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Some Results For Locally Dependent Arrays

Frits H. Ruymgaart
Department of Mathematics and Statistics
Texas Tech University
Lubbock, TX 79414
USA

1. Preliminaries

A locally dependent array (l.d.a.) of order m = m(n) is a triangular array of real-valued random variables
{Xn1,-y Xnn,n € N} such that the variables in the n-th row are (m — 1)- dependent, 1 < m < n. In order
to have sufficiently many independent components in a row it will always be assumed that m/n — 0, as n — oo.
Such arrays have been studied in the literature as objects of interest in their own right (Berk (1973), Barbour (1990),
Reinert (1995, 1996)), and as a tool to approximate certain time series (Portnoy (1991), Chanda and Ruymgaart
(1990, 1991)). Time series with Volterra expansions seem particularly suited for such approximations.

Here we want to focus on properties of the empirical process of the array which are useful when nonparametric curves
like autoregression functions are to be estimated (Chanda and Ruymgaart (1991)). Some results from Einmahl and
Ruymgaart (1998) including weak convergence in D([0,1]) will be surveyed in Section 2. A conjecture on weak
convergence in L2([0,1]) for a wider class of l.d.a.’s with application to the empirical process of a linear process is
formulated in Section 3.

Having the empirical process in mind for the most part we will restrict ourselves to arrays that satisfy the following
assumptions:

— all the X, ; assume values in [0, 1];

— the X, ; are rowwise identically distributed with c.d.f. F,.

The actual strength of the dependence within a row can be locally strong and is in some sense further specified by
the variance of a block. Under the present conditions we always have

k
Var()  Xp i) < Ckm, (1.1)

=1

for some generic 0 < C' < oo, but the Lh.s. may be actually of smaller order than the r.h.s. The following example
shows that, typically, local dependence foregoes long range dependence.

Linear Processes. Let us approximate the linear process X; = Y po _ .. ak€i—k, where the €; are ii.d. (0,1), with
the array Xn; = 3 pe_ . @k€i—k(i = 1,..,n). Let us assume that |ag| &~ 1/(1 + |k|°) for some 6 > . For useful
approximation we need on the one hand that

max;<i<n|X; — Xn | = 0p(n~°), for some ¢ > 0, (1.2)

and on the other hand m << n. Straightforward calculation shows that this can be only achieved for § > 1+e¢. For
such & the linear process is not long range dependent (Beran (1994)), and the variance in (1.1) is bounded by Ck
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and consequently is of the same order as in the i.i.d. case. For long range dependent moving averages the em-
pirical process has been studied in Ho and Hsing (1996) and for certain long range dependent stationary processes
by Dehling and Taqqu (1989).

2. Some Tools And Weak Convergence

In order to prove weak convergence of the empirical process of the l.d.a. a central limit theorem will be needed to
deal with the finite dimensional distributions, and a fluctuation inequality to deal with the tightness in D([0, 1]).

Central Limit Theorem. In addition to the assumptions of Section 1 let us assume that for 1 < £=£(n) < m

Lhs. of (1.1) < C%si, s2/(n€) = o2 > 0, nm!*9 /52t — 0 for some § > 0, (2.1)

as n — 0o, where s2 = Var(}., X, ;). Then we have
1 n
—= Y X,ni—=4N(0,0%), asn — 0. 2.2
Tt 2 K 24 N0 (22)

Fluctuation Theorem. Let us write

N 1

Fa(t) = - 1pg(Xne), 0 <1, (2.3)
=1

An:FA’n_Fn’ (2.4)

and, for any interval I = (a,b] let Fo{I} = F(b) — Fu(a), B {I} = E(b) — Fy(a), An{I} = E.{I} — F,{I}. Fix an
interval Iy with F,,{Ip} < % Then there exists 0 < € < 1 such that for each n and A > 0

_ - 2
P{suprcr,|An{T}] > A} < Cle)exp ( Q%Fni)};; b ( Vngf; {IO})) , (2.5

where 9(z) = 2272{(1 + z)log(1 + z) — z}, = > 0, and ¥ (0) = 1.

In order to be able to derive tightness in D([0,1]) from (2.5) it is necessary that the proper scaling factor of A, is
v/n/m so that the factor m in the denominator of the exponent will cancel. This places a technical restriction on
which we will further comment in Section 3.

Weak Convergence in D([0,1]). Suppose we have

supo<t<i|Fn(t) — F(t)] = 0,asn — oo, (2.6)
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for some c.d.f. F, and

%Cov(An(s), An(t)) = T(s,t),a8n = 00, (2.7)

for some nondegenerate covariance function I' on the unit square. Then there exists a Gaussian process G in the
space D([0,1]) endowed with the Ji-topology such that

,/%An —4 G,asn — 00, in D([0,1]). (2.8)
The process G is centered and has covariance function I'.

3. Weak Convergence In A Hilbert Space

Unfortunately it can be seen from the results in the example of Section 1 that for linear processes (with § > 1)
condition (2.7) will not be satisfied. In fact the convergence rate is much faster. Although our proof of weak
convergence in D([0,1]) breaks down we may try to prove weak convergence in L%([0,1]); see Laha and Rohatgi
(1979).

Let us consider an l.d.a. with strictly stationary rows, and assume that (cf. (2.1), (2.7))

k
Var(3y_ 1po,4(Xn)) S C ke, (3.1)

=1

for all ¢, and

%Cov(An(s), An(t)) = T(s,t),asn — oo, (3.2)

in addition to (2.6). In much the same way as in the proof of the CLT the process A, can be written as the sum of
ii.d. processes and a remainder. Further conditions to ensure the weak convergence

\/%An —4 G,asn = oo, in L([0,1]), (3.3)

should be mild. Of course such a result holds true for random variables with values in any bounded interval [a, b].

Returning to the linear process let us assume for convenience that the X; assume values in [—1, 1], and let F' be their
common c.d.f. Denote their empirical process by A%, based on the empirical c.d.f. ﬁ‘;:, and let A, be the empirical
process of the L.d.a. Xy1,... Xnn (for suitable m), based on the empirical c.d.f. Ey,. If § > 1 for this array (3.2) will
hold true with £ = 1. Since

1
n / (2 () - En(®)}2dt < nmaxi<izal Xi — Xnil, (3.4)
-1

the truncation index m = m(n) can be determined in such a way that the Lh.s. of (3.4) tends in probability to 0,

as n — 0o, provided that § > 31. If we assume that n f_ll{F(t) — F,(t)}2dt — 0, as n — oo, the weak convergence
(3.3) for the empirical process of the .d.a. (with £ = 1) entails the weak convergence
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Vi, =4 G, asn — oo, in L2([0, 1]), (3.5)
for the empirical process of the linear process.
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BITTERLICH, S., KNABNER, P.

Formfree and Cascadic Identification of Material Laws in (Un)Saturated
Fluid Flow from Column Experiments

Simulations of processes in porous media often are based on mathematical models in form of partial differential
equations or systems of such equations. The processes in porous media critically depend on knowledge of material
laws, characteristic material properties of the considered porous media, which are represented in the model equations
by coefficient functions. Therefore, the material properties have to be determined by suitable experiments. Usually
such ezperiments can only reveal an output of the system caused by the material properties to a certain input. The
material property itself has to be identified from this by mathematical and numerical methods (inverse modeling).
This paper presents an approach for formfree and cascadic identification of nonlinear coefficient functions in a partial
differential equation based on output least squares minimization.

1. (Un)Saturated Fluid Flow in Porous Media

Flow in an (un)saturated porous medium is described by the well-known Richards equation, which in its pressure
head form is given by a mass balance equation

0OY)+V-7=0
and Darcy’s law

§=-K@)V({+2),

where 1 = (&, t) [Length] is the pressure head, ¢ = ¢(&,t) [Length/Time] is the volumentric flow rate per unit
surface area and z is the height against gravitational direction.

The coefficients in above equations characterize the hydraulic properties of the medium, fluid retention ©(1)
[-] and hydraulic conductivity K (1) [Length/Time]. These functions are monotone increasing and constant in the
saturated region (1) > 0). Soil scientists work mostly with the van Genuchten-Mualem model (see [6]). Soil column
outflow experiments are a suitable method to determine the hydraulic functions (see [2]).
Column experiments exhibit a flow regime only in oth x=0
one direction such that a spatially one-dimensional
model suffices. The experiments involve draining
a vertically oriented soil column of length L with
known initial pressure head distribution to(x) near
saturation by slowly decreasing the pressure head
h(t) at the lower boundary. Mathematically this is
modeled by a Dirichlet boundary condition. The flux
at the upper boundary is adjusted to ¢ = 0, there-
fore a homogeneous flux boundary condition is used.

The flux f(t) is measured at the outlet at the lower he)
boundary:
f(#) =q(L,1).
Further the pressure head g¢(t) is measured at the outlet
upper boundary:
g9(t) = ¥(0,1). Figure 1: Soil column

The physical properties of the experiments allow us to assume that it suffices to describe the flow in the column by
the Richards equation in one spatial dimension:

8,0(v) - 0, <K(w>(az«f/) - 1())3
K@(0,6) (@9 —1) =0, (L,1)

0, (z,t) € (0,L) x (0,T)
vo(z), @€ (0,L) (1)
h(t), t€(0,T).

il

i
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Solving the model equation (1) for given hydraulic functions © and K and assigning the measurements f(t) and
g(t) to © and K characterize the direct problem (DP: (0, K) — (f,g)). The inverse problem consits of determining
the hydraulic functions © and K from given measurements f(t) and g(¢) (IP: (f,9) = (©, K)). In general, inverse
problems are ill-posed, therefore we need an appropriate regularization strategy for a stable solution process of the
identification problem.

2. Identifiability

Assume f and g are obtained by exact, error-free measurements. If the mapping IP is injective, the coefficients ©
and K can be uniquely identified. To prove this property of the inverse problem we apply the method of integral
identities (see [1],[3]).

According to [4], we define distinguishability of real continuous functions.

Definition 1. Two real, continuous functions «, 8 : [a,b] = R are called distinguishable on [a,b], if there exists a
finite partition a = 21 < ... < z, = b, such that on every interval (z;_1,x;) either a(z) < (z) or a(z) > B(z) or
a(z) = B(z) for z € (z;—1,z;) is valid. One of the cases ”<” and “>” has to be valid at least once.

Now, we can present the identifiability theorem.

Theorem 2. Let (f1,91) and (f2, 92) the solution of the direct problem for sufficiently smooth coefficients (01, K)
and (©2, K3), respectively. If the applied suction h(t) at the lower boundary is smooth and monotone decreasing in
time and the pairs (0, K1) and (03, K3) are distinguishable on the interval [¢*,0] for 9* = —L + h(T) (the lower
boundary of the experimentally considered pressure head region) with ©;(0) = ©2(0), then (f1, 1) and (f2, go) are
not identical on [0, T].

Proof. See [1].

In the sense of the above theorem it is meaningful to assume that the inverse problem is uniquely solvable.
Consequently the hydraulic functions fluid retention © (if ®(0) is known) and hydraulic conductivity K are identi-
fiable from soil column outflow experiments.
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Figure 2: Hydraulic properties (dashed) and identified hydraulic properties (piecewise quadratic) for 9 degrees of
freedom (solid), left: fluid retention @, right: hydraulic conductivity K, “optimal”.
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Figure 3: Pressure head (left) at the upper boundary and flux (right) at the outlet (dashed: original, solid: recon-
structed, points: “measured”), “optimal”.
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3. Stabilization of the Inverse Problem

The inverse problem is stabilized by a parametrization of the hydraulic functions. We are looking for an unbiased
parametrization, which does not take other a-priori shape informations as basic physical properties like
e.g. monotonicity into account.

A general approach uses spline functions to parameterize the functions that have to be identified. In this
way we obtain e.g. a piecewise linear or a piecewise quadratic parametrization. Then the unknown functions are
defined by real parameter vectors p© and p¥ of a finite dimension r, called number of degrees of freedom. A special
aspect of such a parametrization is the fact that the fluid retention and the hydraulic conductivity are not coupled
like in the van Genuchten-Mualem model. The low smoothness of piecewise linear functions © and K leads to
low smoothness of the observations f(t) and g(t) corresponding to the measurements. Therefore an approach with
quadratic B-splines is profitable. Apart from a local basis we can use a concept of hierarchical and multi scale basis.
Such parametrizations correspond to projection methods for the regularization of inverse problems. Of course, a
threshold rpqs (depending on the discretization error, measurement error and the type of parametrization) exists,
such that a parametrization with more than ryq, degrees of freedom entails instabilities. Note that due to the local
dependence of the unknown functions on the parameters only a reconstruction for the range of ¢-values, which is
covered by the experiment, can be expected.

0.00036
0.00034
©0.00032
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35
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Ppressure hea: "

Figure 4: Hydraulic properties (dashed) and identified hydraulic properties (piecewise quadratic) for 9 degrees of
freedom (solid), left: fluid retention ©, right: hydraulic conductivity K, “non-optimal”.
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Figure 5: Pressure head (left) at the upper boundary and flux (right) at the outlet (dashed: original, solid: recon-
structed, points: “measured”), “non-optimal”.

4. Numerical Identification by Output Least Squares

The identification problem is transformed into a minimization problem for an error functional. We deal with
usual output least squares functionals. The discretization of the coefficient functions leads to a finite dimensional
optimization problem, where parameter vectors p® and p¥ have to be found which minimize

M 2 N . )
T(0° %) = Yo (£ - F) + 08 (o) - 5 @
i=1 i=1

with positive weighting factors a;, 8; and measured values fi and §® at time points {* and &, respectively. For
a numerical identification procedure the direct problem has to be discretized, too. We use a hybrid mixed finite
element method described in [5].
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Efficient optimization algorithms need the value of the error functional (2) and its gradient. The gradient of
the error functional can be evaluated in two ways:
a) Finite difference method: We have to solve the direct problem 2r times for the one-sided and 4r times for the
central difference quotient to compute an approximation of the gradient.
b) Adjoint method: Differentiation of the discrete problem leads to an adjoint system of equations for the gradient.
The combined solution process needs here about twice the CPU time of solving the direct problem.

Adding a penalty term to the error functional (in accordance with the Tikhonov regularization) and constraints
(e.g. monotonicity conditions) further stabilize the minimization procedure. Under the assumption that the Mualem-
relation

ff[l/ap(s)]dsr )

Jo11/%(s)lds

where K is the saturated conductivity, is a realistic model of hydraulic conductivity, an appropriate penalty term
is given by deviations between the hydraulic conductivity and the Mualem-model

aZ |K(0;) — K*(©;)[? (4)

K*(0) = K,0'/? [

for a small positive regularization parameter a. The values K*(©;) in the penalty term (4) can be obtained by a
quadrature rule. For it we approximate the retention function © exponentially for values of the pressure head less
than ¥*.

Major problems of minimizing the highly nonlinear functional are the high sensitivity to the initial value and
the slow covergence. To eliminate these problems we embed the identification procedure in a multi level algorithm:
start minimization with the least possible number of degrees of freedom, interpolate the result of the optimization
for a parametrization with one ore more added degrees of freedom and use this as next initial value. In this context
the hierarchical concept generates a scale by scale optimization. The values of the hydraulic functions at saturation
O, and K, usually are known from independent experiments and can be used to determine initial values for a
parametrization with the least possible number of degrees of freedom.

We simulate an experiment for a column with a van Genuchten-Mualem parametrization of the hydraulic
functions and disturbe the “simulated measurements” by a gaussian distributed noise (5%). If a local basis is used
for the parametrization, then the identification results depend on the so called refinement strategy for the increase
of the degrees of freedom during the multi level algorithm. The results for two different refinement strategies are
shown in figures 2 and 3 (“optimal”) and in figures 4 and 5 (“non-optimal”).
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M. HINTERMULLER AND K. KUNISCH

Inverse Problems for Elastohydrodynamic Models

Inverse coefficient problems for variational inequalities arising in the elastohydrodynamic lubrication of a journal
bearing are presented. The height of the gap between two rotating surfaces denotes the distributed parameter that
has to be identified from estimates of the pressure in the lubricant between the surfaces. The variational inequality
approach which includes the phenomenon of cavitation, i.e. the situation where the gap is not entirely filled by
the lubricant, reduces to the Reynolds lubrication equation under fully-flooded conditions. Utilizing a regularized
least-squares formulation the problem of ezistence of multipliers, and the importance and derivation of a first order
characterization amenable for (structured) numerical realization are addressed.

1. Introduction

The direct problem. In this paper we consider lubrication problems for journal bearings. The schematic cross-
section of a typical device is shown in Figure 1. By u we denote the height of the gap between the ball and the wall

.,-/

load Y YReynoids

s
5 bubbles

tiquid Hqud %0 : :
ogf 30 20 10 0
Fig. 1: Ball bearing (schematic Fig. 2: Solution of Reynolds Fig. 3: max. (upper graph) and Vmax.
cross-section) equation (lower graph).

of the bearing. We assume that this height is small compared to the other dimensions. To avoid damage, a liquid
(lubricant) is used to maintain strict positivity of the gap. The ball imposes a certain load which induces a pressure
y in the lubricant. It is well known that the Reynolds equation

—div ((pu®/6p)Vy) = psg—u— (1)
T2
models the pressure distribution y. In (1) p and u denote specific densities and viscosities, respectively, which are
both assumed to be constant. Moreover, s is a constant relative velocity of the two surfaces in motion. Throughout
we further assume that the ambient pressure p, is zero. Note that the weak form of (1) together with boundary
conditions is the necessary and sufficient first order condition for

minimize/ e(u)|Vy|>dz — / (Fu)ydz =: J*(y) over y€ HX(Q), (2)
Q Q

with e(u) = pu®/6u and Fu = ps 2.

Unfortunately, the Reynolds equation is not always adequate. Especially, in the cases of gaseous and vapor cavitation
(indicated by the bubbles in Figure 1) a pressure distribution below the ambient pressure (in our case a negative
pressure distribution) is predicted; see Figure 2, where the horizontal axis displays the number of grid points in
(0,1). This behavior does not conform to physics. In certain cases, a remedy is given by adding the constraint y > 0
in (2), i.e. now the minimization is taken over K := {y € H}(2)|ly > 0}. The corresponding first order condition
for the unique solution is the variational inequality

(e(w)Vy, V(v —y)) — (Fu,v—y) >0 forall veK. (3)
Above (-,-) denotes the usual L?(Q)-inner product.

The inverse problem. For several reasons the problem of estimating the height of the gap u from estimates yq of
the pressure distribution y is of importance. (i) For a certain regime, from engineering experience a good estimate
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of the pressure distribution may be available. Then the investigation of the possibility of damage of the bearing, i.e.
u <0, is of central importance. (ii) In cases of high pressure phenomena such as vapor cavitation a second equation
modeling the influence of the pressure on the gap has to be taken into account. Hertzian contact theory yields

Co
\/(.’El - 12‘1)2 + (IL‘Z - ﬁ‘z)?

where ug denotes a constant clearance. The numerical procedure for computing y from the coupled system (3) and
(4) by '

(point contact), (4)

U=1U, +/ K(z1,z0)y(z2)dzy, K(z1,20) =
Q

(¢) given y™ compute u” from (4); (i) solve (3) to obtain y™*! and go to ()
frequently fails to converge or converges at a low rate. A possible remedy is to reverse the procedure, i.e.
(z)T given y™ compute u” from (3); (i), solve (4) to obtain y™*! and go to (i),.
Note that (i), amounts to a parameter identification problem in a variational inequality which — compared to (i),
- is the difficult task. Therefore, subsequently we concentrate on the inverse coefficient problem in (i),.
2. First order necessary characterization

There are several approaches to identify u from estimates y4 of y. Here we concentrate on regularized least squares !
techniques, i.e. we consider

minimize  {ly(u) — yall32(q) + $llullin
(P) st.  ueU,
y(u) = argmin{J*(y)|y € K}, (5)

where U = {u € H'(2) N L®()]0 < ¢ < u < & < 400}, and || - [|z2() and || - |1 () denote norms in L?(2) and
H, (), respectively. Moreover, @ > 0 is the regularization parameter.

Problem (P) is a bilevel optimization problem due to the fact that (5) is a minimization problem with u as a
parameter. Usually solutions to problems of type (P) are characterized by a first order system involving (Lagrange)
multipliers. However, here the lower level problem prevents the immediate application of the classical theory, since
by replacing (5) by its first order optimality condition (3) or equivalently by

= (FU,U) for all v € H;(Q)a
A>0, y(u)>0, (y(u),)) =0,

certain regularity requirements may get lost and existence of multipliers cannot be guaranteed (even in practically
important situations). Therefore, our aim is to derive multipliers that exist in very general situations, and such that
the corresponding first order characterization is amenable for numerical realization. Combining these two aspects
contrasts most of the available literature e.g. [1] and the references in [2].

Primal-dual penalization. The first step towards the existence proof is the reformulation of the lower level
problem (5) by means of a primal-dual penalization technique. In fact, we consider

minimize J%(y) + || max{\ — cy,O}H%g(Q) = J¥(y) over ye HQ), (6)

where X € L2(2), X > 0, is arbitrarily fixed, and ¢ > 0. Note that we have replaced the explicit constraint y > 0 by
an implicit one. The first order condition for the optimal solution y.(u) of (6) is given by

(e(w)Vye(u), Vo) = (Fu,v) — (max{X — cy.(u),0},v) =0 for all v € HL(Q). (7)

Lemma 1. (i) Let {cn} C IR* be a sequence satisfying ¢, — oo for n — co. Then {y., (u)} converges to
y(u) (cf. (5)) strongly in H)(Q). (ii) The mappings ® : u > y(u) and &, : u > y.(u) are completely continuous.

For the proof we refer to [2]. The aim of Lemma 1 is twofold: Due to (ii) it can be seen that (P) and the bilevel
problem after reformulation of the lower level problem admit optimal solutions by using techniques similar to those
in [1,2,3]. Assertion (i) can also be seen as a consistency result, i.e. by solving (6) repeatedly with increasing ¢, the
solution to the original problem is approached.
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The next theorem is a key result (for its proof see [2]): It clarifies the role of A, i.e. a suitable choice yields yc(u) > 0.
Moreover, employing the’ concept of complementarity functions it aims at numerical amenability. For the latter
purpose the following definition is necessary.

Definition 2. A function © : IR?2 = IR is called complementarity function iff

0(a,b)=0 <= >0,62>0,ab=0.

_ Theorem 3. Let {c,} C Rt with ¢, = oo, and let © be a complementarity function. Then: (i) for
X := max{—(Fu),0} we have y., (u) >0; (i) {max{X — cpyc, (u),0}} converges weakly in L2(Q) to A(u) satisfying

(e(u)Vy(u), Vo) — (Fu+ A(u),v) = 0 for allv € H}(Q), O(A(u),y(u)) =0 ae. inQ.

Regularization. Due to the nondifferentiability of the max-operation in (7) we use a regularization technique as
in [2,3], i.e. we set

forz > &
(z+ &) for |z| < &

1
forz < 5.

max.{z,0} =

Onje 8

For the graphs of max, and its first derivative, which we denote by sgn,, see Figure 3.

For the regularized primal-dual reformulation of (P) which is equivalent to

i minimize %[y — vallZa(q) + $llullfn g
(P.) 8.t. ueU,
(e(uw)Vy, Vv) — (Fu + max.{) — cy,0},v) =0 for allv € H,(Q)
the analogues of Lemma 1 and Theorem 3 hold true. Note that the problem (P,) can be viewed as a standard

optimal control problem. Thus, applying the well-known (Lagrange) multiplier technique we arrive at the necessary
first order characterization (in weak form):

(e(@2)V52, Vo) + ¢ (sgn.(A — ¢ii),v) + @ —ya,v) = 0 forallve Hy(Q),
(aB*Ba: + e (@) (Vgr - Vpe) — F*pr,u—id;) > 0 forallueU,
(e(@)Vi:, Vo) ~ (Fa: +max.{X —cj;,0},v) = 0 forallve Hy(Q).
Here (4, 42) € H:(Q) x U is the optimal solution of (P,), % denotes the associated adjoint state, B represents the

embedding operator from H*(Q) to L?(Q), and F*, B* are the dual operators of F', B, respectively. Moreover, €(-)
is the derivative of e(-).

Passage to the limit. Combining the previous results and passing to the limit for ¢ — oo yields

Theorem 4. Let {c,} C R* with c, — oo, and let © be a complementarity function. Then (7, u7)
converges strongly-weakly in HL(Q) x U to (y*,u*), an optimal solution to (P). Moreover, there exist multipliers
(p*, p*) € Hy() x (L=(Q))* satisfying

(e(u*)Vp*, Vo) + (u*,v) + (" —ya,v) = 0 for allv € Hy(Q),
(aB*Bu* + €' (u*)(Vy* - Vp*) — F*p*,u—uv") > 0 forallueU,
p*A*=0, py* = 0 ae inQ,
(e(u*)Vy*, V) + (\*,v) — (Fu*,v) = 0 forallve Hi(Q),
o(\*,y") 0 ae inf,

where X* is the weak limit of {maz., {\ — cn@; ,0}} in L*(Q), with X suitably chosen.

For the proof of this result we refer to [2]. In contrast to the first order characterizations in [1] and the references in
[2,3], the above first order necessary condition is immediately amenable for numerical realization. Observe also the
mixed nature of this system, i.e. partial differential equations and a variational inequality resulting from a partial
differential equation are mixed with (algebraic) pointwise conditions. This mixture requires further investigation for
numerical realization.
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3. Numerical issues

For the discretization of the functions involved in the first order system of Theorem 4, we utilize finite dimensional
subspaces and -sets yielding

N, ’ N, N»
yu(z) = ZYiwi(w), up(z) = ZUiui(z), An(z) = ZAili(z), .
i=1 i=1 i=1

We define Y := (Y1,...,Yn,)! € RMv and analogously for U, P, A, and M.

Let us briefly address some of the problems related to the pointwise conditions. For this purpose we assume that y is
discretized by linear finite elements. If X is discretized by piecewise constant finite elements, i.e. functions constant
over each triangle, then one introduces linear dependencies. In fact, if Y7 > 0, then for all all six triangles building
the support for we(z) the coefficients A}, 1 < j < 6, must vanish in order to satisfy ©(As,ys) = 0. On the other
hand, even in cases where the infinite dimensional optimal solution satisfies strict complementarity, i.e. y(z) =0
implies A(z) > 0 for almost all z € , in the discrete case we observe that at least one A; may vanish although
Y, = 0. Both cases introduce numerical difficulties in terms of linearly dependent rows in the discretized first order
system. Frequently, this results in instabilities.

For this reason we use the same number NV of linear finite elements for y, p, A, and p. For u we use N, linear finite
elements. A more detailed analysis and corresponding choices for the discretization will be reported elsewhere. As
a consequence of this choice the pointwise almost everywhere conditions are enforced at the nodal points of the
discretization. This implies that ©(),y) becomes On(A,Y) = 0 with On(A,Y) = (¢(A1, Y1), ..., (AN, Yn))E, and
¢ the complementarity function ¢(a,b) = va? + b2 — (a + b) which satisfies ¢ € C*(IR?;IR). In order to circumvent
the variational inequality in the first order system we apply an interior technique for U. More details on this aspect
can be found in [2].

Another important issue comes from the fact that we cannot reliably estimate u on the singular set S, = {z €
Q|Vy(z) = 0}. If we assume that y4 is a reasonable estimate for y, then we obtain a good approximation for S,.
On S, we fix ujg, = 4s,, where g, is assumed to be available.

Since the resulting discretized first order system is overdetermined, i.e. 5N + N, equations have to be satisfied
by 4N + Ny — |S, 1| variables, a stabilized Gauf-Newton approach is applied. For stabilization we use the forcing
function p(r) = r3 with the norm of the relative residual as its argument. Globalization is achieved by an Armijo
line search procedure.

Figures 4 — 6 give the result of a test run with o = 10™* for the lubrication problem. The dark gray part of the
unit square represents the observation set, i.e. the set where uy is computed. The algorithm needs 35 iterations to
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Fig. 4: Observation set. Fig. 5: Resulting pressure Fig. 6: Resulting height function uy.
distribution yp.

reduce the Gaufi-Newton objective to the order of 1078. The relative error in the max-norm for yj, is 0.142%. The
corresponding error for up, is 0.074%.
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Domain Decomposition methods on nonmatching grids and some applica-
tions to linear elasticity problems

Domain decomposition techniques provide a powerful tool for the coupling of different discretization methods or
nonmatching triangulations across subregion boundaries. Here, we consider mortar finite elements methods for
linear elasticity and diffusion problems. These domain decomposition techniques provide a more flexible approach
than standard conforming formulations. The mortar solution is weakly continuous at subregion boundaries, and its
jump is orthogonal to a suitable Lagrange multiplier space. Our approach is based on dual bases for the Lagrange
multiplier space. It has the advantage of locally supported basis functions for the constrained space. This is not
true for the standard mortar method [2]. The biorthogonality relation guarantees that the Lagrange multiplier can be
locally eliminated, and that we obtain a symmetric positive semidefinite system on the unconstrained product space.
This system will be solved by multigrid techniques. Numerical results illustrate the performance of the multigrid
method in 2D and 3D.

1. Introduction
The central idea of domain decomposition techniques is to decompose a global problem into subproblems of smaller
complexity, and to “glue” the subproblems together in a suitable way. This is especially helpful for problems given on
complicated geometries or problems with jumps in the material coefficients. Numerical examples for these situations
will be given in the last section. As model problem let us consider the following linear elasticity problem with
homogeneous Dirichlet boundary conditions

Lo duy
],; 5—( Z Eijlm —a.’ﬁ—m) = fi in Q.

T
J Iym=1

Here, 2 is a bounded, polygonal domain in R¢, d = 2,3 and Hooke’s tensor E is assumed to be sufficiently smooth
and uniformly positive definite. The components of f € (L*(2))* are denoted by f;, 1 <i < d.

We use a geometrically conforming decomposition of  into K non-overlapping polyhedral subdomains 2,
ie., 0 = UK 0. Each subdomain is associated with an independent triangulations. Let us remark that the
triangulations do not have to match at the common interface between two adjacent subdomains. The interfaces are
denoted by m, 1 < m < M, and inherit their triangulation from one of the adjacent subdomains. This side is called
non-mortar side and the opposite one mortar side. The choice is arbitrary but fixed. We use standard piecewise
linear in 2D and piecewise trilinear in 3D conforming finite elements on the subdomains and denote the product
space by Xj. Then, the constrained mortar space V; is defined by: Vj := {veXn| blv,u) =0, p € My}, where
the bilinear form b(-,-) is given as a duality pairing on the interfaces b(v, ) := z%=1([v], By U E Xny o € Mp,
and [v] is the jump of v on 7,,. The constrained space V}, consist of all functions in X}, which have a vanishing jump
at the interface with respect to the Lagrange multiplier space Mj. Of crucial importance is the suitable choice of
My, = Hﬁ;;l (Mp(vm))® in the definition of the constrained space Vi. The space M, w(7m) is defined by vy, locally
supported linear independent functions ¢j*. Here, vy, = dim Wo.n(ym), and Wi(ym) is the finite element trace
space on Y, and Wo.n(vm) = Wa(m) N H} (7). Now, the nonconforming mortar solution is obtained by: Find
up, € V4 such that

a(ur,v) = (f,v)o, v € Vh. (1)

Here, the bilinear form a(-,-) is given as a(u,v) := EkK=1 Z?’j,l,mﬂ fa, Eijim %i— g—;’; dz, u,v € Xp. If Po(ym) C
My(~vm), the bilinear form af(:,) is uniformly elliptic on Vi x V4. Under some assumption on Mp(ym), optimal a
priori bounds for the discretization error for the mortar finite element solution are obtained in the energy norm and
the L?-norm, we refer to [2,5,7]. '

Dual bases for the Lagrange multiplier space. Here, we consider two different types of dual bases in 2D
and 3D. The first one is spanned by piecewise linear functions and the second one by piecewise constants. Figure 1
illustrates the shape of the dual basis functions. In the left part, the 2D case is depicted whereas in the right part,
the isolines of a dual basis function at the two dimensional interface in 3D are given. In 2D, the support of our dual




S22 ZAMM - Z. Angew. Math. Mech. 81 (2001) S1

basis functions is the union of exactly two adjacent edges, and in 3D it is in the interior of Ym the union of four
faces sharing one vertex. We remark that the definition of the basis functions associated with the vertex zy* has to
be modified if £} is close to the boundary of 4,, , for details we refer the reader to [2,7]. In both cases, it is easy to

B 2= N N s o
ﬁ\ ............ /\ ........... o @}/
A A D B S et

-2

Figure 1: Piecewise constant and piecewise linear dual basis functions in 2D (left) and 3D (right)

see that the biorthogonality relation fym o do = by |, o @1 do holds, where ¢ and 97* denote the nodal basis
functions of Wo,n(Ym) and My (), respectively. We refer to [7], for an analysis of the discretization error and some
numerical results illustrating the influence of different Lagrange multiplier spaces. Of crucial importance is the so
called mortar projection which is Héé %_stable. Optimal a priori estimates in the energy norm and the L2-norm can

be obtained.

2. Multigrid method on the product space
Let us assume that we have a nested sequence of global triangulations and let us denote the associated unconstrained
product spaces by X;, 0 < I < L. The meshsize is given by h; = 2h;41. In contrast to the constrained spaces V},
the product spaces X; are nested. We denote the standard prolongation operator by I,’__1 : X1 — X; and the
restriction by Izl—l : X; — X;—1. Here, we use a symmetric positive semidefinite variational problem on the
unconstrained product space X; which is given in terms of a projection P,. We start with the definition of the locally
defined projection operator P, : X; — X

A b(vi, )
Pu)i:= Y Y ok b lem 1 <<,
( [3 ) Lt m,l f ¢Zn d0'¢l

Ym

where the nodal basis functions ¢;" of Wo,;(7,) are extended in a trivial way on the non-mortar side of Ym. Then, it
is easy to see that the kernel of P is exactly the constrained space V;. Let Ay, By, and C) be the matrices associated
with the bilinear forms a(-,-) on X; x X, b(-,+) on X; x M; and the projection P,, respectively, and f; the vector
associated with the right hand side.

Lemma 1. The following system is symmetric and positive definite. Its solution u; € X satisfies u; € Vi and (1)
Ay = ((Id - CTYA(1d - C) + CT A,C)wy = (1d - CT) fi. 2
Furthermore, the solution w; can be obtained by u; = (Id — C})v; from any solution v, € X, of
Ay = (1d - G A (1d = Ch)v = (1d - CF) fu. 3

Proof. It is easy to see that 4; and 4, are symmetric and positive semidefinite. Furthermore, 4; is positive
definite on V; and P,X;. Then, the triangle inequality yields that /il is positive definite. Now, let u; € V; be the
solution of (1), i.e., (Id — CT)Ajw; = (Id — CF) fi, then by definition of C; we find Cju; = 0 and u; solves (2).
Observing that Cj is a projection, the second assertion follows immediately.

In the following, we call v; € X; a solution of (3) only if it satisfies (3) and if v; € V. To obtain level independent
convergence rates for our multigrid method, suitable approximation and smoothing properties have to be established.
In a first step, we consider level dependent grid transfer operators (Im,,d)f_:l and (Imoq)!_, defined by

(Imoa) ™" = (1d = CL)L™,  (Imoa)i—y = (Id — C)I}_,.

It is easy to see that these transfer operators guarantee CL  (Imoa)! twy = 0, wy € X, and G, (Imod)t_qwi—1 = 0,
wi—1 € X;—1. Then, an appropriate approximation property can be found in [9]. It is based on the assumption that
the iterate after the smoothing steps is in the constrained space V. Starting with an arbitrary smoother for A4;, we
construct a modified one satisfying this condition. Let G’fl be a smoother for 4, e.g., a damped Jacobi method.
Then, we define our modified smoother by G;* := (Id — C;)G; (Id — CT), and denote the iterates by y} and §,
respectively. The following lemma shows the relation between the two different iterates.
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Lemma 2. Under the assumption §° = (Id — C1)y?, the iterates §jj can be obtained from yj by a local post-processing
step ) )
j=0-Cy, izl
Furthermore, the smoothing and stability properties of G’fl are inherited from Gl—l, i.e.,
A&l = Auefll,  lIetll < Cliefll,
where & and e} are the corresponding iteration errors and the constant C < oo does not depend on the level 1.
Proof. Observing the special structure of the right hand side d; and A;, we obtain by induction
gt = gi + (Id - C)GH(1d - CF)(dy — Ardif) = (1d — C)(y + G (di — Au})) = (1d - C)y ™.

The second assertion follows from the observation that C) is a scaled mass matrix, the norm of which is bounded
independently of I.

Our multigrid method for the solution of (1) will be defined in terms of the equation (3), the given modified transfer
operators, the smoother G‘,’l, the implementation of which is realized in terms of Gz_l and one local post-processing
steps at the end of the smoothing iterations. Then, we obtain level independent convergence rates for the W—cycle
provided that the number of smoothing steps is large enough.

3. Numerical results
Here, we consider some numerical results illustrating the performance of our multigrid method in 2D and 3D. Our
multigrid method has been implemented for scalar problems and systems of equations for 2D and 3D in the finite
element toolbox UG, see [1]. We apply nested iteration and use a tolerance of 5 - 10~8 for the norm of the residuum
as stopping criterion for the iteration. Our first example is a 2D plane strain example with discontinuous coefficients,
discretized by linear finite elements on triangles. The computational domain is depicted in the left picture in Figure
2, and consists of a nut and a wrench. Dirichlet boundary conditions are applied at the handle of the wrench, i.e.,
uy(z,y) = 1/3-||m—(z,9)7||-sin(a), uz(z,y) = 1/3-|lm—(z,y)T||-(1—cos(a)), and homogenous Dirichlet conditions
at the interior boundary of the nut. Here, m denotes the midpoint of the nut and we set a = 7/30. The interface is
located at the contact area between the nut and the wrench. We use a W(3, 3)—cycle with a symmetric Gaui—Seidel
smoother accelerated by a stabilized biconjugate gradient method (bicgstab). Table 1 shows the required number
of iterations on each level and the number of unknowns. As it can be seen, the number of iterations is independent
of the level. The distorted grid scaled by a factor of 10 is shown in the second picture from the left in Figure 2. An
adaptive refinement strategy has been used, controlled by a residual based error estimator for mortar finite elements.

Figure 2: Initial and final triangulation in 2D (left) and initial triangulation and isolines in 3D (right)

As 3D example, we consider a ”Sandwich”-like domain build up of two different materials. The domain 2 is
decomposed into three hexahedrons Q; := {[0,1]? X [2;, 2i+1]} where z1 := 0,22 := 1,23 := 1.2, z4 := 2.2. In the right
part of Figure 2, the nonmatching initial triangulation is shown. The non-mortar sides are defined on the middle
hexahedron. We consider two different elliptic problems on this domain: a scalar model problem and a full linear
elasticity problem, both with discontinuous coefficients. For both problems, we use the same initial triangulation,
see Figure 2. We refer to the right picture in Figure 2 for the isolines of the solution at the interface in the scalar
case.

Let us first consider the scalar problem —divaVu = 1, on  := (0,1)2 x (0,2.2) where the coefficient a is piecewise
constant, alg, := 100, i = 1,3 and a|g, := 1. Dirichlet boundary conditions are applied on the upper and lower
part of the domain, u(z,y, z) = 1000/(z — 1/2)2 + (y — 1/2)? - (1.0 — y/3) exp(—10(z® + y?)) if z = 21 or z = 24,
and homogeneous Neumann boundary conditions are taken on the remaining part of the boundary. In Figure 3, the
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asymptotic convergence rates for the Jacobi and the Gau-Seidel smoother are depicted. The numerical results show
that the asymptotic convergences rates do not depend on the refinement level. Even for the V(1,1)-cycle, a constant
asymptotic convergence rate is obtained. For the full linear elasticity example, we took as material parameters for

Level | # dof | # iter Level | # dof | # iter
0 108 1 0 378 1
1 232 3 1 1,839 2
2| o04| 4 2! 10989 | 2
3| 1,622 4 3| 74,865 2
41 2,350 4 4 | 550,233 2
5| 3478| 5
6| 5380 | 5
7| 8,272 5
812844 | 5
9 {20,130 5
10 | 30,878 5

Table 1: Numerical results for the 2D example (left), the distorted grid (middle) and the 3D results (right)

the Lamé constants ulo, = 8517 and Ao, = 108280 for i = 1,3 and uln, = 2008 and A|g, = 3567 for ¢ = 2. Here, we |
apply an incomplete LU~decomposition as smoother and use the V(3,3)-cycle as preconditioner for the begstab—
method. Dirichlet conditions are applied on the top and bottom of the ?Sandwich”, Neumann boundary conditions

on the remaining part of the boundary. The right table in Table 1 shows the performance of our method in 3D.
Although the number of unknowns increases by a factor of 10 in every refinement step, the number of iterations to
achieve the required tolerance is constant. We remark, that uniform refinement has been used for this example. The
displacement of the solution scaled by a factor of 10 is shown in the middle of Table 1.

0.9 —— Gauss-Seidel 0.9 —— Gauss-Seidel 0.8 —— Gauss-Seidel [X] —— Gauss-Seidel
L e Jacobi 2 --+-- Jacobi L e Jacobi L e Jacobi
S Loz [ 4 ¢ joz T |o7
8 8 8 8
g 05 g 05 é 0.5 g’ 05
2 loa ST e 2 los 2loa T eeaneene 2 loa !
S , S S <] |
o K o o K o
o1 [ X 01 / 0.1
R e N D R nr ey copury T, P St -
10" 10° 10° 10° 10° 10" 10° 10° 10* 10° 10 10° 10° 10* 10° 10' 10 10° 10* 10°
Number of elements Number of elements Number of elements Number of elements
V(1,1)-cycle V(3,3)-cycle W(1,1)—cycle W(3,3)—cycle

Figure 3: Asymptotic conv. rates for Jacobi and symmetric Gaufi-Seidel smoother (3D scalar example)
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ZuMmBUSCH, G.

On the quality of space-filling curve induced partitions

The solution of partial differential equations on a parallel computer is usually done by a domain decomposition
approach. The mesh is split into several partitions mapped onto the processors. However, partitioning of unstructured
meshes and adaptive refined meshes in general is an N P-hard problem and heuristics are used. In this paper space-
filling curve based partition methods are analysed and bounds for the quality of the partitions are given. Furthermore
estimates for parallel numerical algorithms such as multigrid and wavelet methods on these partitions are derived.

1. The partition problem

Finite-Element, Finite-Volume and Finite-Difference methods for the solution of partial differential equations are
based on meshes. The solution is represented by degrees of freedoms attached to certain locations on the mesh.
Numerical algorithms operate on these degrees of freedom during steps like the assembly of a linear equation
system or the solution of an equation system. A natural way of porting algorithms to a parallel computer is the
data distribution approach. The mesh with attached degrees of freedom is decomposed into several partitions and
mapped to the processors of the parallel computer. Accordingly also the operations on the data are partitioned.
Goals of a partitioning scheme are load-balancing and little communication between the processors. Sometimes
also singly-connected partitions are required. If the partitions are determined during run-time, furthermore a fast
partitioning scheme itself is sought. This is e.g. the case within adaptive mesh refinement of a PDE solver.

The partitioning problem in general is N P-hard [18]. There are many heuristics based on graph connectivity or
geometric properties to address this problem [2,6,12,13,19]. In practice fast heuristics are known. However, there is

- not much known about general quality of these methods. In contrary there exist examples, where single heuristics

give really bad results.

In this paper we analyse a specific geometry based heuristic based on space-filling curves. It is cheap and helps to
simplify the implementation of parallel algorithms [9,15,16,17,20,23]. We are interested in bounds for the quality of
the partitions. This will lead us to general estimates on the parallel performance of advanced numerical algorithms
on these partitions.

2. Space-filling curves

First we have to define curves. The term curve shall denote the image of a continuous mapping of the unit interval to
the IRY. Mathematically, a curve is space-filling if and only if the image of the mapping does have a classical positive
d-dimensional measure. The curve fills up a whole domain. For reasons of simplicity we restrict our attention to
simple domains. We are interested in a mapping

f:[0,1]=1 —QcCR" f continuous and surjective (1)

There are classical curves like the Hilbert-, the Peano- and the Lebesgue-curve, see [21]. However, we will also
construct special space-filling curves on an unstructured mesh.

The space-filling curve can also be used for the inverse mapping f from a domain Q C IR? to the unit interval I.
This means that we can map geometric entities in IR to the one dimensional interval such as elements or nodes.
Entities, which are neighbours on the interval, are also neighbours in the volume IR?. Unfortunately the reverse
cannot be true and neighbours in the volume may be separated through the mapping.

However, we can solve the resulting one-dimensional partition problem: We cut the interval I into disjoint sub-

intervals I; of equal workload with | J; I; = I. This gives perfect load-balance and small separators between the

partitions. The partition f(I;) of the domain Q induced by the space-filling curve with |J; f(I;) D Q also gives
. J .

perfect load-balance. However, the separators 0f(I;) \ 0 are larger than the optimal separators in general as we

will see.
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3. Quality of a partition

We use a basic performance model for a distributed memory computer. The execution time of a program consists
of computing time, which is proportional to the number of operations on a processor, and of communication time.
Communication between the processors is done with message passing through some network and requires time linear
in the size of data ¢ = tstartup + 7 * thandwidth-

We consider O(n) algorithms linear in the size of data n, e.g. FEM matrix assembly for n finite elements, sparse
matrix multiply or components of a multigrid algorithm such as a grid transfer or smoother, see [2,10]. The parallel
computing time is C1 - n/p for a partition of n data onto p processors. We call v := n/p the volume. The runtime
depends on the communication time. The data to be transferred is proportional to the separator or surface s; of
the partition s; := 9f(I;) \ 99.

n
t= Cil}—7 + Cy (tstartup + 5% tbandwidth) (2)

This model suggest that we have to minimise the surface to volume ratio s/v of the partition for a high parallel
efficiency of

) Cy,1 s
efﬁc1ency = 1/(1 + 'é‘?(;tstartup + ; * tbandwidth)) . (3)

While the lowest continuous surface to volume ratio is obtained for the sphere by s = 1"/2dd"1%v(d‘l)/ ¢ we

usually deal with partitions aligned with the mesh. Hence the cube with s = 2dv{4=1)/9 is of interest. In general we
regard estimates of type

s < Cpart * pld-1)/d (4)

with low constants Cpar¢ as optimal.

4. Estimates for space-filling curves

The estimate for the locality of a discrete space-filling curve F we will use with F : [1,...,k% — [1,...,k]% is of
type

1F(z) = Fy)ll: < C¥/]z —yl . (5)

Gotsman and Lindenbaum [8] give an upper bound C = (d + 3)%22¢ for the Hilbert curve and tighter bounds for
C =62 for d = 2 and C = 23 for d = 3, which has been improved by [1]. Analogous estimates have been derived for
the Hilbert curve [22] and the Peano curve [7]. It turns out that a similar curve, called H-index gives even better
constants, see [5,14].

Lemma 1. Given a connected discrete space-filling curve F on a domain [1,...,k]% and a partition
F([js...s74v —1]) of v nodes, the surface s of the partition is bounded by eqn. 4. The constant Chart depends on
the curve.

Proof. is based on eqn. 5 and the connectedness of the partition. It is sufficient to consider s of the bounding
box.

This lemma does not hold for curves of Lebesgue also called bit-interleaving [3], because the discrete partitions tend
to be disconnected. However, we generalise the situation to unstructured and adaptively refined meshes by the
following construction: We create an enumeration of a mesh by some heuristic in order to obtain a ‘local’ discrete
space-filling curve. Then we do mesh refinement by some geometric refinement rules, see [2,4]. Each coarse element
Ej is substituted by several smaller E; , elements. The enumeration is changed such that it cycles through these new
elements E; ; right after the elements Ej_1or Ej_3 k. This leads in the limit to a continuous space-filling curve, see
[11,15,20]. Alternatively a standard, continuous space-filling curve can be super-imposed onto the grid, see [9,17].

Corollary 2. FEstimate 4 also holds for a space-filling curve partitioning of a (quasi-) uniform mesh by
superposition of f or mesh dependent construction of f.
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Estimate 3 combined with corollary 2 gives a speedup for large problems of

C3Charttbandwidth p
. C1 "l d) (6)

This implies optimal parallel efficiency for very large problems, n — co. Estimate 6 holds for a code for the solution
of partial differential equations in the steps of setting up an equation system, a single matrix multiply, a fixed number
of Krylov iterations. Furthermore, using the same space-filling curve an all grid levels, this also holds for an additive
multigrid implementation and for standard multigrid if we neglect terms logn - tgtartup proportional to the number
of grid levels. For the scalability of a gobal PDE solver an O(n) multigrid solver is essential. Solvers with higher
than linear complexity may scale in p like eqn. 6 but scale completely different in n.

efficiency = 1/(1 +

daptively refinad triangular mesh
Hilbert curve, uniform mesh 55 adap y. © - 9 ef

T

surface

lavel 5

0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300 350
volume volume

Figure 1: Locality of partitions defined by a space-filling curve. Hilbert curve on an uniform mesh (left) and an
unstructured mesh with adaptive mesh refinement (right).

avik

A3,

Figure 2: Adaptive mesh refinement. Partitions defined by a space-filling curve (left) and a counter example for a
non-local partition (right).

5. Numerical experiments

The proof of lemma 1 only gives a crude estimate on the constant in eqn. 4. Hence we look at two examples for
two-dimensional partitions. In figure 1 the maximum surfaces s to different volumes v are given. We consider a
uniform square [0, 2¥]? (counting the complete boundary) and a triangulation (counting the interior boundary only).
The triangulation starts with a hexagon and angles of 7/3 and is refined adaptively. The triangulation is shown in
figure 2 left. The different graphs in figure 1 show the ratios for different grid levels. The surface of small partitions
comes close to the expected 1/n behaviour while larger partitions have a limited boundary. 8 is a natural limit.

Lemma 1 did not deal with adaptive mesh refinement. Although, moderate refinement seems to give similar estimates.
However, very strong refinement with an arithmetic progression of nodes during refinement shows a different picture.
In this example, figure 2 right, s is proportional to v. This behaviour limits the usefulness of the partition method.
This ‘counter’ example is related to examples where other heuristics like spectral bisection [19] also fail to perform
well.

6. Sparse grids
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Space-filling curve partitions can also be used for the parallelisation of adaptive sparse grid implementations, see
[25]. A certain choice of tensor products of (pre-) wavelet basis functions can give approximations with a low number
of degrees freedom of the order v = O(nlog"l_1 n) for a spatial resolution of 1/n, see [24]. The discretization of
PDEs on such sparse grids links geometrical nodes on different scales and at different distances. The surface of a
rectangular shaped partition is of order s = O(n logd'z n) which is rather large compared to v. Experimentally
space-filling curves and other graph partitions heuristics give partition surfaces of similar size.

s < Cpart with v = O(nlog® ! n) (7

v
logn
. p
— - 8
efficiency = 1/(1+C logn) (®)

We obtain scalability of wavelet algorithms on sparse grids. However, the parallel efficiency grows far slower in the
problem size as for standard discretizations which scale excellently, compare eqns. 6 and 8.
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DENZLER, JOCHEN

Branch Classification for the Spectrum of the Orr—Sommerfeld Equation for
Plane Couette Flow

The spectrum of the Orr-Sommerfeld equation for Plane Couette Flow (solution continuum of the characteristic
equation) undergoes only remarkably simple topological changes as the Reynolds number changes from 0 to co. The
case of Reynolds number 0, which can be treated completely in full rigor, determines most of the structure for
any finite Reynolds number, but not for infinite Reynolds number, the only complementary phenomenon being the
so-called mode crossing.

1. Introduction

The purpose of this paper is to give a detailed rigorous branch classification of the eigenvalue spectrum of the
Orr-Sommerfeld equation

(R-l(ag —a?) —iay - ,\) @ - ®)w(y) =0, w(0)=0=w(1), w'(0)=0=uw'(l) )

for plane Couette flow (pCf). This equation arises as the linearization of the Navier Stokes equation for a plane
viscous incompressible shear flow between two parallel plates moving with respect to each other, as is detailed out,
e.g., in [2],[4]. It has been shown by Romanov [3] that, for any Reynolds number R and any wave number a, all
eigenvalues satisfy ReA < —p < 0, and also that asymptotic stability of the solution under the full Navier-Stokes
equations ensues from this in the given case.

Given such a result, one still has to beware that the basin of attraction of the asymptotically stable solution
may be very small, and it is in fact generally believed to shrink indefinitely as R — oo in the case of pCf. This
explains superficially why instability is observed at large R in spite of Romanov’s stability result. A more detailed
account of the phenomenon is lacking. Trefethen and others [5] are working out scenarios where the non-normality of
the linearized operator accounts for a large transient growth of initial perturbations, which will therefore be driven
out of the basin of attraction by this effect. Much of that work is numerical, e.g. [6], or treats a model problem
rather than the original equation [1], owing to the inherent difficulty. Any deeper understanding of the dynamics in
a neighbourhood of the shear flow clearly requires not merely the half plane estimates for the spectrum, but a closer
understanding of both the eigenvalues and the eigenfunctions coming with them (which amounts to a similar informa-
tion as is contained in the pseudospectrum). This work gives rigorous results for the eigenvalues. The eigenfunctions
will require further study, which is on the way. We give rough sketches of proofs only. Details will appear elsewhere.

2. The characteristic equation
By means of the transformation
2t = (aR)/3, A=-R1(4it3 + 44%6) ~RIBRU3)?, e=R! (2)

the eigenvalue condition of (1) can be written as A(4,¢,€) = 0 with the well-known Gram determinant

1 1
/ Ai(6 + it2) sinh(4e37) dz / Ai(8 + it2) cosh(4et32) dz
A((S, t, 6) = _11 ~-_11 . (3)
/ Bi(6 + itz) sinh(4et®z) dz / Bi(d + itz) cosh(4et®z) dz
-1 1

It is sufficient to study this equation for ¢ > 0 and complex 4. Simplifications of (3) occur in various limiting cases.
The case R — 0, € = 00, physically irrelevant as it may seem, leads to %(6 +1it) = %(6 — it) and can be handled
comparatively easily and elegantly. It turns out that it not only gives the branch structure for sufficiently small R,
but actually up to arbitrarily large R with exception of only finitely many (depending on R) branches. The limiting
case R — 0 is therefore a good starting point for the branch classification by homotopy arguments, and we shall

give details below.
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3. Series expansion
There is a remarkable series representation of (3) that seems to be completely new:

Theorem 1. Let z := 46t and A := 64¢®t®. Then we have the locally, in (C\ {0}) x R x [0,00[ 3 (&, ¢,¢),
uniformly absolutely convergent series expansion

AS,t¢) —% 00 cc
ST Z (A @i [Pj (z, A) + P{°(z, A) cos vz cosh VA + "
1 PS(z, A) cos\/Esmh\/—— 4+ P A)smf cosh VA + P (a A)sxnf z sinh VA

VA vz Ve VA

with polynomials P}* consisting of monomials of which the joint degrees with respect to (z, A) are within the range
given by the table:

deg of mon’s in || PO Pge Pge P P
..from || 4j 4j 45 +1 4j+1 45 +1
toll B |5+ /2] [+ LG+ 1)/2] |55+ (G +1)/2) | 55+ i/2] +1
degwrt A<| 2j 4j 45 +1 4j 4j+1
The apparent pole at x = —A is compensated, in each order j, by a zero of order at least 45 + 2 of the term in

brackets.

The theorem is proved by means of a full Taylor expansion with respect to ¢ of all terms under the integrals
in (3). A lot of combinatorics is involved to recombine the terms into series (4). Explicit (though rather unwieldy)
combinatorial formulas for the polynomials are available.

In the case t < O(|6]'/4), the j = 0 term of (4) in Theorem 1 is actually dominant and permits a full
classification of branches in that domain:

Theorem 2. Given € > 0 and C sufficiently small, independent of €, the zero set
{@aerm+hﬂA@ua=0J<owﬂq (5)
(with the obvious interpretation of the case e = 0 as o limit € — 0) consists of real branches (8,(t),t), n > 2, only.

These branches are totally ordered: 6,(t) < dpy1(t), the limit wy, := limy_024/8,(t) ¢ exists and is independent of
€ € [0,00[. It holds

_ VY (n+ %)ﬂ' for n even Wn, = N7 for n even

(n—1)r <2V ()t < { nw fornodd °’ wy/2=tanw,/2 forn odd ©)

For ¢ = oo (where in (5) the corresponding limiting equation Bi(6 + it) = Bi(§ — it) appears), it holds
Ai Ai

limg 0 24/0,(t) t = (n — 1)7. For arbitrary C, the same still applies to those branches indezed by n > no(C).

These real solutions are the basis of the branch classification. Based on either the implicit function theorem (IFT)
or, where §sA = 0, on the Weierstral preparation theorem (WPT), any solution to A(4,%,£) = 0 can be followed
for ever decreasing ¢t > 0, until it finally enters the domain covered by Theorem 2: In points where 85A = 0, the
IFT fails, but WPT shows that a branch point does actually occur, and one can follow the solution continuum for
further decreasing ¢ (nonuniquely, though, with a choice of branches). Therefore all solution branches are connected
to the real branches discussed in Theorem 2 through (possibly several) bifurcations.

The proof of Theorem 2 is a Rouché counting argument, combined with an existence proof for real solutions by
the intermediate value theorem, where the real solutions thus found already exhaust the total number of solutions
determined by Rouché.

4. Small or finite Reynolds numbers

The behaviour outside the domain ¢ < O(|6|'/4) is determined by the following theorem:

Theorem 3. For sufficiently large € (small Reynolds number), the zero set Z} = {(d,t) |t > 0, A(S,t,€) =
0} is homeomorphic to 23 := {(6,t) |t > 0, BL(5 +it) = Bi(6 — it)}, namely it consists of
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(1) A family of real branches R;, j > 1, connecting the (32;(t),t) and (62j+1(t),t) of Theorem 2 into a single curve
on which the coordinate t has ezactly one critical point, a nondegenerate mazimum. (Call this point r;.)

(2) A corresponding branch C; of complez solutions (3;(t),t) and (6;(2),t) branching off at r; for increasing t
and globally parametrized by t. Ast — oo, (6;(t) — it)e=2"/3 converges to a_; < 0, the j* zero of the Airy
function Ai (independent of €).

For arbitrary € > 0 (not necessarily large), the same applies to those branches indexed by j > jo(e).

Given this result, it follows that changes in the topology of ZF can only accumulate as e = 0 (R — oco) with
t = oo at the same time. A quantitative analysis shows that they actually are confined to a critical domain where
[t — V38| < O(t~/21nt) as t — co. By means of a separate calculation for the case e = 0 and comparison to € > 0
one sees that bifurcations actually do occur for all branches (see Theorem 4 below).

The figure shows the first few real branches for different values of e. The asymptotic behaviour as ¢t — 0 is
clearly visible, both for € < oo as stated in (6) and for € = 0o, where the asymptotic behaviour is shifted. The
change of topology which affects the first real branches, one at a time, will be discussed in the following section.

t

t t = 0.004681 €=0.001218 €

I § Is

4
L

§
°

5. The inviscid limit
Here the following branch classification holds. (Remember that the 6, of Theorem 2 are numbered from n = 2.)

Theorem 4. The solution continuum Zg consists of

(1a) real branches jo, J sufficiently large, connecting the (ds;—1(t),t) and (84;(t),t) of Theorem 2 into a single
curve on which the coordinate t has ezactly one critical point, a nondegenerate mazimum. (Call this point
ka;.)

(1b) real branches Rpj-1, j sufficiently large, connecting the (d45-2(t),t) and (04j41(2),t) of Theorem 2 into a
single curve on which the coordinate t has ezactly three critical points, a nondegenerate minimum kgj—1 and
two nondegenerate mazima r25_1 and ra;.

(2) complex branches Caj—1 and Csj bifurcating from Rg;—y and Ry; at roj_1 and 72, respectively. These consist
of pairs of complez conjugate solutions parametrized globally by t as in Theorem 3. This time, however,
(6;(t) — it)e=2™/3 converges to zeros of [ Ai(x) dz instead, as t — oc.

(3) topological circles ézj connecting koj_1 with kj, and also consisting of pairs of complex conjugate solutions
parametrized by t.

Numerical evidence suggests that “j large enough” means actually “j > 17, thus exhausting all branches. Without
resort to numerics, all asymptotic statements hold for j > 1; it is only the way how the ends are connected inside a
compact set that is affected by the hypothesis “j large enough”.

The proof of this theorem relies on asymptotic expansions of Airy functions. It is very likely possible, by enhancing
the qualitative asymptotic estimates entering in the proof with quantitative error bounds, to abandon the hypothesis
“j large” in favor of “j > 1”. We have however not carried this through. Numerical evidence also suggests that the
mode crossings that Ry;_; and Rs; undergo as ¢ — 0 are the only bifurcations to occur, and that they occur one
after another for j = 1,2,3,..., with no changes of topology being subsequently undone again. A rigorous proof of
this at least for large j is currently under investigation.
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The figure shows the first few real and complex branches for € = 0 (R = o), projected in either the (Red,t) or the
(Imé,t) plane. The complex branches are dotted. The dashed lines (¢ = /3§ and ¢t = |Im§|) help to display the
asymptotic behaviour.

tA

T (o) 53
10+

| J—

9
. ....................é):.m

6. Outlook

Next, a description of the corresponding eigenfunctions would be desirable. The method used to study the spectrum
has this perspective in mind. In certain limiting cases, the eigenfunctions can be understood more easily: in
particular, under the limit ¢ — 0, 2v/8t — wn, the ay term in (1) can be neglected, and the limiting eigenfunctions

can be chosen as real. It is hoped that the classification of branches permits continuity methods to be applied to
the eigenfunctions.
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SERRE E., Raspo I., BONTOUX P. AND PEYRET R.

Spectral Solution of the Navier-Stokes Equations for Rotating Flows

Direct numerical simulation by spectral methods are developed and used to study the instabilities in the Ekman
and Bédewadt layers at the transition to the time-dependent regimes. The physical phenomena are characteristic of
rotating flows with walls. The geometrical cavities are elementary geometries that are relevant of turbine applications
and that also refer to typical configurations studied in fundamental investigations and in experiments.

The three - dimensional Chebyshev - Fourier collocation method is based on a projection scheme to solve the coupling
between the velocity and the pressure. The method devoted to annular domain is extended to fully cylindrical domain
involving the azis of rotation. A special development has been required to deal with the singular behaviour of the
coefficients when the radius tends to zero. The investigation was carried out in two types of generic configurations that
are the forced throughflow in a rotating cavity and the confined flow driven by the differential rotation inside a rotor-
stator cavity. Depending on the aspect ratio and on the Reynolds number, counter-rotating rolls can superimpose to
the boundary layer flow near the disks under the form of annular and spiral structures. The characteristic parameters
of the perturbations (wavelength, frequency, phase velocity, inclination of the spiral ) are shown to be relevant of the
types I and II instabilties in rotating flows.

1 Introduction

Instability patterns are simulated with an efficient spectral method in different rotating flows driven by the differential
rotation of the walls or by a throughflow. Two enclosed rotor-stator annular and cylindrical cavities and a rotating
cavity with a superposed radial outflow are considered. These situations are relevant of air cooling devices of gas
turbine engines. A characteristic of these flows resides in the coexistence of adjacent and coupled flow regions that
are greatly different in terms of the flow properties and of the length scales as it is the case for the Ekman or the
Bbddewadt layers and the geostrophic core region.

The characteristic parameters of the solutions are shown to be relevant with available theoretical and experimental
results about type I and type II instabilities, that are two classes of generic instabilities developing above rotating
disks [1]. The spatial structure of these instabilities consists of circular and spiral vortices on the boundary layers.

2 Geometrical and mathematical models

The geometrical models correspond to two disks of depth radius AR = Ry — Rp, where Ry and R; are the internal
and external radii. The geometrical domain can be open including radial inflow and outflow boundary conditions,
or completely enclosed by one or two cylinders of height 2h, the internal shaft and the external shroud. The open
cavity rotates at the uniform angular velocity  whereas the enclosed cavity is composed of a stationary part (stator)
and of a rotating disk (rotor) at the angular velocity Q.

The motion is governed by the three-dimensional Navier-Stokes equations written in primitive variables for an
incompressible fluid. The two geometrical parameters refer to curvature and the aspect ratio, R, = (R1 + Ro)/AR
and L = AR/2h. The scales for the dimensionless variables of space, time and velocity are [h, Q~1, QR;] respectively.
The dimensionless spatial variables are denoted (¥, %) and have been normalized to the square form -1, 1]x[-1, 1],
a requirement for the use of Chebyshev polynomials. The normalized spatial variables are denoted (r,z) and r =
(2h7 —a—b)/AR and z = Z. The relevant physical parameters are the Reynolds number, defined as Re = Q2 (2h)? v
and when the flow is submitted to a radial outflow, the mass flow rate, @, is made dimensionless as Cyy = Q JVRy.
We note by radial outflow that the flow is forced from R to R; and parallel to the disks plane.
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In all cases, the boundary conditions correspond to no-slip conditions for  and w at the rigid walls. For the open
cavity, an Ekman boundary layer flow [2] is considered at Ry and R;. For rotor-stator cavities, the azimuthal velocity
component at the boundaries conditions are v = 0 on the stator, v = (R, +7)/(Rm + 1) on the rotating disk.

3 Numerical model

The solution method is based on a pseudo-spectral collocation Chebyshev-Galerkin Fourier method. The approx-
imation of any flow variable ¥ = (u,v,w,p) is derived from the following developments in truncated series, with
—1<r2<1land 0<6 < 2m:

K/2-1 N,M

Yymk(r, z,0,t) = Z Z {I\Inmp (t) Tn (r) Tm(z)eipe
p=K/2 n,m=0

Ty, Trn, are the Chebyshev polynomials and @nmp the spectral coefficients.

The time scheme is based on the second-order backward differentiation formula for the diffusive term and on the
Adams-Bashforth scheme for the nonlinear terms. The velocity-pressure coupling is performed with a projection
algorithm [3,4]. For the cylindrical cavity (involving the axis), the numerical approximation method was modified
with a dependent variables transformation (17 =TV and p = 7p). In this case the natural boundary conditions on
V and p are then assigned to be zero for 7 = 0. The details of the technique are developed elsewhere in [5].

4 Rotor-stator cavity

The velocity fluctuations display the spatial structure of instabilities and are computed at given instants with respect
to the average flow solution. The local Reynolds number is defined by Res = Q6r/v, where § = (v/Q)°® is the
length scale of the rotating boundary layer.

Two kinds of axisymmetric instabilities have been computed succeeding to the stationary basic flow. The first one
is a stationary instability on the Bédewadt layer, characterized by 3 pairs of circular rolls and which is observed
(for the first time numerically) in the annular cavity (Rm =5, L = 5) for Re = 330. This stationary axisymmetric
solution has closely similar characteristics to the type II instability showed in experiments by [6].

When further increasing the rotation rate the instability is time-dependent in both cases of the annular cavity and
the cylindrical cavity. In the annular cavity (R,, =4, L = 5), for Re = 400 the solution is oscillatory (o = 4.7). The
axisymmetric vortices are visible along the two layers and travel following the flow as in recent experiments by [7].

In the cylindrical cavities closer to the axis, the axisymmetric instabilities appears for Re = 4000, L = 2 and
Re = 1600, L = 5. Differently to the annular cavity the Ekman layer over the rotating disk keeps stable. These
vortices travel slowly inward in the Bdewadt layer down to near the axis which corresponds to a local Reynolds
number Res =~ 27. These results in cylindrical cavities are closely similar with experimental results of [8] for a cavity
of aspect ratio L = 0.5, who was the first to observe traveling circular waves during an impulsive spin-down for
25 < Res < 125. Then following the analysis of Savas [8] the instabilities are of type II in both the Bédewadt and
the Ekman layers.

The rolls that progress under the form of rings in the axisymmetric solution, now constitute spirals arms. The
transition to three-dimensional patterns was accelerated via “artificial” initial disturbances of general form o sin (pf)
where p is an arbitrary number corresponding to an azimuthal wavelength and « the magnitude rate (scaled with
respect to the azimuthal velocity). The angle of the spiral patterns can be defined by € as the orientation of the
wavefront with respect to the azimuthal direction (it is defined positive when it is rolled up towards the axis of the
disk in the rotation direction).

Spiral patterns (unmixed with circular pattern) arise in annular cavities at large distances from the axis (Rm = 5)
but also in the near axis region of cylindrical cavity where the confinement is important (L = 2). In the case of the
annular cavity, an oscillatory solution (¢ = 21.4) is obtained with 22 spiral arms in both layers. Inside the Ekman
layer, the angle of the spiral wavefront £ decreases with 7 as —15.3° < ¢ < —6.9° (Figure la) . These 3D spiral
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patterns have already been observed in experiments of the Ekman layer (see a review in Ref. [9]) that are referred
as the type II instability. Close to the stationary disk the spatial structure of the vortices shows some similarities
with that one on the rotating disk layer but the spiral arms form a positive angle, 11° <& < 23°.

Mixed annular and spiral pattern is also observed in the cylindrical cavity of large aspect ratio L = 5 and in the
annular cavity closer to the axis (R,, = 4, L = 5). For Re = 400 in the annular cavity, 18 spiral arms can be counted
inside the Ekman layer, with an angle ¢, steeply decreases between Rg and Ry, from —20° to —7 .5°. The number of
arms modifies between the shaft at Ro and the shroud at R; exhibiting a zone with dislocations (Figure 1b) . These
spiral patterns have characteristic parameters very close to the previous ones described for L = 5, Ry, = 5 and are

_relevant to type II instability. Inside the Bédewadt layer, we observe in the annular domain 4 pairs of spiral and
annular rolls. The latter develop in rings and the first develop into 18 spiral arms forming an angle 15.6° < e < 23°
close to the shaft. The persisting axisymmetric structures interact with the spiral arms and travel inward. The
coexistence of these two types of waves was described by [8] who identifies these spirals to the type I instability of
Bédewadt layer.

In the cylindrical cavity (L = 5) for Re = 1200, the temporal behavior exhibits an oscillatory regime (o = 1). For
1.54 < 7 < 5, the vortices transform under the form of 5 annular structures while at larger distance from the axis
rolls develop under the form of 6 spiral structures forming an angle 7° < e < 28° and exhibit pairing phenomena
(Figure 1c) .

Figure 1: Three - dimensional display of iso-surfaces of the axial velocity component fluctuation. (a) Spiral patterns
of the instability in annular cavity (R,, = 5 and L = 5) for Re = 330. (b) Spiral and annular patterns (R, = 4 and
L =5) for Re = 400. (c) Spiral and annular patterns of the instability of the Bodewadt layer in the cylindrical
interdisk cavity (L = 5) for Re = 1600.

5 Rotating cavity submitted to a radial outflow

The base flow solution is steady and axisymmetric and organizes itself symmetrically and parallel Ekman layer flows
form on the two disks with the same mass flow rate [9]. In all cases the Reynolds number is Re = 1750.

For C,, = 530 the flow is axisymmetric and oscillatory (¢ = 7.4) (Figure 2a) . We obtain good agreement between
the computed value of o and the frequency reported from experiments by [10]. In the numerical solution six pairs
of counter-rotating axisymmetric rolls are exhibited in the Ekman layer. A good agreement with the theoretical
results is obtained. The range of the characteristic parameters is relevant with the axisymmetric mode of the type
11 instability.

Multiple periodic solutions with different numbers of spiral arms following the periodicity of the disturbances, n 2 p,
p > AR/, (= 6) are obtained (Figure 2b) . Theses 3D spiral patterns have already been observed in experiments
of the Ekman layer (see a review in Ref. [5]) and the characteristic parameters are in good agreement with those
obtained in the relevant experiments [10]. Thus, the spiral structure of the computed rotor layer shows the same
characteristics as the type II standard instability of the Ekman layer.
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Figure 2: Three - dimensional displays of instantaneous iso-surfaces of the axial velocity component in the annular
domain (R, = 5, L = 3.37), for C, = 530, Re = 1750. (a) Circular patterns of the axisymmetric instability.(b)
Spiral patterns.

6 Conclusion

A Fourier-Chebyshev pseudospectral method has been proposed for solving the unsteady, 3D Navier Stokes equations
in rotating cavities. The main computational difficulties come from the presence of the singularity at the axis and
the incompressibility constraint. We obviated the first difficulty with a tranformation of the variables and the second
one by means of a projection scheme. Three-dimensional simulations have shown axisymmetric and spiral instability
patterns which are in good agreement with experimental studies and theoretical analyses for the type II and type I
instabilities.

Acknowledgements

This research was supported by a research grant from DGA and CNRS. The authors gratefully acknowledge Prof. M. Schaefer,
Prof. J.M. Owen and Dr. M. Wilson for fruitful discussions. The computations were carried out on Cray computer C98
on the C.N.R.S. I.D.R.I.S. Computing Center with supports from the Scientific Committee. The C.N.R.S.-D.F.G. Research
Program ”Numerical Simulation of Flows” and research contracts involving D.G.A. are also acknowledged.

2. References

1 GREENSPAN, H. P. : The theory of rotating fluids. Cambridge University Press (1969).

2 Hipg, R. : On source-sink flows stratified in a rotating annulus. J. Fluid Mech. 32 (1968), 737-764.

3 Hugues, S. & RANDRIAMAMPIANINA, A : An improved projection scheme applied to pseudospectral methods for the
incompressible Navier-Stokes equations. Intl. J. Numer. Meth. Fluids 28 (1998), 501-521. :

4 Raspo, 1. :Méthodes Spectrales et de Décomposition de Domaine pour les Ecoulements Complexes Confinés en Rotation.
Ph. Deg. Thesis, Universite de la Méditerranée (1996)

5 CRESPO DEL ARCO, E., MAUBERT, P., RANDRIAMAMPIANINA, A. & BoNnTOUX, P. : Spatio temporel behaviour in a
rotating annulus with a source-sink flow. J. Fluid Mech. 32 (1996), 1-27.

6 SERRE, E. & PuLICANI, J. P. : A 3D pseudospectral method for convection in a rotating cylinder. Computers and Fluids
(in print).

7 SIRIVAT, A.: Stability experiment of flow between a stationnary and rotating disk. Phys. Fluids A3 (11) (1991), 2664-2671.

8 SCHOUVEILER, L., LE GAL, P., CHAUVE, M. P. & TAKEDA Y. : Spiral and Circular waves in the flow between a rotating
and a stationary disk. Experiments in Fluids 26 (1999), 179-187.

9 Savas, O. : Stability of Bédewadt Fow. J. Fluid Mech. 183 (1987), 77-94.

10 FALLER, A. J. : Instability and transition of the disturbed flow over a rotating disc. J. Fluid Mech. 230 (1991), 245-269.

11 SErrE, E., Hucugs, S., CRESPO DEL ARCO, E., RANDRIAMAMPIANINA, A. & BonToux, P. : Spiral and circular
instability patterns in an Ekman boundary layer flow. Int. J. Heat Fluid Flows (in print).

12 CALDWELL, D. R. & VAN AtTA, C. W. : Characteristics of Ekman boundary layer instabilities. J. Fluid Mech. 44
(1970), 79-95.

Addresses: DR. SERRE E., DR. Raspro 1., Pror. Bonrtoux P., L.A.B.M., CNRS / Université Aix-Marseille
II, Technopdle de Chateau-Gombert, 38 rue F. Joliot-Curie, 13451 Marseille cedex 20, France; email:
serrel@13m.univ-mrs.fr.

PrROF. PEYRET R., Laboratoire J. A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose -
BP 71, F - 06108 Nice Cedex 02




Minisymposium 5 S37

SOLONNIKOV, V.A.

L,-estimates of solutions of initial-boundary value problem for generalized
Stokes equations

We prove the solvability of the Cauchy-Dirichlet problem for generalized Stokes equations and obtain coercive esti-
mates of the solution in anisotropic Sobolev spaces.

Keywords: Stokes equations, Non-newtonian fluids, Hydrodynamical potentials.

The present communication is concerned with the initial-boundary value problem

%+A(m,t,%)ﬁ+Vp=f(m,t), V-7=0, zeQCcRE te(0,T), (1)

¥(z,0) = To(x), i(z, t) s = d(z,t), (2)

where unknown are a vector field #(z,t) = (v1(z,t),v2(z,t), v3(z, t)) and a function p(z,¢). By A we mean a matrix-
formed differential second order elliptic operator with real coefficients and by Ap we mean its principal part, i.e. the
sum of all terms in A containing derivatives of the second order. We assume that the matrix Ao (z,t,4€) is positive
definite for arbitrary £ € R® and for arbitrary fixed = € Q, ¢ € [0,T]. The domain § is bounded, 5 = o0.

When A = —V?2I, then (1) is a well known Stokes system. The system (1) arises as a result of linearization of
equations of motion of non-newtonian fluids.

Our main result is the following existence theorem for the problem (1), (2).

Theorem 1. Assume that S € C3, coefficients of A are bounded and the leading coefficients are continuous
in (2,2) and belong to W2(2), 1/g < min(1/p, (p— 1)/p,1/3) + 1/3, p > 1, for all t € [0,T]. Let the data f(z,1),
To(z), d(z,t) possess the following properties:

1. fe L(Qr), 5o € W22/P(Q), &, € W2TY/PIY2P(81), @it € Ly(0,T; Wi H/7(S)) wherep > 1, Qr = 0x(0,T),
Sr=Sx(0,T), & = a— (i - a);

2. there hold the compatibility conditions V - ¥ = 0,

170(51") s = E(I,O), if p Z 3/27 (3)
and the condition
LI A(z,1) (4)
ot =divg )

where 7 is the exterior normal to S, divs is the divergence on S, Ae L,(0,T; W,}—l/”(S)), The equations Uo(z)-7|s =
@(z,0) -7t and (4) are understood in a weak sense, and Go(x)-|s = @ (z,0) is understood as an equation between two

elements of the space W,?”””(S), if p> 3/2, and as the condition of the boundedness of the integral

T
dtdS.dy
I= 3. (z,t) — Tor (y)|¥/ 2 —— 2
/o /Q/s' (@8) =% W (e =y + 572

if p=3/2 (the function 7 in the ezpression ¥y, is extended from S into Q with the preservation of class).

Then the problem (1),(2) has a unique solution ¥ € W2 (Qr), Vp € Ly(QT), and the solution satisfies the inequality

112,53 gy + 17212, 0y < (1L, @y + 101 2o
T

|
0

T
+”6TH€V:—1/PJ-—1/(2P) (1) + / |d(1 t) ) ﬁ“f}‘,}?—l/ﬁ(s)dt + A ||A(7 t)”f}V;—l/P(S)dt + IP[aT’T]) (5)
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where

- : - , - 1T ,
Lld.,T)=0, if p> 3/2, Ip[aT,T] =1, if p=3/2, Ip[ar,T] = W‘/ ||ar(-,t)||7£p(s)dt, if p<3/2.
0

V Similar theorem holds in the two-dimensional case.

For the Stokes system Theorem 1 is proved in [1] but with somewhat stronger norm of @ - 77 in the right hand
side of (5). '

A fundamental role in the proof of this estimate is played by the analys1s of the model problem for the
generalized Stokes system with constant coefficients in the half-space, namely,

31: +Ao(—)u+V = flz, 1), V-i=0, z€R3, t>0, i(z,0) = do(z), (6)
gz-}-Ao( w)'D’—FVp:O, V-7=0, zeRy, t>0, ¥(z,0) =0, 7 Oi&'(z’,t) (7
: v z3=

where R} = {z3 > 0}, 2’ = (z;,22) and Aoz g ~) is an elliptic operator with constant real coefficients containing
only second order derivatives. The ellipticity means that the matrix 4y (i€) is positive definite for arbitrary ¢ € R®.
As shown in [2], the solution of the problem (7), (8) can be represented in the form of the simple layer potential

3 t
- w(t) = Z /0 /1112 Tim(z' —y', 23, — TR (y', 7)dy'dr, k=1,2,3,
m=1

3 t
plz,t) = —— \/—W ~h(y', t)dy' + E 1/0 /]R2 Tim(@' =y 23, = T)hm (y', 7)dy'd,
e

where T, are elements of the fundamental matrix of solutions of the system (6) and hy, are linear combinations of
some pseudodifferential operators applied to a; which can be written in the form

2
hk(zl’t)_(c’iat ;azﬁ Z// (' —y',0,t — T)a;(y', 7)dy'dr

3 t
+ Z / / Wim(z' — o', ¢ — T)am(y’,r)dy’dT), k=1,2,
m=170 JIR?
h3(:c't)=(—a~—22: & Z// Wsi(z' —y',t — T)a;(y', T)dy'dr
o ot = 81% J J
_1' a3
T JR2 IZ’—yI

// Was(z' —y',t — T)aa(y', 7)dy’ d’r)

where hy = (F'L)~hy, F'L is the Fourier-Laplace transformation with respect to z1, To,t, F(m t) is a fundamen-
tal solution of the heat equation in IR3. The functions Tym(2,t), T4, (2,t) and Wi, k,m = 1,2,3, satisfy the
inequalities : .

1D} T (2, )] < c(li)(jef? + )= C+HID2 DI (3,8)] < e(l])(Jal? +£)= D72,

DL Wi (@', 0)] < c(G)(|o'2 +)"C+ID/2, kim <6, DL Was(al,t)] < ()t 2 (0! |? + £)=CHiD/2
for arbitrary ¢t > 0, and they vanish, if ¢ < 0.

We show that if
Oas(z1,22,t) _ OA " 04

TR R . ®
(which should be understood in the same sense as in Theorem 1), then’

a(z1,22,0) =0

P
”‘U“ W2 1(1R3 x(0,T)) + ”vPHL (]R3 x(0,T))
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2 T 2 T
1
p ||P
c( § 1: ”hjl]zi/;—l/”"/z‘l/”)(mzx(o,T)) +/0 ||h3('at)”W;—1/p(IR2)dt+ Tp/2—1/2 § 1:/0 ”hJ”LF(]Rz)dt>

Jj= i=

2 T o
SC( § 1:”ajIIl‘),i,i—llp.l—ll(h)(Isz(OyT) / ]|a3( )H w2 1/p(m2)dt+/0 ||A('7t)”:;i,;—l/p(m2)dt

]:

2 T
1
T /0 las 1 yt)- (9)
j=1

Here the dot over W indicates that the corresponding norm is homogeneous and contains only principal terms,
for instance,

T
=P (. ]“
lall®. s <01 /0 (||Dtu( L(]Ra)+||z: \DZ (-, )11, (ms))dt.
=2

Inequality (9) and the estimate for the solution of the Cauchy problem (6)

I oz + 170 x0) € (T oo 1600 -2 ) (10)
(obatined also in [3]) make it possible to prove (5) by a standard Schauder procedure (cf. [2]).

Let us say a few words about the proof of this inequality. We introduce a vector field w(z,t) = V&(z,t) where
® is a solution of the Neumann problem

26 =0, z€Q, 8—q’| =d i
onls

The problem is solvable, since [ @ - 7dS = fot dr [ divs A(z, 7)dS = 0, and, as shown in [4],
192y ) + 120, oy < (108 B i g + GO 1)

For the differences #, = 7 — V®, p; = p + ®; we have the problem of the same type as (1), (2) but with @- 7 =0,
so we assume that this condition is satisfied by @ in (2).

Let us estimate ¥(z,t) and p(z,t) in the neighbourhood of arbitrary point z(® ¢ S on a small time interval
(0,%0) (this restriction is easily removed). Assume that the point 2(°) coinsides with the origin of our coordinate
system and that the zs-axis is directed along the interior normal 7i(z(®)) = 7(0). Let z3 = F(z1,%2) = F(2') be
the equation of S in d-neighbourhood of the origin, and let ¥ (y), A € (0,d/2), be a smooth cut-off function equal
to one for |y| < A, to zero for |y| > 2) and satisfying the inequalities 0 < ¥ (y) < 1, [DIYA(y)] < ¢(4)A~ i, We
make the change of variables near the origin, according to the formula y' = ', y3 = 23 — F(z'), and we introduce
the functions @ = ¥\¥, ¢ = ¥p. They satisfy the relations

ot

% +Aoo( )u+Vq—f¢>\+(V V) + (Aoo — A)it + fi(y,t) = h(y,1), (11)

V.-i=(V-V)-d+7 Vi = g(y,t),
@m0 = ToCx,  Ulys=0 = A0 (12)
G ant: T — (2 CI:) 8.
where V is a transformed gradlen:c‘. v = (3gr — 1315173" Bz ™ v2 T35 Brs
Ao (0,0, ay) = Ay(0,0, %) and fi = A(Uy)) — Y AT + pVn. We extend @ and g by zero into the domain |y >
2, y3 > 0 and we consider (11), (12) as equations in R3.

2.} A is a transformed operator A, Ago( 6y) =

Further, we introduce the vector field @, (y,t) = V¥(y, t) where ¥ is a solution of the Neumann problem

o

V20 = g(y,t), yelR3, —
gy,t), v o

= rag(y',1).
Then @) =4 — VY, ¢1 = g+ ¥, satisfy the relations

ot -
;tl-i-Aoo( )u1+Vq1=h1, V-i=0
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allt:O = UOC)\ e V‘I’(.’E, 0) = ﬁo, a|y3=0 = é"w)\ - V\Il(y:t)ly:;:O = g(y,’t)

where El =h- Aoo(a%)u'il. It is easily seen that b3 = 0. The function ¥ is given by
U(y,t) = —/ MVF(?;’) - (z,t)dz + / N(y,2)7- Viprdz + / N(y,2',0)(as — VF - @)y (2',0)dz’
Ry Oz 5 R?

where N is the Green function of the Neumann problem in IR3. The function D;(a3 — VF - &) is representable in
the form (8), so we may estimate ), with the help of the Calderon-Zygmund theorem and of the well known bounds
for L,-norms of the second derivatives of the solution of the Neumann problem in IR . The functions @, ¢; can be
estimated by inequalities (9), (10). If A and ¢, are small enough, standard calculations lead to

123 0+ IVPIE, 0.0 S (T @0y + 1501, g+ Vo maciran s, Fplrd 1)

2X,

eIV, gy 0 + 1912, uny + 1B 000y): VEE (O,0)

where O\ = {z € @ : |z] <A}, Qar = Uy X (0,8), Sx =90\ NS, Tr: = Sy x (0,t). The same estimate can be
obtained in the neighbourhood of arbitrary point {2, so we arrive at

190525000y * 1VPNE ) < (1 15012 o+ N1 g, + Tl 1)

+(IVT, g + I51%, @y + 81 (0 VEE (0,t0):

We consider p as a solution of the Neumann problem

Vip=-V.(47- ), | =i (a7~ fls

which allows us to show that
lp(s )z, @) < C(HVUHLF(Q) IVl + 190, + llﬂlLP(n)), vt € (0,to)

(cf [1]). The norms of V¥ and @ can be estimated with the help of interpolation inequalities and of the Gronwall
lemma which leads to (5).

The work was done at the Mathematical center (CMAF) of the University of Lisbon whose hospitality is
gratefully acknowledged.
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SCHIRMACHER, ROLF

The Use of Active Vibration Control for the Reduction of ICE Interior Noise

First generation ICE high speed trains show a disturbing low frequency noise of about 100 Hz audible inside the
coaches. Tt is excited by unround wheels, propagates via the bogie to the body of the coach and is finally radiated as
airborne sound.

A mized concept of active suspension at the bogie in connection with adaptive residual noise minimisation
inside the passenger compartment is successfully applied to the problem. A prototype system utilizing piezo ceramic
actuators was installed and tested on the rolling rig of Deutsche Bahn in Munich. The noise level reductions at
single harmonics were more than 12 dB averaged over the whole compartment and more than 20 dB at single seats.
Measurement results and practical ezperiences with the system are reported.

1. Introduction

Low frequency interior noise poses an important problem for modern high speed railcars. One example for such a
railcar is the German high speed train ICE. With the first generation of this high speed train, ICE 1, DB (Deutsche
Bahn, German Rail) is operating high speed rail connections with up to 280 km/h. The intermediate passenger cars
of this train, equipped with bogie type MD 530, exhibit low frequency vibrations at about 100 Hz. These vibrations
are excited by unround wheels (with the fourth harmonic of the wheel rotational frequency being at the 100 Hz
range at about 200 km/h and the third at about 250 km/h, both typical operational speeds for the German high
speed rail network) and the sleepers below the rail (the sleeper passing frequency of 100 Hz corresponds to a speed
of 216 km/h).

The bogie constitutes a double elastic suspension, set up by a primary suspension directly on top of the axle
bearings and a secondary suspension below the bogie bolster. Figure 1 shows a drawing of the Bogie MD 530. The
secondary suspension exhibits spring resonances at the 100 Hz region, but there are also further resonances at this
frequency range at different parts and subsystems of the railcar.

Friction blocks |

Bogie bolster |

— e e
= |
pot
= |
)
Primary suspension / Secondary spring I
TSR TN i RTE TERN

Actuators for AVC

Figure 1: Bogie MD 530 as used at the ICE 1 passenger coaches. The car body is loaded on top the friction blocks.

The car body itself is a large (26.4 m long, up to 3 m wide) aluminium structure with a high modal density of
structural as well as acoustical cavity modes. The vibration enters the body through the bogie-body interface and
is well predictable because of the harmonic excitation.

2. Active Vibration Control Concept

As the railcar body is supported by only two friction blocks on each side of the bogie and there are no clearly visible
flanking transmisson paths (e.g., no large dampers in parallel to the secondary suspension), it was decided to set
up an active vibration control system which actuates at the bogie-body-interface [1,2]. By this, four point forces
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should be sufficient for an active control system supressing the vertical vibration. The horizontal degrees of freedom
were assumed to be of minor importance, as the secondary spring should be softer in the off-axis plane. Preliminary
experiments and field measurement data (high speed train rides) gave a need for an active control force of about
200 N at 90 Hz for a predominant wheel harmonic. This was set as a design target for the actuator systems. By using
actuators at this interface, the necessary control forces are comparatively low because the whole passive suspension
is still used to reduce them.

As there surely are flanking transmission paths in parallel to the friction blocks, it was decided to use error
microphones distributed inside the car as control inputs. By this, some aspects of Active Structural Acoustic Control
(ASAC, minimisation of the radiated air-borne sound instead of some structural quantity) are combined with aspects
of active vibration isolation (cutting the power flow at some prominent points). This concept turned out later on
to be a key element of the success of the system as it really shows that acoustic minimisation does not necessarily
imply the minimisation of vibrational quantities. '

To generate the compensation signal for the actuators, a feed-forward scheme utilizing a revolution counter was

used. By this, any feed-back problems of the actuator output to the control system reference signal are eliminated.
This controller design lead to a very robust active system.

3. Actuator System

The most critical system components are the actuators. This is a very typical situation for active noise and vibration
control. For the active control of the 100 Hz vibration, about 200 N at 90 Hz are needed on each side of the bogie
according to preliminary investigations. The actuators also have to fit into the bogie design with its space restrictions.
As a result, piezoceramic driven inertial mass actuators were developed. These actuators fit into the free space of
the inner secondary suspension springs even under all driving conditions of the bogie. Figure 2 shows a sketch of
such an actuator system.

Figure 2: Inertial mass actuator system as used for the active control of the ICE 1 vibrations. 11 kg lead mass
suspended from a piezoceramic drive unit with a maximum amplitude of 140 um,, and fitting into the inner
secondary suspension spring.

The inertial mass is a lead hull mass carried by an inner steel element. The drive unit is a stacked high voltage
piezoceramic actuator giving a maximum displacement of 140 pm,,. Two of these elements, each hanging inside the
inner secondary suspension springs, give the necessary dynamic force at each side of the bogie bolster. The piezos
were driven by a 100 W high voltage amplifier each.

As the actuator systems could be made out of commercially available key components, these actuators were

very cost-effective for the experiments. Further on, much experience on the practical applicability of new’ actuators
was gained throughout the development as well as the experimental work.

4. Experimental Results

A bogie MD 530 was equipped with the active vibration control system as described above and mounted below an
ICE 1 intermediate car. The whole car was tested on the rolling rig of DB in Munich. This research facility allows
test drives up to more than 500 km/h, curve simulations by car tilting and low frequency (up to about 20 Hz) track
simulation of previously measured existing railway lines. By this, the sleeper passing frequency is not modelled on
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this test stand, but the whole range of vehicle ride dynamics is modeled by the facility.

Tests were performed with different wheelsets showing different unroundnesses of the wheels, for different
speeds, for run-ups, for different simulated lines and with and without tilting for curve simulation. At all these
various conditions, interior noise reductions in the 80 to 120 Hz range (the working range of the control system)
were found. With constant driving conditions, for single wheel harmonics, spatially averaged reductions were more
than 12 dB with single seat reductions higher than 20 dB. Figure 3 shows some typical results in the upper half.

Active interior noise control with piezo actuator
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Figure 3: Spatially averaged sound pressure level inside the ICE 1 passenger car at a rolling rig test drive with
160 km/h, extremely unround wheelset. Top: working range of the active control system showing about 12 dB
spatially averaged reduction at the fifth harmonic at 98 Hz while also operating on the fourth and sixth harmonic
(the system was not set up to work on the second wheelset with a slightly higher diameter and thus lower freqencies
as well, the 95/110 Hz harmonics are excited by this second wheelset). Bottom: Frequency range of the second
harmonic of the working frequencies, showing sound pressure level increases due to piezo nonlinearities.

As shown on the lower half of figure 3, the actuator drive units are not usable that way for a practical system.
Due to the nonlinearities of the piezocreamic based on the varying dynamic load during the cycle as well as on the
hysteresis, the ceramics produce quite significant higher harmonic distortion. As the actuator system was driven
below its mechanical resonance, these distortions are further amplified in terms of dynamic force compared to the
displacement nonlinearities typically stated for piezoceramic materials. As a result, the sound pressure level did for
some measurements notably increase at the higher harmonics frequency range, mostly for the second harmonic of
the active control frequencies.

This drawback does not only occur with piezoceramics but was also shown with magnetostrictive materials at
test stand experiments in a comparable environment [4]. Although much research is focused on that topic, including
modelling and real-time control strategies for the materials, no practical solution has been found so far.

Nevertheless the validity of the concept and the feasability of active interior noise control for high speed railcars
was demonstrated by the experiments as high reductions of the interior sound pressure levels were reached.

Figure 4 demonstrates the validity of the concept regarding the mixture of active suspension and interior noise
control. In that figure, the sound pressure level distribution inside the car is shown with the system switched on and
off for a 200 km/h test ride. As can be seen, the sound pressure level is reduced through the whole interior space
by the application of only four dynamic point forces. It should be noted that the horizontal vibration levels at the
bogie bolster as well as some vertical vibration levels, e.g., at the floor of the passenger compartment increased due
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to the operation of the active system. This clearly demonstrates the benefits of the concept of error microphones
and compensation forces.

Active Interior Noise Control at the ICE 1
Sound Pressure Distribution, v=200 km/h, Frequency Band 95 to 100 Hz
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Figure 4: Sound pressure distribution in the 95 to 100 Hz band inside the ICE 1 passenger compartment, at a test
ride with 200 km/h on the rolling rig. Active system off (top) and on (bottom) showing the global reduction through
the whole interior space.

5. Conclusion

The feasability of an active low frequency interior noise reduction system for a high speed train was demonstrated by
rolling rig measurements. A concept of sound minimisation by control forces showed up to be essential for the sucess
of the system. The piezoceramic actuators showed to be unusable for practical applications due to nonlinearities.
Nevertheless, significant noise level reductions in the working range of the system were demonstrated.
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STOBENER, U.; GAUL, L.

Active Vibration and Noise Control by Hybrid Active Acoustic Panels

In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures
is proposed. The treatment is manufactured as sandwich structure and is called Hybrid Active Acoustic Panel. The
passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of
the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain
frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the
active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout
o Hybrid Active Acoustic Panel is manufactured and experimentally tested. The ezperimental results validate the
proposed concept.

1. Introduction

Different concepts of hybrid passive and active damping treatments have been developed and proposed, such as
the Electro Mechanical Surface Damping [2,3] and the Active Constrained Layer Damping [1]. Most of these
hybrid damping treatments are designed to enhance the viscous damping by increasing the shear or compressional
deformation of the passive layer or to create additional energy dissipation in electric shunts. The Hybrid Active
Acoustic Panel, which has been first proposed in [4], is not designed to improve passive energy dissipation but to
combine viscous damping effects and active control moments.

A hybrid system for acoustic applications is proposed by VEERAMANI AND WERELEY in [6]. Their hybrid system is
developed in order to reduce the sound transmission between a sound source and a receiving chamber and is based
on a Kevlar-epoxy composite plate. The used damping layer (3M Scotchdamp ISD-112) is embedded within eight
Kevlar plies and one PZT actuator is bonded to one surface of the plate. In contrast to this hybrid treatment the
Hybrid Active Acoustic Panel is designed to reduce the sound radiation of an existing housing.

excited mode shapes excited mode shapes
sound source

with
housing

sound source
[ with
housing

sound radiation 5 sound radiation

Figure 1: Concept of the Hybrid Active Acoustic Panel

Passive damping measures for the reduction of noise radiation from vibrating structures such as damping coatings
or absorbers are successfully used especially for the high frequency range. On the left hand side of Fig. 1 the
housing of a sound source is depicted. The housing is covered by a foam mat. The vibration of the housing causes
deformations of the foam mat and due to the viscoelastic material behaviour damping takes place. The dissipated
energy reduces the structural vibration and the related sound radiation as well. The reduction in the low frequency
range is more difficult because the increase in space and weight is significant. Compared with passive measures,
active vibration control efficiently reduces sound radiation for low frequencies by lightweight actuators. On the right
hand side of Fig. 1 the foam mat and an active plate is bonded to the outer side of the housing. The remaining
vibration in the low frequency range is now counterbalanced by the bending moments generated by the actuators.
Therefore a combination of passive damping layers and active vibration control leads to a broadband reduction of
sound radiation by a minimum of additional mass with respect to the housing.
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2. Selection of the passive layer thickness

The Hybrid Active Acoustic Panel consists of a foam mat and a thin aluminum plate, as shown in Fig. 1 and 2.
For high sound absorption coefficients the foam is made of a melamin resin. The coefficients are listed in Table 1
for two different thicknesses and five different frequencies. These data are adopted from the manufacture data sheet
and are defined by DIN 52212. It can be seen that the absorption increases with higher frequencies.

[ frequency | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz |
sound absorption coeflicients (10mm mat) | 0.06 0.08 0.10 0.17 0.31 0.38
sound absorption coeflicients (20mm mat) | 0.07 0.09 0.16 0.30 0.54 0.76

Table 1: Sound absorption coefficient of the foam mat

The selection between the two thicknesses depends on the sound absorption coefficients and the number of modes
in the low frequency range. Regarding the 10 mm foam mat an appreciable decrease of radiated sound is achieved
for frequencies higher than 1000 Hz. Approximately the same order of sound reduction can be obtained by using the
20 mm thick foam mat for frequencies starting from 500 Hz. Therefore the frequency limit mentioned in the abstract
of this paper is 1000 Hz for the thin mat and 500 Hz for the thick plate.

'The number of eigenfrequencies and the eigenfrequencies w; of the base plate with free boundary conditions can be
calculated analytically by the equation

A2t E
A | B )
a 12p(1 — v2)

where p is the plate density, E is the Youngs modulus, v is the Poisson ratio and t, is the thickness, a is the
lenght of the plate. A; is a factor which depends on the nodal pattern and the boundary conditions as formulated
e.g., by WARBURTON in [7]. For p = 2700kg/m®, E = 70000 N/mm?, t, = 10mm, ¢ = 500mm the number of
eigenfrequencies between 0 and 500 Hz is 2 whereas between 0 and 1000 Hz 7 eigenfrequencies are calculated. Taking
into account that the control of 7 modes is possible and a minimum of mass and volume is desired for the hybrid
panel the 10 mm foam mat is chosen for further investigations.

Figure 2: Base plate, 10mm and 20 mm foam mats and aluminum plate

3. Layout of the active plate

Since a modal controller is used for the active vibration reduction the mode shapes of the Hybrid Active Acoustic
Panel are required. The panel is a multilayer structure with nonlinear and nonisotropic properties, therefore the
determination of the mode shapes is difficult. In a first step the modes of the base plate are calculated. For the

calculation Kirchhoff plate theory and the formulas of WARBURTON [7] are used, where the characteristic beam
functions,

¢1(z) =1 form =0, qSl(x):l—%E form =1, (2)

z 1 z 1
1(z) = cosmy (E - 5) + ky coshy; (E — 5) form = 2,4,6, ..

1
¢1(z) = siny, (— - 5) + kg sinh o (— - %) form = 3,5,7,... ,

with k; = ‘M, tan 0.5y, +tanh0.57, = 0, kg sin 0.572

Sinh 0.5, , = m, tan 0.5y, — tanh 0.5y, = 0,
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approximate the shapes. The same functions are used for the y direction. The results of the calculation are shown
in Fig. 3 in the upper row. In a second step the mode shapes of the base plate are evaluated by an experimental
modal analysis. These results are listed below the calculated modes in Fig. 3. Obviously the calculation and the
experiment leads to the same modes.

Since the bending stiffness of the base plate is much higher than the stiffness of the foam mat and the active plate
it is assumed that the mode shapes of the hybrid panel are dominated by the shapes of the base plate. In order to
validate this assumption a modal analysis is carried out for the coupled hybrid structure. It has to be noticed that
the results of this analysis have to be discussed carefully since modal analysis is based on linear theory. Therefore
the results, which are depicted in the lower row of Fig. 3, have to be interpreted in the context of the results for the
base plate and under the mentioned assumption. Only the modes (2,0), (2,1), (3,0) and (0,2) are identified for the
hybrid panel whereas the modes (1,1) and (1,2) do not occur.

mode shapes
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Figure 3: Calculated and experimentally evaluated mode shapes

Using the information of the identified modes the PVDF sensors are placed at the locations of maximum strain
which correspond to the locations of maximum curvature. The sensors are arranged in an array and their outputs
are assembled by a modal sensor matrix in order to filter modal displacements or velocities respectively. Therefore
the condition of the modal sensor matrix has to be taken into consideration for the sensor placement. Details of the
sensor placement are discussed in [5]. The determined sensor positions are indicated by the shaded areas in Fig. 4.

The creation of the actuator layout is based on the idea to represent the actuator function by bending moments
along their edges. Therefore the actuator edges have to be adapted to the nodal lines of the mode shapes. The
actuator design is also discussed in [5]. According to the mentioned design rules the layout shown in Fig. 4 has been
created. The white arrows indicate the direction of induced strain.
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Figure 4: Test panel

4. Experimental test of the panel

For experimental investigations the manufactured Hybrid Active Acoustic Panel is clamped into a wooden frame
which is a part of an acoustic enclosure. To obtain free boundary conditions rubber strips are used as spacers between
the frame and the base plate of the test structure. At the outer side of the acoustic enclosure an electromagnetic
shaker is connected to the base plate. Inside the enclosure three microphones are positioned to sense the radiated
sound pressure. Microphone 1 is located at the center of the upper edge of the panel, microphone 2 is placed at
the right upper corner of the panel and microphone 3 is positioned at the center of the panel. The distance of all
microphones to the surface of the panel is 20 cm. Swept sinusoidal excitation of 3 Newton amplitude is used to
generate the vibrations and to acquire the radiated sound pressure for a frequency range from 0 to 800 Hz. This
measurement is done for the base plate without coating, the hybrid panel without active control and the hybrid
panel with active vibration control. The results are plotted in Fig. 5 and it can be seen that a significant reduction
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is achieved by the passive layer. The active component enhances the reduction especially for the mode (3,0) since
the chosen actuator layout enables a high controllability for this mode.
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panel without foam mat -~ panel with 10mm foam mat e panel with 10mm foam mat and control

Figure 5: Sound pressure for the panel with and without control

By using the same experimental setup but replacing the microphones by a sound intensity probe the radiated sound
power is acquired. The results are shown in the bar charts of Fig. 6. Obviously the main reduction is achieved by the
passive layer and the active component generates an additional decrease of the sound power. The great advantage

of the active component is its variability. By modifying the controller the radiation characteristics can be changed
in a preselected way, e.g., to suppress dominant harmonics.
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Figure 6: Sound power for the panel with and without control
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Friction Induced Vibrations and Mode Lock-In

In this paper the phenomenon of mode lock-in is investigated, which occurs in structures where vibrations are
excited by frictional contact forces. In general “mode lock-in” denotes the coupling of substructure modes which
form the vibratory response of the assembly. To study this effect an experimental beam-disk set-up was built and
a corresponding FE model was generated. A friction model is formulated which incorporates the surface roughness
by a statistical distribution. The time-stepping solutions of the FE model were checked for system resonances and
compared to the experimentally observed mode lock-in.

1. Introduction

Friction-induced oscillations occur in many physical systems. A system of great practical importance is, e.g. the
brake. Disc brakes can develop large sustained oscillations which are heard as “brake squeal”. At present, no
comprehensive model for the many phenomena of brake squeal exists. This paper presents a novel approach to the
numerical modelling of brake squeal as a friction-induced oscillation. As a highly simplified physical system the
beam-on-disc device is used. This apparatus has the advantage of reduced complexity by well-defined components
and boundary conditions; well-defined confined contact area and a simple friction couple. However the dynamics
of the beam-on-disc device has characteristic features of more complex systems. Friction in the plane of the disc
leads to large out-of-plane oscillations of the disc; modes of the components “lock” into new “assembly modes”
when coupled through a friction interface. The beam-on-disc device is therefore a well-suited test object for the
development of numerical representations of contact laws.

2. Mode lock-in

The investigated system consists of two components (beam and disc) whose dynamics (natural frequencies and
vibration modes) are well understood, when they are considered separately. The assembly, as coupled through
a friction interface, has somewhat different system frequencies and modes. Non-linear friction coupling causes
particular modes of the components to lock into one another. When mode lock-in takes place, a special base
frequency with all of its higher harmonics can be observed in the resonant-like system response [1]. For example,
when the second bending mode of the free beam and the (0,3) mode of the free disc are almost equal in frequency,
lock-in occurs at almost exactly that frequency.

3. Experimental beam-disc set-up and FE model

The mode lock-in test set-up consists of two subsystems, a rotating disc and a clamped beam on a slide-way (Fig. 1,
left). The disc has a diameter of 358 mm and a thickness of 25 mm. The beam has a variable length from 0 mm
to 200 mm to vary its natural frequencies and a square cross section of 10 mm. The normal load on the beam is
generated by weight (adjustable from 0.5 kg to 5 kg) which presses the two subsystems together. The vibrations
during squealing of the disc are measured by a triax laser vibrometer whereas those of the beam are recorded by

Figure 1: Experimental beam-disc set-up and FE model
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a triax accelerometer. Noise generated by friction-induced vibrations is measured by a %”-microphone. All of the
experiments are conducted with a direct aluminum to aluminum contact at the friction interface. The complete FE
model, with its refined contact area, used to simulate mode lock-in, is shown in Fig. 1 (right). The domain of the
beam-disc model is discretized by first-order hexahedron finite elements only. From the number of nodes (4582) and
the additional degrees of freedom by contact, one obtains 14288 DOF's altogether. Rigid beams are fixed between
the center and the inner diameter of the disc. By rotating the center nodes, a circular movement of the disc is
generated. In order to bring both components of the friction couple into contact a force is applied at the end of the
beam.

4. FE model update

For improving the fit between simulated and experimental results, it is necessary to update the dynamic behaviour of
the FE model corresponding to the experimental set-up. As a first step, both beam and disc are updated in free/free
boundary conditions using natural frequencies and mode shapes measured by experimental modal analysis (EMA).
Secondly, another EMA of the assembly is carried out. Using these data, the real acting boundary conditions and
the modal damping values are taken into account by means of 3D springs and the Rayleigh damping approach in
the numerical model. The model update is performed in a frequency range of 300 Hz to 20 kHz where besides the
well-known out-of-plane modes several in-plane modes are identified as well. Fig. 2 shows the two mode shapes in
assembled condition and identified by means of EMA which are involved when mode lock-in occurs.

#//I/o‘\‘\\\‘ N
"’.||= :'.“ fBeam,m = 2095 Hz

fBeam,c = 2101 Hz

i

Figure 2: Squealing mode shapes of disc and beam (m=measured, c=calculated)

5. Contact laws

In order to obtain realistic surface parameters for the simulation, a contact interface model [3] based on a statistical
description of the surface roughness is used to derive a non-linear constitutive description for normal- and tangential
contact. A number of assumptions are made: elastic contact of metallic surfaces; contact points do not interfere
with each other; isotropic surface roughness; surface parameters do not change with time; dry friction.

Normal contact: Using these assumptions, each local contact area can be described by Hertzian theory. The
normal force K; to compress a summit i with normalized curvature s in contact with a plane is given by

4

1 3 s
Kin)=<E——((-n)%20%
i) = 3E = -l )
with the normalized gap function 7, Young’s modulus E, root mean square value of the curvature 0%, normalized
height of the summit above a reference level ¢ and the root mean square value of the height distribution of summits .

Tangential contact: The tangential load-displacement function is formulated under the assumption of a total
contact radius a calculated by Hertzian theory and a constant shear yield strength 7maz of the Jjunction. The
tangential force @; of an asperity ¢ with the normalized relative tangential displacement v is given by

7r 1-a3
Qi(v,n) = ngm,,a2 [(1 - a2) + 2ﬁ (2)

with the relative radius @ between slip and stick areas.

Contact laws: For the implementation in a macroscopic model the relations have to be distributed on the apparent
area of contact. This is done via a statistical model of the surface, which assumes that the distribution of heights
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is Gaussian. With the probability P for a summit with normalized curvature s and height {, the apparent normal
contact pressure p of all summits above 7 and the tangential contact stress 7 as a function of v and 7 are given by

o) = 35 7 7 Ki()P(Go)dsde,  m(v,) = 37 ]o 7, Qv )P(G, )ds d¢ ©
7 0 n O

with resolution & of a square grid of points for the surface roughness measurements.

Fig. 3 shows the constitutive laws of the contact interface using the equations above and surface roughness data of
both beam and disc measured by laser scanmng profilometry with a resolution h of 1 pm. The material is aluminum
and the material parameters are E = 70000 —=, Poison’s ratio ¥ = 0.33 and Tyaz = 385 7 mm2
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Figure 3: Normal and tangential contact law

The friction relation, as shown in Fig. 3 (right), is implemented in a standard FE code [2] by means of a user
subroutine using a radial return mapping approach. Whereas the normal contact law (see Fig. 3, left) is defined as
a piecewise-linear pressure-clearance relationship in tabular form.

6. Results

Experimental results: The experimental part is carried out using the test equipment shown in Fig. 1 (left).
The test conditions are as follows: beam length = 151.5 mm (with a second beam eigenfrequency of 2095 Hz);
rotation speed = 2.4 RPM (corresponding to an average disc velocity of 40 ™ at the contact location); contact
angle = 4° (between normal vector to the disc and neutral axis of the beam); normal load =15 N.
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Figure 4: Spectrum from lock-in response for disc (left), beam (middle) and near field sound spectrum (right)

Fig. 4 shows an example of mode lock-in where the spectrum contains a dominant frequency and all of its higher
harmonics. The lock-in frequency is determined by the third eigenfrequency of the disc (2256 Hz). However the
experimental data show, that lock-in does not occur at exactly that frequency, but at a slightly lower one (2215 Hz).
In contrast to the spectrum of the beam (Fig. 4, middle), which contains seven harmonics, the frequency response of
the disc (Fig. 4, left) shows four harmonics only in the frequency range considered. Furthermore, it can be observed
that the amplitudes of the beam harmonics decrease monotonically, whereas the amplitudes of the disc harmonics
show a completely different behaviour. To verify the results described above, squealing generated during mode
lock-in (Fig. 4, right) was measured. The sound spectrum has likewise a dominant frequency and higher harmonics.

Numerical results: In the following section the FE model developed previously is applied to a non-linear time-
marching solution. Beam length, rotation speed, contact angle and normal load are equal to the values used in the
experimental part whereas the friction relation, found in Section 5, is varied.
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Figure 5: Onset of friction-induced vibrations in time domain (left), frequency domain (middle) and considerations
on excitation energy (right)

Fig. 5 depicts the simulation results using the equivalently scaled friction relation (u(p = 14 % = 0.45) if
mode lock-in takes place. Both beam and disc vibrate at the same frequency, although the natural frequencies of
the two sub-systems do not match (Af = 157 Hz). It is evident that the oscillations of the system are actually
friction-induced and self excited. They grow as a function of time (see Fig. 5, left) and reach a steady state after
a certain period of time. By means of a FFT (Fig. 5, middle) it can be shown that the system responds with a
dominant frequency (2017 Hz). The higher harmonics can be observed as well. Fig. 5 (right) shows the friction force
versus relative displacement in lateral direction of the beam. The hysteresis area describes the amount of energy

which is exciting the system during one single oscillation. It increases with increasing vibration amplitudes.

7. Conclusion

In this paper, an experimental and numerical study of the mode lock-in phenomenon, in particular of self-excited
friction-induced oscillations was presented. A finite element model of the rotor-stator system, updated by means
of experimental modal analysis was used to compute the dynamic behaviour of the experimental set-up. The
numerical predictions for a mode lock-in case were compared with experimental results. A good correlation was found
concerning the qualitative behaviour in frequency domain (dominant lock-in frequency and its higher harmonics).
However the lock-in frequency numerically predicted was slightly lower than that experimentally observed. The
unstable amplitude growth of the investigated beam-on-disc model configuration was underlined by calculating the
excitation energy per vibration cycle.

Modelling friction-induced vibrations using the finite element method provides a simulation tool to obtain a deeper
insight into the mechanisms of self-excited oscillations and guidance in avoiding them in the design of sliding systems.
Although the analyzed model was comparably simple, the observations and methods used in this work can be applied
to the analysis of more complex systems, for example disc brakes.
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Experimentelle und theoretische Untersuchungen an Scheibenbremsen

Die an einer Hydropulsanlage gewonnenen Ergebnisse tber das Materialverhalten von Bremsbeligen werden im er-
sten Teil diskutiert. Der zweite Teil zeigt theoretische Untersuchungen an einem zeitvarianten Modell mit einem
Freiheitsgrad. Der Taumelfehler der Scheibe und Oberflichenrauigkeiten werden als harmonische und stochastische
Anregungen formuliert. Mit Hilfe von nichtlinearen Markov-Modellen kénnen stochastische Anregungen mit begrenz-
ten Amplituden und Frequenzen fiir Scheibenschlag, Reibwert und Oberfliche formuliert werden. Mittels des grifiten
Lyapunov-Ezponenten lassen sich Stabilititsaussagen durchfihren.

1. Experimentelle Untersuchungen an Bremsbeligen
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Bild 1: Hydropulser Bild 2: Steifigkeitskennlinie

Das Materialverhalten von Bremsbeligen wurde an einem Hydropulser (siche Bild 1) experimentell ermittelt. Hierzu
wurden die Bremsbelige einachsig (kraftgeregelt) belastet und iiber Sensoren die Kraft F und der Weg 2 gemessen.
In Bild 2 ist fiir eine quasi-statische Belastung eine Messung dargestellt. Gut zu erkennen ist der nichtlineare Verlauf
der Steifigkeitskennlinie. Bei ansteigender Belastung (Kompression) wird die obere und bei abfallender Belastung
(Dekompression) die untere Steifigkeitskennlinie durchlaufen. Mit einem Polynom dritten Grades

F(z) = a1z + asz® 4 aza® (1)

kann die Steifigkeitskennlinie iiber ein Least-Square Verfahren approximiert werden. Fiir die Koeffizienten des Po-
lynoms ergeben sich folgende Werte:

ay =4.079-107?[41], ar = -1.893- 10—4[(;,;")2], as =1.261- 10—6[(5,1,;’)3 (2)

Wird als Anregung eine harmonische Kraft
F(t):F0+F1sinwt (3)

mit dem Mittelwert Fo, der Amplitude F; und der Erregerkreisfrequenz w verwendet, ergeben sich Kraft-Weg
Verldufe, wie in Bild 3 dargestellt. Das visko—elastische Materialverhalten des Bremsbelages 148t sich durch das
Modell

br + a1z + CLQCEE + (13113 = F(t) (4)
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mit dem konstanten Dampfungsparameter b und der kubischen Steifigkeitskennlinie nach (1), beschreiben. Mit der
Kraft F(t) und der Geschwindigkeit (¢) kann die dissipative Arbeit AE

T/w 27w
AE = /0 N pyde = /0 Ft)adt (5)

fiir eine Periode berechnet werden. Die stationére Antwort des Systems (4) wird iiber eine numerische Integration
berechnet. In Bild 4 ist der Quotient aus dissipativer Arbeit und dem Quadrat der Antwortamplitude AE/A? iiber
der Frequenz f dargestellt. Fiir verschiedene Dampfungswerte b sind die numerischen Ergebnisse eingezeichnet.
Durch Vergleichen der Messung mit den Linien kann das Dampfungsmaf$ b bestimmt werden. Im vorliegenden Fall
liegt der Wert von b zwischen 1-10~% und 7-10-5.

02 r T : -
Messung: Pad 1 —="
018 b=1.10"4"% ]
b= 71075
b= 61075
018 b=<"5.10"5
b =1-105 777
0.14
012+ =1 10-4/"‘{ -
AE [G_N] e 10-5, .
2 Lm 1 o e
008
0.06
0.04
0.02
75 . . : L . o by ; : ) . . . .
184 186 188 180 192 194 196 10 20 30 40 50 60 70 80 80 100
z [pm] f [He]
Bild 3: Harmonische Anregung Bild 4: Dampfungsparameter b

2. Mechanisches Modell

Das in Bild 5 dargestellte mechanische Modell besteht aus einer starren Bremscheibe mit der Scheibenoberfliche u(s)
und einem Bremsbelag mit der Masse m. Der Bremsbelag ist visko—elastisch (Federkonstante k, Dampferkonstante
d) gelagert. Die Verbindung zwischen dem Belag und der Bremsscheibe (1 Punktkontakt) wird durch ein visko-
elastisches Element (Federkonstante ¢, Dampferkonstante b) hergestellt. Die Bewegung des Bremsbelages wird durch
die Absolutkoordinate z beschrieben. Im Kontaktpunkt Scheibe/Belag herrscht Coulombsche Reibung (Reibwert
1), wobei die Richtung der Reibkraft stets der Tangente im Kontaktpunkt (Oberflichentangente) entspricht [1]. Die
Bewegungsgleichung lautet:

p+ ' (s)

. 2D . 2
z+ 20wz +wiz + 1= pal(s)

[wiu(s) + 2Bwou!(5)$] = 0 (6)

mit der Scheibenkoordinate s, der Eigenkreisfrequenz w;, dem Lehrschen DampfungsmaB D, den Parametern wp
und B sowie den Beziehungen
s=zr—y, S=z-—9y )
wi=k/m, 2Dw;=d/m, wi=c/m, 2Buwy=b/m
3. Stochastischer Reibwert

Reibwertmessungen von Popp/Rudolph [2] zeigen deutlich eine Fluktuation des Reibwertes. Als mathematische
Beschreibung fiir den Reibwert wird

M = po + Zy (8)

mit konstantem Mittelwert po und additivem Rauschen Z; angesetzt. Fiir Z; kann das parametrische Modell

Zt = (50’2 — wg)Z, + o Zg - ZtZWt (9)
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mit dem Wiener—Proze8 W, der Rauschintensitit o und der Grenzfrequenz w, verwendet werden. Das Modell besitzt
die Eigenschaften:

|1Z:] < 2 Amplitudenbegrenzung
R.(r) = ole~will Korrelation (10)
p(z) = C(2 - 22)(~14ws/*)  fiir 02 < w, stationdre Verteilungsdichte

Uber die Bedingung fj’;ﬂ° p(z)dz = 1 kann die Konstante C' bestimmt werden. Nach Transformation auf Polarkoor-

dinaten mit der Amplitude 4; = \/X? + X,2 und der Phase ®; = arctan g(—(f: ergeben sich fiir das homogene System
(6) und fiir einen harmonischen Schlag u(t) = —ug — uy sin Qvgt mit der statischen Vorspannung des Belages up und
der Amplitude u; folgende Ito-Gleichungen:

dA; = {sin®;cos ®,(1 —w?) —sin® ®¢(2Dw; + 2Buwo fi)} Asdt
d®, = {- sin® &; — wf cos? ®; — (2Dw1 + 2Bwo f) sin ®; cos O, }dt
d¥, = Quodt (11)

dZ, = —w,Zydt+1/72 — Z2adW;

(o + Z1)u1Q cos ¥y + uiQ? cos® ¥,
1— (po+ Zi)u1Q cos ¥y

Mit dem multiplikativen Ergodentheorem (Osceledec) kann die asymptotische Stabilitat der Ruhelage X = 0 iiber

1
A= 1im11n-§l = lim%/ {sin ®, cos B, (1 — w?) — sin® ®,(2Dw; + 2Bwof,)}dr  (12)
0

t—oot 0 t—o00
(po + Z-)u1Qcos ¥, + u?Q? cos® ¥,
1— (o + Zr)ui1Qcos ¥,

mit fr

berechnet werden. Fiir die Parameter wy = 1 [1/s], wo = 1000 [1/s], B = 0.1, D = 0.001, @ = 5 [1/m], p = 0.3,
20 = 0.1, w, = 10 [1/s] und o = 3 ergibt sich die in Bild 6 gezeigte Stabilitatskarte. Fiir A <0 ist das System stabil,
fiir A > 0 instabil.
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Bild 5: Mechanisches Modell Bild 6: Stochastischer Reibwert (Lyapunov-Exponent A)

4. Stochastische Oberfliche

Die harmonische Anregung (Scheibenschlag) wird durch eine stochastische Anregung (Oberflichenrauhigkeit) additiv
iiberlagert. Fiir die Anregung ergibt sich somit

U, = u1§2 cos(Quot) + Z; (13)

mit dem parametrischen Modell Z; nach (9). Nach Transformation auf Polarkoordinaten ergeben sich fiir das homo-
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gene System (6) folgende Ito-Gleichungen:

dA; = {sin®, cos ®s(1 —w?) — sin? ®,(2Dw; + 2Buwo f;) } Adt
d®; = {-sin®®; —w?cos® ®, — (2Dw; + 2Bwy f;) sin ®; cos &, }dt
d¥, = Qugdt (14)

dZy = —wyZidt+\/22 — Z}odW,

w(u1Qcos Wy + Z;) + (u1Q cos U3 + Z;)?
1— p(ui1Qcos ¥, + Z;)

Uber das multiplikative Ergodentheorem (Osceledec)

A= lim —l—ln = (15)
t—oo t 0
kann der gréfite Lyapunov—Exponent A berechnet werden. In den Bildern 7 und 8 ist der grofite Lyapunov—Exponent
iber der Amplitudenbegrenzung 2o aufgetragen. Verwendet wurden die Parameterwerte wo = 1000 [1/s], w1 = 1
[1/s], @=5[1/m],p = 0.3, B=0.1, D = 0.001 und vy = 0.4 [m/s]. In Bild 7 ist wy = 10 [1/s] und variiert wurde
die Rauschintensitdt o und der Scheibenschlag u;. In Bild 8 zeigt sich der EinfluB der Korrelation (Grenzfrequenz
wy) auf die Stabilitt,.
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Bild 7: Einfluf8 von Schlag bzw. Rauschintensitt Bild 8: EinfluB8 der Korrelation
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Ertz, M.; KNOTHE, K.

Einfluss von Temperatur und Rauheit auf den Kraftschluss zwischen Rad
und Schiene :

Gemessene Kraftschlusskennlinien zeigen charakteristische Abweichungen von Berechnungsergebnissen auf der Ba-
sis der Theorien von Carter und Kalker. Die Unterschiede bestehen- einerseits in einer geringeren Anfangssteigunyg,
andererseits im Auftreten eines Mazimums, nach dessen Uberschreiten es zu einem teilweise erheblichen Abfall
des Kraftschlusses kommt. In der vorliegenden Arbeit wird gezeigt, dass die Beriicksichtigung von Mikrorauheiten zu
einer realistischeren Anfangssteigung der berechneten Kennlinien fiihrt. Weiterhin wird die Temperaturerhéhung auf-
grund der in der Kontaktfliche auftretenden Reibleistung berechnet. Unter der Annahme einer temperaturabhdngigen
Reibungszahl kann damit auch der Abfall der Kennlinie bei hohen Schliipfen erklirt werden.

1. Kraftschlussberechnung nach Carter

Der Kontakt zwischen Rad und Schiene ist ein dreidimensionales Problem. Unter der Wirkung einer Normalkraft
N bildet sich eine Kontaktfliche aus, die in vielen Fallen nach der Theorie von HERTZ berechnet werden kann.
Man erhilt eine Ellipse mit den Halbachsen a (in Fahrtrichtung) und b. Fiir die Untersuchung des Spannungs- und
Verzerrungszustandes unter einer Tangentialkraft T beim Antreiben oder Bremsen gehen wir auf den Kontakt eines
Zylinders gegen eine Ebene iiber, womit sich ein zweidimensionales Modell ergibt. Die Grofien a und p,o (Maximal-
wert der Normalspannung) werden aus dem dreidimensionalen Normalkontakt iibernommen. Dazu kommt hier noch
die Breite L des Ersatzzylinders. Mit dieser Vereinfachung ist die Losung des Tangentialkontaktproblems fiir glatte
Oberflichen nach CARTER analytisch moglich. Es zeigt sich, dass eine Tangentialkraft immer mit dem Auftreten
einer Relativgeschwindigkeit v, = vg — vo zwischen der Fahrgeschwindigkeit vo und der Umfangsgeschwindigkeit
des Rades, vg = Qor, verbunden ist. Bezogen auf die mittlere Geschwindigkeit (vo + vg)/2 erhilt man daraus den
Schlupf v,. Die Beziehung zwischen Kraftschluss f =T/N und Schlupf lautet nach CARTER

ron=nfe(z22)- (7). 2

solange Vg < Vg mae Mit Vg mae = pa/r gilt. Dabei tritt am Auslaufrand der Kontaktflache immer ein Gleitgebiet
auf, dessen Ausdehnung mit steigendem Schlupf zunimmt, bis es fiir vz = ¥z mas die gesamte Kontaktfliche bedeckt.

Damit ist gleichzeitig der maximale Kraftschluss f (Vo maz) = perreicht, der sich bei weiterer Steigerung des Schlupfes
nicht mehr andert. Eine iibersichtliche Darstellung dieser Zusammenhénge findet sich z. B. bei JOHNSON [4].

2. Beriicksichtigung von Mikrorauheiten

Abbildung 1 zeigt einen Ausschnitt aus der Profilmessung auf einer Schienenlauffliche. Die Losung von Normal- und
Tangentialkontaktproblem ist bei solchen Oberflichen nur nummerisch mdglich. In einer Arbeit von KNOTHE und
THEILER [5], deren Ergebnisse hier wiedergegeben werden, wird dazu ein spezielles Randelement-Verfahren verwen-
det. Fiir diese Berechnungen werden die Rauheiten von Rad und Schiene zusammengefasst und einem der beiden
Korper zugeschlagen, wihrend der andere als glatt angenommen wird. Bei der Lésung des Normalkontaktproblems
zeigt sich, dass die Beriihrung der Oberflichen nur in den Spitzen der Rauheiten stattfindet, wo die maximalen
Druckspannungen ein Vielfaches der Werte beim Kontakt glatter Oberflichen erreichen kénnen. Als Ma$ fiir die
Auswirkung der Rauheiten wird das Verhiltnis Ayqu/Agiate herangezogen.

Zur Losung des Tangentialkontaktproblems ist eine weitere Vereinfachung erforderlich. Es wird angenommen,
dass die Verschiebungen im Gleitbereich so klein sind, dass der Kontaktvorgang als stationér betrachtet werden
kann. Eine Anderung der Kontaktfiche durch das Gleiten der Rauheitsspitzen wird ebenso vernachlissigt wie die
Bewegung der gesamten Oberfachen mit der Fahrgeschwindigkeit. In Abbildung 1 sind die nummerisch berechne-
ten Kraftschlusskennlinien fiir unterschiedliche Rauheiten dargestellt. Es zeigt sich, dass die Anfangssteigung mit
sunehmender Rauheit abnimmt und das durch die Reibungszahl gegebene Maximum entsprechend spéter erreicht
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wird. Mit guter Naherung kann hierfiir

frau (I/,,) = fglatt ( Aray Vz') (2)

Aglatt

geschrieben werden. Wegen der Vernachlissigung des Gleitens von Rauheitsspitzen ist es nicht sinnvoll, die auf diese
Weise berechneten Kraftschlusskennlinien fiir raue Oberflichen in den Bereich vollen Gleitens fortzusetzen.

04k b
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s 3 WMM T 038
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Abbildung 1: Ausschnitt aus der Profilmessung auf einer Schienenlaufflsiche (a) und nummerisch berechnete Kraft-
schlusskennlinien fiir unterschiedliche Rauheiten (b)

3. Temperaturentwicklung im Radsatz

Wenn ein angetriebenes, auf der Schiene rollendes Rad die Tangentialkraft 7' = fN iibertrégt und dabei die Gleit-
geschwindigkeit v, = vg — vg auftritt, dann ergibt sich daraus die Reibleistung Pre;p = fNv;. Wir nehmen an, dass
sie unmittelbar in der Kontaktfliche vollstindig in den Wérmestrom Qyeip = Preip umgewandelt wird, der in das
Innere von Rad und Schiene abfliefit. Davon geht der Anteil Qreis, R = 6Qreip mit

5= __ Prvor (3)
Br\/VR + Bs+/vo

in das Rad. 8 = /Apc ist der materialabhingige Wirmeeindringkoeffizient. Die Aufteilung des Wéarmestroms ergibt
sich aus der Forderung, dass an der Oberfliche von Rad und Schiene im Kontakt Temperaturgleichheit herrschen
muss. Aufgrund der kurzen Kontaktzeit tritt Warmeleitung nur senkrecht zur Kontaktfliche auf. In Abbildung 2
sind die Oberflichentemperaturen dargestellt, die sich bei gleicher Reibleistung Q,e;» in Abhiingigkeit von der lokalen
Verteilung der Reibleistungsdichte greis(z) = p(z)p, (z)vs(z) ergeben. Der Einfluss beschrinkt sich im Wesentlichen
auf den Ort der Maximaltemperatur, deren Wert aber kaum von der Verteilung abhéngt. Ausserhalb des Kontaktes
gleichen sich die Temperaturverldufe sehr schnell wieder an. Mit jeder Umdrehung wird dem Rad die Warmemenge

o .
Qreib,R = m‘Qrez’b (4)

pro Flécheneinheit zugefiihrt. Nach mehreren Umdrehungen des Rades steigt seine Temperatur durch diese regelmifi-
ge Wérmezufuhr immer weiter an, wihrend die Schiene weiterhin mit Umgebungstemperatur in den Kontakt eintritt.
Damit ergibt sich ein Warmestrom aus dem warmen Rad in die kalte Schiene, der mit guter Naherung als Tem-
peraturausgleich von zwei halbunendlichen Kérpern mit verschiedenen, jeweils konstanten Anfangstemperaturen
berechnet werden kann. Mit der Eintrittstemperatur ©go des Rades stellt sich im Kontakt spontan eine zeitlich
nicht verdnderliche Kontakttemperatur ©,, = §@go mit § wie in (3) ein. Die gesamte durch Temperaturdifferenz
wihrend einer Umdrehung iibertragene Wirmemenge pro Flicheneinheit ist damit

é /8a
Jtemp,R — ’—ﬁ 20 ORro. (5)
YR s

Wie sich mit einer einfachen Abschétzung zeigen lasst, ist die Warmeiibertragung durch Konvektion an die Umge-
bungsluft im Vergleich mit der Warmeleitung in die Schiene von untergeordneter Bedeutung.
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Damit sich die Temperatur des Rades bis auf periodische Schwankungen wihrend einer Umdrehung nicht mehr
ndert, muss der Warmezufluss aus Reibleistung gleich dem Warmeabfluss aus Temperaturdifferenz sein. Aus (4)
und (5) ergibt sich damit die Temperatur, in der thermisches Gleichgewicht vorliegt, zu

! _ﬂl“Q‘reib- (6)

O = ﬁ_sff 8avg

In Abbildung 2 erkennt man, dass die Schwankungen um diesen Wert auf die unmittelbare Umgebung des Kontaktes
beschrankt sind. Die Gleichgewichtstemperatur ist etwa doppelt so hoch wie die mittlere Kontakttemperatur beim
einmaligen Kontaktdurchlauf.
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Abbildung 2: Oberflichentemperatur beim einmaligen Kontaktdurchlauf fiir unterschiedliche Verldufe der Reiblei-
stungsdichte (a) und Temperaturverlauf im thermischen Gleichgewicht (b)

4. Temperaturabhingigkeit der Reibungszahl

Aus den vorangegangenen Ausfiihrungen folgt, dass es in der Kontaktfliche zum Gleiten zwischen metallischen
Oberflichen kommt und dabei gleichzeitig erhebliche Temperaturerhéhungen auftreten. Als mogliche Auswirkung
der Temperaturerhshung wird im Folgenden eine mit zunehmender Temperatur abfallende Reibungszah! untersucht.
Dafiir lassen sich unterschiedliche physikalische Erklirungen angeben. BowDEN und TaBOR {1] nehmen an, dass
beim Gleitvorgang ein stéindiges Verschweifien und Aufbrechen von Metallbriicken stattfindet. Der Bewegungswider-
stand, d. h. die Reibungszahl, wird damit durch die Scherfestigkeit der entstandenen Verbindungen bestimmt und
die Temperaturabhingigkeit der Reibungszahl ergibt sich aus der Temperaturabhangigkeit der Scherfestigkeit. Bei
KRAFT [6] findet sich eine andere Begriindung, die auf einem atomaren Modell beruht. Wir gehen hier nach Bow-
DEN und TABOR von der Streckgrenze eines mittelfesten Stahls aus, die einen monotonen Abfall mit zunehmender
Temperatur aufweist [3]. Fiir nicht allzu hohe Temperaturen kann mit guter Naherung linearisiert werden. Mit der
Ubertragung der Temperaturabhéngigkeit auf die Reibungszahl lasst sich dann die Beziehung

w®) = (1-5) (7)

mit po als Reibungszahl bei 0° C angeben. Der Parameter ©,, ist ein Maf fiir die Steigung der Kennlinie und wird
fiir die folgenden Rechnungen mit 500° C angenommen. Die Linearisierung ist bis etwa 250° C zulassig.

Fiir die folgenden Untersuchungen wird angenommen, dass die Reibungszahl iiber die gesamte Kontaktflache
konstant ist und nur von der mittleren Kontakttemperatur abhéngt.

5. Temperaturabhingige Kraftschlusskennlinie

Bei vorgegebenem Schlupf kommt es zu einem Zusammenwirken von Kraftschluss, Reibleistung, Temperaturerhthung
und temperaturabhingiger Reibungszahl. Wir betrachten den Fall vollen Gleitens, wobei der Kraftschluss gleich der
Reibungszahl ist. Ausgangspunkt ist die temperaturabhéngige Reibungszahl (7). Wenn man hier den Zusammenhang
zwischen der mittleren Temperatur und der Reibleistung (6) einsetzt und die Reibleistung Qeis = fNv, wiederum
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auf den Kraftschluss zuriickfiihrt, erhélt man die Gleichung

f(Us) = ﬁ (8)

fiir eine mit zunehmender Gleitgeschwindigkeit abfallende Kraftschlusskennlinie. Die hierbei verwendete Abkiirzung

_0u8sL [8avg
Voo = ﬂON T (9)

besitzt die Dimension einer Geschwindigkeit. In gleicher Weise l4sst sich auch die Cartersche Lésung (1) mit einer von
der mittleren Kontakttemperatur abhéngigen Reibungszahl berechnen. Die Ergebnisse sind in Abbildung 3 darge-
stellt. Diese Kennlinie beschreibt den Kraftschluss, der sich nach hinreichend langer Zeit einstellt, wenn thermisches
Gleichgewicht erreicht worden ist. Die Vorgehensweise lasst sich zumindest qualitativ auch auf Ubergangszustande
anwenden. Da die Temperatur fiir gegebene Betriebsbedingungen ihr Maximum im thermischen Gleichgewicht er-
reicht, ist der Temperatureinfluss und damit der Abfall der Kennlinie in diesen Fillen geringer.
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Abbildung 3: Kraftschlusskennlinie bei temperaturabhéngiger Reibungszahl (a) und Temperatur im thermischen
Gleichgewicht (b), Fahrgeschwindigkeit vg = 75 m/s

6. Zusammenfassung

Die vorgestellten Ergebnisse liefern physikalisch begriindete Erklirungen fiir die charakteristischen Abweichungen
zwischen gemessenen und berechneten Kraftschlusskennlinien. Mit der Beriicksichtigung von Mikrorauheiten nimmt
die Anfangssteigung der berechneten Kennlinien ab. Durch die Berechnung der Kontakttemperatur in Verbindung
mit der Annahme einer temperaturabhéngigen Reibungszahl erhilt man einen ausgeprigten Abfall der Kennlinie
bei hohen Schliipfen. Beide Effekte fithren zu einer besseren Ubereinstimmung mit gemessenen Kurven [2].

Diese Arbeit wurde im Rahmen des Sfb 605 ,, Elementarreibereignisse“ an der TU Berlin durchgefiihrt.
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MULLER, S. AND R. KOGEL

Numerical simulation of roll-slip oscillations in locomotive drives

This paper deals with roll-slip oscillations in locomotive drives. Numerical simulation results are presented which
demonstrate that roll-slip oscillations may arise if the contact conditions at the left and right wheel of a wheelset are
different. Even if an adhesion controller can detect and reduce these vibrations within a few seconds the drive chain
is still subject to high loads, there are noisy vibrations in the locomotive car body and the rail surface is damaged by
periodic wear patterns. Usually, it is tried to avoid roll-slip oscillations by an optimal adhesion controller design. A
different approach is presented in this paper. Instead of optimising a controller it is demonstrated how mechanical
design parameters influence the proneness to roll-slip oscillations and for one locomotive type it is shown how a
certain mechanical parameter combination helps to avoid roll-slip.

1. Introduction

Roll-slip oscillation in locomotive drives is an unstable vehicle motion and is usually associated with a slip velocity-
traction force characteristic with a negative gradient at relatively high slip velocities. This characteristic was found
during many measurements [1] [2]. Operating the locomotive where the gradient of the slip velocity-traction force
curve is negative introduces negative damping to the system and the vehicle dynamics can become unstable. This
causes high mechanical loads in the drive chain, noisy vibrations in the locomotive car body and periodic wear
patterns on the rail surface.

Presumably, in [3] roll-slip oscillations in locomotive drives have been first thoroughly investigated using a simple
numerical model of the mechanical drive chain. More recently, [4] and [5] are dealing with roll-slip oscillation and
how control concepts can help to avoid this phenomenon. In this paper a different approach is presented. In addition
to an already existing control strategy [6] which detects and reduces roll-slip oscillations it is tried to reduce the
proneness to roll-slip by the mechanical design of the locomotive drive.

For one locomotive type numerical simulation results demonstrate that roll-slip oscillations may arise if the contact
conditions at the left and right wheel of a wheelset are different. It is also shown that the adhesion controller
of the locomotive detects these unstable vibrations and the controller reduces the high amplitudes after a few
seconds. But during this period of time the drive chain is subject to high mechanical loads. A mechanical design
which had a smaller proneness to roll-slip would reduce the number of roll-slip occurrences during operation. This
would increase the lifetime of the drive components, reduces the noise inconveniences and preserves the track. It is
therefore investigated how mechanical design parameters influence the proneness to roll-slip and for the locomotive
type investigated it is shown how a certain parameter combination helps to avoid roll-slip.

2. The numerical simulation model

The modeling of the control part of the locomotive comprises the motor control and the adhesion control. The
motor control is considered by measured transfer functions. The adhesion controller controls the slip velocity, which
is the relative velocity between wheel and rail in the point of contact. It determines the optimal slip where maximal
traction forces are obtained [6]: A speed sensor measures the response of the angular velocity of the rotor to the
motor torque plus a sinusoidal test signal added to the motor torque. Based on the phase between filtered sinusoidal
rotor speed response and the sinusoidal motor torque test signal the gradient of the slip velocity-traction force curve
at the operating point of the drive is computed. The actual gradient is compared to a predefined desired gradient. If
the difference between both is too large a new desired rotational rotor speed is calculated which changes the motor
torque.

The mechanical structure has been modeled using a Multi-Body-System program. All model parts are rigid and
all springs and dampers are linear. Under consideration of structural symmetry it comprises half of the car body,
one bogie, secondary and primary support, drive components and three wheelsets. The elasticity of the wheelset
axle about the lateral axis is considered by two torsional springs. One between gear wheel and right and left wheel,
respectively. The locomotive type investigated is driven by a so-called nose-suspended drive, which consists of motor
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box, rotor, gear wheel and the motor box support. The gearwheel is fixed to the wheelset axle and is in the vicinity
of the right wheel. The motor box is supported by the wheelset axle but can rotate about it. The motor box is
elastically connected to the bogie by the motor box support.

For the numerical simulation a mechatronical model has been set up within MATLAB/SIMULINK which comprises
the mechanical structure, the control part and the interaction between mechanics and control.
3. Simulation results if contact conditions at left and right wheel are different

With the mechatronical model a time step integration has been performed to simulate the dynamical behaviour
of a locomotive if the contact conditions at left and right wheel of a wheelset are different. In Figure 1 the slip
velocity-traction force characteristics are shown which have been assumed for the numerical simulation.

Traction foroes at ieft wheel Traction forces al right wheel
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Figure 1: (a) Longitudinal contact condition at left and right wheel if £ < 10 sec, (b) longitudinal contact condition
at right wheel after ten seconds

At the beginning of the simulation the contact is the same for both wheels of a wheelset. But the contact is different
at different wheelsets as soon as conditioning effects caused by a preceding wheelset are considered (Figure 1(a)).
After ten seconds the contact at the right wheel changes (Figure 1(b)). This may happen if one side of the track is
frosted or covered by oil or dirt. Contact conditions can also be different due to kinematic effecs: In the curve the
rolling radii of left and right wheel are different and the translational velocities of inner and outer wheel are not the
same. This results in different slip velocities at the right and left wheel of a wheelset and thus in different operating
points on the slip velocity-traction force curve.
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Figure 2: Slip velocity at left and right wheel of the third wheelset

In Figure 2 the outcome of the numerical simulation for the slip velocity at the left and right wheel of the third
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wheelset is plotted. At the beginning the locomotive starts and the slip velocity increases till a predefined limit
of 0.2 m/s is obtained. After four seconds the adhesion controller superposes a test signal of 11 Hz to the motor
torque. The adhesion controller starts to change the slip velocity after 6 seconds until the right contact changes
at + — 10 sec. This causes a sudden drop which is followed by a new increase until the vehicle dynamics become
unstable and the slip velocity at the right wheel is oscillating with high amplitudes and a frequency of about 147
Hz. An eigenvalue analysis of the mechanical structure reveals that at this frequency the right wheel is rotating
about the lateral axis. The rotation of right wheel and gearwheel is out-of-phase, the amplitudes of the rotation of
the left wheel are small. The roll-slip oscillation arises since the right wheel of the third wheelset is operating at
slip-velocities where the gradient of the slip velocity-traction force curve is negative. The adhesion control detects
the unstable motion and reduces the slip velocity until the gradient of the slip velocity-traction force curve is positive
at all wheels. The amplitudes thus decrease and after a few seconds the vehicle dynamics again is stable.

4. Investigation of the influence of mechanical design parameters

In Figure 2 it is shown that the vehicle dynamics may become unstable if the contact conditions at the left and right
wheel of a wheelset are different. It is also demonstrated that the adhesion controller detects the unstable motion
and reduces the amplitudes of the oscillations after a few seconds. Nevertheless, the drive chain is subject to high
mechanical loads during this period of time. It is now investigated how mechanical design parameters influence the
proneness to roll-slip and for the locomotive type investigated mechanical design parameters are given which are
likely to reduce the number of roll-slip occurrences.

For the investigation of the proneness to roll-slip the torsional stiffness and damping of the connection gearwheel-
wheelset axle and the torsional stiffness of the wheelset axle between gearwheel and right wheel of a wheelset
are varied. The investigation is performed in the frequency domain. Except for the right wheel of the third
wheelset the gradient of the slip velocity-coefficient of friction curve is zero. At the right wheel of the third wheelset
the gradient is varied from zero to a negative value. Note, that for the traction force at one wheel the relation
Firaction = M(AV) Nygasic is assumed, where p is the coefficient of friction, Av is the slip velocity and Netasic is the
static wheel load in vertical direction.

For each mechanical design parameter combination the eigenvalues of the linearized mechatronical model are calcu-
lated for different gradients at the right wheel of the third wheelset and the threshold gradient is determined, which
is the minimal gradient where the vehicle dynamics is still stable. The outcome of this investigation is summarized
in Figure 3(a), Figure 3(b) and Figure 4.
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Figure 3: Threshold gradient at (a) different torsional stiffnesses and (b) different torsional damping coefficients of
the connection gearwheel-wheelset axle

In Figure 3(a) the threshold gradient is plotted at different torsional stiffnesses between gearwheel and wheelset axle.
At relatively small stiffnesses the proneness to roll-slip is high. Even for gradients only slightly smaller than zero
the system becomes unstable. The corresponding natural mode is characterized by a torsion of the wheelset axle
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between gearwheel and left wheel. At higher stiffnesses the proneness to roll-slip clearly decreases and the vehicle
dynamics becomes unstable if the gradient at the right wheel of the third wheelset is smaller than —0.055 s/m. The
unstable motion is then characterized by a torsion of the wheelset axle between gearwheel and right wheel.

The threshold gradient at different torsional damping coefficients of the connection gearwheel-wheelset axle is plotted
in Figure 3(b). For this calculation the torsional stiffness between gearwheel and wheelset axle has been set to 1x10°
Nm/deg. Along the x-axis a damping ratio is plotted which has been defined as Dywr = 0.5dgwn/\/Cqun , Where
dgwn is the torsional damping coefficient and cyq,p, is the torsional stiffness between gearwheel and wheelset axle. It
reveals that the proneness to roll-slip decreases if the torsional damping increases.

In Figure 4 the threshold gradient is plotted at different torsional stiffnesses of the wheelset axle between gearwheel
and right wheel. For this calculation the torsional stiffness of the connection gearwheel-wheelset axle is 1 x 10°
Nm/deg, the corresponding damping coefficient is 1 x 10° Nms/deg. It is illustrated that the vehicle dynamics is
most likely to remain stable if the torsional stiffness is comparatively high.

Variation of stifiness of shorter axle part («:Q wn™ 168 Nm/deg)
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Figure 4: Threshold gradient at different torsional stiffnesses of the wheelset axle between gearwheel and right wheel

The outcome of the variation of mechanical design parameters is that the locomotive type investigated has a reduced
proneness to roll-slip if the connection between gearwheel and wheelset axle is stiff and damped and if the torsional
stiffness of the wheelset axle is relatively high. With these mechanical design parameters it is therefore likely to
reduce the number of roll-slip occurrences during operation.
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RubpoLrH, M.; Porp, K.

Modellbildung reibungsselbsterregter Bremsenschwingungen

Es werden Erregungs-Mechanismen (fallende Reibkennlinie, geometrische Instabilitit, nichtkonservative Lagekrifte)
zur Beschreibung des Energieeintrages von der Bremsscheibe in das mechanische System Bremse dargelegt und dis-
kutiert.

Darauf aufbauend wird ein erweitertes Prinzipmodell vorgestellt, das eine reale Schwimmsattelbremse beschreibt.
Dabei handelt es sich um ein Mehrkdrpersystem, das elastische Moden der Bremsenbauteile beriicksichtigt. Anhand
einer Sensitivitits-Analyse des linearen Modells werden Bauteile mit hoher Relevanz fiir die Schwingungsanrequng
identifiziert.

1. Einfiihrung

Reibungsselbsterregte Bremsenschwingungen mit Frequenzen oberhalb 1000 Hz werden als Bremsenquietschen be-
zeichnet. Diese technische Erscheinung gewinnt fiir den Bremsenzulieferer in der Automobilindustrie aufgrund des
zunehmenden Komfortanspruchs der Automobilkunden immer mehr an Bedeutung.

Da die grundlegenden Wirkmechanismen des Quietschens noch nicht eindeutig identifiziert worden sind, beschrankt
sich die Bekdmpfung der Gerduschentwicklung auf iiberwiegend empirische Verfahren. Dabei wird eine bestehende
Bremsenkonstruktion, ausgehend von aufwendigen experimentellen Untersuchungen, nachtriglich modifiziert. Mit
den hier dargelegten Arbeiten wird daher angestrebt, den Wirkmechanismuns des Quietschens besser zu verstehen
und Parametereinfliisse aufzudecken. Dieses Wissen kann wertvolle Hinweise fiir den Entwurf und die Konstruktion
einer gerduscharmen Bremse liefern.

2. Erregungs-Mechanismen

Mechanismus Reibkennlinie Geometrische Instabilitit | Nichtkons. Lagekrifte

L7, =
RS S

dz

my
Modell % " /u(vren) } ¢ N
w B _I: my
+ v + \k ., g d{T’
\

Instabilitits- dp
bedingung dres

d 2d 2
=0 < T F, > ta'n(7) + sin(2v)dy > % + hf?c;; + TLTcsch

Tabelle 1: Erregungs-Mechanismen des Bremsenquietschens

Im Zustand des Quietschens bildet die Bremse ein selbsterregtes Schwingungssystem, bei dem zwischen Bremsscheibe
und Bremsbelag ein Energietransfer stattfindet, der durch die Schwingung gesteuert wird. Die in der einschliigigen
Literatur beschriebenen Bremsenmodelle lassen sich auf drei grundlegende Mechanismen dieses Energietransfers
zuriickfithren (Tabelle 1):

Fallende Reibkennlinie: Dieser Erklirungsansatz wurde schon 1938 von MILLS in [1] vorgeschlagen. Bedingt
durch ein Abfallen des Reibwertes bei zunehmender Relativgeschwindigkeit der Reibpartner kommt es zur
Schwingungsanregung bis hin zu Haft-Gleit-Schwingungen (Stick-Slip). Das Modellsystem hierbei ist ein einlgufi-
ger Schwinger mit Reibkontakt zu einer bewegten Unterlage. Wird eine Coulombsche Charakteristik angenom-
men, so verhdlt sich das System im Groflen stabil, Trajektorien ziehen sich auf einen Haft-Gleit-Grenzzykel
zusammen. Liegt eine kontinuierlich fallende Kennlinie vor, so bildet die Gleichgewichtslage einen instabilen
Fokus, zu erkennen in Abbildung 1a). In Abhingigkeit von den Systemparametern kann das System auch im
Grossen instabiles Verhalten zeigen.
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Geometrische Instabilitit: Basierend auf experimentellen Erkenntnissen aus der Untersuchung von U-Bahn-
Bremsen stellte SPURR 1961 mit [2] eine Erklarungshypothese des Quietschens auf, die von CRISP als mechani-
sches Modell formuliert wurde. Es handelt sich dabei um einen der Selbsthemmung verwandten Mechanismus,
der auf bestimmten geometrischen Verhaltnissen und dem Vorhandensein von Reibung im mechanischen Sy-
stem beruht (Sprag-Slip). Die Stabilitétsgrenze wird durch eine Bedingung fiir den Gleitreibwert bestimmt,
die von der Geometrie und der Ddmpfung im System abhéngt.

Nichtkonservative Lagekrifte: Dieses Prinzip findet sich bereits 1972 in den Arbeiten [3] von NORTH und wird
hier anhand eines 2-FHG Minimalmodells vorgestellt. Durch reibungsbedingte lageproportionale Kréafte wer-
den Freiheitsgrade schwingungsanregend gekoppelt. Die Anwendung des Hurwitz-Kriteriums liefert mehrere
Instabilititsbedingungen, von denen in Tabelle 1 aus Platzgriinden nur eine wiedergegeben ist. Betrachtet
man die Systemeigenwerte in Abhingigkeit vom Reibwert, so zeigt sich, dass sich die Eigenwerte der zun&chst
stabilen Moden mit zunehmenden Reibwert in ihrer Frequenz annéhern bevor Destabilisierung des Systems
auftritt. Dieser Effekt wird auch als Modenkopplung bezeichnet, vgl. Abbildung 1b).

a) p) =) T
....... *!
....... g”fl%
TN
....... L
. o R

Abbildung 1: Stabilititsverhalten der Erregungs-Mechanismen
a) Phasendiagramm zum Reibschwinger mit linear fallender Charakteristik
b) Wurzelortskurve des 2FHG-Systems mit nichtkonservativen Lagekriften
bei einer Reibwerterhéhung von p =0 (o) auf p=1 (x).

Um den Mechanismus zu finden, der zum Bremsenquietschen fiihrt, muss die Modelldynamik mit den Eigenschaften
des realen Systems verglichen werden.

Fallende Reibkennlinie: Nimmt man einen Haft-Gleit-Grenzzykel als Erklirung des Quietschens an, so sollte
die Grenzzykel-Periodendauer unabhéngig von der Unterlagengeschwindigkeit sein. Diese Forderung ergibt
sich aus der Tatsache, dass sich die Quietschfrequenz wihrend der Bremsung nicht kontinuierlich &ndert. Der
Reibschwinger mit Coulombscher Charakteristik kann dieses Verhalten nicht abbilden; wird aber eine linear
fallende Reibkennlinie vorausgesetzt, so 148t sich die Konstanz der Grenzzykelfrequenz bei Verdnderung der
Unterlagengeschwindigkeit zeigen.

Es konnte jedoch noch nicht experimentell nachgewiesen werden, dass wihrend des Quietschens ein Haften
zwischen Belag und Scheibe auftritt.

Geometrische Instabilitit: Die aus diesem Modell folgende Reibwertbedingung fiir das Auftreten von selbsterreg-
ten Schwingungen, wie sie in Tabelle 1 angegeben ist, erfordert fiir realistische Stabilidtsgrenzen des Reibwertes,
dass die Dampfung der Scheibe gréBer als die des Belages ist. Im realen System liegt die Belagddmpfung jedoch
gewdhnlich iiber der Dampfung der Bremsscheibe.

Nichtkonservative Lagekrifte: Dieser Mechanismus kommt ohne die Annahme eines Haften zwischen Brems-
scheibe und Belag aus und erfordert keine Annahmen iiber die Gréfle der Ddmpfungen im System. Weiterhin
l4sst sich neben der Wirkung der Steifigkeiten auch der Einfluss von geometrischen Verhltnissen auf die Sta-
bilitdt erkennen, siehe Tabelle 1. Somit hat der Effekt der nichtkonservativen Lagekréfte einen allgemeinere
Bedeutung als die geometrische Instabilitét.

Als Konsequenz der hier dargelegten Untersuchung erscheint der Mechanismus der nichtkonservativen Lagekréfte
am geeignetsten zur Beschreibung des Energieeintrages beim Bremsenquietschen zu sein.
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Abbildung 2: Erweitertes Prinzipmodell
G Gehdusefinger, K Kolben

3. Erweitertes Prinzipmodell

Um einen Beitrag zur Vermeidung des des Bremsenquietschens leisten zu konnen, ist es erforderlich, konstruktive
Design-Parameter einer Bremse im Modell abzubilden. Umfangreiche Finite-Element-Modelle bieten diese Moglich-
keit, besitzen jedoch auch Nachteile. Zum einen ist die Umsetzung von Design-Variationen im Modell aufwendig
und zum anderen ergeben sich durch die hohe Anzahl von Freiheitsgraden lange Rechenzeiten. Ausserdem gestaltet
sich die Einbindung von harten Nichtlinearitdten schwierig und die gewonnenen Erkenntnisse sind sehr produktspe-
zifisch. Vor diesem Hintergrund wurde quasi als Bindeglied zwischen dem Erregungs-Mechanismus und den Finite-
Element-Modellen ein Modell einer Schwimmsattelbremse entwickelt, dass mit wenigen Freiheitsgraden wesentliche
Design-Parameter abbildet.

Es handelt sich dabei um ein ebenes Mehrkérpersystem mit 14 Freiheitsgraden, sieche Abbildung 2. Die Parameter
dieses Modells wurden zum Teil aus Messungen an den Bremsenbauteilen gewonnen und zum Teil aus einem beste-
henden Finite-Element-Modell kondensiert. Elastische Schwingformen sind durch Strukturanpassung beim Bremsen-
triger und bei der Bremsscheibe durch Parameteranpassung an quietschrelevante Bauteil-Eigenfrequenzen integriert
worden. Die Starrkérper des Modells sind verbunden durch lineare Feder-Dampfer-Koppelelemente, die aber durch
nichtlineare Elemente ersetzen lassen. In den Koppelelementen zwischen Belag und Scheibe ist trockene Reibung
integriert, was zu einer Unsymmetrie in der Steifigkeitsmatrix des Systems fiihrt. Das erweiterte Prinzipmodell setzt
also auf dem Mechanismus der nichtkonservativen Lagekrifte auf.

Den Kern des Simulationsprogrammes bildet ein allgemeiner Mehrkorper-Algorithmus fiir Schwingungssyteme mit
kleinen Amplituden basierend auf der synthetischen Methode nach Newton und Euler. Die Struktur des zu simu-
lierenden Systems sowie dessen Parameter sind in externen Dateien abgelegt, so dass eine Strukturmodifikation der
Bremse einfach in das Modell zu itbernehmen ist.

4. Technische Sensitivititsanalyse

Die Stabilitéit des Systems, und damit die Griuschneigung der Bremse, wird im linearen Fall durch die Realteile der
Eigenwerte beschrieben. Daher erscheint es sinnvoll, die Sensitivitdt der Realteile beziiglich einer Parametervariation
zu untersuchen. FRANKE zeigt in [4], dass sich die Sensitivitit eines Systemeigenwertes A beztiglich eines Parameters
p mit Hilfe der Rechts- und Linkseigenvektoren der Systemmatrix ergibt. Fiir eine technische Parameter-Variation
Ap versndern sich jedoch auch die Systemeigenvektoren um ein signifikantes Maf, so dass die resultierende Verénde-
rung der Eigenwerte nicht mit dem beschriebenen Verfahren zu bestimmen ist. Andererseits stellt es mit der heutigen
Rechentechnik kein gréfieres Problem dar, die Systemeigenwerte vor und nach der Variation Ap zu bestimmen und
die Differenz A\ direkt zu berechnen. Fiir dieses Vorgehen wird der Begriff technische Sensitivitdtsanalyse eingefiihrt.
Da die Anzahl der Parameter recht grof} ist und die Parametervariatonen, die untersucht wurden, eine gut zu inter-
pretierende konstruktive Bedeutung haben sollen, wurde die Menge der Parameter in Variationsgruppen eingeteilt,
innerhalb derer die Parameter gleichzeitig verindert werden. Die technische Sensitivitétsanalyse wurde zur Unter-
suchung von zwei Eigenschaften, der Robustheit und der Parametereinfliisse, eingesetzt.

Da der Reibwert zwischen Belag und Scheibe im Bremsbetrieb verh#ltnismiBig grofilen Schwankungen unterliegt
und ein hoher Reibwert eher zu Gerduschen fiihrt als ein niedriger, wurde die Robustheit des Modells gegeniiber
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Abbildung 3: Ergebnisse der Sensitivititsanalyse
a) Robustheitsuntersuchung fir gleich- (——) und gegensinnige (+—— ) Koppelelementverschiebung
b) Parametereinfluss

Reibwerterhthung fiir etwa einhundert Parametervariationen untersucht. Von den Reibwertsensitivititen

_ ARe(A:) _ Re(Xi(p2)) = Re(Xi(m1))
Ap o — M1

aller Eigenwerte wurde jeweils das Maximum ausgew&hlt und mit dem Maximum des unmodifizierten Zustandes
verglichen. Abbildung 3a) zeigt als Ergebnisbeispiel die Wirkung von Koppelelementverschiebungen. Es wird deut-
lich, dass die Steifigkeiten im Reibkontakt und die Verhiltnisse zwischen Belag-Riickenplatte und Kolben, bzw.
Gehdusefinger, eine grosse Bedeutung haben. In der Praxis werden hier Dampfungsbleche zur Gerduschminderung
eingebaut.

Bei der Untersuchung von Parametereinflissen wurde der Reibwert konstant gehalten und die Parameter entspre-
chend ihrer Gruppeneinteilung um zehn Prozent variiert. Die resultierende Verdnderung der Eigenwert-Realteile ist
fiir alle Eigenwerte einzeln betrachtet worden. Eine Normierung auf den Zahlenwert der Parametervariation wurde
zugunsten einer besseren Vergleichbarkeit bei unterschiedlicher Parameter-Dimension nicht vorgenommen. In Ab-
bildung 3b) ldsst sich erkennen, dass sich Parametervariationen sehr unterschiedlich im Spektrum der Eigenwerte
auswirken kénnen. Die geometrische Variation 3 liefert beispielsweise eine globale Stabilisierung des Systems.

1)

S5(0)

5. Zusammenfassung und Ausblick

Die Diskussion der Erregungs-Mechanismen zur Erklirung des Bremsenquietschens zeigt, dass der Mechanismus der
nichtkonservativen Lagekréfte einen vielversprechenden Ansatz darstellt. Darauf aufbauend wurde ein Mehrkérper-
Modell einer Schwimmsattelbremse entwickelt und einer Sensitivitétsanalyse des Stabilitétsverhaltens beziiglich Pa-
rametervariation unterzogen. Die Ergebnisse dieser Sensitivitétsanalyse werden derzeit experimentell {iberpriift. Weitere
Modellrechnungen beziehen nichtlineare Effekte ein, ausserdem wird das Modell auf elastische Korper erweitert.
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SCHMIEG, H. UND VIELSACK, P.

Selbsterregte Reibschwingungen bei konstant verzégertem Vortrieb am Bei-
spiel einer Scheibenbremse

Das Paradigma selbsterregter Reibschwingungen ist ein starrer Kdrper auf einer rauhen Unterlage, der durch eine
Feder mit konstanter Vortriebsgeschwindigkeit geschoben wird. Die Existenz der selbsterregten Schwingungen werden
durch die Eigenschaften des Reibgesetzes bestimmt. Im Gegensatz dazu wird fiir ein erweitertes mechanisches System
gezeigt, daf bei konstant verzégertem Vortrieb die Art des Reibgesetzes eine untergeordnete Rolle spielt und die
Existenz von instationdren selbsterregten Schwingungen im wesentlichen durch die mechanischen Eigenschaften des
Systems bestimmt sind.

1. Einleitung

Selbsterregte Reibschwingungen, wie sie bei Scheibenbremsen auftreten, kénnen u.a. durch ihre Frequenzbereiche
Klassifiziert werden. Hoherfrequente Schwingungen (2 kHz<f<12 kHz) konnen der Kategorie Bremsenquietschen [1],
niederfrequente (f<1 kHz) der Kategorie Bremsenrubbeln zugeordnet werden. Thre Modellierung und der Bereich
der Reibkennlinie, welcher entscheidend ist fiir das Auftreten von selbsterregten Schwingungen, unterscheiden sich
wesentlich. In dieser Arbeit wird ausschlieSlich der Fall niederfrequenter Reibschwingungen betrachtet. Diese sind
durch Stick-Slip-Phénomene gekennzeichnet.

2. Modellierung und theoretische Untersuchung einer Scheibenbremse

In Bild 1a ist das reale Bremsystem zu sehen, bestehend aus Bremse, Bremsscheibe, Aufhéngung und Antrieb.
Die Bremse selbst besteht aus dem Bremssattel mit Bremszylinder und dem Tréger. Beidseitig der Bremsscheibe
liegen im Tréger die Bremsbacken (Pads). Beim Bremsen werden diese durch den Bremszylinder gegen die Scheibe
gedriickt, von dieser etwas mitgenommen und laufen auf den Triiger auf. Die resultierende Reibkraft wird iiber den
an der Aufhingung befestigten Triger in das Fahrzeug eingeleitet.

In dem Versuchsstand Bild 1a wurde die Aufhingung des Fahrzeugs durch einen Biegestab nachgebildet. Der Antrieb
erfolgt durch einen drehzahlgeregelten Hydraulikmotor. Im Gegensatz zum realen Fahrzeug ist die Drehzahl der
Bremsscheibe unabhingig von der Reibkraft.

Aufhéngung
%W}*{M" Sattel
M
Scheibe
Bild 1 Reales System Mechanisches Modell

In der Modellierung wurde das Bremssystem durch ein Starrkorpersystem mit diskreten Massen, Federn und Damp-
fern, der flichenhafte Reibkontakt Pad/Bremsscheibe durch einen punktformigen Reibkontakt ersetzt. Allgemein gilt
daB Strukturen grofierer Abmessungen beim Schwingen niedrigere, jene mit kleinen Abmessungen hhere Frequenzer;
abstrahlen. Da hier ausschliefllich der niedrige Frequenzbereich betrachtet wird, muf} in die Modellierung aufier der
Bremse auch die umgebende Struktur, also zumindest die Aufhingung, miteinbezogen werden. Bremsenhersteller
bestétigen obige Aussage. Basis des mechanischen Modells in Bild 1b ist daher ein 1-Freiheitsgradsystem, bestehend
aus der Masse M der Bremse (im wesentlichen die des Sattels) und der Steifigkeit K der Aufhingung. Die reibin-
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duzierte Anregung erfolgt liber ein Pad der Masse m und die Steifigkeit k des Trégers. Die eingefiihrte Ddmpfung
D ist im wesentlichen die des Pad. Insgesamt ergibt sich damit als mechanisches Modell ein 2-Freiheitsgradsystem
mit Reibung. Dabei wird die Bewegung des Pad durch die Kordinate &, die der Scheibe am Reibkontakt durch die
Koordinate 7 beschrieben.

Das reale Reibgesetz ist durch mechanische Kenngréen, wie Relativgeschwindigkeit, Anpressdruck, Materialpaarung
bestimmt, die wiederum Kurz- und/oder Langzeiteinfliissen, wie Temperatur, Menge und Verteilung des Abriebs,
Feuchtigkeit, Belastungsgeschichte, etc. , unterliegen. Dies bedeutet, dafl das Reibgesetz sich in kaum vorhersagbarer
Weise wihrend des Bremsens dndert. Zur theoretischen Berechnung wird das Reibgesetz nach Bild 2 verwendet,
welches das reale Gesetz mit all seinen Parametern sicher nur unvollstéindig erfafit. Entscheidend fiir die Untersuchung
ist jedoch der Bereich des Reibgesetzes in der Nihe des Ursprungs, da Stick-Slip Phénomene untersucht werden,
die wechselnde Haft-Gleitzustinde voraussetzen. Experimentell wurden Verliufe dieser Art fiir die Kombination
Padmaterial-Stahl gemessen. Die Reibkraft zeigt eine Haftiiberh6hung. Fiir Gleiten gilt ein lineares Kraftgesetz.
Es ist nur von der Relativgeschwindigkeit abhingig; die Normalkraft ist konstant. Fiir die Berechnung wurden die
Werte ps = 1, pp = 0.75, ¢ = —0.02 angenommen (siehe Bild 2).

P 7n'(7)

\ pPs
Cc
PD

A gl _ n/ 7]6
\ \_))v_/ ~—— T
Gleiten Haften
Bild 2: Reibgesetz Bild 8: Geschwindigkeitsverlauf 0'(7)der Scheibe

Eine konstante Verzoégerung, 7" der Bremsscheibe, bewirkt eine lineare Abnahme der Geschwindigkeit 7'(7) bis zur
Ruhe (Bild 3). Grundzustand ist das permanente Gleiten des Pad auf der Scheibe. Das Pad ist statisch ausgelenkt,
seine Geschwindigkeit ¢’ ist zundchst Null. Wird nun bei einer Scheibengeschwindigkeit 7; eine Stérung initiiert,
so kann von der gestérten Bewegung des Pads auf die Stabilitét dieser Bewegung geschlossen werden. Als Stérung
wurde ein Haftzustand & = 7], initiiert. Anhand der Phasenkurve £'(€) oder der Kontaktkraft p(7) 148t sich leicht
entscheiden, ob selbsterregte Reibschwingungen auftreten.

Alle Rechnungen erfolgten in Anlehnung an [2] und, falls nichts anderes angegeben, mit den Werten
7" =-10"%, K/k=0.15 D=10"2, M/m=10.
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Bild 4: Phasenkurve &' (€) und Kontaktkraftverlauf p(7) fiir ng = 0.7 und 04 gy, = 0.3

Bilder 4a,b zeigen den Fall n} = 0.7. Ausgehend vom stabilen Zustand £’ = 0 wird eine Stérung ¢ = ny = 0.7 initiiert
(Vertikale in £'(£)). Diese Haftphase bleibt kurzzeitig erhalten (Horizontale in £'(£)), dann erfolgt der Auslésevorgang.
Schon der nichste, kleinere Zyklus zeigt kein Haften mehr. Die Schwingbewegung wird mehr und mehr abgebaut;
sie ist stabil. Im Verlauf der Kontaktkraft p(r) ist die Stérung als abklingende Kurve erkennbar. Danach folgt der
Verlauf der Kontaktkraft dem Reibgesetz nach Bild 2 bis zum Stillstand der Scheibe. Der Ausschwingvorgang von
p(7) resultiert aus der geddmpften Schwingung der Sattelmasse M bei haftendem Pad auf stillstehender Scheibe.Die
Grofe dieses Ausschwingvorganges ist von seinen (nichtvorhersagbaren) Anfangsbedingungen abhingig. Stért man
das System bei kleineren ng-Werten, so erhélt man zunéchst qualitativ gleiches Verhalten. Erst bei der Grenzge-
schwindigkeit 77§ gy, = 0.3 &ndert sich dieses (Bilder 4c,d). Die Bewegung des Pads wird instabil, d.h. selbsterregte
instationiire Reibschwingungen treten bis zum Stillstand der Scheibe auf.
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Die Frage ist, welche GroSen die Grenzgeschwindigkeit g gren: beeinfluBen. Abgesehen von den Kenngréfien M,
m, K, k und D des Systems, werden auch die Verzdgerung n" der Scheibe und das Kraftgesetz mehr oder weniger
dafiir entscheidend sein, ob bei hoheren oder niedrigen Geschwindigkeiten 76 Reibschwingungen auftreten. Im folgen-
den wird die Verzégerung 7", das Steifigkeitsverhéltnis K/k und die Démpfung variiert. Anhand der Kontaktkraft
p(r) wird iiber die Stabilitit der Padbewegung befunden (Bild 5).

' = —10_2, —10—3, -10~4 K/k = 1.5, 0.15, 0.015 D =101, 102, 10-8
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Bild 5: Kontaktkrifte p(r) bei Variation der Verzégerung 1", der Steifigkeiten K/k und der Dimpfung D

Bild 5a ist zu entnehmen, da8 mit abnehmender Verzogerung zeitlich frither, d.h. bei htheren Geschwindigkeiten
selbsterregte Reibschwingungen auftreten. Verindert man bei gleicher Bremse (k = const) die Steifigkeit K der
Aufhingung, so wird bei weicherer Aufhingung das Pad mehr zum Schwingen neigen (Bild 5b). Wie zu erwarten,
ist dies auch der Fall, wenn die Dampfung D verkleinert wird (Bild 5c).

Bisher wurde mit dem Reibgesetz nach Bild 2 gerechnet. In [2] wurde gezeigt, dafl Systeme mit verzdgertem Vortrieb
auch fiir weitere Reibgesetze pp < ps, ¢ > 0 (s. Bild 2) Stick-Slip-Phénomene aufweisen. Dort wurde festgestellt,
daf die Existenz von Stick-Slip-Erscheinungen weniger von der Form der verschiedenen Reibcharakteristiken, als
von der Eigenschaft des Antriebs abhéngt.

3. Experimentelle Untersuchungen

Die theoretischen Ergebnisse nach Bild 5 wurden mittels Experimenten verifiziert. Stichprobenartig wurden dazu,
bei linear abnehmender Drehzahl n der Bremsscheibe (0 < n < 1 U/sec), jeweils drei Beschleunigungs-Zeit-Signale
a(t) des duBeren Pad erfafit. Variiert wurde die Geschwindigkeitsabnahme, d.h. die Zeit T bis zum Stillstand, die
Steifigkeit K der Aufhingung und die Démpfung D.

In Bild 6 sind die Ergebnisse spaltenweise in 2 Gruppen mit je 3 Bildern dargestellt. Der Gleitzustand (oberstes Bild
jeder Gruppe) ist gekennzeichnet durch einen unregelmaBigen a(t)-Verlauf ohne erkennbares Muster. Dies bedeutet,
daB in der Realitst permanente Stérungen vorhanden sind.
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Bild 6: Beschleunigungs-Zeit-Signale a(t) bei Variation der Bremszeit T, der Steifigkeit K und Dimpfung D

In Bild 4a zeigt die obere Gruppe a(t)-Signale fiir eine lineare Drehzahlabnahme von 1 U/sec bis zum Stillstand
in T~30sec, die untere in Ta5sec. Der oberen Gruppe ist zu entnehmen, daB bei der Drehzahl 0.367 U/sec sich
eine regelméBige Schwingung anfingt auszubilden. Bei niedrigerer Drehzahl erhélt man Reibschwingungen mit einer
Frequenz von ca. 50Hz, deren Schwingungsamplitude ca. 0.4mm betrigt. Bei schnellem Abfall der Drehzahl bildet
sich erst kurz vor dem Stillstand dieses Muster aus. In Ubereinstimmung mit Bild 5a ist festzustellen, daffi mit
abnehmender Verzdgerung bei hoheren Drehzahlen Reibschwingungen auftreten.

Verringert man den Bremsdruck von p=15bar in Bild 6a auf p=5bar in Bild 6b, so treten keine Reibschwingungen
auf, wie der unteren Gruppe 6b zu entnehmen ist. Wird nun die Steifigkeit K der Aufhéngung auf K/5 verringert
(Gruppe 6b, oben), so zeigen sich erneut Reibschwingungen mit, auf Grund der verringerten Steifigkeit, kleinerer
Frequenz von ca. 34Hz. Dieses Resultat bestétigt die theoretischen Ergebnisse von Bild 5b.

Die systemimmanente Dampfung D = Dy ist im wesentlichen durch das Pad bestimmt. Eine Dampfungsvergréfierung
erfolgte durch Bekleben der Riickseiten der Pads mit Démpfungsmaterial. Die Mefergebnisse der oberen Gruppe
6c erfolgten mit der Ausgangsddmpfung Dy und sind eine Wiederholung des Mefivorgangs von Bild 6b, oben. Die

untere Bildgruppe 6c zeigt, daB bei groferer Dadmpfung Reibschwingungen ganz unterdriickt werden kénnen. Diese
Ergebnisse bestétigen die theoretischen Resultate von Bild 5c.

4. Zusammenfassung

Insgesamt ergab sich eine gute ﬁbereinstimmung von Theorie und Experiment in phinomenologischer Hinsicht,
was die Hinzunahme der Aufhéngung in das Modell bestitigt. Ein verzogerter Vortrieb verstirkt die Tendenz zur
Selbsterregung im Vergleich zu jenem mit konstanter Drehzahl. Seine Eigenschaften bestimmen im wesentlichen die
Existenz von Stick-Slip-Phénomenen und weniger die Form der Reibungscharakteristik.
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GERSTEN. K.

Asymptotic Theory for Turbulent Shear Flows at High Reynolds Numbers

It is shown that a complete asymptotic theory of turbulent shear flows at high Reynolds numbers near walls exists for the
following three standard classes of flows: attached boundary layers, Stratford flows (ty = 0) and natural convection Slows.
These flows are characterized by a finite thickness and a layer structure. The Reynolds-averaged Navier-Stokes equations
together with an appropriate turbulence model can be solved by the method of matched asymptotic expansions. Hereby the
matching conditions between the different layers yield boundary conditions for the solutions of the equations of motion and
furthermore conditions, which asymptotically correct turbulence models have to satisfy. As typical results of the asymptotic
theory general explicit formulae for the distributions of the shear stress and the heat flux at the wall exist (usually power
laws, except the logarithmic laws for attached boundary layers). For more general classes of flow, e.g. boundary layers with
separation, combined natural and forced convections, a complete asymptotic theory is not yet available, because their
solutions depend on additional coupling parameters that contain the viscosity.

1. Introduction

There is general agreement that Prandtl’s boundary-layer theory for laminar flows is an asymptotic theory for the
solutions of the full Navier-Stokes equations at high Reynolds numbers. The question arises whether an
asymptotic theory exists also for turbulent flows, that means for the solutions of the Reynolds-averaged Navier-
Stokes equation. It should be mentioned that a survey on the asymptotic theory for free turbulent shear flows has
been given in [1]. Hence, in the following only wall-bounded turbulent flows will be considered with the
restriction of incompressible two-dimensional flows.It was shown in [2] that L. PRANDTL considered the
turbulent boundary layer theory as an asymptotic theory for high Reynolds numbers, although he did not use this
terminology. All his contributions to attached turbulent boundary layers show the characteristics of an
asymptotic theory. In particular, his new system of formulas for turbulent boundary layers published in 1945 [3]
is free from the viscosity. It turns out that attached turbulent boundary layers are not the only class of flows
?I}lllere an asymptotic theory is available today. There are two more classes of flows, as will be shown in the
ollowing.

2. Layer Structure

In contrast to laminar boundary layers turbulent boundary layers have a finite thickness [4], [5], [6]. They also
show a layer structure as sketched in Fig. 1, cf. [7], [8]. There are three layers: the fully turbulent layer (the
viscosity can be neglected compared to the eddy viscosity), :
the viscous sublayer (its thickness is small compared to &
and the inertia terms can be neglected) and the viscous
superlayer (equilibrium of convection and diffusion). It
turns out that two viscous layers have universal local
solutions when the local values of the wall shear stress and
the wall heat flux for the viscous sublayer and the so-called
entrainment velocity for the viscous superlayer are known.
Since the equations of motion for the fully turbulent layer is
free from the viscosity, only one boundary-layer calculation
is necessary for all Reynolds numbers, which is typical for
an asymptotic theory. The boundary conditions that the
solutions have to satisfy follow from the matching with the
outer flow as well as with the viscous sublayer. The latter
matching is of central importance for formulating the
boundary conditions for n =y/d = 0. Fig. 1: Attached Turbulent Boundary Layer
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3. Overlap Layer

An overlap layer is characterized by the fact, that it has the properties of both the neighbouring layers. In the case
of the overlap layer between the fully turbulent layer and the viscous sublayer its flow is independent of v (as
part of the fully turbulent layer) and independent of & (as part of the viscous sublayer). These features lead via
dimensional analysis to a priori statements about the gradients of velocity and temperature. They are given as
follows:

nyT/p or 1
m-———— = —
=0 —q,(p-c,) 0n K,

0y

1
K"

Hence, the turbulent Prandtl number is always a constant in the overlap layer between the fully turbulent layer
and the viscous sublayer:

v, 0I'lon _«x

Pr, = —lim 2)
=0 q,/c, Ouldn Ky
The balance equations for the flow in this overlap layer reduce to:
momentum: O0=g-f-(T-T,)-sina —ld—p+i(ﬁj 3)
p dx y\p
N 0q,
thermal energy (no dissipation): 0= —5 4

From this last equation it follows that in the overlap layer the turbulent heat flux is constant and equal to the wall
heat flux, q; = qy-

For three classes of flows Eq.(3) reduces to simple relations for the turbulent shear stress as listed in Table 1. The

matching conditions (1) lead to the gradients of velocity and temperature in the overlap layer for these three
classes of flows listed in Table 1.

These conditions are valid independent of the turbulence model used. On the contrary the constants of the
turbulence must be chosen such, that the conditions given in Table 1 are satisfied, cf. [6].

w | o
FI Definiti on ?77 ) C P
oW efinition 7, \/—— / onstants ¥
,/p | _9t\P
n Tl p
Attached =0 1 =0.41
Boundary & T, 1 * LI 0.89
Layers Ty #0 K-n Kg- M Ky =0.46 Ky
Stratford g=0 Nd_p_ 1 1 Kq =0.59 Ko _ 0.82
FlOWS TWZO dx 77 Koo‘n% Kooe.n% Koog =0.72 Kwa
#0
Natural ip Y 1 : 1 . Ry =032 | Ky _ o
Convection Ex—=0 n KN'UA Kyo N3 |Kng =018 Ky,

Table 1: Gradients of Velocity and Temperature in Overlap Layer
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4. Attached Boundary Layers

The equations of motions combined with appropriate turbulence-model equations are free from the viscosity for
the fully turbulent layer. The boundary conditions for n = 1 are given by matching with the outer flow and they
follow for n— 0 from the conditions in Table 1. Only one calculation is necessary for all Reynolds numbers, cf.

[4]. The main result of this calculation is given by the functions c (x) and C o (x) . Matching the velocities of

the fully turbulent layer and the viscous sublayer leads to the analytical formula for the local skin-friction
coefficient c¢ =2 T, / (p-U2):

2

1 ¢r + , A

=—-In|Re - — [+ C" +C(x) %)
¢, K 2
Where Re, = U(x)[X - Xo] / V is the local Reynolds number and C* a universal constant (C* = 5.0 for smooth
surfaces). The main contribution of the right hand side of Eq. (5) comes from the first two terms. They are results
of the universal solution for the viscous sublayer. The function C(x) is the contribution of the fully turbulent
layer and hence dependent on the turbulence model. Its effect on the skin friction, however, is only a few percent
and decreases with growing Reynolds number.

It is worth mentioning that the so-called équilibrium boundary-layers are characterized by a constant C , in
which case the profiles of the velocity defect in the fully turbulent layer are self-similar and the partial
differential equation reduces to an ordinary differential equation.

A formula similar to Eq. (5) is valid for the local wall heat flux or Nusselt number, cf. [8].

5. Stratford Flows

In Stratford flows the wall shear stress is everywhere equal to zero (t, = 0). STRATFORD [9] has investigated
such a flow experimentally. Theoretical investigations of this particular equilibrium boundary layer can be found
in [8], [10], [11]. As a result the following formula for the Stanton number, i.e. the dimensionless local wall heat
flux g.(x), can be derived:

q, 0.6
p-cy (T, ~T.) U cx_(pr)-Re)s

(6)

Here Re, is again the local Reynolds number based on the outer flow velocity U(x) ~ (x-x"* and the length
x — Xo. The value Cj, (Pr)results from the universal viscous sublayer solution. It depends on the Prandtl number
Pr, itis Cy.(0.72) = 1.8, cf. [12], [13].

6. Natural Convection Flows

The equations of motion for the fully turbulent layer can be found in [4], [8]. In these particular cases it is not
necessary to solve these equations to get a formula for the wall heat flux. The matching between the fully
turbulent layer and the viscous sublayer yields directly the following formula to the leading order :

T,-T.

= Clyp (Pr) (7)
q
where

Vi
7 4y uq=[v-qw-ﬁ-g-sma] ®)

Top Cp-lyq PCp
The function Cy,(Pr) is given in [4]. It is Cj,(0.72) = 4.56 . Equation (7) is equivalent to a power law of the

Nusselt number as function of the Rayleigh number. The exponent of the power law depends on the input (given
T.(X) or q.(x)). The agreement of Eq (7) with experiments is excellent, cf. [4].
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7. Incomplete Asymptotic Theory

The momentum equation, Eq. (3), for the overlap layer in general can be written in dimensionless form as
follows
+

y

T,

) =—l5=1+K-y' + Ky [0° (") " ©
P u; 0

where
d qa -p-B-
K = v ap KN=ﬂL2'B_g_ (10)
u,.-t, dx C, Ty

are so-called coupling parameters. They represent a distinguished limit for the double limiting process v—0,
1,—0.

K is a parameter that changes along the wall for turbulent boundary layers with separation, cf. [4], [12]. Their
fully turbulent layers depend also on K and hence on the viscosity. Therefore, a complete asymptotic theory with
a solution that is independent of the Reynolds number is not available yet. Consequently, turbulence models that
are used to predict turbulent boundary layers with separation must have model constants which are functions of
the coupling parameter K. For K| > 0.01 the effect of K on the solution has to be taken into account, cf. [4]. The
coupling parameter Ky serves in analogous form for the combined forced and natural convection flows along a
flat plate. In the most general case (pressure gradient as well as buoyancy effects ) both coupling parameters may
become important.
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A. KLuwick

Laminar boundary layer separation, fast and slow

It is well known that classical boundary layer theory fails if flow separation occurs. In the limit of large Reynolds
number this failure can be avoided if the interaction between the viscous wall layer and the external inviscid region
is accounted for. The form of the resulting interaction equations crucially depends on the route towards separation.
If a firmly attached boundary layer is separated by the action of a rapid pressure increase separation is governed
by the triple deck equations e.g. the classical boundary layer equations supplemented with appropriate matching and
interaction conditions. However, if the approach towards separation is much slower the formation of a marginally
separated flow region is described by a nonlinear integrodifferential equation. Representative solutions of both sets of
interaction equations indicate that boundary layer separation often is accompanied with a loss of uniqueness.

Without doubt boundary layer theory published 1904 in the seminal paper “Uber die Fliissigkeitsbewegung bei
sehr kleiner Reibung” by L. Prandtl represents one of the cornerstones of modern fluid mechanics. Nevertheless,
one must concede that the classical hierarchical concept, in which the pressure distribution inside the boundary
layer is imposed by the external inviscid flow and thus known in advance at each level of approximation, is able to
yield complete solutions to given problems in rare cases only. The most well known example is provided by a semi
infinite aligned flat plate in a uniform stream of an incompressible fluid. However, difficulties arise if one considers
a plate of finite length L. This has been pointed out first by GOLDSTEIN 1930 who showed that both the transverse
velocity component and the first order pressure disturbances resulting from the boundary layer displacement exhibit
singularities at the trailing edge. Despite the occurrence of these singularities, however, the solution to the boundary
layer equations can be extended into the wake region in a sensible manner.

A more severe breakdown of classical boundary layer theory is usually encountered if flow separation occurs. In this
connection it is found that two routes towards separation have to be distinguished. This is seen most easily if one
considers the flow past a slender airfoil at a small angle of attack. First let us concentrate one the case of trailing
edge stall. To bring out the essential features unencumbered by complicated geometry the airfoil - following BROWN
AND STEWARTSON 1970 - is replaced by a flat plate. If the Kutta condition is enforced the pressure on the suction
side rises to its ambient value as the trailing edge is approached where the adverse pressure gradient is infinite. For
the case of laminar flow considered here this means that the boundary separates before the trailing edge is reached
even if the angle of attack k is arbitrarely small. For k¥ <« 1 the transition from a fully attached to a separated
boundary layer occurs very fast, e.g. in the immediate neighbourhood of the trailing edge. It is characterised by
the formation of a Goldstein singularity in the wall shear stress-distribution and, most important, it is found that
solution of the boundary layer equations cannot be extended beyond the point of vanishing wall shear. A different
flow behaviour is observed if one considers the case of leading edge stall, RUBAN 1982, RUBAN 1981, STEWARTSON
1982. As the fluid passing over the suction side of the airfoil accelerates starting at the stagnation point the pressure
drops rapidly. This initial phase of flow development is followed by a sharp pressure rise which may cause the wall
shear in the nose region to decrease significantly. However, if the angle of attack k is sufficiently small the wall shear
remains positive there and rises again if the distance & from the leading edge is larger than %, say. Further increase
of k eventually leads to the wall shear distribution also shown in Fig. 1: the wall shear 7,, vanishes in a single point
but immediately recovers. In contrast to the Goldstein singularity df,,/dZ remains finite at 7, = 0. It changes
discontinuously and the solution - in which the point of zero wall shear is approached much slower than before -
can be continued further downstream. If the angle of attack is increased beyond the critical value k. leading to this
socalled marginal separation singularity a Goldstein singularity forms upstream of &, and, as before, represents an
impassé for the boundary layer calculations. This fact should, however, not be misinterpreted as a signal that the
boundary layer equations cease to be valid at separation. In fact, they remain valid in both cases of fast trailing edge
and slow leading edge separation. Rather it is the hierarchical structure of classical boundary layer theory which
breaks down, namely the assumption that the pressure distribution inside the boundary layer and the solution to
the boundary layer equations can be obtained in successive steps. This conclusion was drawn independently by
a number of authors including NEILAND 1969, STEWARTSON 1969 and MESSITER 1970. It clearly indicates how
boundary layer theory can be modified to allow for the description of separation processes both fast and slow: by
accounting for the displacement of the boundary layer on the external inviscid flow in leading rather than higher
order or, in other words, by letting the boundary layer and the outer inviscid region to interact.
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In the first case one is led to the socalled triple deck theory. Its name derives from the finding that the local interaction
region exhibits a three layer structure, Fig. 2. Asymptotic analysis for large Reynolds number Re = oo L/ > 1
reveals that the length and width of the interaction zone are of the order Re™%/® [, where i, and represent reference
values of the external flow velocity and the kinematic viscosity while L is a characteristic length associated with the
unperturbed boundary layer. Since the interaction length is so short the disturbances generated, for example, by a
trailing edge are essentially inviscid not only in the region outside the boundary layer (upper deck) but also over
most of the boundary layer (main deck). Viscous effects play a major role in a thin layer (lower deck) adjacent to
the wall and the wake centerline. Here the flow is governed by the boundary layer equations. Furthermore, even if
the flow under consideration is compressible, the velocities close to the wall are small and the field quantities in the
lower deck region are thus governed by the incompressible version of the boundary layer equations. Using suitably

scaled coordinates (X,Y’) parallel and normal to the wall, corresponding velocity components (U, V) and pressure
disturbances P they assume the form

oUu oV ou oUu P 8*U
axtar = UsxtVay = ax Tave @
The boundary conditions

X<0,Y=0: U=V=0, X>0,Y=0: continuity of pressure,

()
X—=-00: U=Y, P=—-a(—X)1/2

include the no-slip condition at the plate, the requirement that the pressure is continuous across the wake centerline
and exhibits the upstream behaviour predicted by the theory of inviscid flows. Here o = k Re'/® denotes the scaled
angle of attack. Additional conditions

AI

X )d X subsonic, —A'(X) supersonic flow (3)

Yoo0: U=Y+AX), P(x):%

é\g
xli |

follow from the requirement that the flow properties in the lower, main and upper deck blend smoothly, e.g. can be
matched. Here —A(X) characterises the displacement effect excerted by the lower deck which is felt (through the
passive main deck) by the upper deck where it causes an inviscid pressure response.

The interaction equations 1 - 3 for the suction side of the plate have to supplemented with similar equations for the
pressure side and then have to be solved numerically. Before turning to a discussion of numerical results it is useful
to briefly describe the nature of the interaction process if the approach to separation is slow. As before the local
interaction region exhibits a three layer structure, Fig. 3. Again, the flow in the main deck region which comprises
most of the boundary layer is essentially passive and outside the boundary layer we have a weakly perturbed parallel
flow. Viscous effects associated with the interaction process are confined to a thin lower deck region where the
boundary layer equations hold. In contrast to the triple problem outlined earlier, however, the incoming flow is no
longer fully attached but on the verge of separation. This in turn means that very small disturbances are sufficient
to separate the boundary layer and asymptotic analysis indicates that these disturbances satisfy the boundary layer
equations which are linearized with respect to the separation profile. The first oder solution is seen to include a
function —A(X) which remains undetermined at this level of approximation and, as earlier, can be interpreted as
a perturbation displacement thickness or equivalently as a scaled wall shear. In order to determine A(X) one has
to investigate the second order lower deck problem which is found to have an acceptable solution only if A and the
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scaled pressure disturbances P satisfy the relationship

P (X) —

where the parameter I' measures the difference between k and k.: T ox (k — kc)Rez/ 5. A second relationship between
A and P is given by the Hilbert integral or the Ackeret formula in (3) if the external flow is subsonic or supersonic.

X
A2(X)—X2+I‘=—/
00

Now let us return to the triple deck problem for the flat plate at incidence. Its solutions determine, among others,
the dependence of the lift coefficient on the angle of incidence and the Reynolds number: ¢z /27 = 1 —a; (a)Re~%/%.
On physical grounds one expects that viscous effects will reduce the lift which requires a, to be positive and this is
confirmed by the numerical results of CHow AND MELNIK 1976, KOROLEV 1989, Fig. 4. As one expects the flow
remains attached if the angle of incidence is sufficiently small. Most interesting, however, it is found that solutions
of the interaction problem do not exist if o exceeds the critical value a, &~ 0.497 (indicating that larger values of
will lead to a substantial change of the flow structure) and that the relationship between a; and a is non unique
in the neighbourhood of a.. Upper branch solutions exhibit much longer separated flow regions than lower branch
solutions which results in a substantial reduction of lift.

The phenomenon of non-uniquenes observed in Fig. 4 appears to occur quite frequently in connection with flow
separation. In fact it has been detected first in the different context of supersonic flows past flared cylinders
GITTLER AND KLUWICK 1987. The flow field in the neighbourhood of the corner develops the triple-deck structure
discussed before with the difference that the interaction law is more complicated than (3). Owing to the axisymmetric
geometry the streamtube area decreases downstream of the corner if the flare angle is negative and the initial pressure
drop, therefore, is followed by a pressure rise which may separate the boundary layer. The positions Xg and Xg of
the separation and reattchement points are plotted in Fig. 5 which clearly displays ranges of the (scaled) flare angle
a where the solutions of the interaction problem are non unique.

ax X
5 .

S—

o
+¥

______ ;! Xs i
0.3 04 047 0497 ¢ i | e
leej= catastrophic stall ? 11 —11281 <115 12 [-125 a
attached separated —11.45 -12.42
Fig. 4 Fig. 5

In the examples discussed so far the external flow was either purely subsonic or supersonic. The treatment of
transonic interactions is severely hampered by the nonlinearity of the transonic small perturbation equation which
has to be solved simultaneously with the nonlinear boundary layer equations and very limited progress has been
achieved so far. Some insight into the properties of mixed subsonic supersonic flow can, however, be gained if one
considers transonic effects in narrow channels, KLUWICK AND GITTLER 2001. Owing to the slenderness of the
channel the flow in the inviscid core region is essentially one-dimensional and can be investigated analytically. This
leads to a nonlinear interaction relationship between P and A which allows for the passage through the critical state.

At this point let us stop this brief discussion of fast separation and to return to the case of slow separation. Again,
non-uniqueness of flow patterns is found to represent a very common phenomenon. In fact, it occurs in all known
examples of marginally separated flows. Results for the problem of leading edge stall, which was used to introduce
the notion of marginal separation, are shown in Fig. 6 which displays the wall shear at X = 0 as a function of the
parameter I'. If T is negative, i.e. if k < k. the flow remains attached and the solutions of the interaction equations
3, 4 are unique. However, for all values I' > 0 for which solutions can be found there exist at least two different ones.
Furthermore, it is interesting to note that the interaction equations do not admit solutions if I' 2 2.75 indicating
that a substantial change of the flow behaviour - not fully understood at present - must take place as I exceeds this
value. Also note, that there exists a I-range where one has four rather than two different solutions. There exist cases
of marginally separated flows, however, where non-uniqueness of solutions is even more pronounced. An example is
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provided by a viscous jet flowing past a curved wall which separates under the action of an adverse pressure gradient
generated by centrifugal forces, ZAMETAEV 1986. If the wall shear at X = 0 is plotted as a function of the parameter
I" which characterizes the flow angle downstream of the interaction region (measured from the value where classical
boundary layer theory predicts the onset of separation) one obtains the plot shown in Fig. 7. As before there exists
an upper limit T'; of T for which solutions of the interaction problem can be found. For I' < I, there exist ranges
of T where we have two, four, six or even more different solutions. In this connection the question arises how these
solutions react to small disturbances. Disturbances caused by localized surface mounted obstacles Y = H(X, Z)
have recently investigated by BRAUN AND KLUwICK 2000, BRAUN, KLUWICK AND STEINRUCK 2001 for I, - T < 1.
Representative results are depicted in Fig. 8 where A3p and Z denote the wall shear distribution in the presence of
the 3D obstacle and the (scaled) coordinate in the lateral direction. In the case of the upper branch solutions (u)
the disturbances are seen to decrease with increasing distance from the obstacle. Disturbances of the lower branch
solutions (1), however, generate a periodic flow pattern which extends up to Z = co. Asymptotic analysis indicates
that the flow behaviour for large Z is almost independent of the specific shape of the obstacle for both the upper
and lower branch solutions where they approach the properties of weakly nonlinear eigensolutions. These closely
resemble soliton and cnoidal wave solutions known from the Korteweg de Vries equation. The implications of these
surprising results are currently under investigation.

A(0) £
i s 0.1
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: |
of 8
E S
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DANIEL MARGERIT AND DWIGHT BARKLEY

Singular perturbation equations for 3-d excitable media

In this paper the idea of Prandtl’s boundary layer is exported to a field other than fluid dynamics. Fzcitable media,
such as nerve fibers and heart tissue, are typically modelled with reaction-diffusion equations containing two chemical
species that evolve on very different time scales. In three dimensions solutions of these equations take the form of
rotating scroll waves (interfaces) ending on filaments. The ratio of the two times scale defines a natural small
parameter epsilon. Exploiting the inherent smallness of epsilon, singular perturbation methods are used to derive
three-dimensional equations for each of two boundary layers : interface region (scroll) and filament region (core),
and for the associated outer region. For scrolls with uniform twist about straight filaments, this matched asymptotic
ezpansion method is also used to derive free-boundary equations not only at leading order but also at first order.
Both orders are validated against full solutions of the reaction-diffusion equations. Using these two orders and with
no adjustable parameters, the shape and frequency of waves are correctly predicted for most cases of physical interest.

1. Introduction

In three-dimensional excitable media, propagating waves of excitation typically take the form of scrolls which are
organized about one-dimensional filaments[13]. These filaments have some similarities to the vortex filaments found
in fluid dynamics. However, unlike vortex filaments in fluid dynamics, filaments in excitable media can have associ-
ated twist. Figure 1 illustrates this by showing a scroll wave which is uniformly twisted along a straight filament.
The purpose of this paper is to show how the idea of Prandtl’s boundary layer can be applied to excitable media.
In particular we derive equations predicting the shape and rotation frequency of scroll waves such as in Fig. 1 and
through these equations we are able to understand and predict the role of twist in shape and frequency selection.

We begin by considering the following partial-differential-equation (PDE) model of excitable media[l] written in the
space-time scales proposed by Fife[6]:

oufdt = EViu+u(l—u) (u—Hb), (1)

a

/ot = e(u—v). (2)

Such two-component reaction-diffusion models capture essential properties of excitable media and are widely used
in theoretical and computational studies, e.g. [2, 3, 7, 8, 9, 14]. Mode!l parameters a and b control the excitation
threshold and duration and will have values @ = 0.8 and & = 0.1 throughout. The parameter ¢ is small, reflecting
the disparate time scales of the fast activator variable u and slow inhibitor variable v.

Previous work on wave selection in excitable media through asymptotic expansions [3, 7, 8, 9, 12] has focused entirely
on leading order in the small parameter € and primarily on two dimensions. Expanding the rotation frequency as

w=w® tea® 4 (3)

only the leading-order frequency w(® has been obtained[3, 7]. While the small-¢ (Fife) limit has played an important
role in 2D studies, the leading order does not accurately predict many properties of waves at finite e. However, we
find (Fig. 3 below) that expansions to first order in ¢ are predictive well into regimes of physical interest.

2. Geometry, asymptotic description and leading order solution

For the leading-order asymptotics, we begin by considering the general three-dimensional (3D) case. The medium
is divided into three regions: outer, interface, and core as shown in Fig. 2. The filament is the curve X (s,t) inside
the core. The outer region comprises the bulk of the medium. It consists of both excited (+) and quiescent (-)
portions for which v = ut =1 and v = u~ = 0, respectively, to all orders in . Expansion of the v-field in the outer
region gives: v = v° + evD) 4 ..., where v* = —b + a/2 is the stall concentration (value such that a plane interface
is stationary) and v is to be determined.




582 ZAMM - Z. Angew. Math. Mech. 81 (2001) S1

interface (-)

Figure 1: Twisted scroll wave from nu- Figure 2: Scroll geometry showing outer regions [excited
merical solutions of Eqgs. (1-2). Isosur- (+) and quiescent (-)], interface regions [wavefront (+)
face is shown for u = 0.5. The filament is and waveback (-)], and core region. The filament X(s, )
white. The structure rotates in time with is parameterized by s and time f. Local coordinates to
frequency w about the filament. The the filament are (7, ¢, s), with (r,¢) in the plane normal
twist is 7 = 0.5, (defined later in the to X(s,t) and ¢ measured from the normal vector n.
text); e = 0.1.

Separating excited and quiescent states are the thin interfaces where u undergoes rapid change. These consist of
a wave front (+) and a wave back (-), which on the outer scale are given by ¢ = ®*(r,s,t). Solving leading- and
first-order inner equations for u across the interface (v is constant at these orders across the interface) and matching
to the outer u-solution, one obtains equations for interface motion[10]. Thus Eqs. (1-2) reduce to equations for »(*)
in the outer region together with equations for the motion of the two interfaces (free boundaries):

v /ot = ut —of, (4)
5(0)% p+

_g)_h 9IgE &+ Qv(l)i (5)
vm* a

where ®(0* is the leading order approximation to ®*, and where ht = |6X/8s| (1 — rK cos®©%) K is the
filament curvature, m* is the determinant of the metric tensor and H¥ is the mean curvature of interface o0)F
and finally v()?* is the value of v(1) at interface ®(0%, Eq. (5) equates normal velocity of the interface to twice the
mean curvature plus the speed of a plane interface. Phenomenological approaches to excitable media yield similar
equations [16]. As in 2D [9], the core plays no role at leading order other than to regularize the cusp that would
otherwise exist as the two interfaces come together. However, leading-order core equations dictate that X0 = 0,
Le. the filament velocity is zero at leading order in ¢ and filament motion must come at higher order.

We now consider the specific case of a straight filament and seek solutions with uniform twist = 0®/ds and
constant frequency w(® = &), The angle between the two interfaces can be shown to be constant: A®(®) =
@0 — 3O+ = 27(1—v*) and v(* can be eliminated from the free-boundary equations to obtain a single equation
describing the shape of the interface[10]:

dU© w01 4§07
+

~ 2 2
— E =g+ 07 - B(g+ w)*2, (6)

q

where ¥(©) = rd®©+/dr = rd®©)=/dr, and ¢ = 1 4 7272, with # = VwOp, 7 = 7/Vw© . The eigenvalue B is
related to w(®) and model parameters via B = (u/w(®)3/2 where p3/2 = V2mv* (1 = v*)/a. With ¥ = 0 (2D case),
Eq. (6) is as given by Karmal[7], while for 7 # 0 it can be shown to agree with the work of Bernoff [3]. ¥(%) and the
selected B as a function of 72 is found[11] from Eq. (6) by shooting: integrating from # = 0 to large 7 and finding
B such that ¥(®) matches the relevant large-r limit obtained from Eq. (6).
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3. Order-¢ asymptotic for a straight filament with twist

We now consider the order-e asymptotics. We treat only the case of straight filaments. For scrolls with twist 7
rotating at frequency w: 0/0t = —wd/d¢ and 8/0z = 78/d¢p. For this case Eqs. (1-2) become

Ewduf/dp + EVieutu(l-wu) <u— v—l—b) =0, (7)

a

wiv/Bp + e(lu—v) =0, (8)

where V2 = 9%/0r? + (1/7)8/0r + (¢/7%)9%/0p?. The major complication in deriving free-boundary equations from
Egs. (7-8) is matching outer and inner solutions (for u and v) across the interface because v(?) is not constant across
the interface and because the normal to the interface lies outside the (r, ¢) plane when 7 # 0. For this we use local
coordinates “normal” to V2 near the interface[10].

The symbolic calculator Maple is used to obtain the cascade of asymptotic equations in both the outer and inner
regions up to the order of interest. The outer asymptotic expansion is plugged into Egs. (7-8). For the inner region,
Maple is first used to express Egs. (7-8) in local inner coordinates in the interface region and then used to plug the
inner asymptotic expansions into these equations. Maple is then used to find the behavior at infinity of the inner
solution and to perform the intricate asymptotic matching with the outer solution. Finally, Maple is used to find the
asymptotic behavior at infinity of U0 and ¥(1) to many orders in 7. The symbolic calculator allows us to quickly
derive these results and to minimise the possibility of mistakes in such fastidious calculus.

The result is that at this order A®() = (1)~ — &+ = 0 and it is again possible to obtain a single equation for
T = qu(@rd®(1)E /dr[11] with an eigenvalue D related to w) by D = aw™). The general solution of this equation
is found[11] and diverge exponentially at infinity unless D has a selected value.

Finally, we use symbolic calculation to verify that the fields obtained asymptotically is truly the solution of Egs. (7-8)
up to the order of interest. This is an exact check which is independent of the calculus used to derived the asymptotic
fields. We perform this verification with Maple by (i) plugging into Egs. (7-8) the outer asymptotic solution and
equations for ¥(®) and ¥(1) up to the relevant order, then expanding in € and verifying that 0 = 0 on the computer;
(ii) doing the same for the inner asymptotic solution and with Eqgs. (7-8) written in the local stretched coordinates
(but not expanded in €); (iii) checking the matching between the outer and inner asymptotic solutions. Such a
check is important in boundary layer problems. The symbolic calculator makes this check easy to perform and thus
provides a strong and useful tool for singular perturbation calculus.

4. Comparison with the numerical PDE solution and conclusion

We now compare the asymptotic results with full PDE solutions. For this we solve (7-8) using Newton’s method [2].
The operator V2 is discretized on a polar grid typically with 256 points in ¢ and radial spacing Ar = 0.05. The
r-derivatives are computed by finite differences and ¢-derivatives are computed spectrally.

Figure 3 shows the dependence of w on ¢ from the PDE solutions. This figure clearly shows the existence of the Fife
limit: a finite-frequency limit as € — 0. Over a substantial range of ¢, the frequency is very well captured by the
first two orders in €: w ~ w(® + ew(). Extrapolation of frequency data to € = 0 gives w© and thus B. The slope of
w versus ¢ gives w(!) and hence D. From the computed u-fields we find the functions &% as curves on which u = 1/2
and from these ¥ is computed by differencing. Analogously to the frequency, from the dependence of ¥ on € we find
¥(®) and ¥M[11]. The core radius is found to be r ~ 8¢ and the data also confirm that AP = 0.

In Fig. 4 we compare full solution of the stationary PDE (7-8) with the interface curves. Shown is a cross-section
of a twisted scroll wave normal to the straight filament X at station s and instant ¢ in the domain, r < 20. Also
shown is cross-section of the stationary interface at leading-order ¢ = &% (r,5,t) and at leading-plus-first-order
¢ = ®O%(r 5, 1) +e®VE(r, 5,1). Figures 4(b) and (d) show the same case as Fig. 1 (apart from the domain radius).
The agreement is excellent and contains no adjustable parameters.

In conclusion, we have derived free-boundary equations at leading-order and first-order for twisted scroll waves in
excitable media and we have validated these equations directly with numerical solutions of the underlying PDEs.
The free-boundary equations we have derived apply to a large class of models [10]. For excitable media it would
be of considerable interest to derive an equation of motion for this filament as has been successfully performed in
hydrodynamics for vortex filaments[4].
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Figure 3:  Scroll frequency w versus Figure 4: Comparison between PDE solutions (greyscale)
¢ from numerical solutions of the PDE and asymptotic results (white curves). (a) ¥ = 0, asymp-
model for two values of twist. Lines are totics at leading order. (b) ¥ = 0.5, asymptotics at leading
from fits to the data at small € and are in- order. (¢) ¥ = 0, asymptotics at leading-plus-first order.
distinguishable from asymptotic predic- (d) ¥ = 0.5, asymptotics at leading-plus-first order. Black
tions at first order in e. is the interface 0.1 < u < 0.9; light grey (dark grey) is
v < 0.1 (v > 0.9). The radius is 20; a = 0.8, b = 0.1,
e=0.1.
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TING, LU AND VAN DYKE, MILTON

Prandt!l’s Boundary Layer Theory, before and to Matched Asymptotics

The idea of joining a local and a global perturbation expansion to form a uniformly valid approzimation was exploited
by various workers in mechanics throughout the 19th century for isolated problems. The idea was first explored
systematically by Ludwig Prandtl with his students and colleagues, for fluid motion at high Reynolds number. Here
we review the work of Prandtl’s 19th-century predecessors and then describe the explanation of Prandtl’s boundary
layer theory by K. O. Friedrichs, leading to the method of matched asymptotics. The method provides a systematic
procedure for the formulation of a singular perturbation problem, and additional mathematical novelties, such as,
the identification of the ‘lost’ boundary condition(s) from the full system of equations and the derivation of the nezt
order equations and their compatibility condition(s), which in turn serve as the closure condition(s) for the leading
order solution. Ezamples are presented to demonstrate the novelties of matched asymptotics and to emphasize the
physical intuition needed to formulate the perturbation problem, i. e., the choice of the scalings and the ezpansion
schemes.

1 Introduction

In 1904 [1], Prandtl presented his boundary layer theory for a body moving at high Reynolds number. See also
[2]. His theory initiated a systematic procedure for joining local (inner) and global (outer) perturbation expansions
to form a uniformly valid approximation, and was generalized by Friedrichs in 1945, [3], to a systematic procedure
for deriving the leading and higher order equations and matching conditions for the inner and outer solutions and
for removing singularities of the outer solutions. The procedure was referred to as the boundary layer technique
[4], and became known since the 60’s as the method of matched asymptotics (MMA). The method has been widely
employed to resolve many singular perturbation problems in applied mechanics and have been explained in many
monographs, see, e. g., [5] and [6].

The first part of our presentation in the Mini-symposium, dealing with the boundary layer type analyses prior to
Prandtl, is described in Section 2. We mention problems in fluid dynamics and acoustics. for which the construction
of a global or regular perturbation solution with local singularities was carried out, and the solution was later
identified as the leading global solution by MMA, with its singularities resolved by the inner solutions.

The second part of our presentation reviews the formulation of and the contributions to MMA by Prandtl and
Friedrichs and their students and colleagues. The review emphasizes the physical intuition needed to formulate the
perturbation problem, i. e., setting up the expansion scheme, the restrictions implied by the expansion scheme and
the physical meaning of the inner solution and its matching with the outer solution. The highlights of the review
article, [7], are presented in Section 3.

The last part of our presentation is described in Section, 4. We use the studies of the diffraction of weak shock by
a concave corner to show that there can be different admissible models, in the sense that the matched asymptotic
analysis for each model can be carried out to higher orders without contradiction. But different models have different
degree of difficulty, sometimes insurmountable, in the construction of the inner solution. We then identify the “best”
model for the removal of a particular singularity.

2 Boundary Layer Type Analyses Before Prandtl

We note that the analysis of a linear oscillator with vanishing mass was the example introduced by Prandt! to
explain his boundary layer theory [2] and was explained in detail in [6] to show the basis of MMA. We shall not
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repeat this example. Instead, we mention one classical problem in fluid dynamics, and one in acoustics in §2.1 and
2.2 respectively and interpret them by MMA.

Point vortex in a two-dimensional potential flow. The classical solution for the velocity potential a point
vortex in a background flow is ®(z, y,t) = [I'/27] Inr+¢@(z, y), where ¢(z, y) is the potential of the steady background
flow without the vortex, and I" denotes the strength of the vortex located at point P(X(t),Y (t)) and r denotes the
distance from (z,y) to P. This solution has two defects: (1) the solution is singular when r — 0 and (2) the velocity
of the vortex point has to been assigned. It is zero for a fixed vortex and is the local background, P (t) = Vo(X,Y)
for a free vortex. The solution for a fixed vortex is often identified as the far field representation of a lifting body of
size, b. The inner solution, or the near field solution in the length scale, b, yields or matches with the outer solution
at large distance L to the body with L > b [8].

When there is a free vorticity distribution of total strength I', concentrated in the neighborhood of a point P, the
classical solution is considered to be the outer solution in the length scale £ much larger than the effective core size
¢ of the vortex distribution. The singularity of the outer solution as r/£ — 0 is removed or matched with the inner
solution, i. e., the core structure. With the core structure, the velocity of the vortex is defined and the classical
theory for the velocity of the point vortex is identified by MMA as the average velocity in the normal time scale
O(£%/T). See [9] and references therein.

2.2. Scattering of long acoustic waves The problems of acoustic radiation from the open end of a pipe, apertures
in plane screens and scattering by small obstacles were treated by Helmholtz (1860) and Rayleigh (1897). See [8].
The solution, known as Rayleigh’s long wave approximation, is applicable when the wave length A is much larger
than the size a of the opening or the obstacle. The scattered field in the length scale a, obeys the Laplace equation
with ¢ as a parameter, instead of the wave equation. Rayleigh’s approximation is explained systematically by MMA
with a/X as the expansion parameter and applied to other problems in acoustics by Lesser and Lewis [10] and Ting
and Keller [11], and to problems in aero-acoustics by Crow (1970) and many others (see [8] and the references
therein).

3 Boundary Layer Theory to Matched Asymptotics

In the review paper [7], we describe the formulation of the boundary layer theory in four steps, common to those
used later in MMA, [3] and [5], in which the boundary layer solution and the inviscid solution are identified as the
leading order inner and outer solutions respectively. The method gives a systematic procedure to derive the higher
order equations for the inner and outer solutions and their matching conditions. The matching conditions also
resolve the local singularities of the outer solution, if any. The four steps are: I, the physical intuition or modeling
of the flow field, II, the choice of the scalings and the expansion scheme, III, derivation of the leading and higher
order equations and the matching conditions, and IV, the construction of the inner and outer solutions and the
study of their physical meaning. In terms of these four steps, the method enables us to check the consistency of
the expansion scheme and provides additional mathematical novelties, such as the “lost” boundary conditions, the
“compatibility” conditions and the “closure” conditions.

We point out that the selection of an the expansion scheme in step ITimposes certain restrictions on the solution. Two
examples are quoted to show the modifications needed when some of the restrictions are violated. The consistency of
an expansion scheme has to be tested in step III, not only by the leading and higher order equations of the inner and
outer solutions but also by their matching conditions. For example, in Kaplun’s analysis of a flow at low Reynolds
number, R, <« 1, the necessity of a double series expansion in power of R, and In(1/R,) comes from the matching
conditions. See [5]. From step III, we can identify the “lost” boundary condition(s) from the full system of equations
and the associated compatibility condition(s) for the solutions of the reduced systems. As examples, we identify the
“lost” boundary conditions and the “compatibility” conditions for two-dimensional and three-dimensional boundary
layers. We mention the second order shock conditions to demonstrate that there are cases for which we have to
recover the missing or “closure” conditions for the leading order solutions from compatibility conditions of the higher
order equations.

We note that although Prandtl did not continue his boundary layer theory to the next order, he introduced the
displacement and momentum thicknesses of the boundary layer and pointed out how to use them to render the
outer solution valid to the next order, [12]. His suggestions have been in use by engineers, for example, the design
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Figure 1: Shock incident on a concave corner - uniform regions, sonic circles and shock fronts.

of convergent-divergent nozzles for supersonic tunnels and the design of supercritical wings for current commercial
airplanes.

We then describe the investigation leading to the correct model for the planing of a plate at high Froude number in
order to show that it is essential to understand the physics of the problem prior to the formulation of the correct model
and expansion scheme. In the last section of [7], we mention a few methods for singular perturbation problems, other
than MMA and note that MMA can be readily implemented to remove the singularities of the solutions obtained
by the other methods.

4 Diffraction of Weak Shocks

We use the studies of the diffraction of a weak shock by a concave corner to demonstrate that there can be different
models for MMA and identify the “best” model for the removal of a particular singularity of the outer solution. Let
the negative r-axis be the horizontal side of a concave corner of angle 7 — a, with vertex at the origin O and the
inclined side be parallel to 7 = icosa + jsina. The incident shock is moving parallel to the z-axis with velocity Voi
hitting the inclined side at t = 0. For t < 0, there is no reflected shock. For t > 0, S* is reflected by the inclined side
at the point Vptsecat and 3 denotes the angle of reflection of the shock ST. There are three uniform regions, 0,7
and I1, outside the non-uniform region in the domain of influence of the vertex. Ahead of S*, there is the uniform
region 0, at rest. Behind S' but ahead of the reflected shock ST, there is the uniform region /, moving at velocity
uyi. Behind S7, there is the uniform region II, moving at velocity urs#. Let P and Ci denote the pressure and
speed of sound of the k-th uniform state, in which the domain of influence of the vertex is bounded by the sonic
circle Cj with radius Cit and center Oy moving with the uniform stream. We have Op located at the origin, O; at
iust and Oy at 7uyst. We note that, (i), relative to a shock, the flow behind (ahead) or on the high (low) pressure
side is subsonic (supersonic) and hence (i) S™ cuts into C;; at point T, as a diffracted shock 89, approaching C;
from outside and remains outside of Co. Since the unsteady flow field does not have a length scale, it is a conical
flow field. Figure 1 shows the flow field in the conical variables £ = z/Cot and § = y/Cot. The uniform regions,
0 and I7, being outside of the domain of influence of the vertex, are defined. The uniform region I is behind ST,
above the z-axis and outside the reflected shock S™ and then the diffracted shock, 89, yet to be defined.

For a weak incident shock, we have (P; — Py)/Po =€ <« 1,and f = a+ O(e). and the flow field differs from any one
of the three uniform states by O(¢). The classical theory for weak shocks or acoustic wave gives the perturbation
solution from the state at rest, say the perturbation pressure ep = P — P,, given by Keller and Blank (1951), cited
in [13]. In the conical variables, the non-uniform region is bounded by the unit circle, Co, and the sides of corner,
0 = 7 and 7 — a. In the first approximation, the reflected shock 57 is tangent to So at T(1,2¢a), which is the triple
point lying on the boundaries / and II and the non-uniform region. Across the point T along Co, the pressure
jumps from P; to Py as 6 decreases. We note that, (iii) in conical variables, the linearized equation is hyperbolic
outside and elliptic inside the unit circle.
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The perturbation solution is not uniformly valid to O(e) near Cy because it differs from correct boundaries of its
adjacent uniform regions, C; and Cry, by O(e) and Vp is singular near Cg. The solution was rendered uniformly valid
excluding the neighborhood of the triple point by Lighthill’s technique (1949) and by MMA, Zahalak and Myers
(1974), for linearized supersonic flows and by the geometrical theory of diffraction for nonlinear waves, Hunter and
Keller (1987). See [13]. To O(e), they arrived at the same correction which amounts to replacing the arcs of Cp,
adjacent to I and II and the distance to the arcs by those of C; and C; respectively.

If we construct the perturbation solution say epy = P — P, from the uniform state, k = I or IT , and use Cy as
the origin for the conical variables (Z, 7k), we find that epy = ep(Zx, Jix) + (Po — P), provided that the vertex Co
is moved to C, i. e., the horizontal (inclined) side is moved with the uniform stream in I (II) to the dotted line
as shown in Fig. 1. Thus py is related to p in the k-th conical variables. We note that pr (prr) is uniformly valid
near Cr (Crr). In the region R common to the domains of the three perturbation solutions, which is outside the
e-neighborhood of the sonic circles and the sides of the corners, we have P, + €pr, k = I,II and P, + ep differ by
O(e?), because their conical variables differ by O(e). Excluding the neighborhood of the triple point, we have a
perturbation solution uniformly valid to O(e), which is p(Z, Jjx) near Cy, for k = I or IT and continue to p(Z, ) in
R and then to the corner.

Near the triple point T' or the singular ray, the correction, breaks down because of the O(e) gap between C; and
Crr and pressure jump from Py to Pry. The inner solution for the neighborhood of a singular ray, A, was found to
obey a transonic equation by the aforementioned three methods. Because of statements () and (i), the solution
perturbed from state 0 is of the mixed type and is not available. This is also true for that perturbed from state I.
For the solution perturbed from state 17, the inner solution in A’ remains elliptic and its solution is amenable [14].
From the physics of shock waves and characteristics, we arrive at the following rule: At a singular ray separating
two uniform states, the perturbation expansion based on the state with the higher pressure is the “best” one, because
it leads to an elliptic problem in N.
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Geomechanics of tunneling in squeezing rock

This paper deals with the numerical analysis of shotcrete tunnel shells in squeezing rock. For this purpose, a hybrid
method combining in-situ measurements with chemomechanical material modeling of shotcrete is developed.

1. Tunneling in Squeezing Rock

When driving tunnels in squeezing rock, the ground squeezes (plastically) into the opening without visible fracturing
or loss of continuity [1]. In the context of the New Austrian Tunneling Method (NATM), the newly excavated tunnel
area is supported by means of a thin flexible shell of shotcrete. Under “normal” ground conditions, the compliance
of the shotcrete shell resulting from elastic, plastic, and creep deformations is sufficient to cope with the moderate
ground movements. For squeezing rock, however, the compliance of the shell is not sufficient to avoid damage or
destruction of the shell. In order to increase the compliance of the shotcrete shell, longitudinal gaps are left out
during shotcreting. In these gaps, so-called Lining Stress Controllers (LSC) may be placed. Figure 1(a) shows one of
three rows of LSCs installed at the Semmering pilot tunnel. LSCs are used to control the load level of the shotcrete
shell. At a pre-specified load level, buckling occurs which is followed by local plastic deformations (see Figure 1(b)).
The experimentally obtained load-displacement curve for the LSCs used at the Semmering pilot tunnel is shown in
Figure 1(c).
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Figure 1: Semmering pilot tunnel: (a) shotcrete tunnel shell with Lining Stress Controllers (LSC) installed
in longitudinal gaps [6], (b) prototype of LSC after buckling [6], and (c) experimentally obtained
load-displacement curve for LSCs used at Semmering pilot tunnel [6]

2. Hybrid Method for Tunneling in Squeezing Rock

Hybrid methods have been developed in order to gain realistic informations concerning the state of loading of tunnel
shells [5] [3]. These methods are characterized by prescribing displacements measured in situ on the exterior surface
of the structural model of the investigated part of the tunnel shell. The investigation concerns a ring with a width
of 1 m, fictitiously cut out of the structure and modelled, in the present case, by plane-strain Finite Elements.
The transfer of the measured displacements to the structural model requires a couple of hypotheses concerning the
structural behavior of a tunnel shell. As for a shotcrete shell with LSCs, the following hypotheses are made:

o H1: During the deformation, the thickness of the shell is assumed to be approximately constant. This hypothesis
is consistent with the Kirchhoff-Love shell theory. Because of the small thickness and the mode of loading of
the shell, this assumption is justified.

e H2: As for the parts of the shell made of shotcrete, smooth displacement fields are assumed. With regards to
the gaps, after buckling of the LSCs (see localized deformation in Figure 1(b)), large displacement gradients
occur in a very small region as compared to the dimensions of the whole structure. This situation can be
approximated by discontinuous displacement fields, i.e., they exhibit a jump in the circumferential direction.
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e H3: The exterior surface of the tunnel shell and the surrounding rock are always in contact, i.e., no gaps are
occurring.

o H4: There is no stress transfer between the ends of the top heading or the benches and the adjacent rock
during respective construction states, e.g., installation of the top heading. This assumption is made because
of lack of respective design provisions within the framework of the NATM.

e H5: The LSCs are assumed to have a 1D linear elastic-ideal plastic load—-deformation characteristic. In
other words, they have a well-defined ultimate load for a large range of (non-elastic) deformations (6]. The
experimental load—displacement curve for the LSCs used at the Semmering pilot tunnel is depicted in Figure

1(c).

Monitoring equipment at the Semmering pilot tunnel: Five devices for displacement measurements are
installed at each measurement cross-section. The positions of the measurement points MP1 to MP5 are defined
by the angles ¢up1 to wmps (see Figure 2(a)). The displacement vectors obtained at these measurement points
are referred to as fipyp; with ¢ = 1,...5. In addition to the displacements at MP1 to MPS5, the shortenings of the
three LSCs were recorded in situ: They are referred to as Aty rscr with k = 1,2, 3. The positions of the LCSs are
defined by the angles prsc1 t0 @rscs, see Figure 2(a).
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Figure 2: Measured displacements in the Semmering pilot tunnel at km 4.274: (a) location of measure-

ment points (MP) and Lining Stress Controllers (LSC), (b) vertical and horizontal displacements at
measurement points, and (c) shortening of LSCs

Interpolation in time: The displacements at the measurement points, @, and the shortening of the LSCs, Ay,
are obtained at discrete time values ¢,. For the numerical simulation, the definition of a continuous displacement
history, i.e., i = @i(¢) and Al, = Adi,(t), is required. This history is determined by means of linear interpolation
between the time instants t,, at which the measurements are performed:

M) = 000) (¢ 4y and Adg(t) = Ay (1) + 22elnt) = A8eln) 0 )

(t) = a(t,) +
(t) = t(tn) Pa— bttt — tn

fOI‘ te [tn, tn+1]-

Interpolation in space: According to the structural hypothesis H2, smooth displacement fields are assumed in
the parts of the shell made of shotcrete. At the LSCs, the distribution of the radial displacement component 4, is
assumed to be smooth as well. In the circumferential direction, however, buckling of the LSCs results in a jump in
the distribution of the circumferential displacement @, A#,. These jumps are considered by means of Heavyside
functions Hy,

0 .. fory<yrsck,
Hi(p) = { 1 ... foro>ewrsck ., v

in the approximation of the circumferential displacement fields at the exterior boundary of the investigated part of

the tunnel shell. Altogether, six quadratic functions are employed for this approximation, see Figure 3, namely

3
@y (ip,t) = af(t) + bA(t)p + ch(t)e? + > Aty nsorHi(p) with A=1,..VI . (3)
k=1
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Figure 3: lllustration of the quadratic interpolation of %, on the basis of displacements at measurement
points MP1 to MP5, displacement jumps and prescribed values of iy, = 0, /Oy at LSC1 to LSC3

The coefficients aé, bg, and cg are determined such

¢ that the displacement values at the measurement points coincide with the respective values measured there,
ie Uy = vrmpi) = Gnpi,

e that continuity of @, = 0a,/0p at MP2 and MP3 is enforced, and

e that the value of %, at the longitudinal gaps guarantees the agreement of the circumferential axial force

n, in the shotcrete adjacent to the gap with the force in the respective LSC, calculated from the measured
shortenings on the basis of structural hypothesis H5.

The last condition requires an additional iterative procedure during the respective non-linear chemomechanical Finite
Element analysis.

In contrast to the circumferential direction, the radial displacement component 4, is continuous. Three quadratic
functions are used for the interpolation between the values at the measurement points (see Figure 4):

@l (p,t) = al(t) + b2 () + cA(t)p?  with A=],..JIT . (4)

Continuity of 4. = 0%, /0y is enforced at MP2 and MP3.
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Figure 4: Illustration of the quadratic interpolation of u, on the basis of displacements at measurement
points MP1 to MP5

In the context of the hybrid method, @, and @, are prescribed on the outer surface of the tunnel shell. The evaluation
of 4, and 4, from interpolation of quantities measured in the interior side of the tunnel shell requires the validity
of the structural hypothesis HI.

Material model for shotcrete: Shotcrete is modelled in the framework of chemically reactive porous media, for
a detailled description, see [2] and references therein. Dissipative phenomena at the microlevel of the material are
accounted for by means of (internal) state variables and energetically conjugated thermodynamic forces, related to
the state variables via state equations. The rates of the internal state variables are related to the corresponding
thermodynamic forces by means of evolution equations.

In shotcrete, four such dissipative phenomena govern the material behavior:
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(I) The chemical reaction between water and cement, the hydration leads to chemical shrinkage strains, ageing elas-
ticity, and strength growth (chemomechanical couplings), furthermore to latent heat production (thermochemical
coupling). The state of the reaction is described by the mass per unit volume of the reaction products called hy-
drates, m.

(I1) Microcracking of the hydrates results in permanent or plastic strains ”. The state of microstructural changes
resulting from microcracking (i.e., hardening/softening) is described by hardening variables 'y, as in classical plas-
ticity theory.

(IIT) Stress-induced dislocation-like processes within the hydrates result in flow (or long-term) creep strains /. The
state of respective microstructural changes is described by the viscous flow .

(IV) Stress-induced microdiffusion of water in the capillary pores between the hydrates result in viscous (or short-
term) creep strains €.

3. Chemomechanical Analysis of the Semmering Pilot Tunnel

Figure 5 shows first results of the chemomechanical Finite Element analysis of the tunnel cross section at km 4.274
on the basis of the hybrid method adapted for tunnels in squeezing rock: The LSCs are exclusively loaded in
the compressive regime. In the shotcrete part of the tunnel shell, also tensile forces occur. Figure 5(b) reflects
the pronounced creep capabilities of shotcrete, whereas the distribution of the circumferential axial force depicted
in Figure 5(c) seems to stem from highly non-homogeneous conditions in the adjacent rock. A more detailled
interpretation of such results, including the remarkable bending of the investigated shell, is a topic of current research
activities.
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Figure 5: Semmering pilot tunnel: evolution of axial force n, in (a) Lining Stress Controllers and (b) four
different shell sections; (c) distribution of axial force at ¢ = 36 h

Acknowledgements

The authors would like to thank W. Schubert and B. Moritz from the Institute for Rock Mechanics and Tunneling of Graz
University of Technology for the transfer of measurement data and for fruttful discussions.

4. References

1 MCCUSKER, T.G.: Soft ground tunneling. In J.O. Bickel, T.R. Kuesel, editors, Tunnel engineering handbook, 1982.

2 HELLMICH, CH.; LECHNER, M.; LACKNER, R.; MACHT, J.; MANG, H.A.: Creep in shotcrete tunnel
shells. In S.Murakami and N. Ohno, editors, 5th IUTAM Symposium on Creep in Structures, Nagoya, Japan, 2000.

3 HELLMICH, CH.; ULM, F.J.; MANG, H.A.: Hybrid method for quantification of stress states in shotcrete tunnel
shells: combination of 3D in-situ displacement measurements and thermochemoplastic material law. In W. Wunderlich,
editor, CD-ROM Proceedings of the Buropean Conference of Computational Mechanics, Munich, Germany, 1999.

4 MACHT, J.; HELLMICH, CH.; MANG, H.A.: Hybrid analyses of shotcrete tunnel shells in squeezing rock. In
CD-ROM Proceedings of the IASS-IACM 2000 Colloquium on Computation of Shells € Spatial Structures, Chania - Crete,
Greece, 2000.

5 ROKAHR, R.B.; ZACHOW, R.: Ein neues Verfahren zur taglichen Kontrolle der Auslastung einer Spritzbetonschale.
Felsbau, 15(6):430-434, 1997. In German.

6 SCHUBERT, W.; MORITZ, B.: Controllable ductile support system for tunnels in squeezing rock. Felsbau, 16(4):224~
227, 1998.

Adresse: DIPL.-ING. JURGEN MACHT, DR.TECHN. ROMAN LACKNER, DR.TECHN. CHRISTIAN HELLMICH,
Pror. DR.TECHN. DR.H.C. HERBERT MANG, PH.D., Institute for Strength of Materials, Vienna Uni-
versity of Technology, Karlsplatz 13, A-1040 Vienna, Austria




Minisymposium 12 593

OETTL, G.; STARK, R. F.; HOFSTETTER, G.

Verification of a Fully Coupled FE Model for Tunneling under Compressed
Air

This paper deals with the verification of a fully coupled finite element model for tunneling under compressed air. The
formulation is based on mizture theory treating the soil as a three-phase medium with the constituents: deformable
porous soil skeleton, water and air. Starting with a brief outline of the governing equations results of numerical
simulations of different laboratory tests and of a large-scale in-situ test are presented and compared with experimental
data.

1. Introduction

For tunneling below the groundwater table deformations of the ground and surface settlements are caused both by
dewatering of the soil and by the advance of the tunnel face. The application of compressed air for the dewatering
process in the vicinity of the tunnel face is motivated by the objective to get smaller ground settlements than by
lowering the groundwater table by means of pumping wells and driving the tunnel under atmospheric conditions.

The aim of the current research project is the development and the application of a three-dimensional numer-
ical mode! for tunneling below the groundwater table taking into account compressed air as a means for dewatering
the soil in the vicinity of the tunnel face.

Basically, there exist two different solution strategies for the numerical simulation of tunneling under com-
pressed air. In the first one, an uncoupled numerical approach, the flow of water and compressed air in the soil
and the deformations of the soil skeleton are treated in two consecutive steps resulting in a neglect of interactions
between the fluid low and the deformations. The coupled solution procedure applied in the present model permits
consideration of the intrinsic coupling of the process of dewatering with the deformations of the soil, thus allowing to
properly take into account the interactions of the flow of water and compressed air in the soil with the deformations
of the soil skeleton in a physically consistent manner.

2. Short outline of the governing equations

A basic constituent of a coupled numerical approach for tunneling under compressed air is a model for the soil,
treating the soil as a three-phase medium consisting of the deformable porous soil skeleton and the fluid phases
water and compressed air. The mathematical description of the problem is based on mixture theory together with
so-called averaging procedures. A soil element can be thought of as a mixture of the three phases soil grains, water
and air, which continuously fill the entire volume according to their percentile share.

Following [1] the governing equations for such a three-phase model are described briefly in the subsequent part
of this section.

The equilibrium equations are formulated for quasi-static conditions in terms of averaged values for the density
p and the stresses & of the three-phase mixture as

dive + pg =0, 1)

where g denotes the vector of gravitational acceleration. The total stress tensor & is decomposed into the effective
stress tensor &' of the soil skeleton and the hydrostatic stresses p and p® of the two fluid phases water and air
(using the porosity n of the soil and the degrees of saturation S% and S¢ of the fluids).

The mass balance equation for a fluid phase f can be derived as
pf 8 éyor + ST pf + np’ 87 = —pfdivv/T (2)

vI7 being Darcy’s artificial velocity of the fluid relative to the soil skeleton. Equation (2) reflects the fact that the
inflow of fluid mass into a given control volume, represented by the term on the right hand side, can be stored in
the volume element either by an increase of the volumetric strain of the soil skeleton, by an increase of the density
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of the fluid phase or by an increase of the degree of saturation of the respective fluid phase.

The well-known kinematic relations between the displacements of the soil skeleton and the strains in the soil
skeleton are restricted to small displacements and small strains which seems to be a justified assumption for tunneling
under compressed air.

To define the material behavior of the various constituents of the model constitutive equations for the soil
skeleton, the fluid phases water and air and the capillary stress, which is defined as the difference between the
hydrostatic stresses in the air- and the water phase, are required.

3. Implementation into a finite element program

For the numerical solution of problems involving a three-phase medium, weak formulations of the equilibrium
equations for the three-phase mixture (1) and of the mass balance equations for the fluid phases (2) are required,
which can be derived multiplying the respective equations by virtual displacements or virtual hydrostatic stresses and
subsequent integration over the domain under consideration. The application of standard finite element procedures
together with the implicit and unconditionally stable Euler backward method for the numerical integration in the
time domain yields the following coupled set of equations, which has to be solved for the incremental nodal values
of the displacements of the soil skeleton and the hydrostatic stresses in the two fluid phases water and air.

K Chs Chi1 AUpp 1 — Cap Py — Co, PL
(C;LU-’-])T —Sh — Atpp  HY Cri APR., p = Atpir (fff+1 +H;,PY)
(Cay)” Cri1 =Sh41 — Atpypr HY AP7 L, Atn1 (£, + H,,P;)

3)

The matrices involved in equation (3) are the stiffness matrix K of the soil skeleton, the coupling matrices
C¥, C® and C¥* between the different constituents, the compressibility matrices S and S® and the permeability
matrices H” and H®. AU, APY and AP® denote the global vectors of the incremental nodal values for the
displacements of the soil skeleton and for the hydrostatic stresses in the fluid phases. The vector on the right hand
side contains the increment of the external forces Afe® of the soil skeleton and the flow terms f* and fo.

Since all the matrices in (3) depend on the nodal values in some form, this system of equations is non-linear
(even in the case of linear elastic material behavior of the soil skeleton). Thus, it has to be solved iteratively for
each time step, e. g., by means of a direct iteration procedure.

4. Verification of the three-phase formulation

The complex implementation procedure of the three-phase soil model into the FE program AFENA [2] was subdivided
into several steps. Each of them was checked by the numerical simulation of appropriate experiments.

The first step of the implementation contained the special case of a two-phase formulation taking into account
a compressible fluid phase. This subset of the three-phase model was verified by the numerical simulation of a
footing on a water saturated soil layer [3] and of a laboratory test (Fig. 1(a)) conducted at the Institute for Soil
Mechanics and Foundation Engineering at the Technical University of Graz within the framework of the Austrian
Joint Research Initiative on Numerical Simulation in Tunneling. In this experiment the loss of compressed air
through cracks in the shotcrete lining and the flow of compressed air in the adjacent soil were determined. During
the test the time-dependent development of the air pressure in the soil was measured at selected points [4].

Fig. 1(b) shows the computed distribution of the hydrostatic stress in the air phase after steady state conditions
have been attained, whereas the dots refer to the respective measured values. The experimental set-up together
with numerical results are documented in some more detail in [5].

For the verification of the complete three-phase formulation a laboratory test performed by Liakopoulos [6]
was chosen as a first example. The problem deals with dewatering of a sand column of 1 m height under atmospheric
conditions, i.e. the dewatering process is driven by gravitation only. Prior to the start of the experiment steady state
conditions are prevailing in the sense that water is continuously added at the top and freely drains at the bottom of
the column. At the onset of the experiment the water supply is stopped.

Fig. 2(a) shows the transient stresses in the water phase versus height of the sand column for different points

of time. Quite substantial differences between the numerical and the experimental data at the beginning of the test
(see lines according to 10 minutes time) can be recognized. However, these discrepancies can also be noticed in the
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Figure 1: Air flow experiment TU-Graz: (a) Test set-up; (b) Air pressure distribution

computed results for this test, presented by other research groups [1]. Nevertheless, the computed solution agrees
fairly well with the measured data after two hours time. Re-running the problem assuming a rigid soil skeleton yields
even larger discrepancies in the early test phase indicating that the numerical results could probably be improved
using a more refined constitutive law for the behavior of the soil skeleton. Unfortunately, Liakopoulos did not
measure any mechanical properties of the soil. As can be seen from Fig. 2(b) there is a sharp decrease of the excess
air pressure with a clear peak at about that level of the column where the degree of water saturation of the mixture
starts decreasing below fully saturated conditions. Taking a look at the degree of water saturation (Fig. 2(c)) the
different lines indicate the position of the de-wetting front moving down the sand column with increasing time.
Together with this de-wetting front the peak in the excess hydrostatic air stress is also moving downwards. Since
the degree of water saturation decreases, starting from the top of the column, air is allowed to enter the pores of the
soil resulting in an increase of the air pressure up to the atmospheric one. Calculations dealing with a time period
beyond that of the experiment show that the excess air stresses completely disappear after some time which means
that at the final stage atmospheric pressure prevails in the whole soil column again. With respect to the degree
of water saturation the numerical simulation up to steady state conditions reveals that the column remains fully
saturated at the bottom whereas at the top the degree of water saturation is reduced to about 90 %. This means
that for the particular soil considered here it is not possible to completely dewater the specimen under the influence
of gravitation only.
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Figure 2: Liakopoulos experiment: Stresses in (a) the water phase and (b) the air phase; (¢) Water saturation

In connection with the application of compressed air at the subway construction site in Essen, Germany, a full
scale in-situ air permeability test was carried out [7]. It is considered as a second example for the verification of the
complete three-phase formulation. Fig. 3(a) shows a sketch of the experimental set-up. In order to investigate the
air permeability of the Essen soil and to study the influence of the flow of compressed air on the deformations of
the soil skeleton, three sets of tests were performed. In these tests compressed air was injected at different depths
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Figure 3: Air permeability test Essen: (a) Test set-up; (b) Air pressure distribution

below the ground surface. In the experiment considered here compressed air was pumped into the ground via a bore
hole between a depth of 18 and 21 m below the ground surface with an excess air pressure up to 2.35 bar. This air
pressure was applied in three steps keeping the pressure constant for about one day at each of the three level.

Fig. 3(b) finally shows the computed air pressure distribution at the end of the first pressure level of 1.60 bar
together with the isolines composed from the measured values of the air pressure in the experiment. The agreement
between the measured and the computed air pressure is remarkably good.

5. Conclusions

Apart from a given short summary of the theoretical framework of a three-phase soil model for tunneling under
compressed air and of the different steps of the implementation into a FE code, the paper focussed on the verification
of the developed model. Comparisons of the numerical results of the two-phase- as well as of the complete three-phase
formulation with both experimental data and solutions reported in the literature show fairly good agreement.
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Multilaminate Models for Numerical Simulation of Tunnel Excavations According to NATM

Excavation of tunnels with low overburden under unfavourable geological conditions can lead to extensive shear band
formation in the ground which can even cause the collapse of the structure. In this paper a constitutive model
embedded within the Mulilaminate framework is presented which is able to capture the mechanism of strain
localisation and the formation of shear bands. The model includes deviatoric hardening in the pre-peak range and
strain softening in the post-peak behaviour. Application to numerical simulations of a biaxial test and a shallow NATM
tunnel excavation in staged construction sequence demonstrates the potential of the model to predict shear band
formation and possible failure mechanisms with sufficient accuracy for practical problems.

1. Introduction

For excavation of tunnels with low overburden, a number of geotechnical problems have to be solved. An important
role play strain localisation phenomena such as the formation of shear bands in the ground. During strain localisation,
the nearly homogeneous deformation behaviour of a body is abruptly changed into highly concentrated deformation
patterns and a single or multiple shear bands or cracks form.

Extensive shear band formation under unfavourable geological conditions as well as an inappropriate construction
sequence may lead to significant deformations of the tunnel structure and could even cause a collapse. A numerical
model, which is able to simulate the deformation behaviour of a structure near failure and predict possible failure
mechanisms could, therefore, contribute to a safer and more economic design of tunnels with low overburden.

In this contribution, a constitutive model embedded within the Multilaminate framework is applied to finite element
analyses of a shallow tunnel excavation. Deviatoric hardening plasticity in the pre-peak range and a simple strain
softening formulation to describe the post-peak behaviour are incorporated. The tunnel excavation according to the
principles of NATM (New Austrian Tunnelling Method) was simulated by modelling a staged construction sequence
with excavation of top heading, bench and invert.

2. Multilaminate Concept and Constitutive Relations

The Multilaminate Model was developed for application in rock engineering by Zienkiewicz & Pande [12].
Subsequently, it has been extended for modelling clays [5] and sands [7], [4]. Recent developments include research on
strain localisation in dense sands [3]. A similar approach to describe the behaviour of concrete and soils is the
microplane model developed by BaZant et al. [1].

The basic idea of the Multilaminate concept is that a block of soil material is thought to be intersected by an infinite
number of randomly distributed planes. It is assumed that the deformation behaviour of this soil can be obtained from
sliding along some of the planes under effective normal and shear stresses. These assumptions are transferred into the
finite element model where a certain number of integration planes is located within each integration point (Gauss
point). Number and orientation of these integration planes either follow integration rules (3-D case) or they are evenly
distributed about a common axes (2-D plane strain case).

The stress state in the integration point is transformed into normal and shear stresses on each integration plane and,
consequently, evaluated by a yield function and plastic potential function. The resulting plastic strains of all planes are
integrated to obtain the behaviour in the respective integration point.

The constitutive relations are formulated on each integration plane individually, thus, directional anisotropy can be
achieved in a natural and physically meaningful manner depending on current stress state and load history. As a yield
criterion, Mohr-Coulomb’s failure criterion was enhanced by introduction of a mobilised friction angle Q.
Mobilisation of the friction angle is governed by accumulated plastic shear strains on each integration plane
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individually (deviatoric hardening) until the peak friction angle is reached. With increasing load, shear strains
concentrate on a few planes as demonstrated in [8] and [10]. When the peak friction angle is reached on some of the
integration planes and shearing continues, the model switches into strain softening and friction angle and cohesion are
reduced on the respective planes to residual values.

A non-associated flow rule employing a mobilised dilation angle i, governs plastic flow and dilatancy. The mobilised
dilation angle depends on the mobilised friction angle @y, according to the stress-dilatancy theory proposed by Rowe

[6].

The Multilaminate Model was implemented into the finite element code BEFE [2] which solves nonlinear equation
systems utilising a viscoplastic algorithm. A detailed description of the implemented yield function and plastic
potential function are included in [9].

3. Numerical Simulation of Biaxial Test

A biaxial test (plane strain compression) was modelled to demonstrate the potential of the proposed method in
capturing shear band formation. In addition, four different meshes consisting of 126, 224, 504 and 880 elements,
respectively, were analysed to evaluate possible mesh dependences in the post-peak range. In all calculations, a plane
strain formulation of the Multilaminate Model employing 64 integration planes in each integration point was used.

The sample of the dimensions 1:3.4 is vertically constrained at the bottom. The top of the sample is bounded by a
horizontally constrained stiff top platen. Full friction between top platen and the sample introduces a slightly
inhomogeneous stress distribution which, at a certain load stage, initiates strain localisation. Starting from an initial
stress of 6| = 3 = -100 kN/m?, strain controlled loading was modelled by stepwise application of nodal displacements
to the top platen.

In Fig.1, curves of the mean vertical stresses o, versus vertical strains g, are presented. The curves for all meshes,
consisting of 126, 224, 504 and 880 elements, respectively, are congruent up to the peak which is reached at a vertical
strain €, of approximately 3.0%. In the post peak softening range some deviation can be observed, namely the meshes
consisting of a higher number of elements show slightly more pronounced softening. However, when the residual
strength is reached at an approximate vertical strain of £,=4.0% all curves are in a close range.

Fig.2 presents contour lines of the mobilised friction angle ¢y, for all meshes at residual state (g,= 4.0%). Obviously, in
all calculations the mobilised friction angle has been reduced to its residual value in a distinct zone indicated by the
dark strip across the sample. This zone represents the shear band. There are some differences in the location and the
width of the shear band which depends on the element size.

-700

7
A
-600 i
T 00 .
E
3 400
-— = s i
© 00 v o
£ i
3 %4==
200 |—£ s
EREE:
B Ly
-100 o
0.0%  -10%  20%  -30%  -40%  -50%  -60% & g!
2 RS E R B A ARG TR
~—880 elem. 504 elem ¢1 [%}] igiﬁgigﬁ
224 elem, === 126 elem =361 CBEU R
Fig.1: Stress-strain curves for biaxial tests using Fig.2: Contour lines of mobilised friction angle @, for meshes
different meshes consisting of 880, 504, 224 and 126 elements




Minisymposium 12

S99

4, NATM Tunnel Excavation

The deformation behaviour of tunnel excavations with low overburden usually can not be matched very well if linear
elastic — perfectly plastic material models are employed. Utilising more advanced constitutive models prediction
capabilities can be significantly improved. However, from a practical point of view the model should be as simple as
possible to avoid excessive parameter studies and computational costs [11].

The proposed model was applied to numerical analyses of a practical boundary value problem, namely a tunnel
excavation with low overburden. A tunnel excavation according to the principles of the “New Austrian Tunnelling
Method” (NATM) was modelled considering staged construction sequence: First, the top heading (the upper part of the
tunnel cross section) was excavated and a shotcrete layer was applied to the tunnel walls. Then, construction sequence
consisted of excavation of the bench (middle part of the cross section), application of shotcrete to the bench walls,
excavation of the invert (lowest part) and, finally, application of the shotcrete layer to the tunnel invert.

The aim of the numerical simulations presented here was to show that a possible failure mechanism due to formation
and progressive development of shear bands could be captured with the proposed model. Therefore, the previously
described construction sequence was altered at the stage of bench excavation to enable development of extensive shear
zones. The shotcrete layer usually stabilising the tunnel was not applied, at the same time the forces due to bench
excavation were increased in increments of 5% until failure occurred. During this process, development of shear straing
and mobilisation of the friction angle @, was monitored. After application of 80% of the excavation load no converged
solution could be obtained.

In Fig.3 the failure mechanism at bench excavation is demonstrated by showing contour lines of the mobilised friction
angle. The shotcrete lining consisting of one line of elements can be recognised at the top heading of the tunnel while it
is not installed at the tunnel bench. Thus, with increasing load a failure mechanism forms initiating from the side of the
tunnel next to the bench excavation. Light areas in the contour plot stand for zones where the shear resistance of the
soil material is fully mobilised (@m = Qpeax) OF the material behaviour has switched into softening on some integration
planes. Consequently, at these planes the friction angle is decreased with increasing shear strains until the residual
value of the friction angle is reached. Beginning from the softening zone at the side of the tunnel, a shear band starts
growing towards the ground surface. When 80% of the nodal forces due to excavation are applied, the shear band
reaches the ground surface. No convergence can be reached and a failure mechanism forms leading to large
deformations within the shear band and collapse of the tunnel. This mechanism corresponds well with experimental
findings and failure mechanisms which have occurred at real tunnel construction sites.

50% load~= 65% loai .l 75% loa

Fig.3: Failure mechanism due to formation of shear band for shallow tunnel excavation, contour lines of mobilised
friction angle
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5. Conclusions

It was demonstrated that the deformation behaviour involving strain localisation and the progressive formation of shear
bands can be captured in a realistic way with the proposed model. The constitutive model utilises a strain hardening /
strain softening formulation within the Multilaminate framework. Numerical simulations of biaxial tests show that
mesh dependences in the post-peak softening range can be mastered with sufficient accuracy from a practical point of
view. Well predictions of a possible collapse mechanism are obtained for the numerical analysis of a shallow tunnel
excavation with staged construction sequence (top heading / bench / invert).
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STERPL, D.
Strain Localisation Effects in the Stability Analysis of Shallow Openings

The localisation of strains within shear bands represents an important aspect of the behaviour of rocks and dense soils which
may govern the stability of relevant structures. The formation of shear bands is often associated to a loss of the material
mechanical resistance and stiffness, eventually leading to progressive failure. A numerical approach accounting for strain
localisation and for the consequent gradual loss of shear strength is adopted for the simulation of laboratory tests on 2- and
3-dimensional models of shallow tunnels. These tests allow for the validation of the numerical procedure on the basis of a
comparison between experimental and numerical results.

1. Introduction

The stability analysis of shallow underground openings presents non negligible problems when dealing with media charac-
terised by strain softening behaviour, such as rock masses, dense sands or overconsolidated clays.

In geotechnical engineering the term “strain softening” customarily denotes materials that, when subjected for instance
to a compression test, show a loss of their overall load carrying capacity with increasing deformation, after a peak load level
has been reached. Quite often this behaviour is associated with the formation of zones of limited thickness where irreversible
strains localise, referred to as shear bands. When dealing with large scale engineering problems, the shear bands represent
potential sliding surfaces that could affect the overall stability by originating a collapse mechanism.

When a tunnel is driven into a formation of stiff soil or weak rock, characterised by a low value of the coefficient of
earth pressure at rest, zones of localisation initiate at the tunnel springlines, if the opening is not properly supported. Their
extension might rapidly increase with the progress of excavation, developing upwards into arched shear bands that eventually
join at a point above the tunnel crown, or reach the ground surface in the case of shallow openings. In these cases a collapse
mechanism may form with the consequent failure of the tunnel crown. A more complex geometry of the collapse mechanism
can be observed in the cross section of parallel tunnels. In this case, in fact, the shear bands might develop on the sides of the
tunnels as well as within the ground wall separating them. In addition, if the stability of the tunnel face is not ensured during
excavation, the spread of shear bands ahead of the excavation face can lead to the inward sliding movement of an unstable
mass of soil.

The attention is focused here on the numerical modelling of strain localisation and softening effects as observed during
laboratory tests on small scale models of shallow tunnels. These tests were carried out on both 2D (plane strain) and 3D mod-
els, to investigate the stability, respectively in the cross section and at the excavation face, of tunnels driven in frictional me-
dia. The calibration of the numerical model accounting for softening effects is discussed on the basis of the experimental re-
sults. These allow for the validation of the hypotheses introduced in the proposed model and for the refinement of the nu-
merical procedure.

2. Numerical Approach to Strain Localisation and Softening

For geological media, the process of initiation and subsequent spread of the localisation zones seems to depend on two as-
pects. From a “structural” point of view, the loss of load carrying capacity is originated from a sort of structural instability of
the material, which is not specifically related to a loss of shear resistance introduced in the stress-strain relation, but occurs
when, for a given increment of the external actions, a bifurcation point is reached, i.e. the uniqueness of the solution of the
equations governing the stress analysis problem is lost [3]. On the other hand, from a “constitutive” view point, the strain
softening phenomenon can be seen as a consequence of an intrinsic property of the material, shown at a constitutive level as a
loss of shear strength with increasing deformation [1]. The associated shear band formation is caused by a progressive local
damage of the material, in terms of its mechanical deformability and resistance, depending on the cumulated permanent
strains or on the plastic strain energy.

The procedure for the strain softening analysis here adopted accounts for both aspects in considering separately two
“phases” of the phenomenon, namely: the onset of localisation, based on a structural approach, and the spread and coales-
cence of the shear bands, based on a constitutive approach. The two phases correspond to two stages of a non-linear finite
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element procedure, implemented in the code SoSIA, for Soil-Structure Interaction Analysis [2].

The first stage consists in checking a particular local condition, at each integration point and at the end of each loading
step, the fulfilment of which indicates the local onset of strain localisation. This condition stems from the shear band analysis
of bifurcation theory, which detects the occurrence of an alternative solution in the form of a planar discontinuity in the strain
field. For a plane strain problem in a 2-dimensional system , this discontinuity can be kinematically described by the differ-

ence Au between the displacement rates at its two sides, which is assumed to vary linearly with the distance from the dis-
continuity itself:

Ai=gmnT x . )

In the above equation, # is the unit vector normal to the discontinuity, m is the unit vector defining the direction of the differ-
ence Au and g is its amplitude.

The strain compatibility, in terms of the difference A€ between the strain rates at the two sides, and the equilibrium

conditions for the stress rate G across the discontinuity, can be expressed in the following matrix forms:

AE=gN-m , NT.AG=0 , (2ab)
where matrix N collects the direction cosines of unit vector .

Considering now an elastic perfectly plastic material and assuming that the material at the two sides exhibits the same
mechanical behaviour after the onset of the discontinuity, the following constitutive relationship holds:

A =DP ()4 3)

in which D% represents the tangent elastic plastic constitutive matrix. By substituting eq.(3) into €q.(2b) and taking into

account eq.(2a), a homogeneous system of governing equations is arrived at, which admits non trivial solutions g =0 if and
only if the following so called “condition of localisation” is fulfilled:

defy™ Do) |0 . @
It has been proved that this condition can be met even for perfectly plastic, or positive hardening, materials, if the plastic flow
rule is non-associated [5]. Further details and comments on the derivation of this equation can be found in [6].

The second stage of the analysis accounts for the actual coalescence of localisation zones into shear bands and, there-
fore, it is activated only for the integration points where condition (4) has been fulfilled. Consider that the occurrence of a
strain discontinuity causes a change in the local structure of the material: for instance an increase of void ratio or a decrease
of relative density due to the dilatancy effects. Consequently, a local loss of shear resistance and stiffness might occur.

This suggests to base the second stage of the analysis on a procedure in which the shear strength and stiffness pa-
rameters are gradually reduced, with increasing permanent strains, from their peak to their fully softened values. In the cal-
culations, this reduction is linearly related to the increment of the square root of the second invariant of deviatoric plastic
strains, with respect to the corresponding value at the onset of localisation. The rate of this reduction depends on the material
mechanical characteristics and on a “measure” of the problem discretisation. It has been shown, in fact, that the solution of a
numerical strain softening analysis is dependent on the adopted discretisation, which affects thickness and direction of the
computed shear bands. The mesh-dependence is induced by the very nature of the finite element method, since the loss of
shear strength and stiffness is evenly distributed over a zone that depends on the size of the elements. As a consequence, the
decrease of the material parameters adopted in the calculations should be related also to the finite element size [4]. This pro-

vision has been adopted here, by keeping constant the product between the average element size and the rate of reduction of
the mechanical parameters.

3. Applications

The described approach has been applied to the numerical simulation of laboratory tests on 2D and 3D small-scale models of
shallow tunnels.

The first series of 2D, plane strain tests was performed at the Rock Mechanics Laboratory of Kobe University (Japan),
using an assemblage of aluminium bars as “analogical” soil [8]. The mechanical characterisation of this material was based
on tests performed, with non conventional devices, on bar assemblages having the same relative density adopted during the
tunnel tests. The tunnel tests are set up by lying the bars within a rigid frame, where one or two steel cylinders are located,
that represent the cross section of one tunnel or two parallel tunnels. The cylinders have a diameter of 15¢m and contain pres-
surised airbags. The excavation process is simulated. by removing the steel cylinders and by decreasing the air pressure in

subsequent steps. The induced stresses and strains are obtained by embedded load cells and by digitised pictures of the alu-
minium bar assembly.
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In the tests featuring a single tunnel, the collapse was originated by the development of two shear bands from the tun-
nel springlines towards the surface and a negligible deformation was observed in the mass limited by them (fig.1.a). Shape
and thickness of the bands depend on the tunnel depth and on the relative density of the medium. The numerical simulation of
these tests showed a progressive spread of a shear band whose position was rather similar to the one experimentally observed
(fig.1.b,c).

In the case of two parallel tunnels, the simultaneous reduction of pressure gives rise to a gradual increment of vertical
stresses at the springline level, which leads to the failure of the separating wall. Consequently, the load is transferred to the
external sides of the tunnels, which then behave as a single wide opening. This additional stress increment leads to the initia-
tion of lateral shear bands and, eventually, to the collapse (fig.2.a). In fig.2.b the numerically evaluated contour lines of the
deviatoric plastic strains show a high level of deformation within the soil wall and the presence of a lateral shear band.

It can be also observed that the numerical analyses correctly estimated the internal pressures corresponding to the col-
lapse for both cases of single (fig.3.a) and double tunnel (fig.3.b).

A second series of tests was performed at the Laboratories of Mitsubishi Heavy Industries in Takasago (Japan), con-
cerning a 3D steel model of a horse shoe shaped tunnel [7]. The tunnel model has a crown diameter of 1.2 m and the depth of
the crown is 1.3 m. The model is contained within a tank filled with a medium uniform sand, from an alluvial deposit of cen-
tral Japan. Following a procedure similar to the one used in the previous tests, the stability of the excavation face was investi-
gated by measuring the displacements induced in the sand mass by the gradual reduction of the pressure of an airbag con-
tained within the tunnel model.

Some 2D, plane strain calculations were carried out with reference to the longitudinal section of the tunnel. Although
they do not allow for a quantitative comparison between experimental and numerical results, they permit a qualitative esti-
mation of the influence of softening on the overall behaviour of the tunnel. Fig.4.a shows that two shear bands develop from
the tunnel crown and from its invert arch and gradually reach the ground surface, in agreement with the experimental obser-
vation. On the contrary, if the strain softening effects are neglected in the calculations, the shear strains concentrate only
within a limited zone ahead of the tunnel face and the shape of the collapse mechanism is not properly predicted (fig.4.b).
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Fig.1. Single tunnel problem: comparison between the experimentally measured settlements (a) and the calculated displace-
ments (b) and deviatoric plastic strains (c) (contour lines of the square root of the 2nd invariant of dev.pl.strains, min=.3%,
increment=.6%)

(b)

Fig.2. Double tunnel problem: comparison between the experimentally observed collapse (a) and the calculated deviatoric
plastic strains (b) (contour lines of the square root of the 2nd invariant of dev.pl.strains, min=.5%, increment=.5%)
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Fig.3. Confinement pressure vs. crown convergence curves for the single (a) and double (b) tunnel problems.

@ (b

Fig.4. Numerically evaluated deviatoric plastic strains at the excavation face at collapse for strain softening (a) and elastic
perfectly plastic (b) analyses (contour lines of the square root of the 2nd invar. of dev.plstrains, min=.5%, increment=.5%)

4. Conclusions

A finite element model accounting for strain localization and softening effects has been adopted for the numerical interpreta-
tion of laboratory tests on 2D and 3D models of tunnels. The procedure, which can be seen as a relatively simple extension of
a standard non linear finite element analysis, turned out to be effective in the prediction of the tunnel test results. In particular,

collapse load and mechanism suggested by the numerical analyses appear in fairly good agreement with the experimental
measurements.
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Nonlinearity Tests

A possible first step in a signal based system identification procedure is a nonlinearity test. The result can be used to
decide whether or not simple linear models are sufficient to describe the observed dynamics. It determines if modal
analysis or other methods that assume linear system behaviour yield valid results. After a brief overview two tests
are discussed in detail and results of an application to test systems are given.

1. Introduction

In many engineering disciplines the identification of dynamical systems from measured signals is an important task
in the modeling process. If information on the structure of the system is available, the task is reduced to the
identification of parameters. Often, however, either such information is not available or the system structure is
known but is very complex and the relevant part of the structure is not easily discerned.

A possible first step in the identification process is to ask whether a simple linear model is sufficient to describe
the dynamics or whether more complex nonlinear models have to be considered. The answer to this question does
have a strong impact on the experimental procedures used in the identification procedure as well as on possible
control schemes to be implemented. Ideally, a nonlinearity test should not only decide whether a system can be
regarded as linear or not, but also give an indication about the strength and the type of nonlinearity contained in
the system.

2. Overview

Table 1 gives an overview of a selection of signal based nonlinearity tests that can be found in the literature. The
tests have been grouped according to the domain in which they operate—the time or the frequency domain—and the
way the system input is dealt with-——some tests make assumptions about the type of input while other tests require
that the system input is measured. The overview is by no means complete and the reader is referred to 1, 2, 3, 4]
for further references.

The tests by Keenan [5] and Tsay [6] assume the input signal to be a strictly stationary zero mean random
process, the null hypothesis of a linear system is accepted or rejected based on a statistic calculated from multiple
regression steps. In Surrogate Data Tests [7] measured signals are modified (surrogate data) in a way that is
consistent with the null hypothesis of a linear system. The second step is to compute a statistic that is capable of
discriminating linear and nonlinear systems. The Method of Internal Harmonics Cross-Correlation by Dimentberg,
Sokolov and Haenisch [8, 9] is applicable to systems that are excited by broadband random signals and contain
a distinct main frequency component in the output signal. The test calculates the correlation between the time
varying amplitudes of the main frequency component and the higher harmonics. The bispectrum tests {10, 11]
combine testing for Gaussianity and linearity. Peyton Jones and Billings [12] suggest identifying ARMAX-models
before and after applying the same linear filter to the input and output signal. In the case of a linear system the
identified system models should be identical.

Finally, the methods relying on the Hilbert Transform and the Nonlinear Prediction Error Test will be discussed
in this paper. The remaining tests of Table 1 are common knowledge in engineering, so they do not need to be
described here.

3. Hilbert Transform

The Hilbert Transform can be used to detect nonlinear system behaviour in measured frequency response functions
(FRF) of technical systems. Examples are given in [14, 16], the initial suggestion was given by Vinh.

The FRF of linear systems, the so called transfer function G(s), can be expressed by the ratio of two polynomials

_N(s)

——m‘, s = 1w (1)

G(s)
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Table 1: Overview of nonlinearity tests

Time Domain Frequency Domain
o Test for linearity against second-order o Bispectrum test [10, 11]
Volterra expansion [Keenan/Tsay] [5, 6] L
Assumptions ¢ Total harmonic distortion
on Input /| e Surrogate Data Tests [Theiler et al.] [7] — a3+aZ+...
Output Mea- THD af+al+alt...
sured only ® Method of Internal Harmonics
Cross-Correlation
[Dimentberg/Sokolov/Haenisch] [8, 9]
o Superposition of input signals: [1] e Hilbert Transform [14]
ur = Y1, u2 = Y2 G =H(G)
= u +us >y +
Input Mea- SRR LR & e Linear spectral density [15]
sured / Out- | ® Identification of ARMAX-models before |Suyl? = Suu * Syy
put Measured and after filtering [Peyton Jones/
Billings] [12]
¢ Nonlinear Prediction Error Test
[Bruns/Popp] [13]

where 7 is the imaginary unit and w the angular frequency of excitation.

Assuming that all poles have negative real parts (stable system) it can be shown that an integral transform
of G(s) exists in the right s-halfplane that maps G(s) onto itself. Because of the similarity of this transform to the
Hilbert Transform the result is denoted H(s). Considering the symmetry properties of transfer functions with real
coefficients, H(s) can be split into the real and imaginary part

+00 .
Re{H(iwc)}=—;2r-P.V. / %njgg%)ldw (2)

c

2 _
w? — w2

0

+o0 .
Im{H(in}:%P.V. / Re{G(‘“Z)} duw.

0

Combining the left hand side of eqn. (2) results in a complex function that will be referred to as H (iw). Any
difference between H(iw) and the original G(iw) therefore indicates either a nonlinear or an unstable system.

Figure 1 shows three examples of applications of the Hilbert Transform. Figure la) shows the frequency
response function G and the Hilbert Transform H of a simple mechanical oscillator with a softening spring. The
characteristic deviation indicates nonlinear system behaviour. Figures 1b) and Ic) show the frequency response
function of a cylindrical workpiece fixed in a grinding machine. The workpiece is excited tangentially to the grinding
contact by an external force while the acceleration in the same direction is measured. In 1b) there is no contact
between the workpiece and the grinding wheel. Subsequently, the measurement is repeated at a contact force of
120N (1c)). Clearly, nonlinearity due to friction and other effects is reflected in the difference between G and H.
Comparing with Figure 1c),here also a softening spring characteristic can be assumed.

4. Nonlinear Prediction Error Test

The Nonlinear Prediction Error Test [13, 17] is based on comparing prediction errors that are obtained by applying
a linear and a nonlinear prediction model to the discrete time output signal y(k) of a system that has been sub jected
to a special input signal u(k).

The input signal is composed of different random sections upg;(k), that are required to excite the system, and
repeated deterministic sections up(k),

u(k) = {ugr1(k),up(k), ur2(k),up(k),...}. 3)

In the consecutive up(k)-sections the system is excited by the same input signal, therefore, differences in the system
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Figure 1: Nyquist Plots of frequency response functions (G) and the corresponding Hilbert Transforms (H): a)
mechanical oscillator with a softening spring, b) response of a workpiece in a grinding machine, c) response of the
same workpiece when it is pressed against the grinding wheel.

evolution with time are due to different initial conditions of the system states at the beginning of the up(k)-sections.
Assuming the system under study is observable, different initial conditions are equivalent to different so called
reconstructed state vectors

xr(k)=[y(k)ay(k_1)a~~-’y(k—dE'+1)]7 (4)

that are composed of time lagged versions of the output signal y(k). In the analysis of time series of nonlinear
systems, the length of the reconstructed state vector is often called the embedding dimension dg, this concept is
also used here.

The nonlinear prediction model referred to in this test generates a prediction y (k +1) based on x,(k) using a
local linear model (LLM). The model is fitted to the nearest neighbours of x, (k) found in the other u p(k)-sections.
The linear model used in this test is fitted to the input/output data of all up(k)-sections and is therefore referred
to as the global linear model (GLM).

Figure 2 shows the results of applying the test to a simulated chain of three lightly damped nonlinear mechanical
oscillators. The curves represent the mean of the absolute value of the prediction error e divided by the root mean
square of the entire signal. The prediction error is plotted for both models, GLM and LLM versus the above
mentioned embedding dimension used. The three plots are associated with different values of the scaling parameter
B of the cubic component of the nonlinear restoring force

fr(z) =01+ Bz)z. (5)

In the case of the linear system (8 = 0) the two models yield equal prediction errors. The prediction error
drops to a value near zero when the embedding dimension dg reaches the number of system states that is equal to
6, corresponding to 3 mechanical degrees of freedom. When the system becomes nonlinear (8 # 0), the prediction
performance of the nonlinear model (LLM) beats that of the linear model (GLM). The prediction error of the
nonlinear model decreases still after the embedding dimension has reached the number of system states. This
reflects the well known fact that with a nonlinear system of order N up to 2N + 1 output values may be required
to characterize the system’s state.

5. Summary

After a brief introduction and overview of nonlinearity tests that can be found in the literature, two tests were
described and results given.

The test based on the Hilbert Transform was applied to experimental data from a grinding machine. It was
shown that nonlinear effects in the contact zone between grinding wheel and workpiece are reflected in the Hilbert
Transform results. Comparing the characteristic deviation of the Hilbert Transform from the originally measured
frequency response function to numerical examples can help identifying the type of nonlinearity in the system.

The Nonlinear Prediction Error Test characterizes the strength of nonlinearity in the observed system dynamics
by comparing the prediction performance of a linear and a nonlinear model. In addition, an estimate is obtained
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Figure 2: Results of the Nonlinear Prediction Error Test applied to a simulated chain of three mechanical oscillators.
The system contains hardening springs due to cubic restoring forces scaled by the parameter 3.

of the number of output values to be considered in an input/output model. A drawback of the method is that
input-nonlinearities cannot be detected.
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Identification of industrial robots’ nonlinear dynamics

Simple linear joint controllers are still used in typical industrial robotic systems. The use of these controllers leads to
non-negligible path deviations for complez tasks, e. g. laser-cutting, since nonlinear influences are neglected. Model-
based compensation of nonlinear dynamics is the most common way to reduce these path deviations. For this, a
parameter-linear multi-body model is generated and adapted to the robots’ real behaviour by parameter identification
methods. Different identification approaches are presented. The approaches are applied to the typical siz d.o.f.
industrial robot manutec-r15 and compared with respect to ezcitation problems and practical applicability. The
application to path error prediction and compensation shows the quality of the identified model.

1. Introduction

In recent years, robotic applications, which require not only position accuracy but also high path accuracy, have
become more and more important not only in the academic but also in the industrial world. But, simple linear joint
controllers are still used in typical industrial robot controls. Since nonlinear influences can not be compensated, the
use of linear controllers leads to not acceptable path deviations.

Model-based compensation of nonlinearities is the most common way to reduce these errors. Since the dynamic
parameters, like masses and moments of inertia, are usually not given by manufacturer and payload is not known
in advance, the model’s parameters typically have to be identified. Conventionally, linear parameter estimation
techniques are used to solve this problem. For this, the equations of motion have to be derived in a form which is
linear with respect to dynamic parameters.

In this article, two different approaches for identification of serial robots’ rigid body dynamics are presented.
The conventionally used identification scheme is compared to a so-called two-step approach with respect to industrial
applicability and excitation problems. Identification is applied to the standard industrial robot manutec-r15. The
identified model is used for simulation and reduction of tracking errors. The excellent results prove the quality of
the model.

Although the gears have large impact on robot dynamics, the modeling of gear is not discussed in this article
due to space restrictions. Normally, only the losses are taken into account by velocity dependent friction torques.
Other effects like elasticity and backlash are neglected. For a detailed discussion of modeling and dynamic influence
of friction see [1,2,4,9].

2. Rigid body model

The dynamic equation of the robot’s rigid body model can be written as
Q=M(q)i+clg,d)+g9(a) <= Q=A(g4¢dp. ey

The left equation represents the usual form of the dynamic equation with the mass matrix M(q) as well as the
vectors of centrifugal and Coriolis forces ¢(q,q), gravitational g(g) and joint torques Q. The right equation is
the parameter linear form of the equation of motion. The base parameter vector p consists of the inertial and
gravitational parameters of the links, e.g. masses and moments of inertia, and linear combinations of them. It has
minimal order to guarantee identifiability of all elements p; and can be derived automatically for any serial robot [7].
For typical industrial robots dim(p) is relatively small because of the symmetric link structure. For the manutec-r15
the dimension is 14.

The base parameters can be divided into two groups: The gravitational parameter vector p, comprises the
parameters that occur in g(q), whereas the inertial parameters vector p,, consists of the parameter which only
influence M(q) but not g(q). This division leads to the following formulation of the equations of motion:

Q=Aum(20,d) Py + AMy(0,d) P, + Ac(q,4) P+ Ag(g) Py - (2)
~ -~ ) —,..__/ ~ 2
Mq)§ €(q.9) 9@




S110 ZAMM - Z. Angew. Math. Mcch. 81 (2001) S1

3. Identification: Conventional approach

There exists a vast amount of literature on the identification of the rigid body model. However, most of the methods
are variations of the same identification scheme. The robot is moved along a trajectory, where joint motion and
torque are measured. Finally, the parameters are estimated by the use of the least-squares (LS) technique.

The LS method is based on the representation of robot dynamics shown on the right-hand side of equation
(1). For a certain point in time T', measurements of m < n different axes 7; ...y, are combined as

QTi=[Q-Y1,Ti"'Q7m,Ti]T and WTi:[azl,Ti"’a:m,Ti]Ta (3)

where Q,; are the measured torques and a; are the corresponding rows of A. Further combination of measurements
at r different time steps leads to the over-determined vector equation

Q=Yp+e, Q = [le T Q;r]T and ¥ = [\I’gl T ‘I’;r]T (4)

with measurement vector Q, observation matrix ¥, parameter vector p and the unknown error e. Generally, equation
(4) can be solved by using a pseudo-inverse of the observation matrix:

p=(T¥)1¥Q. (5)

If ¥ is not a full rank matrix the pseudo-inverse does not exist. Therefore, p must have minimal dimension
as mentioned in the previous section. Minimizing the error in the LS sense leads to ¥ = ¥7 and an estimated
parameter vector

p = arg. min((le])) = (¥Te)1eTQ. (6)

This basic form of LS estimation can be refined by another choice of ¥ to e.g. total least-squares or instrumental
variable method.

The main concern in using (5) and (6) is a proper choice of 'measurements’ in order to ensure the excitation of
all parameters. An insufficient excitation of one or more parameters would lead to a deterioration of the estimation
result. An upper bound of the relativ estimation error can be given by

Omax ()

llp — Bl < cond(\ll)M with cond(¥) = Toin (D)’ @)

llpll Il
where 0o (W) and omin(¥) are the largest and the smallest singular value of ¥ [1,6]. The minimum of the
condition of the observation matrix or the maximum of the smallest singular value are common criteria for optimizing
trajectories in order to achieve excitation of all parameters. One problem is the computational burden if arbitrary
trajectories are optimized. The computational costs can be reduced by using 7t#-order polynomial trajectories [4].
Furthermore, such trajectories are shock- and jerkless such that unmodelled elasticities of joints are not excited by
the driving torques.

The main problem of the optimization, however, is the fact, that standard industrial controls can only generate
very simple trajectories. Therefore, the optimized trajectories can only be used in the field of robotics research, but
usually not in industrial robotics.

4. Identification: Two-step approach

In contrast to the conventional identification approach, the two-step method requires only very simple trajectories
and is, therefore, simply implementable in industrial robotics. It is based on the grouping in equation (2).

In the first step, gravitational torques and moments of inertia are ’'measured’ for a lot of different joint con-
figurations, so-called operating points. Each measurement is carried out by moving one single axes ‘back-and-forth’
along some trapezoidal velocity profile in the neighborhood of the operating point. Such trapezoidal trajectories are
very simple to generate by standard industrial controls. No specialized trajectories are needed as only one property
has to be identified and the trajectories are chosen to excite just this property.

For measurements of gravitational torque, long periods with constant velocity have to be included. The mean
between an averaged torque at forward and backward motion gives the desired gravitational torque. For the mea-
surement of the moments of inertia motions with higher share of acceleration are used. Gravitation is compensated
and the moment of inertia is identified in connection with a simple friction model. For more details on the measure-
ments see [5,8].
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The operating points are chosen by analyzing the structure of M(q) and g(q) to excite all dominant depen-
dencies on the parameters p in order to include them in the estimation. Of course, also an optimization could be
performed with respect to the common criteria (see section 3). A selection 'by hand’, however, is sufficient as it leads
to excellent results for the mentioned criteria. A further optimization would not yield recognizable improvements.

In the second step, the measurements of the gravitational torques are combined in

1
stl) ay,'rl(q(l)) e®
: = : p,+| 1 |, mefl...n) (8)
—_—— ———
T, ¥, €

where Q.; are the measured gravitational torques, ag,,,m(q(i)) are the corresponding rows of A, for the given
operating point ¢ and e is an error that has to be introduced since P, is not known. For the identification a
weighted least squares criterion is introduced for e, and leads to the estimation p,

D, = arg.x%in(e;"Wey) - P, = (¥ W) WIWT,. 9)
g
The diagonal weighting matrix takes into account the different ranges of the torque measurements by weighting
them with respect to the maximum torque of the respective axis
W = diag([W-1 - - - Wym]), With Wai = (Qrimax) ™" (10)

The inertial parameter vector p,,, is identified by combining the measurements of the moments of inertia M, 5(? of k
different operating points. They are combined and the influence of the already known p, is compensated:

15 anm,g,5(qM,us) a1 (q®, us1) e®

- P, = Ppt : (11)
MJ(]’:) aM,g,5k (@®), usk) GM,&k(q(k),'qu) e®)
I‘:q ‘I’VM em

Vectors us; stand for a vector of size of § with a 1 in the component of the measured inertia and zeroes elsewhere
(6; € {11...nn}). An estimation for p,, is then found by

P = arg.r;}in(e{,WeM) = Pp=(TTWEY) 1T Wy, (12)

In the application to the manutec-r15 both methods yield similar results. The disadvantage of the two-step
approach is the higher measurement effort. In contrast to the conventional approach, which needs only one trajectory,
a lot of experiments have to be performed. For the manutec-r15 the procedure takes about 45 minutes. But on the
other hand, no optimization is necessary as the choice of operating points could be performed ’by hand’. The single
measurements are very simple. This makes the approach applicable to standard industrial robot systems which is
the decisive advantage of the method.

5. Applications

One possible application of the identified robot model is the prediction of tracking errors [9]. Such a dynamic
simulation could be integrated in off-line programming packages in order to notice path deviations in advance and
so reduce teach-in costs. In figure 1 simulated and measured path deviations of the manutec-r15 are shown as

Euclidean distance (e.q = /€2 + €2 + €2) for a vertical circle with 0.4m diameter. The identified model accurately
predicts the dynamic behaviour of the robot.

Based on these results a compensation of the path deviations can be performed. One possibility is a model-
based compensation by the well-known computed-torque method [3]. The necessary torques for a given trajectory
g, can be estimated using equation (1) and a previously identified friction model Q;(g) :

Q = M(q,)iy + @y da) + 3(a2) + Q5 (da) = A(g4,da, Ga) P+ Qs(da)- (13)
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Fig. 1: Simulation and measurement of path errors for Fig. 2: Results of computed-torque method for an edge
vertical circle. in x-y-plain.

Figure 2 shows that the computed-torque method yields impressive improvements of path accuracy. This is another
proof for the quality of the identified model.

6. Summary

Two different approaches for rigid body identification of robots dynamics are presented and compared. The com-
monly used one leads to very little measurement costs but needs optimized trajectories which can usually not
generated by standard industrial controls. This makes the application in industrial robotics difficult or even impos-
sible. The two-step approach is much easier to implement since no optimized but only very simple trajectories are
used. Therefore, it is applicable not only in research labs but also in industry.

Both method yield similar results. The model quality is shown by application to tracking error prediction and
tracking error reduction by computed-torque method for the typical 6-d.o.f. industrial robot manutec-r15.
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MERKWIRTH, C.; PARLITZ, U.

Modeling chaotic and spatially extended systems

Different aspects of local modeling of chaotic time series are discussed including cross validation methods and algo-
rithms for fast nearest neighbor search. The resulting local models are used for predicting the temporal evolution of
low-dimensional and spatio-temporal systems.

1. Attractor reconstruction and local modeling

Measurements of dynamical systems typically provide discretely sampled scalar time series {s'}, t € Z. Using the
method of delay embedding, states

t

xt = (st,s"7L ..., st—(D-1)Ly

may be reconstructed from the data which are diffeomorphic images of the original states provided the embedding
dimension D and the delay time L are chosen properly (Abarbanel, 1996; Kantz and Schreiber, 1997). This state
space reconstruction may be used for deriving (black box) models describing the underlying process. In particular
local descriptions of the dynamics in the reconstructed state space (typically around some reference point) in terms
of local models (or: local predictors) turned out to be rather powerful. They are based on the assumption that
neighboring states undergo similar evolutions and may thus be applied only when the flow 9 in the reconstructed
state space is given by a continuous nonlinear function. Exploiting the special structure of delay embedding the
approximation of the flow 1 can be reduced to the approximation of a scalar function f(x) : RP? - R,x — &:

§t = f(xt) = F((st,s*7L, ..., s (D-DLY), o

The predicted time series value 5+ can then be used for constructing the future state X!*! that enters the prediction
of the next value §#*2 and so on. Of course, prediction errors accumulate with this kind of iterative prediction, but
nevertheless iterated prediction is in general superior to direct prediction using a single, large prediction step.

For approximating the scalar function f(x) we shall use in the following local constant models that are based on
preimage-image relations of the k nearest neighbors x™%,j = 1,...,k of a given state x’. Based on these relations
two local constant prediction schemes have been proposed. Absolute averaging

k
= 1
§t+1 — f(xt) _ Zw snn,’-}-l (2)
k J
Ej:l Wi j=1

where the result 3! of the prediction is a convex sum of the images s™*! of the neighbors and thus lies inside the
range spanned by the given data. This makes the prediction robust but also leads to poor results when extrapolation
(or: generalization) is crucial for the prediction (for example, in sparsely occupied regions of the reconstruction
space). In those cases integrated averaging

k
5 1 . )
gl — f(xt) =gt + - ij (snn,+1 _ snn,) (3)
ijl Wj j=1
may lead to better results. To avoid discontinuities we use for both prediction schemes weights w; = (1 —r7)" that
depend on the relative distance r; := fi—l given by the distance d; := d(x*,x™") between the reference point x*
and neighbor x™% normalized by the distance to the (k + 1)-th neighbor. For n > 0 the resulting functions are

(n — 1)—fold continuously differentiable.
2. Leave—One—Out—Cross—Validation for local models

Cross validation (or: bootstrap) provides a simple but efficient way for choosing the free parameters of a given
nonlinear model. Furthermore, this technique may be used to overcome the problem of overfitting where particular
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features of the given data are incorporated into the model which are untypical for the dynamical process. For this
purpose the available data are split into a training set which is used for deriving the model (parameters) and a test
set that is used to check the quality of the model and to tune parameters. In order to improve statistical significance
the division of the data into training and test set is repeated several times. An extreme version of cross validation
is the so-called Leave-~One-Qut-Cross-Validation where a data set of length N is split into a training set of size
N —1 and a test set of size 1. For global models this way of cross validation is extremely time consuming, because
for each case the full global model has to be determined again. In the case of local models, however, just the single
point which is left out has to be omitted in the selection of nearest neigbors and Leave-One-Out-Cross-Validation
may thus be implemented very efficiently.

To evaluate the performance of the one—step-ahead—cross—validation we use the average mean square error

2
MSE; = |Tm' Z (t+1 Frre(xt )) ) (4)

t€Tres

When using small sampling times one should avoid using neigbors in state space that lie on the same trajectory
segment, because they contain only little information about the underlying deterministic dynamics. This is done
here by omitting all neighbors with time indices nn; € [t — ¢,t + ¢] close to the time ¢ of the current reference state
x! as indicated with the notation ft‘” In general, however, not the error of the one-step—ahead-cross-validation is
most interesting, but the features of the models when applied iteratively. The normalized multi-step-ahead—cross—
validation error

NMSEf, = 7 D <( o fie)) +Z(‘+’+1 ftifrf(x*“))z) (5)

PIT.e Et- t—8)" e,

measures this performance over p iteration steps and is used in the following to quantify the quality of the derived
models.

3. Fast nearest neighbors search

An important ingredient for local modeling are fast algorithms for searching the required nearest neighbors. The task
of finding one or more nearest neighbors in a D,-dimensional space can be used in many fields of data processing, e.g.
information retrieval in database applications, data mining or, as in our case, for nonlinear time-series analysis where
it may be used for modeling and prediction of time series, fast correlation sum computation (correlation dimension,
generalized mutual information etc.), estimating the Renyi dimensions and Lyapunov exponents of experimental
data or nonlinear noise reduction (Abarbanel, 1996; Kantz and Schreiber, 1997).

Nearest Neighbor searching and related problems of computational geometry have been extensively studied in the
fields of computer science and pattern recognition and turned out not to fall into the class of computationally hard
problems. Searching the nearest neighbor of all points in a data set of size N using a naive algorithm (which
calculates the distances to every other point and picks out the smallest) is of order O(N?). However, for real
world applications it would be useful to have an algorithm which is of order O(N log(/N)). A common approach to
achieve this goal is to build up an auxiliary indexing data structure during a preprocessing phase which helps finding
nearest neighbors during the search phase. Recently we proposed a new algorithm for searching nearest neighbors
(Merkwirth et al., 2000) where during preprocessing, a hierarchical cluster tree is constructed which is then used in
the search phase for efficiently locating neighboring points. The triangle inequality : d(z,z2) < d(z,y) + d(y, 2) is
used in different ways to select for a given reference point (or: query point) the number of clusters that may contain
possible candidates of nearest neighbors. Since the triangle inequality is valid in any metric, there is no limitation
in what kind of metric is used to calculate distances.

4. Numerical examples

To illustrate the cross validation approach for local models time series of length N = 10000 have been generated by
numerical integration of different dynamical systems given in Table 1. For computing distances in reconstruction
space we used a weighted metric that emphazises the most recent samples of the time series (McNames, 1998)

D-1
dy(xt,x%2) = Z Xi(str—iL — gta—iL)2

=0
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| | Dynamical System | Parameters [T [AT [D: |
I, = -—Z2+az; a=028 b=4

Baier-Sahle i = T —Tip( 1=2,...,M-1) d=2, e=0.1 2000 | 0.2 | 4.26

iy = e+bry(zm—1—d) M=5
g1 = oz —h(z)) a=9, B=14.286

Chua 2z o my=-L my=2 | 1000 |01 |230
hy) = yma+05(ms—m)(ly+el-ly-cl) | ©=*
;7 = oz —x2) g=-10

Lorenz Iy = TZ1— Ty — T1T3 b= % 300 | 0.03| 215
.'1'23 = I1T2 — b.’E3 r =28
.’fl = =923 a=0.45

Rossler Ty = 1+ aze b=2 2000 | 0.2 | 1.97
3 = b+zz(z1—c) c=4

Table 1: Dynamical systems used for generating chaotic time series. All time series are of length N = 10000 and
have been sampled with sampling time AT after a transient time T'. The last column contains the information
dimensions Dy of the data sets.

[ System I p|DJE] X | wn | Modus | NMSES , | NMSEmax/NMSE; i), |
Baier-Sahle || 40 | 40 | 8 | 1.0 1 | Integrated | 0.050045 27.9
Chua 5030|510 3 | Integrated | 0.053058 14.6
Lorenz 50140105 0 | Integrated | 0.084055 5.2
Rdssler 80140 | 1]07| 0} Absolute 0.005964 20.7

Table 2: Results of cross validation of local models for chaotic time series generated with the dynamical systems
given in Table 1. The last column shows the ratio of the errors of the best and the worst parameter combination.

where x' and x*? are reconstructed state vectors and 0 < A < 1 (including the ordinary euclidean metric for A = 1).
The model selection consisted in a systematic computation of the normalized multi-step-ahead-cross—validation
error (5) for all combinations of the following parameters and approximation methods

o embedding dimension D € {4, 8,12, 16, 20, 25, 30,40}

e exponent of the metric A € {0.5,0.6,0.7,0.8,0.91.0}

o number of neighbors k € {1,...,8}

e type of weight function w; = (1 —r})" specified by the power n

e absolute (2) or integrated averaging (3)

The parameter ¢ equaled the mean return time, i.e., half of the value of the smallest time shift ¢ for which the
distance d; = d(x",x" +1),i = 0,1,... decreases again. For the delay time we used L = 1. This leads to rather high
values of the optimal embedding dimension D but the used algorithm for finding nearest neighbors (Merkwirth et
al., 2000) depends mainly on the (fixed) fractal dimension of the point set, while the embedding dimension has no
strong influence on the computation time. Each time series was splitted 1000 times into training and test set. The
resulting optimal parameter combinations are shown in Table 2. Figure 1 shows the results of iterative predictions
using the optimal parameter values. The length of the time series shown equals 4p, i.e. four times the prediction
horizon p given in Table 2.

5. Spatially extended systems

Local modeling can also be applied to data from spatio-temporal systems. In this case, however, the dynamics is
usually high-dimensional and special reconstruction techniques are necessary that exploit the fact that the data
originate from an extended system. For systems whose dynamics is governed by local interactions in (configuration)
space, the reconstruction of local states has turned out to be a useful method for analyzing and predicting the
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Figure 1: Iterated predictions computed with the optimal parameter combinations given in Table 2. The dashed

curves show the true evolution and the solid lines give the prediction starting at the end of the training set as
indicated by the vertical dashed line.

corresponding spatio-temporal time series (Parlitz and Merkwirth, 2000). With this reconstruction method samples

from local space-time regions are used to create local states. Based on these states all methods described above can
be used for predicting the underlying dynamics.

All numerical simulations presented in this paper were performed using Matlab programs from our nonlinear dy-
namics software package TSTOOL (http://www.dpi.physik.uni-goettingen.de /tstool/).
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P.C. MULLER

Nonlinearity estimation by PI-observers: Theory and applications

1. Introduction

Dynamical systems are often influenced by troublesome nonlinear effects such as Coulomb friction, hysteresis or
backlash. In [4] an indirect measuring technique of the actual values of these nonlinearities has been presented by
defining an extended linear state observer which includes an integral feedback of the measurement error additional
to the usual proportional feedback. This PI - observer yields estimates of the time behaviour of the state and of
the nonlinearities as well. In the following this method of nonlinearity estimation is presented, its theory is touched,
and its potentiality of applications is shown.

2. Method of nonlinearity estimation
The problem under consideration is described in the state space by
%(t) = Ax(t) + Nn(x(t),t) + Bu(t) , y(t) = Cx(t) + Du(t) (1)

where x,u,y denote the n-dimensional state vector, the r-dimensional control vector of known inputs (e. g. control
inputs or known excitations) and the m - dimensional measurement vector, respectively. The vector n(x, t) represents
p more or less unknown functions which are generally nonlinear but which may be in special cases linear functions
with unknown parameters or external disturbances depending only on time. The matrices A,N,B,C,D are of
related dimensions. To avoid redundant formulations the conditions tk N = p, rk B =r, rk [C,D] = r are
assumed to be satisfied.

The problem of nonlinearity estimation consists in the construction of an estimate fi(t) of the nonlinearities n(x,t)
on the basis of the measurements y,0 < . For this, it is assumed that the quantities A, N, B, C,D and the input
signals u,0 < t, are known.

According to [4, 5, 7] an extended linear state observer

%) ] [ A-L,C N[ %(t) B L,
[ $(t) ] B [ -L,.C 0 } [ o) | T o |uOF| g, |60 -Dud) 2)
is designed yielding the estimation of the state, %, and of the nonlinearities, fi(t) = ¥(t). Assuming the initial

condition ¥(0) = 0 then the combined proportional and integral feedback properties of the observer (2) are explicitly
shown by

ﬁ:\‘f——-—Lv/(y——y)dt, 5'c=Ai+Bu+Lx(y—y)+NLV/(y-y)dt 3)

where ¥ — y is the measurement estimation error with §(¢) = C%(t) + Du(t) . The choice of the observer gain
matrices Lz, L, can be realized that the observer (2) is asymptotically stable if and only if the extended system is
detectable [5, 7). Hints for the observer design and bounds for the estimation errors were presented in (7).

3. Applications

The proposed method of nonlinearity estimation may be applied to the identification of nonlinearity characteristics,
to parameter identification, to fault detection or to nonlinearity compensation in closed-loop control systems. The PI-
observer (2) yields an estimate (3) of the time behaviour of the nonlinearities. If one is interested in the characteristics
of the nolinearities then additional informations are required about the structural dependencies of n(x(¢),t) on x
and t. If this & priori information is available, e.g. that a friction characteristic depends on a certain velocity which
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is represented by one state variable z;, then the reconstruction of the nonlinear characteristic is determined by
ﬁ(& t) = O(t)]t=argi(t) . (4)

The problem of parameter estimation is easily illustrated in the special case of n(x,t) = Kx(t) where K is a matrix
of unknown parameters. Then (3) results in ¥(t) = K%(t). In general it is not reasonable to evaluate this equation
pointwise. But applying correlation methods a result is obtained for a sufficiently large T

N

T T
K= % / YRR ()dt - (= / %(t)%" (t)dt)~* ©)
0 0

The problem of fault detection in dynamical systems is an application of the identification methods mentioned before.
In this case a fault is defined as an unknown nonlinearity which is zero in the faultless state and non-zero if a fault
appears. Then a non-vanishing estimate (3) indicates the fault. Also sometimes a fault may be modelled by a change
of a parameter which can be indicated by a recursive realization of the parametes estimation (5). The compensation
of nonlinear effects within a closed-loop control system is based on the method of disturbance rejection 8. Ifu
represents control inputs then a feedback control u(t) = —K,%(t) — K, ¥(t) is used. The gain matrix K, of the state
feedback can be designed as usual but the gain matrix K, of the nonlinearity compensation has to be calculated in
a specific manner. In the special case if the matching condition is satisfied we have K = —M if N = BM.
But in general K, has to be determined by a more complicated system of linear equations, cf. [5,6].

The proposed method for estimation and compensation of nonlinearities by PI-observers has been successfully applied
to a number of technical applications. Hasenjéger [2] used the method to compensate nonlinearities in the position
control of parabolic antenna. Ackermann [1] compensated Coulomb friction in a highly accurate position control
of elastic robots. Without this compensation steady-state inaccuracies or even limit cycles had appeared due to
slip-stick friction. The good results have been verified in simulations as well as in experiments. Another application
was the design of improved independent joint control of industrial robots estimating and compensating the coupling
effects among the axes of the robot [3, 6]. The application of the PI-observer method to fault detection problems
has been demonstrated is [9, 10]. Séffker et al. [10] detected cracks in turbo rotors. The observer based method
allows an improved early detection of faults avoiding damages. More recently these results have been confirmed
and generalized [9]. The method of estimation and compensation of nonlinearities has been successfully proved in
the field of identification and reduction of the influence of parasitic effects. The main advantages are its simplicity
because only standard algorithms of linear system theory are required and its robustness against modelling errors
in the input channels of the nonlinearities.
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Frequency Response Functions: Validity and Usefulness in Nonlinear System
Identification

This paper considers the role of Higher Order Frequency Response Functions (HFRFs) for characterising nonlinear structures
which can be represented by polynomial equations. By considering only the leading diagonals of these multi-dimensional
HFRFs, simplifications are possible which allows practical procedures for experimentally measuring these, albeit they are
approximations to the exact HFRFs due to the truncation of the series.

1. Ideal and Measured HFRFs

In order to describe the relationship between the ideal higher order FRFs and the measured higher order frequency response
functions it is necessary to briefly describe the role of the Volterra series when the input is idealised (non-physical) harmonic

function x(t) =X ¢¥®'. For a non-linear system which can be represented by a Volterra model, the output and input relationship
becomes,

y(t) =X &I fmhl (x,)e ™" dr, + X2 2 Ifwhz (ty,7, 2 dr,dr, + ...

inet 00 .
+X" i r _f h,(,,...7, )e P dr o)
Noting that the terms inside the integral signs are multi-dimensional Fourier transforms, equation (1) becomes,

y(t) =H, (jo)X e +H, (jo, jo)X* e +...+H, (jo, .., jo)X" ™. )

Equation (2) simply shows the relationship between the linear (one-dimensional) FRF function, H,(jco) and the leading
diagonal terms of the higher order FRFs H, (jo) at the excitation frequency o, which are simply the higher harmonics at 20,

30 etc. The FRFs in equation (2) are defined in terms of the one-dimensional Fourier transforms of the input and output terms
as,

. Y(jm)
H, (JCO)= X(j@)

.y 2Y(j20)
H,tjo, jo)= 3
n-1 :
. (jo. .. jo) = 2 Y(ne)
X(jo)*
For a sine wave input (which is the practical case) we obtain the following Higher Order Transfer Functions:-
_ Y(jm) _ . 3 . . . < \2 n . . . \n—-1 —
TF, = (o)~ H,(jo)+2H;(jo, jo, - jo)X(jo)* + o= H, (jo, ..., - jo)X({o)" " +.. n=135,.. @)
TF, (jno) = Y(oo) 1 (jo, ... jo)+ (0-+2) H,.,(jo, ...~ jo)X({jo) +.. n=123.. ®)

a2 n+2

- X(jCO)n 211—-1 n
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The additional terms i.¢. those above H, (jo) are referred to as degenerative terms on the H, (jo) function arising from the fact

that the sine wave input excites the even and the odd higher order FRFs. If we take, as an example, what we normally measure
in practice which is defined by equation (4) we see that to a first approximation,

TF, (jo) = H, (jo)+ O(X(jo))? ©)

and to a second approximation,

TF, (jo) = Hy (jo)+ 3 H; (jo, jo,~jo)X (o)’ +O(X(jo))*. )

Equation (7) shows that the classical first order transfer function is equal to the classical first order FRF only when,
H; (jo, jo, jo) Hy(jo ... jo), etc are zero, i.e. when the system is linear. Further, it clearly shows that as the level of input |

excitation spectrum X(jo) is increased the significance of the higher order terms increases in relation to X(jo)*". This can be
physically interpreted as an increasing distortion of the measured transfer function (bending to the right or left) of systems with a
hardening or softening stiffness non-linearity, as the amplitude of the input excitation increases. Indeed, the well known |

distortions apparent in the transfer function of a Duffing oscillator subject to sinusoidal excitation are readily explained by this
analysis [3]. |

Equation (5) can be applied experimentally very simply to measure the approximate HFRF', referred to as Higher Order
Transfer Functions:

TF, (joo) = L020)

X(jo)"

ie. TF (JCD) = Xgmg is obtained by exciting the structure with a sine wave at a given frequency and measure the response
(0]
and force input amplitude and phase at this frequency.

The second order transfer function,

Y( .
TF, (j20) = %(;—2)- is obtained by exciting with a sine wave at frequency » and measuring the response at the 20
X{jo
component, dividing by the square of the excitation force level at the forcing frequency to form TF, (cho). This is repeated for
higher order transfer functions as desired. Such transfer functions can offer considerable insight into the type of nonlinearities
present in dynamic structural testing. Examples of the application of these ideas can be found in references 1,2,3,4.
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UNBEHAUEN, H.

Identifikation nichtlinearer Systeme aus regelungstechnischer Sicht

Die Identifikation einer Regelstrecke liefert ein mathematisches Modell, das heute meist als Grundlage fiir den Ent-
wurf einer modernen Regelung dient. Da die meisten technischen Regelstrecken mnichtlinear sind und hdufig eine
Linearisierung in einem Arbeitspunkt nicht ausreicht, spielen Verfahren zur Identifikation nichtlinearer Modelle von
Regelstrecken sowohl fiir die Regelung als auch Uberwachung und Fehlererkennung eine 2unehmend wichtige Rolle.
Der Beitrag gibt eine Ubersicht iiber die wichtigsten in der Regelungstechnik verwendeten nichtlinearen Modellfor-
men, wobei zwischen nichtparametrischen, parametrischen und semiparametrischen Modellen unterschieden wird. Es
werden Methoden zur Identifikation der das jeweilige Modell beschreibenden Kenngrofen erwdhnt, und abschlieflend
wird eine vergleichende Einschitzung dieser Verfahren gegeben.

1. Einleitung und Problemstellung

Die Regelung hat die Aufgabe, die RegelgroBe y(t) schnell auf den gewtinschten festen oder variablen Sollwert w(t) zu
bringen. Dabei ist eine generelle Voraussetzung fiir die Parametereinstellung oder die Synthese von Reglern, dafl das
dynamische Ein-/Ausgangsverhalten der Regelstrecke in Form eines dynamischen Modells bekannt ist. Ein solches
Modell kann in vielfaltiger Form aufgestellt werden, so z.B. als Differentialgleichung, Differenzengleichung, Ubertra-
gungsfunktion, Ubertragungsmatrix, kiinstlich-neuronales Netzwerk oder linguistisches Fuzzy-Modell. Grundsitzlich
bestehen zwei Moglichkeiten zur Herleitung eines solchen Modells. Die auf der Basis der die Regelstrecke beschreiben-
den physikalischen Gesetze hergeleiteten mathematischen Modelle sind meist sehr kompliziert und beruhen hiufig
auch auf verschiedenen Voraussetzungen, die teilweise nur ungenau zu erfiillen sind. Eine andere Moglichkeit der
Modellbildung beruht auf der Messung der Ein- und Ausgangssignale u(t) und y(t) der betreffenden Regelstrecke.
Diese Vorgehensweise wird auch als experimentelle Systemidentifikation bezeichnet [1]. Sie bildet die Grundlage fiir
die nachfolgenden Betrachtungen.

Die meisten industriellen Regelstrecken weisen nichtlineares Verhalten auf. Dies ist entweder eine Folge der meist
nichtlinearen Stellglieder und der hiufig nichtlinearen MeBverfahren oder der nichtlinearen statischen Kennlinie,
sofern die Regelstrecke iiber einen groBen Arbeitsbereich betrieben wird und somit eine Linearisierung zu einem
bestimmten Arbeitspunkt nicht mehr in Frage kommt. Daraus resultiert der Wunsch, das Verhalten der nichtlinearen
Regelstrecke durch entsprechende nichtlineare Modelle zu beschreiben. Solche Modelle sind insbesondere erforderlich,
wenn nichtlineare Regler eingesetzt werden.

2. Nichtlineare Modellstrukturen

Zahlreiche Verfahren wurden zur Modellierung nichtlinearer Regelstrecken vorgeschlagen [2 bis 6]. GemaS8 [2] lassen
sich diese Verfahren in 4 Gruppen unterteilen: (i) Nichtparametrische Modelle, (i) Parametrische Modelle, (iii)
Semiparametrische Modelle und (iv) Lineare Multimodelle.

Auf einige typische Vertreter aus diesen Modellgruppen soll nachfolgend kurz eingegangen werden.
2.1. Nichtparametrische Modelle

Diese Modellklasse wird durch eine nichtparametrische Darstellung, z.B. in Tabellenform oder graphischen Formen
(Zeitverlsufe, Ortskurven, spektrale Darstellungen oder klassische Phasen-Ebene-Darstellung) charakterisiert. Ein
typisches Beispiel ist die Volterra-Reihe [7]. Diese Modellbeschreibung fiir das Eingangs-/Ausgangsverhalten kann
als eine Verallgemeinerung des fiir lineare Systeme bekannten Faltungsintegrals {iber das Produkt der Impulsantwort
g(t) mit dem zeitverschobenen Eingangssignal u(t) angesehen werden. Die Systemidentifikation besteht hierbei darin,
anhand der gemessenen Ein- und Ausgangsgrofien u(t) und y(t) die in den Integraltermen

t ¢ i
/---/g,-(rl,...,n) HU(t—Tj)dT]_...dTi i=1,2,...
S —r j=1

i-mal
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der Volterra-Reihe auftretenden “Volterra-Kerne” g; durch numerische Entfaltung punktweise zu bestimmen. Es ist
leicht nachzuweisen, da8 der hierfiir erforderliche Rechenaufwand bereits fiir kleine Werte von i auBerordentlich gro8
wird.

2.2. Parametrische Modelle

Bei dieser Modellklasse erfolgt die Darstellung bevorzugt in Form nichtlinearer Differenzen- oder Differentialglei-
chungen, deren Parameter speziell im kontinuierlichen Fall auch oft eine physikalische Bedeutung haben.

2.2.1. Diskrete parametrische Modelle

Als eine der allgemeinsten Modellformen dieser Gruppe ist das Kolmogorow-Gabor-Modell zu nennen [8,9], das auf
der Basis eines Polynomansatzes beruht. Unter Einbeziehung eines Stérmodells stellt dieses Modell eine nichtlinea-
re ARMAX-Struktur dar und wird deshalb auch als NARMAX-Modell bezeichnet [10,11]. Dieses Modell ist linear
in den Parametern, so da8 diese relativ einfach mit einem LS-Verfahren geschiitzt werden konnen. Zur Reduzie-
rung der prinzipiell hohen Anzahl von Modelltermen stehen leistungsfihige, selbstétig ablaufende Algorithmen zur
Strukturbestimmung zur Verfiigung [11 - 13].

Bei den beiden Modellstrukturen der Wiener und Hammerstein-Modelle wird davon ausgegangen, daB sich das dy-
namische Verhalten des Systems in einem linearen Teilmodell und das statische Verhalten in einem nichtlinearen
Teilmodell darstellen 1&8t. Beide Teilmodelle werden in Reihe geschaltet, wobei das nichtlineare Teilmodell beim
Hammerstein-Modell am Eingang und beim Wiener-Modell am Ausgang angeordnet wird. Beiden Modellen wird
am Ausgang noch ein lieares Stormodell iiberlagert. Zahlreiche technische Regelstrecken knnen durch diese Mo-
dellstrukturen recht gut beschrieben werden. Hervorzuheben ist, da88 die Struktur des Hammerstein-Modells linear
in den Parametern ist, so daf die Parameter wiederum durch ein LS-Verfahren geschitzt werden kénnen. Dies ist
allerdings beim Wiener-Modell nicht der Fall. Hier miissen die Parameter durch ein Gradientenverfahren bestimmt
werden [14]. Das bilineare Modell ist als Sonderfall bereits im Kolmogorov-Gabor-Modell enthalten. Die Nichtlinea-
ritét tritt hierbei nur in Form von Produkten zwischen MeBwerten der Ein- und AusgangsgréBe auf. Quadratische
Terme und solche héherer Ordnung werden nicht beriicksichtigt.

2.2.2. Kontinuierliche parametrische Modelle

Neben den kontinuierlichen Formen der bilinearen und der Hammerstein- und Wiener-Modelle lassen sich nichtlineare
Systeme auch durch integrierbare Modelle der Form

S o fu(®),u(6]) = 0
=0 j=0

oder durch das faltbare Modell

niy n2 ng d,i

33N ainor ["(t), y(®) gz [filu(®), y(t)]]] =0

#=0 j=0 k=0
darstellen. Hierbei sind f; und gi bekannte Funktionen, wihrend die Parameter a;; bzw. a;;x zu bestimmen sind. Zur
Parameterschéitzung werden diese Differentialgleichungen entweder durch Fourier- [15] oder zweckmiBiger Hartley-
Modulationsfunktionen [16 - 18] in eine spektrale Darstellung gebracht. Da diese Darstellung linear in den Parametern
wird, 148t sich die Parameterschitzung wiederum mit einem LS-Verfahren durchfiihren.

2.3. Semiparametrische Modelle

Diese neue Bezeichnung wurde eingefiihrt [5], um die Klasse der Modelle zu charakterisieren, die auf kiinstlich
neuronalen Netzen (KNN) oder auf linguistischen Fuzzy-Regeln beruhen. Diese Modelle sind nicht streng in eine
der zuvor behandelten Modellklassen einzuordnen. In beiden Fillen wird als Ziel der Identifikation eine gewisse
Zahlenmenge geschétzt, die im Falle des KNN-Modells den Neuronengewichten und im Falle der Fuzzy-Modelle den
Werten der Zugehorigkeitsfunktionen entspricht. Beide Klassen von Modellen sind auch in der Kombination von
Neuro-Fuzzy-Modellen besonders gut zur Beschreibung von nichtlinearen Regelsystemen geeignet [19-21].

3. Kritische Bewertung der unterschiedlichen Modellstrukturen

Da die zuvor beschriebenen nichtlinearen Modellstrukturen sich teilweise ganz erheblich unterscheiden und fiir sehr
unterschiedliche regelungstechnische Aufgabenstellungen entwickelt wurden, ist ein allgemeiner Vergleich hinsicht-
lich ihrer Leistungsféhigkeit nicht moglich. Auch sind manche Detailprobleme bis heute noch ungeniigend geklsrt.
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Dennoch sollen nachfolgend einige wichtige Eigenschaften der unterschiedlichen Modellstrukturen angesprochen und
fiir vier Modelle, als typische Vertreter der wichtigsten Modellklassen, dem

— Volterra-Modell (VM),

- Kolmogorov-Gabor (NARMAX)-Modell (KGM),

— kontinuierlichen faltbaren Differentialgleichungs-Modell (KFDM),

— kiinstlich neuronalen Netz-Modell (KNNM)
kritisch bewertet werden.

Da fiir eine solche Bewertung allgemeinverbindliche MaBe bisher kaum zur Verfligung stehen, sollte diese Vorge-
hensweise nur als subjektive Betrachtung des Autors, allerdings auf der Grundlage umfangreicher Erfahrung mit
diesen Modellstrukturen, gesehen werden. Eine wichtige Eigenschaft einer Identifikationsmethode ist ihre Approzi-
mationsfihigkeit. Diese ist ein unmittelbares Ma8 dafiir, wie gut ein identifiziertes Modell in der Validierungsphase
gemessene Signalverldufe der Systemausgangsgrofie unter Vorgabe der zugehdrigen gemessenen Eingangsgrofien ap-
proximiert. Ein wesentlicher Gesichtspunkt ist weiterhin der erforderliche Rechenaufwand fiir die Durchfiihrung der
Identifikation. Obwoh! heute leistungsfihige Rechner zur Verfligung stehen, spielt der Rechenaufwand hiufig die
entscheidende Rolle, ob ein Verfahren im ,on-line“ Betrieb, also auch in Realzeit in rekursiver Form eingesetzt
werden kann. Dies ist ein wichtiger Gesichtspunkt bei der Realisierung adaptiver Regelsysteme. Weiterhin sind die
Identifikationsverfahren unterschiedlich empfindlich gegen stochastische Stdrsignale. Leider sind die theoretischen
Grundlagen fiir den EinfluB stochastischer Stérungen in nichtlinearen Systemen bisher noch zu unbefriedigend er-
forscht, so daB weitgehend nur lineare Stérmodelle dem Ausgangssignal tiberlagert werden. Daher konnen allgemeine
Aussagen iiber die Unempfindlichkeit einer Identifikationsmethode gegeniiber Rauschsignalen nicht gemacht werden.
Hier ist man weitgehend auf Erfahrungswerte angewiesen.

Tabelle 1: Eigenschaften nichtlinearer Modelle

| Eigenschaften Modell niedrig mittel groB
VM x
Approximations- KGM x
fahigkeit KFDM x
KNNM x
VM x
Rechen- KGM
aufwand KFDM x
KNNM x
VM nein
,on-line“ KGM (ja)
Fshigkeit KFDM ja
KNNM ja
VM (x)
Unempfindlichkeit KGM (%)
gegen Rauschen KFDM (x)
KNNM (x)
VM
Konvergenz KGM x
KFDM x
KNNM x
VM erforderlich
Datenvorver- KGM nicht erforderl.
arbeitung KFDM erforderlich
KNNM nicht erforderl.

Bei den zur Systemidentifikation eingesetzten Algorithmen ist die Konvergenz zum ,wahren® Identifikationsergebnis,
also den Schitzparametern und der Modellstruktur, von besonderer Wichtigkeit. Bei den Verfahren, deren Struktur
linear in dem zu schitzenden Parameter ist, ist die Identifizierbarkeit mit einem LS-Verfahren gesichert, sofern das
Ausgangssignal geniigend erregt wird. Bei Gradientenverfahren ist dies nicht immer gewshrleistet.

SchlieBlich sei noch darauf hingewiesen, daB bei manchen Verfahren eine Vorverarbeitung der Mefdaten erforderlich
ist. Wihrend bei den Verfahren zur Ermittlung diskreter parametrischer Modelle dies nicht erforderlich ist, empfiehlt
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sich eine solche Datenvorverarbeitung hiufig bei der Ermittlung kontinuierlicher parametrischer Modelle.

Tabelle 1 gibt eine Ubersicht zur Bewertung der oben genannten vier Verfahren unter den hier genannten Gesichts-
punkten.

4. Zusammenfassung

Es stehen heute bereits zahlreiche bewéhrte Verfahren zur Identifikation nichtlinearer Systeme zur Verfligung. Im
speziellen Anwendungsfall mu8 das geeignetste Modell sorgfiltig ausgewshlt werden, wobei man aufgrund der vor-
gegebenen Situation zuerst mit der einfachsten Modellstruktur beginnen sollte, und nur dann, falls diese nicht
das gewtinschte Ergebnis liefert, auf allgemeinere Modellklassen {ibergehen sollte. Haufig liefert auch eine genauere
technisch-physikalische Analyse des zu modellierenden Systems Hinweise zur Wahl einer geeigneten nichtlinearen
Modellstruktur.

In diesem kurzen Uberblick wurde versucht, den augenblicklichen Entwicklungsstand zur Identifikation nichtlinearer
Systeme aus regelungstechnischer Sicht darzustellen. Er ist fiir den interessierten Leser gedacht, um ihm einen
leichten Einstieg in dieses wichtige Gebiet der dynamischen Systeme zu erméglichen.
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T. BOHLKE, A. BERTRAM

The 4th-Order Isotropic Tensor Function of a Symmetric 2nd-Order Tensor
with Applications to Anisotropic Elasto-Plasticity

Dedicated to Prof. D. Gross on the event of his 60th birthday.

The effective elastic properties of polycrystals can vary significantly with their crystallographic texture [7]. Since
a correlation of elastic and plastic properties has been proven (see [8] and references therein), a phenomenological
modeling of the crystallographic texture induced elastic anisotropy is of importance in the contert of both elasticity
and plasticity. In the present paper an evolution equation for the effective elasticity tensors of aggregates of cubic
crystals is specified by means of the theory of isotropic tensor functions. It is shown that constraints forced by the
elastic symmetry on the micro scale simplify the phenomenological equations significantly.

1. Introduction

Notation: Linear mappings of 2nd-order tensors are written as A = C[B]. The scalar product, the dyadic product,
and the Euclidean norm are denoted by A - B, A ® B, and ||A]| = (A - A)Y/2, respectively. Lin denotes the set of
all 2nd-oder tensors. Sym and Orth represent the sets of symmetric and proper orthogonal 2nd-order tensors.

Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and
elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although
experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain
materials. A source for such phenomena is a significant anisotropy of the corresponding physical property of the
single erystals forming the aggregate. The main purpose of the present work is to derive the 4th-order isotropic
tensor function of a symmetric 2nd-order tensor and to determine explicitly its irreducible part. This tensor function
is necessary to formulate a phenomenological model for the evolution of the elastic properties polycrystals.

Generally, it is possible to decompose 4th-order elasticity tensors of arbitrary symmetry into a direct sum of or-
thogonal subspaces, on which the action of Orth is irreducible. The action of Orth on a vector space is said to be
irreducible when there are no proper invariant subspaces. The harmonic decomposition has the form

C = hyP! + hoP} + H, @ T+ 1@ HY + 4J[H)] + H, (1)
where

]P{ = %I QI IP’% =1- HD{, 4.U[A] = (Aiméjn + Ainsjm + JimAjn + JinAjm) eRe; e, e, (2)
[12, 13, 5, 3]. I denotes the 2nd-order identity tensor and I represents the identity on symmetric 2nd-order tensors.
The tensors Hf, H5, and H are irreducible, i.e. completely symmetric and traceless. A review concerning this
representation is given in {6]. h; and hy are called the first and second isotropic parts; Hj and HY, are the first and
second deviatoric parts; H is the harmonic part. Irreducible 2nd-order tensors have five, and irreducible 4th-order

tensors have nine independent components.

The symmetry group of C is the intersection of the symmetry groups of its harmonic and deviatoric parts [6]. As
a result, a cubic crystal symmetry forces H| = 911 and Hj = 1. From tr(H}) = 0 and tr(H5) = 0 one concludes
41 =0 and v; = 0, respectively. Therefore, the tensors Hj and HY vanish and the harmonic decomposition of the
single crystal stiffness reduces to

C= hlﬂl’{ + th§ +H. (3)
Only in the case of a cubic crystal symmetry the deviatoric parts H} and Hj vanish.

The effective elastic properties can be determined by orientational or volume averages of the local elasticity tensors.
Examples are the arithmetic, the geometric, or the harmonic average [2]. In what follows we consider aggregates of
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cubic crystals. The singlecrystalline grains are assumed to differ only by their crystallographic orientation. For the
volume average of C remains only

Note that the volume average H' of H' is irreducible. It is seen that a crystallographic texture evolution affects only
the harmonic part of the stiffness. The same statement holds for the arithmetic mean [15] of local stiffnesses, the
geometric mean [1, 9], and the harmonic mean [11] (see also [2]).

A simple phenomenological model for the texture induced elastic anisotropy is given by the following evolution
equation

DI

D - ' ’ 1y _ I8y (——
EH’ - “Dp“ (G (Np) d(Ip)H') > NP ||D;,” )

Ip = det(Ny), (5)

where Dy, is the macroscopic plastic strain-rate which is deviatoric. All quantities are formulated with respect to
the (Lagrangian) undistorted configuration, which is invariant under changes of the observer. D(-)/ Dt denotes the
material derivative. The plastic spin has not been taken into account in eqn (5). Furthermore, the driving term
depends only on the direction N;, of D,. The main problem is to find the general representation of the function
G', which has to be irreducible. In section 2 the general 4th-order isotropic tensor function of a symmetric 2nd-
order tensor is derived by means of the theory of isotropic tensor functions of 2nd-order tensors ([17, 4], see also
[10, 16, 14]). In section 3 the corresponding irreducible part is determined. It is shown that the condition of
irreducibility simplifies the representation considerably.

2. The 4th-Order Isotropic Tensor Function of a Symmetric 2nd-Order Tensor

In what follows, we derive the representation of a general, not necessarily polynomial, 4th-order isotropic tensor
function G of a symmetric 2nd-order tensor A € Sym. The tensor function G is required to exhibit the index
symmetries of elasticity tensors, i.e. the major symmetry and the symmetry in the first and second pair of indices

M-G[N]=N-G[M], M- -G[N]=M-GN"]=M"-G[N] VM,N € Lin. (6)

The starting point is the irreducible representation of a (symmetric) 2nd-order isotropic tensor function of two
symmetric 2nd-order tensors [17, 4]

.
G(A,B) =) goG. ()
a=0
The eight symmetric tensor generators G, are given by
I,A A%, B,AB + BA,A’B + BA2, B2, AB? + B?A. (8)
The g, are general functions of the 10 invariants of the functional basis of A and B
tr(A), tr(A?), tr(A3), tr(B), tr(B?), tr(B3),
tr(AB), tr(AZB), tr(AB?), tr(A2B2). @

The representation (7) is called irreducible if the functional basis is irreducible and if none of the generators can be
expressed as a linear combination of the other generators, formed with general functions go- A functional basis is
called irreducible if none of its elements can be expressed as a single-valued function of the other elements [4]. This
definition of irreducibility differs from the one applied when discussion the index symmetries of the tensor H.

The function G can be obtained by a linearization of G in B
G'"(A,B) = G(A)[B]. (10)
The linearized function G*” reads

G'"(A,B) = gj"1+ ¢ A + g§" A? + g§"B + g§" (AB + BA) + ¢i" (A’B + BA?) . (11)
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After the linearization, the scalar functions g,(A, B) can be expressed in terms of B and the new functions g;;(A)
that are isotropic in A

¢ = gio(A)tr(B) + gi1(A)tr(AB) +gi2(A)tr(A?B), (1=0,1,2),

) (12)
fin = gi(A), (i=3,4,5).
A direct calculation yields the following representation
G(A) = (3900 + 930) P] + 930P% + 911A ® A + g22A% © A% + 2940J[A] + 2g50T[A7]
4+ g10A®T+ g0 I® A +920A% © I+ go2l ® A? (13)
+ gnA?Q@A+g12AQ A%
From the requirement (6); one concludes
910 = go, 920 = go2, 12 =92 (14)
As a result, the 4th-order isotropic tensor function G reads
G(A) = Yam1GalA)Ga(A)
= (3900 + 930) P{ + 930P} + 911A ® A + g22A% @ A% + 2940 J[A] + 2g50T[A7]
(15)

910 (ART+I®A) +920 (A’ I+1Q A%

-+

+ g1 (A’®@A+AQA?).

3. The Irreducible Part of the 4th-Order Isotropic Tensor Function of a Symmetric 2nd-
Order Tensor

As mentioned before, an irreducible 4th-order tensor is symmetric and traceless with respect to every pair of indices.
In this section we present the irreducible part G’ of the function G (see (13)) by employing the procedure suggested
by [5]. The irreducible part of a 4th-order tensor function G is given by

G = %(G) - 511{13 @I} + %tr(ﬁxl ®1), (16)
where
H = Giier ® e + 2Gikier @ €. (17)
{ex} represents an orthonormal basis. The bracket formulae is defined by (A, B € Sym)
(AijAu) = AijAn+ AiAji + AaAxj) 1)

{Al‘jBkl} = AjjBri + Ai Bjt + Aa B + Bij Akt + Bix Aji + Bit Ag;.

Note, that G has the major symmetric. Therefore, {Gi;jx) = Gijui + Girji + Gitkj. All components of G’ are linear
functions of the components of G.

Inspection of eqn (15) shows that only the following three of the nine 4th-order tensor gemerators contain non-
vanishing irreducible parts

Gs(A)=A®A, GiA)=AZRA% Gy(A)=A’QA+AQA? (19)
which are given by
Gi(A) = HA®A)-F (r(A){A T} +2{A2@T}) + 1f5 (tr(A)? +2t(A?)) (IS T),

4(A) = Gs(A?),
(20)

Gy(A) = HA?®A}-k (4(AD{AST) +u(A){A201} +4{A%sT))

+ 2 (tr(A)tr(A2) + 2tr(A%)) (IR T).
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If the tensor A is replaced by the direction N’ = A'/||A’|| of its deviatoric part A’ = A ~ tr(A)I/3, then, the
generators read

G (N') = %(N’ o Ny — %{N'2 Q1)+ 13—5tr(N'2)(I® 1, 1)
Gy(N') = %(N'z ®N"?%) - 513 (tr(N?){N"? @1} + 2{N"* o I}) + % (tr(N"2)? 4+ 2tx(N'9)) (I 1), (22)
Gh(N') = %{N'Z QN'}— % (tr(N){N' @I} + 4{N® o 1}) + Tgfgmr(N"*)(I QI). (23)

Since N’ is traceless and normalized, the three functions Gy, G, and G3 depend on the only non-constant principal
invariant det(N’) of N’. As a result, G'(N’) reads

G'(N') = Gs(I)G5(N') + G4(I)GL(N') + Go(I)G5(N'), I = det(N). (24)

Within the presented evolution equation (5), the four scalar functions Ga(I,) G4(1,), Gs(,), and d(I,) which depend
on the scalar I, = det(N},) remain to be identified.

4. Conclusions

The theory of isotropy tensor functions of 2nd-order tensors is applied in order to formulate evolution equation
of 4th-order elasticity tensors. The general representation theorem of a 4th-order isotropic tensor function of a
symmetric tensor is derived. The irreducible part of this representation is determined explicitly. It is shown that
the consideration of constraints given by the elastic symmetry on the micro scale simplifies the phenomenological
equation significantly.
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PAWELSKI, H.

Theorie und Praxis des Dressierwalzens unter Beriicksichtigung der Ober-
flichenveridnderung

Beim Dressierwalzen insbesondere diinner Binder kommen im Vergleich mit herkimmlichen Walzfillen verschiedene
Besonderheiten erschwerend fiir die Modellierung hinzu: Elastische und plastische Deformationen des Bandes sind
von gleicher Grifenordnung (Verwendung des Prandtl-Reufschen Stoffgesetzes erforderlich), es tritt eine erhebli-
che Walzenabplattung auf (Ausbildung einer Férderzone mit nur eingeschrinktem plastischen Fluf in der Mitte des
Walzspalts), auflerdem ist hiufig die erzielte Dickenabnahme nicht wesentlich grifier als die Rauhtiefen der Ober-
flichen von Walzen und Band (Oberflichenverinderung des Bandes muf} in die Theorie mit einbezogen werden). Es
wird ein Modell vorgestellt, das diese speziellen Gegebenheiten beriicksichtigt, ohne jedoch zu grofe Rechenzeiten zu
erfordern. Messungen an industriellen Dressiergeriisten bestitigen die Verwendbarkeit des Modells.

1. Walzenabplattung

Die Vertikalverschiebung u der Walzenoberfliche durch elastische Verformung, die durch eine Vertikaldruckverteilung
p(z) hervorgerufen wird, ist, siehe [3],

u(x):/ip({) Uz —€) dt U@):-% {1+(1—VW) h{(%f]} : (1)

Die wesentlichen einen Walzfall kennzeichnenden Groflen sind in der Tabelle auf der linken Seite von Abbildung
3 zusammengefafit. Falls wir den Druck abschnittsweise als Polynom schreiben kénnen, 148t sich eine geschlossene
analytische Losung fiir u(x) angeben. Sie setzt sich aus den folgenden Monomanteilen der Ordnung n zusammen:

un (T, 71, T2) = zzgnU( _gd_.ﬂv_v_ n+l _ entl 11— .
n\L;L1,L2) .= z ) 6—(’n+1)EW7f T To +( VW)
z1
ntl g1 - 2 _ 2 — 2
T ji_ g ntly (x - 1) _gntl (z —2) — g+l (z—m1)
{2 ; J (‘TZ z ) +a2f T n e ey In o - o T ([ (2)

2. Einebnung der Oberfliche

Ein Bestandteil des Modells ist die Beriicksichtigung der zunehmenden Kompression der Oberflichenschicht aufgrund
des ansteigenden Drucks. Dazu benétigen wir einen Zusammenhang zwischen dem makroskopischen Druck p und dem
Traganteil f, das ist der Quotient zwischen tragender Flache der Rauheitsspitzen und der gesamten makroskopischen
Kontaktfliche. Wir verwenden fiir trockene Reibung das Modell des Eindringens von Stempeln in einen Halbraum,
vgl. auch [5]. Dabei ist k = ky/+/3 die SchubflieBspannung. Bei Schmierung, siche [4], ist die Volumenkompression
der Oberflichenschicht aufgrund der gefiillten Schmiertaschen kleiner als bei trockener Reibung.

T 1 /(2k) p _1 =
1+=)f, falls f<=, p P 1,7
- (1+3) 7, fails <3 ‘e 12’ 2S gpsatg o
2k ) _1+7/2 I 16 [p/(2Kk)]2 p_1 =
, falls f>—, pP,-,T
21/ -1 123 /e rmr 28 52317

3. Druck- und Dickenverteilung

Zur Aufstellung des Modells stellen wir geeignet zueinander passende, abschnittsweise aus Polynomen bestehende,
Ansitze fiir den Vertikaldruck p(z) und die Gesamtdicke des Bandes h(z) auf, sieche Abbildung 1. Zur Ausbildung
der Forderzone zwischen z» und z3, wie sie grundsétzlich auch vom Folienwalzen bekannt ist, siehe [1] und [2].

_"hTotpn T _(m—pam) + (p2—p1) T
Por=——""—", P12 =

— 2 3 4
y P23 =Pmaz+C1T+C22"+c3z” +eqa,
1 — Xo Ty — 71
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Banddicke in mm

0.25 Druckverteilung:
' | | I T
0.249 |- Gesamtdicke h _ 3,03
0.248 |- - f (x2.P2) :
Dicke beider :
0.247 - Rauheitsschichten 2d : f (x4,p4)
0.246 Dicke der Kern- o (X1.P1) ¢ 4 :
schicht h — 2d : 1 :
0.245 . | l - : d P
- - - . B x,0) [ ¢ X
1 0.8 0.6 0.4 0.2 0o (%0 ;| | (5.0)
Druck in N/mm? do| ¥ /f : .
0 T ¥y s
600 _/ T
500 T T j [
400 y
300 .
200 ho hy| |hy |h-2d k3 hs
100 Kernschicht
0 des Walzguts [
-100 L -
-1 -0.8 -0.6 -0.4 -0.2 0 ! L{I’ < : _
Walzspaltkoordinate  in mm J# Walzenobe rﬂaCI%aUheltSSChICht

Abbildung 1: Links: Simulation des Druckanstiegs und der Kompression der Oberflichenschicht mittels Prandtl-
Reuf-Streifentheorie, Vergleich mit linearisiertem Modell (gestrichelt). k£y=300N/mm?, E=206000N/mm?, »=0.3,
09=05=60 N/mm?, hp=0.250 mm, hy=0.247 mm, dy=0.002 mm, £#=0.15. Rechts: Modell des Dressierwalzens.

(P34 — paw3) + (ps — p3) = _ Pa®s(T5 — 234) + 2ps%4 T — py 27

P34 = T4 — T3 y Das (s — )2 4)
Die Abkiirzung p;; bezieht sich auf p(z) im Bereich z; < z < z;. In pos eliminieren wir ¢, und ¢4

¢z = [(P3 ~ Pmaz — €173 — 323)25 + (Dmaz — P2 + €122 + c33)23] / [25 o3 (2% - z3)] ,

s = {Pmaz (23 — 23) — p37% + T3[p2x3 + T (T2 — 23) (1 — cszazs)|} / (23 25 (23 — 22)] (5)

WwObel Prqs, ¢1 und c; freie Parameter bleiben. Wir wihlen h(z) konsistent zu p(z) (die h;; sind wie p;; definiert):
hoz = coo + co1 T + coz2 T2, haz = co0 + 2272 (z < 0), hoz = ca0 (z > 0), hss = cs0 + c31 T + C32 22,
mit: cop = {h1Zo(z0 — 222) + z1[ho (272 — 21) + 2 coamo (21 — 20)22]} /@1
cor = 2 [h1 — ho + ca2(2 — 21)] 22/q1 , co2 = [ho — b1 + 2ca(z1 — T0)T2] [

Co0 = [hl(a:o ~ 22)? — ho(z1 — 22)? — caa(zo — 21)22 (22021 — ToTy — z122)] /q1

cz0 = {(hsq1z3(x3 — T4)24 + [Raqrz3 (x5 — 23) + q2za(Ts — T5)]75} /g3,

ca1 = {qu[hs (2] — 23) + ha(a} — 23)] + @2(a3 — 23)} /a3

cs2 = {q1lhs(z3 — 24) + ha(zs — 23)] + @2(24 — 75)} /g3,

g =(zo—21) (o +21—222) , g5 =q1 (T3 — z4) (T3 — 25) (T4 — 25) ,

@2 = hi(wo — 22)® — ho(z1 — 22)? — caz(To — 21) 22 (2 20T1 — ToT2 — 172) . (6)

Entscheidend ist die weitere Abnahme von h(z) aufgrund der Kompression der Oberflichenschicht bis zum Erreichen
des Maximaldrucks ppas, obwohl die Dicke des Kerns h—2d in der Férderzone (z; < z < z3) konstant bleibt.
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Vertikaldruck auf die Walze p in N/mm? Dicke des Walzguts (mit Rauheitsschichten) A in mm
1200 F 7 T T T T - 0.6 E 1 | T | | | |
1000 = 71 0599
800 - -
0.598
600 |- -
0.597
400 -
200 - _ 0.596
0 | | | | 0.595 ] | | | | | |
-3 2 - 0 1 2 3 3 2 - 0 1 2 3
Walzspaltkoordinate z in mm Walzspaltkoordinate z in mm

Abbildung 2: Beispiel. k;=400N/mm?, E=Ew=206000N/mm?, v=vw=0.3, go=05=60 N/mm?, R=300mm,
ho=0.6 mm, hs=0.597 mm, do=2 um. Rechts ist h(z) (durchgezogen) mit hw (z) (gestrichelt) verglichen.

4. Prandtl-ReuB-Streifentheorie, linearisiertes Modell

Die Streifentheorie des Bandwalzens, [3], 148t sich bei Verwendung der inkrementellen Prandtl-Reu$-Gleichungen

1 v v dy
de, = ? doy i doy T do, + (20, — 0y — 02) 3 kdf @ (7
v v 0
= = doy — = do, — = do 0. = 08)
dey If doy T 0~ 5 doy + 20y — 0, — 02) 5 ké’ @ (8)
v v ©
= = — = d T T o 2 — Oz — F RS
0 5 do, 7 Y= % doy + (20, — 0z — 0y) 251 () 9)

und der differentiellen Form der von Misesschen FlieBbedingung (o Vergleichsforménderung)

(204 — 0y — 0,)(2doy — doy — do;) + (204 — 0z — 0z)(2doy — do, — dog)+

(20, — 05 — 0y)(2do, — dog — doy) = 6 ks (p) () do (10)
auf den elastisch-plastischen Fall erweitern, [6]. Zusatzlich wird die Kompression der Oberflachenschicht mittels

d = do(1 — f + f2/2) und Einsetzen von Gleichung (3) berticksichtigt. Ausgehend davon, siehe auch das Beispiel,
Abbildung 1, links, wird folgendes linearisiertes Modell fiir das Materialverhalten im Ein- und Auslauf vorgeschlagen:

_ E (ho—2d0)—(h1—2d1) _ 2 1 — Zo
pl’—l_y2 hO ) pl—\/gkf—UO'f‘/.Lpl hO )
Ty — & Ty—T
pr=ptply ot (120 p) S pe=petubat (=20 p) =2
E h5—h4 2 4p4 Ty — T4
= = = — ks — _ =
Pa=71_2 ho y Pa 73 F— 05+ U 3 7o (11)
Die Losungen dieses Gleichungssystems lauten:
oy = ho (2\/5 ks — 309) po = ho + p(z2 — 1) o, ps= ho + p (x4 — z3) »
3[ho — p (1 — m0)] ’ ho—p(—-2m@—a1) 0 BT ho—p@-2p) (e —3s) T
ho (23 ks — 30 1-02 1—p?
_he @VB ks Z309) o fi)de~ 2o ho pry he=hs— = ho pa. (12)

E E

p= 3h0—4[1(.’175 —14)]

Zur Berechnung des Traganteils f; bei £ = 2; nehmen wir an, dafl der Druck bei Eintritt in die plastische Zone
2k — 0 ist, und setzen dies in die obere Zeile von Gleichung (3) ein:

_ @k=00)/2R) _ 1= (V3 a0)/@ky)

15q/2 L+ n/2 (13)

h
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Ew ,vw | Elastizitdtsmodul, Poissonzahl der Walze 0.3 I I T T T
R Radius der Arbeitswalze
Ev Elastizitdtsmodul, Poissonzahl des Bandes 0.25 |- © ~
kg Flieispannung (inklusive Abhingigkeit von ¢) < o)
00, 05 | Bandzugspannung am Ein-, Austritt = 02 o 08 © e
ho,hs gesamte Banddicke am Ein-, Austritt S 3 8
do anfangliche Dicke einer Rauheitsschicht go 015} © 8 o) O -
I Coulombsche Reibungszahl 2
Daten der Walzversuche: & = Eyy = 206000 N/mm?, = 01F N
v=vw = 0.3, R =280mm, k; = 370...440 N/mm?,
00,05 = 50...200N/mm?, 0.05 - 7]
hp=0.2...0.6mm, do =4...5um, 0 1 t i I {

Verlangerung [(ho —2dp) — (hs —2d3)] /ho = 0.4...0.7%,

breitenbezogene Walzkréfte 5. .. 8 kN /mm. 0203 04 05 06

Banddicke hy in mm

Abbildung 3: Tabelle auf der linken Seite: Einen bestimmten Walzfall kennzeichnende GroSen. Rechte Seite: Aus
gemessenen Walzkréften zuriickgerechnete Reibungszahlen .

Der Koeflizient cz; in den Gleichungen (6) ist schlieBlich (praktisch immer ist ey > (A+7/2) k~ 148k, 1):

2
e} = 2d1—dy) = [fs2— fa) - 12— fi)ldo , fs=1/ [l + % (pl—-:;%) } : (14)

5. Algorithmus und Anwendungen

Ziel ist es nun, die noch unbekannten Grofien o, ..., Zs, Pmaz, ¢1 und cs so zu bestimmen, daf} die Walzspaltkontur
h(z) mit der aus der zugehérigen Druckverteilung p(z) iiber die Walzenabplattung berechneten Kontur hy (z)
moglichst gut {ibereinstimmt:

/25 [h(z) — hw (@))® dz < Min , hw(z)=2 [R - VR?-22+ u(z)] + const . (15)

Die Konstante wird dabei so gew#hlt, daB Aw (zo) = ho. Man beachte, da$ alle Verteilungen, insbesondere auch die
Abplattung bei Verwendung von (2), in analytischer Form vorliegen. Lediglich die Minimierung des Fehlerquadrat-
integrals (15) mu numerisch erfolgen, wobei sémtliche Ableitungen der Zielfunktion nach den Optimierungspara-
metern ebenfalls analytisch vorliegen.

Ein Beispiel fiir die Anwendung des Modells zeigt Abbildung 2. Das Modell wurde auBerdem anhand der ProzeB-
daten von Trockendressierstichen an Stahlbindern iiberpriift. In Abbildung 3, rechts, sind die aus den gemessenen
Walzkréften zuriickgerechneten Reibungszahlen zusammengestellt. Der eingehaltene Streubereich zeigt die Verwend-
barkeit des Modells, wohingegen mit Standardwalztheorien (Walzenabplattung nach Hitchcock) keine sinnvollen
Resultate zu erzielen sind.
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BROCKS, W.; BESSON, J.; CHABANET,O.; SCHEIDER,I.; STEGLICH, D.

Modeling of Crack Growth in Sheet Metal

Recent results of an investigation programme for the assessment of lightweight structures are reported. Special
emphasis is laid upon the modeling aspect, and ezamples for the simulation of ductile crack growth by damage and
cohesive zone models are given. The numerical simulations are compared with experimental data.

1. Introduction

A realistic assessment of the residual strength of aircraft structures requires methods to characterize the crack
growth resistance of the material and elastic-plastic analyses which are capable of simulating crack initiation and
propagation. Conventional methods of fracture mechanics apply quantities like stress intensity factors, J-integral,
energy release rate, or crack tip opening angle (CTOA), see e.g. [1, 2]. However, these integral measures can be
applied to real components only under certain conditions, and the general lack of transferability of fracture data
from specimens to structures impose important restrictions on the R-curve approach.

The so-called "local approach” to fracture provides a solution of the transferability problem by introducing local
quantities and criteria for the degradation of the material. Especially, the application of micromechanically based
models of the strength and toughness of materials with particles or inclusions has brought a better understanding of
the mechanisms of ductile crack growth, see e.g. [3, 4]. These models have been successfully used to predict grack
growth resistance curves for thick walled components of structural steels [5, 6]. Their application to thin walled
components and high strength aluminum alloys, however, suffers from a number of specific problems:

e The stress state in sheet metal is totally different, namely the triaxiality is much lower and close to plane stress
conditions whereas models of ductile damage have been established for large triaxialities.

e The fracture plane may shift from a normal to a 45° incline orientation to the applied load during crack growth,
see figure 1.

» Rolled sheets generally show an anisotropic behaviour with respect to both, plastic hardening and void nucle-
ating particles.

e Little is known about the specific damage phenomena in high strength aluminum in relation to its microstruc-
ture.

This requires enhanced constitutive models for deformation and damage especially adapted to the specific microstruc-
ture and properties of light weight materials and stress states in metal sheets, respectively.

2. Models of Ductile Damage and Failure

Ductile tearing of metals is dominated by the mechanisms of void nucleation at particles, void growth and coalescence.
The "mesoscopic”, i.e. averaged over the microstructure, inelastic deformation is described by a modified yield
function and plastic potential, ®, including the ”porosity” in terms of the void volume fraction, f, as an additional
internal variable which is responsible for the ”softening” of the material. The most common constitutive model
for describing this process on a meso-scale was proposed by GURSON [7] and later modified by TVERGAARD and
NEEDLEMAN [8, 9], hence adressed as GTN model:

AN ) .
P = (RZEPI;) +f Q1 cosh [QQZ—R%] - (1 +Q3f 2) =0 (1)
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Figure 1: Ductile failure of a notched panel of Al 2024 showing slant fracture in the course of crack propagation

The GTN model has proven its ability to model crack initiation and growth in thin panels, see figure 2 showing
the tunneling of the crack in the center plane. A simulated crack growth resistance curve of a center cracked panel
of Al 2524, based on crack tip opening displacement, is shown in figure 3 (left), below. However, 3D modeling of
large crack propagation is numerically costly. The present version does not yet account for any anisotropy of the
plastic deformation and damage evolution. Furthermore, it cannot predict shear band formation over the specimen
thickness and corresponding fracture in a 45° plane.

An alternative formulation of the plastic potential also introducing a scalar variable of porosity has been propsed
by ROUSSELIER [10]:

V325 o

_ . Yk
®= - nrEn T REH PP [ak - f)]

Commonly, this model is not supposed to yield major differences to the GTN model though despite the value of
initial void volume fraction, fo, all their other characteristic parameters are not comparable. Comparative analyses
of round tensile bars and HiLL-specimens however resulted in different predictions of the localisation of damage.
The ROUSSELIER model turned out to have a better performance in predicting the formation of shear bands over
the thickness of thin panels, see figure 2.

-1=0 . @)

A phenomenological description of ductile tearing bases on BARENBLATT’S idea of a ”cohesive zone” at the crack
tip where material separation is localized. The crucial problem in the application of a cohesive zone model (CZM)
is, which decohesion law is appropriate for a given failure mechanism and, as in every model, how the material
parameters can be identified. No possibilities of a direct measurement have been found yet. Several proposals have
been made in the past, e.g. [11, 12, 13], which all base on a rather simple assumption, that the releation between
traction, X,, or shear, X¢, and the respective material separations, 8., 0., is uniquely defined by two parameters
per separation mode, namely the cohesive strengths, oz, Tmaz, and the cohesive lengths, dcn, ., or alternatively,
the decohesion (or separation) energies, I'nc, I'se. ROSE [11] proposed a potential from which the normal and shear
components are derived as

_ On 1 2 Tmaz 0y ? On . _ 9
Fn = Omaz € {Z (E) B 22 m (‘Sct) P zfscn ’ Tne = 160maa:5cn (3)

0, é /9
Yt =Tmaes € {z (i) } €xXp l:_zﬁ]; Fie = 3_27'ma:c(sct y (4)

respectively, where e = exp 1 and z = 16¢/9.

and
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Figure 2: 3D finite element simulation of ligament necking and damage (dark zone) at the crack tip of a center
notched panel of Al 2524 under tension showing tunneling of the crack front, FE code ABAQUS and GTN
model (left); Formation of a shear band in a quarter model of a HILL-specimen, plane strain analysis with FE

code ZEBULON and ROUSSELIER model (right)
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Figure 3: Simulation of CTOD based crack growth resistance of a center cracked panel of Al 2524 by GTN model
(left) and CZM (right), FE code ABAQUS.
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Figure 4: Simulation of deformation and crack growth in a laser welded micro SE(B) specimen by a CZM, influence
of local separation energy, I'. , FE code ABAQUS.
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This formulation has been used by NEEDLEMAN and other authors [12, 14]. The CZM relates microscopic to
macroscopic parameters [15] and has also been successfully applied to simulate ductile crack growth in aluminum
panels [16, 17], see figure 3 (right). It is numerically effective for large amounts of crack growth, it is applicable to
characterize bimaterial interfaces and welds, see figure 4, and it even can be used to model combined normal and
shear fracture.
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PETER GUMBSCH

Atomistische Aspekte des Bruchs

Die atomistische Modellierung von Rissen zielt darauf, die der Sprédigkeit von Werkstoffen zugrunde liegenden
Prozesse verstehen zu lernen. Meist werden dabei einfache atomare Wechselwirkungsmodelle verwendet, in jiingster
Zeit kommen aber auch quantenmechanische Methoden zum Einsatz. Atomistische Simulationen kdnnen eingesetzt
werden, um mégliche Spaltebenen von Kristallen, deren Bruchzihigkeit sowie die Abhdngigkeit von Rissfortschritts-
richtung oder Belastungsart zu ermitteln. Hierzu werden beispielhaft Ergebnisse zum Sprodbruch von Wolfram und
Silizium vorgestellt und mit ezperimentellen Untersuchungen verglichen.

1. Einleitung

Der Bruch von Werkstoffen ist ein Phinomen, das iiber viele Léngenskalen hinweg betrachtet werden muss. Die
makroskopische Probengeometrie und die Belastungsart sind ebenso wichtig wie die Details der atomaren Bindungs-
verhiltnisse an der Rissspitze. Die Bedeutung der atomaren Skala ist im Falle des perfekt sproden Bruchs offen-
sichtlich, da sich ein Riss in einem sproden Material nur durch das Brechen atomarer Bindungen an der Rissspitze
ausbreiten kann und daher atomar scharf sein muss. Halbspréde Materialien, wie die zentralen Ubergangsmetalle
und die Stahle, zeigen ein begrenztes MaB an Plastizitdt und eine ausgepragte Lastratenabhéngigkeit beim Bruch.
Atomistische Prozesse sind hier entscheidend fiir den Wettbewerb zwischen dem Brechen der Bindungen und der
Erzeugung von plastischer Verformung an der Rissspitze. .

Da experimentelle Information auf der atomaren Langenskala kaum verfiigbar ist, ist die atomistische Modellierung
das einzige Werkzeug mit dem solche atomistischen Prozesse auf der passenden Zeit- und Lingenskala untersucht
werden konnen. Nach der Darlegung einiger generisch atomistischer Effekte soll in dieser Arbeit die Bedeutung der
atomistischen Betrachtung am Beispiel der Spaltanisotropie beziiglich der Rissfortschrittsrichtung aufgezeigt werden.

Die Hauptschwierigkeit bei der atomistischen Modellierung von Bruchprozessen liegt im Aufbringen realistischer
Randbedingungen. Dies kann beispielsweise durch die Kopplung von atomistischen und kontinuumsmechanischen
Simulationsmethoden gelést werden. Auf simulationstechnische Fragen kann hier nicht weiter eingegangen werden.
Diesbeziiglich wird auf die Literatur [1, 2] verwiesen. Anzumerken ist hier nur noch, dass die atomistische Modellie-
rung im Vergleich zu den haufig eingesetzten Kontinuumsmethoden den Vorteil besitzt, dass sie Bruch als Folge einer
suBeren Belastung selbststindig reproduziert, nachdem die Beschreibung der atomaren Wechselwirkung festgelegt
wurde, wihrend die Kontinuumsmethoden immer auf mehr oder minder detaillierte Versagenskriterien angewiesen
sind.

2. Bedeutung der diskreten, atomistischen Natur der Werkstoffe

Die Behandlung sproder Bruchprozesse folgt traditionell der Betrachtung von Griffith [3], bei der fiir die Rissspitze
ein thermodynamischer Gleichgewichtszustand gesucht wird. Das Griffith-Kriterium fiir die Stabilitdt eines Risses
ergibt sich als Gleichgewicht zwischen der den Riss treibenden Kraft, der Energiefreisetzungsrate G, sowie dem
Risswiderstand des Materials R, der Oberflichenenergie vs der zwei Bruchflachen [4]:

G=R=2s. 0]

Die Energiefreisetzungsrate G kann im Rahmen der Elastizitatstheorie, die den sproden Riss als Spannungssingula-
ritit der Stirke K beschreibt, berechnet werden [4]. Der Spannungsintensitatsfaktor K ergibt sich aus der Geometrie
der Probe und der suBeren Last und fiihrt im linear-elastischen Fall direkt zur Energiefreisetzungsrate

G= @

"ET;

wobei E' ein elastischer Modul ist. Das Stabilitdtskriterium ist in einer solchen kontinuumsmechanischen Betrach-
tung gemaB Gl. (1) und (2) nur fiir die Griffith-Last Kg = 27£' erfiillt. Wihrend eine solche linear-elastische
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Abbildung 1: (Links) Schematische Darstellung einer Rissspitze im atomaren Gitter. (Rechts) Die Gesamtenergie
der Oberfldche des Risses T steigt wihrend des Rissfortschritts in der Kontinuumsbetrachtung mit der Steigung 2vs
linear an, wahrend die atomistischen Verhéltnisse eher durch einen nicht-linearen Anstieg beim Brechen der Bindung
charakterisiert werden.

Beschreibung des Risses in einem spréden Material auBerhalb der wenigen nicht-linearen Bindungen in unmittelba-
rer Umgebung der Rissspitze fraglos angemessen ist, muss die Annahme, der Materialwiderstand gegen Rissfortschritt
wire allein durch die Gibbs’sche Oberflichenenergie charakterisiert, niher beleuchtet werden. Atomistisch sollte der
Materialwiderstand gegen Rissfortschritt durch die Kréfte charakterisiert sein, die notwendig sind, die atomaren
Bindungen an der Rissspitze zu brechen. Die ersten atomistischen Betrachtungen zum Rissfortschritt [5] zeigten
die Bedeutung der diskreten Natur der atomaren Bindungen darin, dass der Riss bis zu Lasten K* > K¢ stabil
bleibt und sich auch erst bei Lasten K~ < Kg wieder schliefit, also in einem endlichen Lastbereich stabil ist. Das
Vorhandensein eines solchen endlichen Stabilitatsbereichs bezeichnet man als lattice trapping. In einer simplen Konti-
nuumsanalogie kdnnte man das lattice trapping als nicht-linearen Anstieg der Oberflichenenergie beim Rissfortschritt
betrachten (siehe Abb. 1).

Friihe atomistische Simulationsrechnungen zeigten [6], dass die GroBe des trapping-Effekts stark von dem verwendeten
Modell fiir die atomare Wechselwirkung abhingt. Werden die interatomaren Krafte mit einem abrupt brechenden
Federgesetz beschrieben, so kann K+ um einen Faktor zwei grofier sein als K¢, wihrend ein realistisches weiches
und langreichweitiges Wechselwirkungspotential nur einen sehr geringen trapping-Effekt zeigt [6]. Weitergehende
Betrachtungen [7] zeigen, dass die Gré8e des trapping-Effekts vorwiegend von der relativen Steifigkeit der Bindung
an der Rissspitze und der diese Bindung belastenden Umgebung abhingt. In einem so generalisierten Bild ist das
trapping auch nicht mehr auf ein atomares Gitter beschrinkt, sondern lisst sich ebenso auf amorphe Festkérper
oder Grenzflichen iibertragen [8]. Trapping-Effekte kdnnen zwanglos verschiedene Beobachtungen, wie thermisch
aktiviertes unterkritisches Risswachstum [9] oder die Erzeugung metastabiler Bruchflichen [2, 8], erkliren. Ein
besonders illustratives Beispiel ist aber die experimentell verschiedentlich beobachtete Spaltanisotropie beziiglich
der Rissfortschrittsrichtung.

3. Richtungsanisotropie beim Spaltbruch

Im kontinuumsmechanischen Bild sollte ein Riss in einem elastisch isotropen Material auf einer Spaltebene rich-
tungsunabhéngig laufen konnen, sobald K¢ erreicht ist, da die Oberflichenenergie in Gl. (1) keine Information iiber
die Rissfortschrittsrichtung enthélt und der Modul in Gl. (2) im isotropen Fall konstant ist. Elastische Anisotropie
mag iiber Gl. (2) eine gewisse Richtungsanisotropie einbringen, diese ist aber iiblicherweise schwach, da die Haupt-
belastungsrichtung bei 6ffnender Belastung parallel zur Bruchflichennormale ist und diese natiirlich nicht von der
Fortschrittsrichtung abhéngt. Im Gegensatz dazu wird im Experiment manchmal eine drastische Richtungsanisotro-
pie beobachtet [10, 11, 12].

Der Spaltbruch von einkristallinem Wolfram, das elastisch nahezu isotrop ist, ist einer der am besten dokumentierten
Fille fiir eine solche Richtungsanisotropie. Atomistische Simulationsrechnungen [1] sowie Bruchexperimente bei
T = 77K [12] zeigen beide, dass Rissfortschritt auf beiden Spaltebenen, den {100}- und {011}-Ebenen, leicht erreicht
werden kann und defektarme Bruchflichen erzeugt, wenn die Rissfront parallel zu einer (011)-Richtung orientiert
ist. Im Gegensatz dazu werden etwa 40% héhere Belastungen bendtigt um Rissfortschritt mit (001)-Rissfronten zu
erreichen. Die dabei erzeugten Bruchflichen sind auBerdem rauher und zeigen Markierungen die andeuten, dass der
Rissfortschritt lokal entlang der leichten Richtungen erfolgte [12]. Tabelle 1 fasst die experimentellen Ergebnisse und
die berechneten Bruchzihigkeiten zusammen. Qualitativ ist die Ubereinstimmung zwischen den 77 K-Experimenten
und den Simulationsrechnungen ausgezeichnet, quantitativ sind die experimentell ermittelten Bruchzihigkeiten aber
doch signifikant hoher als die berechneten Werte. Dies kdnnte andeuten, dass die Rissspitzenplastizitit selbst bei
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Spaltsystem Bruchexperiment Bruchexperiment Atomistische K¢ aus atomistischem

{Ebene}(Front) Raumtemperatur 77K Simulation =~ Wechselwirkungsmodell
{100}(010) 8.7+2.5 3.4+0.6 2.05 1.61
{100}(011) 6.2+£1.7 2.430.4 1.63 1.61
{110}(001) 20.2+5.5 3.8+0.4 2.17 1.51
{110}(110) 12.942.1 2.8+0.2 1.56 1.51

Tabelle 1: Bruchzihigkeit von Wolfram Einkristallen fiir {100}- und {110}-Spaltebenen fiir verschiedene Rissausbrei-
tungsrichtungen/Rissfronten. Die experimentellen Daten stellen Mittelwert und Standardabweichung von mindestens
5 unabhingigen Messungen dar. Sie sind [2, 12] entnommen und in MPa,/m angegeben.

77K einen nicht vernachlissigbaren Einfluss hat. Der Vergleich von Raumtemperatur- und 77 K-Experiment zeigt
zwar ein deutliches Absinken der plastischen Anteile an der Bruchzéhigkeit mit sinkender Temperatur, dennoch kann
deren Einfluss nicht ausgeschlossen werden.

Experimentell sind die Verhiltnisse diesbeziiglich im Silizium wesentlich klarer. Silizium kann als praktisch verset-
zungsfreier Einkristall hergestellt werden. In-situ Beobachtungen im Elektronenmikroskop [13] sowie in der Ront-
gentopographie [10, 11] zeigen, dass Risse im Silizium bei Raumtemperatur ohne jegliche begleitende plastische
Verformung fortschreiten. Silizium bricht sowohl auf {111}- als auch auf {110}-Ebenen [10]. Beim Spaltbruch auf
den {110}-Ebenen zeigt sich dabei eine besonders drastisch ausgeprigte Richtungsanisotropie. Wahrend Risse sich
entlang der (110)-Richtung bei den niedrigsten gemessenen Bruchzéhigkeiten ausbreiten und dabei nahezu perfekte
ebene Bruchflichen erzeugen [10, 11], gelingt der Rissfortschritt in (001)-Richtung nicht. Der Versuch, Risse in diese
Richtung und damit senkrecht zur bevorzugten Ausbreitungsrichtung zu treiben, fiihrt zu einem Abknicken des
Risses und einer Ausbreitung auf {111}-Ebenen [11, 14]. Dies ist schematisch in Abb. 2 (links) dargestellt. Abb.
2 (rechts) zeigt die Seitenansicht eines makroskopisch entlang der (001)-Richtung gebrochenen Siliziumwafers. Da
fiir die {110}-Risse bei Ausbreitung entlang der leichten Richtungen eine niedrigere Bruchzahigkeit gemessen wird
als fiir die {111}-Risse [10] und da die elastische Anisotropie im Silizium allenfalls fiir Unterschiede von 10% im
effektiven Modul E’ ausreicht [14], kann der beobachtete Unterschied konventionell nicht erklért werden.

Obwohl sich ein solch ausgeprigter Effekt prinzipiell gut atomistisch modellieren lassen sollte, sind entsprechende
Rechnungen mit einfachen interatomaren Wechselwirkungsmodellen nicht gelungen. Dies liegt daran, dass alle em-
pirischen Wechselwirkungsmodelle fiir Silizium zur Stabilisierung der Kristallstruktur kurzreichweitig sein miissen
und daher beim Brechen der Bindungen, wo die Wechselwirkungsmodelle an der Grenze ihrer Reichweite getestet
werden, unangemessen steife Bindungen vorspielen. Diese Problematik ist bislang noch nicht befriedigend geldst und
der einzige Ausweg besteht darin, auf quantenmechanische Methoden zur Beschreibung der atomaren Wechselwir-
kung zuriickzugreifen. Hierbei ist man jedoch bei der Anzahl zu behandelnder Atome sehr stark eingeschrénkt, so
dass der Riss immer signifikant mit den Randbedingungen wechselwirkt.

Selbstkonsistente quantenmechanische Berechnungen zum Brechen der Rissspitzenbindungen im Silizium zeigen zwei
qualitativ unterschiedliche Prozesse [14]: einerseits ein kontinuierliches Offnen der Bindungen an {111}-Rissen oder

b [110]
(110)
% ______ Q\Q f/’{;
[110]
~~L_ [001)

Abbildung 2: (Links) Schematische Darstellung der Richtungsanisotropie beim {110}-Spaltbruch von Silizium.
Rissfortschritt entlang der (110)-Richtung gelingt leicht und erzeugt eine nahezu defektfreie Bruchflache, wahrend
senkrecht dazu der Riss von der {110}-Ebene auf {111}-Ebenen ausweicht. (Rechts) Die Seitenansicht einer makro-
skopisch in {(001)-Richtung gebrochenen Probe, die deutliche {111}-Facetten erkennen lasst. (Diese Abbildung wurde
dankenswerterweise von T. Cramer zur Verfiigung gestellt [15].)
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Abbildung 3: (Links) Mit selbstkonsistenten Pseudopotentialrechnungen relaxierte atomare Struktur des {110}(001)
Risssystems, welches experimentell leicht zu spalten ist, bei einer Belastung von 1.2 K. (Mitte) Relaxierte Struktur
des {110}(110) Risssytems bei einer Belastung von 1.2 K¢. (Rechts) Linge der Rissspitzenbindung (#4) fiir beide
Risssysteme in Abhéngigkeit von der aufgebrachten Belastung. Deutlich ist das abrupte Brechen der Bindung im
{110}(110) Risssytem bei einer Belastung von 1.35 K¢ zu erkennen. Die Bindungslinge ist in Angstrém angegeben.

dem in der leichten Orientierung ausgerichteten {110}-Riss, andererseits ein abruptes Brechen fiir den {110}-Riss mit
(110)-Rissfront. Die atomare Struktur der Rissspitze sowie die Abhingigkeit der Lange der Rissspitzenbindung von
der anliegenden Last sind in Abb. 3 dargestellt. Das kontinuierlich Offnen der Bindung in der leichten Orientierung
ist auf die sehr kleine Systemgréfe zuriickzufiihren, weist aber sicher auf geringe trapping-Effekte hin. Im Gegensatz
dazu ist das abrupte Brechen unabhingig von der Systemgrofe. Es geht mit einem signifikanten trapping einher und
hat seine Ursache in einer Aufteilung der Last zwischen den zwei unmittelbar an der Rissspitze liegenden Bindungen
(sieche Abb. 3) [14]. Aufgrund des grofien trapping-Effekts in der schwierigen Fortschrittsrichtung ist es fiir den Riss
méglich auf die mit geringem trapping zuginglichen {111}-Ebenen auszuweichen. Die atomistischen Rechnungen
kdnnen damit die experimentellen Beobachtungen zumindest qualitativ erkliren.

Zusammenfassend kann damit festgehalten werden, dass atomistische Betrachtungen zur Analyse spréder Bruchpro-
zesse sehr hilfreich sind und mit ihnen insbesondere auch die Bevorzugung einzelner Rissfortschrittsrichtungen gut
erklart werden kann.
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Agarwal, R. K.

Acoustic Radiation Due to Gust-Airfoil and Blade-Vortex Interactions

An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex
interactions is developed. In these types of problems, sound is generated as a result of interaction
between the unsteadiness in the flow and the body. The acoustic governing equations are derived by
linearizing the compressible unsteady Euler equations about the steady mean flow. From these
equations, the frequency domain acoustic equations are obtained assuming a single frequency
disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time-
stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles’
nonreflecting boundary condition and the Perfectly Matched Layer (PML) absorbing boundary conditions
are employed. This report describes the technical approach and shows the results calculated for the
interactions.

1. Introduction

An issue of importance to aircraft designers and manufacturers is the accurate prediction of
aerodynamically generated noise. Until the last decade, most of the analytical and computational
work in aeroacoustics has been based on the wave equation analogy type of approaches pioneered by
Lighthill [1]. But with the maturation of Computational Fluid Dynamics (CFD) technology over the last
two decades, it is now feasible to develop acoustic codes based on the solution of unsteady
compressible Euler/Navier-Stokes equations. However, since the nature and characteristics of
aeroacoustics problems are different from those encountered in aerodynamics, CFD based
Computational Aeroacoustics (CAA) technology needs to resolve these characteristics in an accurate
and efficient manner. The author and his colleagues have developed an accurate and efficient
numerical method for solving a wide variety of problems in acoustic propagation, radiation and
scattering [2]. This paper deals with the application of the acoustic code described in [2] to the
problems of acoustic radiation due to gust-airfoil and blade-vortex interactions.

2. Technical Approach

The time-domain acoustic equations are derived from the unsteady compressible Euler equations by
linearizing about a steady mean flow. From these equations, the frequency-domain acoustic equations
are obtained by assuming a single frequency disturbance. A pseudo-time variable is introduced into
the frequency-domain equations so that the same computational techniques that are used to integrate
the time-domain equations in time can be employed to time-march the frequency-domain equations to
harmonic state. This approach provides a unified framework for the solution of both time- and
frequency-domain acoustic equations. The equations are solved by employing a multi-stage Runge-
Kutta finite-volume time-stepping algorithm with a fourth-order compact spatial discretization and a
six-order compact filter (dissipation). A rigid wall type of boundary condition is applied in all
calculations such that the total normal velocity on the airfoil is zero. In the farfield, both the Perfectly
Matched Layer (PML) absorbing boundary condition [3] and Giles non-reflecting boundary condition [4]
are employed.

3. Acoustic Radiation due to Gust-Airfoil Interaction

We consider an airfoil in a steady compressible flow when it encounters an unsteady gust. For

simplicity, the scope of investigation is limited to an incoming sinusoidal gust such that the transverse

i(kx—wt)

velocity perturbation can be modeled as Vi=e , where k=w0/u_and u, is the free stream
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velocity. The gust/flat-plate interaction benchmark problem from the first ICASE/LaRC
Computational Aeroacoustics Workshop [5] was chosen for computations. It is a relatively high-
frequency non-compact case with reduced frequency k= 11.8 and compactness ratio K = 7.85. The
sensitivity of the solution to the numerical parameters such as the order of the difference method, the
grid size, the farfield boundary location and the level of artificial dissipation were examined. PML
absorbing boundary condition and the sixth-order Padé scheme were used unless noted otherwise.
The features of the acoustic pressure field for this non-compact gust/flatplate interaction are
illustrated in Figures 1 and 2 at Mach numbers of 0.25 and 0.75 respectively. The Doppler shift in the
propagating waves is apparent in the instantaneous pressure contours. Results for the farfield
pressure obtained with the fourth-, sixth- and eighth-order Padé schemes at Mach number of 0.5 are
shown in Figure 3. The differences in the solutions are insignificant indicating that the fourth-order
method has sufficient resolution for this case. The results compare well with the solutions published
in Reference 5. Computed plate surface pressure distributions are shown in Figure 4. As the
compactness ratio is increased, there is an increase in the number of lobes in the sound pattern as a
result of phase differences and variable loading along the plate surface. We have also computed the
problem of gust-airfoil interaction for a compact case with K = 0.5, a NACAOOO1 airfoil with freestream
Mach number of 0.5, ® = 0.8875 (40 Hz) and a gust of unit amplitude. Figure 5 compares the
amplitude of the computed acoustic pressure with asymptotic expansion of Amiet [6] along the lower
surface of the flat plate. The agreement is excellent.

4. Acoustic Radiation due to Blade-Vortex Interaction

A significant source of helicopter noise is the acoustic radiation due to blade-vortex-interaction (BVI).
When a vortex is shed from the rotating blade tip and is convected downstream, it interacts with the
next blade which results in the movement of the leading edge stagnation point on the blade resulting
in change in the lift. The rate of change of lift induces pressure fluctuations in the proximity of the
blade, and results in a series of expansion/ compression waves propagating upstream. Research has
shown that when the blade is parallel to the vortex axis, the noise due to BVI is very high and the
interaction can be modeled as 2-D. In this investigation, a finite core Rankine vortex embedded in the
flow field was used to simulate a shedding vortex. The vortex core is a rotational region and contains
all the vorticity associated with the vortex. In order to study the unsteady inviscid interaction of a
Rankine vortex with an airfoil, the steady-state flow past the airfoil was first computed using a CFD
code. A Rankine vortex was then introduced into the flowfield at a point upstream of the airfoil. Time-
accurate computations were started from this initial condition. The vortex was allowed to freely
interact with the airfoil so that subsequent convection required no explicit tracking. Using the
magnitudes of the perturbation qualities (due to the interaction of vortex with airfoil) determined from
CFD, the acoustic signature was computed with the frequency-domain acoustic solver with the
frequency determined either from BVI experiments, or by performing the Fast Fourier Transorm (FFT)
analysis of the unsteady pressure time history obtained from the CFD solver. Parametric studies of
vortex location, vortex strength, and flow field conditions on unsteady pressure field about various
airfoil sections were conducted. The case of a NACAOO12 airfoil interacting with a vortex of strength
0.2 at convective Mach number ranging from 0.3 to 0.8 was considered. Aerodynamic characteristics
due to the BVI at Mach 0.8 are shown in Figure 6 which compare well with the solutions published in
Reference 7. At a frequency of 200Hz, the variation of calculated acoustic intensity with distance
along a 45-degree ray below the airfoil leading edge at various subsonic freestream Mach number is
shown in Figure 7. In a similar fashion, the acoustic intensity for two different values of vortex
strength at Mach 0.3 is plotted in Figure 8. These calculations are similar to those reported by Baeder
[8] et al. The computations show that higher values of acoustic intensity are obtained for higher Mach
number, stronger vortex strength, smaller vortex core size, or smaller distance between the vortex and
the airfoil.

5. Conclusions

A fourth- order compact time-domain/frequency-domain computational acoustics code is applied to
compute the acoustic radiation due to gust-airfoil and blade-vortex interactions. Excellent solutions
are obtained which compare well with the analytical solutions or the computations of other
investigators. Extensive calculations show that a fourth-order Padé scheme with PML absorbing
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boundary conditions in the farfield provides the most accurate and efficient method for acoustic
computations using linearized Euler equations.
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BLACKMORE, D; Knio, O.

Hamiltonian Structure for Vortex Filament Flows

A new Hamiltonian formulation of the passive particle motion induced by a smooth vortez filament in an ideal fluid
contained in a region of 3-space is derived. The point of departure in the derivation is a desingularized version of
the Biot-Savart formula for the induced velocity field. Then a foliation of a neighborhood of the filament (that moves
with the fluid flow) is constructed that is comprised of smooth two-dimensional leaves that are invariant with respect
to the induced velocity field at each time. Natural symplectic coordinates are introduced on the moving leaves of
the associated foliation such that the equations of motion on the leaves assume a simple (possibly time-dependent)
Hamiltonian form. With this Hamiltonian structure one can, by simply following the evolution of the leaves of the
foliation, easily determine the motion of the passive fluid particles near the filament. Any irregular or singular
behavior in the motion can essentially be associated to geometrical features of the moving foliation in the large. The
Hamiltonian structure is illustrated with three examples: a rectilinear filament; a circular vortex ring; and o helical
filament.

1. Introduction

Let C; be a smooth vortex filament having constant vortex strength I' # 0, moving in an ideal fluid in a region of
IR3 for time t (¢t > 0). We shall show how to introduce natural (moving) coordinates (g, p) transverse to C; such
that the fluid motion induced by the filament can be described in the Hamiltonian form

q:‘{QaH}Z(‘;_I;(Q7p7t)a p:{p,H}=—%Iqi(q,p,t), (1)

in a neighborhood MN; of C; for all t > 0, where the - denotes d/dt and {-,-} is the usual canonical Poisson bracket.

The idea is to first construct a smooth family of foliations F := {§; : t > 0} such that §; is a foliation of 91, comprised
of leaves that are smooth surfaces transverse to C; and each leaf £ of §; is invariant with respect to the induced
velocity field for each t > 0. We then introduce natural, canonical (moving) coordinates on the leaves of F that
produce the desired Hamiltonian structure. Our approach is somewhat like, but more intuitive and geometric than,
the Clebsch transformation (see [6, 7, 11]) - which actually is not strictly applicable to the flows under consideration.

‘We develop the subject matter of this paper in the following manner: In Section 2 we delineate our basic assumptions
concerning the nature of the vortex filament and the fluid flow. Next, in Section 3, we construct a moving foliation
on whose leaves the relative fluid motion may be expressed in Hamiltonian form. Then in Section 4 we show how the
relative Hamiltonian structure of Section 3 leads directly to the Hamiltonian equation (1). In Sections 5, 6 and 7,
respectively, we apply our procedure for the construction of a Hamiltonian structure to a rectilinear vortex filament,
a circular vortex ring and a helical vortex filament. Finally, we discuss our results in Section 8.

2. Preliminaries
We assume that the vortex filament has the form
Cs := {R(0,t) = (§(0,t),n(0,1),{(0,1)) : (0,1) € I x R4}, 2

with all of the coordinate functions smooth. The motion of the filament as well as all other fluid particles is assumed
to be governed by the following desingularized version of the Biot-Savart law:

v=v(r) =5 [ Vs~ R@00) x G do ©

where V is the standard gradient operator (with respect to the space variables only), I is the interval on the real
line on which the parameter o of the filament is defined, r = (z,y, 2) and

x (e = Rf) = % (I = RJ) [ = R| ™" + (1 = % (Jr ~ RI})) log |r ~ R[ " 4)
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Here 4 : IR — IR is a smooth function such that 1(s) = 0 for s < 0, ¢(s) =1 for s > § > 0 and diy/ds > 0 for all
s, where 0 < § < 1 represents the core radius of the vortex filament. This desingularization has the same essential
features as those derived from fundamental principles for matching Navier-Stokes flows (e.g., see [2, 8, 9]). Note that
if the filament has infinite length, integrability considerations may require an adjustment of the integrand in (3).

In order to evaluate the velocity field defined by (3), it is necessary to compute the parametrization R(c,t) of the
moving filament which is determined by solving the partial differential equation

S D=1 [ VORwY - REI) x S(o; o, )

where R(v,0) is any convenient parametrization of the initial filament Cy. We remark that (5) is an infinite-
dimensional Hamiltonian dynamical system (in the same sense as the Euler equations) - one which we conjecture to
be completely integrable (cf. (3, 4]). It is convenient to denote the ” (semi-) flow” generated by v as ¢, for ¢ > 0.
Then, for example, we can write C; = ¢ (Cp).

We shall construct a (moving) coordinate system (q(r, ), p(r, ), w(r, t)) adapted to C; and its corresponding foliation
§t for £ > 0 such that the leaves of the foliation are of the form £ = {r € IR® : w(r,t) = ¢}, where c is a real
constant, ¢ and p are coordinates on the leaves and the motion on each leaf for ¢ fixed is governed by

oH?! OH!
7= Bp DD p= ~ g &P (6)
where the prime denotes d/d7. Each leaf £ is v(-,¢)-invariant and 7 parametrizes the trajectories of the motion on
the leaves that would be generated by the velocity field if it were fixed in time. Following the coordinate system as
it evolves under the action of ¢y, we shall find that the motion of passive fluid particles can be described in terms of
the Hamiltonian system (1). For an observer at the origin of a leaf £¢, which coincides with the point of intersection
of the filament with the leaf, the motion appears two-dimensional (= one-degree-of-freedom) and Hamiltonian.

3. Derivation of Relative Hamiltonian Structure

For each t > 0 we define p(r,t) to be the distance from r to C; and 9%(e) := p~1([0,¢€],t) to be the tubular e
neighborhood of C;, where € > 0. Now we fix ¢ > 0. Observe that it follows from (3) that divv = 0 and that
v =curlw for all (r,t) € IR® x R, where

w=wiet) = 1 [ x(r Rl )) Gdo @)

Consequently, by employing some standard results from vector analysis we infer that there exist smooth, real-valued
functions a and w, with w multi-valued if Cy is closed, such that

w=aVw = v=Vax Vw (8)

on N;(€) x IRy for e sufficiently small. Observe that w is tangent to C; when r € C, the level surfaces of w for t > 0
yield the leaves of the desired family of foliations  and « can serve as a coordinate in the leaves of F := {§;} .

Rather than using o as a coordinate in the leaves, we shall construct smooth functions 3 and X such that (8, \,w)
are orthogonal coordinates for 91,(¢) for all ¢ > 0 if € is sufficiently small. We draw curves along a fixed leaf £¢ that
are paralle] to the principal normal of C; at the origin of the leaf. Then we flow these curves along w. Thus we
obtain a foliation of 9;(e) by surfaces that can be represented in the form ((r,t) = const. if € is suitably small. Note
that V3 - Vw = 0 owing to definition of 3. Analogously, by drawing a family of curves on £ that are orthogonal to
the S-curves and flowing them along C;, we obtain another foliation of 9;(e) by surfaces of the form A(r,t) = const.
such that {V3,V\, Vw} constitute an orthogonal basis on 9, (¢) for all ¢ > 0 when ¢ is sufficiently small. In terms
of these orthogonal coordinates, we readily compute that

or or or a 1o}
S udnil ¥ _ ! — i it T Bl 4 J— ’ =
r—aﬂﬂ+6)\/\ too = Ww=0= divv=x [aﬁ(nﬂ)+aA(nA)] 0, 9
where k := ||0r/0p| ||0r/OA|| |0r /dw|| , owing to the facts that ' = v, v - Vw = 0 and divv = 0. We infer from (9)
that for each ¢ > 0 there exist a smooth (stream) function H¢, depending only on § and ), such that k3’ = dH?* /oA




Minisymposium 16 S147

and kX = —9H?*/8p. To obtain the desired Hamiltonian form on the (moving) leaves, we introduce the new variables

8

q:= { k(s,N)ds, p:=X\ (10)

this leads directly to (6).

4. Derivation of Absolute Hamiltonian Structure

Now that we have derived the relative Hamiltonian structure (6) of the flows, it is a simple matter to obtain the
absolute Hamiltonian equations (1). We continue to use the orthogonal coordinates (3, A,w) constructed in the
preceding section. Then the reasoning used above can be employed to obtain the following absolute analog of (9):
. fr. Or. Or ., . 0,
=r= — —)\ — . = di = -1 - A =Vu.

v =r 8ﬁﬁ+3/\ +toov=0 0= divv=x [8,8(Kﬂ)+8)\(n )] 0 (11)
Hence there exists a smooth function H(f3, A, t), where we may suppress the dependence on w since it is constant along
the flow ¢; owing to (11). Asdivv=0and x = (VG- VA x Vw)°1 , k is independent of ¢ along ;. Consequently,
we may proceed from this point just as in Section 3 to define the new variables (10) in terms of which the equations
of motion take the form (1). Note that H in (1) and H? in (6) are related as follows: H*(q,p) = H(q,p,1).

5. Rectilinear Vortex Filament

For the case of a straight line vortex filament we may assume that Co = {(0,0, 2) : z € IR}. It is easy to verify in
this case that R(z,t) = R(z,0) and §; = §o = {the foliation of IR? by planes parallel to the z, y-plane} for all ¢ > 0.
We find that 8 =z, A =y, and w = z comprise a suitable global coordinate system for the Hamiltonian structure.
As the structure is independent of ¢, the relative and absolute motion coincide and we compute that the desired
equations on the leaves are

ofr T .8 r T
q=5—é(5/x(\/q2+p2+sz)ds>, P="% (E/x(\/q2+p2+sz)d3), (12)

Zoo —00

where ¢ :=  and p := y. Note that in this case x must be adjusted, for example by the factor exp (—\/ Q2 +p%+ 32) ,
in order to insure the existence and smoothness of the Hamiltonian function in (12).

6. Circular Vortex Ring

The initial circular vortex ring may be assumed to be in the form Cy = {R(¢,0) = (acos ¢,asing,0) : 0 < ¢ < 27},
where @ > 0 is the initial radius of the ring. It is easy to show that §; = Fo = {the singular foliation (with singularity
the z-axis) of R® by half-planes ¢ = const.} for all ¢ > 0. In this case we readily compute that C; = {R(¢,t) =
(acos¢,asing,vt) : 0 < ¢ < 27}, where <y is the nonzero constant defined by

27

[ 9 (x (avaT=0s) ) x 50,0000

0

r
Y= "‘7_; ’ (13)

Note that the improper integral in (13) is convergent. A coordinate system for the structure is 8 = p = (22 +
y2)1/2, X = z,w = ¢. Whence, the Hamiltonian equations in terms of g := p? and p := z are readily found to be

1" ™
=9 i=-3 m--2S / x(\/wa—a)z+(p—vt)2+4a\/asin2§)cos¢d¢, (14)

7. Helical Vortex Filament

A circular helical filament can be parametrized as Cyp = {R(c,0) = (acoso,asino,bo) : a,b > 0, 0 € IR}. We find
after a straightforward calculation that C; = {R{o,t) = (acoso,asing, bo + pt)}, where p is the nonzero constant
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defined as

= al Z [cosa'—— V/2a2(1 — cos 0)2 + bzoz) + sin a— (\/2a2(1 —coso)? + b2a2)] do. (15)

7/

Note that as in Section 5, x requires an adjustment to insure smoothness of the integrals in this section. §; changes
with time: its leaves take the form of the helicoids £ = {w(r,t) := (z — pt) — atan™1(y/z) = c}. It is not difficult
to show that (8, A,w) is a suitable orthogonal coordinate system, where 8 := p and A := (2 — put) — btan~'(y/z).
Defining g := A2 and p := B3, we find after a complicated but routine calculation that the desired Hamiltonian
equations of motion on the leaves are (cf. [8]):

OH . _ OH . _ alvg [ -
5 =5y H=-52 [ x(ist@n) R esods, (16)

8. Concluding Remarks

The structure developed in this paper provides a simple Hamiltonian description of the dynamics of an ideal fluid in
a neighborhood of a vortex filament in terms of the self-induced motion of the filament. Thus the filament dynamics,
which is induced by an infinite-dimensional Hamiltonian vector field, is the key ingredient in characterizing the fluid
motion near the filament, and we plan to investigate this problem. Our illustrative examples reveal an apparent
direct correlation between the symmetry of the initial filament and simplicity of the Hamiltonian structure. Further
research is needed to fully comprehend this relationship.

To understand the global nature of the induced flow, one needs to study the evolving geometry and topology of the
associated foliation in the large. This promises to be a formidable problem, but investigation of some interesting
special cases would be instructive (cf. {1]). It is natural, and particularly relevant for applications, to ask if our
Hamiltonian structure can be generalized to apply to two or more filaments. Some preliminary research of our own
and related work such as in [2, 5, 10] suggest that the answer is affirmative for certain types of filament configurations.
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SAITO, SHIGERU

VORTEX CAPTURING AND NOISE PREDICTION BY MOVING
OVERLAPPED GRID METHOD

1. Introduction

The external noise of a helicopter is the most important issue in current helicopter technology. Specifically the
reduction of the blade/vortex interaction noise is urgent subject in order for a civil helicopter to be spread widely.
The capturing of the tip vortices in the noise analysis is the most important item because of its affection to sound
pressure level. The moving overlapped grid method is developed in order to calculate rotor unsteady aerodynamics
in hover and forward flights. This code is combined with the sound prediction codes using Ffowcs Williams and
Hawkings formulation without quadruple term. The present combined noise analysis code is validated by the
experimental data, which was conducted by Advanced Technology Institute of Commuter Helicopter (ATIC) at
DNW in Netherlands. Comparison shows that the noise prediction was fairly good agreement with the data.
Besides the calculated vortex parameters such as trajectory, core size, and strength of circulation are investigated
by using present codes. The comparison of predicted tip trajectories shed from a rotor blade in hovering flight with
well-known Kucurek7s formula shows good agreement.

2. Experiment of tip vortex properties

Figure 1 shows the test set-up in the Low-speed Wind Tunnel facility at NAL[1]. Two different types of wing
tip shape were used in order to investigate the effect on the tip vortex property. Three components of velocity
vector were measured by 7-holes probe which is located just behind of the vortex generator. Using these velocity
data, the core size and strength of circulation were estimated for two tip shapes. From this experiment, the core
size and the strength of circulation for the tapered tip shape showed small values compared with that for the
rectangular tip shape. In the noise prediction codes, mathematical models of tip vortex are often used to calculate
the aerodynamic performance and trajectories of tip vortex for the blade/vortex interaction noise. In order to
investigate the effectiveness of these models, several models were compared with test data. Figure 2 shows the
comparison results for the case of rectangular tip shape. Among various vortex models, Scully vortex model is best
fitted with present data. For the tapered tip shape case, Scully vortex model is still best fitted with the data. From
these results, it is generally said that Scully vortex model is reasonable as tip vortex model.

3. Moving overlapped grid method(MOGM)

In the noise analysis, the free wake analysis based on the vortex theory is generally used in order to calculate the
trajectory of the tip vortex. In this calculation, several empirical models, such as vortex core size and roll-up position
of the tip vortex, are assumed. Therefore the accuracy of the calculation always depends on the decision of such
parameters. To avoid these uncertain parameters, CFD technique is promising for the capturing the tip vortex. The
moving overlapped grid method (MOGM) was developed to calculate the unsteady flow field around a rotor in the
collaboration with Advanced Technology Institute of commuter Helicopter Ltd. (ATIC)[2][3]. This CFD code was
combined with the noise prediction code based on the Ffowcs Williams and Hawkings formulation without quadruple
term. This CFD code has three grid systems (blade, inner and outer grid). The number of grid points is 17 millions.
In order to get the convergence condition in the calculation, it took about one week by means of NWT at NAL.

4. Calculation results

Figure 3 shows the comparison of the tip velocity distribution between calculation and experiment. Experimental
data was measured at 11 times of chord length behind the vortex generator. Calculation results shows that the
about 1.5 times larger core size than that of the experiment. This is because the viscosity of the flow was not
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taken into consideration in the calculation. Figure 4 shows the comparison of the prediction of noise waveform with
experimental data. The experiment was conducted by the ATIC at DNW in Netherlands. The calculated results by
MOGM show over-estimation in the magnitude compared with experimental data. This discrepancy between them
were caused by the omission of the blade elastic deformation and the effect of the body itself on the rotor.

5. Conclusions

The wind tunnel test to measure the velocity field of tip vortex was conducted in the NAL Low-speed Wind Tunnel.
These data were compared with calculation. The CFD code-named Moving Overlapped Grid Method was developed
and combined with noise prediction code. From the investigation, the following conclusions are drawn.

1. The velocity field of a tip vortex is well modeled by the Scally vortex model.
2. CFD calculation results show the over-estimated prediction of core size of a tip vortex.

3. Noise predictions by the Moving Overlapped Grid Method show the over- estimation in the noise waveform.
This is caused by the omission of the blade deformation and the effect of the body on the rotor.

In this calculation, Euler equation is used to predict the vortex property. Basically the viscosity of the flow is not
taken into consideration. Therefore more sophisticate calculation should be necessary in the future.
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WAGNER, S.

Calculation of Far Field Sound due to Blade-Vortex Interaction on a Heli-
copter Rotor

The objective of the paper is to present an efficient tool for the prediction of far field noise due to blade - vortex
interactions (BVI) on a helicopter rotor. These interactions occur mostly in low subsonic flight, e.g. a helicopter
in descend. In this case, the method of retarded potentials can be used. When transonic effects at the tips of the
advancing blade are present a coupled Euler-Kirchhoff method is applied. These two schemes allow the calculation
of the acoustic signatures at arbitrary observer positions for rotors with usual blade motions. The theoretical results
are compared with experimental data.

1. Introduction

Noise generated by helicopters can give rise to problems concerning their public acceptance. Helicopters have many
components that produce noise but it is usually dominated by the main rotor with the engine and the tail rotor
being important additional sources. At this point only aerodynamic noise will be addressed. It is caused by several .
complex flow phenomena [12]. Inflow-turbulence noise is caused by the interaction of turbulence in the inflow with
the leading edge of an airfoil. Trailing-edge noise and also tip noise is a by-product of any turbulent flow around
blades. Typical noise spectra of helicopters (e. g. [9]) indicate that especially blade vortex interaction (BVI) noise
plays a dominant role. High-speed impulsive (HSI) noise [1, 3] is another major noise source in high speed flight,
when aerodynamic shocks are generated and radiate into space as sharp pressure peaks. These pressure gradients
build up a wave front of spiral-like shape and are perceived as periodic noise. BVI noise will be described and how
it can be simulated by theoretical /numerical methods. In case of low subsonic flight, e.g. a helicopter in descend,
the method of retarded potentials is used. When transonic effects occur at the tips of the advancing blade a coupled
Euler-Kirchhoff method is applied.

2. Calculation of Far Field Sound due to Blade-Vortex Interaction (BVI)

BVI noise is characteristic for helicopters and originates from the interaction of a rotor blade with the tip vortex
of a preceding blade. This interaction leads to a sudden variation of the flow around the blade and therefore to a
pressure fluctuation that is radiated away as sound. BVI is most important if the tip vortices pass very close to a
blade and if the vortex axis is parallel to the blade. These conditions occur especially during descent flight.

The starting point for the prediction of BVI noise is usually the homogeneous linear wave equation [10]. In its
most simple form it describes the propagation of sound waves through an acoustic medium at rest. The generation
of sound is due to (1) the volume displacement of a solid body moving through the air, (2) the forces that this
body exerts on the air, and (3) the non-linear momentum flux terms that may be caused by turbulence or by strong
non-linearities in the flow field such as shocks. The first part is often referred to as thickness noise and is of monopole
type. The second part is termed loading noise and is a dipole term, the third is mathematically a quadrupole term.
It was Lighthill [7, 8] who recognized that this term is associated with the turbulent Reynolds stress tensor, i. e.
the mixing of turbulent eddies which take place for instance in a jet [8]. This approach is called acoustic analogy.

In order to properly predict BVI noise the correct structure and position of the wake including the tip vortices must
be known. There are several approaches possible [11]. In the present paper a linear theory, a non-linear theory and
combination of both are used. The linear theory used is a vortex-lattice method for rotary wings (ROVLM). Zerle’s
computation [14, 15] included 240 time steps where the increment of the azimuth angle was gradually reduced from
15 degrees to 1 degree (Fig. 1). This solution allows the extraction of intensive BVI. In the present example they
occur between 50 and 60 degrees azimuth angle in a low speed descendent flight where incompressible flow can be
assumed. Zerle et al. [16] used the calculated pressure distribution in a so-called "retarded potential postprocessor”
and calculated the sound received by an observer. The method [14, 16] is based on the linearized wave equation (no
transonic effects, constant speed of sound ag)

2§ _ 1 . 9%& _
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where 7, is the retarded distance between the noise source and the observer, o is the sink/source distribution
(single layer potential) and y is the doublet distribution (double layer potential) of each panel, where the index
W indicates the wake panels. &, marks the orientation of the local doublet. The blades have to be determined in

a retarded position. The contribution of each blade to the sound received by an observer can thus be calculated
(Fig. 1).
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Figure 1: Sketch of vortex structure and sound pressure contribution of each blade at microphone 3, [16].

Since blade number 4 did not contribute that much noise in reality as calculated by theory because of the presence

of a strong wake behind the rotor mast fairing which was not simulated this contribution was omitted and a good
agreement with measurements was obtained (Fig. 2).

If transonic effects are present non-linear methods must be applied, e. g. the Euler equations. To resolve the
structure of the tip vortices a very fine mesh and higher order algorithms in space have to be applied. Since, in
addition, the distance between the noise source and the observer might be large a very big computational effort
both in computer storage and speed is necessary. Therefore, Wehr [13] in a first attempt coupled ROVLM with
the Euler code INROT of the institute (IAG) and calculated the unsteady pressure field induced by the rotor. The
advantage of this procedure is that the wake of the rotor is predicted without any dissipation or diffusion because
of the numerical solution of the vortex lattice method. The actual BVI is then calculated by the Euler procedure.
However, the computational effort is still large. Thus, Algermissen [2, 3] coupled INROT with the Kirchhoff method
to simulate the sound propagation to an observer.

Generally, when at transonic speeds so-called HSI noise is to be calculated the acoustic analogy strategy requires
to evaluate the sound sources on the blade and in the flow field. The latter are necessary in order to model sound
generation by aerodynamic shocks. Sound radiation from these sources is described by the Ffowcs Williams-Hawkings
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Figure 2: Comparison of calculated and measured sound pressures, [16].

(FW-H) equation [6]. Similar to the equation derived by Lighthill the FW-H equation is an exact combination of
the continuity equation and the Navier-Stokes equations that results in an inhomogeneous wave equation. However,
the FW-H formulation is much more suited for the treatment of noise from moving solid bodies as it displays the
effect of volume displacement, forces, and non-linear terms as separate source terms on the right-hand side of the
wave equation. The FW-H equation is the most general form of Lighthill’s acoustic analogy [7] and is appropriate
for the prediction of noise that is generated by helicopters where especially HST and BVI noise occur.

The Kirchhoff formulation for moving surfaces is an alternative formulation that has widely been used in rotary
wing aeroacoustics in the past [5]. However, there is a problem where to place the so-called Kirchhoff surface when
it is moving [2, 3]. To compute the pressure at an arbitrary observer position both surface and volume integrations
are necessary in the FW-H approach, whereas the Kirchhoff approach assumes validity of the homogeneous wave
equation outside the Kirchhoff surface that is the boundary between the non-linear and linear calculation. For
sound computation according to a Kirchhoff formulation integration over the two-dimensional Kirchhoff surface is
sufficient. Since in transonic flow fields the local speed of sound is not constant and the velocity vector differs from
free stream conditions sound propagates through such regions not2 in a perfectly uniform manner as assumed by the
acoustic analogy. However, the Kirchhoff strategy makes the assumption of free flow sound convection only outside
the Kirchhoff surface.

Both methods are usually applied in retarded time formulation, i. e. that different points of the spatial integration
domain refer to different emission times but to the same observer time. For high-speed flight part of the sound sources
move with supersonic speed. If the Kirchhoff surface is placed around these sound sources and rotates with the rotor
blade parts of the Kirchhoff surface would also move with supersonic speed. In this case difficulties arise with acoustic
analogy and Kirchhoff method. Multiple emission times can correlate to one observer time and singularities occur in
the integration formulae. Farassat and Myers [5] presented a Kirchhoff formula for supersonically moving surfaces
that can cope with these singularities. However, the procedure is more complex than the one for subsonic speeds.
These difficulties were often circumvented in the past using a non-rotating Kirchhoff surface, enclosing the complete
rotor tip plane. In forward flight the Kirchhoff surface was then assumed to move uniformly with the helicopter and
a subsonic Kirchhoff formulation was used. Zibi et al. [17] showed that the position of the Kirchhoff surface can
considerably influence the accuracy of the noise prediction. Algermissen and Wagner [1] found that for a hovering
rotor the position of the Kirchhoff surface does not influence the results remarkably. They got good agreement with
measurements. However, in forward flight the results did depend on the position of the Kirchhoff surface and the
agreement with measurement was only fair. The numerical resolution of the code seemed to be too low (it was only
third order accurate in computational space) to resolve the pressure fluctuations necessary to predict the emitted
noise.

In a recent paper Brentner [4] re-examined the FW-H equation to demonstrate recent advances in rotor noise pre-
diction and showed that the Kirchhoff formulation can lead to misleading results. In order to show the shortcomings
of the Kirchhoff formulation he applied an embedding procedure similar to that used for the derivation of the FW-H
equation to the wave equation by Farassat and Myers [5] and derived that way the Kirchhoff formulation for moving
surfaces. Now he could compare the FW-H equation and Kirchhoff formulation and could that way show that for
linear wave propagation several terms in the FW-H formulation would trend to zero and the FW-H equations and
the Kirchhoff formulation would completely agree.

Finally in Figure 3 the prediction of acoustical pressure signals computed by Algermissen [3] are compared with
measurements. The As mark positions of tip vortices whereas the INs indicate positions of inboard vortices. The
agreement is only fair. A higher resolution of the Euler code seem to be necessary to resolve the pressure peaks that
are induced by the tip vortices and that are responsible for BVI noise.
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3. Conclusions
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Wave Phenomena in Bubbly Liquid-Vapour Mixture (review)

The mizture of a liquid and bubbles of its vapour is an excellent example of two-phase system where interesting
wave phenomena take place. The occurrence of these phenomena in single-component two-phase miztures can
be attributed to the effect of strong thermodynamic non-equilibrium. During the flow of a two-phase mizture,
mechanical non-equilibrium can also occur. Both types of non-equilibrium give rise to strong deformations of
velocity and temperature fields in the liquid surrounding vapour bubbles. Specific features of the two-phase medium
determine its wave properties, pronounced in its dispersive nature, meaning that the velocity of propagation of
disturbances in the two-phase medium depends on their frequency. These above properties typical for the two-phase
medium of low void fraction can be modelled using a concept of internal structure. In this concept, a model of
continuum with the so-called operative parameters is assumed. The model is capable of predicting the phenomena
such as: dispersive shock waves, pseudo-criticality, wave propagation and divergence between the hydrodynamic and
thermodynamic pressure during flashing flow.

1. Introduction

Real two-phase one-component system of a liquid and its vapour is distinctive by virtue of very complex physics,
including thermodynamic and mechanical non-equilibrium. The thermodynamic non-equilibrium follows from the
facts that the temperature of the liquid 7; is different from the temperature of the vapour Ty, i.e. T; # T,, and the
chemical potential of the liquid p4 assumes different values than the chemical potential of the vapour pg, i # tg-
The thermal non-equilibrium, 7; # T, gives rise to energy transfer between the phases, whereas the chemical non-
equilibrium, g # pg, is a stimulus for the phase changes — evaporation and condensation, that can be considered
the mass transfer between the phases. Mechanical non-equilibrium is pronounced in different local velocities of the
liquid phase, w;, and vapour phase, wg, w; # wy. This type of non-equilibrium is substantiated in the momentum
transfer between the two phases. The exchange of mass, momentum and energy give rise to dissipation of energy
as each of these processes is irreversible. The above mentioned processes take place at a finite rate, therefore it can
be assumed that the return to the state of equilibrium is characterised by a finite relaxation time 9. The two-phase
liquid-vapour systems are peculiar for their relatively long relaxation times, especially during generation of the
vapour phase, that is during flashing, where the relaxation time can be as high as 1 s, [1]. This compared to the
relaxation times for gases or liquids, that are of the order of 10~ 1%, see Batchelor [2], brings realisation of the fact
that the bubbly liquid-vapour system must be qualitatively different from the one-phase system. The differences
are particularly pronounced in wave properties of bubbly flow.

2. Modelling two-phase flows

Real two-phase system is a discrete system. However, it is usually modelled as a continuum, [3]. In order to
simplify the notation, let us limit ourselves to a one-dimensional model. The two-fluid model [4] will be assumed
for consideration. Most models belonging to this class can be written in the form of the following set of equations

0o ; do;

Aij(0j) 5. + Bij(03) 5,7 = ¢il0i2) 1)
where o is the state vector, t — time, z — coordinate along the channel. Imposing a small disturbance do on the
state vector about undisturbed solution o at a point I, so that o = o? + 80, and making use of the analysis of

small disturbances the following dispersive equation can be derived [5]

k i [0A; 0%  9B; 909 Oc;
U _ .. 0 = M 0 m m 0 m fd 0 —
det{Aw(Uz) szJ(Uz)'*'w 80, (a7) 5t T 80, (o7) Bz +_60j(al’z)]} 0. (@)

Let us introduce the so-called phase velocity apn = w/k, where w is the disturbance frequency and k is the wave
number linked to the wave length [, k = 27/l. The system defined by the set of Eqs. (1) can be described as wave-
dispersive if the phase velocity depends on the disturbance frequency, that is apn = f(w). This is possible if the
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system is non-linear %‘i’ #0, %—il # 0 and when the source term ¢; in Egs. (1) depends on w, that is when % # 0.
The two-phase hqmd—va,pour bubbly flow is highly wave-dispersive, which is confirmed by numerous experlments
for example [6]. The dispersion is due to the thermodynamic non-equilibrium and the largest contribution follows
from the term —L # 0. At the same time the two-phase flow is also characteristic for considerable damping of
wave disturbances a fact reflected in the model where the phase velocity a, is a complex number with a real and
imaginary part.

3. Relaxation model

The most simple model that takes into account thermodynamic non-equilibrium is a relaxation model described
by the following conservation equations of mass, momentum and energy [7].

dp 1 0pwA
atde 0 ®)
ow Ow oP C
P tPug, =—37 1 TP, (4)
Opu  10puwA ~ POwA TwC 5)
o A 0z A 0z A’
where w is the barycentric velocity, P — thermodynamic pressure, u — specific internal energy, p — density, A —

cross-sectional area of the channel, C' - channel circumference, 7 — wall shear stress, 7 = 1 fw p, where f denotes
the friction factor. The thermodynamlc non-equilibrium is contained in the equation of state

p=p(u, P,x) (6)

where z is the actual dryness fraction different from the equilibrium dryness fraction, Z = u,f(‘;;‘ 5 )

and u" are specific internal energies corresponding to the saturation lines Z = 0 and Z = 1. The above system of
equations is augmented by a heuristic evolution equation, derived from the linear Taylor expansion of z about

where u/

Dz T—-Z
DT e @
where substantial derivative % is defined as
D 0 0
Di = Bt + w-a—; . 9)

Quantity 6 is the relaxation time — a parameter that incorporates the internal structure of the two-phase system
[8]. A more developed form of the evolution equation (7) was presented by Banaszkiewicz [9]

Dz z-z (z-z)% 0%*z-2)
R = ©

where 3,7, are constants that can be evaluated based on experimental investigations. The relaxation model
(3-7) describes well flashing flow and explains a very interesting phenomenon of pseudocriticality [10], that is
flow choking observed for Mach numbers as low as 0.2. However, the relaxation model fails to provide enough
dissipation of energy especially for the description of propagation of large disturbances and stationary shock waves.
In order to successfully model these phenomena, a model with the so-called operative viscosity 7 and operative
heat conductivity A was introduced.

4. Model with operative quantities

The operative viscosity 7j and operative heat conductivity X, similar to turbulent viscosity in the turbulence models,
substantiate strong deformations of the velocity and temperature fields in the carrier fluid at the vicinity of the
dispersed phase. The model additionally takes into account the difference between the thermodynarmc pressure
P that is always positive, and the hydrodynamic pressure P?, P¥ = P* — P, where P* = —(PM + Py, + P,,),
which can assume either a positive or a negative value, and in general P" £ P. This model, descnbed in detail in
[11], has been found to describe well the propagation of large disturbances {12], structure of the stationary shock
wave [13, 14], as well as the evolution of the pressure impulse during the rapid depressurisation of a liquid, [15].
Therefore, the model can be treated as the most general model capable of describing well the wave properties of
the one-component two-phase bubbly system and can be written in the form as below
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~ mass conservation equation

Dp ow  pwdA
DetPe: T T A (10)

- momentum conservation equation
Dw ——?ﬁ+ o 1(4 + Ouw —T€+ cos (11)
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— energy conservation equation in the form of enthalpy, h, balance equation

Dh DP c WOw (4 )\ (ow\® 8 (0T, c

supplemented with the state equation
% — v=o(P,h,z) = w(P,z, h) + z[" (P) — ] (13)

together with the equations describing the evolution of the actual dryness fraction x, and pressure difference

= P" — P. Based on the philosophy offered by the Thermodynamics of Irreversible Processes [15] there are
2 options for these equations. The first option comes from the Classical Irreversible Thermodynamics (CIT) and
leads to the following couple of equations

. Ow;
& = Lua(m — pg) o7 (14)
v Ow;
P? = Ly1(put — pig) + Loz 7 (15)
where © = 22. The second option is derived from the so-called Extended Irreversible Thermodynamics (EIT). EIT

provides much richer evolution equations for the actual dryness fraction z and pressure difference P¥ than CIT,
namely

Di O
0; Ff + & = Ly (u ~ pg) + L12 ;: (16)
DPY v Ow;
Op Dt + P¥ = Loj (1 — g o7 17

where L;; are the fenomenological constants, yu, 4y chemical potentials for liquid and vapour respectively. The
following quantities appear in Eqs. (12), (13) are the dynamic molecular viscosity of the two-phase mixture 7,
the so-called operative viscosity 7, molecular heat conductivity of the two-phase mixture A, and its operative heat
conductivity X, wall shear stress 7, heat flux to the channel from the outside g, channel cross-sectional area 4,
channel cxrcumference C, acceleration of gravity g, angle between the flow direction and gravitational force a,
specific volume v, and v — specific volume at the saturation line z = 1.

Egs. (16) and (17) introduced into the conservation equations (10) - (12) constitute a model described by hyperbolic
equations. This model predicts a finite value of the frozen velocity, ay = lim, oo aph. At the same time, the model

contributes to the diffusion effects by second derivatives g =z, 6‘22 £+, and an extra term %T, which seems to be of
importance for such a complex system as the two-phase mixture of a liquid and its vapour.

5. Conclusions

The two-phase liquid-vapour bubbly system is highly wave-dispersive and is characteristic for its long relaxation
time, as a result of which first, wave disturbances are considerably damped, second, critical flow is connected with
the equilibrium velocity, and then, there is a great impact of the bulk viscosity giving rise to a difference between the
thermodynamic and hydrodynamic pressure. The properties of the considered two-phase system depend strongly
on its internal structure. The effect of the structure can be expressed by the concept of operative viscosity and
operative thermal conductivity.
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LuTz FRIEDEL

Fluiddynamical critical two-phase (gas/liquid) flow state in non ideal flow
geometries

During the emergency venting of pressurized, in most cases partially liquid loaded reactors across safety devices or
in the course of the intentionally controlled depressurisation, resp., degassing of such production equipment across a
throttle valve a two-phase flow can establish due to the occurring level swell. In the context of the equipment sizing
for safety and economical reasons a maximum mass discharge, resp., critical velocity in the transfer piping system or
device is an issue. Indeed, analytical methods for the critical two-phase mass flow prediction are only available for
ideal nozzle or pipe flow. In principle, they look like simple derivatives of the ideal model used in (compressible) gas
dynamics. Hence, rating tests for determination of the actual capacity of the flow controlling devices are necessary
for an adequate sizing of the commercial devices. They are, however, time consuming and, therefore, prohibitively
costly due to the large number of test variables as device size and type, fluid or mixture properties, initial subcooling,
pressure, temperature, mass flow quality, valve lift, resp., opening, etc. are primary sizing parameters. Additionally,
during the experiments the problem arise to define, resp., to fix the critical flow state. In contrast to the explanations
in text books referring to the case of an ideal nozzle flow such a characteristic flow state does not establish in the
device. This is, amongst others, the consequence of wall detachment of the flow, establishment of an inhomogeneous
velocity field across the flow controlling cross section, local random cavitation or flashing/condensation incipience,
multiple choking in the transfer piping system and corresponding back pressure change. As a consequence, the
experimental maximum mass flow will depend, e.g., on the experimenter’s pragmatism as well as capability and the
metering quality installed in the test rig as well as, strictly speaking, it can only be valid for the individual specimen
due to non avoidable manufacturing tolerances.

The engineering design practice is still characterized by particular solutions according to the respective limited ex-
perimental evidence as not at all a sizing convention is available. On the other hand, in all individual procedures,
as a rule, the experimental or attributed maximum flow rate is expressed as, i.e., in single-phase compressible flow
in terms of a corresponding one-dimensional ideal two-phase nozzle mass flow by introducing an empirical discharge
coefficient of the valve. It is in this context invariably coupled to the respective flow model as well as specimen and
its value should, according to the general physical understanding, remain below unity. Otherwise, the choice of the
reference nozzle model is inappropriate. This is a common situation, as in two-phase flow an immense variety of
critical mass flow models have been proposed. A common feature is, herewith, that for identical initial conditions
different predictions are obtained though each model has been fitted to some experimental data and incorporates to
a large extend theoretical aspects. Indeed, an analytically based pre-assessment and selection of the most promising
two-phase nozzle flow model by using theoretical boundary values for comparison purposes is not feasable as these
are not available.

The assigned discharge coefficient acts, in principle, as a global adjustment factor. In view of its definition it has no
physical significance. Nevertheless, it is standing graphically for a variety of deficiencies of the reference flow model
as dissipation, actual mixture state change, delayed phase change, non ideal fluid behaviour, incompleteness of the
flow density definition, slip etc. In general, a lumped value of between 0.5 and 0.9 is obtained.

An example for such a pragmatical approach is the recently proposed short-cut safety valve sizing method by T.
Lenzing et al. [1]. The basis is formed by the isentropic homogeneous two-phase nozzle flow model, leading under all
conditions to a discharge coefficient value in two-phase flow of less than unity. The essential features of the method
are thermodynamic and fluiddynamic equilibrium between the phases. The other submodels included address the
polytropic state change of the mixture, the boiling delay in subcooled or saturated flow, the degree of phase transfer
and a liquid phase viscosity correction. As experimental pre-requisite for application at least one out of the two
single-phase flow discharge coefficients must be available from the usual standardized (compulsory) device rating
test. The weighed inclusion in the method is such that on approaching the limiting cases of the two-phase flow either
the actual liquid or subcritical/critical gas/vapour flow capacity is predicted. The reproducibility of the underlying
experimental results taken from the literature as well as produced in own tests is adequate, s. fig. 1 and 2. Indeed,
the progress achieved in the reproductive accuracy against that of the formerly used methods is evident.
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On concluding, it is fully recognised that the short-cut method also includes a combination of incomplete submodels
and that the successful reproduction will be to some extend the consequence of mutual error compensation. Never-
theless, a moderate method extrapolatability with respect to fluids, pressure ranges and valve sizes is expected as

physically reasonable intermediate key values are effective.

1 T. LENZING, L. FRIEDEL: Modelle fiir den iiber Vollhubsicherheitsventile abfiihrbaren Massenstrom bei Einphasen- und

1. References

Zweiphasenstromung. Techn. Uberw. 41 (2000) 5,6 und 7, 15/23.
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