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Numerical Analysis  of a Singular  Integral Equation 
Arising from Electromagnetic Interior Scattering 

1     Introduction 

For safety and health reasons, it is of considerable interest to assess the short- and long-term 
effects of electromagnetic (EM) radiation on people working near radars and other similar 
EM-wave-generating devices. Research to understand this can be classified as epidemio- 
logical, experimental, and numerical. In numerical electromagnetic dosimetry one is led 
naturally to the problem of solving the Maxwell's Equations inside a highly inhomogeneous 
and highly dispersive body. One of the solution approaches is to solve an equivalent problem 
in the frequency domain using a volume integral equation formulation. 

Mathematically, in the time-harmonic case, if the body (V) is incident by an electric field 
E^r) and if E(r) is the total electric field inside the body (r € V), then the scattered field, 
defined as the difference between the two fields, Es(r) := E(r) - E'(r), can be shown to take 

the form 
Es(r) = (1+ 1 VV-)/ <7(r,r') F£(r') dV (1) 

in which 

FB(r)    :=. r(r)E(r) 

'      r(r)    :=   k2(r) - k2
a 

3(r,r') 
ejk° 

ATVT 

T    :=   I r — r' 

Here j — \f^\ and kD and fc(r) are the wave numbers associated with free space and the 
body respectively. Further manipulation of Equation (1) to move the differentiations under 
the integral signs results readily in a vector integral equation of the form (see [7] for details) 

Es(r) = Ä(r)FE(r) + /  G(r,r')(FE(r') - F   (r)) dV (2) 

in which the dyad Ä(r) becomes unbounded near the boundary and the dyad (the dyadic 
Green's function) G(r,r') has a singularity of type 0(r~3). Previous attempts to solve 
this equation [6, 7] using a Moment Method or a Nyström Method have been successful only 



for a restricted class of parameters. Before attempting to conduct a thorough numerical 
analysis of Equation (2), we opted instead to analyze the following simpler but analogous 

1-D integral equation: 
A(0*(0-JW)-ff>(0 = Xi(0 (3) 

for t G [a, b] and Xi G C([a,b]). Here, analogous to Equation (2), 

b 

The functions X(t),kb(t,s), and kg{t,s) also have properties analogous to that in the 3-D 

case, namely: 

• X(t) > 0 on (a,b) 

• lim X(t) = oo and liraA(t) = oo. . 
t-Va      V   ' t->fc 

• *=»(',*) =|^[.   7,  >0. 

• fc (*,s) is continuous on [a, 6] X [a, 6]. 

It should be mentioned that the problem considered here is not equivalent to the 1-D 
Maxwell's Equations wherein E is dependent on only one spatial dimension. It is well-known 
that the Green's function for the 1-D Maxwell's Equations is much better behaved. To keep 
the problem here simpler, however, we will ignore the 'good' kernel k9(t,s) in the following 
analysis and concentrate only on the equation 

\(t)cf>(t)-Kb<f>(t) = Xl(t) (4) 

As a preliminary analysis of Equation (3), we studied numerically the 1-D problem anal- 

ogous to Equation (2) in which 

g{t,s) = \t-s\{]n\t-s\-l). 

After properly moving the double differentiations under the integral sign, the resulting 
k (i,s), kb(t,s) and X(t) can be shown to satisfy the properties mentioned above. Numerical 
solutions were obtained using several variants of the Nyström methods: 

1. Product method with extrapolation at the end intervals 

2. Gauss-Legendre method 



3.   A simple method (in which uniformly spaced integration points and uniform weights 
are used) 

In each case, apparent convergence was obtained. The main result of this study is a rigorous 
mathematical proof of the convergence of a numerical method used to solve Equation (3). 

In Section 2, we will re-formulate the problem and put it into perspective. In Section 
3, we will investigate the properties of an operator K that arises from the re-formulated 
problem. The numerical method used to solve the problem will be denned in Section 4, 
and some preliminary properties of the associated numerical integral operators Kn will be 
explored. Several convergence theorems for the numerical integral operators Kn will be 
proven in Section 5. In Section 6, a convergence theorem for the numerical solution of the 
complete problem will be given. Finally, we will conclude with some closing remarks in 
Section 7. 

2     Statement of the Problem 

We begin with the integral equation in (4), namely 

mm-%1 \t~s\-i{4>(s)-cf>(t)}dS=Xl(t) (5) 

defined on an interval (a, b). Here we assume the constant -yt > 0 and the function Xi £ 
C([a,6]). Furthermore, we assume the function A is positive and continuous on (a, b) and 
that A(<) -) oo as f -) a and as t —> b. Under these assumptions, Equation (5) can be 
transformed to an integral equation of the second kind: 

m - 7W /. i* - «rw - #ojds = x(t) (6) 
J a 

defined on the interval [a, b]. Here -y(t) := 7i/A(£) > 0 on (a, b) and together with x{t) '■= 
X,(i)/A(t) may be assumed to be continuous on [a, 6], because of the assumptions on A. 
Define the operator 

K<f>(t):= I    \t- s\-l{4>{s) -<l>{t)]ds (7) 
Ja 

Then Equation (6) can be written in the familiar operator notation as 

{I-1K)cf> = x (8) 

Our problem is then to analyze the numerical solution of this equation when, in particular, 
a simple Nyström method (to be described in Section 4 below) is used. 



The problem being addressed here differs from conventional weakly singular integral 
equations in at least two fundamental ways. First, while Equation (6) contains the difference 
term used in the well-known Singularity Subtraction Method, namely 

K<f>{t)= [    k(t)S)[<f>(s)-(f>(t)}ds, 
•'a 

the subtracted term fc b 

f     k(t,s)<l>{t)ds = <l>{t)   f    k{t,s)ds 
Ja -I* 

in our case is divergent.   This is in stark contrast to the conventional case where the sub- 

tracted term is and must be finite. 
Second, for weakly singular integral of the second kind 

4>(t)-J   K(t,s)<f>(s)ds = x(t) 

or 

where \K(t,s)\ < C \s - t\a~\0 < a < 1, K. is compact from C([a,b]) -» C([a,b]). Conse- 
quently, the analysis of a typical numerical method taking the form 

(I-K)<l>n = X (9) 

can be based on Anselone's Collectively Compact Operators, wherein the operators Kn are 
each compact from C([a,b]) -> C([a,b]). (See, for example, [1]). Unfortunately, in our 
problem the operators are not compact, as we shall see below. 

3     Mapping Properties of K 

We first investigate the mapping properties of the operator in Equation (7): 

K<j>{t): =  I    \t-s\~l [cf>(s) - <j>(t)] ds 
J a 

We recall a function f is uniformly Holder continuous of order a (0 < a < 1) on an 
interval [a, b] if there exists a constant C such that 

\f{x)-f(y)\<C\x-y\". 



for all x and y in [a, b}. Define 

{The space of all uniformly Holder 
continuous functions of order a 

on an interval [a, b) 

The following properties of C  '" {[a,b]) are well-known: 

Proposition 2.      For 0 < a < ß < 1 

l.CM(Ki])cCM(ia,i]) 

2. C{°'ß) ([a, b\) is a subalgebra of C[[a, b}) 

3. C(C'a)([a, b)) is a Banach space under the norm 

ll/IU = ll/lloo + l/L 
where 

p-yr 
is a semi-norm. 

4. Imbedding maps   l0a : C^'^^a, 6]) -> C(°'a)([a, 6]) are compact. 

Proof.   (See [5, 3])   U 

Corollary 3.      For 0   <   a   <  ß  <   1,     the mapping 1^  from  {C{°'ß){[a,b]),\\ ■ ||„)  onto 

(Cl,J0{[a,b)), || -\\ß) is unbounded. 

Proof.   Otherwise, the identity map lßß would be compact on the infinite dimension space 

CM([a,6]).    U 

Corollary 4.    For 0 < a < ß < 1,   C(°'ß)({a,b}) is not a Banach subspace of C  '" {[a,b]). 

Proof.   Else I"1 would be bounded, by the closed graph theorem [4], since   I      and therefore 

I-1 are closed operators.    U 
P,c 

y(°ß)/r      ill      ,   /-r(°"°). Proposition 5.    For 0 < a < ß < 1,    K : &     ([a, 6]) -* C  'a {[a, b]) is compact. 

5 



Proof   Mimicking the steps m one of the proofs in [3], one can show that K is bounded from 

c™ (|a> 6]) _> C{°*\\a,b\), where *:=(« + i3)/2-   UsinS the fact that the imbedding fr°m 

C{0,S) {[a[b]) -> ^"'"'([o.b]) is compact, the proposition follows immediately.   U 

Unfortunately, classical Fredholm theory does not apply here, because of the following ob- 

servation. 

Proposition^.    C^{[a,b]) is not invariant under K for any 0 < a < 1. 

p^oTBy direct calculation, one can show that <j>(t) := tP  6 C^M), but Kftt) £ 

C{O,0)([a,b}), assuming, without loss of generality, [a, b] = [0,1].   U 

For theoretical as well as numerical reasons, it is desirable to consider operators L whose 

range is contained in its domain, so that L\ for example, is defined. This leads us to the 

following spaces. For    0 < a < 1, we define 

Xa:=l){C{°-P)({a,b])\«<ß<1} 

In particular, X0 is the set of all functions defined on [a, b] which are uniformly Holder 

continuous of some order a E (0,1]. 

Lennnai For 0 < a < 1, (Xa1 || - ||J is a normed linear space and is invariant under K. 

Proof (XQ,|| • |U) is a linear subspace of C{^([a, b)), || - |L). The invariance foUows from 

Proposition 4.    U 

While the semi-norm | -1. in Equation (10) and hence the norm || - ||Q are defined for a £ (0,1] 

on C(°'o)([a,&])i ^ is convenient (and also consistent) to define 

U/H. :=||/L.   /^Xo 

Lemma 8       (X    || - || ) is a normed linear space and is invariant under K. 

Pr^MX0, || -1|.) = (X01 || • |L)    is a linear subspace of (C([a, 6]), || • ||J, and the invariance 

follows again from Proposition 4.   U 



j- •  „ I,0TO if ran he shown that the closure of (Xo) j ■   ») in 
While not germane to our discussion here, it can be shown en v 
C^da.t]) is not C^M), even though & ' \[a,b)) contains C      (M) for all 0 > a. 

Proposition 9.     K is unbounded on (XB> || ■ ||J for any 0 < a < 1. 
p^oTI^rne, without loss of generality, [a, b) = 10,1]. One can then readily show that 

•       bounded sequence in Xaj but ||i^>JL ^ oo as n -> oo.   U is a 

4     Numerical Integral Operators, Kn 

The numerical solution of Elation (8) can be defined .„ternrs of '£ «£*™^ 
i wc    Tt k Wicallv the operators associated with the Nystrom method,  ror 

"elf"L;r: > 0. „V efiTa pl.ition>„ on the interva, [.,fi] by partit.oning the .nterv. 
"to I e^al subintervals. We associate with the parftion P, the operator K. defined on 

C([a, 6]) as follows. 

w here 

^■(0    = 

it-f.r1 *£ic--»*J 

tv  =  (*„,_, +tnJ)/2,   j = i,--A 
",) 

Per simDlkity we have purposely chosen each weight «,„j associated with the j-th subin- 
terllin P to be dependent only on the integer n and not on j. More separated cho.ee 

"he weights is of course pos/ble, bnt the resulting analysis ~ff°££^ 
Also KT * is actually defined for any function * that ,s merely defined on the nterval ^ 
H„weve"r here we are only interested in those functions that are at leas contmuous. It 
o"wu     hat if * 6 C([a,b]), then so i. KJ. That is, C([a,b]) is .uvanant nuder K.. 



The numerical solution <f>n to Equation (8) is now obtained by solving the equation 

By collocation at the kn mid points {£* .}, the following system of linear equations is obtained 

(i-jKnmt'j = x(t:J), j = i,-..,K (i2) 

from which {</>„(£* .)} can be solved. 
For comparison with the operator K, we will look at some properties of Kn. Unless 

specified otherwise, we will always assume n is a positive integer in the following. Also for 

later convenience we introduce the following functions, each of which depends only on n: 

We will first look at some properties of Kn on C([a,b]) and then its properties on 

C °'a ([a, b]), öL € (0,1]. As we have already noted, we have 

Proposition 10.     C([a,b]) is invariant under Kn. 

Moreover, we have 

fc—* 
Proposition 11.     Kn is bounded on C([a,b]) with H/fJI«, = 8   £   ^y 

i=i 

Proof.   From the definition of Kn, it follows immediately that 

KJ(t) = KnjJ(t) + K^(t) 

where 

j=i 

Now Kn, is compact and hence bounded on C([a,b]), because it has finite dimensional range. 

Since gn   (i) G C([a,b]), so does i>n(t). Hence Kn2 is also bounded on C([a,b]). It follows that 

Kn must be bounded on C([a)b])" To find the"norm of K„ on C([a,b]), let t* = (a + b)/2. 

One can verify directly that 



For any <f> G C([a,b]), 

\KJ(t)\   <   2\\<f>\L1>n{t) 

<   2||^|L^B(t*) 

Hence \\K II < 2^ (f). Since i* ^ i* ., j = l,-.-A, there exists <j>0 G C([a,b]) such 

fhatl;:,,; t rJU) = -^(C,) = U = l,-*.- Thus, ff.*.«') = 2^>) and 
||iUL > 2V'„(i*)-   It follows that 

fc 

BY direct verification, one obtains ^„(f) = 4 £   ^pi-   Hence, ||tf„|L - 8   E   2j_r   u 
J
 jz=l J 

Corollary 12.      if„ is not a compact operator on C([a,b]). 

P^FlTfi7 were" compact, then Knfl = Kn - Kn>l would also be compact, since K^ is 

compact. Now ^) G Cüa>bD> as ^-W 1S b°Unded aWay fr°m °"  ^^ ^ = ,7* T^ 
be compact   This" is impossible, since the identity operator I is not compact on C(la,bj).   U 

Incidentally, the last proposition implies that if the method of successive approximation 

is applied to Equation (8), it will likely fail as n increases, since \\KJ„ are not uniformly 

bounded. (o<o,r    m ir. ,i     Ti y\ 
We now turn our attention to the properties of Kn on C  '   ([a, &]), a G (0,1J.    Unüke 

the operator K, we have 

Proposition 13.      C(0"° ([a, b)) is invariant under K„ for a G (0,1]. 

Proof. It suffices to show that 5n,(-)A„^(-) G C'^Qa, 6]) for any 4> £ ^(M)- IF * G 

C(°'a)([a,b]), then clearly A„ .0 G C(°'a)([a,6]). One can also show that gn. G C(0,1,([a,6]) and 

hence it belongs to C^ ([a, 6]) for a G (0,1]. Finally, ^ (-) A-^(-) € C " (M), smce 

the latter is an algebra.    U 

To investigate the boundedness of Kn on C(
°'

Q)
 ([a, b}), a G (0,1], it suffices to consider the 

individual components of K„, leading'us to define the following operators on C      ([a, b}\. 

LnJ{t):=gn,[t)^m^     j = !,...,*»• 

Clearly, Üf„ = E «*   ■ £„,, - 



Lemma 14,      LnJ is bounded on C(°'a) ([a, 6]), a G (0,1],   for j = 1,. • ■, K    and \\LnJ ||. < 

%     L 
Proof.   For any * € C^Qa.fi]), we have |L„^(i)| = k, (0^(01 < 2lkJL MIL, ** 

all i G [a, b}.   Hence ||L„^L < 2|k.,-IL W\L-    For ^ 5 and * G [a'6]' 

< 2IML k» -3„,(t)l + IkJ-W) - #5)l 
< wiusj» + iiuu*u i* - *r 

since both gn. and * € C™([a,b]).       Hence |Ln^|. < 2||^|L k,L + !k,L l*L-     Ifc 

follows that 

ll^ll.    =    IIA.,*L + l^-A 
< 2||5n,L ||*L + 2||*IL kj- + lk,3-IL 1*1» 
< 2|k,j.|]*||.. 

The Lemma is now proved.    U 

For 0 < a < 1, one can readily show that 

2       a{l-a)' 
IkJL = IkJL + k,-l. = 7T + —/^~ 

TI 71 

Proposition 15.     tfn is bounded on C(°,a)([a, 6]), <*.<= (0,1]. 

Proof,   This follows directly from the last Lemma.   U 

While the restriction of the operator K to C(°"° ([a, b}) allows it to be defined, the restric- 

tion of the operator Kn to C^([a,b]) does not gain us much. We stnl have 

Proposition 16.     K„ is not compact on &°'a) ([a, b}) for a G (0,1]. 

P^of~The^oof follows in exactly the same manner as that in the C([a,b]) case.   U 

Because Kn are not compact on <7(°""([a,6]), we cannot make use of the theory-ofcol- 
lectively compact operators to prove convergence of our numerical method.   We do have 

10 

,(!—») 



some type of compactness as we will see in the next proposition. However, this is mainly of 

academic interest only. 

Proposition 17.     Kn : C(°'a)([a, b\) -> C™ {[a,b]) is compact, if 0 < ß < a < 1. 

Proof.   If we denote by A~* the map A : a'0"0 ([a, b}) -> C^' ([a, 6]), then *«■* = /«■"AT. 

Since Ka-a is bounded and /a-ß is compact, K*ß is compact.   U 

5     Convergence Theorems for Kn 

As we cannot make use of the theory of collectively compact operators to prove the con- 
vergence of our numerical method, we resort to proving it directly. We will prove some 
pointwise convergence properties of K„ after establishing several preliminary lemmas. For 

convenience we define 

Acj>(t,s) 

SA1,5) 
B(t,S) 

= 4>(t)-<l>(s)   ^ 

=   9^{t,s)\t-s\" 

=   {s€[a,b}  |   |*-t|<*} 

*®=$*   fortes 

where, as before, 

gA^s) t-s 

Lemma 18.      Let cj> G C™ ([a, b}), ß G (0,1] and a G (0,ß). Then 

\F;(t,s)\<ui\t-sf- 

for all (£, s) G [a, b] X [a, 6]. 

Proof.   This follows trivially from the definition of C      ([<*,&])• 

Lemma 19.     Let t G [a,b] and <£ G C^M), ß G (0,1]. Then for any e > 0, there exists 

5{e,(f>) > 0 independent of t such that 

|  f g3l(t,s)A<f>{s,t)ds\< 
'B(M') 

11 



for all 5' < 5. 

ProoL   Let iGfo^KK 6]. Then 

< ,mi. /,' 
|f _ sf~l  ds    < 

ß 
K -Ei) 

Thus, the required 5 can be chosen as 

s = l ße i/ß 

2  \2l-"Ul 

U 

r      ,      r    u      J ,A e r(0,p)Cf^ fcn   ÖGfO 11.    Then for any e > 0 there exist 
Lemmata     Let t G [a, 6] and <£ G 6       U«,bJ)> P \^'1J; 
N (independent of t)t 0 < *w>1 < fc„,2, and 8 > 0 such that 

for all r G B{t, S) and for all n > N, where 

a + *„.A    =    a+K,ihN=:-ai 
a + Kah„    =    a + K^^-.b,    and 

B(t,S)    C    [a.,6,] 

EjeoL   Let e > 0 be given. Let N = m«{ *, *, *3}, where NUN2, JV3 are specified below. 

For any positive integer n, define 

r _    I   [^-' *-■)    lfl^J<fc" 

,- -  •  i.       •        f /r    \i=fc"   r f= / for a unique j'(t), 1 < jjt) < K- 
Since [a, 6] is the disjoint union of {lnJ)j=i  > f t i„,,;(t) 

lül l     J"v 

,„,,      ,.,._[, t 1 . It follows that [o^fci] 2 /„..(e) and fc„iX < j'„{t) < 
We define [ai,&ij — [J

w;(,)-»'V>;wJ ,J"U 

12 



k     for all n > N. For ease of presentation, we assume t G (a^&i). (If, for example, t 

t    .     A. 
NoN-''    "•>* 

In the t and t ^  a, we can increase JV by 1, and let [a!, 61]  : 
N,j*    — 1 

following, we will always assume r G (a^bi) = {K.1K1K7K) and « > #. Then 

5n(r) = 5„il(r) + 5„,2(r) + 5n>3(r) 

where 

5nil(r)    = E       ^S.-WA.^(r) 

5    M    =    w q   .    (T) A    .     <£(r) 

i»<;<fc„,2 

We shall show that each of the above can be made arbitrardy small uniformly for r G (o1} 61) 

for n sufficiently large. Indeed, 

\S^[r)\   =   2W -.,)-*('-) I 
< 2||^|L|i*  .      -rf 

< 2ii4k; 
< - 
-    3 

provided 

TL >7V2:=max|rilog2(^(6-af||^)],lj 

We will now derive a bound for | S,,» |.    If ;» = fcn>1 + 1, then £,» = 0. Otherwise, 

if il(r) > ^,1 + 1' then 

|5Bil(r)|   <   h„       2^ if   _T| 

< fcjHi/ E  (--cr 

= MWlEl^^.)' 

13 



where x := r - t   ..      _ and  L„ := j» - *„, - 2.   From the definitions of t\ . and j», 

we must have ^"<*<^.   Let y := £:   Then | < y < f   and 

^-1 

\sn,Ar)\ < hß
nu\\ß £(» + «0" 

771=0 

Since ß € (0,1]  and  \ < y < |, 

I^(T)]  < ^VJIC + OäE - 

< ^^H^ + A^iÄa+^O 

From   £(r) < fc„,2   and  L„ = j» - *..,, - 2   we have 

=    bi — ai 

0-i 

an Ld so 
1  ,ß- 

|5"„,(r)|    <    (2lH, + l)fc;il*IU + jgW,(6i-«i)' 
e 

< - 
-   3 

provided 

where 

n> Nx := max{iVlia, iVi.b} 

N1>a    =   mB.x{\~log2(~(b-af\\<i>\\^},l} 

NiJk    =   max{[^log2^(5-a)'3||^lJl} 

Estimating a bound for | S„,3(r) | is similar to that for | S„,, (r) |, producing N3 similar to 

Nx. The Lemma is proved by choosing 5 = min{|f - ai|, \t - 6i|>-   U 

Remark. It foUows from the proof of the last lemma that 
m2 

J=m 
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long as K, + 1 < rm < m2 < kn as long 

^po^iUon^    For any 4> G <?" ([a, b}), ß E (0,1], 

lim  \\{K - Kn)4>\\x = 0 

p      f    T et e > 0 be given    By the compactness of [a.b], it suffices to show that for any 
Proof,   Let e > U be given       y r < e for all n > Nt and for all 
t m [a,b], there e^st iV, and 8t such that |(K      *-W'1 _     ^ for 

€ B(*, <U-   Now for any 7> and 72 W ~ 7l ~ ~      ~ 
and m2 with 1 < mx < m2 < kn, 

T 

m 

1 J _   T,(r,.,l,m,)-T1(r,»,m,+l,™,)-r,(r,»,-m-lA) 

where 

T2(r,n,m,fc)    =    £ vjnJ <7„» A-^ 
j:=T7i 

It follows readily ton the last two lemmas that there «d** and ,  > 0 such that by 

letting 7l = * - *„>,„ , > 0 and T2 = ^ ,2 - * > 0,   we 

|Tl(T,t-71>* + 7a)l. ^    3 

|T2(r,n,fcnil+l,fc„,2)|    <    3 

„^ .WW uniformly continuous on [[*-*„* +*J n [a, b\ j X [a,       7lj, and therefore uniformly 
and 5. > 0 such that 

|T1(r,aJt-7i)    ~    ZUT.TI.IAJI 

7=1   •/tnJ-l 

)]^l 

e 
<    - 
~    6 
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for all n > N2 and r G B(t, S2). Similarly, there exist N3 and S3 > 0 such that 

\TAr,t + Jtib)    -    T2{r,nXa + M»)l 

=    I     E      P     [/(r^)-/(r,C-)]^l 

for all n> N3 and r G B(f, ^3).. The proposition is proved by letting TV = max-fiV,, N2, Nz} 

and    £ = min{<£i; 52, 83}.   U 

If follows immediately from the definition of X0 that 

Corollary 22.    For any (j) £ X0, 

hm ||(Ä--/irj^L = o 

If </> G C^ ([a, 6]), /? G (0,1], then we already know that both K<j> and Kn<f> G C(0'"'([a, 6]), 
for « G (0,/?). One may suspect the convergence in the last proposition is also true in 
C(°,a) ([a, 6]), i.e., lim ||(Ä" - Kn)(/>\\a = 0 for 0 < a < ß. Unfortunately, we have not been 

able to prove it. However, for those (j> G C{°ß\[a,b\) that satisfy the additional assumption 

in the following proposition, we do have convergence in certain C  '   ([a, b\). 

Proposition 23.     Let <j> G ClaJ>) ([a, 6]), ß G (0,1] such that 

\Knm-KM\<c,\t-*f 
for some 0 < £"< ß and for some constant C^ independent of n, then 

lim  \\(K - KMl = 0 
n—>oo 

for 0 < a < £. 

Proof. Because of the last proposition, it suffices to prove lim \(K - Kn)<f>\a = 0. For 

simplicity of notation, let 

A„i^(£, -) := (K - Kn)<f>(t) -(K- K„)<f>{s) 
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1—t 

1-TT 

I1-"» 

Then for 0 < 7 < *> 

Since 0 € &'"{\a,b]), K<j> G C7™(M), - t < *■*««* 

where Ct = 2^(1*^ + C,)\ The proposition follows by letting 7 = f.   U. 

6     Convergence Theorems for I - ^Kn 

•        r ^ ^r A   -I- -vff    the matrix Bn defined below will 
In studying the properties of the operator A,  _ /     7 A  , 

be useful. For any 7 £ <7([«, *>]) with 7(t) > 0 in (a, 6), let 

Cn .(f) := 7(i)™„, 9nJ{t) > 0 on (a,b),   j = 1,■ - • A 

and k„ 
b„{t):=l + Y,cnJ{t)>Oon[*M 

3=1 

Thei1 *..:=(*„■) 

where iu = 6.(*y^-^-(0. <>^,i<*. 

Bn is simply the discretized version of An in the sense that 

in the union of the disks \z - U < A,,  * S * _   »• 
have absolute values > 1. Hence, Bn is mvertible.   U 
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Proposition 25.      Let 7 £ C([a,b]) and -y(t) > 0 on (a, b). Then for each positive integer n, 

An maps C(J) 1-1 onto C(J), where J := [a,b]. 

Proof.   An is clearly defined on C(J). For a given % G C(J), we can define, because of the 
invertibility of Bn, 

X»    :=    (x(tn.i)>--->x(t*n,lf)Y 

Then it can readily be shown that An4> = %, where 

ttt) = h(t)~1[x(t) + £cnii(t)<i>x
j] (13) 

J=I 

Hence A    is onto.   If A d> = 0, then A Sit* ) — 0, i = 1,..., k . Since B    is invertible, 

</)(t* .) = 0, i = 1,... ,kn. Subsequently, <f>{i) = 0, since bn > 0.   U 

Corollary 26.      A     is bounded for each n. 

Proof.   Clearly An = I — 7 Kn is bounded on the Banach space C([a,b\). The boundedness 

of A     is a consequence of the Open Mapping Theorem [2].   U 

Other properties of the matrix Bn that we will need are contained in the following lemmas. 

Lemma 27.      Bn is irreducible. 

Proof-   Because Bn is a full matrix with no non-zero entries, it is irreducible [8]. 

Lemma 28. B     > 0, i.e., all entries are positive. 

Proof.   Bn is real, irreducible, diagonally dominant with 

•J      }   >0,    1 = 3 

The Lemma now follows from a theorem in Varga [8] (p. 85).    U 

(14) 

Lemma 29.      Each row-sum of B_ is 1. 
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Proof   The ,-th row-sum of B. i. 2 Kr *™ ^ «***» *< »«' "* " ^ '° ^ ^ 
  7=1 

Remarks- Since the entries 6;, of B„ do not all have the same signs, 

.   K 
HBJU =  max  Y,\bJ±l. 

I=J 

L^^St     If each row-snm of a non-singnlar . X . mate A = (a,,) is 1, then ,ts inverse 

has the same property. , 
Itarf.   Let V* = 1, - .». d-ote the . X . mat„* which is ment.ca, to A except for the 

j-th column where it consists of aU ones. Because 

the determinant of A is the same as the determinant of A, for 1 < j <>•The ,«h row sam 

1   wlTch is also the determinant of A. Hence the i-th row snm of A    .s one.   U 

CoroUary 31.      IK' IL = 1 for a11 Positive integCr ^ , 
^fT^mTfoUows from the last lemma and the fact that all entries in B„   is positive. 

Proposition^.      (>C)~, 1S umformly hounAed °n C([a'b])" 

ProoL   Let x € C([a,b]). Then using the notations in Equation (13), we have 

Ä^X{t) = K{ty1w)+cn[t)B:ixn] 

WherC Cn{t):={c^{t)t...,cn„{t)),N = K 

From the definition of bn(t), it follows immediately that 

|6n(t)
_,|   <   l   and 
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~1'' „A „ OO     I I /A.T1  I I OO 

for all t e \a,b) and n > 0. Also, 

IK'XJL  < ll^/ILIIx. 
=       IIXnIL 

< llxL 

It readily follows that 
IKxlL<2||xlL 

for each X in C([a,b]) and for aUOÖ. Hence || A"1 ||M < 2 for all n.   U 

Tlieorem^      Let x G C([a, 6]) and assume (/ - 7Ä> = X has a unique solution ^X, 

For each positive integer re, let 4>n be the solution of 

Then 

as n —> oo. 

proof.   Following the standard arguments, we have 

0    =    (/-7K-)^-(J-7^)^« 

=  4- 4>n-i{[K - Kn)4> + KM- 4>J) 

Hence 
4>-4>n = -iK(K-*-)*■ 

an 

The theorem follows from the uniform boundedness of A?  and the pointwise convergence 

of K   to K.   U 
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7     Conclusion 
In this report we have analyzed the numerical solution of the singular integral equation 

{i-iK)4> = x (15) 

using the Nyström method described in Section 4. Here 

K4>[t)= f \t-s\-l[<Ks)-<Kt)]ds 
a 

We studied the mapping properties of the operator K and found that the space (X0) || • ||J 
of all uniformly Holder continuous functions, despite not being a Banach space, is a natural 
setting to study the unbounded operator K, as it ( X0 ) is invariant under K. 

We also studied the mapping properties of the numerical integral operators Kn that arise 
from the Nyström method. It is found that Km are bounded on C([a,b]) and (therefore) on 
X but they are not compact on C([a,b]). Nevertheless, we proved a pointwise convergence 
theorem of Kn to K on (X071| - ||J- Using this and other properties of K we proved, under 
appropriate conditions, the convergence of the numerical solutions of the singular integral 

equation (15) to its actual solution. 
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