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 Preface S437 

Preface 

The annual scientific conference of the Society for Applied Mathematics and Mechanics (GAMM) was held at the 
University of Göttingen, Germany, April'2-7, 2000. These meetings provide a forum for the exchange of ideas between 
the different mechanical engineering disciplines and mathematics. 

In total 949 scientists from 33 countries attended the conference. There were 16 plenary lectures, 95 papers were 
presented in minisymposia and 624 contributions were presented in a large number of parallel sessions divided into 
25 sections. The themes of the minisymposia and sections can be found in the tables of contents of each volume. More 
detailed information about the meeting is given in the GAMM Letter Nr. 2, 2000. 

The following list gives the titles of the plenary lectures. These are not contained in the present proceedings, but 
are expected to be published in the regular volumes of ZAMM. 

R. J. Adrian, University of Illinois: Velocity Field Measurement 
L. D. Brown, University of Pennsylvania: Asymptotic Equivalence for Infinite Dimensional Statistical Problems 
R. E. Caflisch, University of California: Prandtl's Boundary Layer Equation 
U. Christensen, University of Göttingen: Fluidmechanik des Erdinneren 
D. L. Colton, University of Delaware: Inverse Scattering Techniques for Detecting Burned Objects 
P. Deuflhard, Konrad-Zuse-Center Berlin: From Molecular Dynamics to Conformational Dynamics in Drug Design 
U. Helmke, University of Würzburg: Computation and Control: A Dynamical Systems Perspective 
A. Hübler, University of Illinois: Controlling Chaos 
W. Jüptner, BIAS Bremen: Theoretische Grundlagen interferometrischer Meßverfahren zur Auswertung interfero- 
metrischer Medaten in der experimentellen Festkörpermechanik 
M. Karpel, Technion Haifa: Procedures and Models for Aeroservoelastic Analysis and Design 
R. V. Kohn, New York University: Energy Minimization, Microstructure, and Pattern Formation in Grain Bound- 
aries and Ferromagnets 
C. Miehe, University of Stuttgart: Computational Plasticity at Finite Strains 
H. Pottmann, TU Wien: Computational Geometry 
A. Quarteroni, EPFL Lausanne: Multimodels in Fluid Dynamics 
W. Schneider, TU Wien: Continuous Solidification Processes 
P. D. Spanos, Rice University Houston: Stochastic Processes in Mechanics 

Ludwig Prandtl Laudatio 

J. Zierep, Technical University of Karlsruhe: • 

• 

• 

Ludwig Prandtl Memorial Lecture 

P. Saffman, F.R.S., California Institute of Technology, Pasadena: Aspects of Vortex Dynamics 

Public Lecture 

W. Send, DLR Göttingen: Vom Vogelflug zum Düsenklipper 

The three volumes of the proceedings comprise most of the contributions to the minisymposia and sections. The 
manuscripts were submitted in camera-ready form, were reviewed by two external referees and examined by a member 
of the Editorial Team. The contributions to the minisymposia and the invited contributions to the sections were 
restricted to four pages and the short communications to two pages. A manuscript which was judged not to be accep- 
table in its present form (although it may contain publishable material) had to be rejected since time constraints did 
not allow for a revision process. We take this opportunity to express our appreciation to all the authors who submitted 
their manuscripts. 

The proceedings are organized as follows: 

Volume I contains the papers presented in the minisymposia. 
Volume II contains the contributions to Sections 1—8. 
Volume III contains the contributions to Sections 9—25. 

The conference was supported by grants of the 

— Deutsche Forschungsgemeinschaft 
— Niedersächsisches Ministerium für Wissenschaft und Kultur 
— Deutsches Zentrum für Luft- und Raumfahrt 
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and 

- European Office of Aerospace Research & Development (EOARD) 
- DaimlerChrysler Aerospace Airbus GmbH 
- EAM Göttingen 
- Sparkasse Göttingen 
- Druckerei Kinzel, Göttingen 
- Walter de Gruyter & Co. 
- B.G. Teubner GmbH Stuttgart 
- Wiley-VCH Verlag 
- Springer Verlag 
- Editions Elsevier 

We greatly appreciate the generous support given by these institutions. 

A conference of this size is the result of a collaborative effort. We would like to thank the plenary speakers, the 
organizers of the minisymposia and sections, the local organizers and all the authors for their contributions to the 
annual meeting and to these proceedings. We also thank the GAMM presidency and Mr. Trinkl from WILEY-VCH for 
their cooperation in the editorial process. 

Special thanks are due to the external referees without whose help and expert advice a fair evaluation of the 
submitted manuscripts would not have been possible. 

Finally we thank Elisabeth Winkels for her continuous assistance in preparing the three volumes of these pro- 
ceedings. 

Göttingen, March 2001 The Editor 

Prof. Dr. Gerd E. A. Meier 



Table of Contents S439 

Table of Contents 

Preface      S437 

Section 9 Inviscid Flows, Gas Dynamics 
Chaired by: A. Dillmann, H. Sobieczky 

Chernigovski, S., Glatzel, W., Fricke, K. J. 
Strange-Mode Instabilities in Luminous Stars      S447 

Dillmann, A. 
Can Linear Potential Theory Predict Supersonic Jets?      S449 

Dobes, J., Fort, J., Fürst, J., Halama, J., Kozel, K. 
Comparison of Several Numerical Methods for Internal Transonic Flow Problems      S451 

Fokin, D., Wagner, S. 
A Field-Panel Method for Subsonic and Transonic 3D Wing Calculation      S453 

Hirschler, T. 
Collapsing Cylindrical Shock waves in Gases with Low Absorptivities      S455 

van Keuk, J., Ballmann, J. 
Numerical Simulation of Inviscid Shock Interactions on Double-Wedges      S457 

Section 10 Viscous Flows, Turbulence 
Chaired by:        W. Nitsche, H. Thiele 

Böhme, G., Wünsch, O. 
Über Symmetrien schleichender Strömungsvorgänge in verfahrenstechnischen Apparaten      S459 

Breuer, M. 
Towards Technical Application of Large Eddy Simulation      S461 

Exner, A., Kluwick, A. 
The Interaction Problem for the Locally Cooled Free Convection Boundary Layer      S463 

Farge, M., Pellegrino, G., Schneider, K. 
Wavelet filtering of Three-Dimensional Turbulence      S465 

Franke, J., Frank, W. 
Temporal Commutation Errors in Large-Eddy Simulation      S467 

Heiken, S., Demuth, R., Laurien, E. 
Dependency of the Bypass-Transition on the Initiating Disturbance      S469 

Heinz, S. 
Advanced Methods to Compute Multiphase Turbulent Reacting Flows      S471 

Kluwick, A., Gittler, P. 
Transonic Laminar Interacting Boundary Layers in Narrow Channels      S473 

Kluwick, A., Kronberger, R. 
On the Interaction of a 2-dimensional Transonic Turbulent Boundary Layer with a Localized 3-dimensional 
Disturbance      S475 

Krumbein, A. 
Laminar-turbulente Transitionsvorgabe im DLR Navier-Stokes-Löser FLOWer      S477 

Mang, J., Ungarisch, M., Schaflinger, U. 
Numerical Investigation of the Spin-Up of a Two-Layer Fluid      S479 

Rung, T., Lübcke, H., Thiele, F. 
Universal Wall-Boundary Conditions for Turbulence-Transport Models      S481 

Sadiki, A., Maltsev, A., Janicka, J. 
Performance of Turbulence Models of Second Order in Predicting Turbulent Mixing in Jet Exhaust behind 
Aircraft Engines      S483 

Schneider, K., Farge, M. 
Coherent Vortex Simulation (CVS) of Two-Dimensional Turbulence      S485 

Scholle, M., Wierschem, A., Aksel, N. 
Creeping Newtonian Film Flow Down an Inclined Wavy Plane. Part I      S487 

Tuliszka-Sznitko, E., Soong, C. Y. 
Linear Stability Theory of Non-Isothermal Flow between Two Rotating Disks      S489 

Wagner, C. 
An Eddy Viscosity Scaled Dynamic Scale Similarity Model      S491 



S440 ZAMM • Z. Angcw. Math. Mech. 81 (2001) S3 

Wierschem, A., Scholle, M., Aksel, N. 
Creeping Newtonian Film Flow Down an Inclined Wavy Plane. Part II      S493 

Zlatanovski, T. 
Settling Velocity of Porous Particles Using the Particle-in-Cell Model      S495 

Section 11 Heat and Mass Transfer, Convective Flows 
Chaired by:        H. Herwig, D. Mewes 

Henselowsky, C, Kuhlmann, H. C., Rath, H. J. 
Heat Transfer from Hot Wires at Small Forced-Flow Velocities      S497 

Hozejowski, L., Hozejowska, S., Sokala, M. 
Stability of Solutions for Some Inverse Heat Conduction Problems by Heat Functions Method      S499 

Hribersek, M. 
Inexact Newton-Krylow Methods for Nonlinear Forced Heat Convection Problems by BEM      S501 

Lee, Y.-S., Kuhlmann, H. C, Rath, H. J., Chun, Ch.-H. 
Stability of Thermocapillary Flow in Cylindrical Liquid Bridges: Rotation of the Hot Disk      S503 

Marcic, M., Zgonik, M., Avsec, J. 
Combustion of the Diesel Fuel Spray      S505 

Mocikat, H., Prazak, J., Göppert, St., Herwig, H. 
Konvektiver Wärmeübergang bei instationärer Anströmung      S507 

Nienhüser, Ch., Kuhlmann, H. C, Rath, H. J. 
Instability of Buoyant-Thermocapillary Flows in Non-Cylindrical Liquid Bridges      S509 

Severin, J., Beckert, K., Herwig, H. 
Plane Channel Flow with Heat Transfer: Stability Analysis with a Commercial CFD-Code      S511 

Steinrück, H. 
Upstream Travelling Waves in the Boundary Layer of a Horizontal Mixed Convection Flow      S513 

Section 12 Multiphase Flows, Flows of Reactive Fluids 
Chaired by:        B. Rogg, G. H. Schnerr 

Avsec, J., Marcic, M. 
The Calculation of Velocity of Sound near the Liquid-Gas Transition      S515 

Baumbach, V., Dreyer, M., Rath, H. J. 
Coating by Capillary Transport through Porous Media      S517 

Bielert, U., Kotchourko, A., Burgeth, B., Breitung, W. 
Numerical Simulation of Large Scale Hydrogen Explosions in Complex Geometries      S519 

Diebels, S., Ehlers, W., Markert, B. 
Neglect of the Fluid Extra Stresses in Volumetrically Coupled Solid-Fluid Problems      S521 

Ehlers, W., Blome, P. 
A Multi-Phase Soil Model Including a Soil-Foundation Interface      S523 

Favier, V., Vervisch, L. 
Partial Premixing in Diffusion Flame Quenching      S525 

Geiß, S., Sadiki, A., Maltsev, A., Dreizler, A., Janicka, J. 
Investigations of Turbulence Modulation in Turbulent Particle Laden Flows      S527 

Gerlinger, W., Schneider, K., Bockhorn, H. 
Direct Numerical Simulation of Three-dimensional Flame Instabilities       S529 

Gerlinger, W., Schneider, K., Bockhorn, H. 
Mixing in Two-dimensional Turbulent Reactive Flows       S531 

Gutheil, E. 
Structure and Extinction of Laminar Ethanol/Air Spray Flames      S533 

Huld, T., Wilkening, H. 
3D Simulations of Turbulent Deflagrations Using Dynamic Grid Adaptation      S537 

Indenbirken, M., Strauß, K. 
Zur Modellierung komplexer partikelbeladener Strömungen mit der kinetischen Theorie granulärer Medien S539 

Kempf, A., Forkel, H., Chen, J.-Y., Sadiki, A., Janicka, J. 
Large Eddy Simulation of a Counterflow Configuration      S541 

Lange, M., Warnatz, J. 
Parallel DNS of Turbulent Non-Premixed Flames with Adaptive Chemistry      S543 



Table of Contents S441 

Luo, K. 
Some Recent Findings on Turbulent Diffusion Flames from DNS      S545 

Machu, G., Meile, W., Nitsche, L., Schaflinger, U. 
The Motion of a Swarm of Particles Travelling through a Quiescent, Viscous Fluid      S547 

Meile, W., Machu, G., Schaflinger, U. 
Experimental Investigation of Viscous Drop Formation from a Needle      S549 

Meinköhn, D. 
Liquid-Fuelled Rocket Propulsion: The Role of Atomization Processes in Combustion chamber Instabilities S551 

Meironke, H., Szymczyk, J. A. 
Experimentelle Untersuchungen der Deformation einer Phasengrenze einer aufsteigenden Gasblase      S553 

Niemann, J., Laurien, E. 
Computing Virtual Mass by Direct Numerical Simulation      S555 

Rum berg, O., Rogg, B. 
A Three Variable Formalism for Turbulent Reactive Sprays      S557 

Saptoadi, D., Laurien, E. 
Simplified Two-Fluid Model for the Simulation of Two Phase Bubbly Flows      S559 

Sauer, J., Schnerr, G. H. 
Development of a New Cavitation Model based on Bubble Dynamics      S561 

Steiner, H., Bushe, W. K. 
Large Eddy Simulation of a Turbulent Reacting Jet-Flame      S563 

Teppner, R., Schaflinger, U. 
Bubble Formation on Inclined Surfaces      S565 

Thevenin, D., Gicquel, O., Darabiha, N. 
Computations of NOx Emissions of Domestic Boilers      S567 

van Dongen, M. E. H., Lamanna, G, Prast, B. 
Condensing Nozzle Flows: Ludwieg Tube Experiments and Numerical/Theoretical Modelling      S569 

Vortmann, C, Schnerr, G. H. 
A New Law of State Model for Cavitation at Non-Equilibrium      S573 

Winkler, G., Heiler, M., Schnerr, G. H. 
Simulation of Condensation Processes in Turbines Including Impurity Effects      S575 

Wölk, G., Dreyer, M., Rath, H. J. 
Gas/Liquid Two-Phase Flow under Low Gravity Conditions      S577 

Wursthorn, S., Schnerr, G. H. 
Numerical Investigation of Performance Losses in a Centrifugal Pump due to Cavitation      S579 

Yuan, W., Schnerr, G. H. 
Numerical Simulation of Cavitating Flow in Injector Nozzles      S581 

Section 13 Waves, Acoustics 
Chaired by:        A. Kluwick, H. Körner 

Delfs, J., Grogger, H., Lauke, Th., Lummer, M., Yin, J. 
Numerical Description of Acoustic Sources in Airframe Noise      S583 

Dziecielak, R. 
Lamb's Problem for a Fluid-Saturated Porous Medium with a Structure      S585 

Konicek, P., Bednarik, M., Cervenka, M. 
Nonlinear Effects in the Sound Field of the Circular Piston      S587 

Langer, S., Antes, H. 
Schalltransmission durch Isolierfenster      S589 

Schanz, M., Cheng, A. H.-D. 
Wave Propagation in a One-dimensional Poroelastic Column      S591 

Ziegler, F. 
The 3-D Dynamic Green Functions Expanded in Plane Waves      S593 

Section 14 Applied Analysis 
Chaired by:        H.-H. Alber, P. Hähner 

Chelminski, K. 
On Noncoercive Models in the Theory of Inelastic Deformations with Internal Variables      S595 

Gasser, I. 
The Small Debye Length Limit in a Hydrodynamic Model for Charged Fluids      S597 



S442 ZAMM • Z. Angcw. Math. Mech. 81 (2001) S3 

Gwiazda, P. 
On the Model Chan-Bodner-Lindholm in the Theory of Inelastic Deformation      S599 

Knobloch, S. 
Zur Behandlung des Elastizitätsproblems in Gebieten mit Ecken      S601 

Kunze, M. 
On the Period of Periodic Motions of a Particle in a Scalar Wave Field  S603 

Neff, P. 

A Model Describing Small Elastic Deformations and Korn's Inequality with Nonconstant Coefficients      S607 
Raguz, A. 

Compensated Compactness for Higher Order Differential Relations      S609 

Section 15 Mathematical Methods of the Natural and Engineering Sciences 
Chaired by:        G. Dziuk, P. Maaß 

Berger, A. 

Regular and Chaotic Motion of a Kicked Pendulum: A Markovian Approach      S611 
Callies, M., Callies, R. 

Hochgenaue Konturliniengenerierung  gg^3 
Kohout, M., Schreiber, I., Kubicek, M. 

Numerical Continuation of Homo/Heteroclinic Orbits with an Oscillatory Approach to Stationary Point ...     S615 
Kucaba-Pietal, A. 

Squeeze Film of Micropolar Fluid - Theory and Application      S617 
Langemann, D. 

Numerical Analysis of the Polygonalizagion of Railway Wheels      S619 
Rieder, A. 

How to Scale Reconstruction filters in 2D-computerized Tomography      S621 
Schagerl, M., Berger, A. 

On the Appropriate Treatment of Singularly Perturbed Wave Equations      S623 
Vrdoljak, M., Jankovic, S. 

Aircraft Performance Obtained from Modified Point Mass Model      S625 

Section 16 Computer Algebra and Computer Analysis 
Chaired by:        G.-M. Greuel, S. M. Rump 

Lunter, G. 

A Generalization of Gröbner Bases Helps to Compute Singularity Theory Transformations  S627 
Seiler, W. M. 

Index Concepts for General Systems of Partial Differential Equations      S629 
Wichmann, T. 

Computer Aided Generation of Approximate DAE Systems for Symbolic Analog Circuit Design      S633 
Zerz, E. 

Some Applications of Gröbner Bases in Multidimensional Systems Theory      S635 

Section 17 Applied Stochastics, Operations Research 
Chaired by:        E. Brunner, M. Denker 

Kolesnik, A. D. 
On Diffusion at Finite Speed in a Plane        g537 

Mazur-Sniady, K., Sniady, P. 
Reliability of the Beam with Variable Cross-Section under Stochastic Excitation      S639 

Richter, M., vom Scheidt, J., Starkloff, H.-J. 
Moment Functions for Solutions of Random Boundary Value Problems      S641 

Sieniawska, R., Wysocka, A., Zukowski, S. 
Reliability of Elastic-Plastic Bar Systems Loaded Dynamically      S643 

Sniady, P., Sieniawska, R., Zukowski, S. 
Random Response of a System due to Periodic Excitation with Gaussian and Non-Gaussian Disturbances     S645 

Socha, L. 

Statistical Linearization of the Duffing Oscillator under non-Gaussian Excitations with Criteria in Probabil- 
ity Density Function Space  S647 



Table of Contents S443 

Starkloff, H.-J., vom Scheidt, J., Wunderlich, R. 
Random Vibration Systems with Weakly Correlated Random Excitation      S649 

Wunderlich, R., vom Scheidt, J., Starkloff, H.-J. 
Low-Dimensional Approximations of Random Vibration Systems      S651 

Section 18 Optimization 
Chaired by:        H. A. Eschenauer, J. Werner 

Aurnhammer, A., Marti, K. 
Adaptive Optimal Stochastic Trajectory Planning in Real-Time Using Neural Network Approximations ....     S653 

Bittner, L. 
Shortest Curves for Vehicles on Surfaces of Celestial Bodies      S655 

Blachut, J. 
Optimal Design of Steel Barrelled Shells      S657 

Burgmair, R., Pfeiffer, F. 
Prozeßspezifische Roboteroptimierung      S659 

Ciglaric, I., Krasna, S., Prebil, I. 
Optimal Path Synthesis of the Four-bar Mechanism      S661 

Engels, H., Becker, W. 
Optimization of Patch Reinforcement around Circular Holes in Isotropie and Anisotropie Plates      S663 

Glocker, C. 
Spatial Friction as Standard NLCP      S665 

Hansel, W., Becker, W. 
Weight-Minimal Laminate Structures under Stress Constraints      S667 

Hörnlein, H. R. E. M. 
Effiziente semi-analytische Gradientenberechnung in der Strukturoptimierung      S669 

Istratie, V. 
Optimal Rendezvous with Constraints on Circular and Elliptical Orbits      S671 

Kegl, M. 
An Efficient Shape Parameterization Concept for Structural Optimization      S673 

Kiriazov, P. 
On Optimal Control of Mobile Robots      S675 

Konickova, J. 
Sufficient Condition of Basis Stability of an Interval Linear Programming Problem      S677 

Krajn, A., Beg, D. 
A Priori Constraint Elimination      S679 

Kutylowski, R. 
The £-Relaxed approach in Topology Optimization for Various £-Functions      S681 

Lindemann, J., Becker, W. 
Optimization of Composite Laminates under Uniaxial Tension with Respect to the Free-Edge Effect      S683 

Marti, K. 
Robust Optimal Control of Robots by means of Stochastic Optimization      S685 

Meckbach, S., Ehrenstein, G. W. 
Erweitertes Optimierungsverfahren für den Spritzgießprozess      S687 

Mikulski, L. 
Querschnittsoptimierung unter mehrfacher Belastung      S689 

Rijpkema, J. J. M., Schoofs, A. J. G., Etman, L. F. P. 
RSM Based Design Optimization      S691 

Rottler A., Eschenauer, H. A. 
Optimal Layouts of Structural Components Considering Fatigue Strength      S693 

Schwarz, St., Kemmler, R., Ramm, E. 
Structural Optimization in Nonlinear Mechanics      S695 

Stöckl, G. 
Topology Optimization of Trusses under Stochastic Uncertainty      S697 

Vervenne, K., de Boer, H., van Keulen, F. 
Accuracy and Implementation of Refined Second Order Semi-Analytical Design Sensitivities      S699 

Vietor, Th. 
Optimal Design in Automotive Engineering with Scattering Design Variables      S701 

Vondrak, V., Dostal, Z., Rasmussen, J. 
Duality Based Contact Shape Optimization      S703 



S444 ZAMM ■ Z. Angcw. Math. Mech. 81 (2001) S3 

Section 19 Numerical Analysis 
Chaired by:        R. Kornhuber, W. Mackens 

Bastian. M., Schmidt, J. W. 
Nonnegative Interpolation with Clough-Tocher Splines of Cubic Precision      S705 

Benner, P. 
On a Numerical Method for the Regularization of Descriptor Systems      S707 

Boese, F. G. 
On the Distribution of the Zeros of Polynomials Related to the Daubechies Wavelets      S709 

Detmers, F., Herzberger, J. 
Enge Schranken für den Effektivzinssatz nach der PAngV bei einem Annuitätenproblem      S711 

Dyllong, E., Luther, W. 
Flatness Criteria for Subdivision of Rotational Bezier Curves and Surfaces      S713 

Ehrhardt, K., Borchardt, J., Grund, F., Horn, D. 
Distributed Dynamic Process Simulation      S715 

Faßbender, H., Benner, P. 
Computing Roots of Matrix Products      S717 

Flajs, R., Saje, M., Zakrajsek, E. 
Global Convergence of Newton's Method to the Solution of Equations of Reissner's Elastica      S719 

Hofferek, B., Voss, H. 
Eigenvalue Reanalysis and Condensation with General Masters      S721 

Korelc, J. 

Multi-language Approach in Automatic Generation of Numerical Procedures      S723 
Müller, L., Lube, G. 

A Nonoverlapping DDM for the Nonstationary Navier-Stokes Problem      S725 
Pelzer, A., Hofferek, B., Voss, H. 

Implementing Global Masters into Parallel Condensation      S727 
Schinnerl, M., Langer, U., Lerch, R. 

Multigrid Simulation of Electromagnetic Actuators      S729 
Schwetlick, H., Schnabel, U. 

An Inverse Subspace Iteration for Computing q Smallest Singular Values of a Matrix      S731 
Wieners, C. 

The Application of Multigrid Methods to Plasticity at Finite Strains      S733 

Section 20 Numerical Treatment of Ordinary and Algebro-Differential Equations 
Chaired by:        G. Lube, R. Weiner 

Arnold, M. 
Constraint Partitioning in Dynamic Iteration Methods      S735 

Bartel, A., Günther, M. 
Developments in Multirating for Coupled Systems      S739 

Callies, R. 
Multidimensional Stepsize Control  g743 

Linß, T. 

Uniform Pointwise Convergence of Finite Difference Schemes for Quasilinear Convection-Diffusion Problems S745 
Neher, M. 

Berechenbare Schranken von Taylorkoeffizienten analytischer Funktionen      S747 
Schmitt, B. A., Weiner, R., Podhaisky, H. 

Parallel Two-Step W-Methods      S749 

Section 21 Numerical Treatment of Partial Differential Equations 
Chaired by:        L. Angermann, G. Lube 

Adolph, T., Schönauer, W. 
The Generation of High Quality Difference and Error Formulae of Arbitrary Order on 3-D Unstructured 
Grids      S753 

Angermann, L., Wang, S. 
A Conforming Exponentially Fitted Finite Element Scheme for the Semiconductor Continuity Equations in 3D S755 

Chapko, R. 
On the Numerical Solution of the Hyperbolic Evolution Problem on Closed Curve      S757 



Table of Contents S445 

Fischer, B., Ludwig, M., Meister, A. 
A Finite Volume Method to Compute the Steady State Temperature Distribution in Premature or Newborn 

Infants      S759 

Fröhner, A., Linß, T., Roos, H.-G. 
The £-Uniform Convergence of a Defect-Correction Method on a Shishkin Mesh      S761 

Haschke, H., Heinrichs, W. 
Splitting Techniques for the Navier-Stokes Equations      S763 

Heinrichs, W., Loch, B. 
Spectral Schemes on Triangular Elements      S765 

Knopp, T., Lube, G., Rapin, G. 
Stabilized FEM with Shock-capturing for Advection-diffusion Problems      S767 

Section 22 Space Transport Systems, Aerothermodynamics 
Chaired by:        W. Kordulla, G. Koppenwallner 

Callies, R., Wimmer, G. 
Stabilisierte Hyperschallflugbahnen      S769 

Dinkelmann, M., Wächter, M., Sachs, G. 
Flugbahnm-Optimalsteuerung für ein Hyperschall-Flugsystem zur Verringerung des instationären Wärme- 
transfers       S771 

Fedorova, N. N., Fedorchenko, I. A., Schülein, E. 
Experimental and Numerical Investigation of the Oblique Shock Wave/Turbulent Boundary Layer Interac- 
tion at M = 5      S773 

Sachs, G., Mayrhofer, M. 
Reichweitensteigerung  bei  Hyperschall-Notflugbahnen  duirch  Optimalsteuerung des  Treibstoff-Ablaßvor- 
gangs       S775 

Ting, C.-C. 
Visualization of Supersonic Flow past EOS      S777 

Section 23 Formation of Structures in Nonlinear Systems 
Chaired by:        F. H. Busse 

Albensoeder, S., Kuhlmann, H. C, Rath, H. J. 
The Lid-Driven Cavity Revisited: Stability of Two-Dimensional Flow      S779 

Blohm, C, Albensoeder, S., Kuhlmann, H. C, Broda, M., Rath, H. J. 
The Two-Sided Lid-Driven Cavity: Aspect-Ratio Dependence of the Flow Stability      S781 

Class, A. G. 
Rotating Polyhedral Flames      S783 

Leypoldt, J., Kuhlmann, H. C, Rath, H. J. 
Stability of Hydrothermal-Wave States      S785 

Section 24 Aerodynamics and Experimental Technics since Prandtl 
Chaired by:        E. H. Hirschel, H.-U. Meier 

Lutz, Th. 
Airfoil Design and Optimization      S787 

Schulte-Werning, B., Heine, C, Matschke, G. 
Slipstream Development and Wake Flow Characteristics of Modern High-Speed Trains      S789 

Section 25 Invited Session: Flow Control and Optimization 
Chaired by:        M. Gunzburger, G. E. A. Meier 

Hinze, M. 
A Remark on Second Order Methods in Control of Fluid Flow      S791 

Slawig, T. 
Domain Optimization for the Navier-Stokes Equations by an Embedding Domain Technique      S793 

Author Index      S795 



Section 9-25 S447 

CHERNIGOVSKI, S., GLATZEL, W., FRICKE, K.J. 

Strange - Mode Instabilities in Luminous Stars 

If radiation pressure contributes significantly to the total pressure in models for the envelopes of hot and luminous 
stars, such as massive objects and Wolf - Rauet stars, strange - mode instabilities with growth rates in the dynamical 
range do occur. The properties of these mechanical instabilities are reviewed and an intuitive model of the underlying 
instability mechanism is discussed. Adopting spherical geometry the evolution of the instabilities has been followed 
into the nonlinear regime by numerical simulation. Multiple shocks are formed and velocity amplitudes above 102 

km/sec are reached which can imply direct mass loss of the objects. 

1. Introduction 

Strange - mode instabilities are a common phenomenon in models for the envelopes of luminous stars with luminosity 
to mass ratios in excess of w 103 (in solar units), where the most violent examples have been discovered in models 
for Wolf - Rayet stars (see [5] and [8]). The phenomenon can be identified by performing a standard linear, non- 
adiabatic stability analysis of standard stellar models for the objects mentioned and is then found to be present both 
within the radial (see [3] and [7]) and nonradial (see [6]) spectrum of eigenfrequencies. There is no common precise 
definition of the term "strange modes". In a loose sense they are additional modes neither fitting in nor following 
the dependence on stellar parameters of the "ordinary" spectrum. In general they are connected with instabilities 
having growth rates in the dynamical range. 

2. The mechanism of strange - mode instabilities 

A useful tool to classify modes and to identify the mechanism of an instability is the NAR approximation, where 
"NAR" stands for non - adiabatic - reversible (see [1]). It consists of neglecting the time derivative of the entropy in 
the energy conservation equation for the perturbation. Physically, this can be realized either by adiabatic changes of 
state or by vanishing heat capacity which is equivalent to very large or very small ratios of thermal and dynamical 
timescales respectively. The second case is considered in the NAR approximation. Consequently, it is justified, if 
matter cannot store heat efficiently, the thermal timescale in the stellar envelope is short, as a consequence of low 
densities heat capacities are small, and large deviations from adiabatic behaviour prevail. Such conditions are in fact 
met in the envelopes of the luminous stars considered here. As a consequence of the first law of thermodynamics the 
luminosity perturbation vanishes in the NAR approximation. Moreover, zero heat capacity implies disregarding the 
thermodynamics of the system: in the NAR approximation it is reduced to its mechanical aspects. Thus thermal 
modes and any instability mechanism relying on a thermal, Carnot - type process, are excluded. Neglecting the 
time derivative of the entropy implies time reversibility with the consequence that eigenfrequencies come in complex 
conjugate pairs. Thus the NAR approximation may be used to distinguish between thermal and mechanical origin 
of both modes and instability mechanisms. As the thermodynamics of the system is essentially disregarded in the 
NAR approximation one would expect it to be rather unrealistic. However, surprisingly, for Wolf - Rayet stars 
it provides even quantitatively correct results. In particular, strange - mode instabilities still exist in the NAR 
approximation. As a consequence, the instability can be described in terms of mechanical quantities only and the 
luminosity perturbation is not essential for its mechanism. Apart from large deviations from adiabatic behaviour the 
high luminosity to mass ratios of the envelopes considered also imply the ratio ß of gas pressure and total pressure 
to be negligible. Therefore the model presented here (see also [2]) is based on the NAR approximation and the limit 
ß -+ 0. With these assumptions the mechanical equations (mass and momentum conservation) may be condensed 
into an acoustic wave equation for pressure (p) and density (p) perturbation: 

ö^p_ö2p_ 

dt2      dr2 ~ 

It has to be closed by a linear relation between p and p which is provided here by the diffusion equation for energy 
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Figure 1; Dimensionless density perturbat ion ill for ^ El 

(t) (c) 

Figure 2- Mach-Zehnder interferograms for an overexpanded supersonic jet with M0 = 1-48, - po - 0.092 and 
-*- = 1 370 (flow direction from bottom to top), (a) experimental snapshot image; (b) time-averaged xnterferogram 

computed from eight subsequent snapshots; (c) theoretical interferogram computed from Pack's solution. 

fluctuations in the jet's free shear layer, only the portions close to the nozzle orifice are clearly visible In order to 
eliminate these perturbations, the time-averaged interferogram b) was produced by extractingthe &™J*£. of 

eight subsequent snapshots via inversion of (3), calculating the pixel-wise arithmetic mean and then ^bsktu mg 
the averaged phase shift into (3) to obtain the intensity of the time-averaged image Thus, the turbulent *™f*™* 
are almost completely eliminated and the steady potential core of the jet appears with surprismg clarity Photograph 
( sWs the co'rresp'onding theoretical interferogram as computed from (1), (2 and (8). The remarkab e agreemen 
letween theory and experiment demonstrates that linear potential theory is indeed able to descnbe the essential 
features of supersonic free jets correctly, except some minor deviations in the ree shear layer and m the focussing 
redons C = 1 3 where the theoretical solution predicts infinite density values. A more extensive comparison 
between theory and experiment based on the basis of Mach-Zehnder interferometry and computerized tomography 

has been reported in a recent paper [4]. 
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J. DOBES, J. FORT, J. FüRST, J. HALAMA, K. KOZEL 

Comparison of Several Numerical Methods for Internal Transonic Flow Prob- 
lems 

This contribution summarizes results of several numerical methods developed at our department. Presented methods 
are based on central TVD schemes, upwind TVD schemes with or without Riemann solver, ENO schemes and Lax- 
Wendroff type schemes. The results of 2D methods, computed on either structured quadrilateral grids or unstructured 
grids composed of triangles and quadrilaterals, are compared on 2D axial and radial turbine cascade and 2D axial 
compressor cascade. A comparison of results, obtained on structured hexahedral grids, is shown for 3D axial turbine 
cascade of Skoda Pilsen enterprise. 

1. Numerical methods 

A transonic flow field in all presented cases is modeled by the system of Euler equations (1). The non-zero right 
hand side term Q is taken into account only for 3D case of rotor flow, when the system is writen in relative frame 
of reference rotating around axis x with angular velocity fi. 

W* + Fx + Gy + Hz = Q (1) 

Following finite volume methods have been involved: 

1. methods for structured H-type grids (quadrilateral in 2D and hexahedral in 3D) 

(a) 2nd order method based on Ni's cell-vertex scheme with 2nd order artificial dissipation 

(b) 2nd order method based on full TVD MacCormack cell-centered scheme 

2. 2D methods for unstructured triangular grids 

(a) 1st order upwind method based on approximate Roe's Riemann solver with entropy correction (Harten, 
Hyman 1983) and explicit Euler integration in time 

(b) 2nd order implicit upwind method based on approximate Osher's Riemann solver (1st order treated im- 
plicitly and higher order explicitly), linear system is solved by restarted GMRES with ILU preconditioner, 
piecewise linear reconstruction is done by weighted ENO method 

2. Numerical results 

Numerical results for axial turbine cascade SE 1050 shows weak points of structured H-type grid in the vicinity 
of leading and trailind edges. The worse geometrical description of the leading edge for H-type grid compared to 
unstructured grid produce certain amount of entropy which affects the flow field near profile and streamwise the 
trailing edge, see fig.l.a. Calculation on adapted unstructured grid (fig.l.c) captures very good the shock wave 
structure, disadvantages of structured grid are suppresed by O-H multiblock grid (fig.l.b). 

(a) 'TVD MacCormack' (H-type grid)  (b) 'Ni' (struct, multiblock grid)    (c) 'Osher' (adapted unstruct. grid) 

Fig.l: a transonic flow through axial turbine cascade SE 1050 
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Results in fig.2 (isolines of Mach number) shows good agreement of results for a not too common technical application 
- a transonic flow through a radial turbine cascade. 
Results in fig.3 show the influence of AVDR (axial velocity density ratio) for compresor cascade MAN GSH-1 at 
off-design conditions i = —7deg. 
Results in fig.4 (isolines of Mach number) show the computed 3D flow field through axial turbine cascade. 

(a) 'Osher' (unstructured grid) (b) 'Roe' (unstructured grid) (c) Ni (structured H-type grid) 

Fig.2: a transonic flow through a radial cascade 

Fig.3: 2D transonic flow through axial compressor MAN GSH-1, AVDR = 1.0 left, AVDR = 1.1 right 

Fig.4: 3D transonic flow through axial cascade, TVD MacCormack scheme left, Ni's scheme right 
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FOKIN, D.; WAGNER, S. 

A Field-Panel Method For Subsonic And Transonic 3D Wing Calculation 

The development of fast numerical methods for calculating sub- and transonic flow over 3D configurations is im- 
portant for numerical optimization purposes. One efficient approach, namely field panel method, is based on the 
boundary-element methods solving the full potential equation (see e.g. [1]). The algorithm incorporates panel meth- 
ods for calculating the basic incompressible flow and compressible field iterations. The purpose of the present work is 
to develop a mathematically well based and efficient numerical field-panel method for the analysis of transonic flow 
over 3D wings, that could be further used for design and optimisation of transonic wings in a given range of free 
stream Mach numbers. 

1. Formulation of the problem and method of solution 

Consider a steady potential flow over a wing with symmetric 
profile at zero angle of attack Fig. 1. The unity flow vector at 
infinity UQO is directed along x axis. All velocities are related 
to the velocity at infinity, all lengths are related to the chord 
length of the wing root section. The value of the free stream 
Mach number is given as M^ < 1. The wing is symmetrical 
with reference to the x y - plane. The shape of the wing surface 
S is given in the form z = f(x,y) with x,y 6 Si where Si is 
the shape of the wing planform in x y plane. We denote the flow 
region outside the wing as D. It is required to determine the 
distribution of the flow parameters in D. Namely, the distribu- 
tion of the Mach number in the flow field and the distribution 
of the pressure coefficient on the wing surface. Figure 1: Formulation of the problem 

Assume that the flow over the wing is isentropic and satisfies the full potential equation. This assumption is valid 
if the intensity of transonic shocks is such that we can neglect the entropy changes across the shock. This type of 
flow is described by a disturbance potential function tp(x,y,z) satisfying the full potential equation 

Aip = a 

where 

_ v\ d2tp     vy d
2ip     v\ d2(p     2vxvy d2cp      2vyvz 

dx2      a2 dy2      a2 dz2 dxdy 

d2<p      2vzvx öV 
dydz dzdx 

(1) 

(2) 

Here vx, vy,vz are the velocity vector components, a is the velocity of sound. The flow impermeability condition 
on the wing is n ■ V<p = —n ■ tfoo > where n is the vector normal to the wing surface. The solution of the problem is 
sought in the following integral form 

1      f T(p)dSl 1      f o~{p)d£drjd(; 

peR3     \P-PO\ 
(3) 

where p = (£, n, Q is an integration variable point, p0 is the reference point. The function <p from (3) satisfies to (1) 
if a is of the form (2). Then the impermeability condition of the wing can be rewritten as 

n 

47T JpeS! 

r(p)(p - p0)dSi 

IP-POI
3
/
2 

n 
in </pi 

a{p){p- p0)d£dr)dC, 

peR* |p-Po|3/2 
—n ■ Uoo,    Po & S (4) 

Relationships (4), (2) with the account of (3) give a system of integro - differential equations for finding the function 
T on the planform surface and a in the flow. To solve the system the planform surface Si is presented as a collection 
of quadrilaterial panels with piecewise constant distribution of r and the impermeability condition is satisfied in 
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prescribed collocation points on the wing surface. The values of a are also assumed to be constant in every cell of 
some equidistant volume mesh, containing the wing. Suppose that some initial approximation for a is given (say 
a = 0). The relationship (4) is reduced to a system of linear equations for finding r on the planform panels. Then 
the distribution of the disturbance potential is found from (3) in the cell centers of the equidistant volume mesh. 
The new values of a are calculated from (2) through the central finite difference scheme in subsonic regions. For 
supersonic regions an additional artificial viscosity term is added to a in order to stabilize the iteration process. The 
iterations are continued until a convergence criterion is fulfilled. 

2. Calculation examples 

Consider the case of a swept ONERA wing for M = 0.9 (Fig. 1). The thickness of the wing root section is 8%, the 
wing span is L = 3. The planform surface consists of 49 x 15 rectilinear panels. The wing collocation points are 
located just above the centers of the planform panels. The equidistant volume mesh contains all the wing collocation 
points inside. The calculations are performed for the three meshes with different number of cell divisions, namely, 
29 x 15 x 29, 49 x 15 x 49, 69 x 15 x 69 The resulting pressure coefficient distributions are presented by dashed 
lines, dashed and dotted lines and solid lines correspondingly in Fig.2 for section y = 0.75 and in Fig. 3 for section 
y = 0.25. 
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Figure 2: Pressure distributions at section y/L = 0.5 Figure 3: Pressure distributions at section y/L = 0.75 

For comparison also calculation results of calculation, obtained by means of a finite volume Euler code [2] are 
presented (circles). For the coarse mesh (dashed lines) the pressure coefficient curves as resulting with the present 
field panel method are too smooth in the shock region. As the mesh becomes finer (dashed and dotted and solid 
lines) the shock strength increases and its position moves to the position obtained with the Euler solver [2]. We can 
also mention a well exposed suction peak near the leading edge of the wing captured by the proposed method. 
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HIRSCHLER, T. 

Collapsing cylindrical shock waves in gases with low absorptivities 

In the self-similar formulation of the collapse of a cylindrical shock wave in radiating gas the temperature gradient at 
the shock front is an undetermined quantity. Together with the absorptivity an arbitrary choice of these two variables 
is the basis of a parametric study. The paramretric study focuses upon gases with low absorptivities and is extended 
up to the isothermal limit where the absorptivity is equal to zero. In this context it is shown that the heat flux at 
the shock front is almost negligible. For gases with low absorptivities the assumption of an adiabatic shock front is 
therefore a sufficient accurate approximation. 

1. Basic Equations 

The flow field behind a collapsing cylindrical shock wave depends on the radius r and the time t. The domain of 
validity of the similarity solution is the immediate vicinity of the axis of symmetry. The domain of validity shall be 
bounded by a reference point given by RQ an i0- The reference point lies on the shock path R(t). At this point the 
self-similar solution fits together with an outer solution. Similarity requires that the logarithmic derivation of the 
shock front velocity W(t) with respect to R(t) is a constant, i.e. dlnW(t)/dlnR{t) = -A/2 or R(t) = R0(t/t0)

2/{2+X). 
The more the shock front is accelerated the higher A is. Provided that the velocity, pressure, density, heat flux and 
speed of sound are of the form u{r,t) = f(x)W(t), p(r,t) = pag(x)W(tf, p(r,t) = pah(x), q(r,t) = paQ(x)W(tf 
and a2(r,t) = Q(x)W(t)2, respectively, where x(r, t) = r/R(t) is the similarity variable and pa the density of the 
ambient medium, the diffusion approximation for the radiative heat transfer equation and the conservation equations 
for a nonadiabatic flow of an ideal, inviscous gas, with a constant ratio of specific heats 7, can be reduced to five 
ordinary differential equations for the temperature, velocity, pressure, density and heat flux coefficient 6, /, g, h 
and Q, respectively, given as [1] 

d© 
dx 

Q 
r e(x/2 - i/A) 

d/ 
dx 

f d© 
dx 

+ 2 )/(/-*) + il 
h G) 

(/-.>■ -(f) 

dQ 
dx 

dg_ 
dx 

Q 

-[(!)'-"-> (i) dh 
dx 

h 

(/-*) x \dxj 

+ fa) [,*-7,/(i) -(/-*> Q) /»+ »[</-*>2"9] (I 

(la, b) 

(lc,d) 

(le) 

A is the eigenvalue of (1). It must be determined such that in the zero of the denominator of (lb) the numerator 
in (lb) also vanishes. The heat transfer parameter T is a parameter of the solution. In the adiabatic case the gas 
has an infinite absorptivity. Although dQ/dx ^ 0 no heat flows and Q = 0. Thus, according to (la), T = 0. If the 
gas has no absorptivity, the heat flux will cause a sudden temperature equalisation dQ/dx = 0 and the flow field 
will become isothermal. With Q^O, according to (la), r -¥ 00. At the shock front the coefficients must fulfil the 
conditions 

hn = 

Wn  —  Jn 

l-/n   ' 
9n  = fn , ©n  = 7 /n (1  - fn) 

2(7 fn Q„ = -r©y2-i/A 
\dxj 

(2a,b,c) 

(2d,e) 

These are five equations for the six unknowns /„, gn, hn, 0n, Qn and the temperature coefficient gradient at the 
shock front (dQ/dx)\n. The latter directly corresponds to the temperature gradient at the shock front. In the flow 
field of a collapsing shock wave the highest temperature occurs at the shock front and hence (dQ/dx) |n < 0 and, 
according to (2e), Qn > 0. At an adiabatic shock front (d©/da;)|n = 0. In the framework of similarity (dQ/dx)\n 

can be taken as parameter [2]. Together with T it is the basis of the following paramretric study. In the first part 
of the paramretric study the shock front is assumed to be adiabatic and T is varied. In the second part a gas with 
a low absorptivity T = 50 is assumed and (dQ/dx) \n ^ 0. In the following 7 is assumed to be 7/5. 
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2. Paramretric Study 

Assuming an adiabatic shock front, all solutions pass through the same shock point Pn = (Fn, Zn) and the origin in 
the F = f/x, Z = 0/x2-plane, as shown in figure 1. The origin corresponds to the moment of collapse, where R = 0 
and x -> oo. A nonadiabatic solution T ^ 0 becomes singular in the point of intersection with Z = 7(1 - F)2, which 
corresponds to a denominator equal to zero in (lb). The solutions for gases with low absorptivities (r >) hardly 
deviate from each other. Thus, the singular points of these solutions almost coincide in figure 1. The equation 
system in the adiabatic case T = 0 can be deduced from (le) with (l/x)d(Qx)/dx = 0. The singular point lies then 
on Z = (1 - F)2. According to figure 2, the acceleration of the shock front increases with an increase of radiation. 

0.20 

Z 
0.66 

A. 

0.0      0.2      0.4      0.6      0.8 p 1.0 

Figure 1. Solutions with an adiabatic shock front 

1D"       10°       10'   "To2'     10'       10* r 10* 

Figure 2. Distribution of the eigenvalue A over the 
heat transfer parameter T 

Assuming for all solutions in figure 1 the same shock front velocity Wo at the reference point, RQ becomes smaller 
for an increasing T. In a smaller domain of validity of the similarity solution, however, the converging geometry 
accelerates the shock front more as radiation retards it. The variation of (dQ/dx)\n for T = 50 is shown in figure 3. 
The relation between (dQ/dx)\n and the shock point co-ordinate is given in figure 4. Solutions are physically possible 

(d©/dx)|n 
0.001 c Q > 0 

0.0 0.2 0.4 0.6 0.8   p   1.0 

Figure 3. Solutions with a nonadiabatic shock front Figure 4. Distributions of the eigenvalue A 
and the temperature coefficient gradient (dQ/dx)\ 

over the shock point co-ordinate Fn. 

for Qn > 0. A decrease of (d®/dx)\n means an increase of the energy withdrawal from the shock front. As shown 
in figure 4, A increases then. This can again be explained by the placement of RQ. According to figure 4, for a 
gas with a low absorptivity (dQ/dx)\n « 0 and hence Qn fa 0. According to figure 1, solutions for gases with low 
absorptivities are closely related to each other. Thus, for such gases the shock front can be assumed to be adiabatic. 
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Numerical Simulation of Inviscid Shock Interactions on Double-Wedges 

In supersonic and hypersonic flight double wedge geometries can cause very complex interaction phenomena between 
different wave types. These interactions can sometimes lead to anomalously high pressure and heat loads on the 
contour of aerospace planes like the ELAC1 configuration developed in the Collaborative Research Center (SFB 
253) in Aachen. For the numerical simulation of such flows one has to use a method that should be both robust 
and accurate. The algorithm used here is based on the DLR FLOWer-Code extended by several Upwind-Splitting 
Methods for the physically correct description of the inviscid flux vector. Numerical solutions of 2D inviscid shock 
interactions on double-wedge geometries are presented and compared with corresponding results of other authors. 

1. Physical Model / Numerical Method 

The two-dimensional Euler equations for perfect gas flow are solved with a finite volume method, which is based 
on the well-known DLR FLOWer-Code [1]. This code is formulated as a cell vertex centered finite volume scheme 
in a block structure, and it has been extended by different Upwind-Discretization Techniques ( e.g. van Leer / 
Hänel, AUSM, AUSM+, AUSMD/V, LDS, HLLE, Roe (Harten/Yee) ) to better capture the directed propagation 
of information inherent in the inviscid part of the equations [5]. The scheme used in this work is the AUSMD/V 
Flux-Vector Splitting of Wada and Liou [6], a successful update of the well-known original AUSM proposed by Liou 
and Steffen [3]. Formally second order accuracy in space is achieved by means of MUSCL-Extrapolation, and the 
limiter functions for the TVD-property are those of Roe ("minmod", "superbee") and van Leer. Time integration 
for asymptotically steady state solutions is performed by an explicit 5-Stage Runge-Kutta scheme in connection 
with several optional convergence acceleration techniques such as local time stepping, implicit residual smoothing 
or the FMG-FAS multigrid method. An implicit formulation based on Jameson's Dual Time Stepping Technique is 
used in order to be able to apply the convergence acceleration techniques also to unsteady flows. 

2. Results 

According to the work of Olejniczak, Wright and Candler [4] two-dimensional inviscid shock interactions on double- 
wedge geometries are simulated, that are similar to those studied by Edney for blunt body flows with an incident 
shock [2]. Such investigations are thoroughly of practical relevance, since situations like these can appear as detail 
problems on hypersonic aerospace planes at control flaps, fins and, in particular, in the intake region. Values of 
Moo = 9-0 and K = 1.4 are chosen for the free stream Mach number and the ratio of specific heats at a fixed first 
wedge angle of 0X = 15.0°. A computational grid consisting of 800 x 400 points has been used in every case. The 
second wedge angle is varied from 02 = 45.0° via 02 = 50.0° up to 02 = 60.0° and within this region the structure 
of the solution is completely changing as it is shown in Fig. 1 and 2. The calculated Mach number distributions are 
displayed and subsonic regions are shaded. For 02 = 45.0° the very complex so-called Type V interaction appears, 
that consists of seven shocks and three contact surfaces. If the second wedge angle is changed to 02 = 50.0° the 
deflection of the flow via the second ramp can no longer be realized by an attached oblique shock, so the well-known 
Type IV interaction is formed. Here the interaction is characterized by five shocks and two contact surfaces enclosing 
a supersonic jet. Finally, if the second wedge angle is further increased, the interaction point moves more upstream 
and an interaction appears, that Olejniczak, Wright and Candler call Type IVr interaction and that consists of four 
shocks and one contact surface. Although not displayed it is worth mentioning that the maximum wall pressures 
for these cases vary between 400 and 700 times the free stream value! In Fig. 1, 2 the computed Mach number 
distributions are compared with those of Olejniczak, Wright and Candler showing a good agreement. All the flow 
phenomena like the shock positions and angles, the contact surfaces and the supersonic jets are resolved in a similar 

way. 

Subject of future work will be an extension of the FLOWer-Code for the simulation of flows in chemical and thermal 
non-equilibrium in order to simulate the real flight case, where the gas will not behave as thermally and calorically 

perfect. 
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Figure 1: Type V-IV-IVr Transition (Olejniczak, Wright, Candler) 
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Figure 2: Type V-IV-IVr Transition (van Keuk, Ballmann) 
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BÖHME, G., WÜNSCH, 0. 

Über Symmetrien schleichender Strömungsvorgänge 
in verfahrenstechnischen Apparaten 

1. Theoretische Grundlagen 

Die in der Kunststoffaufbereitung und in der Lebensmittelindustrie zu verarbeitenden fluiden Stoffe sind oft sehr zäh, 
so daß die Strömungsprozesse durch kleine Reynolds-Zahlen gekennzeichnet sind. Die Analyse solcher Strömungs- 
vorgänge erfolgt dann sinnvollerweise auf der Basis der Bewegungs- und Kontinuitätsgleichungen für schleichende 
inkompressible Strömungen 

-gradp(r,t) + divT(r,t) - -^eÄ = 0,        divv(r,t) = 0 (1) 

in Verbindung mit den Stoffgleichungen für nichtlinear viskose Flüssigkeiten 

T(r,i) = 277(72)D(r,i), f := 2spD2(r,t). (2) 

Dabei bezeichnet v den Geschwindigkeitsvektor, T den Reibungsspannungstensor, D den Verzerrungsgeschwindig- 
keitstensor, Api/i den mittleren axialen Druckgradienten und p die "Feinstruktur" des Druckfelds über dem in 
z-Richtung linear anwachsenden Druckanteil. Da Zeitableitungen fehlen, degeneriert die Zeit t zu einem Parame- 
ter. Jede instationäre schleichende Strömung kann deshalb als Folge voneinander unabhängiger, quasistationärer 
"Momentaufnahmen" aufgefaßt werden. Die Feldgleichungen sind außerdem invariant gegenüber der Transformati- 
on ApL -> — Apx,, v -> —v, p -> const -p. Bei einem Vorzeichenwechsel des aufgeprägten Druckgradienten und 
der kinematischen Randbedingungen ändert sich deshalb überall in der Flüssigkeit lediglich das Vorzeichen des 
Geschwindigkeitsvektors, d.h. die Strömung läuft wie ein Film beim Rückspulen zeitlich invers ab (kinematische Re- 
versibilität). In Verbindung mit geometrischen Invarianzen des Strömungsraums resultieren daraus bemerkenswerte 
Eigenschaften der dreidimensionalen Strömungs-, Deformations- und Spannungsfelder. 

2. Symmetrien in statischen Mischern und Doppelschnecken 

Der in Abb. 1 skizzierte statische Mischer besteht aus einem Gerüst schmaler Stege, die bezüglich der ^-Richtung 
abwechselnd um ±45° geneigt sind. Benachbarte Segmente sind jeweils um 90° gegeneinander versetzt. Der geome- 
trisch komplexe Strömungsraum ist invariant gegenüber einer 180°-Drehung um die y-Achse. Deshalb erkennt man in 
der inversen Bewegung die ursprüngliche Strömung wieder. Das führt zu folgenden Symmetrien für die kartesischen 
Komponenten des Eulerschen Geschwindigkeitsfelds [1]: 

u(-x,y,-z) = u(x,y,z),    v(-x,y, -z) = -v(x,y,z),    w(-x,y,-z) = w{x,y,z). (3) 

Experimentelle Fakten stützen diese theoretischen Prognosen in überzeugender Weise (Abb. 2). Die Symmetrien 
schlagen auf die Bahnen materieller Punkte durch, die durch Integration des Differentialgleichungssystems 

dx        , .      dy        , .      dz        , . , . 
— =u(x,y,z),     —-v(x,y,z),    —=w{x,y,z) (4) 

bei Vorgabe der Anfangspositionen (x0,yo, zo) zur Zeit t0 zu berechnen sind. Die in Abb. 1 enthaltenen Bahnen A und 
A' verlaufen invers zueinander: Jede Position (x, y, z) längs A kehrt - mit einem Vorzeichenwechsel der Koordinaten x 
und z - auf der korrespondierenden Bahn A' wieder, wenn man diese rückwärts durchläuft. Demzufolge besitzt auch 
ein Poincare-Schnitt des dynamischen Systems (4) mehr Symmetrien als die geometrische Konfiguration (Abb. 3). 
Die Symmetrien (3) spiegeln sich auch im Deformationszustand und nach Gl. (2) dann auch im Spannungszustand 
wider. Abb. 4 zeigt eine Häufigkeitsverteilung der kinematischen Feldgröße a :— detD/(0.5spD2)3/2, die den Anteil 
der Dehnung an der Gesamtdeformation der Fluidelemente beschreibt. Mit jedem Fluidelement, das mit a > 0 
gedehnt wird, korrespondiert ein räumlich entferntes Element, das mit —a gestaucht wird. 
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Abbildung 1: Statischer Mischer vom Typ SMX mit 4 Bahnlinien bei Betrachtung von oben und von der Seite [1] 
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Abbildung 2: Experimentell ermittelte Geschwindigkeitsprofile an korrespondierenden Positionen; Quadrate: 5 mm vor dem 
ersten Segment, x = 29 mm; Dreiecke: 5 mm hinter dem letzten Segment, x = —29 mm [21 
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Abbildung 3: Zwei Segmente eines statischen Mischers vom Typ Kenics mit Abbildung 4: Dehnungsanteil an der Ge- 
zweizähliger Geometrie und zugehöriger Poincare-Schnitt für L/d = 0.98 mit samtdeformation in einer Gleichdralldoppel- 
vierzähliger Symmetrie aufgrund der kinematischen Reversibilität [3] Schnecke: relative Häufigkeitsdichte q(a) [3] 

Diese Symmetrien können einerseits ausgenutzt werden, um bei der numerischen Simulation der Strömung das 

Berechnungsgebiet drastisch zu reduzieren. Sie führen andererseits zu der Erkenntnis, daß periodisch aufgebaute 
Apparate nicht ideal mischen. 
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Towards Technical Application of Large Eddy Simulation 

The paper is concerned with the computation of high Reynolds number circular cylinder flow (Re — 3900/140, OOOJ 
based on the large eddy simulation (LES) technique. Because this flow involves a variety of complex flow features 
encountered in technical applications, successful simulations for this test case, especially at high Reynolds numbers, 
can be considered as the first step to real world applications of LES. Based on an efficient finite-volume LES code, a 
detailed study on different aspects influencing the quality of LES results was carried out. In the present paper, some 
of the results are presented and compared with experimental measurements available. 

1. Introduction 

During the last decades the performance of the fastest supercomputers in the world has been increasing about 
one order of magnitude every five years and despite occasionally contrary prophecies, this trend is still continuing. 
The hardware development and concurrent progress in numerical methods have strongly influenced the simulation 
approaches for turbulent flows enabling the application of advanced techniques such as Large Eddy Simulation. 
LES is not new. However, in the past the application was mainly restricted to flows involving simple geometries 
and low Reynolds numbers. The long-term objective of the present work is to promote LES for high-Re flows of 
practical relevance. This requires the validation of the applied physical models and numerical methods by detailed 
investigations based on well-documented test cases. Because the flow past circular cylinders involves remarkably 
complex flow features such as thin separating shear layers, transition and large-scale vortex motion, it can be 
considered as the paradigm of complex flows and as an ideal test case for LES. Based on this flow, a series of 
investigations on different numerical and modeling aspects has been carried out [1-3]. In this short contribution, 
some results of the high-Re case (Re = 140,000) are presented and compared with experimental data by Cantwell 
and Coles [4]. 

2. Computational Basics 

The LES approach can be defined as the 'golden mean' between direct numerical simulation (DNS) and classical 
turbulence modeling based on the Reynolds-averaged Navier-Stokes equations (RANS) combined with statistical 
turbulence models. For DNS the entire spectrum of turbulent eddies down to the smallest length scale (Kolmogorov 
length) has to be resolved by a numerical method, whereas in the RANS approach an appropriate turbulence model 
has to take into account the effect of all length scales. Contrary to DNS and RANS, in LES the spectrum of turbulent 
motions is split into the large energy-carrying vortices which can be resolved by the numerical method applied and 
all non-resolvable small-scale vortices called subgrid scales (SGS). Its influence on the large-scale motion has to be 
modeled. However, such SGS models have, in many situations, a much simpler task than RANS models because 
only that part of the spectrum has to be taken into account which is easier to model. With respect to CPU-time, 
LES has also to be classified between DNS and RANS, because it generally requires considerably larger resources 
than RANS due to the three-dimensional and time-dependent approach, but less CPU-time than DNS owing to 
reduced resolution requirements. 

The LES code CESÖCC used for the solution of the filtered Navier-Stokes equations, is based on a 3-D 
finite-volume method for arbitrary non-orthogonal, block-structured grids [1-3]. The spatial discretization of all 
fluxes is based on central differences of second-order accuracy. A low-storage multi-stage Runge-Kutta method 
(second-order accurate) is applied for time-marching. In order to ensure the coupling of pressure and velocity fields 
on non-staggered grids, the momentum interpolation technique is used. For modeling the non-resolvable subgrid 
scales, two different models are implemented, namely the well-known Smagorinsky model with Van Driest damping 
near solid walls and the dynamic approach with a Smagorinsky base model. Moreover, computations were performed 
without any subgrid scale model in order to investigate the influence of the model on the resolved scales. CSSÖCC is 
highly vectorized and additionally parallelized by domain decomposition with explicit message-passing based on 
MPI allowing efficient computations on vector-parallel machines. For more details, we refer to [1-3]. 
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3. Results for the Circular Cylinder Flow 

For sub-critical Reynolds numbers (200 < Re < 5 • 105) the boundary layer at the cylinder is laminar up to the 
separation point and transition to turbulence takes place in the free shear layer. In the wake, the well-known von 
Kärmän vortex street with periodic vortex shedding is observed, which was visualized by streaklines (see [3]). The 
predicted Strouhal number of the vortex shedding frequency varies around 0.2 based on the different grids and 
SGS models applied. This value is in good agreement with generally accepted experimental data for Re — 140,000. 
Fig. 1 shows a qualitative comparison of the computed LES results and the experimental data by Cantwell and Coles 
[4]. The streamlines and vector fields were obtained by averaging the instantaneous flow field in time and in the 
spanwise direction. Unfortunately, no measurements were taken for the front part of the cylinder and in the direct 
vicinity of the rear. However, in accordance with the experimental data, the LES computation predicts an attached 
recirculation region behind the cylinder which is much shorter than for Re = 3900 (see Fig. 1(c)). In contrast to 
Re = 3900, no small counter-rotating vortices attached to the backward side of the cylinder can be observed for 
the high-i?e case. The primary separation angle is at about ©sep « 91°, which means that the separation point 
is still behind the apex of the cylinder. An immediate transition to turbulence close to the cylinder is observed in 
the free shear layers. Compared with the low-iJe case, transition to turbulence moves farther upstream. A more 
detailed investigation of the predicted results based on velocity profiles (see [2-3]) shows that the LES results are 
in satisfactory agreement with the experimental data, especially in the near wake. Owing to the coarse resolution 
in the far wake, larger deviations were observed here. Additionally to the mean flow field, higher order statistics 
have been analyzed. In Fig. 2 the total resolved streamwise Reynolds stress u'u', the cross-stream component v'v', 
and the shear stress u'v' are depicted. These distributions are in reasonable agreement with the measured values 
of Cantwell and Coles [4]. In conclusion, the LES results agree satisfactorily with experimental data. The present 
work has demonstrated that LES of practically relevant high-Re flows should become feasible in the near future, 
particularly for flows involving large-scale vortex motion. 

(a) EXP: C. & C. (1983) (b) LES (c) LES 

Figure 1: Time-averaged flow past a cylinder:  (a) measurements by Cantwell and Coles [4] at Re = 140,000, (b) 
LES at Re = 140,000, (c) comparison of LES results for two Re, upper part: Re = 140,000, lower part: Re = 3900. 
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(a) LES: u'u' (b) LES: v'v' (c) LES: u'v' 

Figure 2: Time-averaged flow field of the sub-critical flow past a cylinder at Re = 140,000, total resolved stress 
components: (a) streamwise Reynolds stress u'u', (b) cross-streamwise Reynolds stress v'v', (c) shear stress u'v'. 
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A. EXNER AND A. KLUWICK 

The interaction problem for the locally cooled free convection boundary layer 

The free convection boundary layer which forms on a heated vertical flat plate of constant temperature is investigated 
in the vicinity of a localized disturbance of the wall temperature. In a small region the wall is cooled in a prescribed 
manner. The short strong disturbance results in an interaction problem which is solved numerically. If the distur- 
bances are sufficiently weak, the interaction equations can be linearised allowing for analytical solutions. For strong 
disturbances, a numerical calculation of the non-linear interaction problem is performed. 

1. Problem formulation 

The wall temperature of a constantly heated vertical flat plate is disturbed at some distance L from the leading edge 
in a region of streamwise extent aL with the non-dimensional parameter a<l. The flow is investigated in the limit 

Gr = pa°f °° -* °° ^ for Pr = f^ = 0(1) with g, T0, T^, v^ and äoo denoting gravitational acceleration, 
undisturbed wall temperature, ambient temperature, kinematic viscosity and specific heat conductivity, respectively. 
The temperature disturbance ßw(x) is taken to be a continuous function of the non-dimensional wall coordinate 
x = (x/L—l)/a. We assume steady laminar two-dimensional flow. Dissipation shall be negligible and the Boussinesq 
approximation is adopted. Inspection of the momentum equation shows that a temperature disturbance of amplitude 
~ (Too -TO)CT

-1
/

3
 is necessary to provoke separation. Two different flow regimes have to be distinguished depending 

on the magnitude of a. For 1 » a » Gr-3/14 marginal separation occurs (EXNER AND KLUWICK 1999). On the 
other hand viscous-inviscid interaction comes into play when a = 0(Gr-3^14). This case will be investigated in the 
following. 

A double-deck structure of streamwise extent Gr_3//14 is appropriate to describe the flow in the vicinity of the 
disturbance with an outer predominantly inviscid layer (main deck MD) of thickness Gr-1/4 and a thin sublayer 
adjacent to the wall (lower deck LD) of thickness Gr~9/28 where viscous effects dominate. The flow in the LD is 
retarded by the disturbance which leads to a thickening of this layer, thereby causing a displacement of the MD flow. 
The disturbance of the temperature field is confined to the LD. In the MD, the flow, in leading order, is determined 
by the similarity profile U0(yMD) of the unperturbed flow, which is shifted away from the wall by a distance a(x) 
denoting the displacement thickness. Similar to the problem studied by SMITH AND DUCK (1977), the pressure 
induced in the MD by the flow displacement is given by 

/•OO 

p(x,yMD) = a"(x) dyU0(y)2. (1) 
J VMD 

In the LD, the pressure is a function of the wall coordinate x only. Applying the pressure law (1), the LD problem 
is described by the system of equations 

dv d2v    d$ a2* _     d3a   d3v 
dy dxdy     dx dy2 ~        dx3~ + l)yT, ^ 

(3) 
W&d_dV&d _ 1 dH 
dy dx     dx dy     Pr dy2 ' 

j/ = 0:   * = — = 0, d = 0w(z);    y-+oo:   ^- = y - a(x), 0 = 0; 

x -¥ -oo :   -p— =y, v = 0, o = 0 
dy 

where * and tf = Gi~1/U(f - f^/fto - t^) denote the stream function and the temperature disturbance, 
respectively. 
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2. Results 

For small but finite disturbances iDw(x) = egw(x), e < 1, the flow quantities can be expanded into series of the 
perturbation parameter e, leading to a linear system for the disturbances which can be solved by Fourier transform 
methods. Solutions of a simple form are obtained for Pr = 1 which show pronounced upstream influence of the 
disturbance as it is typical for interaction problems. For the specific choice gw(x) = exp(-4x2), the solutions for 
the disturbances of the skin friction {TW(X) - l)/e and the displacement thickness a(x)/e are given by 

(T„,(S)-1)  _ _i_  roo   ,    [e(uli/3+<l>) cos(ux-§)+(62 cos(ux)+<l>cos(ux-%))ui7/3] 
€ i^fii JO      "^ wl/3L,14/3 + v/30,J7/3.4_fl21 „l/S^lVS + ^^T/S+^J 16 

a(x) _      (<j>-02)  foo j   [sln(ux)u7/3+e cos(cjq:-7r/3)l   - 

with 6 = -3Ai'(0) and </> = 3Ai(0). For values of the perturbation parameter e up to 
are found to be in good agreement with numerical solutions of the non-linear problem. 

(4) 

0.1, the linearised results 

For stronger disturbances, i. e. when the perturbation analysis is not applicable, the non-linear system (2-3) has to 
be solved numerically. To this end, a marching procedure using a Newton-Raphson solver and a Crank-Nicholson 
discretisation scheme was applied starting from an unperturbed state of the flow sufficiently far upstream of the 
disturbance. To account for effects of free interaction, a small positive pressure disturbance was imposed at the 
starting point of the calculation. Its value was adjusted by a shooting method. Representative results for Pr = 0.7, 
tiw{x) = -2.4 exp(-4z2) are given in Figs. 1-3. 

 t? = const., \P = const. 
-0.1 / 

\t^ 
a(x) p(x)    rw(x) 0„ 1w(x) 
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X 

Fig. 1 Fig. 2 Fig. 3 

In Fig. 1, isothermes with constant spacing Atf = 0.3 between subsequent lines with values ranging from -0.1 to 
-2.2 (solid curves) and streamlines (dashed curves) are displayed. A separation bubble is formed at the wall close to 
x = 0 and flow displacement is apparent in its vicinity. The temperature field shows a large region of cooled medium 
distorted in downstream direction by convection, and the disturbance rapidly decays as the wall distance increases. 
Fig. 2 shows the displacement thickness a(x) and the induced pressure p{x) = a"{x). Both quantities begin to differ 
from 0 already some distance upstream of the region where a significant deviation of the wall temperature from its 
unperturbed value occurs which is clearly an effect of interaction. Wall heat flux qw{x) and skin friction TW{X) are 
plotted in Fig. 3. Note the section of negative values of skin friction corresponding to the region of separated flow 
in Fig. 1. It is found that separation is retarded by interaction compared to the case of non-interacting flow. 

Finally it has to be mentioned that the above analysis as well as the problem treated by EXNER AND KLUWICK 1999 
can easily be generalised to wall jets in the limit Re -» oo since temperature disturbances are confined within the thin 
viscous sublayer and the solutions do not depend on the temperature profile of the oncoming undisturbed boundary 
layer. A characteristic temperature difference for the wall jet problem to define the strength of the disturbance can 
be extracted from the Reynolds number. 
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MARIE FARGE, GIULIO PELLEGRINO AND KAI SCHNEIDER 

Wavelet filtering of three-dimensional turbulence 

We present a new vortex tube extraction method for three-dimensional turbulent flows. The method is based on an 
orthogonal wavelet decomposition of the vorticity vector field. The coherent part of the flow is reconstructed from the 
strongest wavelet coefficients using an universal threshold criterion. As example we present the vortex tube extraction 
of three-dimensional homogeneous isotropic turbulence. 

The importance and the role of coherent structures (coherent vorticity tubes) in 3D turbulence have been established 
largely by high resolution numerical simulations, see e.g. [1]. In the past we have developed a wavelet method to 
extract coherent vortices in 2D turbulent flows [2,3], at which the remaining background flow exhibits Gaussian 
statistics. 

In this paper, we propose a new wavelet based method to seperate three-dimensional flows into an organized part, 
corresponding to the coherent vorticity tubes, and a random part, corresponding to the incoherent background flow. 
As an example, we consider DNS data of statistically stationary 3D homogeneous and isotropic turbulence. The 
flow has been computed by Meneguzzi & Vincent [1] using a pseudo-spectral scheme with resolution N = 2403 

corresponding to a microscale Reynolds number of 150. We project each component of the vorticity vector field CS 
onto a three-dimensional orthogonal wavelet basis. Then we reconstruct the coherent vorticity field (w>) from those 
wavelet coefficients for which the modulus of the wavelet coefficient vector is larger than (4/3Zlog10 N)1/2 (where 
Z denotes the total enstrophy and N the number of grid points), while the incoherent background flow (w<) is 
reconstructed from the weak coefficients. We find that only 2.8% of the coefficients represent the coherent vorticity 
tubes (cf. Fig. 1, left) and retain 74.7% of total enstrophy. The remaining 97.2% of the coefficients represent the 
unorganized background flow (cf. Fig. 1, right) containing 25.3% of the total enstrophy. The energy spectra ( Fig. 
2, left) show that both components (u> and w<) are multiscale, although the coherent part only differs at high 
wavenumbers from the original field (w), which confirms the fact that vorticity tubes are multiscale. The pdf of 
vorticity (Fig. 2) for the coherent part is very similar to the original pdf, which confirms the fact that most of the 
statistical information is preserved by the wavelet filtering. The pdf of the background field is not exactly Gaussian 
as in the 2D case, however its variance is strongly reduced. For further details we refer the reader to [4]. 
The motivation for the above approach is the development of a new semi-deterministic turbulence model, called 
Coherent Vortex Simulation (CVS) [2,5] for simulating high Reynolds number flows. Therein, the evolution of the 
coherent vorticity tubes is calculated in an adaptive wavelet basis, which dynamically adjusts to the flow evolution, 
while the influence of the incoherent background flow is statistically modelled. 
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Figure 1: Isosurfaces of vorticity. Left: coherent vorticity field C3> reconstructed from 3% of the wavelet coefficients. 
Right: background vorticity w< reconstructed from 97% of the wavelet coefficients. Note that the coherent vorticity 
is similar to the original field Q (not shown here). 
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Figure 2:   Energy spectra (left) and pdf of vorticity (right) of the total field w, the coherent field Q> and the 
background field w<. 
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FRANKE, J., FRANK, W. 

Temporal Commutation Errors in Large-Eddy Simulation 

The spatial filtering applied in large eddy simulations leads to additional closure problems if the filter width varies in 
space and time. While the spatial commutation error has been examined, the temporal commutation error has not 
been studied, despite its relevance for in-cylinder flow simulations [1]. Here some theoretical results for the temporal 
commutation error are presented. It is shown that a temporally varying domain leads to an additional constraint on 
the filter function.  The results are illustrated for a simple scalar problem. 

1. Introduction 

In large eddy simulation (LES) a spatially filtered flowfield is computed. The evolution equations for the filtered 
flow variables are derived by applying a spatial filter to the Navier-Stokes-equations. If the filter is homogeneous in 
each coordinate direction, only the non-linear terms lead to a closure problem that can be expressed as generalized 
central moments. The equation system for the resolved flow variables has to be closed by a subgrid scale (SGS) 
model. But if the filter is non-homogeneous in any coordinate direction spatial filtering and partial derivation do not 
commute, leading to an additional closure problem. This commutation error has been analysed for non-homogeneous 
filters in space [2,3]. These arise if non-equidistant grids are used in the computation of the resolved field, because 
the grid-width determines explicitely or implicitely the filter-width. For a temporal variation of the filter-width, 
corresponding to a temporally varying grid, the resulting commutation error has not been discussed explicitely [3]. 
Therefore we present the temporal commutation error for the one-dimensional case and discuss its implications for 
the basic equations of LES with temporally varying grids. 

2. Definitions and simple example 

In the following we restrict ourselves to the one-dimensional case in space, as the three dimensional case is generally 
recovered by multiplication of the three one-dimensional filter functions G(x - y; A), which depend on the filter 
width A. Furthermore we will only allow a continuous temporally varying filter width A(i), which is constant in 
space. Then the filtered value u{x,t) of any scalar flow variable u(x,t) in the domain x E [a(t),b(t)] is defined by 
the moving average 

Mt) Mt) 
ü(x,t)= G(x-y;A(t))u(y,t)dy       , /      G(x - y; A(i)) dy = 1    . (1) 

Ja{t) Ja(t) 

The second equality restricts the filter function to those that are mean-preserving. For a temporally varying filter 
width, this leads to an additional constraint pertaining to the time derivative 

/ 
*W 8G dA(t) J 

.(«)  öA    dt    dy~ 
Gix_mt)<m„Gix-a{t),t)

dav 
dt v v ''   dt 

(2) 

Eqn.(2) might be called the FILTER CONSERVATION LAW as it corresponds to the GEOMETRIC CONSERVATION LAW 

in FV- or FE-computations with temporally varying grids (e.g. [4]). It should be noted, that eqn.(2) is obtained by 
applying the moving average of eqn.(l) before any discretization issue is adressed. 

If this average is applied to the linear wave equation, du/dt + du/dx = 0, two additional terms appear in the 
differential equation for the filtered variable ü 

d^ + ^+Ct[u](X,t)+Cx[u}(x,t)=0    . 

Due to the spatially constant filter width the spatial commutation error Cx only consists of a surface term [2, 3] 

^=l-£=[^-2/;A(f)My'i)ö*) ■ 
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The temporal commutation error Ct shows an additional local closure problem, because the knowledge of the unfil- 
tered quantity u is necessary in the entire domain, 

Ct = 
du du 

di G(x-y;A{t))u(y,t) 
y=b(t) 

y=a(t) 

[W dG dA(t) 

Jal »(*) öA    dt 

The influence of Ct on the resolved v, will be demonstrated by a simple example displayed in figure la. Applying 
a temporally varying box filter, GB(\X - y\) = 1/A(t) for \x - y\ < A(t)/2 and GB{\x - y\) = 0 elsewhere, to the 
steady function u(x) = 5(cos(5a;) + cos(100a;)), a time dependent filtered function ü~(x, t) = 2(cos(5a:) sin(2.5A(t)) + 
cos(100z) sin(50A(i))/20)/A(i) emerges. 

a)  15 r 
u(x), 
0(x,t) 

10h 

u(x) 
u(x,0) 
Ü(X,1.57t) 

b)isP 1_/A(dA/dt) 
u(2,t) 
F(2,t) 

u(2,t) 

1 2 3x4 0123t456 
Figure 1: a) u(x), u(x,0) and ü(X,S/2TT) for A(i) = 2 + 1.8sin(i); b) u(2,t) and RHS of eqn.(3) for x = 2 

If the boundary terms are neglected, the temporal evolution of TL is given by the local temporal commutation error, 

du _ 

Tt~~Ct- 
1   dA(t) 

A(t)    dt 
u(x,t) — 

u{x + A(t)/2) +u(x- A(i)/2) 1    dA(t) 
' A(t)    dt 

F(x,t) (3) 

Generally, a decrease in the resolved quantity would be expected, if the filter width is increasing, leading to a 
deterioration of the resolution quality. However, as can be seen from figure lb, where ü~ and the terms on the RHS 
of eqn.(3) are plotted for x = 2 over time, there can be an increase in ü~ if the filter width is increasing and vice 
versa. This is due to the magnitude of the transport of unfütered u over the filter's boundary appearing in the 
square brackets in eqn.(3). 

3. Conclusions 

In this short communication we have shown that the application of a filter function with temporally varying filter 
width leads to an additional constraint, the FILTER CONSERVATION LAW, and an additional closure problem, the 
temporal commutation error. This term appears in the basic equations of LES for computations with moving grids 
prior to discretization and has to be modelled. Another possibility is the application of filtering to the equations in 
general curvilinear coordinates, extending the work of Jordan [5] to time. Then no commutation error will result. 
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S. HEIKEN, R. DEMUTH, E. LAURIEN 

Dependency of the Bypass-Transition on the Initiating Disturbance 

Numerical Simulations are made by integration of the three-dimensional Navier-Stokes equations for the early stages 
of the turbulent spot development in accelerated flat plate boundary layers. Serveral initial finite amplitude distur- 
bances are stretched and develop a steep velocity gradient in the spanwise direction. The structure, visualized by 
tracer particles, becomes more complex and looks similar to a turbulent spot, shown in experiments by Elder. 

1. Introduction 

It is essential to understand the laminar-turbulent transition initiated by local finite amplitude disturbances in 
compressible boundary layers for the development of improved transition prediction methods, e.g. for boundary 
layers on turbomachine blades, where bypass-transition is dominant [1]. The early stages of the turbulent spot de- 
velopment are simulated numerically in the present research. To investigate the dependency of the spot development 
on the initiating disturbances, various disturbances are compared. 

2. Integration Domain and Numerical Method 

To integrate the compressible, three-dimensional Navier-Stokes equations within a cartesian box, a finite-difference 
spectral method [2] with periodic boundary conditions in the horizontal, streamwise (xi) and spanwise (£2) direc- 
tions, is used. At the wall, no slip and isothermal boundary conditions are imposed. Disturbance and base flow are 
superposed at the beginning of the simulation. To prevent the disturbance from reaching the horizontal boundaries, 
the integration domain is chosen large enough. 

In the present work, a vortex pair and a torus vortex, Fig.l, both also investigated by Henningson et al. [3], are 
used. Owing to observations of Perry et al. [4], further disturbances like a hairpin vortex and a disturbance formed 
by six small A vortices, Fig.l are tested. They are placed near the upstream boundary of the integration domain 
at the beginning of the simulation. The investigated base flow has no variation in the horizontal directions and is 
chosen according to an experiment by Hoheisel et al. [5]. The parameters for this case are Res = 10700 (based 
on the boundary layer thickness 5) and (the Mach number) Ma = 0.6. The numerical resolution is 32 x 64 modes 
x 76 points (streamwise, x x spanwise, y x wall normal, z-direction), aliasingfree up to cubic products. A time 
step width of At = 0.01 is used. 
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Figure 1: Isolines of the wall normal velocity (solid = positive, dotted = negative) for the initial disturbances, vortex 
pair, torus vortex, hairpin and six small A vortices (left to right) 

3. Results 

The initial disturbances are stretched as they move downstream. In all cases, a steep gradient in the spanwise 
direction develops and the flow structure becomes more compact. This mechanism is dominant in all cases. Owing 
to the regions with upwards velocity, apart from the wall, marker-particles are lifted up into regions with higher 
downstream velocity and accelerate. So, due to the velocity field, there are accumulations of particles and regions 
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with fewer particles, [6]. There are overlaps of the upwards and downwards parts of the disturbances in all cases as 
already described for the vortex pair in [7]. In the later stages, t > 10, the vortex centres of the disturbances start 
to form a helix in space. The differences between these cases are the structures at the end of the simulations, Figs.2 
and 3. These structures depend on the initial disturbance. 

Figure 2: Particle Plot for the dimensionless time t = 2 (left) and t = 6 (right) 

Figure 3: Particle Plot for the dimensionless time t — 10 (left) and t = 14 (right) 

4. Conclusions 

All disturbances show the same dominant mechanisms as describe above. The structures they lead to are different 
and depend on the initial disturbance. 
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Heinz, S. 

Advanced Methods to Compute Multiphase Turbulent Reacting Flows 

PDF and FDF methods do not require approximations for chemical reactions, which makes them extremely valuable for 
reacting flow calculations. The performance of these methods depends significantly on the accuracy of simulating small-scale 
mixing processes. It is illustrated, in which way models may be developed that simulate mixing for various phases as a multi- 
scale process in dependence on different factors. Further developments towards a system of very accurate and (less 
expensive) simplified methodologies for reacting flow calculations are pointed out. 

Equations for 
averaged fields 

Hybrid methods Equations for 
instantaneous fields 

LES methods Velocity field: LES methods 

Scalar fields: FDF methods 

FDF methods 

RANS methods Velocity field: RANS methods 

Scalar fields: PDF methods 

PDF methods 

Table 1. Basic techniques for high-Reynolds number turbulent reacting flow 
simulations: large-eddy simulation (LES), Reynolds-averaged Navier Stokes 
(RANS), filter density function (FDF) and probability density function (PDF) 
methods. 

1. Computation of turbulent reacting flows 

Mainly due to the required computational 
costs, technologically-relevant multiphase 
turbulent reacting flows cannot be 
calculated in general by solving the basic 
equations of thermo- and fluid dynamics 
directly, i.e., through adopting direct 
numerical simulation (DNS) [1]. Basic 
methodologies for simulating such flows 
are shown in Table 1. 

RANS and LES methodologies, 
which solve equations for averaged 
(filtered) velocities and scalars, are well- 
known standard techniques for the 
calculation    of   high-Reynolds    number 
turbulent flows. The simulation of technologically-relevant turbulent flows by means of RANS techniques is very attractive 
due to their relative simplicity and computational costs, but usually applied models are known to perform poorly in the 
prediction of even basic turbulent flows that are far from equilibrium [2-3]. Apart from the simulation of near-wall regions, 
that problem may be overcome through adopting LES methods, but both RANS and LES methods can be applied successfully 
to reacting flow simulations only if the chemistry is very fast or slow compared to turbulent flow changes [4]. 

PDF and FDF methods enable a much more comprehensive 
description of turbulence than do RANS and LES techniques: they provide 
the full (one-point) statistics. The essential advantage of applying PDF or 
FDF methods to reacting flow calculations is given by the fact that arbitrary 
complicated chemistry can be treated without any need for adopting 
approximations [1, 5-6]. In that way, the modelling of the complex 
turbulence-chemistry interaction can be reduced significantly. However, 
accurate simulations of turbulent mixing are still a challenge [7]. 

2. Advanced methods 

The complexity of mixing processes and the differences between mixing in 
gases (Sc « 1) and liquids (Sc » 1) are illustrated in Figure 1. The scalar 
spectrum has for Schmidt numbers Sc > 1  in addition to the inertial- 
convective a viscous-convective subrange. The Kolmogorov-scale (kK) and 
Batchelor-scale  (kß)  wavenumbers are  separated through the  Schmidt 
number Sc, kB = Sc,/2 kK. Thus, the characteristic mixing times in liquids are  Figure 1. Idealized velocity (Eu) and scalar 
much larger than in gases, which may result in significant effects on the (E0)   spectral   density   functions   in   fully 
efficiency of chemical conversions. The mixing may be also remarkably developed homogeneous, isotropic turbulence." 

1/2 In E„ E t 
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influenced by other effects, as Reynolds number variations, the influence 
of the scalar-production-to-dissipation ratio, and correlations with the 
velocity field. 

To simulate real conditions, mixing has to be calculated for a 
high number of chemical substances, which react according to complex 
schemes. Thus, simply-structured mixing models have to be preferred, 
where all the variations of the mixing processes are reflected through 
changes of a scalar quantity: the mixing frequency. 

A way to extend the 'interaction by exchange with the mean' 
(IEM) mixing model, which is applied in most of the simulations of real 
flows, has been developed recently by Heinz and Roekaerts [8, 9]. A 
typical example for the variations of the mixing rate Ra is shown (for a 
scalar production-to-dissipation ratio pa = 1) in Figure 2: For growing 
turbulent Reynolds numbers Re,, Ra approaches C (the constant 
standard value for the mixing rate which applies the IEM model) 
asymptotically. The effect of the Schmidt number Sc is consistent with 
Figure 1: higher Sc-values increase the characteristic mixing time Ra

_1. 
The new multi-scale IEM (MSIEM) model was shown to work well in 
simulations of parallel chemical reactions in a tubular reactor [8, 9]. 

100        1000        10000 

i r 
100        1000       10000 
Re, 

Figure 2. The turbulent Reynolds number (Re,) 
dependence of the normalized mixing rate Ra / C 
for different Schmidt number Sc and a scalar 
production-to-dissipation ratio pa = 1. 

3. Summary 

Within the frame of hybrid methods (see Table 1), the application of advanced models for small-scale mixing is a simple way 
to improve the accuracy of reacting flow computations significantly. Full PDF or FDF methods have to be applied under 
conditions, where the coupling between flow and chemistry is relevant. Such full PDF [10] and FDF [II] methodologies are 
currently under development. 
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A. KLUWICK, PH. GITTLER 

Transonic laminar interacting boundary layers in narrow channels 

The investigation of transonic viscous-inviscid interactions is hampered by the fact that the nonlinear small distur- 
bance equation which governs the external flow has to be solved simultaneously with the nonlinear boundary layer 
equations. This poses an extremely difficult numerical problem which has been treated so far with limited success 
only. However, if the medium is confined in a sufficiently narrow channel, the flow outside the viscous wall layers is 
one-dimensional in the leading order approximation which in turn allows the derivation of a solution in closed form. 
This significantly simplifies the construction of numerical solutions which nevertheless display essential features of 
transonic flows associated with the transition from subsonic to supersonic conditions or/and vice versa. 

The present paper is concerned with viscous-inviscid interactions of steady transonic flows in narrow channels which 
are triggered, for example, by a shallow deformation of the channel walls, Fig. 1. Asymptotic analysis for large 
Reynolds number Re = UooL/v 3> 1 then shows that a consistent interaction theory in which the flow inside the 
inviscid core region is almost one-dimensional can be formulated if the heights H and h of the channel and the 
surface mounted obstacle are of the orders Re~x^L and Re~7/2L and if the length A of the obstacle and H are of 
comparable size. Here üt», L and v denote the flow velocity in the core region just upstream of the local interaction 
region, a characteristic length associated with the unperturbed boundary layers adjacent to the channel walls and a 
reference value of the kinematic viscosity. 

Similar to the case of external transonic flows the local interaction region exhibits a triple deck structure. As there, 
the role of the main deck is to transfer the displacement effects excerted by the lower deck unchanged to the upper 
deck (which comprises the inviscid core region) and to transfer the resulting pressure disturbances unchanged to the 
lower deck. Here, the fluid motion is governed by the boundary layer equations in incompressible form 

8X + 8Y ~    '        8X +    8Y ~    dX     OF2 U 

where {X,Y), (U,V) and P denote Cartesian coordinates parallel and normal to the freestream direction, the cor- 
responding velocity components and the pressure. All quantities are suitably scaled, see e.g. [3]. The boundary 
conditions include the no slip condition on the channel walls and the requirement that the unperturbed velocity 
profile is recovered in the limit X —> — oo 

Y = F(X) :     U = 0 = 0,    X-*-oo:     U = Y. (2) 

Let — A(X) denote the perturbation of the displacement thickness caused by the interaction process, the appropriate 
behaviour of U at large distances Y from the wall can be written as 

Y -► oo :     U = Y + A(X). (3) 

Inside the upper deck region we have a weakly perturbed quasi one-dimensional flow. As a result, pressure distur- 
bances resulting from the boundary layer displacement can be calculated from elementary properties of the massflux 
velocity relationship and the well known leading order approximation between the pressure and velocity disturbances. 

Taylor series expansion for |Moo — 1| «C 1 up to second order and substitution of the scaled quantities used in 
equation (1) to (3) then yields 

P = - sgn (1 - Moo) (l ± ^/lTÄI(X)) (4) 

where A = 2|1 — M^l-3/2 Re~1^i(pw/p00)X = 0(1) represents a transonic similarity parameter which depends on 
Re, the Mach number M^ in the unperturbed core region as well as the wall density nondimensionalized with the 
freestream density and the nondimensional wall shear A of the unperturbed flow. 

One remarkable property of interacting external supersonic flows is the phenomenon of upstream influence. The 
associated mechanism was clarified first by OSWATITSCH AND WIEGHARDT 1941, [2] and formulated mathematically 
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by LIGHTHILL 1953, [1]. Nonlinear effects were later studied by STEWARTSON AND WILLIAMS 1969, [3], who showed 
that the possibility of upstream influence manifests itself in the existence of nonlinear eigensolutions of the lower 
deck problem, now commonly termed compressive/expansive free interaction solution. 

upper deck 

cv ~ Re-1'6 

main deck 

Re-1/4! 

Re-1'4! 

Re"1/2! 

Re"7/2 L 

lower deck 

Fig. 1 Fig. 2 

As a first application of the interaction equation (l)-(4) let us investigate the upstream influence of weak disturbances 
in transonic internal flows. To this end U, V and P are expressed in the form 

U~Y-aie
KXf[(Y),    V ~ alKeKX h(Y)    P ~ axe KX 

(5) 

where ax < 1 characterises the amplitude of the perturbations. Linearization of the governing equations with 
respect to Oi and introduction of the stretched coordinate z = «1/3y then shows that f[' = cßfr/dz2 satisfies 
the Airy equation zf[' = f['". Furthermore, K is found to be given by the relationship K = (sgn (M£, - 1)/A)3 

which implies that upstream influence is possible in supersonic flow M^ > 1 only and becomes more pronounced 
as A ->■ oo, e.g. as Moo -> 1 with Re held fixed. In order to extend the flow behaviour described by equations (5) 
into the nonlinear regime it is necessary to solve the interaction equations numerically. Representative results for a 
compressive free interaction are depicted in Fig. 2. In agreement with the predictions of linear theory the pressure 
disturbances initially increase exponentially with X. As expected, the pressure increase causes the displacement 
thickness to increase too while the wall shear drops. Critical flow conditions are reached for P — 1 where -A exhibits 
a local maximum. The displacement thickness thus forms a viscous throat which in turn allows for a continuous 
transition from supersonic to subsonic flow conditions in the inviscid core region of the channel. Also note that 
—A -> 0 as X -» oo so that the total pressure increase agrees with the amplitude of a weak normal shock wave. 

We therefore, conclude that (i) compressive interaction solutions of the lower deck problem (l)-(4) represent ac- 
ceptable global solutions which (ii) have an obvious physical meaning. They describe normal shock waves which - 
in narrow channels - cannot exist as discontinuities but are smeared out through the action of viscous forces. It 
should be noted, however, that the mechanism responsible for the shock structure shown in Fig. 2 is completely 
different from the one causing the celebrated Taylor profile of weak shocks in unconfined flows. In the latter case 
viscous normal stresses and heat conduction are the dominating dissipative effects. Both contributions are negligible 
small to the order considered in the present study where the dissolution of the shock discontinuity into a continuous 
compression wave results from presence of viscous shear stresses which generate boundary layers in which distur- 
bances can propagate upstream. The compressive free interaction solution discussed so far describes the transition 
from supersonic to subsonic flow conditions which takes place in a channel of constant cross section. A material 
constriction in the form of a Laval nozzle, however, is required to accelerate a flow from subsonic to supersonic 
conditions. Corresponding solutions of the interaction equations will be presented in a separate publication. 
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A. KLUWICK AND R. KRONBERGER 

On the interaction of a 2-dimensional transonic turbulent boundary layer 
with a localized 3-dimensional disturbance 

If a weak normal shock wave impinges on a fully attached transonic turbulent boundary layer, a three layer structure 
develops. In the outer defect region the solution of the interaction problem may be described as an irrotational pertur- 
bation to the oncoming stream. Hence a potential $ can be introduced, which is governed by a generalized transonic 
small-disturbance equation. In the present study it is shown that, for a suitable scaled problem, the interaction of 
the incoming boundary layer with a small 3-dimensional obstacle can be described by an equation of similar type. 
Numerical studies are carried out focusing on the formation of the local supersonic region within the defect region of 
the boundary layer. 

1. Introduction 

Due to its practical importance, especially in the field of turbomaschinery and aircraft design, the transonic shock - 
boundary layer interaction problem has been the object of extensive investigations in the last decades. In our study 
we will closely follow the work of MELNIK AND GROSSMAN (1974). Therefore, as a starting point we consider a 
weak normal shock wave impinging on a turbulent boundary layer on a flat plate and restrict ourself to the limit of 
large Reynolds numbers i.e. almost vanishing boundary layer thickness and infinitesimally weak shocks, that is the 
double limit 

I  M2 - 1 
M^-l«l    ,    e= y/Cf /2«1    with    Xt = -SL

e =0(1). (1) 

Here the skin friction coefficient 0/ defines a small parameter e which can be shown to be of the Order 0(1/ log-Re) 
and MQO denotes the local Mach number at the edge of the boundary layer. Furthermore, we assume that the ratio 
Xt has a fixed value of order 0(1). In this limit, the velocity jump across the shock wave is of the same order as 
the velocity defect in the approaching boundary layer. The pertinent length scales that describe the asymptotic 
structure of the flow field can then be expressed in terms of e. The vertical extent of the interaction region is fixed 
by the upstream flow to be of the order of a boundary layer thickness, i.e. 0(e), whereas the streamwise length scale 
follows from transonic considerations about the slope of the characteristics to 0(e b). This length scale describes the 
outer or defect part of the interaction region, in which turbulent and viscous stresses associated with the interaction 
process are negligible in a first approximation. In addition two inner regions are required, namely a conventional 
compressible wall layer to satisfy the no-slip condition at the wall and a so-called blending layer to smooth the 
discontinuity between the shear stress in the outer and the wall layer and in which turbulent stresses and inertia 
terms play the dominant role. Since displacement effects of the two inner layers turn out to be negligibly small to 
second order, appropriate boundary conditions can be formulated in the defect layer for the calculation of the first 
order pressure correction which, as can be shown, is directly proportional to the first order skin friction correction. 
In the following, we will, therefore, focus on the solution in the defect layer. 

2. Formulation of the Problem 

Specifically, we investigate the interaction problem of an incoming turbulent boundary layer with a small 3-dimension- 
al obstacle. In agreement with the results summarized in section 1, its streamwise extent is assumed to be of order 
0(e b). The external flow is taken to be subsonic, M^ < 1. The basic set of equations describing the problem consists 
of the time-averaged Navier-Stokes equations. Inspection of the momentum equations leads to the appropriate length 
scale in the ^-direction which turns out to be of order 0(e). Wider humps can be dealt with by superposition of 
2D-solutions. Accordingly, coordinates are made dimensionless with an appropriate length L* and scaled as follows: 

x = e'2x,        y = ey,        z — ez. (2) 

Here the bar denotes unsealed dimensionless coordinates. Velocities, density and pressure are made non-dimensional 
with respect to the undisturbed velocity u^, undisturbed density p*^ and p^u*^. Expansion of the various field 
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quantities leads to u = 1+e «i«+. • •, v = e b u» +..., w = £3/= w<f> +..., p = 1+e pO) +... and p = Poo+epm + 
energy equation is simplified using the Crocco-Busemann integral and takes the inviscid form -^j 

dzw® = 0 in first order. dyV® 

.... The 
c2 + \u2 — const. 
Introduction of a The basic equations then reduce to [xt + (7 + 1) uw] dxu® 

potential $« according to u« = «in + $m ,x, wa) = $(1),y and w« = $«)2 leads to the final form 

(7 + 1) [\{y) - $o) iX] *o> iXX + $<» yy + $m f„ = 0 (3) 

with A = - [xt/(l + 1) + Win] and the known distribution from the oncoming boundary layer inn = ^[logy + 7f(l + 
cos7Tj/)]. Since the flow is subsonic, vanishing perturbations are imposed at the edges of the calculation domain. At 
the wall, linearized boundary conditions can be imposed which describe the flow past an obstacle with thickness of 
the order 0(e3) and require 

wa> =$mty = h'{x). (4) 

3. Results 

Typical results for a special form of the obstacle profile given by h = r x{\ - x) z(\ - z) with r = 0(1) are shown 
in Figs. 1 and 2. The similarity parameter is fixed to \t = -7.5. In Fig. 1 pressure corrections at the wall for 
r = 1.0, 3.0, 5.0, 6.0, 7.0 and 9.0 are plotted. For increasing obstacle height r, a local supersonic region develops 
which can extend beyond the defect layer as is shown in Fig. 2. Here, the edge of the boundary layer corresponds 
to y = 1. Note that in Fig. 2 the a;-extent of the obstacle was stretched in order to obtain a better resolution of the 
supersonic domain. With increasing values of the similarity parameter \t, e.g. decreasing values of the boundary 
layer thickness, the wall pressure distribution slowly approaches the inviscid case. However, the discontinuity remains 
smeared out at the wall and no Oswatitsch-Zierep singularity develops as in the case of inviscid flows. 

Following MURMAN AND COLE (1971) type depending differencing combined with a line relaxation method was 
used to solve equation (3) of mixed elliptic-hyperbolic type. Grid refinement was applied with respect to the second 
derivative of $<«. Typically 106 gridpoints were necessary for 3-dimensional calculations. 

$d) 

-4-2024 

Fig. 1: Wall Pressure Distribution Fig. 2: Local Supersonic Region 

4. Conclusion 

In this study, we present a method for the calculation of the interaction of a 2-dimensional transonic turbulent 
boundary layer with localized 3-dimensional disturbances. It turns out that, within the given assumptions, the first 
order skin friction is proportional to the defect layer wall pressure correction and can be calculated without any 
turbulence closure. Typical applications are the calculation of turbulent boundary layer flows past valves or rivets. 
We also want to mention that the extension to 3-dimensional boundary layers is straightforward and results in an 
additional term in X(y) entering equ. (3) only. 
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KRUMBEIN, A. 

Laminar-turbulente Transitionsvorgabe 
im DLR Navier-Stokes-Löser FLOWer 

Die Modellierung der laminar-turbulenten Transition in Navier-Stokes-Lösern ist eine notwendige Anforderung für 
die Berechnung von Strömungskonfigurationen in der Luftfahrtindustrie. Häufig werden quantitativ oder sogar qua- 
litativ richtige Ergebnisse nur unter Berücksichtigung der Transition erzielt. Eine Technik zur Transitionsvorgabe 
zerteilt das Berechnungsgebiet in laminare und turbulente Bereiche, die durch Transitionslinien auf der Konfigurati- 
onsoberfläche festgelegt sind. Die Transitionslinien werden ins Oberflächennetz abgebildet, womit eine Einteilung in 
laminare und turbulente Stücke vorliegt. In direkter Nachbarschaft zu laminaren Wandsegmenten werden laminare 
Raumgebiete erzeugt, deren Ausdehnung in Wandnormalenrichtung variabel ist. Turbulenzgrössen (z.B. ßt) werden 
in geeigneter Weise numerisch behandelt. Vorgestellt werden Ergebnisse an mehrkomponentigen, 2- und 3-dimensi- 
onalen Konfigurationen (3-Element-Profil, Hubschrauber, Flügel-Rumpf-TW-Pylon). 

1. Transitionsetzen auf Oberflächen 

Die Einteilung des Berechnungsgebiets in laminare und turbulente Bereiche wird zunächst auf der Oberfläche der 
Konfiguration durch Abbildung einer vorgegebenen Transitionslinie in Form eines orientierten Polygonzugs in das 
Oberflächennetz vorgenommen. Die Abbildung erfolgt über den Vergleich der Longitudinalrichtungskoordinate x 
eines Oberflächenpunkts Ps mit derjenigen eines Ps zugeordneten Punkts der Transitionslinie PT, der mittels Pro- 
jektion von Ps und der Transitionslinie in die auf der x-Richtung senkrecht stehenden y — z-Ebene durch 

y(PT) = [y(Ps)Ay2+y(PT,i)Az2 + [z(Ps)-z(PT,i)]AyAz}/(Ay2 + Az2), 

z{PT) = Az/Ay[y(PT) - y(PT,i)} + z(PT>i) 

und X(PT), bestimmt mit z.B. linearer Interpolation in Transitionslinienrichtung, gegeben ist, Abb. 1. 

(1) 
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Abb. 1: Projektion der Transitionslinie in y — z-Ebene und Laminarzonen an 2-Komponenten-Konfiguration 

Durch Zuordnung eines laminar-turbulenten Status Itflag(Ps) per 

x(Ps) > x(PT) => Itflag(Ps) = 1 & turbulent, 

x(Ps) < x{PT) => Itflag(Ps) =0 4» laminar 
(2) 

werden laminare und turbulente Oberflächenpunkte identifiziert. Jede Konfigurationskomponente mit Transitionsli- 
nie wird in dieser Weise behandelt. 

2. Transitionsetzen im Raum 

In direkter Nachbarschaft der laminaren Oberflächenstücke wird die laminare Grenzschicht approximiert durch 
Laminarzonen, erzeugt durch Projektion der Oberflächenkontour ins Strömungsfeld. Die wandnormale Ausdehnung 
der Zonen ist steuerbar durch einen begrenzenden Abstand dt zwischen der Oberfläche und dem Aussenrand der 
Zone. Zur Erzeugung der Zonen wird bei Existenz von nc Transitionslinien mit den begrenzenden Abständen di^, 
i — l,...,nc für jeden Feldpunkt P folgender Algorithmus durchlaufen: 
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1) Berechnung des Wandabstands d„ti(P), i = l,...,nc zu jeder Oberfläche mit Transitionslinie. 
2) Bestimmung des P nächst gelegenen Oberflächenpunkts Pg_,- auf jeder Oberfläche mit Transitionslinie. 
3) Anwendung folgender Bedingung für alle Konfigurationskomponenten mit Transitionslinie, Abb. 1: 

dn,i{P) < di,i => Itflag(P) = ltflag(P§J,i = l,...,nc (3) 

Der Algorithmus wird nach einer "voll turbulenten" Initialisierung des Strömungsfelds angewendet, was zu einer 
"Laminarisierung" bestimmter Turbulenzgrössen führt. Seine Anwendung ist auf strukturierten und unstrukturierten 
Rechennetzen möglich und ist im Fall strukturierter Netze topologieunabhängig. 

3. Laminar-turbulenter Status 

Während der Erzeugung der Strömungslösung mit FLOWer wird der laminar-turbulente Status Itflag(P) bei Einsatz 
algebraischer Wirbelviskositätsmodelle zur Laminarisierung der Wirbelviskosität \it verwendet, 

tf°d<(P) = ltflag{P)nt{P), 

bei Transportgleichungsmodellen wird zusätzlich der Produktionsterm Pt manipuliert, 

P£°de(P) = min[Pt{P),Dt{P)Cl
t
tfla9{P)], 

mit dem Destruktionsterm Dt und einem Limiter Ct > 0. 

(4) 

(5) 

4. Ergebnisse 
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Abb. 2: Laminarzonen an Vorflügel und Hauptelement (links) und an der Klappe (rechts) eines 3-Element-Profils und cp-Verteilungen 

Abb. 3 (links): Vorgegebene (dünn) und abgebildete (dick) Transitionslinie an Hubschrauberrumpf und cy-Verteilungen für voll 
turbulente Rechnung (oben) und Rechnung mit Transition (unten) 

Abb. 4 (rechts): Rumpf-Flügel-Triebwerk-Pylon-Konfiguration mit Transitionslinien an Rumpf, Triebwerk und Pylon und 
cy-Verteilungen für voll turbulente Rechnung und mit Transition 
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Numerical investigation of the spin-up of a two-layer fluid 

The spin-up of a two-layer fluid with a free surface in a cylindrical container rotating about a vertical axis is 
investigated numerically, using axisymmetric finite differences. As Linden & van Heijst (1984) have shown, the flow 
inside the viscous boundary layer at the bottom leads to the accumulation of the heavier lower-layer fluid near the 
side wall. Thereby, a bare spot in which the light fluid is in direct contact with the bottom is formed around the axis. 
The present simulation gives new insight into the internal structures and interaction of the two fluids. Preliminary 
results indicate strong mixing inside the region of heavy fluid. 

1. Introduction and description of the problem 
An initially stationary cylindrical container open to the atmosphere is filled with two fluids of different densities />* 
and p\ but equal kinematic viscosities v*. (Dimensional variables are marked by an upper asterisk.) The height of 
the free surface is denoted by H and and the initial height of the interface E is denoted by h0 with h0 <C H. At 
the time t = 0+ the container is abruptly set into rapid rotation Ü* about its vertical axis. The transient motion 
during which the initially stationary fluids acquire a state of solid body rotation with the angular velocity of the 
container is termed spin-up. The flow is expected to be driven by a secondary convective motion, sustained by the 
quasi-steady thin viscous Ekman layer above the bottom boundary. The present work investigates the influence the 
density jump at E exerts on the spin-up dynamics. The spin-up of two-layer liquid systems is of relevance to the 
design of centrifuges used in chemical and biological engineering applications (Lim et al. 1993) as well as geophysical 
problems (Linden &; van Heijst 1984). 

2. Direct Numerical Simulations 
The governing equations are formulated in a cylindrical coordinate system co-rotating with the container. With the 
scaling 

[r*,v*,t*,P*] = [R*r, R*fTv, ft*-1t, ^(fi*R*)2P] (1) 

the continuity equation and momentum balance become 

V-v = 0       and        4^+25xv= -J—l-Vp + ^f + £fcV2vl, (2) 
at l + jcp L J 

with the reduced pressure and the body-force acceleration f given by 

P = P+(-y + ö#ß^)        ^d       f = 7rf-^jz. (3) 

A density function 0 < </>(r, t) < 1 subject to a transport equation is defined to capture the deformation of the 
moving interface E. Pure upper-layer fluid is represented by <j> = 0 and pure lower-layer fluid by <j> = 1. 

p'{T,t)=pl[l + 'Y<KT,t)]    where   7 = (ft* - P*U)IPI    5     ^ = V • DV<j> (4) 

The dimensionless parameters governing the problem are the Ekman number, and the global Froude number 

Ek = v*/n*R*2        and       Fr2 = Ü*2R*/g1",   where /= jg*. (5) 

The initial conditions are v = — v6, 4> = 1 (z < ho), and <j) = 0 elsewhere at t = 0. At solid boundaries, no-slip and 
no-penetration are prescribed. At the free surface, w and the tangential stress vanish. These conditions neglect the 
deformation of the free surface caused by the centrifugal force which is justified for small values of ft* R* /4g*H* 
and 7. The governing equations are discretised on a staggered grid using forward finite difference approximations in 
time and centred finite difference approximations in space. The numerical procedure is to solve a Poisson equation 
for p, next to compute the velocity field at the new time step and finally, the density function. 
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Figure 1:  Density function <f>(r,z) and stream lines: 
h0 = 0.2 

7 = 5.1 • 10-3, Pr2 = 8, Ek = 5 • 10" H 

Figure 1 shows the ^6-field and the stream lines in an r,z-plane after 4 and 11 revolutions of the system. The z-axis 
coincides with the axis of the container. Light grey corresponds to (j) = 0, and dark grey corresponds to <fr = 1. The 
density jump at the interface is smeared by diffusion. Within the first revolution, a quasi-steady thin Ekman layer 
develops, as indicated by the close packing of stream lines near the horizontal bottom-boundary. The Ekman layer 
transports fluid from the centre to the periphery. In the non-rotating region it sucks fluid from the core and thereby 
causes E to descend. In the partially spun-up region it expels fluid and h increases. The heavy lower-layer fluid 
cannot overcome the density jump at E, the stream lines are deflected and the fluid circulates back to the centre. 
E is horizontal in the region where the dense layer is still at rest. The inclined part of E corresponds to the region 
where the lower layer is already partly spun-up. It coincides with a free Ekman-like shear layer which is indicated 
by the bending of the stream lines. The free shear layer smoothes out the difference in w between the lower and the 
upper layer. It supports the spin-up of the upper layer and counteracts the spin-up of the dense layer. 

Figure 1 corresponds to a case of weak stratification where the secondary convective flow faces only little resistance 
from gravity. The interface descends rapidly. Eventually, it intersects the bottom of the container. The circular 
region in which the upper-layer fluid is in direct contact with the bottom boundary is termed "bare spot". The 
formation of "bare spots" is relevant to oceanographic flows because it provides a mechanism for the removal of 
sediments into fluid layers which are typically not in contact with the sea bottom . The spin-up of the upper layer 
will be significantly accelerated because at this stage also the upper-layer fluid is directly affected by an Ekman layer 
at the bottom boundary. Figure 1, moreover, indicates a possible mixing between the two fluids as the Ekman layer 
pumps upper-layer fluid into the dense layer. Such an intrusion was reported by Smeed (1987) in an experimental 
investigation of a related problem. 

3. Conclusions 
The spin-up of a two-layer fluid is driven by the Ekman layer at the bottom of the container. However, the transient 
flow is more complicated and the spin-up takes significantly longer than in the single-fluid case. The spin-up of the 
upper layer is carried out by a secondary convective flow sustained by an Ekman-like shear layer which smoothes out 
the difference in angular velocities along the deforming interface. In weakly stratified configurations the deformation 
of E is stronger and may culminate in the formation of a "bare spot" where the upper layer comes into direct contact 
with the horizontal bottom boundary. In such events, upper-layer fluid may intrude into the dense-fluid region via 
the Ekman-layer. The flow variables u, u, and p are z-independent in the initial phase of the flow which suggests a 
simplified analytical formulation based on the classical Wedemeyer single-phase spin-up model. 
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Universal wall-boundary conditions for turbulence-transport models 

In the industrial design process of fluids engineering devices, the use of numerical simulation is of ever increasing 
importance. The predictive quality of such simulations is often governed by the representation of turbulence. Virtu- 
ally all industrial simulations mimic the influence of turbulence by a closure model based on transport equations for 
statistical turbulence properties. Besides the derivation of such transport-equation models, the adequate formulation 
of wall-boundary conditions has come into the focus of attention. Conventional boundary conditions rely on the 
validity of specific flow conditions pertaining to the wall-shear stress and the resolution properties of the computa- 
tional grid in the wall-adjacent region. Since the shear stress is part of the simulation result, this approach - strictly 
speaking - requires the anticipation of the solution. Moreover, it significantly affects the efficiency and flexibility of 
the simulation due to the associated mesh constraints. The principal aim of this research is the development of a 
universal boundary condition. Examples included show encouraging results for attached and separated flows. 

1. Introduction 

Traditional approaches towards the formulation of wall-boundary conditions for RANS are either based on high- 
Re number or low-Re number assumptions. The former technique avoids the resolution of the near-wall region, 
which in contrast has to be appropriately resolved by the latter. Due to the lower computational cost, high-Re 
number (law-of-the-wall) boundary conditions, which assume that all quantities scale with the friction velocity, are 
usually preferred in industrial flow simulations. The simultaneous presence of pressure gradient and shear in the 
near-wall region of most industrial flows leads to a complex, anisotropic turbulence structure, where the flow is no 
longer universally controlled by the wall-shear stress. Recent proposals based on generalized wall functions [1] are 
advantageous for the stability and the efficiency of the algorithm. This is, however, at the expense of a poor validity 
in complex near-wall flows and might deteriorate the predictive capabilities particularly in adverse pressure gradient 
flows. The paper aims to advocate a universal boundary condition which does not require specific grid-resolution 
properties in the near-wall regime. The approach provides conditions for mean momentum and turbulence properties 
located in the wall-adjacent node and adapts itself to the solution. It contributes to the flexibility and therefore 
simplifies the grid-generation process. The latter is particularly important for the simulation of complex industrial 
flows, where a fair and continuous resolution of the viscous sublayer is neither desirable nor feasible. The approach 
is expected to improve the multi-grid performance of the algorithm. 

2. Universal wall boundary condition 

The present universal wall-boundary condition is based on a low-Re modification of the traditional law-of-the-wall 
boundary condition. The key features of the approach are series expansions for mean-momentum and turbulence 
properties, which provide an asymptotic matching of the log-layer and the viscous sublayer. The starting point is 
an approximation of the non-dimensional wall distance Y+ in the entire wall region 

Y+ = U+fraclE e(«u+) _ {1 _ KU+ + o.5(«[/+)2 - ...} 0.41 ,    E = 8.43 . (1) 

Equation (1) is used to update the friction velocity UT and the wall-shear stress in an iterative procedure, viz. 

TW = (1 - cj>)TWti0W + 4>TwMgh ,        with       ^.= (l-e-°-09y+)2. (2) 

The low-Re wall-shear stress is determined by the viscous stress, Tw,high follows from the log-law (\TWthigh\ = 
pKÜrl{EY+)). Neumann conditions are imposed for the turbulent-kinetic energy k which holds for both, low 
and high-Re regimes. Additionally, the production of k is manipulated in the wall-adjacent node according to 
Pk = \Tw\Vkc025/(Kn), where n is the wall-normal distance and cM = 0.09 the anisotropy parameter. The wall- 
adjacent turbulent-length scale is evaluated from a modified log-law constraint, e.g. 

e = k*'2ILe , Le = Kc-°-75n(l-e-TRe*)    or   u = k^2/(cßLu) , Lu = Kc;°-75n(l-e-^) .       (3) 
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The remaining parameters of eq.(3) are determined from an asymptotic matching of the linear Taylor-series expansion 
of the length scales to the near-wall turbulence (7^ = 0.2 and ju = 0.057). 

3. Validation 

The first validation example is a fully-developed channel flow. Results are reported for various Reynolds numbers 
employing the same numerical grid. The grid accurately resolves the viscous sublayer for the lowest Reynolds number 
investigated (ReT = 197), the remaining Reynolds numbers feature a continuos transition from low-Re to high-Re 
conditions. Figure 1 indicates, that the logarithmic behaviour of the mean velocity profile is accurately predicted 
for all Reynolds numbers investigated. Details of the near-wall regime are captured depending on the resolution 
quality of the grid. An important advantage of the universal-boundary condition is the grid-adaptive character of 

20.0 

15.0 

O   10.0 

5.0 

0.0 

o Re =197,   Res=3640 
• Ret=567,   Res=9868 
» Re=1035, Re,=24221 
° Re =2176, Res=56024 

/ '* 

1 10 100 

VI'" ■ Re=125 
. •".$•', • Re =180 

' Ret=235 
■ Re,=525 

"***» Hi 
»*».» **« 

v Re =910 

0.4 0.6 
Y/5 

Figure 1: Performance of the universal wall-boundary condition in a channel at various Re numbers (Wilcox k-w 
model [2]); Mean velocity (left) and turbulent-kinetic energy (right). Symbols correspond to the grid-point locations. 

the formulation. The second example investigates the flow over a backward-facing step at Re = 37 500 [3]. The focal 
point of this exercise is the recirculation regime along the step site. Hence, the grid accurately resolves the near-wall 
phenomena of the bottom-wall boundary layer (Y+ « 0.5), but provides only a coarse resolution (Y+ « 40) of the 
upper-wall boundary layer. The simultaneous application of conventional high- and low-Re boundary conditions 
is usually considered to be unfeasible for coding reasons. The use of low-Re boundary conditions, however, might 
be fatal in this case, as indicated by the pressure distribution displayed in figure 2. In contrast to this, the present 
universal boundary condition can adapt to the coarse grid of the upper wall and is not afflicted with a deterioration 
of the over-all-solution quality. 
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Figure 2: Numerical grid and step side distribution of the pressure coefficient for a backward-facing step flow 
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Performance of Turbulence Models of Second Order in Predicting Turbulent 
Mixing in Jet Exhaust behind Aircraft Engines 

The modeling of near-field jet from aircraft engines is considered as an important task for a subsequent study on 
chemistry and micro-physics in far-away spatial regions of the aircraft wake. The main goal of this study is to 
investigate the performance of transport equation turbulence and mixing models for the prediction of near-field jet 
exhaust plumes. Turbulence is modelled with three different models (two different linear second order moment closures 
(Reynolds stress transport models) and k -e model). Scalar fluxes are modeled by corresponding transport equation 
models. Finite-rate chemistry is considered. Results, obtained with and without chemical reactions, show that 
turbulence and mixing modeling effects on the chemistry and flow field are significant and should be taken into 
account in modeling of near-field exhaust plumes. 

1. Introduction 

The interaction between the aircraft engine exhaust plume and the surrounding air mass appears these last days to be 
a focal research point in many investigations into the influence of engine emissions on global climate changes. Kärcher 
et al. (1994, 1996) [4] [5] founded their studies on an empirical turbulence model for modeling the microphysics 
and chemistry during plume expansion. Wang and Chen (1997) [9] studied the microscale turbulence and chemistry 
interaction in near-field to manifest the importance of microscale mixing processes occuring at different scales and 
developed a reduced chemical reaction mechanism. Anderson et al. (1996) [1] used in the initial plume the two- 
equations model up to the first 100 meters in calculations of the flow field and chemical kinetics from the engine 
combustor out to a distance of about 20.2 km. It occurs, that one area that lacks fundamental understanding is to 
gain insight into the turbulence modeling effect on the predicted jet exhaust transport and mixing fields. Focussing 
on chemistry, in particular on turbulence-chemistry interaction, it is well known that the chemical or combustion 
process is strongly dependent on the mixing of the fuel (here exhaust gas) and oxidant streams (here surrounding 
air mass), so that it is necessary to capture the major features of the flow and mixing fields before further detailed 
investigations can be performed. In the framework of statistical moment closures, second-moment closures represent 
an optimum simple choice for a reasonably detailed representation of the turbulence and mixing. The turbulence 
is modelled with three different models (two different linear second order moment closures [7], [3] and a standard 
two-equations model). Various scalar fluxes are modeled by corresponding transport equations models [3]. 

2. Numerical method, initial and boundary conditions 

For the simulation of the flow field the well-known Patankar-Spalding [1967] [8] finite-difference procedure was used. 
The main advantage of this procedure lies in special choice of grid which adjusts its width so as to conform to the 
thickness of the layer in which significant property gradients are present. The flow field is assumed to be steady 
state, axisymmetric, isobaric (at an ambient air pressure) and diffusive terms are assumed to be significant only in 
radial direction (parabolic approximation). The numerical integration is carried out by marching in axial direction 
x. The scheme has a first order of accurancy in marching direction and second order of accurancy in radial direction. 
Two types of initial and boundary conditions were considered. First case is the only heat transfer problem without 
consideration of chemical reactions. Model input was taken from the work of Kärcher and Fabian [1994] [4]. The 
second case in which chemistry effects are simulated represents the same type of engine, but with some differences 
in geometrical and dynamical parameters. Such initial and boundary conditions can be found in works by Kärcher 

et al. [1996] [4] and Wang & Chen [1997] [9]. 

3. Chemical reaction mechanism 

Chemical data were taken from Chen and Wang [9]. Following this mechanism the calculation of the chemical source 
term in enthalpy and mole fractions transport equations was carried out using Chemkin package [Kee at al, 1989] [6]. 
This package includes the Gas-Phase Subroutine Library that returns information on elements, species, reactions, 
equation of state, thermodynamic properties, and chemical reaction rates. The gas inside each computational cell 
was assumed to be perfectly mixed, so that no microscale mixing consideration is necessary. 
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4. Results and discussions 

As mentioned above, the first simulation case includes only heat transfer problem. Results for the first case are 

presented in Fig. 1 and Fig. 2. Comparison is performed with results of BOAT RANS code (Dash and Pergament, 
1978) [2] which is the only existing reference for this kind of initial and boundary conditions. Fig.l shows the decay 
of the centerline temperature and velocity during jet expansion. In Fig.2 one can see the jet diameter evolution taken 

as double radius in which axial velocity component is 30 time less than the central value. With second order models, 
in particular with Jones and Musonge [3], important properties of the flow reveal overall acceptable agreement. 

The correct prediction of these fields must be emphasized here in comparison to the results in previous work [4]. 

Secondly, simulations were carried out for the second type of model input. Fig. 3 shows the main nitrogen species 
centerline evolution. Results are in good qualitative agreement with results obtained by previous authors [5], [9], 
[10] (not shown here because of the lack of space), but there is some quantitative difference, especially for results 
obtained with the Jones Musonge turbulence model. 

As shown in these results, the turbulence and mixing modeling effect on the flow and the chemistry is significant 
and should be carefully taken into account in modeling of jet exhaust behind aircraft engines. 
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Coherent Vortex Simulation (CVS) of two-dimensional turbulence 

We present a new turbulence model to compute fully developed turbulent flows. The method is based on the solution of 
the wavelet filtered Navier-Stokes equations in vorticity-velocity formulation using an adaptive wavelet discretization. 
As application we present a Coherent Vortex Simulation (CVS) of a two-dimensional mixing layer and compare the 
results with those obtained with Direct Numerical Simulation (DNS). 

In this paper we propose a new turbulence model, called Coherent Vortex Simulation (CVS) [1,4] for computing 
fully developed turbulent flows. This new approach for CFD is based on the observation that turbulent flows contain 
both an organized part (the coherent vortices) and a random part (the incoherent background flow). In classically 
used LES-methods the Navier-Stokes equations are low-pass filtered and only the evolution of the large scales of 
the flow is computed, while the effect of the small scales onto the large scales is modelled. Hence, the intermittent 
behaviour of the flow is only partially taken into account due to the lack of small scales. CVS is based on the 
multi-scale computation of the coherent part of the vorticity (characterized by a non-Gaussian multiscale behaviour 
and responsible for the intermittency), while the influence of the incoherent background flow is statistically modelled 
(characterized by Gaussian statistics and likewise multiscale). 

We filter the two-dimensional Navier-Stokes equations using a nonlinear orthogonal wavelet filter and obtain an 
evolution equation for the coherent vorticity w>: 

ötUK. + V • (w> f>)-iA72w>    =    VxF>-V-r (1) 

v-i*>   =  o  , 

which includes an unknown term, r = (w V)> - u> V>, to be modelled. This incoherent stress term describes the 
effect of the discarded incoherent terms onto the resolved coherent terms. We compensate the loss of enstrophy of 
the wavelet filtering by a conditional forcing term acting in the region of strong nonlinear activity [2]. In contrast 
to LES, where the underlying computational grid is static, the CVS method employs regridding which dynamically 
adjusts to the flow by refining in regions of strong gradients. 

As example we compute a temporally growing two-dimensional mixing layer using the CVS method (cf. Fig. 1). 
To validate the approach we compare the results with DNS data obtained using a classical spectral method. We 
observe that in the CVS approach all scales of the flow are well resolved, however with a reduced number of degrees 
of freedom (cf. Fig. 2). 
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Figure 1: CVS computation of a two-dimensional mixing layer. Left: isolines of vorticity (ui = 
0.1,0.4,0.7,1.0,1.3,1.6) at t = 37.5 s. Right: corresponding adaptive grid in physical space. Note that the grid 
dynamically adapts to the flow evolution both in scale and space. 

15 20 25 30 35 

Figure 2: Left: comparison of corresponding enstrophy spectrum with a DNS calculation. Right: time evolution of 
the number of grid points. Note that at t = 37.5 s only 4700 grid points are used in CVS method, while DNS uses 
65538. 
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M. SCHOLLE, A. WIERSCHEM, N. AKSEL 

Creeping Newtonian Film Flow Down an Inclined Wavy Plane. Part I 

Theoretical investigations are made on the influence of a sinusoidal bottom topography on a gravity driven, Newtonian 
film flow. Neglecting inertia effects the surface shape is obtained for small amplitudes of the bottom profile using 
perturbation theory. For thick films and large bottom amplitudes an exact analytical approach is developed. 

1. Formulation of the problem 
Various methodical approaches are available for an analytical treatment of film flows which differ with respect to 
coordinates, scalings and perturbation parameters. One method developed by Wang is based on a local coordinate 
system [1]. In this formulation the boundary conditions at the bottom can be fulfilled exactly. Especially if the 
film is thin compared to the bottom profile amplitude this approach provides good results [2]. If the film height is 
large compared to the bottom profile amplitude, however, the use of globally defined Cartesian coordinates is more 
adequate because the equations of motions can be fulfilled exactly. This case is discussed in the following. 

Let the X- and the Z-axis be orientated parallel and perpendicular to the mean inclination a of the plane. We 
introduce a representation in terms of dimensionless, complex coordinates £ and £ by the transformation 

{:=^(Z + iX),        t:=^(Z-iX) (1) 

with the wavelength A of the bottom profile as scaling factor. Note that £ and £ are the two independent character- 
istics of the Laplace equation. Furthermore, we join the vector components U and W of the velocity field together 
to a dimensionless, complex velocity field 

v:=±(U + iW),        with    Uo:=8-^^Hl. (2) 

The scaling factor UQ is the surface velocity of a fully developed, plane film flow depending on mass density g and 
viscosity n of the fluid, the gravity acceleration g, the inclination angle a and on the film height H0 of a flat bottom 
shape. Neglecting inertia effects (Re -> 0) Navier-Stokes equations and continuity equation read 

.of . ,.  ,,2 Ö2»   . ...     .    .   ,     - ,       T    fdv -2-Ki—+ (2ith)   ——T + 2[l-zcota] = 0       and       Im   -=    = 0 (3) 

with the real-valued pressure P scaled by TJUOXHQ
2
 and with the scaled film thickness h := H0/\. Integration of 

the second equation with respect to £, followed by an integration with respect to £ provides 

2TT/I        [2irh] 

P    =    Po- ^[Z + Z]-2*ih2[Q'(t)-Q'(ZJ\ (5) 

as general solution of (3). The prime denotes the first order derivative. The two periodic, yet open functions Q(£) 
and R(£) are due to the two integration steps. Let C := A/\ be the aspect ratio 'amplitude per wavelength' and 
Ca := nUo/o- be the capillary number. Then, Q and R have to be determined from the no-slip condition v = 0 at 
the bottom £ = ß (x) := — 7rCcos(a;) + ix/2 and from the kinematic and dynamic boundary conditions at the free 
surface £ = tp(x) :— [f (x) + ix] /2: 

W(x)+v<p'(x)}Lv(x)=0 (6) 

27T (P - Pair) + {^f [l + f (x)2] ~3/2/" (x) Cp'(x)-i(2Khf—ip'(x) = 0 (7) 



S488 ZAMM ■ Z. Angcw. Math. Mcch. 81 (2001) S3 

2. Results for small wave amplitudes 
If the amplitude of the bottom profile is small compared to its periodic length, i.e. if £ < 1, regular perturbation 
methods can be applied: Writing the boundary conditions in a Taylor series with respect to the perturbation 
parameter £ the first order approximation delivers a harmonic form of Q, R and the surface shape f(x), 

Q(o= E 2« exp (2<) >    R (0 = E Rn exp (2<)'    /(*) = 2nh ~ r2< cos (x+A).   (8) 
n=±l n=±l 

with the four complex-valued coefficients Q±i, R±i, the real-valued damping factor r and the real-valued phase 
shift A depending only on the film thickness h and on the combined parameter 

M- 
1 cot a + 

2Ca (2TT/I) 
(9) 

as the two concicive parameters. Thus, in leading order the inclination angle a and the capillary number Ca are 
included via /x. Figure 1 shows phase shift and damping factor versus film height for three different inclination angles 
neglecting the capillarity.  Independent of the inclination angle the phase shift reaches a maximum at h w 0.177 

0.75- 

0.25- 

0.6 0.8 
h      "" "'" * " "" "        h 

Figure 1: Phase shift A and damping factor r of the surface shape versus film thickness. 

whereas the damping factor decreases monotonously. For h —► 0 the surface shape fits to the bottom shape and 
for h —> oo the film surface becomes fiat. 

3. Large wave amplitudes — roughness 
For large aspect ratios C = A/X the perturbation approach is not straightforward. However, if the bottom profile 
amplitude is much smaller than the film height (A < H0) a flat film surface can be assumed. After re-scaling v := 
2-Khv and applying the limit h —> oo the velocity field reads in Fourier representation: 

v = v0 + 2 [e + £] + J2 [fn exp (-2n£) + (r„ - 2n [£ + £} qn) exp (-2<)] (10) 
n=l 

Hence, the problem is reduced to the determination of the coefficients qn and r„ by fulfilling the no-slip condition 
v — 0 at the bottom £ = ß(x) which results in a linear algebraic system of equations, 

oo oo 

E [KnQn + Etnrn]  = Khl  , £ [Fk,n«» + Elnrn]  = 0 , 
n=l n=l (11) 

where the matrix elements are given by Efn := lk_n «) ±Ifc+ri (n() and F^n := E^n+na [^_1>n + ^+1J with 

the modified Bessel functions I„. By solving this infinite system of equations for a finite order N the velocity field v 
is obtained with sufficient accuracy. 
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EWA TULISZKA-SZNITKO AND CHYI-YEOU SOONG 

Linear  Stability Theory of Non-Isothermal Flow Between Two  Rotating 
Disks 

The objective of the present study is to investigate the flow stability of mixed convection in non-isothermal rotating 
fluids between a rotating disk and a stationary one. The buoyancy effects stemmed from the rotational forces, 
including centrifugal and Coriolis, are taken into account. A similarity model of thermal flow with the assumption of 
Boussinesq fluids is formulated for generating axially symmetric solutions of the basic state. Disturbance equations 
are derived by using the concept of small perturbation of normal mode expressions, and then solved by the Chebyshev 
collocation spectral method. The influences of the rotation-induced buoyancy effects and the rotational conditions 
on the flow stability characteristics of the two-disk rotating fluid motion are explored. The present results disclose 
the mechanisms and the significance of the rotation-induced buoyancy on flow stability characteristics of the non- 
isothermal fluids in the rotor-stator disk systems. 

1. Introduction 

The rotating-disk flows, especially the one between two co-axial disks, are highly complicated in nature. The com- 
plexities reflected in multiplicity of the flow states and bifurcation phenomena are stemmed from the non- linearity 
of the rotating fluids. In the course of the increasing rotating rate or in dimensionless form, the rotational Reynolds 
number Re = y/S2£li/v (5 is a distance between disks), the steady laminar flow may turn to the asymmetric, 
time-dependent or oscillatory state, and then to the chaotic state, that means a turbulent flow. A profound stability 
study may provide more evidence of the instability evolution and the transition processes. To reach this end, the 
linear stability analysis is a good starting point for the study of the loss of stability. 

In the past decades, numerous works have been conducted to explore the flow structure and the instabilities associated 
with the rotating-disk flows. According to the experimental results of the earlier single-disk studies summarized in 
the book of Greenspan [1], two types of instability waves, classes I and II, appeared over the disk in order. The waves 
of each of these families form a series of horizontal rolling vortices. Relatively a few works were devoted to the flow 
between the two rotating disks. One of them is Itoh [2] who analyzed the hydrodynamic nature of the flow between 
two rotating disks. Once the non-isothermal flow condition is considered, thermal effects and the rotational-induced 
buoyancy become important and influential in stability characteristics and the critical conditions. Basically, the flow 
mechanisms are closely related to the non-linearity. Before performing the nonlinear stability analysis, the classical 
linear stability analysis is a good starting point. We can conduct the linear stability analysis to find the critical 
condition for the loss of symmetry or steadiness (only). In the present work we analyze the neutral conditions under 
the influences of the rotation-induced buoyancy effects. 

2. Formulation of the problem 

Fig. 1 shows schematically a physical model of the mixed convection heat transfer between two disks rotating at 
rates f2i and ^2, respectively. A cylindrical co-ordinate system (R, Z, ip) is fixed on and rotating with the disk 1. In 
the present study, the value of 02 = 0 represents a rotor/stator disk system. The flow field is assumed to be laminar, 
steady and axisymmetric and is described by Navier-Stokes equations, continuity equation and energy equation. 
To take into account the buoyancy effects induced by the involved body forces, the Boussinesq approximation is 
invoked, i.e. the density associated with the terms of gravity, the centrifugal and the Coriolis forces due to the 
disk rotation, and the curvilinear motion of the fluids are all considered as variable. The Boussinesq linear density- 
temperature relation can be written in the following form p = pr[l —ß(T — Tr)} where r denotes a reference state and 
ß = —l/pr(dp/dT)p is the thermal-expansion coefficient. The disturbance equations are derived by expressing the 
velocity, pressure and temperature fields as a superposition of the basic state and the perturbed flow. A similarity 
model of the thermal flow with the assumption of Boussinesq is formulated for generating basic solutions of the 
axially symmetric flows. The similarity equations with the appropriate boundary conditions create a nonlinear two- 
point boundary value problem, which can be solved by a shooting method with modified Newtons method to update 
the guessed values. Solutions can be easily obtained for lower Res by using the conventional shooting method. 
However, due to the stiffness of the system, the convergent solution is getting hard to bring about as Res increases. 
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Figure 1: Schematic picture or the rotating disks system. 

To improve the accuracy and the convergence characteristics, non-uniform grid, under-relaxation third-order discrete 
continuation techniques are applied (Soong [2]). The linear stability equations (temporal approach) are solved by 
the spectral collocation method based on the Chebyshev polynomials. 

The fluid flow between the two disks may have two different patterns. One is the so-called Batchelor-type flow, 
and the other is of Stewartson-type. Since the flow between a rotating disks system at high rotating rate behaves 
as a Batchelor-type flow the present study concentrates on the flow of this type. In the present paper we analyze 
the influence of _two governing parameters, Res and B on instability characteristics and critical parameters. The 
parameter B = ß(T2 - T2) is the so-called thermal Rossby number. For validity of Buossinesq approximation, the 
values of B has to be limited to a small range, e.g. \B\ < 0.1 in this study. For all of the boundary layers studied 
here on disk 1 and disk 2, two different types of instability i.e. type I and type II were obtained. Type II occurs at 
the lower local Reynolds number Re = y/R

2Q,1/v; for the higher Re type I instability is dominant. We have found 
that, B > 0 or T2 > Ti stabilizes type II instability and destabilizes type I instability on disk 1. Simultaneously 
B < 0 or Ti > T2 stabilizes both type I and II on disk 2. For all analyzed examples the boundary layer of disk 2 
(stator) turned out to be more unstable than that on the rotating disk 1 for any considered values of B. To verify the 
present computations, we have compared our instability results with the previous data of hydrodynamic instability, 
without thermal effect, i.e. B = 0 presented in Itoh's paper [2]. The present predictions are of a little deviation 
from Itoh's (less than 1%). 
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WAGNER, C. 

An eddy viscosity scaled dynamic scale similarity model 

A new subgrid scale model for Large Eddy Simulations (LES) of wall-bounded turbulent flows, which is based on 
scale similarity between resolved stresses and subgrid scale stresses, is proposed. Testing this model a posteriori, the 
fully developed turbulent channel flow was simulated for a low Reynolds number (based on the channel height H and 
friction velocity uT) of Re = 360. Additionally a coarse direct numerical simulation (DNS) without model and a 
LES with a dynamic Smagorinsky model were performed. Excellent agreement is obtained applying the new model 
in comparison with Kim et al. 's [2] DNS data base. 

1. Foundations 

The dimensionless top-hat filtered incompressible Navier-Stokes equations read: 

düi/dxi = 0       ,        düi/dt + diüiü^/dxj + dnj/dxj = -dp/dxi + 1/Re d{2Sij)/dxj (1) 

The velocity vector üj = (ü~x,ü~y,ü~z) and the pressure field p in eq. (1) represent top-hat filtered values, which 
have been integrated over the discrete volume A = Ax Ay Az as described in Wagner [7]. Re denotes the Reynolds 
number, r^- = v^üTj — ü~iü~j the subgrid scale stress tensor and S^ = l/2(dü~i/dxj + düj/dxi) the strain rate tensor. 

Assuming isotropic turbulence and a Kolmogorov spectrum with —5/3 decay in the inertial subrange the unknown 
subgrid scale stress tensor r^- can be modeled in terms of a constant C, an eddy-viscosity ut and the strain rate tensor, 
i.e. Tij « Cvtßij. There are many variants of these so-called eddy-viscosity models. Smagorinsky [6] originally 
proposed the eddy-viscosity vt,s as shown in eq. (2, left). The model by Metais and Lesieur [5J uses a structure 
function based eddy-viscosity, which can be rephrased in terms of the velocity gradient tensor Aij = düi/dxj for 
further use in Germano's dynamic process [1]. The resulting eddy-viscosity VtiA is presented in eq. (2, right). 

vt,s = -ÄV3(2SijSij)
1/2 or Vt,A = -tf"^^)1" (2) 

The trace of the strain rate tensor vanishes in incompressible flow due to the continuity eq. (1, left). Consequently 
in anisotropic wall-bounded flows only the deviatoric part of subgride scale stress tensor Uj = Ty — rkkSij (Sij 
denotes the Kronecker symbol), can be modeled using an eddy-viscosity ansatz. In order to determine the constant 
C in wall-bounded flows the additional filtering operation (.".), which represents the average over the discrete volume 
Ä = 2Ax2Ay Az, is introduced to access scale invariance through Germano's dynamic process [1]. The according 
eddy-viscosity relations for the two filter levels read: 

Uj « CvlSij and Ty = üfüTj - «{«,- - (ü£ü£ - ükük)Sij « CviSij (3) 

Subtracting the filtered subgrid scale stress tensor Uj from IV,- leads to the resolved stress tensor Ly and, in 
consequence of eq. (3), to an equation for the unknown constant C. Applying the least-square formula, which 
was introduced by Lilly [3], the constant can be approximated. Additional statistical averaging (denoted by (..)) 
minimizes the error and ensures C to be positive definite. 

Ut - LkkSij = T^ - Uj « C(Vt%i - vJij) = CMij =► C = - \ ^.^ (4) 

2. Scale similarity model 

It is well-known that the strain rate tensor Sij and the subgrid scale stress tensor Ty correlate very poorly. On the 
other hand, correlation between r^ and Ltj is very high, if top-hat filtering is applied. This led Liu et al. [4] to 
propose the scale similarity relation eq. (5), which leaves CL unknown. 

Tij = CLLij or Uj = Ch{Lij - Lkk8ij) (5) 
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In order to determine Cx, it is proposed to substitute eq. (3, left) and (4, left) into eq. (5, right) to obtain eq. (6, 
left), which can be solved for CL with vt = vtts or vt = vtjA (eq. (2)) applying the least square formula. Additional 
statistical averaging forces CL to be smooth in homogeneous directions, which is necessary to ensure scale similarity 
of the statistically averaged tensors of resolved stresses (Lij) and subgrid scale stresses (T^), i.e. (ry) = CL{LXJ). 

vtSij = CLMij c   = (vtSijMjj) 
(MijMij) {MijMij) (6) 

3. Results 

The performance of the new model has been tested by a Large Eddy Simulation of turbulent channel flow solving 
eq. (1) with a finite-volume method of second-order accuracy in staggered cartesian grids. 64 x 64 points in (x,y)- 
directions and 95 points, which are refined in wall normal z-direction using a tangent hyperbolic law, resolve the 
computational domain extending 27rX7rxlina;xj/x z-directions. The flow is driven by a constant pressure gradient 
dp/dx = 2 and the Reynolds number equals Re = (uTH)/v = 360 (u represents the dynamic viscosity). 
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Figure 1: Mean velocity profiles (left) predicted in different LES and DNS. Profiles of the deviatoric part of the 
Reynolds stress tensor (right) calculated in LES with the new model (lines) and in DNS by Kim et al. (symbols). 

In fig. 1 (left) the mean streamwise velocity profiles computed in a coarse direct numerical simulation (DNS) 
(LES without model), a LES using the dynamic Smagorinsky model and a LES with the new scale similarity 
model are plotted over the logarithmically scaled wall distance in wall units z+ = zRe. While the coarse DNS 
leads to overprediction of wall shear stress, the LES with the dynamic Smagorinsky model produces the opposite. 
The mean velocity profile obtained with the new model utilizing vt = vtyA in eq. (6), agrees remarkably well 
with results reported by Kim et al. [2]. It must be noted that employing vt,s instead of vttA leads to almost 
identical results (not presented). Fig. 1 (right) contains profiles of the deviatoric part of the Reynolds stress tensor 
Rij = (uiitj) - (ui)(uj) - ((ukiik) — (uk)(uk))8ij. The comparison with Kim et al.'s data [2] also demonstrates that 
the new scale similarity model produces reliable forecasts in turbulent channel flows. 
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WiERSCHEM, A.; SCHOLLE, M.; AKSEL, N. 

Creeping Newtonian Film Flow Down an Inclined Wavy Plane. Part II 

We consider the creeping film flow down an inclined wavy plane. For large wavelengths and thin films we consider 
two different approaches depending on the order of the amplitude of the wavy bottom profile and compare them to 
experimental results. 

1. Introduction 
The flow down an inclined plane is a well studied problem in classical hydrodynamics. However, little is known about 
the effects of bottom profile variations on the flow of a liquid film. Films flowing down curved surfaces have been 
studied theoretically by Wang [1] and numerically by Pozrikidis [2]. However, we are not aware of any experimental 
results concerning this subject. Additional to the study by Wang we take here another approach for small wavy 
perturbations. Together with a further theoretical method described in this volume [3], the different approaches are 
compared to first experimental findings. 

2. Theoretical Approach 
The film flow down a sinusoidal wavy plane has three geometrical lengths: the wavelength of the bottom profile A, 
its amplitude A, and the film thickness H. Here we are interested in the case where the film is rather thin. For thick 
films see [3]. The wavelength is assumed to be always larger than the other two scales. Thus we may distinguish 
between two remaining cases: One with small amplitudes and one where the amplitude is much larger than the film 
thickness. In the first case we may use the ratio between amplitude and wavelength as the perturbation parameter. 

AfzH «A 
A 

ff«A< A; 
'=! (i) 

Both cases are treated conveniently in local coordinates. For easier comparison with experimental data, we give here 
the leading order results in dimensional form. In line with Wang [1] we obtain at leading order in 6 the creeping 
film flow corresponding to the local inclination angle: 
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Here U, W, X, and Z are the velocity components and the coordinates parallel and orthogonal to the bottom profile, 
respectively. The film thickness is denoted with H and the pressure with P, whereas g, u, a, 6, a and H0 are the 
gravitational acceleration, kinematic viscosity, mean inclination angle, inclination angle relative to the mean, surface 
tension and film thickness at mean inclination angle, respectively. For small amplitudes in linear order e we obtain: 
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where B is the bottom profile. It gives the first correction to the solution of the creeping flow over a flat bottom. 

3. Experimental System and Results 
We studied the film flow of silicon oil with a dynamic viscosity of 970 mPas over a ramp with three consecutive 
waves of 300 mm length and 15 mm amplitude after a flat part of 1000 mm length. The latter serves to compare 
the flow over the wavy profile to that over a flat bottom. The film thickness has been measured from the side with a 
CCD-camera mounted with a microscope objective. The camera is fixed to an XYZ-transverse unit and scans the 
bottom and the free liquid surface. 
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Figure 1: Comparison of experimental and theoretical film thickness for different inclination angles, (a) Reynolds 
number Re = 0.04, mean inclination angle a = 28°, (b) Re = 0.056, a = 18°. 

Besides the two theoretical approaches with exact boundary conditions mentioned above, we compare the experimen- 
tal data to the results obtained in [3]. This method consists in solving the exact volume equations and perturbing 
the boundary conditions for small bottom-profile amplitudes A < A; £ = A/X. The comparison is shown in 
Figure 1. All approaches match reasonably well to the experimental curve for a mean inclination angle of 28°, as 
seen in Figure 1(a). At leading order as considered here, Wang's result fits best the measured film thickness, yet it 
has the lowest expansion parameter for the experimental setup. However, at lower inclination angle the situation 
changes. For the ramp used, the lowest local slope becomes zero at a mean inclination of 17.4° and reaches negative 
values at lower tilt. Despite the fact that the bottom profile is monotonously falling at 18° mean inclination, the 
theoretical approaches do not describe the experiment properly as shown in Figure 1(b). They all show considerable 
deviations at the flat side of the profile. Neither of these approaches describes the damming up at the beginning 
of the flat side of the slope. Wang's approach diverges the most from the experimental curve. This is due to the 
base approximation of his approach. The assumption that the creeping film flow corresponds to the local inclination 
angle leads to extremely thick films at the flattest part of the bottom slope, which is not encountered in experiment. 
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ZLATANOVSKI T. 

Settling velocity of porous particles using the particle-in-cell model 

We extend the particle-in-cell model to the case of settling porous particles. The particle swarm is assumed to 
consist of identical unit cells each containing a porous particle surrounded by a fluid shell. The steady axisymmetric 
creeping flow in this multifield unit cell model is assumed to be governed by the Stokes equation in the fluid shell 
and the Brinkman equation in the porous particle. Analytical solutions for the case of porous-sphere-in-cell and 
porous-spheroid-in-cell model are obtained. 

1. Introduction 

Settling operations with porous particles are encountered in many engineering applications. We apply the concept 
of the particle-in-cell model to computationally predict settling velocity of an assemblage of porous particles moving 
together in bulk through a fluid, as in sedimentation. The boundary value problem is reduced to consideration of 
a single particle, region (2), and its bounding fluid envelope, region (1). The volume of the fluid cell is chosen so 
that the porous particle volume fraction in the cell, 7 = Vp/VCeii, equals the porous particle volume fraction of 
the swarm. Under the same assumptions as in the case of the rigid-particle-in-cell model [1], the non-dimensional 
governing equations for the porous-particle-in-cell model are 

Av'1' = i?u.Regradp(1)    -    Stokes' equation in (1) (1) 

Av<2) - K2v{2) = EuRegTcidpW    -    Brinkman's equation in (2) (2) 

divv«=0    » = 1,2 (3) 

where K2 = L2/k; k denotes the permeability of the porous particle, and L is an appropriate length-scale. 

The boundary conditions to be satisfied on the shell-particle interface are continuity of velocity, pressure and tan- 
gential stress. On the outer fluid cell surface we apply Happel's boundary conditions, i.e., uniform velocity in the 
direction of main axis and vanishing tangential stress component, which are physically more realistic than Kuwabara's 
assumption of vanishing vorticity instead of vanishing tangential stress. Using the stream function formulation for 
axisymmetric creeping flow, the problem reduces to the following equations for the stream function 

EH{1) = Q   -    Stokes (4) 

E*yW - K2E2yW = 0   .    Brinkman, (5) 

and the equations ApW = 0, i = 1,2 for the pressure in the two flow regions, which are all to be solved using the 
above specified boundary conditions, and where E2 is the Stokes differential operator in the specified coordinate 
system. 

2. The case of a porous-sphere-in-cell 

For this case we have obtained a closed form solution of the problem. The settling velocity of a swarm of porous 
spherical particles, U, relative to the settling velocity of a single particle of the swarm alone, Uo, is given by 

U_       i(l-y)       A-Bt^K 

UQ      2K2 + 3 (l — tanhjO C — D tanh K 
(6) 

where A = 90s5K + (3 + 42s5 - 30s6) K3 + (2 - 3s + 3s5 - 2s6) K5, C = ZK2 + 2K (15 + K2) s5, B = 90s5 + 

(3 + 72/ - 30s6) K2 - (3s - 15s5 + 12s6) K\ D = 3K2 + 6 (5 + 2K2) s5, and K = b/y/k, s = ^7, 7 = {b/af, 
b =particle diameter, a =diameter of the fluid shell outer surface.   In the limiting case as k ->■ 0 we obtain the 
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expression for the relative settling velocity of a swarm of rigid spherical particles as given in [1]. Figure 1 shows the 
computed streamline pattern of a porous-sphere-in-cell structure. 

3. The case of a porous-spheroid-in-cell 

The case of settling elongated axisymmetric porous particles can be best modeled by the porous-prolate-spheroid-in- 
cell approach. However, this problem is more complicated than the former one, and there is no closed form solution 
of this problem, even for the rigid-spheroid-in-cell model. The rigid-spheroid-in-cell model was treated in [2]. The 
problem of Stokes/Brinkman flow past and through a single porous spheroid in uniform far-field flow was solved in 
[3]. To solve the present problem we have derived and used appropriate general solutions of the Brinkman, Stokes 
and the Laplace equations in spheroidal coordinates. From our numerical calculations to this problem we give here 
(Figure 2) the streamline pattern for a porous prolate spheroidal particle in confocal fluid shell. 
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Figure 1: Streamline pattern of a porous-sphere-in-cell Figure 2:   Streamline pattern of a porous-spheroid-in- 
cell (semi focal distance c = \/3) 

4. Conclusions 

Unit cell models have proven to be a very useful approach in the analytical treatment of complex flows involving 
a great number of particles. In the most cases, such models consider only impermeable spherical particles. Here 
we have employed the concept of particle-in-cell model to the case of sedimenting swarm of porous particles, using 
the widely accepted Brinkman equation for the flow through the porous medium of the particles. We have solved 
the boundary value problem arising in this type of particle-in-cell model both for the case of porous spherical and 
spheroidal particles. 

In order to find to which extent the analytical solutions here obtained agree with the real situation, measurements 
of settling time and terminal velocity of sedimenting porous particles have to be performed. 
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HENSELOWSKY, C; KUHLMANN, H.C.; RATH, H.J. 

Heat transfer from hot wires at small forced-flow velocities 

At very low velocities (v < 0.1 m/s), hot-wire measurements are significantly influenced by free convection. To 
assess the contribution of free-convection heat transfer to the heat balance of hot-wire probes, measurements under 
gravitational and under microgravity conditions are compared in a velocity range 0 < v < 0.3 m/s corresponding to 
a Reynolds number range Re < 0.1. The measurements were made with horizontal hot-wire probes in cross flow in 
air at 21.8° C. For creeping flow three distinct regions can be observed in which different factors dominate the heat 
transport. While free convection prevails at Re = 0, forced convection dominates for Re > Grxl3. At intermediate 
Reynolds numbers both transport mechanisms must be considered. 

1. Introduction 

The heat transfer from hot wires in low-velocity forced flows can be significantly influenced by buoyancy effects. 
In order to quantify this buoyant contribution to the total heat transfer, experiments under weightlessness were 
compared with laboratory measurements. The microgravity (fig) measurements have been carried in the Drop 
Tower Bremen which provides a reduced gravity level of 10~5g during a period of 4.7 s. In this work two wires 
with different aspect ratios T = l/d, where / and d are the wire length and the wire diameter, respectively, were 
investigated at different wire temperatures. Measurements have been made with horizontal hot wires placed normal 
to a horizontal air stream. The experimental setup is described in [3]. 

2. Dimensionless numbers and probe dimensions 

All fluid properties like the kinematic viscosity v, thermal expansion coefficient ß, thermal conductivity A, and 
thermal diffusivity K to determine the dimensionless Reynolds number Re = U ■ d/u, Nusselt number Nu = a ■ d/X, 
Grashof number Gr = g ■ d3 ■ ß ■ (Tw - Ta)/v2, and Prandtl number Pr = V/K have been evaluated at the film 
temperature Tf which is defined as the arithmetic mean of the wire temperature Tw and the fluid temperature Too • 
The diameters of the hot wires used were so small that the molecular nature of air had to be taken into account. 
Therefore, the Nusselt number was recalculated to a continuum Nusselt number Nuc — Nu/(I — 2 • Kn ■ Nu), where 
Kn is the Knudsen number; see [2]. The probe properties are specified in Table 1. 

Probe Material Wire ends Length [mm] Diameter[/im] Aspect ratio T 

1. TSI 1210-T1.5 W/Pt coated 1.27 3.8 334 

2. HFI W/Pt uncoated 4.0 5.0 800 

Table 1: Probe properties 

3. Results 

Figure 1 shows the calibration curves for lg and fig measurements for different wire temperatures. Below a cer- 
tain threshold Reynolds number Re* both curves differ, while they coincide for Re > Re*, where Re* was found 
graphically from the figures below. For Re > Re* the both Nusselt-number curves follow the modified King law 
Nuc = A + BRen [4] with different calibration constants (A,B,n). For Re < Re* the Nusselt numbers measured 
under p,g conditions are well described by a linear dependence Nuc = a + bRe. 
Collis and Wiliams [2] found experimentally that the influence of free convection can be neglect when Re > Gr1/3. 
Table 2 shows a comparison of this criterion [2] with the experimentally determined range of transition Reynolds 
numbers Re* for different overheat ratios. For the short TSI-hot-wire probe the transition-Reynolds-number val- 
ues are in good agreement with the classical criterion. For the wire with high aspect ratio (HFI) the measured 
transitional Reynolds numbers are slightly larger than predicted by [2]. 
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Figure 1: Heat-transfer Nusselt numbers for lg and fig conditions.  The lower figures show magnifications of the 
regions boxed in the upper figures 

HFI TSI 
Re > Gr1'3 0.009 - 0.0098 0.0070 - 0.0074 
Re* found here 0.013-0.0180 0.0067-0.0087 

Table 2:  Comparison of the measured transition-Reynolds-number range with the classical criterion by [2].   The 
range is determined by the different overheat ratios. 
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HOZEJOWSKI L., HOZEJOWSKA S., SOKALA M. 

Stability of solutions for some inverse heat conduction problems by heat 
functions method 

1. Heat functions for transient problems of heat conduction in (r, ^-coordinates 

The heat functions of the first and second kind, gn(r,t) and un(r,t), are defined as the coefficients of p2n in the 
power series expansion of the generating functions, respectively 

U(r,t,p)=I0(pr)ei>2t, 

where 7 is Euler's constant. Both gn{r,t) and un{r,t) are clearly solutions of the heat equation 

W(r,t,p) = K0(pr)epH + (7 + \n^)I0(jyr)epH, 

d2T     ldT     dT 
 1 = ir-,       t>0, a<r <b, 
dr2      r or      at 

and therefore show good applicability for problems governed by this equation. A more detailed investigation of their 
properties can be found in [1]. 

2. Solution of some inverse problems by heat functions method 

The solution of a boundary value problem in a long (possibly hollow) cylinder Q, can be approximated with a linear 
combination of the heat functions 

JV M 

T(r,t)^e^(r,t) = J2cnk)9n(r,t) + J2dmUm(r,t),    reu, kAt < t < (k + l)Ai, fc = 0,l,2,... 
n=0 m=0 

The coefficients c^ and d$ are chosen to minimize the functional whose terms represent the residuals at the 
boundaries. The approximate formula for T(r,t) can be extended beyond the region of the direct problem to be 
used for solution of an inverse problem. 

3. Stability of the computational algorithm 

Suppose the boundary temperature of a long solid cylinder is to be inferred from the initial temperature distribution 
and the temperature histories at a certain inner location. Measurements of temperature contain errors: ÖT^ in 
the current time interval and <JT(fc_1) in the previous time interval. They cause error of the solution, 06^, and the 
relationship between these quantities is given in the form 

06^ = AST^-1^ + BOT™ 

in which A and B are certain matrices. 

If we demand that the error should not propagate with time, the condition ||A||s < 1 must be satisfied. (||A||s is 
largest of the eigenvalues of the matrix AAT). 

4. Numerical examples 
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Example 1. A long solid cylinder (radius R = 0.02m, a = 14.4 x 10-6m2/s is initially at 0°C. The 
measurements of temperature at r = 0.0198m are taken with the time step tstep = 0.14s. The unknown to solve for 
is the temperature at r = R. The graph shows how stability condition is satisfied when At grows from 0.28s to 2.8s 
and M = 0 and N = 4, 6, 9. 
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Fig. 1 Values of ||A||s for various lengths of the time interval At 

Example 2. A long hollow cylinder of radius a < r < b, (a = 0.01m, b = 0.05m, a = 6.76 x 10~6m2/s) 
is initially at 60°C. For times t > 0 heat is dissipated by convection from the boundary surface at r = a into a 
surrounding at 24°C (h = 2 x 104W/m2K). Measurements of the temperature at r = 0.48m are taken with the time 
step tstep a) 0.7s, b) 1.8s. The results are presented for M = N = 2 and M = N = 3. The graph shows ||A||s when 
At changes from a) 0.7s to 19s, b) 1.8s to 19s 
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Fig.2 Values of ||A||s when both kinds of the heat functions are used 

The obtained results show that propagation of the measurement errors is smaller when tstep increases and when 
fewer heat functions of either kind are used in the solution. When M, N and tstep are fixed, it is possible to find 
such a length of the time interval At for which the condition \\A\\s < 1 is satisfied. 
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HRIBERSEK, M. 

Inexact Newton-Krylov Methods for Nonlinear Forced Heat Convection 
Problems by BEM 

A preconditioned inexact Newton-Krylov nonlinear iterative method is constructed for computation of nonlinear heat 
transfer problems by Boundary Element Methods. The performance of the iterative method is tested on conjugate 
heat transfer problem in a thick wall channel. 

1. Problem definition 

Applying an approximation method for a solution of conjugate heat transfer problem inevitably leads to nonlinear 
systems of equations, which have to be solved in order to obtain a numerical solution to a selected problem. This is 
also the case with Boundary-Domain Integral Method (BDIM) [1], a version of Boundary Element Method for fluid 
flow and heat transfer problems. 

As a frame for the solution the diffusion-convective heat transport equation was chosen, 

DT _      d2T (!) 
Dt        dxjdxj' 

which is in BDIM transformed into an algebraic equivalent [1]: 

[Ht]{T} = ~[Gt]{^ ~ Tvn} + ~[Du][vi]{T} + [Bt]{T}r_lt (2) 

with K being the thermal diffusivity. With known velocity vector field and given boundary and initial conditions the 
task of the solution algorithm is to compute the corresponding temperature and its derivatives field in the fluid and 
solid part of the computational domain. The equation (2) is a nonlinear one and can be written in general form as 
N nonlinear equations with variables Xi, i = 1,2,..., N: 

F(x) = 0, Fi(xl,x2,...,xN) = 0,    i = l,2,...,N. (3) 

In case of equation (2) we can construct the F(x) = 0 as follows. After applying boundary and initial conditions to 
the selected heat transfer problem the following nonlinear equations set is obtained: 

Ax = b(x), b(x) = bBC + bv(x), (4) 

where bBc is the right hand side (RHS) vector due to boundary and initial conditions and bv(x) is on x dependent 
RHS vector due to variable velocity field. Unknowns x are T and §£. Hence, 

Ax - bv{x) - bBC = 0 -> F(x) = Ax-bv{x)-bBC- (5) 

2. Nonlinear solution algorithm 

For the solution of equation (3) the inexact Newton-Krylov method [2] was selected. It's main advantage over the 
standard Newton's method is a global convergency for almost any initial guess. In the general Newton's algorithm, 

J6x = -F{nx), -+ n+1x=nx + 6x, (6) 

the Jacobian J of the system F is now computed approximately using the finite difference formula: 

J = 

dFj 9Fi ML. 
9XI dX2 '"      9XN 

dFN dFN dFN 

dxi 9X2 "'         9XN 

dFj _ Fj(x + hjej)-Fi{x) ^ 
dxj hj 

with hj = y/rjMAX{\xj\,typ Xj}sign{xj) the stepsize, JJ = the relative error in computing Fi(x) (machine epsilon) 
and typ Xj > 0 the typical size of Xj. Evaluation of Jacobian J in BDIM is computationally favourable, as the use 
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of macro element with Subdomain technique allows local (element-wise) evaluation of J and as a result the J has 
the same sparsity pattern a system matrix A, saving computer memory. Another important and decisive feature of 
Inexact Newton's method is only approximate computation of the Newton's step Sx. 

In the process of searching of the solution to (3) the method has to decide whether the new step Sx leads to 
convergence. Among different strategies for adopting Sx the linesearch backtracking technique [2] was applied, 
where the check whether F is being minimized by the new step is performed as 

\\J{nx)5x + F(nx)\\<r)\\F(nx) (8) 

with forcing term n G [0,1). If (8) holds, Sx is accepted, otherwise backtracking search is performed along the descent 
direction for / = \FF to find a new Sx. To ensure low number of backtracks in the early stages of nonlinear loop 
and to increase the convergency in the vicinity of the solution, a dynamic setting of r) = (0.5)n (n=nonlinear loop) 
was applied. 

It is important to realize that the norm of F in (8) appears also as a norm to minimize when a Krylov method is 
applied for the solution of the step ox in (6). Therefore, choosing a monotonically converging Krylov method, like 
GMRES [2], ensures a fast solution to the linear problems together with a decrease of the norm of the nonlinear 
function F, hence leading to a fast and reliable nonlinear solution. The nonlinear iterative method is therefore 
based on Newton-Krylov iterations. In order to increase convergence of GMRES and to avoid problems with rising 
memory demands of GMRES as linear iterations increase, preconditioning from the right has to be applied, i.e. 

J5x = -F —> JQ-^QSx F. (9) 

Due to changing value of the stopping criterion r) during nonlinear iterations a flexible preconditioning was applied, 
resulting in the use of the diagonal preconditioning in the early stages and the level based fill-in (ILU(l)) incomplete 
lower upper factorization [1] in the rest of nonlinear iterations. For large value of r) low value of I was selected 
(ILU(O)), and for small value of 77 a higher value of I (ILU(1)-ILU(4)) was selected. 

3. Results and conclusions 

Conjugate forced heat convection in a thick wall channel with constant outside wall temperature, Fig.l (left), was 
computed with the use of different nonlinear iteration schemes. Computational mesh consisted of 480 cells. The 
Peclet number value, based on the channel height, was 100. As can be observed, Fig.l (right), the underrelax- 
ation scheme is very sensitive to the choice of underrelaxation parameter 0 and converges only for smaller val- 
ues, whereas Inexact Newton-GMRES method converges almost quadratically. Hence, the inexact Newton-Krylov 
method presents a strong alternative to commonly used nonlinear iteration schemes in BEM. 
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Figure 1: Computational domain and boundary conditions (left), convergence of nonlinear iterative methods (right) 
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LEE, Y.-S.; KUHLMANN, H. C; RATH, H. J.; CHUN. CH.-H. 

Stability of thermocapillary flow in cylindrical liquid bridges: 
Rotation of the hot disk 

The thermocapillary flow in a differentially heated cylindrical liquid bridge under steady rotation of the hot disk 
is considered in the limit of zero capillary number. Steady flow states and their three-dimensional stability are 
calculated numerically. It is shown that the vortex breakdown caused by the rotation is strongly affected by the 
thermocapillary flow. A linear stability analysis reveals that the most dangerous perturbations are oscillatory with 
azimuthal wavenumber m = 1 or m — 2 depending on the parameters. 

1. Introduction 

We consider a differentially heated cylindrical liquid volume of radius R under steady rotation of the hot upper disk, 
separated from the cold disk by a distance d, in the limit of zero capillary number and zero gravity. This half-zone 
models the float-zone crystal-growth process. The thermocapillary driving force is generated by vertical temperature 
difference AT along the cylindrical surface. Adiabatic condition is imposed along the free surface. 

Re is the Reynolds number defined by Re = ^ATd/pot/2. The rotational Reynolds number for the hot disk 
rotation is defined as Ren = fid2/v. The Prandtl number is Pr = V/K, and the aspect ratio T = d/R. 

2. Numerical methods 

The basic steady axisymmetric flow («o,Po, #o) *s calculated by a mixed finite-difference and Chebyshev collocation 
method [1] and its stability is investigated by solving the linearized equations with normal modes ~ e(a+if)teimp 
From the resulting generalized eigenvalue problem, the critical conditions are found by seeking the zero of the growth 
rate a over azimuthal wave numbers up to m = 6 and all normal modes. Typical grid sizes are Nr x Nz = 32 x 
100. More details on the numerical methods are given in [1]. 

3. Axisymmetric steady state: vortex breakdown 

Without hot disk rotation, there exists an axisymmetric toroidal thermocapillary flow directed downwards (towards 
the cold wall) on the free surface and upwards near the axis, as shown in Fig. la for T = 1.0 and Pr = 0.02. The 
thermocapillary flow is enhanced by the secondary flow due to the hot disk's rotation. At a constant rotation rate 
Ren = 800 of the hot disk, vortex breakdown appears on the axis if the Reynolds number Re exceeds a certain value, 
as can be seen in Fig. lb. The separation bubbles grow as the Reynolds number increases, a behavior very similar to 
the one in lid-driven confined swirling flows [2]. While vortex breakdown can appear when the rotational Reynolds 
number Ren is increased at a fixed Reynolds number Re, it can also disappear again on a further increase of Ren. 

4. Linear stability analysis 

A linear stability analysis shows that the flows shown in Figs, le and la are neutrally stable; those in Figs, lb-d 
are linearly stable. We find that rotation of the hot disk generally stabilizes the thermocapillary flow. Results on 
the critical Reynolds number Rec are shown in Fig. 2. For low Pr and in the absence of rotation (Fig. la) the 
critical mode is steady [1] (with m = 1 for Pr = 0.02 and T = 2). When the hot boundary rotates, the critical mode 
becomes unsteady with a frequency growing linearly from LJC = 0. In some cases, we observe a change of the critical 
wave number between m = 2 and m = 1 (cf. Fig. 2a). In the case of high Prandtl numbers the critical mode for 
Ren = 0 is already oscillatory and there exists a pair of azimuthally traveling waves with frequencies ±u. We find 
different actions of the rotation on the pair of traveling waves. The rotation of the hot disk monotonically stabilizes 
the thermocapillary flow when the rotation direction is the same as the one of traveling wave (prograde mode), 
while the rotation slightly destabilizes the flow when the rotation direction is opposite to the one of traveling wave 
(retrograde mode) near Ren = 0. On a further increase of Ren, however, the flow becomes stabilized monotonically. 
The stability boundary of the retrograde mode is lower than that of the prograde mode, as shown in Fig. 2b. 
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Ren=0 Ren= 800 Ren= 800 Ren= 800 Ren= 800 

(a) Re= 1678      (b) Re= 2850      (c) Re= 3060      (d) Re= 6000     (e) Re= 8573 

Figure 1: Streamlines of the meridional flow showing the appearance of vortex breakdown with increasing Reynolds 
number Re for Refi = 800, Pr = 0.02, and T = 2.0. Two breakdowns are visible in (c). 
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Figure 2: Dependence of the critical Reynolds number Rec on the rotational Reynolds number Ren. T = 1 
r = 2    . (a) Pr = 0.02, (b) Pr = 4. P indicates the prograde mode, R the retrograde mode. 

5. Conclusion 

It is shown that the vortex breakdown caused by the rotation of the hot disk is strongly affected by the thermo- 
capillary flow in the Prandtl-number range 0.02 < Pr < 4 and for aspect ratios 1 < T < 2. A linear stability 
analysis reveals that the most dangerous perturbations are oscillatory with azimuthal wavenumber m = lorm = 2 
depending on the parameters. 
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M. MARCIC, M. ZGONIK, J. AVSEC 

Combustion of the Diesel Fuel Spray 

The paper deals with the computer simulation of the Diesel fuel spray combustion under the similar conditions as in 
Diesel engines. A mathematical model of the spray propulsion and combustion is treated which allows the observation 
of the phenomena in the spray during its movement through air. Fuel droplets of Hie spray are vaporized due to the 
transfer of heat from hot air. In a certain moment when required conditions are met selfignition of mixture occurs. 
In order to determine the points where selfignitions occurs first, we have introduced the term "ignition probability" 
referring to the local air ratio and fuel dispersion in the spray. 

1. The Physical Model 

The paper deals with the computer simulation of the Diesel fuel spray combustion under the similar conditions as 
in Diesel engines. The mathematical model of combustion consists of submodels describing individual combustion 
stages. The paper describes in detail only the fuel ignition stage. The mathematical model of the Diesel spray 
(Fig. 1) is obtained from the continuity and momentum equation. Spray is divided into small elementary volume. 
The mathematical model allows the computation of the quantity of fuel and fuel vapours, air, mean, maximum and 
minimum fuel droplet diameter [1] as well as their number in each elementary volume. Due to the varying fuel 
output velocity u(t) from the nozzle and different positions of elementary volumes in the spray, their velocities differ 
one from another. We assume that inside each elementary volume all the droplets move at the same velocity. 

The most efficient combustion with regard to the consumption and emission will be in those elementary volumes 
containing the stoichiometric air ratio and the fuel droplets with the lowest mean diameters. At the same time, 
there is a strong probability that under normal operating conditions in Diesel engines self-ignition the fuel vapour-air 
mixture occurs in those elementary volumes containing stoichiometric air ratio and fuel droplets with the lowest 
diameters. In order to determine the points or elementary volumes where self-ignition occurs first, we have introduced 
the term "ignition probability" * referring to the local air ratio and fuel dispersion quality in the spray. 

* = *c*d < 1 (1) 

The term \PC takes into account the local air ratio in the spray and has the highest value for stoichiometric air ratio. 
In the equation 2 mg is mass of fuel and ma is mass of air. 

*c = exp -ABSln^- *r 
mg 

ma 
$, \maJ (2) 

stoichiometric 

^d takes into account the fuel spray dispersion quality and has the maximum value at the droplet diameter dopt = 
0.0065 mm. This diameter is considered the optimum for combustion in Diesel engines. The droplets with the 
diameter 0.0065 mm may already be treated as those burning as a gas [2]. In the equation 3 dm is a mean droplet 
diameter in each elementary volume. 

*d = 
3oo(27r) = 

■exp 
__1 j dm — dppt V 

2 V     3<j0     J 
a0 = ABS(dm - dmin) (3) 

The points where * has equal value are joint into curves so as to obtain the areas where the self-ignition probability 
is the strongest. In the point st (Fig.l), the fuel jet changes from the fully liquid into the spray containing air, fuel 
vapours and fuel droplets. To calculate the evaporation of fuel droplets we used the law of droplet evaporation[3]. 

2. Computer Simulation and Comparison with Measured Results 

The simulation results of the combustion of Diesel spray injected into   stagnant 832°C/10 bar air are presented. 
The injected fuel amount is 128 mm3/cycle and the duration of injection 1,84 ms. The highest probability of the 
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mixture self-ignition is at the end of the spray (Fig. 2) where the majority of the fuel has been evaporated, the 
droplets have very low diameters and the local air ratio is approximately one. 

The experiments have been carried out in a combustion bomb allowing the measurements of spray diameter, 
concentration in spray, combustion temperature and combustion shooting. Fig. 3 shows the radial temperature 
distribution in the spray at the distance of 40 mm from the injection nozzle. The matching of the measured and 
computed temperatures is good over the entire cross section of the spray. 

Fig. 1: Diesel spray 

Fig. 2: Probability of the mixture self-ignition 
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Fig. 3: Measured and computed temperature 
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H. MOCIKAT, J. PRAZäK, ST. GöPPERT, H. HERWIG 

Konvektiver Wärmeübergang bei instationärer Anströmung 

Der Einfluss instationärer Strömungen, z.B. rotierender oder pulsierender Prallstrahlen, auf den Wärmeübergang an 
einer angeströmten Platte wird mit Hilfe gemessener Temperatur- und Wärmestromfelder untersucht. Die Bewer- 
tung der Strömungsvarianten mit Wärmeübergangs-Koeffizienten a bzw. Nußelt-Zahlen Nu ist problematisch, weil a 
unstetig werden kann und die charakteristische Länge der Nu-Zahl für verschiedenste Düsenkonstruktionen schlecht 
vergleichbar ist. Deshalb wird eine neue Auswertung mit Hilfe der Parameter "Leistung des Prallstrahls " sowie einer 
Effektivitäts-Kennzahl E vorgestellt. 

1. Einführung 

Stationäre Prallstrahlen bewirken an den beaufschlagten Flächen einen sehr intensiven konvektiven Wärmeüber- 
gang und sind deshalb ausführlich untersucht worden [1]. Üblicherweise werden die experimentellen Ergebnis- 
se in der Form a(Re,H/D,r/D) bzw. Nu(Re,H/D,r/D) ausgewertet, mit dem Wärmeübergangs-Koeffizienten 
a(r) = q{r)/[T(r) ~TL], der Nußelt-Zahl Nu(r) = a(r) ■ D/A, der Reynolds-Zahl Re = w ■ D/v, D: Düsendurch- 
messer, H: Abstand Düse - Wärmeübergangsfläche, r: Abstand Staupunkt - Messort, q(r): Wärmestromdichte, 
T(r): Temperatur der Wärmeübergangsfläche, Ti: Luft-Temperatur. 
Dabei treten Probleme auf, da die Temperaturdifferenz [T(r) — T£\ sehr klein und sogar negativ werden kann und 
indem für den Vergleich mit komplizierten Düsengeometrien, wie sie z.B. mit Radialstrahl-Düsen [2] oder Düsen für 
pulsierende Prallstrahlen [3] gegeben sind, die charakteristischen Düsendurchmesser D nicht vergleichbar sind. Ein 
derartiger Vergleich ist aber erforderlich, wenn der Wärmeübergang mit Hilfe instationärer Prallstrahlen verbessert 
werden soll [4]. 
Als neue Größen zur Bewertung des Zusammenhangs "Düse - Strömungsfeld - Wärmeübergang" werden deshalb die 
Strahlleistung PD = Ap • V mit Düsen-Druckverlust Ap und dem Volumenstrom V und eine Effektivitäts-Kennzahl 
E eingeführt. 

2. Effektivitäts-Kennzahl E 

Bei einer Wärmestromdichte q(r) stellen sich in einem Gebiet A bei natürlicher Konvektion eine Temperaturvertei- 
lung TMK{T,^P) und bei Prallstrahl-Anströmung eine Temperaturverteilung Tps(r,<p) ein. Die Wirkung des Prall- 
strahls besteht im Übergang TNK —> Tps- Im Gebiet A gilt nach experimenteller Beobachtung TNK{T, f) « const.. 
Weiterhin gilt q = ctNK ■ {TNK — Too) , wobei T^ die Umgebungs-Lufttemperatur ist. Damit wird die Effektivitäts- 
Kennzahl E definiert: 

E = l/A- J[(TNK - TPS)/(TNK - Too)} dA 
A 

Werden die herkömmlichen a-Beziehungen eingesetzt, ergibt sich 

E=l/A- Al - aNK/apS] dA 

A 

E liegt im Wertebereich 0 < E < 1. Die Versuchsergebnisse werden in der Form E = E{PD,H,T) ausgewertet. 

3. Versuchsaufbau und -durchführung 

Eine Messplatte von 400 • 400mm2 , die in 25 Einzelfelder unterteilt ist, wird elektrisch erwärmt und erlaubt die 
Messung der Oberflächentemperatur T(r) und der konvektiven Wärmestromdichte q(r). 
Die Düsenvarianten sind in der Tabelle aufgeführt. Der Düsen - Platten - Abstand wird im Bereich 20mm < H < 
300mm variiert. Die Strahlleistung ergibt sich je nach Düse und Volumenstrom zu 0,5W < PD < 750W. 
E wird für ein Gebiet A = ix ■ R2 mit R = 322mm bei mittleren Wärmestromdichten qm « 400W/m2 berechnet. 
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Bezeichnung Kürzel Beschreibung Strömung 
Prallstrahl- 
Düse 

FW konvergente    Düse,    Querschnittsverjüngung    von 
Da = 37mm auf D = 10mm 

stationär, axialsymmetrisch 

Ringstrom-Düse RA Düsenströmung   (Di   =   8mm)   konzentrisch  von 
schnellerer Ringströmung umgeben (Dr = 12mm) 

stationär, turbulent infolge 
freier Scherschicht 

Pulsations-Düse PA innere Düse (Di = 8mm) koaxial in äußerem Rohr 
(Da = 37mm) um 110mm zurückgesetzt 

instationär, schwach 
pulsierend 

Pulsations-Düse PB wie PA, innere Düse um 270mm zurückgesetzt instationär, stark pulsierend 
Drallstrahl- 
Düse 

FD wie FW, aber mit Drallerzeugung in Düsenvorkam- 
mer (Da = 37mm) 

stationär, drallbehaftet 

Präzessions- 
Düse 

PD wie FD, aber in äußerem Rohr (Da = 37mm), mit 
Blende (DB = 10mm) abgeschlossen 

instationär, stochastisch 
präzessierend 

Tabelle: Düsenvarianten und Strömungs-Charakteristika 

4. Versuchsergebnisse und Diskussion 

Abb. 1 zeigt mit Re(PD) den Zusammenhang von Strömungsfeld und Strahlleistung, wobei Re auf D bzw. Dr 

(s. Tab.) bezogen ist. Abb. 2 zeigt die größeren E-Werte für die stationären Strömungen, weil die instationären 
Strömungen offensichtlich noch nicht die charakteristischen Strouhal-Zahlen haben, um auf den Wärmeübergang 
einzuwirken. Zusätzlich sind die E-Werte über ein sehr großes Gebiet A gemittelt. Künftig werden die Ortsfunktio- 
nen E — E(r) und zusätzlich die Parameter der Strömungsfelder gemessen und ausgewertet. 
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Abbildung 1: Reynolds-Zahl verschiedener Düsen bei 
Variation der Strahlleistung 

Abbildung    2:    Effektivitäts-Kennzahl    verschiedener 
Düsen bei Variation der Strahlleistung 
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NIENHüSER, CH.; KUHLMANN, H. C; RATH, H. J. 

Instability of buoyant-thermocapillary flows in non-cylindrical liquid bridges 

The flow driven by buoyancy and thermocapillarity in a liquid bridge between coaxial differentially heated disks 
held by surface tension forces is investigated. We numerically determine the stability of axisymmetric flows by a 
linear stability analysis. In the present approach, the influence of buoyancy forces on the flow stability is taken 
into account through static meniscus deformations as well as through internal buoyancy. To elucidate the physical 
instability mechanisms the energy balance given by Reynolds-Orr-like equations is considered term by term. 

1. Model and numerical methods 

The well-known half-zone model consists of a liquid bridge, bounded axially by two parallel concentric rigid disks. 
Their radii r^ = R and their axial distance d define the aspect ratio Y = d/R. Differential heating of the disks leads 
to a temperature gradient along the free fluid surface causing a variation of the surface tension. Since the surface 
tension of most liquids decreases with increasing temperature, a surface force directed from hot to cold surface areas 
drives a fluid motion (thermocapillary effect). 
For the mathematical formulation we use the continuity-, the energy- and the Navier-Stokes equations together 
with appropriate boundary conditions. The characteristic numbers are the Prandtl number Pr = U/K, the Reynolds 
number Re = 'yATd/pv2, and the Grashof number Gr = gßATd?/v2. In our scaling the Reynolds number gives the 
ratio of thermocapillary to viscous forces. The location of the free surface depends on the normal-stress balance. For 
liquid tin, which is considered here, the mean capillary pressure is large compared to the hydrodynamic one. Hence, 
the normal-stress balance can be approximated by the Young-Laplace equation, in which the static Bond number 
BodPpg = oo gives the ratio of hydrostatic pressure to the mean capillary pressure. The Young-Laplace equation is 
solved for fixed contact lines and prescribed contact angle a at the hot corner. 

Having determined the static free-surface shape by a shooting method the axisymmetric stationary 2D flow is 
calculated numerically. A streamfunction-vorticity formulation is discretized on a nonequidistant grid using second- 
order finite-differences. Geometrical grid compression towards the rigid walls and the free surface is applied to resolve 
gradients and boundary layers. By a linear analysis we determine the stability of the 2D basic state. Infinitesimal 
perturbations are represented by a complete set of normal modes with discrete wave numbers m in azimuthal 
direction. Neutral Reynolds numbers Rec(m) are determined by a vanishing real part of the growth rate. The 
critical mode with the wave number mc is determined by the global minimum of Rec(m). We analyze the energy 
transfer rates to the perturbations using Reynolds-Orr-like equations. The identification of the most important 
terms and their local distributions can provide information about the instability mechanisms. 

(a) 
4000 

3500- 

Rec   3000 

(c) 
0.5 

0.25- 

-0.25 

-0.5   I i  i i i  i i i i  M i  i i i | 
0.0      0.275     0.55     0.825      1.1 

r/Ro 

Figure 1: (a): Critical Reynolds number Rec as function of the Bond number for Gr = 0 (dashed line) and Gr ^ 0 
(full line), (b): Kinetic energy balance of the perturbations for different Bond numbers and for Re = 2130. (c): 
Local distribution of the integrand of Yl, h (shaded), the perturbation flow (arrows), and the stream function of the 
basic flow (full lines) for Bo = 2.5 and Re = 2130. The other parameters are T = 1, and mc = 2. 
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(a) (b) (c) 
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Figure 2: Local distribution of the integrand of £ h for T = 1, Re = 2130, m = 2, and Bo = -6 (a), Bo = 2.5 (b), 
and Bo = 6 (c). 

2. Results 

We present results for liquid tin, which is representative for most metals. The Prandtl number is Pr = 0.02 and 
the ratio of the dynamic Bond and the static Bond number is Bd/Bo - Gr/BoRe = -y/ßa0 « 0.27. The sign of 
Gr and Bo distinguishes heating from above (Gr,Bo > 0), i.e. the gravitational acceleration is in direction of the 
thermocapillary drive, from heating from below (Gr, Bo < 0). Figure la shows the linear stability boundaries of the 
2D flow as a function of the Bond number. The dashed line representing the results for Gr = 0 differs only slightly 
from the full line, which shows the results for non-zero Grashof number (-6200 <Gr< 3900). The (de)stabilization 
due to buoyancy for negative (positive) Gashof numbers is in agreement with results for the cylindrical half-zone 
[1] and dominating thermocapillary convection. Due to the small ratio of Bd/Bo the influence of buoyancy on the 
linear stability boundaries is small compared to that of the free-surface shape. 
The kinetic energy balance of the perturbation for different Bond numbers, shown in fig. lb, does not change 
qualitatively. The dissipation £>kin is mainly balanced by inertial terms Y*h = -ReJü(u-V)Ü0 dV, which describe 
convective transport of basic-state momentum to the perturbation flow (basic-state velocity U0, perturbation velocity 
ü). The local distribution of the integrand of J2 h is shown in fig. lc for Bo = 2.5 together with the basic-state 
vortex and the perturbation-flow field. One can identify one region of positive energy transfer near the basic-flow 
vortex-center, that is mainly fed by radial transport of axial basic-flow momentum. The contribution of this process 
decreases with increasing Bond number (fig. 2), when the basic-vortex center moves towards the convex part of the 
free surface near the cold corner. The other region of positive energy transfer extends, aligned with the basic-flow 
isolines, from the cold wall into the interior (fig. lc). The underlying mechanism is the transport of momentum 
perpendicular to the basicjflow direction. Due to the 'no-slip' boundary-condition at the walls, which enhances the 
cross-stream gradient of U0 when the basic-vortex center moves towards the cold wall, this process becomes more 
efficient with increasing Bo. As functions of the Bond number, the change of efficiency of these two processes is 
opposite, where the latter one is dominating. This leads to a strong stabilization for large negative Bo and to a 
slight stabilization for large positive Bond numbers (fig. l)a. 
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SEVERIN, J., BECKERT, K., HERWIG, H. 

Plane channel flow with heat transfer: stability analysis with a commercial 
CFD-code 

Spatial development of small amplitude disturbances in plane Poiseuille flow is investigated numerically using a 
commercial CFD code (CFX 4-2). Small amplitude Tolmien-Schlichting waves known from an Orr-Sommerfeld 
analysis are superimposed as initial conditions on a fully developed laminar channel flow. The downstream spatial 
disturbances are calculated on the basis of the full Navier-Stokes equations (NSE). Results are compared to calculations 
based on the Orr-Sommerfeld equations (OSE). In a second step the thermal energy equation is solved in addition to 
the NSE to investigate temperature effects and especially the development of temperature disturbances. 

1. Introduction 

In our study we want to find out to what extend commercial CFD codes can be used today already for a direct 
numerical simulation (DNS) of flow stability characteristics. Plane Poiseuille flow is a "good candidate" since its 
mean flow is a parallel flow. Moreover, the analytical parabolic velocity profile is an exact solution of the full 
Navier-Stokes equations. Thus the Orr-Sommerfeld analysis, which we want to use as a reference theory, is an exact 
description of the linear stability behavior of (exponentially) small disturbances. 

Since a spatial simulation of the problem under investigation needs a great amount of computer resources most 
previous studies have been performed in terms of a temporal simulation with periodic boundary conditions in the 
mean flow direction. In our study, however, we analyse the spatial development of Tollmien-Schlichting (TS) waves. 

2.  Our Approach 

The basic setup of the problem is relatively simple and a sketch of it is shown in figure 1. Our computational domain 
is the rectangle A— B - C - D. We assume the flow to be fully developed, two-dimensional and incompressible. 
The basic equations solved by the program CFX 4.2 by AEA technology are the well known conservation equations 
for mass, momentum and, in the non-isothermal case, energy (see the CFX manual for details) 

Fig. 1: 

i inflow 
T boundary 

I  outflow 
T boundary 

T disturbance patch 

Sketch of the channel flow and the computation domain for the NSE calculation. 

In the present study the disturbances were introduced at some location downstream of the inflow boundary, on the 

"disturbance patch" (x* = x*dp). Therefore, first the Orr-Sommerfeld solution for a given disturbance frequency and 

Reynolds number was calculated to get the amplitude functions of the v*' and u*'-components of the disturbance. 

Then the two-dimensional TS wave (only the v* '-component) 

v"(x* = x*dp, y*,t*) = AReal(v* exp{-icj*t*)) (1) 

was superimposed on the laminar parabolic velocity profile.   Here, A is the amplitude of the TS wave, v* the 

dimensional amplitude function calculated from the Orr-Sommerfeld equation and w* the corresponding frequency. 
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Since CFX 4.2 does not provide direct access to the velocity field during the iteration process we had to model the 

disturbances on the disturbance patch by using source terms. 

As a crucial element we introduced a so-called buffer domain in our NSE model (see Chung and Sung (1997) for 

this idea and more details). In this buffer domain the governing equations are modified to enforce strictly outgoing 

waves. 

3. Results 

In figure 2 NSE solutions for two different grid resolutions are compared to the corresponding OSE solution for 

the case Re = 10000, w = 0,3302 (nondimensional disturbance frequency). Since for these calculations a buffer 

domain was introduced the time periodic wave of the source was correctly transformed to a spatial disturbance. The 

corresponding OSE solution (d = 1.0006 + i0.0109) shows good agreement with the NSE solution with respect to 

the wavelength. The growth rate, however, still is to low. Obviously the grid resolution is insufficient. 

0.008 

0.006 • 
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x*/H *  25 

Fig. 2: v*max at the centerline: Comparison of 
NSE solutions (with buffer domain) with 
OSE solution 
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Fig. 3:       Downstream   development   of    T*^^ 
(absolute value of the amplitude of T"), 
grid resolution:  1651 x 81, Pr = 0.7 

In figure 3 the development of the amplitude of the temperature disturbance in downstream direction is shown for 

a Prandtl number Pr =0.7. The gray shaded inserts show a typical downstream traveling wave of the temperature 

disturbance and the corresponding v-velocity disturbance at y* — H* /2. 

After an overshoot a small adjustment zone is following before the disturbance reaches its final behaviour after 

approximately four wavelengths comparing well with the OSE results based on the so-called shape assumption 

(unique disturbance shape for flow and temperature). 

All calculations were performed on a HP 9000/889 K460 workstation cluster. A typical number of 300 time steps, 

each of it with 4 iterations and 500 seconds of CPU time (grid resolution: 2001 x 81) thus took approximately 40 

hours of total CPU time. Since computers with this specifications often are multi-user devices such calculations may 

last for days or weeks. 
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STEINRüCK, H. 

Upstream travelling 
vection flow 

waves in the boundary layer of a horizontal mixed con- 

The propagation of small disturbances in a mixed convection boundary layer flow over a horizontal plate is considered. 
Employing an asymptotic analysis with respect to a small buoyancy parameter K = Gr/Re2 a triple deck structure 
of the perturbed flow field is found. Two effects contribute to the pressure perturbation in the lower deck: The 
displacement of the outer field and the buoyancy in the main deck. Linearizing the perturbation equations and taking 
the Fourier transform with respect to time and the coordinate parallel to the wall the dispertion relation is derived. 
Considering the case that the buoyancy induced pressure dominates the displacement induced pressure upstream 
travelling waves are found. These waves are confined to the boundary-layer and exist only in the case of the flow 
over a cooled plate. Furthermore a stationary downstream growing mode exists which indicates that the solution of 
the boundary layer equations is not unique. 

We shall be concerned with the upstream propagation of small disturbances in the boundary layer of a mixed 
convection flow over a cooled horizontal surface. The upstream propagation of perturbations in a boundary-layer 
is nothing unusual [1]. But in most cases the boundary layer interacts with the outer flow field (triple-deck). 
Considering a mixed convection flow the upstream propagation can take place in the boundary layer for a certain 
parameter regime. In contrast to the triple-deck mechanism the pressure gradient is induced by the main deck. To 
understand that mechanism we have to look more closely onto the mixed convection flow: 

Due to the cooling of the horizontal surface there is a temperature gradient normal to the wall in the fluid (figure 
1). Corresponding to this temperature gradient, a hydro-static pressure gradient normal to the wall builds up. This 
pressure gradient influences the flow only indirectly. If the wall temperature is not uniform or the boundary layer 
thickness is growing, a horizontal pressure gradient results. 

The governing equations are the Navier-Stokes equations for an incompressible fluid coupled to the energy equation. 
To account for buoyancy effects, the Boussinesq approximation is used. The equations are in dimensionless form 
using the velocity of the free stream, the boundary layer thickness and the temperature difference between the plate 
and the ambient fluid as reference values for velocities, lengths and temperature differences, respectively. 

Thus the flow field is characterized by the Reynolds number Re and the buoyancy parameter K=Gr/Re2. The Grashof 
number Gr and the Reynolds number Re are based on the boundary layer thickness S. The third dimensionless 
parameter, the Prandtl number, is assumed to be of order unity. 

The equations governing the propagations of small disturbances are derived under the following conditions: The 
length scale A on which the perturbations vary parallel to the wall is assumed to be large compared with the boundary 
layer thickness. But it has to be small compared with the length scale on which the boundary layer thickness varies 
(A <C Re). Thus we consider the limit of a large wave length A and a small amplitude e of the perturbation. For the 
flow field we assume small buoyancy effects K <C 1 and a large Reynolds number Re. Thus we consider the limit: 

e -¥ 0,    A -> oo,    Re -> oo,    K ->• 0   . 

To obtain meaningful limiting equations the following scaling conditions have to hold: 

A = AT3Re-► oo,    e = 0(A_1). 

(1) 

(2) 

Under these conditions we obtain a triple deck structure of the perturbed flow field. But the scaling differs from the 
classical case. Depending on the magnitude of the buoyancy parameter K, we distinguish the following three cases: 

buoyancy param. K wave length A 

K < Re~1/4 A = Re1/4 triple deck 
K ~ Re~1/4 A = Re1/4 triple deck+buoyancy 

1 » K > Re~1/4 Re » A » Re1/4 waves in the boundary layer 
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Figure 1 shows the scaling for the third case. The wave number 1/A of the perturbation is small compared to 
the buoyancy parameter K. In general, there are two contributions to the pressure perturbations: The outer flow 
field generates a pressure correction of the order 0(1/A) due to displacement effects. In the main deck a second 
contribution to the presseure perturbation of magnitude 0{K) is induced due to buoyancy effects. Thus in the third 
case the pressure in the lower deck is dominated by the buoyancy induced contribution. In this parameter regime 
the outer flow field plays no active role. In the second case, where the buoyancy parameter K = 0(1/A) is of the 
same magnitude as the wave number, the usual triple-deck scaling applies. Here both pressure contributions act 
onto the lower deck. 

Assuming only small amplitudes of the perturbations, e < A-1, e <€. K, the perturbation equations can be linearized. 
Searching for harmonic waves of the form 

u(x,y,t) = U(y)e^ax/x+w^K\ (3) 

the perturbation equation can be solved in terms of the Airy function, and the dispersion relation can be derived. 
In the buoyancy dominated case we obtain: 

+ V^e(o)   jzik. 
l       r°° 

Ä^T)JZ1 
Ai( z) dz = 0, (4) 

with z\ — - (Jp/3, T being the dimensionless wall shear stress of the basic flow and 6(0) the dimensionless wall 

temperature. The dispersion relation is solved numerically, showing the existence of waves propagating upstream 
in case of a cooled plate (Fig 2). In the case of a heated plate these upstream-propagating modes are not present. 
One spatially growing, stationary mode exists in the case of buoyancy-dominated flow over a cooled plate. This 
mode has been described previously [3]. A consequence is the non-uniqueness of the solution of the steady-state 
mixed-convection boundary-layer equations and the influence of downstream conditions onto the boundary layer 
flow. This has been shown previously in [2] and for a different parameter regime in [3]. 

outer deck y0 ~ O(X) 

Ap = 0(1/A) 

main deck ym ~ O(l) 
Ap = O(K) 

I lower deck yi ~ 0{K) 
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Fig.l: The triple-deck structure of the disturbed flow * wave number 
field and the undistrubed velocity, temperature and        FiS-2:   First branch of the dispersion relation in case of 
pressure distributions. adverse indirect buoyancy. 
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The Calculation of Velocity of Sound near the Liquid-Gas Transition 

The paper features the mathematical model of thermodynamic functions of state in gas-liquid region for pure refrig- 
erants with the help of classical thermodynamics and statistical thermodynamics. To calculate the thermodynamic 
properties of real fluid we used models on the base of Lennard- Jones intermolecular potential. 

1. Introduction 

Utilizing the semi-classical formulation of the partition function for the purpose of the canonical ensemble for the N 
indistinguishable molecules can be expressed as follows : 

Z =        N/r   / ... / exp ( -— j d-rfid~rf2----d~r>Nd~p \d~j?2 d~p N, (1) 

where F stands for the number of degrees of freedom of individual molecule, H designates the Hamiltonian of the 
molecule system. The canonical ensemble for the system of N molecules can be like this: 

Z = ZoZtransZvibZrotZirZeiZnuc^conf- \   ' 

Thus the partition function Z is a product of terms of the ground state (0), the translation (trans), the vibration 
(vib), the rotation (rot), the internal rotation (ir), the influence of electrons excitation (el), the influence of nuclei 
excitation (nuc) and the influence of the intermolecular potential energy (conf). Utilizing the canonical theory for 
computating the thermodynamic functions of the state can be put as follows [1]: 

Pressure: p = kT (^f)   , Internal energy:!/ = kT2 (p§f\    . Fiee energy A =-kT ■ In Z.      (3) 

The term velocity of sound refers to the velocity of the mechanical longitudinal pressure waves propagation through 
a medium. It is very important parameter in the study of compressible fluids flows and in some applications of 
measurement (acoustic resonance level gauge). The propagation of sonic waves for real fluids is almost in all cases 
nearly isentropic. Therefore, we can calculate the isentropic speed of sound for the real fluid CQ: 

co = J-V2 dp\   J_ 
9V)SM     ^-M[(|v)p_£,(f)J' 

V2^ fe) \ov/p (4) 

where T is temperature, p is pressure, S is entropy, V is molar volume, Cp is the molar heat capacity at constant 

pressure. 

2. Configurational integral 

For the calculation of thermodynamical functions of state is the Lennard-Jones fluid the most widely used model. 
In the present paper those models were used which yielded favorable results in practical computations for a large 
number of components. 

a) Johnson-Zollweg-Gubbins (JZG) model 

For a real fluid the Johnson-Zollweg-Gubbins [2] model based on molecular dynamics and Monte Carlo simulations 
with the Lennard-Jones intermolecular potential we used. The JZG model contains 32 linear parameters and one 
non-linear parameter. On this basis we can express configurational free energy Aco„/: 

A^i=y^^C + hiGu (5) 
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where are a*, b; and Gj the coefficients. The coefficients &i and b; are functions of temperature T only, the coefficient 
G* is function of the reduced density p*. N presents the number of molecules in the system, e is Lennard-Jones 
parameter. 

b) Revisited Cotterman model (CYJ) [3] 

Revisited Cotterman EOS is based on the hard sphere perturbation theory. The average relative deviation for 
pressure and internal energy in comparison with Monte-Carlo simulations are 2.17% and 2.62% respectively for 368 
data points [3]. The configurational free energy is given by: 

Aconf = AHS + ^pert ^ 

where AHS is cofigurational free energy on the base of hard sphere model and Apert is perturbational part of free 
energy. 

c) Tang-Tong-Lu model [4] 

Tang-Tong-Lu model uses as the intermolecular potential a new two-Yukawa function. This function is found to 
mimic very closely the Lennard-Jones potential. Tang-Tong-Lu analytical model calculates thermodynamic func- 
tions of state on the base of salvation of the Ornstein-Zernike equation with help of perturbation theory. The 
configurational free energy is given by: 

Aconf 
j^ = a0 + ai+a2, (7) 

where ao represents the free energy of the hard sphere fluid, ai and a2 are perturbed first and second order parts. 

3. Results and comparison with experimental data 

Determining the equilibrium states between the liquid and the gasous phases conditions for equilibrium are applied: 

T=T" ,p'=p"   ,//=(i", (g) 

where ' in equation (8) means the liquid phase, '' means the gaseous phase and (j, constitutes the chemical potential. 
Due to the mathematical complexity of the equations in the model, the states on the coexistence curve are obtained 
numerically. By applying these states, thermodynamic properties in the two phase environment can be calculated. 
In the two-phase region the computation of thermodynamic functions of state are based on the mixing rule. 

Table 1 shows the results for carbon dioxide (saturated Vapour) and R 152a (boiling liquid). The computed velocity 
of sound conform well for all models, obtained by statistical thermodynamics, with the measured velocity of sound. 
Somewhat larger deviations can be found in the region of critical conditions due to the large influence of fluctuation 
theory and singular behaviour of some thermodynamic properties in the near-critical condition. 

Table 1: Velocity of sound (m/s) for carbon dioxide (saturation curve) and for R152a (boiling curve). 

co2 263 K 273 K 283 K 293 K 301 K R 152a 278.5 K 298.5 K 318.5 K 338.5 K 358.5 K 
JZG 
CYJ 
TTL 
Exp. 

219.3 
223.8 
226.4 
217.5 

219.3 
219.9 
223.2 
212.7 

212.9 
213.8 
218.1 
206.3 

203.7 
204.2 
210.2 
197.9 

194.1 
191.0 
199.2 
189.8 

JZG 
CYJ 
TTL 
Exp. 

749.8 
737.0 
699.2 
743 

600.8 
592.8 
570.4 
642 

549.0 
544.6 
528.9 
542 

430.0 
437.9 
429.6 
435 

297.4 
320.1 
315.9 
321 
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Coating by Capillary Transport through Porous Media 

A coating device which works with the help of a porous medium is considered. The fluid of interest is a surfactant 
solution which passes a porous medium before it is deposited on a solid substrate. A hydrostatic model for the process 
is proposed which assumes the validity of DARCY's law as well as an approach for slot coaters developed by Higgins 
and Scriven (1980). Emphasis will also be placed on the experimental determination of the porous media permeability 
and porosity. Moreover the model is compared with experimental results. 

1. Introduction 

In numerous practical coating applications it is required that the process works without any auxiliary devices like 
pumps, valves and sensors. For such applications we have developed a coating device, which is shown in Fig. 1. 

fe ^ A Ö 

zzzzzzzzzzzz 

I 
/ 

ho 
APtu>orAPbt 

63 

I 

Fig. 1: Model of the process. Fig. 2: a) Initial and b) gas break-through condition. 

Here the coating device consists of a liquid tank which is filled up with a surfactant solution. A porous medium, 
made up of a fibrous package, with a measured porosity of e = O^ll^ is fixed in the middle of the tank (Fig. 1, 
number 3). The fibres are aligned along x and have a diameter of 150/xm. Below a fleece is attached between the 
substrate surface and the fibrous package to guarantee a uniform contact. Provided that the porous media are fully 
saturated and applying a relative velocity u, a pressure gradient is generated which results in a flow of the coating 
liquid through the fibres onto the substrate surface. 

For modelling the process we assume the validity of DARCY's law and that the system works in a range of small 
BOND numbers Bo = pgd2/a < 1 and of small capillary numbers Ca = up/a < 1, where p, p and a are the fluid 
density, dynamic viscosity and surface tension respectively. Further on we assume that the remaining gas volume 
expands isothermally and we neglect surfactant diffusion in the liquid film. More over the transient coating process 
is going to be considered within the limiting conditions of two different bubble points. At t = 0, Fig. 2a), we can 
calculate the initial pressure Ap = p0 - pa = -pgh - (2a/rb) cos6>, where the first term on the r.h.s. counts for the 
hydrostatic pressure and the second one for the capillary pressure at the meniscus of the porous medium (see Fig. 
2a). For t > 0, during the coating process, the biggest capillary in the fibrous package drains due to the expansion 
of gas within the tank. This is illustrated in Fig. 2b) where the system purges. After the gas break through Apbt a 
nearly steady state coating condition is achieved (see Fig. 3). 

2. Modelling the Process 

Access to the coating process provides the tank pressure, which can be both, measured and calculated via Eq. (1). 
Here the fractional term in the brackets refers to the isothermal expansion and is dependent on the gas volume and 
the change of the liquid level along the x co-ordinate, which is also designated in Fig.   1.   For a more convenient 
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depiction the tank pressure is nondimensionalised by the first mentioned bubble point Ap. 

APt 

Ap Pa -PO 
! + £* 

1 

"Kp 

To predict the transient behaviour of the tank pressure till the system purges we need to develop the differential 
equation with respect to the x co-ordinate. For this we use the stationary BERNOULLI equation by neglecting also 
the convectional term. Intergrating it along a streamline from the initial point 1 to the end point 2, as designated 
in Fig. 1, leads to the following equation: 

ßAtl . 

K7bX+Pa Pc-PO 
1 + T0

X 
pg(h-x)=0 (2) 

Here the first term refers to the pressure drop over the porous media via DARCY's law, where K and b are the 
porous media permeability and the fibrous package depth respectively. With the aid of a correlation from Higgins 
and Scriven (1980) the pressure within the coating gap can be determined: 

1.34Ca2/3-^- + [CO8 0! + cos02] - 
o[x) d (3) 

The dynamic contact 02 can be estimated by the HOFFMAN-TANNER (1975, 1979) law, 02 = 4.54Ca0'353, the 
contact angle 0j is approximated to zero. Reorganization of Eq. (1-3) and the utilization of conservation of mass 
x = 8(x)bu/At leads to two equations for the two remaining unknown, the final film thickness S(x) and the time 
derivation from x. 

3. Comparison with Experimental Results 

The only parameter which has to be determined experimentally is the porous medium permeability. With the aid of 
DARCY's law K = Qlfi/bsApp and measuring the adjusted flow rate Q and the corresponding pressure drop App 

over the porous media one obtains a permeability of K = 29.5 X 10"12m2, where the accuracy is in a range of 10%. 

Exp. TTieory 
□     Ca = 0.0035   
O    Ca = 0.0071   
A    Ca = 0.0106   
O    Ca = 0.0142   
X    Ca = 0.0177   

o  O  o 

14 /       16 18 

gas break through 

i   ■     |          i          |     '     |     '     !     ■     >■■■-•—I—■—i—i—i—■— 

\ ! ■ 

i \ 
 Ca=0,0035 
 'Ca=0,071 
 Ca=0,0106 
 Ca=0,0142 
 Ca=0,0177 

. 
_ 

■ 

. *» 
J 

! 
7*- '^•wj^.-Tr^—^--^_ 

~'""-'-=*-'^:. 
1       i       |       i-~| , 1 

10 12 

t[s] 
Fig. 3: Comparison of experimental data and of the model.     Fig. 4: Calculated film thickness. 

The diagrams shown in Fig. 3 and 4 depict the nondimensionalised tank pressure Pt and the film thickness 6 (x) 
respectively over the time t for different capillary numbers. Apart from the experiment at the lowest capillary 
number we obtain for the remaining experimental data a good agreement with the model. This means that the 
model works properly for capillary numbers in a range of 7 x 10~3 to 1.8 x 10~2. (This work is funded by the 
German Space Agency DLR under grant number 50TT9737 6) 
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Numerical simulation of large scale hydrogen explosions in complex geome- 
tries 

Large hydrogen air clouds represent a serious hazard during severe accidents in nuclear power plants as well as 
in facilities of the developing hydrogen technology. The accident scenarios are dominated by large time and length 
scales with complicated boundary conditions. The combustion can proceed as an accelerating turbulent flame with 
possibly transition to detonation. Such problems require a careful selection of the physical and chemical models as a 
fully detailed calculation is not yet feasible. An extension of the well known eddy break-up model together with the 
k-e-model was calibrated at a large set of experiments on different scales. It was demonstrated that this model gives 
good results for a large range of parameters. 

1. Analysis procedure for safety applications 

Todays computers do not allow to simulate a complete accident scenario in a nuclear power plant on a fine physical 
level. Therefore the whole process must be broken down into smaller problems which can be tackled by specialized 
methods. After the problem has been specified by selecting a plant design, a mitigation concept and an accident 
scenario, the first step is to calculate the hydrogen release and distribution in the containment. The creation of 
hydrogen inside the reactor vessel can be modeled by lumped parameter codes like MELCOR [1] which take into 
account the complex chemical reactions of the reactor materials but do not resolve the details of the flow. Once 
hydrogen has been created and is released into the containment the distribution of hydrogen and steam is simulated 
by the cfd code GASFLOW [2]. Depending on the type of accident this distribution phase can last for hours or 
even days. Therefore the heating of the structures and evaporation of water and condensation of steam must be 
considered also. During the distribution the hazard potential of the hydrogen-steam-air mixture must be assessed. 
This is done by applying three criteria. The first criterium are the ignition limits of the mixture. Only when the 
mixture is within the ignition limits combustion can be initiated. If the mixture can be ignited the next question is 
whether the flame can accelerate. From a large experimental database the cr-criterium has been derived [3]. Only 
if the expansion ratio of the burning mixture is higher than a certain threshold the flame can accelerate. If flame 
acceleration is possible the third criterium evaluates the possibility of a transition to a detonation (DDT). For DDT 
to occur the available space compared to the detonation cell size of the mixture must be large enough (A-criterium). 
Depending on the results of the three criteria different combustion codes are used to calculate the further progress 
of the accident. If only the ignition criterium is fulfilled, the resulting slow flames are investigated with V3D. If 
flame acceleration is possible, COM3D [4] is used. And if DDT can not be excluded DET3D [5] can be used. The 
different combustion codes produce as result the loads on the containment structure. In case of a slow deflagration 
or a standing diffusion flame these are mainly thermal loads. For the faster combustion regimes mechanical loads 
are more important. The results of these calculations either verify that a given design is sufficient or give indications 
how the design must be modified, thus starting a new iteration through the whole sequence. 

2. The computer code COM3D 

For fast turbulent combustion processes the computer code COM3D is used. In this code the Favre-averaged Navier- 
Stokes equations are solved on a structured grid with constant cell size. Turbulence is modeled by either a standard 
fc-e-rnodel or by the RNG fc-e-model. Combustion is described by the extended eddy-break-up model of Said and 
Borghi [6]. COM3D has been optimized to deal with complex three dimensional geometries with internal obstacles. 
A variety of explicit solvers including van Leer, Roe and various TVD schemes has been implemented. A more 
detailed description of the code can be found in [4]. 

3. Calibration and Validation of COM3D 

The combustion model as well as the turbulence model in COM3D contain constants that must be specified. For 
the fc-e-model well known values for turbulent tube flow were used [7]. The single constant in the extended eddy- 
break-up model was calibrated against experiments performed in the FZK 12m tube. For this tube a large set of 
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experiments with different hydrogen-air mixtures and obstacle configurations is available. Experiments with different 
blockage ratios and different hydrogen concentrations were simulated with COM3D. For most of the experiments 
a value of Cf — 6.0 gave good agreement between calculation and measurement. For very lean mixtures the Cf 
values for best agreement deviated somewhat from this value. An important influence parameter is the geometrical 
scale of the problem. For larger scales a more violent combustion process can be expected. To cover this effect 
simulations of combustion processes on a larger scale in the RUT facility (63 m length) of the Kurchatov Institute 
were performed and compared to experimental data. It was found that these large scale experiments could be 
simulated with the same model constants as in the small scale experiments. During the simulation the length and 
time scales of turbulence and combustion were evaluated. This allows to locate the combustion process in the so 
called Borghi diagram. Collecting this information for many calculations allowed to identify the region in the Borghi 
diagram for which the extended eddy-break-up model has been calibrated. 

4. Application of COM3D to a nuclear power plant containment 

The length scale of the RUT facility is of the same order of magnitude as a typical nuclear power plant containment. 
But of course the total volume of the containment is much larger than the RUT facility. Thus it was possible 
to perform fast turbulent combustion calculations of a full size reactor containment. The grid for this simulation 
consisted of approximately 2100000 cells with a cell size of 0.4 m. The accident scenario chosen for the simulation 
was a small break loss of cooling accident (SBLOCA). In this scenario the release of hydrogen and the subsequent 
preconditioning of the hydrogen-steam-air mixture proceeds for a very long time. The gas distribution at the time of 
the proposed ignition were calculated with GASFLOW and then imported into COM3D. For the chosen scenario the 
simulation predicts maximum pressures on the outer containment shell of less than 3 bar. This maximum pressure is 
well below the design pressure of the containment of 5 bar. Higher pressure values are observed on internal structures 
in the containment, especially in the steam generator tower near the proposed ignition location. 

5. Summary and Outlook 

It has been shown that the combustion code COM3D is capable of predicting turbulent combustion processes in large 
geometric scales. Its application is not limited to nuclear safety investigations. Another possible application is the 
investigation of accident scenarios in the use of hydrogen as a future source of energy in transportation. However, 
there are several points that need further attention. The spatial resolution of the code should be increased to cover 
smaller details of the problem geometry and smaller details of the turbulent flow field. An adaptive grid refinement 
procedure is presently under development to achieve these goals. Another point for future work is the modeling of 
turbulent combustion. The extended eddy-break-up model used so far does not cover the whole area of interest in 
industrial applications. Therefore work is under way to supplement this model with a presumed ß-PDF model. 
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Neglect of the Fluid Extra Stresses in Volumetrically Coupled 
Solid-Fluid Problems 

Usually the fluid flow through porous media is described by Darcy 's law or generalizations of it. In this contribution, 
Darcy 's law is derived from the theory of porous media. To archive this, the fluid extra stress (frictional stress) is 
neglected in comparision with the momentum exchange (drag force) between the fluid phase and the solid skeleton 
of a two-phase model. This common assumption is motivated by the results obtained from a microscopic capillary 
model in combination with a dimensional analysis of the continuum mechanical model. This analysis shows that the 
influence of the fluid extra stress decreases with increasing number of capillary tubes per area element. 

1. Macroscopic Model 

The Theory of Porous Media may be used to derive Darcy's law. The theoretical approach is based on the concept 
of superimposed continua and on the concept of volume fractions. Details are given e. g. by Ehlers [2, 3] and others. 
The balance equations for a materially incompressible fluid-phase flowing through a porous medium read 

(nF)'F + nFdivx'F = 0, pFx'F = divTF + pF g + pF. (1) 

Therein, nF is the porosity, pF = nF pFR is the partial fluid density, x^ and x'F are the macroscopic velocity and 
acceleration, respectively, T, pF and g are the fluid Cauchy stress tensor, the momentum exchange between the 
fluid and the porous skeleton, and the gravity. Eq. (l)i results from the balance of mass, if the effective density 
pFR is assumed to be materially constant. According to thermodynamical investigations, the stress tensor and the 
momentum exchange are split into a term depending on the pore pressure p and so-called extra terms depending 
on the rate of deformation BF = 1/2 (gradx^ + gradTx^) and on the seepage velocity wF =x'F-x.'s. In the 
physically linear case, the constitutive equations for the stress tensor and for the interaction force may be written as 

lnF\2    FR 
TF = -nFpI + 2(j,FDF, pF = pgradnF - -—p wF. (2) 

Therein, the dynamic viscosity of the fluid is p,F, the bulk viscosity (F is neglected for simplicity, jFR is the effective 
weight of the fluid, and, finally, kF is the Darcy permeability describing the geometry of the pore-space as well as 
viscous properties of the fluid. The combination of (1)2 and (2) yields Darcy's law provided that the processes are 
quasi-static, i. e. x'F « 0, and, furthermore, that the extra stresses T| = 2 nF Tip are neglected in comparision with 
the extra momentum exchange pF = - {nF)2~fFRwF/kF. In this case, Darcy's law is obtained in the following 
form: 

nFwF = - -p^ (gradp - pFR g). (3) 

2. Microscopic Model 

An interpretation of the Darcy permeability in terms of the structure of the pore-space will be given in this section. 
Therefore, the flow through the pores is described by a simple capillary model. In this case, N capillary tubes 
crossing an area element of size A are taken into account. For simplicity, all tubes are assumed to be parallel and of 
the same diameter d and length I. For a Newtonian fluid, in each tube the flow is of Hagen-Poiseuille type, if inertia 
and gravitation are not taken into account. According to [5], the volume flux Q caused by a pressure difference Ap 
in one of the tubes may be expressed as 

TT^Ap (4) 
V 128ßFl 

The total volume flux of fluid crossing the area element A is then given by QA = N Q. On the other hand, it follows 
from the macroscopic model, that the flux of volume crossing an area element A is QA = (nF wF ■ n) A, where n is 
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the unit normal. If the volume fluxes according to the microscopic and to the macroscopic approach are equivalent, 
the Darcy permeability kF may be computed in terms of the microscopic quantities as follows 

V 128M
F/ JFR   I ~      32^ ^      K    ~ lFRk    ~    32   ■  ^ 

In (5), it is taken into account that the Hagen-Poiseuille flow is derived under the assumption of a constant pressure 
gradient Ap/l. In addition, it follows that the intrinsic permability Ks is a function of the volume fraction nF and 
of the diameter d of the capillary tubes only. Similar results have been presented previously, e. g. by Rusch [6]. 
These relations are applied in the next section within the framework of a dimensional analysis of the macroscopic 
model. As a consequence of this analysis, it will be shown that the neglect of the fluid extra stress in the continuum 
mechanical approach is justified. 

3. Dimensional Analysis 

For the following analysis, the motion of the solid skeleton is neglected, i. e. wF « x^. The combination of 
the quasi-static balance of momentum according to (1)2 and of the constitutive equations (2) may be written in 
a dimensionless form, if the position vector x is scaled by a characteristic length L, x = Lx*, and the seepage 
velocity v/F is scaled by a characteristic velocity V, wF = Vw*. In the dimensionless form, the magnitude of the 
viscous forces O(divT^) resulting from the extra stress and the magnitude O(p^) of the extra interaction force 
are given by the parameter combinations related to the dimensionless stress and to the dimensionless momentum 
exchange, respectively. The extra stress and the extra interaction may be compared in terms of a dimensionless 
number relating the order of magnitude of one to the other [1,4]: 

= ö(divTg) yFkF 

If it is assumed that the characteristic length scale is related to the characteristic area element, L2 - A, and, 
furthermore, if the results of the microscopic model for the permeability according to (5) are substituted, it can be 
seen that the dimensionless number II is proportional to A-1: 

11 = ITA = °<W (7) 
This result may be interpreted as follows: The macroscopic model validly describes the flow through the pore-space, 
if the pores are small compared with the macroscopic length scale. In this case, there is a large number N of capillary 
tubes per characteristic area A. Therefore, the value of II is rather small, and, as a consequence, the extra stress 
is negligible with respect to the interaction force. This situation fits to the concepts behind the Theory of Porous 
Media and justifies the neglect of the fluid extra stess in the macroscopic approach. On the other hand, if there is 
only one tube per characteristic area, the interaction force and the fluid extra stress are of the same magnitude, and 
both of them must be taken into account in the framework of a microscopic model. 
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A multi-phase soil model including a soil-foundation interface 

In the present contribution, the frictional material soil is considered within the well-founded framework of the Theory 
of Porous Media [1-3]. The model represents a multi-phase medium consisting of a solid skeleton, a pore-liquid (here 
water) and a pore-gas (here air). Concerning the solid skeleton, a general elasto-plasticity approach including a 
soil-foundation interface is presented. In particular, to describe granular soils like sand, a physically non-linear soil 
elasticity law [4] is taken into consideration. In the plastic domain, use is made of the single-surface yield function 
by Ehlers [2], which is extended towards isotropic work-hardening materials. 

1. The soil model 

The soil model is composed by the phases (pa. These phases are <ps, the soil skeleton, ipL, a pore-liquid, and ipG, a 
pore-gas. In case of fluid saturation, the saturation constraint holds. Thus, 

ns + nL + nG = 1       with the porosity       nF = nL + nG , (1) 

where na are the volume fractions of the constituents. It is assumed that the solid and the liquid are materially 
incompressible, whereas the gas phase is materially compressible according to the ideal gas law (Boyle's law). 

The primary variables of the model are the solid displacement us, the effective pore pressures pE
R of the liquid 

and pE
R of the gas exceeding the atmospheric pressure p0. For their numerical determination, the sum of the partial 

linear momentum balances of all constituents, the sum of the partial volume balances of the solid and the liquid and 
the sum of the partial mass balances of the solid and the gas are used. In the quasi-static case, the corresponding 
weak forms are 

fsus-(ps+ pL+ pG) bdv -fgr&dSus-{Ts+ TL+ TG-pL dL® dL-pG dG® dG) dv = -    Sus-ida. (2) 

n Q r 

fspE
R [(ns + nL)'s + (ns + nL) div(us)'s] dv - /gradSpE

R ■ nL wL dv = - I' 6pE
RvL da, (3) 

u n r 

J5pGR [nG (pGR)'s + (1 - nL) pGR div (us)'s - P
GR (nL)'s ] dv - 

fi (4) 
- / grad 5p%R ■ nG pGR wG dv = - / 5p%R f da, 

Q r 

Therein, Ta is the partial Cauchy stress tensor related to each ipa, dx, and dG denote the diffusion velocities of the 
liquid and gas phases with respect to the local barycentric velocity Vf = (pL VL + pG VG)/(/ + pG) of the fluid 
mixture. pa = na paR is the partial mass density given by the effective (true) mass density paR and the volume 
fraction na. The symbol (-)s characterizes the material time derivative following the motion of the solid phase. 
Furthermore, b denotes the volume force per unit mass (gravity), wj; and wg represent the seepage velocities of 
the respective fluids. Finally, dus, SpE

R and SpE
R are test functions corresponding to the solid displacement and 

the excess pore pressures of the liquid and gas phases. 

On the surface T of a considered domain ft, there may act an external stress vector t = Tn, a liquid volume 
efflux vL = nL Wi • n or a gas mass efflux q° = nG pGR'wG ■ n. Here, T is the total stress tensor and n the outward 
oriented unit surface normal on T. 

According to the effective stress principle, the total stress tensor can be reformulated by 

T = Tf - nLlnFpL
E
Rl - nG/nFp%RI - pLdL ® dL - pGdG ® dG , (5) 

where Tf denotes the solid extra stress (effective stress). Furthermore, the filter velocities nLWi in (3) and nGwG 

in (4) are replaced by Darcy's general filter law. The dependence of the filter law on the soil deformation and on 
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the degree of fluid saturation has to be taken into consideration additonally. 

The numerical implementation of the model leads to a differential-algebraic equation (DAE) of first order in 
time. The solution of this DAE by the FE method determines the solid deformation us, the excess pore pressures 
PßR and p^R and therewith the seepage velocities wjr, and wg. 

2. An elasto-plasticity material law for soils including a soil-foundation interface 

The extra part Tf. of the solid stress is described in the framework of a geometrically linear theory by a physically 
non-linear elasticity law that is appropriate to describe the complex material behaviour of frictional soil materials: 

T| = 2ns(evp)e§e + ks(eve; evp, £umin)(ese • I) I- (6) 

Therein, fis and ks are not the usual elastic constants. In particular, ks is a function of the elastic volume strain 
eve at a given state of plastic deformations. Thus, the plastic volume strain evp and the maximal achievable volume 
contractancy ev m\n must be understood as parameters of the elastic process [4]. 

For the description of the plastic material behaviour, the model proceeds from a single surface yield criterion, 
isotropic work-hardening conditions and a non-associated flow rule [2, 4]: 

F=^/lIjD(l + 7IIIü/(IID)V2)m + Ial2+^I4+/3I + eI2_K) (7) 

G = ^iIID + iaI2 + (52I4 + V2l + eI2     ->     {eSp)s = AÖG/ÖTf. (8) 

The yield criterion, F = 0, is described by the first invariant I and the second and third deviatoric invariants II 
and III0 of T§ together with a set of seven material parameters. The subset (a, ß, S, e, K) refers to the shape of the 
yield curve in the hydrostatic plane of the principal stress space, whereas the subset (7, m) refers to the deviatoric 
plane. For the consideration of work-hardening conditions, the parameters are developed as functions of the plastic 
work. In the framework of the non-associated plasticity concept, an additional plastic potential (8) is used, where 
the parameters ip± and ip2 govern the plastic dilatation angle. Consequently, the flow rule is given with respect to 
G, where A is the plastic multiplier. 

An interface formulation for the description of the contact zone between foundation and soil is considered 
necessary, when the material behaviour in this zone is substantially different from the material behaviour of the 
pure soil. Therefore, in the scope of a continuous formulation, the presented model is also applied in the contact 
zone using a modified set of material parameters. These modified parameters are generated by the reduction of the 
maximal plastic work taken by the material. 

3. Example: numerical simulation of a shear test on Berlin sand 

The numerical example considers a shear test with a vertical load of en = Ng 100 
100 kN/m2. A parameter identification by experimental data from triaxial 
tests on dense Berlin sand was performed before [4]. Result of the numerical 
simulation of the interface "sand-sand" by the FE method is a shear stress- £ 50 

displacement curve that reproduces successfully the experimental findings 
up to the maximal shear stress. Ongoing, the interface "sand-concrete" is 
studied in a corresponding test. 

/tf^'  ;^v:^vi;::„-;;;. «^ 
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Partial premixing in diffusion flame quenching 

Using Direct Numerical Simulation, we focus on the development of partial premixing in laminar diffusion flame 
quenching. Calculations are performed in the configuration of a 2-D diffusion flame squeezed by a pair of vortices. 
First, the flame undergoes strong finite rate chemistry effects, linked to high levels of strain rate induced by vorticity. 
Then quenching develops, leading to edge-flames. During the creation of the hole within the reaction zone, the 
response of the laminar diffusion flame burning rate to strain rate variation is investigated. Depending on the flame 
structure, strong differences between DNS results and the behavior of a steady 1-D flamelet are observed, on account 
of partial premixing. 

1. Introduction 

Finite rate chemistry and quenching in diffusion flames lead to intermediate combustion regimes between fast chem- 
istry and fast micromixing [1]. Modeling partially premixed combustion in industrial devices requires a good under- 
standing of these phenomena, local quenching prohibits flame stabilization and modifies pollutants formation [2]. 

In order to study the quenching mechanisms and the flame structure bordering quenched locations, numerical 
simulations of diffusion flame quenching are investigated. It is shown that one may distinguish between conditions 
leading to transition from burning to quenching and conditions observed at a quenched location featuring different 
flame properties, related to combustion in a partially premixed regime. 

2. Diffusion flame quenching, edge flame and partially premixed flamelets 

Diffusion flames may be parametrized using the mixture fraction Z as a conserved scalar (Z — 0 in pure oxidizer 
and Z — 1 in pure fuel). The local Damköhler number Da is defined as the ratio of a diffusive time TX to a chemical 
time [3]. When Da falls below a critical value Da*, flame quenching occurs. rx may be estimated from the scalar 
dissipation rate \ = D\VZ\2 as rx « x_1 (-D is a diffusion coefficient). Solutions of planar flame problems for a 
variety of x, called flamelet library, provide the critical quenching value %* used in turbulent combustion models [1]. 

To study flamelet quenching without curvature of the stoichiometric line, we have further analyzed a Direct 
Numerical Simulation (DNS) database initially developed to focus on triple flame / vortices interaction [4]. The 
diffusion flame is initially stabilized within a 2-D domain following a procedure proposed in [5]. For strong vortices, 
the trailing diffusion flame is submitted to a high level of strain and \ leading to quenching of the 2-D planar 
diffusion flamelet (Fig. 1). We focus on the zone of the computational domain where quenching appears and where 
only diffusion combustion is concerned. For the simulated case, the vortices do not carry any hot gases and products 
remaining from their interaction with the partially premixed front and effects of unsteadiness are negligible in our 
analysis. 

L. StoichioMtric  lljia/  € O Quuchlnä of th» 

Edff«  flamaa 

Figure 1: Schematic of the simulations of two-dimensional quenching. 
A laminar flamelet library has been constructed using the same chemistry and transport than in the full Navier Stokes 
simulation. The reference quenching scalar dissipation rate %*, its corresponding quenching length Sq = (.D/x*)1/2 

and the scalar dissipation rate in the unperturbed trailing diffusion flame XDiff may be used as control parameters. 
The vortices are characterized by their radius R, velocity v and the length lv (Fig. 1). The reported simulations have 
been performed using a representative condition where diffusion flame quenching is found: Xq/XDiff & 100,  lv/Sq « 



S526 ZAMM • Z. Angcw. Math. Mech. 81 (2001) S3 

12,   R/öq « 5,   v /(x*q &q) K 40. Varying these numbers changes the streamwise position of quenching, but do not 

fundamentally modifies the presented results. The studied sequence may be decomposed in three stages (Fig. 2). 

«■#■■= 
I    12. 

Invars« or normallzsd scalar dlaaipatlon rat« 

1 12. 

I 1°- 
1 •■ 

1 

Invar«« of normalized scalar dissipation rat« 

Figure 2: Three successive times of 2-D unsteady quenching of a planar diffusion flame pinched by a pair of vor- 

tices, configuration studied in [4]. Left, bold: iso-reaction rate, dotted: vorticity, frame: region of the flow where 

the centerline response of the flame versus inverse mixture fraction dissipation rate is studied. Right top, circle: 

1-D flamelet library, line: top left 2-D flame, triangle: middle left 2-D flame, square: bottom left 2-D flame. Right 

bottom, circle: 1-D flamelet library, line: partially premixed flamelet <pm = 0.16, dash line: <j>m = 0.19. 

The planar diffusion flame is first squeezed by the vortices, then quenching occurs. Latter, premixed kernels develop 

at the reaction zone extremities. The centerline response of the burning rate shows that one should distinguish 

between the amount of scalar dissipation rate necessary to quench the diffusion flame Xq, and, XqEd, the value 

measured at the extremity of the reaction zone, featuring an edge flame [6] (Fig. 2). In these unsteady simulations, 

the value Xq that should be applied to transition from burning to quenching is found to be of the order of x*q 

predicted by flamelet theory (Fig. 2 top right). In particular when x> X*q, quenching is observed. However, once a 
hole exists in the reaction zone, xgBd, the level of scalar dissipation rate necessary to maintain quenching, is always 
lower than the reference flamelet value %*. This is explained by multi-dimensional flux of species and heat at the 

flame tip combined with partial premixing of the reactants in the zone bordering the quenched location. 

An indicator of the local degree of partial premixing is given by the product of reactants mass fractions 

<j)m = YpYo- In a pure mixing situation: <j>m = YFI0YO,0Z(1 - Z), where Yp,0 and Yo,0 are the mass fractions of 
fuel and oxidizer in the feeding streams. Flamelet library are usually constructed using as boundary conditions for 

(Yp,Yo,Z) the values (0,Yo,o>0) and (}>,<,, 0,1). They may also be constructed for prescribed values of partial 

premixing <j>m. Fig. 2 (bottom right) suggests that steady partially premixed flamelets, parametrized with both <f>m 

and x, reproduce the edge flame response after quenching has developed. A meaningful result for flamelet modeling 

of turbulent burners where strong finite rate chemistry and quenching occur, and have to be captured carefully. 
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Investigations of Turbulence Modulation in Turbulent Particle Laden Flows 

This paper presents the results of experimental and numerical analyses of high particle laden turbulent flows. The 
dispersed phase consists of non-reacting solid mono-dispersed particles with variable diameter between 60/im and 
1500/jm. Experiments using Laser Doppler Anemometer (LDA) and Phase Doppler Anemometer (PDA) show in agreement 
with earlier investigations that small particles attenuate turbulence while large particles enhance turbulence. More 
detailed investigations are, however, needed to clearly identify and quantify such influences. In order to obtain preliminary 
information about the performance of the k-s model, mostly used for the majority of the numerical models, in predicting the 
physical features of modulation, some numerical calculation results obtained by use ofEuler / Lagrange method and a 
modified version of the k-s model are compared to the experimental data. 

1. Introduction 

Particle laden flows or turbulent multiphase flows are frequently encountered in a variety of technical processes (injection, 
sprays, chemical or combustion processes, etc.). These processes include separated flows, bubble flows, gas-solid, gas- 
liquid or solid-liquid flows with or without chemical reactions. In such flows, the processes are considerably influenced by 
interactions between the turbulence of the carrier phase (the continuous phase) and the dispersed phase. 

Three types of turbulence / dispersed phase interactions have been identified in the literature: a) turbulent 
dispersion of the dispersed phase; here, the particle motion is additionally influenced by interaction with the walls of the 
confinement; b) modification of the continuous phase turbulence characteristics by the dispersed phase or by interphase 
transport, the so-called turbulence modulation, and c) modification of interphase transport by turbulence. The third type of 
interaction is much less investigated and, consequently, less understood [lj. Several sources review the state of the art for 
the first two types of turbulence / dispersed phase interaction [2]. Although several models have been developed for 
turbulence modification besides recent direct numerical simulation [3], it appears that they have limited application as they 
all fail to predict the increase in turbulence energy experimentally observed for large particles. Careful experimentation and 
more appropriate models are still demanded to clearly identify, predict and quantify the mechanisms for turbulence in 
multiphase flows. This paper aims to investigate experimentally and numerically the turbulence modulation in turbulent 
particle laden flows without chemical reactions. 

2. Experimental set-up and measurement techniques 

For the experimental investigations a vertical closed test tunnel was designed and built up. This is a strongly modified test 
facility compared to Kulick et al. [4]. The carrier phase - driven by a radial compressor - circulates in a closed pipe system. 
The glass particles are dispersed in required doses by a sluice, generating the two phase flow. The flow passes a diffusor 
with an half-angle of a/2=4.1° before reaching the settling chamber where diverse meshs (first mesh ß=0.37, second mesh 
ß=0.60; ß: open area ratio) and honeycombs are integrated. Consequently a nozzle with a contraction ratio of 1,57:1 
homogenises the flow. At the nozzle exit a turbulence grid and the measurement section are placed. In a following section 
the two phases are separated by use of a cyclone. The essential data of the set-up are: a) the measurement section is 
designed as a vertical square glass tunnel with inner dimensions of 0,2m x 0,2m x 2,0m; b) the maximum mean velocity of 
the measurement section is 12m/s; c) the particle size can be varied between 60um and 1500um (the maximum of the 
particle size is limited by the smallest used mesh size); d) the particle concentration is constant and can be chosen between 
u=0-2 (u: ratio of mass of the particle phase and mass of the carrier phase; the maximum of the particle concentration is 
limited by the optical transparency of the flow). 

For simultaneous measurements of velocity (mean velocity, higher moments), correlations, particle size and 
concentrations a two dimensional LDA/PDA set-up is used. The optical set-up consists of a fibre flow probe including a 
beam expansion; the beams are separated on the focusing lens (fLDA =310mm) by bs =75,24mm. For this optical 
configuration the measurement volume results in a diameter of dfl =46um and a length of di =380um. For the PDA 
measurements the LDA measurement volume is combined with PDA receiving optic with a focal length of fPDA=400mm 
(PDA probe without beam expansion). Detailed descriptions of the measurement techniques can be found in [5]. 

3. General flow characteristics 
For the investigations it is required that the flow field has to be isotropic and stationary. Grid generated turbulent flows 
approximate these requirements. Such flow fields decrease in intensity of the turbulent kinetic energy in the direction of the 
mean flow. The decay of turbulence is characterised by at least two distinct regions. The first region which is important in 
the present study is defined between 10 and 100 mesh length downstream the grid. The second region is located beyond 
500 mesh lengths which is not investigated here. 
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In this study two different biplanar square turbulence grids are employed. The characteristics of the grids are: 
mesh length M=6mm (1mm thickness of wire) and M=12mm (2mm thickness of wire). The selection for both grids is 
based on the requirement to obtain a high level of turbulence but also to maintain a local isotropic flow field. In respect to 
these needs a solidity ratio (projected solid area over total area) of s=0,31 is chosen. 

4. Results and discussions 

For both types of turbulence grids the flow field in the wind tunnel is characterised in a first step without particles. The 
LDA measurements are performed over a fine point grid covering the core (8cm square area) of the wind tunnel to avoid 
the influence of the boundary layer. Gravitational effects are also negligible. The measurements span from at x/M=10 to 
x/M=60. The turbulence is found to be homogeneous in planes perpendicular to the mean flow direction up to x/M=40. To 
obtain the degree of local isotropy, the ratio of the mean square velocity fluctuation in streamwise direction u'2 to that of 
the vertical v'2 and horizontal w'2 cross stream direction is computed. Throughout the test section, the local isotropy is 
found to be higher than 95% (see Fig. 1). Measurements of decay of the turbulent energy in the streamwise direction are 
found to agree well with that expected by the use of such grids. The corresponding behaviour is shown in Fig. 1 in addition 
to earlier experimental results [6] using different grids. For the investigation of particle laden flows identical measurement 
locations are taken. To illustrate the influence of a dispersed phase round glass particles (diameter dp=110nm±10um) are 
used. The density of the particles is pp=2440kg/m3 and the particle concentration is set to 250 particles/cm3. Measurements 
of induced decay of the turbulence energy show that such small particles attenuate turbulence. A comparison with results 
obtained without particles is given in Fig. 2 in addition to numerical results. For these simulation purposes a modified k-e 
model following [7] has been used and is not presented here. 
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Detailed measurements obtained by means of LDA and PDA are used for comparison to standard numerical models for 
dispersed two phase flows. In particular, a simple modified k-s model in the Euler / Lagrange framework is tested in order 
to obtain information about the performance of this model. This model compares well to experimental data which indicate 
that small particles attenuate turbulence. The effect of larger particles (>lmm) which augment turbulence on the continuous 
phase is the topic of further investigations. 
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Direct numerical simulation of three-dimensional flame instabilities 

The evolution of premixed gas flames near extinction and stability limits is of primary interest for many applica- 
tions in combustion technology. Under such conditions the flames are very sensitive, and exhibit quasi-steady state 
behaviour so that they are well-suited to determine flammability limits. We show three-dimensional numerical sim- 
ulation of the transient behaviour of lean H2-air flames. The thermo-diffusive equations are solved by means of a 
parallelized Fourier-pseudospectral code. We compute the evolution of freely propagating spherical flames, whereby 
the influence of the initial flame radius is investigated. The results exhibit different behaviour as found in experimen- 
tal studies under microgravity conditions, i.e. the splitting due to cellular instabilities, extinction, and stationary 
flame balls. 

1. Introduction 

Premixed gas flames near extinction and stability limits are of primary interest for many applications, e.g. the im- 
provement of energy conversion engines or fire safety applications. For many reactive systems there is little knowledge 
about the very sensitive near-extinction conditions. Because the dominating significance of earth-generated buoy- 
ancy is excluded, microgravity (/x#) conditions constitute a suitable environment to investigate the interaction of 
scalar transport, chemical reaction and radiation. 

Many /13-experiments have been performed to study the extinction and flammability limits of premixed lean gas 
mixtures at small Lewis numbers [6]. These studies show different phenomena such as local extinction, cellular 
instabilities, and steady flame balls. 

We present the studies on the non-stationary behaviour of flame balls in three dimensions by means of direct 
numerical simulation of the governing partial differential equations. The code was implemented and optimized on a 
massively parallel computer so that large scale problems using high resolutions can be solved. In particular, we are 
interested in the influence of the initial radius and the radiative heat loss onto the evolution of the flame structures. 

2. Numerical method 

Our research deals with the numerical simulation of two- and three-dimensional flame balls. As governing equations 
we employ the thermo-diffusive model in its dimensionless form [1], 

dtT - v2r   =   w - a , (1) 

dtY - j-V2Y   =    -u, (2) 

ß2 v       (   ß(T-l)   \ m 

a    =    S(T+(a-1-l))4-S(a-1-l)4. (4) 

The physical quantities are nondimensionalized with the flame thickness, the flame velocity, and the burnt and 
unburnt state. The chemical reaction is modelled by single-^tep kinetics with the Zeldovich number ß and a 
temperature ratio a. The heat loss due to radiation is represented by the Stefan-Boltzmann law with radiation 
constant s. The Lewis number Le is the ratio of the species and heat diffusion. The above model equations exclude 
convection and assume the density and other thermodynamic properties of the gas to be constant, as justified in [5]. 

As flame balls are not influenced by boundaries, we choose a periodic approximation in the simulations. As initial 
condition we take the asymptotic solution of the three-dimensional flame balls proportional to 1/r [2] with a small 
additional smoothing for large radii r(x, y, z) to ensure periodicity. 

The system (l)-(4) is discretized in time using exact time integration of the linear terms and a second order 
Adams-Bashforth extrapolation for the non-linear terms. The spatial discretization is done by a classical Fourier- 
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pseudospectral approach [3]. The equations are transformed into Fourier space using a parallel version of the 
Fast Fourier Transform (FFT). The non-linear terms are calculated by collocation in physical space. The main 
computational cost is caused by multidimensional FFT's between physical and coefficient space. To achieve high 
resolution without increasing computing time, the code was implemented on an IBM RS/6000 SP using the message 
passing interface (MPI) [1]. 

3. Results and Discussion 

In the following computations, the thermodynamic parameters were ß — 10, a = 0.64, Tj, = 830 K, Tu = 300 K, 
and Le = 0.3, corresponding to a 6.5 % H2-air flame. The radiation coefficient was s = 0.1. The computational 
box length was L = 80, and the time step was At = 5 x 10-4. The presented simulations were computed on 64 
processors with a spatial resolution of 2563. This discretization is sufficient to resolve the narrow chemical reaction 
zone. 

To study the influence of the different parameters, we carried out simulations varying the initial flame radius TQ. 

The evolution of the flame ball is quantified by the integral reaction rate R(t) = Jv udV. Figure 1 summarizes the 
evolution of R for different initial radii. Configuration (a) exhibits a gradual splitting of the flame into more and 
more cells. Hence, the integral reaction rate is increasing. The evolution of a flame kernel with radius ro — 4 (b), 
also starts with increasing R and separating into cells, but later is extinguished because of increasing heat loss with 
growing radius. Larger initial radii (c) lead to direct extinction without splitting of the flame due to dominating 
radiation effects so that the integral reaction rate is decaying monotonously. 
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Figure 1: Left: Evolution of the integrated reaction rate R for simulations with different initial radii; right: temper- 
ature isosurface of an extinguishing spherical flame structure. 
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Mixing in two-dimensional turbulent reactive flows 

Enhanced transport and mixing of scalars in turbulent flows are of major importance, in particular, when chemical 
time scales are smaller or of the same order as the the mixing time. We present direct numerical simulation of 
the mixing of passive and reactive scalars in two-dimensional flows dominated by coherent vortices These organized 
structures have a significant impact on the mixing dynamics in turbulence. By means of a Fourier-pseudospectral 
method the instationary equations are numerically integrated. To quantify the mixing, we consider statistical prop- 
erties, i.e. the variance decay and histograms to approximate the probability density functions of the scalars. Also, 
the influence of a chemical reaction on mixing are investigated. 

1. Introduction 

Turbulent flows guarantee enhanced mixing of the transported quantities: momentum, mass, and energy, and lead 
to an accelerated diffusion. Moreover, there is a wide range of scales present in the flow which involves a large 
number of degrees of freedom. As the dynamics of such flows is mainly dominated by coherent vortices [1], they 
are of primordial importance for the mixing of scalars. We present the evolution of typical vortex arrangements, 
analyze their ability to mix scalars, and attribute the influence of vortices to the formation of spirals and to the 
vortex merging. 

2. Governing equations and numerical treatment 

We use a classical pseudo-spectral scheme to integrate numerically the Navier-Stokes equations together with the 
species' transport equations [2]. The semi-implicit time scheme consists of an Euler backwards treatment for the 
linear terms and an Adams-Bashforth extrapolation for the non-linear terms. The governing equations read in 
dimensionless form 

dtv + v • W - 4-V2t7 + -Vp  =  0 , (1) 

V-tT =  0, (2) 

ReSc 
dtCi + v-Wci - ir-?-V2ci  =  -DacACB , (3) 

with the velocity v, the hydrodynamic pressure p, the concentration c* of two species i = A, B. The density p is set 
to 1. As non-dimensional parameters, the Reynolds number Re, the Schmidt number Sc and the Damköhler number 
Da are introduced. We consider a two-dimensional isothermal incompressible flow imposing periodic boundary 
conditions in both directions. In the reactive case, we implement a second order reaction between the species. 

We calculate the temporal evolution of the physical quantities in a domain of fi = [2n]2 using 6002 grid points for the 
computation of about 10 eddy turnover times with a time step of 10-3. The physical parameters are Re = 10000, 
5c = 1. 

3. Results 

In [3] we examined typical coherent vortex structures and a fully developed turbulent flow in order to show how 
vortices promote the mixing of species. We showed two mechanisms which enhance the mixing process, the merging 
of co-rotating vortices, and the creation of quasi-singular structures, i.e. the formation of spirals. We conclude that 
the spiral formation and the vortex merging are important features to model turbulent flows. 

In this paper, we focus on the influence of the merging on a second order chemical reaction of two species and on 
the histograms of the species in a fully developed turbulent field. 

In the left picture of figure 1 the evolution of the volume integrated chemical reaction rate is shown for two different 
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vortex arrangements with increasing merging influence: case one is a homostrophic dipole consisting of two co- 
rotating and slowly merging vortices. The species boundary is located between these two vortices so that with the 
merging the boundary is elongated yielding an accelerated mixing. The second vortex configuration corresponds to 
case one but includes a third counter-rotating vortex with half the vorticity amplitude. This third vortex pushes the 
other two together and cares for a fast merging of the two co-rotating vortices. A comparison of the homostrophic 
dipole with the reference case yields similar reaction rate profiles until t = 5, but with initiating the merging process 
R increases significantly for the the three vortex configuration. 

Figure 1 (right) shows the histograms of CA in the non-reactive and reactive case after about 30 vortex turnover times. 
A comparison with fitted /^-functions, which are used in classical presumed shape PDF-models [5] for computing 
turbulent flows shows a good accordance. 

.J 1 1                                                              three vortices — 
1                                                    homostrophic dipole — - 

2 - 

.5 - 

1 

IS v. y 
2.5 7.5 

Figure 1: Left: Evolution of the chemical reaction rate for two vortex configurations: a slow merging homostrophic 
dipole and a fast merging three-vortex configuration; right: Histograms and approximated /3-PDF's for a non-reactive 
(Da = 0) and a reactive (Da = 0.2) simulation after 30 eddy turnover times. 

4. Conclusions 

The present paper is concerned with the direct numerical simulation of the mixing in freely decaying, incompressible 
homogeneous isotropic turbulence in two dimensions. We showed the influence of the merging onto the mixing and 
hence on the evolution of the chemical reaction rate. Also, we showed the agreement of the histograms of passive 
and reactive scalars with commonly used /?-PDF's. 
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Structure and Extinction of Laminar Ethanol/Air Spray Flames 

The paper presents the structure and extinction of both mono- and bidisperse ethanol/air spray flames in the coun- 
terflow configuration. A similarity transformation for monodisperse spray flames is extended to polydisperse spray 
flames, and the resulting one-dimensional formulation accesses the use of detailed chemical reaction mechanisms as 
well as detailed transport. For the ethanol/air system, 38 species and 337 elementary reactions are used. 
At high strain, the droplets cross the gas stagnation plane, reverse and return towards their injector. For this 
situation, the width of the chemical reaction zone of bidisperse and monodisperse sprays with the Sauter mean radius 
is almost the same. However, the droplet oscillation causes the spray flame of the bidisperse spray to strongly increase 
the total spray flame thickness. For the injection velocity of the spray studied here, the droplets returning to their 
injector hit the boundary of the computational domain as strain is increased whereas the monodisperse spray flame 
extinguishs at a considerably higher value of gas strain rate. Thus, the extinction behavior of the bidisperse spray 
flame is not represented by the monodisperse spray flame with the Sauter mean radius. The model is also suitable 
to predict pollutant formation. 

1. Introduction 

Structures of laminar spray flames in the counterflow configuration have been studied extensively in the last decade. 
Several research groups have presented papers on both experimental [1-5] and theoretical [6-11] investigations. 
The focus has been on polydisperse, nonreactive sprays [2,3] for the fuels methanol and n-heptane as well as on 
monodisperse spray flames [4-6,8,10,12]. A survey of the major publications until 1996 is given in a review paper by 
Li [13]. 

The most advanced theoretical study of polydisperse spray flames is that of Greenberg and Sarig [14] who investigate 
these flames using a simplified one-step chemical reaction step for decane/air. They find that the polydispersity has 
a strong influence on the reaction zone structure. However, a single-step chemical reaction system is not suitable to 
include effects of strain on the flame structure and in particular to predict flame extinction [10]. 

The focus of the present paper is the investigation of the fuel ethanol that has not yet been studied for spray flames in 
the counterflow configuration. Its chemical reaction mechanism of the gas phase, however, is known well enough [15] 
to predict reliable extinction conditions. Moreover, the liquid phase properties are available [16,17] which qualifies 
that system for the study presented in this paper. Also, bidisperse sprays are investigated, and both their structure 
and extinction conditions are presented. 

2. Formulation 

The mathematical formulation of the present study is an extension of previous work [10]. That paper concerned 
structures and extinction of both monodisperse methanol and n-heptane spray flames in air. However, it was pointed 
out already by Continillo and Sirignano [6] that the similarity solution employed in the formulation of the gas phase 
is also suitable to treat polydisperse sprays. 

The thin spray is modeled using an Eulerian-Lagrangian formulation for the gas and the liquid phase, respectively. 
The major assumptions are steadiness of the gas phase, low Mach number, and the validity of the ideal gas law. 
The equations used here to present the gas phase are derived following the previous paper [10], where detailed 
transport and detailed chemical reactions are considered. The major difference is the consideration of a polydisperse 
spray. The spray characteristics is formulated using a discrete droplet model where each individual droplet group 
is represented by a single droplet for each axial position - the particles with equal properties lie perpendicular to 
the space coordinate. It should be pointed out here that all droplet size groups are treated separately, so that they 
maintain their individual characteristics presented by the equations for droplet heating, vaporization, and motion. 
Thus, for each droplet size group the corresponding equations are formulated [18]. 
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The convective droplet transport for each droplet group is evaluated from the equations derived by Abramzon and 
Sirignano [19]. Thus, the equations given in the previous papers for a monodisperse spray are transferred to each 
droplet size group in the present paper individually which allows for independent heating, vaporization, and motion 
for each droplet group. 

The gas phase equations are the well known twodimensional Navier Stokes equations where additional source terms 
due to interaction with the liquid phase appear. The similarity transformation is used to transform the twodi- 
mensional gas equations into onedimensional form. The transformed equations may be found in [10] for detailed 
transport and detailed chemical reactions. 

The present paper concerns the ethanol/air system, and a detailed chemical reaction mechanism is used. It has been 
derived by Chevalier [15] and was found to be suitable to predict ignition delay as well as laminar flame speeds in 
gas flames. Moreover, it was successfully used in a study of ignition delay for monodisperse ethanol/air sprays [20]. 
The mechanism is employed here for atmospheric pressure, and it comprises 38 species and 337 elementary reactions. 
The transport properties are computed using CHEMKIN. 

3. Results and Discussion 

The computations concern both mono- and bidisperse ethanol/air spray flames in the axisymmetric counterflow 
configuration. If bidisperse sprays are investigated, the total liquid mass is distributed equally between the two size 
groups. For all flames the pressure is atmospheric, the spray is introduced with carrier gas air at an inlet temperature 
of 300 K, and the air stream that is directed against the spray flow has also 300 K. The influence of both equivalence 
ratio and initial spray velocity was studied in the previous paper [10]. The global equivalence ratio is unity here, and 
the initial spray velocity is fixed to a value of 0.44 m/s. The gas strain rate on the spray side of the configuration 
is varied from 55/s up to extinction for most cases. Moreover, the initial droplet size is varied. 

Figure 1 shows the structure of two different spray flames for fixed strain rate a = 55/s. The spray enters from 
the left side, and the symbols show both the magnitude and position of droplets. The figure displays the outer 
flame structure of a bidisperse spray (left) where the initial droplet sizes are i?0i = 25/xm and R02 = 10/mi whereas 
in the right part of Fig. 1 the structure of a monodisperse spray flame with R0 = 14.286/xm which is the Sauter 
mean radius (SMR) of the bidisperse spray flame. A comparison of the structures shows that the flame temperature 
decreases as larger droplets are involved which is associated with an increased energy exchange between the gas 
and liquid. The same is true for momentum exchange which causes a substantial decrease in gas velocity. The 
large droplets of the bidisperse spray penetrate deeper into the configuration - this is associated with the increased 
momentum of these droplets. However, the monodisperse situation shows a considerably broader reaction zone which 
is due to the increased gas velocity and the high peak flame temperature. None of the flames shows droplet reversal. 
The monodisperse spray yields less interaction between spray and chemical reactions. 
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Figure 1: Outer structure of a bidisperse (left) and a monodisperse (right) spray flame where iü0i = 25/L/m, R02 

10/xm, and RSMR0 = 14.286/xm, at a = 55/s. 
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Figure 2: Outer structure of a bidisperse (left) and a monodisperse (right) spray flame where i?0i = 25//m, R02 = 
10/irn, and RSMR0 = 14.286/xm, at a = 1800/s. 

Figure 2 shows a comparison of the flame structure of the bidisperse and the monodisperse spray, respectively, 
at elevated strain (a = 1800/s). The figure shows the droplet oscillation of the large droplets of the bidisperse 
spray. Their complete evaporation occurs near the gas stagnation point whereas the droplets on the air side of the 
configuration do not contribute to the vaporization process. The large droplets determine the width of the spray 
flame whereas the small ones dominate the reaction zone characteristics. A comparison with the corresponding 
monodisperse spray on the right in Fig. 2 demonstrates that the width of the reaction zones of both flames is almost 
the same. The peak value of the vaporization rate of the small droplets of the bidisperse spray is about the same as 
monodisperse droplet vaporization (not shown). The peak gas temperature shown in Fig. 1 of the bidisperse spray, 
however, is about 50 K lower, and the difference increases as strain increases. 

Bidisperse Spray 

Monodisperse Spray, SMR 
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R = 10nm 
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Figure 3: Maximum flame temperature versus gas strain rate on the fuel side where RQI = 25/zm, R02 = lO/mi, and 

RsMR0 = 14.286/im. 

A comparison is made to see if the reaction zone resembles that of a monodisperse spray having the small droplet 
size. The results are shown in Fig. 3. The structure of that flame is more similar to that of the bidisperse spray (not 
shown), but it is considerably stabler compared to the bidisperse situation. Note that this situation has not been 
carried to extinction - these flames, however, are more stable compared to the RQ = 14.286/im situation. 
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4. Conclusions 

The structure and extinction of mono- and bidisperse ethanol/air spray flames have been presented. Large droplets 

of a bidisperse spray determine the width of the spray flame as well as its stability. The small droplets dominate 

the reaction zone characteristics and the width of the reaction zone. A comparison of the vaporization rates of 

the droplet size groups shows that large droplets contribute only about 10% to the total vaporization process at 

high strain. The results of the study show that the extinction characteristics of spray flames is not sufficiently well 

reflected by the Sauter mean radius of a spray with droplet reversal. The Sauter mean radius, however, may be 

suitable to describe polydisperse spray flames where no droplet reversal occurs. 

If the laminar spray flame structures are to be used in turbulent flame computations employing the flamelet model for 

spray diffusion flames [21], the discrete droplet groups should be matched to laminar flame computations using that 

droplet size rather than using the Sauter mean radius for systems where droplet oscillation occurs. This procedure, 

of course, increases the computational effort of both laminar and turbulent flame simulations. 
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THOMAS HULD AND HEINZ WILKENING 

3D simulations of turbulent deflagrations using dynamic grid adaptation 

We present a CFD code for simulating turbulent deflagrations in gas mixtures for studies of explosion accidents. A 
dynamic grid adaptation method is used to increase the accuracy of the calculation in regions of interest, such as at 
flame and shock fronts. The numerical simulations compared with experimental data and is shown to yield strongly 

improved results at at modest cost in computational time. 

1. Models and numerical methods 

The details of the basic physical equations and numerical methods have been described in[l]. The basis for the 
numerical methods is the set of compressible Navier-Stokes equations for the conservation of species' masses, mo- 
mentum and total energy, coupled with the equation of state for an ideal mixture of Joule gases. The effects of 
turbulence are modeled by the compressible Ar-e equations. 

In turbulent deflagrations the chemical source terms are heavily influenced by the turbulence. A model must therefore 
be used to account for this influence. In the present work we have used a model based on the Eddy Dissipation 
Concept [2], with modifications due to Said and Borghi. In this model, the chemical time scales are assumed to be 
very much shorter than the turbulent time scales, so the combustion processes are limited by the turbulent rate of 
mixing at the flame front. The source term for the fuel component of the mixture is given by: 

where Yiim is the mass fraction of the species which is present in lowest concentration, weighted stoichiometrically 
in the combustion process, p is the density, k is the specific turbulent kinetic energy and e the dissipation rate of Ar. 
The factor Cf is calculated from the laminar burning velocity i^am and the turbulent kinetic energy: 

4.4 A (2) 
Cf = Cfo    1 + 

1 + 3.2v/£Mam 

where Cf0 is an empirical constant, which must be found by comparisons with experiments. The advantages of 
this combustion model are its simplicity and low computational costs. It does have limitations, however, in that it 
cannot account for important phenomena such as the transition from laminar to turbulent flames or the transition 

from deflagration to detonation. 

The NS equations are discretized by dividing space into a set of tetrahedral elements. Control volumes are then 
formed around each vertex by equipartition of the tetrahedra [1]. The integral formulation of the equations is then 
solved by a finite-volume method, calculating the fluxes across control volume boundaries. 

In order to improve the calculation accuracy, we have introduced a system for dynamic grid adaptation. New node 
points are inserted in regions of interest (defined by monitoring the spatial variation of one variable, for instance 
pressure or temperature). The new nodes are removed when the variation of the chosen variable becomes low 
enough. This avoid cluttering up the grid with useless grid points. A certain amount of "look-ahead" can be 
imposed, whereby the new grid points are inserted also in a region around the region of interest. In this way the 
grid can be "prepared" for the arrival of the flame front or shock, which avoids problems with interpolation. 

2. Results and discussion 

As a test of the code and the models, we chose to simulate the development of a turbulent deflagration in an explosion 
tube experiment performed at the Forschungszentrum Karlsruhe, Germany [3]. The tube has a length of 12m and a 
diameter of 0.35m. Inside the tube are ring-shaped obstacles, placed at intervals of 0.5m, blocking 30% of the tube 
cross-section. The tube was filled with a uniform mixture of hydrogen and dry air. Ignition occured at the center of 
one endplate. Pressure and light transducers recorded the progression of the flame. 
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Figure 1: (a k b left) Isocolour plots of a flame propagating in an explosion tube with obstacles. The plots show 
temperature in a 2D cut in a section of the tube, with 4m < x < 5.5m. One half of tube cross-section is shown. 
Results shown are without (a) and with (b) grid adaptation. Right graph shows comparison of flame arrival times 
vs. position between experimental values and simulations with and without grid adaptation. 

Figure 1 shows a comparison between experimental results and numerical simulations for a case with an H2 con- 
centration of 12% by volume. The simulations were performed with an original grid of 40000 grid points. In the 
adaptive simulation, the number of grid points reached a maximum of 80000 grid points. For these calculations we 
chose a value of C/0 = 6.0. 

Figures 1 a) and b) show clearly the improvement in the sharpness of the flame front due to the adaptive grid. In 
figure 1 in the graph the arrival time has been offset so that all arrival times coincide at x = 11.25m. Here we see 
that the adaptive calculation better captures the rapid acceleration in the first part of the tube and the subsequent 
reduced acceleration. The non-adaptive calculation is more prone to continue accelerating throughout the tube. 

3. Conclusion 

Dynamically adaptive grids provide a valuable tool for accurately simulating turbulent deflagrations in complex 
geometries. Much improved solutions may be obtained at moderate requirements in computational time. In the 
calculation presented in this paper an improved resolution of a factor of 3 in each dimension was obtained with a 
increase in computational nodes of less than a factor 2. This gave a much improved resolution of the flame front 
and better global prediction of the deflagration. 
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INDENBIRKEN, M.; STRAUSS, K. 

Zur Modellierung komplexer partikelbeladener Strömungen mit der 
kinetischen Theorie granulärer Medien 

Die Partikelbewegung in verdünnten feststoffbeladenen Gasströmungen wird häufig mit der kinetischen Theorie granu- 
lärer Medien (engl: kinetic theory of granular flows, KTGF) beschrieben. Dieses aus der kinetischen Gastheorie abge- 
leitete Modell basiert auf der Kontinuumsannahme für beide Phasen (dem sog. Euler/Euler-Ansatz) und ist in seiner 
ursprünglichen Formulierung vor allem für einfache Strömungsformen geeignet. Hier werden neue Ansätze vorge- 
stellt, die die Verwendung der KTGF auch bei komplexen Strömungen mit ausgeprägten Partikel- Wand-Kollisionen 
ermöglichen. Dazu ist es erforderlich, die beschreibenden Kollisionsintegrale auszuwerten und die nicht elementar 
integrierbaren Ausdrücke zu approximieren. Als Resultat werden neuartige Randbedingungen sowie ein erweitertes 
Konzept zur Beschreibung der Partikel-Partikel- Wechselwirkungen vorgestellt. 

1. Modellbildung 

Die Motivation zur Entwicklung des hier vorgestellten Modells ergibt sich daraus, daß in der Verfahrenstechnik 
häufig partikelbeladene Strömungen vorliegen, in denen lokal begrenzt Wandkollisionen der Partikel auftreten. Ent- 
sprechende Beispiele sind die Durchströmung von Rohrkrümmern und die Umströmung von Wärmetauscherrohren. 
In den genannten Anwendungen werden die Partikel mit der Gasströmung in Richtung der begrenzenden Wand 
bewegt und kollidieren aufgrund ihrer Trägheit mit der Berandung, bevor sie der Bewegung des Fluids wieder folgen 
können. Derartige gerichtete Wandkollisionen können bei Verwendung des Euler/Euler-Ansatzes für die Partikel- 
phase in Verbindung mit der KTGF nicht beschrieben werden. 

Aus diesem Grunde wurde das Konzept entwickelt, den Feststoff auf mehrere Phasen aufzuteilen, wobei eine 
Phase durch die Partikel gebildet wird, die sich in die Richtung der zu untersuchenden Berandung bewegen. Eine 
weitere Phase enthält diejenigen Partikel, die bereits mit der angeströmten Wand kollidiert sind und sich wieder von 
ihr entfernen. Obwohl dieses Konzept bei wiederholten Wandkollisionen auf beliebig viele Partikelphasen erweitert 
werden kann, ist es sinnvoll, deren Anzahl auf maximal drei oder vier zu begrenzen. Insbesondere für Anwendungen, 
die eine große Zahl gerichteter Partikel-Wand-Kollisionen bedingen - wie z. B. der horizontale pneumatische Trans- 
port - ist dagegen das Lagrange-Verfahren zur Beschreibung der Partikelbewegung zu bevorzugen. 

Aus der Konzeption des hier beschriebenen Verfahrens ergeben sich die Aufgaben, geeignete Randbedingungen 
für die jeweilige Partikelphase sowie Wechselwirkungsterme herzuleiten, die den Austausch von Masse, Impuls und 
Fluktuationsenergie zwischen den verschiedenen Partikelphasen beschreiben. 

2. Randbedingungen 

Zur Herleitung der Randbedingungen wird das Kollisionsintegral der jeweiligen Transportgröße gelöst. Dies bedeutet, 
daß alle Partikel berücksichtigt werden, deren wandnormale Geschwindigkeit vN (= VN + v'N) so groß ist, daß sie 
innerhalb des betrachteten Zeitintervalls die Berandung erreichen. Das Vorgehen wird exemplarisch am Beispiel 
des an der zu untersuchenden Wand zwischen zwei Partikelphasen ausgetauschten Massenstroms vorgestellt. Bei 
der Beschränkung auf eine zweidimensionale Darstellung ergibt sich unter Verwendung der Partikelmasse mp, der 
Verteilungsfunktion / der Partikelgeschwindigkeiten (angenommen als Maxwell-Verteilung), der Fluktuationsenergie 
6 (der sog. granular temperature) und der zur Wand tangentialen Geschwindigkeit vT der ankommenden Partikel 
(Index A) der an die Phase der reflektierten Partikel (Index R) übertragene Massenstrom 

m„,    =    -mD 

N,A    OO 

/  /(^,A+<,J/A<K,Ad<A 

=     $A£P 
v v N,A 1 - erf | -^ 

Zur Formulierung der Randbedingung wird dieser flächenspezifische Massenstrom anstelle des konvektiven Flusses 
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in die Massenbilanzen beider Partikelphasen für ein an die Berandung angrenzendes Volumenelement eingesetzt. 

Auf analoge Weise wird der an der Wand zwischen den Phasen übertragene Impuls bestimmt, wobei in der Bi- 
lanz der reflektierten Phase zusätzlich die Wandschubspannung zu berücksichtigen ist. Ebenso ist bei der Randbedin- 
gung für die Fluktuationsenergie zu beachten, daß es zur Dissipation von Fluktuationsenergie durch die Inelastizität 
der Wandkollisionen und zur Produktion aufgrund der Rotation der Teilchen nach dem Wandstoß kommt. 

3. Wechselwirkungen der Partikelphasen 

Durch die Anwesenheit von Partikeln anderer Phasen werden die kinetischen Größen wie Druck und Viskositäten 
der betrachteten Partikelphase beeinflußt. Entsprechende Modifikationen der beschreibenden Gleichungen sind von 
der Betrachtung polydisperser Suspensionen bekannt [1]. Auch Terme, die den Impulsaustausch mehrerer Phasen 
untereinander beschreiben, sind bereits vorgestellt worden (vgl. [2],[3]), enthalten jedoch im allgemeinen starke 
Vereinfachungen. Dagegen existieren keine entsprechenden Ausdrücke für den Austausch der Fluktuationsenergie 
0 [1]. Bei der Herleitung dieser Terme - beispielhaft für den Impulsaustausch JAR zwischen beiden Partikelpha- 
sen vorgestellt - sind die Verteilungsfunktionen der beteiligten Phasen und die radial distribution function g0 zu 
berücksichtigen. Es ergibt sich: 

oo     oo     oo     oo 

JAK = Ci go j   J   J   J  /A /R |«A -vR\-{vA- vR) dvN a du, A dvM „ du. 'AR 

— OO —OO —OO —00 

N,A ""T,A N,R ^*^T,R 

Die Lösung erfolgt, indem JAR für den Grenzfall 0 < (vA - vRf sowie für den Fall ausschließlich zentraler Stöße 
bestimmt wird. Diese Lösungen lassen sich schließlich zu dem folgenden Ausdruck ergänzen [4]: 

V - V      (i -       - \ 2 \ (VA - VR) 

In den beiden Gleichungen stellen C\ und C2 jeweils Konstanten dar, $ repräsentiert die Volumenanteile. Ein 
analoges Vorgehen kann auch zur Berechnung des Austausches der Fluktuationsenergie 0 angewandt werden [4]. 

4. Ergebnisse 

Als Anwendungsbeispiel für die beschriebene Methode wurde ein horizontaler Freistrahl betrachtet, der in eine 
verdünnte zirkulierende Wirbelschicht eingedüst wird. Unter dem Einfluß des einphasigen Gasstrahles werden die 
sich zunächst vertikal bewegenden Partikel in Richtung des Freistrahles abgelenkt und kollidieren schließlich mit der 
der Düse gegenüberliegenden Berandung. Von der Wand prallen die Partikel zurück in das Strömungsgebiet und 
wechselwirken mit den sich dort befindlichen Partikeln. Dieses aus eigenen experimentellen Untersuchungen bekannte 
Verhalten wird mit den beschriebenen Methoden sehr gut wiedergegeben. 

Demgegenüber ist es mit der KTGF in ihrer ursprünglichen Formulierung nicht möglich, die wandnormale 
Bewegung und folglich die gerichteten Wandkollisionen der Partikel zu beschreiben. Der Impulsaustausch mit der 
Berandung ergibt sich daher bei Verwendung der klassischen KTGF ausschließlich aus der Fluktuationsbewegung der 
Partikel. Vergleiche mit Ergebnissen, die mit dem hier beschriebenen neuartigen Ansatz erhalten wurden, zeigen, daß 
bei Verwendung der ursprünglichen Formulierung der KTGF der Impulsaustausch mit der Wand in der vorliegenden 
Anwendung um bis zu 60% zu gering berechnet wird. 

5. Literatur 

1 BOEMER,  A.: Euler/Euler-Simulation der Fluiddynamik blasenbildender Wirbelschichten.  Dissertation,  RWTH Aachen 
(1996). 

2 ARASTOOPOUR, H., LlN, S., WEIL, S. A.: Analysis of the vertical pneumatic conveying of solids using multiphase flow 
models. AIChE Journal 28, No. 3 (1982), 467-473. 

3 SYAMLAL, M.: The particle-particle drag term in a multiparticle model of fluidization. Topical report DOE/MC/21353-2373, 
DE87 006500 (1987). 

4 INDENBIRKEN, M.: Weiterentwicklung des Euler/Euler-Verfahrens zur Beschreibung berandeter Gas-Feststoff-Strömungen. 
Dissertation, Universität Dortmund (in Vorbereitung). 

Adresse: DIPL.-ING. MATTHIAS INDENBIRKEN, PROF. DR.-ING. KARL STRAUSS, Lehrstuhl Energieprozeßtechnik 
und Strömungsmechanik, Fachbereich Chemietechnik, Universität Dortmund, D-44221 Dortmund 



Section 9-25 S541 

KEMPF, A.; FORKEL,H.; CHEN,J.-Y.; SADIKI, A.; JANICKA,J. 

Large Eddy Simulation of a Counterflow Configuration 

The aim of the present work is to extend the possibilities of predicting turbulent activity and mixing in counterflow 
burners. Such burners are well suited for the calibration and validation of combustion models. Because of their 
geometry, they allow simulations to be performed in only one dimension of space. This safes much computation 
time, rendering for example the simulation of detailed chemistry possible. Here, a three dimensional LES is applied 
without considering chemical reactions. Sub-grid fluctuations are modeled according to Smagorinsky. The model 
constant is determined dynamically by the well known Germano approach. 

1. Introduction 

The understanding of the flow structure and the mixing process is crucial for many fundamental and industrial 
applications. Numerical simulations of turbulent flows which are able to predict the instationary behaviour within 
reasonable computational efforts are highly needed. As far as combustion is concerned, LES has a greater potential 
for the simulation of turbulent flows than RANS, because fluctuations of velocity and chemical compositition are 
resolved down to filter width. An accurate description of mixing, the driving mechanism of combustion in such 
systems, is therefore possible. 

Although the extension of LES to reacting flows has already been the goal of many investigations (see [1] and other 
mentioned papers), it is well known that a good overall agreement of the flow and mixing field is a prerequisite 
for understanding the turbulence-chemistry interaction. For configurations which are well suited for calibration and 
validation of combustion models (e.g. counterflows), it appears very interesting to see how existing SGS-models 
perform in predicting turbulent flow and mixing. The aim of this work is to investigate the potential of LES to 
describe turbulent counter-flow with the view of advancing the use of LES in understanding complex systems. 

In the numerical method, the density is considered to be independent of pressure. The subgrid distribution of 
the mixture fraction fluctuation is presumed to have the shape of a ß function. To represent the sub-grid scale 
stresses and scalar flux, a Smagorinsky model is used [6]. The Smagorinsky coefficient is determined by the dynamic 
Germano procedure [2]. The subgrid-fluctuation of the mixture-fraction is modeled by the resolved variation of the 
mixture fraction in the neighbour-cells. 

2. Configuration and Computational Parameters 

The burner studied in this work is based on a design by Mastorakos [3] and Sardi [5], in which two opposed nozzles 
(30mm in diameter) are arranged in line, separated by a distance of 30mm. These nozzles create opposed jets. Their 
velocities are adjusted to balance momentum, so the mixing layer is located at half the nozzle distance. 

Two straight pipes deliver the fluid. Short upstream of the nozzles, a perforated plate excites reproduceable tur- 
bulence. For the non-reactive case presented here, both nozzles spend plain air. In the experiments, the mixture 
fraction was determined by measuring the local temperatures. (One stream is heated 25 degrees over ambient.) In 
contrast, this work presents iso-thermal mixing. 

A laminar coflow shields the opposed jets of outer influences. 

Its height is defined by the nozzle distance, its radius was set to approximately 1.5 times the radius of the pipe. 
Thus, part of the Co-flow is simulated as well. This domain was discretized by 104.000 cells (65 axial, 25 radial, 64 
tangential). 

The nozzles and the Co-flows were described by a Dirichlet condition for both velocity and mixture fraction and a 
von Neumann condition for pressure. On the outer ring (coflow) steady laminar flow is forced, whereas velocities on 
the inner section fluctuate corresponding to the turbulent flow out of the nozzles. With this domain the turbulent 
inflow condition is of special importance for the entire flow-field, because there is no time for turbulence to develop 
before approaching the area of interest (the entire centerline). Thus, it appears to be necessary to predict the velocity 
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fields in the wake of the perforated plate and to copy these velocities onto the inflows. The flow out of the plate 
holes was described by a corresponding velocity profile which was forced onto the inflow of the feeding pipes. As 
boundary condition on the cylinder shell, a simple outflow condition was used (Dirichlet-condition for pressure, von 
Neumann-type condition for velocities and scalars). Negative outflow-velocities are cut-off to ensure stability. 

3. Results, Discussions and Conclusions 

For this study, it was relied on experimental data by K. Sardi [5]. The case considered features a Reynolds-number 
of 7,500. Results along the domain-centerline are presented in both Fig. 1 and Fig. 2. The first figure shows the 
normalized mean axial velocity and the fluctuations for both axial and radial velocity. The numerical solution for 
the mixture fraction (see Figure 2) proves that good results can be achieved by this approach. The fluctuation peak 
value seems to be predicted very well, while the fluctuations out of the middle are slightly overestimated. Although 
the experimental data presented in Figure 2 is not really sufficient to draw such conclusions, they are confirmed 
by data-items acquired at an increased Reynolds-number of 10,000 (presented in [5] as well). Because the mixing 
is determined by the state of the flow turbulence, it can be deduced that the flow quantities shown in Fig. 1 are 
predicted realisticly as well. (No experimental data are available here.) 

All in all, the results appear to be pretty promising for further investigation. Furthermore, they were achieved at a 
reasonable cost (3 days of CPU-time). Finally, it shall be stressed that the entire turbulent flow fields were computed 
by LES. No experimental data was used to describe the boundary conditions. 
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LANGE, MARC; WARNATZ, JüRGEN 

Parallel DNS of Turbulent Non-Premixed Flames with Adaptive Chemistry 

Direct numerical simulations (DNS) have become one of the most important tools to study turbulent combustion. 
Computation time is still a main limiting factor for the DNS of reacting flows, especially in the case of using detailed 
chemical mechanisms. The computation of the chemical source terms is one of the most time-consuming parts in 
such DNS. An adaptive evaluation of the chemical source terms is used in the presented DNS of turbulent diffusion 
flames. This leads to a decrease of the time needed for this part of the computation by more than a factor of five 
without any significant loss of accuracy of the results. 

1. DNS of Reacting Flows 

Turbulent combustion processes are important for a wide range of applications like automotive engines, electrical 
power generation, and heating [1]. During the last few years, direct numerical simulation (DNS), i.e. the computation 
of time-dependent solutions of the compressible Navier-Stokes equations resolving the whole wave-number spectrum, 
has become one of the most important tools to study turbulent combustion. Due to the broad range of occuring 
length and time scales, DNS are far from being applicable to most technical configurations, but they can provide 
detailed information about turbulence-chemistry-interactions and thus aid in the development and validation of 
turbulent combustion models. 

In the case of using detailed chemical reaction mechanisms, in addition to the conservation equations for mass, 
momentum, and energy, an equation for the species-mass of each of the Ns chemical species a 

^|P + div(gYau) = Maca - divj« (1) 

has to be solved. Herein g denotes the density and ü the velocity, Ya, ja and Ma are the mass fraction, diffusion flux 
and molar mass of the chemical species a. The computation of the chemical source terms on the right-hand-sides of 
the species mass equations (1) is one of the most time-consuming parts in such DNS. The production rate ca of the 
chemical species a is given as the sum over the formation rate equations for all N-R. elementary reactions, 

NR NS        (r) 

^ = £*A("ä-''2)IKa*. (2) 

where i/rj[ and t/^ denote the stoichiometric coefficients of reactants and products respectively, and ca is the 
concentration of the species a. The chemical reaction mechanism for the H2/O2/N2 system which has been used in 
the simulations presented contains iVs = 9 species and NR = 37 elementary reactions [1]. 

2. Adaptive Computation of Chemical Source Terms 

Figure 1 shows a snapshot of a typical DNS of a turbulent non-premixed flame. An initially planar laminar diffusion 
flame has been superimposed with homogeneous turbulence at the beginning of this simulation. A very fine grid 
is used to resolve the smallest turbulent length-scales everywhere in the computational domain. In a fully coupled 
simulation the complex chemistry model is normally computed on every point of the same grid although in big 
parts of the domain no or almost no reactions occur. Thus, computation time can be saved by computing the 
chemical source terms using the detailed chemical mechanism only in those regions in which reaction-rates are non- 
negligible. Criteria which can be fast evaluated are then needed to decide if a grid point belongs to such a region. 
For non-premixed and partially premixed reactive systems, it is possible to check the element mass fractions of fuel 
and oxidizer. If one of these two is nearly zero, no reactions will occur. As a test for this adaptive evaluation 
of the chemical source terms, a DNS of autoignition in a turbulent mixing layer has been performed. The initial 
temperature of the fuel stream consisting of 10% H2 and 90% N2 (mole fractions) was T± = 298 K and the initial 
temperature of the air stream was T2 = 1398 K. The turbulent Reynolds number based on the integral length-scale 
was Re\ = r.m.s.(u') • K/v = 238. The size of the domain is 18 mm x 18 mm and the computational grid has 
800 x 800 points.  The temporal evolution of maximum heat release rate for this DNS is shown in Fig. 2. In the 
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Figure 1: Snapshot of heat release rate q and absolute 
vorticity \w\ in a turbulent non-premixed flame 
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Figure 2: Maximum heat release rate <jmax over time 
in a laminar and a turbulent mixing layer 

adaptive computation for every timestep the chemical source terms have been set to ca — 0 for all chemical species 
a at those points at which Zu < ea or ZQ < £b with ea = t\, = 1 • 10-5. The limiting values ea^ have been estimated 
from the results of a similar one-dimensional simulation. Another possibility would be the computation of a library 
of production-rates in homogeneous mixtures depending on temperature and pressure, from which limiting values 
for more general applications could be determined. In the following table the maxima of the relative errors 

<ü™ax(t.) = m&x(5x{x,y,t)) = max 
f\Xfu\\(x,y,t) -Xadapt{x,y,t)\ 

x,y  ■ x,y   \        maxXty(Xfun(x,y,t)) 

of heat release rate and mass fractions of OH and HO2, which are especially important for the ignition, are given 

(3) 

t/ßS 25 50 75 100 125 150 

1.8-10"3 

1.5-10"4 

6.7-10-4 

7.2-10-4 

4.6-10-4 

6.0-10-4 

1.6-10"3 

2.6-10-4 

1.7-10-4 

1.2   10-3 

1.7-10-3 

8.6- 10"5 

1.4-10-3 

4.4-10-3 

1.7-10-4 

1.4-10-3 

4.1-10-3 

2.0-10-4 

The maximum errors <5;£ax(£) at times t = 25/is,50/us,.. .,150/xs for x- and y-components of velocity u and v, 
pressure p, density g, and temperature T are all less than 2 ■ 10"5, and those of the mass fractions Ya of all chemical 
species except HO2 are smaller than 1 • 10"3. It can clearly be seen that no significant loss in accuracy is introduced 
by the adaptive computation of the chemical source terms. 

As our DNS-code is parallelized using a domain-decomposition approach, a dynamic load-balancing has to 
be done to be able to benefit from the adaptive chemistry computation. The implemented load-balancing scheme 
performs a grid-point redistribution, based on differences of the times which had been needed by the processors for 
carrying out the last integration step on their subdomains. More details on the load balancing scheme and the DNS 
code in general can be found in [2]. The additional time needed for the load-balancing is typically small compared 
to the savings due to the adaptivity in the chemistry computation. In the described DNS of a turbulent mixing 
layer (carried out on 64 processors of a Cray T3E), the sum of the times needed for the load-balancing and for the 
computation of the chemical source terms in the adaptive computation is by a factor of five smaller than the time 
needed for the full computation of the chemical source terms. 
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Luo, KAI 

Some Recent Findings on Turbulent Diffusion Flames from DNS 

Direct numerical simulation (DNS) is a valuable tool for the study of complex interactions between turbulence and 
combustion, thanks to its ability to resolve the wide range of time and length scales involved. Its application in the 
fundamental study of turbulent diffusion flames has been particularly fruitful in recent years, which led to some new 
findings, improved understanding of known phenomena and the development of new theories and models. This paper 
is concerned with the effects of heat release from finite-rate chemistry on compressible turbulence. The present DNS 
results reveal intricate interactions among combustion, turbulent transport and mixing. 

1. Heat release effects on shear-layer growth rate 

Turbulent diffusion flames are strongly dependent on the effectiveness of mixing between the fuel and the oxidizer, 
which is often measured by a shear-layer thickness. How such a thickness grows spatially and temporally will 
determine how a combustion process will proceed or whether it will take place at all. The reverse process, in which 
combustion influences the shear-layer growth, is equally important, through their non-linear interactions. Numerous 
studies were devoted to the topic, but conclusions were often contradictory. The shear-layer growth was seen to 
be inhibited by heat release in some cases [1, 2] but promoted in others [3]. In almost all cases, explanations were 
sketchy. Lately, the study of Luo [4] provided a full explanation of the observed phenomena on the basis of a 
mathematically exact relationship between the shear-layer growth rate and other flow quantities expressed as: 

dS 

dt    Plui+C 

r+°° / Fir,. \ r+<x  
(1) L {-pu^dx-jdX2+L r^)dx> 

where the symbols have their usual meanings, that is, p for density, u; for velocity and Xi for space coordinate in 
the i-direction. <x,j stands for viscous stresses. A Reynolds average decomposition of a quantity <j> is defined as 
<j> = 0 + <f>' whereas a Favre average decomposition is defined by <f> = <f> + <f>". Thus, the first term on the right-hand 
side is the integrated Reynolds stress production for the 11-component of the Reynolds stresses and the second 
term represents its viscous stress production. The shear-layer thickness is defined using the momentum thickness 
of a temporal mixing layer: S(t) = l/(piC^i2+oo) /_ °° ~P (^i,+oo — «i)(wi — fi,-oo) dx2 where Z/i.+oo and C^i.-oo are 
the upper and lower free-stream velocities in the streamwise direction. Formulas identical to these and (1) can be 
written for a spatial mixing layer or jet. 

It is clear from (1) that the shear-layer growth rate is affected by both turbulence and viscous effects. DNS results [4] 
show that combustion can either increase or reduce the growth rate, depending on the effects of non-linear interactions 
between heat release and turbulence on the two production terms in (1). On the one hand, heat release can increase 
the turbulent production through augmented velocity gradients and enhanced pressure-strain rates due to increased 
pressure fluctuations. On the other hand, heat release can increase viscous effects as a result of raised temperature. 
The interactions between the two opposing mechanisms are responsible for the diversity of phenomena reported in 
the literature. For modelling purposes, the viscous term in (1) can be ignored when the heat release is small and 
the Reynolds number is large. The advantage is that the growth rate can then be predicted solely by the turbulence 
production term, which is computed directly in a second-moment closure model. For the cases studied by Luo [4], 
neglecting the viscous term led to an error of up to 15% in the prediction of the growth rate. It is anticipated that 
the error will decrease with increasing Reynolds number but will increase with increasing heat release. 

2.  Countergradient diffusion 

In the modelling of turbulent combustion, turbulent scalar fluxes are customarily approximated by gradient diffusion 
(GD) models. However, Bray et al. [5] predicted theoretically the existence of countergradient diffusion (CGD) in 
premixed turbulent flames. Recent DNS studies have produced evidence of CGD in both premixed [6] and non- 
premixed [7] turbulent combustion. Therefore, the use of GD models in reacting turbulent flow must be questioned. 
Luo [8] conducted further investigation into the mechanisms behind CGD, using DNS of non-premixed turbulent 
flames with different heat release rates. Local countergradient diffusion (LCGD) was observed in the turbulent fluxes 
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of both non-conserved and conserved scalars. The frequency, extent and duration of the occurrence of LCGD all 
increased with increasing heat release, although GD never broke down completely in all spatial locations and at all 
times. The appearance of such LCGD increases the complexity of the problem even further. 

A detailed analysis of the transport equations for scalar fluxes in compressible reacting turbulent flow was performed 
by Luo [8], which revealed the driving forces for and against CGD. Both the mean and the fluctuating pressure 
gradients generated by combustion promote CGD, whereas the production terms due to the mean velocity and 
scalar gradients inhibit CGD. The viscous dissipation term also inhibits CGD although its magnitude is relatively 
small and its physical mechanism still unclear. It is highly likely that the viscous effects inhibit CGD by damping 
turbulent fluctuations. Finally, the term containing the reaction rate has a negligible effect on scalar transport. It 
explains why conserved and non-conserved scalars have very similar turbulent transport behaviour. On the basis of 
these results, a criterion for the occurrence of LCGD of the scalar flux p8"u'- in the j-direction can be written as: 

dPe ^ r., f, ,   M ^WX de „     >K [1 + ^-^4=^-^- (2) 

where K is a model constant, Prt a turbulent Prandtl number and pe an "effective pressure gradient" defined as: 

?»—!-(»!»+V»L, ,3, 
dxj y/o'10" V     dxj dxj 

The above criterion (2) states that LCGD or CGD occurs when the combustion-generated "effective pressure gradi- 
ent" effect is larger than the effect of the gradient diffusion caused by the mean scalar gradient. It should be noted 
that the effects of mean velocity gradients have been incorporated into the turbulent Prandtl number Prt. Fur- 
thermore, the effective pressure gradient represents the total effects of combustion-generated mean and fluctuating 
pressure gradients. DNS results show that combustion-generated pressure gradients are highly sensitive to the level 
of heat release, which in turn depends on many factors. The next challenging task is to find a quantitative relation- 
ship between heat release and pe through further simulation and modelling. In this sense, the criterion in (2) is a 
vital but first step in establishing a viable tool for predicting CGD in general. As discussed above, CGD or LCGD 
occurs due to a sufficiently large effect of the combustion-induced pressure gradient. It is therefore an intrinsic effect 
of the heat release process, which should be present in most practical flames. Provided the spatial and temporal 
accuracy of the simulation or measurement is sufficiently high, CGD or LCGD should be detected in more and more 
situations. Accordingly, combustion models must be built to be able to account for CGD and LCGD. 
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MACHU G.; MEILE, W.; NITSCHE, L.; SCHAFLINGER, U. 

The motion of a swarm of particles travelling through a quiescent, viscous 
fluid. 

The motion and shape evolution of viscous drops made from a dilute suspension of microscopic, spherical glass beads 
sedimenting in an otherwise quiescent liquid is investigated for conditions of low Reynolds number and infinite Bond 
number. The key stages of deformation of single drops and pairs of interacting drops are identified. Of particular 
interest are (1) the coalescence of two trailing drops, (2) the subsequent formation of a torus, and (3) the break-up of 
the torus into two or more drops in a repeated cascade. All the phenomena described above can be explained within 
the realm of Stokes flow, without resort to interfacial tension or inertial effects. 

1. Introduction 

In the following, the shape evolution of single and interacting pairs of drops is investigated theoretically by means 
of discretizing the drop volumes with a swarm of small particles at a given volume fraction. The particles act 
simultaneously as generators of the flow field (because they are sedimenting relative to the local ambient flow) and 
tracers of shape and interface of the drops. The concept of shape and (fuzzy) interface is therefore a macroscopic 
interpretation of the result of a (microscopic) calculation of individual particle positions. 

2. Governing equations 

For a small drop Reynolds number (and an even smaller particle Reynolds number) and vanishing acceleration 
of the particles, the suspension drop can be modeled by using the equations of creeping flow. At low volume 
fractions the ratio of the particle radius to the smallest interparticle distance r is small. A good representation of 
hydrodynamic interactions between the particles is to therefore to pretend that each particle at the position xm 

sediments essentially in isolation with the Stokes settling velocity relative to a local ambient velocity vector. This 
velocity vector is obtained by superposing the Stokeslet disturbance fields (determined by F(x)) from all other 
particles at positions xn, each of these others being regarded as itself settling in isolation relative to its own local 
flow field. If we recast the governing equations (see [2] or [4]) by using R as the radius of the drop, a reference 
velocity U which is the Hadamard-Rybczynski (H-R) velocity for a drop of unit radius and time R/U, we obtain the 
velocity of the m-th particle in the swarm: 

d M 1 
-=*2-  as Y, (67r<Ü • F (xm - xn), F(x)  =  — (I + xx), x = r~lx        r = xm-xn 

n=l 

3. Results 

We have proved rigorously (see [4]) the analogy in behaviour of drops containing finely dispersed particles and drops 
consisting of pure liquid (see also [3] for experiments). Therefore, all the results exhibited in this section also hold 
true for drops of pure liquid. In figure 1(a), the interaction of two horizontally displaced drops is presented. Due to 
the interaction (see [1]) , the rear drop manages to catch up with the leading drop and eventually pokes through. 
During the further development both droplets mix due to the toroidal vortex. It is clearly visible that a large amount 
of surrounding clear liquid becomes entrained in the newly formed compound drop. This mechanism of entrainment 
is identified for being responsible for the subsequent torus formation presented in figure 1(b). The entrained liquid 
circulates in the compound drop and gives rise to a ring-like structure, a 'closed' torus. This initially formed torus 
is surrounded by an envelope of closed streamlines, as exhibited in figure 2. The torus undergoes a series of radial 
expansion and contraction cycles, with the expansion prevailing. Subsequently the flow field suddenly changes and 
the torus evolves into a so-called 'open' torus, with the streamlines passing through the hole in the center. The 
'open' torus is unstable and disintegrates into two or three secondary drops, which themselves become unstable and 
break into tertiary drops - the cascade of ring disintegration. 
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Figure 1: (a) The interaction of two horizontally displaced suspension drops in a sectional plane. Drop positions 

are shifted four units to the right at each dimensionless time interval of At=1.84. A H-R trajectory for a single 

drop of unit radius is drawn as a reference scale, (b) The cascade of ring disintegration in a (Z/X) diagram. Drop 

positions are shifted four units in X at each dimensionless time interval of At=7.64. The graph is turned 90 degrees 

counterclockwise from the vertical to make it compact. 

Figure 2: 3-d volume streamlines for the closed (+) and the open torus (*) marked as (+) and (*) in figure 1(b). 

The torus (not drawn here) is situated at the centre of the cubical volume. The streamlines start along a regular 

spacing at a line parallel to the X-axis in a sectional plane which intersects the centre of the torus. 
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MEILE, W., MACHU, G., SCHAFLINGER, U. 

Experimental investigation of viscous drop formation from a needle 

The present paper focuses on the shape evolution and deformation of single drops and pairs of trailing drops made from 
dilute suspensions during gravitational sedimentation in an otherwise quiescent homogeneous liquid. The presented 
experimental results are only one part of a comprehensive investigation also including theoretical considerations and 
numerical simulations. This paper presents the characteristic phenomena through both flow visualization and detailed 
PIV-measurements including subsequent derivation of the streamline pattern. 

1. Introduction 

It became evident from previous investigations that both homogeneous liquid drops and suspension drops exhibit 
similar phenomena during sedimentation when effects of inertia and interfacial tension are negligible, i.e. zero drop 
Reynolds number 

UdR „ (Ag)gR3 

and infinite Bond number 

B 

Vi QfV{ 

(Ag)gR2 

Our recent theoretical studies yielded a rigorous mathematical proof of the striking analogy between liquid drops 
and suspension drops [3]. Here, Ag - gd - gt = <f>(gp - gt) denotes the density difference between the suspension 
drop and the ambient liquid, <f> the volume fraction of solid particles, R the drop radius and <r the (vanishing) 
interfacial tension. For equal viscosities Ud is the Hadamard-Rybczyriski settling velocity of the drop. The shape 
evolution of both (liquid drops and suspension drops) has been observed experimentally and results are given in a 
number of previous papers (e.g. [1], [2], [4], [6]). Despite the wide variety of experimental and theoretical treatments 
applying different methods, several important questions have remained. In particular, the formation and the possible 
break-up of the torus with respect to the initial conditions, and the subsequent cascade of following break-ups are 
of certain interest. Previous multiparticle simulations [5] have addressed the break-up of a spherical blob by a 
dispersive exodus of particles in a tail, but with no significant distortions in shape. However, this theoretical ideal 
of a strictly spherical drop is nearly impossible to produce in the laboratory. 

2. Experimental setup 

The suspension drops consisted of pure glycerine and a small fraction of glass beads with a mean radius of a = 25//ra 
corresponding to volume concentrations of 0.04 < <p < 0.08. The premixed suspension was injected through a 
thin needle via a precisely controllable pump into the reservoir with the ambient fluid (pure glycerine). The laser 
light-sheet was created by an argon ion laser in combination with an electro-optical shutter and a polygon scanner. 
Light-sheet visualization and detailed measurements were performed with a complete DANTEC PIV-system including 
a cross-correlation camera, the Flow Map processor and the appropriate software package. Inside the drops the glass 
beads served as seeding particles, and the ambient liquid was seeded with polyamide particles of similar size. In 
addition, suspension drops with polyamide particles instead of glass beads were used for better performance of the 
correlation procedure. 

3. Results 

The individual pictures in Figures 1 and 2 show the shape evolution of a single suspension drop and a pair of 
horizontally displaced trailing drops, respectively. All pictures were recorded via light-sheet technique and are 
addressed in the following text from the left to the right (and from the upper row to the lower row in Fig. 1). The 
evolution of single drops is quite fundamental, and the different stages displayed in Fig. 1 are explained in greater 
detail, what follows. The first photograph of Fig. 1 shows the typical shape of the initial "drop" shortly after the 
downward injection of the suspension below the free surface of the liquid. The lower part of the suspension forms 
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a roughly hemispherical cap, while the upper (rear) part resembles the conical shape of the laminar jet due to the 

injection process. The corresponding streamline-pattern (streamlines cut through the rear part of the structure) 
indicates that clear liquid starts to become entrained at the rear. Furthermore, particles are swept out from the 

edges of the spherical part and form a second coaxial tail. Clear liquid circulates in the toroidal vortex and progresses 
towards the front stagnation point, eventually cuts through the surface and is carried back to the rear. This process 
leads to the mushroom shape with the leading cap and the depression region at the rear, as seen in the fourth 
photograph. At this stage a closed envelope of streamlines can be detected and both tails, the original and the 
coaxial, are left behind (c.f. [3]). During the following process also the leading cap is carried back (fifth photograph) 
and in time the shape becomes toroidal with an envelope of closed streamlines and two stagnation points in front 
and rear. To this configuration we refer as a closed torus. This initial torus is an intermediate outcome of a range of 
initial configurations; once it has formed, the further proceeding appears in two distinct phases: (1) a period of cyclic 
expansions and contractions, where the expansions prevail in time and the torus grows in horizontal direction; (2) 
at some point, the configuration changes to an open torus with streamlines passing through the central hole (see e.g. 

[3]). However, the open torus is unstable under the above-mentioned conditions which leads to the subsequent well- 
known break-up cascade. It is the closed torus that first forms and undergoes a periodic expansion and contraction 
cycle, but it is the open torus that eventually disintegrates. The experimental observations of pairs of trailing drops 

clearly display the flattening of the leading drop and a strong elongation of the trailing drop yielding a prolate shape 

with a long tail. The trailing drop moves at higher velocity, catches up with the leading drop and pokes through. 

In the further progress the toroidal vortex leads to a mixing of both drops and a compound spherical drop emerges. 

The tail gets disconnected and a closed torus is formed. Eventually a transition to an open torus takes place and 

this is followed by a cascade of break-ups. In case of horizontal displacement the trailing drop gets into alignment 
with the leading one and the further evolution is similar as described above (see Fig. 2). 
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Figure 1: Evolution of a single suspension drop Figure 2: Two horizontally displaced suspension drops 
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DIRK MEINKOHN 

Liquid-Fuelled Rocket Propulsion:   The Role of Atomization Processes in 
Combustion Chamber Instabilities 

1. Introduction 

Combustion instabilities are denned to be large-scale unsteady movements of the gas contained in a combustion 
chamber. They are unwanted and considered potentially dangerous since such chambers are designed for steady 
operating conditions. Combustion instabilities may evolve out of stationary chamber operations and are driven by 
feed-back from downstream chamber processes like combustion to upstream processes generally associated with how 
the propellants are fed into the combustion chamber. For liquid-fuelled propulsion, these supply processes involve 
liquid injection and atomization, and the feed-back loop comprising downstream combustion and upstream atom- 
ization has been identified as a major factor in generating combustion instabilities. In order to predict and thereby 
to avoid combustion instability in the case of liquid propellants, the physics of jet instability and disintegration of 
liquid sheets and ligaments needs to be thoroughly understood. Although motor designers in liquid-fuelled rocket 
propulsion are fully aware of this requirement, a predictive model is still unavailable. This is largely due to the fact 
that liquid disintegration and atomization are not readily describable in terms of continuum mechanics because the 
act of rupture by which a droplet eventually separates from a parent body of liquid violates basic assumptions of 
continuum theoretics. It is found, though, that the act of rupture by which a hole forms in a liquid sheet, or by 
which a droplet pinches off a liquid filament, is given in the form of an asymptotic limit of the appropriate field 
equations which comprise the Navier-Stokes equations, the equation of mass continuity, and an equation describing 
the kinematics of the transverse surfaces of the sheet. The lowest order in the corresponding asymptotic expansion 
gives a set of strongly coupled evolution equations which are degenerate-parabolic. This degeneracy causes the 
appearance of singularities in finite time which are associated with the act of rupture. Since the sheet curvature 
approaches large values, large values of the capillary pressure occur which lead to strong acceleration of the liquid 
elements of the sheet. Since their inertia prevents large regions of liquid to be affected, the act of rupture is given 
as a self-similar phenomenon. 
Due to strong coupling and parabolic degeneracy, the mathematical treatment of the lowest order field equations is 
difficult. It is the intention of this paper to investigate free liquid sheets along with sheets which are supported by 
a solid surface. For both types, the physics of hole formation and droplet detachment are found to result from the 
same mechanism. Since surface-supported liquid sheets turn out be mathematically more tractable, it is hoped that 
from their treatment insight is gained as to the more complicated case of free liquid sheets and filaments. 

2. Hydrodynamics of Thin Liquid Sheets 

In order to facilitate a comparison of supported and unsupported liquid sheets, symmetry conditions are imposed 
on the systems under consideration. For supported sheets, the supporting solid surface is required to be a plane. 
The sheet thickness h is measured in the normal direction, so that the outer surface of the sheet is given as: 
z = h(xi,X2,t), where z is the transverse coordinate measured in the normal direction, t the time, and Xi,x2 are 
coordinates in the longitudinal directions along the solid support. Unsupported sheets are assumed to be symmetrical 
with respect to an internal neutral plane. In this case, the film thickness is 2/i, and due to symmetry it suffices to 
restrict considerations to the upper half of the sheet, which is therefore bounded by the outer surface z = h{x\,X2,t) 
and the neutral plane at z = 0. The evolution of both types of sheets is driven by capillary forces arising from the 
curvature of the outer surface of the sheet. These forces give rise to a flow field within the sheets, with a velocity 
{T= {ui,U2,w}. The two cases of supported and unsupported sheets essentially differ in the boundary condition for 
2 = 0, i.e. at the supporting plane or the neutral plane, respectively. At the supporting plane the no-slip condition 
is imposed whereas for an unsupported film the velocity boundary condition at the neutral plane is a consequence 
of the imposed symmetry. 
The field equations are as follows: 

Navier-Stokes dtv + (« ■ VW = Vp + vAv 
P 
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mass continuity V • v = 0  :     Vsu + dzw = 0 

surface kinematics z = ft(a:i, 2:2, <)   :     -^-— |1 + (Vs/i) \vn = 0 

V = nabla operator, V5 = {9Xl, 9^,0} = surface nabla, vn = normal velocity at the outer sheet surface z = 
h(x1,x2,t), p = density, p = pressure, v = kinematic viscosity, u = {ui,u2,0} = surface velocity. If a characteristic 
thickness h0 and a characteristic time t0 are introduced, and if a characteristic velocity is denned by v0 = h0/t0, 
and if the internal pressure is given by the capillary pressure: p ~ <rV2/i, where <x is the surface tension, then the 
Navier-Stokes equation is obtained in nondimensional form as follows: 

Re (dtv+ (v ■ V)vj = ^-V3/i + V2v 

Re = Reynolds number, Ca = capillary number which essentially expresses the ratio v/a. Sheet rupture is investigated 
in the distinguished limit Re = e2 -» 0, with the supplementary condition ReCa ~ 0(1). Particularly, for a 
supported sheet: ReCa = e2 —> 0, which expresses the physical fact that in this case large capillary forces can be 
dynamically equilibrated by internal friction and wall friction, whereas inertial forces are negligible in lowest order of 
approximation. The case of an unsupported sheet is different in that there is no wall friction, and inertial forces are 
therefore needed to equilibrate the capillary forces. In this case the supplementary condition must be: ReCa = e -* 0 
whereby 1/Ca = e. 
In the limit of e —>■ 0 the field equations along with the boundary conditions are solved for the surface velocity 
u — {wi,«2,0} and the sheet thickness h. For unsupported sheets, the field equations are: 

dtu+(u-Vs)u       =        o-VjA + 4-V, • (ÄV, • u) 

dth + Vs ■ hü       =        0 

For ü the following boundary conditions need to be satisfied: dzu = 0 at z = 0 and at z = h. The case of a supported 
sheet is simpler in that integration of the Navier-Stokes equation is straightforward, giving u as a functional of h, 
so that a single field equation remains to be solved: 

dth + Vs 
h3   , s 

0 

Here, the velocity field ü satisfies the boundary conditions of dzu = 0 at z = h and u = 0 at z = 0 

3. Field Equation Properties 

The lowest-order approximation of the field equations amounts to a reduction of the initial 3-d sheet to a 2-d 
membrane or a 1-d filament. Due to this reduction the approximate equation system turns out to be nonlinear 
degenerate-parabolic because it is given in terms of transport operators of the following form: VsC(h)j. In this 
expression, j is a flux given in terms of Vs/i or V5v whereas ((h) designates a transport coefficient which is 
proportional to some power of the field variable h: ((h) ~ hq. The degeneracy arises since h -)• 0 is admitted, in 
which case ( -> 0, which implies singular values of V,/i or V5v. Degeneracy may lead to the appearance of self- 
similar sharp waves (similar to those which are known as Barenblatt waves) of finite speed of propagation, whilst in 
the case of nondegenerate parabolic systems the perturbations in the field variables propagate with infinite speed. 
Self-similar waves in nondegenerate parabolic systems correspond to a relaxation phenomenon by which initially 
steep gradients in the field variables are progressively smoothed out. For sharp waves a steep neck is propagated 
without losing its steepness, which is in close agreement with what is observed experimentally when liquid sheets and 
ligaments rupture. In the case of an unsupported sheet, the two field equations are strongly coupled since spatial 
derivatives of both h and ü occur in each of the two evolution equations. 
In order to investigate why drops form preferentially by pinching off 1-d filaments, a right circular cylinder of radius 
R is chosen as supporting solid surface or as neutral surface, respectively. This generalizes the coordinate system 
to become curvilinear, which introduces an additional curvature effect since now even the outer surface of a liquid 
sheet of constant thickness possesses a mean curvature which is nonvanishing. It is found that this additional 
curvature favours sheet instability. In the limit of R -> 0 the two principal curvatures become infinite but there is 
a compensation since they differ as to their sign. 
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Heiko Meironke, Janusz A. Szymczyk 

Experimentelle Untersuchungen der Deformation einer Phasengrenze 
einer aufsteigenden Gasblase 

1. Einleitung 

In dieser Arbeit wird die Vorgehensweise, der Versuchsaufbau und die ersten Ergebnisse im Rahmen der experi- 
mentellen Untersuchungen der Deformation einer Phasengrenze einer aufsteigenden Luftblase präsentiert. 

2. Theoretische Betrachtungen 

Um das Spektrum der Untersuchungen bei der Blasendynamik einzugrenzen ist eine Gliederung der durchzuführen- 
den Experimente sowie der Bezug auf relevante Kennzahlen nötig. Zur genauen Berechnung dieser Kennwerte, 
müssen daher die bestimmenden Größen mit einer 

■ IV. Blasenzerfall (bei großen Blasen) 

III. Bereich der Pendelbewegung und Aufstieg 
entlang einer Spiraltrajektorie 

. > 
 ,_     JO  
stabiler    _ n   Geradlinig stationärer Biasenaufstieg   -j mit rotations- 
Zustand  S    asymmetrischer 

der Blasen-cb i.   Geradlinig instationärer Blasenaufstieg ) 
form     y 

Form 

Abb. 1:   Strömungsmechanische Übergänge 

höchst möglichen Genauigkeit erzielt werden. Im 
Allgemeinen kann man den Aufstieg der Blase vom 
Austritt bis zur Oberfläche in vier Bereiche untertei- 
len, die in Abhängigkeit von den Kennwerten der 
flüssigen Phase und den Dimensionen der gasför- 
migen Phase weniger oder zum Teil dominant aus- 
geprägt sind (Abb. 1). Um den Bereich der Pendel- 
bewegung entlang einer Spiraltrajektorie eindeutig 
beschreiben zu können, ist es notwendig eine Reihe 
von Größen zu ermitteln, welche die lokale Lage 
der Blase im Raum sowie die spiralförmige Trajek- 
torie charakteristisch beschreiben. Als wichtige 
Kennzahlen für das Auftreten von Instabilitäten der 
Oberfläche während des Blasenaufstieges stehen unter anderen die Reynolds-, die Weber und die Mortonzahl. Eine 
kritische Reynoldszahl existiert für verunreinigte und hochviskose Flüssigkeiten (Re=2Q2) und eine kritische We- 
berzahl für reine, niedrigviskose Flüssigkeiten (We=\,26) [1]. Es gibt jedoch bis jetzt keine exakte Methode, die 
eine eindeutige Aussage liefert, welches der beiden Kriterien in einer gegebenen Flüssigkeit überwiegt. Aus diesen 
Kriterien resultieren folgende Aufgabenstellungen für die Untersuchungen: 

I. Ermittlung der strömungsmechanischen Übergänge bei folgenden Phänomenen: 
• Existenz von Oszillationen der Oberfläche 

- Auftreten einer instabil verlaufenden Aufstiegsbahn (Pendelbewegungen) 
- Instabilitäten der Blasenform während des Aufstieges: Kugelform zum Ellipsoid, Ellipsoid-Form, 

Pilzform 
- Blasenzerfallprozeß (bei großen Öffhungsdurchmessern) 

II. Katalogisierung der Oszillationsmoden von aufsteigenden Blasen 

3. Versuchsaufbau 

Um die oben genannten Anforderungen hinsichtlich 
der Genauigkeit und der hohen zeitlichen und räum- 
lichen Auflösung des Meßobjektes gerecht zu wer- 
den, sollen im Rahmen dieser Untersuchungen ein 
digitales Hochgeschwindigkeitsvideo-System (40500 
Bilder/s) sowie ein 3D Stereo Particle Image Velo- 
cimetry- System eingesetzt werden. Zum Einsatz 
kamen Quarzglas-Kapillare, die einen Öffhungs- 
durchmesser von 0.2 mm bis zu 2 mm aufwiesen. Zur 
definierten Generierung der Blasen wird eine Kol- 
benpumpe eingesetzt, welche einen extrem langsa- 
men Vorschub gewährleistet. 
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Abb. 2:   Schematischer Versuchsaufbau 
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4. Präsentation der Ergebnisse 

Als flüssiges Medium wurde ein 50% Glycerin / Wasser Gemisch (166 mm über Kapillare) und in einer weiteren 
Bildsequenz destilliertes Wasser (480 mm über Kapillare) untersucht. Die Blase wurde jeweils mit einem Volumen- 
strom von 47.1 ul/h an einem Öffhungsdurchmesser von 1.11 mm generiert. Die Verfahrgeschwindigkeit der Kame- 
ra wurde der Aufstiegsgeschwindigkeit der Blase annähernd angepaßt. Nach dem Abriß (Abb. 41 = 0.0ms), befindet 
sie sich in der Beschleunigungsphase und ist durch den Abbau der Schwingungen, die durch den Ablösevorgang 
entstanden sind, gekennzeichnet. Hierbei ist die Blase rotationssymmetrisch und bewegt sich auf einer geradlinigen 
Bahn (bis t =100 ms). In dem II. Bereich bewegt sich die Blase geradlinig mit einer stationären Aufstiegsgeschwin- 
digkeit entlang der vertikalen Achse und ist noch rotationssymmetrisch (t < 259 ms). Mit Erreichen eines kritischen 
Punktes (t = 259 ms; 49.7 mm über dem Austritt) endet die geradlinige Aufstiegsbahn und die Blase beginnt sich in 
einer Pendelbewegung und entlang einer Spiraltrajektorie nach oben zu bewegen. Kennzeichnend für dieses Fluid 
mit einem höheren Dämpfungseffekt aufgrund der Viskosität (Prandtl-Zahl = 46.1), ist eine bleibende rotations- 
symmetrische Form der Blase selbst. Bei der Pendelbewegung entlang einer Spiraltrajektorie ist aber die Symmet- 
rieachse der Blase in einem Winkel gegenüber der vertikalen Achse geneigt. Weiterhin erfolgt auch eine pendelnde 
Rotation der Blase in horizontaler Richtung der Blasenachse. 

202.7 ms 247.1ms 380.4 ms 469.3 ms 647.1ms 

Abb. 3: Blasenaufstieg im 50 % Glycerin/Wasser-Gemisch - Aufhahmefrequenz: 1125 Bilder/s 

Re =155; We = 0.26 
Mo = 3.66 10"8;   Pr  =46.1 

Kennwerte im Bereich des geradlinigen stationären Aufstieges: 
Volumen der Blase (nach Abriß)      = 40.87 mm3 Kennzahlen: 
Blasenäquivalentdurchmesser = 4.27  mm 
Geschwindigkeit der Blase = 192   mm/s 

5. Zusammenfassung und Ausblick 

Zur Untersuchung der Deformation der Phasengrenzfläche einer aufsteigenden Blase wurde ein Versuchsstand ent- 
wickelt, der es ermöglicht, qualitative und quantitative Aussagen über die Blasenform und ihrer bestimmenden Pa- 
rameter in einer hohen zeitlichen und räumlichen Auflösung zu gewährleisten. Die verschiedenen Verhaltensmuster 
der Gasblasen während des Blasenaufstiegs wurden in Bereiche unterteilt, die durch strömungsmechanische Über- 
gänge gekennzeichnet sind. Zur Optimierung des Untersuchungsaufwandes wurden bestimmende Kenngrößen zu- 
sammengefaßt und die Aufgabenbereiche in Abhängigkeit von diesen Kenngrößen beschrieben. Am Beispiel von 
zwei verschiedenen Fluiden wurden erste Aufnahmen erstellt und qualitativ interpretiert. Als Strömungsmeßtechnik 
wird die Particle Image Velocimetry zur Sichtbarmachung des Strömungsbildes um die Blase und zur quantitativen 
Auflösung der lokalen Geschwindigkeitskomponenten in der Umgebung der Phasengrenze zum Einsatz kommen. 
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J. NIEMANN, E. LAURIEN 

Computing Virtual Mass by Direct Numerical Simulation 

Bubbles resist acceleration with an apparent added mass. An improved knowledge of this virtual mass is desirable 
for accurate models of bubbly flows, for instance, in a two-fluid-model. A high-resolution, two-phase numerical code 
based on a volume-of-fluid method is used to compute the virtual mass of air and vapour bubbles in water. The 
dependency of virtual mass from void fraction is investigated. A well known analytically obtained equation of this 
dependency is confirmed and the hitherto undetermined quadratic term, which is of importance for medium and high 
void fractions, is established. A dependency on bubble size and shape is investigated. 

1. Introduction 

For the development of new models for technical two-phase flows, e.g. the Two-Fluid Model [1], it is necessary 
to determine model parameters. The virtual mass coefficient cvm is one of these parameters. It takes account of the 
effect that bubbles resist acceleration stronger than is apparent from their actual mass. The virtual mass increases as 
the average volume fraction of gas x, or void fraction, increases. Because acceleration effects are difficult to measure 
experimentally, it is desirable to investigate them numerically. Virtual mass is often defined differently by different 
authors. The definition of the virtual mass coefficient used here is 

V       PL J    a     PL 

with pG and pL the gas and liquid densities, g the gravity and a the actual upward acceleration. 

2. State of the Art 

Several authors employed a potential theory to obtain similar formulas of the general form 

with K taking values of 2.78, 3 or 3.32 [2,3,4]. The neglecting of the quadratic term leads to large errors at medium 
and high void fractions (x > 0.1). Sangiani and Acrivos [5,6] derived an expression for medium void fractions. The 
logarithmic function used there can be approximated by the above quadratic polynomial. 

3. Numerical Method 

The numerical method used here is an incompressible Navier-Stokes code with a volume-of-fluid method for de- 
scription of the free surface, a semi-implicit, multi-grid solver running parallel on a supercomputer (Cray T3E). It 
was originally designed for droplet collisions [7,8]. To simulate bubbles at high void fractions, a single bubble is 
placed into a cartesian box as the integration domain with periodic boundary conditions in the vertical direction 
and mirror boundary conditions in all other directions. Thus, a hexagonal array of bubbles is established. The 
simulations are run with 643 and 1283 numerical cells for medium and low void fraction, respectively. The bubble 
is resolved with at least 16 cells across the bubble diameter. 

4. Results 

The acceleration is obtained by time derivation of the bubble position and has been computed for bubble arrays 
with void fractions between 1% and 35%. In the low void fraction regime, up to 10%, the results are in agreement 
with the linear approximation of equation (2). For medium void fractions, the quadratic dependency is obtained: 

1     3.26        7.7  2 /ON 
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Variation of bubble diameter showed no influence on the result, whereas ellipsoidal bubbles showed that the area of 
the cross section perpendicular to the direction of motion determines the virtual mass. The diameter of this cross 
section becomes the determining quantity, shifting the coefficient cvm towards higher void fractions by a factor in 
the order of the aspect ratio. 
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Figure 1: Diagram of the virtual mass coefficient versus void fraction 

During acceleration, the pressure field around the bubble changes. This effect depends on void fraction. The pressure 
field at high void fractions is more deformed compared to the initial pressure field than at low void fraction. The 
virtual mass effect can be explained as a force acting to resist the change of the pressure field around the bubble. 

5. Conclusion 

Earlier formulas represent virtual mass only well for low void fractions. An improved formula for medium void 
fractions is presented. The phenomenon of virtual mass is interpreted as a force resisting the pressure change 
around the bubble's surface during the process of gaining speed. 
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RUMBERG, O; ROGG, B. 

A Three Variable Formalism for Turbulent Reactive Sprays 

A suitably defined PDF is set up for the statistical treatment of a liquid spray dispersed in a gaseous carrier phase. 
The formulation is full in the sense that the PDF allows for the mathematical description of the totality of all liquid- 
phase an gas-phase variables. The evolution of this PDF in time is governed by a PDF transport equation, which is 
modelled and solved via a Monte-Carlo method. The numerical results clearly indicate the usefulness of the method 

for laminar and turbulent reacting flows. 

1. Introduction 

In many technical applications, to enhance combustion liquid fuel is sprayed into hot gas, leading to a very large 
number of droplets with different properties. In numerical simulations it is impossible to track the droplets indi- 
vidually in a deterministic manner, thus in a certain sense the mathematical description has to be statistical. This 
concepts leads to a joint probability density function (PDF) for the spray and a corresponding transport equation, 
which is referred to as Williams' spray equation [1]. For pure gaseous flows advantage is taken by setting up a joint 
probability density function, too. Here this approach has become popular and widespread through the work of Pope, 

see e.g. [2]. 
A natural way of modelling proceeds by considering both the droplet and the gas-phase motion as random processes 
and to describe the overall process via a suitably defined PDF. The formulation is "full" in the sense that there 
is a single joint-PDF for the totality of all gas-phase and liquid-phase dependent variables. Based on a general 
joint-PDF formulation of two-phase flow [3], the special case of a reactive spray is considered for which transport 
equations are derived. Next to the well-known advantages that using a PDF method for turbulent flows reaction 
and convection are given in closed form, in the formulation derived the interaction of liquid and gaseous fluid phase 
appears in closed form, too. Significant reduction in computational effort is achieved by assuming that the gas-phase 
combustion chemistry can be described by a global one-step reaction which leads to a formulation with only three 

scalar variables [4]. 

2. Statistical Formulation 

Without loss of generality, for the joint PDF / the additive form / = // + /// is assumed [4]. Here // denotes 
the contribution to / of the liquid phase, /// the contribution to / of the gas phase. For the systems and flames 
considered herein, // = fi(V, R; x, t) and /// = fn(V, C, c, i); x, t). Here carets are used to denote the phase variables 
of the respective stochastic quantities; U is the phase-independent velocity vector (the phase being taken into account 
explicitly by distuiguishing between // and ///). For // the transport equation 

~ {pLfi} + Vi-^- {PLfi} + -^ {Wi&R)pLfi} + i {QM(U.,R)PLfi} = 0 (1) 

can be derived, for /// the transport equation 

<> ,    , ta.,/  a  r    ,us!f   8li>)    a(nj)\     \ 
si f"o/"'+v> cs;lmM + Wj {l" *-+-^r)h) 

In Eqs. (1) and (2) it is understood that Z = {U,(,c,f))T, pG = PaiCAfj) and PL = const., respectively.   The 
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last terms in Eqs. (1) and (2) account for evaporation. For general two-phase flows the last term in Eq. (2) needs 
modelling, but here - in the special case of a spray - it can be rewritten in closed form [4]; the exchange of mass, 
momentum and scalars due to evaporation is described physically correct even under turbulent flow conditions. 

3. Numerical Method and Results 

Equations (1) and (2) are solved using a particle method, where two sets of notional particles are assigned properties 
according to the inlet conditions and are tracked on their way through physical and state space. Details on the 
important questions of consistency and computation of a proper pressure gradient are addressed in [4]. The unclosed 
terms on the right hand side of Eq. (2) are approximated by standard models, which are a modified mixing model 
and a stochastic reorientation model, respectively [2]. Statistical moments up to all orders and of all variables of 
interest are computed through ensemble averaging at given physical position x and time t. 

The numerical simulation shown below is for turbulent, overall steady and one-dimensional flow in the limit Rea —> 
oo. At x = 0 the liquid droplets are injected into the flow. Both phases exchange momentum with an without 
the exchange of mass. For the latter a common drag-law is used; for evaporation a d2-law is assumed with the 
evaporation-rate parameter taken as K/(RQVG) — 2 ■ 10~3. With respect to the gas phase other typical parameters 
read: PL/PG = 500, VG/VL = 2,L/R0 = 8 ■ 103. The reaction is characterised by a Zel'dovich number of Ze = 6.5 
and a heat release parameter of a = 0.85. 
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Figure 1: Numerical results for a one-dimensional, turbulent and reacting polydisperse spray; a) mean profiles of 
significant variables, b) droplet-size distribution at different axial positions x. 

Figure la shows mean profiles of the gas-phase scalars fj, ( and c, the velocities VL and VQ, the void fraction 9 and 
the pressure distribution p. It is seen that with evaporation the evaporation-progress variable fj increases from zero 
to one and the void fraction 6 tends from its initial value to one; simultaneously the mixture fraction £ decreases. 
Whereas the evaporation is seen to set in immediately after injection, the combustion, indicated by the reaction- 
progress variable c, develops further downstream. The kink in the profile of fj is due to the onset of combustion 
and only present in turbulent flow. The right column of Fig. la plots the mean profiles of droplet and gas velocity 
and pressure. By exchange of momentum the droplets are decelerated, the gas accelerated and static pressure is 
recovered. Over the flame region the pressure drops to account for thermal expansion. 
Figure lb displays the marginal density function fi(R;x,t) at different axial positions. Starting from an initial 
distribution the droplet radius is seen to decrease, changing the shape of its distribution and finally approaching 
f(R) = S(R). 
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D.SAPTOADI AND E.LAURIEN 

Simplified Two-Fluid Model for the Simulation of Two Phase Bubbly Flows 

An engineering application model to calculate two-phase bubbly flows is developed on the basis of the equations of 
the two-fluid model. With the used assumptions, the momentum and energy equation of the gas phase are always 
satisfied, and one has to solve only the continuity equation of the gas phase. The modeling of gas-liquid interaction 
will also be discussed. The simplified model is verified by comparison to an experimental investigation of a bubble 
column. 

1. Introduction 

Numerous theoretical and experimental investigations of bubbly flow systems have been carried out. [1] used 
the homogeneous model, with predefined gas volume (void) fraction distribution, to simulate a bubble column 
experiment [2]. The two-fluid model is used to simulate a bubble plume [3] and a pipe flow [4]. Either the accuracy, 
lack of ability to predict different types of flows, or the high computation time are drawbacks of the mentioned 
models. Therefore the present simplified two-fluid model is developed. 

2. Simplified Two-Fluid Model 

The simplified two-fluid model is based on the full two-fluid equations [5] with some assumptions: (1) Liquid and gas 
are both isothermal and incompressible with constant densities, QL , QG , (2) each bubble moves upwards relative to 
the liquid with constant terminal velocity UT , (3) there is no virtual mass effect, and (4) there is no momentum or 
energy transfer among the bubbles. With these assumptions, the momentum and energy equations of the gas phase 
are always satisfied. The governing equations of the liquid phase are: 

ßi{^ + V(aLä
t)}=rL m = 1,2,3 (1) 

^{^^ + V^L^ (2) 
Where " and " denote phase averaging and mass-weighted phase averaging of the gas (G) or the liquid (L) phase, 
respectively; the index m = 1,2,3 refers to the three coordinate directions, x = [xi,X2,xs] is the space coordinate, 
uL = [üi,Ü2,ü^] is the velocity, o^ and aG are the void fractions, pL is the pressure, fL is the stress, g.Re'L 

is the Reynold stress tensor, TL is the interfacial mass transfer, and Mx,,m is the interfacial momentum transfer 
term. Because of the following relationships, 

aG = 1 - OLL ,       u   = ü   +UT       and       UT = [ 0    0   UT ]     , (3) 

we have the continuity equation of the gas phase as follows: 

ßG\-dr+—dx7~+—dx^+—dx~3—r~TL- (4) 

The terms TL and Mi^m that appear in the equations describe the interaction between both phases, and have to 
be modeled to gain a realistic result. In the first step of the development, it is assumed that Tjr, = 0 , and Mi]TO is 
represented by the drag force: 

ML,m = FD = -  |uT| UT (5) 

where Rb is the bubble radius and CD is the drag coefficient of a bubble. The terminal velocity UT and the drag 
coefficient CD are determined using balance between buoyancy and drag, and have to be evaluated consistently. 
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3. Numerical Method 

The model is implemented into a single phase incompressible 2D-CFD code, with staggered grid [6] in cylindrical 
coordinates (r,z). As dependent variables, OLL ü^ and O:LP

L
 are used. The time derivative of equation (1) is 

omitted, making our implementation not time accurate. 

4. Calculation Result 

The simplified model is verified with the bubble column experiment [2]. The following parameters are used for the 
calculations: column radius R - 0.05m and height (A) ZT = 0.278m and (B) ZT = 0.098m. The liquid is castor oil 
(viscosity 0.69910~3m2s-1) and the gas is air with bubble radius Rb = 3.0 mm, terminal velocity UT = 2.8 cms'1 

and void fraction at the gas inlet OLGO = 0.0178 . The liquid velocity vector of the results and gas void fraction of 
experiment A for a transient and for a stationary state is shown in figure 1. The transient state is shown to illustrate 
the convergence history. The profile of the axial liquid velocity w normalized with bubble maximum velocity Wbmax 
for experiment B is shown in figure 2. Good agreement with the experiment is observed. 
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Figure 1: Liquid velocity vector and gas 
void fraction of experiment A, left: tran- 
sient, right: stationary. 

Figure 2: Liquid axial velocity profiles of experiment B. 

5. Summary 

A simplified two-fluid model for two-phase bubbly flow and its equation system have been described. The simulation 
of the bubble column experiment [2] has been presented. Without prior assumption of the void fraction distribution, 
as in [1], calculations show good agreement with the experiment. 
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J. SAUER, G.H. SCHNERR 

Development of a New Cavitation Model based on Bubble Dynamics 

This paper presents a numerical approach for a cavitation model that bases on a combination of the Volume-of-Fluid 
technique with a model predicting the growth and collapse process of bubbles. The cavitation model is applied for the 
simulation of cavitating nozzle flows and cavitating flow over a NACA 0015 hydrofoil and showed it's capability to 
resolve characteristic effects of cavitation such as the cyclic formation of the cavitation cloud, the formation of the 
re-entrant jet and the local occurrence of hydrodynamic pressure peaks due to bubble cloud collapse. 

Introduction 

The investigation of cavitation phenomena is of great interest for industry since its occurrence in hydraulic systems 
(pipes, pumps, etc.) can lead to damage and loss of performance. In the past, several models were developed to 
simulate cavitation, which do in general not model the complicated and highly transient bubble growth and collapse 
process. This process is responsible for the cavitation damage and therefore the location where the bubbles collapse 
is of great interest and the need for a cavitation model rises that also includes effects based on bubble dynamics. 
Since hydrofoils make up so many different types of machines - pumps, turbines, propellers- the study of as how to 
cavitation affects hydrofoil performance is of special interest. The type of cavitation most frequently observed for 
hydrofoils with a well-rounded leading edge is the so-called traveling bubble cavitation, where the nuclei reach the 
leading edge and grow to vapor bubbles while they are convected downstream. The bubbles are swept in the region 
of higher pressure and finally collapse. Essentially, the numerical model follows close this experimental observation 
and will be described in the following section. 

2. Numerical Approach 

In general, the bubble-liquid flow is treated as a homogeneous mixture, hence only one set of equations is used for 
description. Entering or leaving the cavitated region, the mixture density jumps from the pure liquid value to a 
much smaller value or vice versa. To overcome problems due to a discontinuous density distribution, the Volume-of 
-Fluid method (VoF) is used. The VoF-method requires in addition to the continuity and the momentum equations 
(which are coupled by a SIMPLE algorithm), the solution of a transport equation for the cell vapor fraction a, which 
is defined as the vapor volume/cell volume: 

da   ,    d(au)   ,   d(av) _  ( na \   d_ /4     E>3\ 

The vapor production is taken into account by the source term on the right hand side of the equation. The change 
of the cell vapor fraction does now depend on the number of bubbles per cell volume (rhs:lst term) times the volume 
change of a single bubble (rhs:2nd term) and the convective transport. The parameter n0 is defined as the nuclei 
concentration per unit volume of pure liquid. To model the bubble growth process, the Rayleigh relation is used 
which is well suited for the description of inertia controlled bubble growth: 

R y/i 
p(R)-Peo 

QL ' 

where p(R) is the pressure in the liquid at the bubble boundary and poo is the pressure in the liquid at a large 
distance from the bubble. Within the scope of this model, p(R) is set equal to the vapor pressure and p^ to the 
ambient cell pressure. 

3. Results 

The above described cavitation model is used to simulate the cavitating flow over a NACA 0015 hydrofoil at an 
angle of attack of 6°. The geometry and boundary conditions are shown in Fig.l. The mixture is assumed to be 
inviscid, the nuclei concentration n0 is set to 108

m"^'er, the vapor fraction at the inlet to a value of a0 = 10-5 

which corresponds to a nucleus radius of R0 = 30/nra. The inlet velocity U is set to 12m/s. The fluid is water, the 
water temperature is 293.15K and hence thermal effects are negligible. 
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The series of instantaneous pictures 1-8 (labeled from top to bottom) presented in Fig.3 shows the vapor fraction 
distribution during one cycle of the periodic formation and destruction of the vapor phase. The frequency is f=ll 
Hz, the time increment is At = 0.011s. The corresonding times are also marked in Fig.2, which shows the the lift and 
drag per [m span]. The vapor cavity starts growing at the leading edge and grows until a re-entrant jets forms and 
brakes off a part of the cavity (Fig 3, pics 1-3). The first part starts to collapse (pic. 4) and the second part of the 
cavity is swept downstream. A secondary vapor region forms (pic. 6), merges with the already existing vapor region 
and finally collapses. The growth and collapse of the vapor phase does significantly alter the pressure distribution 
and thus changes the lift and drag of the hydrofoil, Fig.2. The single phase calculation yields a lift of L = 73007V 
per meter span and a drag of D ~ 07V (inviscid calculation), compared to a time averaged lift of Lc = 42007V and 
drag of Dc — 7507V under cavitating conditions. Due to cavitation, the lift of the hydrofoil has been substantially 
decreased (drag increased) which is in agreement with experimental observations. 

8000 N 

4000 

non-cavitating 

 cavitating 

600 mm -4000 N L 

Fig.l:    Cavitating NACA 0015 hydrofoil. 
Geometrical setup and boundary conditions 

Fig.2: Unsteady lift and drag for one cavitation cycle. 
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i^—i IHH'i     II— 
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Fig.3: One cycle of the periodic formation and destruction of the vapor phase, f = 11 Hz. 

4.  Conclusions 

A cavitation model based on a combination of the Volume-of-Fluid method with a relation to estimate vapor change 
due to bubble growth and collapse has been derived. The cavitation model was successfully applied to calculate 
cavitating flow over a hydrofoil and resolved characteristic flow phenomena associated with cavitation. 
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H. STEINER AND W.K. BUSHE 

Large Eddy Simulation of a Turbulent Reacting Jet-Flame 

The high nonlinearity of the chemical reaction terms requires a closure model for the chemical source terms occurring 
in the spatially filtered scalar transport equations. Based on the Conditional Moment Closure hypothesis a new model 
was recently proposed for LES of non-premixed combustion. The new model was applied to an LES of a piloted jet 
flame to assess the model's robustness and predictive capabilities. 

1. Equations 

The LES set of equations is obtained by applying a density-weighted spatial filter to the governing differential 
transport equations. In chemically reacting flow the filtered transport equations for species and enthalpy read as 

follows: 

dp% 
m    +v[puYj)    =    vlpföt+D^VYj   +Clj, (1) 

_~ J    _ 
M + V (put)    =    V [(«, + Kt) VT] + £ [tij h0J) . (2) 

Here, p, u, h, and f are the filtered density, velocity vector, enthalpy and temperature; Yj is the mass fraction of 
species j, h0J is its enthalpy of formation. The molecular diffusivity and thermal diffusivity of species j is represented 
by Dij and Kh respectively. The eddy diffusivities, Dttj and Kt, which account for the unresolved subgrid-scale 
turbulent transport, are modeled using the dynamic model proposed for compressible flows [1]. Constant specific 
heats, a uniform molecular Schmidt number and unity Lewis number were assumed for all species. 

2. Model for chemistry 

The rate of change of species mass fraction due to chemical reaction, fi,-, appearing as source term in Eqs. (1) and (2) 
is a linear combination of the different reaction rates in which species j participates: 

«j = ^ £;(^-.#)**. (3) 

Therein, K is the total number of reactions and Vjk> and Vjk>< are the stoichiometric coefficients for species j in 
reaction k. The spatially filtered chemical reaction rates dik in Eq. (3) were obtained using the Conditional Source- 
term Estimation (CSE) method [2]. CSE invokes the Conditional Moment Closure (CMC) hypothesis [3] 

HK>«/*(<HC>,<r|C>,as-K>), (4) 
where (uik \ C) denotes the average of the rate of reaction k conditioned on the mixture fraction having some value < 
and fk is the Arrhenius-type equation for wfc evaluated with the conditionally averaged density (p | C), temperature 
(T | C), and mass fractions (Yj | <")■ The CMC hypothesis (4) has proven to give a fairly accurate approximation when 
compared to data from experiments and DNS. The conditional averages input to the RHS of (4) are computed by 
inverting integral equations, which, e.g., for the conditionally averaged mass fraction (Yj \ C) reads 

/1(yi|C)P(C;x,t)dC = y,(x,0, (5) 
Jo 

on planes of constant distance from the nozzle of the jet, on which statistical homogeneity, hence invariance, for the 
conditional averages can be assumed. The quantities on the RHS of (5) are provided by the spatially resolved LES 

flow field. P(C; x, t) denoting the Favre-filtered density function (FDF) at some LES point x and time t is assumed 

as a /^-function determined by the mean Z{xm,t) and variance Z"2(xm,t).  The first can be expressed as linear 
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Figure 1: Centerline profiles versus downstream distance in nozzle diameters D : (a) mixture fraction Z and 
temperature T/T0 normalized with the reference temperature T0 = 29IK, (b) fuel YQH4 and oxidizer Yo2\ symbols 
denote the experimental data. 

combination of the reacting species, the latter is dynamically modeled [4].  Once the conditional reaction rate is 
obtained with (4), its unconditional counterpart is computed using 

Wfc(xm,t ) = p(xm,t)   / 
JO 

1 <*»IC) 
<P|C> 

P(C;xm,i)dC. (6) 

3. Results 

The present LES considered a piloted methane-air jet flame with the Reynolds number Re = 22400. It is known 
as the "Sandia D-Flame" [5]. The feed fuel stream is diluted with air such that the stoichiometric mixture fraction 
is Zgtoic = 0.352. A reduced two-step methane-air mechanism was employed as chemical kinetic scheme [6]. The 
good agreement in mixture fraction shown in Fig La illustrates that the LES captures the mixing process very well. 
The fairly accurate predictions for temperature and reactive species (Fig 1 .b) prove the CSE method as a reliable 
closure model for LES of non-premixed combustion. 
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TEPPNER, R. AND SCHAFLINGER, U. + 

Bubble Formation on Inclined Surfaces 

Gas purging is used in metal casting processes to increase the product quality. We studied the influence of the surface 
inclination and the surface roughness on the bubble formation in experiments using water, air and teflon surfaces. 

1. Introduction 

In metal casting gas purging is used for impurity reduction. The impurities concentrate on the surface of the gas 
bubbles and are transported towards the slag by the ascending bubbles. Therefore, efficient flotation requires an 
optimal relation of the bubble volume and the bubble surface [1]. 

The aim of this work is to learn about the factors which influence the volume of the generated bubbles. We 
investigated the bubble formation on different porous media surfaces and studied the dependence of the bubble 
volume on the inclination angle of these surfaces. 

In this context it is known that the bubble formation is strongly influenced by the non-wettability between 
the porous refractory and the melt. In our experiments we simulated this situation by using water, air and teflon 
surfaces. A comparison is possible since the systems water/air and melt/purging gas have similar physical properties 
because of equal Bond numbers and approximately equal kinematic viscosities. The surfaces we used were a single 
teflon orifice, a teflon grid, a wetted porous refractory and a non-wetted porous refractory. 

2. Single Teflon Orifice 

For these experiments we used a teflon plate with an orifice of 0.6 mm in diameter in its center. We investigated 
the influence of the inclination of the non-wetted surface on the volume and the shape of the detaching bubbles. 
Inclination angles from 0 ° up to 90 ° were examined in 15 ° steps. Figure 1 shows the bubble shape on the horizontal 
plane. The bubble is located right above the orifice. Figures 2 and 3 show bubbles at inclined planes, detached 
from the orifice. For inclined planes we generally observed that the bubbles do not grow symmetrically to the orifice 
because of the acting buoyancy forces. The bubbles separate earlier from the orifice and are therefore smaller than 
in the horizontal case. Figures 2 and 3 show the bubbles already separated from the orifice. This means that they 
have achieved their final volume. Figure 4 shows the average bubble volume in dependence of the inclination angle 
of the surface. 50% volume reduction can be achieved by inclining the surface from 0 ° to 45 °. An inclination of 
90° leads to a volume reduction of 67%. 

0 45°  E 90' 

0        15      30      45      60      75 
Angle of Inclination a 

Fig.l Fig.2 Fig.3 Fig.4 

Figs. 1-4: Single teflon orifice, V=45 mm3/s; comparison of the resulting bubble shapes. Fig. 1: Bubble at horizontal 
surface, above the orifice. Fig. 2, Fig. 3: Bubbles at inclined surfaces, detached from the orifice. The ruler shows a 
mm scale. Fig. 4: Dependence of the average bubble volume [mm3] on the angle of inclination. 

3. Teflon Grid 

A teflon grid with orifices of 0.6 mm in diameter was used. The rows were separated from each other by 3 mm. 
The actual number of emerging bubbles and their size is determined by the non-wettability of the surface [2]. We 
investigated the influence of inclining the grid surface on the bubble generation from 0° to 180° in 30° steps. 
The volume of the detached bubbles is not clearly dependent on the inclination angle of the grid surface. Possible 
explanations are the coalescence of bubbles and the aspiration of additional air while the bubbles are running over 
neighbouring orifices. In the special case of an inclination of 180° the bubbles are not able to detach. They merge 
to a very big bubble which detaches when it has reached a critical size. 
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Figs. 5,6: Teflon grid, non-wetted, V=100 cm3/min 
In all four figures the ruler shows a mm scale and the gray scale is inverted 
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Figs. 7,8: Porous refractory, non-wetted, V=120 cm3/min. 

4. Porous Refractory, wetted and non-wetted 

We studied a porous refractory with a porosity of about 20%. For small volume flows only a small number of 
refractory pores is active. First, the refractory had a rough surface which was wetted by water. Analogously to a 
wetted sieve [2] the bubble size is determined by the pore radius and there is no coalescence of bubbles. We found 
that the bubble volume is independent of the refractory inclination. Second, in order to achieve non-wettability 
by water the surface of the refractory was coated with a teflon spray. Analogously to the wetted refractory we see 
small bubbles whose size is mainly determined by the pore radius. There is no coalescence and no dependence of 
the bubble volumina on the inclination angle. 

Comparing the results for the non-wetted porous refractory with those for the teflon grid leads to the conclusion 
that the surface roughness prevents the contact line from spreading which results in smaller bubbles. The capillary 

length of the liquid/gas system is given by talgas = J gQ'/J^'y If the magnitude of the surface roughness is much 

, then there is no influence on the spreading of the contact line (Fig. 9). If the surface roughness smaller than l„    a 

Ji/gas 
and l„ have the same magnitude, there is a distinct influence on the spreading of the contact line (Fig. 10). 

Fig. 9: The teflon surface is smooth compared to the 
capillary length /"'a er'a'r =2,72 mm. There is no in- 
fluence of the surface roughness on the spreading of the 
contact circle. 

Fig. 10: The roughness of the teflon surface in the 
vicinity of the orifice was artificially increased to the 
magnitude of l™ater<air =2,72 mm. There is a distinct 
influence of this roughness on the spreading of the con- 
tact circle. 

5. Conclusions 

We investigated factors which are essential in the formation of air bubbles in water on teflon and porous refractory 
surfaces. For the single teflon orifice the surface inclination influences the bubble volume. However, for all studied 
porous media no distinct dependence of the bubble volume on the inclination angle of the surface was found. 
Comparing the experiments for the teflon grid with those for the non-wetted refractory we found that the surface 
roughness with respect to the capillary length of the system determines more the bubble size than the non-wettability. 
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THEVENIN, D., GICQUEL, 0. AND DARABIHA, N. 

Computations of NOx Emissions of Domestic Boilers 

Due to severe regulations concerning pollutant emissions, practical devices using combustion to release energy must 
be designed from the start using accurate, predictive numerical tools. A partially premixed methane/air flame in a 
two-dimensional configuration is investigated in this work. This configuration is close to those used in real domestic 
gas boilers. The flame structure and flow pattern are calculated using complex chemistry and detailed transport 
models. A post-processing method is then used to predict NO emission. 

Computations are performed for two configurations. The two cases have the same primary and secondary 
mass flow-rates and equivalence ratio. The only difference between them is the introduction of an insert inside the 
primary injector. 

Both results have been compared to measurements. Calculations are found to be in good agreement with the 
flame shapes observed experimentally. The classical burner shows a Bunsen-type flame while the one with an insert 
has a totally different shape (butterfly-type flame). NO emission levels are also well predicted in both configurations. 
The butterfly flame induces a reduction in NO emission. This reduction seems to be due to the increased mixing 
between the burnt gases and the secondary air jet, which homogenizes the temperature distribution and reduces the 
maximum temperature. 

1. Configuration and numerical methods 

We consider here an idealised domestic boiler based on a 2D laminar partially-premixed methane/air burner. The 
boiler power input and performance are similar to those of a typical domestic boiler. Its specificity is that the 
primary and secondary air and gas flow-rates are independently controlled. 

Two different cases are considered. The first test case is a classical Bunsen-type flame. In the second case an 
insert is added in the middle of the slot to alter the flow field. The flame is then transformed into a butterfly-type 
flame. In both cases the global methane/air mixture equivalence ratio is equal to </>g = 0.714 while the primary air 
equivalence ratio is equal to </> = 0.833. The primary air inlet velocity is equal to 0.9776 m/s and the secondary air 
inlet velocity is equal to 0.051 m/s. 

Computations of these partially-premixed 2D laminar methane-air flames are carried out by solving the Navier- 
Stokes equations discretized on an orthogonal and structured mesh. The discretization relies on the finite-volume 
method. The numerical resolution is based on a semi-implicit segregated solver. Two grids are used to solve 
the equations: a velocity grid (used to solve the density and the velocity), which nodes are located on the mesh 
intersection lines, and a pressure grid (to solve the pressure, the temperature and the species mass fractions), which 
nodes are located on the center of the cubes formed by the velocity grid nodes. In order to reduce the CPU 
time, the computations rely on the FPI (Flame prolongation of ILDM) technique [1]. The FPI technique uses a 
one-dimensional laminar flame as a prolongation of a one-dimensional ILDM manifold. 

2. Post-processing technique 

The numerical prediction of NOx has been intensively studied in recent years. Detailed chemical schemes are now 
available, including about 50 species and more than 200 chemical reactions. Performing computations with such 
mechanisms requires a huge amount of CPU time and is not possible in an industrial environment. 

To be still able to take into account all the information included in these detailed chemical mechanisms, several 
post-processing techniques have been developed. The chemistry is then described with reduced schemes in the fluid 
mechanics computation [2]. These mechanisms are obtained using the classical steady-state and partial equilibrium 
assumptions for species such as OH, O or CH3. As the reactive nitrogen species usually represent a small percentage 
in mass in the flame and have only a small impact in the main reaction process, it is possible to decouple the 
nitrogen chemistry computation from the main flow field computation [2,3]. For the nitrogen species computations, 
the steady-state assumption is usually assumed for all species except for NO and HCN, which are determined with 
a standard transport equation [2]. This approach requires a good background in chemistry to generate an accurate 
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reduced scheme and implies many modifications in standard CFD codes to implement the equations describing the 
steady-state assumptions. It often leads to severe numerical problems. 

In the present work, a first fluid mechanics computation was performed using a FPI look-up table corresponding 
to a skeletal mechanism without the nitrogen chemistry. Afterwards the velocity, the temperature, all the mass 
fractions of the species included in the mechanism and the density field are frozen. We then compute all the nitrogen 
species using standard transport equations. This increases the numerical stability and computational speed. It is 
with this method possible to take into account accurately the real transport phenomena associated to all species 
and to describe similarly the different ways to create NO such as thermal NO and prompt NO. We have checked 
the accuracy of our post-processing technique for a laminar freely-propagating premixed flame and for a counterflow 
diffusion flame. In both cases, the error in NO levels is well below 10% (3 ppm) and the prediction of species such 
as CN or NH3 is also very satisfactory. 

3. Results 

It can be seen in this figure that the maximum level of NO is very similar for the two cases investigated, while 
the NO distribution in the whole burner is quite different. The computations are able to reproduce the differences 
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Figure 1: Field of NO in ppm corresponding to a Bunsen type flame (left) and to the corresponding butterfly-type 
flame (right). 

observed experimentally between the two cases. The numerical NO emission index is about 30% lower than the one 
obtained experimentally, but the influence of the insert is perfectly reproduced. The computations were performed 
on a standard workstation. The initial computation without the NOx chemistry takes 4 hours of CPU time and we 
need 30 more minutes to post-process NO. This is fully compatible with industrial constraints. 
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M.E.H. VAN DONGEN, G. LAMANNA, B. PRAST 

Condensing nozzle flows:  Ludwieg tube experiments and numerical/ theo- 
retical modelling. 

The present paper deals with homogeneously condensing flows of humid nitrogen in a Laval nozzle. The modelling 
of nonequilibrium condensation phenomena can be separated in two distinct processes: homogeneous nucleation and 
droplet growth. Our objective is to investigate the quality of a condensation model characterised by the following 
combination: the (corrected) Internally Consistent Classical Theory for the nucleation process and a generalised 
transitional growth model, with the droplet temperature calculated explicitly via the wet-bulb equation. Our theoretical 
predictions have been then compared with our experimental results on droplet sizing showing a good agreement. 

1. Introduction 

Supersonic nozzle flows of a condensable gas mixture are characterised by the spontaneous generation of a liquid 
droplet cloud, whose properties strongly depend on the coupling between the flow and the condensation process 
itself. Further, depending on the initial conditions, different flow regimes may occur ranging from steady to periodic 
oscillating motions. Along the years, many different models have been proposed and verified thoroughly with respect 
to the onset of condensation, shock position, frequencies, and modes of oscillations [1,2,3]. However no conclusive 
answer could be drawn due the lack of reliable experimental data on droplet sizes. This latter, in fact, constitutes a 
very sensitive parameter for assessing the quality of the proposed condensation models. The scarcity of reliable data 
is ascribable to the difficulties of retrieving the size information from the spectral data of a nanometre-size cloud. 
At the gas dynamics laboratory of Eindhoven University of Technology, a facility has been developed to determine 
the time dependent variation of the size distribution by means of a white light extinction method. Objective of this 
paper is to use these experimental results to validate condensation models and to corroborate the validity of the 
underlying theoretical assumptions. 

The modelling of nonequilibrium condensation can be separated in two distinct processes, namely homogeneous 
nucleation and droplet growth. Therefore, its correctness relies simultaneously on the quality of the nucleation and 
growth model employed. The present paper focuses essentially on this latter. By comparing two different growth 
laws, the importance of simulating correctly the energy flux between the droplet and its environment is ascertained. 
The quality of nucleation models is, instead, more difficult to evaluate and is, therefore, only marginally addressed 
here [4]. It is important to realise, in fact, that significant uncertainty exist with regard to the surface tension 
of subcooled liquid water. This uncertainty makes the assessment of nucleation models extremely critical, since 
it strongly depends on the extrapolation of surface data to low temperatures. Here the analysis is limited to a 
temperature range of [245 4- 270] K, where accurate experimental data are available from literature [5]. 

2. Modelling 

On the basis of Luijten's experiments [6] on water-nitrogen systems, the Internally Consistent Classical Theory 
(ICCT) was chosen to model the nucleation process. This latter differs from the Classical Nucleation Theory (CNT) 
for the presence of correction factors, as indicated below: 

(1) 

(2) 

J  = — expO JCNT; 0 = 
aa0 

kBT 

JCNT     = 
pi   /2a 

V          3 eXP pi V 7rmJ 

r    4    03   ■ 

27(ln5)2. 5 

where S = pv/ps{T) is the supersaturation, a is the surface tension, a0 is a molecular surface area, kB is the 
Boltzmann constant, and 0 is a dimensionless surface tension. For an exhaustive review on nucleation models, the 
reader is referred to Luijten et al. [7]. Upon implementing the (ICCT) model to condensing nozzle flows, it resulted 
that a satisfactory agreement was found with a correction factor of about 0.01. Thus the implemented nucleation 
rate is JICCT = £•</, where £ = O (10-2). 

The process of droplet growth involves the net transfer of mass (vapour molecules) towards the droplet, and the 
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simultaneous net transfer of energy (latent heat) away from the droplets. The mechanism of these fluxes depends 
to a large extent on the Knudsen number Kn. This latter is defined as the ratio of mean free path of vapours 
molecules to the diameter of the droplet. For small Kn, the transfer is governed by diffusion; for large Kn growth 
is regulated by the kinetic process of impingement of vapour molecules onto the droplet (Hertz-Knudsen regime). 
On the basis of the analysis of Peeters et al. [8], the Gyarmathy model was chosen. In this model, the expressions 
for the energy and mass flux between the droplet and its environment are explicitly calculated for the continuum 
and kinetic regime. Then the expressions for these fluxes in the intermediate situations are simply found by means 
of an interpolating fit between these two regimes. This procedure yields a system of four equations containing an 
additional unknown represented by the droplet temperature Td. This latter can be calculated by means of an energy 
balance on the droplet surface, which after some simple algebra can be expressed as 

E = -ML + Mhvs (3) 

where L is the latent heat of condensation, E, and M are the energy and mass fluxes, and hvs is the specific enthalpy 
of the vapour at equilibrium. The above equation is only valid in the assumption of quasi-equilibrium between mass 
and latent heat transfer and is known as the "wet-bulb" approximation. Since for moist air the most relevant growth 
occurs in the Knudsen regime, we devoid from describing the model in detail [9], [4] and concentrate only on the 
kinetic regime. Within this restriction, the growth law (wet-bulb) reduces to: 

wet —bulb Pi 

Pv Pv,r(Td,rd) 

y/2irRvT      y/2itRvTd 

For reference the "traditional" expression for the Hertz-Knudsen law (HK) is also reported: 

HK 

1 

Pi 

Pv -Pv,r(T>rd) 

^/2wRvT 

(4) 

(5) 

The question to be answered is whether and to what extent the inclusion of temperature differences between the gas 
phase and the liquid droplets is relevant for modelling the growth process. To answer this question, let us consider 
Fig. 1. Here the following two combinations are considered: JCNT for the nucleation rate; while for the droplet 
growth, in one case Eq. (4) is adopted, in the other the Hertz Knudsen formula (Eq. 5) is employed. As it can be 
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Figure 1: Axial distribution of temperatures T, Td, modal radius Rd and droplet growth rate dr/dt. Models: Part 
(a) - JCNT and wet-bulb equation (Td ^ T). Part (b) - JCNT and Hertz-Knudsen (Td = T). Nozzle: G2. Stagnation 
conditions: T0 = 296.6 K; P0 = 8.67 • 104 Pa; S0 = 0.50. 

inferred immediately from Fig. 1(a), large temperature differences are predicted in the initial part of the growth 
process by the wet-bulb model. This can be understood because while the gas temperature decreases rapidly due 
to the expansion, the droplet temperature increases due to the release of latent heat at the droplet surface. The 
macroscopic consequence of this is twofold. First, the temperature difference effectively damps the growth process: 
(dr/dt)wet-buib is roughly two times smaller than (dr/dt)nK- Second, smaller modal radii Rd are predicted by the 
wet-bulb law: since the rate of heat addition is considerably lower in this model, the nucleation rate is quenched a 
bit later. As a consequence, more critical cluster are produced while the total amount of liquid mass stays the same. 
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3. Experimental Set-up 

The experiments are carried out in a Ludwieg tube: it has a square cross- section of 0.01 m-2, a length of 12 m, 
and is initially separated from a vacuum vessel by a diaphragm. A thermal control system allows to reach initial 
temperatures as high as 40°C. Upon rupturing of the diaphragm, an expansion wave is generated which accelerates 
the undisturbed mixture. The nozzle has a steady reservoir condition until the arrival of the reflected wave from the 
rear end of the tube, which occurs after roughly 50 ms. The droplet sizes are measured by means of a fully time re- 
solved white light extinction method [4]. The technique is based on the simultaneous determination of the extinction 
coefficients ß at seven different wavelengths A. As an example, Fig. 2(a) shows the extinction coefficients as functions 
of time at three different wavelengths. On the basis of Mie theory, variations in ß are directly connected to variations 
in droplet modal radius rm and number density nd. However, it is worth mentioning explicitly that in proximity of 
the regime of Rayleigh scattering, it is theoretically impossible to retrieve meaningful information on droplet size 
from the spectral data. To verify that this limiting condition is not met, the experimentally determined extinction 
efficiencies g(a) have been directly compared to their theoretically counterparts Qext(a), where a = 2irRd/\ is the 
size parameter. In the hypothesis of a monodispersed distribution, g(a) is simply ßexpirf/nridr^, where rm and 
nd are provided by the inversion procedure. Figure 2(b) shows this comparison in correspondence of the extinction 
peak at U = 33.3 ms. The perfect match between Mie curve and g(a) guarantees first that the measured spectrum 
is definitely outside the regime of Rayleigh scattering. Second, it proves that the experimental determination of ß 
and the solution of the inversion procedure are both accurate. It is, thus, on these points (i.e. extinction peaks), 
that the validation and analysis of condensation models is based. 
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Figure 2: Part (a) - Experimentally determined extinction coefficients ß versus time. Part (b) - Theoretical extinction 
efficiency Qext and spectral turbidity g(a) as function of the size parameter a. Nozzle: G2. Exp. 37 - Stagnation 
conditions: P0 = 8.752 • 104 Pa, T0 = 296.6 If, S0 = 1.188. 

4. Results 

Objective of this section is to validate condensation models and to verify the correctness of the underlying theoret- 
ical considerations. In particular three different models were considered. The first (ICCT-wb) is proposed by the 
authors and described earlier. The second one (SD), proposed by Schnerr et al. [10], has been widely used for a 
variety of nozzle configurations. It uses CNT for the nucleation process, with a specific surface tension fit, and the 
Hertz-Knudsen formula for the droplet growth process. The third one (SD-wb) has the same nucleation model as 
the (SD) model, but it employs the wet-bulb correction for the droplet growth. The three models are compared 
with respect to frequencies of the oscillations and predicted maximum droplet radii. Figure 3(a) shows the results 
for the droplet radius. Clearly, regardless from the specific nucleation models, correct droplet sizes are predicted 
only when the wet-bulb approximation is implemented. In agreement with our theoretical consideration from the 
previous section, the HK growth rate is too strong and leads to an overestimation in droplet radii. Figure 3(b) is, 
instead, more difficult to interpret. We start observing that, while the (SD) and the (ICCT-wb) model agree fairly 
well with the experimental results, the (SD-wb) model clear underestimates the frequency values. By comparing the 
(ICCT-wb) with the (SD-wb) model, the influence of the correct expression for the nucleation rate becomes evident: 
the CNT theory is a bit weaker than the corrected ICCT one and this leads to the prediction of lower frequencies. 
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On the other hand, in the (SD) model, the stronger droplet growth law compensates for the weaker nucleation rates, 
thus leading, by a cancellation of errors, to the correct frequency value. 
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Figure 3: Frequency of oscillations (a) and maximum modal radius Rmax (b) versus stagnation supersaturation. 
Nozzle: G2. Stagnation conditions: T0 = 296.8 ± 0.4 K; P0 = 8.69 • 104 ± 0.015 Pa. 

5. Conclusions 

It has been shown that for the correct modelling of nonequilibrium condensation, it is essential to calculate explicitly 
the energy flux between the droplet and its environment. The simple assumption of equal temperatures between gas 
and liquid phase leads inevitably to an overestimation in droplet size, by at least a factor 2.5. Three condensation 
models were analysed and compared with our experimental results. From this study, it turned out that the best 
overall agreement was obtained with the (ICCT-wb) model. 
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C. VORTMANN, G.H. SCHNERR 

A New Law of State Model for Cavitation at Non-Equilibrium 

For practical reasons cavitating flow is often simulated using simple law of state models. These models are usually 
based on the assumption that the phase transition occurs if the pressures drops below the equilibrium vapor pressure. 
In order to improve the description of the cavitation process a new law of state model was developed that takes phase 
non-equilibrium effects into account. By postulating the variation of the free enthalpy for the phase mixture a rate 
equation for the dryness fraction is derived. Concerning the calculation of two-dimensional, unsteady cavitating flow 
the rate equation for dryness fraction is solved in combination with a modified Volume-of-Fluid algorithm. 

1. Cavitation model and numerical scheme 

In earlier studies [1] cavitation was predicted by a simple law of state model. Herein the thermodynamic state is 
fixed by coupling pressure and density at constant temperature. At ideal case the phase transition takes place at the 
equilibrium vapor pressure. Due to numerical stability the phase transition region is spread in these models across a 
certain pressure region. The physical modeling is however rude and has to be improved. Phase transition is stated 
as a molecular exchange process that develops during a finite time interval. Hence the liquid will not immediately 
evaporate completely if the equilibrium vapor pressure is reached but a time depending evaporation process starts. 
Such a non-equilibrium effect can be modeled by an approach suggested by Landau and Ginzburg. In this study 
the promising model of Müller and Achenbach [2] is modified with the purpose of application to fluid dynamics, 
especially for the description of cavitation phenomena. 

In the following the underlying physical concept is explained. Equilibrium states can be calculated by minimizing 
the free enthalpy G. In equilibrium phase transition is indicated by equality of the free enthalpy values of each phase. 
For the modified non-equilibrium model of Müller and Achenbach the free enthalpy of a cluster of water molecules 
is introduced. The postulated variation of the free enthalpy consists of an energy potential corresponding to the 
liquid state and another one for the vapor. In between exists an energetic barrier that has to be passed by the 
cluster during the phase transition. The lower the energy potential of the corresponding phase the more probable 
the cluster will adopt this state. Based on this concept the following rate equation for the dryness fraction x can be 

derived 

f-=   (l-x)-Ki^v   -X-Kv^l Ki^v = —      . 
 „ ~ „  r , v (i) 

Gain Loss T-   J     exp [-fyfcff)   dv 

Vb 

The gain of vapor clusters depends on the number of liquid clusters expressed by the liquid fraction y = l-x = mi/m, 
and furthermore on the probability K\^v that liquid clusters change their state of aggregation from liquid to vapor. 
This probability can be derived by the theory of thermally stimulated processes, if the form of the free enthalpy is 
postulated as described above. The probability Kv^t differs from Kt^v only concerning the integration boundaries 
that cover the region of the respective phase area. The time scale is controlled by the relaxation parameter r and 
by the mass of a cluster mc. The dryness fraction in Eqn. 1 is calculated by a routine that is particularly suited 
for stiff systems (Radau Ha from the book of Hairer and Wanner). The integral form of the 2-D Euler equations 
are numerically solved by an implicit Finite-Volume-Method at non-orthogonal structured, single-block grids with a 
collocated arrangement of variables as described by Peric [3]. The phase mixture is simulated as fluid with varying 
density, whereas the pure phases are treated incompressible. To overcome problems due to the huge density variation 
between vapor and liquid a modified Volume-of-Fluid algorithm is used 

da     _   .   _. / 1       1 \    dx /9x 
— + V • (ac) = p • •-jr. iz) 
dt K    ' \pi     PvJ    dt 

Herein evaporation resp. condensation is described by a source term on the right handside of the transport equation 
(Eqn. 2) for the void fraction a = Vv/V. This source term is calculated by using Eqn. 1. 
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2. Results 

Cavitating flow is investigated in a nozzle geometry shown in Fig. 1. Water at T = 20°C was chosen and the mass of 
a cluster is mc = 1.7 • 10~24kg. Figure 2 presents the total vapor content in the nozzle versus time for different values 
of the relaxation parameter r. The decrease of r to 10~4 s kg/m3 leads to states that are related with equilibrium. 
As a consequence only small differences can be recogniced compared to the bubble growth laws e.g. Rayleigh. For 
all parameters periodic behavior with the frequency f=9.5 Hz is observed after a single overshoot. Figure 3 shows 
one cycle of the cavitating flow at maximum non-equilibrium condition r = 1.0 s kg/m3. A re-entrant jet forms 
due to the sudden decrease of vapor fraction at the cavity tail. In that way a cavitation cloud arises which moves 
downstream where it finally collapses. 

U„„,= lOm/s 

Fig. 1: Geometrical setup of 2-D plane nozzle. 

Vim3] 

Fig. 2: Total vapor volume vs. time, Variation of the 
relaxation parameter T for Müller-Achenbach Model and 
comparison with Rayleigh-Model. 

100 

Fig. 3: Velocity vectors and vapor fraction, 
T = 1.0 s kg/m3. 
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G. WINKLER, M. HEILER, G.H. SCHNERR 

Simulation of Condensation Processes in Turbines including Impurity Effects 

Condensation processes are important for many technical applications such as in transsonic low pressure steam tur- 
bines. Impurities like dust particles or chemical deposits significantly affect the condensation process. Depending on 
the expansion rate the condensate formation is controlled by homogeneous or heterogeneous nucleation. Technical 
steam for example, used in power processes, typically consists of several impurities, which change due to lower ex- 
pansion rates the condensation behaviour, so that a large fraction of the condensate mass is formed heterogeneously. 
Numerical parameter variations in the nozzle BA-1 were performed to study as how to the number of particles influ- 
ences the condensation onset and the total amount of formed condensate mass. In comparison to the homogeneous 
case, a smaller supersaturation is reached if heterogeneous condensation dominates. The condensation occurs close 
to the equilibrium state and reduces losses caused by the pure non-equilibrium process. 

1. Introduction 

The expansion in the last stages of low pressure steam turbines crosses the thermodynamic state path and enters the 
metastable area. Hence the subsequent stages operate in a two-phase mixture of steam and droplets. Depending on 
the fluid contamination with impurities and the expansion rate, a superposition of homogeneous and heterogeneous 
condensation will occur [2,4,5]. As expected, the effects of homogeneous/heterogeneous condensation in the turbulent 
transonic steam flow behave similar to the already investigated inviscid nozzle flow of condensing moist air [2]. 

2. Physical modelling and numerical scheme 

The homogeneous nucleation process is modeled according to the classical nucleation theory of Volmer, Prenkel, 
and Zel'dovich. The simulation of steam turbine flows requires droplet growth expressions which cover the whole 
Knudsen number range and does also take the temperature as a driving potential into account. A modified model of 
Gyarmathy shows good agreement with nozzle flow experiments of steam [1,3], which approximate very well steam 
turbine conditions. In addition the Hertz-Knudsen law, is used to model the droplet growth in moist air and well 
suited for very low partial vapor pressures. 

The simulation is based on the time dependent 2-D Navier-Stokes equations which are solved in conservative form. 
Two additional conservation equations (wetness fraction, droplet number) are used to model the condensation process 
and the liquid phase. The k-R turbulence model, which is applied in our calculations, solves the equations for the 
turbulent kinetic ernergy k and the undamped eddy viscosity R. The solution is further based on a MUSCL-type 
Finite-Volume-Method on structured body fitted grids. The source terms for the condensate formation are treated 
by applying the fractional step method in order to split the equations into a homogeneous and an inhomogeneous 
part, so the scheme accounts for different time scales of the flow and of the condensation process, respectively. The 
solution of both sets of equations proceeds by an explicit second order accurate time integration. The fluxes at the 
cell interfaces are determined by a hybrid AUSM/van Leer flux vector splitting for imperfect gases assuming a frozen 
speed of sound. Finally the «-scheme from van Leer with the van Albada limiter calculates the vector of unknowns 
at the cell interfaces. 

3. Results 

The influence of the homogeneous/heterogeneous condensation process on the transonic flow in the nozzle BA-1 is 
investigated. The numerically simulated Schlieren picture Fig. 1 a) shows a typical shock formation, associated 
with the homogeneous condensation process. By increasing stepwisely the particle number, the shock is weakened 
and moves further downstream until it finally vanishes completely. The distribution of physical relevant quantities 
along the nozzle axis (see Fig. 2) of the purely homogeneous and a purely heterogeneous case shows, that the 
homogeneous nucleation process is suppressed completely. Due to subsonic heat addition (see Fig. 2b)) the pressure 
distribution is changed along the whole nozzle length. The amount of the wetness fraction is increased compared to 
the homogeneously condensing flow. The investigation of the loss of efficiency shows a decrease with nhet,o = 1016 

in contradiction to the purely homogeneous case, even if the wetness fraction at the nozzle axis is increased. 
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Fig. 1:    Numerically simulated Schlieren pictures; reservoir conditions: T0\  = 380.55 K,p0i  — 0.784 bar; 
a) homogeneous, b) nhetfi = 10 14     1 c) nhetfi = 1015 ^r, d) nhetfi = 1016 ^, flow from left to right; 
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Fig. 2:    Physical quantities along the nozzle axis: nondimensional pressure distribution 
(with and without condensation) p/poi, homogeneous nucleation rate logw(Jhom [m_3s-1]), 
wetness fraction g; reservoir conditions: T0i  = 380.55 If, p0i   = 0.784 bar, a) homogeneous, 
b) nhetfi = 1016 ^5-, flow from left to right; 
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WöLK, G.; DREYER, M.; RATH, H.J. 

Gas/Liquid Two-Phase Flow under Low Gravity Conditions 

A novel flow pattern map is developed based on five dimensionless parameters. The transition region from dispersed 
bubble to slug flow, from slug to frothy slug/annular flow and from frothy slug/annular to annular flow is presented 
and good agreement between theory and experimental data from the literature is obtained. 

1. Introduction 

Prediction of the flow pattern in a gas/liquid flow is one of the most important problems in two-phase flow. For the 
optimization of the design and the operation of two-phase flow systems, especially concerning the pressure drop and 
thermodynamical quantities, there is a need to predict accurately the existing flow patterns. In case of gas/liquid 
flow under low gravity conditions (ßg0) four major flow patterns, designated by Zhao & Rezkallah [1] as dispersed 
bubble flow, slug flow, frothy slug/annular flow and annular flow, can be observed. 

2. Flow pattern maps 

The aim of this investigation is to propose a flow pattern map for single-component two-phase flow as well as for 
two-component two-phase flow. A dimensional analysis was performed to identify the dimensionless groups which 
control flow pattern maps under low gravity (//go) condition. The parameters influencing gas/liquid flow under 
^go-conditions in a smooth tube are the characteristic (superficial) velocities UGs and ULS, the densities pL and 
pG, the dynamic viscosities ßL and /xG, the surface tension a and the tube diameter dh. The subscripts L and G 
denote liquid and gas, respectively. Using the Il-theorem one get five dimensionless groups which together with 
combinations of these groups could be relevant for presenting a flow pattern map in absence of gravity: 

UoiJ± (PaUh^\^eGS^ (1) 
ULS   ßo \ a       ) V MG      / V a      J 

Here, the Weber number represents the relative importance of inertial forces to surface tension forces and the 
Reynolds number represents the balance between inertial forces and viscous forces. 

For the new developed flow pattern map, we use this five dimensionless groups and propose the following coordinates 
for the flow pattern map: 

x 
for the abscissa:      I —— )    (We^s)   , 

\
ULS

'X (2) 

for the ordinate:      ( ^ J    (ReG5)y {WeGSf , 

where the exponents X, Y and Z are adjustable parameters. In equation (2) we note that the same exponent Z 
applies to the gas and liquid Weber number; and that the same exponent X applies to the viscosity and velocity ratios. 
Additionally, if Z is much greater than both X and Y, the Weber number dominantes the flow pattern prediction as 
published by Zhao & Rezkallah [1], without totally neglecting the other three dimensionless parameters. The values 
of the exponents, found by fitting to the experimental data collected by many researchers (e.g. Bousman [2], Colin 
et al. [3], Colin & Fabre [4], Dukler et al. [5], Lowe & Rezkallah [6], Reinarts [7], Rite & Rezkallah [8], Wölk et al. 
[9], Zhao & Rezkallah [1]), are X = 0.50, Y = -0.25 and Z = 2.50. Figure 1 shows the result of this approach as 
an overall flow pattern map for the gas/liquid two-phase flow in a circular tube. The flow regime data are depicted 
from papers [l]-[9] irrespectively concerning the used working fluids/gases and tube sizes. Overall a combination 
of 19 different experimental results (combinations of 5 different liquid/gas systems with 11 different tubes sizes) 
are shown in the map. However, only experimental data with a residual acceleration less than 10"2 go during the 
experimental observations are considered in this investigation. From Figure 1 one could directly see that four flow 
regime domains exist, with one flow regime is being absolutly dominant in each domain. Inside the map, the grey 
bars display transition regions between two flow regimes.   The proposed flow pattern map predicts:  no dispersed 
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Figure 1: Overall flow pattern map for a gas/liquid two-phase flow under low gravity conditions. The grey bars 

display transition regions between two flow regimes. The flow pattern data are depicted from paper [l]-[9]. 

bubble flow pattern in the frothy slug/annular flow regime region and vice versa, no dispersed bubble flow pattern 

in the annular flow regime region and vice versa, and no slug flow pattern in the annular flow regime region and vice 
versa. Overall a good agreement between the new flow pattern map and the experimental data from the literature 
is obtained. The results of modeling the transition regions from disperse bubble to slug flow, from slug to frothy 
slug/annular flow and from frothy slug annular to annular flow is beeing discussed by Wölk et al. [10]. 
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S. WURSTHORN, G.H. SCHNERR 

Numerical Investigation of Performance Losses in a Centrifugal Pump due 
to Cavitation 

Numerical simulations of cavitating pump flow in consideration of centrifugal and Coriolis force are performed. For 
the simulations a homogeneous model for the liquid-vapor two-phase flow is used. The pump investigated is a radial 
type of low specific speed (nq = 1%) with parallel shroud and hub. Numerical results such as detailed visualizations of 
the unsteady vapor distribution and time averaged pressure distribution in comparison with experiments are provided. 

1. Introduction 

In hydraulic machine systems cavitation is an important phenomenon. Due to the highly unsteady flow, cavitation 
causes noise, vibrations and damage of the material accompanied by performance losses. To get detailed insight and 
knowledge of this problem two phase simulations of unsteady cavitating flow are of great interest. 

2. Numerical treatment 

The calculations have been performed with the commercial CFD-software STAR-CD. The numerical treatment of 
the cavity flow is done with a modified Volume-of-Fluid algorithm. This means the liquid-vapor mixture described 
by a void fraction a is treated like a single fluid with varying density p = cxpv + (1 - a)pi. The pure phases 
are treated incompressible. For a a transport equation is solved. The formation and disappearance of vapor is 
descriped by a source term in the reformulated continuity equation V • c = -^ff = -j-^ä) ■& and in the transPort 

equation for a: ff + V(ac) = | + aV-c= J^(2 ~ ^)^) f • A simplified description of the vaporisation and 
condensation process is proposed through an empirical distribution of the speed of sound a(a) for the liquid-vapor 
mixture proposed by Wallis [1]. The minimum speed of sound at a = 0.5 is fixed at 2m/s. The pressure - velocity 
coupling is done by the PISO algorithm. 

3. Results 

The geometry of the pump is given in [2]. Inviscid calculations were performed in the rotating reference system with 
additional terms for Coriolis and centrifugal forces. Due to the diffuser ring it's sufficient to simulate only one vane 
with cyclic boundary conditions. Figure 1 shows the underlying computational mesh with the boundary conditions. 

constant pressure boundary 

cyclic 
boundary 

1.00 

H/H 

inlet 
boundary 

100% 

0.98 

0.96, 

experiment 

3       4       5 
NPSHav [m] 

Fig.   1:     Computational   mesh   with 
boundary conditions. 

Fig. 2: Comparison of the experimental and numerically predicted 
NPSH-head-drop-curve at partial capacity (V = 272m3/h). 

Figure 2 shows the numerically predicted NPSH-head-drop-curve in comparison with experimental measurements. 
It shows that the calculations are able to predict changes of the head due to cavitation. At high NPSHav- values 
the simulations show a gain of head. At lower NPSi^-values the head loss takes place suddenly and in a small 
range o{NPSHav- This unstable behaviour of the NPSH-head-drop-curve is caused by the lack of damping viscosity 
due to the inviscid calculations. Concerning the commonly used 3%-head-drop-criterion for acceptable cavitation, 
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the discrepancy of NPSH3% is only 0.5 m. Figure 3 shows the vapor distribution of the periodic cavitating flow at 

NPSH3%. The cavitation is separated from the blade due to a vortex at this region. The influence of this vortex 
can also be seen in the surface pressure distribution (Fig. 4 right). 

Impeller 

t = t0 t — t0 + £ Tperi0d    t — t0 + ö Tp eriod 

Vapor Fraction [%] 
«iiiiiii-^sissir 

40 20 
t — t0 + 2 J- Period    * — *o T 3 J- Period    ' — *o T g -1 Period 

Fig. 3: Periodic cavitating pump flow. Vapor fraction in the flow field at 3% head loss. / = 45Hz, V = 272m3/h. 

At Pfleiderer-Institut Braunschweig photographs of the cavitation area have been taken and pressure measurements 
in the rotating system have been performed [2]. Figure 4 shows qualitative good agreement concerning the vapor 
distribution and surface pressure. 

Fig. 4: Comparison with experiment. Left: Instantaneous vapor distribution in the flow field (photograph by 
Pfleiderer-Institut Braunschweig). Right: Time averaged surface pressure p = p"%™/ (s=position on the vane 

surface beginning at the leading edge). 
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W. YUAN, G.H. SCHNERR 

Numerical Simulation of Cavitating Flow in Injector Nozzles 

In this study high-velocity cavitating flows in injector nozzles are calculated using a modified Volume-of-Fluid method 
coupled with bubble dynamics. The calculations show that cavitation in injector nozzles may be unsteady and the 
interaction between the internal and external flow should be taken into account. 

1. Introduction 

In injector nozzles cavitation may occur due to violent pressure drops. This affects the fuel dispersion and combustion 
process in engines. The small size of the nozzle and the high velocity of the flow make experimental measurements of 
this internal flow extremely difficult. Numerical simulation provides an efficient method, to further understand this 
small scale flow. In this study the continuum method is used, which reduces the computational cost. For simplicity 
and also due to the successful application to classical cavitation in hydraulic machinery, the bubble dynamic model 
is straight forward extended to high velocity cavitating flows. 

2. Description of numerical method 

The bubble-liquid flow is treated as a homogeneous mixture, hence only one set of governing equations is used for 
description. The equations are solved applying a cell-centered Finite-Volume-Method. Laminar flow is assumed 
for the reason that we are interested in assessing the effect of cavitation on the flow; introduction of a turbulence 
model would couple the effects of both cavitation and turbulence. This simplification will be removed in the future. 
In order to couple the pressure and velocity using SIMPLE algorithm, the non-conservative form of the continuity 
equation is used. The mixture density is calculated using the vapor fraction: Q = (1 - a)ei + agv. The vapor fraction 

a is solved from his transport equation: 

da 
(ac) 

da 

~dl 
+ a V -c = 

n0 

l + n0-UR3dtK3 UU3), (i) 

where n0 is defined as nuclei concentration per unit volume of pure liquid. This equation indicates that the va- 
por is presumed to consist of mini spherical cavitation bubbles. The bubble growth is governed by the Rayleigh 

relation: R =   /| Pv.r-y^   For ^e test cases jn this study n0 is set to be 101 ■tl.7   nuclei 
m3water and R0 - 0.3pm.  The 

pressure of local cell is used as p0 

3. Numerical results 

To verify the above described bubble dynamic model for injector nozzle flows, experimental test cases of Roosen and 
Genge of the RWTH Aachen are calculated. The fluid was water. The mesh and boundary conditions are shown in 
Fig. 1. Table 1 shows three test cases. In the table the units are bar for pressure and m/s for velocity. 

Symmetry    Enlarged area 

y[mm]—^ miet, u=u,nW, v=0 m/s     / / 
-i-O.Or  ™s=- 

Exit 
Constant 
pressure 
P=PEXü 
au/at+uxau/3x=o 
3v/3t+Ux3v/8x=0 

J    x [mm] 

Table 1: Parameters of the test cases 

Case 
Experimental k = 

Plni.-Pv 
Plni.-PExit 

Computed 

PExit Plnj. Ulnlet P Inlet 

1 
2 
3 

21 
11 
26 

81 
81 

1.34 
1.14 
1.37 

12.2 
12.5 
13.3 

81 
81 

97 ±2 
Fig. 1: Sketch of the mesh and boundary conditions. 

Figure 2 shows the experimental and computed (only half nozzle) cavitation distributions for case 1 (left) and case 2 
(right). A nearly steady partial cavitation flow is obtained in case 1. Compared with the experimental observations, 
the calculated cavitation region is slightly longer due to lack of turbulence modeling and the fact that the nozzle 
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lip used for experiment was not truly sharp-edged. In the second case the cavitation number tends to unity and 
the cavitation region tends to the nozzle exit accompanied by a backflow, which indicates a fully flipped condition 
may occur. Once the condition with backflow is reached, the time accurate calculation is terminated due to the fact 
that the outflow boundary conditions under an unsteady flipping situation are not yet well defined. This problem 
should be solved in coupling with the external flow. This means, the interaction between the internal and external 
flow should be taken into account. Another interesting simulation is case 3. Calculations indicate that this flow is 
partially cavitated and periodic unsteady. A single period of this cavitation process is depicted in the Fig. 3. Figure 
4 shows that the total vapor volume of this partially cavitated flow in the nozzle passage changes with a frequency 
of about 73.5 kHz, which is closely correlated with the time it takes a fluid element to traverse the nozzle passage. 

x[mm] 

Reverse flow 

Fig. 2: Experimental (upper, from Roosen & Genge) and computed (lower) cavitation distributions for cases 1 & 2. 

y[mm] 

x[mm] 

x[mm] 

x[mm] 

~ÖS    5/i     S3     53    53     S3     S3     577    53     53     Tox[mm] 

Vapor Fraction [%] 

40 60 

Fig. 3: Vapor fraction distribution and velocity 
vectors in the nozzle for case 3. 

Vim3] Total Vapor Volume 

9.0X10''1 

Fig. 4: Oscillation of total vapor volume for case 3. 

4. Conclusions 

The cavitating injector nozzle flow has been calculated using 
bubble growth model coupled with the VOF method. The cal- 
culations show that the cavitating flow may be unsteady with 
a period of the order of the nozzle transit time. To simulate 
the unsteady flipping situation, the complex outflow condition 
should be well treated. 
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DELFS, J.; GROGGER, H.; LAUKE, TH.; LUMMER, M.; YIN, J. 

Numerical description of acoustic sources in airframe noise 

The origin of airframe noise in subsonic flows is mainly related to vorticity perturbations which i) interact with 
geometric inhomogeneities (egdes, steps, slots), ii) are subject to strong convective accelerations of the mean flow, 
iii) are strongly amplified in magnitude due to hydrodynamic instability of the mean flow. Therefore, apart from an 
appropriate modeling of the vorticity perturbations (e.g. causal or stochastic), a suitable Computational Aeroacoustics 
(CAA) method needs to describe accurately the conversion process from hydrodynamic to acoustic perturbations, i.e. 
the very noise generation. Aeronautics-related examples of numerically simulated airframe noise phenomena are 
presented which were obtained using DLR's CAA-code based on the high order spatial DRP scheme of Tam&Webb 
[1], the RK4 scheme in time and perfectly matched layers at the freefield boundaries Hu [2]. 

1. Simulation concept for airframe noise 

In the study of (broadband) airframe noise one is not primarily concerned with the turbulence eigennoise, i.e. the 
sound produced by free turbulence. At subsonic flow Mach numbers a much more efficient source mechanism is 
represented through diffraction of the hydrodynamic pressure field at geometric inhomogeneities. Here part of the 
pressure associated with the vorticity fluctuations in the flow is converted into sound. For high Reynolds-number 
flows, two basically different approaches to the simulation of airframe noise are practial: a) the solution of a wave 
equation, derived from e.g. Lighthill's, Lilley's, Möhring's acoustic analogies. This approach requires the modeling 
of dedicated acoustic source terms; b) the solution of conservation equations, in which only the origin of the source, 
i.e. the vorticity perturbations is modeled, while the sound source is part of the simulation. For very complex flow 
situations as e.g. near the very noisy deployed high lift devices of a wing in approach conditions, the source modeling 
for a) may become overly complicated. For such situations approach b) is justified although the smaller amount of 
modeling has to be paid by considerably more compuational effort. 

In what follows, approach b) is considered exclusively. Two models of a different kind lend themselves to a reasonable 
representation of broadband vorticity disturbances: i) stochastic modeling, and ii) a causal modeling. In the first 
case a suitable stochastic representation of the velocity fluctuation field mimics the relevant features of turbulence. 
Causal modeling relies on imposing a spatially localized purely vortical disturbance upstream the source region in 
the steady mean flowfield. The computed acoustic response of aerodynamic bodies to such "vorticity pulses" defines 
their ability to convert vorticity into sound (i.e. their airframe noise characteristics), see also [4]. 

2. Governing equations 

Simulating aeroacoustic sources of the mentioned kind necessitates the use of equations which describe simultane- 
aously vortex dynamics and sound, and thus their interdependence. The compressible, unsteady Euler equations 
meet this requirement. They serve as the basic equations upon which a set of linear perturbation equations may 
be derived (see e.g. [3]), which describe the dynamics of small perturbations q' := {p',v',p') about a given (quasi-) 
steady flow q° := (p°,v°,p0): 

^+v'-Vp0+p0V-v'+p'V-v0    =   m' (1) 

pod^+pov^vo+p,vo,Vvo + Vpl    =    f, (2) 

^£ +v'.Vp° +7p°W + 1P'V-v°    =   0' (3) 

The equations are dimensionless with time t = fa^/l, lengths Xi = x*Jl, density p = p*/poo, velocity vector 
v = v*/a,oo, pressure p = p*/pOc,al0, some mass source density disturbance m' = m'*llp^a^, some force density 
disturbance /' = f'*l/PcodL and some entropic (e.g. heat) source density disturbance 6' = 9^1/p^a^. The 
asterisk denotes quantities bearing dimensions. A thermally and calorically perfect gas is assumed and 7 denotes 

the isentropic exponent (7 = 1.4 for air). Moreover ^j ~ ^ + «°-V. 

The spectrally tuned DRP-scheme of Tam&Webb [1] is the basis for the numerical representation of (1-3) to simulate 
the vortical, entropic and acoustic disturbance dynamics. 
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The boundary conditions for acoustically hard walls is equivalent to satisfying the non-penetration condition. With 
n representing a vector locally normal to the wall at a given wall point it reads: 

vn:=n-v'=0     <=>     ^f = (p0(v0v' + v'v0)+p'v0v0):Vn 
on      v ; (4) 

The boundary condition is implemented indirectly as a condition on the wall normal component of the pressure 
gradient -^ as indicated by the above equivalence. It says that the pressure gradient at a hard wall is - other than 
for acoustics in non-moving media - usually non-zero, namely the double contraction of the momentum flux with 
the local curvature tensor of the wall, i.e. centrifugal and coriolis components. The above statement is essential 
when dealing with the computation of the sound generation at aerodynamic bodies subject to flows which contain 
vorticity perturbations (e.g. inflow turbulence). 

3. Results 

First the effect of the presence of a flow field on scattering of a sound wave at a cylinder is illustrated in figure 1. 

Figure 1: CAA-simulation of scattering 
of right-running plane Gaussian-shaped 
pressure pulse at cylinder. Left: no 
flow, right: Vortex flow around cylin- 
der, v°v — 0.5 (white spots near cylin- 
der due to plotting difficulties for over- 
lapped grids). The primary plane wave 
experiences very small changes without 
flow and strong changes in the presence 
of flow. The radiation pattern is com- 
pletely changed as well. 

■ U25 

The effect of the nonhomogeneous condition for ^ona noise generation problem is illustrated in fig. 2. It shows 
the numerical solution of (1-3) to simulate the aeroacoustic noise generation due to the interaction of a localized 
vorticity disturbance (test vortex seeded far upstream) with a Joukowski airfoil in a flow of Mach number Mx = 0.5. 
The initial linear vortex-disturbance is defined by its streamfunction, being a Gaussian of half-width hw =0.1, i.e. 
10% of the airfoil's chord. It is seen that the visualized acoustic pressure pulse generated during the encounter of the 
airfoil's nose with the vortex appears strongly distorted when simulated using the condition ^ = 0 as in classical 
acoustics. Other related edgenoise problems are dealt with in more detail in [3],[4]. 

Figure 2: Pressure p' after airfoil-vortex encounter. Center: correct boundary condition due to (4), right: -£ - 0. 
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DZI^CIELAK, R. 

Lamb's Problem for a Fluid-Saturated 
Porous Medium with a Structure 

The Lamb's problem for a fluid-saturated porous medium has been considered by PHILIPPACOPOULOS [1] on the basis of 
BIOT'S [2] linear theory for porous fluid-saturated media. This author described structure of a medium by volume porosity 
only. 

The aim of this paper is to present the results of the study of this problem for a fluid-saturated porous half-space with a 
structure. This problem is of interest in earthquake engineering applications. The medium consists of an isotropic elastic 
solid skeleton with pores filled by viscous compressible fluid. Usually in the soil and rock mechanics the structure of a 
porous medium is determined by single, the well known parameter, volume porosity f, . However such description of a 
porous medium structure is too poor to describe the dynamic properties of this medium from the point of view of balance 
of momentum leading to the equations of motion. This is a reason to introduce so called double-parameter description of a 
porous medium structure. Complete description of a porous medium by two parameters has been given by KUBIK [3]. This 
author characterized the isotropic pore structure by two parameters: the volume porosity^ and the structural permeability 
parameter A or structure parameter K= ?Jfv. 

We confine our considerations to the elastic fluid-saturated porous medium described by the linear constitutive 
relations proposed by BIOT, [3], 

I" = 2ME* + (AtrEs + QtrEr)l Tf = (g/rEs + RtrEr )1 (1) 

where T and Tf are the stress tensors in the solid skeleton and in the fluid, respectively, A, N, Q, R are the material 
constants of a medium, Es and Ef are the linear strain tensors 

Es = -[gradu* +grad(uff], Ef = -[graduf + grad(uff]. ( ) 

us and i/ denotes the displacement vectors of the solid skeleton and the fluid, respectively, T denotes transposition. 
Linearized equations of motion for the medium with a structure are of the form, [8], 

divT +A(v' -vä) = fllM^+fl2(r)^ ,        dirt' -A(v' -v') = P2(K)~ + P22(K)^- ^ 
at a a dt 

where: 
.   .       -s      \~K -f ,   ^ \-K —f ,   „       \ _f (4) 

pn(K) = p    + pJ , Pi2M = PJ , P22(K) = -P- 
K K K 

Vs and y1 are the velocities of the solid skeleton and the fluid, respectively, b is the resistant coefficient for Poiseuille 
flow; for lower frequencies (f< 1000 Hz) which are especially met in seismology, the dependence of internal forces of 
interaction between components of the medium on the frequency can be neglected. The mass coefficients P\\{K), P\2{K), 

Piiix) depend on the structure parameter K. The considered in this paper influence of the structure of a medium stems 
from these terms of the equations of motion. The displacement equations are of the form 

JW2iis +(A + N) grad div us + Q grad div uf + b 
fd*f   d^ 

a     a 
= PuW—r + P\2(K)-^r . 

Qgraddivus + R grad div u^ -b 
äif    äis 

a    a 
a2us a2uf (6) 

= Pi2(K')—y-+/>22«>   ^ a a 2 

Now we apply a Helmholtz resolution of each of the two displacement vectors, of the form 

uJ =grad(p+roth , u' = grady/ + rotg , P) 

to the displacement equations (5), (6) and we obtain the system of wave equations. 
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To simplify the study of the influence of a porous medium structure on Lamb's problem we confine our further 
considerations to one-dimensional problem of the uniformly distributed load 

p(r,t) = P0e icat (8) 

on the boundary of the half-space; a is the circular frequency of the surface load. The vertical displacements w and w of 
the solid skeleton and the fluid, respectively, are of the form 

"*. w. = -(A,SJ,e-''z + E^U^z\eim. (9) uz=-{Axlxe-^+Bxl2e-^)e w^-iA^e-V+B&^e 

where l\ and h are the wave numbers. The displacements indicate that the dynamical load of the boundary of half-space 
causes, as usually in such a medium, the propagation of two longitudinal waves: the wave of the first kind and the wave of 
the second kind with the phase velocities 

m co (10) 
vi Im/, V2 Im/7 

Both of these waves are attenuated and attenuation coefficients are 
Ai = Im/! ßl = Im/2 (11) 

In order to estimate the influence of a medium structure on the propagation of longitudinal waves in a fluid-saturated 
porous medium with a structure the numerical calculations were performed taking the data for water-saturated Bere'a 
sandstone and for oil-saturated sandstone. 

Numerical solution of the dispersion equation gives us the phase velocities and the attenuation coefficients of the wave 
of the first kind and the wave of the second kind as a functions of the structural permeability parameter. The results of the 
numerical calculations made for two kinds of media let us to formulate interesting conclusions concerning the properties 
of these waves in the fluid-saturated porous medium with a structure. The dependence of the dimensionless phase 
velocities of the wave on the structure parameter /eis presented in Figure 1. The influence of a medium structure on the 
phase velocities and on the attenuation coefficients is stronger at higher frequencies of the waves. The phase velocity of 
the wave of the second kind is a little more sensitive on the medium structure than the phase velocity of the wave of the 
first kind. The attenuation coefficient of the wave of the first kind is influenced by a medium structure much stronger 
than the attenuation coefficient of the wave of the second kind. Practically, the phase velocity is not sensitive to the wave 
frequency thus the dispersion is not observed in the range of frequencies met in seismology 
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Fig. 1. Dimensionless phase velocities of the wave of the first kind and the wave of the second kind 
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PETR KONICEK, MICHAL BEDNARIK, MILAN CERVENKA 

Nonlinear Effects in the Sound Field of the Circular Piston 

This paper deals with the numerical modelling of the directional sound beams in the tube. The solution of KZK 
equation with and without the boundary layer is presented. The importance of boundary layer in directional sound 
beams modelling is shown here. 

1. Khokhlov-Zabolotskaya-Kuznetsov equation 

The KZK equation is the most widely used model equation for describing the combined effects of diffraction, non- 
linearity and absorption in directional sound beams. KZK equation accounts for diffraction at the same order as 
dissipation and nonlinearity. In the case of axial symmetry it can be written as [1] 

82w d3w      r0 82w2      \ (Id   ,   d2\ m 

dadr uÖr3 " 2ld 8T
2
       4 Uö£     dt? 

where w = v/vm is the dimensionless velocity, a = z/r0 is the dimensionless coordinate in the direction of propa- 
gation, £ = r/Ro is the dimensionless coordinate perpendicular to the direction of propagation, r = cot - kz is the 
dimensionless retarded time, a is the linear coefficient of diffusion, ld the shock formation distance for the plane 
wave, r0 is the Rayleigh distance (the beginning of the far field region) and R0 is the tube diameter. 

2. Numerical solution 

The equation (1) was solved in the frequency domain where we obtain the system of nonlinear equations which was 
solved by means of a simple iteration method. 

3. Frequency correction 

When the wave approaches the shock wave, numerical instability rises (Gibbs oscillations). It is given by the finite 
number of terms in the Fourier series. This problem was solved by using the frequency correction term for each 
harmonics in the Fourier series [2] 

ipn = sinc(n/H). (2) 

It is necessary to set an appropriate value of H to eliminate Gibbs oscillations and not to affect the higher part of 
the frequency spectrum significantly. 

4. Boundary conditions 

The equation (1) was solved with two different boundary conditions which were compared each other. 
The following boundary condition was used for the ideal fluid in the tube: 

^ = 0. (3) 
or 

The second boundary condition taking into account a boundary layer was applied for real fluids: 

dw _    B   F^d_   } dw     dr1 ^ 

dr c0 V 7T dr J   dr' A/T^-T
7 

— oo 

where B = \/2^[l + (7- l)/v/Pr]/2c0, v = n'/po is the kinematic viscosity, Pr = T]'CP/K is the Prandtl's number, K is 
the heat conduction coefficient. This formula was derived by Blackstock from the Stokes equation for the boundary 

layer [1]. 
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5. Results 

The courses of three velocity harmonics in the dependence on £ and a are shown in the figures below. Each figure 
contains three dependencies for various combinations of the frequency correction factor H and the boundary value 
coefficient U0 = BR0u>3/2/c0. All calculation were done for Gaussian sources. 
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Figure 1: Dependence of the harmonics on the radius f for a = 1,0. 
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Figure 2: Dependence of the harmonics on the a coordinate for £ = 0,5. 

6. Conclusion 

The velocity harmonics dependence of the sound beam in the tube on a and £ axes was shown. These dependencies 
demonstrated nonlinear, diffraction and dissipation effects in the tube. If we compute the velocity time dependence, 
we can observe the influence of dispersion effects on it very well. From the comparison of results with and without 
the boundary layer we see the importance of the boundary layer for the modelling the directional sound beams in 
the tube. 
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S. LANGER, H. ANTES 

Schalltransmission durch Isolierfenster 

Der Nachweis der Schalldämmwirkung von Isolierfenstern erfolgt bisher im Allgemeinen durch Messungen unter 
normierten Bedingungen, obwohl eine numerische Simulation schneller und effektiver wäre. Deshalb wird dafür hier 
ein Berechnungsmodell entwickelt, dass die Schallwellenausbreitung und den Schalldurchgang durch zweifach-verglaste 
Fenster sowie alle auftretenden dynamischen Wechselwirkungsvorgänge beinhaltet. 

Dazu wird sowohl für die Biegewellen der als elastische, dünne Kirchhoff-Platten modellierten Glasscheiben wie 
für die Schalldruckwellen in der Luft der Scheibenzwischenräume und des Gebäudeinnenraums die Finite-Element- 
Methode (FEM) verwendet. Die Umgebung ausserhalb des Gebäudes stellt ein halbunendhches Gebiet dar, so dass 
wegen der Abstrahlbedingung dort die Randelementmethode (REM) bevorzugt wird. Die Kopplung der Fluidgebiete 
mit den Glasscheiben erfolgt jeweils über die virtuellen Arbeiten an den Koppelflächen. Die Lösung liefert sowohl 
das dynamische Verhalten der Glasscheiben wie die Schalldruckverteilung in der Luft. Damit ist dort der Schallpegel 

bekannt und kann das Schalldämm-Maß des Fensters ermittelt werden. 

1. Theoretische Grundlagen 

Die Finite-Element-Gleichungen für eine mit der Frequenz u angeregte elastische Kirchhoff-Platte (5) und für ein 
ideales kompressibles Fluid (4) können aus der folgenden, auf dem Hamilton'sehen Prinzip basierenden Variations- 

gleichung hergeleitet werden: g^ _ ^ + gw = Q (1) 

Die Variation von kinetischer bzw. potenzieller Energie führt auf die Steifgkeitsmatrizen K und Kx bzw. die 
Massenmatrizen M und K2. Die Durchbiegung n der Platte wird dabei in jedem finiten Element der diskretisierten 
Platte durch r? = Nsu , der Schalldruck in jedem finiten Element des diskretisierten Fluids durch p = NaP appro- 
ximiert (vgl [1]) Mit dem Term SW können die strukturellen und die akustischen Freiheitsgrade gekoppelt und 
damit deren Wechselwirkungen erfasst werden (vgl. [2]). Er ergibt sich für die Fluidgleichung (4) mit Variation des 
Schalldrucks Sp zu (2) bzw. für die Strukturgleichung (5) mit der Variation der Plattendurchbiegungen öw zu (3). 

SW = -[spwdT^ (2) 8W = -Jp8wdTW (3) 

Für die Kopplung müssen vorab die Verformungsfreiheitsgrade u = (w,wtX,wlV,w,xy) der Kirchhoff-Platte 
kondensiert werden, so dass nur die Durchbiegungsfreiheitgrade w zurückbleiben. Die beiden miteinander gekoppel- 

ten FE-Gleichungssysteme lauten dann: 

(Kx-fcWjp   =-pw2CTwW    (4) (K-W
2
M) w   =-CpW (5) 

wobei (K - u2M)* die dynamische Steifigkeitsmatrix der Platte nach der Kondensation ist. Die Knotenwerte der 
Durchbiegung und des Schalldrucks in der Koppelfläche sind in den Vektoren w'1 und p*1 zusammengefaßt. Grenzt 
an beide Seiten der Platte ein Fluidgebiet, stellt p«> = V{hinter) ~Y>(vor) den Schalldrucksprung an der Koppelflache 
dar C = [NTNadrW \st die Kopplungmatrix der ersten Koppelfläche P1, also der inneren Fensterscheibe, die an 
die abgeschlossenen, luft- bzw. gasgefüllten Gebiete des Gebäuderaums bzw. des Scheibenzwischenraums grenzt. 

Bei Schallausbreitungsproblemen in unendlich ausgedehnten Gebieten muß die Sommerfeld'sche Abstrahl- 
bedingung erfüllt sein, d.h. die Wellen müssen im Unendlichen auslaufen. Am Diskretisierungsrand eines Finite- 
Elementgebietes kann es zu Reflexionen kommen, so dass die Abstrahlung nur durch zusätzlichen Aufwand, z. B. 
durch die Verwendung von infiniten Elementen (vgl. [3]), sichergestellt werden kann. Die Randelementmethode 
erfüllt im Gegensatz dazu implizit diese Bedingung. Die Randintegralgleichung für Schallausbreitungsprobleme ist 
in Gleichung (6) gegeben, wobei p* die sogenannte Fundamentallösung und q* deren Schallfluß bedeutet (vgl. [4]). 

c(0p(0 + /9*(x.0pWdrs = ^p*(x,08WdrB   (6) Gq-HP = 0. (7) 

Diskretisierung des Randes T und Approximierung von Schalldruck und -fluß durch p = Npp und q = Nqq 
in jedem Randelement sowie Kollokation in jedem Randelementknoten führt auf die Randelementgleichung (7). 

Die äußere Glasscheibe, also die zweite Koppelfläche T^, grenzt an den gasgefüllten Scheibenzwischenraum 
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(SZR) und das unendlich ausgedehnte Außengebiet. Während die FE/FE-Kopplung von SZR und Platte analog zur 
ersten Koppelfläche erfolgen kann (8), muß für die FE/RE-Kopplung von Platte und Außenraum für beide Frei- 
heitsgrade der REM, den Schalldruck und den Schallfluß, eine Koppelbedingung eingeführt werden. Dort müssen 
jedoch die Beschleunigungen der elastischen Partikel der Platte und die der Fluidpartikel gleich sein, woraus als 
Bedingung für die Kopplung der strukturellen Durchbiegungen mit dem Schallfluß q = f£ = pFu2vW und damit 
Gl. (10) folgt. Die Anwendung des Prinzips der virtuellen Arbeit in der Form SW = ~{pl-Pv)5wAY^ führt auf 
die Kopplung mit dem Schalldruck (vgl. (9)). 

Es ergibt sich damit das folgende Gleichungssystem, wobei Randelement-Knoten, die nicht auf der Koppel- 
fläche liegen, Dirichlet- oder Neumann-Randbedingungen aufweisen müssen (vgl. (11)). Für den Fall, dass für die 
Finiten Elemente und die Randelemente die gleichen Ansatzfunktionen gewählt werden, sind die Kopplungsmatrizen 
C(FE) und C(fl£i) gleich. 

(id - Ä;2K2)p = -pw2Crw<°)   (8) 

PFüßGwW - Hp = 0 (10) 

K-OJ
2
M) w = 

Gq - Hp = 0 

,(ö) C
(^)P(^) + C(F^)P\';^ (9) 

(ii) 

2. Numerische Beispiele 

Zur Erprobung des Verfahrens wird die Schalldämmwirkung eines mit fester Einspannung gelagerten Fensters der 
Größe Im x Im untersucht, das einen Im x Im x 0,5m großen Raum mit ansonsten schallweichen Wänden (Refle- 
xionsfaktor = -1 und Absorptionsgrad = 0) vom Außenraum trennt. Die Belastung erfolgt durch einen konstanten 
Schalldruck der Größe 1^ auf der dem Fenster abgewandten Stirnfläche des Raumes. Die maßgebende Bauteilkenn- 
größe ist das Schalldämm-Maß, das sich aus den Schalldruckverteilungen Pl bzw. p2 vor bzw. hinter dem Fenster zu 
R = Lx - L2 = 20 lg 2i [dB] berechnen läßt, wobei mit Lx und L2 die Schalldruckpegel am Sende- bzw. Empfangs- 
ort bezeichnet werden. 

Zum Vergleich wurden Berechnungen mit unterschiedlichen Dicken der Glasscheiben durchgeführt und die 
Gasfüllung des Scheibenzwischenraums (SZR) variiert (vgl. Abb.l). Die Berechnungen zeigen, dass Fenster mit ei- 
nem edelgasgefüllten SZR (I) ein besseres Schalldämm-Maß aufweisen als Fenster mit Luftfüllung (III). Ebenso ist 
die schalldämmende Wirkung eines solchen luftgefüllten Fensters mit asymmetrischem Scheibenaufbau (III) besser 
als eines mit identischer Gesamtscheibendicke und SZR-Füllung aber symmetrischem Scheibenaufbau (II). 

Diese akustischen Einflüsse konstruktiver Änderungen werden beim Entwurf von Isolierfenstern ausgenutzt 
und können mit dem vorgestellten Verfahren simuliert werden. 
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Abbildung 1: Einfluß des Fensteraufbaus bzw. der Zwischenraumfüllung auf das Schalldämm-Maß 
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SCHANZ, M.; CHENG, A.H.-D. 

Wave propagation in a one-dimensional poroelastic column 

In Biot's theory of porous media a second compressional wave, known as the slow wave, has been identified. An 
analytical solution in the Laplace transform domain is obtained showing clearly two compressional waves. For the 
special case of an inviscid fluid, a closed form exact solution in time domain is obtained using an analytical inverse 
Laplace transform. For the general case of a viscous fluid, solution in time domain is evaluated using the Convolution 
Quadrature Method of Lubich. Using properties of two different real materials, the wave propagating behavior, in 
terms of stress, pore pressure, displacement, and flux, are examined. Of most interest is the identification of second 
compressional wave and its sensitivity of material parameters. 

1. Analytical solution 

For a wide range of fluid infiltrated materials, such as water saturated soils, oil impregnated rocks, or air filled foams, 
Biot's theory of poroelasticity is used. Among the significant findings in this theory was the identification of three 
waves for a 3-d continuum, two compressional waves and one shear wave. This extra compressional wave, known as 
the slow wave, will here be confirmed numerically. 

A 1-d poroelastic column of length I is considered. It is assumed that the side walls and the bottom are 
rigid, frictionless and impermeable. Hence, the displacements normal to the surface are blocked and the column 
is otherwise free to slide parallel to the wall. At the top, the total stress a and the pore pressure p and at the 
bottom the longitudinal displacement u and the flux q are prescribed. Due to these restrictions the governing set 
of differential equations is reduced to two scalar coupled ordinary differential equations in Laplace domain (denoted 

by () with parameter s) 

B 62s 
EütXX-(a-ß)p,x-s2(g-ßgf)ü = 0        p,xx - —p- {a - ß) sü x = 0 , (1) 

SQf R 

with the abbreviation ß = fi+tjgf+fa ), the modulus E, the porosity </>, the bulk density g = gs (1 - <p) + (pgf and 
the permeability K. The apparent mass density ga is assumed to be frequency independent as ga = 0.66</>£>/. Biot's 
effective stress coefficient a and R complete the set of material parameters. 

Due to the neglected body forces this is a system of homogeneous ordinary differential equations with inhomo- 
geneous boundary conditions. Such a system can be solved by the exponential ansatz ü (x) = UeXsx, p (x) = PeXsx. 
This leads to an Eigenvalue problem where the characteristic equation has four complex roots, and, therefore, the 
complete solution of the homogeneous problem is ü (x) = ]Ci=1 UieXiSX, p(x) = ^2i=1 PieXi3x. Using the Eigenvec- 
tors a system of four equations for four unknowns is achieved. Finally, for stress boundary conditions a (x = t) = — Po 
and ü (x = 0) = q (x = 0) = p (x = H) = 0 the results for the displacement and the pressure is obtained 

u(s,x)    = 

p{s,x)    = 

^(diAs-daAi) 

EidiXs-dsXx) 

d3 (e-*is(*-z) _ e-\is(t+x)\      ^ fe-\3s(t-x) _ e-\3s(t+x)\ 

a(l + e-2A»«*) s(l + e-2A3^) 

fe-\is(t-x) _|_ e-x1s(e+x)\      te-\3s(e-x) _|_ e-\3s(e+x)\ 

1 + e-2\lSe l _|_ e-2\3st 

(2) 

(3) 

Note, due to the dependence of ß to the Laplace parameter s, the roots A» and consequently di = —}a-ß)\f are 

dependent of s. Therefore, an analytical inverse Laplace transform of the solutions above is in general not possible. 
However, if the damping due to the relative motion of the fluid and the solid is neglected, i.e. the permeability tends 

2 

to infinity K —> co => ß « v' Qf , an analytical inverse Laplace transform can be found [2]. For an arbitrary 
value of K a numerical inverse Laplace transformation is necessary. Here, it is preferable to take the 'Convolution 
Quadrature Method' proposed by LUBICH [1]. This method approximates a convolution integral numerically by 
a quadrature formula whose weights are determined with the help of the Laplace transformed impulse response 
functions ü (s, x) and a linear mültistep method. 
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2. Results 

Next, wave propagation in the 1-d column is studied using the developed solutions. Two very different materials, 
a rock (Berea sandstone) and a soil (coarse sand) are chosen to represent a wide range of porous materials. To 
unambiguously capture the slow wave, we examine an 'infinite' column to avoid wave reflections. This is achieved by 
using a column length of I = 1000 m and a short observation time. In Fig. 1 we record the pressure, p (t, x = 995 m), 
five meters behind the excitation point {x-t= 1000 m). It is assumed that the time history of the stress loading 
is a Heaviside step function. Since this is the first time that we expect to observe such wave, it is compared with the 
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Figure 1: Pressure p(t,x = 995m) versus time for different values of K compared with the analytical solution 

exact time domain solution for K ->■ oo [2], shown as solid lines in Fig. 1 for the two materials, to gain confidence. 
To make the comparison, an arbitrarily large value, K = 1 x 10-2, is chosen in the Convolution Quadrature solution, 
with results plotted in dashed lines in Fig. 1. It is observed that, except for some fluctuations at wave fronts, which 
are generally unavoidable for all numerical inversion methods, the two solutions compare very well. 

The phenomenon exhibited in Fig. 1 can be rationalized as follows. We first observe the arrival of the first 
wave at 5 m that causes the step jump. The second wave, arriving at a later time, is of negative amplitude and 
cancels exactly the first wave as indicated by the exact solution. The arrival time of the two waves is independent 
of K as its limit has been taken. 

To obtain and understand the solution of the realistic cases, we start to decrease K values. Fig. 1 shows a 
sequence of reduction that lead to the real values. As K decreases, we observe that both the amplitude and the 
arrival time of the waves are affected. The effect is strongest for the second wave. For some intermediate values of 
K, we observe that when the second wave arrives, its amplitude is diminished. Hence the pressure does not drop to 
zero at the passage of the wave front. We also observe that the second wave is dispersive as it does not arrive as 
a sharp front with constant value in some cases. Rather, the pressure continues to decline as seen in some curves. 
Also, the comparison shows the different behavior of the two different materials on changing the permeability. For 
rock, the wave amplitude of the first wave is nearly independent from the permeability, contrary to the soil. 

Summarizing, two compressional waves are clearly identified in the limiting case of an infinite permeability. 
For some intermediate permeability cases the second wave is also present. However, for the actual permeabilities 
of the tested materials the effect of the second wave vanishes after a short distance. This paper does not test all 
practical materials, natural and man-made. There exist some materials, particularly those with small fluid viscosity 
and large medium permeability, in which the second wave effect can be significant. 
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ZIEGLER, F. 

THE 3-D DYNAMIC GREEN FUNCTIONS EXPANDED IN PLANE WAVES 

Basic equations 
The Helmholtz decomposition of the displacements in a homogeneous and isotropic solid yields the set of wave equations 
for P- and S-waves, 

H = grad0 + curlyr ; A0=c 2 0, Ayf = C~2yr , divyr = 0 -r-2;„ 0) 

Furthermore the three components of stresses, given by Hooke's law enter the "internal" boundary value problems to be 
considered below 

(T!z = kc'2^+2ß 
d2$     d2

%    d\} 
di       dxdz     dydz 

,<*zx = f -C'Vv + 2 
d2$     d2yfx    <?V> 
äxdz.     äedy       ebe2 0V» = M 

..        Id2*     d2Wz    3
2

Vx 
-C   Wx + 2' + 

dydl     dxdz.       di 
(2) 

Vertical instant single force 
Lap/ace-transformation in time, Fourier transformations with respect to the horizontal (x, v) coordinates, render the solution 
via the three conditions provided by the internal b. v. problem 

z = 0: ojg, K,s)=-^ezQzf{s), ux = uy = 0 (3) 

in terms of the P- and S-wave potentials, expanded into plane waves and in the form of the Weyl-Sommerfeld integrals, the 
phase - time relationship has been indicated, note the emittance functions, see also [1] and [2], 

<jTz [x, y, z, s) = s2QzF[s) £ fZ Spexp{sgP) d£dr,       Yj (*. V, z, ') = *2QzH*) £ £ 4exPM<*&*, 

-t = gp=i§x + iKy-Ti\z-Zo\,   tl = \/c-2 + Z2+K2, -t = gs= i^x + iKy-C\z-z0\ ,   $=<fc 2 + £2 + K
2
, j = x,y 

F{s)=f{s)h^s2p ,SP = -ez,   S§, = -^,   5^ = | ,  ftfry.z.s) =0 (4) 

Fig. 1 Vertical force in infinite space. Rotation of coordinates about the y-axis 

The potentials, Eq. (4), are easily referred to rotated coordinates, see Fig. (1), by enforcing the following invariance 
conditions for the plane wave amplitudes and phases, P or S waves are understood, 

Sd£dK=Srd?dK,   -t = g = gr=i%x + iKy-(Ti,Q\z\ = i?'xr + iKy-{ri,£)r\zr (5) 
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However, the transformed 3-dimensional solution cannot be interpreted to represent the potentials of the counter-rotated 
(horizontal) force by putting a = n/2 . Violation of the condition of axisymmetry is the major reason,- the interpretation 
works for the 2-dimensional case of line loads, see again [1]. 

Horizontal instant single forces 
The instantaneous forces are considered in the x- and j-directions and the internal b. v. problems yield alternated emittance 
functions, listed in Table 1, 

z = 0:dzx(£,K;s)=-jezQxf[s), uz = uy = 0  ,   z = 0: a^, K,s) = --ezQyf[s), uz = ux = 0   . (6) 

Putting alternatively j = x, y in the displacement potentials, note the coupling by the characteristic determinants, 

*>{x,y,z,s) =s2QjF(s)fZfZSi
P™p(sgp)dZdK , #(*>,*,*) =s2QxF(s)fZflsiSxexp{sgs)dZdK (7) 

Vy[x,y,z,s) =s2QxF(s)fZj!siSyeW{sgs)dt;dK , ^z[x,y,z,s) = s2QxF(s)fZ!lsiexp{sgs)d4dK (8) 

and considering Table 1 renders the desired solutions. Note the vector potential with all three components present. 

Table 1 Emittance functions of horizontal forces 

lJ.JL s*^*firHzt &-* *l-r-iiK7l   rf_   ,   rf_   „^-C 
A> 

sU-iK^-f-* ,K=ri[?-?)-C*    ^-it11^'* .*y-n(?-*)-Z? A> 

The oblique instant force 
Since a common time source function is understood in the above given solutions, the potentials are summed to render the 
so called source ray. We note exemplary the emitted P-wave 

*[x,y,z,s) =s2F(s)jZfZSPexp{s8P)dZdK ,SP= Qx-£--Qy-£--Qzez (9) 
C Ax C Ay 

The oblique surface force 
Buried source and receiver, where z - z0 > 0 , in the half-space are considered first with source ray, Eq. (11), and reflected 

rays, (first segment pointing upwards) Pp and Ps, superposed. In that solution, the limit of the source depth to zero is 
performed to render the proper emittance functions of the surface force, the reflection coefficients for potentials are derived in 
[3], 

^ = ^+lim (vTp + Zv^Jp)   , Sp = S0p + SPRpp + 2sSikR
S'kP,k = x,y,z (10) 

Zo^°\ k j k 

Vsj = ¥oj + Hm (WPsJ + X ¥S,ksj\  , Ssj = S0sJ + SPRp^ + X SSJtR
S'kSJ, j = x,y,z (11) 

Zo^°i * J k 

Similarly, the source in the interface between a surface layer and an underlying dissimilar half space is considered. 
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CHELMINSKI, KRZYSZTOF 

On Noncoercive Models in the Theory of Inelastic Deformations with Inter- 
nal Variables 

In the theory of inelastic deformations with internal variables, H.-D. Alber has defined an important class of models 
called models of monotone type. For the subclass containig coercive models, the existence of global in time solutions is 
known. Unfortunately, in practice the coerciveness condition fails very often. Therefore we consider here noncoercive 
problems. In this note we study a subclass of models of monotone type for which the so-called coercive approximation 
converges to a solution of the original noncoercive problem. 

1. Introduction and the existence result for coercive models 

Let (1 C E3 be a bounded region with the smooth boundary dti. The system of equations modelling inelastic 
deformations of metals can be written in the form: 

pvt = divxV(e-Bz)+F,    et = -(Vxv + W^v),    zt € g[ - pVz^(e,z)) (MS) 

where v : Q x (0,T) -> 1R3 is the velocity field, p > 0 is the constant mass density, e is the strain tensor, V : 
S3 -> S3 = TR?Sym denotes the elasticity tensor which we assume to be constant, symmetric and positive definite. 

z = {ep,z) : Cl x (0,T) -> TRN is the vector of internal variables containing the plastic strain tensor ep. The 
operator Bz = B(sp, z) = sp is the projector of the vector z on the ep-direction. g : D(g) C S3 x MN -*■ V(MN) is 
the given constitutive multifunction, F : Cl x (0, T) —> 1R3 desreibes external forces acting on the material and finally 
tp(e,z) is the free energy function associated with the model. The system (MS) is considered with the Dirichlet or 
the Neumann boundary condition 

v(x,t) = go(x,t),   or   T(x,t)n(x) = gN{x,t)    for x 6 du and t> 0 
and the initial conditions are:    v(x, 0) = v°(x),e(x, 0) = e°(x),z(x,0) = z°(x), compatible with the boundary data 
(where T = V(e — Bz) denotes the stress tensor). 

Definition 1. We say that the model (MS) is of monotone type if the constitutive multifunction 
g : D(g) C IR^ —> V(SRN) is monotone and additionally satisfies 0 € g(0), and the free energy function is in the 
form 

pi>(e, z) = -V{e - Bz) ■ (s - Bz) + -Lz ■ z 

where B is the projector on the ep-direction and L £ IR^m^ JS positive semi-definite. Moreover, L is so chosen that 
the symmetric matrix BTVB + L is positive definite (=$> kerL C range B if range L D kerBj. 

Let us denote by (•, -)s the following bilinear form generated by the total energy function £ 

{(v, e, z), (v, e, z))e = / (pv-v + [V(e - Bz)] ■ {e - Bz) + Lz ■ z) dx. 
Jn 

If the bilinear form (•, -)s induces a scalar product in L2(Q; 3R3 x S3 x IR^) then we say that the problem (MS) is 
coercive. In [1] and [3] is proved the following existence result: 

Theorem 1. If the problem (MS) is coercive and the monotone multifunction g : D(g) C IR^ —> V(RlN) is 
maximal monotone then the system (MS) possesses global large solutions to all initial data from the L2-domain of 
the operator generated by the right-hand side of the system (MS). 

2. Safe-load condition and the main result 

Following [2], for noncoercive models we define the coercive approximation and require that the sequence (vk,ek,zk) 
satisfies the system 

vk
t=div-v(ek-Bzk + ^ek)+F,  e\ = \&vk + W=),  zk e g(-PVz^

k{ek ,zk)) (CA) 
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with  vk(x,t) - gD{x,t)   or with  V{ek - Bzk + \ek){x,t) ■ n{x) - gN{x,t) for x £ du and t > 0, and with the 
initial conditions vk(0) = v\ ,    ek(0) = e°k ,    zk(0) = z\ . The quadratic form ipk is now defined by 

pi>k{ek,zk) = \v{ek - Bzk) ■ (sk - Bzk) + \hzk ■ zk + ±-Vek ■ ek . 
2 2 2K 

Definition 2.    We say that go or g^ satisfies the safe-load condition if the problem 

pvi=divxV(£*-Bz*),    e*t = ±(Vxv* + VZv*),    z* = 0, 

with v* = gD ,   or V(e* - Bz*) ■ n = gN on du, and with the initial conditions  (v*(0),e*(0),z*(0)) = (v°,e°,z°) 
compatible with the boundary data, possesses a solution (v*,e*,z*) satisfying: 

3*>o V|ff|<ä   (-pVztp(e*,z*)+a) e D(g)  and } 

VH<a 3z,egi_pVzf{e.)Z.)+!T)  || sup |4| \\L2 <C(T).   \ (SLC) 

Theorem 2.    (SLC)     =»     ||«t
fc|U-(Li) < C{T). 

Proof. : By the monotonicity of g 
4-°<4i-pV^Hek,zk) + pVzTp(e*,z*))-z*-(-pVzi)

k(ek,zk)+pVz^{e*,z*)-o-) .Next we take the supremum 
with respect to a and use the energy estimate. For more details see [3]. 

Let us assume for simplicity that kerL = range B. Then the limit functions satisfy the following limit problem: 

pvt = divx V(e -Bz) + F in L°°(L2)     et = |(V« + VTw) in L°°(Ml**) 

e\ = tw- lim ef * = X
p in L°°(A^)    zt = tu-lim*-«, zk = X in L°°(L2). 

fc—>oo 

where -M3*^ denotes the space of bounded Radon measures with values in the space S3. Hence it only remains to 
prove that (xp,X) satisfies the nonlinear inelastic constitutive equation. First we improve our convergence result. 

Theorem  3.    For models of monotone-gradient type, (g(z) = 8M(z)   and M : IR^ ->■ K+ is convex), the 
sequence {Vzipk(ek,zk)} converges strongly to Vzil){e,z) in L°°(L2). 

Now we have to define the product (e£,T) <3- to define (et - T>-lTt,T) <S> to define (e4,T): 

< ö(Vu + vT^) -T^)-- [ divT • v^dx - f T • (v ® V0) dx 
^ Ja Jn 

for <j> € C$°(tt;M). Thus we have defined the product (et,T) as a distribution (T G i2(div) and u € L2). 

Theorem  4.    Suppose that the model (MS) is of monotone-gradient type with a maximal monotone multi- 
function g and the given boundary data satisfies the safe-load condition, then V (wp,£>) e g((wp,w)) the expression 

(ep
t - up,V(e- sp) - wp) - {zt -Q,Lz + w) 

is a nonnegative scalar distribution. Hence the inelastic constitutive equation is satisfied in the sense of distributions. 
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GASSER, I. 

The Small Debye Length Limit in a Hydrodynamic Model for Charged Fluids 

The small Debye length limit is studied in a hydrodynamic model for charged fluids. The problem is studied on two 
different time scales.  The limiting problems are identified. 

1. Introduction 

We consider a bipolar hydrodynamic model (HD) for charged fluids in one space dimension. This kind of models are 
used in semiconductor physics, plasma physics, etc. (see MARKOWICH ET AL. or SITENKO-MALNEV). Denoting 
by n, p, j, g, P(n), Q(p) the charge densities, current densities and pressures of the two - negatively and positively 
charged - fluids, respectively, the scaled equations of the bipolar HD model are given in x e IR, t > 0 by 

nt + jx = 0 Pt + 9x = 0 

jt + U2/n + P(n))x = nE- j/r gt + (g2/p + Q(p))x = -pE - g/r 

X2Ex=n-p-C, (!) 

where E is the electric field satisfying the Poisson equation, which is the only coupling between the two fluids. 
C - C(x) is a given fixed background charge. A is the so called Debye length. We prescribe initial conditions 

n(t = 0,x)=no(x),    j(t = 0,x)=jo(x),        p(t = 0,x) = p0(x),    g(t = 0,x) = g0(x). (2) 

We assume a damping mechanism of relaxation type with relaxation time r. In the semiconductor context the 
relaxation term models the influence of the underlying semiconductor lattice. In the case of a plasma the relaxation 
term describes the influence of the non-ionised part of the fluid. Global in time existence of weak solutions for this 
model was obtained by NATALINI. 

Typically, the scaled quantities r and A are very small in many standard scalings. Therefore, in the following we 
consider the limits r ->■ 0, A -> 0 on two significant time scales. In both cases we assume the relation A2 = r1+a 

with -1 < a < 1. 

2. The small Debye length limit 

The first scaling we consider is given by 

Sl = —,        JT(sux)=Taj(Ta
Sl,x),       GT(sux)=Tag(Tasux), 

FT(s1,x)=T1+aE{Tas1,x),      nT(s1,x)=n(ras1,x), pT(sux) = p(Tasux), (3) 

where the superscript r denotes the dependence on the parameter. The rescaled equation read 

< + Jl = 0 

T
1
-«^, + (r1-*^ +r1+aP(nT))x = nTFT - JT 

1 nT 

PT
Sl+GT

x = 0 

T1-aGr
tl + (r1-"^ + r1+aQ(pT)h = -PrFT - GT 
1 pT 

FT=nT-pT-C. (4) 

We Assume r independent initial data and perform the limit T -> 0. The (formal) limit problem - which is a short 
(long) time approximation for positive (negative) values of a - is given by 

nSl=-(nF)x,        ptl=(pF)x,        Fx=n-p-C, (5) 



S598 ZAMM • Z. Angow. Math. Mcch. 81 (2001) S3 

with initial data no and po for n and p. Here n, p, F denote the the limits of nT, pT, FT as r ->■ 0. Alternatively, 
the limit system can be written as inhomogeneous (inviscid) Burgers equation 

FS1 + (^)* = -FC. (6) 

In GASSER-MARCATI-1 this limit is justified rigorously in the setting of weak entropy solutions for values jn = 
7P>2. 

3. The quasi-neutral limit 

The second scaling we consider is given by 

s2 = Tt,    JT(s2,x) =—^—,    GT(s2,x)~—^—,    nT(s2,x) =n(—,x),    pT(s2,x) = p(—,x).(7) 
T T T T 

This scaling corresponds to a long time analysis. For C = 0 The rescaled equations read 

< + Jl = 0 

T2J;2 + (r2<^f- + P(nT))x = nTET - JT 

r2Gl2 + (r2^ + Qtf))x = -tfE* - GT 

Tl+QET
x=nT -pT. (8) 

In this scaling the limit r -> 0 is a quasi-neutral limit, since the two differently charged fluid in the limit become a 
single neutral fluid. The formal limit problem is given by the nonlinear diffusion equation 

wS2 = \{P{w) + Q{w))xx,        w(s2=Q,x) = no{x)+
2
Mx\ (9) 

where w denotes the limits of nT and pT, which are the same due to the Poisson equation. This limt is known to be 
very delicate. The only results regarding quasi-neutral limits in hydrodynamic models concern the limit for classical 
solutions given in CORDIER-GRENIER or special traveling wave solutions in CORDIER-DEGOND-MARKOWICH- 

SCHMEISER. In GASSER-MARCATI-2 the result is performed for general weak entropy solutions. 
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GWIAZDA,  PlOTR 

On the Model Chan-Bodner-Lindholm in the Theory of Inelastic Deforma- 
tion 

We prove global in time existence and uniqueness of large solutions for a problem in the nonlinear theory of inelastic 
deformations with internal variables for nonhomogeneous boundary conditions. The proof is based on the nonlinear 
nonautonomous semigroup method. 

1. Introduction 

We shall consider the dynamic problem for a system of equations modelling the non-elastic deformation of metal. 
The model proposed by K.S. Chen, S.R. Bodner, U.S. Lindhol [2] is an extension of the Bodner-Partom model [1]. 
The extension is based on introducing directional hardening properties. All main results proved in this article are 
also true for the Bodner-Partom model (which is a special case of our model). The system of equations, which we 
consider consists of linear partial differential equations (the balance of momentum) and nonlinear ordinary differential 
equations for internal variables (constitutive equations describing the dependence of the material's properties on its 
deformation history). The set of internal variables consists of two matrix variables (ep, ß) and one scalar variable 
(y). sp describes the plastic part of the deformation tensor, ß is the directional hardening and y is the isotropic 
hardening. We consider materials with constant density p = 1 and use the assumption of small deformation, which 
allows the balance of momentum to be linearized. We assume that the stress-elastic strain relation is generated by 
a bilinear, strictly positive, symmetric form. The problem which we study can then be written in the form: Let 
Q, C IR3 be an open, connected set with smooth boundary <9fi, find the velocity field v : Cl x IR+ —> IR3 , the 
stress tensor T : Q x IR+ —> IR3y^ and the internal variables (ep,ß, y) :Qx IR+ —>■ IR3^ x IR3y^ x IR+ which 
satisfy the following system of equations 

^v(x,t)    =    divxT{x,t) + F(x,t) 

Q-te{x,t)    =    ^xv(x,t) + {Vxv{x,t))T) 

d „ f\a(x,t)\\   a-(x.t) 

^y(x,t)    =    7(y(x)<))o(^|l)k(a!)<)|-A%(a;(0) 

lß(x,t)    =    rn(r^-ß{x,t)\u(^\-BnmxM-^ 
dtrK ' > V kOM)l     v ' 7   \vc{x,t)j      n'"v ' ,u\ß(x,t)\- 

Here T = T>(e - ep), a = T - |(trT) • / is the stress deviator, Q,U,i\ : IR+ -4- IR+ , 7 : £»(7) C IR+ -> IR+ , 
8 : D(S) C IR+ —> IR+ are given functions and A, B, m, r > 0 are given material constants, moreover the constitutive 
equation for yc = y + faß holds. 
In the present paper we impose the Dirichlet or Neumann nonhomogeneous boundary condition 

v(x,t)\8to=(gv)t{x,t) or T(x,t) ■ n{x)\da = gx{x,t) {BC) 

and initial conditions 

u(x,0) = u°(x), £u(x,0) = ul(x), ep(x,0)=ep°\x), y(x,0) = yW(x), ß(x,0) = ß^(x). (IC) 

Now we shall describe properties of the functions Q, H, 7, S, 77, which yield all nonlinearities to the system. To prove 
our theorems we need that the functions §,71,^,6, n satisfy: 

Assumptions 

1- G(p),fi{p) £C2{IR+) nC°(IR) (for all p < 0 Q(p) = 0 and 7i(p) = 0), SM, ^ eC2{IR+,IR+) (Al) 
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2- 35>o,A>o Vpgffi+ fir(p) < g ,?{{p) < h (G, ~H are bounded), (A2) 

3- Vpg/fi+ <7'(p) > 0 , ft'(p) > 0  {G,% are nondecreasing). (A3) 

4. 3g<>o,v>o Vpeffi+ g'(p)p2 < g', U'{p)p < h! , (AA) 

5. £»(7) = D{8) = [2/2,2/1] where 0 < 2/2 < 2/i and j{p),S{p) are C°°(D(7), ZR+)  functions, (AS) 

6. Z?fo) = [0, R] and ijfo) is C°°(D(»7), ffi+) (A6) 

7- ^petys.yj] 7'(p) < 0  (7 is nonincreasing), (A7) 

8- 7(2/2) > 7(2/1) = 0, S(y2) = 0 and V„6(tf3,yi] S(p) > 0, (A8) 

9- VpgDfo) »?(p) > 0. (A9) 

2. Main result 

To consider our problem as the abstract problem in the Hubert space: 

H={(v,e,sp,y,ß)\veL2(n;IR3), s eh2(Q;IR3^), £pGL2(fi;ffi^), y G L2^;/^),/? G L2(fi;/R^)}, 

we define the scalar product: 

({'v,e,ep,y,ß),(v,e,ep,y,'ß)}H= / v ■ v + [V (s - ep)] ■ {s - sp) + ep -Sp + y-y + ß-ß dx. 

Definition 1. We say that the initial data are admissible if and only if: (v(°\e(°\ £p°\ y^°\ß^) G H, 
(divxV{eW-ep(0)),VxvW + (Vxv^)T) G L2(fi; IR3 x IR3*3), and initial data are compatible with boundary data. 

Theorem 1. Let us assume, that F G W^^O.T);!.2^; IR3)) , gv <= W1'oo((0,T);Hl(ön; IR3)) , or 

gjf G ^'"((O.TjsH^ÖfijIR3)) . Moreover for the Dirichlet problem (gv)tt G W^ftO.TJjL^ötyZR3)), or for the 

Neumann problem (gj^)tt G L1((0,T);L2(öß; IR3)), and the initial data are admissible. 

Then there exists the solution (v,e,ep,y,ß) G W1'oo((0,T); H) to the problem (CBL). 

Proof. : Main idea is to use the results of nonlinear semigroup method (see [6]) for the sum of a monotone 

operator and a Lipschitz operator. For the full proof with the homogeneous boundary data see [4], and with the 
nonhomogeneous boundary data see [5]. 
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KNOBLOCH, S. 

Zur Behandlung des Elastizitätsproblems in Gebieten mit Ecken 

Betrachtet wird ein Randwertproblem aus der linearen ebenen Elastizitätstheorie in einem Gebiet mit einer Ecke, 
deren Innenwinkel > n ist. Die Lösung gehört nicht zu ff2, was ßr die numerische Behandlung problematisch ist. Als 
Ausweg dient die Zerlegung in einen singulären Teil mit singulären Funktionen und Spannungsintensitätsfaktoren und 
einen reguläreren Teil, der zu ff2 gehört. Kennt man die singulären Funktionen und die Spannungsintensitätsfakto- 
ren, kann man Randwertprobleme für den Teil, der zu H2 gehört, numerisch lösen und die eigentlich gesuchte Lösung 
durch Hinzufügen der singulären Teile erhalten. Es werden Formeln zur Berechnung der Spannungsintensitätsfakto- 
ren bereitgestellt, in die aber die unbekannte Lösung eingeht, so daß ein iterativer Algorithmus vorgeschlagen wird. 

1. Einleitung 
Betrachtet wird eine Aufgabe der linearen Elastizitätstheorie für ein homogenes, isotropes und elastisches Material: 

2     „ 

- V ■£-o-ij{Ü) = fi(x)   in ft C Et2, i = 1,2 ,        Ü = 5   auf Oft . (1) 
i=i dXj 

Es bezeichnen u(x) die Verschiebung, fi(x) € L2(ü),i - 1,2, die Komponenten des gegebenen äußeren Kraftfeldes, 
// > 0 und A > 0 die Lame-Konstanten und (Tij(ü),i,j = 1,2, die Komponenten des Spannungstensors mit 

,*     «     dui     ,    (dui  , du2\     .     . _ ,^ ,* (dux     du2 

Ist der Rand des Gebietes ft glatt, dann gilt u € [C2(ft)]2. Hat der Rand Ecken, ist das nicht mehr der Fall. Ist das 
Gebiet konvex, dann gilt noch u € [ff2(ft)]2, was nicht mehr gilt, wenn das Gebiet nicht konvex ist, siehe [3]. Die 
Regularität der Lösung ist für die numerische Behandlung von Randwertproblemen von Bedeutung, da die Konver- 
genzrate und der Fehler eines numerischen Verfahrens von der Regularität abhängen. Ist das Gebiet ein konvexes 
Polygon, gibt es für die Lösung des Elastizitätsproblems mit der Finite-Elemente-Methode Fehlerabschätzungen der 
Größenordnung 0(h) bzw. 0(h2), siehe [2]. 
Das Gebiet ft habe eine Ecke mit einem Winkel u > n, die im Koordinatenursprung liege. In der Nähe dieser Ecke 
stimme ft mit einem Kreissektor überein. An möglicherweise weiteren vorhandenen Ecken seien die Eckwinkel < TT. 

2. Zerlegung der Lösung und Formeln für die Spannungsintensitätsfaktoren 
Um trotz fehlender Regularität zu günstigen numerischen Verfahren zu gelangen, nutzen wir die Zerlegung von ü in 
einen singulären und einen regulären Teil, siehe [3]: 

u = cZl- SZ1 + cZ2-SZ2+w,we [H2(Ü)]2 . (2) 

cZl und cZ2 sind Konstanten, die sogenannten Spannungsintensitätsfaktoren. Die singulären Funktionen sind 

"* -# I   1      falls v klpin 
SZi (r, 6) = r(r) ■ rZi ■ $Zj (0) , 0 < zt < 1 , mit einer glatten Funktion r(r) = |0 [   falls r groß   .    (3) 

(\ 2 -. -. 
^jj   erfüllen, und glatten Funktionen $2i = $Zi{6,u,X,ß,Zi), die in [3] zu 

finden sind. r,6 sind die Polarkoordinaten bezüglich des Koordinatenursprungs. Für w > 7r gilt 0<zi<5<z2<l- 
Wären c2l und cZ2 bekannt, könnte man das Problem 

2    a 2 ( 2    d        -     \ 
- Y, J-Vii («0 = /<(*) in fl , tf = Sauf aft   mit jt = U + ^ cZm ■    £ ^-^ (SZm)     ,. = 1,2,(4) 

j-i öxi m=i y=i     i J 

numerisch lösen. Da w € [.ff2(ft)]2, hat man bei Verwendung der Finite-Elemente-Methode eine 0(/i)-Fehlerabschät- 
zung, siehe [1]. Mit w ist ü aus (2) berechenbar. Es werden Formeln für die Spannungintensitätskoeffizienten benötigt. 
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Theorem  1. Es gelten 

$1    =    / E (/<(*)' §-*ui + «< • 2^^(5_Z1) ) «fa, (6) 

/i    =   2zi- [Ia(6,\,ii)d0, i = 1,2, (7) 
o 

/«    =    (A + /i)-{cosö-*,4,i(Ö)+8inÖ.*,ii2(ö)}2+/i-{*2<il(ö) + $^2(ö)j , i = ij2 ,      (8) 

*2    =    / 12 ( Üx>*0 • £-»*,< + u* ■ SDJaij(S-za) 1 d*, (9) 

2 

/i(»,tZ)    =   /i(a;)+cZl(tO-53l>j«Tü(5*1),t = l,2> (10) 

S-Zi(r,0)    =   r(r) ■ r~Zi ■ $Zi(Q) , i - 1,2 ,     ('duoie singuläre Funktionen). (11) 

Die Formeln (5) lassen sich mit (2) und mit Hilfe der Greenschen Formel in Gebieten ü\Bp(0) herleiten, wenn Bp(0) 

Kreise um 0 mit kleinen Radien p > 0 bezeichnen, siehe [4]. Die Greensche Formel wird zunächst für u und S-Zl 

aufgestellt, um die Formel für cZl zu gewinnen. Dann wird die Greensche Formel für v und S-Z2 genommen und 
die Formel für cZ2 erhalten. Bei den Betrachtungen treten Integrale über das Randstück r = p auf, die unabhängig 
von p sind und auf (7) mit (8) führen. Für andere auftretende Integrale über r = p läßt sich mit w 6 [H2(ft)]2 

und Sobolevschen Einbettungssätzen zeigen, daß sie für p -» 0 gegen 0 gehen. Beim Grenzübergang p -> 0 wird aus 
n\Bp(0) das Gebiet fi. 

3. Algorithmus 
1.) für k = 0 : Anfangsnäherung ü0 als Lösung des Randwertproblems (1) numerisch bestimmen 

für k = 1,2,... :     uk - wk-i + cZl (ujt-i) • SZl + cZ2 (uk-i,v(uk-i)) • SZ2  berechnen 
2.) cZl(ü*fc) mit (5) und uk aus 1.) berechnen 

3.) v{ük) =uk- cZl{ük) ■ SZ1 und fi(uk) = ft(x) + cZl(ük) • £ Dja^iS^) berechnen 
3=1 

4.) cZ2 \uk,v(uk),f(uk)J mit (5), ük aus 1.), v(uk) und fi(uk) aus 3.) berechnen 

5.) fi {uk,v(uk),f(uk)j = fi(ük) + cZ2 (uk,v(uk),f(ük)^ ■ £ DjVij(SZ2) berechnen 

6.) wk als Lösung des Randwertproblems (4) mit rechter Seite ft (uk,v(uk),f(uk)) aus 5.) numerisch bestimmen 
7.) k :— k + 1 setzen und bei 1.) fortfahren 

Das Randwertproblem für u <£ [H2(fl)]2 wird nur einmal numerisch gelöst. Die Anfangsnäherung u0 wird verbessert, 
indem Randwertprobleme für w e [H2(tt)]2 gelöst werden. Außerdem erhält man Näherungen für cZl und cZ2. 
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KUNZE, M. 

On the Period of Periodic Motions of a Particle in a Scalar Wave Field 

It is shown that a periodic solution of the nonlinear infinite-dimensional Hamiltonian system describing a particle 
in a scalar wave field can have only certain discrete periods that are related to zeroes of the Fourier transform of the 
function that realizes the coupling. 

1. Introduction 

For the motion of a charged particle q(t) £ H3 subject to its self-generated field, a simplified model is governed by 
the equations 

q(t)=    J^i>        p(t) = -VV(q(t))+ [d3yt(y,t)Vp(y-q(t)), 
\n + p(t)2 J (i) 

4>(x,t) = ir(x,t), -k(x,t) = A<f>(x,t) — p{x — q(t)), 

with x £ 1R3 and t £ 1R. Here q(t) and p(t) = (1 - q{t)2) q(t) £ R3 are the velocity and the momentum of the 
particle, respectively, and cf>(x, t) £ IR denotes the (scalar) field. If the wave equation cf> = A(p — p(x — q(t)) in (1) were 
replaced by the full Maxwell equations for electric and magnetic fields E(x,t),B(x,t) £ IR3, then (1) would be the 
more general and well-known Maxwell-Lorentz model, also called Abraham model; see [8] for an up-to date review. 
An important role is played by the function p in (1), since it accounts for considering the particle a charged sphere 
with charge p rather than a point particle: If one formally sets p — So, then the wave equation <\> = A(f> — 5(x — q{t)) 
means that there is only charge at the point x = q(t) where the particle sits. For p we assume 

peC0°°(IR3),    p(x)=0   for   |i|>iJp,    p{x) = Pr(\x\), (C) 

to be satisfied. 

Our goal is to investigate the long-time behaviour of (1) as a dynamical system on the state-space £ = D1,2(JR3) © 
IR3 ©L2(IR3) ©IR3, with the canonical norm, where D^QR3) = {0 £ L6(IR3) : \V(f>{x)\ £ L2(IR3)}. Assuming here 
and in the sequel that V £ C2(IR3) with inf9G]R3 V(q) > -co, it is known from [4; Lemma 2.1] that for data lo = 
(<j)o,q0,-!r0,po) £ £ there exists a unique global (weak) solution 11->- Y(t) € £ of (1), Y(t) = (</>(-, t),q(t),ir(-,t),p(t)), 
suchthat y(0) =F0- 

It became apparent that for the dynamics of (1) a particularly important role seems to be played by the Fourier 
transform 

p{k) = (2TT)-
3
/

2
 fdsxe-ikxp(x),    hem3 

of p. In case that p{k) ^ 0 for all k £ IR3, it was also shown it [4] that solutions of (1) for any data YQ £ £ 
(with a certain decay at |x| -> oo) will approach the set of all equilibria of (1), in the topology on £ generated by 
the seminorms induced by restriction of integrals over {x £ IR3 : |a;| < R}, R > 0. This corresponds to the fact 
that the particle is accelerated by the potential V and hence radiates energy in x-space. Therefore, if a fixed ball 
{x £ IR3 : |x| < R} is considered, then all energy should be dissipated from this ball as t -> oo. 

Contrary to this satisfactory answer, from a rigorous viewpoint the situation is much less clear if p admits zeroes, 
for simplicity we suppose 

p(k)=0   for    k £ IR3, \k\ = a > 0,    p(k)^0,    \k\ ^ a; (2) 

note that since p is radially symmetric, so is p. In this case, linearizing (1) about a fixed point, it can be seen that 
the linearized system possesses periodic solutions, of period T = 2-rr/a. It has been proved in [5] that, due to the 
coupling to the continuous spectrum, these "linearized periodic solutions" do not generate periodic solutions of the 
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non-linear problem, in a certain sense: This somehow excludes the existence of periodic solutions to (1) close to 
equilibrium points, but it remained open whether there are periodic solutions at all, e.g., with large energy. 

In the present note we will prove that if a periodic solution to (1) does exist, then necessarily it is of period 
T = (2n/a)n for some n £ IN. More precisely, we show 

Theorem 1. Assume (C) and (2) are satisfied, and let Y(t) = ((t>(-,t),q(t),ir(-,t),p(t)) be a solution to 
(1) with data Y0 = (4>o,qo,^o,Po) G.£ such that for some R0 > 0 the functions cf>0(x) and ir0(x) are C2 and 
C1 -differentiable, respectively, outside the ball {x £ IR3 : |a;| < RQ}, and for \x\ -> oo 

\4>°(x)\ + \x\ (|V0o(s)| + \Mx)\) + Nl2 (|VV^o(a:)| + \VTT0(X)\) = ö(\x\-°) (3) 

holds, with some o > 1/2. Then, if q(-) is periodic of period T > 0 and non-constant, we already must have 
T = (27r/a)n for some n £ IN. 

Remark 1. (i) Since (1) is a nonlinear infinite-dimensional Hamiltonian system, the fact that there should 
be periodic solutions of only discrete periods seems to be somewhat unlikely. Typically one would expect periodic 
solutions of "very many" periods, cf. e.g. [2]. Perhaps this indicates that there are.no periodic solutions at all, and 
that every trajectory has to tend to the set of all equilibria in the long-time limit. 

(ii) For the choice p{x) = S(\x\ - b), which means that the charge is uniformly, distributed over the sphere \x\ = b, an 
analogous (but quite formally derived) result has been obtained in [7j; see also the remarks in [6; p. 937]. For this p 
the existence of a periodic solution is claimed in [1], but the argument is non-rigorous. Note, however, that in this 
case (C) is not satisfied, and p(k) = §1§ip. 

(Hi) The decay assumption (3) is the one already used in [4]. 

2. Proof of Theorem 1 

The following result from [4; Prop. 3.1] will play the main role in the proof. 

Lemma   1. In the situation described in Theorem 1, 

I"0 dt [       cficv \Ru(t)\2 <oo,    with   Ru{t)=  fd3xp(x-q(t + Lu-x))      ^^^^    ,. 
Jo        J\ui\=i J (l-uj-q(t + ui-x)) 

This estimate obtains from a careful analysis of how much energy does leave a ball {a; £ IR3 : |x| < R] as t -> oo, 
and it reflects the fact that there is energy dissipated in quantitative terms. Note that due to the a priori bound 
suPteiR l?(*)| = suPte[o,T] l?WI <v< 1, see [4], we always have \u ■ q(t + u ■ x)\ < v for |w| = 1, whence Ru(t) is 
well-defined. 

Now we can proceed to show Theorem 1. 

Proof. Since q is T-periodic, so are q and q. Whence i?w(-) is T-periodic as well, for each |w| = 1, and 
thus the same holds for t .K» f^=1 d

2 oj\Ru(t)\2. Utilizing .Lemma 1 we find that this is only possible in'case 

that i?w(i) = 0 for all |w| =.1 and t £ [0,T]. To rewrite Ru(t) appropriately, we introduce the ID version 
P(i)(0 = JM2 p(xi,x2,0 dxidx2 of p, with £ G IR. We perform a change of variables 

IR3 3 x h-> (Wl • (x.- ip{uj ■ x)), uj2 ■ (x - ip(tü ■ x)), to ■ x) = z G H3, 

with </?(£) = q(t + f) G IR3, andw1,w2 G ]R3 are chosen in such a way that {UJI,LJ2,OJ} is an orthonormal base of 
IR . Then it may be calculated that 

dz 
ldet(^)l=!    and    \x - (p{w ■ x)\ = \{zuz2,zz - to ■ .<p(z3))\, 

hence 

p{x - q(t + u> ■ x)) = p{zi,z2,z3 - uj ■ ip{zs)) 
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■w) = J*1ipw(t-»-rt+a),irjM?tf=0' H'=1' ie[0'T]- 

due to (C). Thus we obtain 

w ■ g(* + Q 

\l-LO-q(t + Or 

Writing r(t) = w ■ q(t), this yields, due to P(i)(-£) = P(i)(0> 

/ 
dleP(l){t-6) v-mm 3 ' 

the latter through the substitution'« = £ - r(£), f = 1 - r(0; recall that |r(£)| < v < 1, hence £ •-»■ 0(0 is a 
difFeomorphism with inverse 9 H> £(0). Since this is a convolution, we can summarize that 

(p(i) *&,)(*) = 0,    M = l,    *G[0,T],    with   ^(ö) = -^ 
u-q(W)) (4) 

■9(«ö)))3' 

see also [4]. Due to the assumed periodicity we may as well write H G IR" instead of "t G [0,T]". According to (2), 

P(ij(jfe) = 0    for    fc G H,. |*| = a > 0,    p(1)(fc)^ 0,    \k\ ? a. (5) 

Prom (4) and (5) we want to conclude that T = (27r/o)n for some n 6 IN. We will use the following lemma, the 
proof of which is certainly known, but since we did't find a precise reference we will include some details. 

Lemma 2. If p{1) G C$°(Et) satisfies (5), and if g E Cb{M) is such that 

(/»(I) *»)(*) ='0»     *G1R, 

then either g = 0 or g{t) = A sm(at + 9), t G H, for some A, 9 G Et. 

Proof, (of Lemma 2). Define the finite measure p{A) =JAP(i)(t)d£ for A G 23(H), the Borel a-algebra on 

Et. Then p(1} * 9 = 0 can be rewritten as p * g = 0. With the notation a(g) = fl/ejv(3){fc e ^ : f(k) ~ °}> where 

AT(5) = {/ G J^QR; C) : / * g ■= 0}, it is thus known from [3; Thm. 15.4.6(vii)] that 

a{g)c{k£lR:ß(k)=0} = {kem:pil)(k)=0} = {-a,+a}, 

the latter by (5). Hence there are not many possibilities for the spectrum a(g) of g. If a(g) = 0, then g = 0 by [3; 
Thm. 15.4.7]. In case that a{g) = {-a}, a(g) = {a}, or (7(9) = {-a, a}, it follows from [3; Thm. 15.4.17(iii)] that g 
has the form g(t) = ae~iat + ßeiat for some a,ß G C. Since 9 is real-valued, we arrive at .' . 

g(t) = [Re a + Re ß]cos(at) +[Im ß-Im a] sm{at) = A sin{at + 0),    t G Et, 

for suitable A, 9. This completes the proof of Lemma 2. 

To continue with the proof of Theorem 1, we now can apply Lemma 2 to each gw(-) from (4). Hence for each \u\ = 1 
we find Au, 9U G Et such that 

u " ^m)    , = gh,(fl) = Au sin(afl + $„),    861. 
(l-W-g(^)))3 

Setting 6» = 0(0, the inverse of 9 \-> £(9), we infer 

 u ' q{^    . = A, sin(o[t - a. ■ g(t)] + ft,),    tGEt, (6) 
(l-w-9(t))3 

where we wrote i instead of £. To deduce further information from this implicit ODE for q, we re-introduce 
u(t) = t - u ■ q(t), i.e., u - 9. Then (6) reads as 

ü + Au sin(au + 9u)u3 = 0,    t G Et. 
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Writing this asu.= z,z = -A» sin(au + e^z3, it follows that 

du 1 

dz Au sin(au + O^z2' 

Hence integration reveals that for all \w\ = 1 there exists Cu£l such that 

w-'-q(t) = Ausm(a[t~b}-q(t)]+Ou,)-+Cu,    teJR. (7) 

This finally gives the claim of the theorem, since due to T-periodicity of q for all t £. IR 

A» sm{aT + a[t - u ■ q(t)] + 6U)    =    A„ sm{a[t + T - u> ■ q(t + T)] + 0U) = u • q(t + T) - Cu 

=    u-q(t)--Cu=A(Jsm(a[t-u-q(t)]+0u,). (8) 

From (7) we conclude that it is not possible to have Au = 0 for all \w\ - 1, as in this case 

~q(t)= d2Lü(uj-q(t))uj= [       d2LüCuiü   . 
6     . J\u>\=l J\u\ = l 

is independent of t, i.e., q is constant. Thus for one \u\ = 1 with Aw ^ 0 it follows from (8) that 

sin(aT + ü(t)) = sin(ö(i)),    t G IR, 

with u(t) = a[t-u- q(t)] +6ü},teJR. Since ü : H -> ]R is onto, we finally find 

sin(ar + r) =sin(r),-   TEE, 

hence T = (27r/a)n for some h £ IN as was to be shown. 
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PATRIZIO NEFF 

A model describing small elastic deformations and Korn's inequality with 
nonconstant coefficients 

This contribution is concerned with the formulation and mathematical investigation of a model for small elastic 
deformations which arises from multiplicative theories of elasto-plasticity. In a natural way it leads to a linear 
elliptic system with nonconstant coefficients for the deformation u. In contrast to infinitesimal plasticity the model 
should be valid for both large plastic deformations Fp and large deformation gradients F. The arising linear partial 
differential system is proved to have unique solutions by means of a generalized Korn's inequality. 

1. Motivation 

In the nonlinear theory of elasto-plasticity at large deformation gradients it is often assumed that the deformation 
gradient F = Vu splits multiplicatively into an elastic and plastic part Vu(x) = F(x) = Fe(x) • Fp{x), Fe,Fp € 
GL(3,JR) where Fe,Fp are explicitly understood to be incompatible configurations, i.e Fe,Fp ^ V* for any * : 
Q, C M3 i-> JR.3. In our context we assume that this decomposition is uniquely defined up to a rigid rotation. 
This ansatz is micromechanically motivated by the kinematics of single crystals where dislocations move along fixed 
slip systems through the crystal lattice. The source for the incompatibility are those dislocations which did not 
completely transverse the crystal and consequently give rise to an inhomogeneous plastic deformation. Therefore 
it seems reasonable to introduce the deviation of the plastic intermediate configuration Fp from compatibility as a 
kind of plastic dislocation density. This deviation should be related somehow to the quantity RotFp and indeed 
later on we see the important role which is played by RotFp, see [4] for more on this subject and for applications of 
this theory in the engineering field look e.g at [2,3]. 

2. Metal Plasticity 

It is known that any homogeneous, isotropic and material objective energy with stress free reference configuration 
11 admits the representation 

W(F) = X \\FTF - E||2 + n tr{FTF - II)2 + o(\\FTF - H||2) (1) 

near 11. Here X,fj, > 0 denote the Lame constants. When dealing with metal-plasticity it is observed that elastic 
deformations remain small in the sense that \\FjFe - 111| remains pointwise small. Accordingly taking W and 
inserting Fe instead of F and skipping the higher order term o(||Fe

TFe - H||2) the following St. Venant-Kirchhoff 
ansatz for a hyperelastic free energy should be a reasonable first choice: 

W = W(Fe) = X \\F?Fe - H||2 + /i tr{FjFe - E)2. (2) 

However, W would still lead to a problem which is neither linear in F nor elliptic. Therefore invoking the smallness 
of || Fe

TFe - 1111 again we see with the aid of the polar decomposition that Fe is approximately a rotation Re. If we 
set Fe = (Fe - Re) + Re, insert this formula into the free energy W and cancel terms which are of second order in 
{Fe - Re) we are left with the following elastic energy: 

W(F, Fp, Re) = X \\RjF F-1 + Fp
TFTRe - 2 • E||2 + /i tr{RT

eF F'1 + Fp
TFTRe - 2 • II)2. (3) 

Note that W is quadratic with respect to F if Fp, Re are assumed to be known.. The new energy W is still material 
objective since QF = Q-FeFp implies Re{Q-Fe) = Q-Re(Fe) and W{Q-F,FP,Q-Re) = W{F,Fp,Re)V Q € 0(3). 
Let Ü C H3 be a smooth bounded domain with boundary dCl. In the absence of body forces and in the quasistatic 
setting the problem to be solved is: find the deformation u : [0, T] x fi i-> H3 and the plastic deformation gradient 
Fp : [0, T] x fi (->• GL(3, JR.) such that 

divDFW{F(x,t),Fp{x,t),Re{x,t))    =   0   x e fi (4) 

d 
—F~ 
dt  p ^F"1    =    /(FF-1) (5) 
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Re(x,t) = polar(Fe(x,t)) (6) 

F(x,t) = Fe(x,t) • Fp(x,t) (7) 

F^(x,0) = F-Hx) (8) 

u\ga{x,t) = g(x,t) (9) 

where / : M3x3 x M3x3 H- M3x3 is some function governing the plastic evolution, g is the given Dirichlet boundary 
data and F^1 is the initial condition on the plastic flow. Here polar : GL(3,JR) i-> 0(3) is the function which gives 
the unique rotation of its argument according to the polar decomposition. Observe that the complete system is still 
nonlinear in F altogether due to the appearance of polar : GL(3, IR) H> 0(3). Some simple computations reveal 
that the above equilibrium system is a linear elliptic system with nonconstant coefficients at fixed values Fp,Re in 
contrast to the elliptic system with constant coefficients in infinitesimal plasticity. Note that Re represents in a 
natural way deformation induced anisotropy. It is natural to ask whether at fixed time to the equilibrium equation 
div DpW{F, Fp, Re) — 0 has a unique solution if the data g, Fp, Re at t0 are known. The answer is given in 

Theorem  1.   Let fi C H3 be a bounded smooth domain with smooth boundary and let 
Fp,Re G C2(H,GL{3,JR)). Moreover assume that g G tf^lR3).  Then 

divDFW(F,Fp,Re)    =   0   a; efi (10) 

"la,    =    9 (11) 

admits a unique solution u G i71(fi,]R3). 

Proof. The proof uses the key idea to interprete the equilibrium equation as the Euler-Lagrange equation of 
the functional I: ff^,lR3)x02(n,GL(3,IR))xC2(fi,GL(3,IR)) H> ]R with I (u,Fp,Re) := /n W{Vu,Fp-\Re) dx. 
Evaluating the second derivative of I with respect to u we have the following estimate 

D2
uI{u,Fp,Re).{(j>,<j>) > 2A /  \\Fp-

TV4>TRe + RT
eV<j>Fp-

l\\2 dx. (12) 
Jn 

In [1] it is shown by proving a generalized Korn's inequality that there exists some positive constant c+ > 0 such 
that forall <p G H^(Cl,JR3) we have 

/  \\F-TV4>TRe + RT
eVd>Fp-'\\2 dx>c+- U\\2HHU) (13) 

which implies the strict convexity of / with respect to u. By the direct methods of the calculus of variations it is 
clear that there exists a unique minimizer of I over the space Hl (fi) together with the boundary condition. In the 
prove of this assertion a prominent role is played by the quantity RotFp which to our opinion shows clearly the 
importance of the dislocation density concept approach in elasto-plasticity. 

Observe that our model is at variance with models already proposed for small elastic deformations, which essentially 
are defined by making the physically linear ansatz S2 = D.(C - Cp) where D is a fourth order positiv definite 
symmetric elasticity tensor, C = FTF and Cp is some plastic variable. It turns out however that the associated 
equilibrium equations are neither linear in F nor in general elliptic. There may even be no solution of the equilibrium 
system due to the possible formation of microstructure. This may indicate that our approach of defining a model 
for small elastic deformations is more likely to lead to well posed problems and to stable numerical algorithms. 
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ANDRIJA RAGUZ 

Compensated compactness for higher order differential relations 

In this paper we present two compensated compactness results which generalise well known results of Tartar and 
Murat. The first result generalises the basic compensated compactness theorem in quadratic case to differential 
relations of arbitrary order m. A particular result of this type has already been used in the homogenisation theory 
for elastic materials (Antonic and Balenovic, 1999). The other result treats the case where differential relations are 
of different order, and therefore cannot be reduced to the above form. Nevertheless, we obtain a result showing that 
we can pass to the limit in the product of two weakly converging sequences. 

1. Some notation 

The abbreviation LPDO is used for a linear partial differential operator (with constant coefficients), and n(A) 
denotes the order of LPDO A, while A* stands for the LPDO adjoint to A. T stands for the Fourier transform on 
L2(Rd), and ft denotes a bounded open set in Rd. 

2. Main results 

Theorem 1.    (generalised compensated compactness in the quadratic case) 

Let us fix d,r,m € N. Consider real quadratic form Q : Rr —> R satisfying Q(X) > 0, A G A, where 

A:=[AeRr:(3£eRd\{0})    £   £   Aijkl...kd£kl .. .^Xj = 0 ,t = 1,...,?} , 
<- j=l ki,...,kd > 

(1) 

and the sum is taken over all ki,..., kd G {0,..., d} satisying the constraint k\ + ■ ■ ■ + kd = rn. Let us assume that 

fa) Ej=i £*!,...,*„ AiJki...kddklx
9

k^%dXkd  is pre-compact in H,~™(ft) (strongly), for i = 1,... ,q. 

Then from QoUn    vague ' \i it follows ß>QoU°°. 

Proof.  Firstly, following [4], we note that without loss of generality we can assume (after siutable extension 
of Un and U°° by zero to the whole space) that the sequence Vn := Un — U°° (where we keep the same notation 

for extended functions) satisfies supp Vn C K for some compact K C Rd, and also Vn ■—^ 0, as well as 

E E 4**1-*^,    \kd   
iLJg^o- (2) ■,uu ddk^xkl...d

k*xkd 3=lki,...,kd 

After taking the Fourier transform, we have TV71 ■—*■ 0 and 

1        r dmTV^        H-m(Rd) 

1 + \f\m E     E     Aijkl-kddk^kl...d"^kd ^°" (3) 
^^'      j=lklt...,kd ^kl ^"d 

Furthermore, by Plancherel's theorem it suffices to prove that 

liminf /   Q{FUn(0)dZ > 0 , (4) 
n—t-oo JRd 

where Q is the hermitian form on Cr associated to Q. By construction we have 

^y"LL(Rd;C?o. (5) 
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Next we split the integral over Rd in (4) into integral over the unit ball and over its complement. By (5), the 
integral over the ball tends to 0 when n —> oo, and it remains to consider the integral over |£| > 1. We recall the 
following useful inequality (as in [4], Theorem VII.5): For any e > 0 there exists Cs > 0 such that for all W G Cr 

and n G Rd\{0} 

ReQ(W)>-£|W|2-Ce£(E   E   Ami...kdW3 
i=l    j=l ki,..,,kd 

\v\m 

For M := limsupn ||Vn||L2, W := TUn{£) and i\ := f, where |f | > 1, by (6) we get 

,^)2- (6) 

liminf /      Re(2(JR7"(OR > ~eM2 , (7) 
n—yco _/|?|>1 

and when e —> 0 we obtain (4). 

Corollary 1.   J/Q(A) = {0}, then, under the assumptions of the theorem, Q o Un —vasue ' Q o U°°. 

Theorem   2.      (non-symmetric case)    Suppose that Q has sufficently smooth boundary, and that B : 
£>'(fi;Rd) —> P'(ft;R) and H : V'(Q,;Rd) —y V'(ü;Rd) are given LPDOs.   Furthermore, let us assume that 

Dn L (";R \ D!  En L (n;R \ E, and that (BDn) is pre-compact in E~n^+1 (Ü;R), while (HEn) is pre-compact 

in H-n(H)+1(ft;Rd). If there exist LPDOs K : P'(fi;Rd) —> P'(ft;R) and A : V'{Sl;Rd) —► P'(fi;Rd) satisfying 

(i) n(B) + n{K) = n{A) + n{H) 

(ii) L := B*K - AH is an elliptic LPDO , 

thenDn-En-^^D-E. 

Proof.  Let us consider a new sequence un e HQ   ^(fijR0) such that Lun = En. Then, by a standard elliptic 
regularity argument (cf. [3]) we immediately conclude that 

jjn(A) + l H„(B) + 1 

Hun —^ ^Hu   and   Kun-^ ^Ku . (8) 

On the other hand: 

f En ■ (pDn = f Kun • ByDn + f Kun ■ ipBDn - [ Hun ■ A*ipDn - [ Hun- <pA*Dn . (9) 

Assumptions (i) and (ii) allow us to pass to the limit in all integrals, and after performing the reverse calculation 
we conclude that Jn E

n ■ ipDn —> JnE-<pD . 
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BERGER, A. 

Regular and chaotic motion of a kicked pendulum: A Markovian approach 

Mechanical devices subject to impulsive excitation may exhibit very complicated dynamics. Though desirable, a 
complete analysis of the statistical morphogenesis of (the maps induced by) such systems usually is highly demanding. 
We therefore focus on a special class of maps nevertheless wide enough to comprise a number of interesting examples. 
Furthermore, an approximation technique tailored to this specific class is shown to improve Markovian approximation 
techniques discussed in the literature. 

1. Statistical stability 

Let (/, B, A) denote the unit interval together with the tr-algebra of its Borel subsets and Lebesgue measure; futher- 
more, assume that the measurable map T : I ->• / be non-singular, i.e. \(T~1(B)) = 0 whenever A(JB) = 0. The 
uniquely determined linear operator PT on L1 satisfying 

/ 
JT-

1 
fdX =   f PTfd\   for all B G B and / G L1 

(B) JB 

is called the Frobenius-Perron operator associated with T. This positive, non-expansive operator constitutes a major 
tool in the statistical analysis of dynamical systems ([1,4]). According to [4] the map T is termed statistically stable if 
there exists a unique P^-invariant density /* 6 L1 and Pff ->• /* as n ->■ oo for every density /. Conditions implying 
statistical stability (as well as the weaker form of asymptotic periodicity) are extensively studied in the literature. 
In view of the application below we state the following result which may be considered a slight modification of the 
classical Lasota-Yorke theorem ([4]). 

isC2 
Theorem    Assume that for a finite number of points 0 = ao < a\ < ... < ar_i < ar = 1 the map T : I -t I 
on ]aj_i,aj[ and has a ^-extension to [<Zj_i,aj] for all i = 1, ...,r.   Then T is statistically stable if only 

limX/*a; T(x) — 0 for all i = 1,... ,r and swpxeIT'(x) < —r for some r > 1. 

In order to deal with the mechanical application below we consider a special class of 
maps on I. Let / : i" -» [0, oo[ be a strictly decreasing C2 function with /(l) = 1 
and ß > 1. The map T on [0, oo[ defined as 

f{x) ~{ 
f(x)     if x G /, 
ß~lx   iix$I, 

induces a measurable map T on J according to T(x) := Tn(x\x) where n(x) := 
min{/ e JN|f'(a;) G /}. A short calculation yields T{x) = /(a;)/3-|"log"/(x)1; conse- 
quently T(I) C [ß~l, 1], and the analysis of T may be restricted to the latter interval. 

Corollary   Let f and ß be as above. If the induced map T is expanding, 
infx |T"(a;)| > 1 on [ß_1,1], then it is statistically stable. 

2. An example: The kicked pendulum 

i.e. 

Fig.l A map satisfying the 
assumptions of the modified 
Lasota-Yorke theorem 

We shall statistically investigate the dynamics of a kicked long pendulum with linear friction (see figure 2). The 
linearized equation of motion reads ml2(p + kip + mgl(p = 0. In order to keep the pendulum in motion a kick is 
exerted whenever the pendulum's angular velocity does not exceed w0 as the pendulum goes through the vertical 
position from the right to the left, i.e. whenever 0 < —01^=0 < wo; specifically, we assume that at each kick the 
angular velocity (p~~ is instantaneously enlarged to ip+ = K(ip~) > (p~~.   After introducing the non-dimensional 

quantities x := ip~~/u0 as well as p := 2^p\/~ anc^ a :=   /np 2 
we are more or ^ess m *ne situation discussed above 

with f(x) := K(Lü0X)/UQ and ß = ea. (For simplicity the damping is assumed to be weak, i.e. 0 < p < 1.) Clearly, 
any measurable map on the unit interval could be obtained in this way by appropriately specifying the kick-law K. 
In the sequel we shall, however, exclusively deal with the affine rule f(x) := 1 + a(l — x) where a > 0. Intuitively a 
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!/(*) 

Fig. 2 The pendulum model (left) 
and the non-dimensional kick law / 

kick due to this law is the stronger the slower the pendulum and the larger 
the parameter a. Depending on the parameters a and a the dynamics of the 
resulting map T^>a) on / may differ quite considerably. 
By introducing the boundary functions bj(£) := (es? - e*)/(e* - 1) and 
KiO := ßSi is e JN)> it is easy to see that T(CTQ) has an attracting fixed point 
x* whenever (a,a) G Bs := {(£,77) G Et+|M0 < V < Kit)} for some s € IN. 
In the latter case Xs := {x G I \ TJldx) -ft x*} turns out to be a Cantor set 

if s > 3. Its Hausdorff dimension can be calculated as dimjj(Xs) = log^ Z 

where Z denotes the unique solution in [l,ß] of z+z2 + . .. + zs~1 = zXogßa. (If 
(a, a) G Bs then dim#-(Xs) < 1; on the boundary b~ one finds dim# (Xs) = 1 

while on bf the relation dimff(Xs) = ^- < 1 holds, with a* being uniquely 
defined by bj(a*) = b+(a*).) Furthermore, (Xs,T^ta)\x,) is easily seen to 
be topologically conjugate to the full shift on s - 1 symbols (cf.[2]). The sets 
Bs (s > 3) thus provide "tongues" of transient chaos (see figure 3). 

If (a, a) & UsgiN Bs the map T(a,a) is piecewise expanding and therefore statistically stable by the above corollary. 
In general the unique T^^j-invariant density /* will be rather complicated. (Since T(a,a) is piecewise affine one 
could write down an explicit formula for /* which in fact turns out to be hardly illuminating,[3].) Probably the most 
convenient way of discussing /* and its morphogenesis under varying (a, a) consists in approximating T(a,a) by a 
Markov map. By definition, such a map sends each interval ]aj_i,Oj[ to a union of such intervals. It is well known 
that the analysis of PT reduces to a matter of finite-dimensional linear algebra, if T is an expanding, piecewise affine 
Markov map. In particular, there always exists an invariant density which is piecewise constant. Moreover, a lot of 
approximation techniques have been discussed in the literature (see [1] and the references cited therein). However, 
the computational effort due to these methods usually grows exponentially with the number of approximation steps 
that have to be performed. As far as the present problem is concerned, a much better approximation can be found. 
Although T(aya) will not be Markovian in general, it might be so with respect to a refined partition: assume that 
2^.^(0) G {ao,... ,ar} for some n G IN. It is easy then to see that T(a<a) is a Markov map with respect to 

{ao,... ,ar}U{T((riQ)(0),... ^""^(O)}. Consequently, the unique solution of PT^ a)f* = f* can be found by solving 

a linear equation in TRr+n~2. (Observe that the dimension of the latter problem grows linearly with n.) For the 
system under consideration it is easily seen that the set made up by those parameters (a, a) which give rise to a 
Markov map is in fact dense in IR+. It therefore should not come as a surprise that our Markovian analysis provides 
a rather complete picture of 

a the system's statistical mor- 
phogenesis. A few results in 
this direction are summarized 
by figure 3. It is worth not- 
ing that due to the discontinu- 
ities in the family T^a,a) there 
can be observed more dra- 
matic dynamical changes than 
for other, more regular fami- 
lies. For example, if a crosses 
one of the lines bf from below, 
an immediate transition from 
transient to full chaos takes 
place via a continuum of two- 
periodic points; following [2] 
we call this effect a chaotic ex- 
plosion. 
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CALLIES, M.; CALLIES, R. 

Ho chgenaue Konturliniengenerierung 

Automatisierte Meßverfahren tasten Gegenstände mit hoher Genauigkeit ab. Die entstehenden Datenmengen sind 
für eine direkte Weiterverarbeitung in FE-Programmen zu umfangreich. Ein datenreduzierender, auf multivaria- 
ten NURBS basierender Ansatz wird vorgestellt, mit dem sich Konturkurven und -flächen mit hoher Präzision aus 
Meßwerten ableiten lassen. Die Approximationsqualität wird zur strikt an die Größe der Meßfehler angepaßten 
mathematischen Nebenbedingung, unter der die primären Zielfunktionale zu optimieren sind. Lokal adaptive Ver- 
feinerungen erhöhen signifikant die Flexibilität der Ansätze. Alle Schritte unterliegen einer strikten Optimierung 
über SQP-Verfahren. Beispielhaft wird die automatische Präzisionsauswertung von Schichtbildern aus der Com- 
putertomographie vorgestellt. Man erreicht Approximationsgenauigkeiten der Konturlinien von 0.05 mm bei einer 
Datenreduktion um mehr als den Faktor 5. 

1. Bestimmung der zu approximierenden Punkte und zulässigen Gebiete 

Die Computertomographie generiert eine Folge von Einzelbildern für parallele Schichten. Jedes Einzelbild besteht 
aus q ■ r quadratischen Pixeln endlicher Ausdehnung, jedem Pixel ist ein fester Grauwert zugeordnet (Typisch: 
4096 diskrete Graustufen). Alle Grauwerte unterhalb eines festgelegten Schwell wertes S werden als Untergrund 
interpretiert, alle Werte oberhalb als Material bzw. (in der Medizin) als Gewebesubstanz. 
Im Vorverarbeitungsschritt wird ein regelmäßiges Gitter durch die Zentren der Grauflächen gelegt. Man erhält eine 
q ■ r-Matrix aus Flächenpunkten X(uß, vu) e Hl, p = 1... q, v = 1... r; je 4 Punkte bilden eine Zelle. Ziel ist die 
Bestimmung der zu approximierenden Punkte dj,j = 0,...,m durch lineare Interpolation entlang der Gitterlinien 
sowie die Approximation der Konturlinie durch einen Polygonzug als Verbindungslinie der dj. 
Eine polygonale Höhenlinie tritt entlang einer Kante in eine Zelle ein und verläßt sie wieder entlang einer der 
anderen Kanten; der Austrittspunkt kann durch Betrachtung der restlichen Kanten und anschließende Interpolation 
bestimmt werden. Eine nichtganzzahlige Wahl von S verhindert, daß die Konturlinie durch die Ecke einer Zelle 
oder entlang einer Zellenkante verläuft. Die in Abb. 1 beispielhaft dargestellte Eindeutigkeitsforderung löst das Vier- 
Punkte-Problem und sichert die Eindeutigkeit des Algorithmus. Zentrale Forderung ist, daß die Verbindungslinie von 

Abb. 1 

0 0 Gk—Q 

X{u^vv) > S und X{uß+1,vv+1) > S durch den Polygonzug nicht geschnitten wird. Die Bedingung verhindert in 
Grenzfällen das Zerfallen in mehrere Einzelobjekte und basiert auf dem Prinzip der minimal extrahierten Information 
[1], Neben der Festlegung der Approximationspunkte werden die in der Abb. 1 schattierten Bereiche bestimmt, in 
denen die approximierende Konturlinie verlaufen darf (Beschränkung, die Selbstdurchdringung verhindert!) 

2. Optimierung der approximierenden NURBS 

NURBS: Gegeben sei ein Intervall [u0,uf] C IR mit der Unterteilung u0 < ux < ... < un+p+1 = uf, ferner 
Gewichte 0 < wt e IR und Kontrollpunkte Pt := (xi,yi)T G IR2. Dann ist die parametrisierte NURBS-Kurve vom 
Grad p definiert als n ,   n 

C(u) = J^mPiNijiu) /J2wiNM 
j=0 '    j=0 

Die B-Spline-Basisfunktionen NitP(u) € IR sind rekursiv über dem Knotenvektor U := (un,ui,... u„J.n+->)T 6 
IRn+p+2 definiert (Cox-de Boor). +P+ ' 

NURBS-basierte Darstellungen ermöglichen sowohl die Beschreibung von Freiformflächen als auch die exakte Dar- 
stellung analytischer Standardformen (Kegel, Quadriken, Drehflächen). Durch die Variation von Kontrollpunkten, 
Knoten, Gewichten und der Parametrisierung erreichen die NURBS eine hohe Flexibilität und sind zur Approxima- 
tion komplizierter Geometrien besonders geeignet [2]. 



S614 ZAMM ■ Z. Angcw. Math. Mcch. 81 (2001) S3 

Optimierungsproblem: Gegeben sind die Datenpunkte d := (djJTj) G IR2 | j = 0, • ■ •,m). Gesucht wird 

hier das Minimum der nichtlinearen Zielfunktion $ = ^^"=0^ {C(TJ]P,W,U) -dj(r,)) = min, Gj > 0 

(andere Zielfunktionen sind problemlos implementierbar) mit folgenden Variablen: 

Kontrollpunkte P := (P* G IR2 | i = 0,...,n), Gewichte u; := (w; G IR | i = 0,...,n), Knoten u := (u* G IR| i = 
0,..., n + p + 1) sowie Datenparametrisierung r := (r,- G IR | j — 0,..., m). 

Für die Komponenten von P,w,u und r sind jeweils Grenzen vorgegeben. Die inneren Knoten müssen die lineare 
Beschränkung ui+i -Ui> 10~2 erfüllen. Im Fall geschlossener Kurven gilt zusätzlich P0 - Pn = 0 A w0 - w„ = 0. 
Die Bereichsbeschränkung aus Abb. 1 und der vorgegebene maximale Abstand der Konturlinie von den Datenpunkten 
bilden die nichtlinearen Beschränkungen. 

SQP-Verfahren: Die Lösung des Optimierungsproblems geschieht mit Hilfe des SQP-Verfahrens NPSOL 
[3]. Dabei wird eine Folge {xk} konstruiert, die gegen die optimale Lösung x* konvergiert. In jedem Haupt- 
Iterationsschritt sind die Variablen und die Lagrange-Multiplikatoren neu zu bestimmen: 

xk+i =xk + akPk , Afe+i = Afc + afc& , (6 Suchrichtung für Multiplikatoren) 

Zur Bestimmung der Suchrichtung pk G IR" entwickelt man die Lagrange-Funktion C(x, X) := f{x) - XTr(x) und 
die Beschränkungen um den Punkt {xk} und bricht die Taylorentwicklung nach dem quadratischen bzw. nach dem 
linearen Term ab. Das entstandene quadratische Optimierungsproblem wird in den Neben-Iterationen gelöst. Der 
Relaxationsfaktor ak > 0 ergibt sich als Ergebnis einer skalaren Liniensuche mit dem Ziel einer „signifikanten" 
Reduktion der erweiterten Lagrange-Gütefunktion L(x,\,s) := f(x) - Y,i^i(ci(x) ~ si) + 1/2Y,iPi(ci(x) ~ s*)2 • 
Am Ende jedes Haupt-Iterationsschrittes ist eine neue Näherung für die Hessematrix V2£(zfc+i, Xk) zu bestimmen. 
Um die Effizienz des Verfahrens zu erhöhen, werden die erforderlichen Ableitungen analytisch vorgegeben. 

3. Anwendungsbeispiel 

In Zusammenhang mit der Restauration der Gebeine der 
seligen Gisela (erste ungarische Königin, ca. 980-1055 n. 
Chr.) entstanden hochgenaue Aufnahmen des Schädels mit 
einem neuentwickelten Spiral-CT der Firma Siemens Medi- 
zintechnik. Die einzelnen Schichten sind 1 mm dick, ihr Ab- 
stand beträgt 0.5 mm. Insgesamt liefert das CT 512 Schich- 
ten zu je 512 x 512 Bildpunkten in 4096 Graustufen (Auf- 
nahmevolumen: 200 x 200 x 250 mm). 
Die beschriebenen Verfahren ermöglichen die computer- 
gestützte Rekonstruktion des Schädels, exemplarisch dar- 
gestellt an einer Schichtaufnahme (vgl. Abb. 2). Es treten 
in diesem Fall 29 geschlossene Kurven und 5 randbegrenzte 
Kurvenstücke mit insgesamt 6224 Konturpunkten auf. Die 
Schädeldecke bildet mit 2605 Punkten das größte Objekt. 
Die NURBS-Approximation besitzt eine Genauigkeit von 
weniger als 0.05 mm, die Datenmenge der Kontur wird um 
den Faktor 5.01 komprimiert. Auch kritische Bereiche wie 
z. B. die poröse Knochenstruktur der Schädeldecke werden 
mit hoher Genauigkeit rekonstruiert. 
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KOHOUT, M., SCHREIBER, I. AND KUBI'CEK, M. 

Numerical continuation of homo/heteroclinic orbits with an oscillatory ap- 
proach to stationary point 

We formulate a boundary value problem to locate homoclinic or heteroclinic orbits approaching a stationary point 
in an oscillatory manner so that velocity vectors on the orbit close to the stationary point are used rather than 
eigenvectors. A Newton method combined with multiple shooting can be used to numerically find the orbit truncated 
to a finite time interval. This is an extension of an earlier method proposed for 'nonoscillatory' homo/heteroclinics 
[1,2]. We have incorporated this procedure into a continuation algorithm, so that a parameter dependence can be 
obtained.  The method has been applied to Rössler system and can be applied to travelling waves. 

1. Method for calculation and continuation of 'oscillatory' homoclinic orbits 

Homoclinic orbits are biasymptotic to a stationary point of a vector field. When the orbit is oscillatory it approaches 
the stationary point within a two-dimensional stable/unstable manifold. There are several numerical methods dealing 
with the problem of accurately locating homoclinic orbits with a two-dimensional (un)stable manifold [3-5]. These 
methods rely in some way on stable/unstable eigenspaces at the stationary point. In contrast, our method is using 
velocity vectors on the orbit close to stationary point avoiding thus the manipulation with the Jacobian. Despite 
this, the method seems quite efficient. Let 

dx 
= f(x;a,ß),    ze5Rn, (1) 

be a system of ODEs determined by the vector field f{x) with a stationary point xs, a and ß are parameters. A 
homoclinic orbit x(t) satisfies the boundary conditions 

t -> ±oo : x(t) -t xs. (2) 

To find such an orbit numerically implies a truncation to a finite time interval t € [0,T] and replacing (2) by a 
suitably chosen substitute. We do this by choosing small distances e\, £2 from the ends of the truncated orbit to 
xs and using f(x) at the endpoints. Oscillations are embedded in a plane near xs, so we need two endpoints at 
the oscillatory side. A homoclinic orbit is a codimension one bifurcation phenomenon that plays a major role in 
the Shil'nikov transition to deterministic chaos [3]. Therefore a curve of loci of homoclinics in a parameter plane is 
desired and we have implemented the method for computing homoclinics into the continuation package CONT [6]. 
This system of equations truncated to a finite interval t € [0,T] is (t/j(t,x) is the flow of (1), T\ = 0,TJV = T): 

1       N f(xN;a,ß)    , fix^aj) f(x°;a,ß)  s 

■\\f{x»;a,ß)\\  -^\\f(x^;a,ß)\\ 

xP(Ti+1-Ti,x
i)-xi+1=0, 

I       1 C,, 

a;   —a;     = £1, 

rß(To,x°)-x1=0, 

'\\f(x°;a,ß)\\' 

% = 1,...,N-1, 

f(xs;a,ß)=0, 

\\xs -xN\\ =e2, 

\\X° -XS\\ = -£i, 

GdG 
c2 

= GJ 

V -*sll 

where G = 

V   \\f{xi;a,ß)\\ 

h(x°;<*,ß) 
\\f(x°;a,ß)\\ 

U(x°;a,ß) 
ll/(z°;«,/3)|| 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Here Eq. (3) represents the boundary conditions. The initial point x1 on the truncated orbit is assumed to be at E\ 
distance from the stationary point xs, see Eq. (6). The approach to xs is assumed oscillatory and thus an auxiliary 
point a;0 at distance ei/2 is introduced so that x1 is reached in time To from x°, see Eqs. (7). The vectors fix1) and 
f(x°) provide approximately a basis of a plane of oscillations and a linear combination of the two vectors is sought 
so that points xs and a;1 are connected. At the endpoint xN of the orbit a nonoscillatory approach to xs is assumed 
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in the direction of f{xN); the distance from xN to xs is chosen according to Eq. (6) to be e2. Eqs. (4) define the 
multiple shooting procedure and Eq. (5) defines the stationary point. Finally, Eq. (8) represents a Gauss-Newton 
procedure for finding best fit of the linear overdetermined problem for the oscillatory plane. Since this is a codim 
one problem, a solution is found for a particular value of parameter a. By introducing another parameter ß, we 
obtain a continuation problem solved by a predictor-corrector method [7]. 

2. Example 

A simple example may be provided by a variant of a model of abstract chemical kinetics due to Rössler [8]. It is 
represented by three ODEs: 

dx\ 

~dt 
-{x2 +x3) 

dx2 

~dt 
= x\ 4- Ax 2, 

dx3 

dt 
= Bxi - Cx3 +X1X3, (9) 

where A, C are external parameters. For sufficiently large C there is a Hopf bifurcation giving rise to a periodic 
solution which in turn approaches an oscillatory homoclinic orbit as A is increased. An initial estimate for this orbit 
has been obtained by continuation of the periodic orbit to sufficiently high period. Then a curve of homoclinics in 
the A, C plane has been calculated by applying continuation method to Eqs. (3-8), see Fig. la. The sequence of 
selected homoclinic orbits along this curve is shown in Fig. lb. As C is decreased the orbit shrinks and approaches 
a point which is a kind of degenerate Bogdanov-Takens singularity. This happens when another bifurcation curve 
of branch stationary points is met, see inset in Fig. la. The numerical procedure seems to converge quadratically. 
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Figure 1. left panel - bifurcation diagram in A-C plane, full line - locus of homoclinic orbits (HO), dashed line - locus 
of Hopf bifurcation points (HP), dotted line - locus of branch points (BP), BT - Bogdanov-Takens like point; 
right panel - a series of homoclinic orbits along the line indicated by numbers in the left panel 
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ANNA KUCABA-PIETAL. 

Squeeze film of micropolar fluid - theory and application 

The squeeze flow of micropolar fluid between two plates is considered. The upper plate is rigid and the lower is 
porous. The analytical solution to the problem is derived for the general form of boundary conditions imposed on 
microrotation vector on the wall. 

1. Foundations 

Experiments have shown that when liquids flow through narrow passages then there are many anomalies and 
nonlinearity of rheological phenomena that the classical Newtonian continuum theory is not able to explain. Eringen's 
theory of micropolar fluids describes such flows very well. The reviews of research and results in the field to date can 
be found in the books of:MiGOUN, PROKHORENKO[5] and LUKASZEWICZ [3]. Micropolar squeeze films between two 
plates have been investigated theoretically by several authors due to its applicability in modelling lubrication and 
biolubrication processes. The problem of squeeze film bearing with micropolar fluid as lubricant has been studied 
by MATH [4].Several authors considered the system of squeezing plates as an approximation for the lubrication in 
the weight bearing synovial fluids under conditions when the area of contact is maximum such as in standing and 
jumping. NIGAM [6] considered squeeze flow between parallel plates with the reference to human joints. The lower 
plate was porous and consisted of three layers of different porosities which modelled cartilage. The results were 
obtained under the assumption, that microrotation vector vanishes on the wall. The problem, concerning the effect 
of non-zero values of microrotation vector on the walls on squeeze film behavior of micropolar fluid was studied 
by KUCABA-PIETAL, MIGOUN [2] and results shown, that the effect is considerable and strongly depend on the 
parameters characterising the fluid micropolarity. This motivated the paper. 

2. Formulation of the problem and solution 

We consider squeezing flow of micropolar fluids between two parallel plates The lower plate is stationary and a 
porous solid consisting of three layers of different porosities. The upper one, which is parallel to the stationary 
plate is rigid and moves normal to itself towards the lower plate with the velocity U. In the Cartesian coordinate 
system (x,y,z) the lower plate is described as y = 0 and the upper one as y = h. The translational velocity of the 
plate is (0 - U,0). The motion is very slow. Each of three layers is described by paramer kt, which denotes Darcy's 
coefficient, and Hit which denotes width of the layer, i = 1,2,3. The fluid leaves the domain between the plates in 
two directions, through the open boundary at x = a and x = -a. So the model may be considered as a two region 
flow model of (i) squeeze film lubrication between two approaching surfaces with micropolar fluid and (ii) flow of 
viscous fluid in a porous matrix. In this note we solve (i) problem for general boundary conditions imposed on 
microrotation vector and using solution by NIGAM [6] in the porous region (ii). 

Denoting by v = (u,v,0) the velocity, by v = (0,0,u) the microrotation and by p - the pressure, the flow in the 
region (i) can be described by the following system of equations [2]: 

dp      l to    .    ^ Q2u  ,     du)       I92"     o du      n      dP      „ 

Symbols «,7,//. denote rheological constants of micropolar fluid. The boundary conditions for the problem are: 

v = U,    v - -(a)rotv, (2) 

for y = h, and 

v = u,     v= -(a)rotv (3) 
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for y=0. h is the gap width between the two plates, 0 < a < 1, and u = (ui,vi,0) denotes velocity resulting from 

porosity of the lower wall From analysis of the flow in porous layer flow given by NlGAM it follows that: 

_ ki_dpi_ _ kj dpi 

fj, dx ft dy 

Solving (1) subject to boundary conditions (2)-(4) we get 

u(x,y) = - 

(4) 

K  — ....     - «,, 1       2 r,T^ ,     ^ll 
1 + cosh(ky)-X + sinh(ky)-Y + — y2 + 2Vy + —}PE(x), (5) 

X sinh(fcy) + Y cosh(ky) + V - —y ui(x,y) 

Functions which appeared in the formula are denned below: 

PE(x) (6) 

(V(1 + 2Q),    X(cosh(lbfc) - 1) = -i±^Vsinh(JfcA) - ^(2V + h± y = _iIiLZ_£^i    x(cosh(kh)-l) = -^-^Vsmh(kh)-—(2V + hw-w), (7) 

N=/5&    L=T>    /=V^'    * = "*' (8) 

V = (-VP1 + aVP2) {aVp^ _ vpA) + {l+ 2a)(cosHkh) _ 1} ■    ^4=^±j, (9) 

VPl = JL(-i + ct — ),    VP2=^-{2-cthk),    VP3 = c*(-/e)(-^^smh(M)-2 —), (10) 
2/J, K 2fi aK+1 K 

PE{x) denotes ^ and ct = coth(ky/2); From the equation of continuity and analysis of porous layer flow in the 

region (ii) [6] we get 

dx 

" 
Juäy=U + Hd^ (11) 
o 

where H = {Hx + ff H2 + ^#3)- Integrating (11) with respect to x and using the boundary conditions (2)-(4) the 

-U{a2-x2)   

pressure is given: 

p — po = 
±h3 + (l- cosh(fc/>)fjy + (- smh(kh) + h)fsX - h?V + &kxh + 12/iH]. 

(12) 

After differentiation (12) we receive ^ which appears in the expressions (5), (6) defining solution to the problem. 

Having it done we are able to obtain all tribological characteristics of the bearing system: load L and time of 
approach T. For the case a = 0 obtained solution cover the case considered by NlGAM. 
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DIRK LANGEMANN 

Numerical analysis of the polygonalization of railway wheels 

The formation of irregular wear patterns on wheels in high-speed trains is an important problem because it affects 
negatively the convenience of passengers and increases maintenance costs. Finally, nonhomogeneous contact geom- 
etry leads to considerable variations of loading conditions and is hence a security hazard. 

An algorithm is presented to analyze the development of irregular wear patterns quantitatively and to predict 
wear formation of wheel/rail-systems. It is based on the concept of ergodicity and it is time-expensive but reliable. 
The algorithm is applied on a SB-model using different parameters. 

1. The coupled system of multiple time-scales 

Let us regard a mechanical system, e. g. a wheelset, which undergoes wear on a surface of a body due to contact 
with another body. The generalized coordinates q e Ml with the time derivatives q £ JRl describes the motion of 
the mechanical system. The wearing surface S is parameterized by a; £ Rfe, (k < I) and u{x,t) is the depth of the 
total material loss at the point x £ S until the time t. Every position q of the mechanical system implies a set of 
contact points, we shortly note x = y{q) if x £ S is a point in contact depending on the position q. Now, we get 
the coupled system of the equation of motion (ODE) 

mq = f(q, q, A) + XVgg(q, u)  with g(q, u) = 0 (1) 

with the mass matrix m, the outer force /, the LAGRANGEian multiplier A and the geometrical constraints g 
depending on u. Using the actual wear w(q,q,X) at y(q), we formulate the evolution equation of the surface (PDE) 

ut(y(q),t)=w(q,q,X) (2) 

In practice, exact knowledge about the wear of a material pair is lacking, and thus the actual wear is assumed to 
be proportional to the dissipated energy. In general, the values of w and y are functions over S, but for reasons of 
simplicity we will handle them as single values. 

The dynamical behaviour of the system, s. Eq. (1), and the wear evolution, s. Eq. (2), have completely 
different time-scales, e. g. the wear speed of a railway wheel is about 5 • 10-11 m/s. That is why we neglect a 
second LAGRANGEian multiplier with respect to the change of u and why the accurate numerical solution of the 
hybrid system (1), (2) is impossible in time intervals relevant for wear. On the other hand, most realistic mechanical 
systems, in particular rolling wheelsets, behave ergodically in time relevant for wear, although they are deterministic 
in short time intervals, cf. [4]. 

2. Adaptation and decoupling of the time-scales 

The standard method to handle this problem is the adaptation of the time-scales by introducing a slow time r = ß~xt 
and by enlarging the actual wear by the amplification factor ß in the range of 104 up to 107 , cf. [3]. But this leads 
to considerable errors if dim 5 > 1, cf. [2]. 

We propose the indroduction of a density W(X,T) of wear intensity at the point x and the slow time r. With 
a solution of Eq. (1) for fixed geometry U(T), we regard the measure of the wear intensity on 0 C S 

fT 
i/(0, r) =  lim   /    w{q,q,X)je(y{q))dt (3) 

T-HX>J0 

with the characteristic function 7e (x) = 1 if x £ 0 and 70 (x) = 0 else. Due to the ergodic property the transient 
phase of the motion does not influence the measure v, and on its support, v is absolutely continuous to the EUKLiDian 
measure of 0. The density of v is W(x, r) and we replace Eq. (2) by 

u ■ :,T{X,T) = ßW{x,r). (4) 

Now, the solution of Eq. (1) acts as an input to the right hand side of the evolution equation (4). 
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3. Numerical technique 

Eq. (4) can be handle by standard methods for evolution problems, e. g. by a semi-discretization in x with xt G 0;, 
and the patches {0J form a partition of S. The evaluation of the right hand side consists in the solution of Eq. (1) 
with t G [0,T] for fixed U(T), and V(QUT) is approximated, s. Eq. (3). The approximation is to accept if the relative 
change of v with respect to T is neglectable. This procedure is time expensive but provides reliable results, cf. [2]. 

4. Results 

It can be proven that the occurence of wavy wear patterns is the generic case and not the exception. In the simulation, 
TRUE'S wheelset model was chosen as a relatively simple 3D-wheelset with a complex behaviour of motion, cf. [4]. 
In particular, it has treads which are extended in two dimensions. 

y in mm 

Figure 1: typical worn polygonalized tread; 

angle in rad 

radius of a strongly worn wheel 

In Fig. 1, a typical worn tread is shown on the left and a strongly worn contour of a wheel on the right. We 
remark three maxima of wear over the circumference and more material loss at the margins of the surface which 
comes potentially in contact with the rail. Both effects fit to the measurements of real polygonalized wheels. 

The slip is the mean relative velocity of the particles in contact on the wheel and the support to each other, it 
is regarded as an important system parameter, cf. [1]. The influence of the slip, the conicity of the wheels et al. on 
the total material loss and on the strength of the polygonalization effect is investigated by first parameter studies. 

The total material loss is strongly increasing with the absolute slip of the rolling wheel in the case of fixed 
vehicle speed and slightly decreasing with the speed in the case of a fixed slip. This holds if the actual wear increases 
with the dissipated energy in the used wear law (2). It is to mention that no single valued relation between the total 
material loss and the relative slip (slip per speed) could be exposed. 

On the other hand, a total material loss is acceptable if the wheel stays round. We find a non-monotonous 
dependency of the unroundness on the slip, the speed and the conicity of the wheels, i. e. there are some rare 
parameter combinations which cause wheels staying nearly round. Nethertheless most of them effect unround 
wheels, and re-smoothing combinations were not found. The number of three fundamental radius maxima over the 
circumference is relatively stable. We have found ergodicity as a second fundamental property of wearing mechanical 
systems, beside the feed-back between different time-scales. 
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RIEDER, A. 

How to scale reconstruction filters in 2D-computerized tomography 

The state-of-the-art reconstruction algorithm in 2D tomography is the filtered backprojection algorithm. The quality 
of the reconstructed density function depends crucially on the proper scaling of the reconstruction filter in relation 
to the discretization step size.  We show how to do it the right way in the parallel scanning geometry. 

1. Introduction 

Tomographie reconstruction allows to look inside a closed object without destroying it, for instance, the human body 
in medical imaging. Speaking in mathematical terms we have to find a density distribution / supported in the unit 

ball ft from all its line integrals. 

The analytic basis of tomography in 2D is the reconstruction formula 

/ = (27r)-xR*AR/. W 

Here R : L2(ft) -+ L2(Z), Z =] - 1,1[ x ]0,n[, denotes the Radon transform, 

R/M) :=   / f(x)da(x) 
JL(s,ti)nn i(s,«)nfi 

mapping a function to its integrals over the lines L{s,ti) = {TU
X
(I)) + SU(0)\T 6 JR.}, s e]-l,l[, w(0) = 

(cos ■&, sin i9)' and w^tf) = (-sin ■&, cos #)' for tf e]0,7r[. This parameterization of lines hitting ft gives rise 

to the parallel scanning geometry. 
The backprojection operator R* : L2(Z) ->■ L2(ft) is the adjoint to R. Formally, A is the square root of the 

negative ID Laplacian -A: A = (-A)1/2. In (1), A acts on the variable s of R/. For a proof of (1) see, e.g., [1]. 

As A amplifies high frequencies instabilities occur very likely in reconstructing / from noisy Radon data 
R/ using (1) directly. Therefore, an algorithmic realization of tomographic reconstruction is based on (• denotes 
convolution and *s denotes convolution with respect to the variable s) 

/*e7 = R*K*SR/),    e7 = R*u7, (2) 

where e (x) = e(z/7)/72, 7 > 0, and e = e% is a smooth function with normalized mean value (called a mollifier). 
Hence, /*e7 is a smoothed or mollified approximation to /. The convolution of the tomographic data R/ with the 
reconstruction kernel or reconstruction filter v7 implements a low pass filtered version of AR/. A discretization of 
(2) leads to the filtered backprojection algorithm, see, e.g., [l,Chap. V]. 

In the following we will investigate how to choose 7 depending on the discretization step size h used in the 
filtered backprojection algorithm. However, we will first comment on the computation of u7 from e7. 

2. Reconstruction filters 

The reconstruction formula (1) holds true for all / in the L2-Sobolev space HQ
/2

{ü) with zero boundary conditions. 

With e7 e Hy2(Q) we therefore define 

u7 := ARe7/(27r) (3) 

which yields the required relation e7 = R*u7. Restricting ourselves to radial symmetric mollifiers we may express 

(3) by 

1     f°° 
vJs) = —   /     a ^(a, 0) cos(scr) da, 

7T    Jo 
(4) 

where e is the Fourier transform of e being radial symmetric as well.  Please note that u7(s) = v1(s/j)/-y2.  We 
therefore need to evaluate the integral in (4) only for 7 = 1.   This can be done analytically for several useful 
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mollifiers e. 

Let us look at an example. We define a family {e"}„>0 of radial mollifiers by ev(x) := (1 - ||x||2)" for x £ ft 
and ev{x) := 0, otherwise, which gives rise to the reconstruction kernels 

1       f   2(i/ + l)2Fi(l, -r/;l/2;s2)     :    |s| < 1 

Zn      {  -2Fi(l, 3/2; z, + 2; l/s2)/s2    :    |s| > 1 

where 2Fi is the hypergeometric series. For other examples see [2]. 

3. Scaling the filters 

fR = R*Ih(w*g),    g = Rf, 

Here we model the filtered backprojection algorithm with discretization step size h = 1/q, q 6 INT, by 

IR = I 

see (2), where * denotes the discrete convolution, 

(wlg(;#j)   =hYJ™i-k9{hk,0)    with^W^    '■    k = -^---^ 
v k I otherwise 

Above Ih : £2{Z.) -> L2(R) is the piecewise linear interpolation operator, ha(s) = Y,kak Bh(s - hk), Bh(s) = 
B(s/h), with B being the linear B-spline supported in [-1,1]. 

We will now investigate the difference (x denotes the indicator function of the interval [-2,2]) 

Of ■= fR-R*{xv7*g) = R* (lh(w * g) - xvj *g) 

which coincides with the reconstruction error fR - / * e7 in the region of interest ft. 

Theorem   1.    Let f be in Co°(fi) and let w7 be an even function.  Then, 

m = 27r if (WIKII)-v^Äikii)) + JhrT^difii) E rm-y f/"*"> 

withThv7(a) = h(v7(0) + 2Y,2kLlVy(hk) cos(hka)) sinc2(/i||£||). 

A closer look at Of shows that term /(f)/||£|| is the critical one. In general /(£)/||£|| is far being absolutely small 
for small ||£||. Therefore, we have know the behavior of the difference Thv^(a) - V^xu^cr) as a tends to 0. 

Lemma 2.  We have that 

lim  a"1 | sinc2(/icr) Thv7(a) - V^T xv^i^) | = 0 

if and only if 

t 2q f2 

h (u7(0) + 2 ^u7(/ifc)) =   /    u7(s) ds. (5) 
fc=l ■'-2 

Selecting 7 for fixed h as a solution of equation (5) guarantees tomographic reconstructions without artefacts due 
to wrong scaling of the reconstruction filter. 

All proofs omitted in this short note as well as numerical experiments and further references can be found 
in [2]. 
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SCHAGERL, M.; BERGER, A. 

On the appropriate treatment of singularly perturbed wave equations 

Engineers frequently find themselves concerned with the following situation: One is not interested in certain effects 
of a model, expecting them to have no significant influence, and one therefore simply neglects them - even if the 
type of the governing equations is changed. Having obtained a sound knowledge about the thus simplified problem 
one would nevertheless like to take into account the effects neglected at first, preferably as some sort of small 
perturbation. By means of an example from dynamics we point out that such an approach may necessitate some 
careful analysis: More often than not the perturbations turn out to be of rather singular type. 

1. The elastic pendulum: a multiple scales approach 

We consider a light elastic rod with high stiffness, i.e. ff < 1; in addition we also include linear viscous damping D 
(see Fig. la). For simplicity we assume the rod's configuration to remain perfectly straight. By r = r{s,t) we denote 
the distance from the fixation point to the material point being 
at position s in the unstrained configuration. The pendulum's 
motion due to gravity, elasticity and damping is governed by 

mrtt - EArss - Drtss - mrtp2 + mg cos ip , 

I(p = —Sg sirup ; 

here the first and second order moments have been denoted by 
S(t) := m JQ

1
 r(s, t) ds and I{t) := m £ r2(s, t) ds, respectively. 

As the free endpoint isn't subjected to any tension, the solu- 
tion has to satisfy the boundary condition EA(rs(l,t) - l) 
Drts(l,t) = 0; at the fixation point obviously r(0, t) = 0. Moti- 
vated by the high stiffness - and perhaps numerical problems 
when evaluating (1) - one may neglect the longitudinal exten- 
sion. This naturally gives rise to the study of an inextensible 
rod, i.e. r(s,t) = s. Clearly this reduction process yields the 
numerically well-behaved system (lb). Having obtained a solution of the reduced problem, the following question 
arises: Which properties of the former persist if the neglected effect is taken into account as small perturbation? 

For the sake of technical lucidity we shall not consider the complicated partial differential equation (la) in the 
sequel. Anticipating the result of a discretization procedure applied to (1), e.g. a simple finite difference scheme, it is 
sufficient to consider the analogous but finite dimensional system of a spring pendulum (Fig. lb) in order to discuss an 

appropriate perturbation technique. The pendulum's governing equa- 
tions with r = r(t) then reads 

Fig. 1.   A continuous visco-elastic pendulum (a) 
and its discrete analogon (b). 

mr + EA(r - 1) + Df = mnp2 + mg cos (p (2) 

Fig. 2. A Solution of (3) for e = 0.02 and 
/(t) = 1 + sin2 t. The fast oscillations are 
persistent for long times. 

whereas the equation for tp is just (lb) with / := mr2 and S := mr. 
Scaling time by y/g and introducing the non-dimensional parameters 

e
2 := Hg and 2A := -A= we substantially have to discuss an equation 

e2r + 2Ae2r -f r = 1 + e2(ar + b) . 

We associate the limit e —> 0 to passing from an elastic to a rigid 
pendulum by increasing the former's stiffness. This clearly yields a 
singular perturbation problem ([2]): Setting e = 0 turns our governing 
differential equation into an algebraic one (r(t) = 1). Since the latter 
trivial solution is always present in our model, we prefer introducing 
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a new variable x according to r = e2x +1. In physical terms, x is just the ratio of the force in the pendulum's spring 
and the weight of the endmass. Subsequently we shall thus discuss the singularly perturbed initial value problem 

e2x 4- 2Xe2x + (l - at2) x = f ,  x(0) = x ,   x(0) = v ; (3) 

here a and / are assumed to be given functions of t. Expecting the dynamics of typical solution of (3) to take place 
on different time scales t (slow) and r := \ (fast; see Fig. 2) we insert the asymptotic expansion 

x(t) =x0(t,T)+exi(t,T) + e2x2(t,r) + 0(e3)    as    e -> 0 (4) 

into (3). Balancing terms of zeroth, first and second order of e respectively then yields 

O(l):   xo,rr+x0 = /, zo(0,0) =x ,  £0,T(0,0) = 0 , (5a) 

O(e):    xhTT+xi = -2x0,tr-2Ax0,T , zi(0,0) = 0 ,  zi,r(0,0) = -a;0,t(0,0) + v ,    (5b) 

0(e2): X2,TT+X2 =-2xittT-2XxiiT-2Xxo,t-x0itt+ax0 , zi(0,0)=0 ,  x2,T(0,0) = -xM(0,0) . (5c) 

According to the idea of two-timing, the variables t und r have to be considered independent ([4]). Hence we 
have to solve the set of partial differential equations (5) successively. From the lowest order equation (5a) we 
simply get x0(t, r) = a0(t) COST + b0(t) sinr + fit). Note that the functions a0 and b0 are not specified yet. They 
are determined from the vital requirement that XQ must not cause any fast resonance on the right hand side of 
(5b), -2xo,tr - 2Ax0,r = 2(d0(i) + Xa0(t)) sinr - 2(b0(t) + Xb0(t)) COST; imposing initial conditions then yields 
a0(t) = (x - f(0))e~xt and b0(t) = 0. From the 0(e) equation (5b) we obtain x\{t,r) = ai(t)cosr + bi(t)sinT. 
Again we choose the functions a\ and b\ in such a way that the trigonometric terms are non-resonant for (5c). From 
the initial data we finally get the asymptotic relation 

x(t) = f(t) + (x- f(0))e-xt cos - + £ (x - /(0)) (A + l-XH +\j^ a{v) dv^+v- /(0) ' sin - + 0(e2 

e 

as e —> 0. Note that the first term is the solution of the reduced problem, i.e. e = 0 in (3). The singular nature of 
(3) is highlighted by the fact that there is - even on order 0(1) - an additional term in the approximate solution 
not visible in (3) with e = 0. We further point out that contrary to (4) separating asymptotic expansions like 

x(t)=x0(t) + e2x2(t)+e4x4{t)+e2(Xo(T)+e2X2{T))+0{e6)    with    T =-| (6) 

(as advocated e.g. by [3]) would fail. Instead of (5a) expansion (6) would lead to XQ + x0 = / from which no 
reasonable insight on the function X0 could be gained. Notice that such a treatment would nevertheless suggest the 
solution Xo = f of the reduced problem. 

2. The role of damping 

Expansion (6) is often used in initial layer problems where, due to strong damping, the solution quickly converges 
to the one of the reduced problem. One could therefore be tempted to justify the usage of (6) even for our problem 
by increasing the damping parameter A in (3). However, this justification only works if 1/A(e) = o(e) as e —> 0, e.g. 
2A(e) := ce~2. In the latter case, inserting (6) in (3), would yield on lowest order 

0(1):   XS + cx0 + cX'0 + x0 = f ,  i0(0) = x ,  x0{0) + X^O) = v . (7) 

At this point one can assume that the initial layer correction X0 is fast decaying and hence can be neglected. This 
yields x0(t) = /0* f{v) e^u~^/c dv+xe~t/c and in turn, after inserting this result into (7), C

2
X0(T) = (f{0)-x-cv)e~CT 

which justifies the convergence assumption. However, we point out that assuming A(e) e2 = const, (or more generally 
1/A(e) = o(e) as e —> 0) is quite unreasonable from a physical point of view. Usually, materials like steel or polymers 
behave just the other way round: the higher the stiffness the lower the internal damping ([1]). We thus conclude 
that a thorough and realistic analysis of our model (as well as of the original wave propagation problem) definitely 
requires the use of multiple scales. 
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VRDOLJAK, M.; JANKOVIC, S. 

Aircraft performance obtained from modified point mass model 

1. Introduction 

Complete motion of the rigid aircraft is described with the 6-degrees-of-freedom model (6DOF) [1]. This 
model is complex and requires large sets of data for modeling the aerodynamics, mass and propulsion. For the 
application of aircraft performance analysis we need to analyze the motion of the aircraft's center of gravity with 
the mass as a function of time due to the fuel consumption in order to determine some global characteristics of that 
motion. The flight regimes of the interest for the aircraft performance are quasi steady straight flight and sustained 
turn. In this paper a modified point mass model which describes only the motion of the center of the gravity will 
be presented and analyzed. Notation used here will be from [2] if not mentioned otherwise. 

2. Modified point mass model 

Since the airplane doesn't have the constant mass, we have to apply the theory of Gantmakher [3] 

m(t) 
dVK 

dt 
= RA+F + m{t)-g. (1) 

This theory gives us the components of the propulsion force F along the principal axes of inertia 
[T cos or 0 TsinaT - Fpa(ap - ar) ]T as described in [4]. Here T is product of a mass flow and a ve- 
locity of the flow. The part FPa(ap - aT) can be neglected in respect to the Tsinar- We accept that there is no 
wind (VK = V,'ja= jandxa = x) and with sideslip angle ß = 0. In this case we can project the vector equation (1) 
on the velocity axis system denoted by "V" with x axis along the velocity, z axis in vertical plane through the 
velocity 

(2) 

Using the transformation matrices LVA = ^X(-^A), ^>VF = 1>X(-^A) • I>z{ß) • Ly(-a) and Lyo = ^Y{I) ■ ^z(x) 
we get 

V -D T cos ar 0 
V cos 7•x = 'LVA ■ 0 + LVF ■ 0 = m ■ JJVO " 0 

-V7 -L T sin ar . 9 

V 

X    = 

^cos(aT-a) -ff-siri7- ^ 

[£-£sin(aT-a)]#^- 

7 Lm ■ sin(aT — a)] 
5 PA    _   9-COS7 
V V 

x = V ■ cos 7 • cos x 

y = V ■ cos 7 ■ sin x 

h    =    V ■ sin 7 
(3) 

m = -Cp ■ Peng        or       m = -CT • Teng . 

The angle HA can be related to the roll angle cj> of the aircraft as described in [4] with 

tanjjLA = 
sm< 

cos a ■ cos 6 + sin a ■ tan $ 
(4) 

Even for high values of roll angle 4> and pitch angle i? at some usual value of angle of attack a, (f> is very close to /J,A 

and can be used instead of it in (3). 

Model (3) reduces the number of differential equations with respect to the 6DOF model and moreover we have 
the reduction in data sets needed for its solution. So for the aerodynamic model we need only the lift and drag force or 
in dimensionless form for lift CL = CL0 +CLaa+CLsm Sm and for drag force we have CD = CDmin +K-(CL-CLmin)

2 « 
CDo + K ■ C\. In case of trimmed flight the pitching moment is Cm = Cmo + Cmaa + CmSm5m = 0. From this 
equation we can determine the angle of attack a as the function of elevator deflection angle 6m.  Therefore from 
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the set of aerodynamic data we need: CD0, K, CL0, Cia, CL ^mo 5  ^rt c, ms„ Also for the mass model we 
need only the initial mass and specific fuel consumption coefficient. The power or the thrust of the engine can be 
regulated with the throttle command Sthrottu and in general as in [5] we can take the power for propeller engine 
Peng = Peng(V,h,Seattle) and the thrust for jet engine Teng = Teng(V,h,Sthrottie). For specific fuel consumption 
we have similar relations CP = CP(V,h,Sthrottie) and CT - CT(V,h,5throttie)- 

3. Results and Discussion 

Presented model can be used for analyzing the quasi steady motion and in this paper we will restrict our 
selves to regimes of straight and sustained turn flight. In straight flight we have 7 = const, ßA = 0, a = const, 
ß = 0 and V(t) with command Sthrottie(t). For example in range calculations airspeed and throttle setting have 
small variations with time. In this flight regime angular velocities are equal to zero and we can say that modified 
point mass model (3) is equal to the 6DOF model. 

In sustained turn we have V = const, 7 = 
const, HA — const, ß = 0 with small variations in 
time of a(t), or 8m(t), and throttle setting öthrouie(t). 
In   turn   we   have   angular   velocities   of   the   aircraft 

v- sin a    T? cos a sin < — s cos a cos <b 1    which cause ad- 

modified point mass model 
6dof model 

IR °111U      R ^^">""<f R 
ditional parts to the forces that are not included in the pre- 
sented model. Therefore in this flight regime some differ- 
ences between presented model and 6DOF occur. Diagram 
on Fig.l presents the results for modified point mass model 
in comparison with 6DOF model [6] for the trajectory of the 
center of gravity for big transport aircraft in sustained turn 
with given airspeed V and load factor n (which defines the 
roll angle 0) in climb at given angle 7. Even with the ne- 
glected angular velocities modified point mass model is still 
good approximation of the motion of aircraft's center of grav- 
ity in sustained turn. Difference between the results of these 
two models for the case from Fig.l is less then 2% of the turn 
radius. 

16CKK 

1400 s 

£1200. 

1000. 

800- 

600 

x[m] 

Figure 1: Results for sustained turn in climb 

For the analysis of the aircraft performances modified point mass model can be applied because it describes 
the motion of the aircraft's center of gravity with the mass change and it is a good approximation of 6DOF model. 
The advantage of using this model instead of the 6DOF model is in simplification of the model itself, its calculation 
requirements, smaller data sets and simpler trim processes. Modified point mass model presented here can be used, 
beside for the performance analysis, possibly for the flight traffic management simulations because of its simplicity 
and possibility of simple modeling of different aircrafts. 
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GERTON LUNTER 

A  generalization  of Gröbner  bases  helps  to  compute  singularity theory 
transformations 

According to singularity theory, many functions admit (local) normal forms under suitable equivalence transforma- 
tions. Motivated by a dynamical systems problem, where we are interested in symbolically computing bifurcation 
curves, our goal is to compute the normalizing transformation explicitly. 

Its computation proceeds stepwise, and resembles Newton's root-finding algorithm, with the derivative replaced 
by the tangent space to the orbit under equivalence transformations. At each step we need a solution of a linear 
equation involving the tangent space, analogous to Newton's algorithm requiring the inverse of the derivative. 

If the equivalences are right-transformations, the tangent space is an ideal, and the linear equation is solved 
by the normal form or 'division' algorithm of Gröbner bases. If left-right transformations are used, the tangent space 
consists of sums of ideal and algebra elements. The resulting linear equation can be solved analogously by suitably 
extending the notions of Groebner basis and canonical subalgebra (SAGBI) basis. See [9] for an extended overview, 
[8] for the details. 

1. Motivation 

The research reported here has its roots in a dynamical systems problem. Our overall goal is to symbolically 
compute bifurcation curves of a certain low-degree-of-freedom Hamiltonian dynamical system (see [4,3]). This is 
accomplished by simplifying the Hamiltonian system in a two-step reduction process. The first step is ordinary 
Birkhoff normalization, leaving a family of planar Hamiltonian systems. We shall focus on the second step, which 
uses singularity theory to simplify the Hamiltonian system by subjecting it to certain equivalence transformations. 
Bifurcation curves of the resulting (polynomial) normal form are easy to find, and pulling back these curves through 
the coordinate transformations yield bifurcation curves for the original dynamical system. 

To compute symbolic bifurcation curves, we need explicit coordinate transformations in both reduction steps. The 
standard Birkhoff procedure (see e.g.[5]) also computes the transformation. For the second step, an algorithm of 
Kas and Schlessinger [7] can be used. It linearizes the nonlinear singularity theory equations and solves it iteratively 
for increasing degree, in the same way as Newton's root-finding algorithm uses the linearized equation to solve a 
nonlinear one. 

We use two different equivalence classes, right-equivalences and left-right equivalences. The first leads to an equation 
of the form F(x) = G(<p(x)), where F,G : 1R" -> !Rfc, to be solved for <p : IR" -» Rn. The tangent space to the orbit 
of G under right-transformations is an ideal, and the related linearized equation appearing in Kas and Schlessinger's 
algorithm, called the infinitesimal stability equation in this context, is of the form 

i 

to be solved for the hi. In the ring of truncated formal power series, this is a linear equation in the coefficients of 
the hi, and is solved efficiently using standard bases, a variant of Gröbner bases tailored to local rings [1,2,6]. In the 
case of left-right equivalences, the central equation is 

F{x) = A{G{<t>{x))), 

to be solved for A : JRk -> TRk and <p. The left-right tangent space contains sums of ideal and subalgebra elements, 
and the related infinitesimal stability equation is 

f(x)=a(G1(x),...,Gk(x))+^2^-hi(x), 
i 

to be solved for a : JRk ->■ TRk and the hi. Again, this equation is linear in the coefficients of the h, and of a. 
Straightforwardly solving it is inefficient due to the large matrices involved. We here propose a method for solving 
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the equation that uses the subalgebra and ideal structure, analogous to how the ideal structure is used in the standard 
basis approach. This method brings Gröbner bases, standard bases and SAGBI bases [11] under one umbrella. 

2. Solving the infinitesimal stability equation 

Given a basis for truncated formal power series ring, an ideal basis can be associated to a matrix representing a 
linear map whose image is the ideal. A standard basis then corresponds to this matrix being in row-echelon form. 
Linear equations involving such a matrix can be solved efficiently. This method can be generalised, by building a 
linear map $ whose image is required space, e.g.an ideal plus a subalgebra, and checking whether the corresponding 
matrix is in row-echelon form. The necessary conditions to check, analogous to S-polynomials reducing to 0, are 
related to the generators of the kernel of a certain linear map (the monomial mapping) associated Vf. 

In the case of the left-right tangent space, these generators are of three types: either 5-polynomials associated to 
the ideal, or SAGBI-syzygies related to the subalgebra, or 'mixed' syzygies. This last type encodes situations where 
leading terms of ideal generators cancel those of subalgebra elements. Computing 5-polynomials is trivial, while 
computing the two other types of syzygies is essentially a combinatorial problem. Gröbner bases can be used to 
solve this combinatorial problem, cf. [10]. 

Buchberger's algorithm has an analogue in this generalized setting: Adding nonzero reducts of syzygies to the basis 
improves the basis in a precise sense. Under some conditions, which are met in the case of truncated formal power 
series, this procedure is finite. 

3. Results and conclusions 

Using the approach sketched, we were able to compute symbolic bifurcation curves for certain dynamical systems. 
The results agreed with numerical data within measurement errors. Explicit computation of singularity theory 
transformations beyond simple right transformations may find application in other areas. The method can be used 
for automatic computation of codimension of singularities under various equivalence classes, and may be useful in 
automatic classification algorithms as well. Finally, the unified approach to Gröbner bases, standard bases and 
SAGBI bases may be helpful for expository purposes. 
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SEILER, W.M. 

Index Concepts for General Systems of Partial Differential Equations 

We proposed recently some index concepts for general systems of partial differential equations [12] based on the so- 
called formal theory. In this note we discuss their meaning in the context of semi-discretisations. It is shown for 
some simple examples that the involution index of the original partial differential equations provides a lower bound 
for the index of the differential algebraic equations obtained by a semi-discretisation. 

1. Involutive Systems of Differential Equations 

Differential algebraic equations have now been studied intensively for more than 20 years [1]. However, the extension 
of this theory to partial differential equations has only just begun and encounters many difficulties. We went 
recently the opposite direction and demonstrated that the formal theory of differential equations provides a powerful 
framework for studying general systems of partial differential equations, i. e. systems that do not necessarily satisfy 
the conditions of the Cauchy-Kowalevsky theorem, and that its specialisation to ordinary differential equations 
recovers much of the standard index theory of differential algebraic equations [12]. 

The notion of an involutive system of differential equations is central for the formal theory. It is beyond the 
scope of this short note to give a rigorous definition of it. For this we must refer to the literature [8,11]. In this 
section we will try to explain, in as simple words as possible, some of the basic ideas behind involution. We will 
restrict to linear systems, although from a theoretical point of view there is no fundamental difference between linear 
and non-linear systems in this context. The first step towards an involutive system of differential equations is formal 
integrability. The name stems from the fact that for formally integrable systems it is straightforward to construct 
order by order formal power series solutions. This will be the case, iff there are no integrability conditions hidden in 
the system. Such a condition represents a differential equation that is automatically satisfied by any solution of the 
given system but that is nevertheless algebraically independent of it. 

For ordinary differential equations only one mechanism for the generation of integrability conditions exists: the 
system contains equations of differing order and the differentiation of the lower order ones leads to new equations. 
A simple example is ü = v and u + v — 0. Differentiating the second equation and substituting the first one yields 
v = —v. As for first order systems lower order equations are in fact algebraic equations, the name differential 
algebraic equations has become costumery for such systems. 

For partial differential equations a second mechanism exists consisting in the simplest case of cross-differen- 
tiations. Consider the system uzz = uy and uzy — ux. By subtracting the «/-derivative of the first equation from 
the ^-derivative of the second one, we see that any solution of this system must also satisfy the equation uyy =uxz. 
This equation cannot be constructed by performing only algebraic manipulations of the original system; it is crucial 
that we differentiate. More generally, integrability conditions arise, if it is possible to take linear combinations of 
differentiated equations such that all derivatives of highest order cancel. If we cannot generate any new equation 
this way, no matter how often we differentiate, then our system is formally integrable. One can show that in our 
example above addition of the integrability condition yields a formally integrable system. 

A formally integrable system is called involutive, if it possesses in addition a somewhat abstract property of a 
more combinatorial nature. This property sounds very bizarre at first sight, but there rests a surprising power in it 
which explains much of the importance of involution. As we assume that we are dealing with a linear system, we 
can solve each equation in it for a derivative of maximal order. With some algebraic manipulations we can achieve 
that each equation is solved for a different derivative and thus we may consider each equation as a unique rule to 
determine a certain derivative. But when we start to differentiate the equations, we loose in general this uniqueness. 
In our example above, the integrability condition arises from the fact that there are two possibilities to determine 
uzzy and we must of course require that both yield the same result. 

Assume now that, somehow, we knew already that the given system was formally integrable, so that, whenever 
there exist several possibilities to compute a derivative, all of them lead to the same result (modulo the equations 
contained in the system). Involution concerns a certain "recipe" to choose in such cases a unique way to determine 
each derivative. It requires an ordering of the independent variables; so let us call them x\,... ,xn. If ux. Xi ...Xi 

is a derivative of order q with i\ < ii < ■ ■ ■ < iq, we call i\ the class of the derivative. 
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If an equation in our system is solved for a derivative of class k, we differentiate it only with respect to the 
variables xi,...,Xk- It is not so difficult to see that if one has chosen carefully the derivatives for which each 
equation is solved (this means basically that one has taken derivatives of as high class as possible), all equations one 
obtains by these differentiations are algebraically independent, as they are still all solved for different derivatives. 
The decisive question is now whether we can construct all possible differentiated equations this way or whether we 
perhaps miss some. If we indeed get all equations, we call the system involutive. 

We demonstrate this idea with two simple examples. Consider first the system uX2X2 = 0 and uXlX2 = 0. The 
first equation is of class 2 and we allow all possible differentiations of it. The second equation is of class 1 and thus 
may be differentiated only with respect to x\. But this restriction has no consequences: the equation uXlX2X2 = 0 can 
also be obtained by an "allowed" differentiation of the first equation with respect to x\. Thus we have an involutive 
system. Now we take the system uX2X2 = 0 and 11^,, = 0. Again the first equation is of class 2 and the second of 
class 1. But now the restriction to "allowed" differentiations prohibits us to derive the equation uXlXlX2 = 0. So we 
have here an example of a system that is not involutive. 

2. Completion and Indices 

Involutive systems share a number of useful properties. For example, in the case of analytic systems one can prove 
an existence and uniqueness theorem for analytic solutions of the Cauchy problem, the Cartan-Kähler theorem. 
Involutive systems may also be considered as a kind of generalisation of the well-known Gröbner bases of polynomial 
ideals [2] to differential equations. In fact, for linear systems this relation can be made precise. Reinterpreting any 
derivative uxxy... as a monomial x2y • • •, we can associate to every linear system with constant coefficients a set of 
polynomials. If the system is involutive, this set represents not only a Gröbner basis of the ideal generated by it but 
even a very special kind, a so-called involutive basis, possessing many interesting properties [3,13]. 

If a given system of differential equations is not involutive, the Cartan-Kuranishi theorem asserts that we can 
make it involutive by differentiating it finitely often and by adding a finite number of integrability conditions. The 
proof of this theorem even leads straightforwardly to an algorithm for this completion to involution. An efficient 
version of it and its implementation in the computer algebra system MuPAD will be described in two forthcoming 
publications [5,6]. For lack of space we cannot discuss this interesting problem any further. 

The basic insight of [12] was that differentiation indices, as they are often used to classify differential algebraic 
equations, basically only count the number of steps this completion algorithm requires; we thus prefer to speak of 
the involution index. As the Cartan-Kuranishi theorem holds for ordinary and for partial differential equations, we 
obtain this way automatically an index concept that can be applied independently of the number of variables. One 
can show that for linear differential algebraic equations it coincides with the strangeness index1 introduced in [7]. 

For ordinary differential equations the theory becomes rather trivial, as for them there is no difference between 
involution and formal integrability and one can omit all the complicated combinatorial considerations. So it is not 
surprising that the completion algorithm restricted to this case has been rediscovered many cases, see e.g. [9,10]. 
For Hamiltonian systems with constraints one recovers the classical Dirac theory [14]. 

It should be emphasised that we speak here exclusively about differentiation indices and not about perturbation 
indices as introduced by Hairer et al. [4]. For the latter class of indices it is still an open question how they can be 
formulated for partial differential equations. Involution should play here an important role, too, as the involution 
index gives a sharp upper bound for the order of the derivatives of the perturbations that enter the involutive system 
and thus its solution. 

3. Semi-Discretisations 

Much of the currently existing literature on designing indices for general systems of partial differential equations 
is based on semi-discretisations, i. e. one reduces to a differential algebraic system for which many index concepts 
exist. We will present now two examples as evidence for a conjecture: the involution index of a system of partial 
differential equations provides a lower bound for the index of any differential algebraic system arising from it by a 
semi-discretisation. 

In a first simple example we demonstrate the effect of the existence of integrability conditions in a system of 
partial differential equation on its semi-discretisation. Not very surprising, one rediscovers discretised versions of the 
integrability conditions as "hidden" constraints of the arising differential algebraic system.  Consider the following 

1Due to a slightly different way of counting the strangeness index is actually always 1 less than the involution index. 
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linear over-determined system of second order partial differential equations for an unknown function u = u(t, x): 

utt =ux,    uxt = 0. C1) 

This system is not formally integrable, as a trivial cross differentiation yields the integrability condition uxx = 0. 
Addition of this equation yields an involutive system, so we can conclude that the involution index of (1) is 1. 

Now we perform a semi-discretisation of (1) by substituting central differences for the x-derivatives. We omit 
a discussion of initial or boundary conditions — not only for simplicity but also because for a non-involutive system 
it is not so obvious what conditions can be imposed. In our example, it is easy to see that the general solution of 
system (1) is given by u(t,x) - 2Ax + At2+Bt + C with three arbitrary real constants A, B and C. Thus only three 
conditions at points could be imposed. The semi-discretisation yields the following differential algebraic system 

2/iüj = Uj+i - Ui-i ,    üi+i - tij_i = 0 l2) 

where h denotes the step width of the z-discretisation and m = u»(i) approximates the values of u(t, x) at the i-th 
grid point. In order to determine the differentiation index of (2), we must check what happens, if we differentiate 
the second equation. After some trivial manipulations we get the algebraic equation 

Ui+2 - 2Ui + Uj_2 = 0 (3) 

which represents just a central difference approximation (with grid size 2/i) of the integrability condition uxx = 0 of 
the original system (1). It is easy to check that differentiation of (3) does not yield any new equations, so that the 
index of the differential algebraic system (2) is 1 and thus equal to the involution index of (1). 

One should note that this result does not depend on the fact that we used central differences. It is easy to see 
that no matter what land of difference formula is used to approximate the ^-derivatives, one will always obtain a 
differential algebraic system consisting of second and first order equations and the differentiation of the first order 
equations will yield some algebraic constraints. Thus the differentiation index is always at least 1. 

While this result is no big surprise, it is perhaps less obvious that when one discretises a formally integrable 
but not involutive system of partial differential equations the arising differential algebraic system will contain hidden 
constraints, too. As a simple example for this effect, we consider again a linear over-determined system of second 
order partial differential equations for an unknown function u = u(t,x). 

uu = 0,    uxx=0. (4) 

This system is formally integrable, as it obviously cannot generate any integrability conditions. But it is not 
involutive; it becomes involutive only after one differentiation to third order. So we find an involution index of 1. 

As above we perform a semi-discretisation by approximating the ^-derivative by a central difference and obtain 

the differential algebraic system 

üi = 0 ,    Ui+i - 2m + Ui-i = 0. (5) 

Obviously, we get new first order equations by differentiating the algebraic equations: 

ui+i - 2Ü; + Üi-i = 0. (6) 

It is easy to check that differentiating (6) does not yield any new equations and thus the index of the differential 

algebraic system (5) is 1, too. 
Finally, let us consider the differentiation of (4) to third order. It yields the following involutive system 

um = 0,    uttx = 0 ,    utxx = 0,    uxxx = 0. (7) 

Approximating the z-derivatives by central differences leads to the differential algebraic system 

uf] = 0 ,    üi+i - üi-i = 0,    üi+i - 2ü; + üi-i = 0 ,    ui+2 - 2ui+i + 2ui-x - Uj_2 = 0 . (8) 

It is left as an exercise for the reader that differentiation of any of the lower order equations in (8) does not yield 
anything new. Thus there are no hidden constraints and both (7) and (8) are of index 0. 

4. Conclusions 

We have outlined some ideas from the formal theory of differential equations and how they are related to index 
concepts for differential algebraic equations. Based on two simple examples we have formulated a conjecture on the 
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behaviour of the index under semi-discretisation. Attempts to prove this conjecture lead to interesting questions in 
Commutative Algebra related to syzygies. 

All examples in this note are completely artifical and have no relevance for concrete applications. But there 
exist very important systems of partial differential equations which are not in Cauchy-Kowalevsky form. Maxwell's 
equations governing electromagnetic fields 

dtE = iotB,    dtB = -rotE,    div£ = 0,    divJ3 = 0 (9) 

form an involutive system, although they are over-determined. The incompressible Navier-Stokes equations 

dtu + (u ■ V)u = - divp + Aw,    divu = 0 (10) 

have an involution index of 2 because of the peculiar way the pressure p enters. There is one non-trivial integrability 
condition, namely the well-known Poisson equation for the pressure 

Ap + V ■ (u ■ V) u = 0. (11) 

It has been shown in [15] that any semi-discretisation of the Navier-Stokes equations indeed leads to a differential 
algebraic equation with a strangeness index of at least 1 and thus an involution index of at least 2. 

In general, one expects that a semi-discretisation leads to a differential algebraic system with an index equal 
to the one of the original system of partial differential equations. In fact, one should take care that this is the case. 
The index is an important structural property of a differential system. If it is changed by the semi-discretisation, one 
must expect that other properties of the system may be changed, too, and so the obtained numerical approximation 
might be not very reliable. 
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WICHMANN, T. 

Computer Aided Generation of Approximate DAE Systems for Symbolic 
Analog Circuit Design 

The behavior of nonlinear analog circuits is described by a set of differential algebraic equations (DAE). We are 
developing simplification and approximation methods which can be applied to this DAE system in order to generate 
a reduced symbolic system, where a user given error bound is assured automatically. Either the reduced system can 
be analyzed further to achieve a better understanding of the circuit's behavior or it can be used as a behavioral model 
which can be solved numerically easier and faster. In the following we will focus on two aspects of the algorithm: 
simplification of subexpressions and monitoring of the index during simplification. 

1. Introduction 

Mathematically the behavior of an analog circuit can be described by a set / of differential equations and a set g of 

algebraic constraints, such that 

f(x(t),x'(t),y(t)Mt);p)    =    0    foralUe/ (1) 
g{x(t),y(t),u(t); p)    =    0    for all* Gl. (2) 

Here, u : H -> W denotes the inputs, x = (v, i) : IR ->• JRk denotes the vector of internal voltages and currents, 
y : H ->■ Rs denotes the outputs, and Jcl denotes an interval. We are working with symbolic equations, i. e., / 
and g are parameterized by symbolic parameters p = (pi,... ,pN)- The equations originate from Kirchhoff 's current 
and voltage laws and the circuit element characteristics and form a nonlinear differential algebraic equation system 
(DAE) F = (f,g). Even for small circuits the symbolic system of equations is getting very large, so the desire for 
an algorithm to reduce the complexity of the system arises. 

DAE systems originating from analog circuits are often linear in the differential variable, i. e., F(x, x',y, u; p) = 
A(x, u, y; p)x' + h{x, u, y; p) where A is a matrix valued function. To analyze the circuit's behavior, there are several 
standard techniques like DC, AC, or transient analysis. Since those are numerical analysis methods, a numerical 
design point 7r € MN has to be inserted for the symbolic parameters p. 

2. The Simplification Algorithm 

To simplify the symbolic DAE system, several different simplification methods are applied, including mathematical 
exact operations like elimination of variables. Additionally, operations which substitute the original system by an 
approximate one are applied, such as cancellation of terms, substituting of terms by constant values, or deletion 
of variables' time derivatives. One key aspect of the algorithm is the calculation of a suitable order, in which the 
different parts of the system are affected within one simplification method. An optimized order (ranking) yields 
both a better result and a higher performance of the algorithm. For different simplification techniques and different 
analysis methods several ranking algorithms have been developed. We refer to [1], [4], and [6] for a more detailed 
description of the simplification algorithm as well as of the ranking methods. 

We found that the combination of algebraic elimination and cancellation of terms in most cases reduces the 
complexity of the equation system significantly. But it also turned out that the notion of term as introduced in [1] is 
sometimes not suitable: after the deletion of a term the maximum error exceeded, whereas subexpressions of this term 
could be simplified without significant influence on the error. So the algorithm was extended towards simplification 
not only of "top-level"-terms but also of subexpressions hereof. Fortunately the DC-ranking mentioned in [4] (which 
uses the linearization of F) can be adopted to the cancellation of terms in nested subexpressions: For this let the 

DAE systems F = (/i,..., /„) and F = (/i,..., /„), such that j{ = ft for i £ I, ft = h + f, and /, = h + r for 
an index I. Here r and r denote top-level terms in the Zth equation of F and F which differJn the cancellation of 
a subexpression (for example, r = exp(xi + x2) and r = exp(xi)). Then the Jacobian of F can be expressed in 
terms of the Jacobian of F as J~ = JF + uvT where u = e( denotes the Zth unit vector and v = grad(r - r). Both 
Jacobians differ by a rank-one modification, such that the Sherman-Morisson formula can be applied for an efficient 
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calculation of J~. As in the top-level case, the DC ranking gives a very good prediction of the error influence for 
subexpression deletion, too. 

3. Index Observer 

The so-called index plays an important role in the theory of DAEs and there exist a number of different index 
concepts in the literature, e. g., the global, the perturbation, the differential, or the tractability index. In this work 
we will focus on the latter one, so if we are talking of the index we are speaking of the tractability index ([3]). It is 
known that solving initial value problems for DAEs with index greater than one numerically is an ill-posed problem. 
DAEs originating from electrical networks theoretically can be of arbitrary index but in real world problems they 
are usually of index one or two. Since the simplification algorithm modifies the DAE system one can not rule out 
the possibility of an index change during simplification, which has to be avoided. 

In [5] structural properties have been stated an electrical network has to fulfill in order to assure index one. 
By means of C-V-loops and L-I-cutsets it is possible to predict the index based on the network topology without 
analyzing the equation system. But this result is not suitable for our algorithm: After some simplification steps, 
say cancellation of terms, the resulting system of equations may not be re-interpreted as an electrical network. For 
example, Kirchhoffs current law may be violated for some nodes. So the index has to be calculated based on the 
equation system. 

The quasilinear DAE f(x,x') = A(x)x' + h(x) is said to be index-1 (or tractable) if the matrix A + BQ is 
regular, where B - Dxf, and Q denotes a projector onto ker A. The projector Q can be computed numerically for 
example using the Gram-Schmidt orthogonalization or the singular value decomposition of A. Yet another way is 
the following: Let S - {x G IR" | Bx £ imA}, then it can easily be shown that A + BQ is regular if and only if 
S n ker A = {0} (see [3]). Without loss of generality we may assume the following matrix structure: 

-Co t). *=(££)■ 
where Ai is regular. Then some simple computations show that Snker^4 = {0} if and only if det(B4-B3J4f 1A2) ^ 0. 

So the idea is to check whether after some simplifications the DAE system is still index-1 using one of this 
methods to compute the index.   If the index increased, we undo these simplifications because they changed the 
structural properties of the DAE system. 

4. Conclusions 

The extension of the algorithm towards simplification of subexpressions in many examples showed to be the key 
step to explicitly solve static circuit equations for the output variables. Furthermore, satisfactory results could be 
achieved applying the DC-ranking to those simplifications. Using the index observer it is now possible to avoid 
numerical problems for the simplified equation system caused by an increased index. 
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ZERZ, E. 

Some Applications of Gröbner Bases in Multidimensional Systems Theory 

The aim of algebraic systems theory is to study systems of differential equations with algebraic tools. This approach 
is also called "Algebraic Analysis." In the following, we will deal exclusively with linear systems of partial differential 
equations with constant coefficients: 

R(d)w — R(du...,dn)w = 0. (!) 

Observe that a characteristic polynomial matrix R is associated to any such system: R € V3Xq, where V - 
K[0i,..., d„] and K = B or K = C. The solution space of system (1) is defined as 

B = keiA{R) = {weAq \ R{d)w = 0}. (2) 

Here, A denotes a function space with D-module structure, for example, the space of smooth functions C°° or the 

space of distributions V. 

We have the following natural Galois connection between P-modules in Vlxq and P-modules in A" (the Z?-module 
structure of N C Vlxq is given by the usual multiplication in the polynomial ring, whereas the D-module structure 
on B C Aq is given by partial derivation). It is convenient here to introduce the notation 

■R:V1X9 ->Vlxq,    x^-xR. 

To a polynomial module N = im(-fi) C Vlxq, we associate the behavior N1- := kerA(R) as in (2). Conversely, for 
B C Aq, we define B1- := {r £ Vlxq | r(d)w = 0 Vw e B}. The mappings (-)x are inclusion-reversing and we have 

N C N^ and B C B^. 

Oberst [4] showed that for A = C°°,V this Galois correspondence induces a duality, i.e., a behavior B = ker^(i?) 
and the module N = im(--R) are in fact equivalent data. The following two sections show, in terms of two examples, 
how this may be exploited for gaining information on the solution spaces by studying the associated polynomial 

modules. 

1. Interconnection of Systems 

Given two solutions spaces Bt = kerA(Ri) C A9 (i = 1,2), we define their interconnection (see Willems [7]) as 
B = B\ n B2. In terms of the associated modules, we have N = N\ + N2. 

Let us consider the following task from control theory: Given a system Bi and a desired behavior B, design another 
system (a "controller") B2 such that BxHB2=B and Bi+B2=Aq. In terms of the associated modules: Given Nx 

and N, design (if possible) N2 such that N = N1®N2\ 

Our data are two polynomial modules Ni = im(-Bi) and N = im(-R). An obvious necessary condition for the 
problem to be solvable is that Ni C N. We shall make this assumption in the following. Then we have to decide 
whether TVi is a direct summand of N, that is, whether the exact sequence 0 -)■ Nx M- N -> N/Nx -> 0 splits. This 
is true if and only if there exists a polynomial solution Y to the linear matrix equation 

A{YRX -R) = 0. 

In that case, we already have a solution, namely N2 := im(-ri?i - R). The matrix A is obtained from computing a 
free resolution of the module N/Ni, that is, an exact sequence 

...^FI4F0-> N/NX -+• 0 

where F, are free P-modules. In other words, A is such that N/Ni ~ coker(-A). Note that the assumption Nx C N 
implies the existence of a polynomial matrix D such that Rx = DR. Moreover, since N/Nx = im{-R)/im{-DR) ~ 
V1X9/im(-D) + ker(-R), we may compute the matrix A based on the following Gröbner basis techniques: 
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• 

For computation of D with Rt - DR, we compute a row Gröbner matrix for R, that is, a matrix RG whose 
rows are a Gröbner basis of the module generated by the rows of R. The extended Gröbner basis algorithm 
also yields a polynomial transition matrix X with RG = XR. Now we may compute the normal form of each 
row of Ri with respect to RG. Storing each reduction towards the normal form (which is zero by assumption), 
this yields a representation R1 = DGRG = DGXR. 

The computation of a polynomial matrix Q with ker(-i?) = im(-Q) is implemented in computer algebra systems 
such as SINGULAR [2]. 

Finally, we set A = [DT,QT]T. Now, for checking solvability of A(YRi - R) = 0, we rewrite it as veciAYR^ = 
{Rf ® A)vec(y) = vec(AR) (see e.g. [1]). Thus we have to test whether vec(AR) 6 im(Rj ®A). To to this, one 
computes a column Gröbner matrix for Rf <g> A and the normal form of vec(AR) with respect to it. Our problem is 
solvable if and only if this normal form is zero. The extended version of the division with remainder algorithm also 
provides a solution Y (if it exists). Then we put R2 := YRi - R, and have im(-i?i) © im(-i22) = im(-R) as desired. 

2. Parameterizability 

The following result is fundamental in Algebraic Analysis [5]: Let A = C°° oder A~V. If 

■plxg    'A   2)lx9   'M\ 7)1 xm 

is exact, then so is A9 <£- A9 ^~ Am, i.e., 

R(d)w = 0    <£>    3v:w = M(d)v. (3) 

This motivates the following definition: A system R(d)w = 0 is said to be parameterizable if there exists a polynomial 
matrix M such that (3) holds. In view of Oberst's duality theorem [4], the following are equivalent [8]: 

1. B = ker^(i?) is parameterizable; 

2. N = im(-.R) is a syzygy module, i.e., its rows generate the kernel of a polynomial matrix: N = ker(-M); 

3. B = kevA(R) with a polynomial matrix R that is left prime in the following sense: If R = DRi with rank(fi) = 
rank(i?2), then there exists E such that Rx -ER(RUD, and E are supposed to be polynomial matrices). 

Based on the computation of syzygies [2], it is now easy to design a parameterizability test. 

Classical examples are the parameterizations div(io) = 0 <£> 3v : w = curl(u), curl(tu) = 0 <S> 3v : w = grad(u), and 
the Maxwell equations: 

*+V*^    =    °U     ELM:/!    =    ^ 

But there are also examples whose parameterizability has been decided only a few years ago [6], e.g. the linearized 
Einstein equations ötfw"fi„ + ursdTStt^ - urs(drinsj + drjnsi) - uji:jLjrsujuv(duvnrs - druQsv) = 0. Does this 
10 x 10 system of linear constant-coefficient PDEs admit a generic potential like the Maxwell equations? It is 
virtually impossible to do the calculations by hand, but with modern computer algebra systems such as SINGULAR 
[2] we are now able to obtain the answer (which is negative) within seconds. 
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KOLESNIK, A.D. 

On Diffusion at Finite Speed in a Plane 

We consider a diffusion generated by random motions at finite speed v in a plane with n, n>2, directions controlled 
by a homogeneous Poisson process of rate A > 0. The diffusion approximation theorem for the transition functions 

of this process is given. 

1. Introduction 

In the classical mathematical models of heat and mass transfer it is supposed that the diffusion is generated by 
chaoticly moving particles making a Brownian motion. As is well known, such a process is being described by parabolic 
heat equations, which give a good approximation to the experimental data if the diffusion speed is sufficiently large. 
However, it is also known from physical experiments that parabolic equations are not satisfactory in many respects 
when we deal with a slow diffusion. This fact can be easily explained remembering that parabolic equations usually 
arise under the assumptions, which are equivalent to the infinite speed of Brownian particles. On the other hand, the 
Brownian trajectories are continuous and non-differentiable almost everywhere. This means that Brownian particle 
is exposed to the infinite number of collisions during a unit of the time, and it has not any free run. Clearly it is 
not like this in real physical processes. In reality the particle is subject to a finite number of collisions during a 
given time what entails changes of direction of the particle motion, and it moves with a finite velocity between two 

consequent collisions. 

A new approach to the diffusion processes has recently been proposed in which these two idealized mathematical 
assumptions concerning infinite speed and number of collisions have been omitted. It was proposed to interpret the 
diffusion with finite velocity as a process of random motion of the particles moving with finite speed. This has led 
not to the parabolic equations, but to the hyperbolic ones. In this case the classical parabolic diffusion arises as a 
limit of the hyperbolic one under some natural conditions (that should be expected). This approach gives a new 
insight of many physical processes from the probabilistic point of view. 

2. Main Result 

The subject of our interests is the following planar stochastic motion. A particle moves with some constant finite 
speed v in the plane R2. At every time instant it has one of n, n > 2, possible directions of motion E0, Elt..., En-U 

where the direction Ek, k = 0,1,..., n - 1, forms the angle 2irk/n with z-axis. In other words, the direction Ek 

is orientated like the vector (cos(27r*/n), sin(2jr*/n)), k = 0,1,..., n - 1, n > 2. The motion is controlled by a 
homogeneous Poisson process with rate A > 0 as follows. When a Poisson event occurs, the particle instantly takes 
on a new direction with probability l/(n - 1) and continues its motion in the chosen direction with the same speed 
v until the next Poisson event occurs, then it takes on a new direction again, and so on. 

Let 0(f) = {X{t),Y(t)) denote the particle position in the plane at some instant t. It was shown in Kolesnik and 
Turbin (1998) that the transition law of the process S{t) is governed by the n-th order hyperbolic equation with 

constant coefficients 

fl [(n+1)/2] (n - k 

fc=i 
dt 

7n-2k+lQk-l 

[n/2] 

k=0 

2K)"2>n2" 
d 
dt     n 

2kJ \dx 

Xn 

[n/2] 

fc=i 

n-2k 

Q 

-1) 
fc-i 

Ik 

n — k — 1 

fc-1 

/ = 0, 

?n-2kr\k QK- 

(1) 

r     -    4 
with A being the two-dimensional Laplace operator, [*] means the integer part of a number. 
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It was also proved that if the following so-called Kac's condition 

v2 

v-»-oo, A-»oo, y-*C,   c>0, (2) 

is fulfilled then for n > 3 the hyperbolic equation (1) turns into the classical parabolic diffusion equation in the 
plane. This suggests that under the condition (2) the planar random motion described above is asymptotically a 
Wiener process in R2. 

The behaviour of the transition laws of Q(t) is of a special interest as the intensity of transitions A of the switching 
Poisson process tends to infinity and, according to A, the particle speed v increases as well. The accordance between 
the growth rates of A and v is determined by the Kac's condition (2). 

Here we present a diffusion approximation theorem stating that under the Kac's condition (2) the transition functions 
of the process Q(t) weakly converge to the transition function of the two-dimensional Brownian motion with explicitly 
given generator (see Kolesnik (2001)). 

Diffusion Approximation Theorem. Let the Kac's condition (2) be fulfilled. Then in the Banach space of twice 
continuously differentiable functions with compact support the semigroups generated by the transition functions of 
the process Q(t) converge to the semigroup generated by the transition function of the Wiener process in R2 with 
generator 

2n 

where A is the two-dimensional Laplace operator. 
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MAZUR-SNIADY K., SNIADY P. 

Reliability of the beam with variable cross - section under stochastic excitation 

The vaver presents the problem of reliability of a beam with periodically variable geometry under stochastic excitation. The 
annroahibasedon Lcepts of the nonasymptotic tolerance averaged model [3]. In this way we formulated the averaged 
TauaZns of the structured beam which describe the length-scale effect [1,2]. Using these ^ZZ^ZTrlZbZZMs 
probabilistic characteristics of the beam with periodically variable geometry. We will solve the problem of reliability of this 
beam as the problem of the first crossing. 

1. Foundations 

We consider stochastic vibrations of the periodic-like straight beam with a variable cross-section and a finite length L. The 
equation of the beam has well known form (under assumptions of the Euler-Bernoulh linear elastic beam theory) 

[B{x)v"{x,ij[ +c{x)v(x,t)+p{x)v{x,t)=p{x,t), (1) 

where v(x t) is the deflection of the beam axis, B(x) is the flexural beam stiffness, c(x) is the damping coefficient, p(x) is 

the mass density per unit length, p(x,t) is the stochastic process. The standard methods of analyzing of beam dynamics are 
ef e" v only if coefficients fn the equation above are constant or slowly varying. We consider beams in which the rapidly 
varying funcLal coefficients B, c, p are represented by periodic-like functions. It means that there -t -low.y varymg 
function /=/(*) xe<0,L>, where max/(x)«L, such that in every interval Ax = (x-l(x)/2,x+l(x)/2), 6xe<0,L>, functions 
Topcan beapproximated respectively by certain /^-periodic functions. Functions will be averaged by means of the 

formula  <cP>{x)S+'\(p^)d^   xeQ\   Q° ={*eü:   A(x)eü}. We base on the physical assumptions that the 
1   —;/t X-//2 

deflection of the /-periodic-like beam axis is an /-periodic-like function v(x,t)sPL(l). Let us define the averaged deflection 
w(x,t) by means of formula w(x,t)=< p >"' {x)<pv> (x,t). The total deflection of the beam can be represented by a sum 
v{x,i)=w(x, t)+d(x,i), where w(x,t)eSV(l). The deflection disturbance function d(x,t) will be assumed in the form of the 

series d{x,t)=hA(x)V/A(x,t), (summation convention over,4=1,2,... holds), where //(x)-the global mode shape functions 
are the known a priori oscillating /-periodic-like functions (with the weight p), [1], having at every xeQ° the periodic 
approximation h* (^), % e ä{X) and the new unknowns amplitudes of the shape functions y/A (x,t) e SV(l). Based on 
concepts of the tolerance averaged model, [3] and [1], we obtain the averaged equations of the beam in form of a set n+\ 
differential equations with slowly varying or (for /-periodic beam) constant coefficients: 

<B>wrv(x,ty<B(hAJ > ^A"(x,t]^<c>w(x,t)^<chA>wA{x,ty<P>w(x,t)=<p>{x,t), (2) 

<ß(hB)' >w"{x,t)+<B(hB)'(hA)' >y/A{x,ty<chB >w(x,t)+ (3) 

+ <chBhA >rj/A(x,ty<phB hA >iPA(x,t)=<p hB >{x,t). 

The boundary conditions are similar to that formulated in the Euler-Bernoulli beam theory. For the initial-value problem two 
initial conditions for y/A and w should be also known. 

2. Stochastic excitation 

We assume that p(x,t) = P(x)- F{t), where P(x)is deterministic function of * and F(t) is stationary stochastic process. 
We consider the simply supported beam with periodic-variable cross-section.. In this case we assume the following form of 

^    /\ .   inx v>      i\ .   jnx 
the solution:   w = > y^Jsin —- ,   WA = 2^yVJsm—— . 

For A=\, h*= hx =h we have equations (2,3) in the matrix form MY{k) + CY(k) + K[k)Y = R{k)F(t), where *=1,2,..., 
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f(*) = 

P = 

y(k)if) M ■ 

<P>W ' 

< Ph >{k) 

<p>,      0 

0   ,<ph2> 

r   „     .   knx  , 
< r >sin dx 

C 
<c>,     0 

0   ,<ch2> 
= T]M, 

r   „,      .   kn x  , 
< r/z > sin toe 

J T, 

K (*) 

<jB>lf 
-<Bh* > 

kn 

,-<Bh"> 

B(h"f 

kn 

We solve the eigenvalue problem to apply another eigenvalue transformation:  \K^ -{co^j M\Z^ = 0. We find the 

frequency a; from equation   det|*:w -(co^)2 M\=0 . Introducing new variables    rf)(t) = ''   W   ,Y{k) = Z{k)rß
{k)(t),ß- 

Wv)\ 
1,2, we receive uncoupled set of equations:   rf^ + 2a frf"> + {p^jrf^ = C$F({) , (4) 

m ß m ß 

The   solution   to   equations   (4)   has   form:    r(k)(t)= a{k) jg(k\t-T)F{r)dr,   where      g{k\t) =-\^e'"^' sin ü{j]
ß t, 

\Pdß) =\pß) ~Vxß) • We assume the loading process F(0 as stationary stochastic process. 

The expectation and variance of the response have following forms: £[/-j^j= ajf' fgj£fy-r)£[F(z-)]fifr , 
o 

\crrM(t)J =\ay) j Jg^y, -r,)g^'(?2 -r,)CFF(z-1 -T2)drldT2.   The   variance   of   the   velocity   of   the   response   is: 
0   0 

\&fmf\t)=\ay) J jgjjfo -^\)gp\h -T\)CFF{TX -r2 )drj dx2. For steady state of the vibration the average number of 
0   0 

1      ar^      "2^1 
crossing the level s is given by the Rice's formula   v4

+ = 
2n a i 

For white noise CFFfa -t2)=crFS(t1 -t2) the 

steady state solutions have form: 

3. Conclusions 

L i_ m°2„ L \_m^F v+_ iÄXP 
w ~4^)(ft>«)2' w —s^-'v- -Yn^exp 

s\htfa>V 
^a FF 

Problem of the stochastic excitations of the beam with periodically variable geometry is described by an equation with the 
rapidly varying coefficients. In this case the dynamic stochastic analysis and the estimate of reliability are rather difficult to 
obtain. In the framework of the tolerance averaging approach, it is possible to describe the problem in the form of the 
averaged differential equation system with constant coefficients. This approximation describes the effect of the beam 
segment length on the global dynamic behaviour (this effect disappears in classical homogenization solutions). We have 
reached the effective solution by double expansion into the eigen-functions and eigen-vectors. 
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RICHTER, M.; VOM SCHEIDT, J.; STARKLOFF, H.-J. 

Moment Functions for Solutions of Random Boundary Value Problems 

Boundary value problems for a class of ordinary differential operators with random coefficients are investigated. The 
random influences to the differential operators and the inhomogeneous terms are modelled by the class of weakly 
correlated processes. Using a perturbation method the random solutions can be represented as integral functionals 
of weakly correlated processes. It is possible to find approximations for the moment functions of the solutions by 
means of expansions in powers of the correlation length e of the input processes. Especially asymptotic expansions 
for second-order moments of the solutions are presented. The results determined analytically are compared with 
Monte-Carlo simulations. 

1. Random boundary value problems with weakly correlated stochastic influences 

In this paper, random boundary value problems for ordinary differential equations 

(1) 
L(UJ)U   = g(x,ui), 0 < x < 1, 

Uk[u]    = 0, fc = l,2,...,2n, 

are considered, where L(UJ) is given by 

L(w)u:=X;(-:ir[/i(a:,w)uW]      ,     x £ [0,1], 
i=0 

and the boundary conditions Uk are assumed to be non-random. 

For the purpose of simplification, the function f„{x,u) is assumed to be non-random, fn(x,w) = /„(a;), the 
more general stochastic case is investigated in [3]. The paths of the considered random functions are assumed to be 
sufficiently smooth. Furthermore, the condition fn(x) ^ 0 for all x e [0,1] and the positive definiteness of L(w) are 
supposed. Further assumptions, especially to the boundary conditions, are necessary, see [3]. Hence, the operator 
L(OJ) is assumed to be symmetric with respect to all admissible functions (these are those functions, which possess 
2n continuous derivatives and satisfy the boundary conditions). An example for suitable boundary conditions is 
given by u(0) = «'(0) = ... = u""1^) = «(1) - «'(1) = ... = un-x(l) = 0. 

The random influences to the considered problem are defined as follows, ge(x, u) := g{x, u)-{g(x)}; fie{x, w) := 
fi(x,u) - (fi(x)} (i - 0,1,..., n - 1), whereby (•) denotes the expectation operator. It is assumed, that the ran- 
dom perturbations to L(u) are sufficiently small, |/ie(a;,a;)| < r) a.s., i = 0,1,... ,n - 1. Such as in [1], [3] and [4] 
boundary value problems are investigated, where the vector process (gs(x,w), f0e(x, w), fu(x, w),..., fn-ie(x, u)) 
is assumed to be weakly correlated connected with correlation length e. Weakly correlated functions can be char- 
acterized as functions without "distance effect". The definition and a detailed presentation of the theory of this 
class of random functions is presented in [4]. The essential property of a weakly correlated connected vector process 
(hl£(x,u>),h2e{x,u))) reflects in the behaviour of the expectation and correlation functions, which are given by 

{ RijS(x,y)       \x-y\<e 
(hie{x))=0     and      (hie{x)hje(y)) = { ,    1,3 = 1,2. 

[ 0 \x-y\>e 

2. Asymptotic expansions of second-order moments of the solutions 

Using a perturbation approach, it is possible to find the stochastic solution u(x, u) of problem (1) in form of an 
expansion u(x,u) = u0(x) + Yt'jLi ui(x'>w) • Thereby, u0(x) denotes the solution of the averaged problem (which 
arises by substituting the random input functions by their expectations) and Uj(x, w) {3 = 1,2,...) denotes the term 
of u(x, w), which is homogeneous of j-th order as to g£(x, u), fie(x, w) (i = 0,1,..., n - 1). Consequently, the terms 
Uj(x,ai) can be represented as integral functionals of the weakly correlated connected input process. 

The basis for the consideration of the stochastic behaviour of the solutions of (1) are asymptotic expansions of 
moments of integral functionals of weakly correlated processes (e -> 0) which were given in [4] and which were (under 
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a special weak assumption) refined in [5]. In the following, exemplarily the second-order moments are investigated. 

Based on limits theorems given in [4], Theorem 1 can be derived. For a detailed presentation of the used perturbation 
method and the proof of the theorem it is referred to [3]. 

Theorem  1.    Let G(x,z) denote the Green's function associated with the averaged operator LQ (defined by 

L0u := YH=O(~1Y [(fi(x))uW] and ^e boundary conditions) and let u0(x) — /„* G(x, z) (g(z)) dz be the solution 
of the averaged problem.  Then it holds 

({u(xi) - uo(zi)) (u(x2) - u0 (**)))=*■{£ G(xi, z)G(x2,z) agg(z) dz 

E/ (oi 
i=0 JO     \ 

n-1        /■] 

E       / «1,»2=0  JO 

id
iG(x2,z)  , ril       ,d

iG{x1,z) 
x^z) ST;—- + G(x2, z) 

dzi 

&*G{xuz) di2G{x2,z) 
.(*i)/ 

dz1 UQ~{Z) agi(z) dz (2) 

dz*i dz** 
^'(z)u^!(z)aili2(z)dz\+o(s), 

whereby Oj1j2(z) {ii,i2 = 0,1,... ,n - 1) denotes the intensity between the components fclE and fi2E of the weakly 

correlated connected input process, aili2(z) := lim^ /f£ (filS(z)fi2€(z + x)) dx , and agg(z) and agi(z) are defined 

accordingly. 

Example  1.    We consider the random boundary value problem 

-u" + (1 + foe(x, w)) u = 1 + g£(x,u),        u(0) = u(l) = 0. 

The vector process (ge(x,w), f0e(x,ui)) is assumed to be a weakly correlated connected process, which can be simulated. 

Such processes are investigated in [2], [3] and [4]. The corresponding intensities are constants and chosen as agg = 

1.67 • 10~7, aso = l-67 • 10-6 and a0o = 1.67 ■ 10~5, respectively. On the left hand side of Figure 1 the approximation 

result for V(x1,x2) := liml/e • ((u(a;i) - uo(zi)) (u(x2) - u0(x2))) which is derived from (2) is shown.    On the 

right hand side the result of a corresponding Monte-Carlo simulation is presented, which coincides very well to the 
approximation obtained from Theorem 1. 

510 

Figure 1: approximation and simulation results ofV(xi,x2 
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SlENIAWSKA R., WYSOCKA A., ZUKOWSKI S. 

Reliability of Elastic-Plastic Bar Systems Loaded Dynamically 

An approach for calculating the reliability and sensitivity of elastic-plastic systems loaded dynamically is presented. The 
algorithm integrates the random nature of static and dynamic load with elastic-plastic strains of the structure. For the 
dynamic calculations the COSMOS system has been used and for calculating the reliability index and sensitivities the 
STRUREL system has been applied. Some example results of a roof grid are shown. 

1. Formulation and solution of the problem 

Let's consider a plane or space bar structure made of an elastic-perfectly-plastic material of random parameters. Let's assume 
that the configuration of the structure elements is deterministic, the load does not change their location, acts on the structure 
in the static manner (for example the dead load, the weight of machines) and in dynamic manner (for example the load of 
working machines). Let's assume also that the dynamic load is an excitation of a harmonic type and the magnitudes of all 
kinds of loads are described by random variables of known probability distribution. The structure is so designed that the 
fundamental frequency of its natural modes is larger that the expected frequency of the loading function. Furthermore, we 
assume that the damage of the structure can be caused by the incremental growth of plastic strains in these cross-sections in 
which the extreme bending moments are equal to the cross-section capacities (plastic limit moments). The number of plastic 
hinges, which appear in the damaged cross-sections, must be so that it makes the construction collapse. The problem of the 
construction shakedown can be formulated in a kinematic way starting from the unshakedown Neal's theorem or in a static 
way starting from the Melan's shakedown theorem in both cases completed with the "dynamic" (sufficient) shakedown 
theorem (Ceradini [1], Ho [2]). 
From the kinematic formulation follows that the structure will fail if there exists a failure mechanism which satisfies the 
following condition: 

X(max^e-6)/-min<-6).-)> IX,r-(<9++ €r) C1) 

where Moi are the plastic limit moments (capacities) in the f'-th critical cross-section, 0,+, 0," are the strains in the i-th 

plastic hinges, maxM? = M°(g)+maxM?(p), minM^ =Me
j(g) + mm.Me

i(p), are the maximum and minimum values of the 
bending moments, that occur due to given load in the j'-th critical cross-section of the elastic system, respectively. 
From the static theorem it follows that the structure adopts to the changing loads if, for each cross-section, following 
conditions are satisfied: 

JM/ ■X'j+maxMf -M0i
+ <0 

(2) 

- £ Mj ■ X) - min M] -M0~ < 0 

where M/ is the bending moment in the i-th cross-section caused by they-th unity hyperstatic force, X] is they-th residual 

hyperstatic force, nh is a degree of the static indeterminacy. 
For further considerations, as the reliability measure we assume the probability pr that the construction does not fail. A 
reliability index ß exists, which corresponds to this measure. We assume also that the random values that describe the types 
of load (dead load, operational etc.) and structure capacity are mutually independent. 

2. Example results 

The reliability and sensitivity of a roof grid built of 4 beams loaded by the dead load and static and dynamic operational load 
caused by working machines have been calculated. First, using the COSMOS system, the construction has been solved in the 
elastic range due to static and dynamic loads and the extreme bending moments have been found. Then, the shakedown 
conditions have been built and input to the STRUREL system for calculating the reliability and sensitivity of the structure. 
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Fig. 1. Model of the structure 
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Fig.3. The reliability index vs. the structure capacity 
calculated for the elastic state (dashed line) and 
for the shakedown state (solid line). 
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3. Conclusions 

The algorithm presented is a whole probabilistic approach, it gives the possibility for taking into account both the 
randomness of the load and construction and also the plastic reserve and can be useful in estimating the reliability of existing 
or newly designed structures. From the calculations shown follows that: in a case such as presented, when the shapes of 
failure mechanisms are easy to determine the kinematic approach seems to be more effective äs the static approach. The 
reliability index depends very strongly on the coefficient of variation of the static load and structure capacity and not much 
on the coefficient of variation of the dynamic load, because in this example the static load was much greater than the 
dynamic load. 
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Random Response of a System Due to Periodic Excitation with Gaussian 
and Non-Gaussian Disturbances 

The vibrations of a linear system due to periodic excitation with some Gaussian and non-Gaussian disturbances are studied. 
The disturbances are modelled by the white noise and by compound Poisson stochastic processes. The Ito formula for the 
white noise process and the general Ito formula for the compound Poisson process are applied to get the equations for 
calculating the probabilistic moments of the system response. 

1. Formulation and solution of the problem 

Let's consider vibrations of a structure made of an elastic material with deterministic material and geometrical parameters. 
Let the vibrations be caused by a harmonic excitation with some stochastic disturbances of its amplitude and phase, caused, 
for example, by the wind pressure or by working machines. After making eigen transformation, the vibrations of a linear, 
multi-degree of freedom system can be described by the separated set of equations 

y„(t)+ 2a„y„(t)+ con
2y„(t) = p„ [l + a £ (f)]sin <p(t) (1) 

Let's consider two types of disturbances: one of the gaussian type and one of non-gaussian type. In the first case the phase 
disturbance is described by 

d<p{t) 
= B7 + a2%2(t) (2) 

dt 

where %(f) and £2 (/) are stochastic processes of the "white noise" type. The equation (2) can be written in the shape 

d(p(t) = l3dt + Z2dW2(t) (3) 

where W2(f) is a unit Wiener stochastic process. Above problem has been considered in the paper [1]. 
In the second case the phase disturbance is as follows 

= m+XAo)k (4) d<p(f) ^> 

dt *=i 

where N{f) is the Poisson stochastic process with parameter A and for further calculations we assume that E[N(t)] = At, 

ElAal] = E[Aß/] = const, i = 1,2,3, E[Aak] = 0 . 
For calculating the probabilistic moments of the system response a set of Ito equations can be derived from the equation (1) 
after introducing some new variables [1] and taking into account the expressions (3) or (4). For the first case of excitation we 
introduce 4 new variables and for the second case of excitation 5 new variables 

Z\M = yn{f),   z„(n,t) = y„(t),    z3{t) = sin(p(t),    zA{t) = cosq>(t\    25(0= SAa>t. (5) 

The first 4 variables are the same in both cases. 
After applying the Ito's differentiation formula for the gaussian excitation and the generalised Ito formula for the non- 
gaussian excitation one receives a hierarchical set of differential equations for calculating the probabilistic moments of the 
variables z, (t), (i = 1,2,...,4,5). 
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2. Example results 

Some probabilistic characteristics of an example system due to harmonic excitation with gaussian and non-gaussian 
disturbances have been calculated. The results are shown in Figures 1 to 4 . 
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3. Conclusions 
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Fig. 4. Expected value of j> and its velocity vs. structure 
stiffness calculated for non-gaussian disturbances 

The problem presented seems to be interesting from the theoretical and practical point of view. The harmonic excitation with 
gaussian and non-gaussian types of disturbances can be an appropriate model for the wind load in the case when it causes the 
Benard-Karman vortexes. In the case of harmonic vibrations with stochastic disturbances the problem is difficult to solve in 
both theoretical and numerical way. When analysing the problem numerically one can see that the results depend very 
strongly on the precision of calculations. 

While solving the hierarchical set of differential equations for calculating the probabilistic moments of the 
system response a closure procedures is required. For any closure procedure, however, additional numerical verifications 
must be done. One of the closure procedures is to assume zero value for all probabilistic moments of orders higher than 
calculated. Another of the closure procedures is such that the higher order probabilistic moments, which have appeared in the 
equations, can be treated as a product of adequate probabilistic moments of lower order. Another proposition is to set the 
appropriate cumulants to zero. 
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Statistical Linearization of the Duffing Oscillator under non-Gaussian 
Excitations with Criteria in Probability Density Function Space 

The concept of statistical linearization with probability density criteria for nonlinear oscillator under non-Gaussian 
excitations is considered in this paper. New criteria of linearization and an approximate approach is proposed. 

1. Introduction 

In almost all studies of statistical linearization different moment criteria and nonlinear systems under Gaussian 
excitations have been considered. Also the application of statistical linearization to the Duffing oscillator in the 
case of moment criteria and non-Gaussian excitations [1] and in the case criteria in probability density space and 
Gaussian excitations [2] have been shown. The objective of this paper is to combine the both approaches for 
continuous excitations modelled by a polynomial of Gaussian coloured noises. 

2. Problem statement 

Consider a nonlinear Duffing oscillator described by 

dxi = x2dt,    dx2 = [-2£LJ0X2 - f(xi)]dt + ndt, (1) 

where f(xx) =y = wjfci +ex\; w0, C, and e are constant parameters; n(t) is assumed to be a non- Gaussian stochastic 

process modelled by 

M 

7?(i)=^aiJ/
i(t),    dy{t) = -ay{t)dt + qd£, (2) 

where a, ai; (i = 1,..., M) and q are constant parameters, y(t) is a one-dimensional coloured Gaussian process, and 
£(i) a standard Wiener process. An equivalent linearized system for the Duffing oscillator has the form 

dxi = x2dt,    dx2 = [-2CCJOX2 - u\xx - ee]dt + r)dt, (3) 

where u2
e = ke and ee = k0 - keE[x\(t)] , fc0 and ke are linearization coefficients. Two basic criteria of linearization 

in probability density functions space are introduced. 

/+oo r+°° 
(9N(y) - 9L(y))2dy,   I2(k0,ke) = \y\2\ gN(y) - gdy) I dy, 

-oo J-oo 
(4) 

where öjv(y) and gL{y) are probability density functions of variables of the outputs of nonlinear and linearized 
variables in equations (1) and (3) , respectively. 

3. Main results 

One can show that for variables y = ufai + ez? and y = u2xi + ee the corresponding factions gN(y) and gL(y) are 

9N(y) = ^-[^ + y-^}9i(hN(y)),   9L(y) = T±-l9i{hL(v)), (5) 
DOC      Vy 1^2 I "*e I 

where 

«w = jh^-{^£r-K+15*'^» (6) 
i/=3 

hN(y) = vi+v2,   hL(y) = -j-(y-ee) = —(y-k0 + keE[y(t)]), (7) 
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Vl = [£(j/ + v/2/2 + 4Wo
6/27e)]1/3, v2 = [£(y - yV + 4Wo

6/27e)]1/3, mx = E[x),a2
x = E[(x - mx)

2);cv = £[(?„(* - 
mj)]." = 3,4...,TV are quasi-moments, #„(a;) and G„(x) are one-dimensional Hermite's polynomials. The quasi- 
moments of the response c„ are uniquelly determined by corresponding moments E[rf£x%\ for px + p2 = 0,1,2, ...^. 

We approximate the moments that are needed for the calculation of the linearization coefficients by the corresponding 
ones of the linearized system. One can show that for system (3) the moment equations are determined in closed 
form [1]. In this case, the following algorithm for the determination of the linearized system can be formulated: 

1. Substitute e = 0 i.e. k0 = E[xi] = 0, k2 = u% into equation (3) and calculate probability density function of 
linearized element (one dimensional) defined by (5) for a2

x = a\ = q2/4(u}2 

2. Calculate stationary moments for the solution of system (3) and next the probability density function p7(x) 
defined by (6) 

3. Consider criterion h or I2 , where gN(y) and gL(y) are defined by (5) for hN(y) and hL(y) given by (7) and 
find the coefficient kmin which minimizes the considered criterion (4). Next, substitute ke = kmin 

4. Calculate stationary moments for the solution of system (3) and next the probability density function gI{x) 
by substituting E\x\xxf ] and functions gN(y) and gL{y). Go to step 3 until ke and E[x\] converge. 

Example. We show a comparison of stationary mean-square displacements of linearizaed systems obtained by 
applying statistical linearization with criteria: mean-square error of displacements, mean-square error of potential 
energies, criteria h, I2 and by simulation. The numerical results denoted by lines with crosses, squares, triangles, 
circles and stars, respectively are presented in Figure 1. 
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Figure 1: The comparison of stationary mean-square displacements of linearizaed systems vs.   parameter e with 
w0 = 1, C = 0.05, q2 = 0.1, a = 1, M = 3, c*i = a2 = a3 = 0.25 
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STARKLOFF, H.-J.; VOM SCHEIDT, J.; WUNDERLICH, R. 

Random Vibration Systems with Weakly Correlated Random Excitation 

In the paper asymptotic expansions for second-order moments of solutions to ordinary differential equations with 
weakly correlated random inhomogeneous terms are presented. Such equations arise e.g. in the mathematical modeling 
of vibration systems with an external random excitation. The given expansions allow an efficient approximative 
computation of moment functions of the solution process, particularly when the number of degrees of freedom is 

large. 

1. Asymptotic expansions for correlation functions of integral functionals 

Let us consider a system of random linear ordinary differential equations 

y = Ay + x V1) 

with a deterministic constant matrix A, which is assumed to be stable (i.e. all eigenvalues have negative real parts) 
and a centered wide-sense stationary random process x. Then a wide-sense stationary random solution process 

exp(A(t - s))x(s) ds=        exp(Au)x{t - u) ds (2) 
-oo Jo 

exists (see e.g. [1]). In the present paper the case of an e-correlated random excitation x(s) = Ef(s) will be 
treated. The random process 7 is characterized by a small correlation length e > 0 in the sense, that for the matrix 
correlation function it holds Rcf,f{s,t) = 0 for values s,t with \s - t\ > e [2,3]. In order to get approximations to 
second-order characteristics of the corresponding solution process, the process 7 is embedded in a family (ef), e > 0 
of random processes and asymptotic expansions as e -» 0 are derived. In a more general framework we can consider 
integral functionals of the type 

e9(t) (    Q(t - s) £f(s) ds = r Q(u) ef(t - u) du. 
J-oo JO 

Theorem  1. [4,6] Let (£f(s),s € 1R) be centered vector-valued wide-sense stationary e- correlated processes 
with correlation functions R'ff which are generated by a continuous correlation function of a 1-correlated process, 

Ä./v(«) = -R1/l/(f)=Ä(f) (3) 

and let Q be a deterministic matrix-valued function which is N-times continuously differentiable, N £ XSo = 
{0,1,2,...}, QW is absolutely continuous on M+ and Q^ € L2(TR+) D L1{JR+), j =-0,...,N+ 1. Then the 
following asymptotic expansions for fixed values T as e -» 0 are valid: 

RCgCg(0) QU\u)vfQ*{u)du + f Jo 
QU>{u)ufQ .+ n*( \du 

R-9-9^)    =    Y,— I    Q(uWQU)(u + T)}*du+ o{e 
j=0   3'    Jo 

N+n 

for T > 0 and RegCg(T) = R*Sgeg(-r) for r < 0. 

The quantities fij, i/f and Uj are called correlation moments [4,6] and are defined by 

/oo /-oo /-oo 

sjR{s)ds,    VJ= \s\jR(s)ds,    v+= sjR(s)ds, 
-OO J—oo JO 

where R denotes the generating correlation function from (3). 

+0(£"
+1), 
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2. Application 

Choosing Q(u) = exp(Au) one finds the asymptotic expansion for the matrix correlation function R^^T) for the 
stationary solution process (2) of system (1) with excitation x(t) — £f(t). 

Example 1.   In the case of a one-degree of freedom random vibration system 

y + 2590y + 6&/ = x, 0 < 6 < 1 

one gets for the general stationary solution (4) and the corresponding asymptotic expansions if x = Ef 

1 f°° 
Ryy(T)    =    45 /j—w 3 /      exp(-Se0\T-u\)sm(ed\T-u\ + <p5)Rxx(u)du (4) 

#WO    =        £     ^4=exp(-^o|r|)sin(^|r|-(i-l)W) + 0(£
JV+1)     (r # 0) 

j=0,jeven    ■'' 

uretfi öd = ö0\/l - £2 and ips = arctan(^^). 

Example 2.    Investigating a multi-degree of freedom vibration system (1) with a stable diagonalizable matrix A, i.e. 
-4 = VAV"1 with A = diag(Ai,..., A„), Re(Xi) < 0, one can find for fixed values r the asymptotic expansions 

j=0     J' 

R-v-vi-r)    =    J2-rJQ(r) + o(eN+1)     (r > 0) 

with 

7 j=0    J 

jq    =    "M^H V*' (*«)M-iA....- = V-1^^-1]*. 
\ / fc,(=l,2,...,n 

\ / k,l=l,2,...,n 

Further expansions of second-order moment functions for integral functional of weakly dependent random processes 
and other related results can be found in [2,3,4,5,6]. 
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Low-Dimensional Approximations of Random Vibration Systems 

The paper considers the computation of moment functions of the response of large-scale randomly excited vibration 
systems. Since standard methods fail because of enormous computational problems dimension reduction techniques 
are applied. We find approximations of the desired response characteristics of the large-scale system by solving a 

suitable reduced-order system. 

1. Introduction 

Mathematical modeling of real-world vibration systems (e. g. rotating generator shafts excited by random fluctuations 
of the generator torque, vehicles moving on a rough road) often results in the following system of equations 

y(f)    =   ^(y(t)) + Bh(t,w);        z(i) = Ty(t) (1) 

with an r-dimensional input or excitation h, an n-dimensional state y and an n'-dimensional output or response 
z, r, n, n' E IN. The above equations are called state and output equation, respectively. J7 is an n-dimensional 
mapping, B and T are n x r and n' x n matrices, respectively. 

The excitation h(i, w) is assumed to be a stationary random vector function. For the description of the long- 
term behaviour of the above system under continuously acting excitations so-called stationary solutions y and the 
corresponding output z are used. A stationary solution is a random vector function which satisfies the state equation 
and which is stationarily related to h. We are interested in conditions for the existence of stationary solutions y and 
the computation of moment functions (as mean, variance, correlation function and spectral density) of the output 
z. If T is linear, i.e. T{y) = Ay with some nxn matrix A, then the stability of A is a sufficient condition for the 
existence of stationary solutions. For systems with additional polynomial nonlinear perturbations the papers [2,4] 
provide corresponding conditions. For the computation of moment functions we refer to [1,3,4]. 

In this paper we consider large-scale systems with a large number n of state equations. This case arises 
in the semi-discretization of continuous vibration systems which can be described by PDEs. Procedures for the 
computation of moment functions of z (as well as for y) become intractable because of enormous computational 
problems. Therefore, we try to find approximations of z using the following system with a suitable low-dimensional 
state equation which still can be handled numerically 

ym(t)    =    Fm(ym(t))+Bmh(t,w);        z(t) = Tmym(t). (2) 

Here, ym is an m-dimensional state, m < n, Bm an m x r matrix, Tm an n' x m matrix and Tm an m-dimensional 
mapping. The n'-dimensional output z is called reduced-order approximation of z and system (2) is called reduced- 

order system of (1). 

2. Reduced-order systems 

To describe the investigated reduction technique we restrict to the case n' = n and T = I„, i.e. z = y. Assume the 
state space to be C" and let vi,..., v„ be a set of linear independent elements with unit norm forming a basis of 
Cn. Denote by xi,..., xn the new coordinates of y with respect to the above basis, i.e. 

n 

y(i, w) = 53 **(*' w)Vfc = Vx(*'w) 
fc=i 

where x = (x\,..., xn)T and V = (vi,..., v„). With respect to the transformed coordinates the original system (1) 

reads as 

x(i)    =    0(x(t)) + Dh(i,w);        z(t)=Vx(i) (3) 

where ö(x) := V-1 J"(Vx) and D := V_1B. The approximation idea consists in the assumption, that the basis 
elements are chosen such that the last n-m coordinates xm+1,..., xn are "small", i.e. approximately zero. Replacing 
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these variables by zero and truncating the corresponding state equations in (3) a reduced-order system (2) arises 

with Fm{ym) = gm ((o^rj), Bm := Dm, Tm := (vi,..., vm). Here, Qm and Dm denote the first m rows of Q 

and D, respectively. 

In order to assess the approximation accuracy and to find suitable basis elements vi,..., v„ error criterions 
have to be defined. Since the main interest is to compute the correlation function Rzz(r) = E{z(f)z*(i + r)} and 
the corresponding spectral density Szz (a) we define 

/" »    n 

£ |R«,*,(r)-B.Siij(r)| VijQ^dT and As(z,z):= / £ |S,iZ»-S^.(a)| *yda 

R ^'=1 R <>>=1 

n 
where * = {®i,j}i,j=i,...,n is a weighting matrix with non-negative entries and JZ *ij = 1 while 9 is a non-negative 

weighting function with / ö(r)dr = 1. In [4] the following upper bound for the introduced error criterions has been 
R 

found 

AR(z,z), As(z,z) < VA0(z,z) (2^E{||Z|
2
} + ,/X^i 

where A0(z, z) := E | ||z - z||   !>. For the computation of the upper bound means and covariances of z and z - z are 

needed, only. The above inequality suggests, that those basis elements vi,..., v„ provide small values of AR(z,z) 
and As(z,z) for which the term A0(z,z) is small. This idea leads to the following suggestions for the selection of 
basis elements (see [4]). 

1. Choose vi,..., v„ as the eigenvectors of the covariance matrix T := E{y(i)y*(i)} such that for the corre- 
sponding eigenvalues cr2,..., u\ it holds of > ... > &„. 

2. In case of a linear mapping ^"(y) = Ay choose vi,..., vn as the eigenvectors of A such that for the second- 
order moments of the transformed state variables xi,...,xn it holds E {|xi|2} > ... > E {|a;n|2}. 

3. Application 

The introduced dimension reduction procedures have been applied to a large-scale linear system (1) resulting from 
the semi-discretization of a PDE describing axial vibrations of a thin homogeneous beam of length 1 with a free 
end and a random excitation at the other end. The dynamics of the axial deflection u{t,x,u) is governed by the 
equation 

biutt + b2ut - b3uxx - biUtxx    =   0 

with the boundary conditions u(t,0,u) = p(t,uj),ux(t,l,u>) = 0. Here, bub2,h,b4 are some positive constants and 
p(t, u) is a stationary random process. Approximating the derivatives with respect to x by finite differences using 
the values of u(t, x, u) at grid points xk = jfe, k = 0,...,N+l, leads to a system (1) with n = 2N state equations. 
Numerical experiments in [4] indicate that reduced-order systems using only a few (m = 14... 20) properly chosen 
state equations provide a very accurate description of the random dynamics of the considered infinite dimensional 
vibration system. 
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Adaptive Optimal Stochastic Trajectory Planning in real-time using neural 
network approximations 

In Optimal Stochastic Trajectory Planning (OSTP) of industrial robots, the problem can be represented by a vari- 
ational problem under stochastic disturbances. Using deterministic substitute problems obtained from stochastic 
optimisation theory, the corresponding deterministic substitute variational problem can be solved approximatively via 
mathematical programming techniques. However, due to the computationally expensive algorithms involved, these 
techniques can be used for off-line calculations only. Hence, neural networks are trained to solve the trajectory- 
planning problem in real-time and to provide suitable solutions for on-line applications. 

1. Introduction 

The point-to-point Adaptive Optimal Stochastic Trajectory Planning Problem (AOSPTP) for industrial robots can 

at every stage j, after a time-path parameter transformation s : [tj,t{f] H-> [sj,sf], be represented by [1]: 

min] £(f(s,qe,q'e,q':,ß,ß',p)\Atj)ds (la) 

s.t. 

P(Tmin <aß' + bß + C< Tmax\Atj) > au,  Sj <S< Sf, (lb) 

qmin < Qe(s) < qmax,  Qmin < Qe^VW) < Qmax,  Sj<S<Sf, (lc) 

ß(s) > 0, Sj<s<sf, (Id) 

Qe(sj) = qj, qe(sf) = q/, (ie) 

<fe{si)y/ß&i)=qj,ß{°f) = 0, (lfJ 
where qe = qe(s) is the geometric path in configuration space, ß = ß(s) := s2{t) the velocity profile and (lb,c) 
are control, position and velocity constraints for the path to be optimised subject to the expected performance 
index (la). Since in the coefficients a = a(p,qe,q'e),b = b{p,qe,q'e,q") and c = c{p,qe) of (lb), as well as in the 
objective (la), stochastic parameters p = p(co), like e.g. the payload mass are included, the constraint is according to 
stochastic optimisation theory written as a probabilistic constraint, that has to be fulfilled with a certain minimum 
reliability of au. Furthermore, (le,f) denote initial and terminal positions and velocities for the robot joints. 

2. Solution of (AOSPTP) 

Let f(s,p) denote the objective in (la) and p(j) the conditional expectation of the parameter vector p subject to the 
available information Atj at stage j, the expected objective can be approximated by the following Taylor expansion: 

S(Rs,p)\Atj) » Ra,fP) + J2 lM{s'pU))flU (2) 

where m is the system of the z-th conditional central moments. Moreover, for calculating (lb), the condition 
for the torques is split into one-sided inequalities, and the inverse of the conditional distribution function is 
applied. Finally, using B-spline basis functions, the optimal solution (q{

e
j) (s), ß^ (s)) can be approximated by 

f^™!e
17?eBf'(s),YJ2iilkBk(s))- Substituting these linear combinations of known basis functions into problem 

(la-f), and discretisizing the path parameter s, finally yields a finite nonlinear parameter minimisation problem for 
7 := (7?', 7J®), i = 1,..., nQe, k = 1,..., riß, that can be solved by a mathematical programming algorithm. However, 
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since mathematical programming does not provide real-time solution capability for (AOSPTP), which is necessary 
due to the short cycle times of industrial robots, we solve many problems (la-f) with C = (sj,Atj, qj,qj)T as input 
at the different stages j and use the solutions to train Neural Networks. 

3. Example 

Consider the following time-optimal point-to-point problem for the industrial robot Manutec r3 [2], where the 
payload is supposed to be stochastic with a uniform distribution on an interval [mi - Ami, mi + Ami]. The initial 
information is given by q0 = (0.0,-1.5,0.0)T,qf = (1.0, -1.95,1.0)T,m* = 7.5, Am, = 4.0 and au = 0.99, and the 
trajectory is adapted once at time tx = 0.2229 sec with new information m( = 5.0 and Ami = 2.66. This leads on a 
SUN Ultra-Sparc II with a 200 MHz processor to the following numerical and graphical results for the first joint: 

♦Ü) stage j       tj mi Ami 
Mathematical programming:        0           0.0 7.5 4.0 0.5689 
Mathematical programming:         1 0.2229 5.0 2.66 0.5577 
Neural Network:                            1 0.2229 5.0 2.66 0.5553 

CPU-time in seconds 
3.57 
6.44 
0.02 
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Figure 1: Position q\(t). 
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Figure 2: Joint velocity qi(t). 
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Figure 3: Control n(t). Figure 4: Velocity profile ß(t). 

As the above table and Fig.  1-4 indicate, the neural network solution can be obtained very fast, and at the same 
time the optimal trajectory is approximated with a high precision. 
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BlTTNER, L. 

Shortest Curves for Vehicles on Surfaces of Celestial Bodies 

The classical problem, to find the shortest line connecting two given points of a given surface, does not take account 
of 1) obstacles, i. e. forbidden regions (islands, icebergs, foreign territories a. s. o.) through which the curve must 
not run, 2) alterations of the shape of the surface in the course of time (tides, tectonic displacements a. s. o.), 3) 
the fact that the length of the curve, described by a vehicle moving on the surface, has eventually to be measured 
with respect to a primary inertial coordinate system emitting the control signals. The surface system may change 
its position relating to the primary system. 

Let /i, f2, /3 be the orthonormal unit vectors of the surface system and P=y be a point of the surface represented 
by a parametric description 

3 

y = r(t,v) =J2ri(t,v)fi 
i=i 

depending on the time t and the Gaussian parameter vector v = (vi, v2)- As a rule r(t, v) = r°(v) + d(t,v), where 
r°(-) is the parametric representation of a reference surface and d(t, v) is a deviation vector relatively small compared 
with r°(v). 

Let ei, €2, e$ be the orthonormal unit vectors of the primary system and let 

3 

i=i 

denote the distance vector from the origion of primary system to the origin of the surface system. 

Since the unit vectors fi of the surface system are definite functions 

3 

fi = fi(t) = *Y^<Pu{t)ej 
i=\ 

of the (constant) unit vectors ej we obtain 

r(t,v) = s(t,v) 

with 

s(t,v) = J2sj(t,v)ej,    Sj(t,v) = ^2ri(t,v)ipij(t). 
3 i 

Assume 

y(t) = r(t,v(t)),    tt<t<tf, 

to be the actual position of the vehicle with respect to the surface system, hence 

x(t) = a(t) + s(t,v(t)),    ti<t<tf, 

the actual position with respect to the primary system. The initial point of the curve be P0= y°, 

y°=r(to,v°),    v°=v(t0), 
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the final point be Pf=yf, 

yf=r(tf,v
f),        vf=v(tf) 

with respect to the surface system. 

The length of the curve with respect to the surface system is 

t, tf 

Li   -   J\y'(t)\dt = I^^(t,v(t))fi\dt 

=     f     2 3«(*,w(*))*i(*)**(*))    *> 
to  VJ=° / 

where v0 = t, v0(t) = * and gtj denotes the scalar product ■§£•■§*:. The length of the curve with respect to the 
primary system is 

dt L2    =    y*|i(t)|cft   =   J \ä(t) + jts(t,v(t)) 
to 

|ä(i)|2 + 2ö(t) • jts(t,v(t)) + ]T M*> «(*))** (*)«>(*) |    *, 

to 

*/ 

/ 

where /iy- denotes the scalar product J^- • ^. 

Either Lj or L2 has to be minimized by an appropriate choice of an absolutely continuous, two-dimensional function 
v(-), taking account of boundary, phase and slope (control) conditions B, Ph, SI. 

B) Let the moments t0) tf and the points Po%°, Pf=yf be given, assume y° = r(t0,v°), yf = r(tf,v
f). Then a 

feasible function v(-) has to fulfill v(t0) = v°, v(tf) = vf. Alternatively 

B') Let <o and y° = r(t0,v°) be given, but tf be free. Let the end point Pf=yf(t) = r(t,vf(t)) be a variable target 
for t > t0. Then a feasible function has to fulfill v(t0) = v° and v(tf) = vf(tf) for some tf > t0. 

Ph) The allowed region A(t), to which the point y(t) = r(t,v(t)) has to belong, is supposed to be defined by 

A(t) = {y = r(t,v) | hi(t,v)>0    (l = l,...,L)}, 

where the hi are sufficiently smooth real functions. Therefore a feasible function v(-) has to satisfy 

hi{t,v(t))>0    (l = l,...,L). 

SI) Restrictions concerning v(t), f. e. \v(t)\ < c f. a. t, are assumed to be defined by inequalities 

9k(t,v(t))>0,     (k = l,...,K)a,e., 

where the gk are sufficiently smooth real functions too. 

In order to apply tools of optimal control the derivative v(t) is introduced as control u(t). A simplified example 
(only one coordinate system, minimization of Li, ...) for such a solution procedure is presented in L. BITTNER, 

Kürzeste Wege auf einer Fläche beim Vorhandensein von Hindernissen, in Mathematik-Interdisziplinär, Shaker- 
Verlag, Aachen 2000. 
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BLACHUT, J. 

Optimal design of steel barrelled shells 

The Simulated Annealing, SA, technique is applied to maximize the magnitude of external hydrostatic pressure for bowed 
out shells for which, the shape of the meridian is sought. A global maximum offers a 40% increase in load carrying 
capacity over the mass equivalent cylindrical shell of the same mass whilst the SA heuristic proves to be computationally 
affordable. 

1. Background 

Simulated annealing has been primarily explored in areas such as Operational Research, Computer Science and Artificial 
Intelligence. A comprehensive bibliography, containing 1380 entries, on heuristics can be found in [9]. In addition to SA it 
also covers genetic algorithms, tabu search and other search strategies. Apart from referencing past research effort into SA, 
this bibliography provides references for applications covering the following problems: assignment, combinatorial, design, 
function optimization, graph, placement, location and allocation, manufacturing, production planning, load balancing, 
multi-objective optimization, networks and telecommunications, routing and transportation, scheduling and statistical. It 
transpires from the detailed listing and available literature that structural optimization problems have rarely adopted the SA 
methodology. Known work in this area includes references [1-3, 7, 8, 10-12]. 
This paper explores the possibility of applying SA heuristic to structural optimization of shells subjected to stress and 
static stabiliy constraints. 

2. Neighbourhood Configuration and Problem Description 

The following variable step method has been adopted for generation of candidate points in the design space. One starts with 
the initial, feasible, point X0 and the next point is generated using the following relation: 

Xnew = X0 + rvheh, 
(1) 

where r is a random number generated in the range [-1,1], vh is the component of the step vector along the h* direction 
given by the vector eh. If the h* component of Xnew falls outside the bounded domain given by constraints then a fresh 
random search takes place until a feasible point Xnew is obtained. The magnitude of vector v is related to the acceptance 
ratio ace s n/Nk, where n is the number of accepted moves and Nk is the total number of evaluated moves (= epoch length). 
Both n and Nk are at a given temperature. For each direction, h, the new step vector component is taken as: 

vh = v°h(l + c(n/Nk - 0.6)/0.4), if n > 0.6Nk;     vh = v°h/(l + c(0.4 - n/N^AM),   if n < 0.4Nk; or vh = v°h - otherwise  (2) 

The parameter c denotes a constant. The purpose of these variations in step length is to maintain the average percentage of 
accepted moves at about 50% of the total number of moves, at a given temperature. References [5,6] provide a more 
detailed discussion on choosing a step size for the continuum domain. 
Let us consider a bowed out steel shell subjected to static external pressure. The shape of the barrelled out geometry is 
assumed to be given by the following generalised ellipse: 

x 

R+A 

/ \ »2 

y 
0.5 z, + n, 

= 1 (3) 

Exponents n,, n2 and n3 are taken as design variables and A denotes the amount of bowing out - see Ref. [4]. It is assumed 
in this paper, that bowed-out mild steel shells have the same radii, R,,, at the top and bottom edges as the initial, and mass 
equivalent, cylindrical shell of length L0. 
The load carrying capacity of the above shells is characterised by yield load, py, static bifurcation buckling, pbif, or 
axisymmetric collapse, pc. The bowed-out configuration capable of supporting the maximum external, hydrostatic pressure 
is sought, i.e. 

popt = max mm [py, pbif, pc], W 
ni, Ü2> n3 

subject to the following constraints: u L U L U 
- lower and upper bounds on the design variables:   n;

L < n! < nx ;      n2 < n2 < n2 ;        n3  < n3 < n3 ; (5) 
- constant mass of barrelled shell: mbarrel = const (= m,.yliader). (6) 
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Structural response of the above axisymrnetric shells is calculated using BOSOR5 and ABAQUS codes. No axial deflection 
is allowed at the mid-length of barrels. Also, at the top and bottom edges only, axial displacements are allowed and the 
magnitude of all other variables is set to zero. Shells are assumed to be made from mild steel with Young's modulus E = 
210 GPa, Poisson's ratio v = 0.3 and the yield point of material ffw = 300 MPa. Structural analyses are based on linear 
elastic, perfectly-plastic modelling of material (with isotropic strain hardening). 

3. Solution Details, Results and Conclusions 

There is very little a priori knowledge about the design space and the quality of cost function. It is known from past 
experience however that the cost function may not be continuous at the transition regions between axisymrnetric collapse 
and bifurcation buckling, for example. 
The following values were assumed for lower and upper bounds on design variables: 1.0 < n[ < 10.0; 1.0 < n2 < 10.0 and 
1.0 < n3 < 10.0. The search process started from a random point X0 with all subsequent new configurations generated using 
Eqn (2). Parameter c was taken to be 10. The epoch length, Nk = 20, was constant at all temperature levels. A geometric 

schedule for lowering temperature was used with 
the parameter a = 0.99 and the initial temperature 
T0 = 50.0. The number of cooling cycles was not 
fixed and the annealing process was allowed to 
continue until there was no change of the cost 
function in 10 consecutive cycles. 
Detailed computations were performed for the 
reference cylindrical geometry given by LyRo = 
1.0 and RJt0 = 33.33. The maximum hydrostatic 
pressure popt = 14.71 MPa, is associated with the 
axisymrnetric collapse. The optimal design vector 
(nb n2, 2n3/L0)opt equals (2.2, 2.0, 1.0). Yielding 
starts on the inner surface of the barrel at both top 
and bottom edges and the maximum, effective 
plastic strain at the collapse reaches 3.2%. A 

Fig. 1 Section through optimally shaped barrel. section through the barrel, at collapse pressure, is 
depicted in Fig. 1 where it is seen that 71% of the cross section has yielded at the optimum load. The ratio of popt to the 
bifurcation buckling pressure of mass equivalent cylinder, pbif is popt/pbif = 1.4. 
Computational effort of a single re-analysis is such that a predominantly sequential optimization tool, such as SA, is 
capable to navigate through the design space in an affordable amount of time. 

Max. Plastic Straii 
eeff! 

PcolT 
Elastic 

Plastic 
Strains 
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R. BuRGMAiR; F. PFEIFFER 

Prozeßspezifische Roboteroptimierung 

Es werden Zielfunktionen und Nebenbedingungen zur numerischen Optimierung der Lage, Reglerkoeffizienten und 
der Fügerichtung von Robotern, die Objekte mit großen Auslenkungen montieren, vorgeschlagen. Das nichthneare 
Vektoroptimierungsproblem wird mit einem SQP-Algorithmus gelöst, Optimierungsergebnisse werden gezeigt. 

1. Einleitung 
Seit langem gibt es große Bemühungen die in der automatisierten Montage auftretenden Handhabungsprozesse 
zu optimieren, u.a.[l],[2]. Da die bei Montageprozessen auftretenden Kräfte oft starken nichtlinearen Charakter 
zeigen, ist es naheliegend zur geeigneten Definition von Gütekriterien den Fügeprozeß selbst mit einfließen zu lassen. 
In [3] wurde auf solche Weise der Montageprozeß bezüglich eines Bolzen-Loch-Problems optimiert. Hier soll der 
Schwerpunkt auf Fügeprozesse mit großen Auslenkungen liegen. 

2. Robotermodell 
Grundlage für die Berechnung der Gütekriterien ist das mechanische Modell des Roboters (PUMA560, 6 Achsen). 
Je nach betrachtetem Gütekriterium werden die ersten drei Getriebe starr oder elastisch (Feder-Dämpfer-Element) 
modelliert. Im elastischen Fall erhält man / = 9 Freiheitsgrade, 3 Motor- und 6 Armwinkel, im starren Fall die 
/ = 6 Freiheitsgrade der Armwinkel. Der Vektor der generalisierten Koordinaten ergibt sich im elastischen Fall zu 
q := [7M,i, IM,2, 7M,3, JA,I , ■ ■ ■, 7A,e], im starren Fall zu q := [7A,I , • • •, lAfi]■ Allgemein lassen sich die Bewegungs- 
gleichungen folgendermaßen hinschreiben: 

M(q)q- + h{q,q) = BT + JT{q)\, W 

mit M e TRfJ als Massenmatrix, h G El''1 als gyroskopische, Zentrifugal- und Corioliskräfte, B € JRf'6 als Über- 
setzungsmatrix, r € Et6'1 als Motormomente, J £ Et''6 als Jacobimatrix bezüglich dem Greiferkoordinatensystem 
und dem System der Minimalkoordinaten q, und A 6 El6'1 als auf den Greifer wirkende Kräfte und Momente.^edes 
Gelenk ist PID geregelt: r = -Ki${~tM - 7M,s)dt ~ KP(~1M ~ 7M,S) ~ Kd{iM ~ 7w,s). mit IM € 1R ' als 
Ist-Motorwinkel, 7M s £ 1R6'1 als Soll-Motorwinkel, und Ki,p,d € IR6,6 als Reglermatrizen. Bei Annahme kleiner 
Bahnlängen, verglichen zu den Roboter abmaßen, kann um einen Arbeitspunkt linearisiert werden: q = q0 + q. Man 
erhält ein gewöhnliches DGL-System 2.Ordnung. 

3. Optimierungsproblem 
Parameter: Optimierungsparameter sind die Armwinkel, die Reglerkoeffizienten, und die Orientierung des Füge - 
koordinatensystems (F) bezüglich des Greiferkoordinatensystems (G)(Kardan-Winkel). 

Gütekriterien: 
-Störverhalten: Durch Anregungen am Greifer und durch die Motoren wird der Roboter in Schwingungen versetzt. 
Um diese zu minimieren wird ein Integralkriterium Gs = J™ AxT(t)GSAx(t)dt definiert. Hierbei ist AI der Vektor 
der Bahnabweichungen in F und Gs ist die Gewichtungsmatrix. Die Simulation erfolgt mit dem elastischen Mo- 
dell Da eine optimale Dämpfung der Schwingungen unendlich hohe Reglerkoeffizienten zur Folge hätte, müssen die 
benötigten Motormomente berücksichtigt werden: GT = /0°° TT(t)GTr(t)dt, mit GT als Gewichtungsmatrix. Das 
Kriterium für Störverhalten ergibt sich zu d = 0.5(Gs + GT). 
-Beschleunigungsvermögen (BV): Um auf ein Ereignis (z.B. Knicken) schnell reagieren zu können ist das BV eine 
wichtige Kenngröße. In [4] wird ein 'Dynamic Manipulability Ellipsoid' eingeführt, welches das räumliche BV charak- 
terisiert. Die Begrenzungen der Motormomente gehen dort nicht ein. Da diese jedoch das BV wesentlich bestimmen, 
werden sie hier berücksichtigt. Ausgangspunkt sind die linearisierten Bewegungsgleichungen des starren Modells für 
q - q = fqdt = 0 und A = 0: Mq + h = BT. Eliminiert man hieraus q mit Jq = b = Gbeb, erhält man nach 
weiterem Umformen die maximale gewichtete Beschleunigung bmax entlang einer vorgegebenen Richtung e: 

, .      f   (BTCX - h)j   \ (2) 
bmax =   min   <      .   H > ■ K ' 

»=i,...,6 [((MJ    )Gbe) 



S660 ZAMM • Z. Angcw. Math. Mcch. 81 (2001) S3 

mit b = Vbb, e = 6/6, Gb = diag{gb) und gb e 1R6'1 als Gewichtungsvektor. rex,i 6 {Tmin,i,TmaXti\b > 0}, für 
i = 1,... ,6. Als Kriterium wird der Kehrbruch des von ebmax(e) aufgespannten Volumens Vb definiert: G2 = 1/Vb. 

-Fügekräfte: Da es sich bei Fügeobjekten mit großen Auslenkungen oft um gummiartige Materialien handelt, die 
große Reibkräfte verursachen, ist die zur Verfügungstellung genügend großer Fügekräfte wichtig. Ausgangspunkt 
sind wieder die linearisierten Bewegungsgleichungen des starren Modells, jetzt für q = q = J qdt = 0 und q = 0: 
h = BT

 + J A. Eliminiert man hieraus A mit A = G\e\ erhält man analog zu G2 das Kriterium G3 = l/V\. 

Nebenbedingungen sind Gelenkwinkelbeschränkungen, beschränkte Motormomente, 
Forderung der Reglerstabilität, genügend große Entfernung zu Singularitäten und Be- 
schränkungen in Lage und Orientierung von F. 

Lösung erfolgt mit einem SQP-Algorithmus, unter Verwendung automatisch generier- 
ter, analytischer Ableitungen der Gütekriterien und der Nebenbedingungen. Die Pareto- 
optimale Fläche wird mit der Methode der gewichteten Summe berechnet. 

4. Ergebnisse 

Für das Beispiel des Fügens einer Gummidichtung in einen Kanal (vgl. Abb. oben) werden geeignete Gewichtungen 

gewählt (Fügeebene xF - zF). Das Ergebnis der Mehrkriterien Optimierung ist unten dargestellt. Für angezeigte 

Punkte wird ein Vergleich des jeweiligen Güteriteriums bezüglich Referenz- und optimierter Parameter gezeigt. Ange- 

merkt sei, daß die charakteristische Form des BV im Raum, durch Einbeziehung der Motormomentbeschränkungen, 
von Ellipsoid- (vgl. [4]) in Polyederform übergeht. 

Pareto-optimale Fläche für G1 

G1 
8 

4 
Amplitudengang in F 

Al    " 

Pareto-optimale Fläche für G2 

G2 

Max. translatorische Beschleunigungen in G 

ylm/s2!' 

ax [m/s2] 

aylm/s2? 
axlm/s2] 

Pareto-optimale Fläche für G3 
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IZTOK.  ClGLARIC; SlMON   KRASNA, IVAN PREBIL 

Optimal path synthesis of the four-bar mechanism 

Four-bar mechanisms are widely used in different devices as leading mechanisms that have to provide desired and 
often complicate motion and sustain substantial forces, accelerations and jerks. As the four-bar mechanism seems to 
be a simple device, it is well known that dimensional synthesis is an exacting piece of work. One has to determine 
the proportions of link lengths needed to accomplish the specified motion and force transformation. Paper discusses 
optimal synthesis of four-bar mechanism. The objective of this approach is to determine the optimal values of 
the mechanism link lenghts, to minimize the difference between the trajectory "T" of the arbitrary point C on the 
mechanism coupler link and prescribed trajectory "P", while hinge forces have to remain within the prescribed values. 

1. Mechanical model of four-bar mechanism 

The vector notation [1] is particularly suitable for analyzing planar four-bar mechanisms depicted in Figure 1 by 
using symbolic manipulations [2]. To solve the kinematics, the loop closure condition needs first to be written [1], 
and represented as a system of two scalar equations 

T3 COS 63 = r\ COS #i + 7*4 COS 64 + T2 cos 02 
7-3 sin Ö3 = ri sin 0\ + 7-4 sin 64 + r-i sin 62 

(1) 

with unknowns 03 and 04. The angles 63 and 64 in terms of parameter 62 are obtained by summing squared equations 
(1) and after some additional algebraic manipulation. Figure 1 clearly demonstrates the relation between the angles 
63 and 65. 

Figure 1: Notation and discretization of the four-bar mechanism 

In order to perform kinetic analysis, the discretization approach is used. Figure 1 depicts, how mechanism links are 
considered as free bodies. An external force Fc is applied in point C and an external moment MA is applied in 
point A. Newton-Euler equations of motion can be represented in the following matrix form 

m2a2Tx 
m2(a2Ty + g) 

rn3a3Tx ~ Fcx 

m3{a3TV + g) - FCy 

m,4a4Tx 
m4(a4Ty+g) 

J2T 02 -MA 

J3T 03 -eiFcx ~ ^Fcy 

JiT 6 A 

The equations (1), together with equations (2), fully describe the four-bar mechanism motion and forces that 
produced motion or are the result of prescribed motion and should be understand as system equations. 

1 0 -1 0 0 0 0 0 
0 1 0 -1 0 0 0 0 
0 0 1 0 -1 0 0 0 
0 0 0 1 0 -1 0 0 
0 0 0 0 1 0 -1 0 
0 0 0 0 0 1 0 -] 

171 0-72 «73 a74 0 0 0 0 
0 0 fl83 ^84 085 ß86 0 0 
0 0 0 0 095 «96 ^97 a9 

0 " F\2 

0 ■F12 

0 ■P23 

0 -F23 

0 F34 = 
0 F34 

0 FAX 
0 F41 

1 ME 

(2) 
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2. Formulation and solution of nonlinear programming problem 

Hydraulic support [5], depicted in Figure 2, is a part of mining industry equipment, considered for protection of 
working environment. The aim of research is optimal design of the leading four-bar mechanism ABDE in order to 
ensure desired motion of hydraulic support top part with minimal transversal displacements, while the hinge forces 
have to be less than Fmax = 1500MN. The applied external vertical load in point C is 1178.4fciV. The nonlinear 
programming problem is defined as 

minmax|:rc(£) - 65|,        t e [0,T] 

subject to gi (a, u,t) = |F» (a, u,t)\ - Fmax < 0, 

95 (a) = (a3 + a4) - (ax + a2) < 0, 

56 (a) = (a2 + a3) - (oi + a4) < 0, 

aj e [oj-.a,-],        j = 1,2,3,4, 

A,B,D,E,        te[0,r}. 

(3) 

(4) 

(5) 

(6) 

(7) 

where a = [oi, a2, a3, a4] := [ri, r2, r3) r4] is design variable vector and u = [ult u2]T := [xc, yc]T is system variable 
vector. Hinge forces Ft (a, u,t), i = 1,2,3,4 are calculated in symbolic form by using system equations (1) and (2). 
Formulation (3-7) enables one to minimize the maximal difference between the trajectory T of point C on the 
coupler of the four-bar mechanism ABDE and the prescribed linear trajectory P : x = 65. Constraint functions 
(4) ensure the four-bar mechanism hinge forces to be less than prescribed value, while constraint functions (5) 
and (6) represent well known Grashoff conditions, which prevent from complete rotational movement of the links. 
Certain upper and lower bounds are imposed on design variables. Formulation (3-7) is not soluble with today 
known methods of mathematical programming. The issue of this problem is operator max in the objective function 
and time dependent constraint functions. As shown in [3], we involve an artificial design variable to eliminate 
operator max and time discretization of time dependent functions in the formulation (3-7) to obtain soluble form. 
The formulation (3-7) is solved by using global optimization method. The Adaptive Grid Refinement algorithm 
(AGR) is applied [4]. The optimal leading four-bar mechanism ABDE is specified with parameters vector a* = 
[718.5,1361.9,407.2,1311.9] mm. The trajectory of point C and hinge force in E are depicted in Figure 2 as solid 
fines. Comparing previous existing solution (dashed lines) [5] with calculated optimal solution (solid lines) one could 
see slight increase of transversal displacements from Axmax = 12.16mm to Ax^ = 12.53mm. However, maximal 
hinge forces F%max = 1234.41A:7V, F£max = 1234.30WV, F£max = 1493.97fcA^ and i^max = 1494.60^ for optimal 
design vector are decreased over 12% in critical joints D and E compared to previously existing solution. The 
external load is therefore more equally distributed between joints, consequently this means more improved and safer 
design. 

~£W> 

IJrad] 

Figure 2: Hydraulic support Figure 3: Trajectory of point C and hinge force FE 
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H. ENGELS, W. BECKER 

Optimization of Patch Reinforcements around Circular Holes in Isotropie 
and Anisotropie Plates 

For various technical reasons cutouts like holes in thin-walled structures are often inevitable. Applied loads lead 
to an undesired stress concentration and respective strength degradation in the hole vicinity. In order to reattain 
the requested strength in practice a local hole reinforcement is applied. The techniques of mathematical structural 
optimization have been applied in order to determine an optimal design for the hole reinforcement. 

1. Introduction 

For many technical applications the frequent structural mechanical problem of cutouts like holes is inevitable. Any 
arbitrary load leads to an undesired stress concentration and strength degradation in the hole vicinity which results in 
a possible premature failure. By virtue of the mentioned strength degradation in practice a local hole reinforcement 
by doublers (Fig. 1) is employed. The application of the hole reinforcement leads to the question of an optimal 
doubler design with a minimum weight and maximal strength. For that purpose an optimization problem has been 
formulated which is solved by the techniques of mathematical structural optimization. 

2. Problem Definition 

For the subsequent investigations a circular hole in an infinitely extended plate consisting of isotropic or anisotropic 
material is assumed. Furthermore the settings of linear elasticity are presumed. For the analysis of the hole 
situation several analytical solutions (complex potential method and the Airy stress function) and of course numerical 
approaches like the finite element method are available. Analysing the stress distribution of the circumferential stress 
along the hole edge leads to the well-known stress concentration factor K [4]. Its numerical value depends on the 
investigated load case and thus in the present study the uniaxial tensile load case, shear load case and the biaxial 
tensile load case are considered. With respect to the shape and design of the doubler various alternatives are possible. 
In the present study a circular doubler, an elliptical doubler with fixed thickness td and an elliptical doubler with 
adjustable thickness td have been investigated. 

3. Treatment of the Optimization Problem 

In order to determine an optimized doubler design a clearly defined optimization problem has to be set up. First it is 
necessary to have a mathematical model for the structure which provides the required structural response and defined 
state variables. In the present case the structural model is given by a detailed finite element model. Second the 
optimization model itself has to be set up which includes the respective design variables, objective function as well as 
equality and inequality constraints. The doubler radius rd, the elliptical aspect ratios a, b, the orientation angle 6 of 
the ellipse and the doubler thickness td are possible design variables depending on the particular doubler alternative. 

basic structure 
upper patch 

<V    /°: 

Figure 1: Hole reinforcement by doublers 
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Figure 2: Optimization results 

As objective function the doubler mass is chosen and is to be minimized. The necessary inequality constraints are 
given by the respective strength constraints along the hole edge and along the interior as well as exterior reinforcement 
boundary. Third the mathematical optimization problem has to be solved by an appropriate optimization algorithm 
[6]. The combined application of the sequential linearization and generalized reduced gradients turned out to be 
efficient. The derived optimization procedure can be applied for an anisotropic material in terms of a composite 
laminate as well [1,5]. In this case the ply angles and thickness of the respective doubler layup may be introduced 
as new additional design variables. For the strength constraints the Tsai-Wu failure criterion [5] is used in order to 
avoid first-ply-failure. 

4. Results and Discussion 

Figure 2 illustrates the determined optimization results for the considered load cases and doubler types assuming 
isotropic material. The minimal required doubler volume is shown in dependence of the obtainable strength for each 
load case. Obviously the required doubler volume depends significantly on the applied doubler type. Furthermore the 
obtainable strength differs with respect to the investigated doubler alternatives. The doubler volume can be reduced 
significantly by introducing the doubler thickness td as an additional design variable. The obtained optimization 
results for a composite laminate demonstrate well their effective use in regard of the adapatability to different load 
cases by well-adjusted doubler designs. 

5. Conclusions 

The techniques of mathematical structural optimization have been used successfully to the problem of hole rein- 
forcements and reveal significant optimization potential. The implemented procedure works with good reliability. It 
turns out that the required doubler volume and the obtainable strength are highly dependent on the applied doubler 
type. Increasing strength requirements go along with a corresponding growth of the doubler volume. 
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CHRISTOPH GLOCKER 

Spatial Friction as Standard NLCP 

Coulomb friction problems can be stated as quasi-variational inequalities. These are variational expressions of certain 
non-smooth pseudo-potentials which have to be minimized in the sense of a two-person non-cooperative constrained 
game, consisting of the normal and the tangential player. In this paper we show that spatial Coulomb friction applied 
to the rolling contact problem in rigid body dynamics may be formulated as a nonlinear complementarity problem in 
standard form, i.e. as 0 < x _L f(x) > 0 with continuous and differentiable x -> f(x). 

1. The spatial rolling contact problem 

We investigate a multibody system (mass matrix M, generalized velocities u, applied forces and gyroscopical ac- 
celerations h) with one spatial contact. Terms indexed by N and T refer to the normal of and to two orthogonal 
directions in the contact plane, respectively. The kinetic and kinematic equations for such a configuration are 

Mü - h - WJVAJV - WTAT = 0, 7N = wJfü + WN,    7T = Wyii + WT (1) 

with (\N,XT), (7JV,7T) 
and (WJV,WT) being the values of the contact forces, the relative velocities and the gen- 

eralized force directions of the contact. Only the rolling contact problem is considered. For the contact laws we 
assume impenetrability in the normal and Coulomb friction in the tangential directions, and we characterize the set 
of the admissible tangential forces XT by the friction disk DT in M2 with normal cone NDT(XT), 

DT ■= {AT I |AT| < MAJV} 

{/te     for 0 < |Ar| = MJV 

0      for 0 < |AT| < I*\N 

H2     for 0 = |Ar| = ßXN 

(2) 

Here, \i is the coefficient of friction, e = Ar/|AT| the direction of the tangential force, and K > 0.  For a closed 
contact and 7iv = 7r = 0, the impenetrability condition and Coulomb's law on the acceleration level become 

XN > 0, 7JV > 0, XN'JN = 0,    -7T € NDT(XT), (3) 

and we may state the following problem: For M, h, (WJV, WT), (WN,^T) given, find ü, (XN,XT), (7AT,7T) 
sucn as 

to satisfy (1) and (3). 

fcOS CC; 

Vsin et; 

i = 1,2,3 a3=f 7C 

Tl        '^^T9       '*—'T"3 

Fig. 1: Friction disk 
DT- Left: Normal cone 
NDT(XT) at different 
points AT € DT accord- 
ing to (2). Right: Addi- 
tional constraints Cn in 
(4) defined by three unit 
vectors e,. 

2. An alternative representation of Coulomb's law 

To formulate (1) and (3) as a nonlinear complementarity problem in standard form, an alternative representation of 
the tangential contact law -jT 6 NDT (AT) in (3) is needed. For this purpose we define 

CTi = {AT 1 o-i(XT) > 0} with CTJ(AT) = HXN — ef AT, 

DT = {AT 1 O-D(XT) > 0} with G-D(XT) = ß2X2
N - |AT|

2 

i = 1,2,3 
(4) 
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Note that the friction disk DT is now characterized by a parabolic function aD with vanishing gradients at XT = 0, 
but accompanied by three additional linear inequalities CTi which will take over the job to satisfy the friction law 
also at AT = 0. By setting 

CT ~ f| CTi n DT = DT;    NCT (AT) = £ NCri (AT) + NDT (AT) = NDT (AT) 
i=i 

(5) 
j=i 

we obviously obtain the identity NCT{\T) = NDT(\T), and may hence write the friction law as -jT £ NCT(XT) 

This inclusion can be rewritten as a system of inequalities [4] 

~^T = ^2 e*Ki + 2^TKD     With Kj > 0, Oj > 0, Kjffj = 0,     j" = 1,2,3, D, 
2=1 

(6) 

where equivalence with -jT G NDT(XT) has been proven in [1]. 

3. An NLCP formulation of the rolling contact problem 

By using the representation of the tangential contact law from section 2, the rolling contact problem may now be 
stated in the following form: We need the kinetic and kinematic equations (1), the normal contact law in (3), the 
definition of the friction saturations a, and aD in (4), and equation (6), i.e. 

Mu - h - WJVAJV - WTAT = 0, 

Oi - fi\N - ef AT (i = 1,2,3), 

-W > 0, 7AT > 0, XNJN = 0, 

JN = w^ü + wN, 7T = W^ü + WT 

°D = V2\2
N - |AT|2,        -7T = Ei=i ei*i + 2ATKD 

°i > 0, KJ > 0, ajKj = 0 (j = 1,2,3,D). 
(7) 

We now eliminate ü, yT, \T from (7) such that as unknowns only the five complementary pairs (AJV, 7JV) and (aj,Kj) 
(j = 1,2,3,£>) remain. By setting aP := (CTl <r2)

T, KP := (Kl K2)
T

, HP := (p fj,)T, 1P := (ei e2)
T, this yields 

KP 

\°D   J 

(   w&M-^wjv + W.p/ip) 
- Wj, M-1 (WJV + Wp/if) 

T T—T fi    e3 ip ßp 
0 

/ 0 \ 
-21 (HPAN - crp) KD 

0 

V f^XN ~ \\»P*N - <rp\\2j J 

\ 

+ 

-wj^M-'Wf 
W^M-'Wp 

e3 ip 
0 

-Ip1 e3 

0 
0 

0\ 
0 
0 
0/ 

<rp 
«3 

V   KD   J 

+ 
(    w^M^h + WN    \ 

-WlM^h-wp 

(8) 

V J 
Here we have also used WP := WTIP

T, wP := ^wr and I := Ip1!^, where I is a symmetric and positive 
definite 2x2 matrix. The NLCP (8) is of the form y = f (x), y > 0, x > 0, yTx = 0 with f (x) = Ax + g(x) + c and 
generalizes the cases discussed in [2,3]. Since f(x) is continuous and differentiable we may finally state its Jacobian 
Dxf = A + Dxg. We denote by XP(XN,crP) := ßPXN - <?p and obtain for Dxg explicitly depending on Ajv, aP 

and KD with I = IT the expression 

Dxg = 

0 0 0 0       \ 
0- 2Ifj,PKD             2IKD 0 -21AP 

0                           0 0 0 
\2ß2\N-2\p,ITßP      2A£lT 0 0       ) 

(9) 
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HANSEL, W.; BECKER, W. 

Weight-Minimal Laminate Structures Under Stress Constraints 

The determination of weight-minimal laminate structures requires the well-aimed employment of structural opti- 
mization. In contrast to the common parameter optimization in which the design variables fiber orientation and 
layer thickness are varied continuously, a layerwise topology optimization offers more flexibility. Starting from an 
initial laminate lay-up with sufficient strength, the topology of each individual ply is varied by removing unnecessary 
material.  The final design is well adapted to the local load fluxes. 

1. Introduction 

During the last decades, the use of unidirectional CFRP (carbon fiber reinforced plastics) got well established for 
lightweight construction of aircraft and spacecraft applications. The special anisotropic properties of composite 
materials allow tayloring the laminate behavior to the given structural needs. In order to receive weight minimal 
structures, structural optimization is needed. Traditionally, properties like fiber orientations or layer thicknesses 
are used as design variables which are varied continuously. Often this kind of optimization leads to weight-optimal 
laminate designs, which are difficult to manufacture. Therefore in the present work an optimization algorithm is 
presented that leads to designs which are easy to manufacture. The main idea of the layerwise topology optimization 
is to remove locally the whole ply material within regions where it is not seriously needed. With regard to a low-cost 
manufacturing the choice of orientation angles is limited to 0°, ±45° and 90° and the ply thickness is fixed to the 
discrete values 0 (no material) and h (material). The required structural analyses have been performed with the 
finite element program ÄNSYS and also the optimization algorithm has been implemented by ANSYS macros. 

2. Problem formulation 

As the initial design, we consider a symmetric laminate under pure inplane loading. In order to keep the manufac- 
turing costs low a common quasi-isotropic lay-up [0°/ ± 45°/90°]s with the initial layer thicknesses ft* is used. The 
material orientation angles Gj are fixed and cannot be varied during optimization.  The objective function of the 
optimization problem is to minimize the total weight m of the structure. 
The strength constraints of the optimization problem are given by the TSAI-WU failure criterion in the form 

°~\°~1 ,      °~2      i   °12 + a?o (I 1   \    . Al 1 + 2£ + *i Nr-^r    +** l±-±    <1 (1) 
XtXc     VXtXcYtYc ^ YtYc 

T S2        l\Xt     Xj       ' \Yt     Yc 

with the longitudinal and transverse strengths X and Y in tension (index t) and compression (index c). As design 
variables the thicknesses of the finite elements with the discrete values ft and e « ft are taken. The small value e ^ 0 
is chosen to avoid singularity problems within the performed finite element analyses. 

3. Optimization algorithm 

The contrived heuristic optimization algorithm is based on an iterative process with two phases in which the thick- 
nesses of the single elements are varied. Within the first phase the principal directions </> and </J + 90° of the averaged 
stresses of the total laminate [0°/ ± 45°/90°] are determined and compared with the four layer orientation angles 
@i. The optimal load-carrying capacity of a single element is reached if that element is essentially loaded in the 
direction of its orientation angle. On the other hand this means that a single ply element is not optimally loaded, if 
its orientation angle differs significantly from the principal stress direction <p. Those elements can be removed, e.g. 
material in the ±45°-layers can be removed if the stress direction is in the range -A<p < <p < +Aip. The parameter 
Aip is an arbitray threshold parameter that is increased during the first phase of the optimization process. 
In the second optimization phase the weight saving potential is further exploited. For that purpose material is re- 
moved in those regions where the principal stresses <T/ and au of the single elements are below a threshold parameter 
a0. A low value of aI/n suggests that the corresponding element is not loaded significantly. The threshold stress 
value (To is increased successively until the load carrying capacity of the laminate is attained. 
For some more flexibility two options are implemented in the algorithm to fit in again removed material. By a first 
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criterion material is fitted in if the principal stress of a removed element (thickness e) is "large" and if simultaneously 
the TSAI-WU criterion is lower than 1. In a second criterion it is checked if at any location where failure occurs 
other layer elements exist whose orientation angles correspond in a better way to the calculated principal stress 
directions. 

4. Optimization examples 

The effectiveness of the proposed optimization method has been tested and verified in a number of example problems. 
In a first example the weight of a rectangular laminate plate is to be minimized when the plate is clamped along 
the left edge and is loaded by a single force at the upper right corner. The other edges are free. Each of the four 
layers is discretized into 20 x 40 quadrilateral plane eight-node elements. Thus, in all there are 3200 elements with 
12400 degrees of freedom. In fig. 1 the final design after 35 iterations is shown. The weight could be reduced from 
31.65 in the initial design to 3.81# in the final design. 

In a second example the optimal design of a reinforcement for a [0790°]5-cross-ply laminate plate with a hole under 
a uniaxial tensile load is determined. As a reinforcement two quasi-isotropic [0°/ ± 45°/90°] doublers are chosen. 
The objective function is to minimize the total weight of the doublers. Because of symmetry only one-quarter of the 
problem is regarded (fig. 2). In the final design elements in the 0°- and +45°-layers are almost completely removed 
and only a small ring of the -45°-layer around the hole is remaining to reduce the circumferential stresses <TVV. 

In order to transfer the tensile load predominantly material in the 90°-layer is required. The determined laminate 
structure is then optimally adapted to the local load fluxes. 

[0790°] laminate 

Figure 1: A cantilever plate Figure 2: Optimal material distribution of reinforcement 

5. Conclusions 

The present work gives a novel concept of topology optimization for laminate structures, where the optimal topology 
is determined for each individual layer. The final design is easy to manufacture from standard prepregs by tailoring 
each layer individually and subsequent curing. In many cases the weight of the laminate design can be significantly 
reduced and the resultant structure is well-adapted to the structural needs. The numerical effort keeps reasonably 
low, because in contrary to a formal mathematical optimization no sensitivity analyses are needed. 
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HÖRNLEIN, H. R. E. M. 

Effiziente semi-analytische Gradientenberechnung in der Strukturoptimierung 

Bei der Lösung von Strukturoptimierungsaufgaben werden fast immer Gradientenverfahren der Mathematischen Op- 
timierung eingesetzt. Die Bereitstellung der ersten Ableitungen beansprucht den größten Teil der Gesamtrechenzeit. 
Der Erfolg der Optimierung hängt aber auch von der numerischen Genauigkeit der Ableitungen ab. Hier wird auf 
einen entscheidenden Nachteil der favorisierten semi-analytischen Sensitivitätsanalyse aufmerksam gemacht, gleich- 

zeitig wird aber gezeigt wie dieser Nachteil zu beheben ist. 

1. Bestandsaufnahme 

In der Anwendung auf Sfem^-Optimierungsprobleme ist die semi-analytische Berechnung der Gradienten unum- 
stritten. Bei der SAape-optimierung ist das nicht so, hier ist die Genauigkeit der Ableitungen fragwürdig. In der 
Literatur wurde an Beispielen gezeigt, daß die konventionelle semi-analytische Sensitivitätsanalyse (SA) mit großen 
numerischen Fehlern behaftet ist, siehe [1], [2], [3], [5]. In dem Bericht [8] sind diese Aktivitäten übersichtlich zusam- 
mengefaßt. In [2] wurde gezeigt, daß die Starrkörperrotationen der biegesteifen Elemente (Balken, Platten, Schalen) 
für diesen Fehler verantwortlich sind. In [9] wird dieser Fehler durch die Berücksichtigung der Starrkörperrotation im 
Pseudo-Lastvektor vermieden. Bei der Improved Semi-Analytical Sensitivity Analysis (ISA) wird die Genauigkeit 
durch eine NEUMANN-Reihenentwicklung der perturbierten inversen Steifigkeitsmatrix verbessert, [4]. 

2. Verbesserte semi-analytische Sensitivitätsanalyse (ISA) 

Das linear elastisches Gleichgewicht K{x)u = p, x £ Mn wird durch eine CHOLESKY-Zerlegung K = LLT mit 
anschließender Vorwärts-Rückwärts-Substitution (VRS) nach den Verschiebungen u gelöst. Für die Ableitung der 
Verschiebungen werden drei wesentlich verschiedene Möglichkeiten zur Berechnung der Gradienten betrachtet: 

Analytisch (A) 

du __ I9KM 

dxi dxi 

Semi-Analytisch (SA) 

du        ,. „_! AKi 
—- =   hm   -K L——u 
dxi     Axi->o Axi 

Finite Differenzen (OFD) 

du        ,.      u(x + eiAxi) - u(x) 
-— =   lim    7  
dxi      Ax;->o Axi 

Der Codierungsaufwand der analytischen Ableitungen ist für die Vielzahl von FE-Elementtypen und Variablenarten 
nicht vertretbar. Semi-analytische Ableitungen nach geometrischen Entwurfsvariablen sind bei der Anwendung auf 
biegesteife Strukturen ungenau. Finite Differenzen (OFD) sind i.a. hinreichend genau aber zu rechenintensiv weil 
die CHOLESKY-Dekomposition für alle xt durchgeführt werden muß. Die Konstruktionsidee für die ISA basiert auf 

einem Lemma von CARL NEUMANN: 
Für lineare Operatoren B £ L (1R") mit dem Spektralradius p(B) < 1 existiert die Inverse (7 + B)     und läßt sich 

als Reihe darstellen:    (I + B)~l = limfc_>oo Ej=o(~1);'-B'' • 

Für die inkrementierte Steifigkeitsmatrix K+ = K{x + etAxi) = K + AKi erhält man mit der Äquivalenz K+1 = 

(j _|_ K1 AKi) ~l K1 und dem NEUMANN Lemma, die Verschiebung der gestörten Struktur als Reihendarstellung: 

u+ = K?p =(I + K-'AKi)-1 K-*p = f>l)j {K-'AKiY u = u + J>1)J (ÜT1 AK,)' «. (1) 

Die Auswertung der Reihe (1) läßt sich mit der Rekursion: Ei=i(-!)j [K^AK^u = £-=1(-l)
j K^AKtfj 

einfach und schnell mit nur einer CHOLESKY-Dekomposition durchführen: Ktij+i = AKrfj und i?i = u. 

Eine Verallgemeinerung auf nichtlineare Rechthandseiten p = f{ue) mit der elastischen Verschiebung ue der Aero- 
elastik ist einfach und kann beim Autor mit dem vollständigen Bericht als E-mail abgefragt werden. 
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Als Alternative zur ISA werden im Programmsystem LAGRANGE der DaimlerChrysler AG die gemittelten fini- 
ten Differenzen (GD) für AÜT/Ax; verwendet. Neben den zentralen (GD2) Differenzen werden die vierten gemittelten 
Differenzen (GD4) aus den Taylorreihenentwicklungen für K bei x + e^e mit e e {iAz,, ±AXJ/2} berechnet. 

3. Numerische Verifikation am Beispiel 

Der in Abb. 1 gezeigte Kragbalken verformt sich unter der Einheitslast Mz = 1 nach der analytischen Lösung um 
v = (MZL

3)/(2EIZ). Die Geometrie und der Werkstoff ist mit L = I = E = 1 so gewählt, daß für die Verschiebungs- 
ableitung dv/dL = 1.0 gilt. Zur Simulation mit der FE-Rechnung wurden m = 100 Balkenelemente verwendet. In 
der Abb. 1 sind die Ergebnisse der konventionellen- (SA), der voll numerischen- (OFD), der verbesserten- (ISAfc) 
und der gemittelten- (GDn) Gradienten für eine Perturbation von AL = 10~4 gegenübergestellt. 

Bernoulli-Euler Balken 
Inkrement AL = 10~4 

Referenzen dv/dL 
(SA) -1.49936 
(OFD) 1.00006 
analytisch 1.00000 
[5] 0.99990 
[7] (ISA2) 0.99977 
[7] (ISA3) 0.99883 
[7] (ISA4) 1.00005 
(GD2) 1.00075 
(GD4) 1.00001 
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Abbildung 1: Vergleich des Verschiebungsgradienten dv/dL am Kragbalken 

In der Strukturoptimierung hat sich gezeigt, daß die super linear konvergenten quasi-NEWT ON- Verfahren 
der mathematischen Optimierung, z.B. die Sequentielle Quadratische Optimierung (SQP), sehr genaue Gradien- 
ten benötigen um die zweiten Ableitungen aufzubauen. Für den Anwender stellt sich also die Frage nach dem zu 
wählenden Inkrement e, das klein genug sein muß um den Abschneidefehler klein zu halten aber auch nicht zu 
klein ist, um den Rundungsfehler zu vermeiden. Um dieses numerische Fenster zu treffen sind e-Parameterstudien 
erforderlich. Die im Beispiel verwendete Perturbation ist mit e = 10~4 für Computerrechnungen zu groß gewählt, sie 
wurden hier verwendet um den SA-Fehler zu demonstrieren. Die Parameterstudie zeigt jedoch, daß der SA-Fehler 
auch mit kleinerem Inkrement nicht beseitigt werden kann. Es gibt für die SA kein brauchbares numerisches Fenster: 
die konventionelle semi-analytische Sensitivitätsanalyse ist für die praktische Anwendung nicht zu gebrauchen. 
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ISTRATIE, V. 

OPTIMAL RENDEZVOUS WITH CONSTRAINTS ON CIRCULAR AND ELLIPTICAL ORBITS 

This work studies the optimum rendezvous with minimum fuel consumption two space vehicles on circular and 
elliptical orbits, the surveyor vehicle being equipped with a low thrust installation, their motion equations being written in 
the three-dimensional space, in relative motion; the space origin being the target vehicle. Optimal controls to be 
determined being the acceleration due to thrust related to the minimum fuel consumption. By means of the Legendre- 
Clebsch condition it is demonstrated that the formulated optimization problem is, indeed, a minimum problem. 

1. Problem Formulation. Motion Equations of the State 

Considering the Axzy system: the z axis in the direction of the vectorial radius (that links the origin of the inertial 
system with the origin A of the moving system), the x axis is counter rotating, and the y axis perpendicular on them, 
related to the A target which evolves on an already known circular or elliptical orbit the motion equations of the surveyor 
(because the motion takes place out of the atmosphere the aerodynamic forces are neglected) are: 

dx          dVr       2uzsinq>      up         Jup                             x dz    Tr 
— = VX,-

JL = ^——^z + ^x + 2^-—V-a- ^fr + ar,— = V7 
dt      *'   dt r0

3 2     / \2 2 x   +[r0+z)   +y &      x'dt 

dV,      u     lunsiny       up      „Jup r0+z dy 
- + X + — Z-2-^-VX-\L? = — + a„— = V. 

dt      r2 r3 r4 r2     * w,      rQ r0 i0 r0 2    ( \2       2 
x   +[r0+z)   + y 

3/2       V dt 

dvv y         ^    \Vi. \2 
u? : :^- + av, — = ,—U + ecojq>J 

dt 2      ( \2 1 x   +[r0+z)   +y 
3/2       r dt 

where r0 is radius planet, u - gravitational parameter, p - focal parameter, £ - eccentricity orbit (e = 0 for circular 
orbit), ax,az,ay - control variables (the accelerations du to the thrust) and (the state variables) are: x,z,y- coordinates, 

VX,VZ,Vy - velocities, (p - elliptical anomaly, with the initial conditions at the time t = 0: 

x(0) = x0, z(Ö) = z0, y(0) = y0, V,x(0) - VXQ , VzX(0) = VZQ , VyX(0) = Vyo, <|»(0) = 105 degree (2) 

and final conditions att = tf: 
]{tf)={tf) = y(tf)=V

X{
tf)=Vzh)=yy(tf)-0 (3) 

dtf ] is free. For die control variables CL and y we impose the constraints \ax\< a,\az\< a,\ay < a where for orbits in 

around of Earth, a = 10 g, g - the gravity acceleration. The problem can be stated is: Let us find a control function 

u = [ax,az,ay):\o,tf\-*R and  a  state  function*^x.Zjy.V^V^y,,j.'lo, tj-1 —> R     for  the  circular  orbits  and 

x =ix, z, y,Vx ,VZ ,Vy, <|)j: 0, tj-1 -> R   for elliptical orbits, which minimize functional 

J{u)= i [a2
x+al+a2

y)dt (4) 
o 

subject to the differential equations of motion (1) with the initial conditions (2) and the final conditions (3). 

2. Optimizing Problem. Boundary Value Problem 

Optimizing the problem by the minimum principle. The above defined problem of optimal control is transformed in 
a well-known1 into a two point boundary problem. For this, the Hamiltonian is 

H = -f0+Pxfx+ Pvx fvx 
+Pzfz+PVz fvz + Py fy + PVy fvy + Aj> ft, (5) 

where f0 is the function under the integral (4), x, pv , pz, pv , p , pv , p^ are the adjoint variables corresponding of the state 

variables x, Vx, z, Vz, y, Vy,§, and also, fy, /e, /^, /z, /q,, fx> f$ wt the functions defining the motion equations system of 

the state variables x, Vx, z, Vz, y, Vy ,§, respectively. 
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By means of the Hamiltonian, the canonic equations that is the differential equations of the state variables (the above mentioned 
equations), the differential equations of the adjoint variables. The algebraic equations of the controls (the optimality conditions) 

are deduced for \ax ,az,ay] the interior point, for: H from Hu = 0 (ax = pv 12, az = pv 12, a   = pv 12 ) and must fulfill 

the Legendre-Clebsch condition, that is Huu > 0. 

3. Solving of the Problem. Numerical Application 

Practically, the analytical solution could not be determined due to the non-linear structure of the equations which 
form this system, so because of this we shall also solve this problem using the shooting type numerical method3. 
Calculations were performed (calculus vas performed on a PC-486 computer having computational program elaborated in 
this respect according to the method shooting) for circular and elliptical (e = .01) orbits around the Earth, the final time 
being imposed. 
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1. The calculations performed using based on the non-linear theory presented in this work show that the differences 
between the results obtained for circular orbits and the elliptical ones are small if the eccentricity of them are also small. 
2. The initial value of the target real anomaly does not significantly influence the results even in case the target reaches the 
proximity of the orbit apogee 

5. References 

1. Bryson, A. E., Ho, Y. C, Applied Optimal Control, Revised Printing, Hemisphere Publishing Corp., Washington D C 
1975. 
2. Istratie, V., "Shooting type methods for solving the two point boundary value in the optimization of the flight vehicles 
evolutions. Journal ZAMM, 1997. 

Address: VASILE ISTRATIE, National Aerospace Research Institute, Bd. I. Maniu 220, 77538 Bucharest, Romania 



Section 9-25 S673 

KEGL, M. 

An efficient shape parameterization concept for structural optimization 

This paper describes a shape parameterization concept that may be used efficiently in structural shape optimization. 
It relies on the assumption that the finite element mesh is defined as a convective mesh, following automatically the 
shape changes of a conveniently parameterized body. Suitable parameterization of the body is achieved by combining 
the design element technique and a convenient design element. The design element in turn is defined as a rational 
(tensor-product) Bezier body. It represents a general-purpose design element, serving as the geometrical data provider 
for the response and sensitivity analysis for virtually any finite element type. 

1. Introduction and fundamentals 

Efficient parameterization of the structure, or more precisely of the finite element (FE) mesh, is the key to successful 
shape optimization. An efficient parameterization should provide enough flexibility of the structure with a minimum 
set of independent design variables. Additionally, it is most desirable that any geometrical requirements, imposed 
by the designing engineer, may be fulfilled automatically without extending the design problem with additional 
constraints. The proposed approach meats these requirements to a great extent 

This work represents a generalization of the concepts proposed in [1,2]. The fundamental idea can be briefly 
explained as follows [3]: let us consider a generic FE mesh of a structure. Let the hull of the mesh represent the 
boundary surface of a body B. We assume that we can build up some mapping ft that maps some standard domain 
U into B. Once we have the mapping ft, it is possible to define the FE mesh by defining its pre-image in the domain 
U rather than directly in the real 3-D space. Now we invoke the design variables b as parameters of the mapping ft. 
In this way, we get a 'convective' FE mesh that follows automatically the changes of the body B caused by changing 
the design variables b. In that way, we can expect to be able to optimize the shape of the structure efficiently. 

Figure 1: Design element mapping (a) and required geometrical data (b) 

By adopting the above set-up, the most important question that naturally arises is how can we establish a 
convenient mapping ft in a systematic way, suitable for the general case. It is proposed to employ the design element 
technique (see [3] and the references cited therein) by which B is regarded as an assemblage of smaller bodies with 
simple shape - the design elements A- Thus, we have B = Ui!=i A where N is the number of all design elements. 
Since A is assumed to have a simple shape, we can choose a convenient standard mapping ft; that maps U into A 
(Fig. la). The set of all mappings ft; defines fully the needed mapping ft. 

2. A convenient design element 

We assume that all of the design element mappings ft; are of the same type and that only the values of their 
parameters are different. In this case we have to choose such a type of ft; that free-form shapes as well as classical 
shapes (e.g. bodies defined by surfaces of revolution) can be described in a rather convenient and simple way. 
Therefore, in our work ft; is defined to be a rational Bezier body mapping [3]. In other words, the position vector r 
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of a point of Di C B is expressed as 

r = fti(s,b);        n,(s,b) E/=i YLi EJLi Bj M Bk M B{ (a3) o,jfct (b) qjfci (b) 

E/=i Ef=i Ef=i 5/ («i) Bf (*2) Bf (*3) "jfcI (b) 

where s = [ si S2 S3 ] is the position vector of a point in a unit cube U, representing the domain of fi;. The 
symbol B denotes the Bernstein polynomial [4], q*-fci is a position vector of a control point and wL is its corresponding 
weight. The symbols J, K and L denote the number of control points in corresponding parametric directions. 

The geometrical data for the FE mesh can now be retrieved quite easily for any given b. For a generic FE 
node sn, we usually need its position vector in the real 3-D space as well as sometimes some director (e.g. for 
a shell element). The position vector is given by r = r(sn,b) while the director can be expressed in terms of 
ei = dr/dsi (sn,b), representing the vectors being tangent to the parametric directions of the body A (Fig. lb). 
The design derivatives dr/db and dei/db at (sn,b), needed for the sensitivity analysis, can also be evaluated easily. 
The necessary expressions are given in [3]. 

3. A numerical example 

Let us consider a classical test design problem of a plate in Fig. 2. A rigorous description of the problem can 
be found in [3]. In brief, the objective is to find the best possible shape of a hole in a square plate with uniform 
distributed forces applied on its edges, such that the Von Mises stresses along the hole boundary are minimized. Due 
to symmetry, only a quarter of the plate is modeled (Fig. 2). The solution is expected to be close to an ellipse that 
represents the analytical solution for an infinite plate under a biaxial stress field. In order to describe the structural 
geometry, one needs two design elements DEI and DE2 (Fig. 2) with 3x3x1=9 control points each. The shape 
of the hole boundary A-B depends on 6 design variables related to the control points and to their weights. 
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Figure 2: Starting (a) and optimized (b) boundary A-B of the plate 

The optimization was started with the initial design corresponding to a circular hole with radius equal to 1, 
(Fig. 2a). The solution procedure was very stable and after a few iterations, the boundary A-B became almost an 
exact quarter of an ellipse (Fig. 2b). The ratio of the maximum to the minimum Von Mises stress along A-B, was 
reduced from 1.8726 to 1.0175. A more detailed discussion on the results can be found in [3]. 
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KlRIAZOV, PETKO 

On Optimal Control of Mobile Robots 

There are continuously increasing demands to mobile robots (MR) for faster operation, higher accuracy, and lower 
energy cost. A unified direct-search optimization approach is proposed which employs parameterized control laws 
consistent with the Pontryagin Maximum principle. We define mostly appropriate input-output pairs and transform 
the given two-point boundary-value problem into a system of shooting equations. The control parameters which are 
not in the input-output pairs are used for time/energy optimization. Existence of solutions is guaranteed under a 
weak and reasonable condition. The approach is applied on a dynamic model of a MR having two independently 
driven wheels. 

1. Problem statement 

MR are highly non-linear and difficult to model, identify and control mechanical systems due to dynamic couplings, 
friction, backlash, actuator saturation, and external disturbances. For control design purposes, we can consider the 

following dynamic model 

g = Af-1(ßu-Ä(?,9)), W 

where the coordinates of the vector q are generalized coordinates with respect to to a vehicle frame; M is the inertia 
matrix; B is a matrix which represents the location of actuator forces u; R{q, q) stands for all other forces; 

To consider the robot motion in the real space (the state with respect to an absolute reference frame denoted 
by x), we use the following equation for the generalized velocities 

q = Dx, (2) 

where matrix D depends on the orientation of the vehicle with respect to the absolute reference frame. 

The required motion task is how to take MR from a given state x° at a time-moment t° to a required state 
xt at a time-moment t' in the best possible way. It means that the movement is optimal in time or energy and the 
existing control (and state) constraints are not violated. 

The complex vehicles' dynamics and the continuously increasing performance requirements give rise to prob- 
lems which can not be efficiently solved by the classical control theory. In this study, we propose a direct-search 
optimization approach which leads to solutions which are not so sensitive to modelling errors as those obtained by 

the classical, gradient-based methods. 

2. Time/energy optimal control 

Robot point-to-point motion can be efficiently optimized applying a direct-search approach, [1], [2], with the following 
main steps: 1. Choose a set of appropriate test control functions; 2. Input-output pairing; 3. Solving shooting 

equations. 
The term "appropriate" concerns the structure and the shape of the test control functions. Simple linear- 

spline control functions of "bang-bang", "bang-pause-bang", or "bang-slope-bang" types can be employed as such 
forms of the control laws are consistent with Pontryagin's Maximum Principle when a time/energy functional is the 

performance index. 
Among all the control parameters, we find those n mostly effecting the reached final state F - x(t*). Denote 

this vector by p* and make input-output pairing {p{, Ft) in the sense that F{ is most sensitive to p{ for any i = 1,..., n. 
All the remaining parameters are taken to be components of the vector p°pt if the performance index depends, to 
some extent, on all of them. The proper choice of the control parameters can be done by using a mathematical 

model, or merely by engineering intuition. 

Then, we have to perform the following two-level control synthesis procedure: 
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first level: with fixed pop\ solve the given boundary value problem transformed into the shooting equation 

F(Pf) = <lf (3) 

second level: optimize the performance index with respect to popt. 

3. Existence of feasible solutions 

In most practical cases, the reached final state F can be considered as a continuous function of any control parameter 
vector p. But for Eq.(2) to have a solution, the so-called independent parameter controllability (IPC) condition has 
to be fulfilled. 

Definition 1. A parallelepiped P = p : pt £ \pi~;pi+], i = 1,..., n is called to be a margin of IPC for V with 
control parameters pi, if for any pair of points p and p on the boundary of P, symmetrical about the centre of P, 3i 
such that Fi(p)Fi(p) < 0. 

As has been proven (see [1]), the IPC-condition is sufficient for the existence of solutions of Eq.(3). This con- 
dition is the weakest general condition for solution existence because in the linear case it is also necessary. Applying 
the non-negative matrix theory, it can be easily proven that a MR can fulfil the IPC-condition if its control transfer 
matrix M_1B is generalized diagonally dominant. Numerous verifications indicate that this property can take place 
for any MR having properly located actuators. 

In our performance optimization scheme, the algorithms most appropriate for solving the problems at the two 
stages are those of one- or multi-dimensional bisections. Unlike classical gradient methods, they are globally conver- 
gent, robust to modelling errors, optimal as regards the number of trial movements, and natural for implementation 
in the real control systems. Since the control constraints are inherently satisfied with the choice of the test control 
functions, we should verify only if the solutions of the given boundary-value problem satisfy the state constraints. 
The performance optimization is carried out over the set of all feasible solutions. 

4. Example: MR having two independently driven wheels 

Consider the minimum time control problem. Such a problem for a simple (idealistic) model of MR with indepen- 
dently driven wheels has been solved in [3]. The authors have proven that the optimal controls are "bang-bang" and 
the total number of switch times for the two driving motors is three when MR orientation at the point of destination 
is not specified, and this number is four in the other case. We accept these reasonable shape and structure for the 
test control functions employed in the full-dynamics case. 

The input-output pairing in the case when MR orientation at the point of destination is not specified is done 
as follows. To reach the required final position, we have to control the following two outputs (polar coordinates of 
a MR reference point): the direction of motion and the distance travelled. Correspondingly, the control parameters 
are: the first switch time and the mean value of the other two switch times. After the last switch time, the trajectory 
is linear and MR is decelerating until it stops. As the numerical experiments show, the required values of these 
control parameters can be easily found after a relatively small number of trial movements. This control learning 
procedure can be applied on the robot itself for final adjustment of the control parameters. 
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JANA KONICKOVä 

Sufficient condition of basis stability of an interval linear programming prob- 
lem 

The contribution deals with basis stability of an interval linear programming (ILP) problem. We consider the coeffi- 
cients of the matrix, right-hand side values and cost vector values to vary independently in the given intervals. We 
present the new necessary and sufficient condition, and the sufficient condition of basis stability of ILP problem. 

1. Introduction 

We study a family of linear programming problems 

max{cTx;Ax = b,x>0}, (1) 

AeA^beb^cec1, (2) 

where A E IRmxn, 6 G IRm and c 6 IRn. An interval matrix^7 is the set {A; A < A < A}. It can be written in the 
form A1 = [A,A] = [Ac - A, Ac + A], where Ac = \{A + A) is the center matrix of A1 and A = \{A - A) is the 

radius matrix of A7. The interval vectors b1, c7 are defined analogously: 67 = {6; 6 < b < b] = [6,6] = [bc-S,bc + 8], 
c7 = {c;c< c<c} = [c,c] — [cc-j, cc + j]. In this paper the new necessary and sufficient condition of basis stability, 
and the new sufficient condition of basis stability are established. 

Definition 1. The problem (1), (2) is called [strongly] B-stable (basis stable) with basis B if each problem 
(1) with data satisfying (2) has a [unique] nondegenerate basic optimal solution with basic variables Xj, j E B. 

2. Necessary and sufficient condition of basis stability 

We introduce the set Y = {y E IRm; \yj\ = 1 for j = 1,... ,m}, and for each y EY we denote by Ty the diagonal 
matrix with diagonal vector y (i.e. (Ty)u = y{ for each i and (Ty),-_,- = 0 for i # j). In addition to the set Y C M"1 

we introduce also the set ZB = {z E R"; \ZJ| = 1 for j G B, Zj = 1 for j <£ B, j - 1,..., n], so that ZB has 2m 

elements. For each y EY, Z G ZB we define the matrices Ayz, Ay and the vectors by, cz by 

Ayz    =    Ac-TyATz, by    =    bc + TyS, 
Ay    =   Ac-TyA, cz    =   cc + Tz-/. 

Theorem 1 (Rohn, [1]). Problem ILP is [strongly] B-stable if and only if for each y E Y, z E ZB the 
linear programming problem max{cja;; Ayzx = by,x > 0} has a [unique] nondegenerate basic optimal solution with 
basic variables Xj, j E B. 

This theorem characterizes basis stability by means of the 22m linear programming problems. In the following we 
formulate a new criterion of basis stability. 

Theorem 2. The ILP problem is [strongly] B-stable if and only if the following conditions are satisfied: 
(i) system (AV)BXB = by has a unique positive solution {XV)B for each y E Y, (ii) for each z EY the following 
system has a unique solution pz: 

TZ{{AC)
T

BP-{CC)B)    =    AT
B\p\ + lB, (3) 

(Ac)lp-AT
N\p\    >    cN, (4) 

[in system (4) sharp inequality holds]. Assertions in the square brackets are related to the case of strong basis 
stability. 

This theorem is the consequence of the Theorem 1 and of its proof, which is given in [1]. 

To check the basis stability by means of the above criterion it is necessary to solve the 2m systems of linear 
equations {AV)BXB = by, and the 2m systems of nonlinear equations (3). These nonlinear systems correspond with 
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the solution set of the system of interval linear equations (Äß)1p = cB. The convex hull of the solution set of 
this system is equal to the convex hull of the 2m vectors pz, which are the solutions of the corresponding nonlinear 
systems (3). We can use the "sign-accord algorithm" (Rohn, [2]) for computing all vectors pz. Generally, this 
algorithm solves the 2m systems of linear equations to find the vector pz. In most cases one system only is solved. 
Also, it is necessary to solve at least the 2m+1 systems of linear equations, and the 2m + 22m systems in the worst 
case. 

3. Sufficient condition of basis stability 

Let us denote XB = {XB',ABXB = b,A G A1 ,b G b1}, PB = {p,ABp = cB,A G A1 ,c G c7}. The corresponding 
interval hulls are denoted by \x_B, xB], \p,p]- These interval hulls are the exact interval solutions of appropriate system 
of interval linear equations. The verification of the following sufficient condition is easier than the verification of the 
necessary and sufficient condition, because it is necessary to compute only the interval hulls of the sets XB and PB ■ 

Theorem 3. Let AB be a nonsingular interval matrix. Let xB > 0. Let N denote the index set of all 
nonbasic columns of matrix A1. Let the inequality 

m 

^2 mmiüfjp., OfjPi, äijp., äijPi} > Cj (5) 
i=l 

hold for each j G N. Then the ILP problem is B-stable with basis B. If the inequality (5) holds sharply, then the 
ILP problem is strongly B-stable. 

Proof. The assumptions of nonsingularity of AB and xB > 0 imply that the system ABXB = 6, xB > 0 has 
a unique solution for each A G A1, b G b1. Moreover, the nonsingularity of AB implies that the system ÄßP — CB 

has a unique solution for each A G A1, c G c1. We shall show that this solution satisfies Aj^p > c/v- In the following 
relation we use the interval arithmetic: 

m m 

{ATp)j =^2aijPi > ^min{aijPi,a,ijPi,äijp.,äijpi} > c, > Cj 
i=i i=i 

holds for each j G N. Hence, it follows from the duality theory and complementary slackness condition of linear 
programming that each problem (1) under (2) has a nondegenerate basic optimal solution and therefore the ILP 
problem is 5-stable. If the inequality (5) holds sharply, then the previous inequality holds sharply too, which 
means that each problem (1) under (2) has a unique nondegenerate basic optimal solution, hence the ILP problem 
is strongly 5-stable. The proof is complete. 

4. Conclusion 

Checking basis stability of ILP problem is important. In basis stable case it is very simple to find the set of all 
optimal solutions and the set of all optimal values. In this case the set X* of all optimal solutions of ILP problem is 
described by means of the system of linear inequalities (Beeck, [3]) X* = {x; ABxB < b, ABxB >b,xB~> 0, £jv = 0}. 
The set of all optimal values of ILP problem is the interval [/,/], which can be obtained by solving of two linear 

programming problems (Beeck, [3]) / = min{cTa;;a; G X*}, f = max{cTar;a; G X*}. 
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KRAJNC, ALES; BEG, DARKO 

A Priori Constraint Elimination 

The problem of steel frames optimal design, when it is written in mathematical programming form, gives a moderate 
number of unknowns and a huge number of constraints. A typical frame has about 50 unknowns and 20000 con- 
straints. The large number of constraints, which are complex functions of many parameters, represents a problem for 
most non-linear programming solvers. In order to reduce the number of constraints, we developed a method, which 
eliminates a large portion of constraints without their costly evaluation. The method is based on the problem specific 
constraints organization, where the constraints are organized into sets. It turns out that we can remove individual 
constraints from a set by simply comparing constraint parameters. 

1. Introduction 

The optimization problems from the field of mechanics are always non-linear and complex. They combine two steps 
that are usually done separately: finite element analysis step and design step. During the finite element analysis we 
obtain internal forces and displacements. These results serve as a base for the design step, where initial structural 
dimensions are verified. The form of the design step depends on the structure type and the theory used during 
the analysis step. In general two approaches are possible: (i) A very detailed material and geometrical non-linear 
analysis using shell or 3D finite elements. Here, the results only need to be checked against their limit values in the 
design step, (ii) The finite element analysis using some simplified theory, e.g. beam elements. The results (internal 
forces and displacements) are then verified using rules from the design codes, e.g [1]. 

The first approach has a clear mechanical background and is an obvious choice of the future. Today, unfortu- 
nately, it still can not be applied to solve everyday problems in the structural design practice1. Namely, the modelling 
of the problem is too complex, the analysis is time consuming and requires high computational power. The second 
approach has only modest computational requirements, the modelling is easy, the analysis is fast. However, in the 
design step we have to deal with complex design rules. These rules are the cause for large number of constraints in 
our problem. Since our steel frame optimization problem is practically oriented, we are using the second approach. 

Regardless of the approach used, the optimization solution of some mechanical problem is obtained in an 
iterative procedure where the following steps are taken: 

1. Initially, assign some values to the initial solution of the problem and perform full finite element analysis. 

2. Evaluate constraint functions and rank them according to criticality. Retain only those constraints that are 
critical or potentially critical. Only the retained constraints enter into further design cycle. 

3. Perform the sensitivity analysis to calculate gradients of retained constraints and objective function. 

4. Take the gradients and create an optimization problem. Solve the problem using either general purpose solver 
(if it could be used) or derive a problem specific solver, e.g. [2]. 

5. Update the analysis data with the solution obtained by the solver. Perform the the full finite element analysis 
and evaluate the quality of current design. If the solution has converged, terminate. Otherwise go back to step 
2. 

As it can be seen from the procedure, the elimination of the constraints is performed in step 2. First all constraints 
are evaluated, ranked and then selected according to some criterion. E.g. gi(x) < —0.3. We call such elimination a 
posteriori elimination (constraints are eliminated after their evaluation). 

2. A Priori Constraint Elimination Background 

The constraints in our problem have special organization, which enables us to eliminate them before they are actually 
evaluated. For one element (steel beam) in the frame, there are a few hundred constraints that come from nine 
different constraint families. We define a family as a set of constraints that have the same mathematical form, but 

:It can, however, be applied for solving some special engineering problems. 
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each set element has different parameters. E.g., set G = \J"=1 gt has n elements in a form of gi{x,pi) < 0. Here, x 
represents the vector of optimization unknowns and pt the vector of known parameters. 

Mathematically speaking, let us have a set G that holds n constraints of the same function family g, which 
differ only in their parameters p. G = {gi(x,pi),g2(x,p2),... ,gn(x,pn)}. Let X denote the set of all feasible 
solutions of the problem. Let g(x,p) be increasing function for each component of p for any fixed x £ X. In this 
case ga{x,pa) > gb(x,Pb) if and only if pa > pb. Using the latter relation, we can build an elimination algorithm for 
constraints in set G based only on parameters p. We can easily extend the validity of the algorithm for constraints 
that have one or more components pj of p, such that g is decreasing on pj for any fixed x. We can alter the 
decreasing behavior into an increasing one by introducing a new parameter pj = -pj that replaces j-th component 
of the parameter vector p. 

3. Algorithm 

The algorithm below describes the process of the a priori elimination: 

Input: n constraints gt(x,$); i = 1... n of the same family. 

Output: Sets G+ and G~ that hold potentially critical and eliminated constraints, respectively. 

1. Initialization: G = {gi(x,pi),g2(x,p2),... ,gn{x,pn)}, G~ is an empty set. Set G+ initially holds the first 
constraint g\. Let i <- 2 be an index. 

2. Elimination I: Compare gi with the elements in G+. If gf exists, an element in G+, such that corresponding 

Pj >Pi, then pi becomes a new member of G~ and continue with step 4. If this is not the case, & will become a 
member of G+, but first we must check the existing elements in G+ against their possible elimination by pt. 

3. Elimination II: For each element in G+, let it be denoted by gf, check the corresponding parameter vector pt 
for relation p+ < pt. If this is true, take gf from the set G+ and put it into set G~. When all elements in G+ are 
checked, put gi into the set G+. 

4. Termination: i<-i + l. Until i < n go back to step 2. Otherwise the algorithm is completed and set G+ holds 
critical and potentially critical constraints, while G~ holds the eliminated constraints. 

4. Performance & Conclusions 

We used the algorithm in many practical calculations and it gave very good results in all cases. The algorithm 
usefulness is revealed from the following topics: 

• There are nine beam related constraint families in our problems. Only one family does not fulfill the increasing 
criterion, and thus we are not able to apply a priori elimination algorithm on it. 

• For other eight families, the rate of elimination is up to 99.9% for the simple constraint function and down 
to 80% for the most complex constraint functions. This is far better than it is obtained by using a posteriori 
elimination. 

• The a priori elimination algorithm is much faster than the evaluation of constraints - we get about 20% shorter 
overall computation times. 

• We are able to eliminate constraints that are almost critical without any risk of being wrong, which is not the 
case in the a posteriori elimination. 

• For complicated constraints we were not able to get an analytical proof for the constraint being an increasing 
/ decreasing function over feasible area X. In such cases, the constraint must be numerically verified. 
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KUTYLOWSKIR. 

The s - Relaxed Approach in Topology Optimization for Various s Functions 

The inspiration of this contribution was a paper written by Cheng and Quo [1] where the s-relaxed approach for structural 
topology optimization was applied and a second one paper by Duysinx and Bendsoe [2] where continuum structure with 
stress constraints was considered. In this contribution various s functions are proposed and discussed for continuum 
structure from the convergence point of view. The problem is illustrated by FEM examples. 

1.    Introduction 
Generally, the topology optimization gives us an answer: from which regions in the design domain the material must be 
taken away and where it has to be left. The main goal of this e - relaxed approach is to eliminate the singular optima from the 
topology optimization problem formulation. In this paper, by relaxing the mass constraints put on these designed points in 
which during the optimization process the strain energy is relatively small we modify the shape of the structure within fixed 
design domain Based on [3] the variation approach is used. The objective is defined as the total strain energy of the 
structure. It is minimizing under the constraints put on the mass of the structure. These constraints say that the mass of the 
structure iny-th step is less or equal to available mass. Available mass is defined as m0 = a m, where a is less than one. The 
following formulation of the updating the density in every design point is used: 

£(A) = £°(4)3 (1) 

where p, is the density in i element, p° is the initial density equal to the a parameter and E° is the initial Young's modulus. 
The optimization procedure, which was proposed in [4] is used here. This procedure uses the threshold functions to cut the 
density in the elements with relatively small strain energy. In current paper the threshold function works in the base form 
(2a) and in the weaken form - eight times less (2b): 

a)     TF=0.1jp°, b)     TF= 0.0125 jp° (2) 

where; means the number of the topology optimization step during the process. The mass constraints are formulated as: 

0<mj< m0 
(3) 

where m0 is the available mass. This can be written globally in FE notation (4a) and for each one element separately with 
introduced the lower bound of the mass in (4b) form. Finally e is assumed as the lower bound of the density (4c). 

a)    o<.J^Pyt<.YJp°vl b)   pLvi<pyi<pvvl C)       £• = p (4) 

2.   Formulation of the s - relaxed functions and FE examples 

The main problem in this paper is to define in proper way the s - relaxed functions, to 
obtain the optimal topology within possible small step number. Clamped cantilever beam 
loaded by a force P as a benchmark of the problem is considered as an example (Fig. 1). The 
available mass is assumed as m0 = 0.3m, what means that the total mass in this case is 120 
for considered finite element mesh (20 x 20). The figures in this paper are presented in 
number mode and in colour mode (from white through the shades of grey to black colour). 
White colour means void, the black colour - material and the shades of grey the 
intermediate density. In [1, 2] s was assumed in the ranges from 10"3 to 10"9 and from 10"1 to 
10"6 respectively, ^was relaxing by for example dividing by two in the subsequent steps. In 
this paper the following s- relaxed functions are considered: 

S.  

^:::::: 
V    . J-U 

20 

20 

Fig. 1 Benchmark example 
with finite element mesh 

a)   e = const.   s = {10'4 10~7}, b)   e(j) = -~,       ß = 10~3 or 10'4, 

c)    e(j) = 
io- 

j2+100j 

io-3 
d)  £0') = 7Ti—n—:■ 

o.l] +j   +j 
e)   £(j,p°)= ,, 

(p ) J 

(5) 
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a) m 
step 32 step 142 

b) s 
1.00 1.00 1.00 too 

1.00 1.00  1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00  1.00 1.00 
O01 

Q01 
1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.0D 1.00  1.00 1.00  1.00 

100 1.00  1.00   1.00  1.00 

1.00 1.00 1.00  1.03 

1.00 1.00 1.00 

030 1.00  1.00 1.00 1.00 

030 100  1.00 1.00 1.00 

1.00 1.00 1.00 

1.00 1.00  1.00  1.00 

1.00 1.00  1.00   1.00  1.00 

1.00 1.03  1.00  1.00 1.00  1.X 

too        too 1.00 too 1.00 1.00 ( 

too too 1.00 too 1.00 001 

1.00 1.00 1.00 1.00 1.00 1.00  1.00 0.01 

1.00 1.00 1.00 1.00 1.00 0.01 

1J0 1.00 1.00 1,00 030 0.01 

step 13 step 92 

c) 

step 13 step 87 

Fig.2 Topologies for (5a)   a) for s = 10-4, 
b) s = 1(T5,    c) e=l(T7 

Fig. 3 Topology for s = 10"3/j for (2b), step 98 

a) b) 
Fig. 4 Topologies for (2b) a) s = 10"4/j, 

step 88,   b) 6 = 10-3/((p0)2 j2), step 92 

C2SHS 
a) b) c) d) 

The optimal 
topology for (5a) 
definition is 
presented in the Fig. 
2, where on the left 
side we have the 
topologies for (2a) 
threshold function 
formulation and on 
the right side for 
(2b) threshold 
function {s is here 
constant during the 
process). The best 
solution  is  at  the 

right side (e = 10'7, 
step number of the 
optimal topology is 
here equal to 87). In 
the Fig. 3 the topology 
for s= 10"3/j and for 
(2b) threshold function 
is presented. In this 
case as we can see the 
convergence is not 
achieved. It is enough 
to change the power 
row to -4 and the 
solution is satisfied 
(Fig. 4a). If we change 
s definition into (5e) 
we obtain the result as 
in the Fig. 4b. In the 
Fig. 5a and 5b we have 
the final topologies for 
(2a) threshold function 

Fig. 5 Topologies for (5c) a) and c),   for (5d) b) and d) 
formulation   for   (5c) 

for (2a) a) and b),    for (2b) c) and d) md (5d)  £ j^^ 

Topologies are very 
similar and both pictures are for 12 step. For the same £ functions, but for (2b) threshold functions we have topologies in 
the Fig. 5c and 5d. Fig. 5c is made for 87th step and Fig. 5d for 81 step. The topologies showed here are made for final 
optimal step. 

3. Conclusion 

Most of presented definitions of the e - relaxed functions let to obtain the optimal topology, in meaning of fulfilling 
optimality criteria for each one case separately. 
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LINDEMANN, J., BECKER, W. 

Optimization of Composite Laminates under Uniaxial Tension 
with Respect to the Free-Edge Effect 

High interlaminar stresses in the vicinity of free edges of composite laminates can result in laminate failure by free- 
edge delamination. In the current work it is shown in which way the interlaminar normal stress component is reduced 
by means of structural optimization resulting in laminate configurations with a minor risk of delamination. 

1. Introduction 

The occurrence of high interlaminar stresses in the immediate vicinity of free edges of composite laminates is a well- 
known phenomenon which is not taken into account by the classical laminated plate theory (CLPT) [1,2,3]. This 
so-called 'free-edge effect' may result in a detrimental reduction of the laminate strength because the interlaminar 
stresses can cause laminate failure by free-edge delamination already before the strength limit predicted by the CLPT 
is reached. In the present work structural optimization methods are used to reduce the level of the interlaminar 
normal stress az. For both the example of a quasi-isotropic [0°/=F 60°]s- and a [0°/ ± a/ ± /3]s-laminate under 
uniaxial tension a significant reduction of the interlaminar normal stress is achieved. 

kZ,X, 

tt 0° 
h -60° 

60° 

/ b 

J£2 

Figure 1: Laminate with considered characteristic quarter-slice 

2. Optimization Problem 

Subject of consideration are laminates with UD-fiber-reinforced layers under uniaxial tension (fig. 1). The geometry 
is given by a total laminate width of 50 mm and total height of 2 mm. The load is applied as uniform axial strain of 
ex = 0.001. The structural analyses are performed by three-dimensional finite element analyses with the commercial 
program MSC/NASTRAN whereby only a characteristic quarter-slice is considered because the field quantities like 
stresses and strains are independent of the zi-direction. Each layer is discretized with 12 layers of 36 20-noded 
volume elements (coarse mesh) and, for comparison, with 24 layers of 48 elements (fine mesh). The optimization is 
performed with two different optimization algorithms, a zero order method similar to the method of conjugate search 
directions and a generalized reduced gradient method. For the example of the quasi-isotropic laminate the orientation 
angle a of the whole laminate is chosen as design variable resulting in an effective [0° + a/ - 60° + a/60° + a]s- 
layup. For the second example the design variables are the ply-angles a and ß in the [0°/ ± a/ ± /3]s-layup for which 
additionally the ratio of the laminate extensional stiffnesses A22 and An is constrained in order to avoid that all 
layers get the same orientation: 0.4 < A22/An < 1.0. The design objective in both cases is to minimize the level of 
the interlaminar normal stress az in order to reduce the tendency to free-edge delamination: 

f(a) — a\  -»■ min    over all elements. (1) 

The reason for choosing the square a\ as objective is that minimizing uz would result in a concentrated high 
compressive stress at the interfaces between two layers at the free edge but, furthermore, in an undesired high 
tensile stress nearby with a maximum of az that could be detrimental inside the laminate at some distance from the 
free edge. 
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3. Optimization Results and Discussion 

Algorithm initial design final design 
coarse mesh fine mesh 

CXinit f(cXinit)/uP* & final j'(pi final)/'MPJ ex final f (ex final) IMP <S 

zero order method 
15° 177.725 0.17° 0.865 0.59° 0.916 
75° 376.254 60.02° 0.046 60.02° 0.055 
135° 286.843 120.25° 0.785 120.41° 1.048 

generalized reduced gradient 
15° 177.725 -1.71° 5.952 0.61° 0.910 
75° 376.254 60.03° 0.046 60.02° 0.055 

135° 286.843 120.12° 0.784 120.41° 1.048 

Table 1: Optimization results for the quasi-isotropic laminate 

For the case of the quasi-isotropic laminate the results are shown in table 1. In dependence of the initial value ainit 

of the orientation angle the determined optimal orientations are 0°, 60° and 120°, independent of the chosen op- 
timization algorithm and the discretization effort. This indicates that a relatively coarse mesh is sufficient for the 
optimization whereas a detailed investigation of the stress distribution requires still a finer discretization. A com- 
parison of the stress-results for the initial value of a - 15° and the final design a = 0° shows that the maximum of 
the interlaminar normal stress az can be reduced by a factor of about 60. 

_°z/MPa 
 1 1 1  

z=0.4mm 

initial design        . 

7 free edge 
/ 

,                  _»A*™?I 

final design 
■ 

      i               i               i 

21 22 23 24 25 y/mm  26 

°*/MPa 

z=0.8mm 

final design 

' initial 
design 

free edge 

21 22 23 24 25 y/mm 26 

Figure 2: Interlaminar normal stress at the +ß/ - a- and + a/0°-Interface for the initial and final design 

In the second example of the symmetric [0°/ ±a/± /^-laminate a quasi-isotropic [0°/ ± 36°/ ± 72°]s-layup has 
been chosen as initial design. For the final design [0°/ ± 48°/ ± 56°]s a significant reduction of the interlaminar 
normal stress has been achieved, too, as it can be seen e.g. for the interfaces at z = 0.4mm and z = 0.8mm (fig. 2). 
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MARTI, KURT 

Robust Optimal Control of Robots by means of Stochastic Optimization 

1. Robotic systems with random parameters 

Modelling a robot through the dynamic equation 

M(pD,q(t))q(t)+h(pD,q(t),q{t))=u(t), t0<t<tf, q(t0) = qo, q(to) = Qo (1) 

for the robot coordinates q(t) and the kinematic equation, a main problem is that the vectors PD,PK of dynamic, 
kinematic prarameters, but also the vectors pc,PJ of model parameters in the objective function and in the con- 
straints are random. 

2. Control of dynamic systems 

In control of dynamic systems, the total input u = u(t), t0 <t < tf, is represented by 

u(t) = u<°>(i) + Au<°>(«), t0<t< tf, (2) 

where u(0) = M
(0)

(*)> t > t0, is a feedforward control based on a certain reference trajectory q^ = q^°\t), t > t0, 
and Ait'0' (t) denotes a control correction to compensate the deviation of the system from the reference trajectory. 

In order to find an appropriate reference trajectory g(0) = qw(t), t>t0, and a feedforward control u(0) = u^\t), t > 
t0, in case of random model parameters, stochastic optimization methods are applied [1]. 

2.1 Transformation of the variable time interval onto a fixed s-parameter domain 

The variable time interval [to,tf] is transformed first onto a fixed s-parameter interval [s0,s/] by using a strictly 
monotoneous increasing function s = s{t), t0 <t <tf, s0 < s < s/. The trajectory q = q(t) is given then by 

q(t)=qe(s(t)),to<t<tf, (3a) 

where qe = qe(s), So < s < Sf, is the geometric path in configuration space. Moreover, s = s(t) is the solution 
of the initial value problem 

s(t) = y/ß(sj, s(t0) = s0,t> t0, (3b) 

where ß = ß(s), so < s < s/, is the velocity profile. Hence, the unknowns are the functions qe{-),ß{-). 

3. Optimal stochastic trajectory planning (OSTP) 

Determine first an optimal velocity profile ßW (s) and an optimal geometric path qe (s), s0 < s < s/, by solving a 
variational problem based on a deterministic substitute for the basic stochastic trajectory planning problem, see 

[1]: 
sf 

Tninimizeß{.)^.)     E (f0\pj,s,qe(s),q'e(s),q"{s),ß(s),ß'(s))\Ato) ds (4a) 

s.t. 

qe(s0) = q(o°\<l'e(so)vfßUÖ) = ^,Qe((sf) = i;\ß{sf) =ßf = 0 (4b) 

P (<7min
(PC) < qe(s) < qm&x(pc)\At0) > aq,P (qm[n (pc) < q'e(s)^ß{sj < gmax(pc)\Ato) > a^   (4c) 

P (umin(pc) < ue(pD,s;qe(-),ß(-)) < uma*(pc)\At0) > au, s0 < s < sf. (4d) 
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Note. At denotes the information set up to time t > t0- The function ue in (4d) is defined by ue = ue (pD, s; qe(-),ß(-)j 

'■= F(PD, qe(s), ji<le{s), -^qe(s)), where F = F (pD, q, q, q) denotes the left hand side of the dynamic equation. 

Having /?(0)(s),qi°](s), s0 < s < sf, we solve (3b) with ß := /?(°) for s = s^°\t). Define then the optimal 

reference trajectory q{0)(t) := qi0) (s(0)(£)J and the optimal feedforward control u(°> = u<°)(t), t > t0, by "inverse 
dynamics": 

u^(t)  :=M(p%\q(°\t))q<°\t) + h(p%\qM(t),qM(t)), pf := E(pD(u;)\Ato). (5) 

4. On—line control corrections 

Due to random variations ApD = pD - p{
D> of the model parameters, there is a remaining deviation between the 

actual trajectory q(t) and the optimal reference trajectory q(°\t). In order to define a control correction (feedback 
control law) 

Au(t) := u(t) - «(«»(*) = <p(t,q(t) ~ «(0)(«),?(*) - ?(0)(«)), * > *o, (6) 

with a function y = <p(t,Aq,Aq) such that <p(t, 0,0) = 0, t > t0, the trajectories q(t),q(°\t), t > tQ, are embedded 
into a one-parameter familiy (homotopy) q = q(t, e), t > t0,0 < e < 1, of the trajectories, related to the perturbed 

vectors pD(e) := p^' + e/ApD, q0{e) := p0 + eAq0,q0(e) := q0 + eAq0, 0 < e < 1, of model parameters and initial 
values, such that q(t, 0) = qw(t),q(t, 1) = q(t), t > t0. The tracking error 

Aq(t) = q(t) - qW(t) = J ^(t,e) de = ^ j{d
lq(t) + Rv(t), with dlq(t) := ~(t,0), l>l,t>t0,   (7) 

1=1 

can be computed by means of Taylor expansion of q = q(t, e) with respect to e at e = 0. Then, based on the expansion 
of Aq(t), with some stability requirements, also the coefficients of the corresponding Taylor expansion 

°°    1 / r)1 

<p(t, Aq, Aq) = J2 JiD'Mt, 0) ■ (Aq, Aq)1 (with Dl
z<p(t, z) := || (t, z)) 

of the feedback control law <p = <p(t, Az) with respect to Az = (Aq, Aq) at Az = 0 can be determined [2]. 

(8) 

5. Reduction of the on—line correction expenses by (OSTP) 

Since E(ApD(u)\Ato) = 0, for the 1st order error term dz(t) = (dq,dq) we have, with a stability matrix A, see [2]: 

Theorem  5.1. First order stability in the mean. Eydz(t)\Ata) = e^^^Azo -> 0, t -»■ oo. 

For the mean absolute deviation 6\dz(t)\Ato) := E\\\dz(t) - E(dz(t)\Ato)\\\Ato) of dz = dz(t) follows: 

Theorem 5.2. s(dz(t)\Ato) < f |je-4(*-r)|| . ||M(o)(r)-i|(£7ue (s(o)(T)) dr> where ^ (>)(*)) is the gener- 

alized variance of the feed forward control u^ (t), and M^ (t) := M (p^, qr(°) (t)\, Thus, according to the minimal- 

ity/boundedness of the 1st order expansion term of the tracking error, the on-line correction expenses are reduced. 
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MECKBACH, S.; EHRENSTEIN, G.W. 

Erweitertes Optimierungsverfahren für den Spritzgießprozess 

Zur Prozessoptimierung beim Spritzgießen wird ein Betriebspunkt bestimmt, an dem vorgegebene Eigenschaften der 
Teile eingehalten werden und der Prozess unempfindlich gegen Störungen ist. Das vorgestellte Optimierungskonzept 
basiert auf Antwortflächen, welche durch Scattered Data Interpolation Methoden erzeugt werden. Probleme die im 
Zusammenhang mit der Wahl des geeigneten Interpolationsmodells auftreten werden diskutiert. 

1. Einleitung 
Zur Gewährleistung eines stabilen Herstellungsprozesses werden heute bereits im Vorfeld der Produktion qualitäts- 
sichernde Maßnahmen ergriffen. Eine wichtige Anforderung ist nicht nur die genaue Einhaltung der Formteilspezi- 
fikationen, sondern das genaue Einhalten der Zielgrößen mit einer möglichst geringen Streuung [1, 7]. Durch eine 
Offline-Prozessoptimierung wird vor Beginn der Produktion ein robuster Betriebspunkt bestimmt. Für diesen gilt, 
dass am Punkt selbst und in einem Bereich um diesen, dem sogenannten Betriebsfenster, die Streuung der Ziel- 
größen gering ist und gleichzeitig die Formteilspezifikationen eingehalten werden. Ein solches Betriebsfenster wird 
als robustes Betriebsfenster bezeichnet. 

2. Prozessanalyse und -Optimierung 

Die vorgestellte Methode der Offline-Prozessoptimierung basiert auf Antwortflächen. Ausgehend von Versuchen an 
ausgewählten Stützstellen im Maschinenparameterbereich wird eine Funktion konstruiert, welche Auskunft über 
den potentiellen Wert der Qualitätsmerkmale an allen Parameterkombinationen gibt. Anstelle der bisher gängigen 
Regressionsmethoden werden die Antwortflächen mithilfe von Interpolationsmodellen basierend auf radialen Basis- 
funktionen [5] konstruiert. Aufgrund ihrer einfachen Darstellung und großen Variabilität werden Multiquadrics [3] 
bevorzugt. Sind Xj e TRk,i — 1,..., N, die Stützstellen im fc-parametrigen Betriebsraum und soll an den Stützstellen 
Xi der Wert p,- angenommen werden, so wird mittels Multiquadrics die Antwortfläche analytisch durch eine Funktion 
der Gestalt 

N 

f(X) = ^2aiH\\x-xi\ 

gegeben mit <f>(r) = y/c2 + r2, c E IR. Die Koeffizienten et,- bestimmen sich aus den Bedingungen /(#,) = p,-,i = 
1,...,N. Hierbei ist die reelle Zahl c geeignet zu wählen. Im Falle, dass durch die Interpolation eine bekannte 
Funktion angenähert werden soll, liefert [4] eine Methode zur Wahl des Parameters c. Im allgemeinen ist kein funk- 
tionaler Zusammenhang zwischen den Parameterkombinationen und der Ausprägung der Qualitätsmerkmale bekannt 
(beispielsweise bei der Standardabweichung). Daher ist zur Prozessoptimierung diejenige Interpolationsfunktion am 
besten geeignet, welche zwischen den Stützstellen möglichst direkt verläuft. Dies erfordert eine Methode zur Beur- 
teilung der Welligkeit einer Fläche. Es zeigt sich, dass das Integral der mittleren Krümmung über den untersuchten 
Parameterbereich ein geeignetes Maß ist, welches aber im Falle von mehr als zwei Parametern recht aufwendig zu 
berechnen ist. Eine einfachere Möglichkeit liefert im Falle von zwei Parametern die Minimierung des Energiefunk- 
tionais 

E -II &f{x,y) 
dx2 \   axoy + fd

2f(x,y) 
V     dy2 dxdy, (1) 

wobei auch hier das Integral über den untersuchten Parameterbereich gebildet wird. Das Energiefunktional lässt sich 
problemlos in den höherdimensionalen Raum verallgemeinern und wird dann als Rauheitsmaß bezeichnet [2]. Schwie- 
rigkeiten bereitet bei der Interpolation mit Multiquadrics, dass für zu hohe Werte von c numerische Instabilitäten 
auftreten. Diesen kann begegnet werden, indem man mithilfe des Integrals (1) prüft, für welche Werte von c die 
Interpolationsfläche eine geringe Welligkeit aufweist ohne dass der stabile Bereich verlassen wird. Die Abbildung 1 
zeigt den Verlauf des Wertes des Integrals (1) in Abhängigkeit von c. 

Zur Optimierung der Prozessrobustheit ist ein Betriebspunkt zu bestimmen, an dem vorgegebene Sollwerte und 
Toleranzen eingehalten werden, die Standardabweichungen möglichst gering bzw. die sogenannten SN-Kennzahlen 
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Abbildung 1: Werte des Integrals (1) in Abhängigkeit von c 

[6] möglichst groß sind; zudem sollen diese Bedingungen auch in einem Betriebsfenster vorgegebener Größe um 
den Punkt erfüllt sein, damit Schwankungen der Maschinenparameter aufgefangen werden können. Anstatt dieses 
Problem wie bisher üblich durch Kombination der Zielfunktionen auf ein eindimensionales Optimierungsproblem zu 
reduzieren, setzen wir für die zu optimierenden Größen untere bzw. obere Schranken fest. Für die Parameterkom- 
binationen, an denen keine Messwerte vorliegen, werden die durch Interpolation gewonnenen Näherungswerte als 
Grundlage gewählt. Das Optimierungsverfahren selbst verläuft so, dass die Schnittmenge aller Punkte festgestellt 
wird, in denen die Kriterien jeweils im ganzen Betriebsfenster um den Punkt erfüllt sind. Reduziert sich die Schnitt- 
menge auf einen einzigen Punkt ist das Optimierungsverfahren erfolgreich abgeschlossen; der Punkt wird als robuster 
Betriebspunkt gewählt. Erfüllen mehrere Punkte alle Bedingungen, so kann man entweder durch Verschärfung der 
Kriterien und nochmaligem Durchlaufen des Öptimierungsverfahrens zu einem einzigen robusten Punkt gelangen 
oder man wählt den Punkt mit dem größtmöglichen robusten Betriebsfenster. Findet sich kein robuster Punkt, so 
muss das Verfahren mit gelockerten Kriterien oder verkleinertem Betriebsfenster nochmals durchlaufen werden. 

Für zwei und drei Parameter wurde das Verfahren in einem PC-lauffähigen Programm realisiert. Durch Darstel- 
lungen in farbigen Grafiken werden dem Benutzer Hilfestellungen bei der Verschärfung oder Lockerung der Kriterien 
gegeben. 
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MlKULSKI, L. 

Querschnittsoptimierung unter mehrfacher Belastung 

Mit Hilfe des Maximumprinzips kann gezeigt weden, daß die Optimierung der durchlaufenden Träger, die simul- 
tan verschiedene Belastungsfälle aushalten, und dabei die maximale Spannung (Verschiebung) minimal halten, ein 
Mehrpunktrandwertprobem (MPRWP) ist. Die maximale Spanunng (Verschiebung) soll unter verschiedenen Neben- 
bedingungen minimal sein J{U) = min[/{maxx ax}. Als Steuervariablen wird die Höhe des rechteckigen Querschnitts 
und auch die Lage der Unterstützungspunkte gewählt. Durch die Einführung des Steuerungsparameter p kann das 
Zielfunktional auf das Mayerischesproblem zurückgeführt werden. Das erhaltene Mehrpunktrandwertproblem mit Di- 
mension 161 kann mit Hilfe des Dircolprogramm gelöst werden. 

1. Der durchlaufende Träger für verschiedene Belastungsfälle 

In dieser Arbeit widmen wir uns der Gestaltoptimierung von durchlaufenden Trägern, die simultan verschiedene 
Belastungsfälle aushalten, und dabei die maximale Verschiebung b.z.w. die maximale Spannung minimal halten. 
Wir betrachten einen durchlaufenden Träger, der an einem Ende eingespannt und am anderen frei drehbar ist. Au- 
ßerdem besitzt er drei innere Unterstützungen £pj. Wir betrachten zehn verschiedene Bestungsfälle [3]: 
- Belastungsfall I: Der Träger ist durch sein Eigengewicht belastet, und die Felder von 0 bis l sind mit der konstanten 
Belastung qo versehen. 
- Belastungsfall II: Der Träger ist durch sein Eigengewicht belastet, und das Feld von 0 bis £pi ist mit der konstanten 
Belastung qo versehen. 
- Belastungsfall III: Der Träger ist durch sein Eigengewicht belastet, und das Feld von £pi bis £p2 ist mit der kon- 
stanten Belastung qo versehen. 
- Belastungsfall IV: Der Träger ist durch sein Eigengewicht belastet, und das Feld von £P2 bis £P3 ist mit der kon- 
stanten Belastung qo versehen. 
- Belastungsfall V: Der Träger ist durch sein Eigengewicht belastet, und das Feld von £P3 bis / ist mit der konstanten 
Belastung qo versehen. 
- Belastungsfall VI: Der Träger ist durch sein Eigengewicht belastet, und die Felder von £pl bis £P2 sowie £P3 bis l 
sind mit der konstanten Belastung go versehen. 
- Belastungsfall VII: Der Träger ist durch sein Eigengewicht belastet, und die Felder von 0 bis £pi sowie £P2 bis £P3 
sind mit der konstanten Belastung q0 versehen. 
- Belastungsfall VIII: Der Träger ist durch sein Eigengewicht belastet, und die Felder von 0 bis £P2 sowie £P3 bis l 
sind mit der konstanten Belastung go versehen. 
- Belastungsfall IX: Der Träger ist durch sein Eigengewicht belastet, und die Felder von £pi bis £P3 sind mit der 
konstanten Belastung qo versehen. 
- Belastungsfall X: Der Träger ist durch sein Eigengewicht belastet, und die Felder von 0 bis £pi sowie £P2 bis / sind 
mit der konstanten Belastung qQ versehen. 
Jedem der zehn Belastungsfälle wird ein Satz von Zustandsdifferentialgleichungen zugeordnet mit Zuständen 2/1,3/2,2/3,2/4 
für den Belastungsfall I, mit Zuständen 2/5,2/6,2/7,2/8 für den Belastungsfall II, mit den Zuständen 2/9,2/10,2/11,2/12 für 
den Belastungsfall III, mit den Zuständen 2/13, 2/H, 2/15,2/ie für den Belastungsfall IV, mit den Zuständen j/17,2/i8, Vis, 2/20 
für den Belastungsfall V, mit den Zuständen 2/21,2/21,2/23,2/24 für den Belastungsfall VI, mit den Zuständen 2/25,2/26,2/27,2/28 
für den Belastungsfall VII, mit den Zuständen 2/29,2/30,2/31,2/32 für den Belastungsfall VIII, mit den Zuständen 
2/33,2/34,2/35,2/36 für den Belastungsfall IX, mit den Zuständen 2/37,2/38,2/39,2/40 für den Belastungsfall X. Dabei 
repräsentieren 2/1,2/5, y9,2/i3,2/17,2/21,2/25,2/29,2/33,2/37 die Verschiebungen, 2/2,2/6,2/io,2/i4,2/18,2/22,2/26,2/30,2/34,2/38 die 
Winkel 2/3,2/7,2/n,2/i5,2/19,2/23,2/27,2/31,2/35,2/39 die Biegemomente 2/4,2/8,2/12,2/16,2/20,2/24,2/28,2/32,2/36,2/40 die Quer- 
kräfte. 

2. Das Mehrpunktrandwetproblem für den durchlaufenden Träger (MPRWP) 

Als Steuerung betrachten wir die normierte Höhe des rechteckigen Trägers U = ■£-■ Die Steuervariable wird nun so 
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bestimmt, daß die maximale Verschiebung (Spannung) minimal wird [2] 

J{U) =p= {max?e[0il] |2/i| + max€e[0,i] \y5\ + max4e[0il] \y9\ + max?e[0il] \yi3\ + max^[0:1] |y17| 

+ maxfe[o,i] 12/211 + max€e[0ii] |j/2s| +maxCe[0il] \y29\ + maxfe[04] \y33\ +max56[0jl] |y37|}. 

wobei zusätzliche Beschränkungen berücksichtigt werden. Die resultierende Optimierungsaufgabe hat die Form : 
minxjJ(U) mit den Nebenbedingungen: 

Differentialgleichung y\ = f[yi(0, U(t)] i = 1...41, 

Vorgegebene Randwerte und innere Punktbedingungen 

Vi{ZP}) = 0   i = 1,5,9,13,17,21,25,29,33,37   j = 1,2,3, 

VkUpj) = !/*(£"■) + Djtk    k = 4,8,12,16,20,24,28,32,26,40, (2) 

1 
Steuerbeschränkungen       Ui < £/(£) < U2    ,    fU{£)d£ = V0, 

0 

Zustandsbeschränkungen       G(yi,p) > 0. 

Die Theorie der optimalen Steuerung liefert notwendige Bedingungen [1], [4] für eine optimale Lösung des Pro- 
blems. Es wird die Hamiltonfunktion H mit den adjungierten Variablen A*(£) eingeführt. Die adjungierten Variablen 
genügen auf nicht-zustandsbeschränkten Bögen den Differentialgleichungen A^ = -Hy. und es geten die natürlichen 
Randbedingungen. Die Steuerung wird aus dem Minimumprinzip bestimmt. Die freie Steuerung U{£) bestimmt sich 
aus Hu = 0. Für Intervalle mit aktiver Steuerbeschränkung bestimmt sich die Randsteuerung U(£) zu G(yi,p) = 0. 
An einem Unterstützungspunkt £pi sind die Gleichungen (3) erfüllt. 

xj(0 =*j(tpi)+Bj    3 = 1,5,9,13,17,21,25,29,33,37   i = 1,2,3 

H($i,y,\,U)=H{Q,y,\,U)+<Ti    i = 1,2,3 (3) 

H{£Pi,y, A, U) = H(£~,y, A, U)    (die Lage der Unterstützungspunkte wird mitoptimiert) 

Die Optimalsteuerungsaufgabe führt auf ein mehr-dimensionales Mehrpunktrandwertproblem mit zusätzlichen Schalt- 
punkten f j und vielen Sprüngen der Zustandsgrößen und der adjungierten Variablen. Diese Aufgabe wurde numerisch 
mit einer leistungsfähigen direkten Lösungmethode dem Kollokationsverfahren DIRCOL [5] gelöst. Die Berechnun- 
gen entsprechen einem durchlaufenden Träger mit folgenden Ausmaßen: die Länge / = 4- 7.2 = 28.8m, die Belastung 
Qo = 7.0^, Elastizitätmodul E = 19200 • 103, von den Bodeneigenschaften abhängige Konstante k = 50000.0^?. 
Für den durchlaufenden Träger mit drei inneren Unterstützungen fpi, fp2,6,3 urid zehn Belastungsfällen hat das 
Mehrpunktrandwetproblem die Dimmension 161 [3]. 

Tab. 1. MPRWP für den durchlaufenden Träger 

Zustandsvariablen y^) | Adjungiertenvariablen Xt | /z(£) | DUk j Bj | &   [ Zielfunktion       I MPRWP 

yi(Q    % = 1-41 I Aj(Q    i = 1.^41 n       [30     I 30  I 18 I 0.118355 ■ 10"3 I 161 
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RSM Based Design Optimization 

Response Surface Models (RSM) based on data from designed numerical experiments are useful as approximation 
models in Engineering Optimization. Their construction can be enhanced by the inclusion of design sensitivity data. 
In this short paper we discuss two strategies to accomplish this. We compare both strategies in a numerical example 
and draw some general conclusions regarding their practical value. 

1. Introduction 

Response Surface Models (RSM) can be constructed successfully from data generated by numerical models [4], 
though implicit statistical assumptions may be disputed with data from deterministic numerical models [3j. The 
RSM's obtained are useful as approximation models in Engineering Optimization. On a global scale they may 
identify promising regions in design space for optimal designs. Furthermore, polynomial functions, often used for 
RSM's, tend to average out non-smooth response behavior, preventing from premature convergence of optimization 
algorithms to local extremes. On a local- or mid-range scale RSM's may be too inflexible to capture detailed local 
functional behavior and a subsequently adapted approach should be considered. After an optimum has been found, 
RSM's build around the optimum can be used to investigate the effect of changes in the design variables without 
the need to rerun the full analysis. This is profitable with e.g. Multidisciplinary Optimization, MDO. 

2. Strategies to augment RSM's with design sensitivities 

Regression techniques for RSM-construction are well known [2]. They start from a postulated relation between the 
dependent variable, y, and the n independent variables, x, which is linear in the k model parameters ß for linear 
regression. To include design sensitivity information relations for partial derivatives can be added, resulting in: 

2/(x)=f^(x)./3 + e1, ^. = ^M.ß + ei+l       * = !,...,„, (1) 

with approximation errors et . Relations (1) can be summarized as: u(x) = FT(x) ■ ß + e. 
To train the model an experimental design is determined, with points in design space for which (numerical) experi- 
ments have to be carried out. Principles from statistical Design of Experiments [1] may be used to limit the number 
of training sites, N. When all information has been collected, experimental data for response and sensitivities at all 
training sites are compared with their respective model predictions. Relations (1) for individual training sites, Xj, 
may be combined into an overall matrix equation: ü = G • ß + e, from which model parameters can be estimated. 
Matrix G is the so called design matrix, which contains all model information. 
As response quantities and their sensitivities have different (physical) dimensions, weighting factors must be used 
to express their relative importance. This can be achieved through a Weighted Least Squares approach (WLS) [2]. 
With an appropriate weighting matrix B and a design matrix G estimates for the model parameters follow from: 

/a=(GT-B-G)_1-Gr-B-y. (2) 

A common choice for B is the inverse of the covariance matrix of the experimental data. Assuming independent 
results between the N training sites and equal covariance matrices, V, at individual training sites it reduces to: 

B = [Cnv(ü)]"1 = (INxN ® Vn+lxn+1)_1 = INxN ® V~^lxn+1. (3) 

An estimate of the covariance matrix, V, can be determined from the experimental data: 

V = JvfTjfc E (u^) - FT(X;) • ß) ■ (u^) - FT(^) ■ ßf ■ (4) 
3=1 

In this so called covariance oriented approach correlations between responses and sensitivities are taken into account. 
An alternative is the so called variance oriented approach, where V is assumed to be diagonal.  Elements follow 
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from corresponding diagonal elements in (4) and represent variances of the data considered. For both approaches 
an iterative procedure of estimation should be employed as model parameters both depend on and influence the 
weighting matrix through V. Once convergence has been reached the estimated model parameters can be used to 
predict both responses and sensitivities for other designs, x. 

3. Numerical example 

To compare both methods, they are applied to a simple two-variable analytical test function: 

/(x) =2 + 4a;i + 4x2 -x\ -x\ + a • sin(6xi) • sin(6x2)        0.5 < xi,x2 < 3.5. (5) 

Parameter choices are restricted to three representative cases, namely a = 0.5; 6 = 2 (smooth behavior), a = 2; 
6 = 2 (smoothly fluctuating behavior) and a = 0.5; 6 = 10 (strongly fluctuating behavior). For all three cases two 
training designs are used to train a full quadratic model: a 22-classical design with factor levels {0.5,3.5} and a 
32-classical design with factor levels {0.5,2, 3.5}. Once model parameters are estimated, they are used to generate 
model predictions for both responses and sensitivities on a regular 101 x 101 grid in the design space considered. The 
average squared difference between these model predictions and the exact values from the analytical test function 
(5) is used as an Empirical Integrated Squared Error criterion. There values are summarized in the following table, 
together with results for a standard Least Squares (LS) approach on response data. 

Method a = 0.5 6 = 2 a = 2; 6 = 2 o = 0.5; 6 = 10 
/ df/dx / df/dx / df/dx 

LS (3z-design) 7.82 • 10^ 2.75 • 10"1 1.25 4.39 6.84 • 10^ 6.26 
WLS (variance; 22-design) 1.06 • 10_1 2.54 • 10_1 1.67 4.06 3.74 7.73 
WLS (variance; 32-design) 6.49 • 10~2 2.56 • 10-1 1.04 4.10 7.11 • HT2 6.26 
WLS (covariance; 32-design) 6.20 • 10-2 2.50 -lO-1 9.92 • 10_1 4.01 6.56 • 10-2 6.26 

Comparing results for the 32-designs indicates that inclusion of sensitivity information in the smooth and the 
smoothly fluctuating case leads to an improvement of the RSM-models for the response, /, with the covariance- 
oriented WLS-approach being slightly superior. However, in the smoothly fluctuating case a second order polynomial 
function seems inadequate to capture the real functional behavior. In the strongly fluctuating case gains are small 
or even absent. RSM-models for sensitivities, df/dx, perform poorly in all but the smooth case. In fact, the second 
order polynomial function used is not capable to capture the real behavior of these sensitivities properly. 
Including sensitivity information in the model training makes it possible to reduce the necessary number of training 
sites, improving the efficiency of model training. Its practical implication is illustrated by comparing results from the 
standard LS approach on a 32-design with those from the variance oriented WLS approach on a 22-design. Results 
show that a (substantial) reduction in training effort by including sensitivity information seems to pay off in the 
smooth and the smoothly fluctuating case, whereas it is inadequate in the strongly fluctuating case. 

4. Conclusions 

The efficiency of model training of Response Surface Models can be improved by including information on design 
sensitivities in the model training. This holds especially for those situations where design sensitivities are easily 
available, as is the case with e.g. Finite Element Models. However, if the response is non-smooth or contains 
discontinuities sensitivity data can disturb the global behavior of the response and should not be used. Furthermore, 
the proposed RSM-model should be flexible enough to capture the behavior of both responses and sensitivities 
properly. If sensitivity information can only be obtained numerically, through additional model analyses, there 
seems to be no clear advantage to spend additional effort on obtaining sensitivity information instead of using it 
directly for gathering response information from a larger training design. 
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Optimal layouts of structural components considering fatigue strength 

Designing complete systems or system components, it is of vital importance for the manufacturers nowadays to optimally 
fulfil the ever increasing demands pertaining to safety, durability, reduction of energy consumption, noise reduction, im- 
provement of comfort, accuracy, etc. This, for instance, applies to all types of traffic and transportation systems like rail 
vehicles, automobiles, airplanes, and ships. 

1. Problem definition 

Increased demands on rail vehicles like high driving speeds, low stresses of railbeds, low life cycle costs, etc. require the 
application of computer-aided computation methods already at a very early stage of the design process. In the present paper, 
a proposal for modeling, simulation and optimization of rail vehicle systems and components (Fig. 1) is presented for two 
very important effects, namely the fulfilling of fatigue strength and durability requirements. 

Primary springs 

o : observation points 

W:     carbody 

bogie with 
driving gear 

bogie without 
driving gear 

Fig. 1 Rail vehicle system and components. 

2. Durability and Fatigue Strength 

Durability and fatigue strength play a further important role for finding layouts of rail vehicle components. Bogie frames are such 
typical components within the global system "train". Currently, the layout of these frames with respect to durability is only carried 
out on the basis of substantially reduced load assumptions. The thus determined stress results reflect the real loads only very 
roughly and both over- and underdimensioning are possible. Using a more precise consideration of the states of operation, an im- 
proved layout is achieved with an optimal exploitation of the material properties. This concept is realized by calculating the forces 
acting on the bogie frame using dynamic MBS-simulations of the global system "train", by an FE-analysis of the bogie frame, and 
finally by evaluating the transient stresses by means of the rainflow counting procedure (see Fig. 2, [2,3]). 

3. Optimization concept 

The fatigue strength concept is integrated into the optimization procedure SAPOP (Structural Analysis Program and Optimi- 
zation Procedure) [1,6], see optimization loop in Fig. 3. The objective function is the minimization of the bogie frame mass. 
Formulating constraints it is demanded that the estimated damage at each point is less than a critical damage. Using gradient 
methods to solve the optimization task, some difficulties occur. These difficulties are illustrated, existing problems are out- 
lined, and solution approaches are described [4, 5]. 
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Fig. 2 Flow chart for the bogie frame layout with 
respect to fatigue strength. 

Fig. 3    Optimization loop in SAPOP 

4. Results - Conclusions 

The| bogie frame is optimized by way of three different optimization models (thickness optimization, geometry optimization as 
wel as a simultaneous thtckness and geometry optimization). The layout with respect to fatigue according to DS 952* compared 
w th alayout wtft respect to operational durability according to EUROCODE 3. This yields different optimum design ,ow£go 
the different load assumpttons and design limits of the respective codes. To achieve realistic data, the structural mode ha! to be 
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Structural optimization in nonlinear mechanics 

In the present study geometrically and materially nonlinear response is considered in topology and shape optimization 
in order to introduce more realism into the structural design. Typical objectives are to minimize the weight or to 
maximize the structural ductility or the critical load factor of a construction. The crucial point of the optimization 
procedure is the sensitivity analysis. In case of path-dependent problems, such as elastoplasticity the sensitivities are 
also path-dependent and have to be determined after each incremental step. With respect to the specific features of 
either topology or shape optimization different methods of sensitivity analysis are applied. The entire optimization 
procedure is verified by several design problems. 

1. Structural analysis 

The structural response based on an elastic and elastoplastic material model (Prandtl-Reuss) and a nonlinear 
kinematic relation is determined by an incremental, iterative solution procedure. The strains are restricted to be 
small. The critical points are evaluated using an augmented set of equations, namely the extended system (see [4]). 

2. Sensitivity analysis 

In the present study gradient based optimization procedures are used (SQP, OC). Therefore the sensitivities of the 
design criteria have to be determined. Depending on the number of optimization variables (nv), the number of 
design criteria (nc) and structural behavior a suitable method has to be chosen. For path-independent problems the 
main criteria for the choice is the ratio of nv to nc. Thus in topology optimization the adjoint method is preferred 
while for shape optimization problems the direct method is common. But for path-dependent problems the direct 
method is preferable in general; here the sensitivities have to be determined after each incremental step (see [2], [6]). 

3. Numerical examples 

Stiffness optimization with critical load constraint: 
This example deals with the minimization of internal 
energy (which corresponds to the maximization of 
structural stiffness in elasticity) for prescribed mass. 
The structural situation and the material data are 
given in Fig. 1. Due to symmetry only one half of 
the structure is discretized by 800 eight-noded shell 
elements. First the optimum topology is generated 
based on linear kinematics (left side of Fig. 1). After- 
wards a nonlinear kinematic relation is adopted. Ad- 
ditionally stability constrains (Ac > 1.4) for the per- 
fect as well as the imperfect structure are taken into 
account. The buckling mode of the lowest critical 
point is assumed as geometrical imperfection with a 
maximum amplitude of 0.075m (right side of Fig. 1). 
Because of the limited number of optimization vari- 
ables (densities, SIMP-approach) the stability con- 
straints could not be reached exactly. This problem 
can be overcome by using more variables. 
For further examples it is referred to [1], [3]. 

design domain: 20m x 5m 

non-linear kinematics, 
linear kinematics, with critical load constraint for 
without critical load constraint        perfect and imperfect structure 

168.277 strain energy [kNm] 194.002 
0.973 critical load factor j£erf 1.750 

critical load factor l!™? 1.572 

Figure 1: Results of the topology optimization with and with- 
out critical load constraints. Minimization of weight of a Vierendeel girder: 

The structural situation and the material data are 
given in Fig. 2. Due to symmetry only one half of the thin plate structure is shown, analyzed and optimized with 
respect to the shape of the holes. Here elastoplastic material without hardening is adopted (see also [3]). 
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material data: 
Young's modulus: E   = 2.1 108 kN/m2 

hardening modulus: ET= 0.00001 kN/m2 

Poisson's ratio: v   = 0.3 
density: p   = 78.5 kN/m3 

yield stress: oy = 2.0 105 kN/m2 

thickness: t    = 0.044 m 

1 m   2 m 2.7 m        2.7 m        2.7 m 2.7 m 

Figure 2: Discretization of the Vierendeel girder and material data. 

2.7 m 2.7 m 

The objective is to minimize the structural weight considering several constraints. The von Mises stresses along the 
edges are limited to av - 2.0-105 fciV/m2 and the shear stresses between the holes are restricted to r = 8.0-104fcAr/m2. 

The maximum possible displacement in the center A of the girder is limited to uA - 1/300 w 0.12m. The optimization 
variables are the coordinates of the shape describing design-nodes. The nodes are allowed to move only to the center 
of the related hole. The optimization variables are linked to enforce symmetry to the longitudinal axis of the girder. 
For comparison the girder is optimized based on either an elastic or an elastoplastic material model. For the elastic 

optimization based on elastic material behavior optimization based on elastoplastic material behavior 

Wopt = 95.5 kN uA = 0.091 m    u» = 0.12 m 

Figure 3: Example 2: Results of the shape optimization and related stresses. 

Wopt = 82.0 kN 

material model all constraints are considered. The weight of the starting design (W0 = 105.7JWV) is reduced to the 
optimum weight of Wopt = 95.5fcJV using the elastic material model (left side of Fig. 3). The optimization procedure 
is terminated by the von Mises stress constraint. For the optimization based on an elastoplastic material model the 
stress constraint is 'replaced' by the von Mises yield stress with ay = av = 2.0 • itf'kN/m2. The other constraints 
are furtheron considered. The optimization process stops, when the displacement constraint at point A becomes 
active. The structural weight can be reduced to Wopt = &2.0kN (right side of Fig. 3). The reason for the additional 
reduction is that the elastoplastic material behavior allows a redistribution of stresses. This leads to a more balanced 
stress state. Further examples maximizing the structural ductility can be found in [3], [5]. 
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Topology Optimization of Trusses under Stochastic Uncertainty 

1. Topology Optimization 

In case of topology optimization, the unknown optimal or satisfying structure is a (proper) substructure of an initial 
topology, called ground structure [1]. A ground structure is given by a set of nodal points, where at some of these 
nodes external loads apply and support conditions are defined, and n potential bars, connecting two of the nodal 
points. Different ground structures can be defined e.g. by connecting the direct neighbours only (Fig.3) or connecting 
nodes in a larger vicinity (Fig.4-6) up to connecting all nodes (Fig.7), without considering overlapping bars. 

2. Foundations from Structural Mechanics 

In collapse load analysis [2,4,5] and plastic, elastic design (synthesis) [2,4,5] of mechanical structures, e.g. trusses, 
structural survival is described by the following two basic conditions: The equilibrium equation CF = R, where C 
is the m x n equilibrium matrix with rank(C) = m < n, and R is the external load vector; The yield, strength 
or safety condition FL(aL,cru,X) < F < Fu(aL,au,X) which is a linear approximation (yield polygon) of the 
actual convex yield, strength or safety conditions for the n-vector F of internal forces. The n-vector bounds Fu, FL 

depend on the (i-vectors au, erL of yield or allowable stresses in compression, in tension, resp., and a certain r-vector 
X of design variables. In the important special case of trusses [4,5] we have that FL := (of" A1(X),...,a^An(X))' = 
*%A(X), Fu := {oYAx{X),..., <T%An(X))' = a%A(X), where A = A(X) := (A^X), ...,An(X))' is the n-vector of 
cross-sectional areas of the elements (members) of the truss. Moreover, (T^,cr^ denotes the n x n diagonal matrix 
having the diagonal elements af,aV,j = 1, ...,n, respectively. Since the m-vector R of external loads Rj,i = 1, ...,m, 
and the /u-vectors crL, au of yield or allowable stresses are not given, fixed quantities in practice, but must be modelled 
as random vectors R = R(u),aL = aL(u),au = ou(u),u G (Ü, A,P), on a certain probability space, (Q,A,P), the 
original structural optimization problem with random data must be replaced by an appropriate substitute problem, 
see [6,7]. 

3. Topology Optimization under Stochastic Uncertainty 

For the topology optimization problem we select the 1st stage cost (weight or volume) function G0 = G0(u, X), e.g. 
n 

G0(o»,X) := Yi 7k{u)Ak{X)Lk. Due to possible violations of the yield, strength or safety condition, we have then 
fc=i 

to take into account the 2nd stage costs AG := AG(u,X,qL(u;),qu(u))) arising from the damage, maintenance or 
repair of the structure, where qL(w),qu(w) denote certain vectors of cost factors. The total costs are given then 
by G(u, X) := G0{UJ, X) + AG(u, X, qL(u),qu(u)), where in the following we consider linear 2nd stage cost models 
AG(uj,X,qL(u)),qu(u)) = qL{w)'AFL- +qu(cj)'AFu- with the second stage cost factors qL(u),qu(u). In case of 
trusses, and assuming discrete probability distributions, e.g. after discretization of the probability distribution, the 
basic structural optimization problem with random data 

minG0=G0(u),X)    s.t.    CF = R(u), FL(aL,au,X) < F < Fu(aL,au,X), X £ D0, 

is replaced by a deterministic (large scale) LP with a dual decomposition data structure, details see [3,6,7], 

min   GQ(X)    +    \piq{ui)'y{u>{) + ... +pjq{u}j)'y(u)j)] 
s.t.     T(ui,X)+    Wyiux) =h(m) 

T(uj,X) +Wy(uj)      =h(uj) 
X€D0,y(uj)>0,j = l,...,J. 
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4. Numerical Examples 

In the following we compare the optimal topologies obtained from     ^ Glwjnd slrueWltJ 

the ground structures Fig.3-7 in case of a deterministic single load,     ^ 
cf. Fig.l, and for a random load with a uniform discrete distribu-     T 

tion, cf. Fig.2. 
Fig.l 

I 1 
^   Ground Ktnicfeffe 

1 : 
Fig.2 

]ÄM1Ä11IÄ 

Fig.3 Fig.4 Fig.5 Fig.6 Fig.7 

Fig.8 Fig.9 Fig.10 Fig.ll Fig.12 

Fig.16 Fig.17 Fig.13 Fig.14 Fig.15 

Obviously, by taking into account random parameter variations by stochastic optimization methods, robust designs 
can be obtained: In comparison to the optimal solutions of the deterministic topology design problem, cf. Fig. 
8-12, the corresponding optimal design obtained by using SLP techniques, cf. Fig. 13-17, demands for additional 
bars and/or greater ( g§»m ) /smaller ( c:...::...;3 ) cross-sectional areas, with the maximum difference of 20% in this 
examples, for some bars in order to cope with stochastic variations of the model parameters (loads in this case). 
Moreover, the optimal topologies obtained from ground structures with a higher order vicinity (more directions 
available) tend to a Michell structure and have lower total costs. 
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K. VERVENNE, H. DE BOER AND F. VAN KEULEN 

Accuracy and implementation of refined second order semi-analytical design 
sensitivities 

Accurate second order design sensitivities of finite element responses play an important role in the optimization 
process. The semi-analytical (SA) method is often used to compute these sensitivities. A disadvantage of the SA 
method is that severe inaccuracies may be observed for shape design variables. To improve the accuracy of the SA 
method a refined second order method has been proposed and implemented. The improvement has been based on the 
consistency conditions for rigid body modes and their derivatives. Both analytical and numerical examples indicate 
a considerable accuracy improvement of the refined method over the standard SA method. 

1. Introduction 

Computation of second order design sensitivities is often done by using the semi-analytical (SA) method. The 
governing finite element equations are 

Ku = f (!) 

and second order displacement sensitivities are derived from the finite element equations by differentiating twice 
with respect to the design variables which gives 

U,y = KT1 (f,y - K.yll - K,4Uj - KjU,j) . (2) 

Here ...,* denotes partial differentiation with respect to design variable i. For a SA formulation the derivatives 
K i and K „ are approximated using finite differences. Advantages of the semi-analytical method are the ease of 
implementation and its efficiency. An important disadvantage is that severe accuracy problems can occur, especially 
for shape design variables (see [1]). 

2. Accuracy improvement of semi-analytical design sensitivities 

Several methods to improve the accuracy of first order semi-analytical sensitivities have been proposed in [2-5]. To 
improve the accuracy of the second order semi-analytical sensitivities a similar approach as discussed in [4] can be 
used. For that purpose the element displacement vector is decomposed into a rigid body part and a deformational 

part 

ue=u= + £afcrj    with    a* = ¥ä- (3) 

Here T\ denotes the set of rigid body modes for a single element.   Similarly, the element pseudo-load vector is 
decomposed into a self-equilibrating part and a non-self-equilibrating part 

■.SB + J>r*    with    ßu = %±- (4) 
k e    e 

Furthermore, for rigid body modes of a single element, it holds that 

Ker* = 0 (5) 

Ke^+Ker^O (6) 

Ke,yr* + Ke>ir* j + KeJvk
e>i + Ker^. = 0. (7) 

These equations are referred to as consistency equations.   As analytical derivatives of the rigid body modes are 
very easy to calculate, the consistency equations can be used together with (2), (3) and (4) to replace some of the 
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derivatives of Ke by derivatives of r*. This results in an improved accuracy of the pseudo-load vector and therefore 
also of the design sensitivities. Possible errors in the self-equilibrating part of the pseudo-load vector do not have 
a large effect on the accuracy of the design sensitivities. This can be concluded from Saint Venant's principle: the 
effect of inaccuracies in self-equilibrating terms tends to damp out. The accuracy of the non-self-equilibrating part 
can be improved by using the consistency equations for rigid body modes and analytical differentiation of rigid body 
modes. 

3. Example: plate problem 

A rectangular strip, clamped at one end, and loaded by a bending moment at the other end, is studied. Second 
order design sensitivities of the tip displacement with respect to the length of the strip are computed for various 
choices of the relative perturbation, using both the semi-analytical method and the proposed refined semi-analytical 
method. From Fig. 1 it can be concluded that the refined semi-analytical method resulted in accurate second order 
sensitivities in a much larger range of relative perturbations, compared to the semi-analytical method. 

2.5 

-11       -10        -9 -8 -7 -6 -5 -4 -3 -2 
log relative perturbation 

Figure 1: Second order design sensitivities of the tip displacement 

4. Conclusions 

It can be concluded that the use of refined semi-analytical design sensitivities gives a significant accuracy improvement 
of the traditional semi-analytical design sensitivities. Furthermore, the implementation is easy in an existing finite 
element code. Finally, the increase in computational cost is minor. 
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ViETOR, THOMAS 

Optimal design in automotive engineering with scattering design variables 

The development of a passenger car is a multidisciplinary task. The vehicle has to fulfill demands out of different attributes 
like vehicle dynamics, driveability, acoustics, thermal and heat management, safety, durability, crash and economics. One 
main problem is the variability of mechanical quantities responsible for the performance and customer perception of a car. 
To overcome this, the extension of the conventional deterministic oriented development process to a process which includes 
stochastic quantities is necessary. In this paper the current deterministic approach is described briefly. It is not possible to 
perform the extension in a single step. In a first extended version of the process the variability of material parameters is 
included. In further steps the formulation and solution of stochastic optimization problems for sub-problems is necessary. 
Finally the complete approach should fully integrate the variability of stochastic quantities. 

Customer    Requirements 

Quality     Function Deployment 

Attribut 

Attribut    1 
Vehicle 

Dynamics 

Attribut    2 
Safety 

and 
Reliability 

Attribut    T 

1. Development process 

Vehicle system concepts (e.g. body structure, front- and rear suspension, powertrain mounting systems, etc.), which are 
selected in an early program phase, have significant influence on the attribute performance of the vehicle. It is almost 
impossible to solve attribute concerns resulting from selection of poor concepts in a later program phase. A good 
understanding of dynamics of the vehicle is needed to design and realize mounting systems that allow the company to reach 
its attribute leadership goals. The selection of the mounting concept and the design of the mounting system is a highly 
complex task which requires the involvement of all related areas. The process should be driven by CAE analyses, as there is 
no hardware available in an early development stage. The principle of the development process is shown in Fig. 1 [1,2]. 

Concept development has become more and more 
part of the ongoing process. It is done by core and 
advanced groups of the car manufacturer. Proven 
concepts have to be available at the start of a new 
vehicle program. Otherwise, the program team 
would not be able to meet the restricted time 
schedule, which has been significantly reduced in 
recent years. CAE is used extensively for concept 
design evaluations. The advantage of analytical 
models is, that the engineer gets a better 
understanding of the system behavior. Sensitive 
areas of the design can be identified, which helps 
to guide the design. With the start of a new vehicle 
program, market research and benchmark studies 
are carried out. Vehicle targets are derived from 
subjective evaluation and from measurements of 
the base vehicle, which is to be replaced, and the 
main competitors. With respect to NVH, the 
vehicle targets are given for example by the 
interior noise level at specific drive conditions. The 
NVH requirements have a big impact on the 
vehicle development. In particular the structural 
design of the powertrain concepts and the body 
architecture is influenced by NVH. CAE studies 
are helpful when it comes to the system and 
component target setting. One important strategy 
for NVH is, to avoid coupling of system and 

Fig. 1 Development Process in Automotive Engineering. 

Concurring     Engineering     Demands 
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Design- 

Guidance 
Material 

Data 

component resonances with other resonances or with primary excitation sources. That means, a proper alignment of modal 
frequencies and vehicle excitations is critical to meeting the overall vehicle targets. For example, the global body modes 
(e.g. torsion/bending) have to be separated from engine idle conditions. Targets are also set for the powertrain and 
suspensions modes. Following the system target setting the program team has the task, to select proper concepts, which have 
the potential to fulfill the overall targets. CAE is utilized to compare concept alternatives for the vehicle program and to 
support the decision process. The next step in the development process is the definition of components targets and the 
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hardware optimization. Generally, CAE is a very strong tool for component optimization. As hardware testing is not done in 
many cases due to time and budget restrictions, it is the only way to make an assessment of the design. In the late program 
phase the required NVH performance of the vehicle is confirmed with prototype vehicles. CAE is of minor importance as far 
as the NVH assessment is concerned. In case of NVH concerns being identified with prototypes the models are used to carry 
out root cause analyses and to identify measures in order to fix the problems. 

2. Introduction of scattering design variables 
In the development process a number of parameters and design variables are scattering. In conventional approaches they are 
assumed deterministic. With increasing importance of reliability the deterministic approach has to be extended and at least 
the most important parameters and variables have to be modelled stochastically. These most important quantities have to be 
identified with sensitivity methods. Only with the limitation to the most sensitive quantities the models can be handeled. The 
key factors for the introduction of scattering design variables are: 
• stochastic data like geometry, dimensions, thicknesses and statical and dynamical stiffnesses of different materials like 

rubber, foams, etc. [3] 
• different stochastic models like gaussian, weibull, lognormal distributions 
• objectives like sound pressure, vibrations, ride and handling, costs, manufacturing, assembly, package 
• solution strategies like RSM, First Order Second Moment reliability methods (FOSM) and different methods of 

stochastic optimization like mean value Taylor methods [4] 

3. Solution strategy for stochastic variables [4] 
Fig. 2 shows the transformation of stochastic variables to standard normally distributed variables. This is the basis for the 
application of First Order Second Moment reliability methods. The magnitude ß of vector y* is a measure for the 

probability of failure Pf = ®(-/? ). This measure for failure can be introduced for each stochatic constraint. With this 

formulation the well known optimization procedure [5] can be extended [4]. Because of the very high numerical effort the 
stochastic optimization problem can be solved only after introducing simplified models for the structural analysis and the 
use only of the most important stochastic quantities. These examples show the big influence of the stochastic character to 
optimal results. 
Z2A 

Z   =   Z(Y) 

g(z)   =   0 h(y)   =   0 

0 

Fig. 2 Transformation to standard normally distributed variables. 
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VONDRÄK, V.; DOSTÄL, Z., RASMUSSEN, J. 

Duality based contact shape optimization 

An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction 
is described. This method is then applied to the contact shape optimization. 

1. Duality based solution of state problem 

The finite element discretization of conditions of equilibrium of a system of elastic bodies in contact results in the 
quadratic programming problem 

min -uTKu — uTf, (1) 

where if is a stiffness matrix, / represents a load vector and inequality constraints Nu < d describe contact 
conditions of non-interpenetration of the bodies. In design optimization, all these matrices and vectors may depend 
on the vector of design variables a. After introducing the Lagrange multipliers A for the inequalities and elimination 
of the displacements u, we obtain dual formulation of the problem 1 in form 

min l^NK^N - AT (NK~xf - d). (2) 
\>o 2 

The latter formulation is suitable for application of the efficient quadratic programming solvers. In particular, these 
methods can exploit rather well conditioned Hessian and bound constraints. After solving 1 for A, we can evaluate 
the displacement vector u by the formula u = K~l (/ — NT\). 

2. Sensitivity Analysis 

The goal of the sensitivity analysis is evaluation of the gradient of the solution of the state problem 1 with respect 
to the design variables. The most straightforward method for evaluation of these directional derivatives is so called 
overall finite difference method which is based on numerical approximation of derivatives by the finite differences 
du/don « j {u(«i,...,cti 4- tej,..., ap) — u(oti,...,ap)}, where e* denotes the vector with 1 in ith position and zeros 
elsewhere, a, is ith design variable, and t is a sufficiently small perturbation parameter. Thus to carry out the 
sensitivity analysis, we should assemble and decompose the stiffness matrix p + 1 times. 

A more sophisticated method for sensitivity analysis is so called semi-analytical method. Using the symbolic 
differentiation of Lagrangian of the state problem and analyzing all possible cases of interaction on the contact 
interface, we obtain the quadratic programming problem 

min    \zTK{a)z-zT(f,{a,ei)-K'{a,ei)u{a)-N'T{a,ei)\{a)) (3) 
zeG{a,ei) 2 

whose solution is formed by the directional derivatives in the design variables a*. In this problem, symbols /'(a, e^), 
K'(a,e,), N'(a,et) denote the directional derivatives of the load vector, stiffness matrix and constraint matrix, 
respectively. They can be evaluated by direct computation. The vectors u(a),\(a) are primal and dual solutions of 
the state problem. The set of constraints is defined as 

G(a,ei) = {z : Nj(a)z < d/fam) - N'j(a,Ci)u(a),Vj e Iw; . . 
Nk(a)z - d'k(a,ei) - Nk(a,ei)u(a),Vk £ /,}. w 

The set Iw comprises indices i of the dual solution with Aj(a) = o, and Is those with Aj(a) > o. Thus the 
semi-analytical method requires only one assembly and decomposition of the stiffness matrix. More details on the 
implementation of the solution of 3 and on the semi-analytical method may be found in papers 1 and 2, respectively. 
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In finishing this local procedure step 4 gives the BB coefficient zn (D) as zn = anani + ßna„j + jno-nk- 
The obtained cubic C1 spline s satisfies 

s(Pi) = Zi,   grad s(Pi) = git Pt vertex of A,      grad s (Pi^P' ) riy = d„, PiPj edge of A. 

2. Nonnegative and range restricted C1 interpolants 

Of course, the above spline s is nonnegative on Q if only the BB coefficients from the steps 1 and 2 are nonnegative. 
This, in turn, holds true if we set gi = 0 for all vertices Pi of A, dy = 0 for all edges P;P, of A and if we assume 

{Sn - P^Pu - Pn) > 0 for n,ve {», j',fc}, n fv, An 6 A. (1) 

the ineaualities (1 

AM It: «• -1 

with cubic splines on Clough-Tocher refinements ACT of the triangulation A which satisfy the condition (1). 

The existence proof should be followed by a fairing step. A fairing functional, for example the thin plate functional 
is minimized with respect to the gradients gt and the normal derivatives dy- subject to the nonnegativity constraints 

aß„ > 0, bnv > 0 for /i, v G {i,j, fc}, fi^,A„EA. 

More general, cubic C1 splines on Clough-Tocher refinements ACT with the property (1) are suitable in range 
restricted interpolation provided the obstacles are piecewise constant, i. e., if Ln < s(P) < U„ for P e An, A„ G A 
is required. Of course, the prescribed obstacles Ln and Un have to be compatible with the function values zu zjt 

zk on any triangle A„ G A. We remark that this problem was shown to be solvable also by means of quadratic C1 

splines on Powell-Sabin refinements Aps of A in [2]. 

To demonstrate the described procedure we have chosen the often used data set illustrated by Figure 2. The 
triangulation A is refined to ACT by means of the incenters. We have constructed range restricted interpolants to 
the obstacles Ln = 0, Un = 1, An G A. Comparing the Figures 3 and 4, in this example and in others the spline 
obtained by minimizing the thin plate functional is visually much more pleasing than the spline used in showing the 
solvability of the problem of range restricted C1 interpolation. 

Figure 2: Data set and the piecewise    Figure 3;    Range restricted inter-    Figure*     Range  restricted  thin 
linear interpolant on an admissible    pQlant uged .n the existence proof       plate interPolant. 
triangulation A. 
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BENNER, P. 

On a numerical method for the regularization of descriptor systems 

We discuss a numerically stable algorithm, originally proposed in [3], that computes a regularizing output feedback 
for descriptor systems. In [3], the system is transformed to a condensed form via a sequence of singular value 
decompositions (SVDs). We show that the expensive SVDs can be replaced by reliable, more efficient orthogonal 
decompositions. Moreover, we demonstrate how the feedback is obtained from our slightly different condensed form. 

1. Introduction 

Consider the linear, time-invariant descriptor system 

Ex(t) = Ax(t) + Bu(t),    x(0)=x°,        y(t) = Cx(t),        A,E £ Knxr\5 £ TRnxm,C £ Wxn,      (1) 

where x, y, and u are the states, outputs, and inputs (controls), respectively, of the system. 

The solution of optimal control problems with quadratic performance criterion for descriptor systems of the form (1) 
is considered, e.g., in [3,4]. In [3] it is shown that essentially, the classical theory from the linear-quadratic optimal 
control problem with E invertible carries over to the descriptor case (E singular) if the pencil A — XE is regular 
and has index at most 1. If the system is strongly stabilizable and strongly detectable it can then be shown (see 
[1,3]) that an output feedback K € JRmxp exists such that the matrix pencil (A + BKC) - XE has the required 
properties. As output feedback represents a generalized state-space transformation, the solution of the original 
problem is equivalent to the solution of the transformed system. Here we will discuss a stable numerical method for 
computing the required regularizing output feedback. 

2. Output regularization 

In [3] a numerically stable algorithm is given that computes an output feedback for a strongly stabiliz- 
able/detectable system such that the transformed system is regular and has index at most 1. A similar algorithm 
for systems with the more common properties of strong or complete controllability/observability is considered in [1]. 
As fewer generalized state-space transformations are required in the algorithm from [3], we demonstrate our ideas 
here for this algorithm due to space limitations. But the algorithm from [1] can be modified analogously. 

In the algorithms in [1,3], SVDs are chosen for reducing the system to a condensed form as these reductions involve 
several critical rank decisions. Unfortunately, SVDs are quite expensive. We show here that cheaper orthogonal 
decompositions can be employed that also reveal the rank of a matrix reliably. A rank revealing QR decomposition 

(RRQR) of a matrix A £ IRnxm is given by A = URPT   =    U [^  ^1 PT, where U € !Rnxn is orthogonal, 

P £ ]Rmxm is a permutation matrix, Ri £ lRkxk is upper triangular, and H.R3II2 < tol-amax(A), for a given tolerance 
threshold tol. The size k < m of Ri is the numerical rank of A. An RRQR is computed via a QR decomposition 
with column pivoting followed by some iterative post-processing in order to determine the rank correctly, see [2] 

and the references therein.   A  UTV (decomposition) is given by a factorization A = UTVT    =    U \ J  T
2   VT, 

where U £ JRnxn, V £ Mmx™ are orthogonal, 7\ £ JR,kxk is a numerically non-singular, triangular matrix, tol 
is as above, and ||Tj||2 < tol ■ omax{A), j = 2,3. Again, the numerical rank of A is determined by the size k of 
T\. Stable algorithms for computing a UTV with T\ upper or lower triangular have been proposed; see [2] and the 
references therein. The SVD is a special UTV with T\ diagonal. Here we will use URVs, i.e., UTVs with Tj. upper 
triangular. The complexity of computing these decompositions and accumulating the orthogonal transformations 
(which is needed here) for a nonsingular n x n matrix is 21n3 flops for the SVD, |n3 flops for the RRQR and the 
URV (the latter two decompositions being identical in this case). If the rank of the matrix is r < n, the cost of the 
SVD remains the same while the costs for RRQRs and URVs become 8r(n2 — nr + |r2) and 2r(6n2 — 5nr + |r2) 
flops, respectively. As we replace two of the four SVDs needed in the regularization method from [3] by RRQRs and 
the other two by URVs, it is clear that a significant acceleration will be obtained. Moreover, if the left and right 
orthogonal factors of such a decomposition have to be applied to other matrices (as is the case in the regularization 
procedure considered in the sequel), an RRQR is very advantageous as its right orthogonal factor is a permutation 
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matrix such that its application to other matrices can be performed without floating point operations. 

Assume now a strongly stabilizable/detectable system as in (1) is given. The modified regularization method can 
then be formulated as follows. 

1. Compute a URV of E: U%EVE = \RQ
E °1 =: Ex, where RE G ]Rn*xn*. Apply UE, VE to A,B,C: 

Ax := UZAVE  = 
Mi   Ai2 

A2i   A22 
Bx := UlB  = fin 

■B21 
C\ := CVE  =   [ C11    C12 j, 

where the partitioning of A\,Bi,Ci is analogous to that of E\. If nE = n, then we are done. 

2. Compute an RRQR of B2l: U%B21PB = [R0
B  B

0
22], where RB G IR"«xn« and B22 G JR,nB><(m-nB)^ 

Let UB := [V   üB] 
and set ^2 := Eu C2 := Cu 

B2 ~ UIBXPB = 
fill ■B12 

= UlAi = 
r An A12 1 

ÄB ■B22 A2: A21 A22 
0 0 L A3i A32 

lAXriA 3. Compute a URV of A32: ÖJ^V^ = \R0
A °], where i^ G IR"-4 

Let [^ := [7"*0
+"s   ^], VA := [^   &], and set E3 := £2, C3 := C2V^ = [ d 

A3 := t/jA2^ = 
An A12 A13 
A21 A22 A23 
A31 RA 0 
A41        0 0 

B3 ■— UAB2 = 
JBII Bi2 
RB -Ö22 

0 0 
0 0 

4. Compute an RRQR of C13: U%C13PC  =   Kc  c0
14], where i?c G IR"cXnc, C14 G B"cx(n-nB-nA-nc)i 

Vc := [7^+^   £] and set E4 := E3, B4 := B3, Let 

A3VC = 
r An A12 Ais A14 

-A21 A22 A23 A24 
A31 RA 0 0 
An        0 0 0 

/-1 TTT'/~I \r        [   C11      C12      Re      C14   1 
G4 — t/cC3Kc - [ c21    C22     0       0   \ 

The system {E4,A4,B4,C4) is strongly stabilizable/detectable as orthogonal changes of basis preserve these 
properties. Hence, nE + riß + nA = n = nE + nA + no, which implies nE = nc- Thus, the new system has 
the form 

EA:= 
RE 0 0   " '  An A12 A13   ' " fin ■B12 

0 0 0 , A4 := A21 A22 A23 i B\ '■— RB ■B22 
0 0 0   j A31 RA 0 0 0 

(~i . r Cu C12 Re 1 
> °4 -_ [ C21 C22   0 j 

5. Now let Syi := amax(RA)InB ■ The output feedback is K :=   [ *"    K™ 1, where Kn = R^1 (EA - A23) R^1 

andÜT12 = -RE
X (A22 + (SA - A23)R^,lCi2) C^2. (Note that amax(RA) is a by-product of the URV in Step 3.) 

A12 Al3 

The regularized system is then given by A := Aj + B4KC4 —      A21    (A22 + (EA - A23))Rc
1c12(i - C+C22)    sA 

L   A13 i?A 0 
E := Ei} B := B4, and C := C4. The system (£, A, B, C) has the desired properties, i.e., the matrix pencil A - XE 
is regular and has index at most 1 because RE, RA, and S^ are nonsingular. Moreover, the regularized system is 
still strongly stabilizable/detectable as output feedback is a generalized state-space transformation. 
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BOESE, F. G. 

On the Distribution of the Zeros of Polynomials Related to the Daubechies 
Wavelets 

To locate all zeros of the polynomials qn{z) from (1) as precise as possible is our aim. These polynomials are related 
to the sequence of Daubechies wavelets. Zero enclosures up to a separation of all zeros are communicated. The 
enclosing sets are conformal lemniscate rectangles. 

1. Problem and Motivation 

Consider for n £ IN the rational function Pn(z) := (1 - z)~n of the complex variable z£C\{l}. Truncate its Taylor 
series expansion around the origin z = 0 after n terms to obtain the polynomials of the title, 

n-l 

Qn(z) ■= YJ 
k=0 

n-l + k 
zK = 1 + nz + — 2j—*  +■ + n(n + !)■ ■ -(2n ■ 

(n-l)! 
X^. (1) 

Our goal is to locate all n - 1 zeros of qn{z) for all n € IN as precise as possible. For our purposes, it is convenient 
to consider besides the qn(z) the associated polynomials pn(z) := qn+1(z/2). What is the interest in these zeros? 
As the title informs, our polynomials occur in a wavelet context and are related to the Daubechies wavelet sequence 
ipn(t), n e IN, see Daubechies [1] or Mallat [3]. The elementary operation to be carried out many times in a wavelet 
transform with a ipn(t) is the convolution of two sequences. One of the sequences is a filter sequence. An explicit 
knowledge of the zeros of the qn{z) would lead to explicit coefficients h0, ■ ■ •, h2n-i in the filter transfer factor 
Hn(z) :=hQ + h1z + --- + h2n-iz

2n~1- Fig. 1 shows the 100 zeros of p100(z). The striking feature in Fig. 1 is the 
regularity of the zeros which seem to lie on a smooth curve, cf. Lemma 2.2. 

Figure 1: All 100 zeros of piooC*) in   Figure 2:  lemniscate strips A(n,r2)   Figure 3: The limiting density dA{a) 
the complex z plane. in the square |»(z)|, |3(z)| < 1. from (9) for -180 <a° < 18°- 

2. First Enclosure and Polynom Representations 

The coefficients of the pn(z) form a sequence of positive, non-decreasing coefficients. This fact allows a zero inclusion 
by a circular sector of the form D(a) := {z € C :  \z\ < 1, | arg(z)| > a}. 

Lemma 2.1. The zeros ofpn(z), n > 1, are simple and lie in the open circular sector D(27r/(2n - 1)). 

More precise zero enclosures can be obtained by using appropriate representations for the qn(z), 

Qn(z)    = 
dN"-1!-*2"-1 

(n-1)1 \dzj 1-z 

(1-z)» 
ßn- = 

T(2n) 
r2(n)' 

(2) 

(3) 
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1 

(1 

(2n -IN f1 (1 - i)"-1 j 

1 (4g)n   /•        /   w2    \n rfw 

(1-z)»       2vri   7c(1/2) 1^2«;-lj   'tu(l - 2ztu)" (5) 

The positively oriented contour C(l/2) in (5) surrounds the point w = 1/2. The next lemma explains the regularity 
of the zero distribution in terms of the incomplete Beta function B(a,b;z) := /Q

z r_1(l - t)b~ldt, 3J(o),5R(6) > 0. 

Lemma   2.2.   The n - 1 aieros of qn(z), n > 1, lie at the intersection points of level curves and argument 
curves of the incomplete Beta function B(n,n;z), 

T2(n) 
\B(n,n;z)\ = —±-±, arg[S(n,n;z)] = 2kir,        1 < \k\ < (n -1)/2. (6) 

3. A Lemniscate Strip Enclosure 

We define the truncated lemniscate strip A(n, r2), the truncated lemniscate ray strip A±(a1, a2), and the lemniscate 
rectangles A(r1,r2,a1,a2) := A(n,r2) nA-L(a1,a2) by 

A(ri,r2):={«€C: n < \z(2 - z)\ < r2, \z\<l}, Ax(a1,a2) := {z £ C :  en < arg[z(2 - z)] < a2, \z\ < 1}. 

Fig. 2 shows 35 (not truncated) subsequent lemniscate strips A(n,r2) in the square |5ft(z)|, |9(z)| < 1. 

Theorem 3.1. i// a;ero5 ofpn(z), n > 1, Zie m i/ie truncated lemniscate strip A(n,r2) wii/i 

2n-l    ^ A1/n 1 n := 21/",        r2 := rv r^_V47me„j      ,    cn := 
717T 

4" 

(2;) 

2 

(7) 

Theorem 3.2. For n > 1, ifte lemniscate rectangle Ak := A(ri,r2,ai,fc,a2,fc), 1 < A; < n/2, with n,r2 from 
(7) and 

aitk := (2k - l)n/n,     a2<k := 2kw/n, 

contains exactly one zero of pn(z). 

4. The Limiting Density of the Zeros 

By Theorem 3.1, the truncated lemniscate A(l, 1) is the limiting (n ->• oo) set of the zeros. How are the zeros of 
pn(z) distributed along A(l, 1) after the passage to the limit n -> oo? 

Theorem 4.1.  The limiting density of the distribution of the zeros of pn(z) for n-^ oo along the truncated 
lemniscate A(l, 1) at the point z(a) is d\(a), 

Z(a):      =      l + e^sgn(a)+a)]/4.^2sin(|a|/2); 0 < |a| < 7T, (8) 

Ma): = 2^my^^^- (9) 

Fig. 3 shows the density dA(a) in the parameterization of (8) and (9), J^ dA(a)da = 1. 

5. Discussion 
The restricted printing space allows not to include the proofs (at least of the new results). Our problem was treated 
earlier by Shen and Strang [4]. In our notation, they achieved - among others- the inclusion by A(21/", 1) for the 
zeros of the pn(z), see Th. 2.3 in [4]. The goal in the work of Kateb and Lemarie-Rieusset [2] was more ambitious. 
A zero localization served to investigate the asymptotical (n -> oo) behavior of the phase arg[.ffn(z)], \z\ = 1, and 
the high order asymptotics of the Daubechies wavelets. Szegö's problem [5] is connected to ours. 
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DETMERS, F.; HERZBERGER, J. 

Enge Schranken für den Effektivzinssatz nach der PAngV bei einem An- 
nuitätenproblem 

Ein spezielles Problem stellt die Ermittlung des Effektivzinssatzes einer geänderten Annuität gegenüber der ursprüng- 
lichen Annuität dar. Daraus ergibt sich die Aufgabe, eine formelmäßige Abschätzung des Zusammenhangs zwischen 
den eindeutigen positiven Wurzeln zweier zugeordneter Polynome zu finden. In unserem Modell wird diese Aufgabe 
bei Anwendung der deutschen Preisangabeverordnung (PAngV) mathematisch gelöst. 

Wir betrachten hier zunächst jährliche, einfache Annuitäten, wobei unter einer Annuität eine gewöhnliche Annuität 
mit fester Laufzeit von n Jahren verstanden wird (siehe [3] oder [5]). Bei einer solchen Annuität wird die Schuld S 
über einen Zeitraum von n Jahren mit festen Jahresraten A, welche die anfallenden Zinsen und einen Tilgungsanteil 
enthalten, in der Weise bedient, daß am Ende der Laufzeit die Schuld getilgt ist. Der vereinbarte Zinssatz sei i (in 
Dezimalschreibweise) und es bezeichne q = 1 + i. Die bestimmende Gleichung einer solchen Annuität ergibt sich 
nach dem Prinzip: "Summe der mit Zinseszins verzinsten Annuitätenraten (Wert der Annuität) ist am Ende der 
Laufzeit gleich der mit Zinseszins verzinsten Schuld (wobei beidemale der Zinssatz i sei)." 

Mathematisch ergibt dies die Gleichung 

n-l 
S-qn = AYtQ

n~1~V    oder   p(q) = qn - a ■ £ q^1'" == 0,     a = A/S. (1) 
i/=0 

Sind die Schuld 5 und die Annuitätenrate A, sowie die Laufzeit n bekannt, dann ergibt sich der Effektivzinssatz der 
Annuität i* aus der nach der DESCARTESschen Vorzeichenregel eindeutig existierenden positiven Wurzel q* von p. 

Polynomgleichungen der Art (1) wurden in der Numerik bereits im Zusammenhang mit der Berechnung der Kon- 
vergenzordnung iterativer Prozesse betrachtet, siehe dazu etwa TRAUB [7]. Eine neuere Arbeit von PETKOVIC & 
PETKOVIC [6] ergibt in diesem einfachen Fall z. B. die Unterschranke 

q* > (2 • a + a ■ (n - 1) • (n + 2))/(2 + a ■ (n - 1) • n) . (2) 

Von H. LICHTENBERG [4] wurde folgendes Problem mitgeteilt: "Bei gleicher Laufzeit, also n Jahren, soll die Ra- 
tenhöhe auf A/k (k > l) gesenkt werden, aber gleichzeitig die Anzahl der Raten auf die k-fache angehoben werden 
(also auf k-n). Wie hoch ist der Effektivzinssatz der so geänderten Annuität? " 

Für den Fall der US-Methode zur Berechnung des Effektivzinssatzes (siehe [3]) wurde das Problem in [2] gelöst. Setzen 
wir die ursprüngliche Annuität mit jährlichen Raten an, dann fällt die geänderte Annuität in den unter jährlichen 
Bereich, und die (1) entsprechende Polynomgleichung nach der PAngV läßt sich nicht ohne weiteres niederschreiben. 
Bei jährlichen Zahlungen fallen US-Methode und PAngV-Methode zusammen. Da bei der PAngV die unterjährlichen 
Zahlungen als reine Tilgungen zu behandeln sind und linear proportional verzinst werden, müssen wir zunächst die 
jährliche Ersatzrate Ä ausrechnen. Diese ergibt sich als A = (A/2k)((k + 1) + (k - 1) • q). 

Damit erhalten wir dann die (1) entsprechende Gleichung der geänderten Annuität als 

n-l 
Pk(q) = qn-ä-Y,Qn~V-b = 0, (3) 

mit   ä={2-A-k)l{2-k-S-A-{k-l))    und   b = A ■ (k + l)/(2 • k ■ S - A ■ (k - 1)) . 

Beide Polynome sind bei uns von gleichem Grad (anders wie in [2]), aber besitzen verschieden aufgebaute Koeffizi- 
enten. Das mathematische Problem der von H. LICHTENBERG gestellten Aufgabe ist nun das folgende: 
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"Es ist für k > 1 ein formelmäßiger Zusammenhang zwischen den eindeutigen positiven Wurzeln der beiden Polynome 

n—l n-1 

p{q) = qn-a-Y,qn-1-»    und   Pk(q) = qn - ä • ^ qn~v - b        (ö, 6 wie in (3)) 

herzustellen." 

Bezeichnet i* den (bekannten) Zinssatz der ursprünglichen Annuität und j* denjenigen der geänderten, dann zeigen 
elementare Rechnungen 

lim j* = (2-*-t7(2-Jfe-t*(Ä-l)) =:u. 
n—>oo v '' 

Außerdem zeigen numerische Beispiele, daß stets j* > u gilt. 

Diese beiden Beobachtungen führen uns auf die beiden ersten (groben) Schranken: 

u = (2 • * • t*)/(2 • * - i*(k - 1)) < j* < (2 • A ■ fc)/(2 • k ■ S - A ■ (k - 1)) = o (4) 

Der Beweis erfolgt durch etwas längere technische Umformungen durch die Nachweise, daß stets pk(l + u) < 0 und 
pk (1 + o) > 0 gelten. Diese Schranken sollen nun verbessert werden. Da das besagte Polynom pk sich im betrachteten 
Intervall als konvex erweist, führt die explizite Anwendung eines Sekantenschrittes mit den beiden obigen Schranken 
als Näherungswerte auf die neue untere Schranke 

2-k-i* 2-A-k 

.. >        2-k-i* 2-k-i*(k-l)     2-k-S-A{k-l) 
J       2-k-i*{k-l)     ^77 ¥S • (5) 

i+
2..-';[-!)' <■**-*> + A 

Ensprechend liefert ein expliziter NEWTON-Schritt, ausgehend von der obigen groben Unterschranke, dann die ver- 
besserte Oberschranke 

(1 + t)n2 ■ (i*k -S-k-A) + 2-A-k 

f<t i*(2-k-S-A(k-l))  

(1 + i)"-1 

    2-A-k 
2-A-k („■_!). (i + t)_n 

2-k-S-A{k-l) t2 
2-k-S-A(k-l) 
 fi  (6) 

2-k- 

(2-k-i*(k-l)) ' 

Als numerisches Beispiel betrachten wir die Daten: n = 12, k = 2, i* = 0.005 und erhalten mit (5) und (6) das 
Intervall 0.0051128166954 < j* < 0.0052031802759 während der iterativ berechnete Wert j* = 0.0052028941 ist. 
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Flatness criteria for subdivision of rational Bezier curves and surfaces 

Many of well-known algorithms in the context of Computer Aided Geometric Design are based on subdivision tech- 
niques. Unfortunately, termination criteria for subdivision mostly require a time-consuming computation of the 
maximum deviation between any given curve segment and its linear approximation at each subdivision step. We 
generalize results by Wang for Bezier curves [3] and present an approach which in advance specifies the number 
of necessary subdivision steps to obtain a piecewise linear approximation within an assumed accuracy for a given 
rational Bezier curve or surface. 

1. Introduction 

Computer Aided Geometric Design (CAGD) is concerned with algorithms to handle parametric curves and surfaces. 
Many algorithms for finding intersections or calculating the distance between two rational Bezier curves or surfaces, 
or for drawing and displaying a rational Bezier curve or surface are based on subdivision techniques, as they are 
especially suited for them. In this paper we deal with flatness criteria for subdivision, that means criteria which 
specify conditions for piecewise linear approximation of a rational Bezier curve or surface within a given tolerance 
e and which are commonly used to terminate the subdivision process. 
Let C{u) be a rational Bezier curve of degree n defined by 

c(u) = ^tTr^' for a * u ^ (1) 

with control points Pt = (xi,yi,Zi), Bernstein basis functions £i,„(f5f) = (■j'""'^" '. and positive weights 
Ui, i = 0,... ,n. In order to discuss under which condition a rational Bezier curve can be replaced by appropriate 
line segments within a given tolerance e, we define the height of C(u) as follows: 
Let C(u), a < u < b, be a parametric curve and let lc(a),c(0) be the line segment between C{a) and C{ß), 
a <a < ß <b. Then we call the maximum perpendicular distance hc,a,ß defined by 

hc,a,ß :=   mBxd(C(u),lC(a),c(ß)) ■■=  max {min \\C(u) - [^C(a) + (1 - t)C(ß)]\\} (2) 
a<u<ß a<u<ß  0<£<1 

the height of C(u) within the parameter interval [a,ß], a < a < ß < b. 
Furthermore, for the sequence X : (X0,...,Xn) with Xt 6 IR3 we define A^  := maxo<i<n{||Xj||00}, A^ := 
maxo<j<n-i{||^i+i --XiHoo} and A^ := max0<i<„-2{||^'i+2 - 2X,+i +X;||oo}- 
Subdivision of curve (1) into two rational Bezier curves with control points Po,k and Pi^, k = 0,...,n, can be 
described using pseudo-code as follows: 

for k  := 0 to n do begin 
Pw[0][k]       := Pw[0]; Pw[l][n-k]   := Pw[n-k] ; 
for i   := 0 to n-k-1 do Pw[i]   :=  (Pw[i]  + Pw[i+l])/2; 

end. 
Here Pw[i]  describes the control points of C(u) in homogeneous coordinates Ff  =  (u>iXi,üJiyi,üJiZi,üJi), and 
Pw[0] [k], Pw[l] [k] the control points P£k, P^k of the two Bezier curves C0(u), Ci{u) after subdivision, respec- 
tively. The subdivision process is continued until a certain flatness criterium is fulfilled. In this case the subdivision 
technique can be used to replace a rational Bezier curve by line segments within a given tolerance. 

2. Flatness criteria for subdivision of a rational Bezier curve 

Flatness criteria for subdivision are based on a rough estimate of the height of curve segments. If the height is 
smaller than the given tolerance e, then the subdivision can be stopped and the curve segment can be replaced by 
the corresponding line segment. These termination criteria for subdivision yield a piecewise linear approximation of 
curve (1). Wang and Xu give in [2] the following estimation for the height of curve (1): 

Theorem   1.    For the height of the rational curve (1) of degree n (a = 0, b= 1) is hc,o,i < $(^o, ■ ■ ■,wn) • 

maxi<i<n-i d(Pi,Zp0,P„), with $(uo,...,wn) :=!-(! + (2"-1 - 1) • max^.w"1) • (maxi<i<n_ia;i))"'  . 
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The estimation in Theorem 1 has the advantage that the approximations are carried out in an adaptive manner and 
no redundant subdivisions have to be done. But its disadvantages are that the tests need to be made after each 
subdivision step and the maximal depth of subdivision is not known in advance. To know the maximal depth before 
starting the subdivision process is useful in many cases, e.g. choosing adequate distance algorithms etc. We have 
proved in [1] the following theorem for an a priori estimated upper bound for the depth of subdivision: 

T h e o r e m 2.   Let C(u) be a rational Bezier curve of degree n with a <u <b, control points Pt = (xt,yi, zi) 
and weights w* > 0, i = 0,...,n.   Moreover, let R : (R0,...,Rn) be a sequence with Rt := (wiXi,uJiyi,WiZi), 
i-0,...,n, and u : (u>0,. ■ ■, un), as well as A := min0<i<„{u;j}. For a given e > 0 we set r := log4 ((\/3n£)/(8e)) 
with L:=(n- l)AyA + ((n - l^A2 + 2nA)iAl)/{Ä)2 + 2nA°i(Ai)2/(A)3. 
If - l°g2 ((ß - a)/(b - a)) > r for a < a < ß < b, then the estimation hc,a<ß < £ is valid. 

This theorem is an extension of Wang's Theorem [3] to the case of a rational Bezier curve.   If wt = canst, the 
curve C(u) describes a Bezier curve and L reduces to L = (n - l)Ap. 
The geometric meaning of Theorem 2 is that after r subdivisions we can replace 
the rational Bezier curve by line segments according to the r-th level of subdivision 
within the given tolerance e. 

E x a m p 1 e 3. Let C(u) be a rational cubic Bezier curve C(u) with PQ = 
(1,-1,0), Pi = (5,6,0.5), P2 = (8,1,0.6), P3 = (5.5,1,0) and u0 = 0.5, wi = 1, 
u2 = 1.5, u3 = 1 (cf. Fig. 1). Then Theorem 2 yields r = 13 and we need 0.15 sec 
CPU time (AMD K6-2/333MHz) to compute a piecewise linear approximation 
of C(u) within the tolerance e — 10~6 using pure subdivision technique. In 
comparison, using Theorem 1 we need 0.21 sec. But the a priori estimated upper 
bound for the depth of subdivision depends much more than the flatness criteria 
by Wang and Xu (Theorem 1) on the weights. If we set wi = 1.5, then Theorem 2 
yields r = 14 and the CPU time doubles. For o»i = 0.2 depth r increases to 16. 
The computing time using Theorem 1 is roughly the same in all cases. Figure 1: C(u) with wi varying 

3. Subdivision bounds for rational Bezier surfaces 

Let S(u,v), a < u < b, c < v < d, be a rational Bezier surface defined as a tensor product of two rational 
Bezier curves of degree n and m, and let the height hs,a,ß,t,v of S(u,v) be defined according to the height of C(u). 
For a vector matrix X : {X*j} o<i<„   with Xitj € H3 we define the constants A^° etc.   according to A^ etc., 

e-g- A_Y   := maxo<i<-i {||Xi+1j - A* iH«,}. Then the following a priori estimated upper bound for the depth of 
0 < j < m 

subdivision is valid: After r := flog4 ((V3Ls)/(8e))] subdivision steps in u- and w-direction for o < a < ß < b, 
c < £ < V < d and (ß-a)/(b-a) = (v-Z)/(d-c) = 2~r is As,a,/j,C,u < e- Here denote Ls := nLuu + 2nmLuv + mLvv 
with 

Luu    :=    (n - 1)A£°/A + ((„ - 1)A%°A^0 + 2nA^A^)/(A)2 + 2nA£°(Ai'°)2/(A)3, 

Luv    :=    A^/A+(A^Ai.1
+A0/Ai-0 + A^A°'1)/(A)2+2A0/Ai.°A^/(A)3, 

Lvv    :=    (m - 1)A°//A + ((m - 1)A^°A°-2 + 2mA^1A°-1)/(A)2 + 2mA^0(A^)2/(A)3. 

and R : {Rij} o<<<„ , Rtj := (utjXij,Uijyi,j,Ui,jZij), and w : {uu} o<,<„ , A := min0<i<n {u>i ,■}. 
0<j<m 0<i<m 0<j<m 'J 

For the proof see [1]. This result has rather theoretical meaning because in this case of approximation, techniques 
based on triangulation are generally more efficient than those based on rectangular structures. 
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Distributed Dynamic Process Simulation 

In chemical process industry a heterogeneous simulation concept is required which distributes the solution of a dynamic 
overall model to a computer network such that the submodels of the global process flowsheet can be solved independently 
of each other on subsequent time intervals. To this end a iteration technique is used which estimates the vector of 
input variables of the submodels, calculates the corresponding time behaviour of the output variables concurrently, 
and matches then the profiles of the interconnecting variables of the overall process model iteratively. For the common 
case that the submodels do not provide input-output sensitivities a specific Broyden-type acceleration of this waveform 
iteration method is considered. 

1. Process flowsheet definition of coupled processes 

On the basis of a global process flowsheet an overall dynamic process model is usually assembled from p autarkic 
models of subprocesses by defining the appropriate interconnecting process variables. It is presumed that the 
submodels generate an output function Vi(t) for each given input function Ui{t) uniquely, i.e. 

Vi(t) = Gi(ui(t)),    i = l,...,p   te[t0,tE}. (!) 

Here the submodel functions G; are only given implicitly by applying a numerical solution procedure to the respective 
submodel equations. Frequently, the internal model of subprocess i is described by a large system of differential 
algebraic equations, cf. ([1]), 

Fi(t,yi(t),yi(t),Ui(t)) = 0,    yi(t0) = y?, (2) 

with yi — (xi,Vi)T. These internal submodel equations (2), the dimension of the resulting discretized model, and 
details of their numerical implementation are usually not known in detail during overall process model formulation. 

The global process flowsheet definition allocates each component of the overall input vector u(t) = (ui,..., up)T 

uniquely to one component of the overall output vector v(t) = (vi, ...,vp)T. Thus the system of equations describing 
the coupling between the submodels is defined by 

f {u(t)) = u{t) - PG (u(t)) = 0,    t£[t0,tE], (3) 

where P = ((pij)), with pij € {0,1}, is a permutation matrix which defines this allocation of individual input and 
output variables of all subprocesses, and G represents all submodel functions G,, cf. (1). The behaviour of the 
time-dependent system (3) is then mainly determined by the corresponding Jacobian J = / - -P§§, where dG/du 
denotes the overall block diagonal matrix of the dynamic input-output-sensitivities dGi/dui of the submodels. 
Unfortunately, these dynamic sensitivities are not provided by most of the simulation tools which are frequently 
used in chemical engineering. Even an initial estimation of the Jacobian at t0 will be difficult to obtain with 
reasonable effort. Additionally, a heterogeneous process simulation approach requires to solve different submodels 
on various computer platforms and to retain tested software for submodel integration with its own internal step size 
and accuracy control. It is obvious that for the distributed simulation of coupled subprocesses an adapted waveform 
iteration method, cf. [4], can be used. The basic idea of waveform iteration is to solve submodels of an overall model 
independently of each other on subsequent time intervals, so called windows. To this end, on the actual window, the 
time behaviour of the vector of input variables of the submodels is estimated, the corresponding time behaviour of 
the output variables is computed concurrently for all submodels, and the interconnecting variables of the flowsheet 
are matched iteratively. 

2. Iterative solution of coupling equations 

Due to the need to simplify communication and synchronization between subprocess simulations, the time variable 
t e[to, tE] is discretized within each window equidistantly. Keeping in use the same symbols for notational simplicity, 
now Ui, and Vi denote the vectors of all discretized input and output variables at all internal time points of the 
current window in an appropriate order, and u and v the related overall vectors u = (ui,...,up)T and v = (vi,...,vp)  , 



S716 ZAMM ■ Z. Angcw. Math. Mech. 81 (2001) S3 

respectively. 

A quasi-Newton-type iteration, which solves (3) at the grid points of the current window, is given by 

uk+l    =   uk - (Bk) ~l (uk - PG(uk)),    Bk*I-PGk
u, (4) 

uk+i    =    Pvk+i^ ^ 

where k denotes the iteration index. Obviously, the evaluation of (4) can be done in parallel for all subprocesses, 
followed by a common step (5) of allocating the output variables to the related inputs. In order to get continuous 
approximations of the inputs u; in (4) in this paper a continuous piecewise linear interpolation is used. This avoids 
the permanent reinitialization of the integration procedure, as it has to be done in the case of piecewise constant 
inputs. 

In (4), Gk represents a reasonable approximation of the overall block diagonal matrix of the dynamic input- 
output sensitivities of submodels at all internal time points of the current window. Again, a trusted estimation 
of Gk at the beginning of a window, even at *0> will be difficult to get. Therefore, we have been looking for an 
acceleration procedure in the case that no initial estimation is available, i.e. the iteration starts with G°u = 0, as it 
is discussed in [3], or in the case that only some of the submodels can provide such information. To this end the 
conventional Broyden update is applied to the investigated waveform iteration technique by calculating an adjacent 
matrix in (4) which still satisfies the quasi-Newton condition with the most recent function values. Obviously, this 
update strategy can be applied to G£ directly to get 

rk+i    =    Ck     (Gk
uAuk - Avk)(Aukf 

{Auk)TAuk 

 ,k{/\„k\T\ \.,kf\„MT 
=     G 

(T     Auk{Auk)T\     Avk(Auk)T      ,A   . T     . 

with 

Af = /fc+i - /* = Auk - PAvk. (7) 

3. Applications 

The proposed update strategy has been implemented within the framework of the Simulation Manager software 
[2]. This tool allows to distribute the numerical solution of subprocess models to a computer network, handles the 
overall process flowsheet dependencies, and provides appropriate submodel communication software according to 
(5). Details of extensive numerical investigations will be reported elsewhere. One can summarise that the update 
strategy (6) improves the waveform iteration (4), (5) significantly even in the case G° = 0, especially in the case of 
large window lenght. 
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FASSBENDER, EL; BENNER, P. 

Computing roots of matrix products 

The problem of computing a kth root of a matrix product W = YlUi A> is considered. The explicit computation of 

W may produce a highly inaccurate result due to rounding errors, such that the computed root W * is far from the 
actual root Wi. An algorithm for computing the square root of W is presented which avoids the explicit computation 
ofW by employing the periodic Schur decomposition and therefore yields better accuracy in the computed root W>. 
In principle, the techniques are applicable to k > 2 as well but lead to solving 2 x 2 polynomial matrix equations 

which are difficult to treat.  The case k = 3 is also addressed briefly. 

1. Introduction 
Computing the square root of the product of two matrices can be used in model reduction methods based 

on the cross-Gramians; see [1] and the references therein. This lead us to consider the more general problem of 
computing the fcth root of a matrix product W = A,A2 ■ ■ ■ Ak^Ak where A{ £ IR"X". That is, a matrix W* is 
sought such that W = (Wi)k. A fcth root of a matrix may not exist. For example, it is easy to verify that the 
matrix [° J] has no square root. Here we will not discuss existence results any further. 

The direct approach for computing the kth root of W involves first the explicit computation of W followed 
by the computation of its fcth root. Already the explicit computation of W may produce a highly inaccurate result 
due to rounding errors, such that the computed product W is far from the actual matrix W. Then one can not 
expect that the computed root W^ is close to the actual root wi. Hence explicitly forming the matrix W should 
be avoided if possible. The approach suggested here was inspired by the work in [2]. There a fast and stable method 
for computing the square root X of a given matrix A is developed. The method is based on the Schur factorization 
A = QSQH and uses a fast recursion to compute the upper triangular square root U of S. Then X = QUQ is the 
desired square root. The fast recursion is obtained by comparing coefficients in the equation U   = S. 

The algorithm for computing the fcth root of W sketched in the following avoids the explicit computation 
of W by employing the periodic Schur decomposition. That is, the real Schur factorization W = QiRQx will be 
computed implicitly by simultaneously reducing all but the first A,- to upper triangular matrices Rh Ax can only 
be reduced to a quasi-upper triangular matrix Rx. Then the fcth root of the product of the factors Rj is computed. 
Hence the computed root has the same quasi-upper triangular form as Rx. This root is then transformed back to 
the root of W. But note that even in case a fcth root of QjWQi exists, it must not necessarily have the form of Rt. 

The process will be demonstrated for fc = 2, the case fc = 3 is briefly discussed. By avoiding to form the 
product W explicitly, this approach yields better accuracy in the computed root W <■ than the direct approach. 

2. First step: The periodic Schur decomposition 

In order to avoid explicitly computing the matrix W a two step approach for computing the fcth root of W is 
proposed which implicitly computes the desired root without ever forming the explicit matrix product W. The first 
step of the algorithm consists of employing the periodic Schur decomposition. 

Theorem   1.   Let Aj G IRnxn, j = 1,..., fc. There exist orthogonal matrices Qj, j = 1,..., fc, such that 

Ri = QiAxQl,   R2 = QiA2Ql,   ...,   Rk-i = Qk-iAk-iQ'k,   Rk = QkAkQi, 

where R2,...,Rk are upper triangular and Rx is in quasi-upper triangular form with lxl and 2x2 diagonal blocks. 
Moreover, Qx puts W into real Schur form, i.e. QfWQx = RXR2 ■ ■ ■ Rk-iRk is quasi-upper triangular. 

Constructive proofs and algorithms for computing the periodic Schur decomposition without explicitly forming the 

product W can be found in [3] and [4]. 

3. Second step: The fcth root 
Here we will assume fc = 2. Using the periodic Schur decomposition the product W = AXA2 is transformed to 
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W = QfWQ^ = {QTA1Q2)(QjA2Q1) such that H = QjAxQ2 is quasi-upper triangular and R = Q^A2QX is upper 
triangular. W has the same quasi-triangular form_as H. Comparing the coefficients in W = X2 gives us formulae 
to compute the elements of the square root X of W. Then W% = QxXQj. In order to compute the elements of X 
we first have to consider the diagonal blocks. In case of a 1 x 1 block hu with hi+1,t = ht,t-i = 0 we can directly 

read off xu = y/huru. In case of a 2 x 2 block [ h^ ft^+^ ] we follow the approach from [2]. First orthogonal 

matrices U, V are computed such that R = VT [ r£ r^+^ ] U is upper triangular, H = UT [ h*£ t ft^+^ 1 V 

and ER = ^ *] with cb < 0 (i.e., ## is in standard real Schur form). Then 

xu = xt+u+i = \]\(a + Va2-bc),    xe+ht = ^c,    x£te+1 = ^-b. 

The transformation matrices U and V have to be applied to rows and columns £, £ + 1 of H, R and Qt in order to 
complete this part of the computation. Now the other elements of X can be computed one superdiagonal at a time. 
Four different cases have to be distinguished depending on the indices of Xjt: 

1.: the indices j and £ are such that neither hjj nor hu belong to a 2 x 2 diagonal block, then 

2.: index j is such that hjj does not belong to a 2 x 2 diagonal block, while index £ is such that hu belongs to a 

2x2 diagonal block (assume w.l.o.g. that the 2 x 2 block is given by [ h^ ( ht+lV+i 1)' then we obtain a 

2 x 2 system of linear equations for xj£ and xjtt+1 which yields with sp = Y?m=j hjmrmp - Emi+i xjmxmp 

3.: index £ is such that hu does not belong to a 2 x 2 diagonal block, while index j is such that hjj belongs to a 

2x2 diagonal block (assume w.l.o.g. that the 2 x 2 block is given by \ ^"'.'f;1 hj^.J ]), then we obtain a 2 x 2 

system of linear equations for Xjt and Xj.ltt which yields with sp = £m=ma*(ij-i) hpmrml - TL=J+I ^pm^mt 

Xu =  »jC^-i.j-i+gt^-gj.j-iJ'j-i „ . _  sj-1-xj-1,jxje 
^        (xij+xu)(xj-1,j-1+xte)-xi,j-ixj-1,i'      ^3-1/ xj-u-t+xii   ' 

4.: both indices j and £ are such that hjj and /i« belong to 2 x 2 diagonal blocks (assume as before, that 
hjj and hu are the (2,2), resp. the (1,1) element of the respective 2x2 block), then the 4 elements of 
Xit ~ [ Xlx~y    XL~£+T J can be computed via solving a 2 x 2 Sylvester equation 

Xj-l,j-l Xj-ly 
Xj,j~l Xjj 

Xjt   + Xjt, 
XU X 1,1+1 

%t+l,l   xl+l,l+l 
= C it-* 

where Cjt — -ffj-i^.i^+i-Ri^+M^+i _ xj-i:j,i+i:i-i^i+i:t-i,ti+i (employing standard MATLAB notation). 
In case the square root does not exist as in the example described in the introduction, the above algorithm fails due 
to a zero denominator. Numerical examples show that the approach presented here for computing the square root of 
W = AXA2 gives better accuracy than when applying the method proposed in [2] to the product W. In case AXA2 is 
already in the form quasi-upper triangular/triangular, both algorithms behave similarly as 1.-4. are adapted from 
[2]. Similar to the approach above algorithms for computing the fcth root of a product of k matrices can be derived. 
These formulae are much more involved, e.g., for a 3rd root, 2x2 equations of the form A2X + AXB + XB2 = C 
have to be solved. Stability issues and existence of fcth roots also need further discussion. 
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Global convergence of Newton's method to the solution of equations of Reiss- 
ner's Elastica 

The sufficient conditions under which the generalized solution of a planar elastic, Reissner's type cantilever beam if 
solely based on the rotation [5] loaded by conservative load, exists and is unique, are presented. Sufficient conditions 
for the global convergence of Newton's method and damped Newton's method with a short step are derived. The point 
load is also taken into account. The derived inequalities are sharp. 

1. Existence and uniqueness of weak (generalized) solution 

Reissner's model of an elastic beam was first presented in article [4] where the so called "Reissner's kinemat- 
ical equations" were derived.    The deformation of the cantilever is governed by the principle of minimum of 

o 

an extended functional of the potential energy [5]. The generalized solution of the beam, <j> G i71((0,i)) = 
{u E Wl'2((0, L)), u(L) = 0} , is obtained from the requirement that the functional 

fL f(f>'2      Rx  . ,      R2  . . .       . 
/    ( ~Y + ~W1 (cos<£„ - cos</>) + -^ {sm<p-sm<pu) 

2       EJy     Tu Y'     EJ 

_     c(R2^R2) (cos(2^ _ cos(2^ _ cB±R* (gin(2 v) _ s.n(2vu)) _!IhL^ds 

is minimal provided that the solution satisfies the prescribed boundary conditions </>'(0) = 0 and <f>(L) = 0.   We 
use abbreviations c = ^ ^ and <(> = <pu — <P where <p, <pu, my, L, E A, G As, E J, Ri and i?2 designate the 
rotation of the cross-section, the rotation of the cross-section of the undeformed beam, the prescribed line moment, 
the length of the cantilever, the elastic axial, shear and bending stiffnesses and Lagrangian multipliers, respectively. 
Existence and uniqueness of the solution can be easily established by the following theorem [3]. 

Theorem 1. Let the functional $ from the Hilbert space H toJRbe twice differentiable in the Gateaux sense. 
Let the second Gateaux derivative at the point u G H be denoted by D2$(u) : H x H 9 (h, k) H-> D

2
$(U, h, k) G K. 

Suppose that u H-> D2$(u,h,k) is a continuous functional from H to 1R for every fixed pair h, k G H. Suppose 
further that the inequalities 

A||fcf<£>2$(u,M)<A||/i||a)        ^>0 (1) 

hold and let    M Hn — H,    Hi C #2 C • • •,    dim Hn 

71=1 

Then there exists a unique minimizing sequence {un} G Hn and a unique minimizing u G H such that 

A 9 
min $(v) = $(un),   min$(i;) = $(u),   $(u„) -> $(u),   un -> u    and    $(u„) - $(u) > - ||u„ - u||   . 
v€Hn v€H I 

The convergence of discrete solutions, obtained, for example, by the conforming finite element method, to the exact 
solution can be seen from the theorem, too. Theorem 2 is an immediate consequence of Theorem 1. 

Theorem  2.    Let the external moment at the free end of the cantilever be zero. Let us further assume that 
° L 

the following relations hold: <pu Gil1((0, L)),    R\ G L2((0, L)),    R2 G L2((0,L)),    f0 my(s)ds < 00. Then there 
o 

exists a unique solution <p Gif1((0, L)) of the minimization problem whenever the inequality 

J7(||Ä||00+C||Ä||L)<^ (2) 
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holds, where we have assumed c > 0, and denoted R = y/R2 + R\ and || • W^ : u i—> ||w||oo = esssups6r0 Li \u(s)\. 

The inequality in equation (2) is sharp, as it is easily seen from the straight cantilever loaded by an axial force at 
the free end. 

2. Convergence of Newton's method and damped Newton's method with a short step 

According to Necas [4], we define the gradient G(u) of the functional $ and the Hessian linear operator H(u) at the 
point u £ H by equations (G(u),h) = D$(u,h) and (H(u)k,h) = D2$(u,h,k). Assume that H(u) is symmetric 
and positive definite. We construct the sequence {un} by damped Newton's method using the equation 

un+i = un -pif_1(M„)G(un),    n = 0,1,.... (3) 

By employing p = 1, Newton's method is obtained. Theorem 3 [3] ensures convergence of approximations, con- 
structed by damped Newton's method, to the solution. 

Theorem 3.   Let the hypotheses of Theorem 1 be satisfied. We construct the sequence {un} by formula (3). 

Let p£ (0,x)- Then 

A2 

A2 \\un - u||2 < — -y ($K) - $(un+i)). (4) 

Thus, un —> u, where G{u) = 0.  The function pn p (\— ^- J attains its minimum at p = -^ and it gives 

2 A3 

IK-U||2      <      -J£-  ($(««) - $(tln+l)) • 

The inequalities (1) of Theorem 1 

D2$(u,h,h)>{l-C2K)  [   h'2dx = X (   ti2dx = \\\h\\2, 
Jo Jo 

D2${u,h,h)<  f   h'2dx + K  f   h2dx<(l + C2K)   f   ti2dx = (l + C2K)\\h\\2 = A\\h\\2 

Jo Jo Jo 

(5) 

(6) 

are satisfied with the choice of constants K = -^j (||-R||oo + c H-RH2») and C — 2^-. According to Theorem 3, damped 
Newton's method (3) converges for all p G (0, ^). After considering estimates (5) and (6), the inequalities 

2{\-C2K) = 2\    >    pA = p(l + C2K)    and     (\\R\\„ + c\\R\\l) <^*^- 

are derived. By making the constant p small enough, we could achieve the convergence under loads up to the 
critical load of the straight cantilever. In particular, the global convergence of Newton's method (p = 1) under load 

satisfying (||i2||oo + c ||Ä||2o) < | *^ is thus ensured. It is seen from the last inequality that the convergence of 
Newton's method under loads smaller than one third of the critical load of the straight cantilever is assured. 
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BIRGIT HOFFEREK AND HEINRICH VOSS 

Eigenvalue Reanalysis and Condensation with General Masters 

In design optimization very often several changes of a structure are necessary to reach predetermined demands, and 
in each step very large eigenvalue problems have to be solved which are small modifications of each other. For large 
eigenvalue problems condensation methods are used to reduce the number of degrees of freedom to manageable size. 
In this note we take advantage of preceding computations by implementing eigenvectors of previous models as general 
masters into condensation. 

1. Introduction 
One purpose of a design process of a structure is to satisfy predetermined demands, such as given natural frequencies 
or dynamic responses. During this process the structure is modified a couple of times, and several eigenvalue problems 
appear which are small modifications of each other and which have similar eigenforms. Hence, reanalytical methods 
are welcome which take advantage of preceding calculations. A common way in reanalysis is to use Taylor expansions 
or Rayleigh quotient approximations or assumed mode approaches in a Rayleigh - Ritz method. In this note we 
consider condensation methods in eigenvalue reanalysis in two ways which are usually applied to reduce the number 
of degrees of freedom of large eigenvalue problems. First we demonstrate that the algebraic cost of condensation can 
be reduced substantially if the masters are chosen as interface degrees of freedom in a substructure decomposition 
of the underlying structure and only a few substructures are modified. Secondly the approximation properties of 
condensation are enhanced considerably if eigenmodes of previous models are used as general masters. 

2. Substructuring and condensation 
We consider the general eigenvalue problem 

Kx = XMx (1) 

where K € ]R(n,n) and M € IR("'n) are symmetric and positive definite matrices which are usually the stiffness 
and mass matrix of a finite element model of a structure, respectively. To reduce the number of unknowns Irons 
and Guyan independently proposed nodal condensation, i.e. to choose a small number of degrees of freedom (called 
masters) which seem to be representative for the dynamic behaviour of the entire structure, and to eliminate the 
remaining unknowns (called slaves) neglecting inertia terms in some of the equations of (1). 

It is well known that substructuring leads to data structures such that the proportions of the reduced matrices 
belonging to different substructures can be computed independently. To this end assume that the structure under 
consideration has been decomposed into r substructures and let the masters be chosen as interface degrees of 
freedom such that the substructures connect to each other through the master variables only. If the slave variables 
are numbered appropriately, then the stiffness matrix is given by 

K = 

'   I^mm     I^-msl     J^ms2 

Ksml      Kssl 0 
Ksm2 0 KSS2 

"■msr    ' 
0 
0 (2) 

V Kamr       0 0       ...    K3sr  J 

and the mass matrix M has the same block form. In this case it is easily seen that the condensed eigenvalue problem 
obtains the form 

K0xm = XM0xm 

where the reduced stiffness and mass matrices K0 and M0, respectively, are given by 

(3) 

KQ — Kmm — 2_j Kmmj '■— K-mm       / y K-msjft ssj^1 smj 
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and 
T r 

Mo = Mmm -J2Mrnmj =: Mmm -^K^jK^M^j - MmsjK;s)Ksmj + KmsjK-)MssjK-)Ksmj. 
3=1 j=l 

Obviously, these matrices can be updated at low cost if only a small number of substructures is modified in a 
reanalysis step since each of the terms in the sums depends only on data of a single substructure. Notice that this 
concept can be generalized to condensation methods in the presence of general masters. Details are given in [1]. 

3. Condensation with general masters 

Nodal condensation has the disadvantage that it produces accurate results only for a small part of the lower end of 
the spectrum. The approximation properties can be improved substantially if general masters are considered. Let 
zu...,zm eJRn be independent vectors, and define Z := (zu... ,zm) <= ]R(n'm). Then the projected eigenvalue 
problem 

K0xm := PTKPxm = XPTMPxm =: \M0xm,    where P = K~x Z{ZT K~x Z)~x ZT Z (4) 

is called condensed eigenvalue problem with general masters zit... ,zm. It is easily seen that this is exactly the 
reduced problem of nodal condensation if we choose zi,...,zmas unit vectors. 

Since {ZT K~x Z)~x ZT Z is a nonsingular matrix the condensed problem (4) is equivalent to the projection of problem 
(1) to the space spanned by the columns of K~lZ. Hence, condensation is nothing else but one step of simultaneous 
inverse iteration with initial guess X = M~XZ e JR(".m). Therefore, we can expect good approximation properties 
of condensation if we include general masters Zj = MXJ where Xj are approximate eigenvectors of problem (1) 
corresponding to the desired eigenvalues. Hence, choosing approximate eigenvectors from previous design steps as 
general masters should improve the approximation properties. 

4. A numerical example 

To demonstrate the gain of accuracy by general masters we consider the free vibrations of a uniform thin clamped 
plate covering the rectangular region ft := (0,5) x (0,3). We discretized this problem by Bogner-Fox-Schmidt 
elements on a quadratic mesh with meshsize h = 0.1 and obtained a matrix eigenvalue problem of dimension 
n = 5684. Dividing fi into 15 identical substructures each of them being a square of sidelength 1 and choosing all 
interface degrees of freedom as masters one obtains a reduced problem of dimension m = 824. 

We modified the problem by doubling the mass in the rectangles (2,3) x (0,3) and (4,5) x (0,3), respectively. The 
following table contains the relative errors of the 12 smallest eigenvalues using nodal condensation (column 2 and 
4) and of condensation if we complement the interface masters by 12 eigenvectors of the uniform plate as general 
masters (columns 3 and 5). 

(2,3) x (0,3) (4,5) x(0 
1 3.54e-3 1.19e-9 3.04e-3 
2 5.41e-3 3.15e-7 6.15e-3 
3 1.50e-2 1.70e-7 1.38e-2 
4 1.63e-2 1.19e-5 1.41e-2 
5 1.57e-2 1.18e-5 1.86e-2 
6 1.51e-2 9.46e-5 2.68e-2 
7 2.87e-2 9.78e-5 2.74e-2 
8 1.25e-l 3.85e-4 5.71e-2 
9 2.34e-2 3.93e-4 7.03e-2 

10 8.14e-2 4.23e-5 1.19e-l 
11 9.20e-2 1.62e-3 l.lle-1 
12 1.29e-l 8.48e-4 1.27e-l 

2.63e-9 
7.99e-8 
1.67e-6 
1.84e-5 
5.58e-5 
2.76e-5 
2.30e-4 
5.26e-4 
1.63e-4 
6.18e-3 
2.09e-3 
7.93e-3 
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KORELC, J. 

Multi-language approach in automatic generation of numerical procedures 

Practice shows that at the research stage of derivation of a new numerical software different languages and 
different platforms are the best means for assessment of performances and failures of the numerical model. By the 
classical approach, re-coding in different languages would be extremely time consuming and is never done. The 
paper presents the use of symbolic and algebraic systems for improved quality control of automatically generated 
numerical procedures. With the symbolic concepts the code is automatically generated for several languages and 

for several platforms from the same basic symbolic description. 

1. Introduction 

Finite element simulations are well established in several engineering fields and are becoming more frequently 
applied in biophysics, food production, pharmaceutics and other sectors. However, only solutions of relatively 
simple process optimisation problems are available at present, so that considerable development efforts will be 
required to provide efficient analysis for multi-physics, multi-scale and multi-body problems. With the increasing 
complexity of phenomenon the realibility of numerical code and the procedures for a quality ensurance of the 
derived finite element code are more and more important. In this article the symbolic approach will be applied to 
enable a more general approach. Symbolic approach implemented in Symbolic Mechanics System (SMS) combines 
recent developments in computer science, in particular in computer symbolic algebra, automatic differentiation of 
numerical code, automatic code generation and theorem proving.. More detailed description of the system can be 

found in Korelc [1]. 

2. Multi-language generation and multi-level testing of numerical codes 

With the symbolic concepts the finite element code can be automatically generated for several languages and for 
several platforms from the same basic symbolic description, leading to the multi-level testing procedures. The 
basic tests which are performed on a single finite element or on a small patch of elements can be done most 
efficiently by using the general symbolic-numeric environments such as Mathematica, Maple, etc. 

2. Symbolic description in SMS 
SMSInitialize["test", Language-> "C+ + "] ; 

SMSModule["Test", Real[u$$[3], x$$, L$$, g$$[3] ] ] ; 

{x, L} t{SMSReal[x$$], SMSReal[L$$]}; 

1. Mathematical description 

3 

u = J3 NiUi «^v 
iVi = No 1- 

L'Na=L )}'■ 

f = u2 

3. Automatically generated code [/ 

uitArray[SMSReal[u$$[#]] S, 3]; 

Nit j-,  1- -,  -    1- - 

ut= Ni.ui;   f i= u ; 

gt= SMSD[f, ui] ; 

SMSExport[g, g$$] ; 

SMSWrite[]; 

FORTRAN MATHEMATICA 

void Test(double  v[501] 
double  ul[3],double   *x, 
double   *L,double  g[3]){ 
v[6]=*x/*L; 
v[7]=le0   -  v[6] ; 
v[8]=v[6]*v[7]; 
v[12]=2e0*(u[0]*v[6]   + 
u[l]*v[7]+  u[2]*v[8]) ; 

g[0]=v[12]*v[6] ; 
g[l]=v[12]*v[7] j 
g[2]=v[12]*v[8], 

SUBROUTINE   Test(v,ul,x,L,g) 
REAL*8   v(500) ,ul(3) ,x,L,g(3) 
v(6)=x/L 
v(7)=ld0   -   v(6) 
v{8)=v(6) *v(7) 
v(12)=2d0*(u(l)*v(6)   + 

-   u(2)*v(7)    +   u(3)*v(8) ) 
g(l)=v(12)*v(6) 
g(2)=v(12)*v(7) 
g(3)=v(12)*v(8) 
END 

Figure 1: Multi-language generation of numerical codes 

Test [] :=Module[{ }, 
$VV[6]=x$$/L$$; 
$W[7]=1  -   $W[6] ; 
$W[8]=$W[6]*$VV[7] ; 
$VV[12]=2*(u$$[l]*$VV[6]   + 

u$$[2]*$W[7]+u$$[3]*$W[8]) , 
g$$[l]=$W[6]*SW[12], 
gS$[2]=$VV[7]*$VV[12] 
g$$[3]=$VV[8]*$VV[12] , 

}; 
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It is well known that many design flaws such as element instabilities or poor convergence characteristics can be 
easily identified if we are able to investigate element quantities on a symbolic level. Unfortunately, symbolic- 
numeric environments become very inefficient if we have a larger number of elements or if we have to perform 
iterative numerical procedures. In order to assess element performances under real conditions the easiest way is to 
perform tests on sequential machines with good debugging capabilities (typically personal computers and 
programs written in Fortran or C/C++ language). At the end, for real industrial simulations, large parallel 
machines have to be used. In Figure 1 a simple example is presented that illustrate standard SMS procedure for a 
multi-language generation of the numerical sub-program. The sub-program returns the gradient of a given 
function /with respect to the set of parameters uy. 

3.    Example: strongly coupled magnetic-thermomechanic problem 

In this section the simulation of induction heat treatment is presented (Figure 2a). Steel cylinder is encircled by 
one circular coil having a square cross section. Electromagnetic field produced by the current-carrying coil induces 
eddy currents in the workpiece. Eddy currents then produce heat sources throughout workpiece. The resulting 
strongly coupled, non-linear, transient, magnetic-thermomechanic problem was solved by the finite element 
method for unknown complex magnetic potential and temperature field. With the SMS the week form of the 
coupled electromagnetic and heat conduction equations was consistently linearized leading to fully implicit, 
quadratically convergent numerical procedure. Derived finite element code was first verified on a symbolic level in 
Mathematica, then a C code for a general FE envaronment was generated. The results of the large scale 
simulation are presented in Figure 2b and 2c. 

Figure 2: Description of the test example (a), absolute value of complex 
magnetic vector potential (b),   and temperature distribution at the end of simulation (c) 
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LARS MüLLER, GERT LUBE 

A nonoverlapping DDM for the nonstationary Navier-Stokes problem 

We consider the nonstationary incompressible Navier-Stokes problem in a bounded domain. A semidiscretization in 
time followed by a linearization procedure lead to Oseen type problems. For an efficient solution we take advantage of 
a nonoverlapping domain decomposition method (DDM) with interface conditions of Robin type. Strong convergence 
of the DDM-iterations to the Oseen solution can be proven. Furthermore we apply an a-posteriori estimate which 
controls the error on the subdomains in terms of the jumps of the velocity across the interface. This may serve as a 
stopping criterion and gives some information how to choose a free parameter appearing in the interface condition. 
A stabilized FEM is used to derive a discrete version of the DDMt and requires a modification of the method. 

1. Time-discretization of the Navier-Stokes problem 

We consider the Navier-Stokes problem in a bounded domain ft C Rd with Lipschitz continuous boundary dft. 

ftu-i/Au+(u-V)u + Vp = /, V-u = 0  in(0,T]xfi,u = 0  on (0,T] x 9fi,u(0) = u0  in ft 

Using (v) = (V)L'(O) sada(w;u,v) := i/(Vu, Vv) + ((wV)u,v) the weak form reads : Find u G L2(0,T;H^(div;u)) 
f]L°°(0,T;L2(div,n)) s.t. for all v G H^(div;Q) : dt{u,v) + a{u;u,v) = (/,«)   in X>'(0,T),u(0) = uo- 

Now we divide the time-intervall [0, T] into subintervalls Jn := (i„_i ,tn], 0 = t0 < h < ... < tk = T. With V x Q := 
(H^(n))dxLl(Ü), Uq :={F:[Q,T\->VxQ: F\Jn = ELo^S^ £ VxQ} and< := \imt^tn+0v(t), vn := v(tn) 
the dg(q) method consists of finding U = (u,p) G Uq   s.t.   for n = 1,..., k and all V = (v, q) G 11, 

/ {(dtu,v)+a(u;u,v) - (p,V ■«) + (<Z, V • u)} dt + («r1.«""1) = («n_1.«+_1) + / (/>v) dt 

In the following we consider dg(0). Then we must find Un = (un,pn) G V x Q  s.t.   for all V = (v, q) G V x Q 

o(«B;un,t;) - (pn, V • «) + (q, V • un) + j£ («",«) = Tn{Jj  f * + """1'") =: (/"'u)- 

We linearize with a simple iteration and with An((u,p), (u,?)) := a(b;u,p) + ^{u,v) - (p,V ■ «) + (?,V • u), 
^n((u,g) := (/","), b = un,i we arrive at a stationary problem : An({un'i+1,pn), {v,q)) = Fn{(v,q)). 

2. The Robin-Robin algorithm 

In this section we describe the domain decomposition method for the linearized problem. First we do that on the 
continuous level in space. The proofs of the theorems can be found in [1]. We divide the domain into subdomains 
ft = Ufci Hi, fti n Clj = 0 for i # j with the interface T := Ui#j I«, ry := oft* n oft,-. Here we restrict ourselves to 
stripwise partitions, i.e. Tij ^ Tki =>• dist(Tij,Tki) > 0. 

Theorem 1. (2-field-formulation) With Vi := V|n, , Qi ■= Q|n*, W« == V|r„ an^ «Ac restrictions 
A?(- •) resp F-n(-) o/t/ie bilinear- resp. linearform to ft, i/ie weak Oseen-problem is equivalent to find (ui,pi)i=1 G 
xfci(Vi x QO witt I* = u,- in Wij and (Ay) G (W*)i#i s.t. /or K,g<)ti € X^Vi x Q-,), * G Wy 

il?((ui,Pi),(vi,9i))-(|(6-ni)«i-^*«i.ui>rJ    =   ^"("i.ft) + S <Aii.u*>r«. W 
i(^0 

(Ay + Aji,*)^    =    ((*i + *,-)*«i,*hv (2) 

The second equation corresponds to a Robin-type transmission condition.   Dropping the constraint u{ = Uj and 
decoupling of (l)-(2) leads to the following Robin-Robin algorithm. 
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Start with an initial guess A0iij G W*j for k ^ j. Find Um,i = (um,i,pmi) 6 V; x Qt s.t. for all Vt = (vitqi) G 
ViX Qi 

A?(Um,U Vi) + {{-\b ■ Hi + Zi) * Um,i, Vi)ri  = F?(Vi) +   £ (Am-VJi, Vi)Tij ■ 

Define a new functional Am>ij e W*j by (Am>ij, <j>) := ((zi + Zj) * Um>i - Am_i j;, </>)rii for <f> G Wij. 

Theorem 2. Assume that Zi G (Z/°°(r;))2, zi = Zj on T^, infx6ri Zi(x) > 0. Each subdomain problem has a unique 
solution (umii,pm,i). Moreover we have convergence to the restriction (ui,pi) of the global solution to fij according 
to 

\\um,i ~ UiWi&i ->■ 0,     ||IIj(pmii - Pi)\\o,Q{ -> 0,     Uiq :=q- meas(ftj)-1(q, l)/,2(r,.). 

Theorem 3. In the case of two subdomains we have for the error Em<i :— (e;,ej) := (ui<m — Ui,piiTn — p») (i = 1,2) 

M-l Hn^ill < |[EiiTO+i]|j < Kj\\zi - -(b ■ ni)||oo,r||wm+i,i - «m,j||o,r + Lj\\um+iti - umj\\Hi/2,r. 

with \[(v,q)]\j := v\v\lQ. + jr-|Mlo,fi; o,nd constants Kj,Lj,Mj depending on problem data. 

For the choice of the interface parameter we observe that in the limit case i/ = 0no boundary condition should be 
imposed on the noninflow part Tf := {x G Tt : (b ■ rij)(x) > 0}. Thus we set zt = (||6 • m\ + R1, \\b ■ m\ + R2) with 
lim„_K) Rl — 0, 1 = 1,2. Balancing the constants Lj and Kj in the a-posteriori estimate gives 

To derive a discrete DDMwe start from a (global) finite element spaces V/, C V, Qh C Q and a SUPG-stabilization 
with bilinear- resp. linearforms Ag(-,-) resp. F§(-). We define local spaces Vh,i '■= V/i|n;, Q^ := Qftln^, W/^j := 
Vftjrij and the restrictions Ag]i(-,-), i^O) to fi,. Now we need a two-field formulation of the discrete problem 
corresponding to Theorem 1. The proof uses the discontinuity of pressure. Thus we have two possibilities. The first 
one is to use pressure functions which are discontinuous (at least) across I\ Then we must introduce pressure jump 
terms of the form J2ECT °~E(\P]E, [Q]E)E in the stabilization. The other way is to introduce a Lagrangian multiplier 
for the pressure test functions. In both variants a decoupeling of 2-field-formulation yields a modified Robin-Robin 
algorithm. With re — 1 for continuous and re = 0 for discontinuous pressure the method reads 

As,i(Um,i,Vi) + {--b-rii + Zi*Ui,Vi)Ti +K{pp
ipi,qi)ri + (1 - re) ]T o-E{Pm,i,qi)E 

ECTi 

=   FliiVi) + J2 (Ki-njuVihii + «(AiUiy-i.ftJry + (!-«)£   £  o-E(pm-xj,qi)E- 

<Am,tj.^"> := (fe+^)*Vi-Am-i,ji,^>r;]   for <j>u G WhliJ, 

K{Ap
m)ij,<P>) := K((P

P
 + ^)pmii - Ap

m_hji>^)rii   for & € Rh>ij := Qh\Tli• 

The properties of the continuous method stated in Theorem 2 are also valid for the discrete method. We can prove 
the unique solvability of the subdomain problems and convergence of the discrete DDM-solutions to the global 
discrete solution with respect to a stabilized norm (see [2]). A result corresponding to Theorem 3 for the case of 
discontinuous pressure can be found in [3]. Numerical examples are included in these papers as well. 
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ANDREAS PELZER, BIRGIT HOFFEREK AND HEINRICH VOSS 

Implementing Global Masters into Parallel Condensation 

The dynamic analysis of structures leads to very large generalized eigenvalue problems. Their number of unknowns 
can be reduced to a manageable size by condensation methods which can be parallelized by combining it with substruc- 
turing. In this note we implement global masters into the parallel condensation process. 

1. Condensation with general masters 

In the analysis of the dynamic response of structures using finite element methods very often prohibitively many 
degrees of freedom are needed to model the behaviour of the system sufficiently accurate. Static condensation 
is frequently employed to economize the computation of a selected group of eigenvalues and eigenvectors. These 
methods choose from the degrees of freedom a small number of master variables. Neglecting inertia terms the 
remaining variables (termed slaves) are eliminated leaving a much smaller problem for the master variables only. 

It has frequently been noted in the literature that the quality of the eigenvalue and eigenvector approximations 
produced by static condensation is satisfactory only for a very small part of the lower end of the spectrum. To 
improve the approximation properties of condensation Mackens and the third author [2] introduced general masters 
which allow to implement a priori information of the eigenmodes (such as eigenmodes of similar structures considered 
in reanalysis or prolongations of eigenvector approximations obtained on a coarser grid) into the condensation process. 

We consider the general eigenvalue problem 

Kx = XMx (1) 

where K € Ht(n,n) and M e Et(n,n) are symmetric and positive definite matrices which are usually the stiffness and 
mass matrix of a finite element model of a structure, respectively. The dimension n is supposed to be very large. 

To reduce the number of degrees of freedom we choose linear independent vectors zi,...,zm € IRn, and we define 
Z := (zi,.. .,zm) G IR(n'm). Then the projected eigenvalue problem 

K0xm := PTKPxm = XPTMPxm =: XM0xm,    where P = K~x Z(ZT K~x Z)~x ZT Z (2) 

is called the condensed eigenvalue problem with general masters zi,...,zm. It is easily seen that this is exactly the 
reduced problem introduced by Irons and Guyan if we choose zi,..., zm as unit vectors. This special case is called 
nodal condensation. 

Since {ZT K~x Z)~x ZT Z is a nonsingular matrix the condensed problem (2) is equivalent to the projection of problem 
(1) to the space spanned by the columns of K~XZ. Hence, condensation is nothing else but one step of simultaneous 
inverse iteration with initial guess X = M~XZ 6 IR("-m). Therefore, we can expect good approximation properties 
of condensation if we include general masters Zj = Mx, where Xj are approximate eigenvectors of problem (1) 
corresponding to the desired eigenvalues. 

2. Parallel condensation 

For nodal condensation the following strategy yields a coarse grained parallel algorithm developed in [4]. Suppose 
that the structure under consideration has been decomposed into r substructures and let the masters be chosen as 
interface degrees of freedom. Assume that the substructures connect to each other through the master variables 
only. If the slave variables are numbered appropriately, then the stiffness matrix is given by 

K = 

I   Kmm Kmsl Kms2 

Kami Kss\ 0 
Ksm2          0 KSS2 

\ Kamr       0 0 

0 
0 

\ 

(3) 

•K-ssr    / 
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and the mass matrix M has the same block form. In this case it is easily seen that the reduced matrices K0 and M0 

in (2) are given by 
r r 

and 
r 

Mo = Mmm -Y^Mmmj, where Mmmj := KmsJK-^Mmj + MmsjK-\Ksmj - KmsjK-)MasjK-)K8mj 

.7=1 

It is obvious that 
in process 
(cf. [3]) 

J'=I 

ms that they can be computed completely in parallel, and that the only communication consists of one fan 
:. This approach can be generalized to general masters if each of them is contained in a single substructure 

In Section 1 we pointed out that good approximation properties of condensation can be expected if general masters 
Zj = MXJ are in use where Xj are approximate eigenvectors of problem (1). In general these will have global support, 
and the block structure of K is destroyed. For this case we proposed a coarse grained parallelization concept the 
communication of which consists of two fan in processes and one broadcast to obtain the reduced matrices. Details 
are explained in [1]. 

3. Numerical experiments 

We implemented the parallel algorithm in FORTRAN 90 using LAPACK 3 and BLAS routines for the linear algebra 
and MPI 1.05 for message passing. We tested the program on a heterogeneous workstation cluster consisting of one 
HP C3000, one HP J2240, and five HP 9000, 712/100 connected by fast-ethernet and on an HP N-Class parallel 
computer with 8 and 16 HP-PA 8500/440MHz processors organized as one and two clusters, respectively. The user 
can only assign each process to one of the clusters whereas the local scheduling is organized by the operating system. 
Moreover the computer is run in a multi-user environment. Hence we are not able to report on the load balancing 
of the processors. 

Our test example was a finite element model of a container ship with 35262 degrees of freedom. We subdivided it into 
10 substructures each of them consisting of between 1134 and 4792 unknowns, and obtained a reduced problem of 
dimension 2097. Besides the plain model of the ship which is called the dry model we took into account hydrodynamic 
masses. This model is usually called the wet model. The spectra of these two models differ quite a bit (cf. the first 
row of the following table which contains the relative distances). However, adding 12 dry eigenmodes corresponding 
to the smallest eigenvalues as general masters to the interface masters when computing the wet eigenmodes improves 
the eigenvalue approximations considerably (row 2 contains the relative errors of nodal condensation with interface 
degrees of freedom as masters only and row 3 the relative errors of condensation using 12 dry modes as general 
masters additionally). 

rel.dist. 3.1e-l 1.5e-l 2.7e-l 7.5e-l 1.0e+0 8.9e-l 6.0e-l 6.7e-l 3.4e-l 4.4e-l 4.7e-l 7.5e-l 
nod.cond. 4.9e-5 6.0e-5 2.4e-5 1.2e-4 3.9e-4 4.5e-4 6.4e-3 1.9e-2 2.1e-2 8.9e-2 1.0e-l l.le-1 
gen.mast. 4.9e-7 7.5e-7 7.9e-7 1.7e-7 3.0e-8 1.4e-7 5.6e-7 1.0e-5 1.9e-5 1.7e-4 4.2e-3 1.2e-2 
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M. SCHINNERL, U. LANGER, R. LERCH 

Multigrid Simulation of Electromagnetic Actuators 

A recently developed multigrid simulation scheme for coupled magneto-mechanical systems is presented. This scheme 
allows the efficient calculation of 3D dynamic motions of elastic ferromagnetic materials in a magnetic field. The 3D 
mechanical problem is discretized with nodal elements and the 3D magnetic problem with edge elements. Both meshes 
may be chosen independently and therefore, they can be adapted to the physical requirements of the mechanical and 
magnetic field. By applying fast multigrid solution techniques, very short solution times can be achieved even for 
large scale 3D problems.  Using the developed scheme the transient behavior of a solenoid valve is calculated. 

1. Introduction 

Electromagnetic actuators convert electrical into mechanical energy by using nonlinear magnetic coupling effects. 
Therefore, the numerical simulation of these actuators must take into account the electrical, magnetical and me- 
chanical fields and their interaction. This leads to very long simulation times, especially in the transient 3D case. 
In this paper a multigrid technique for the design of electromagnetical transducers, based on the finite element 
method (FEM) is presented. The application of geometrical multigrid solvers to the arising matrix-equation systems 
and the use of different grids for the magnetic and mechanical fields enables even for complex problems a fast solution 

process. 
By using the developed scheme the nonlinear dynamical behavior of a solenoid valve is calculated and the simulation 
results are compared with measurements. 

2. Theory 

If displacement currents are neglected, which is possible for the considered class of actuators without restrictions to 
the accuracy, the magnetic field can be described by the parabolic partial differential equation 

Vx (±Vx^=Je-7!£-7W + 7^x(Vxi). (!) 

In (1) fj. denotes the permeability, 7 the conductivity, A the magnetic vector potential, V a known electric potential 
and Je an impressed source current density. For the mechanical displacement din a linear elastic medium the 
hyperbolic equation 

2(RV       v^l-2»,vvv    "')     J        ^ 
holds. Here E is the Young's modulus, v the Poisson ratio and p the specific density of the material. The magnetic 
and the mechanical field are coupled by different effects like the Lorentz-force, surface forces at an interface between 
two materials with different permeability and the electro-motive-force. Additionally, in many cases the variation of 
the magnetic field caused by large mechanical displacements must be taken into account [1]. 
With the help of a nodal finite element (FE) discretization of (2) and an edge FE discretization of (1) a system of 
coupled ordinary differential equations is obtained. This system is solved by an efficient iterative coupling technique 
where multigrid solvers are applied to the arising matrix-equation systems [2]. For the case of 3D edge element 
discretization of the magnetic field a special multigrid technique, which is presented in [3], is used. 

3. Simulation of a Solenoid Valve 

As an application example the dynamical behavior of a magnetic solenoid valve is calculated (Fig. 1). It consists of 
a ferromagnetic pot-magnet with a copper coil and an armature which is fixed by a compression spring in its upper 
position. If the coil is loaded by a current pulse, produced by a capacitor discharge, the armature is attracted by 
the pot magnet. To avoid eddy currents, which causes high delay times between the current pulse and the magnetic 
force the pot magnet is sliced [4]. In Fig. 2 the coarse grid, which discretizes only a quarter of the valve, is shown. 



S730 ZAMM ■ Z. Angcw. Math. Mech. 81 (2001) S3 

compression spring 
plain bearing   guide p,ate 

distance bolt 

pot magnet 

copper coil 

tappet 

Figure 1: Principal setup of the magnetic solenoid valve 

armature 

coil 

pot magnet 

Figure 2:   Coarse grid mesh of the solenoid valve (without 
air) 

The mesh for the mechanical problem (12.000 nodes) and the much finer magnetic mesh (110.000 edges) are obtained 

by adaptive refinement of this coarse grid. The most time consuming part of the simulation process is the repeated 

solution of the matrix equation system arising by the edge element discretization of the magnetic problem. In Fig. 3 

the convergence behavior of the used multigrid technique for this problem is compared to a standard approach. To 

reduce the residuum by a factor of 106 the MG solver needed 21 steps (320 s) and the PC-CG solver 108 steps (1266 

s) (used Computer: SGI ORIGIN 300 MHz). The accumulated simulation time for the whole dynamical simulation, 
consisting of 40 time steps and approximately 6 nonlinear iterations per time step, was 14 hours. 

In Fig. 4 the measured and simulated magnetic force are compared. Thereby a good agreement is observed. 
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ScHWETLiCK, H.; SCHNABEL, U. 

An inverse subspace iteration for computing q smallest singular values of a 
matrix 

Consider a matrix A G JRnxn with singular values <ri > <r2 > • • • > ap > <rp+1 > • • • > <rP+q, p = n — q. For 
computing the singular values £2 = diag (<Tp+i, • • • , o-p+q), i. e., for finding U2, V2 G IRnX9 with U2U2 = V2

TV2 = Iq 

and AV2 = E/2D2, ATU2 = ^2^2) on iteration is proposed which requires per step to solve alternately a linear system 
with matrix B2i — B{Y2i,X2i-i,^2t) or B2l+1 = B(Y2t,X2i+i,Cl2t+i)T, resp., £>0, where 

B(Y,X,Sl):= 
A     Y 

XT    fi GlR 
(n+q)x(n+q) 

The Bk used have uniformly bounded condition numbers, and under weak assumptions the singular vector approxima- 
tions extracted from X2i-\ and Y21 converge linearly with factor K := crp+i/<rp < 1 whereas certain approximations 
to S2 have the factor K

2
 . The theoretical results are confirmed by some numerical examples. 

1. Problem 

This paper is an extension of [3] where the case of q = 1 was considered. Let A G Hnxn be as above with rank(A) > p, 
q := n — p <C n. In addition, suppose that also matrices Y,X£ JRnxg with YTY = XTX = Iq are given such that 
imY «a \vc1U2, imX« imV2 in the sense that the angles 

T) := Z(imY,im£/2) := ma,x{min{Z(y,u) : u G imC^} : V G imY}    and   £ := Z(imX,imV2) 

- see [1] for this notion - are not too close to 7r/2. We want to find improved approximations imY+, imX+ to 
imU2, imV2, defined by Y+, X+ with (X+)TX+ = (Y+)TY+ = /, such that the angles n+ := Z(imY+,im[/2), 
£+ := Z(imX+,imV2) are smaller than £, n. From these matrices Y+, X+ we want to extract approximations to 
U2, V2, and E2. 

2. Motivation from Singularity Theory 

Consider a smooth map F : IR." x 1R -> IR" and the related nonlinear system .F(z,A) = 0. Then (z*, A*) is 
called a singular point of the solution manifold { (z, A) : F(z, A) = 0} if A(z*, A*) := dzF{z*, A*) is singular. Under 
the assumption that r := rank A(z, A) > n — 1 V(z, A) in a neighborhood of (z*, A*) there is a simple condition for 
A(z,X) being singular, cf. [2]: 

Lemma  1.   Define (v, //) G IR" x IR as function of (z, A) by the linear system 

A(z,X)    y 
xT       0 

::B(z,\) 

where y, x are chosen so that B(z*,X*) is nonsingular.  Then we have 

A(z,X) singular      <i=>      ft(z,X)=Q for all (z,X) close to (z*,X*) 

If fi = 0, then Av = 0, i.e., v is a right singular vector to <rn = 0. 

3. Generalization to the Case of Rank Drop q > 1 

We choose Y, X, Ü such that B(Y, X, fi) := 
A     Y 

XT    fi 
G ]R.(n+9)x(n+9) is nonsingular for the given matrix A. This 

holds true, for example, if fi = 0 and  (crp+i/ap) tan n tan £ < 1. Then we solve 

AX+ + YM+ = 0,    XTX++£lM+ = Iq 
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for (X+,M+). It can be proved that  rankX+ = q  and tan£+ < K tan77 where K := ap+i/ap. Moreover, we have 
M+ = 0 if and only if rankyl = p. 

Remark 1. If B is replacedby BT one obtains an analogous result for (Y+, N+) instead of (X+, M+) where 
M+ = {N+)T. 

4. Generalized Inverse Subspace Iteration (=:GISI) 

One double step of GISI (k = It -> ife + 1 = 11 + 1 -> k + 2 = 11 + 2,1 - 0,1,...): 

1. Compute -^2^+1 
M2l+1, 

from 
Yn 21 

Xu-i    Nu\ IM21+1 

X- 2M-1 0 

2. Compute [-X^+ijifo+i] from the modified Gram-Schmidt-orthogonalization of ^2^+1, M21+1 := M2f+ii?2/n 2i+l 

3. Compute Ype+2 
N21+2. 

from 
AT    X21+1 
Y2

Tt    M21+1 
Y2t+2 
N2I+2. lA 

4. Compute [Y2M.2, R21+2] from the modified Gram-Schmidt-orthogonalization of Y21+2, ^21+2 '■= N21+2R2I+2 

Theorem  1.    Choose X-i,Y0,N0  such that B(YQ,X-i,No) is nonsingular. Then we have 

1. All subsequent matrices B2t = Bfäi, X2t-i, N2t), B2e+i — B(Y2i,X2t+i,M2
T
i+1) are nonsingular. Hence, the 

algorithm GISI is well defined. 

2. The quality of Y21, X2t+i is characterized by tan£2M-i < K tan 772^,    tan 772^+2 < «tan^+i 

3. The condition numbers of the matrices B/, are monotonically decreasing and asymptotically almost optimal: 

fclim cond(5fc) = maxjo"!, y'l + ^+1| /min {ap, \/l+^j 

From approximations Y and X with im Y « im U2 and im X fü im V2 found by GISI we can obtain approximations 
U2, V2, S2 to U2, V2, E2, resp., by the following generalized Rayleigh-Ritz-Procedure: 

1. Form the projection S := YTAX € 1R?
X
I. 

2. Compute the g-dimensional SVD S := YTAX = Ü2t2V^. 
3. Define Ü2J= YU2, V2 ■= XV2. 

Then we have Ü^AV2 — £2 = diag(<rp+1, • • • ,er„), IJ2IJ2 = V?V2 = Iq, and the Rayleigh-Ritz-approximations £2 

to S2 satisfy ||S2-£2||.F < C[sin2Z, + sin2 77+ sm£ sin 77] with a constant C > 0 provided that £, 77 are small enough. 

Remark   2.   If A is nonsingular then the algorithm is, in exact arithmetic, equivalent to classical inverse 
iteration with ATA for the X-iteration and AAT for the Y-iteration. 

Let us remark that all results can be extended to rectangular matrices A € IRmx" with m <n. 

5. Numerical Results 

All computations with special almost singular matrices taken from singularity theory and randomly generated 
matrices confirm the expected linear convergence of the singular vector approximations and the better ("quadratic") 
convergence of the singular value approximations. Moreover, the speed depends on ap+i/ap and the condition of 
the matrices Bk is of order o-\/ap independent of the size of <rp+i,..., cr„. 
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WIENERS, C. 

The application of multigrid methods to plasticity at finite strains 

We present a general method for the formulation of incremental plasticity at finite strains and the combination 
with multigrid methods. Therefore, the algorithms analyzed in [5], [6] for Prandtl-Reuß-plasticity are transfered to 
nonconvex energy functionals. The efficiency of the multigrid solver is demonstrated on a large scale numerical 
example in three space dimensions. 

1. Plasticity at finite strains 

We consider a quasi-static plasticity model which is determined by a deformation ip: [0, T] x fi —► Et3 of a reference 
configuration HcE3 and the internal variable Cp_1: [0, T] x Ü —► Et6 (describing the memory of the material) in the 
time interval [0,T]. Here, we consider a multiplicative decomposition of the deformation gradient F = Vxy = FeFp 

in Et9, and the inverse of the plastic strain builds the internal variable Cp_1 = FP-
1
FP-

T
; this defines the symmetric 

elastic Eulerian strain tensor by be = FCp"lFT € Et6. 

Here, we assume that the model is determined by an isotropic stored free energy functional i(i: Et9 x Et6 —► Et of the 
form ip(F, Cp_1) = ^{FCP~1FT) = V>(6e) (depending only on the elastic Eulerian strain) and a convex dissipation 
functional %: Et9 —> Et depending only on the symmetric Kirchhoff stress tensor r = db,i){be)be. 

This defines for every material point the hyperelastic stress response (in the reference configuration) 

P(F, Cp-1) = dF^(F, OP'1) = TF~
T
 € Et9 (1) 

and the plastic evolution (formulated via transformation by F into the current configuration) 

FCP~
1
F

T
 e -dTx(r) FCp-1FT C Et6. (2) 

Note that constitutive equations of this type leads to a consistent model [4, Chap. Ill], and the form of the evolution 
equation guarantees that the dissipation principle is not violated. 

In addition to the evolution of the internal variables we prescribe boundary deformations on T C du, and (since we 
consider the quasi-static process) the momentum balance reduces to the equilibrium condition (for all t € [0,T]) 

/ P(Vxif, Cp_1) • Vx<j)dx = L(t, 4) for all </>: Cl —> Et3 with 4>\T = 0 (3) 

for a given load functional L(t, •) describing body forces and surface tractions. We start with L(0, ■) = 0. 

2. A visco-plastic model 

Following [4, Example 37.1, Model 1], we use the free energy functional 

j,(be) = | trace (J~l>He - I) + \ (J - 1 - ln( J)),        J = det(&e) (4) 

and the (straightforward visco-plastic extension of the) dissipation functional 

X    I s — k\r+1 

x(r)=x(|devr|),        *(«) = ^ \1T/       '        (^> = max{0, s} (5) 

depending only on the second invariant of the symmetric Eulerian stress tensor and material constants r, K > 0, 
k > 0. Note that for the limit case r = oo the model describes perfect plasticity with the elastic domain 

f 0 \s\-k< K, ,.. 
E = domX = {reEt9|     |dev r| < fc + #} for x(s) = \ ^      ~ (6) 
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3. Radial return 

Let to - 0 < «i < • - < tN = T be a time series and At„ = t„ - tn_j. For a given deformation gradient Fn and 
material history C*n_i. the radial return computes the update of the internal variables by solving 

-l. 
FnCP    (t)F* e -dTX(rn) FnC"-1 (t)F%, in f £ [tn^, tn] with rn = M dev(5«) (7) 

subject to the initial condition C^^n-i) - O»"^ (and with bn = det^-^c*-!^)^). This ig golved by 

dev(6*) 
&* = exp   -7„ te trial L€ trial detiFJ-WFnC^FZ 

|dev(6^)L 

with 7„ e Atnx'(ß |dev(6*)|), cf. [4, Section 47]. Implicitly, we define a function T:H —► M6 by 

rr-Y  ) - eXD (-Y    deV(rfa)) \ retrial _ «. 1(7»)     exp^   7n|dev(r(7n))|j&n       -0, 

thus, the radial return is determined by the solution of the nonlinear problem (for /u|dev(6^trial)| > k) 

>|dev(r(7n)|-A;s 

In — ^*n 
K 

(8) 

(9) 

(10) 

mm 
sm 

In the implementation, (9) and (10) are evaluated by Newton methods, where the derivatives are approximated by 
difference quotients; in the same way, the consistent tangent operator is determined. The resulting linear system in 
every Newton step for the problem (3) is solved with a multigrid method. 

4. Numerical experiment 

The algorithm described above 
is realized in the finite element 
module of the software toolbox 
UG [1], which supports multi- 
grid methods on unstructured 
meshes. We illustrate the plastic 
region and the deformation (vi- 
sualization with scaled deforma- 
tion by GRAPE [2]) for an exam- 
ple geometry with 57344 tetrahe- 
dra (mesh generation with NET- 
GEN [3]). The result is ob- 
tained with the material param- 
eters fi = 80193.8, K = 164206.0, 
K = 293.94, k = 173.48, r = 5, 
and N — 16 time steps. 
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ARNOLD, M. 

Constraint partitioning in dynamic iteration methods 

Dynamic iteration (waveform relaxation; is a well approved approach to the numerical solution of coupled instationary 
differential equations that is based on a splitting into several subsystems. If the subsystems are coupled by constraints 
then there is no generic way to assign these constraints to the subsystems. In the present paper we consider three 
partitioning strategies for constraints that couple two differential-algebraic systems. An error analysis shows that the 
stability of the dynamic iteration method depends strongly on the partitioning of the constraints. 

1. Introduction 

In a modular approach to the modelling of coupled physical phenomena and coupled technical systems the overall 
problem is splitted into several subsystems that are in a first step modelled separately. In the second (and final) 
step these models for the subsystems are coupled to obtain a full model for the overall coupled problem. Typical 
coupling conditions are, e. g., balance equations, continuity conditions, and contact conditions [3]. 

The modular approach results in coupled systems of model equations. The special structure of such coupled systems 
may be exploited in the numerical solution [6]. As in the previous paper [1] we focus again on dynamic iteration 
methods for coupled differential-algebraic systems. Dynamic iteration (or waveform relaxation) methods have origi- 
nally been introduced for the simulation of large scale electrical circuits [5]. Similar to the classical Picard iteration 
the dynamic iteration works in a function space, the iterates are continuous functions that approximate the solution 

of an initial or boundary value problem. 

Dynamic iteration is a promising approach to the numerical solution of coupled differential equations since within each 
step of iteration the system is decoupled and the subsystems may be solved separately (modular time integration [4]). 
If the subsystems are coupled by constraints then each constraint has to be assigned to (at least) one of the 
subsystems. The partitioning of the overall coupled system into subsystems includes a partitioning of the constraints. 

In the present paper we consider dynamic iteration methods with three different partitioning strategies for the 
constraints. Stability and convergence of these methods may be studied on the basis of the corresponding analysis 
for a special Gauss-Seidel type method that has been developed in detail in [1]. The error bounds indicate that the 
stability of the dynamic iteration depends strongly on the partitioning of the constraints. 

The paper is organized as follows: In Section 2 we start with a more precise description of the coupled system. The 
class of dynamic iteration methods is defined in Section 3. In Section 4 stability and convergence of these methods 
are analysed. In the present paper we restrict ourselves to these theoretical investigations. A discussion of practical 
applications in mechanical engineering and results of numerical tests may be found in [1]. 

2. The problem class 

As a typical but nevertheless simple problem class we consider the coupling of two differential-algebraic systems 

m(t)   =   h{vi,v2,zi), m{t)   =  /2(j/i,1/2,22),      1 (la) 
0    =   hi (2/1,2/2, Zi, u), 0   =   h2{yi,y2,z2,u)      J 

by nu algebraic equations 

'0 = 0(2/1,2/2,21,^2) • (lb) 

The i-th subsystem of (la) consists of nyi differential equations yt = ft and nZi algebraic equations 0 = ht, (i = 1,2). 
The subsystems are coupled by the arguments 2/1,2/2 in the right hand sides of (la) and by the constraints (lb). We 
assume that the initial value problem 

2/(0) =2/o,   z(0)=zo,  u(0) = uo (2) 

for (1) has a unique solution y = (2/1, y2)
T: [0, Te] ->• Hn», z = (zi, z2)

T : [0, Te] -> lRn*, « : [0, Te] -»• Mn« on the 
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finite time interval [0,Te], ny = £nyj, nz =^nz,.Ina neighbourhood of this solution the functions / = (/i,/2)
T, 

h = (hi,h2)
T, and g are supposed to be sufficiently often differentiate. Furthermore, it is supposed that the 

Jacobians 

dh       dh   \ f   dhi_      dhi_   \ au 
dz       du     \ /     Bzi        du      I C/l „   )■   [Z      „   J.g.     « = U> (3) 

are non-singular such that the coupled system (1) has index one [2]. Condition (3) guarantees that for i = 1 and 
i = 2 the equations hi(y1,y2,zi,u) = 0 are (locally) uniquely solvable w. r. t. z* and the systems of equation 

0 = hi(y1,y2,Zi,u) ,       0 = g(yuy2,zuz2) 

are (locally) uniquely solvable w. r. t. Zi and u. 

3. The class of dynamic iteration methods 

In a dynamic iteration method the numerical solution of the initial value problem (2) for the coupled system (1) is 
composed of analytical solutions for initial value problems for the individual subsystems. Instead of considering the 
time integration for the subsystems in detail the convergence analysis for dynamic iteration focusses on the coupling 
between the subsystems. 

Example   1.   The iterates {y(k\y(k)) of the classical Gauss-Seidel method for a system of two coupled 
ordinary differential equations (ODEs) 

Vi(t) =/i(j/i.2/2) , 2/2(i) =/2(2/i,2/2) (4) 

with initial values j/,(0) = yifl, (i = 1,2) are defined as solutions of the initial value problems 

v[k)(t)    =   h(y[k\yt1}), y[k)(0)= 2/1,0, '(5a) 

y{2k)(t)    =   f2{y
{k\y{k)), yW(0) = y2t0. (5b) 

The initial guesses y|0) may be set, e. g, to y\°\t) := yi0, (t £ [0,Te], i = 1,2). If the right hand sides /* satisfy a 
Lipschitz condition and the time interval of interest is bounded then (5) is convergent [7]. 

Dynamic iteration may suffer from very slow convergence on large time intervals. Therefore a practical implementa- 
tion is based on a splitting of [0, Te] into windows [Tn, Tn+1] with a discrete time grid 0 = T0 < Tx < ... < TN. ■= Te. 

In each window an initial guess y^°] e C( (Tn,Tn+1], TRn»<) is obtained extrapolating the numerical solution yt from 
[0,Tn] to (Tn,Tn+i\. Then a finite number kn of dynamic iteration steps is performed such that the numerical 
solution yi is continued from [0,T„] to (Tn,Tn+1] by 

- I _   (*») yi l(T„,T„ + 1]  
:_ Vn,i    ■ (6) 

The coupled system (1) goes beyond the classical framework of Example 1 since the subsystems are coupled not 
only by the right hand sides in (la) but additionally by constraints (lb). There is no generic way to consider these 
constraints in the dynamical iteration. 

In [1] we generalized the Gauss-Seidel iteration (5) assigning all constraints (lb) to the second subsystem. In the 

first stage of the k-th. Gauss-Seidel step the functions y{k^l) and w^_1) are given and the initial value problem 

(*)   „(*"!)   Jk)   „,(*-1)N (?a) 

2>SW =    /i(2/S,2/iV1)-4fcl), 2/S(Tn)=2/i(r„), 

is solved w. r. t. y(k\ and z^\. In the second stage these functions are inserted in the initial value problem 

2/i>) =    /2(2/ifcl,2/i%*S), 2/S(^)=272(T„), 
0 =    ho(v(k)  v{k)  z{h)  n{k)\ (7K\ u —   n2\yn>i,yn,2,zn2,Un ) , ((b) 

0 =        /  (*)     (*)     (*)     (k)s 

that defines the remaining solution components y*£\, z^k\, and u^. 
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On the other hand a Gauss-Seidel method for (1) may consider the constraints (lb) as well in the first subsystem: 

dt)      =      hiy^Wn^^nl), »£l(r„) = *l(TB) , 

»$(*)  =  /»(»$.»$,*$). v$(T«) = fc(r„), 

0    -    ho(v(k) v(k) z(k) u{k)) 

Obviously, the approaches (7) and (8) may also be combined such that coupling conditions (lb) are considered in 
both subsystems. A typical method of this type is 

»$(*)    =    /i(y£!,V&~1),*£!). yi
n
k}(Tn) = y1(Tn), 

o  =  MÄÄ-'U^i), (9a) 
o =  ^UV^UV1^ 

y$C)   =   /2(»S,ySU2), y(nl{Tn) = y2{Tn), 

0    =    M^l^U^), (9b) 
0    -     a(v{k) v(k) z{k) Zo) 

The functions f/i(i), f^W, ^(i) are auxiliary functions that define the new iterates 

z(kl(t) := Z2(t) + A(t){U2(t) - UM) ,     «<,*>(*) := C/2(i) + B(t)(t/2(t) - t/i(*)) • (9c) 

The matrix valued functions A : [0,Te] -> Rn*2x"", B : [0,Te] ->■ ]R>xn» are free parameters of method (9). 

Assumption (3) guarantees that all three methods (7), (8), (9) are well defined since the subsystems (7a), (7b), .. 
(9b) form differential-algebraic systems of index 1, see [2]. The in 
Z2, and Ui are defined by the algebraic equations hi = 0, g = 0. 

(k)       (k) 
(9b) form differential-algebraic systems of index 1, see [2]. The initial values for the algebraic components zy

ni, un 

4. Error estimates 

Dynamic iteration methods for coupled ODEs define a contractive mapping in a scaled L°°-norm on [0, Te] such that 
convergence follows from the Fixed point Theorem [7]. If dynamic iteration is applied to coupled differential-algebraic 
systems then a contractivity condition has to be satisfied to guarantee also contractivity w. r. t. the algebraic solution 
components [5]. An additional contractivity condition is necessary for a stable error propagation from window to 
window [1]. 

The error is essentially influenced by the choice of the initial guesses (y„ ',z„ ,u„') and by the number kn of 
iteration steps in each window [Tn,Tn+i]. For simplicity of presentation we restrict ourselves to fixed window 
sizes H := T„+1 —Tn. It is supposed that the initial guesses for the differential components y and the algebraic 
components z and u are obtained extrapolating continuously from (Tn_i,Tn] to (Tn,Tn+i]: 

»S» :=*kd)(tf|(Tii_li:rmj) , (4Vi0)) :=^\{z,ü)\{Tn_iTn]) . 

Here (y,z,u) is the result of the dynamic iteration method with a finite number of iteration steps, see (6). We 
assume that the extrapolation operators $„   , $„   satisfy a Lipschitz condition 

W^nkt) - *£V)|| < L\\Y - Y\\ , \\*{n](Z, Ü) - ${*}(Z, U)\\ < L(\\Z - Z\\ + \\U - U\\) 

with a Lipschitz constant L being independent of H (||.|| denotes the L°°-norm). 

The extrapolation errors are defined applying $„   , $„   to the analytical solution of (1): 

S^ := $n] {y\{Tn_uTn]) -2/|(T„,T„+1] > J"a) := $"a)((Z'U)|(T„_1,T„]) - (u)l(T„,T„+l] ■ 
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With these assumptions the convergence result of Theorem 2.2 in [1] may be generalized to (7), (8), and (9): 

Theorem    1. // the contractivity conditions a < a and Lakn < ä are satisfied for all n > 0 with 

nH < T/v = Te and a constant ä < 1 then the dynamic iteration methods (7), (8) and (9) are convergent and there 
are constants Co,C*,H0 > 0 such that for all H < H0 

\\V - y\\[o,Te] + \\z - Z\\[0,T.} + II« - «||[o,T.] < C* ■ ornaxv(//max(0^-2)||^d)|| + /"^U^U) 

with a constant fx = a + CQH / (a + VH).    The constants Co, C*, and Ho are independent of the contractivity 
constant a that is given 

' * -=.if„?,»[(Ä(£)"*^)",(^(fr)",^)]«'^")-<'»" *>"»««>■ 

{h    \dzi\dzj      du)     +  \dz2\dz2)      du)     ' 

Remark 1. a) If the contractivity conditions are violated and a > 1 then the stability of the method may 

not be guaranteed. An exponential instability may be observed already in very simple model problems like (1) with 
scalar linear functions hi and g. 

b) The most important difference between (7), (8), and (9) is the way in that the constraints (lb) are assigned to 
the subsystems. Theorem 1 shows that this partitioning of the constraints has an essential influence on the stability 
of the dynamic iteration method. 

c) In (9) constant a is independent of B(t). For the most obvious choice A(t) = 0 constant a is given by the norm 
of a projector in IR"Z2 such that a > 1 and the contractivity condition is always violated. However, stability and 
convergence may be achieved by an appropriate definition of A(t). The optimal value a = 0 is obtained for 

U'     \dz2)      duyKdzAdzJ      du)     \dz2\dz2)      du))     \dzi\dzj      du)' 

5. Summary 

In a dynamic iteration method for coupled differential-algebraic systems the coupling conditions have to be assigned 
to one or more of the subsystems. Three different strategies for the partitioning of the constraints in a Gauss-Seidel 

type method have been analysed. The convergence analysis indicates that the constraints should be partitioned such 
that a problem and method dependent contractivity constant a is minimized. 
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BARTEL, ANDREAS; GüNTHER, MICHAEL 

Developments in Multirating for Coupled Systems 

In technologically computer-aided design, the demand for a refined modelling yields the numerical simulation of cou- 
pled systems. Often the dynamics of these systems can be described as initial value problems of ordinary differential 
equations, which are characterised by largely varying time constants. A natural approach is to use multirate inte- 
gration schemes which integrate the subsystems by their inherent step size. The realisation of the couplings of these 

subsystems, however done, is the crucial point. 

To begin, we give a short survey on multirate behaviour and its possible numerical exploitation in one-step-schemes. 
Based on the conception of generalised multirate, we classify multirate methods by the means, which compute the 
coupling terms for the internal stages: On one hand, extra/interpolation, on the other hand, the incremental formu- 
lation, which yields a genuine one-step-method. For the latter approach, we discuss the multirate W-method as an 
example and give finally test results for a multirate version of Prothero-Robinson's equation and the Inverter-Chain. 

1. Survey on multirating 

In various applications one has to investigate coupled systems. For instance, in electric circuits latent and active 
units are caused by signals passing through highly integrated circuits. Furthermore, in radio frequency cellular 
phones consist of analog and digital parts. In multibody dynamics Young's modulus might vary over some orders 
of magnitude as well as reaction speeds in chemical reaction dynamics. Thus, these systems are characterised by 
largely differing time constants. A naive integration of all components at a time with a single step size (in a single 
order, single method scheme) is conducted and limited by the behaviour of the fastest changing component. The 
idea of multirating is to use inherent step sizes for the units, while the administration cost and overhead due to 
couplings have to be taken into account. Thus the following analysis and tests are performed for two subsystems: 

slow and fast or latent and active, respectively. 

1.1 Levels of latency exploitation. Normally, the term multirating is used for methods which split on the system 
levels in active and latent components. On this level we have dynamic iteration (waveform relaxation) [14] as indirect 
method, while multi-step-sizes (multirate), multi-order and multi-method are direct methods. Latency is not only 
found on system level, but also on equation level, here Schur-Complement-Techniques and Multi-Level-Newton 
methods-are used for linear and nonlinear systems, see [7, 16].- 

1.2 Multirate step size. Generally, the system is split in active and latent subsystems. The slow, latent part 
is integrated with the large macro step size H and the fast, active part m-times with the small micro step size h: 
H = mh. The realisation now depend not only on the underlying numerical scheme, but also (A) on which part is 
integrated first and, crucially, (B) how the coupling is done. 

One origin of these method are the split Runge-Kutta schemes by Rice [18]. Investigating multirate BDF methods, 
Gear and Wells [6] addressed the question (A) which subsystem should be integrated first and introduced the notation 
of fastest- and slowest-first schemes. Later, G./Rentrop [9] designed multirate schemes based on Rosenbrock-Wanner 
methods. Similar to the previous approach, extra- and interpolation of the coupling variables are incorporated, which 
inevitably decompose the underlying one-step-method in a two-step procedure. Recently, a new answer to question 
(B), how to realise the coupling, was given by Kvaern0/Rentrop [13] for explicit Runge-Kutta schemes: the internal 
stages are used to compute the coupling terms, too. Meanwhile, this so-called generalised multirate approach was 
extended to implicit schemes, e.g. ROW- and W-methods, to manage also stiff problems. We focus on this new 
type of method in section 2. Before going on with generalised multirate, we summarise some alternative ideas how 

to exploit multirate behaviour. 

1.3 Multiorder. Here a single scheme method is used, but with different order for the subsystems. The methods 
[4, 5] by Engstler/Lubich are based either on Richardson's extrapolation or on high order RK-methods. According 
to the activity level in each time step, the order is automatically adapted to each variable. The schemes are explicit 
and well suited for astro-physical problems. However, the couplings are obtained by external procedures. 

1.4 Multimethod.    This approach uses different integration schemes for the subsystems. For example, it provides 
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the functionality to compute non-stiff components explicitly, while the stiff are computed implicitly. Multimethod 
schemes based on RK and RK/ROW methods and can be found by Hofer [10] and Rentrop [17]. The latter approach 
was generalised to linear implicit schemes by Weiner et al. [21]. An analogue idea is to split the iterative solution 
of the nonlinear system: functional iteration is used for the non stiff part, and a modified Newton approach for the 
stiff part. 

1.5 Multirate PDE. Systems, driven by multitone signals with frequencies varying over some orders of magni- 
tude, show obviously a multirate behaviour. A new idea introduced by Brachtendorf [3] is to rewrite the problem 
as a system of PDEs in all inherent time scales, which can be solved very efficiently in various ways [19]. Another 
approach, based on characteristics [15], can be regarded as multirate scheme applied to the underlying ODE. 

2. Generalised Multirate 

We start to give the outline of a somewhat generic generalised multirate one-step-method: the increments in Kro- 
necker notation (as usual k[ = (kjj,... ,kjs-) and k\~ = (kj1;... ,k\s), similar for YA and YL) read 

dyL 
kL + mH [Äf® —± 

y0/ V QyA 

kL =HfL(ls®yLfi + (Ä®lL)kL, | YA \) + H (§ 

kx
A =fof^(p^~~|, ts®yA,x + (A®IA)kx

A)+h Ig® |5i       ]kA + h/m(Af 

yo 

k°, 

dyL 
kL 

(1) 

(2) 
yo,*, 

(3) 

and the numerical solution is given by 

yf (io +H) =yL,0 + {br ®lL)kL        and        yA(t0 + (X + l)h) =yh
A(t0 + Xh) + (br ®lA)kA>i, 

for A = 0,..., m - 1. Still, the coupling terms need to be defined, where we aim: 

(active to latent)    YAti w yA(t0 +&i-H)       and        (latent to active)    Y^« yL(t0 + A • h + a, • h). 

with en := eiAls. Depending on the way coupling terms are computed, we get different types of multirate formulae: 

1. first type - MROW [9]: The coupling terms are defined by the usage of rational extrapolations 

= y!xtra([*o + (A + ai)/l]i); (active to latent) | Y^   = y^xtra([*0 + &i H]i)   and   (latent to active) n 
furthermore Af = Af - 0, and both remaining coefficient matrices (A, Ä) are lower triangular. Last, the 
Jacobian is evaluated at: yjx = (yftraT(t0 + Ah), yA

T(t0 + Xh)), A = 0,.. .,m- 1. Thus the computation 
over each macro step is decoupled, a kind of weakened slowest first strategy [6]. 

2. generalised multirate [13]: the coupling terms are computed by their 'own' RK-like methods, 

= Ks®yLfi + llm((V + T(X))®lL)kL, (4) YA   = ls ® yAfi + m(f> ® XA)k°A,    and n 
which gives us a genuine one-step-method. All coefficient matrices are lower triangular, except for ^"(A), which 
is a matrix of polynomials, constant in each column. Fixing, where to evaluate the Jacobian and some finer 
structure of the coefficient matrices, yields different kinds of methods: 

• explicit Runge-Kutta [13]: g = Af - § = Sf = 0 - thus no Jacobian is coupled. 

• partitioned RK [8]: g - Af = N = 0; § with non vanishing diagonal. 

• W-method [2]: g, §, Af and Äf have constant diagonals, which differ from zero at least for the first two 
matrices; in addition y0,x = yo, i.e. the Jacobian is lagged over a single macro step in order to compute 
the micros. 

• ROW-method [2]: conditions like W-method, plus evaluation of Jacobian on fine grid (specially). 

The structure of system (1-4) yields a compound step of macro and first micro step, and decouples all later micro 
steps. By the linear implicitness, we may sequentially compute the increments k[ = (k/,», k^T). If at least one 
diagonal of Af, Äf vanishes, a block triangular form of the system matrix for the increments is obtained, such that the 
increments may be computed in an interleaved mode: kx,,i, k^, kL;2, k°A2,.... Furthermore, we have ROW-type 
coefficients, i.e. we need just one decomposition per time step. 
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The generalised multirate W-method over any whole macro step with y0,A = Yo can be interpreted as a (generalised) 
partitioned ROW method (P-ROW). Therefore P-theory [11] can be applied to obtain the consistency equation for 
the this partitioned scheme. Furthermore, one demands dense output conditions restricted to the fine grid, since 
the multirate method has to be of the method order on the fine grid, too. Thus the order conditions of the P-ROW 
method might be transfered via technically proofs to the conditions for the W-method (including of course the RK 
variant). The consistency equations and a more throughly description is found in [2]. One can show, that the 
consistency equations are 'consistent' and coefficient sets can be exhibited. 

3. Tests 

Tests of a multirate W-scheme of order 2(3), which has been developed for circuit simulation, were executed within 
MatLab. Speed ups were measured for MatLab operations and for scalar function evaluations of the RHS, since the 
load part is most costly in circuit simulators. 

3.1 Prothero-Robinson.    This system was tailored to multirate systems by Kva3rn0 [12]: 

rT     s\ f j/i(t)-sin(t) "\      (    cos(i)    \ /(T 
y'(t) = y(0) = (5) 

e    -1 / U/2(*) ~ sin(wt)J      \oj ■ cos(wt) 

where T is the stiffness, e the coupling and u the activity level of the second component. Tests were performed using: 
T = -1000, e = 10~\ u> = 100. Using an extension of Shampine's coefficients for ode23s [20] to the multirate 
W-method one obtains: 

mode micros macros max error cost [M ops] 
—ops — 4 

speed up fct-evals 
2fct = 2 

ratio: evals 

sr 1500 (300) 2.5-10-3 0.560 - 10200 - 

mr/fix 

mr/dyn 

1700(11) 

2090(56) 

17(11) 

34(23) 

5•10-3 

4.5 • 10~3 

0.196 

0.285 

2.86 

1.96 

5195 

6530 

1.96 

1.56 

Legend:   sr = single rate        fix = fix multirate m fct-evals = number of scalar function evaluations 
mr = multirate        dyn = dynamical adjusted m     ratio-evals = (sr fct-evals) / (mr fct-evals) 

Table 1: Synopsis of Prothero-Robinson Tests. 

We notice, that multirating is achieved: firstly, the theoretical speed ups in MatLab operations Sops « (n/nA)2 

(since n - TM < WWM; n number of unknowns, UA number of active) and in scalar RHS-evaluations Sfct « (n/nA) 
is almost obtained. Secondly, even more convincing, the number of micro steps reflects the number of steps in the 
single rate algorithm. It has to be noted, that the error scaling err = 2(1- My)-1^1 - y2) was necessarily used 
to obtain these results. 

3.2 Inverter- Chain-Benchmark.    This benchmark is well suited for multirate tests due to its regularity, scalability 
and stiffness control. The equations for n inverters are given by 

(6) .,n in =Uop-u1 -T/(uin,wi,0),        ük-UOp-uk-Tf{uk-i,uk,0)    forfc = 2,. 

where / is piecewise quadratic, and initial values consistent given. As input (u-m) serves a single pulse of length 12ns 
(modeled as a polyline), which is smoothened, delayed and of course inverted by each inverter. The parameter T 
controls stiffness. Furthermore, since activity is time dependent, a dynamic partitioning is necessary: 

1. Window strategy (win)     uses signal speed and width to define interval of active nodes 
2. Activation level (act)        uses node voltage to define activity (excitation from initial value) 

We state some results for the non stiff case: 

mode error control micros macros cost [M ops] 

Hops — 8.0 

speed up fct-evals 
Sfct = 2.9 

ratio: evals 

sr 347(4) 111.8 - 52450 - 

mr/win 

mr/act2 

no seal 

"max — *• 

564(56) 

565(67) 

70(11) 

79(29) 

25.6 

34.4 

4.4 

3.3 

42881 

46643 

1.22 

1.12 

Table 2: Synopsis of multirate on the non stiff inverter chain. 
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In the non stiff case we detect speed ups as expected for MatLab operations, but a bit less for the function evaluations 
(up to 28 nodes were active of 50). In the stiff case, however were up to 77 of 100 nodes active, and speed ups in 
MatLab operations were found (factor 3). But, we observed, a dramatic increase of micro steps (about factor 4!). 
and no speed up in function evaluations was achieved for this rather unfavourable setting for multirating (up to 77 
active / 33 latent). Furthermore, the above error scaling was not anymore favourable. 

3.3 Conclusions. The generalised multirating seems to be very promising as the Prothero-Robinson example 
demonstrates. Still, the non stiff inverter chain performs well. The problem of the increased number of micros for 
the stiff inverter chain might be due to the lagged Jacobian, since (1) the Jacobian might change to much over one 
macro step, and (2) the error scaling bases on exact Jacobians. Thus to overcome these troubles, one might use a 
multirate-ROW method instead of the W-method. 

Furthermore, the ratio of latent to active components is still very small: less than three in all cases. Therefore tests 
with a larger number of latent variables are necessary to reveal the hidden potential of multirating. 
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CALLIES, R. 

Multidimensional Stepsize Control 

Optimization problems in technical simulation often lead to boundary value problems for systems of highly nonlinear 
ordinary differential equations with piecewise defined right hand sides and a large number of exceptional points with 
reduced differentiability. Classical integration schemes show a poor performance due to the large number of restarts 
of the integrator; integration intervals end before the stepsize control has stabilized. The new approach does not only 
use the information of the preceeding integration step for stepsize control, but also information from the preceeding 
iteration step, if the boundray value problem is solved by an iterative algorithm. Multistage search techniques improve 
the efficiency of the determination of the exceptional points. These new techniques are tightly coupled with the progress 
of the Newton process. The numerical solution of the boundary value problem is by the new multiple shooting code 
JANUS which fully exploits the new integration techniques. 

1. Boundary Value Problem 

A problem of optimal control and system optimization in technical simulation is transformed in a well-known 
manner into a multi-point boundary value problem (MPBVP, see e.g. [1]) for a system of highly nonlinear ordinary 
differential equations (ODE). The approximation of experimental data by e.g. Cardinal splines leads to a large 
number of exceptional points with reduced differentiability of the right hand side of the ODE system. The MPBVP 
is solved by the advanced multiple shooting method JANUS. A detailed description is given in [3], here only a short 
summary is presented. In JANUS the solution of the MPBVP is formally equivalent to the solution of a special 
system of nonlinear equations (z := (J/Q", tM+i, yt, h,..., j/j^, tM)T) 

F{z) := (r0{t0,tM+uyo,y(tM+i)),ri(ti,yt,y{tT)),---,rM{tM,yM,y{tM)))    =0 (1) 

y(t~+1) := y{U+i;tv,y+), u = 0,..., M, is the solution at t = tv+\ of the piecewise defmied initial value problem 

y = fv,n{t,y), te[tVtfl,tUtlt+i[,   /X = I,...,K„-I, 

»•„,„(*.,,„, v(t+ß), y(t~ß)) = 0,      H = 2,...,KV-1, 

y{tv) = yt inital value,  tv := tv,i,  U+i := i„,K„. 

fw € CN(A,,MxHr,IRn), r„,M : IRxnTxHT -* IR*"* andr0 : IR2xIRnxIRn -> Mdu+1 withM,N,K„,dv,ß,d0 £ IN 
and DVtll D [«„,„,*„,M+i] open; y(t-ß) := limt^t„,ß-oy(t;U,ß-uyt,ß-i)- For the micro discretisation {*„,„} with 
v = 0,..., M, p — 2,..., K„ - 1 only so-called "continuous design points" (CDP) are permitted. On the other hand, 
CDPs may also be part of the macro discretisation to < t\ < ... < ijvf+i := IF- 

DEFINITION 1: tv>yi is called CDP  :<=5>   y{t~ß) = y(tttß). 
The nonlinear system (1) is iteratively solved by a modified Newton method (iteration of the linearized system). The 
£-th iteration step reads (£>F(*«>) := dF{z)/dz\z=zi()):     2(«+1) := z^ + AAF^«))"^^«)) with AF{z®) « 
DF(z^). An iteration step is accepted, if at least one of the following tests is valid: 

||F(z«+D)||    <    ||F(z«))|| (Testl) 
IKAF^«))"1^^1))!!    <    IKAFC*«)))-^*«))!!       (Test 2) 

In addition we require that: ||F(««+1))|| < \\F(z^-^)\\   A   IKAF^«)))"^^«))!! < IKAF^«-2)))-1^(ä«-
2
))||. 

The following (heuristic) assumption is motivated by the fact, that the assignment of design points to the macro or 
the micro discretisation is arbitray (the assumption has to be validated separately in case of every application): 

ASSUMPTION 2: For the tv and the t„,M similar convergence criteria are applicable, even if only the tv are 
directly modified by the Newton process. 

2. Continuous Design Points: Detection by Multistage Techniques 

Let y{t) denote the exact and n(t) the numerical solution. ??(Fi+i) is calculated by an unperturbed integration step 
f. _>. ti+1 := ti + hi of an integrator of p-th order with the righthand side fv>ll-i{t,y(t)) and step size hi, for which 
r„,„-i(«i,i?(Fi)) • r„,p_i(*i+i,t7(**+i)) < ° =>" f2 == U,y. e]Fi,«i+i[. In Stage 1 dense output [5] of low order qx 
is calculated in [tj,t<+i] without additional function evaluations (typical: p = 7.. .9, qi = 3. ..5 [3]) and a coarse 
estimate i2 for t2 is determined from the dense output. In Stage 2 77(^2) is calculated (no step size control), then 
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another integration step is performed without step size control, but with dense output of order q2 (gi < q2 < p) and 

with a step size h :- 0.2 • hp/q2 (safety factor of 5) in direction of the solution. The local error \y(ii+1) - r)(ti+i)\ of 
the initial integration scheme and the local error of the dense output on a smaller subinterval with length h are of 
the same order. The algorithm solves the problem, that the dense output is mostly of lower order (and therefore of 
lower precision) than the underlying integrator. Only the critical integration step is reduced. Using Assumption 2 
and applying the convergence criteria from Newton iteration, stage 1 in the f-th iteration step can be replaced by 
the following estimate (which is available at no extra cost): 

*&e 7e:= [ci) -3iei) -ea)i.ei)+3iei) -e2)i] • 
If Assumption 2 fails (which is rarely the case), only one additional integration step has to be performed. 

3. Continuous Design Points: Additional Step Size Control 

In case of one-step methods the additional information from the preceeding iteration steps of the system (1) can 
be used to prevent a restart of the integrator. Fundamental for classical step size control of one-step methods is 
Gragg's theorem [4], which proves the existence of an asymptotic expansion of the global discretization error: 
Let f{t,y) e CN+2([to,tf] x IR",IRn) and let the {N + 2)-th partial derivatives of f be bounded. Suppose that 
T){t;t0,yo,h) is the numerical result of y = f(t,y), y(t0) = y0 computed by a one-step method of order p < N 
with constant step size h. Rounding errors are neglected. For f]{t;to,y0,h) an asymptotic expansion holds Vt € 
[a,b],Vh={t-t0)/u,v = l,2,...:        N 

V(t;t0,y0,h) = y(t;t0,y0) + £*(*; to, VoV»' + hN+1DN+1{t;t0,y0,h),  \DN+1(t;t0,y0,h)\ < oo   V/i. 
i=p 

For a chosen stepsize hi two approximations of order p and p + 1 are computed [5] (at := {U; *<_i, ?7»_i}): 

V(<n, hi) - f,{o-i, hi) = (dp+1{o-i)h?+l + dp+2(o-i)h
p

i
+2 + ö(hp+3)) + (dp+2(ai)hp+2 + 0(hp+3)) 

We obtain an estimate for the next integration step by the approximation (eru average error, Eij tolerance): 

1     >£Hi±I~      l^f\dp+hj(ti+1;ti,m)\\2(*)   I 1 ^ fjdp+ijfe;*«-!,^)^2 _. em      hi 
Aft1 "   hptl   ~ \ 

1 ^ ndp+hj(ti+1;ti,m)\\2 (*)      l^/|dp+1J(^;^_1,?7i_1)|\   
n £l V      e<+i,i • hi+i      )        \njr[\ £i,j ■ hi+i )   ~ hp+1 ' hi+1 

An approximation similar to that in (*) is used to construct a second step size control specifically adapted to it- 

eratively solved boundary value problems. Let Mi/,/i)«> be the new integration step starting with $£: t[$ -> 

U,p + hoi^n)^. The Newton iteration produces increasingly better approximations for y(t) and tvß and simulta- 
neously improves the estimate for h0(u,fj,). Analogously to the classical step size control we obtain {h0 - h0(u /i)) 

1 , erro^^tt+i)      fl ^ /l^^^ + ^i^Ufr1*)!\Y/2     err>,(^)(0      $ 

Now we choose: h0(u,^+^ := 0.9Äo(i/,/i)«) • [errQ{v,n)®] 1/p-min{|/lo(^,/i)(«)|/(20. 01 - ti^])2,!} , if 

\U,ß - Utll | < h0(v, fj,)ti); otherwise h0{v, /u)(«+1) is determined as in case of the normal initial value problem. The 
more the estimate for i„iM alters between the £-th and (£ + l)-th step compared to \ho{v,n)l% the more additional 
and hardly controllable effects play an important role in the determination of the initial step size ho(v,/j,)^+1): the 
safety factor is tightened. The numerical value of 20 and the quadratic weighting are due to numerical experiments. 

4. Example Problem 

As an example problem, the ascent optimization of a single-stage, suborbital hypersonic demonstrator system (HYD) 
is considered [2]. Experimental data for the aerodynamical model are approximated by Cardinal splines. This leads 
to a number of 122 exceptional points with reduced differentiability of the right hand side of the 17-dimensional 
system of nonlinear ODEs. The new technique allows a reduction of the number of function evaluations by 72 %. 
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LiNSS, TORSTEN 

Uniform pointwise convergence of finite difference schemes for quasilinear 
convection-diffusion problems 

We study convergence properties of an upwind difference scheme on layer-adapted grids for the ^f^Z*" 
class of ringularil perturbed ^linear two-point boundary value problems. We denve condüionsthat ^jffici^t 
for uniform convergence in the maximum norm, with respect to the perturbation parameter, of the method. These 
conditions are easy to check and enable one to immediately deduce the rate of uniform convergence. 

1. Introduction 

We consider the singularly perturbed quasilinear convection-diffusion problem 

Tu:=-eu"-b(x,u(x))' + c(x,u)=0 for 16(0,1),   u(0) = u(l) = 0, (1) 

where 0 < e « 1 is a small parameter. It is also assumed that bu(x, u) > ß for (*, u) G (0,1) x R with a a positive 
constant ß. The solution u generally has an exponential boundary layer at x = 0: it behaves as follows 

^«(aOl^Ctl + e-'expH?*/«))   for all z € [0,1]  andt = 0,...,? 

for some fixed order q e IN that depends on the smoothness of the data, see [12]. Here and throughout C denotes a 

generic positive constant that is independent of the perturbation parameter e. 

It is well known that singularly perturbed differential equations require special numerical methods in order to obtain 
ac u^acy uniform in e. One of the most attractive approaches is to use standard finite-difference schemes on a priori 
consSSTSquidistant meshes which are dense in the layer(s). A mesh of that kind was first introduced by 
BTkhva^More recently, Shishkin [10] discovered that suitable piecewise equidistant meshes can also produce 
7-unifom re ults. However, even though Shishkin meshes are simpler, they usually give numerical results which are 
nfer or To Bakhvalov m.shes. This prompted some work on improvements of the Shishkin meshes Iri [11] a unified 

theory for Shishkin-type meshes is given. In that article the linear case of (1) is used as model problem. 

2. Upwind discritization and mesh 

Let ÜN : 0 = x0 < xi < . • • < xN = 1 be an arbitrary mesh with local mesh sizes hi := x> - Xi-i. For any mesh 

function\vi}"=0 defined on ÜN we formally set v0 = vN = 0- We introduce the discrete norms 

\\v\\dt00 :=     max     k|    and    ||v||d,i := 2^=1  
h*+iM- 

j=l,...,JV-l 

We define a discrete first-order upwind operator T» approximating the continuous operator T by 

[Tuv]. := -D+ [eD~v + b{-, vj\ . + c(-, v)i , 

where 

tD-v]. := 
Vi ~ Vi~l,    [D+v]. := Vi+* ~ Vi   and g(-,v)i := g(xhVi)  for any function g. 

The discrete operator Tu enjoys the following stability properties 

Theorem  1. Let {«*}*„ and {m}to be two arbitrary mesh functions. Then 

\\v-v,\\d,00<ß-1\\T"v-r'w\\dtl. 

Proof.  See [9]. 
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Theorem 2. Let {vt}[ 
on x only, i.e., c = c(x).  Then lnhV&m-(L\l 7^° aUd {Wi^=° be tW° arbÜrary meshfunctions- As™me that the function c depends 

J=- 

Proof.  A proof that is based on the fundamental works for linear problems in [1] is given in [4, Lemma 1]. 

For our discretization we use a mesh of the general type introduced in [11]. Let N > 4, our discretization parameter 
be an even integer. Let A = 2eß^ IniV denote a mesh transition parameter. We shall consider a layer-adapted mesh 
winch xs equidistant m [xN/2 ] but graded in [0, xN/2], where we choose the transition point xN/2 in ShishkL's sense, 
i.e., xN/2 - A. On [0, xN/2\ let our mesh be given by a mesh generating function ip with <p(0) = 0 and u>(l/2) =\nN 
which is supposed to be continuous and monotonically increasing. Then our Shishkin-type mesh is 

x  = f 2e/3-V(i/AT) for   i = 0,1,... ,N/2, 

I  l-2(l-2eß-1]nN)(N -i)/N   for   i = N/2 +1,.. .,N. 

Let if, = expi-tp). We shall see that the crucial quantity determining the order of convergence is max4e[0,1/2] \^'(t)\. 

Examples for the mesh characterizing function %l> are 

V^) = e~2(lnJV'' standard Shishkin mesh [10] with max|^'| < ClnN       and 

rp(t) = 1 - 2(1 - N-i)t       Bakhvalov-Shishkin mesh [6, 8] with       max \i/>'\ < C. 

uHA <reMTf
en?J<n f™methat*here exist° a constmt C such that the mesh characterizing function <p satisfies 

fW< OW forte [0,1/2].  Then the error of the upwind difference scheme [Tuuu]. = 0,v% = uu
N = 0 satisfies 

h-^L^CTV^maxin 
Proof.  See [4, 9]. 

The numerical experiments in [4, 9] confirm that this error bound is sharp.  The results of Theorems 1-3 can be 
extended to second-order upwind schemes [5,7] and to central difference approximations [3]. 
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NEHER, M. 

Berechenbare Schranken von Taylorkoeffizienten analytischer Funktionen 

Es werden Verfahren vorgestellt, um Schranken ßr Taylorkoeffizienten von auf dem Computer verfügbaren analyti- 
schen Standardfunktionen oder ihrer Verkettungen zu berechnen. Die Verfahren beruhen auf verschiedenen Modifi- 
kationen der Cauchy 'sehen Koeffizientenabschätzung. Bei praktischen Berechnungen auf dem Computer wird durch 
Intervallarithmetik sicher gestellt, dass alle auftretenden Diskretisierungs- und Rundungsfehler erfasst werden. 

1. Cauchy'sche Koeffizientenabschätzung auf dem Computer 

In dieser Arbeit werden verschiedene Verfahren vorgestellt, um mit Hilfe eines Computers garantierte Schranken 
von Taylorkoeffizienten analytischer Funktionen praktisch zu berechnen. Ein wesentliches Werkzeug hierzu ist die 
Intervallrechnung [1]. Dabei ist ein komplexes Intervall Z in dieser Arbeit stets durch ein Paar reeller Intervalle X 
und Y definiert: Z = X + tY := {z = x + %y : x 6 X, y€Y}, i2 = -1. 

Im Folgenden sei r > 0, B bezeichne die Kreisscheibe {z : \z\ < r} und C den Kreis {z : \z\ = r}. 

Eine bekannte Schranke für die Taylorkoeffizienten analytischer Funktionen ist die Cauchy'sche Koeffizientenabschät- 
zung (im Folgenden kurz CK genannt): ist die Funktion f(z) analytisch in B und beschränkt auf C, so besitzt sie 
eine Potenzreihenentwicklung f(z) = ££L0°izi> \z\ < r, für die |o_,| < ^p-, j € INo, gilt, wobei M(r) := 
max 1*1=,. \f{z)\. 

Sei nun im Folgenden / eine analytische Verkettung rationaler Funktionen oder der üblichen auf dem Computer 
verfügbaren komplexen Standardfunktionen (wie e", smz, Log z,...). In diesem Fall können Real- und Imaginärteil 
von / als Verkettungen reeller Standardfunktionen ausgedrückt werden. Solche Zerlegungen wurden in [2] zur Kon- 
struktion komplexer Intervallstandardfunktionen benutzt, die in Programmiersprachen wie C-XSC [4] einfach im- 
plementiert werden können. 

Zur praktischen Berechnung von M(r) überdecken wir C mit komplexen Intervallen Z*, k = 1,..., fcmax- Mit einer 
geeigneten Intervallerweiterung von / berechnen wir für jedes Zk ein Intervall {F*, Fk], das |/(^*)|, den Wertebereich 
von l/l auf Zk, einschließt. Das Maximum der Zahlen Fk liefert dann eine verifizierte obere Schranke für M{r). 

Gute obere Schranken für M(r) werden i. A. nur für hinreichend kleine Durchmesser der C überdeckenden Intervalle 
Zk erhalten. Dies erreicht man durch adaptive Verfeinerung einer Anfangsüberdeckung mit Hilfe bekannter Methoden 
der verifizierenden globalen Optimierung [3]. Allerdings führt auch die präzise Berechnung von M{r) nicht immer 
zu guten Schranken für die Taylorkoeffizienten von /, da die CK sehr pessimistisch sein kann. Zur Verbesserung der 
CK schlagen wir in den nächsten beiden Abschnitten zwei Modifikationen vor. 

2. Schranken mit Hilfe von Polynomapproximationen 

Satz   1.   f{z) = Y^oaJzJ'   \z\  < ri r > °> sei analytisch in B = {z :  \z\  < r} und beschränkt auf 
C = {z: \z\ = r}. pi(z) sei ein Polynom vom Grad l. Dann folgt durch Anwendung der CK auf f -pi: 

K|   <   ^r^   ßrj>l,        wobei N(r,l):= max \f(z)-pi(z)\. 
r3 \A=T 

Falls pi die Funktion / in der Maximumnorm gut approximiert, kann die auf dem Computer berechnete Schranke 
N(r,l) erheblich kleiner sein als M(r). In unseren praktischen Beispielen verwendeten wir als Approximationspoly- 
nom jeweils das Taylorpolynom 2j vom Grad / (mit Entwicklung um den Ursprung). 
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3. Schranken mit Hilfe von Ableitungen 

Satz 2. f[z) = J2%o ajzji \z\ < r> r>0, sei analytisch in B = {z : \z\ < r} und die m-te Ableitung von 
f sei beschränkt auf C = {z : \z\ = r}. Weiter sei P(j, m) := {j +1) • • • (j + m), P(j, Ö):=lßrm£ IN, j e 1N0. 
Dann folgt durch Anwendung der CK auf f^: 

Kl   ^   „,. .  .    fürj>m,        wobei U(r,m) := max |/(m)(«)|. ■* P(j-m,m)ri    '■>-■> v>   i      \x\-r
u     Wl (1) 

Die Abschätzung (1) ist eine wesentliche Verbesserung der CK, da P(j — m,m) mit der Ordnung 0(jm) gegen 
unendlich strebt. 

Bemerkung   1. Die beiden zuletzt behandelten Abschätzungen lassen sich kombinieren, wenn bei der Be- 
rechnung von U zusätzlich eine Polynomapproximation von /("*) verwendet wird. 

4. Numerische Beispiele 

Die vorgeschlagenen Methoden wurden in der Programmiersprache C-XSC unter Linux auf einem PC mit einem 
Pentium II-Prozessor implementiert. Alle bei der Berechnung auftretenden Rundungsfehler wurden durch die in 
C-XSC vorhandene Intervallarithmetik erfasst. 

Schranken für /i(z) = ez Schranken für /2( „\ _    cos z 

"'     z2 +101 

r 1 m M/N/U OIOO OlOOO r / TO M/N/U OlOO OIOOO 

1 — — 2.8E+00 2.8E+00 2.8E+00 1 — — 1.6E-02 1.6E-02 1.6E-02 
1 8 — 4.3E-04 4.3E-04 4.3E-04 1 8 — 1.6E-06 1.6E-06 1.6E-06 
1 — 50 2.8E+00 9.2E-94 9.8E-150 1 — 50 3.3E+18 1.1E-75 1.2E-131 

10 — — 2.7E+04 2.7E-96 2.7E-996 5 — — 1.1E+00 1.4E-70 1.2E-699 
10 25 — 4.1E+01 4.1E-99 4.1E-999 5 22 — 1.0E-03 1.3E-73 1.1E-702 
10 — 50 2.7E+04 8.6E-140 9.2E-1096 5 — 50 1.1E+33 3.9E-96 3.5E-781 
20 — — 5.9E+08 4.7E-122 5.5E-1293 10 — — 1.3E+04 1.3E-96 1.3E-996 
20 — 50 5.9E+08 1.7E-150 2.2E-1377 10 — 50 1.1E+142 3.4E-02 3.6E-953 

Die Tabelle zeigt die mit den verschiedenen Methoden erhaltenen Schranken für die TaylorkoefEzienten der beiden 
angegebenen Funktionen. JV und U ergeben zum Teil wesentlich bessere Schranken als M. Allerdings wird eine gute 
Polynomapproximation von / durch T) auf C bei großen Radien r nur durch Taylorpolynome hoher Ordnung erzielt, 
wodurch die Berechnung von N in diesem Fall sehr viel Rechenzeit erfordert. 

fi besitzt eine Singularität bei z = VlOli, der der Kreis mit Radius 10 sehr nahe kommt. Dennoch ist die Berechnung 
von M und U gut möglich, obwohl 1/(10, m) mit wachsendem m schnell anwächst. Eine Verbesserung der CK erfolgt 
hier nur noch für TaylorkoefEzienten a,j mit hinreichend großem Index j. 
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B.A. SCHMITT, R. WEINER, AND H. PODHAISKY 

Parallel two-step W-methods 

This paper deals with two-step W-methods for stiff initial value problems which allow the parallel solution of the 
stage equations. Special methods of order 3 and 4 are tested for both sequential and parallel implementations and 
compared with efficient sequential codes. The results show that the methods are already competitive in a sequential 
implementation and have a high level of parallelization especially in combination with Krylov solvers for linear 
equations of large dimensions. 

1. Definition of the methods 

There are various possibilities to exploit the facilities of parallel computers in the numerical solution of stiff initial 
value problems 

y' = f(t,y),   y(to)=yo, 

see e.g. [1]. For computers with a relatively small number of processors two-step W-methods are an attractive 
class of methods. They combine the favourable properties of ROW-methods (e.g. [6], [4]) with a high potential of 
parallelization due to their use of external stages in a two-step fassion. These methods were introduced in [7] and 
are defined by 

s 

j=l 
s 

{I — hm^Tm)kmi     =     j[tm + Cihm, Ymi) + hmlm y    fijKfn—ij, (2) 
i=i 

s 

"m|l      =     Urn   i   »m / ^Oj^mi "r VjKm—l,ij- \y) 
j=l 

Here, Tm is an arbitrary matrix, usually an approximation to the Jacobian fy(tm,um). Obviously, all stage incre- 
ments kmi can be computed in parallel with s processors. 

In [7] the convergence properties of two-step W-methods are studied with the help of the simplifying conditions, 
where a = hm/hm-i is the current stepsize ratio, 

C(q): y£a^-iy~1=al'1V ' = 1'"-'« (4) 
i=i 

r(«)= ^7ü(cj-l)'-1=-7^-1c/r1,        l = l,...,q (5) 

B(r): E^-^+^te-l)'-^^,        l = l.-.r. (6) 
j=i j=i 

A standard analysis shows that with the conditions C(q),T(q) and B(p) the methods are convergent of order 
p* = min{g + l,p} for arbitrary matrices Tm under appropriate assumptions on the starting values k0j. 

When applied to the test equation of A-stability, y' = \y with Tm = X and with constant stepsize h, two-step 
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W-methods yield the recursion 

(£0-"M(*t-)-   "M=-U£.T  1+1L). C7) 
where z = ftA, tu := z/(l - *yz), Km := (kmi)

s
i=1, ß:=A + T = (ay + 7ij)? j=1 and 1 = (1,..., 1)T. 

Let 5 C C be the region where p(M(z)) < 1 holds. We call a method A-stable resp. A(a)-stable, if 

closured D C~    resp.   closure5 D {^ € C : |arg(z) - TT\ < a}. 

For very stiff problems L-stability is a desirable property but its precise meaning has to be adapted to the form of 
the recursion (7). In [7] L-stability was defined by requiring ^4-stability and 

lim    um+i = 0 
Re«—too 

for arbitrary um, Km. For two-step W-methods the property (8) can be ensured by the choice 

cs -1,    bT = 7seJ,    vT = e]ß. 

Methods satisfying (9) have been called stiffly accurate in [7]. 

(8) 

(9) 

With the help of the simplifying conditions special methods could be constructed which have order p > s, are stiffly 
accurate and at least L(a)-stable, see Table 1. 

2. Numerical Experiments 

The efficiency of parallel methods is determined by two aspects: 

• The methods should be competitive with efficient sequential methods already in a sequential implementation. 

• They have to show a good speed-up in parallel implementations. 

In order to illustrate the promising properties of two-step W-methods we present two test problems where we 
compare three special L(a)-stable methods, described in Table 1, with efficient sequential codes. The first number 
in the names of the methods indicates the number of stages s, and the second number the order p. 

Table 1: Parallel Two-Step W-methods 
Name p(M(oo)) 7 C\,.. . j c3 defining conditions A(a) order 
PTSW23 0.65414 1.2 2.23809 

1 
C{2),T{2)B(3),Eq.(9) 90° 3 

PTSW34 0.87852 0.84943 -1.71198 
2.36572 
1 

C(3),r(3), £(4), 2*7.(9) 89.7° 4 

PTSW44 0 0.45645 -3.32526 
-2.10534 
-0.26604 

1 

C(4),r(4),B(4),Eq.(9) 68.4° 4 

The computations were performed on a HP/Convex X-Class computer with shared memory. To reduce the number 
of matrix-vector products in the implementation, we rearrange the stage equations (2) into the form 

(i     hm'yTmii)(krni + 2_^ ~~km-ij) — f(tm + Cihm,Ymi) + J^ —km-ij. lij 

i=i U^ 
(10) 

The methods were implemented with stepsize control by an embedded method. Since the methods have full order 
for arbitrary Tm it is computationally attractive to avoid frequent step size changes and to re-use old Jacobians and 
also the LR-decomposition of (/ — hm-ijTm-.i) if hm = /im_i. 
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First, we consider the test problem PLATE of Hairer/Wanner [4]. The results in Figure 1 are from a sequential 
implementation and illustrate that the two-step W-methods are comparable for this problem with the well-known 
ROW-code ROD AS [4]. 

Although all stages can be solved in parallel, the evaluation of the Jacobian and the LR-decomposition would 
restrict the speed-up considerably. We therefore see the main field of application of our methods in the class of large 
stiff problems, where the linear systems of equations are solved iteratively (e.g. by Krylov-methods) completely in 
parallel. 

A special Krylov process is the full orthogonalization method which uses the Arnoldi algorithm to compute an 
orthogonal matrix Qi £ JRnXK whose columns are basis vectors of the Krylov space /C* = span(rj, Art,.. .,A

K~1ri). 
The matrix A is the Jacobian A = fy and rt is the right-hand-side of (10). The stage increments kmi are approximated 
by solving a small linear system of size KX K, 

(/ - hyQ]AQi)h = Qln,    kmi = Qih - £ ^-km-hj. 

This method was applied in our second test equation, the two-dimensional Brusselator, see [5], 

(11) 

= Oi(UXX   + Uyy)   +  1  + U2V  ~ 4U 

=    a(vxx + Vyy) + 3u - u2v 

with a = 0.02 on a 100 x 100 grid. The dimensions of the Krylov spaces were restricted by K < 5. Our code is 
compared with the Krylov multistep code VODPK [2] (using GMRES(5)) and with DOPRI5 [3], since this test 
problem is not too stiff. The results in Figure 2 show the efficiency of the two-step W-methods in the accuracy range 
of practical interest. The observed speedups are around 1.8,2.6 and 3.2 for s = 2,3 and 4 processors. 

computing time (s) 

Figure 1: Results for Plate 
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VODPK 
DOPRI5 

PTSW23_par 
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10 100 
computing time (s) 

Figure 2: Results for Brusselator, PTSWsp using s processors. 

3. Conclusions 

Two-step W-methods are a promising class for the solution of large stiff equations on parallel computers with few 

processors. In combination with Krylov techniques for the solution of the linear systems the s stages can be computed 

almost fully in parallel. First numerical tests show the potential of the methods. The tuning of coefficients, step-size 
control and of the Krylov process will be the topic of future work. 
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ADOLPH, T.; SCHöNAUER, W. 

The generation of high quality difference and error formulae 
of arbitrary order on 3-D unstructured grids 

We generate difference and error formulae of arbitrary consistency order on 3-D unstructured grids for the finite 
difference method. Therefore we have to collect grid points so that we can determine the influence polynomials on 
which the generation of the formulae is based. The problem is to select the appropriate points so that we receive 
a well-structured system of equations of the finite difference method and a good error estimate. We present an 
algorithm for this selection that is controlled by two parameters. The high quality of the formulae is shown by an 

example. 

1. Introduction 

We have extended the FDM to arbitrary consistency order on an unstructured FEM grid with reliable error estimate 
[1,2]. The corresponding generation of 2-D difference and error formulae has been given in [3]. The present paper 
describes the generation of the 3-D formulae. 

To describe an unstructured FEM grid that is usually generated by a (commercial) mesh generator we have 
several tables: The coordinates of a grid point i are stored as coord(i,j) where j = 1,2,3 denotes the x-, y- and 
z-coordinates. The nodes of an element e are stored as nek(e, k) where k = 1,..., 4 is the local number of the node 
of a tetrahedron. From this information we want to generate high quality difference and error formulae of arbitrary 
consistency order q for each grid point. 

2. Principle of the influence polynomials 

FDM of order q means local approach of the solution by a 3-D polynomial of order q: 

Pq(x, y, z) = a0 + aix + a2y + a3z + a4x
2 + a5xy + a6xz -\ (- am-2yzq~1 + am-izq    . (1) 

This polynomial has m = (q + 1) • (q + 2) • (q + 3)/6 coefficients a0 to am-i- Therefore we need m grid points to 
determine these coefficients. The form (1) is not suited for the generation of difference formulae, so in order to get 
explicit formulae we use the principle of the influence polynomials: 

P   (x v z\-{  1    f°r (*<'*> *0 rqtl{x,y,z)-^ 0    for {x.y.z.)jizi    . 

Then the discretized solution u<j can be represented by 

m 

ud:= Pg(x,y,z) = Y^u(xi,yi,zi)-pqAx>y>z)    ■ (2) 
;=i 

By evaluating the influence polynomials for a grid point x = Xi, y = y,, z = z* we get the coefficients of the 
interpolation polynomial. The coefficients of the corresponding difference formulae we obtain by differentiation of 
(2), e.g. uXtd := dPq(x,y, z)/dx, and evaluation at x - a;,-, y = yi, z = Zi. 

For the determination of the m influence polynomials of a grid point i we use m surrounding grid points: 

influence polynomial    1    2    • • ■    m 

pt.l :    l-ao+   xi-cii+   i/i-a2+   z\ ■ a3 + ■ • ■ +   z\ ■ am-\  =    1    0    ■■•     0     , 
2:    l-a0+   X2-0.1+   y2 • <*2 +   z2 ■ a3 + h   z\ ■ am-i  =    0    1    •••    0     , (3) 

m :    1 • a0 + xm ■ ai + ym ■ a2 + zm ■ a3 + h z*, ■ am_i  =    0    0    • • •    1     . 

This can be written as BX = I, thus X = B-1: The column k of the inverse B~l yields the coefficients of the fc-th 
influence polynomial. 
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We get the estimate of the discretization error by the difference of two difference formulae, that of control order 
q+2 and that of actual order q, e.g. for ux we start from the_ relation ux — uXid:q + dXi<! = uX:diq+2 + dx>q+2, and by 
neglecting the exact discretization error for the higher order dx>q+2 we get the error estimate dx>q := uXid>q+2-uXidiq. 
This can be compared to the exact error dx>q = ux - uXtd>q. So we see that ux has been replaced for the estimate by 
the higher order formula uXidi<1+2. This type of error estimate needs an error control: the error must decrease with 
increasing order. 

3. Selection of the m grid points 

Now the problem is to select m appropriate surrounding grid points on an unstructured FEM grid, starting from 
the element list nek(e,k). By indirect addressing we easily generate an inverted list elern(node,i) where for each 
node the elements for i — 1, ...,imax that contain this node are listed. We start at the central point of the difference 
formula and get the elements that contain this node from elem(node,i). Then we get the neighboured nodes from 
the list nek(e,k), and so we have got the first ring. For the next rings we do the same that we did for the central 
point for the points of the first ring and so on until we have sufficient grid points for order q. To avoid double 
counting of grid points we use two logical vectors for each grid point: one for the points found in previous rings and 
one for the neighbours of the outer ring. By logical composition of these two vectors we obtain the new outer ring. 

For the solution of (3) we need m grid points. However, if these grid points do not contain sufficient x, y- 
and z-information the matrix B becomes singular. Therefore we collect points not only up to order q but up to 
a higher order q + Aq so that we offer m + r grid points to the Gauss-Jordan algorithm instead of only m. How 
to select the m "best" points on an unstructured grid that are as close as possible to the central point so that we 
receive a well-structured system of equations of the FDM and a good error estimate? We proceed as follows: 1. We 
move the central point to the origin and transform the other points to the unit cube. 2. We normalize the matrix 
B to absolute row sum equal to 1. 3. We prescribe a starting value for a pivot threshold epivot. 4. We execute 
the Gauss-Jordan algorithm with row pivoting. We have subdivided the rows into groups that correspond to the 
number of points in a ring. Crossing a ring border is permitted only if \pivot\ < epivot. 5. If we have no success 
until the end we put epivot := epivot/\/TÖ and restart at 4. until epivot < £pivot,error = 1.0 • 10-18. It turned out that 
there is a complicated interplay of q, Aq and epivot which is the key for the whole solution process of the PDEs. 

4. An example 

As an example we take a 64000-node unstructured cubic grid Q640oo := [-1,1] x [-1,1] x [-1,1] (40 x 40 x 40 nodes) 
which includes 296595 tetrahedrons. As test solution we take u = sin (§ • z) • cos (| ■ y) • sin (f • z). In Table 1 
we present the results of the difference formulae and error estimates compared to the exact values for order q = 4, 
Aq = 6, Spivot = 0.004 for a typical grid point. We can see the high quality of the error estimates. 

Table 1. Results for a typical grid point-. 
derivative difference formula exact error estimated error 

ux + 0.139 10~2 + 0.138   IO"2 - 0.848 io-b 
+ 0.610 io-4 

Uy - 0.149 101 - 0.149   101 - 0.137 io-4 
- 0.148 io-4 

uz - 0.396 10-1 - 0.396   IO"1 + 0.609 io-6 
- 0.450 io-5 

uxx - 0.772 10ü - 0.771   10u + 0.315 io-3 
- 0.559 io-2 

UXy - 0.507 io-2 
- 0.658 -IO-2 - 0.151 io-2 

- 0.147 io-2 

UXz - 0.308 io-a 
- 0.175 -IO"3 + 0.133 io-3 

+ 0.206 io-3 

u
yy - 0.771 10u - 0.771 -10u - 0.164 IO"3 - 0.174 io-3 

uyz + 0.189 10u + 0.188 -10" - 0.102 io~2 
- 0.990 io-3 

Uzz - 0.772 10u - 0.771 -10u + 0.182 io-4 
- 0.494 10~4 
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ANGERMANN, L.; WANG, S. 

A Conforming Exponentially Fitted Finite Element Scheme for the Semicon- 
ductor Continuity Equations in 3D 

The paper presents an exponentially fitted tetrahedral finite element method for the decoupled continuity equations 
in the drift-diffusion model of semiconductor devices. This finite element method is based on a set of piecewise 
exponential basis functions constructed on a tetrahedral mesh. Error estimates for the approximate solution and its 
associated flux are given, where the error bounds depend on some first-order seminorms of the exact solution, the 
exact flux and the coefficient function of the convection terms. 

1. The application of Gummel's [2] and Newton's methods to van Roosbroeck's drift-diffusion model 
[3] leads to a linear, decoupled system of partial differential equations, where the continuity equations are of the 
following form: 

-V • f{u) + Gu = F  in    ft (1) 

f(u) = Vu — au, (2) 

u\aaD = 0,   f{u) ■ n\anN = 0, (3) 

where ft C H3, dft = dtiD U dftjv is the boundary of ft, <9ftp D dftjv = 0, dQ.D is closed as a subset of oft, and n 
denotes the unit outward normal vector on 9ft. If rj> denotes the electrostatic potential, the vector-valued function 
o G (I°°(ft))3 equals Vt/> and -V^> respectively for the electron and hole concentrations, and the flux f(u) is the 
electron or hole current density. Furthermore, G G L°°(Q), G > 0 a.e. on ft and F G I2(ft). 

It is well known that solutions to this kind of problems display sharp boundary layers so that conventional numerical 
methods often yield solutions with non-physical, spurious oscillations. To overcome this difficulty, several kinds of 
stabilized methods are used such as the streamline-diffusion method or upwind finite volume schemes. An alternative 
way of solving this problem is to use exponentially fitted finite element methods. Recently the second author proposed 
a set of new exponential basis functions and used them to formulate a Bubnov-Galerkin method based on a weighted 
inner product for the semiconductor device equations [4]. Here we describe an extension to the three-dimensional 
case. 

Let {Th}h be a regular sequence of meshes of the polyhedral domain ft, each T/, consisting of tetrahedra having 
diameters less than or equal to h. Without loss of generality we assume that the (global) nodes of T/, are numbered 
such that {xi}^-! is the set of mesh nodes not on <9ftß. 

If t is an arbitrary tetrahedron of a partition Th with vertices {xk}k=i (in a local notation), the nodal basis function 
<j>k '• t —> IR associated with the vertex xk is defined as 

\k(x)B(-a(x) ■ (x- xk)) _7 _ u  0 o A\ 

*W= EL,M.W-M•(-.->>'   I61'   ",6(U'3'41' 
where Ai(z),..., \±{x) denote the barycentric coordinates of x £ t w.r.t. t. 

Theorem  1. LetteT^. Then we have 

<j>i{xx) = 1,        <j>i{x) = 0   Vz G Ax2x3x4,        ^i(x) > 0    Vz G t, 

(j>\ + fa + </>3 + <f>i = 1    Var G t, 

where AZ2Z3Z4 denotes the triangular surface oft with vertices x2,x3 and X4. 

Combining all the local functions associated with the (global) mesh node x{ we obtain a hat function fc defined 
on the union of all the tetrahedra sharing a;,-, denoted by ft,-. From Theorem 1 we see that this fa is unity at xt 

and 0 on dft;. It can be shown that ^,- is continuous across inter-element boundaries and (pi G ff1 (ft;). Finally, we 
extend this hat function fa to ft by defining fa{x) = 0 for all x G ft \ ft,, so that the resulting function becomes a 
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basis function denned globally on Q. We remark that, when a = 0, the basis function fc reduces to the standard 
piecewise linear basis function with the support fi,-. 

We now put Sh = span^;}^. From the above discussion we see Sh C C°(Q) n #£(ß), where Hl{Q) = {v 6 
H (fi) : v\eaD = 0}. Using the finite element space Sh and introducing the bilinear forms 

(w,v)^ := (e_^u>,u), 

A^(u,v) := (Vu- ou, Vv — av)$ + (Gu,v)^, 

we can formulate the following Bubnov-Galerkin problem: 

Find Uh € Sh such that for all v G 5/, 

A^(uh,vh) = (F,vh)^. (4) 

It is not difficult to show that this problem has a unique solution. 

We now consider the convergence of the finite element solution, where we will use the following weighted norms: 

\\v\\o,i> ■= y/{v,v)^, 

\\v\h,i> := VA*(V>V)> 

|/|I,OO,^,A = { J2teTh It e^^l/li.oo.t}1 2     (seminorm). 

Theorem  2. Assume that the electro-static potential tp is continuous and piecewise linear on the partition 
Th o/fi. 

Let u be the weak solution of (1)... (3) and uh be the solution of (4). Then there exists a constant C > 0, independent 
of h and u, such that 

\\u-uh\\i,i,    <    Ch(\f(u)\ltO0ti>th + \\u\\ll0O), (5) 

H/(«) - /(«*)llo,#    <    CAO/Mkoo^A + IMIi,«,). (6) 

Theorem 2 shows that the solution of problem (4) and its associated flux converge to the exact ones with the 
convergence rate of order 0(h). The error bounds depend only on ||u||i,oo and the weighted first order seminorms of 
the exact flux and the coefficient function of the convection term. This is in contrast to the standard piecewise linear 
finite element method in which the error bound depends on ||u||2. Unlike most of the previous work the variable 
used in (5) is the electron or hole concentration rather than one of the Slotboom variables which are physically less 
interesting. 

The method can be used to evaluate the terminal currents. It turns out that the computed terminal currents are 
convergent and conservative. Details are given in [1]. 
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CHAPKO, ROMAN 

On the Numerical Solution of the Hyperbolic Evolution Problem on Closed 
Curve 

We consider an evolution problem for a hyperbolic equation with the Dirichlet to Neumann operator. For the nu- 
merical solution we combine the Laguerre transformation with respect to the time variable and the boundary integral 
equation method. Then an infinite sequence of the integral equations of the second kind with a logarithmic singularity 
is obtained. The full discretization is realized by Nyström's method which is based on trigonometric quadrature rules. 

1. Laguerre transformation and boundary integral equation method 

Let D C H2 be a bounded and simply connected domain with the boundary T of the class C2 and let T > 0 and 
ß > 0. Let w be a solution of the Laplace equation Aw - 0 in D with the Dirichlet boundary condition w = v on 
T. Now we introduce the Dirichlet to Neumann map as Av = ^, where v denotes the outward unit normal to the 
boundary T. We seek the bounded function u that satisfied the following problem 

^ + (A + ßI)u = f   onrx(0,T],       u(;0) = wo,    ^(-,0)=iui    on T. (1) 

Here /, w0 and wi are the given functions. In [2] it is shown that for / € L2(T x (0,T)), wQ € H?(T) and 
W! € L2(r) the initial value problem (1) has the unique solution u € L°°(0,T;H*{T)) n L°°(0,T;L2(r)). We 
propose for the solution of the problem (1) a combination of the classical Laguerre transformation and the boundary 
integral equation method. The Laguerre transformation is used for various non-stationary problems (see for example 
[1,3] and references therein). In this way the solution is expressed as Fourie-Laguerre series 

OO /-OO 

u(x,t) = K^un(x)Ln(Kt)   with   un(x)=        u{x,t)exp(-Kt)Ln{Kt)dt, 
 n «/0 n=0 

where K > 0 is a some fixed parameter. 

Theorem 1. The Fourie-Laguerre series is the solution of the problem (1) if and only if the coefficients un 

satisfy the following system of operator equations 

n-l !E 
m=0 

(727 + A)un =gn-K2^2 ßn-mUm    on   T (2) 

for n   =   0,1,...  and where ß„   =   n + 1,  72   =   «2 + ß>  9n   =   fn + m+ K(U + l)w0  and fn(x)   = 
/~/(ar,*)cxp(-«t)L„(««)A. 

Clearly, that the solution of the Dirichlet boundary value problem for the Laplace equation has an integral repre- 
sentation in the form of a single layer potential 

u{x) = -^j riy)$(x>y)ds(y)- 

Here $(x,y) = \n\x - j/|-1 is the fundamental solution and ß £ C(T) is the unknown density.   Then from the 
properties of this potential [4] we have the following integral representation for the operator A 

(Av)(x) = \ß(x) + A. ^ M(y)gj^y*(*, V)*(V)- 

Thus the system of operator equation (2) equals to the system of integral equations of the second kind 

\ltn(x) + A I n„(y)h2*(x,y) + ^(x,y)]ds(y) = <?„(*) ~ ^ E ßn-m Jrf*™(y)$(x,y)ds(y), (3) 
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where x € T. By Riesz-Predholm theory we can prove the well-posedness of integral equations (3) in L2(T). 

2. Nyström method 

We assume that the boundary curve T is given through a regular parametric representation T = {x(s) : 0 < s < 2it). 
Then we transform (3) into the parametric form 

9n(s) + 2^    ?n(a){^i(s,ff)-72[|x'(a)|lnUsin2i^J - K2(s,a)]}da = Gn(s),    0 < s < 2TT (4) 

with the right-hand sides 

2 n-l -25T / «_    \ 

Gn(s) = 2gn(x(s)) + ^-J2 Ä-™ /     Qm(cr)[\x'(a)\ln(4Sm2 S—^- ) - K2{s,a)]da (5) 
m=0 •'0 V l     / 

for n = 0,1,2,.... Here gn(s) = Mn(z(s)) and the kernels ÜTi and AT2 have the form 

gi(a,g) = 2K(a)|^-^»-y»    and   *,(»,*) ^WIS ff'TL |ar(s) -a:(o-)|2 '   v ;i     |x(s) .^p 

Clearly, the smoothness of these kernels depends on the smoothness of the boundary T. Now using the trigonometric 
quadrature formulas for 27r-periodic functions [4] together with the collocation at the nodal points sk = kir/M, 
k = 0,..., 2M - 1, M € IN we get the following sequence of the system of linear equations 

2M-1 .      r 

«»,* + E *»■< {T2 [-K(«<)fä(«*) + ^K2(sk,Si)  + 2^^i(«*,«i)j = Gn,M(s*), 

where 
n-l 2M-1 p 

Gn,M(sft) = 2pn(x(sfe))-«
2X)/3n_ro E ffmii  -la;'^)^^) +       K2(sk,Si)  , 

k = 0,1,..., 2M - 1, n = 0,1,... and Rk are the weight functions of the quadrature rule for the integral with 
logarithmic singularity. For a more detailed description of this Nyström method and an error and convergence 
analysis based on the theory of collectively compact operators we refer to [4]. The error analysis in a Sobolev space 
setting (see [4,5]) implies the following result for the numerical solution qntM of (4). 

Theorem   2.  Let T is analytic, the initial functions w0) wi and the function f (with respect to the space 
variable) are (p+ \)-times continuously differentiable. Then \\qn -qn,M\\°o,r < Cn M~" with some constant Cn > 0. 

Thus the approximate solution of the hyperbolic initial value problem (1) has the following form 
TV   2M-1 |- 

UN,M(*(s),t) = £jJ2  E *».*   -W(sk)\Rk(s) + —K2(s,sk)  Ln(Kt). 
n=0  fc=0 L 

The numerical experiments show the fast convergence with respect to the number M of quadrature points for the 
numerical solution according to the theorem 2. 
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FISCHER, B., LUDWIG, M. AND MEISTER, A. 

A finite volume method to compute the steady state temperature distribu- 
tion in premature or newborn infants 

A mathematical model is developed and used for a computer simulation of the thermoregulation of premature infants. 
We propose a finite volume technique for the solution of the associated partial differential equation on an unstructured 
grid. Emphasis is laid on the model and the validation of the numerical scheme. Beside various test runs using 
real life data, we present a discrete maximum principle for the steady state solution with respect to the non-convex 
computational domain. Keywords: Finite volume method, Thermoregulation, Maximum principle. 

1. Governing Equation 

We consider the integral form of the bio-heat equation (given in [1]) 

— f T{x,t)dx = /   X(x)WTT(x,t)n{x)ds + f f{x,t) dx 
dt Ja Jda J° 

(1) 

for all control volumes a C D, where T(x,t) describes the temperature distribution in a two dimensional geometry 
D C H2 for the infant. Here, A(x) denotes the heat conductivity of the tissue. The source term is given by 
/(x, t) = <5M(X) + QB (X, t), where QM is the rate of metabolic heat production and QB represents the heat transfer 
within the body due to the bloodstream. Actually, we are only interested in the steady state solution. To solve the 
integral equation (1) numerically, we supplement it by initial and Dirichlet boundary conditions. 

2. Finite Volume Approximation 

In order to solve equation (1) numerically by means of a finite volume method, we use a conforming triangulation 
of the domain flasa primary grid (see [4]); the secondary mesh Bh constructed hereupon is of box-type (see [3]). 

kernel 

Figure 1: Tissue layers in the head region Figure 2: Boundary control volume 

A finite volume method represents a discretization of the integral equation (1) for cell averages which are defined 
by means of the cell average operator {MhT) (t)\a := ^ Jv T(x,t) dx, where |cr| denotes the volume of the box a. 

With regard to the secondary mesh Bh we can rewrite the integral form of the heat equation as 

£ (MhT) (i)U = S0v{ X(x)VTT(x,t)n(x) ds + /ffj f(x,t) dx,  V* € Bh. 

Taking account of the secondary mesh Bh and using a unique linear distribution of T as well as the mean value of 
the heat coefficient Xv on each triangle V of the primary grid lead directly to the formulation of a numerical flux 
function Hv (Ti(i),Tj(i),Tm(i);n*;.) = XvVT$(t) n£. Consequently, for each inner control volume we obtain 

Jdai X(x)VTT(x,t)n(x) ds ^j^Ejemi) Y,l=iH» {Ti^T^T^t);^) \§\. 
A numerical approximation of the remaining boundary integral is required in order to ensure a discrete maximum 
principle in our numerical framework. Utilizing the notation introduced within figure 2 we define as an extended 

barycentre c* = x* - 4||ni^m||2 (nü + "im). with a certain weight p{. Hence we get for the remaining boundary 

integral 

/ A(x)VTT(x,t)n(x) ds = E<G{j,m}^(^W>^,9i5(xi),Ti,9jD(x^);nif) \lu\, 
dmndD 

A simple approximation of the source term yields ^ /ff. f(x, t) dx = QM(xi) + Qßi^i, *)• We integrate the integral 
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form of the equation (1) from the time level tn to the time level tn+1 = tn + At. In order to use larger time steps 
we choose an implicit time discretization for the viscous part and an explicit approach for the source term. Thus we 
have to solve a linear system A AT = b, AT = (ATi,..., ATN) 
right hand side b contains the explicit fluxes and source terms. 

where the matrix A is large and sparse and the 

The following theorem and corollary show that the steady state solution achieved by the developed numerical method 
satisfies a discrete maximum principle if the source terms are neglected. The proofs are given in [2]. 

T h e o r e m If our finite volume method has reached a steady state AT = (ATi, • • •, AT/v)T = 0 and if there is 
a control volume where a global maximum of the temperature is located, then the discrete temperature distribution 
is constant in D. 

C o r o 11 a r y If the finite volume method yields AT = 0, then the global minimum and maximum of the discrete 
temperature distribution are attained on the boundary dD. 

3. Numerical Results 

In this section we present some typical numerical results for the two-dimensional model. As remarked above, we 
employ an implicit time-marching procedure to reach the steady state solution. For the solution of the linear system 
we employ the BiCGSTAB method preconditioned by an incomplete LU-factorization. We present two test cases. 
They differ in the choice of the Dirichlet boundary conditions. Test case 1 was designed to reproduce the temperature 
distribution with respect to normal environmental conditions. In contrast, test case 2 models the attempt to lower 
the cerebral temperature by cooling the head. In the following figures the obtained temperature distributions are 
visualized. To verify the discrete maximum principle, stated in Theorem, we first treat test case 1 without any 
heat production or blood-flow, i.e., f(x,t) = 0. As it is apparent from the top image in figure 3, the maximal and 
minimal temperature occurs at the boundary of D, as predicted by our theory. 

307.65   308.7      309.7      310.7      311.7     312.7  313.4 
Figure 3:   Temperature distribution for the 
test case 1 with / = 0 in the top figure. 

;    ■    .Mill I 
299.15   301.1      303.1      305.1      307.0     309.0  310.3 

Figure 4:   Temperature distribution for the 
test case 2 

Regarding temperature distributions with heat production and blood-flow, depicted in the bottom part of figure 3, we 
observe that our model resembles nicely the expected temperature distribution with respect to normal environmental 
conditions. Most interestingly, figure 4 shows that a selective cooling of the head only affects the skin of the head, 
a result, which triggered a controversy discussion within the medical community. It is worth noticing that recently 
Bußmann [1] obtained similar results in his computations. 
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The e-Uniform Convergence of a Defect-Correction Method on a Shishkin 
Mesh 

A defect correction method based on finite difference schemes is considered for a singularly perturbed boundary value 
problem on a Shishkin mesh. The method combines the stability of the upwind difference scheme and the higher-order 
accuracy of the central difference scheme. The almost second-order convergence of the scheme with respect to the 
discrete maximum norm, uniformly in the perturbation parameter e, is proved. Numerical experiments support the 

theoretical results. 

1. Foundation 
We consider the model singularly perturbed linear convection-diffusion problem 

Lu~-eu" -{b{x)u)' = f{x),    16(0,1),    «(0) = «(1) = 0, (1) 

where e > 0 is a small parameter, b(x) > ß > 0 for all x £ [0,1] and / and b are sufficiently smooth functions. The 
solution u of (1) exhibits an exponential boundary layer at x — 0. The following estimate gives an useful bound for 
the solution u and its deriveatives 

\u^{x)\<c{l+e-ke-ßx^y 

To solve differential equations with (boundary) layers approximately it is appropriate to use a priori chosen layer- 
adapted meshes. Our considerations are done on a piecewise uniform mesh as Shishkin introduced in the early 1990s. 
The mesh is generated as follows: one chooses a transition point A = min(|, ^gMniV) and places N/2 meshpoints 

in both [0, A] and [A, 1]. Thus one has a very fine mesh with stepsize h = 0(eN~x In N) in the layer region and a 
relatively coarse mesh with stepsize H = 0{N~l) outside. All considerations made in the sequel can be extended to 
more general layer-adapted meshes as recently introduced by Linß and Roos [1] 
Let us introduce some notation: 

Xi + i-Xi-i r /. + l/2 + /i-l/2       rn+-|    _  Vj + 1 ~ Vj rn0   ,    _  ü,-+l -Vj-\ 
*, = *,-«,_.!,    hi =  2 '    /l =  2     [Dv]i--h^T>    [Dv]t-—^ • 

We define the upwind difference scheme according to (1) to be 

[L^)i = ~ (p+«u], - [fl+uu],--i) - ^[D+{bu«)]i. 

This scheme is stable but at best first-order convergent in the discrete maximum norm, with a convergence constant 
that is independent of e, on a layer-adapted grid [3]. Furthermore we define the central difference scheme 

[Lcuc]i = -f ([£>+«"],• - [£>+««],-_!) - [D°{bun)]i 
hi 

which is formally second order convergent but causes unphysical oscillations in domains where £ is small compared 
to the local step size. 

2. Defect Correction Scheme 
In the 1980s Hemker [2] proposed combining the advantages of both upwind and central difference methods — 
stability and higher-order accuracy — by means of a defect correction technique. In [4] the authors presented the 
probably first proof of a e-uniform convergence of such a method for a model problem with constant coefficients. 
The defect correction scheme we investigate is: 

initial step: [Luuu]i = /;,     ug = uu
N = 0, 

defect: r, = fi - [Lcu% «=> [Luu°]j =/«,     ug = uu
N = 0, 

correction: LUS{ = n [Luudc).= Ü+ [{LU - Lc)u% 
udc =uu +6 
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For this scheme we can prove the following convergence result in the discrete maximum norm \\-\\oo- 
Theorem Let A0 > 2. Then the error ifc := udc - u of the defect correction method satisfies 

Halloo <C{N~l In TV)2. 

In the sequel we will point out the main ingredients of the proof: The consistency error of that scheme divides into 
two characteristic parts 

L«(U*= _ U) = ((£« _ Lc){uu _ u)) + (/_£«„) ( (2) 

wherein the second addend represents the concistency error of the central difference scheme. The first addend is 
called the relative consistency error and extends to 

[(L"-Ic)(^)],. (briu)i+i-2{bTf)i + {bTi")i. 
2ft,- 

wherein rj" = uu - u. Classically, such higher order differences are analyzed by means of asymptotic error expansions. 
That turns out to be inappropriate for layer problems. Instead our convergence analysis is mainly based on the 
following stability property of Lu established by Andreyev and Kopteva [3] 

JV-1 

AT-1 

INI«, < d| Y, M^H-II if «0 = vN = o. 
P     3=- 

Applying this inequality to (2) we estimate 

H^Hoo < C^II^Hoo + i= max_iÄ,-+1[D+^],- + || ]T hj[f - Leu]j\\). 

All three terms can be bounded by (TV-1 ln/V)2 - as one shows in quite longish computations, see [5]. 

3. Numerical Results 
We consider the test problem -eu"{x) + (1 + x{\ - x))u'{x) = f{x),     u(0) = u(l) = 0, where the right hand side 

/ is such that u(x) =    ~fe_l/c COS|K. The numerical results are calculated using the pertubation parameter 
e = 10-8 and the grid parameter A0 = A 

coarse mesh fine mesh 
N max. error conv. rate max. error conv. rate 

256 8.7283e-05 2.0982 0.0003358 1.7316 
512 2.0878e-05 2.0637 0.00010084 1.7355 
1024 5.0784e-06 2.0396 2.9984e-05 1.7498 
2048 1.2486e-06 2.024 8.6918e-06 1.7864 
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Splitting techniques for the Navier-Stokes equations 

A pseudo spectral approximation for the Navier-Stokes equations is presented. After considering the unsteady Stokes 
equations we use the Uzawa algorithm to decouple the spectral system into Helmholtz equations for the velocity 
components and an equation with the Pseudo-Laplacian for the pressure. In order to avoid spurious modes the 
pressure is approximated with polynomials of one degree lower than the velocity on staggered grids. 
For the time discretization a high order backward differentiation scheme for the intermediate velocity is combined 
with a high order extrapolant for the pressure. 

1. Time splitting scheme 

We consider the unsteady Stokes equations 

^_V2
u + Vp = /inft = (-l,l)2,       V-u = 0inft,       u = 0 on Oft, (1) 

dt 

where u = (u1,u2)
t denotes the velocity and p the pressure. / : ft ->■ IR2 is a given force. We impose the average 

pressure to be zero, i.e. fpdx = 0, as the pressure is only determined up to a constant. The BDF (see [2]) time 

discretization of (1) leads to the following scheme: 

Llkun+l - V2un+1 + Wpn+1 = fn+l in ft,       V • un+1 = 0 in ft,       un+1    =    0 on Oft, (2) 

where At denotes the step size in t and the index n + 1 indicates that the functions are evaluated at the time step 
tn+1 = (n + 1) ■ At. L?k represents the backward differentation scheme for the approximation of Jj and k is the 

k 

order of the scheme. L?k with suitable ßm can be written as: L£ku
n+1 = st E ßmun+l~m. 

To minimize the computational cost we introduce the following splitting scheme which was proposed by Maday, 
Patera and R,0nquist [4]. We obtain: 

L»fcü
n+1 - V2ün+1 + Vp?+1 = fn+1 in ft,       ün+1 = 0 on Oft, (3) 

and 

ß0
uU+1 ~ Ü"+1 + W(pn+1 -ff+1) = 0 in n>       V-un+1=0inft,       un+1 ■ v = 0 on 9ft. (4) 

Here v denotes the outer unit normal, ün+l an intermediate velocity and p"+1 an extrapolant for the pressure 
obtained from the previous / time steps. Obviously the order of convergence depends on the order k of the backward 

i-i 
differentiation scheme and on the order I of the extrapolation where pf+1 =  £ fmPn~m, with suitable coefficients 

m=0 
k 

jm,m = 0,...,l-l. Let fn+l = fn+1 - si E /3mun+1_m - Vp"+1. (3) is equivalent to the following Helmholtz 
m=l 

problem: 

f-v2 + ß0-£-l) ün+1 = fn+1 in ft,       ün+1 = 0 on Oft. (5) 

The system (4) corresponds to: 

#,—«n+1+Vpn+1=fln+1infi,       V-wn+1=0inft,       un+1 ■ v = 0 on Oft, (6) 

where gn+1 = ß0-±iü
n+1 + Vp"+1. By applying the divergence to the first equations of (6) and further using the 
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divergence-free condition (Uzawa decoupling) we finally obtain: 

Bpn+1 = V-5n+1. (7) 

The operator SEE ' is called the Pseudo-Laplacian or energy. For the approximation we apply staggered 
grids where the velocity is defined at the Gauss-Lobatto nodes {x^yj) — (cos 7^,cos ^), i, j = 0,... ,N, while the 

pressure is evaluated at the Gauss nodes {ZUWJ) = (cos ^^,cos ^^N*)■ h3 = 1,---,N. We use the pseudo 

spectral Chebyshev discretization which can be found in [6]. In [3] we proved that the eigenvalues of the spectral 
Pseudo-Laplacian are real and negative. There we also present suitable preconditioners and we numerically show 
that a stable second order method in time for the velocity and at least first order for the pressure can be achieved. 

2. The Navier-Stokes equations 

We consider the unsteady Navier-Stokes equations for incompressible flows in velocity-pressure formulation: 

du 1 
äi~RB      +Vp+(u'v)u   =   f   inn=]-M[2,     V-u = 0   inn=]-l,l[2, 

u   =   h    on du,      u = uQ   for t = 0,   in fi =] - 1,1[2. 

(8) 

(9) 

For the approximation of the convective term we use the Adams-Bashforth scheme of second order. So we can 
substract this term from the right hand side and we are able to transfer our splitting to (8) - (9). We consider the 
driven-cavity problem with the following boundary conditions on the domain 0, = [0, l]2: m(-, 1) = -1, u = 0 else. 
The difficulty in the solution of this problem is the presence of singularities at the corners. At the two upper corners 
pressure and vorticity are not finite while at the two lower corners the singularities are much weaker since only 
the second derivative is unbounded. Therefore we have neglected these singularities. For the determination of u 
and p at the two upper corners we introduce the steady-state streamfunction ip (such that m = §^, u2 = -ff) 
and we consider a local coordinate system x = xs + r ■ cos(ö), y = y2 + r • sin(0) (s belongs to the two upper 
corners). Then we yield the following asymptotic expansion in the neighbourhood of the singularity point (see [5]): 
i>" = rf?(0)+r2f$(6,RE). The functions ff and /| are given in [1], along with the corresponding expression of the 
velocity and pressure. Then we have u = ü + ü, p = p + p, where ü and p consist of the corresponding singular 
parts belonging to the two upper corners. Subtracting the terms with (ü,p) from the right hand side of our system, 
we only have to solve the equations for the remaining smooth parts (ü,p). For the center of the cavity we obtain the 
following results shown in table 1. The corresponding values for the N, N- 2-method are given in [1]. A comparison 
between these two methods at the point (0,0.95) near the singularity is given in table 2. 

Table 1:   Comparison of the vorticity at the 
center of the cavity at RE = 100 

N stagg. grids N, N - 2-method 
16 1.17201 1.17351 
24 1.17405 1.17438 
32 1.17432 1.17441 
48 1.17438 1.17441 

Table 2: Convergence of the vorticity values at 
the point (0,0.95) near the upper left corner 
for RE = 100 

N stagg. grids N, N - 2-method 
16 -36.40664 -36.61642 
24 -35.98513 -35.88211 
32 -36.09436 -36.13314 
48 -36.08085 -36.08094 
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Spectral Schemes on Triangular Elements 

First we consider the Poisson Problem with homogeneous Dirichlet boundary conditions on a triangle. The mapping 
between square and triangle is realized by mapping an edge of the square onto a corner of the triangle. Then 
standard Chebyshev collocation techniques can be applied. Numerical experiments demonstrate the expected high 
spectral accuracy. Further, it is shown that finite difference preconditioning can be successfully applied in order 
to construct an efficient iterative solver. Finally, a domain decomposition technique is applied to the patching of 
rectangular and triangular elements. 

1. Introduction 

Pseudospectral collocation methods give good approximations to smooth solutions of elliptic partial differential 
equations. However, there is a huge disadvantage as these methods are confined to rectangles. Our aim is to find a 
suitable transformation between the standard square and the standard right triangle such that we can then apply 
spectral methods to (right) triangles, too. We present the numerical results received with our transformation for the 
Possion problem as well as for domain decomposition problems and compare our results to those obtained in [3]. 

2. Transformation of the right triangle 

The standard Chebyshev collocation scheme is defined for non-equally spaced Chebyshev-Gauss-Lobatto nodes 
(si,tj) = (cos(^).cos(^)) on the square [-1,1]2. As we are interested in triangular domains we introduce the 
following transformation (see [4]) 

x= -(xR + l)(l-yR),   y = ^(yR + ^-)- 

This transformation maps the right edge of a square onto the third edge of a triangle shifting all points to the left. 
It is no longer injective which however does not disturb the accuracy. 
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3. The Poisson Problem 

Numerous spectral algorithms for the numerical simulation of physical phenomena demand the approximative so- 
lution of one or more Poisson problems in a bounded domain. We consider the Poisson problem Au = f with 
homogeneous Dirichlet boundary conditions on our triangle. We apply the standard Chebyshev collocation scheme 
to a smooth exact solution and receive high exponential decay of the error. Our results are even better than those 
obtained in [3] using polar coordinate tranformation. Next we consider a piecewise constant, discontinuous right 
hand side /. As expected, the error along the line of discontinuity is extremely large. 
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We are interested m a good condition number of our spectral operator which does not increase too fast such 
that efficient iterative solvers can be found. In this case, the maximum eigenvalue of the spectral Laplacian on the 
triangle scales as 0(N ). By multiplying the operator by a certain factor we obtain 0(7V4). This result is typical for 
the square. In order to further improve the condition number we establish a finite difference preconditioner Now 
the condition number scales as O(N). 

4. Domain Decomposition 

Now that we can successfully apply spectral methods to triangular domains we are interested in domain decomposi- 
tion problems. It may sometimes be more reasonable to decompose a domain in quadrilinear interior and triangular 
boundary elements instead of using only squares or rectangles. We use the iterative patching method with interface 
relaxation (see [2]). At interior nodes we solve the differential equation whereas at the interface we require continuity 
of the solution itself and its normal derivative. Again we consider the Poisson equation with Dirichlet boundary 
conditions. At the interface between two subdomains information is exchanged until continuity is reached Into one 
direction we transfer Dirichlet and into the other direction Neumann information. At the Dirichlet side a weighted 
sum of subsolutions at the interface is handed over including a relaxation parameter which is chosen dynamically. 

Numerical results for smooth solutions again show the high spectral accuracy while for less smooth solutions 
the results are of course somewhat worse. The number of iterations required to meet the continuity condition de- 
pends on the number of elements patched and not on N. The figure shows one of the domains we applied the method 
to. We have not considered time dependant problems. Experience shows that they cannot be treated efficiently 
using this method. J 

Summing up we can state that this spectral method is effective for time independant domain decomposition 
problems provided no cross points occur. If there are cross points, the number of iterations is quite large such that 
this method has to be improved in those cases. 

5. The convection-diffusion equation 

We also considered convection-diffusion problems.   Lack of space forces us to leave out this chapter however the 
complete article has been submitted to the Journal of Computational Physics. 
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Stabilized FEM with shock-capturing for advection-diffusion problems 

Stabilized FEM of streamline-diffusion type to advection-diffusion problems may exhibit local oscillations in cross- 
wind direction(s). As a remedy, a shock-capturing variant is considered as an additional consistent (but nonlinear) 
stabilization. We present some preliminary results of the numerical analysis. The shock-capturing method has been 
applied within the numerical solution of the k/e turbulence model of incompressible flow problems for the arising 

nonlinear advection-diffusion problems. 

1. Stabilized finite element discretization with shock-capturing 

Consider on a bounded polyhedral domain ft C Rd the linear advection-diffusion-reaction model 

Lu =   - eAu + b ■ Vu + cu = f in  ft, u = 0 on 9ft (1) 

under the standard assumptions: e > 0, bt € Wx'°°(n), c € L°°(ft) and c - |V • b > 0. The weak form of (1) on 

V := ffo(ft) reads:   Find ueV S-L for allv eV 

aG(u,v)  :=  (eVu,Vv)a + (b-Vu + cu,v)a  = lG{v)  ■=  l/»fi- (2) 

Let Th = {K} be a shape-regular triangulation of ft with hK = diam(JK'). A conforming Galerkin-FEM, which 
projects the solution of (2) to Vh C V, may suffer from nonphysical oscillations unless % is fine enough. A standard 
approach is to use a stabilized FEM, e.g. the Galerkin/ Least-squares method: Find uh € Vh s.t. for all vh € Vh 

asG(uh,vh)   :=  aG(uh,vh) + yj6K(Luh,,Lvh)K   =  lSG(vh)   :=  lG{vh)+J2
6K

^'
LV

^
K

- ^ 
K K 

The analysis predicts the parameter choice 6K = hK(2bKy
1 min{l;PK} with PK = h^K^'1 and bK = ||&||oo,A-- 

The stabilized FEM (3) may exhibit local oscillations in crosswind direction(s). As a remedy, a shock-capturing 
variant is considered as an additional consistent (but nonlinear) stabilization:   Find Uh £ Vh s.t. for all vh € Vh 

aSc{Uh;Uh,vh)    :=    aSG{Uh,vh) +bSC{Uh;Uh,vh)  =  lSG(vh) (4) 
A-Vu    6-ViA 

bsc{w;u,v)    :=    5>*(«;)(Vu, Vv)K + ^ (C(«) - ^H) {^f> ~Jbf) K ' 
K K 

Here we assume that ||b|| > 0 and d = 2. Scheme (4) is easy to implement (also in 3d) and guarantees a proper 
balance with the artificial diffusion from (3) acting in streamline direction. We rewrite the shock-capturing term as 

&X-Vu    b-L-Vv\ SL(°-^
U

    °-^
V 

&sc(W;n,,)=TK^nr, -W)K + TK   V   INI   '     INI  )K 

with splitting in crosswind and streamline directions b1- and b, respectively. Following [1], we set 

i -.          * /   x      hKR*K(w) 
TK(w)    =    e-S(P^(w)),    5(P) = F max {0^-P-1} ;    P£(tu) = £ , 

*«M    =    ™fe'    ^H=max {0;r,H-r-},    tf" = ^ 

with a parameter ß > 0. The local artificial viscosity of scheme (4) is always not smaller than TK{W). Only, if locally 
TK{W) < T

S
K
P9

, then we have a resulting artificial viscosity T™M
(U>) > TK{W) in crosswind direction(s). 

2. Numerical analysis of shock-capturing FEM 

Here we neglect the effect of numerical integration. The first result states consistency and well-posedness. 
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Lemma  1. 

1. The stabilized FEM with shock-capturing (4) is consistent. 

2. Scheme (4) has at least one solution Uh.  The additional stabilization effect follows from the a-priori estimate 

&x      _..     2 V^    c,.__ .        b \\\Uk\\\lG + ^TK(uh) pff-v^ oK + J24L(uh) p-vf/ft 

where    \\\U\\\%G = e\\VU\\* + \\(c - \V • b)i V% + EK SK\\LU\\lK. 

<C||/||. 
0,K 

Proof.    (1)   For u £ V of (1) with Lu = / in L2{K) follows TK(U) = r|L(w) = 0. This implies consistency 
according to asc(u;u,v) = aG(u,v) for all v € Vh. 

(2)   This follows via Brouwer's fixed point theorem using aSc{v,v,v) - ISG(V) > aSG(v,v) - ISG(V). 

A uniqueness result is still an open problem, whereas convergence follows from 

Theorem  1. Let u resp. Uh be the solutions of (1) and of (4). Then we obtain: limft_x, ||u - Uh\\hn = 0. 

Proof.   Split u-uh = (u-uG) + (uG - Uh) with Galerkin solution uG.  The proof follows using density 
arguments and the definition of the stabilization parameters. 

The following result reflects that shock-capturing in (4) is only active where the weighted residual is too large. 

Theorem 2. LetUh anduSa be the solutions of schemes (4) and (3) with and without shock-capturing, then 

IH^-usolllSo   <   E4(^)l|V^||^~^^||LC/ft-/||^max|o;(/3--^^)2| (6) 

Numerical simulations show indeed that the artificial shock-capturing viscosity acts only in (characteristic) layers 
and local oscillations in crosswind direction(s) are damped. Moreover, the (sharp) gradient from scheme (3) is 
preserved. Furthermore, note that the r.h.s. of (6) is computable and may serve as a-posteriori error indicator. 

3. Linearization and applications 

The nonlinear scheme (4) can be very efficiently solved via simple iteration 

neN0:        asc(Un;Un+\v)=lsG(v)    W € Vh. (7) 

Lemma 2.  The iteration procedure (7) generates a uniquely defined sequence of solutions Un £ Vh. 

Proof.  This is a consequence of the Lax-Milgram Lemma together with bsc(w; v, v) > 0 for all w, v 6 Vh. 

Iteration (7) is very robust and fast. A good initial guess is given by (3) using that asc^U1^) = aSG(C/1,u) = 
ISG(V). In our experience, one step is usually sufficient to remove crosswind oscillations from the initial guess (3). 

We applied the shock-capturing variant of the stabilized scheme (3) as a proper discretization of nonlinear advection- 
diffusion-reaction equations arising within the k/e turbulence model of incompressible flows following [2]. Local 
under- and overshoots of the very sensitive (nonnegative) turbulence quantities k and e can be suppressed thus 
allowing a stable iteration scheme. In [3] we extended the approach to non-isothermal problems. 
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CALLIES, R.; WlMMER, G. 

Stabilisierte Hyperschallflugbahnen 

Für ein Hyperschallflugzeug berechnet man optimale, dreidimensionale Flugbahnen unter neuartigen Stabilisierungs- 
beschränkungen. Dabei muß eine „gutmütige" optimale Nominaltrajektorie in jedem Bahnpunkt genügend Spielraum 
bieten, um weitere Kriterien zu erfüllen. Ein Beispiel ist der Aufstieg eines Hyperschallflugsystems, wobei bei ei- 
nem Triebwerksausfall ein Notlandeplatz erreichbar sein muß: Die Zusatzforderung verursacht starke Deformationen 
der ursprünglichen Flugbahn. Zu jedem Punkt der Nominalbahn ist ein sekundäres Optimalsteuerungsproblem zu 
lösen. Das Problem läßt sich als Randwertaufgabe für ein System hoch nichtlinearer Differentialgleichungen formu- 
lieren; die Stabilisierungsforderung wird adaptiv punktweise erfüllt. Die numerische Lösung erfolgt mit dem neuen 
Mehrzielverfahren Janus. 

1. Modellsystem 

Der Hyperschall-Erprobungsträger (HET) besitzt vergleichbare äußere Form wie der DC-XA Delta Clipper; seine 
Startmasse beträgt m0 = 2.1 • 104 kg und die Systemmasse ms = 7.4 • 103 kg. 

Atmosphärenmodell:     Für die Luftdichte Q wird das folgende Modell verwendet (Bezugsluftdichte 
p0 = 1.225 kg/m3, Skalierungshöhe hr = 12760 m): 

e(h)  = Poe-hlK kg 
m3 

Schubmodell: Der Schub T wird durch zwei LOX/LH2-Triebwerke mit einem spez. Vakuumimpuls 
IsP,vac = 404 see und einem max. Vakuumschub von je Tvac = 311 kN erzeugt. Für T gelte folgende Beziehung als 
Funktion des Drosselgrades 5: 

T(5) = Tvac ■ 6. 
Aerodynamisches Modell: Für den Auftrieb L(v, h, CL) und den Luftwiderstand D{v, h, CL) verwendet 

man das folgende Modell mit quadratischer Polare (Referenzfläche S = 33 m2, Nullwiderstandsbeiwert CD0 = 0.05, 
Widerstandsbeiwert CDI = 1/0.7). 

D(v,h,CL)   =   lg(h)v2S(CD0 + CD1Cl),    L(v,h,CL)   =   -g(h)v2SCL. 

2. Bewegungsgleichungen 

Das mathematische Modell des einstufigen, raketengetriebenen HET beschreibt die Bewegung einer Punktmasse über 
einer kugelförmigen rotierenden Erde [1]. Die Bewegungsgleichungen lauten (x = {v,j,x,h,A,m,6) : [t0,tf] -> M 
Zustandsvektor, u = (CL,e,8,n) : [t0,*/] ->• K-4 Steuerungsvektor; t unabhängige Variable, hier die Zeit): 

v    =    {-D(v,h,CL)/m-g(h)smj} + uJ2RcosA(smjcosA-cosjsmxsmA) + A-T{5)cose/m 

7   =    {L{v, h,CL) cos n/(mv) + (v/R-g{h)/v) cos 7} 
+   w

2ficosA(sin7sinxsinA-l-cos7CosA)/u + 2wcosxcosA + J4-T((5)sinecos/i/(mü) 

X    =    L(v, h, CL) sin fi/ {mv cos 7) -{v/R) cos 7 cos x tan A 
+   2w(sinxcosAtan7-sinA)-w2ßcosAsinAcosx/(ucos7) + J4-T(<5)sin/isine/(mvcos7) 

h   =   usin7;  Ä   =   v cos 7 sin x/R 5  rn   =   -A-Tvac- 8/(g0IsP,vac); Ö   =   wcos7Cosx/(ficosA) 

mit den Abkürzungen   g{h) := g0Ro/R2, R~ Ro + h und der Schaltvariable A. 

3. Optimalsteuerungsproblem 

Die Nominalbahn x{t) ergibt sich als Lösung des primären Optimalsteuerungsproblems (Aufstiegsbahn); jeder Punkt 
x(t) der Nominalbahn ist Startpunkt eines sekundären Optimalsteuerungsproblems y[x]{t[x]) (Notflugbahn). 

Primäres   Optimalsteuerungsproblem (Nominalbahn): 
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Bewegungsgleichungen: x = f(x, u, t), A = 1, t € [t0, tf}. 
Optimierungsaufgabe: Maximiere v{U), bestimme U 6 }t0, tf[, so daß h(tt) = hT {hT gegeben) und 7fo) = 0. 
Randbedingungen: x(t0) und x(tf) sind gegeben. 

Beschränkungen: 6 € 0 U [0.12,1], \CL\ < CL0, \s\ < e0 und |/*| < /x0; <;2<? < S0 (Staudruckbeschr.). 

Sekundäres   Optimalsteuerungsproblem: 

Bewegungsgleichungen:     y[x] = f(y[x],u[x],t[x]) := f(y[x],u[x],t[x])\f=0, A = 0, t[x] G [t0[x],tfM]. 
Optimierungsaufgabe:       Minimiere tf[x] - t0[a.]. 
Randbedingungen: y[x]{t0[x]) = x{t) (Kopplung von Nominal- und Sekundärbahn), 

y[x](tf[x]) vorgegeben (Notlandeplatz für alle Sekundärbahnen gleich). 
Beschränkungen: \CL[x}\ < CL0 und \/j,[x]\ < ß0; v2g < S0. 

Existiert zu gegebenem t eine Lösung für das Sekundärproblem, so erreicht das HET den Notlandeplatz P- das 
Sekundärproblem wird unabhängig vom Primärproblem bearbeitet. Gibt es jedoch keine Lösung des sekundären 
Optimalsteuerungsproblems, so ist eine Kopplung zwischen Primär- und Sekundärproblem erforderlich, um die No- 
minaltrajektorie geeignet zu deformieren. Das Vorgehen wird für den Beispielfall einer sekundären Bahn aufgezeigt- 
die zur Nominal-bzw.  Sekundärbahn gehörigen Größen sind mit N (A = 1) bzw. S (A = 0) gekennzeichnet. 

Gekoppeltes   Optimalsteuerungsproblem: 

Nach Transformation auf ein festes Zeitintervall r € [0,1] erhält man folgende Bewegungsgleichungen: 

7 -/W.T),  if,  xs-ts
rf

s(xs,us,T),  i$Y   =   0 

Mit dem Zielfunktional der Nominalbahn, den Randbedingungen und den Beschränkungen der Nominal - und Sekun- 
därbahn ergibt sich das gekoppelte Optimalsteuerungsproblem, das gemäß dem Formalismus der optimalen Steuerung 
[2] in ein Mehrpunkt-Randwertproblem transformiert und mit dem Mehrzielverfahren JANUS gelöst wird. 
Die Kopplungsbedingung für die Nominal- und die Sekundärtrajektorie lautet: X

N
(T^)-X

S
(0) = 0. Die Sprungbedin- 

gung für die zugehörigen adjungierten Variablen A (Ä = -Hx, H = XTf) ergibt sich zu: XN{T^)-XN(Tr)+Xs{0) = 0. 
In der Praxis führt das skizzierte Vorgehen auf extrem große DifTerentialgleichungssysteme! 

4. Numerische Lösung und Ergebnisse 

Die linke Abbildung zeigt die ungestörte Nominalbahn N, mit Sekundärbahnen, die rechte Abbildung die stabilisierte 
Nommalbahn N2 mit Sekundärbahnen (gestrichelt: P wird nicht erreicht; durchgezogen: P wird erreicht). 

xN-tN 

0.03 

0.02 

A[-] 

0.01 

0.03 

0.02 

A[- 

0.01 

0.02 0.02 

Für die ungestörte Bahn beträgt die maximale Geschwindigkeit 2798 m/s, für die stabilisierte Bahn 2755 m/s Durch 
ein geringfügig kleineres Zielfunktional gewinnt die Nominalbahn ein hohes Sicherheitspotential. 
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M. DINKELMANN, M. WäCHTER, G. SACHS 

Flugbahn-Optimalsteuerung für ein Hyperschall-Flugsystem zur Verrinee- 
rung des instationären Wärmetransfers verringe 

Zur Reduzierung der hohen thermischen Belastung im Hyperschallflug wird ein Lösungsansatz vorgelegt, der den 
Zusammenhang von instationärem Wärmetransfer und Bewegung des Flugzeugs erfaßt und in einem Gesamt- 
Optimierungsprozeß behandelt. Bei der Beschreibung des instationären Wärmetransfers und der Dynamik des 2g- 

lesTesZiZ: auiTrefsTeBetrrhtun9swdse«**■ DM*****«•<**»™*L*»**MZi 
tlnpTf 7 Strk0mplex- Die ^gelegten Ergebnisse zeigen, daß eine substantielle Reduzierung der thermi- 
schen Belastung durch eine geeignete, optimale Steuerung der Flugbahn erzielt werden kann. 

1. Einleitung 

holhT^erfSChe BelTT VOn HyPerschall-F^geräten erfordert ein geeignetes Wärmeschutzsystem, um zu 
tZl7rTn ZTr^!dera 0der die aufgenommene Wärmemenge zu begrenzen [2]. Die Form der Flugbahn 
beeinflußt die thermische Belastung, da die Aufheizung des Flugsystems vom Flugzustand abhängt. Daherkann 
durch eine geeignete Steuerung der Flugbahn die thermische Belastung verringert werden 

LrZ n Tlrd dn LÖSUngSanSatz ™*etegt, der durch Kopplung von instationärem Wärmetransfer und Bewe- 
gung des Flugsystems in einer Gesamtoptimierung auf eine Reduzierung der thermischen Belastung im Hyperschall- 
flug abzielt. Fur realistische Ergebnisse sind wirklichkeitsgetreue Modellierungen zur Beschreibung der S- n 
Aufheizung und der Dynamik des Flugsystems erforderlich. mstauonaren 

2. Modellierung 

^e°tdmienlng de7nSta^nar Aufheizvorgänge wird das Wärmeschutzsystem über ein Schichtenmodell nach- 

SÄ^b^T^^^rrtr hieibei dem AufbaU d6r FluSze^nd, die aus unterschiedlichen Matenahen besteht Eine schematische Darstellung dieses Modells zeigt Abb. 1. Die Wärmeströme qx • • - q„ durch 
die einzelnen Schichten können folgendermaßen beschrieben werden: '? 

qx    =    qair-ea(T?-T^) , 
(1) 

£i-l,t<J, i = 2,---,n. 

Außenseite (Heiße Luftströmung) 

VAero    I91 /^Strahlung 

\?Konvektion S^Strahlung 
Innenseite 

Abbildung 1: Aufheizungsmodell für die Rumpfunterseite 

Der Temperaturverlauf ist durch die folgenden Differentialgleichungen bestimmt 

T  — 9i ~ qi+l f     ■       i 

(2) 

Im vorliegenden Fall wird der Bereich an der Rumpfunterseite unterhalb des Wasserstofftanks betrachtet. Für die 
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Temperatur der innersten Schicht (direkt unter dem Wasserstofftank) gilt Tn = Ch 

folgende Zustandsbeschränkung eingeführt: 

(3) 

JO 
Diese Beschrlkungsbedingung führt zu einer Kopplung von instationärer Aufheizung und Dynamik des Flugsy- 

stems. 

Im ,.^.lk£»«. ™, Reichweiten^ eines ^P-f™"^^ XbellIXtei' F^ 
• * AKK  9 HlP Temneraturverläufe in den einzelnen Schichten wahrend des Mugs. Uabei weraen zwei 

lhX^i^l^^:X^^, darbeut. Der Vergleich de. beiden be.— F* 

E&Ä^ÄT-S - LLtn^ SeUOTgänge eine bedenke Rehe spieie, 
Schichtnummer 

800 i ;__u*-~ 

T[K] 

+25% 
-22% 

-21% 

Abbildung 2: Temperaturverlauf der einzelnen Schichten und ff ™^är^ ^^ 

X DlNKELM^tu^^ BelaStUng eines H.perschaM« durch oPtimale Ba.« 
Dissertation, Technische Universität München. 1997 Reentrv Trajectories for Advanced Hypersonic 

für Flugmechanik und Flugregelung, Boltzmannstraße 15, 85747 Garchmg. 
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N.N. FEDOROVA; I.A. FEDORCHENKO; E. SCHüLEIN 

Experimental and Numerical Investigation of the Oblique Shock Wave /Tur- 
bulent Boundary Layer Interaction at M=5 

The results of the joint experimental investigations and numerical simulations of hypersonic separated flows are 
presented. The computed and experimental results are compared with respect to surface pressure, skin friction and 
Stanton numbers distributions as well as the integral boundary layer parameters and the mean gas-dynamic profiles. 

The paper focuses on the problem of the mathematical modeling of Shock Wave / Turbulent Boundary Layer 
Interaction, which is of high importance for engineering applications. The case of the 2-D plane hypersonic flows 
(M=5) is selected for simulations, because it is closely related to the problems of the space transport systems. The 
configurations of the incident shock wave interacting with flat plate boundary layer is simple, but gives a rather 
good test of the turbulence model and computational ability to predict the turbulent boundary layer separation and 
recovery phenomena. 

Three flow cases were studied with different shock generator angle a and hence, the different degree of flow 
separation, including the weak interaction case without separation (6° generator angle), the medium interaction 
case (10°) with small separation zone and the strongest (14°) interaction case. The experimental data include the 
flowfield shadowgraphs, the pressure distributions along the plate surface, profile measurements in the section before 
and after the interaction [1] as well as the optical skin friction and heat transfer measurements [2]. 

The computations were performed on the basis of the full unsteady 2-D Favre-averaged Navier-Stokes equa- 
tions in strong conservation form closed by the Wilcox k-w turbulence model [3]. The details of the method used 
in the computations can be found in [4]. 

Figure l,a presents the experimental and computed pressure distributions along the plate surface for all three 
cases of generator angle and shows a good coincidence of the experimental (symbols) and computed (lines) distri- 
butions in the region of shock wave/ boundary layer interaction. In fig. l,b the computed and experimental skin 
friction distributions are compared. Note, that the open markers are for the velocity profile data and closed markers 
are for the data obtained using oil-film interferometer technique. Figure 1 demonstrates that the computations 
predict the skin friction distributions well except for the strongest interaction case, where the level of skin friction 
after the interaction is underpredicted. Figure 2 presents the comparison of the experimental and computed Stanton 
numbers. It should be mentioned that for a = 6° the computed results are in good agreement with the experiments 
but in the separated flow cases the computations overpredict the heat transfer level just after the reattachment 
point. 

The comparison of experimental and computed profiles of mean velocity, density and temperature were also 
performed showing a good agreement for the weak and medium interaction intensity, but rather poor fitness for the 
strongest case. Possible reasons of this disagreement may be the turbulence model inability to describe properly 
the turbulence intensity growth after interaction with the strong shock wave. Another reason of this disagreement 
may be the fact that the computational model does not include all the factors of the real physical problem such as 
the acoustic perturbations coming to the region of interests from the boundary layer developing on the generator 
surface. The results of numerical simulations have shown the importance of taking into account the external level 
of turbulence which is of great importance for hypersonic flows, especially in the strongest interaction case. 
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Figure 1: Experimental and computed surface pressure and skin friction distributions for a = 6°, 10°, 14° 

Figure 2: Experimental and computed Stanton number distributions for a = 6°, 10°, 14° 
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SACHS, G. ; MAYRHOFER, M. 

Reichweitensteigerung bei Hyperschall-Notflugbahnen 
durch Optimalsteuerung des Treibstoff-Ablaßvorgangs 

Ein Missions-Abbruchszenario von zweistufigen Raumtransportsystemen betrifft antriebslose Notflugbahnen der Or- 
bitalstufe nach Trennung von der Trägerstufe. Hierfür wird dargelegt, daß die optimale Steuerung des Treibstoff- 
Ablaßvorgangs eine Steigerung der erzielbaren Reichweite ermöglicht. 

1. Einleitung 
Bei zweistufigen Raumtransportsystemen [1] kann ein Notabstieg der Orbitalstufe nach der Separation von der 
Trägerstufe erforderlich sein, falls der Antrieb ausfällt oder ein anderer Systemfehlers auftritt. Hierbei besteht die 
Forderung nach Erzielung einer möglichst großen Reichweite, um Not-Landeplätze erreichen zu können. Eine Stei- 
gerung der Reichweite ist durch optimale Steuerung des Treibstoff-Ablaßvorgangs möglich, der in geeigneter Weise 
im Verlauf der Flugbahn erfolgt (statt des üblichen Ablassens des Treibstoffs vor der Landung zur Reduzierung des 
Landegewichts). Zur Bestimmung dieser Reichweiten-Steigerung ist in der Optimierungsbetrachtung der Massenfluß 
beim Treibstoff-Ablassen als zusätzliche Steuergröße aufzunehmen. 

2. Modellierung 
Zur Berechnung der Flugbahn kann das Flugsystem auf Basis der Massenpunktdynamik modelliert werden, wobei 
die Erde als kugelförmig und rotierend angesetzt wird. Besonderer Wert wurde auf die realistische mathematische 
Beschreibung der Aerodynamik des Flugsystems und möglicher Flugbahn-Beschränkungen gelegt, um deren starken 
Einfluß auf die Flugleistungen erfassen zu können. Die Modellierung der Aerodynamik betrifft die Abhängigkeit 
der Beiwerte vom Anstellwinkel a, von der Machzahl M und von der Flughöhe h. Hinsichtlich der Flugbahn- 
Beschränkungen sind zulässige Grenzwerte in der Strukturbelastung, Wärmebelastung, Ruderwirksamkeit u.ä zu 

berücksichtigen. 

3. Ergebnisse 
Im folgenden werden Ergebnisse zu einer Notflugbahn der Orbitalstufe eines zweistufigen Raumtransportsystems 
vorgestellt [2] Hierzu zeigt Abb. 1 Werte einer optimalen Notabstiegsbahn nach einem Triebwerksdefekt bei hal- 
ber Brennschlußzeit. Daraus geht hervor, daß das Treibstoff-Ablässen zu Beginn der Flugbahn erfolgt, d.h. in der 
Flugphase, in der die Fluggeschwindigkeit am höchsten ist. Damit kann die größte Reichweite erzielt werden. 

| ■ ' ■ r1 ' ' t 1UU 

Höhe [km] 

Länge f°] 15       20       25 
Machzahl [-] 

20 
Flugzeit [min] 

Abbildung 1: Notabstieg der Orbitalstufe eines zweistufigen Raumtransportsystems nach einem Triebwerksdefekt 

4. Physikalische Deutung 

Zur physikalischen Deutung des reichweitensteigernden Effektes kann man von folgender Beziehung ausgehen: 

A/IK / {rriTs/m) hrefdt \ > 

Diese Beziehung beschreibt den Höhengewinn, der durch Ablassen des Treibstoffs erzielt und zu einer Verlängerung 

des Gleitflugwegs genutzt werden kann. 
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Zur Bestimmung von href werden die folgenden Relationen verwendet: 

Geschwindigkeit für Gleitflug maximaler Reichweite V = V* = 
2m(t)g 

p(t)C*L(t)S 

v 
m_2~ + m     = const- konstante Gesamtenergie des Systems 

P = Pie~bi{-h~hi^ exponentielles Atmosphärenmodell 

m = ruAnfang - mTst,     rhTs = const. Treibstoffablassen 

0.285 

Für den Auftriebsbeiwert CA der Orbitalstufe gilt näherungsweise: 

M < 0.8 : C\ « 0.165 M > 1.2 : C\ u.    ,  
VM2 - 0.218 

Mit den Gin. (2) bis (6) kann die folgende Beziehung für href hergeleitet werden. 

r n   /   9 1      jr>* \ 1 _1 

+ 0.0664 

^(A;+j^mubl .c2 \M2     MC*A dM 

Eine Auswertung hierzu zeigt Abb. 2. 
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Abbildung 2: Auswertung von Gl. (7) für die untersuchte Orbitalstufe 

Aus Abb. 2 ist ersichtlich, daß href mit der Machzahl ansteigt. Dies bedeutet, daß ein maximaler Höhengewinn 
erzielt werden kann, wenn der Treibstoff bereits bei hohen Machzahlen abgelassen wird. Für Machzahlen M > 5 
kann man href für das betrachtete Fluggerät näherungsweise als konstant ansetzen. 
Der betrachtete Höhengewinn kann zu einer Verlängerung des Gleitflugwegs genutzt werden. Dies kann bei dem 
größtmöglichen Verhältnis von CA/CW erfolgen, das normalerweise im Unterschall erreicht wird. Damit gilt für die 
Steigerung der Reichweite: 

As K (CA/CW) . ■ -^- • In mA"-fa"3 \   Al     w >max,sub    u   
■'Strato m-Ende 

(8) 

5. Schlußfolgerung 

Die Reichweite eines aerodynamisch getragenen Fluggeräts kann mittels Massenreduktion während des Fluges ge- 
steigert werden. Hierbei kann der größte Reichweitengewinn erzielt werden, wenn die Masse bei möglichst hoher 
Fluggeschwindigkeit verringert wird. 
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Visualization of Supersonic Flow past EOS° 
"Elliptic Aerodynamic Configuration ELAC l's Orbital Stage [1] 

The visualization of supersonic flow around EOS [1] involves analyzing shock wave positions and vortices at large 
angles of attack. The applied experimental methods include color Schlieren, oil film and vapor screen techniques. 
Depending on the Mach number and the angle of attack various vortex structures are observed on the leeward side. 

1 Introduction 
Heat transfer to surfaces and flight stability will always be two of the most important topics in the research of 
a space transportation system. The nonlinear shock waves, their interactions and the separation of flow on the 
transportation system are the important features for studying these problems. The high speed gas molecules pass 
through the shock wave and will be heavily decelerated across the shock wave. The kinetic energy of the gas 
molecules will be converted to internal energy and transferred to the model. The shock-shock interaction on EOS 
takes place between the fuselage shock, fin shock and delta wing shock. Special research into this problem can be 
found, for example, in reference [3]. The flow will separate along the delta wing at large angles of attack and this 
will generate vortices on the leeward side [4]. The shock-vortex interaction appears on EOS between the fin shock 
and the vortex on the cylindrical body. 

2 Shock Wave in the EOS Nose Region 
The supersonic flow passes through the compression wave and undergoes a strong increase in temperature, density 
and pressure before it partially impinges onto the model. This has the effect of causing considerable heat flux to the 
body due to the extremely high kinetic energy being converted to internal energy in a short period of time that is 
transferred to the surface of the model. This relatively high temperature can damage the surface of the model. The 
nose of EOS absorbs most energy, transported through the small shock stand-off distance. 

To show the exact shock location various optical methods have been applied in the experiments. The experi- 
mental results have been compared with the theoretical findings based on Billig's equation (1967) [2] developed for 
supersonic and hypersonic flows across sphere-cone and cylinder-wedge models. The general equation reads 

S-i-i*M<i+<»H 
Here, the quantity 6 is the shock angle and Re represents the curvature of the shock on the symmetry axis 
(Fig. 1). For a sphere-cone model the ratios A/R and Rc/R are given by: 

A „„,.,      /3.24\ 

Re , „ „„      (      0.54      \ 

Fig. 1 shows the comparison of computed and measured results. Especially in the Ma=1.5 and Ma=2.5 cases the 
shock-wave positions in the EOS nose region are almost identical. 

3    Topography of Vortices 
The EOS model has a double delta wing with sweep angles of 80° and 65°. At large angles of attack the flow 
separates along the delta wing and reattaches on the fuselage separating into two vortex systems. The direction 
of the vortex axes of the primary wing and body vortices is almost alike. In the streamwise direction the vortex 
diameter grows approximately linearly resulting in two quasi-conical vortices. 

Peake (1980) [4] introduced five topology rules using skin-friction lines and streamlines to classify the flow field 
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 Billig's equation (1967) 
°       °       *    measured 
    °    Ma.1.5 
    -    Ma. 2 
     «    Ma. 2.5 

/      - 

fr 
y/R 

- Separation Lines 
Skln-Friclion Lines 

Fig 1: Comparison of measured and 
computed shock wave positions near the 
nose. The experimental results are based 
on the color Schlieren technique. 

Fig 2: Description of topography on EOS at position 
X/L=0.74 compared with experimental results. The 
experimental result is based on the vapor screen tech- 
nique. 

Fig 3: Description of skin-friction 
lines on EOS compared with ex- 
perimental results from oil film 
photography. 

in the vicinity of a model. Based on the streamlines on a two-dimensional plane cutting a three-dimensional body 
the topography is given by: 

N N' S S' 

where, N, S, N' and S' are node, saddle, half node and half saddle points, respectively. The vortices significantly 
influence the flight stability due to the induced pressure variations. In Fig. 2 a cross section of EOS at position 
X/L=0.95 and the flow field on the leeward side are illustrated. To better understand the flow structure a schematic 
of the vortices is also given. Fig. 3 shows a part of an oil film photography to evidence the separation fines on the 
delta wing and the fuselage. The skin-friction lines illustrate the flow direction in the vicinity of the surface. 

4    Conclusion and Summary 
At low Mach numbers the shock stand-off distances and the shapes of the bow shock of EOS are well identified 
using Billig's sphere-cone equation. The shock direction deviates at the cylinder body because of the acceleration 
of the supersonic flow across the expansion. The visualization of the structure of EOS vortices is limited by the low 
humidity of the vortex kernel in supersonic flow using the vapor screen technique. The interaction of the wing shock 
and the fin shock can only occur at low Mach numbers. At high Mach numbers the wing shock angle is so small 
that there is no interaction with the fin shock. 
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The lid-driven cavity revisited: Stability of two-dimensional flow 

The lid-driven cavity has been studied quite extensively both experimentally and numerically. Today it is the most 
wide-spread benchmark problem in CFD. Despite this fact, the linear stability of the steady two-dimensional flow 
has hardly been considered, not even for the square cavity. In the present study we revisit this classical problem and 
calculate the linear stability of the two-dimensional flow with respect to three-dimensional perturbations for various 
aspect ratios.  The structure of the critical modes as well as the instability mechanism are addressed. 

1. Introduction 

Despite a number of investigations the linear stability of the two-dimensional one-sided lid-driven cavity flow (fig. 
la) is still an open problem. The first attempt to calculate the linear stability was due to Ramanan and Homsy 
[1]. For unit aspect ratio they predicted a critical mode with a wave number k « 2. This result was questioned by 
Kuhlmann et al. [4] who have shown that the mode predicted by Ramanan and Homsy is significantly stabilized for 
higher numerical grid resolutions. Ding and Kawahara [2, 3] confirmed the result of Kuhlmann et al. and found a 
new oscillatory mode with k = 7.4 to be supposedly critical. In this work we also solve the linear stability problem 
and show, in particular, that the mode found by Ding and Kawahara [3] is not the most dangerous mode. 
The base flow (u0,Po) is calculated by solving the steady incompressible Navier-Stokes equations for a viscous fluid 
with kinematic viscosity v. A finite-volume technique in primitive variables on a staggered grid with refinement near 
the boundaries is used. The resulting nonlinear equations are solved by Newton-Raghson iteration. To calculate the 
three-dimensional linear stability we consider the normal modes (u,p) = {u0,Po) + (u(x, y),p{x, y))e'Tt+l(kz wt). The 
resulting general eigenvalue problem is solved by inverse iteration. While the typical grid resolution is 141 x 141, 
convergence test were made by comparison with 71 x 71 grid points. Lengths, velocities, pressure, and time are 
scaled by h, v/h, pu2/h2 and h2/v, respectively, where h is the height of the square cavity and v the kinematic 
viscosity of the fluid. The non-dimensional parameters of the problem are the Reynolds number Re = Vh/u and 
the aspect ratio T = d/h with V being the lid velocity and d the width of the cavity. 
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Figure 1: (a) Geometry of the lid-driven cavity, (b) Neutral Reynolds numbers Ren (solid lines) as functions of 
the aspect ratio T. The dotted and dashed lines denotes the wave number k and the oscillation frequency u of the 
neutral mode, respectively. Previous results of [3] and [4] are indicated by (+) and (*), respectively. 

2. Results 

Calculated neutral Reynolds numbers are plotted in fig. lb as a function of T. Additionally, the wave number k and 
the oscillation frequency u are shown. Depending on T, four different instabilities are possible. 
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Figure 2: (a) Critical mode for T = 1.00 at Rec = 786.3 in the x = 0 plane parallel to the lid. (b) Maximum energy 
transfer by transverse transport of longitudinal momentum. The solid arrows indicate the moving lid. 

In the interval T = [0; 0.888] the critical mode is oscillatory (u ^ 0). The critical parameters behave asymptotically 
for r -» 0 with Rec* = rRec(r -> 0) « 275, k* = Tkc(T -> 0) « 5.1 and wc* = T2

UJC(T -► 0) « 124, where Re^, **, 
and w* represents quantities scaled with the width d instead of the height h. The analysis shows that the instability 
is caused by a centrifugal effect on the strong basic-state eddy that develops near the downstream cavity end. 
For 0.888 < T < 1.163 a steady short-wave-length mode is the critical one. This includes the classical aspect ratio 
r = 1.00 where the steady mode has a wave number kc = 15.43. The critical Reynolds number is Rec = 786.3. This 
value is about 16% lower than the neutral Reynolds number found by Ding and Kawahara, who only considered the 
restricted range k = [0; 10]. The continuation of the neutral mode of Ding and Kawahara becomes critical only in 
the small interval T = [1.163; 1.207]. Here the critical mode is oscillatory. 
Finally, for T > 1.207, the critical mode is steady with a long wavelength. The critical parameters are asymptotic to 
Rec(r -»• oo) PS 420 and kc(T -)■ oo) PS 1.685. This shows that the instability in deep cavities grows on the primary 
vortex near the lid. The secondary vortices are viscous and their intensity decays exponentially from the lid. Hence, 
they cannot support any instability. 

By an energy-transfer analysis one can show [6] that all instabilities are caused by centrifugal effects. As an example, 
the base-state vortex core (center) and the regions of maximum amplification by transverse transport of longitudinal 
base-state momentum are shown in fig. 2b for T = 1 (high transfer is indicated by a dark shading). The latter 
coincide with the region in which the neutral mode is strongest (fig. 2a). Since the mode is caused by centrifugal 
effects and arises in a thin layer parallel to the basic streamlines, it may be called a Taylor-Görtler mode. 
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The Two-Sided Lid-Driven Cavity: 
Aspect-Ratio Dependence of the Flow Stability 

The transition from two-dimensional (2D) steady to three-dimensional (3D) flow is investigated experimentally in a 
two-sided lid-driven cavity for anti-parallel motion of two facing walls. Both wall speeds (Reynolds numbers) have 
the same absolute value. We present critical Reynolds numbers at the onset of steady three-dimensional flow as a 
function of the cross-sectional aspect ratio. The critical curve is composed of different neutral branches belonging to 
different instability modes. Comparison with numerical results enables insight into the corresponding mechanisms. 

1. Introduction 

Owing to its simplicity, the flow in lid-driven cavities has been investigated in the past as a fundamental model 
for interior vortex flows. Examples for applications are drying processes or different coating techniques like, e.g., 
the blade-coating [1]. A generalization of the well-known rectangular one-sided lid-driven cavity is obtained by 
introducing a second lid on the opposite side of the first one which moves with the same speed. In a such modified 
system vortex flows with improved symmetry can be generated and new hydrodynamic instabilities appear. 

A sketch of the experimental setup is shown in fig. la, the geometry and coordinate system is given in fig. lb. The 
dimensions of the cavity in x, y and z directions are d = 39.5 mm, 17.17 mm < h < 131.67 mm and / = 660 
mm, respectively. Using the length scale h, we define 0.3 < T = d/h < 2.3 as the aspect ratio in x direction and 
5.01 < A = l/h < 38.44 as the aspect ratio in z direction, thus A = IT/d. The Reynolds numbers at x = ± T/2 are 
defined by Re = Uh/v, where v is the kinematic viscosity and U is the velocity of the side walls, realized as steel 
belts. The belts move always in the same sense, thus the lids adjacent to the cavity move in opposite directions. 
The plates at y = ± 1/2 and at z — ± A/2 are fixed. As working fluid we use Baysilone M20 silicone oil with a 
kinematic viscosity v = 22.2 mm2/s and a density p = 0.96 g/cc at 20°C. To visualize the flow, a halogen light sheet 
and aluminum flakes suspended into the silicone oil were applied. 

(a) (b) 

Figure 1: Sketch of the experimental setup (a); geometry and coordinate system of the cavity (b). 

2. Results 

For low Reynolds numbers the flow in the two-sided lid-driven cavity is nearly two-dimensional. Small three- 
dimensional disturbances are only present close to the stationary boundaries at z = ± A/2. Using large cylinders 
as moving walls, Kuhlmann, Wanschura & Rath [2] found for T = 1.96 that the basic 2D flow consists of two 
co-rotating vortices. By increasing Re quasi-statically at a rate of Re = 1/2 min- they observed a jump transition 
to the quasi 2D merged-vortex flow (mv) at Remv = 232 in which the former two discrete vortices partly merge. By 
reducing Re the flow switches back to the two-vortex flow (tv) at Retv = 224, so that hysteresis is present in the 
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flow. Using belts instead of cylinders in the present experiment confirms their results. For the transition points we 
find Remv = 238 ± 3% and Retv = 221 ± 3%, shown as (o) in fig. 2b. 

Further increase of Re for T = 1.96 leads to a 3D flow through an elliptical instability [3], which bifurcates via a 

pitchfork bifurcation at Rec = 275 [4]. In the present experimental setup the critical point for the onset of the 3D 
flow has been observed at Rec = 269 ± 3%, marked by (G) in fig. 2b. 

The 2D flow becomes 3D via an elliptical instability for aspect ratios 0.16 < T < 0.75 and 1.05 < T < 1.96. The 
transition points are marked by (G) in fig. 2a. The results of a linear stability analysis are given by the full line in 

fig. 2a and show a good agreement with the experimental data (see also [2]). For 0.75 < T < 1.05 and 2 < T < 2.5 
we found that the flow undergoes a centrifugal instability. For 0.75 < T < 1.05 the 2D flow consists of a single 

vortex which becomes a 3D Taylor-Görtler-like oscillatory flow with spanwise propagating spiral waves. The critical 
points (•) for the onset of the Taylor-Görtler-like oscillatory flow show a qualitatively good agreement to the results 

of the linear stability analysis (- -). For T = 1, as an example, experimental and theoretical critical Reynolds and 

wave numbers k = 2w/X are Refp = 700, *f P = 13.9, Re™m = 669, A£um = 14.6, respectively. For aspect ratios 
A > 2 the 2D flow consists of two well separated vortices, which become 3D in the experiment at (+). The data 

qualitatively agrees with the linear stability analysis, shown as (- -) in fig. 2b. In the supercritical stationary 3D 
state the vortices grow and shrink alternatingly in their diameters along the z direction. 
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Figure 2: Onset of the 3D flow in the experiment (symbols) and the linear stability analysis (lines) as function of T 
(a); (b) shows an enlargement for 1.75 < T < 2.5. 
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CLASS, A. G. 

Rotating polyhedral flames 

By systematically changing the mixture composition of a flame on a Bunsen burner the conical shape of the flame 
can suddenly be transform into triangular cells forming a polyhedron. Often the polyhedron rotates rapidly about its 
vertical axis. We present a weakly nonlinear analysis which results in a Kuramoto-Sivashinsky equation describing 
cellular flames, which is coupled to a heat equation modeling the temperature of the burner rim. Numerical computa- 
tions of the coupled set of equations exhibit rapidly rotating polyhedral patterns, which show the typical saw-toothed 
shape of the corrugations of the flame. In contrast to earlier considerations of this problem, where the rotation is 
explained as a result of mode interactions, we find a primary bifurcation to a rotating state, which may explain the 
high speeds of revolution. 

1. Introduction 

Polyhedral flames are a curiosity in flame experiments which have already been reported in the middle of the 19th 
century. A conical premixed flame is established at the mouth of a tube burner. For certain mixtures the circular 
symmetry of the flame is broken and the shape of the flame edge near the burner mouth forms a polygon with 3 
to 20 sides. The corners of this polygon are connected to the tip of the flame by ridges, so that the flame shape 
corresponds to a polyhedron. Depending on the mixture composition and the burner properties, the flame may 
either be stationary or time dependent, where the simplest dynamics is a ridged rotation of the flame (not the gas). 
It is common understanding that the diffusional-thermal instability, which is present in mixtures with distinct heat 
and fuel-mass diffusivities, is associated with polyhedral flames. A first attempt to explain the patterns, i.e. the 
number of faces of the polyhedron and also the rotating dynamics was undertaken by Buckmaster [1] who studied 
a heuristic one-dimensional model for the flame edge in form of a modified Kuramoto-Sivashinsky equation (KS) 
[5], that accounted for the heat losses to the burner by a damping term. A similar damping term was derived from 
first principles by Class et al. [3] for a porous plug burner. Buckmaster [1] explains the rotating dynamics of the 
polyhedral flames by the interaction of two bistable modes with a distinct number of faces. Recently experiments 
have been reported by Gorman et al. [4] where cellular flames have been established on a circular porous-plug 
burner, that also show a stationary state or a rotating dynamics. 

2. Model 

The burner geometry considered here, is related to the experimental configuration employed by Gorman [4] where a 
premixed cellular flame is established above a circular porous plug burner. A mixture of fuel and oxidizer emerges 
from a cooled porous plug and reacts in a thin laminar flame to form the burnt products. 

The main tasks of the burner are to uniformly deliver the fresh mixture and to stabilize the flame at a fixed location. 
If the porous plug is homogeneous, then the flow rate is constant and the most simple flame configuration corresponds 
to a stationary planar flame. If the porosity is larger or the thickness of the porous plug is smaller in the center of 
the porous plug, then the flow velocity is larger in the center than at the edge. The most simple flame configuration 
now corresponds to a bunsen cone type flame. 

The burner consists of a porous plate which is cooled by an embedded cooling channel. In contrast to the model of 
Buckmaster [2] where the burner surface temperature is assumed to be constant, we assume that the temperature 
of the coolant is fixed. Therefore, small temperature variations along the burner surface may arise. By assuming a 
high heat capacity, and very small temperature variations of the burner surface temperature, we find an observable 
effect; the transition of the primary instability from stationary to oscillatory. 

In the present consideration we analyze polyhedral flames, using a weakly nonlinear theory. The flame is assumed 
to be planar to a first order of approximation. Now the flame is displaced by an amount <p from its basic state and a 
solvability condition for (j> is seeked. In the derivation we allow for general perturbations of the boundary conditions 
and of the physical properties of the burner. 
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Figure 1: Simulations of polyhedral flames, the color coding visualizes <f>. 

In suitable nondimensional variables, the equations for the displacement <f> and the burner surface temperature T 
are, 

dt<f> + V4</> + 2V24> + (V0)2 + vt.V4> + T = va, (1) 

a9tT-6V2r + T-c0 = O, (2) 

where Vj is the tangential component of the velocity field along the flame and va deviation of the axial component of 
the flow from some reference value, which we typically take at the burner edge. For a bunsen type flame vt vanishes 
in the center of the burner and vt points towards the center otherwise. The axial velocity va is largest at the burner 
center. As a simple model of a bunsen flame we take a Gaussian profile for the axial velocity and a Gaussian times 
the radius for the tangential velocity. 

In the heat equation for the burner, a is proportional to the inverse of the Fourier-number, b is proportional to the 
heat conductivity of the burner and c is a measure of the stand-off distance of the flame. Here c = 0 corresponds to 
a freely propagating flame which is not influenced by the burner, and c> 0 stands for a flame which is stabilized 
by heatlosses to the burner. For a burner with constant surface temperature, B = 0, and a constant flow velocity 
Vt = va = 0 the equations reduces to a damped Kuramoto-Sivashinsky equation, dt(j)+VA(j)+2V24)+{y4if+C(f> — 0, 
which is known to exhibit cellular patterns for c < 1. 

A linear stability analysis of flat flames, when vt = va = 0 shows that due to the heat capacity of the burner 
the primary birfurcation may be to an oscillatory state, thus explaining the fast rotating states observed in the 
experiments of Gorman [4]. Here large values of a are destabilizing and the diffusivity b is stabilizing. 

3. Simulations 

In the figure numerical simulations of bunsen type flames using a high resolution spectral collocation method are 
shown. The tangential flow along the flame is responsible for the formation of the typical ridges. The flame instability 
originates at the burner rim where the tangential flow is weak. The flame in figure la is a rotating polyhedral flame 
and the flames in figures lb and lc are oscillating polyhedral flames with five and eight sides respectively. These 
simulation results are in good agreement with the experimental observations. 
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LEYPOLDT, J.; KUHLMANN, H.C.; RATH, H.J. 

Stability of hydrothermal-wave states 

The half-zone model is investigated for unit aspect ratio, zero gravity, and Prandtl numbers Pr= 1.5... 7 by numerical 
simulations. For thermocapillary Reynolds numbers Re > Rec, the 2D stationary flow is unstable to 3D travelling 
waves. In the simulations, standing waves can be generated slightly above Rec. It is found, that these states are 
unstable and decay into either a clock- or a counter-clockwise propagating wave. Amplitude equations are used to 
quantitatively describe the instability of the standing wave states and to estimate the range of Pr within which only 

travelling waves are stable. 

1. Introduction 

We consider a cylindrical volume of liquid held between two circular disks of radius R and separated by a distance 
d = R. The Prandtl number of the fluid is defined as Pr = V/K, where v is the kinematic viscosity of the fluid and 
K its thermal diffusivity. The temperature difference applied between the top (hot) and the bottom (cold) plate is 
AT. For our simulations we use the Navier-Stokes equations under zero gravity conditions and we assume thermal 

insulation at r = R, i.e. drT = 0 (see [2] for details). 

2. Numerical procedure 

The parameters of the model are the Prandtl number and Re = \da/dT\ATd/gu2 as a measure of the driving 
thermocapillary surface forces (a = surface tension, g = density of the fluid). Beyond a critical value Re^ finite- 
amplitude waves propagating azimuthally are stable. The azimuthal wave number is m = 2 in all cases presented 
here If e •= Re/Rec -Ul, the wave amplitudes and their nonlinear coupling is weak and may be described by 
a system of coupled equations. If we write A^Re™^^*" + c.c. for the left- and right-travelling waves, where 
AL(t) = L(i)eiaz-(t) and AR(t) = Ä(i)eiaRW, the system can be written as 

T0dtL = eL-gsL
3-gcR

2L, r0dtaL = coe - c2gsL
2 - c3gcR

2, (!) 

T0dtR = eR- gsR
3 - gcL

2R, T0dtaR = c0e - c2gsR
2 - c3gcL

2. (2) 

Stable solutions exist for g3 > -1. These are travelling waves (TW) if gc/g3 =:gc>l and standing waves (SW) if 

|<7c| < 1 (see [1] for example): 

SW TW (3) 

-1     0     +1 

From (1,2) we obtain gc = (ATWMsw)2 - 1, where ATW and Asw are the stationary amplitudes of the travelling 
and the standing wave state, respectively. In order to determine gc for each Pr, 2D flows were computed for several 
Re > Rec. Then standing waves were induced using a temperature perturbation Tp oc sinnvp. Once saturated, ASw 
was calculated by means of a Fourier transform of the data from one oscillation period. For the investigated Pr the 
standing waves finally decayed into travelling waves, and the amplitudes of the latter were determined in the same 

way. 

3. Results and conclusions 

We are interested in gc as a function of Pr, in order to find the value Pr* where gc = 1, see (3). It turns out that, 
due to corrections of higher order in e not taken into acount in the above amplitude equations, gc depends on r, z, 
and e (fig. 1(a)). The dependence on r and z vanishes if e -> 0. For each e > 0 the average over r and z of gc is 
determined. To be consistent with the assumption of a weakly nonlinear coupling these values are extrapolated to 

e = 0 (fig. 1(&)). From fig. 2 one obtains Pr* = 7.8 ± 0.1. 
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FIGURE 1: (a) Surface plot of gc(r,z) for Pr= 4, e = 0.165. Here we obtain gc = 1.99 ±0.43. (6) Average values gc(e), 
computed from the oscillation amplitude of the azimuthal velocity v, for Pr = 1.5 (+), 3 (A), 4 (D), 6 (x) and 7 (*). The 
respective domains of stable travelling and stable standing waves are indicated by TW and SW. Using the oscillation 
amplitudes of the temperature field T, similar results are obtained (c.f. fig. 2). 

FIGURE 2: Extrapolation of gc(Pr, e = 0) to gc = 1 from T (*), v (A), and the average of both (O). 

It can be concluded that for Pr < Pr* travelling waves are the stable solutions for small-amplitude 3D flows. On 
the other hand, for Pr > Pr* within a certain range the nonlinear coupling of small-amplitude hydrothermal waves 
will lead to stable standing waves. This is summarized in fig. 3. 

T I      I 1 1—T=; T 
6      7 1.5 3      4 6      7       Pr* 10 Pr 

FIGURE 3: Type of the small-amplitude hydrothermal-wave states as a function of Pr. 

The above prediction was confirmed by a simulation for Pr = 10 and Re = 900. Starting from a mixed state with 
|Ai| = 1 and \AR\ = 0.25 at t = 0, the amplitudes equilibrated as time proceeded, and the flow finally evolved into 
a standing wave state. 
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LUTZ, TH. 

Airfoil Design and Optimization 

The aerodynamic efficiency of mildly swept wings is mainly influenced by the characteristics of the airfoil sections. 
The specific design of airfoils is therefore one of the classical tasks of aerodynamics. Since the airfoil characteristics 
are directly dependent on the inviscid pressure distribution the application of inverse calculation methods is obvious. 
The direct numerical airfoil optimization offers an alternative to the manual design and attracts increasing interest. 

1. Inverse Subsonic Airfoil Design 

In order to find a proper airfoil shape for a specific aerodynamic application different approaches may be used. In 
former times, when no theoretical methods were available, relevant geometric parameters were varied systematically 
and the effect on the aerodynamic characteristics was measured in a series of wind-tunnel tests. The first extensive 
experimental investigations in this sense were performed at the AVA after completion of the Göttinger low-speed 

wind-tunnel in 1917/1918. 

After L. Prandtl developed the boundary-layer theory it became obvious that the outer-flow velocity distribution 
along the airfoil surface determines the airfoil performance. This gave reason to develop inverse methods which 
enable the calculation of the airfoil contour from a given velocity distribution. First methods for the approximate 
inverse solution of the Laplace equation were developed in the late twenties and the thirties. Exact solutions based 
on a conformal mapping procedure were proposed by Mangier (1938) and Lighthill (1945). 

When inverse methods were available, knowledge was established how to shape the velocity distribution in order to 
obtain favourable airfoil characteristics, e. g. with respect to minimum drag or maximum lift. A milestone represent 
the well-known NACA laminar flow airfoils designed in the late thirties. As further examples the investigations of 
Eppler, Stratford and Wortmann should be mentioned. 

A significant progress in airfoil design was achieved in the fifties by coupling the potential-flow methods with integral 
boundary-layer procedures to consider viscous effects. Since then, a large number of subsonic airfoil design tools 
were developed, for example the Eppler/Somers code or the methods of Drela. In the hands of experienced users 
such methods enable a carefully directed design and the adaption of the airfoil characteristics to specific applications. 
A good example in this respect is documented in the progress achieved in the aerodynamic performance of modern 
sailplanes. A significant portion of the improvements can be attributed to the sucessful design of low-drag laminar 
flow airfoils (e. g. DU, E, FX or HQ airfoils). 

Another significant amount of investigations on inverse methods for the regime of transonic flows were performed in 
the seventies after the discovery of the supercritical airfoils. Due to the availability of supercomputers it is nowadays 
possible to handle semi-inverse solutions of the Euler equation, the coupled Euler boundary-layer equations or even 
for the Reynolds-averaged Navier-Stokes (RANS) equations. 

2. Direct Numerical Airfoil Optimization 

An alternative to the inverse or semi-inverse procedure is offered by direct numerical optimization. With this 
approach an automated search for an optimal solution with respect to a user-specified objective function, e. g. 
minimzation of drag, is performed. This is done by means of an iterative variation of the chosen design variables. 
To parameterize the airfoil contour mostly geometric shape functions are applied with the respective coefficients 
representing the design variables. The choice of a proper optimization algorithm strongly depends on the topology 
of the considered objective function, the airfoil parameterization, the number of design variables and finally on the 
efficiency of the aerodynamic model. In general, gradient methods converge fast for simple topologies of the objective 
function but one may be trapped in a local optimum if a multimodal objective function is considered. Stochastic 
algorithms offer a greater chance to avoid this problem and can also cope with complex topologies but usually require 
much more iterations. The combination of stochastic optimizers with costly high-accuracy flow-solvers, e. g. based 
on the solution of the RANS equations, is therefore still limited to a relatively small number of design variables. 
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Numerical optimizations of subsonic airfoils featuring a detailed representation of the complete contour are hardly 
known. To reduce the computational effort, potential-flow methods coupled with integral boundary-layer procedures 
are preferred for the aerodynamic analysis, the number of optimization cycles is limited and a moderate number of 
design variables (usually below 10 ~ 15) is considered. Actually, most of the numerically optimized subsonic airfoils 
published so far show a great similarity to the initial shape. 

3. Example on Numerical Shape Optimization of Subsonic NLF Airfoils 

The objective of numerical optimizations performed by the present au- 
thor was to design natural laminar flow (NLF) airfoils which show mini- 
mized average drag for a user-specified design lift region [1], [2]. In order 
to enable a detailed airfoil representation a large number of 34 design 
variables was considered. Contrary to the usual approach the airfoil was 
not parameterized by geometric shape functions. Instead, an inverse 
conformal mapping procedure according to Eppler was applied to gen- 
erate the airfoil contour. The input parameters of this method directly 
control the local outer-flow velocity gradient and finally the boundary- 
layer development. A spline representation of the critical leading-edge 
region is avoided with this approach. 
The potential-flow method was coupled with an integral boundary-layer 
procedure utilizing closure relations according to Eppler for laminar flow. 
The method proposed by Drela with a new shape-factor relation is used 
to calculate turbulent boundary-layers. To predict the laminar to turbu- 
lent transition location, an en database method based on spatial stability 
analysis for Falkner-Skan self-similar profiles was implemented. The ef- 
fect of 'short' transitional separation bubbles is considered by means of a 
new efficient bubble model. The complete aerodynamic model was cou- 
pled with a commercial hybrid optimizer which consists of a combination 
of genetic algorithm, downhill simplex and a gradient method. 

2.5-i 

Figure 1:   Inviscid velocity distribution 
for the optimized airfoil 

One optimization result is depicted in Figs. 1 
and 2. The objective was to minimize the 
average drag coefficient for angles of at- 
tack adesign = [2°, 3°,..., 8°] relative to the 
zero-lift line. Two Reynolds numbers were 
considered, namely Redesign = 3 • 106 and 
9 • 106. In order to prevent a breakdown 
in lift at off-design conditions and to en- 
hance the stall characteristics, the curva- 
ture of the lift curve was limited for a = 
[2°, 3°, ...,15°]. The resulting airfoil shows 
features which are well-known from man- 
ual airfoil design such as smooth transition 
ramps or a Stratford-like turbulent pressure 
recovery on the lower side (see Fig. 1). 
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--   Eppler code 
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Figure 2: Predicted and measured drag polar for the optimized airfoil 

Wind-tunnel tests for the optimized airfoil showed very low drag coefficients inside the laminar bucket which exactly 
coincides with the design lift region, see Fig. 2. The optimization method has furthermore been applied to design of 
airfoils which show minimized trailing-edge noise or minimal derivation to a user-specified drag polar. 
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B. SCHULTE-WERNING, C. HEINE AND G. MATSCHKE 

Slipstream Development and Wake Flow Characteristics of modern High-Speed 
trains 

The tendency to increased cruising velocity of high-speed trains is unbroken, although stabilising the level 
already reached is dominant [1]. In parallel the weight of the end coaches in the future train sets is decreased 
because of replacing the power car concept by the distributed traction concept and because of axle load 
limitations in the trans-European interoperability rules. This allows both for a less overall weight of the train 
with its reduced energy consumption effect and for an end car equipped with passenger seats, thus increasing 
the transport capacity of the train. 

As higher speed means higher aerodynamic forces which then act on vehicles with lower mass, the vehicle 
reaction onto unsteady air force excitation, e.g. of the end car in trailing position, have come into the view of 
the railway operators. In the BriteEuram-funded research project RAPIDE (Railway Aerodynamics of Passing 
and Interaction with Dynamic Effects) the railway undertakings Deutsche Bahn AG (DB), the French SNCF 
and the Italian FS, joined their forces to investigate, among other examinations, the boundary layer flow of a 
modern high-speed train and the wake flow characteristics by means of currently available off-the-shelf CFD- 
codes. Full scale measurements both with a multi-pressure probe device and a LDA-system were performed for 
validation purposes up to train velocities of 280 km/h ([2]). 

When the thick turbulent boundary layer separates at the end of the train the points of separation on the train 
surface may shift periodically in time, thereby causing aerodynamic excitation of oscillations of the last coach 
around the longitudinal axis; a phenomenon first detected by the Japanese railways some years ago ([3], [4]). 
The oscillation frequency with its related amplitude may cause discomfort to passengers in the rear coach 
because of its "nausea" effect. Confirmation of this effect has been given by Japanese measurements on the 
STAR21 [3] experimental train with speeds up to 315 km/h, showing these lateral oscillations to be at several 
Hertz as a peak value. As the lateral oscillations in a tunnel were found to be 10 times higher than in the open 
air because of the asymmetric flow expansion at the tail, the Japanese RTRI presented an initial CFD study of 
the train wake [4] in which they suggested an improved tail shape blunter than the original head geometry, to 
reduce drastically the oscillations in tunnels. Although the suggested tail shape reduces the lateral oscillations 
in the tunnel to a value only 2 times higher compared to the value for open air conditions, a blunter head shape 
clearly contradicts the efforts concerning the reduction of the micro-pressure wave emission ("sonic boom" 
effect) at the tunnel exit. 

To feed the numerical calculations of the flow around the trailing car with the correct inflow conditions, the 
structure of the turbulent boundary layer was measured under full scale conditions with Re=12*10 based on 
the equivalent diameter. Figure 1 shows the test arrangement and the data obtained in a log-log scaling. 
Approximated by a power law, for this highly turbulent flow the measured variation of the velocity with the 
distance to the train surface can be well represented by a power factor of 1/10, this factor is also supported by 
[5]. 

To come to a clear understanding of the train wake flow phenomena, the analysis methods of flow topology are 
used (see e.g. [6]). The surface flow field structure is represented due to its skeleton via the detection of the 
"singular points" in which in the wall plane the skin friction vector vanish identically. These singular points can 
be of the so-called nodal, saddle and focus type. Once having located these points on the train surface and the 
separating streamlines connecting them following the rules of flow topology, the visualisation of closed 
separation bubbles, separating and reattaching shear layers reaching into mid-air as well as vortical flow 
structures, leads to a clear portrait of the wake flow situation. Figure 2 exhibits a first comparison between a 1:7 
model scale test of the ICE trailing car and the related numerical simulation using the commercial Navier- 
Stokes code FLUENT with a standard k-s turbulence model. Concerning the overall flow separation on the 
trailer shoulders there is a quite resemblance between the experimental "oil flow visualisation" and the 
computational skin friction lines, although the details of this separation process were not resolved in the 
experiment. 
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Figure 1: Test arrangement and measured data in log-log scaling near the surface of an ICE trailing car with Re=12* 106 

Roof 

Underfloor 

Figure 2: Wall flow pattern on the surface of the ICE trailing car (Top: wind tunnel test scale 1:7 with Re=2*106 Bottom- 
numerical simulation of 1:1 scale test with Re = 12* 106, Right: topological structure at rear part with onflow from roof side walls 
and underfloor) 

The skin friction computation shows clearly the two vortices spiralling out of wall focus points on each of the 
nose shoulders and a vortex starting at the trailing "tip". All these vortices, on each side with the same sense of 
rotation, will combine in the wake to a complex overall left-right vortex system now subject to the classical 
rules of vortex dynamics. It can be expected that due to the induction law of vortex motion these vortices stay 
close together while slowly coming down to the ground, i.e. the track, where they then separate promptly for 
leaving the train's near wake to the left and right hand remaining close to the ground. This effect amplifies the 
slipstream velocity in the train wake basically created by the boundary layer thickening along the train and 
causes the massive train induced velocity increase in the slipstream after the complete train has passed, this is 
directly felt e.g. by passengers on the platform or maintenance workers near the tracks. 
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MICHAEL HINZE 

A remark on second order methods in control of fluid flow 

We present the functional analytic framework for a tracking-type control problem of the instationary Navier-Stokes 
equations. As solution methods for the control problem we comparatively discuss Newton's method as an example of 
the black box approach, and the SQP-method as one of the all-at-once methods. It is argued that black box approaches 
in general outperform all-at-once methods since the numerical effort necessary to numerically solve linearizations 
of the instationary Navier-Stokes equations compares to that of the nonlinear Navier-Stokes system. We report a 
numerical comparison which illustrates our argumentation. For both approaches local convergence results are cited. 

1. The optimal control problem 

We consider the optimal control problem 

mm{y!u)ewxu J{y,u) := \ f \y- z?dxdt + § / \u\2 dxdt 
Q« 

subject to 
|| + (y . V)y - vAy + Vp=Bu in Q = (0, T) x fi, 
div y = 0 in  Q, 
y{t,-) = 0 on E=(0,T)xÖfi, 

y(0,-) = yo in n- 

>   •$=>■ e(y, u) = 0 in Z*. 

(1) 

Here Qc := fic x (0, T) and Q0 := ft0 x (0, T), with fic and fi0 subsets of Q = (0, l)2 denoting control and observation 
volumes respectively. The first term in the cost functional values the control gain which here is to track the state 
z and the second term measures the control cost, where a > 0 denotes a weighting factor. In this form solving 
(1) appears at first to be a standard task. However, the formidable size of (1) and the goal of analyzing second 
order methods necessitate an independent analysis. One of the few contributions focusing on second order methods 
for optimal control of fluids are given by Ghattas et al [2] and Heinkenschloss [3]. These works are restricted to 
stationary problems, however. Among other things analytical investigations on second order methods are given by 
Kunisch and the author [5], where also further references can be found. 

To define the spaces and operators required for the investigation of (1) we introduce the solenoidal spaces 
H = {v G C§°(Q)2- div v = 0}~"L\V = {v G CS°(fi)2: div v = 0} ''H

1
, with the superscripts denoting closures 

in the respective norms. Further we define W = {v e L2(V):vt G I?{V*)} and Z := L2(V) x H, where W is 
endowed with the norm \v\w = (M2

2(v) + \vt\h{v.))
1/2, and set (•,•) := (;-h>(v),mv), with V denoting the 

dual space of V. Here L2{V) is an abbreviation for £2(0,T; V) and similarly L2(V*) = L2(0,T; V*). In (1) further 
U = L2(QC) denotes the Hilbert space of controls which is identified with its dual U*. The state z is assumed to 
an element of L2{H). It is not hard to show that the cost functional J: L2(H) x U -)• H is bounded from below, 
weakly lower semi-continuous, twice Frechet differentiable with locally Lipschitzean second derivative, and radially 
unbounded in u, i.e.  J{y,u) -4ooas \u\v -> oo, for every y G W.  It is well known that the nonlinear mapping 

e. w x u _> z*, e(y, u) = (Ü + (y • V)^ ~ v^ ~ Bu>y^ ~ ^ is onto [1]' Here' Bu{t''] den°t6S the ^fl 
projection of the extension by zero of u(t, •) to the whole of fi and y0 G H. Therefore, with respect to existence (1) 
can equivalents be rewritten as min J{u) = J(y{u),u) subject to ueU, where y{u) G W satisfies e{y(u),u) = 0. 
It is proved in [1] that this problem admits a solution x* = (y*, «*) G W x U =: X. 

We distinguish two numerical approaches for the numerical solution of (1): In the black-box approach Newton's 
method is applied to the equation VJ(«) = 0 in U. For a given control iterate u = u° the Newton step amounts 
to the solution of one Navier-Stokes system for y{u), the solution of one adjoint system for A(u), and the solution 
of the Newton system H((y(u),u),X(u))Su = -VJ(u), see [5]. In the all-at-once approach the SQP-method is 
applied to solve (1). This is equivalent to apply Newton's method to solve VL(ar,A) = 0, where L:Xx Z -> JK, 
L(x A) = J(x) + (e{x),\)z> z denotes the Lagrangian corresponding to problem (1). For a given iterate (a:, A) the 
numerical amount in every iteration step of this approach consists in solving one linearized Navier-Stokes system 
(with solution bl), and two adjoint-like linear systems (with solutions b2 and b3, respectively) to provide the right- 
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hand-side r in the reduced system H(y, u, X)Su = r, and of the solution of the reduced system for Su. The increments 

Sy and SX can than be obtained from Su, bl, b2 and b3 [5]. In both approaches H{x,X) = T*(x)Lxx(x,X)T(x) 

denotes the reduced Hessian, where T(x) := [-e^(x)eu{x), Mr,}1 with x = (y, u). It is worth noting that due to the 

structure of the reduced Hessian these systems themselves have to be solved iteratively. For the numerical example 

presented in Tab. 1 we utilized the cg-algorithm. Proofs of local convergence with expected rates for both methods 

are gwen in [5] for a wide range of control problems. In [3] it is claimed that all-at-once approaches in general 

numerically outperform black-box approaches, since in the latter ones nonlinear systems have to be solved iteratively, 

whereas in the all-at-once approaches only linear system solves are required. Arguing in this way seems not to be 

correct for control problems for fluid flow since the numerical effort necessary to numerically solve linearizations of 
the instationary Navier-Stokes equations compares to that of the nonlinear Navier-Stokes system [5]. 

In Tab. 1 we present a numerical comparison of Newton's method and the SQP-approach to the control of 
a cavity flow at Reynolds number l/v = Re=400. We chose fic = Q0 = (0, l)2 and a = 10~2. As initial guess 

for the SQP-algonthm we utilized the tuple (x°,X°) where x° = (y°,u°) is obtained from applying one step of 

Newton's method with initial control equal to zero to the numerical solution of V J(u) = 0, i.e. with u° computed 

by Newton's method y° denotes the solution of the Navier-Stokes equations in (1) with u = u°. Finally, the initial 

guess for the Lagrange multiplier is set to A0 = -ey(x°)Jy{x°). Newton's method is initialized with u° = 0. The 

numerical details can be found in [4,6]. The SQP-method takes 10 iterations and approximately 3 hours cpu to 

calculate a numerical solution, whereas Newton's method takes only 4 iterations at 1.3 hours cpu. As is expected 

due the inexact solution of the reduced systems both methods only converge super-linearly. All computations were 
performed on a ORIGIN™ 200. 

Table 1: Performance of the SQP- method (left) versus Newton's Method (rig ht) 
It CG-It |£'(*.A)| 

\L'(x°,X°)\ 
\6(x*,\«) 

J{xk) CG-It 
|J'(u°)| l^u*-1! j{uk) |<5(a;fc+1,Afc+1| 

u - - - 1.188772e-2 - I.eO - 1.188772e-2 
1 11 I.eO 1. 3.216904e-3 13 3.343476e-l 1. 3.216904e-3 
2 3 2.342777e-l 0.456 1.661840e-3 11 5.032540e-2 0.489 1.618184e-3 
3 16 5.846246e-l 1.110 2.041436e-3 18 8.839902e-3 0.428 1.479364e-3 
4 5 1.574504e-l 0.959 1.548152e-3 16 1.126838e-4 0.079 1.477881e-3 
5 14 2.718657e-2 0.554 1.683024e-3 _ _ . 
6 23 6.744024e-2 0.914 1.485434e-3 _ _ 
7 18 8.005254e-2 0.874 1.521882e-3 _ _ 
8 18 1.852064e-2 0.197 1.480751e-3 . _ . 
9 23 1.343532e-3 0.146 1.479234e-3 _ _ 
10 26 1.698641e-4 0.127 1.479219e-3 - - - - 
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THOMAS SLAWIG 

Domain Optimization for the Navier-Stokes Equations by an Embedding 
Domain Technique 

A class of domain optimization problems for the two-dimensional stationary Navier-Stokes equations is studied. 
An embedding domain technique provides an equivalent formulation of the problem on a fixed domain, a reduction 
of the computational effort for the solution of the state equations, and moreover a simply computable formula for 
the derivative of the cost functional with respect to the domain. Existence of a solution to the class of domain 
optimization problems is proved. Numerical examples show the reliability of the derivative formula. 

1. A Class of Domain Optimization Problems 

We consider domains ft7 C H2 where the control parameter 7 : J -> T7 is a function whose graph is a part of 9H7, 
whereas the remaining part T is fixed. E.g., ft7 may be the unit square with T consisting of three of its sides, and 
I := (0,1). For the embedding domain technique and the explicit formula of the derivative we need a combination 
of C2 and convex polygonal boundary. Thus the set of admissible functions 7 is defined as 

S := {7 G H3(I) : \\J\\HHI) < Cs, 7(0) = 7(1) = 0,Co < 70*0 < Ci,x G (S, 1 - «),7'l(o,«) = c°,7'l(i-*,i) = c1} 

with Co, cj G (0,1), S G (0, §), cs, c° G IR+, c1 G TR~ fixed. For an observation region üc C H7 with dist(Ty, fic) > 0 
for all 7 G S, A G C(HX(ft7)2, L2ittc)k, and ud G L2(Üc)k with k appropriately chosen, we study the problem 

min J(7)    :=    -||^u7 - ud||22(fi  )k U) 
7G5 Z 

where u7 G ff2(Oy)2 together with p7 G H1^) n L2
0(Ü7) is a variational solution of the Navier-Stokes equations 

-i/Au7 + u7 • Vu7 + Vp7 = f7 in fi7 

V • u7 = 0 in ft7 ^2) 
u7 = $ on T 
u7 = 0 on T7. 

The stated regularity is guaranteed by the choice of S, /7 G L2{Qy)2, and $ G L2(r)2 with a divergence-free extension 
onto #2(ft7)2, see e.g. [1]. Problem (1) includes cost fucntionals as tracking type or drag studied e.g in [2],[3]. 

2. The Embedding Domain Technique 

We choose A with fi7 C (l for all 7 G <S, see the left figure below, and compute (u7,p7,g7) G i?1^)2 x Lo(W x H* 
such that 

-i/Au7 + u7 • Vu7 + Vp7 - r*37    =    f7    in   H"1^)2 

V-u7    =    0     in    L§(A) (3) 
r-yü-v    =    0     in   H. 7- 

where r7 denotes the trace operator onto T7 and #7 := H^iTj)2 is defined in t4> VIL§2 Sec- 2A Rmk- ^ Problems 

(2) and (3) are equivalent in the following sense: 

Theorem 1. Let 7 G S and f7, $ as described at the end of the last section. Then (ü7,p7,p7) is a solution of (3) if 

and only i/(u7,p7) := (ü7,p7)h7 solves (2), (u7,p7)|fic = (0,0), and g^ = r7(i/§^- -p7n7) in H^2(T7)2. Here 

£K — & \ A7 and n7 denotes the outer (with respect to Qj) normal on T7. 

Proof.   The result is proved by testing the weak form of (2) with functions that vanish on ftT, applying a 
uniqueness result for the homogeneous Navier-Stokes equations and Green's formula. See [5, Th. 3.5]. 
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3. Differentiability and Derivative Formula 

With the assumption on S we can show continuous dependence of the solution of (3) with respect to variations in 7 
and the existence of a solution to problem (1), see [5,Ths. 3.7,3.8]. Moreover the dependence of the velocity vector is 
even Lipschitz. This fact is used to proof the following result on differentiability. In the derivative formula presented 
below the solutions (A7,/i7,x7) € H^(Cl)2 x Lg(f2) x H* of the adjoint problem on the fictitious domain, i.e. 

-z/AA7 + Vu7 • A7 - u7 • VA7 + V/i7 - r*x7    =    -DuJ(j)    in H'^Cl)2 

V • A7    =   0 

A7    =    0 

in Ll(Cl) 

in H-y 

are used. Here we have to restrict the parameter v. For more details and the proof of this result see [5,Th. 3.10]. 

Theorem 2.    Let 7 <E int<S,f € Z,°°(fi)2,f7 := f^, and v > v±.  Then J is Frechet differentiable with respect to 7 
and the derivative in 7 in direction 7 6 S' := {7 E H3(I) : 7|[o,<5]u[i-<5,i] = 0} satisfies 

£7^(7)7    =    -J [9J(X,J(X)) •x7(z,7(z))-p7(x, ~f{x))iiy(x, 7(3;))] j(x)dx. 

Evaluating this formula only requires computation of a one-dimensional integral that can be performed - e.g. for 
FE discretizations as used below - exactly by simple quadrature rules. No normal derivatives have to be computed. 

4. Numerical Example 

Aim was to move the vortex arising in a standard driven cavity flow at Re = £ = 500 over the line üc := 
[0,0.75] x {0.5}. We used J(-y) := JQc ||u7||| dx and controlled by variation of the right wall in [0.75,1) x [0.125,0.75]. 
Starting at a straight line at x = 0.99 (2nd picture) an SQP optimization method using the derivative formula above 
reaches a geometry (3rd picture) with a reduction of J to one percent in just seven iterations. For the velocity norm 
along Oc see the 4th picture. Dotted: starting curve, solid: solution, dashed: comparison with T7 being a straight 
line at x = 0.75. Compared to this the value of J for the geometry obtained by the optimization algorithm is even 
10 percent lower. In this sense we regard the solution as "optimal". 
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r 
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