In all the cases of /" = 0.2, 0.4 or 0.8 the spatial dependences for the peak amplitude becomes to be 
monotone, while the spatial dependences for the frequency chirp demonstrate the quest for stabilization. Figure 3d 
illustrate the root-mean-square deviation A of the shape of envelope for a guiding-center soliton at the point 
z = L where the pulse width reaches its own initial value, from the hyperbolic-secant envelope at the point 

z = 0 versus the factor T . It is seen from Fig.3d that the deviation A is quickly approaching to zero as the factor 
r is increasing. However, even if r>0.1, the envelope of a guiding-center soliton is different from the initial 
one to only a small extent, because therewith A < 0.1. This contention is supported by the upper insert at the right 
of the illustration, displaying the normalized amplitude profiles for one and the same guiding-center soliton at three 
different distance's: z = 0, z = Lmin, and z = LR in case, the "worst" of considered, when a0 = 1.4 and T = 0.4. 

The presented profiles give an indication of the behavior of envelope that may be interpreted as the interference 
between the central portion of a pulse, having the envelope of an ideal fundamental soliton, and the oscillating por- 
tion of the same pulse, reflecting the nonstationarity in evolving a pulse on the interval z e[0,LR]. Depending on 
the current value of phase inherent in the oscillating portion of a field, the imposition of this field portion on the 
soliton center leads to deforming the pulse envelope and to compressing this pulse, peaking at the distance 

z _ i It is displayed in the insert at Fig.3d that the deviation A at the distance z = LR is accompanied by 

originating the only a moderate, up to 10% in magnitude of the amplitude, wings, which are placed exterior to the 
temporal interval of 3 T0 . Moreover, this insert at Fig.3d provides reason enough for a conclusion that even the 

pointed-above small deformations have a symmetrical manner, so both the maximum in amplitude distribution and 
the energetic center of the guiding-center soliton are placed at the same temporal position r = 0 in the accompa- 
nying coordinate system during all the process of passing and reshaping the pulse. 
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Fig.2. Developing "light" solitary waves of the first order, associated with Eq.(l) 
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Fig.3 Developing the parameters of "light" solitary waves with a0 = 1.4, belonging to the zones IV and V: (a) 

spatial dependencies of the normalized amplitude AP / a0; (b) spatial dependencies of the normalized pulse width 

T ft ; (c) spatial dependencies of the frequency chirp b ; (d) root-mean-square deviation of the shape of enve- 

lope for a guiding-center soliton from the sech-like envelope versus the factor r at the point z = LR. The length 

of propagation is normalized to the dispersion distance ZD. The curves from 1 to 5 correspond to f = 0.005, 

0.03, 0.2, 0.4, and 0.8, respectively. 

3. A new area of the application for guiding-center solitons 

Usually, the guiding-center solitons are associated with transmitting the digital data [5,9]. This paragraph is con- 
nected with the application of guiding-center solitons to the problem of creating lengthy fiber networks for a pre- 
cise synchronization. As an example let us consider an antenna complex, consisting of the central post and as low 
as two antennas, for the sake of simplicity, see Fig.4. Such is indeed the case that is the most frequent, for instance, 
in radio-astronomy. In order for operating an antenna complex to be provided, the mutual synchronization of indi- 
vidual antennas, comprising the complex, should be called on. Naturally, the delta-function pulse is an ideal sync- 
signal, but in practice, it can be realized rather approximately. That is why some general requirements to the sync- 
signals have to be satisfied in the synchronously operating complex of antennas with an arbitrary arrangement. 
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These signals should be precisely determined in the time scale compared with a temporal interval, corresponding to 
the cut-off frequency in data flow, or to the jitter time conditioned by any internal instability as well as external 
perturbations. Consequently, the requirements to both the duration and the repetition period of sync-signals increa- 
se by growing the informative capacity and processing accuracy. A selection of these problems may be resolved by 
looking at the technique based on the application of ultrashort optical pulses, which are able to play the part of del- 
ta-function-like pulses under certain conditions. The objective in designing a consideration under our proposal is to 
work out a radically new precise sync-network for synchronizing a medium-base complex of antennas. Therefore, 
we consider some aspects of implementing an optical fiber sync-network using ultrashort optical pulses as the 
sync-signal carriers. We take the simplest case when identical optical sync-signals are one-directionally distributed 
from the central processing unit all over the complex, see Fig.4. These signals are concurrently directed to both the 
antennas by different fiber channels, being just those fiber channels, which are used for transmission of data sig- 
nals. Later, after a passage over the antennas, these sync-signals come back at the central processor. The principal 
measurable value is the clock skew between the energetic centers of ultrashort optical sync-pulses passed in para- 
llel through different fiber channels. However, this brings up the problem of estimating picosecond temporal inter- 
vals, suggesting that one is in a need of accomplishing ultrafast photon-to-electron conversion. Nevertheless, this 
difficulty can be successfully got over if the repetition period inherent in the sync-pulse sequence is sufficiently 
short. To keep picosecond accuracy in electronic post-processing we rely on measuring the tram-average clock 

skew [10]. 

Evidently, the preference should be given to the sync-signal carriers in the form of picosecond solitons being capa- 
ble of passing through single-mode low-loss fibers at a short repetition period. As this takes place, the accuracy of 
synchronization is ultimately restricted by an error in determining the energetic center of a sync-pulse. In its turn, 
such an error is no more than the sync-pulse width, so the application of soliton regime to transmitting the sync- 
signals through single-mode fibers is an essential prerequisite to create a complex of antennas with a picosecond 
accuracy of synchronization. 

Uu (J 
Antenna 1 Central Processor Antenna 2 

—► 
<— 

—► 
<— 

Fig.4. The schematic arrangement of an optical fiber network for a precise synchronization 

The phenomenon of the self-phase modulation is capable of compensating a dispersive broadening of ultrashort 
pulse in the anomalous dispersion region of single-mode fiber and thereby of shaping a stable carrier in the form of 
"light" picosecond optical soliton. Unfortunately, the evolution of optical soliton in a fiber is also conditioned by 
the optical losses whose action is defined by the factor r, which represents the ratio of the dispersion distance 

Z to the loss distance y~'. As it was pointed above, if the factor r = 0, the initial balance between dispersion 

and nonlinearity gives rise to the fundamental soliton when the initial energy of such a pulse is Ef = 2k2 (or0) , 

where a = 2.7 rad/W/km in standard single-mode silica fiber. When r « 1, a fundamental soliton cannot exist 

in an ideal sense, because the optical losses induce adiabatical perturbation due to broadening on the soliton pulse 
as T(X)= r0 exp(2yx), see Fig.2. In the case of r < 1 or r > 1, to realize the soliton-like regime of pulse 

propagation in a lossy fiber the initial energy of a pulse should be made larger than the energy of a fundamental 
soliton in the same but lossless fiber. Thus, we arrive at the application of optical guiding-center solitons in single- 
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mode fiber. The initial energy of optical guiding-center soliton is determined as Eg = a2
0Ef, where a0 describes 

the above-mentioned excess of the optical pulse energy over the energy of an ideal fundamental soliton with the 
same initial width T0. During its propagation, the guiding-center soliton exhibits self-compression up to the dis- 

tance Lmin and return of its own width to the initial value followed by broadening a pulse. 

From the viewpoint of the maximal accuracy of synchronization, associated with the minimal magnitude of the 
width rs of sync-pulse arriving at the central processor, see Fig.4, the potential designer of an antenna complex 

has two scopes for doing. The first scope is in using adiabatically perturbed fundamental soliton whose initial width 
is determined as T0 = Ts exp{-4yL0), where L0 is the arm length. The feasibility of creating an optical fiber 

sync-network, based on the adiabatically perturbed fundamental solitons, had been considered previously in Ref. 10. 
The second one is in exploiting the guiding-center soliton with T0 =TS as a sync-signal carrier. The relation be- 

tween the initial energies Ef and Eg is the governing factor in deciding between adiabatically perturbed funda- 

mental soliton and guiding-center soliton whose width are the same at the distance associated with twiced arm 
length 2L0, see Fig.5. The guiding-center soliton is initially less energetic than fundamental soliton, i.e. Eg <Ef, 

when the condition 2L0 >LA=y~' In a0 is true. For typical magnitudes a0 = 1.4 and y = 0.5 dB/km one can 

obtain LA = 5.84 km. In this case 2L0 = LR = 18.3 km, and the potential designer can use either the adiabatically 

perturbed fundamental soliton with the initial width r,(x = 6)= 1 ps and the initial energy Ef = 1.42 pJ or the 

guiding-center soliton with r2(x = 0)= 8 ps and Eg = 0.34 pJ to obtain the same sync-pulse with Ts = 8 ps at 

the central processor, that leads to the accuracy of synchronization at the range of 16 ps. As this takes place, the 
initial energy of a sync-pulse in the guiding-center soliton regime turns out to be more than 4 times less than the 
energy of a sync-pulse using the adiabatically perturbed fundamental soliton regime. Thus, the guiding-center 
soliton is energetically the best-suited carrier for a complex of antennas under consideration. Consequently, we 
may conclude that the exploitation of guiding-center solitons as sync-pulses has an advantage in creating a me- 
dium-base fiber networks for a precise synchronization. 

0.571(0) 

Fig.5. The peculiarities inherent in developing the width for two types of soliton-like of the first order as the carrier 
of sync-signal: 1 is the fundamental soliton, being adiabatically perturbed by low optical losses; 2 is the guiding- 
center soliton in the presence of optical losses in a fiber. 
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Technically well-grounded parameters of both the sync-signal carrier and the single-mode fiber arm can be chosen 
using spatial dependencies of the amplitude and width for guiding-center solitons, presented in Figs.3a, 3b, and 3c. 
It is clearly seen from Figs.3a and 3b, that the primary self-compression stage is accompanied by the increase in the 
amplitude only when the factor r is small. In the other cases the monotonous lowering of the amplitude is ob- 
served. The insert at Fig.3d shows that the energetic center of guiding-center soliton sync-pulse has no temporal 
shift while a pulse is passing through a fiber arm. The above-considered return of pulse width to the initial value is 
also clearly seen in Fig.5. 

4. Conclusion 

We have analyzed the conditions of existence for the guiding-center solitons inherent in the complex cubic Landau- 
Ginzburg equation. It has been shown that the area of their originating can be enlarged in the region r <1. The 
property of a guiding-center soliton to return of its own width to the initial value has been put into operation as a 
criterion for extracting this class of soliton-like pulses from a family of "light" solitary waves. Key aspects of im- 
plementing a novel all-optical synchronization technique, based on picosecond guiding-center solitons as the ul- 
trashort optical carriers of sync-signals, passing through silica single-mode fibers and being suitable for a medium- 
base complex of antennas, have been considered. Two types of soliton-like pulses, being potentially suitable to be 
the sync-signal carriers, have been compared with each other. The analysis of the relation between the initial ener- 
gies of these pulses has shown that the guiding-center soliton has an advantage over the adiabatically perturbed 
fundamental soliton as the sync-signal carrier in a medium-base fiber network. 
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ABSTRACT 

This paper presents a brief review of developments in modern wireless communication technology — free-space laser 
communication — both for intersatellite and terrestrial applications, including some Russian designs. The character of the 
Russian intersatellite terminal is its modular design and excluding of almost all opto-electronic instruments out of optical 
module with duplex transfer of optical signals between components through fiber-optic cables. Such a design reduces the 
weight 'of stirring parts significantly and facilitates alignment. As for terrestrial lasercom, several commercial systems are 
listed, and results of link availability calculations (for Moscow region weather conditions) are presented. 

Keywords: lasercom, intersatellite, terrestrial, terminal, link availability, Russian. 

1.   INTRODUCTION 

The new technology of wireless communication — free-space lasercom systems — had appeared at the telecommunication 
market several years ago. Wide application of fiber-optic systems all over the world stimulated improvement of laser sources 
and photodetectors technology. As a result, comparatively cheap, highly reliable and efficient semiconductor laser diodes 
and sensitive detectors were developed — they made the basis for elaboration of commercial wireless lasercom systems. In 
the USA, Western Europe, Japan and Russia, lasercom systems rapidly develop in two trends: intersatellite lasercom systems 
(ILS) and terrestrial lasercom systems (TLS). 

2.   INTERSATELLITE LASERCOM SYSTEMS 

In a few years, the practical use of ILS in spatial systems will take place both for real-time downloading of information (for 
example, from observation satellites) and as the components of relay systems based on satellite constellations or GEO 
satellites' More intensively ILS should be introduced during creation of global information networks in space. The most 
impressive project Internet in the Sky, which consists of 288 satellites, is being elaborated by a number of companies with 
share holding (Motorola, Teledesic, Boeing, Matra Marconi Space). In this project, all satellites are supposed to be linked 
together through high data rate cross-links in order to form a unified system. 

There was the National Space Agency of Japan who held the first tentation of data transfer with relatively high rate from a 
satellite. In 1994, the satellite (ETS-VI), supposed to be in a geosynchronous orbit, was launched.1 In spite of some problems 
with the satellite,' demonstration of simplex link operation at data rate of 1 Mbps from the satellite to the ground station was 
conducted, so that the feasibility of such procedure was proved. Results of this experiment permitted to the National Space 
Agency of Japan to start elaboration of LEO terminal for OISETS", which is supposed to be got to take part in SILEX 

* Correspondence: Email: L-device@dialup.ru 
** Optical Inter-orbit Communications Engineering Test Satellite 
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project (the European Space Agency).2 France, Great Britain, Germany, Italy, Belgium, Spain and Netherlands are involved 
in SILEX project. The leading company is Matra Marconi Space. The project includes the creation of relay terminal at GEO 
satellite {ARTEMIS) which must cooperate with a similar terminal at LEO satellite (SPOT-4). In March 1998, SPOT-4 was 
launched, and for last two years it runs the trials. ARTEMIS launch is planned by the end of 2000 — this will the beginning 
of the full-scale flight test. The main purpose of this experiment is transmission of video images from SPOT-4 to ARTEMIS 
and then to the ground station in Toulouse (France) at data rate of 50 Mbps. The weight of the SILEX terminal is 150 kg. In 
1998, Matra Marconi Space had reported the development of the new generation of laser terminals with a mass less than 25 
kg, optimized for transmission of vast multimedia information (see Table 1). Similar researches are held in the USA. The 
main purpose of these researches is to show — to the potential users — the availability and validity of laser communication 
technology for solving any communication problems in space, which emerge in modern society. In American projects, such 
companies as TermoTrex, Astroterra, Bell Aerospace, etc. take part. 

The main problem for ILS is requirement of extremely precise alignment for two partner terminals that use narrow laser 
beams. Beacon lasers with relatively wide beam illuminating uncertainty area are used for acquisition. During data transfer 
the direction to partner satellite is maintained by beacon signals with error less than beam divergence. So, in the conditions 
of mutual motions and vibration of spacecraft, error should be no more than some tenths of arc second. This is the central 
problem for designers. 

Some well-known ILS designs are shown in Table 1. The last developments of Matra Marconi Space — SOUf and 
OMINS'"" — have the best parameters. 

In Russia, the works on ILS designing are held in the Research Institute for Precision Instruments (RIPI). Parameters of 
terminals worked out in RIPI are also shown in Table 1. The specific feature of terminal construction is that electronic 
components are placed outside mechano-optical unit. There are only optical components and pointing system sensors at the 
moving part of the unit. Lasers, photodetectors and other electronic components of power supply and control systems are in 
separate electronic unit. Duplex transfer of optical signals between mechano-optical unit and electronic unit goes through 
fiber-optic cables. It gave the possibility to considerably decrease the weight of the moving part of equipment and so to 
facilitate alignment. RIPI has designed the unified ILS terminal as well, and with the help of its main modules it is possible 
to assemble different types of cross-links with range up to 70000 km and with transmission speed up to 2 Gbps. Single- 
mode Al-Ga-As lasers with power about 100 mW are used as light sources. 

3.   TERRESTRIAL LASERCOM SYSTEMS 

TLS gain rapidly telecommunication marketplace worldwide. The reason is that such systems offer a number of advantages 
over traditional ones. 

First, TLS are capable of much higher data rates than other wireless communication technologies. Potentially, TLS can 
provide data rate at least as high as fiber optics do. For example, the systems that support data rate up to 2.5 Gbps at 
distances up to 2 km are already put on the market by Lucent Technologies Co 

Second, there is no need to obtain frequency spectrum licenses when using TLS. Not only because the optical spectrum is 
not still included into regulations (and will not included next years, perhaps), but also because two adjacent laser links do not 
interfere with each other when the angle between their lines of sight exceeds beam divergence (the latter is less than 30 arc 
minutes, for up-to-date transmitters). 

Installation and alignment of TLS can be performed very quickly (for a few hours). Running power and communication 
cables to the lasers usually require the most time. At any rate, this allows to use TLS for temporary installations efficiently. 

Narrow beamwidth makes the laser link secure with no additional encrypting. 

*"* Semiconductor Inter-satellite Link Experiment 
**** Small Optical User Terminal 
 Optical terminal for Multimedia Network In Space 
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But one has to pay for anything! Achilles' heel of TLS is high dependence of its availability on weather conditions. 
Meanwhile, research work showed possibility to overcome many problems. 

3.1. Atmospheric effects 

Atmospheric effects on laser beam propagation can be broken out into two categories: 
.     Fluctuations of laser power due to laser beam deformation as result of small-scale dynamic changes in the index of 

refraction of the atmosphere, 
•     Scattering of the laser light photons by the aerosols. 

3.1.1. Refraction 

The power profile, as the beam travels through the atmosphere, becomes 'speckled' (on the target, this is seen as chaotic set 
of bright and dark spots which size and scintillation frequency — from tens herzs to some kiloherzs — mainly depend on 
atmospheric turbulence, i.e. weather conditions). 

The simplest way to decrease influence of scintillation on link performance is increasing of receive aperture which leads to 

averaging of fluctuations. 

Another way is non-coherent addition of powers from the lasers that are spaced out. If spaces between transmitters are 
greater than atmospheric turbulence correlation radius, the fluctuations on receive aperture from each transmitter are also 
non-coherent, and total fluctuation decrease. 

3.1.2. Scattering 

Absorption and scattering of the light photons by the different aerosols and gaseous molecules cause the attenuation of laser 
power in the atmosphere. This attenuation is described by Buger's law: 

x X =ns[-a A)L@ (1) 
where: 

x(X) — transmittance at wavelength X 
a(X) — attenuation coefficient 
L — distance 

The attenuation coefficient is made up of four parts: molecular absorption coefficient, aerosol absorption coefficient, 
molecular scattering coefficient, and aerosol scattering coefficient. For near-infrared laser wavelengths, typical for TLS, 
molecular and aerosol absorption as well as molecular scattering are negligible. 

Aerosols include finely dispersed solid and liquid particles, such as water droplets, ice, and dust. Since size of particles is 
much greater than laser wavelength, the attenuation coefficient has small dependence on wavelength. Practically, the 
attenuation coefficient is equal to the aerosol scattering coefficient. 

The relation between the main parameters of TLS link may be described as: 

(P, -ßi2)   (DrPr1)r0 = L2exp(k -L-Sm
1)   [In(BER') -C]m (2) 

where: 
Pt — laser source power, 
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ß, — transmit beam divergence, 

Dr — receive antenna diameter, 

Pr — power on the detector, 

r0 — antenna throughput coefficient, 

L — link range, 

C — data rate, 

k — scale factor (2.5-3), depending on kind of aerosols. 

As seen from (2), the left part of the equation mainly depends on the link range and on visibility; dependence on data rate 
and on BER in much weaker. This means that it is easy to increase data rate, but not the range of the link. The most part of 
TLS products available on the market (see Table 3) has limited range (no more than 1.5 km); at the same time, almost all 
manufacturers offer systems with data rate from 2 to 155 Mbps. To make TLS available at typical weather for given region, 
the system must have corresponding link budget margin. In fact, this margin determines maximum L/Sm value for which the 
link is still available. For example, if L/Sm is equal to 3, link margin must be of 30 dB from power level needed for operation 

in clear weather. 

Sm has random nature and strongly depends on season and climatic zone. As any random value, it has a distribution of 
probabilities. Knowledge of the function of this distribution allows calculating availability of the link. Results of calculation 
(using statistics on long-term measurements in the Moscow region) are shown in Table 2, where F is probability of Sm<Sm,. 

Please note that the best weather occurs in June, the worst — in December. 

Above-mentioned TLS with budget margin of 30 dB will have availability 0.999 at distance 1.5 km, 0.99 — at distance 

about 6 km, and 0.98 — up to 9 km. 

In many countries, TLS operate successfully within telephone and computer networks and in other communication systems. 
For instance, British PAV Data Systems Ltd. (from this year having activities also in Russian market) has installed more than 
3000 free-space laser links for last half decade (data rate up to 155 Mbps, range up to 6 km). PAV Data System's equipment 
is certified for use in Russia. Main parameters of some other TLS with atmospheric links are presented in Table 3. 

In Russia, the development and field tests of specimens of TLS (AOLT type) with range to 10 km for telephone signals 
transmission at rate up to 155 Mbps are completed. There are also interface units for the computer protocols and TV signals. 
Such devices can successfully solve "Last Mile" problem. The main characteristics of these systems and special features of 
their operation are presented in Table 3. The availability of AOLT links with range up to 2 km is at least 0.99, and with 

range 5-6 km — 0.98, in any weather. 

4.   CONCLUSION 

The European Space Agency (in the person of Matra Marconi Space and its partners) attained in new communication 
technology, namely intersatellite lasercom with range of 45000 km (SILEX project, and the others). On such a background, 
the Russian design of a generic terminal with range up to 70000 km and data rate of 2 Gbps (RIPI, Moscow) is worthy of 

regard. 

Russian terrestrial terminals for horizontal atmospheric links with data rate up to 155 Mbps (RIPI, Moscow) worked 
through. Field tests showed link availability of 0.99 for 2 km distance (0.98 for 5-6 km) in any weather. 

 The transliteration of the Russian abbreviation. Approximately: Atmospheric Open Link for Telephony 

200 Proc. SPIE Vol. 4354 



SS 
o 

o o o o 
VD ON 

CN-1 

<i 
CM 

.s 

.SF 
'G> >  w 
1? .* 

o 
o 

O 
in in O m in 

en 
C5 
in 

.2   £ 

.S  JS 

Vl 
•* 

in >n in VD \o 

CL 
X! 

s 
u 
a 
« 

O 
W oo 

Ü 

O 
W oo 

gS 
Ü 

O M T 

D2S 
O  <N    X 

►Jo 

en 

So 
X   OO 

CL> 

•a 
o 
E 
CO 

W-l       CL) 

m  ^ 
—  a 

o o 
in 
X 

CN 

c 
■2 
a 

"2   00 
S 2 
P> 
So 
O 

O 
tq 
►-J in 

6 <N 

q o 
O   o 

P   & 

o 
w 
O o 

w 

O 
tq 

--1 

O  <N 

a 

u 
I. 

■3 
B 

Ä ^ is 
O y K 
w 5 ^ 

I 
OS 

o  1 
w ■» 
Ü £^ 

3<2 

O 
w 
Ü 

1 

O 
W 

o 
m 

6 
w 

C 

« 
to 
•a 

o 1 
ö 6 

S 
■S 
a 

C 

°   o 
k3   S 
•-J   Ob 

6 ö 

o 

1 

o 
tq 
>~1 

u    C 
a) -a 

2 2 

oo 

W 
U 
O 

X 
w 

55 

H 
P 
o 
00 

00 

O 

o 
o 
o 

1    ^_^ 

i^ 
tog 
< 52 

O 
« 
CD 

e 
C3 
n. 
C3 

S.3 
1-S 
I ä 
E 8 
o   o 
u ai 

cj 
o 
ca 
a. 

'2 o 
u 
l- 
ca 

2 
ca 

ca 

2 

<D 
O 
ca 
& 

oo 
'2 
o 
o 
i-. 
ca 

ca 

« 
2 

ID 
Q 
ca 
a. 

oo 
'2 
O 
o 
l-< 

ca 

2 
ca 
Ü 
ca 

2 

< 
00 

ca" 

t 
o 
c/: 

< 

■S 
? Co 
2 

OS 

1 

•S 
CO 
CO 

OS 

I 
1- 
CD 

s 
O 
CÄ 

3 
U 

o 

ca   to 
o ■< 
<->        „ 

.22   u   g 
o   «   a 

00 H «^ 

<: 
CO 

<: 
oo 
W 

< 
00 
w 

< 
oo 

o" 
P 
2 
m 

1 

«sfi 
~  oo 

a   <j   VJ 

B 

Proc. SPIE Vol. 4354 201 



During, the year In December In June 

Visibility, 
km 

F t, hours F t, hours F t, hours 

0,5 0,0008 7,06 0,0011 0,85 0,0002 0,18 

1,0 0,0024 21,4 0,0039 2,88 0,0008 0,56 

1,4 0,0042 37,1 0,0071 5,25 0,0013 0,97 

2,0 0,0077 67,2 0,0135 10,04 0,0025 1,76 

2,8 0,0137 119,8 0,0252 18,79 0,0044 3,16 

Table 2. Results of link availability calculations (Moscow region) 

Manufacturer Model Data rate, Mbps Range, 

km 

Size, cm Weight, 

kg 

Availabi- 

lity, % 

PAV Data SkyNet Ethernet, 10 0,2—6 34x18x55 13—18 99.1 

Systems, GB Token Ring, 1-16 0,2—2 34x18x55 13 
Fast Ethernet, 100 0,2—4 34x18x55 13—18 99.9 

FDDI, 100 0,2—4 34x18x55 13—18 
ATM, 155 0,2^ 34x18x55 13—18 

SkyCom G703/E1(E2),2 0,2—6 34x18x55 13—18 

LightPointe Compact Ethernet, 10 <0,35 22.5x20x42 4 

Communications Inc. Line 10 <0,6 13,5x16,5x5 4,5 90 

Light Station 155 <4 0 
29x29x47 

12 

AirOptics UWIN904 Ethernet, 10 1,1 71,3x36,4x4 10 

UWIN3303 E3,T3, FDDI, 
FastEthernet, ATM 

0,65 8 
41x27x15,5 

7,5 

PHL811/IM Tl/El, 1,5/2 0,78 41x27x15,5 7,5 

PROTEON FreeSpace 
Fibre 

Ethernet, 10, 
TokenRing,4/16 

0,3 42x16x18 3,4+ 
3,4 

FreeSpace Ethernet,45, 0,3 42x16x18 3,4+ 

Turbo Ethernet, 100, 
ATM, 155, FDDI 

3,4 

Eagle Optoelectronics, MultiLink Ethernet, 10, 100 <4 30x30x65 13,5 

Germany 20/4000 
155/2000 

ATM, 155, FDDI, 
TokenRing, 4/16 

Russia BOKS-10M Ethernet, 10 0,5 
BOKS-E1 El, 2,048 1,5 50x12x22 16 
BOKS-E2 E2, 8,448 1,5 100x24x44 8 

BOKS-E3 E3, 34,368 1,0 50x12x22 8 

RIPI, Russia AOLT El, 2,048, 
E2, 8,448, 
E3, 34,368, 
E4, 139,264 

Table 3. Main parameters of some free-space terrestrial lasercom systems 
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