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Some Results For Locally Dependent Arrays 

Frits H. Ruymgaart 
Department of Mathematics and Statistics 

Texas Tech University 
Lubbock, TX 79414 

USA 

1. Preliminaries 

A locally dependent array (l.d.a.) of order m — m(n) is a triangular array of real-valued random variables 
{Xn,i,...,Xnin,n e N} such that the variables in the n-th row are (m - 1)- dependent, 1 < m < n. In order 
to have sufficiently many independent components in a row it will always be assumed that m/n -> 0, as n -» oo. 
Such arrays have been studied in the literature as objects of interest in their own right (Berk (1973), Barbour (1990), 
Reinert (1995, 1996)), and as a tool to approximate certain time series (Portnoy (1991), Chanda and Ruymgaart 
(1990, 1991)). Time series with Volterra expansions seem particularly suited for such approximations. 

Here we want to focus on properties of the empirical process of the array which are useful when nonparametric curves 
like autoregression functions are to be estimated (Chanda and Ruymgaart (1991)). Some results from Einmahl and 
Ruymgaart (1998) including weak convergence in D([0,1]) will be surveyed in Section 2. A conjecture on weak 
convergence in L2([0,1]) for a wider class of l.d.a.'s with application to the empirical process of a linear process is 
formulated in Section 3. 

Having the empirical process in mind for the most part we will restrict ourselves to arrays that satisfy the following 
assumptions: 
— all the XUti assume values in [0,1]; 
— the X„ti are rowwise identically distributed with c.d.f. Fn. 
The actual strength of the dependence within a row can be locally strong and is in some sense further specified by 
the variance of a block. Under the present conditions we always have 

Yax(J2Xn,i+j)<Ckm, (1.1) 

for some generic 0 < C < oo, but the l.h.s. may be actually of smaller order than the r.h.s. The following example 
shows that, typically, local dependence foregoes long range dependence. 

Linear Processes. Let us approximate the linear process Xi = J2h=-<x> ak£i-k, where the EJ are i.i.d. (0,1), with 
the array Xn%i = YlT=—m ak£%-k{i = \,...,n). Let us assume that |ajfe| » 1/(1 + \k\5) for some S > \. For useful 
approximation we need on the one hand that 

raa,yLi<i<n\Xi - Xn<i\ = op(n 
e), for some e > 0, (1.2) 

and on the other hand m << n. Straightforward calculation shows that this can be only achieved for S > 1 + e. For 
such S the linear process is not long range dependent (Beran (1994)), and the variance in (1.1) is bounded by Ck 
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and consequently is of the same order as in the i.i.d. case. For long range dependent moving averages the em- 
pirical process has been studied in Ho and Hsing (1996) and for certain long range dependent stationary processes 
by Dehling and Taqqu (1989). 

2. Some Tools And Weak Convergence 

In order to prove weak convergence of the empirical process of the l.d.a. a central limit theorem will be needed to 
deal with the finite dimensional distributions, and a fluctuation inequality to deal with the tightness in D([0,1]). 

Central Limit Theorem. In addition to the assumptions of Section 1 let us assume that for 1 < I — t(n) < m 

l.h.s. of (1.1) < C-4, sl/{n€) -+ a2 > 0, nm1+s/s2
n
+5 -> 0 for some S > 0, (2.1) 

as n ->■ oo, where s\ = Var(£]"=1 Xnti). Then we have 

1     " 
-?=YlXn^ -*dN{0,a2), asn->oo. 

Fluctuation Theorem. Let us write 

1   n 
Pn(t) = -J2M0,t](Xn,i),0<t<l, 

(2.2) 

n  ■   i 

(2.3) 

A„ = Fn - Fn, (2.4) 

and, for any interval I = {a,b} let Fn{I} = Fn(b) - Fn(a),Fn{I} = Fn(b) - Fn{a), A„{J} = Fn{I} - Fn{I}. Fix an 
interval I0 with Fn{I0} < |. Then there exists 0 < e < 1 such that for each n and A > 0 

r{—|A"{/)I ä A>£ c<*xp (^w* (vsfe))' (2'5) 

where ip(x) = 2a;-2{(l + x)log(l + x)-x},x> 0, and V(0) = 1. 

In order to be able to derive tightness in D([0,1]) from (2.5) it is necessary that the proper scaling factor of An is 
yjn/m so that the factor m in the denominator of the exponent will cancel. This places a technical restriction on 
which we will further comment in Section 3. 

Weak Convergence in D([0,1]). Suppose we have 

supo<t<i\Fn(t) -F(t)\ -> 0,asn->- oo, (2.6) 
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for some c.d.f. F, and 

n 
m 

Cov(An(s), A„(t)) -> r(s,i), as n -> oo, (2-7) 

for some nondegenerate covariance function T on the unit square. Then there exists a Gaussian process Q in the 
space D([0,1]) endowed with the Ji-topology such that 

—A„->•<*£,asn->oo, in £>([0,1]). (2. 

The process Q is centered and has covariance function T. 

3. Weak Convergence In A Hilbert Space 

Unfortunately it can be seen from the results in the example of Section 1 that for linear processes (with 6 > 1) 
condition (2.7) will not be satisfied. In fact the convergence rate is much faster. Although our proof of weak 
convergence in £([0,1]) breaks down we may try to prove weak convergence in L2([0,1]); see Laha and Rohatgi 
(1979). 

Let us consider an l.d.a. with strictly stationary rows, and assume that (cf. (2.1), (2.7)) 

VaT(^2l[Q,t](Xnti))<Ckl, (3-1) 

for all t, and 

j^Cov(A„(s), A„(t)) -» T(s, t), as n ->■ oo, (3.2) üc 

in addition to (2.6). In much the same way as in the proof of the CLT the process An can be written as the sum of 
i.i.d. processes and a remainder. Further conditions to ensure the weak convergence 

W^An-+dö,asn-+oo, in£2([0,l]), (3-3) 

should be mild. Of course such a result holds true for random variables with values in any bounded interval [a, b}. 

Returning to the linear process let us assume for convenience that the Xi assume values in [-1,1], and let F be their 
common c.d.f. Denote their empirical process by A*, based on the empirical c.d.f. F*, and let A„ be the empirical 
process of the l.d.a. X„,i Xn,„ (for suitable m), based on the empirical c.d.f. Fn. If 6 > 1 for this array (3.2) will 
hold true with £=1. Since 

n f  {/",;(*)-■F,n(*)}2*<nmaxi<i<n|JCi-X„lJ|, (3.4) 

the truncation index m = m(n) can be determined in such a way that the l.h.s. of (3.4) tends in probability to 0, 

as n -> oo, provided that 6 > 3|. If we assume that n/^1{F(i) - Fn(t)}
2dt ->■ 0, as n ->■ oo, the weak convergence 

(3.3) for the empirical process of the l.d.a. (with I = 1) entails the weak convergence 
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y/nAl-tdg, asn-» oo, inl,2([0,1]), (35) 

for the empirical process of the linear process. 
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BITTERLICH, S., KNABNER, P. 

Formfree and Cascadic Identification of Material Laws in (Un) Saturated 
Fluid Flow from Column Experiments 

Simulations of processes in porous media often are based on mathematical models in form of partial differential 
equations or systems of such equations. The processes in porous media critically depend on knowledge of material 
laws, characteristic material properties of the considered porous media, which are represented in the model equations 
by coefficient functions. Therefore, the material properties have to be determined by suitable experiments. Usually 
such experiments can only reveal an output of the system caused by the material properties to a certain input. The 
material property itself has to be identified from this by mathematical and numerical methods (inverse modeling). 
This paper presents an approach for formfree and cascadic identification of nonlinear coefficient functions in a partial 
differential equation based on output least squares minimization. 

1. (Un) Saturated Fluid Flow in Porous Media 

Flow in an (un)saturated porous medium is described by the well-known Richards equation, which in its pressure 
head form is given by a mass balance equation 

and Darcy's law 

q = -K^)V(iP + z), 

where tp = ip(x, t) [Length] is the pressure head, q = q\x, t) [Length/Time] is the volumentric flow rate per unit 
surface area and z is the height against gravitational direction. 

The coefficients in above equations characterize the hydraulic properties of the medium, fluid retention 6(V>) 
[-] and hydraulic conductivity K(ip) [Length/Time]. These functions are monotone increasing and constant in the 
saturated region (ip > 0). Soil scientists work mostly with the van Genuchten-Mualem model (see [6]). Soil column 
outflow experiments are a suitable method to determine the hydraulic functions (see [2]). 

Column experiments exhibit a flow regime only in 9(t) x = 

one direction such that a spatially one-dimensional 
model suffices. The experiments involve draining 
a vertically oriented soil column of length L with 
known initial pressure head distribution tpo{x) near 
saturation by slowly decreasing the pressure head 
h{t) at the lower boundary. Mathematically this is 
modeled by a Dirichlet boundary condition. The flux 
at the upper boundary is adjusted to q = 0, there- 
fore a homogeneous flux boundary condition is used. 
The flux f(t) is measured at the outlet at the lower 
boundary: 

f(t) = q(L,t). 
Further the pressure head g(t) is measured at the 
upper boundary: 

g(t) = ip(0,t). Figure 1: Soil column 

The physical properties of the experiments allow us to assume that it suffices to describe the flow in the column by 
the Richards equation in one spatial dimension: 

dte(il>)-dx(K(il>){dxil>-l))    =   0, (M)e(0,L)x(0,T) ) 
V(z,0)    =    Vo(z),    xe(0,L) \ (1) 

K(rl>{0,t)){dxil>-1) = 0,   <P(L,t)    =    h(t),      te(0,T). J 

x=L 
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Solving the model equation (1) for given hydraulic functions 0 and K and assigning the measurements f(t) and 
g(t) to 0 and K characterize the direct problem (DP: (Q,K) H-> (f,g)). The inverse problem consits of determining 
the hydraulic functions 0 and K from given measurements f(t) and g(t) (IP: (f,g) i-> (Q,K)). In general, inverse 
problems are ill-posed, therefore we need an appropriate regularization strategy for a stable solution process of the 
identification problem. 

2. Identifiability 

Assume / and g are obtained by exact, error-free measurements. If the mapping IP is injective, the coefficients 0 
and K can be uniquely identified. To prove this property of the inverse problem we apply the method of integral 
identities (see [1],[3]). 

According to [4], we define distinguishability of real continuous functions. 

Definition 1. Two real, continuous functions a,ß : [a,b] -¥ H are called distinguishable on [a,b], if there exists a 
finite partition a = x\ < ... < xn = b, such that on every interval (xi-i,Xi) either a(x) < ß(x) or a(x) > ß(x) or 
a{x) = ß(x) for x £ (a;j_i,Xj) is valid. One of the cases "<" and ">" has to be valid at least once. 

Now, we can present the identifiability theorem. 

Theorem 2. Let (/i,<?i) and (/2,S2) the solution of the direct problem for sufficiently smooth coefficients (Qi,Ki) 
and (02, K2), respectively. If the applied suction h(t) at the lower boundary is smooth and monotone decreasing in 
time and the pairs (&i,Ki) and (02, #2) are distinguishable on the interval [V>*,0] for ip* — —L + h(T) (the lower 
boundary of the experimentally considered pressure head region) with ©i(0) = ©2(0), then (/i,<?i) and (/2,<?2) are 
not identical on [0,T]. 

Proof.  See [1]. 

In the sense of the above theorem it is meaningful to assume that the inverse problem is uniquely solvable. 
Consequently the hydraulic functions fluid retention 0 (if 0(0) is known) and hydraulic conductivity K are identi- 
fiable from soil column outflow experiments. 
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Figure 2: Hydraulic properties (dashed) and identified hydraulic properties (piecewise quadratic) for 9 degrees of 
freedom (solid), left: fluid retention 0, right: hydraulic conductivity K, "optimal". 

Figure 3: Pressure head (left) at the upper boundary and flux (right) at the outlet (dashed: original, solid: recon- 
structed, points: "measured"), "optimal". 
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3. Stabilization of the Inverse Problem 

The inverse problem is stabilized by a parametrization of the hydraulic functions. We are looking for an unbiased 
parametrization, which does not take other a-priori shape informations as basic physical properties like 
e.g. monotonicity into account. 

A general approach uses spline functions to parameterize the functions that have to be identified. In this 
way we obtain e.g. a piecewise linear or a piecewise quadratic parametrization. Then the unknown functions are 
defined by real parameter vectors pe and pK of a finite dimension r, called number of degrees of freedom. A special 
aspect of such a parametrization is the fact that the fluid retention and the hydraulic conductivity are not coupled 
like in the van Genuchten-Mualem model. The low smoothness of piecewise linear functions 0 and K leads to 
low smoothness of the observations f(t) and g(t) corresponding to the measurements. Therefore an approach with 
quadratic B-splines is profitable. Apart from a local basis we can use a concept of hierarchical and multi scale basis. 
Such parametrizations correspond to projection methods for the regularization of inverse problems. Of course, a 
threshold rmax (depending on the discretization error, measurement error and the type of parametrization) exists, 
such that a parametrization with more than rmax degrees of freedom entails instabilities. Note that due to the local 
dependence of the unknown functions on the parameters only a reconstruction for the range of ^-values, which is 
covered by the experiment, can be expected. 
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Figure 4: Hydraulic properties (dashed) and identified hydraulic properties (piecewise quadratic) for 9 degrees of 
freedom (solid), left: fluid retention 0, right: hydraulic conductivity K, "non-optimal". 
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Figure 5: Pressure head (left) at the upper boundary and flux (right) at the outlet (dashed: original, solid: recon- 
structed, points: "measured"), "non-optimal". 

4. Numerical Identification by Output Least Squares 

The identification problem is transformed into a minimization problem for an error functional. We deal with 
usual output least squares functionals. The discretization of the coefficient functions leads to a finite dimensional 
optimization problem, where parameter vectors pe and pK have to be found which minimize 

M 2 N 

(2) 
2=1 

with positive weighting factors au ft and measured values f and g* at time points il and i\ respectively. For 
a numerical identification procedure the direct problem has to be discretized, too. We use a hybrid mixed finite 

element method described in [5]. 
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Efficient optimization algorithms need the value of the error functional (2) and its gradient. The gradient of 
the error functional can be evaluated in two ways: 
a) Finite difference method: We have to solve the direct problem 2r times for the one-sided and Ar times for the 
central difference quotient to compute an approximation of the gradient. 
b) Adjoint method: Differentiation of the discrete problem leads to an adjoint system of equations for the gradient. 
The combined solution process needs here about twice the CPU time of solving the direct problem. 

Adding a penalty term to the error functional (in accordance with the Tikhonov regularization) and constraints 
(e.g. monotonicity conditions) further stabilize the minimization procedure. Under the assumption that the Mualem- 
relation 

K*{Q)=KSQ
1/2 fi[l^{s)]ds 

SZW{s)]ds (3) 

where Ks is the saturated conductivity, is a realistic model of hydraulic conductivity, an appropriate penalty term 
is given by deviations between the hydraulic conductivity and the Mualem-model 

a^i^eo-^OOl2 (4) 
i 

for a small positive regularization parameter a. The values K*(&i) in the penalty term (4) can be obtained by a 
quadrature rule. For it we approximate the retention function 0 exponentially for values of the pressure head less 
than ip*. 

Major problems of minimizing the highly nonlinear functional are the high sensitivity to the initial value and 
the slow covergence. To eliminate these problems we embed the identification procedure in a multi level algorithm: 
start minimization with the least possible number of degrees of freedom, interpolate the result of the optimization 
for a parametrization with one ore more added degrees of freedom and use this as next initial value. In this context 
the hierarchical concept generates a scale by scale optimization. The values of the hydraulic functions at saturation 
0S and Ks usually are known from independent experiments and can be used to determine initial values for a 
parametrization with the least possible number of degrees of freedom. 

We simulate an experiment for a column with a van Genuchten-Mualem parametrization of the hydraulic 
functions and disturbe the "simulated measurements" by a gaussian distributed noise (5%). If a local basis is used 
for the parametrization, then the identification results depend on the so called refinement strategy for the increase 
of the degrees of freedom during the multi level algorithm. The results for two different refinement strategies are 
shown in figures 2 and 3 ("optimal") and in figures 4 and 5 ("non-optimal"). 
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M. HINTERMüLLER AND K. KUNISCH 

Inverse Problems for Elastohydrodynamic Models 

Inverse coefficient problems for variational inequalities arising in the elastohydrodynamic lubrication of a journal 
bearing are presented. The height of the gap between two rotating surfaces denotes the distributed parameter that 
has to be identified from estimates of the pressure in the lubricant between the surfaces. The variational inequality 
approach which includes the phenomenon of cavitation, i.e. the situation where the gap is not entirely filled by 
the lubricant, reduces to the Reynolds lubrication equation under fully-flooded conditions. Utilizing a regularized 
least-squares formulation the problem of existence of multipliers, and the importance and derivation of a first order 
characterization amenable for (structured) numerical realization are addressed. 

1. Introduction 

The direct problem. In this paper we consider lubrication problems for journal bearings. The schematic cross- 
section of a typical device is shown in Figure 1.   By u we denote the height of the gap between the ball and the wall 

CfyQo bubbles 
Huuld %°o 

Fig. 1: Ball bearing (schematic 
cross-section) 

Fig. 2: Solution of Reynolds 
equation 

Fig. 3: maxc (upper graph) and Vmaxc 

(lower graph). 

of the bearing. We assume that this height is small compared to the other dimensions. To avoid damage, a liquid 
(lubricant) is used to maintain strict positivity of the gap. The ball imposes a certain load which induces a pressure 
y in the lubricant. It is well known that the Reynolds equation 

-div ((pu3 /6ß)Vy) = ps 
du 

dx2 
(1) 

models the pressure distribution y. In (1) p and p, denote specific densities and viscosities, respectively, which are 
both assumed to be constant. Moreover, s is a constant relative velocity of the two surfaces in motion. Throughout 
we further assume that the ambient pressure pa is zero. Note that the weak form of (1) together with boundary 
conditions is the necessary and sufficient first order condition for 

minimize / e{u)\Vy\2dx - f (Fu)ydx =: Ju(y)    over   y € Hl(ft) 
Jn Jo. 

(2) 

with e(u) = pu3/6p and Fu = ps du 

Unfortunately, the Reynolds equation is not always adequate. Especially, in the cases of gaseous and vapor cavitation 
(indicated by the bubbles in Figure 1) a pressure distribution below the ambient pressure (in our case a negative 
pressure distribution) is predicted; see Figure 2, where the horizontal axis displays the number of grid points in 
(0,1). This behavior does not conform to physics. In certain cases, a remedy is given by adding the constraint y > 0 
in (2), i.e. now the minimization is taken over K := {y € Hl(ft)\y > 0}. The corresponding first order condition 
for the unique solution is the variational inequality 

Above 

(e(u)Vj/,V(u-y)) - (Fu,v-y) > 0   for all   v € K. 

■) denotes the usual Z,2(fi)-inner product. 

(3) 

The inverse problem. For several reasons the problem of estimating the height of the gap u from estimates yd of 
the pressure distribution y is of importance, (i) For a certain regime, from engineering experience a good estimate 
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of the pressure distribution may be available. Then the investigation of the possibility of damage of the bearing, i.e. 
u < 0, is of central importance, (ii) In cases of high pressure phenomena such as vapor cavitation a second equation 
modeling the influence of the pressure on the gap has to be taken into account. Hertzian contact theory yields 

u = u0+ / K(xi,x2)y(x2)dx2 ,    K(xi,x2) =     , °   (point contact), (4) 
Jn y/(xi - xi)2 + (x2 - x2)

2 

where u0 denotes a constant clearance. The numerical procedure for computing y from the coupled system (3) and 
(4) by 

(i) given yn compute un from (4); (ii) solve (3) to obtain yn+1 and go to (i) 

frequently fails to converge or converges at a low rate. A possible remedy is to reverse the procedure, i.e. 

(i)r given yn compute un from (3); (ii)r solve (4) to obtain yn+1 and go to (i)r. 

Note that (i)r amounts to a parameter identification problem in a variational inequality which - compared to (ii)r 

- is the difficult task. Therefore, subsequently we concentrate on the inverse coefficient problem in (i)r. 

2. First order necessary characterization 

There are several approaches to identify u from estimates yd of y. Here we concentrate on regularized least squares 
techniques, i.e. we consider 

minimize       \\\y(u) - yd\\l^Q) + f \\u\\2Hi{Q) 

(P) s.t.       ueU, 

y(u) = argmin{•/"(</)|y e K) , (5) 

where U = {u £ Hl(fl) n Z,°°(n)|0 <e<u<e< +oo}, and || • ||L2(n) and || ■ \\H^n) denote norms in L2(Cl) and 
i?i(0), respectively. Moreover, a > 0 is the regularization parameter. 

Problem (P) is a bilevel optimization problem due to the fact that (5) is a minimization problem with u as a 
parameter. Usually solutions to problems of type (P) are characterized by a first order system involving (Lagrange) 
multipliers. However, here the lower level problem prevents the immediate application of the classical theory, since 
by replacing (5) by its first order optimality condition (3) or equivalently by 

(e(u)Vy(u), Vv) - (\,v) = (Fu,v)    for all v £ Hl(il), 
A>0,    i/(u)> 0,    (y(u),X) = 0, 

certain regularity requirements may get lost and existence of multipliers cannot be guaranteed (even in practically 
important situations). Therefore, our aim is to derive multipliers that exist in very general situations, and such that 
the corresponding first order characterization is amenable for numerical realization. Combining these two aspects 
contrasts most of the available literature e.g. [1] and the references in [2]. 

Primal-dual penalization. The first step towards the existence proof is the reformulation of the lower level 
problem (5) by means of a primal-dual penalization technique. In fact, we consider 

minimize    Ju(y) + £|| max{Ä - cy,0}\\2L2{Q) =: J?(y)    over    y £ H^fi), (6) 

where Ä £ L2(ü), X > 0, is arbitrarily fixed, and c> 0. Note that we have replaced the explicit constraint y > 0 by 
an implicit one. The first order condition for the optimal solution yc(u) of (6) is given by 

(e(u)Vyc(u),Vv) - (Fu,v) - (max{X - cyc(u),0},v) = 0    for all v e Hl(ü). (7) 

Lemma   1.   (i) Let {cn} C 1R+ be a sequence satisfying cn ->• oo for n -» oo.   Then {yc„(u)} converges to 
y(u) (cf.  (5)) strongly in H\(ti).  (ii) The mappings $ : u i-> y(u) and $c : u H-> yc(u) are completely continuous. 

For the proof we refer to [2]. The aim of Lemma 1 is twofold: Due to (ii) it can be seen that (P) and the bilevel 
problem after reformulation of the lower level problem admit optimal solutions by using techniques similar to those 
in [1,2,3]. Assertion (i) can also be seen as a consistency result, i.e. by solving (6) repeatedly with increasing c, the 
solution to the original problem is approached. 
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The next theorem is a key result (for its proof see [2]): It clarifies the role of A, i.e. a suitable choice yields yc(u) > 0. 
Moreover, employing the concept of complementarity functions it aims at numerical amenability. For the latter 
purpose the following definition is necessary. 

Definition  2. A function 0 : K2 -> IR is called complementarity function iff 

Q(a,b) = 0     •£=>     a>0,b>0,ab = 0. 

Theorem 3-. Let {cn} C B+ with cn -> oo, and let 0 be a complementarity function. Then: (i) for 
X := max{-(Fu),0} we have yCn(u) > 0; (ii) {max{A - cnyCn(u),0}} converges weakly in L2(ü) to A(u) satisfying 

(e{u)S7y{u),Vv) - (Fu + X(u),v) = 0 for all v e #„(0),     Q(X(u),y(u)) =0 o.e. inn. 

Regularization. Due to the nondifferentiability of the max-operation in (7) we use a regularization technique as 
in [2,3], i.e. we set 

{x for x > ^ 
§(z + ^)2for \x\ < Yc 

0 for x < i. 

For the graphs of maxc and its first derivative, which we denote by sgnc, see Figure 3. 

For the regularized primal-dual reformulation of (P) which is equivalent to 

minimize        |||j/ - j/d|||2(n) + f IMItfi(n) 

(Pc) s.t.        ueU, 

(e(u)Vj/, Vw) - (Fu + maxc{X - cj/,0},w) = 0   for all v e Hl(ü) 

the analogues of Lemma 1 and Theorem 3 hold true. Note that the problem (Pc) can be viewed as a standard 
optimal control problem. Thus, applying the well-known (Lagrange) multiplier technique we arrive at the necessary 
first order characterization (in weak form): 

(e(ü*)Vp*)Vv)+c(sgnc(Ä-q/;),T;)+(jf*-yd)t;)    =    0    for all v e Hl
0(f2), 

(aB*Bü*+e'(ü*)(Vy*-VPc)-F*p*c,u-ü*c)    >    0    for all net/, 

(e(üc*)Vy*c, Vv) - {Fü* + maxc{Ä - cy*c,0}, w)    =    0    for all v € ^(fi). 

Here (y*,ü*c) 6 ffj(fi) x U is the optimal solution of (Pc), p* denotes the associated adjoint state, B represents the 
embedding operator from Hl{ü) to L2(ü), and F*, B* are the dual operators of F, B, respectively. Moreover, e'(-) 
is the derivative of e(-). 

Passage to the limit. Combining the previous results and passing to the limit for c -» oo yields 

Theorem 4. Let {cn} C IR+ with c„ -> oo, and Zei 0 be a complementarity function. Then (y*,ü*c) 
converges strongly-weakly in Hl(Cl) x U to (y*,u*), an optimal solution to (P). Moreover, there exist multipliers 
(p*,u*) G Hl(0) x (L°°(n))* satisfying 

(e(u*)Vp*,Vv) + (n*,v) + (y*-yd,v) = 0 for all v £ H^ü): 

(aB*Bu*+e'(u*)(S7y*-S7p*)-F*p*,u-u*) > 0 for all u e U, 

p*X*=0,    fi*y* = 0 a.e. inn, 

(e(u*)Vy*,Vw) + (A*,u)-(Fu*,u) = 0 for all v £ Hl{tt), 

Q{X*,y*) = 0 a.e. inn, 

w/iere A* is the weak limit of {maxCn{X - cny*n,0}} in L2(Cl), with X suitably chosen. 

For the proof of this result we refer to [2]. In contrast to the first order characterizations in [1] and the references in 
[2,3], the above first order necessary condition is immediately amenable for numerical realization. Observe also the 
mixed nature of this system, i.e. partial differential equations and a variational inequality resulting from a partial 
differential equation are mixed with (algebraic) pointwise conditions. This mixture requires further investigation for 
numerical realization. 
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3. Numerical issues 

For the discretization of the functions involved in the first order system of Theorem 4, we utilize finite dimensional 
subspaces and -sets yielding 

Nv Nu Nx 

Vh{x) = ^YiWi{x), uh{x) = 'Y^Uiui{x), Xh(x) = Y2Aili(x),.-- 
i=l t=l j=l 

We define Y:=(YU..., YNy)' e TR,Ny and analogously for U, P, A, and M. 

Let us briefly address some of the problems related to the pointwise conditions. For this purpose we assume that y is 
discretized by linear finite elements. If A is discretized by piecewise constant finite elements, i.e. functions constant 
over each triangle, then one introduces linear dependencies. In fact, if Yt > 0, then for all all six triangles building 
the support for wt(x) the coefficients Aj

e, 1 < j < 6, must vanish in order to satisfy Q(Xh,yh) = 0. On the other 
hand, even in cases where the infinite dimensional optimal solution satisfies strict complementarity, i.e. y{x) — 0 
implies X(x) > 0 for almost all x 6 Cl, in the discrete case we observe that at least one A\ may vanish although 
Ye = 0. Both cases introduce numerical difficulties in terms of linearly dependent rows in the discretized first order 
system. Frequently, this results in instabilities. 

For this reason we use the same number N of linear finite elements for y, p, A, and p. For u we use Nu linear finite 
elements. A more detailed analysis and corresponding choices for the discretization will be reported elsewhere. As 
a consequence of this choice the pointwise almost everywhere conditions are enforced at the nodal points of the 
discretization. This implies that Q{X,y) becomes 0Ar(A,y) = 0 with QN(A,Y) = (<£(Ai, Yi),... ,(t>{AN,YN)y, and 
<j> the complementarity function <f>(a,b) = \/a2 + b2 -{a + b) which satisfies <p2 G C1 (IR2; H). In order to circumvent 
the variational inequality in the first order system we apply an interior technique for U. More details on this aspect 
can be found in [2]. 

Another important issue comes from the fact that we cannot reliably estimate u on the singular set S0 = {x e 
tt\Vy(x) = 0}. If we assume that yd is a reasonable estimate for y, then we obtain a good approximation for S0. 
On S0 we fix u\Sa = ü|so, where ö|So is assumed to be available. 

Since the resulting discretized first order system is overdetermined, i.e. 5N + Nu equations have to be satisfied 
by 4N + Nu - \S0th\ variables, a stabilized Gauß-Newton approach is applied. For stabilization we use the forcing 
function p(r) = r3 with the norm of the relative residual as its argument. Globalization is achieved by an Armijo 
line search procedure. 

Figures 4-6 give the result of a test run with a = 10~4 for the lubrication problem. The dark gray part of the 
unit square represents the observation set, i.e. the set where uh is computed.   The algorithm needs 35 iterations to 

Fig. 4: Observation set. Fig. 5: Resulting pressure 
distribution yn- 

Fig. 6: Resulting height function un- 

reduce the Gauß-Newton objective to the order of 10-8. The relative error in the max-norm for yh is 0.142%. The 
corresponding error for Uh is 0.074%. 
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Domain Decomposition methods on nonmatching grids and some applica- 
tions to linear elasticity problems 

Domain decomposition techniques provide a powerful tool for the coupling of different discretization methods or 
nonmatching triangulations across subregion boundaries. Here, we consider mortar finite elements methods for 
linear elasticity and diffusion problems. These domain decomposition techniques provide a more flexible approach 
than standard conforming formulations. The mortar solution is weakly continuous at subregion boundaries, and its 
jump is orthogonal to a suitable Lagrange multiplier space. Our approach is based on dual bases for the Lagrange 
multiplier space. It has the advantage of locally supported basis functions for the constrained space. This is not 
true for the standard mortar method [2]. The biorthogonality relation guarantees that the Lagrange multiplier can be 
locally eliminated, and that we obtain a symmetric positive semidefinite system on the unconstrained product space. 
This system will be solved by multigrid techniques. Numerical results illustrate the performance of the multigrid 

method in 2D and 3D. 

1. Introduction 
The central idea of domain decomposition techniques is to decompose a global problem into subproblems of smaller 
complexity, and to "glue" the subproblems together in a suitable way. This is especially helpful for problems given on 
complicated geometries or problems with jumps in the material coefficients. Numerical examples for these situations 
will be given in the last section. As model problem let us consider the following linear elasticity problem with 

homogeneous Dirichlet boundary conditions 

j=l       J   l,m=l 

Here, 0 is a bounded, polygonal domain in Md, d = 2,3 and Hooke's tensor E is assumed to be sufficiently smooth 
and uniformly positive definite. The components of / G (L2(Ct))d are denoted by fu 1 < i < d. 

We use a geometrically conforming decomposition of ft into K non-overlapping polyhedral subdomains flk, 
i.e., fi = Uf=in*. Each subdomain is associated with an independent triangulations. Let us remark that the 
triangulations do not have to match at the common interface between two adjacent subdomains. The interfaces are 
denoted by ym, 1 < m < M, and inherit their triangulation from one of the adjacent subdomains. This side is called 
non-mortar side and the opposite one mortar side. The choice is arbitrary but fixed. We use standard piecewise 
linear in 2D and piecewise trilinear in 3D conforming finite elements on the subdomains and denote the product 
space by Xh. Then, the constrained mortar space Vh is defined by: Vh := {v G Xh | b(v,n) = 0, fi G Mh}, where 

the bilinear form &(•, •) is given as a duality pairing on the interfaces b(v,fi) := £m=i(M,M>7m> v £ Xh, (j, G Mh, 
and [v] is the jump of v on jm. The constrained space Vh consist of all functions in Xh which have a vanishing jump 
at the interface with respect to the Lagrange multiplier space Mh. Of crucial importance is the suitable choice of 

Mh ■= Iim=i(M>i(7m))d in the dennition of the constrained space Vh. The space Mh(lm) is defined by vm locally 
supportedmiinear independent functions i/f- Here> "m •= dim W0]h(jm), and Wh{lm) is the finite element trace 
space on 7m and W0;h(jm) ■= Wh{lm) n H^(lm). Now, the nonconforming mortar solution is obtained by: Find 

Uh G Vh such that 

a{uh,v) = {f,v)o,    v£Vh. (!) 

Here, the bilinear form a(-, •) is given as a(u,v) := J2k=i £i,j,i,m=i In,, EW™ d^t 9^7 dx> u'v G Xh' If P°^m^ C 

Mh(jm), the bilinear form a(-,-) is uniformly elliptic on Vh x Vh. Under some assumption on Mh(jm), optimal a 
priori bounds for the discretization error for the mortar finite element solution are obtained in the energy norm and 

the L2-norm, we refer to [2,5,7]. 
Dual bases for the Lagrange multiplier space. Here, we consider two different types of dual bases in 2D 

and 3D. The first one is spanned by piecewise linear functions and the second one by piecewise constants. Figure 1 
illustrates the shape of the dual basis functions. In the left part, the 2D case is depicted whereas in the right part, 
the isolines of a dual basis function at the two dimensional interface in 3D are given. In 2D, the support of our dual 
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basis functions is the union of exactly two adjacent edges, and in 3D it is in the interior of jm the union of four 
faces sharing one vertex. We remark that the definition of the basis functions associated with the vertex x% has to 
be modified if xf is close to the boundary of 7m , for details we refer the reader to [2,7]. In both cases, it is easy to 

tru tr 

Figure 1: Piecewise constant and piecewise linear dual basis functions in 2D (left) and 3D (right) 

see that the biorthogonality relation J^ ffiipf da = Sik JJm <£,m da holds, where $" and V™ denote the nodal basis 
functions of W0.ih(jm) and Mh{~fm), respectively. We refer to [7], for an analysis of the discretization error and some 
numerical results illustrating the influence of different Lagrange multiplier spaces. Of crucial importance is the so 
called mortar projection which is //^-stable. Optimal a priori estimates in the energy norm and the L2-norm can 
be obtained. 

2. Multigrid method on the product space 
Let us assume that we have a nested sequence of global triangulations and let us denote the associated unconstrained 
product spaces by Xh 0 < I < L. The meshsize is given by hi = 2hl+1. In contrast to the constrained spaces Vu 

the product spaces Xi are nested. We denote the standard prolongation operator by l\_x : Xt_i —> Xi and the 
restriction by It~ : Xt —► Xt-i. Here, we use a symmetric positive semidefinite variational problem on the 
unconstrained product space Xt which is given in terms of a projection Pt. We start with the definition of the locally 
defined projection operator Pi : Xi —> Xi 

M 

w==EE«i 
m=l 1=1 7  da 

l<i<d, 

where the nodal basis functions $™ of W0.i{^m) are extended in a trivial way on the non-mortar side of 7m. Then, it 
is easy to see that the kernel of PL is exactly the constrained space Vt. Let AUBU and Ci be the matrices associated 
with the bilinear forms a(-, •) on Xt x Xu b(-, •) on Xt x Mt and the projection Pu respectively, and /, the vector 
associated with the right hand side. 

Lemma 1. The following system is symmetric and positive definite. Its solution U[ 6 Xt satisfies ut€Vi and (1) 

Am ■= ((Id - Cj)M (Id - Ci) + CjAiCi)m = (Id - cf)/,. (2) 

Furthermore, the solution ut can be obtained by m = (Id - Ci)vt from any solution vt 6 Xt of 

Am := (Id - Cf )^(Id - Ci)vi = (Id - CDh. (3) 

Proof. It is easy to see that Ax and Ät are symmetric and positive semidefinite. Furthermore, Ax is positive 
definite on Vx and PiXt. Then, the triangle inequality yields that Ai is positive definite. Now, let m € VJ be the 
solution of (1), i.e., (Id - Cf)AiUi = (Id - Cf)fi, then by definition of Ct we find Cm = 0 and u« solves (2). 
Observing that Q is a projection, the second assertion follows immediately. 

In the following, we call vt £ Xt a solution of (3) only if it satisfies (3) and if vt eVt. To obtain level independent 
convergence rates for our multigrid method, suitable approximation and smoothing properties have to be established. 
In a first step, we consider level dependent grid transfer operators (7mod)|_1 and (/mod)/-! defined by 

(/mod)!"1  := (Id - CiLjj/-1,       (/mod)!-! ~ (H " C,)//_x. 

It is easy to see that these transfer operators guarantee C,_i(/mod)j~V = 0, wt € Xh and C;(/mod)(_iW;;_i = 0, 
uii-i € .Xj_i. Then, an appropriate approximation property can be found in [9]. It is based on the assumption that 
the iterate after the smoothing steps is in the constrained space Vx. Starting with an arbitrary smoother for Äh we 
construct a modified one satisfying this condition. Let Gj-1 be a smoother for ku e.g., a damped Jacobi method. 
Then, we define our modified smoother by G,_1 := (Id - G/)G/-

1(Id - Cf), and denote the iterates by y\ and y\, 
respectively. The following lemma shows the relation between the two different iterates. 
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Lemma 2.  Under the assumption $ = (Id- C/)^0, the iterates yj can be obtained from yj by a local post-processing 
StCD 

y\ = (Id - Ci)y\,        i > 1. 

Furthermore, the smoothing and stability properties of Of1 are inherited from GJ , i.e., 

IIÄjeJII = \\Aie\W,     ||ej|| < C||e?||, 

where e\ and e\ are the corresponding iteration errors and the constant C < oo does not depend on the level I. 

Proof.  Observing the special structure of the right hand side di and Äh we obtain by induction 

y\+l = y\ + (Id - d)Gl\U - Cj){dx - Äiy\) = (Id - d){y\ + G^tf, - Ä,yf)) = (Id - C{)y\+l. 

The second assertion follows from the observation that Cx is a scaled mass matrix, the norm of which is bounded 
independently of I. 

Our multigrid method for the solution of (1) will be defined in terms of the equation (3), the given modified transfer 
operators, the smoother G,-1, the implementation of which is realized in terms of Gf1 and one local post-processing 
steps at the end of the smoothing iterations. Then, we obtain level independent convergence rates for the W-cycle 
provided that the number of smoothing steps is large enough. 

3. Numerical results 
Here, we consider some numerical results illustrating the performance of our multigrid method in 2D and 3D. Our 
multigrid method has been implemented for scalar problems and systems of equations for 2D and 3D in the finite 
element toolbox UG, see [1]. We apply nested iteration and use a tolerance of 5 • 10~8 for the norm of the residuum 
as stopping criterion for the iteration. Our first example is a 2D plane strain example with discontinuous coefficients, 
discretized by linear finite elements on triangles. The computational domain is depicted in the left picture in Figure 
2, and consists of a nut and a wrench. Dirichlet boundary conditions are applied at the handle of the wrench, i.e., 
Ui{x,y) = l/3-||m-(a;,2/)T||-sin(a), u2{x,y) = l/3-||m-(z,2/)T||-(l-cos(a)), and homogenous Dirichlet conditions 
at the interior boundary of the nut. Here, m denotes the midpoint of the nut and we set a = 7r/30. The interface is 
located at the contact area between the nut and the wrench. We use a W(3,3)-cycle with a symmetric Gauß-Seidel 
smoother accelerated by a stabilized biconjugate gradient method (bicgstab). Table 1 shows the required number 
of iterations on each level and the number of unknowns. As it can be seen, the number of iterations is independent 
of the level. The distorted grid scaled by a factor of 10 is shown in the second picture from the left in Figure 2. An 
adaptive refinement strategy has been used, controlled by a residual based error estimator for mortar finite elements. 

Figure 2: Initial and final triangulation in 2D (left) and initial triangulation and isolines in 3D (right) 

As 3D example, we consider a "Sandwich"-like domain build up of two different materials. The domain ft is 
decomposed into three hexahedrons ft; := {[0, l]2 x [z{, zi+i]} where z\ :- 0, z2 := 1,z3 := 1-2, z4 := 2.2. In the right 
part of Figure 2, the nonmatching initial triangulation is shown. The non-mortar sides are defined on the middle 
hexahedron. We consider two different elliptic problems on this domain: a scalar model problem and a full linear 
elasticity problem, both with discontinuous coefficients. For both problems, we use the same initial triangulation, 
see Figure 2. We refer to the right picture in Figure 2 for the isolines of the solution at the interface in the scalar 
case. 

Let us first consider the scalar problem -divoVu = 1, on Ü := (0, l)2 x (0,2.2) where the coefficient a is piecewise 
constant, a\n{ := 100, i = 1,3 and a\n? := 1. Dirichlet boundary conditions are applied on the upper and lower 
part of the domain, u(x,y, z) = 1000 y/(x - 1/2)2 + (y - 1/2)2 • (1.0 - y/3) exp(-10(a;2 + y2)) if z = zx or z = z4, 
and homogeneous Neumann boundary conditions are taken on the remaining part of the boundary. In Figure 3, the 
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asymptotic convergence rates for the Jacobi and the Gauß-Seidel smoother are depicted. The numerical results show 

that the asymptotic convergences rates do not depend on the refinement level. Even for the V(l, l)-cycle, a constant 

asymptotic convergence rate is obtained. For the full linear elasticity example, we took as material parameters for 

Level #dof #iter 
0 108 1 
1 232 3 
2 904 4 
3 1,622 4 
4 2,350 4 
5 3,478 5 
6 5,380 5 
7 8,272 5 
8 12,844 5 
9 20,130 5 

10 30,878 5 

Level #dof # iter 
0 378 1 
1 1,839 2 
2 10,989 2 
3 74,865 2 
4 550,233 2 

Table 1: Numerical results for the 2D example (left), the distorted grid (middle) and the 3D results (right) 

the Lame constants ^|n,- = 8517 and X\Qi = 108280 for i = 1,3 and fi\ai = 2008 and X\Qi = 3567 for i = 2. Here, we 

apply an incomplete L[/-decomposition as smoother and use the V(3,3)-cycle as preconditioner for the bcgstab- 

method. Dirichlet conditions are applied on the top and bottom of the "Sandwich", Neumann boundary conditions 

on the remaining part of the boundary. The right table in Table 1 shows the performance of our method in 3D. 

Although the number of unknowns increases by a factor of 10 in every refinement step, the number of iterations to 

achieve the required tolerance is constant. We remark, that uniform refinement has been used for this example. The 
displacement of the solution scaled by a factor of 10 is shown in the middle of Table 1. 
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Figure 3: Asymptotic conv. rates for Jacobi and symmetric Gauß-Seidel smoother (3D scalar example) 
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ZUMBUSCH, G. 

On the quality of space-filling curve induced partitions 

The solution of partial differential equations on a parallel computer is usually done by a domain decomposition 
approach. The mesh is split into several partitions mapped onto the processors. However, partitioning of unstructured 
meshes and adaptive refined meshes in general is an NP-hard problem and heuristics are used. In this paper space- 
filling curve based partition methods are analysed and bounds for the quality of the partitions are given. Furthermore 
estimates for parallel numerical algorithms such as multigrid and wavelet methods on these partitions are derived. 

1. The partition problem 

Finite-Element, Finite-Volume and Finite-Difference methods for the solution of partial differential equations are 
based on meshes. The solution is represented by degrees of freedoms attached to certain locations on the mesh. 
Numerical algorithms operate on these degrees of freedom during steps like the assembly of a linear equation 
system or the solution of an equation system. A natural way of porting algorithms to a parallel computer is the 
data distribution approach. The mesh with attached degrees of freedom is decomposed into several partitions and 
mapped to the processors of the parallel computer. Accordingly also the operations on the data are partitioned. 
Goals of a partitioning scheme are load-balancing and little communication between the processors. Sometimes 
also singly-connected partitions are required. If the partitions are determined during run-time, furthermore a fast 
partitioning scheme itself is sought. This is e.g. the case within adaptive mesh refinement of a PDE solver. 

The partitioning problem in general is iVP-hard [18]. There are many heuristics based on graph connectivity or 
geometric properties to address this problem [2,6,12,13,19]. In practice fast heuristics are known. However, there is 
not much known about general quality of these methods. In contrary there exist examples, where single heuristics 
give really bad results. 

In this paper we analyse a specific geometry based heuristic based on space-filling curves. It is cheap and helps to 
simplify the implementation of parallel algorithms [9,15,16,17,20,23]. We are interested in bounds for the quality of 
the partitions. This will lead us to general estimates on the parallel performance of advanced numerical algorithms 
on these partitions. 

2. Space-filling curves 

First we have to define curves. The term curve shall denote the image of a continuous mapping of the unit interval to 
the IRd. Mathematically, a curve is space-filling if and only if the image of the mapping does have a classical positive 
d-dimensional measure. The curve fills up a whole domain. For reasons of simplicity we restrict our attention to 
simple domains. We are interested in a mapping 

/  :   [0,1] =: J 4ÜC IRd,        / continuous and surjective (1) 

There are classical curves like the Hilbert-, the Peano- and the Lebesgue-curve, see [21]. However, we will also 
construct special space-filling curves on an unstructured mesh. 

The space-filling curve can also be used for the inverse mapping / from a domain Q, C Md to the unit interval I. 
This means that we can map geometric entities in Md to the one dimensional interval such as elements or nodes. 
Entities, which are neighbours on the interval, are also neighbours in the volume Htd. Unfortunately the reverse 
cannot be true and neighbours in the volume may be separated through the mapping. 

However, we can solve the resulting one-dimensional partition problem: We cut the interval I into disjoint sub- 
intervals Ij of equal workload with (J • Ij = I. This gives perfect load-balance and small separators between the 
partitions. The partition f(Ij) of the domain Q induced by the space-filling curve with \Jj /(/,-) D fi also gives 
perfect load-balance. However, the separators df{Ij) \ 3fi are larger than the optimal separators in general as we 
will see. 
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3. Quality of a partition 

We use a basic performance model for a distributed memory computer. The execution time of a program consists 
of computing time, which is proportional to the number of operations on a processor, and of communication time. 
Communication between the processors is done with message passing through some network and requires time linear 
in the size of data t = tfstartup + n* «bandwidth- 

We consider 0(n) algorithms linear in the size of data n, e.g. FEM matrix assembly for n finite elements, sparse 
matrix multiply or components of a multigrid algorithm such as a grid transfer or smoother, see [2,10]. The parallel 
computing time is C\ ■ n/p for a partition of n data onto p processors. We call v := n/p the volume. The runtime 
depends on the communication time. The data to be transferred is proportional to the separator or surface Sj of 
the partition Sj := df(Ij) \ d£l. 

71 
^ = Cl~ + (^(«startup + S* «bandwidth) (2) 

This model suggest that we have to minimise the surface to volume ratio s/v of the partition for a high parallel 
efficiency of 

efficiency = l/(l + ^(-«startup + J * «bandwidth)) • (3) 

While the lowest continuous surface to volume ratio is obtained for the sphere by s = ^2dd-1 jf^^y^-1^, we 

usually deal with partitions aligned with the mesh. Hence the cube with s = 2dv(-d~1'>/d is of interest. In general we 
regard estimates of type 

s  < Cpart • vW* (4) 

with low constants Cpart as optimal. 

4. Estimates for space-filling curves 

The estimate for the locality of a discrete space-filling curve F we will use with F : [1,..., kd] t-t [1,..., k]d is of 
type 

II^(*)-^(V)I|3<C{/F^. (5) 

Gotsman and Lindenbaum [8] give an upper bound C = (d+3)d/22d for the Hilbert curve and tighter bounds for 
C — 65 for d = 2 and C = 23 for d = 3, which has been improved by [1]. Analogous estimates have been derived for 
the Hilbert curve [22] and the Peano curve [7]. It turns out that a similar curve, called H-index gives even better 
constants, see [5,14]. 

Lemma 1. Given a connected discrete space-filling curve F on a domain [l,...,k]d and a partition 
F{[j, •••■>j + v — 1]) ofv nodes, the surface s of the partition is bounded by eqn. 4. The constant Cpart depends on 
the curve. 

Proof, is based on eqn. 5 and the connectedness of the partition. It is sufficient to consider s of the bounding 
box. 

This lemma does not hold for curves of Lebesgue also called bit-interleaving [3], because the discrete partitions tend 
to be disconnected. However, we generalise the situation to unstructured and adaptively refined meshes by the 
following construction: We create an enumeration of a mesh by some heuristic in order to obtain a 'local' discrete 
space-filling curve. Then we do mesh refinement by some geometric refinement rules, see [2,4]. Each coarse element 
Ej is substituted by several smaller Ejtk elements. The enumeration is changed such that it cycles through these new 
elements Ejtk right after the elements Ej.x or Ej-lik. This leads in the limit to a continuous space-filling curve, see 
[11,15,20]. Alternatively a standard, continuous space-filling curve can be super-imposed onto the grid, see [9,17]. 

Corollary 2. Estimate 4 also holds for a space-filling curve partitioning of a (quasi-) uniform mesh by 
superposition of f or mesh dependent construction of f. 
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Estimate 3 combined with corollary 2 gives a speedup for large problems of 

efficiency = l/(l + ^CP^t^bandwidth .    P^ _ 
Ci (6) 

This implies optimal parallel efficiency for very large problems, n —>■ oo. Estimate 6 holds for a code for the solution 
of partial differential equations in the steps of setting up an equation system, a single matrix multiply, a fixed number 
of Krylov iterations. Furthermore, using the same space-filling curve an all grid levels, this also holds for an additive 
multigrid implementation and for standard multigrid if we neglect terms log n • Startup proportional to the number 
of grid levels. For the scalability of a gobal PDE solver an 0(n) multigrid solver is essential. Solvers with higher 
than linear complexity may scale in p like eqn. 6 but scale completely different in n. 

Hilbert curve, uniform mesh 
adaptively refined triangular mesh 
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Figure 1: Locality of partitions defined by a space-filling curve.  Hilbert curve on an uniform mesh (left) and an 
unstructured mesh with adaptive mesh refinement (right). 

Figure 2: Adaptive mesh refinement. Partitions defined by a space-filling curve (left) and a counter example for a 
non-local partition (right). 

5. Numerical experiments 

The proof of lemma 1 only gives a crude estimate on the constant in eqn. 4. Hence we look at two examples for 
two-dimensional partitions. In figure 1 the maximum surfaces s to different volumes v are given. We consider a 
uniform square [0, 2k]2 (counting the complete boundary) and a triangulation (counting the interior boundary only). 
The triangulation starts with a hexagon and angles of TT/3 and is refined adaptively. The triangulation is shown in 
figure 2 left. The different graphs in figure 1 show the ratios for different grid levels. The surface of small partitions 
comes close to the expected y/n behaviour while larger partitions have a limited boundary. 9fi is a natural limit. 

Lemma 1 did not deal with adaptive mesh refinement. Although, moderate refinement seems to give similar estimates. 
However, very strong refinement with an arithmetic progression of nodes during refinement shows a different picture. 
In this example, figure 2 right, s is proportional to v. This behaviour limits the usefulness of the partition method. 
This 'counter' example is related to examples where other heuristics like spectral bisection [19] also fail to perform 
well. 

6. Sparse grids 
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Space-filling curve partitions can also be used for the parallelisation of adaptive sparse grid implementations, see 

[25]. A certain choice of tensor products of (pre-) wavelet basis functions can give approximations with a low number 

of degrees freedom of the order v = 0(nlog _1n) for a spatial resolution of 1/n, see [24]. The discretization of 
PDEs on such sparse grids links geometrical nodes on different scales and at different distances. The surface of a 

rectangular shaped partition is of order s = 0(nlogd~2 n) which is rather large compared to v. Experimentally 
space-filling curves and other graph partitions heuristics give partition surfaces of similar size. 

S   < Cpartr-^— With V = 0{n logd_1 Tl) (7) 
~~ logn 

efficiency = 1/ (l + C^—) (8) v log rr 

We obtain scalability of wavelet algorithms on sparse grids. However, the parallel efficiency grows far slower in the 

problem size as for standard discretizations which scale excellently, compare eqns. 6 and 8. 
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DENZLER, JOCHEN 

Branch Classification for the Spectrum of the Orr-Sommerfeld Equation for 
Plane Couette Flow 

The spectrum of the Orr-Sommerfeld equation for Plane Couette Flow (solution continuum of the characteristic 
equation) undergoes only remarkably simple topological changes as the Reynolds number changes from 0 to oo. The 
case of Reynolds number 0, which can be treated completely in full rigor, determines most of the structure for 
any finite Reynolds number, but not for infinite Reynolds number, the only complementary phenomenon being the 
so-called mode crossing. 

1. Introduction 

The purpose of this paper is to give a detailed rigorous branch classification of the eigenvalue spectrum of the 
Orr-Sommerfeld equation 

{n~l (d2
y -a

2)-iay- A) (d2
y - a2)w(y) = 0 ,    w(0) =0 = w(l), w'(0) = 0 = w'(l) (1) 

for plane Couette flow (pCf). This equation arises as the linearization of the Navier Stokes equation for a plane 
viscous incompressible shear flow between two parallel plates moving with respect to each other, as is detailed out, 
e.g., in [2],[4]. It has been shown by Romanov [3] that, for any Reynolds number 1Z and any wave number a, all 
eigenvalues satisfy Re A < -ß < 0, and also that asymptotic stability of the solution under the full Navier-Stokes 
equations ensues from this in the given case. 

Given such a result, one still has to beware that the basin of attraction of the asymptotically stable solution 
may be very small, and it is in fact generally believed to shrink indefinitely as U -> oo in the case of pCf. This 
explains superficially why instability is observed at large 1Z in spite of Romanov's stability result. A more detailed 
account of the phenomenon is lacking. Trefethen and others [5] are working out scenarios where the non-normality of 
the linearized operator accounts for a large transient growth of initial perturbations, which will therefore be driven 
out of the basin of attraction by this effect. Much of that work is numerical, e.g. [6], or treats a model problem 
rather than the original equation [1], owing to the inherent difficulty. Any deeper understanding of the dynamics in 
a neighbourhood of the shear flow clearly requires not merely the half plane estimates for the spectrum, but a closer 
understanding of both the eigenvalues and the eigenfunctions coming with them (which amounts to a similar informa- 
tion as is contained in the pseudospectrum). This work gives rigorous results for the eigenvalues. The eigenfunctions 
will require further study, which is on the way. We give rough sketches of proofs only. Details will appear elsewhere. 

2. The characteristic equation 

By means of the transformation 

2t = (an)1/3,    X=-Tl-1(4it3 + 4t26)-n-1(8Tl-1t3)2,    e = Tl~x (2) 

the eigenvalue condition of (1) can be written as A(6, t,e) = 0 with the well-known Gram determinant 

/   Ai(<5 + itz) smh(4et3z) dz     I   Ai(6 + itz) cosh(4et3 z) dz 

/   Bi(6 + itz)smh(4et3z)dz     f   Bi(S + itz) cosh(4et3 z) dz 

It is sufficient to study this equation for t > 0 and complex S. Simplifications of (3) occur in various limiting cases. 
The case U -> 0, e ->■ oo, physically irrelevant as it may seem, leads to |f((5 + it) = |i(<5 - it) and can be handled 
comparatively easily and elegantly. It turns out that it not only gives the branch structure for sufficiently small H, 
but actually up to arbitrarily large H with exception of only finitely many (depending on 11) branches. The limiting 
case 11 ->■ 0 is therefore a good starting point for the branch classification by homotopy arguments, and we shall 
give details below. 

A(S,t,e):= (3) 
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3. Series expansion 

There is a remarkable series representation of (3) that seems to be completely new: 

Theorem  1. Let x := 45t2 and A := 64e2i6. Then we have the locally, in (C \ {0}) x IR x [0,oo[ 3 (6,t,e), 
uniformly absolutely convergent series expansion 

16iet4 = £ 5-V 
£{A + x)W 

P§°(x, A) + Pfc(x, A) cos Vx cosh VÄ + 

+ ^(x)A)coS^^^ + Pr^A)S^CoShVÄ+Pr(x,A)S^S^ß J VI J y/x J   K   '     '     y/x y/A      . 

(4) 

with polynomials Pj* consisting of monomials of which the joint degrees with respect to (x, A) are within the range 
given by the table: 

deg of mon's in pto pec 
3 

pes 
3 

psc 
3 

pss 

... from 4j 4j 4j + l 4j + l 4j + l 
...to 5j 5J+Ü/2J 5j + L0' + 1)/2J 5j + LÜ + 1)/2J 5j + Ü/2J + 1 

deg wrt A < 2j 4j 4j + l 4j 4j + l 

77ie apparent pole at x 
brackets. 

-A is compensated, in each order j, by a zero of order at least 4j + 2 of the term in 

The theorem is proved by means of a full Taylor expansion with respect to t of all terms under the integrals 
in (3). A lot of combinatorics is involved to recombine the terms into series (4). Explicit (though rather unwieldy) 
combinatorial formulas for the polynomials are available. 

In the case t < Od^l1/4), the j = 0 term of (4) in Theorem 1 is actually dominant and permits a full 
classification of branches in that domain: 

Theorem  2. Given e > 0 and C sufficiently small, independent of e, the zero set 

{((M)€Cx]R+ |£-1A((5,i,e) = 0, t < C^1/4} (5) 

{with the obvious interpretation of the case e = 0 as a limit e ->■ 0) consists o/real branches (6n(t),t), n > 2, only. 
These branches are totally ordered: ön(t) < ön+i(t), the limit w„ := lim^o 1\Jön(t) t exists and is independent of 
e £ [0, oo[. It holds 

(n-l)n<2^W)t<{ {n+*)n    f! [       nir ft 
for n even 
'or n odd 

w„ = rwr 
un/2 — tanwn/2 

for n even 
for n odd (6) 

For e = oo (where in (5) the corresponding limiting equation jr(6 + it) = JT(6 — it) appears), it holds 
limt_>0 2\j5n(t)t = (n — 1)TT. For arbitrary C, the same still applies to those branches indexed by n> no(C). 

These real solutions are the basis of the branch classification. Based on either the implicit function theorem (IFT) 
or, where cfcA = 0, on the Weierstraß preparation theorem (WPT), any solution to A(S,t,e) = 0 can be followed 
for ever decreasing t > 0, until it finally enters the domain covered by Theorem 2: In points where 9$ A = 0, the 
IFT fails, but WPT shows that a branch point does actually occur, and one can follow the solution continuum for 
further decreasing t (nonuniquely, though, with a choice of branches). Therefore all solution branches are connected 
to the real branches discussed in Theorem 2 through (possibly several) bifurcations. 

The proof of Theorem 2 is a Rouche counting argument, combined with an existence proof for real solutions by 
the intermediate value theorem, where the real solutions thus found already exhaust the total number of solutions 
determined by Rouche. 

4. Small or finite Reynolds numbers 

The behaviour outside the domain t < Od^1/4) is determined by the following theorem: 

Theorem 3. For sufficiently large e (small Reynolds number), the zero set Zf := {(Ö,t) \ t > 0, A(<5,t,e) = 
0} is homeomorphic to -Z+ := {(6, t) 11 > 0, ||(5 + it) = ^(6 - it)}, namely it consists of 
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(1) A family of real branches Rj, j > 1, connecting the (Ö2j(t),t) and (o~2j+i(t),t) of Theorem 2 into a single curve 
on which the coordinate t has exactly one critical point, a nondegenerate maximum. (Call this point rj.) 

(2) A corresponding branch Cj of complex solutions (öj(t),t) and (Sj(t),t) branching off at rj for increasing t 
and globally parametrized by t. As t -* oo, (ö~j(t) - it)e~2nt/3 converges to o_j < 0, the jth zero of the Airy 
function Ai (independent of e). 

For arbitrary e > 0 (not necessarily large), the same applies to those branches indexed by j > jo(e). 

Given this result, it follows that changes in the topology of Z+ can only accumulate as e -» 0 (7£ -> oo) with 
t —> oo at the same time. A quantitative analysis shows that they actually are confined to a critical domain where 
\t - \/3#| < 0(i_1/2 lnt) as t -> oo. By means of a separate calculation for the case e = 0 and comparison to e > 0 
one sees that bifurcations actually do occur for all branches (see Theorem 4 below). 

The figure shows the first few real branches for different values of e. The asymptotic behaviour as t -»• 0 is 
clearly visible, both for e < oo as stated in (6) and for e = oo, where the asymptotic behaviour is shifted. The 
change of topology which affects the first real branches, one at a time, will be discussed in the following section. 

5. The inviscid limit 

Here the following branch classification holds. (Remember that the 5n of Theorem 2 are numbered from n = 2. 

Theorem 4. The solution continuum ZQ   consists of 

(la) real branches R2j, j sufficiently large, connecting the (<$4j_i(t),£) and (d~4j(t),t) of Theorem 2 into a single 
curve on which the coordinate t has exactly one critical point, a nondegenerate maximum. (Call this point 
k2j.) 

(lb) real branches R23-1, j sufficiently large, connecting the (Ö4j-2(t),t) and (ö~4j+i(t),t) of Theorem 2 into a 
single curve on which the coordinate t has exactly three critical points, a nondegenerate minimum k2j-i and 
two nondegenerate maxima r2j-\ andr2j- 

(2) complex branches C2J-1 and C2J bifurcating from R2J-1 and R2j at r2j-\ and r2j respectively. These consist 
of pairs of complex conjugate solutions parametrized globally by t as in Theorem 3. This time, however, 
(Sj(t) — it)e~2ni/3 converges to zeros of J°°Ai(x) dx instead, as t -* 00. 

(3) topological circles 02j connecting k2j-\ with k2j, and also consisting of pairs of complex conjugate solutions 
parametrized by t. 

Numerical evidence suggests that "j large enough" means actually "j > 1", thus exhausting all branches. Without 
resort to numerics, all asymptotic statements hold for j > 1/ it is only the way how the ends are connected inside a 
compact set that is affected by the hypothesis "j large enough". 

The proof of this theorem relies on asymptotic expansions of Airy functions. It is very likely possible, by enhancing 
the qualitative asymptotic estimates entering in the proof with quantitative error bounds, to abandon the hypothesis 
"j large" in favor of "j > 1". We have however not carried this through. Numerical evidence also suggests that the 
mode crossings that R2J-1 and R.2j undergo as e ->■ 0 are the only bifurcations to occur, and that they occur one 
after another for j = 1,2,3,..., with no changes of topology being subsequently undone again. A rigorous proof of 
this at least for large j is currently under investigation. 
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The figure shows the first few real and complex branches for e = 0 (R, = oo), projected in either the (Re Ö, t) or the 
(Im J, t) plane. The complex branches are dotted. The dashed lines (t = \/36 and t = |Im5|) help to display the 
asymptotic behaviour. 

10- 

6. Outlook 

Next, a description of the corresponding eigenfunctions would be desirable. The method used to study the spectrum 
has this perspective in mind. In certain limiting cases, the eigenfunctions can be understood more easily: in 
particular, under the limit t -> 0, 2-y/tft -> w„, the ay term in (1) can be neglected, and the limiting eigenfunctions 
can be chosen as real. It is hoped that the classification of branches permits continuity methods to be applied to 
the eigenfunctions. 
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SERRE E-, RASPO L, BONTOUX P. AND PEYRET R. 

Spectral Solution of the Navier-Stokes Equations for Rotating Flows 

Direct numerical simulation by spectral methods are developed and used to study the instabilities in the Ekman 
and Bödewadt layers at the transition to the time-dependent regimes. The physical phenomena are characteristic of 
rotating flows with walls. The geometrical cavities are elementary geometries that are relevant of turbine applications 
and that also refer to typical configurations studied in fundamental investigations and in experiments. 
The three - dimensional Chebyshev - Fourier collocation method is based on a projection scheme to solve the coupling 
between the velocity and the pressure. The method devoted to annular domain is extended to fully cylindrical domain 
involving the axis of rotation. A special development has been required to deal with the singular behaviour of the 
coefficients when the radius tends to zero. The investigation was carried out in two types of generic configurations that 
are the forced throughflow in a rotating cavity and the confined flow driven by the differential rotation inside a rotor- 
stator cavity. Depending on the aspect ratio and on the Reynolds number, counter-rotating rolls can superimpose to 
the boundary layer flow near the disks under the form of annular and spiral structures. The characteristic parameters 
of the perturbations (wavelength, frequency, phase velocity, inclination of the spiral ) are shown to be relevant of the 

types I and II instabilties in rotating flows. 

1    Introduction 

Instability patterns are simulated with an efficient spectral method in different rotating flows driven by the differential 
rotation of the walls or by a throughflow. Two enclosed rotor-stator annular and cylindrical cavities and a rotating 
cavity with a superposed radial outflow are considered. These situations are relevant of air cooling devices of gas 
turbine engines. A characteristic of these flows resides in the coexistence of adjacent and coupled flow regions that 
are greatly different in terms of the flow properties and of the length scales as it is the case for the Ekman or the 
Bödewadt layers and the geostrophic core region. 

The characteristic parameters of the solutions are shown to be relevant with available theoretical and experimental 
results about type I and type II instabilities, that are two classes of generic instabilities developing above rotating 
disks [1]. The spatial structure of these instabilities consists of circular and spiral vortices on the boundary layers. 

2    Geometrical and mathematical models 

The geometrical models correspond to two disks of depth radius AR = i?i - Ro, where R0 and Ri are the internal 
and external radii. The geometrical domain can be open including radial inflow and outflow boundary conditions, 
or completely enclosed by one or two cylinders of height 2/i, the internal shaft and the external shroud. The open 
cavity rotates at the uniform angular velocity tt whereas the enclosed cavity is composed of a stationary part (stator) 
and of a rotating disk (rotor) at the angular velocity Q. 

The motion is governed by the three-dimensional Navier-Stokes equations written in primitive variables for an 
incompressible fluid. The two geometrical parameters refer to curvature and the aspect ratio, Rm = (R\ + R0)/AR 
and L = AR/2h. The scales for the dimensionless variables of space, time and velocity are [h, ft-1, QRi] respectively. 
The dimensionless spatial variables are denoted (r,z) and have been normalized to the square form [-1, 1] x [-1, 1], 
a requirement for the use of Chebyshev polynomials. The normalized spatial variables are denoted (r, z) and r = 
(2hr-a - b)/AR and z = ~z. The relevant physical parameters are the Reynolds number, defined as Re = tt (2h) jv 
and when the flow is submitted to a radial outflow, the mass flow rate, Q, is made dimensionless as Cw — Q/vR\. 
We note by radial outflow that the flow is forced from R0 to Ri and parallel to the disks plane. 
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In all cases, the boundary conditions correspond to no-slip conditions for u and w at the rigid walls. For the open 
cavity, an Ekman boundary layer flow [2] is considered at R0 and Rx. For rotor-stator cavities, the azimuthal velocity 
component at the boundaries conditions are v = 0 on the stator, v = (Rm + r)/(Rm + 1) on the rotating disk. 

3 Numerical model 

The solution method is based on a pseudo-spectral collocation Chebyshev-Galerkin Fourier method. The approx- 
imation of any flow variable * = (u,v,w,p) is derived from the following developments in truncated series, with 
-1 <r,z< 1 andO <6 <2ir: 

K/2-1   N,M 

*NMK(r,z,9,t)=    J2    E  ^nmP{t)Tn{r)Tm{z)e^6 

p=K/2 n,m=0 

Tn,Tm, are the Chebyshev polynomials and $nmp the spectral coefficients. 

The time scheme is based on the second-order backward differentiation formula for the diffusive term and on the 
Adams-Bashforth scheme for the nonlinear terms. The velocity-pressure coupling is performed with a projection 
algorithm [3,4]. For the cylindrical cavity (involving the axis), the numerical approximation method was modified 

with a dependent variables transformation (V = TV and p = rp). In this case the natural boundary conditions on 
V and p are then assigned to be zero for r = 0. The details of the technique are developed elsewhere in [5]. 

4 Rotor-stator cavity 

The velocity fluctuations display the spatial structure of instabilities and are computed at given instants with respect 
to the average flow solution. The local Reynolds number is defined by Res = ClSr/v, where 6 = (u/Q)0'5 is the 
length scale of the rotating boundary layer. 

Two kinds of axisymmetric instabilities have been computed succeeding to the stationary basic flow. The first one 
is a stationary instability on the Bödewadt layer, characterized by 3 pairs of circular rolls and which is observed 
(for the first time numerically) in the annular cavity (Rm = 5, L = 5) for Re = 330. This stationary axisymmetric 
solution has closely similar characteristics to the type II instability showed in experiments by [6]. 

When further increasing the rotation rate the instability is time-dependent in both cases of the annular cavity and 
the cylindrical cavity. In the annular cavity (Rm = 4, L = 5), for Re = 400 the solution is oscillatory (a = 4.7). The 
axisymmetric vortices are visible along the two layers and travel following the flow as in recent experiments by [7]. 

In the cylindrical cavities closer to the axis, the axisymmetric instabilities appears for Re = 4000, L = 2 and 
Re = 1600, L = 5. Differently to the annular cavity the Ekman layer over the rotating disk keeps stable. These 
vortices travel slowly inward in the Bödewadt layer down to near the axis which corresponds to a local Reynolds 
number Res ~ 27. These results in cylindrical cavities are closely similar with experimental results of [8] for a cavity 
of aspect ratio L = 0.5, who was the first to observe traveling circular waves during an impulsive spin-down for 
25 < Re,; < 125. Then following the analysis of Savas [8] the instabilities are of type II in both the Bödewadt and 
the Ekman layers. 

The rolls that progress under the form of rings in the axisymmetric solution, now constitute spirals arms. The 
transition to three-dimensional patterns was accelerated via "artificial" initial disturbances of general form a sin (p9) 
where p is an arbitrary number corresponding to an azimuthal wavelength and a the magnitude rate (scaled with 
respect to the azimuthal velocity). The angle of the spiral patterns can be defined by e as the orientation of the 
wavefront with respect to the azimuthal direction (it is defined positive when it is rolled up towards the axis of the 
disk in the rotation direction). 

Spiral patterns (unmixed with circular pattern) arise in annular cavities at large distances from the axis (Rm = 5) 
but also in the near axis region of cylindrical cavity where the confinement is important (L = 2). In the case of the 
annular cavity, an oscillatory solution (a = 21.4) is obtained with 22 spiral arms in both layers. Inside the Ekman 
layer, the angle of the spiral wavefront e decreases with r as -15.3° < e < -6.9° (Figure la) .  These 3D spiral 
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patterns have already been observed in experiments of the Ekman layer (see a review in Ref. [9]) that are referred 
as the type II instability. Close to the stationary disk the spatial structure of the vortices shows some similarities 
with that one on the rotating disk layer but the spiral arms form a positive angle, 11° < e < 23°. 

Mixed annular and spiral pattern is also observed in the cylindrical cavity of large aspect ratio L — 5 and in the 
annular cavity closer to the axis {Rm = 4, L = 5). For Re = 400 in the annular cavity, 18 spiral arms can be counted 
inside the Ekman layer, with an angle e, steeply decreases between R0 and R1: from -20° to -7.5°. The number of 
arms modifies between the shaft at i?0 and the shroud at R1 exhibiting a zone with dislocations (Figure lb) . These 
spiral patterns have characteristic parameters very close to the previous ones described for L = 5, Rm = 5 and are 
relevant to type II instability. Inside the Bödewadt layer, we observe in the annular domain 4 pairs of spiral and 
annular rolls. The latter develop in rings and the first develop into 18 spiral arms forming an angle 15.6° < e < 23° 
close to the shaft. The persisting axisymmetric structures interact with the spiral arms and travel inward. The 
coexistence of these two types of waves was described by [8] who identifies these spirals to the type I instability of 

Bödewadt layer. 

In the cylindrical cavity (L = 5) for Re = 1200, the temporal behavior exhibits an oscillatory regime (a = 1). For 
1.54 < r < 5, the vortices transform under the form of 5 annular structures while at larger distance from the axis 
rolls develop under the form of 6 spiral structures forming an angle 7° < e < 28° and exhibit pairing phenomena 

(Figure lc) . 

Figure 1: Three - dimensional display of iso-surfaces of the axial velocity component fluctuation, (a) Spiral patterns 
of the instability in annular cavity (i?m = 5 and L = 5) for Re = 330. (b) Spiral and annular patterns (Rm = 4 and 
L = 5) for Re = 400. (c) Spiral and annular patterns of the instability of the Bödewadt layer in the cylindrical 
interdisk cavity (L = 5) for Re = 1600. 

5    Rotating cavity submitted to a radial outflow 

The base flow solution is steady and axisymmetric and organizes itself symmetrically and parallel Ekman layer flows 
form on the two disks with the same mass flow rate [9]. In all cases the Reynolds number is Re = 1750. 

For Cw = 530 the flow is axisymmetric and oscillatory (a = 7.4) (Figure 2a) . We obtain good agreement between 
the computed value of a and the frequency reported from experiments by [10]. In the numerical solution six pairs 
of counter-rotating axisymmetric rolls are exhibited in the Ekman layer. A good agreement with the theoretical 
results is obtained. The range of the characteristic parameters is relevant with the axisymmetric mode of the type 
II instability. 

Multiple periodic solutions with different numbers of spiral arms following the periodicity of the disturbances, n > p, 
p > A-R/Ar (» 6) are obtained (Figure 2b) . Theses 3D spiral patterns have already been observed in experiments 
of the Ekman layer (see a review in Ref. [5]) and the characteristic parameters are in good agreement with those 
obtained in the relevant experiments [10]. Thus, the spiral structure of the computed rotor layer shows the same 
characteristics as the type II standard instability of the Ekman layer. 
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Figure 2: Three - dimensional displays of instantaneous iso-surfaces of the axial velocity component in the annular 

domain (Rm = 5, L = 3.37), for Cw = 530, Re = 1750. (a) Circular patterns of the axisymmetric instability.(b) 
Spiral patterns. 

6    Conclusion 

A Fourier-Chebyshev pseudospectral method has been proposed for solving the unsteady, 3D Navier Stokes equations 

in rotating cavities. The main computational difficulties come from the presence of the singularity at the axis and 

the incompressibility constraint. We obviated the first difficulty with a tranformation of the variables and the second 

one by means of a projection scheme. Three-dimensional simulations have shown axisymmetric and spiral instability 

patterns which are in good agreement with experimental studies and theoretical analyses for the type II and type I 
instabilities. 
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SOLONNIKOV, V.A. 

Lp-estimates of solutions of initial-boundary value problem for generalized 
Stokes equations 

We prove the solvability of the Cauchy-Dirichlet problem for generalized Stokes equations and obtain coercive esti- 
mates of the solution in anisotropic Sobolev spaces. 

Keywords: Stokes equations, Non-newtonian fluids, Hydrodynamical potentials. 

The present communication is concerned with the initial-boundary value problem 

^■ + A(x,t,^-)if+VP = f(x,t),        V-tf = 0,        iGfiCl3,    te(0,T), (1) 
at ox 

v(x,0)=vo{x),        v(x,t)        =a(x,t), (2) 

where unknown are a vector field v(x, t) = (v1{x,t),v2(x,t),v3{x,t)) and a function p(x,t). By A we mean a matrix- 
formed differential second order elliptic operator with real coefficients and by A0 we mean its principal part, i.e. the 
sum of all terms in A containing derivatives of the second order. We assume that the matrix Ao(x,t,iO is positive 
definite for arbitrary £ € H3 and for arbitrary fixed x € ft, t£ [0,T]. The domain ft is bounded, S = oft. 

When A = -V2I, then (1) is a well known Stokes system. The system (1) arises as a result of linearization of 
equations of motion of non-newtonian fluids. 

Our main result is the following existence theorem for the problem (1), (2). 

Theorem 1. Assume that S € C3, coefficients of A are bounded and the leading coefficients are continuous 
in (x,t) and belong to W]{ü), 1/q < min(l/p, (p - l)/p, 1/3) + 1/3, p > 1, for all t € [0,T]. Let the data f(x,t), 
vo(x), a(x,t) possess the following properties: 

1. / G LP(QT), vo e wt2/PW, aT £ W|-1/p>1-1/2,,(ST), S-ft G Lp(0,T;W^1/p(S)) wherep > 1, QT = ftx(0,T), 
ET = S x (0,T), äT=a-n{n- a); 

2. there hold the compatibility conditions V • VQ — 0, 

v0{x)\       =a(x,0),        ifp>3/2, (3) 

and the condition 
^■n = divsÄ(x,t) (4) 

where ft is the exterior normal to S, divs is the divergence onS,Ae Lp(0, T; Wp~1/p(S)). The equations v0{x)-n\s = 
a(x,0)-n and (4) are understood in a weak sense, and v0(x)T\s = aT{x,Q) is understood as an equation between two 

elements of the space Wp~3/p{S), ifp> 3/2, and as the condition of the boundedness of the integral 

fT  f   f ,-> ,     ^     -.   / MS/2       dtdSxdy 
/=7o Us^™-1*-™    Ux-vF + V'*' 

ifp = 3/2 (the function ft in the expression V0T is extended from S into ft with the preservation of class). 

Then the problem (1),(2) has a unique solution v £ W^l{QT), Vp <E LP(QT), and the solution satisfies the inequality 

wp
2_2/p(n) 

+l|3Xwr,,i-x,c»(ET) + [ ll*(',*) • <%F«,{S)* + [ W^Kr/P(s)dt + Wr,T]) (5) 
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where 

Ip[aT,T] = 0, if p > 3/2,        Ip[aT,T] = I,  if p = 3/2,        Ip[är,T].= ^^ |   ||Är(-,t)||Jp(s)dt,  if p < 3/2. 

Similar theorem holds in the two-dimensional case. 

For the Stokes system Theorem 1 is proved in [1] but with somewhat stronger norm of a ■ ft in the right hand 
side of (5). 

A fundamental role in the proof of this estimate is played by the analysis of the model problem for the 
generalized Stokes system with constant coefficients in the half-space, namely, 

-^+Mfa)ü+Vq = f(x,t),        V-u = 0,        xeM3, t>0,        Ü(x,0)=Üo(x), (6) 

■7ü + M-ßr)v + Vp = 0,        V-v = 0,        xeB,3
+,t>0,       v(x,0) = 0,        d        = a(x',t) (7) 

where 1R+ = {x3 > 0}, x' = (xi,x2) and AQ{-~) is an elliptic operator with constant real coefficients containing 
only second order derivatives. The ellipticity means that the matrix A0{i£) is positive definite for arbitrary £ £ K3. 
As shown in [2], the solution of the problem (7), (8) can be represented in the form of the simple layer potential 

Vk{r;t) = Y,       l    Tkm(x'-y',x3,t-T)hm(y',T)dy'dT,        A = 1,2,3, 
m=1Jo Jn* 

where Tkm are elements of the fundamental matrix of solutions of the system (6) and hk are linear combinations of 
some pseudodifferential operators applied to aj which can be written in the form 

/3=1       P        j=l J{1   J M- 

,3       I-* 
+ ' £ //    Wkm(x'-y',t-T)am(y',T)dy'dT),        k = 1,2, 

m=lJ0   J^2 . ' 

ß=l        P j=l Ju   Jll<- 

~lL^V\dy'+f I   W**V-v',t-r)«z{v',T)dv'dT) " Jm.2 \x — V I Jo JTR
2 ' 

where hk = (F'L)-1 hk; F'L is the Fourier-Laplace transformation with respect to xi,x2,t, T(x,t) is a fundamen- 
tal solution of the heat equation in H3. The functions Tkm(x,t), T{m(x,t) and Wkm, k,m = 1,2,3, satisfy the 
inequalities 

\DiTkm(x,t)\ < C(|i|)(|a:|2 +t)-(3+m)/2
i        |^m(M)l < c(\j\)(\x\2 + t)-<4+W>/2, 

\Di,Wkm(x',t)\ < c(j)(\x'\2 + t)-(3+lil)/2>        k + m<6,        1/^,^33(1', t)l < cO")t-1/2(l*'|2 +0"(2+ljl)/2 

for arbitrary t > 0, and they vanish, if t < 0. 
We show that if 

ä(x1,x2,0) = 0,        9a3(x1-c2,t) = ÖA1 + dA1 

dt dxi      ox2 

(which should be understood in the same sense as in Theorem 1), then 

"U"v(^ll(IR4x(0,T)) + H
VP

IILP(1R3.X(0,T)) 
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< c(E H^II^J-i/P.Va-i/a.)(]Rax(o,D) + J     llA3(->*)H^-Vp(IRa)
d* + TP/2-1/2 E /0     ll^ll^dR')*) 

j=l J—1 

.7=1 

+^E/TIIMU*)4 (9) 

Here the dot over W indicates that the corresponding norm is homogeneous and contains only principal terms, 
for instance, 

Inequality (9) and the estimate for the solution of the Cauchy problem (6) 

li"H;-(H3x(0,T)) + HV<(IR3X(0,T)) * c(H/X(IR3x(0,T)) + ll^l^-V^.)) (10) 

(obatined also in [3]) make it possible to prove (5) by a standard Schauder procedure (cf. [2]). 
Let us say a few words about the proof of this inequality. We introduce a vector field w(x, t) = V$(z, t) where 

$ is a solution of the Neumann problem 

V2$ = 0,    ietl,        —     =a-n 
on \s 

The problem is solvable, since /5 a • ndS = /„' dr Js divsÄ(x, r)dS = 0, and, as shown in [4], 

HV*(-,*)llk.(0) + ll«*(-,*)ll^(n) < iM;t)-*\\p
wr„(S) + \\A;t)\\pwr,riS)y 

For the differences vx = v - V$, pi = p + $t we have the problem of the same type as (1), (2) but with a ■ ft = 0, 
so we assume that this condition is satisfied by a in (2). 

Let us estimate v(x,t) and p(x,t) in the neighbourhood of arbitrary point x^ G S on a small time interval 
(0,*o) (this restriction is easily removed). Assume that the point x^ coinsides with the origin of our coordinate 
system and that the £3-axis is directed along the interior normal n(x^) = n(0). Let z3 = F(xi,xz) = F(x') be 
the equation of S in d-neighbourhood of the origin, and let i/j\(y), A G (0,d/2), be a smooth cut-off function equal 
to one for \y\ < A, to zero for \y\ > 2A and satisfying the inequalities 0 < ip\(y) < 1, \Djip\(y)\ < c(j)A-|j'1. We 
make the change of variables near the origin, according to the formula y' = x', y3 = x3 - F(x'), and we introduce 
the functions u = tp\v, q = ip\p. They satisfy the relations 

§J + Aoo(-^-)ü + V</ = fax + (V - V)g + (A00 - A)u + h{y,t) = h(y,t), (11) 
at ay 

V • u = (V - V) • ü + v • VV-A = g(y,t), 

*"|t=o = ^OCA,        ü\y3=o = ä(\ (12) 

where V is a transformed gradient: V = (^ -F^-^, ^-F^^, ^), i is a transformed operator A, A00(-^) = 

AQ{0,0,J-) = Äo(0,0, ^-) and fi = Ä(vipx) - tpxÄv + pVtp\. We extend u and q by zero into the domain \y\ > 
2A, y3 > 0 and we consider (11), (12) as equations in IR+. 

Further, we introduce the vector field wi(y,t) = W(y,£) where * is a solution of the Neumann problem 

V2$ = ff(2/,i),    2/GJR3.,        TT- =il>\as(v',t). 
ayz 12/3=0 

Then u\ = u - V\f, qi = q + ^t satisfy the relations 

dü\      A    , d ._     „        r      T-7   - 
-zr + Aoo(-5- ui+Vgi =/n,    V-« = 0, 
at ay 
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"i|t=o = v0(x - W(z,0) = UQ,    u\ya=0 = aiPx ~ V*(y,t)|»8=o = b(y',t) 

where hi = h - A00(^)wi. It is easily seen that b3 = 0. The function * is given by 

*(»,*) = -/ (y,Z'VF(z')-Ü(z,t)dz+ [   N(y,z)v-Vipxdz+ f   N(y,z',0)(a3 - VF ■ a)^{z\Q)dz' 

where TV is the Green function of the Neumann problem in TR?+. The function Dt(a3 - VF • a) is representable in 
the form (8), so we may estimate wi with the help of the Calderon-Zygmund theorem and of the well known bounds 
for ip-norms of the second derivatives of the solution of the Neumann problem in TR\. The functions üi, qx can be 
estimated by inequalities (9), (10). If A and t0 are small enough, standard calculations lead to 

Mk'\Q>,t)
+ l|v^W,<) ^K^ttt™.,)+ ll^ll^-/-^) + NI^-./p..-./(ap,(EaAt) + ip[Mt]) 

+cW(llvC,w»,> + MP
LpiQ2Kt) + \\p\\pLp{Q2X,t)),      vt 6 (0,t0), 

where ftA = {x € ft : |z| < A}, QA,t = ftA x (0,i), SA = <9ftA n S, £A,t = 5A x (0,t). The same estimate can be 
obtained in the neighbourhood of arbitrary point ft, so we arrive at 

+c(l|Vi7||*F(Qt) + M\lp{Qt) + \\P\\lp{Qt)),     vt e (o,*o). 

We consider p as a solution of the Neumann problem 

dp 
v  p — - v • ^/IU - /;, 

which allows us to show that 

V2p = -V-(Av-f),        ^\s = -fi-(Av~f)\s 

l|p(-,*)IU,(n) < c(||W||Mf2) + ||W||ip(s) + \\v\\LAQ) + ||/1Up(n)),        V* € (0,t0) 

(cf [1]). The norms of W and v can be estimated with the help of interpolation inequalities and of the Gronwall 
lemma which leads to (5). 

The work was done at the Mathematical center (CMAF) of the University of Lisbon whose hospitality is 
gratefully acknowledged. 
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SCHIRMACHER, ROLF 

The Use of Active Vibration Control for the Reduction of ICE Interior Noise 

First generation ICE high speed trains show a disturbing low frequency noise of about 100 Hz audible inside the 
coaches. It is excited by unround wheels, propagates via the bogie to the body of the coach and is finally radiated as 

airborne sound. 

A mixed concept of active suspension at the bogie in connection with adaptive residual noise minimisation 
inside the passenger compartment is successfully applied to the problem. A prototype system utilizing piezo ceramic 
actuators was installed and tested on the rolling rig of Deutsche Bahn in Munich. The noise level reductions at 
single harmonics were more than 12 dB averaged over the whole compartment and more than 20 dB at single seats. 
Measurement results and practical experiences with the system are reported. 

1. Introduction 

Low frequency interior noise poses an important problem for modern high speed railcars. One example for such a 
railcar is the German high speed train ICE. With the first generation of this high speed train, ICE 1, DB (Deutsche 
Bahn, German Rail) is operating high speed rail connections with up to 280 km/h. The intermediate passenger cars 
of this train, equipped with bogie type MD 530, exhibit low frequency vibrations at about 100 Hz. These vibrations 
are excited by unround wheels (with the fourth harmonic of the wheel rotational frequency being at the 100 Hz 
range at about 200 km/h and the third at about 250 km/h, both typical operational speeds for the German high 
speed rail network) and the sleepers below the rail (the sleeper passing frequency of 100 Hz corresponds to a speed 
of 216 km/h). 

The bogie constitutes a double elastic suspension, set up by a primary suspension directly on top of the axle 
bearings and a secondary suspension below the bogie bolster. Figure 1 shows a drawing of the Bogie MD 530. The 
secondary suspension exhibits spring resonances at the 100 Hz region, but there are also further resonances at this 
frequency range at different parts and subsystems of the railcar. 

Bogie bolster 

Primary suspension 

Actuators for AVC 

Figure 1: Bogie MD 530 as used at the ICE 1 passenger coaches. The car body is loaded on top the friction blocks. 

The car body itself is a large (26.4 m long, up to 3 m wide) aluminium structure with a high modal density of 
structural as well as acoustical cavity modes. The vibration enters the body through the bogie-body interface and 
is well predictable because of the harmonic excitation. 

2. Active Vibration Control Concept 

As the railcar body is supported by only two friction blocks on each side of the bogie and there are no clearly visible 
flanking transmisson paths (e.g., no large dampers in parallel to the secondary suspension), it was decided to set 
up an active vibration control system which actuates at the bogie-body-interface [1,2].  By this, four point forces 
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should be sufficient for an active control system supressing the vertical vibration. The horizontal degrees of freedom 
were assumed to be of minor importance, as the secondary spring should be softer in the off-axis plane. Preliminary 
experiments and field measurement data (high speed train rides) gave a need for an active control force of about 
200 N at 90 Hz for a predominant wheel harmonic. This was set as a design target for the actuator systems. By using 
actuators at this interface, the necessary control forces are comparatively low because the whole passive suspension 
is still used to reduce them. 

As there surely are flanking transmission paths in parallel to the friction blocks, it was decided to use error 
microphones distributed inside the car as control inputs. By this, some aspects of Active Structural Acoustic Control 
(ASAC, minimisation of the radiated air-borne sound instead of some structural quantity) are combined with aspects 
of active vibration isolation (cutting the power flow at some prominent points). This concept turned out later on 
to be a key element of the success of the system as it really shows that acoustic minimisation does not necessarily 
imply the minimisation of vibrational quantities. 

To generate the compensation signal for the actuators, a feed-forward scheme utilizing a revolution counter was 
used. By this, any feed-back problems of the actuator output to the control system reference signal are eliminated. 
This controller design lead to a very robust active system. 

3. Actuator System 

The most critical system components are the actuators. This is a very typical situation for active noise and vibration 
control. For the active control of the 100 Hz vibration, about 200 N at 90 Hz are needed on each side of the bogie 
according to preliminary investigations. The actuators also have to fit into the bogie design with its space restrictions. 
As a result, piezoceramic driven inertial mass actuators were developed. These actuators fit into the free space of 
the inner secondary suspension springs even under all driving conditions of the bogie. Figure 2 shows a sketch of 
such an actuator system. 

Figure 2: Inertial mass actuator system as used for the active control of the ICE 1 vibrations. 11 kg lead mass 
suspended from a piezoceramic drive unit with a maximum amplitude of 140 /jmpp and fitting into the inner 
secondary suspension spring. 

The inertial mass is a lead hull mass carried by an inner steel element. The drive unit is a stacked high voltage 
piezoceramic actuator giving a maximum displacement of 140 ßmpp. Two of these elements, each hanging inside the 
inner secondary suspension springs, give the necessary dynamic force at each side of the bogie bolster. The piezos 
were driven by a 100 W high voltage amplifier each. 

As the actuator systems could be made out of commercially available key components, these actuators were 
very cost-effective for the experiments. Further on, much experience on the practical applicability of 'new' actuators 
was gained throughout the development as well as the experimental work. 

4. Experimental Results 

A bogie MD 530 was equipped with the active vibration control system as described above and mounted below an 
ICE 1 intermediate car. The whole car was tested on the rolling rig of DB in Munich. This research facility allows 
test drives up to more than 500 km/h, curve simulations by car tilting and low frequency (up to about 20 Hz) track 
simulation of previously measured existing railway lines. By this, the sleeper passing frequency is not modelled on 
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this test stand, but the whole range of vehicle ride dynamics is modeled by the facility. 

Tests were performed with different wheelsets showing different unroundnesses of the wheels, for different 
speeds, for run-ups, for different simulated lines and with and without tilting for curve simulation. At all these 
various conditions, interior noise reductions in the 80 to 120 Hz range (the working range of the control system) 
were found. With constant driving conditions, for single wheel harmonics, spatially averaged reductions were more 
than 12 dB with single seat reductions higher than 20 dB. Figure 3 shows some typical results in the upper half. 

Active interior noise control with piezo actuator 

      without active system  —     with active system 

spatially averaged SPL 

220       240       260       280       300       320       340       360       380 

Frequency [Hz] 

Figure 3: Spatially averaged sound pressure level inside the ICE 1 passenger car at a rolling rig test drive with 
160 km/h, extremely unround wheelset. Top: working range of the active control system showing about 12 dB 
spatially averaged reduction at the fifth harmonic at 98 Hz while also operating on the fourth and sixth harmonic 
(the system was not set up to work on the second wheelset with a slightly higher diameter and thus lower freqencies 
as well, the 95/110 Hz harmonics are excited by this second wheelset). Bottom: Frequency range of the second 
harmonic of the working frequencies, showing sound pressure level increases due to piezo nonlinearities. 

As shown on the lower half of figure 3, the actuator drive units are not usable that way for a practical system. 
Due to the nonlinearities of the piezocreamic based on the varying dynamic load during the cycle as well as on the 
hysteresis, the ceramics produce quite significant higher harmonic distortion. As the actuator system was driven 
below its mechanical resonance, these distortions are further amplified in terms of dynamic force compared to the 
displacement nonlinearities typically stated for piezoceramic materials. As a result, the sound pressure level did for 
some measurements notably increase at the higher harmonics frequency range, mostly for the second harmonic of 
the active control frequencies. 

This drawback does not only occur with piezoceramics but was also shown with magnetostrictive materials at 
test stand experiments in a comparable environment [4]. Although much research is focused on that topic, including 
modelling and real-time control strategies for the materials, no practical solution has been found so far. 

Nevertheless the validity of the concept and the feasability of active interior noise control for high speed railcars 
was demonstrated by the experiments as high reductions of the interior sound pressure levels were reached. 

Figure 4 demonstrates the validity of the concept regarding the mixture of active suspension and interior noise 
control. In that figure, the sound pressure level distribution inside the car is shown with the system switched on and 
off for a 200 km/h test ride. As can be seen, the sound pressure level is reduced through the whole interior space 
by the application of only four dynamic point forces. It should be noted that the horizontal vibration levels at the 
bogie bolster as well as some vertical vibration levels, e.g., at the floor of the passenger compartment increased due 
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to the operation of the active system. This clearly demonstrates the benefits of the concept of error microphones 
and compensation forces. 

Active Interior Noise Control at the ICE 1 
Sound Pressure Distribution, v=200 km/h, Frequency Band 95 to 100 Hz 

m Active System off 

Figure 4: Sound pressure distribution in the 95 to 100 Hz band inside the ICE 1 passenger compartment, at a test 
ride with 200 km/h on the rolling rig. Active system off (top) and on (bottom) showing the global reduction through 
the whole interior space. 

5. Conclusion 

The feasability of an active low frequency interior noise reduction system for a high speed train was demonstrated by 
rolling rig measurements. A concept of sound minimisation by control forces showed up to be essential for the sucess 
of the system. The piezoceramic actuators showed to be unusable for practical applications due to nonlinearities. 
Nevertheless, significant noise level reductions in the working range of the system were demonstrated. 
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STöBENER, U.; GAUL, L. 

Active Vibration and Noise Control by Hybrid Active Acoustic Panels 

In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures 
is proposed. The treatment is manufactured as sandwich structure and is called Hybrid Active Acoustic Panel. The 
passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of 
the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain 
frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the 
active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout 
a Hybrid Active Acoustic Panel is manufactured and experimentally tested. The experimental results validate the 
proposed concept. 

1. Introduction 

Different concepts of hybrid passive and active damping treatments have been developed and proposed, such as 
the Electro Mechanical Surface Damping [2,3] and the Active Constrained Layer Damping [1]. Most of these 
hybrid damping treatments are designed to enhance the viscous damping by increasing the shear or compressional 
deformation of the passive layer or to create additional energy dissipation in electric shunts. The Hybrid Active 
Acoustic Panel, which has been first proposed in [4], is not designed to improve passive energy dissipation but to 
combine viscous damping effects and active control moments. 

A hybrid system for acoustic applications is proposed by VEERAMANI AND WERELEY in [6]. Their hybrid system is 
developed in order to reduce the sound transmission between a sound source and a receiving chamber and is based 
on a Kevlar-epoxy composite plate. The used damping layer (3M Scotchdamp ISD-112) is embedded within eight 
Kevlar plies and one PZT actuator is bonded to one surface of the plate. In contrast to this hybrid treatment the 
Hybrid Active Acoustic Panel is designed to reduce the sound radiation of an existing housing. 

excited mode shapes 

sound radiation 

excited mode shapes 

sound radiation 

*^S*>\ 

" «*4r5S4 \<Ä 

Figure 1: Concept of the Hybrid Active Acoustic Panel 

Passive damping measures for the reduction of noise radiation from vibrating structures such as damping coatings 
or absorbers are successfully used especially for the high frequency range. On the left hand side of Fig. 1 the 
housing of a sound source is depicted. The housing is covered by a foam mat. The vibration of the housing causes 
deformations of the foam mat and due to the viscoelastic material behaviour damping takes place. The dissipated 
energy reduces the structural vibration and the related sound radiation as well. The reduction in the low frequency 
range is more difficult because the increase in space and weight is significant. Compared with passive measures, 
active vibration control efficiently reduces sound radiation for low frequencies by lightweight actuators. On the right 
hand side of Fig. 1 the foam mat and an active plate is bonded to the outer side of the housing. The remaining 
vibration in the low frequency range is now counterbalanced by the bending moments generated by the actuators. 
Therefore a combination of passive damping layers and active vibration control leads to a broadband reduction of 
sound radiation by a minimum of additional mass with respect to the housing. 
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2. Selection of the passive layer thickness 

The Hybrid Active Acoustic Panel consists of a foam mat and a thin aluminum plate, as shown in Fig. 1 and 2. 
For high sound absorption coefficients the foam is made of a melamin resin. The coefficients are listed in Table 1 
for two different thicknesses and five different frequencies. These data are adopted from the manufacture data sheet 
and are defined by DIN 52212. It can be seen that the absorption increases with higher frequencies. 

frequency 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 
sound absorption coefficients (10mm mat) 0.06 0.08 0.10 0.17 0.31 0.38 
sound absorption coefficients (20mm mat) 0.07 0.09 0.16 0.30 0.54 0.76 

Table 1: Sound absorption coefficient of the foam mat 

The selection between the two thicknesses depends on the sound absorption coefficients and the number of modes 
in the low frequency range. Regarding the 10 mm foam mat an appreciable decrease of radiated sound is achieved 
for frequencies higher than 1000 Hz. Approximately the same order of sound reduction can be obtained by using the 
20 mm thick foam mat for frequencies starting from 500 Hz. Therefore the frequency limit mentioned in the abstract 
of this paper is 1000 Hz for the thin mat and 500 Hz for the thick plate. 

The number of eigenfrequencies and the eigenfrequencies u>i of the base plate with free boundary conditions can be 
calculated analytically by the equation 

A;7T2L E 
a2    Vl2p{l-v2Y (1) 

where p is the plate density, E is the Youngs modulus, v is the Poisson ratio and tp is the thickness, a is the 
lenght of the plate. Aj is a factor which depends on the nodal pattern and the boundary conditions as formulated, 
e.g., by WARBURTON in [7]. For p = 2700kg/m3, E = 70000N/mm2, tp = 10mm, a = 500mm the number of 
eigenfrequencies between 0 and 500 Hz is 2 whereas between 0 and 1000 Hz 7 eigenfrequencies are calculated. Taking 
into account that the control of 7 modes is possible and a minimum of mass and volume is desired for the hybrid 
panel the 10 mm foam mat is chosen for further investigations. 

— < 

Figure 2: Base plate, 10 mm and 20 mm foam mats and aluminum plate 

3. Layout of the active plate 

Since a modal controller is used for the active vibration reduction the mode shapes of the Hybrid Active Acoustic 
Panel are required. The panel is a multilayer structure with nonlinear and nonisotropic properties, therefore the 
determination of the mode shapes is difficult. In a first step the modes of the base plate are calculated. For the 
calculation Kirchhoff plate theory and the formulas of WARBURTON [7] are used, where the characteristic beam 
functions, 

4>i(x) = 1 for m = 0,      4>i(x) = 1 
2x 

for m = 1, (2) 

i(x) = cos7i     + fcj cosh7l       for m = 2,4,6 

<px(x) - sin72 (  J + k2 SUÜ172 f - - - j   for m = 3,5,7,... 

with fci = 
sin O.571 

sinh O.571 
tan O.571 + tanh O.571 =0,   k2 =  S"*  ' J2 ,   tanO.572 - tanhO.572 = 0, 

smh O.572 
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approximate the shapes. The same functions are used for the y direction. The results of the calculation are shown 
in Fig. 3 in the upper row. In a second step the mode shapes of the base plate are evaluated by an experimental 
modal analysis. These results are listed below the calculated modes in Fig. 3. Obviously the calculation and the 
experiment leads to the same modes. 

Since the bending stiffness of the base plate is much higher than the stiffness of the foam mat and the active plate 
it is assumed that the mode shapes of the hybrid panel are dominated by the shapes of the base plate. In order to 
validate this assumption a modal analysis is carried out for the coupled hybrid structure. It has to be noticed that 
the results of this analysis have to be discussed carefully since modal analysis is based on linear theory. Therefore 
the results, which are depicted in the lower row of Fig. 3, have to be interpreted in the context of the results for the 
base plate and under the mentioned assumption. Only the modes (2,0), (2,1), (3,0) and (0,2) are identified for the 
hybrid panel whereas the modes (1,1) and (1,2) do not occur. 

mode shapes 

(2,0) (1,1) (2,1) (3,0) (0,2) (1,2) 

hybrid, 
plate 

Figure 3: Calculated and experimentally evaluated mode shapes 

Using the information of the identified modes the PVDF sensors are placed at the locations of maximum strain 
which correspond to the locations of maximum curvature. The sensors are arranged in an array and their outputs 
are assembled by a modal sensor matrix in order to filter modal displacements or velocities respectively. Therefore 
the condition of the modal sensor matrix has to be taken into consideration for the sensor placement. Details of the 
sensor placement are discussed in [5]. The determined sensor positions are indicated by the shaded areas in Fig. 4. 

The creation of the actuator layout is based on the idea to represent the actuator function by bending moments 
along their edges. Therefore the actuator edges have to be adapted to the nodal lines of the mode shapes. The 
actuator design is also discussed in [5]. According to the mentioned design rules the layout shown in Fig. 4 has been 
created. The white arrows indicate the direction of induced strain. 

«»«■«A 

40 190 

-t 
175 

500 

740 

500 

Figure 4: Test panel 

4. Experimental test of the panel 

For experimental investigations the manufactured Hybrid Active Acoustic Panel is clamped into a wooden frame 
which is a part of an acoustic enclosure. To obtain free boundary conditions rubber strips are used as spacers between 
the frame and the base plate of the test structure. At the outer side of the acoustic enclosure an electromagnetic 
shaker is connected to the base plate. Inside the enclosure three microphones are positioned to sense the radiated 
sound pressure. Microphone 1 is located at the center of the upper edge of the panel, microphone 2 is placed at 
the right upper corner of the panel and microphone 3 is positioned at the center of the panel. The distance of all 
microphones to the surface of the panel is 20 cm. Swept sinusoidal excitation of 3 Newton amplitude is used to 
generate the vibrations and to acquire the radiated sound pressure for a frequency range from 0 to 800 Hz. This 
measurement is done for the base plate without coating, the hybrid panel without active control and the hybrid 
panel with active vibration control. The results are plotted in Fig. 5 and it can be seen that a significant reduction 
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is achieved by the passive layer. The active component enhances the reduction especially for the mode (3,0) since 
the chosen actuator layout enables a high controllability for this mode. 

200    300 400    500   600   700   800     200    300 
frequency   Hz 

panel without foam mat        

400    500   600 
frequency   Hz 

panel with 10mm foam mat 

700   800      200    300    400    500   600   700   800 
frequency  Hz 

 panel with 10mm foam mat and control 

Figure 5: Sound pressure for the panel with and without control 

By using the same experimental setup but replacing the microphones by a sound intensity probe the radiated sound 

power is acquired. The results are shown in the bar charts of Fig. 6. Obviously the main reduction is achieved by the 

passive layer and the active component generates an additional decrease of the sound power. The great advantage 

of the active component is its variability. By modifying the controller the radiation characteristics can be changed 

in a preselected way, e.g., to suppress dominant harmonics. 
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damping 
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Figure 6: Sound power for the panel with and without control 
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ALLGAIER, R.; GAUL, L.; KEIPER, W.; WILLNER, K. 

Friction Induced Vibrations and Mode Lock-In 

In this paper the phenomenon of mode lock-in is investigated, which occurs in structures where vibrations are 
excited by frictional contact forces. In general "mode lock-in" denotes the coupling of substructure modes which 
form the vibratory response of the assembly. To study this effect an experimental beam-disk set-up was built and 
a corresponding FE model was generated. A friction model is formulated which incorporates the surface roughness 
by a statistical distribution. The time-stepping solutions of the FE model were checked for system resonances and 
compared to the experimentally observed mode lock-in. 

1. Introduction 

Friction-induced oscillations occur in many physical systems. A system of great practical importance is, e.g. the 
brake. Disc brakes can develop large sustained oscillations which are heard as "brake squeal". At present, no 
comprehensive model for the many phenomena of brake squeal exists. This paper presents a novel approach to the 
numerical modelling of brake squeal as a friction-induced oscillation. As a highly simplified physical system the 
beam-on-disc device is used. This apparatus has the advantage of reduced complexity by well-defined components 
and boundary conditions; well-defined confined contact area and a simple friction couple. However the dynamics 
of the beam-on-disc device has characteristic features of more complex systems. Friction in the plane of the disc 
leads to large out-of-plane oscillations of the disc; modes of the components "lock" into new "assembly modes" 
when coupled through a friction interface. The beam-on-disc device is therefore a well-suited test object for the 
development of numerical representations of contact laws. 

2. Mode lock-in 

The investigated system consists of two components (beam and disc) whose dynamics (natural frequencies and 
vibration modes) are well understood, when they are considered separately. The assembly, as coupled through 
a friction interface, has somewhat different system frequencies and modes. Non-linear friction coupling causes 
particular modes of the components to lock into one another. When mode lock-in takes place, a special base 
frequency with all of its higher harmonics can be observed in the resonant-like system response [1]. For example, 
when the second bending mode of the free beam and the (0,3) mode of the free disc are almost equal in frequency, 
lock-in occurs at almost exactly that frequency. 

3. Experimental beam-disc set-up and FE model 

The mode lock-in test set-up consists of two subsystems, a rotating disc and a clamped beam on a slide-way (Fig. 1, 
left). The disc has a diameter of 358 mm and a thickness of 25 mm. The beam has a variable length from 0 mm 
to 200 mm to vary its natural frequencies and a square cross section of 10 mm. The normal load on the beam is 
generated by weight (adjustable from 0.5 kg to 5 kg) which presses the two subsystems together. The vibrations 
during squealing of the disc are measured by a triax laser vibrometer whereas those of the beam are recorded by 

Figure 1: Experimental beam-disc set-up and FE model 
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a triax accelerometer. Noise generated by friction-induced vibrations is measured by a ^"-microphone. All of the 
experiments are conducted with a direct aluminum to aluminum contact at the friction interface. The complete FE 
model, with its refined contact area, used to simulate mode lock-in, is shown in Fig. 1 (right). The domain of the 
beam-disc model is discretized by first-order hexahedron finite elements only. From the number of nodes (4582) and 
the additional degrees of freedom by contact, one obtains 14288 DOF's altogether. Rigid beams are fixed between 
the center and the inner diameter of the disc. By rotating the center nodes, a circular movement of the disc is 
generated. In order to bring both components of the friction couple into contact a force is applied at the end of the 
beam. 

4. FE model update 

For improving the fit between simulated and experimental results, it is necessary to update the dynamic behaviour of 
the FE model corresponding to the experimental set-up. As a first step, both beam and disc are updated in free/free 
boundary conditions using natural frequencies and mode shapes measured by experimental modal analysis (EMA). 
Secondly, another EM A of the assembly is carried out. Using these data, the real acting boundary conditions and 
the modal damping values are taken into account by means of 3D springs and the Rayleigh damping approach in 
the numerical model. The model update is performed in a frequency range of 300 Hz to 20 kHz where besides the 
well-known out-of-plane modes several in-plane modes are identified as well. Fig. 2 shows the two mode shapes in 
assembled condition and identified by means of EM A which are involved when mode lock-in occurs. 

fDUc,m = 2256 Hz 
fDisc,c =2258#z 

fBeam.m = 2095 Hz 

fBeam,c   = 2101 Hz 

Figure 2: Squealing mode shapes of disc and beam (m=measured, c=calculated) 

5. Contact laws 

In order to obtain realistic surface parameters for the simulation, a contact interface model [3] based on a statistical 
description of the surface roughness is used to derive a non-linear constitutive description for normal- and tangential 
contact. A number of assumptions are made: elastic contact of metallic surfaces; contact points do not interfere 
with each other; isotropic surface roughness; surface parameters do not change with time; dry friction. 

Normal contact: Using these assumptions, each local contact area can be described by Hertzian theory. The 
normal force Kt to compress a summit i with normalized curvature s in contact with a plane is given by 

Ki(r1) = U-^=(C-Vy- 
6    ^crks 

(72 
(1) 

with the normalized gap function r), Young's modulus E, root mean square value of the curvature <rk, normalized 
height of the summit above a reference level C, and the root mean square value of the height distribution of summits a. 

Tangential contact: The tangential load-displacement function is formulated under the assumption of a total 
contact radius a calculated by Hertzian theory and a constant shear yield strength rmax of the junction. The 
tangential force Q, of an asperity i with the normalized relative tangential displacement v is given by 

Qi{v, V) = ^rmaxa
2   (1 - a2) + 2 " 

with the relative radius a between slip and stick areas. 

(2) 

Contact laws: For the implementation in a macroscopic model the relations have to be distributed on the apparent 
area of contact. This is done via a statistical model of the surface, which assumes that the distribution of heights 
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is Gaussian. With the probability P for a summit with normalized curvature s and height C, the apparent normal 
contact pressure p of all summits above rj and the tangential contact stress r as a function of v and n are given by 

7]   0 »?   0 

with resolution A of a square grid of points for the surface roughness measurements. 

(3) 

Fig. 3 shows the constitutive laws of the contact interface using the equations above and surface roughness data of 
both beam and disc measured by laser scanning profilometry with a resolution h of 1 (xm. The material is aluminum 
and the material parameters are E = 70000 ^3, Poison's ratio v = 0.33 and rmax = 385 N 

mm2 

'-4  -2       0 
Gap [mm] 

2       4 
x 10-3 

Figure 3: Normal and tangential contact law 

The friction relation, as shown in Fig. 3 (right), is implemented in a standard FE code [2] by means of a user 
subroutine using a radial return mapping approach. Whereas the normal contact law (see Fig. 3, left) is defined as 
a piecewise-linear pressure-clearance relationship in tabular form. 

6. Results 

Experimental results: The experimental part is carried out using the test equipment shown in Fig. 1 (left). 
The test conditions are as follows: beam length — 151.5 mm (with a second beam eigenfrequency of 2095 Hz); 
rotation speed = 2.4 BPM (corresponding to an average disc velocity of 40 ^ at the contact location); contact 
angle = 4° (between normal vector to the disc and neutral axis of the beam); normal load = 15 TV. 

0     0.5      1 
Freq. [Hz] 

1.5 
x 104 

Figure 4: Spectrum from lock-in response for disc (left), beam (middle) and near field sound spectrum (right) 

Fig. 4 shows an example of mode lock-in where the spectrum contains a dominant frequency and all of its higher 
harmonics. The lock-in frequency is determined by the third eigenfrequency of the disc (2256 Hz). However the 
experimental data show, that lock-in does not occur at exactly that frequency, but at a slightly lower one (2215 Hz). 
In contrast to the spectrum of the beam (Fig. 4, middle), which contains seven harmonics, the frequency response of 
the disc (Fig. 4, left) shows four harmonics only in the frequency range considered. Furthermore, it can be observed 
that the amplitudes of the beam harmonics decrease monotonically, whereas the amplitudes of the disc harmonics 
show a completely different behaviour. To verify the results described above, squealing generated during mode 
lock-in (Fig. 4, right) was measured. The sound spectrum has likewise a dominant frequency and higher harmonics. 

Numerical results: In the following section the FE model developed previously is applied to a non-linear time- 
marching solution. Beam length, rotation speed, contact angle and normal load are equal to the values used in the 
experimental part whereas the friction relation, found in Section 5, is varied. 
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0     0.8 
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1.5      2 
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Figure 5: Onset of friction-induced vibrations in time domain (left), frequency domain (middle) and considerations 
on excitation energy (right) 

Fig. 5 depicts the simulation results using the equivalently scaled friction relation (//(p = 14 -2-?) = 0.45) if 
mode lock-in takes place. Both beam and disc vibrate at the same frequency, although the natural frequencies of 
the two sub-systems do not match (A/ = 157 Hz). It is evident that the oscillations of the system are actually 
friction-induced and self excited. They grow as a function of time (see Fig. 5, left) and reach a steady state after 
a certain period of time. By means of a FFT (Fig. 5, middle) it can be shown that the system responds with a 
dominant frequency (2017 Hz). The higher harmonics can be observed as well. Fig. 5 (right) shows the friction force 
versus relative displacement in lateral direction of the beam. The hysteresis area describes the amount of energy 
which is exciting the system during one single oscillation. It increases with increasing vibration amplitudes. 

7. Conclusion 

In this paper, an experimental and numerical study of the mode lock-in phenomenon, in particular of self-excited 
friction-induced oscillations was presented. A finite element model of the rotor-stator system, updated by means 
of experimental modal analysis was used to compute the dynamic behaviour of the experimental set-up. The 
numerical predictions for a mode lock-in case were compared with experimental results. A good correlation was found 
concerning the qualitative behaviour in frequency domain (dominant lock-in frequency and its higher harmonics). 
However the lock-in frequency numerically predicted was slightly lower than that experimentally observed. The 
unstable amplitude growth of the investigated beam-on-disc model configuration was underlined by calculating the 
excitation energy per vibration cycle. 
Modelling friction-induced vibrations using the finite element method provides a simulation tool to obtain a deeper 
insight into the mechanisms of self-excited oscillations and guidance in avoiding them in the design of sliding systems. 
Although the analyzed model was comparably simple, the observations and methods used in this work can be applied 
to the analysis of more complex systems, for example disc brakes. 
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AMS A., SCHMALFUSS C, WEDIG W. 

Experimentelle und theoretische Untersuchungen an Scheibenbremsen 

Die an einer Hydropulsanlage gewonnenen Ergebnisse über das Materiaherhalten von Bremsbelägen werden im er- 
sten Teil diskutiert. Der zweite Teil zeigt theoretische Untersuchungen an einem zeitvarianten Modell mit einem 
Freiheitsgrad. Der Taumelfehler der Scheibe und Oberflächenrauigkeiten werden als harmonische und stochastische 
Anregungen formuliert. Mit Hilfe von nichtlinearen Markov-Modellen können stochastische Anregungen mit begrenz- 
ten Amplituden und Frequenzen für Scheibenschlag, Reibwert und Oberfläche formuliert werden. Mittels des größten 
Lyapunov-Exponenten lassen sich Stabilitätsaussagen durchführen. 

1. Experimentelle Untersuchungen an Bremsbelägen 

///////// 

Kraftsensor 
(DMS) 

Bremskolben 

Bremsbelag 

Platte (fest) 

Ü__^ ü. 
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(kapazitiv) 
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Bild 1: Hydropulser 

Mess-System 

oJk" F [kN] 

PC 

Pfl 0        50       100      150      200      250      300      350 

x [/im] 

Bild 2: Steifigkeitskennlinie 

Das Materialverhalten von Bremsbelägen wurde an einem Hydropulser (siehe Bild 1) experimentell ermittelt. Hierzu 
wurden die Bremsbeläge einachsig (kraftgeregelt) belastet und über Sensoren die Kraft F und der Weg x gemessen. 
In Bild 2 ist für eine quasi-statische Belastung eine Messung dargestellt. Gut zu erkennen ist der nichtlineare Verlauf 
der Steifigkeitskennlinie. Bei ansteigender Belastung (Kompression) wird die obere und bei abfallender Belastung 
(Dekompression) die untere Steifigkeitskennlinie durchlaufen. Mit einem Polynom dritten Grades 

F(x) = a\x + a2x
2 + a3a (1) 

kann die Steifigkeitskennlinie über ein Least-Square Verfahren approximiert werden. Für die Koeffizienten des Po- 
lynoms ergeben sich folgende Werte: 

-6r   kN   1 
L(/jm)2 ai= 4.079 -10-2[^],    a2 =-1.893-KT4^],    a3 = 1.261 -10 

Wird als Anregung eine harmonische Kraft 

F(t) = Fo + Fismujt 

l(^m)3 (2) 

(3) 

mit dem Mittelwert F0, der Amplitude Fx und der Erregerkreisfrequenz u verwendet, ergeben sich Kraft-Weg 
Verläufe, wie in Bild 3 dargestellt. Das visko-elastische Materialverhalten des Bremsbelages läßt sich durch das 

Modell 

bx + a\X + a2x
2 + a3x

3 = F(t) (4) 
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mit dem konstanten Dämpfungsparameter b und der kubischen Steifigkeitskennlinie nach (1), beschreiben. Mit der 
Kraft F(t) und der Geschwindigkeit x(t) kann die dissipative Arbeit AE 

/>2JT/U r2ir/w 

AE = F(t)dx= /        F(t)xdt 
Ja Jo (5) 

für eine Periode berechnet werden. Die stationäre Antwort des Systems (4) wird über eine numerische Integration 
berechnet. In Bild 4 ist der Quotient aus dissipativer Arbeit und dem Quadrat der Antwortamplitude AE/A2 über 
der Frequenz / dargestellt. Für verschiedene Dämpfungswerte b sind die numerischen Ergebnisse eingezeichnet. 
Durch Vergleichen der Messung mit den Linien kann das Dämpfungsmaß b bestimmt werden. Im vorliegenden Fall 
liegt der Wert von b zwischen 1 • 10~5 und 7 • 10-5. 
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Bild 3: Harmonische Anregung 
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Bild 4: Dämpfungsparameter b 

2. Mechanisches Modell 

Das in Bild 5 dargestellte mechanische Modell besteht aus einer starren Bremscheibe mit der Scheibenoberfläche u(s) 
und einem Bremsbelag mit der Masse m. Der Bremsbelag ist visko-elastisch (Federkonstante Ar, Dämpferkonstante 
d) gelagert. Die Verbindung zwischen dem Belag und der Bremsscheibe (1 Punktkontakt) wird durch ein visko- 
elastisches Element (Federkonstante c, Dämpferkonstante b) hergestellt. Die Bewegung des Bremsbelages wird durch 
die Absolutkoordinate x beschrieben. Im Kontaktpunkt Scheibe/Belag herrscht Coulombsche Reibung (Reibwert 
H), wobei die Richtung der Reibkraft stets der Tangente im Kontaktpunkt (Oberflächentangente) entspricht [1]. Die 
Bewegungsgleichung lautet: 

x + 2DLOIX + u\x + /* + " )*\ [Lü
2

0U(S) + 2Bu0u'(s)s] = 0 
1 — fJ,u'{S) (6) 

mit der Scheibenkoordinate s, der Eigenkreisfrequenz u>lt dem Lehrschen Dämpfungsmaß D, den Parametern w0 

und B sowie den Beziehungen 

• = x — y,     s = x — y 

)% = k/m,     2DLO1 = d/m,     wl = c/m,     2Bu>0 = b/m (7) 

3. Stochastischer Reibwert 

Reibwertmessungen von Popp/Rudolph [2] zeigen deutlich eine Fluktuation des Reibwertes. Als mathematische 
Beschreibung für den Reibwert wird 

Ht = Ho + Zt (8) 

mit konstantem Mittelwert p,0 und additivem Rauschen Zt angesetzt. Für Zt kann das parametrische Modell 

Zt = (i<r2 - Ug)Zt + ay/zJ^zjWt (9) 
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mit dem Wiener-Prozeß Wt, der Rauschintensität a und der Grenzfrequenz ug verwendet werden. Das Modell besitzt 

die Eigenschaften: 

\Zt\    <    zo Amplitudenbegrenzung 
Korrelation (10) 

p(z)    =    C{z\ - ^(-l+wg/a2)    für a2 < w^    stationäre Verteilungsdichte 

Über die Bedingung j^° p(z)dz = 1 kann die Konstante C bestimmt werden. Nach Transformation auf Polarkoor- 

dinaten mit der Amplitude At - \Jxf+ X? und der Phase $t = arctan fj- ergeben sich für das homogene System 

(6) und für einen harmonischen Schlag u(t) = -u0 - «i sinüv0t mit der statischen Vorspannung des Belages u0 und 
der Amplitude ui folgende Ito-Gleichungen: 

dAt    =    {sm$t cosütil-ul)-sin2 $t(2Dw1 + 2BL)oft)}Atdt 

d$t    =    {-sin2$t - LJI cos2 $t-(2Du)x+2Bw0ft) sin $t cos $t}dt 

di&t    =    Qv0dt (11) 

dZt        =        -LügZtdt+yJz2-Z2 
adWt 

mit 
(fio + Zt)uiü cos $t + uj^l2 cos2 Vt 

•"    ~ 1- (fio + Z^uxClcos^t 

Mit dem multiplikativen Ergodentheorem (Osceledec) kann die asymptotische Stabilität der Ruhelage X = 0 über 

A    =     lim - In — 
t—>-oo t       AQ 

= lim- / {sin$Tcos$T(l-Wi)-sin2$T(2£»a;1-|-25wo/r)}rfT (12) 

_     (//Q + ZT)uiQ cos ^T + u\fl2 cos2 #T 
mlt /T

      
= l-(/io + ^r)wificOS*T 

berechnet werden. Für die Parameter wi = 1 [1/s], w0 = 1000 [1/s], B = 0.1, D = 0.001, Q = 5 [1/m], \i = 0.3, 
zo = 0.1, Lüg = 10 [1/s] und (7 = 3 ergibt sich die in Bild 6 gezeigte Stabilitätskarte. Für A < 0 ist das System stabil, 

für A > 0 instabil. 
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Bild 5: Mechanisches Modell 
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Bild 6: Stochastischer Reib wert (Lyapunov-Exponent A) 

4. Stochastische Oberfläche 

Die harmonische Anregung (Scheibenschlag) wird durch eine stochastische Anregung (Oberflächenrauhigkeit) additiv 
überlagert. Für die Anregung ergibt sich somit 

U't = uiü cos{üv0t) + Zt (13) 

mit dem parametrischen Modell Zt nach (9). Nach Transformation auf Polarkoordinaten ergeben sich für das homo- 
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gene System (6) folgende Ito-Gleichungen: 

dAt    -    {sin$tcos$t(l-w2)-sin2<^(2.Dwi + 2Bw0ft)}Atdt 

d$t    =    {-sin2$t-w?cos2$<-(2£»wi+25w0/t)sin$(cos$f}^ 

d^t    =    üv0dt 

dZt    =    -UgZtdt + yjzl - ZfadWt 

HJUiSl cos ^t + Zt) + (uxQ cos Vt + £Q2 

1 -^(uiflcos^t + Zt) 

(14) 

mit /« 

Über das multiplikative Ergodentheorem (Osceledec) 

A = lim - In —— 
t->oo t        A0 

(15) 

kann der größte Lyapunov-Exponent A berechnet werden. In den Bildern 7 und 8 ist der größte Lyapunov-Exponent 
über der Amplitudenbegrenzung z0 aufgetragen. Verwendet wurden die Parameterwerte w0 = 1000 [1/s], w\ = 1 
[1/s], Q = 5 [1/m], n = 0.3, B = 0.1, D = 0.001 und v0 = 0.4 [m/s]. In Bild 7 ist wg = 10 [1/s] und variiert wurde 
die Rauschintensität a und der Scheibenschlag ux. In Bild 8 zeigt sich der Einfluß der Korrelation (Grenzfrequenz 
wg) auf die Stabilität. 

<r = 0.3, »!  = 3 • 10~3[ml 
tr = 3,      •! = 3 • 10_3[m] 
<r = 0.3, »! = 10-4[m] 
o- = 3,      •! = 10-4[m] 
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 !~:5jv:;::a...... 

  ■ 

*x> '" 

-.,    \v '''••><"'''"^><C 
■ 

\ /' - 

Bild 7: Einfluß von Schlag bzw. Rauschintensität Bild 8: Einfluß der Korrelation 
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ERTZ, M.; KNOTHE, K. 

Einfluss von Temperatur und Rauheit auf den Kraftschluss zwischen Rad 
und Schiene 

Gemessene Kraftschlusskennlinien zeigen charakteristische Abweichungen von Berechnungsergebnissen auf der Ba- 
sis der Theorien von Carter und Kalker. Die Unterschiede bestehen einerseits in einer geringeren Anfangs Steigung 
andererseits im Auftreten eines Maximums, nach dessen Überschreiten es zu einem teilweise erheblichen Abfall 
des Kraftschlusses kommt. In der vorliegenden Arbeit wird gezeigt, dass die Berücksichtigung von Mikrorauheiten zu 
einer realistischeren Anfangssteigung der berechneten Kennlinien führt. Weiterhin wird die Temperaturerhöhung auf- 
grund der in der Kontaktfläche auftretenden Reibleistung berechnet. Unter der Annahme einer temperaturabhangigen 
Reibungszahl kann damit auch der Abfall der Kennlinie bei hohen Schlüpfen erklärt werden. 

1. Kraftschlussberechnung nach Carter 

Der Kontakt zwischen Rad und Schiene ist ein dreidimensionales Problem. Unter der Wirkung einer Normalkraft 
N bildet sich eine Kontaktfläche aus, die in vielen Fällen nach der Theorie von HERTZ berechnet werden kann. 
Man erhält eine Ellipse mit den Halbachsen a (in Fahrtrichtung) und b. Für die Untersuchung des Spannungs- und 
Verzerrungszustandes unter einer Tangentialkraft T beim Antreiben oder Bremsen gehen wir auf den Kontakt eines 
Zylinders gegen eine Ebene über, womit sich ein zweidimensionales Modell ergibt. Die Größen a und pz0 (Maximal- 
wert der Normalspannung) werden aus dem dreidimensionalen Normalkontakt übernommen. Dazu kommt hier noch 
die Breite L des Ersatzzylinders. Mit dieser Vereinfachung ist die Lösung des Tangentialkontaktproblems fur glatte 
Oberflächen nach CARTER analytisch möglich. Es zeigt sich, dass eine Tangentialkraft immer mit dem Auftreten 
einer Relativgeschwindigkeit vs = vR - v0 zwischen der Fahrgeschwindigkeit vQ und der Umfangsgeschwindigkeit 
des Rades, vR = Q0r, verbunden ist. Bezogen auf die mittlere Geschwindigkeit (v0 + vR)/2 erhalt man daraus den 
Schlupf ui Die Beziehung zwischen Kraftschluss / = T/N und Schlupf lautet nach CARTER 

f{ys) = /i (1) 

solange vx < ux,max mit ux,max = fia/r gilt. Dabei tritt am Auslaufrand der Kontaktflache immer ein Gleitgebiet 
auf, dessen Ausdehnung mit steigendem Schlupf zunimmt, bis es für vx = vx,max die gesamte Kontaktflache bedeckt. 
Damit ist gleichzeitig der maximale Kraftschluss f{vXtmax) = » erreicht, der sich bei weiterer Steigerung des Schlupfes 
nicht mehr ändert. Eine übersichtliche Darstellung dieser Zusammenhänge findet sich z. B. bei JOHNSON [4J. 

2. Berücksichtigung von Mikrorauheiten 

Abbildung 1 zeigt einen Ausschnitt aus der Profilmessung auf einer Schienenlauffläche. Die Lösung von Normal- und 
Tangentialkontaktproblem ist bei solchen Oberflächen nur nummerisch möglich. In einer Arbeit von KNOTHE und 
THEILER [51, deren Ergebnisse hier wiedergegeben werden, wird dazu ein spezielles Randelement-Verfahren verwen- 
det Für diese Berechnungen werden die Rauheiten von Rad und Schiene zusammengefasst und einem der beiden 
Körper zugeschlagen, während der andere als glatt angenommen wird. Bei der Lösung des Normalkontaktproblems 
zeigt sich dass die Berührung der Oberflächen nur in den Spitzen der Rauheiten stattfindet, wo die maximakn 
Druckspannungen ein Vielfaches der Werte beim Kontakt glatter Oberflächen erreichen können. Als Maß fur die 

Auswirkung der Rauheiten wird das Verhältnis Arau/Agiatt herangezogen. 
Zur Lösung des Tangentialkontaktproblems ist eine weitere Vereinfachung erforderlich. Es wird angenommen, 

dass die Verschiebungen im Gleitbereich so klein sind, dass der Kontaktvorgang als stationär betrachtet werden 
kann Eine Änderung der Kontaktfäche durch das Gleiten der Rauheitsspitzen wird ebenso vernachlässigt wie die 
Bewegung der gesamten Oberfächen mit der Fahrgeschwindigkeit. In Abbildung 1 sind die nummerisch berechne- 
ten Kraftschlusskennlinien für unterschiedliche Rauheiten dargestellt. Es zeigt sich, dass die Anfangssteigung mit 
zunehmender Rauheit abnimmt und das durch die Reibungszahl gegebene Maximum entsprechend spater erreicht 
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wird. Mit guter Näherung kann hierfür 

frau{l>x) = fglatt        ■ r"" Vx ) (2) 
\Aglatt      J v   ' 

geschrieben werden. Wegen der Vernachlässigung des Gleitens von Rauheitsspitzen ist es nicht sinnvoll, die auf diese 
Weise berechneten Kraftschlusskennlinien für raue Oberflächen in den Bereich vollen Gleitens fortzusetzen. 

b) 
0.4        0.6        0.8 

Schlupf [%] -> 

Abbildung 1: Ausschnitt aus der Profilmessung auf einer Schienenlauffläche (a) und nummerisch berechnete Kraft- 
schlusskennlinien für unterschiedliche Rauheiten (b) 

3. Temperaturentwicklung im Radsatz 

Wenn ein angetriebenes, auf der Schiene rollendes Rad die Tangentialkraft T = fN überträgt und dabei die Gleit- 
geschwindigkeit vs = vR - vo auftritt, dann ergibt sich daraus die Reibleistung Preib = fNvs. Wir nehmen an, dass 
sie unmittelbar in der Kontaktfläche vollständig in den Wärmestrom Qreib = Preib umgewandelt wird, der in das 
Innere von Rad und Schiene abfließt. Davon geht der Anteil Qreib,R = SQreib mit 

ßR 
ßR\/VR + ßs\/vÖ (3) 

in das Rad. ß - y/Xpc ist der material abhängige Wärmeeindringkoeffizient. Die Aufteilung des Wärmestroms ergibt 
sich aus der Forderung, dass an der Oberfläche von Rad und Schiene im Kontakt Temperaturgleichheit herrschen 
muss. Aufgrund der kurzen Kontaktzeit tritt Wärmeleitung nur senkrecht zur Kontaktfläche auf. In Abbildung 2 
sind die Oberflächentemperaturen dargestellt, die sich bei gleicher Reibleistung Qreib in Abhängigkeit von der lokalen 
Verteilung der Reibleistungsdichte qreib(x) = fi(x)pz(x)vs(x) ergeben. Der Einfluss beschränkt sich im Wesentlichen 
auf den Ort der Maximaltemperatur, deren Wert aber kaum von der Verteilung abhängt. Ausserhalb des Kontaktes 
gleichen sich die Temperaturverläufe sehr schnell wieder an. Mit jeder Umdrehung wird dem Rad die Wärmemenge 

Qreib,R LvR 
tyreib (4) 

pro Flächeneinheit zugeführt. Nach mehreren Umdrehungen des Rades steigt seine Temperatur durch diese regelmäßi- 
ge Wärmezufuhr immer weiter an, während die Schiene weiterhin mit Umgebungstemperatur in den Kontakt eintritt. 
Damit ergibt sich ein Wärmestrom aus dem warmen Rad in die kalte Schiene, der mit guter Näherung als Tem- 
peraturausgleich von zwei halbunendlichen Körpern mit verschiedenen, jeweils konstanten Anfangstemperaturen 
berechnet werden kann. Mit der Eintrittstemperatur 0flo des Rades stellt sich im Kontakt spontan eine zeitlich 
nicht veränderliche Kontakttemperatur 0m = SQR0 mit S wie in (3) ein. Die gesamte durch Temperaturdifferenz 
während einer Umdrehung übertragene Wärmemenge pro Flächeneinheit ist damit 

Qtemp,R 
VR 

8avo 
Q R0- (5) 

Wie sich mit einer einfachen Abschätzung zeigen lässt, ist die Wärmeübertragung durch Konvektion an die Umge- 
bungsluft im Vergleich mit der Wärmeleitung in die Schiene von untergeordneter Bedeutung. 
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Damit sich die Temperatur des Rades bis auf periodische Schwankungen während einer Umdrehung nicht mehr 
ändert, muss der Wärmezufluss aus Reibleistung gleich dem Wärmeabfluss aus Temperaturdifferenz sein. Aus (4) 
und (5) ergibt sich damit die Temperatur, in der thermisches Gleichgewicht vorliegt, zu 

ßsL V 8av0 
(6) 

In Abbildung 2 erkennt man, dass die Schwankungen um diesen Wert auf die unmittelbare Umgebung des Kontaktes 
beschränkt sind. Die Gleichgewichtstemperatur ist etwa doppelt so hoch wie die mittlere Kontakttemperatur beim 
einmaligen Kontaktdurchlauf. 

160 

elliptisch 
parabolisch 
konstant 

b) 
z/2a[-] 0     0 x/2a[-] 

Abbildung 2: Oberflächentemperatur beim einmaligen Kontaktdurchlauf für unterschiedliche Verläufe der Reiblei- 
stungsdichte (a) und Temperaturverlauf im thermischen Gleichgewicht (b) 

4. Temperaturabhängigkeit der Reibungszahl 

Aus den vorangegangenen Ausführungen folgt, dass es in der Kontaktfläche zum Gleiten zwischen metallischen 
Oberflächen kommt und dabei gleichzeitig erhebliche Temperaturerhöhungen auftreten. Als mögliche Auswirkung 
der Temperaturerhöhung wird im Folgenden eine mit zunehmender Temperatur abfallende Reibungszahl untersucht. 
Dafür lassen sich unterschiedliche physikalische Erklärungen angeben. BOWDEN und TABOR [1] nehmen an, dass 
beim Gleitvorgang ein ständiges Verschweißen und Aufbrechen von Metallbrücken stattfindet. Der Bewegungswider- 
stand, d. h. die Reibungszahl, wird damit durch die Scherfestigkeit der entstandenen Verbindungen bestimmt und 
die Temperaturabhängigkeit der Reibungszahl ergibt sich aus der Temperaturabhängigkeit der Scherfestigkeit. Bei 
KRAFT [6] findet sich eine andere Begründung, die auf einem atomaren Modell beruht. Wir gehen hier nach Bow- 
DEN und TABOR von der Streckgrenze eines mittelfesten Stahls aus, die einen monotonen Abfall mit zunehmender 
Temperatur aufweist [3]. Für nicht allzu hohe Temperaturen kann mit guter Näherung linearisiert werden. Mit der 
Übertragung der Temperaturabhängigkeit auf die Reibungszahl lässt sich dann die Beziehung 

//(©) = /*„!- 
_e_ 

(7) 

mit no als Reibungszahl bei 0° C angeben. Der Parameter 6^ ist ein Maß für die Steigung der Kennlinie und wird 
für die folgenden Rechnungen mit 500° C angenommen. Die Linearisierung ist bis etwa 250° C zulässig. 

Für die folgenden Untersuchungen wird angenommen, dass die Reibungszahl über die gesamte Kontaktfläche 
konstant ist und nur von der mittleren Kontakttemperatur abhängt. 

5. Temperaturabhängige Kraftschlusskennlinie 

Bei vorgegebenem Schlupf kommt es zu einem Zusammenwirken von Kraftschluss, Reibleistung, Temperaturerhöhung 
und temperaturabhängiger Reibungszahl. Wir betrachten den Fall vollen Gleitens, wobei der Kraftschluss gleich der 
Reibungszahl ist. Ausgangspunkt ist die temperaturabhängige Reibungszahl (7). Wenn man hier den Zusammenhang 
zwischen der mittleren Temperatur und der Reibleistung (6) einsetzt und die Reibleistung Qreib = fNvs wiederum 
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auf den Kraftschluss zurückführt, erhält man die Gleichung 

für eine mit zunehmender Gleitgeschwindigkeit abfallende Kraftschlusskennlinie. Die hierbei verwendete Abkürzung 

e^ßsL   /8av0 

HQN (9) 

besitzt die Dimension einer Geschwindigkeit. In gleicher Weise lässt sich auch die Cartersche Lösung (1) mit einer von 

der mittleren Kontakttemperatur abhängigen Reibungszahl berechnen. Die Ergebnisse sind in Abbildung 3 darge- 

stellt. Diese Kennlinie beschreibt den Kraftschluss, der sich nach hinreichend langer Zeit einstellt, wenn thermisches 

Gleichgewicht erreicht worden ist. Die Vorgehensweise lässt sich zumindest qualitativ auch auf Übergangszustände 

anwenden. Da die Temperatur für gegebene Betriebsbedingungen ihr Maximum im thermischen Gleichgewicht er- 
reicht, ist der Temperatureinfluss und damit der Abfall der Kennlinie in diesen Fällen geringer. 
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Abbildung 3: Kraftschlusskennlinie bei temperaturabhängiger Reibungszahl (a) und Temperatur im thermischen 
Gleichgewicht (b), Fahrgeschwindigkeit VQ — 75 m/s 

6. Zusammenfassung 

Die vorgestellten Ergebnisse liefern physikalisch begründete Erklärungen für die charakteristischen Abweichungen 

zwischen gemessenen und berechneten Kraftschlusskennlinien. Mit der Berücksichtigung von Mikrorauheiten nimmt 

die Anfangssteigung der berechneten Kennlinien ab. Durch die Berechnung der Kontakttemperatur in Verbindung 
mit der Annahme einer temperaturabhängigen Reibungszahl erhält man einen ausgeprägten Abfall der Kennlinie 

bei hohen Schlüpfen. Beide Effekte führen zu einer besseren Übereinstimmung mit gemessenen Kurven [2]. 

Diese Arbeit wurde im Rahmen des Sfb 605 „Elementarreibereignisse" an der TU Berlin durchgeführt. 
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MÜLLER, S. AND R. KÖGEL 

Numerical simulation of roll-slip oscillations in locomotive drives 

This paper deals with roll-slip oscillations in locomotive drives. Numerical simulation results are presented which 
demonstrate that roll-slip oscillations may arise if the contact conditions at the left and right wheel of a wheelset are 
different. Even if an adhesion controller can detect and reduce these vibrations within a few seconds the drive chain 
is still subject to high loads, there are noisy vibrations in the locomotive car body and the rail surface is damaged by 
periodic wear patterns. Usually, it is tried to avoid roll-slip oscillations by an optimal adhesion controller design. A 
different approach is presented in this paper. Instead of optimising a controller it is demonstrated how mechanical 
design parameters influence the proneness to roll-slip oscillations and for one locomotive type it is shown how a 
certain mechanical parameter combination helps to avoid roll-slip. 

1. Introduction 

Roll-slip oscillation in locomotive drives is an unstable vehicle motion and is usually associated with a slip velocity- 
traction force characteristic with a negative gradient at relatively high slip velocities. This characteristic was found 
during many measurements [1] [2]. Operating the locomotive where the gradient of the slip velocity-traction force 
curve is negative introduces negative damping to the system and the vehicle dynamics can become unstable. This 
causes high mechanical loads in the drive chain, noisy vibrations in the locomotive car body and periodic wear 
patterns on the rail surface. 

Presumably, in [3] roll-slip oscillations in locomotive drives have been first thoroughly investigated using a simple 
numerical model of the mechanical drive chain. More recently, [4] and [5] are dealing with roll-slip oscillation and 
how control concepts can help to avoid this phenomenon. In this paper a different approach is presented. In addition 
to an already existing control strategy [6] which detects and reduces roll-slip oscillations it is tried to reduce the 
proneness to roll-slip by the mechanical design of the locomotive drive. 

For one locomotive type numerical simulation results demonstrate that roll-slip oscillations may arise if the contact 
conditions at the left and right wheel of a wheelset are different. It is also shown that the adhesion controller 
of the locomotive detects these unstable vibrations and the controller reduces the high amplitudes after a few 
seconds. But during this period of time the drive chain is subject to high mechanical loads. A mechanical design 
which had a smaller proneness to roll-slip would reduce the number of roll-slip occurrences during operation. This 
would increase the lifetime of the drive components, reduces the noise inconveniences and preserves the track. It is 
therefore investigated how mechanical design parameters influence the proneness to roll-slip and for the locomotive 
type investigated it is shown how a certain parameter combination helps to avoid roll-slip. 

2. The numerical simulation model 

The modeling of the control part of the locomotive comprises the motor control and the adhesion control. The 
motor control is considered by measured transfer functions. The adhesion controller controls the slip velocity, which 
is the relative velocity between wheel and rail in the point of contact. It determines the optimal slip where maximal 
traction forces are obtained [6]: A speed sensor measures the response of the angular velocity of the rotor to the 
motor torque plus a sinusoidal test signal added to the motor torque. Based on the phase between filtered sinusoidal 
rotor speed response and the sinusoidal motor torque test signal the gradient of the slip velocity-traction force curve 
at the operating point of the drive is computed. The actual gradient is compared to a predefined desired gradient. If 
the difference between both is too large a new desired rotational rotor speed is calculated which changes the motor 
torque. 

The mechanical structure has been modeled using a Multi-Body-System program. All model parts are rigid and 
all springs and dampers are linear. Under consideration of structural symmetry it comprises half of the car body, 
one bogie, secondary and primary support, drive components and three wheelsets. The elasticity of the wheelset 
axle about the lateral axis is considered by two torsional springs. One between gear wheel and right and left wheel, 
respectively. The locomotive type investigated is driven by a so-called nose-suspended drive, which consists of motor 
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box, rotor, gear wheel and the motor box support. The gearwheel is fixed to the wheelset axle and is in the vicinity 
of the right wheel. The motor box is supported by the wheelset axle but can rotate about it. The motor box is 
elastically connected to the bogie by the motor box support. 

For the numerical simulation a mechatronical model has been set up within MATLAB/SIMULINK which comprises 
the mechanical structure, the control part and the interaction between mechanics and control. 

3. Simulation results if contact conditions at left and right wheel are different 

With the mechatronical model a time step integration has been performed to simulate the dynamical behaviour 
of a locomotive if the contact conditions at left and right wheel of a wheelset are different. In Figure 1 the slip 
velocity-traction force characteristics are shown which have been assumed for the numerical simulation. 
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Figure 1: (a) Longitudinal contact condition at left and right wheel if t < 10 sec, (b) longitudinal contact condition 
at right wheel after ten seconds 

At the beginning of the simulation the contact is the same for both wheels of a wheelset. But the contact is different 
at different wheelsets as soon as conditioning effects caused by a preceding wheelset are considered (Figure 1(a)). 
After ten seconds the contact at the right wheel changes (Figure 1(b)). This may happen if one side of the track is 
frosted or covered by oil or dirt. Contact conditions can also be different due to kinematic effecs: In the curve the 
rolling radii of left and right wheel are different and the translational velocities of inner and outer wheel are not the 
same. This results in different slip velocities at the right and left wheel of a wheelset and thus in different operating 
points on the slip velocity-traction force curve. 

Slip V9locities at 3. wheelset 
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Figure 2: Slip velocity at left and right wheel of the third wheelset 

In Figure 2 the outcome of the numerical simulation for the slip velocity at the left and right wheel of the third 



Minisvinpnsium '.) S(>3 

wheelset is plotted. At the beginning the locomotive starts and the slip velocity increases till a predefined limit 

of 0.2 m/s is obtained. After four seconds the adhesion controller superposes a test signal of 11 Hz to the motor 
torque. The adhesion controller starts to change the slip velocity after 6 seconds until the right contact changes 
at t = 10 sec. This causes a sudden drop which is followed by a new increase until the vehicle dynamics become 
unstable and the slip velocity at the right wheel is oscillating with high amplitudes and a frequency of about 147 
Hz. An eigenvalue analysis of the mechanical structure reveals that at this frequency the right wheel is rotating 
about the lateral axis. The rotation of right wheel and gearwheel is out-of-phase, the amplitudes of the rotation of 
the left wheel are small. The roll-slip oscillation arises since the right wheel of the third wheelset is operating at 
slip-velocities where the gradient of the slip velocity-traction force curve is negative. The adhesion control detects 
the unstable motion and reduces the slip velocity until the gradient of the slip velocity-traction force curve is positive 
at all wheels. The amplitudes thus decrease and after a few seconds the vehicle dynamics again is stable. 

4. Investigation of the influence of mechanical design parameters 

In Figure 2 it is shown that the vehicle dynamics may become unstable if the contact conditions at the left and right 
wheel of a wheelset are different. It is also demonstrated that the adhesion controller detects the unstable motion 
and reduces the amplitudes of the oscillations after a few seconds. Nevertheless, the drive chain is subject to high 
mechanical loads during this period of time. It is now investigated how mechanical design parameters influence the 
proneness to roll-slip and for the locomotive type investigated mechanical design parameters are given which are 
likely to reduce the number of roll-slip occurrences. 

For the investigation of the proneness to roll-slip the torsional stiffness and damping of the connection gearwheel- 
wheelset axle and the torsional stiffness of the wheelset axle between gearwheel and right wheel of a wheelset 
are varied. The investigation is performed in the frequency domain. Except for the right wheel of the third 
wheelset the gradient of the slip velocity-coefficient of friction curve is zero. At the right wheel of the third wheelset 
the gradient is varied from zero to a negative value. Note, that for the traction force at one wheel the relation 
Ftraction = ß(&v) Nstatic is assumed, where /z is the coefficient of friction, Av is the slip velocity and NstaUc is the 
static wheel load in vertical direction. 

For each mechanical design parameter combination the eigenvalues of the linearized mechatronical model are calcu- 
lated for different gradients at the right wheel of the third wheelset and the threshold gradient is determined, which 
is the minimal gradient where the vehicle dynamics is still stable. The outcome of this investigation is summarized 
in Figure 3(a), Figure 3(b) and Figure 4. 

Variation of gearwheel stiffness (d     =1e0 Nms/deg) Variation of gearwheel damping (c^ 1e9 Nm/deg) 
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Figure 3: Threshold gradient at (a) different torsional stiffnesses and (b) different torsional damping coefficients of 
the connection gearwheel-wheelset axle 

In Figure 3(a) the threshold gradient is plotted at different torsional stiffnesses between gearwheel and wheelset axle. 
At relatively small stiffnesses the proneness to roll-slip is high. Even for gradients only slightly smaller than zero 
the system becomes unstable.  The corresponding natural mode is characterized by a torsion of the wheelset axle 
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between gearwheel and left wheel. At higher stiffnesses the proneness to roll-slip clearly decreases and the vehicle 
dynamics becomes unstable if the gradient at the right wheel of the third wheelset is smaller than -0.055 s/m. The 
unstable motion is then characterized by a torsion of the wheelset axle between gearwheel and right wheel. 

The threshold gradient at different torsional damping coefficients of the connection gearwheel-wheelset axle is plotted 
in Figure 3(b). For this calculation the torsional stiffness between gearwheel and wheelset axle has been set to lxlO9 

Nm/deg. Along the x-axis a damping ratio is plotted which has been defined as Dgwh = 0.5 dgvihly/c^ , where 
dgwh is the torsional damping coefficient and cgwh is the torsional stiffness between gearwheel and wheelset axle. It 
reveals that the proneness to roll-slip decreases if the torsional damping increases. 

In Figure 4 the threshold gradient is plotted at different torsional stiffnesses of the wheelset axle between gearwheel 
and right wheel. For this calculation the torsional stiffness of the connection gearwheel-wheelset axle is 1 x 109 

Nm/deg, the corresponding damping coefficient is 1 x 10° Nms/deg. It is illustrated that the vehicle dynamics is 
most likely to remain stable if the torsional stiffness is comparatively high. 

Variation of stiffness of shorter axle part(c   . r      v  gwli = 1 e9 Nm/deg) 
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Figure 4: Threshold gradient at different torsional stiffnesses of the wheelset axle between gearwheel and right wheel 

The outcome of the variation of mechanical design parameters is that the locomotive type investigated has a reduced 
proneness to roll-slip if the connection between gearwheel and wheelset axle is stiff and damped and if the torsional 
stiffness of the wheelset axle is relatively high. With these mechanical design parameters it is therefore likely to 
reduce the number of roll-slip occurrences during operation. 
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Modellbildung reibungsselbsterregter Bremsenschwingungen 

Es werden Erregungs-Mechanismen (fallende Reibkennlinie, geometrische Instabilität, nichtkonservative Lagekräfte) 
zur Beschreibung des Energieeintrages von der Bremsscheibe in das mechanische System Bremse dargelegt und dis- 
kutiert. 
Darauf aufbauend wird ein erweitertes Prinzipmodell vorgestellt, das eine reale Schwimmsattelbremse beschreibt. 
Dabei handelt es sich um ein Mehrkörpersystem, das elastische Moden der Bremsenbauteile berücksichtigt. Anhand 
einer Sensitivitäts-Analyse des linearen Modells werden Bauteile mit hoher Relevanz für die Schwingungsanregung 
identifiziert. 

1. Einführung 

Reibungsselbsterregte Bremsenschwingungen mit Frequenzen oberhalb 1000 Hz werden als Bremsenquietschen be- 
zeichnet. Diese technische Erscheinung gewinnt für den Bremsenzulieferer in der Automobilindustrie aufgrund des 
zunehmenden Komfortanspruchs der Automobilkunden immer mehr an Bedeutung. 
Da die grundlegenden Wirkmechanismen des Quietschens noch nicht eindeutig identifiziert worden sind, beschränkt 
sich die Bekämpfung der Geräuschentwicklung auf überwiegend empirische Verfahren. Dabei wird eine bestehende 
Bremsenkonstruktion, ausgehend von aufwendigen experimentellen Untersuchungen, nachträglich modifiziert. Mit 
den hier dargelegten Arbeiten wird daher angestrebt, den Wirkmechanismuns des Quietschens besser zu verstehen 
und Parametereinflüsse aufzudecken. Dieses Wissen kann wertvolle Hinweise für den Entwurf und die Konstruktion 
einer geräuscharmen Bremse liefern. 

2. Erregungs-Mechanismen 

Mechanismus 

Modell 

Instabilitäts- 
bedingung 

Reibkennlinie 

^ x 

UM 
c,d 

KVrel) 

(0 ^ (o 
dvr 

< 
x=0 

A. 

Geometrische Instabilität 

c2uY 

M > tan(7) + rj-f^ sin(27)di 

Nichtkons. Lagekräfte 

/*>E + hscs hsci 

Tabelle 1: Erregungs-Mechanismen des Bremsenquietschens 

Im Zustand des Quietschens bildet die Bremse ein selbsterregtes Schwingungssystem, bei dem zwischen Bremsscheibe 
und Bremsbelag ein Energietransfer stattfindet, der durch die Schwingung gesteuert wird. Die in der einschlägigen 
Literatur beschriebenen Bremsenmodelle lassen sich auf drei grundlegende Mechanismen dieses Energietransfers 
zurückführen (Tabelle 1): 

Fallende Reibkennlinie: Dieser Erklärungsansatz wurde schon 1938 von MILLS in [1] vorgeschlagen. Bedingt 
durch ein Abfallen des Reibwertes bei zunehmender Relativgeschwindigkeit der Reibpartner kommt es zur 
Schwingungsanregung bis hin zu Haft-Gleit-Schwingungen (Stick-Slip). Das Modellsystem hierbei ist ein einläufi- 
ger Schwinger mit Reibkontakt zu einer bewegten Unterlage. Wird eine Coulombsche Charakteristik angenom- 
men, so verhält sich das System im Großen stabil, Trajektorien ziehen sich auf einen Haft-Gleit-Grenzzykel 
zusammen. Liegt eine kontinuierlich fallende Kennlinie vor, so bildet die Gleichgewichtslage einen instabilen 
Fokus, zu erkennen in Abbildung la). In Abhängigkeit von den Systemparametern kann das System auch im 
Grossen instabiles Verhalten zeigen. 
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Geometrische Instabilität: Basierend auf experimentellen Erkenntnissen aus der Untersuchung von U-Bahn- 
Bremsen stellte SPURR 1961 mit [2] eine Erklärungshypothese des Quietschens auf, die von CRISP als mechani- 
sches Modell formuliert wurde. Es handelt sich dabei um einen der Selbsthemmung verwandten Mechanismus, 
der auf bestimmten geometrischen Verhältnissen und dem Vorhandensein von Reibung im mechanischen Sy- 
stem beruht (Sprag-Slip). Die Stabilitätsgrenze wird durch eine Bedingung für den Gleitreibwert bestimmt, 
die von der Geometrie und der Dämpfung im System abhängt. 

Nichtkonservative Lagekräfte: Dieses Prinzip findet sich bereits 1972 in den Arbeiten [3] von NORTH und wird 
hier anhand eines 2-FHG Minimalmodells vorgestellt. Durch reibungsbedingte lageproportionale Kräfte wer- 
den Freiheitsgrade schwingungsanregend gekoppelt. Die Anwendung des Hurwitz-Kriteriums liefert mehrere 
Instabilitätsbedingungen, von denen in Tabelle 1 aus Platzgründen nur eine wiedergegeben ist. Betrachtet 
man die Systemeigenwerte in Abhängigkeit vom Reibwert, so zeigt sich, dass sich die Eigenwerte der zunächst 
stabilen Moden mit zunehmenden Reibwert in ihrer Frequenz annähern bevor Destabilisierung des Systems 
auftritt. Dieser Effekt wird auch als Modenkopplung bezeichnet, vgl. Abbildung lb). 

a) b) 
Im(A) 
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Abbildung 1: Stabilitätsverhalten der Erregungs-Mechanismen 
a) Phasendiagramm zum Reibschwinger mit linear fallender Charakteristik 
b) Wurzelortskurve des 2FHG-Systems mit nichtkonservativen Lagekräften 

bei einer Reibwerterhöhung von ji = 0 (o) auf fi = 1 (*). 

Um den Mechanismus zu finden, der zum Bremsenquietschen führt, muss die Modelldynamik mit den Eigenschaften 
des realen Systems verglichen werden. 

Fallende Reibkennlinie: Nimmt man einen Haft-Gleit-Grenzzykel als Erklärung des Quietschens an, so sollte 
die Grenzzykel-Periodendauer unabhängig von der Unterlagengeschwindigkeit sein. Diese Forderung ergibt 
sich aus der Tatsache, dass sich die Quietschfrequenz während der Bremsung nicht kontinuierlich ändert. Der 
Reibschwinger mit Coulombscher Charakteristik kann dieses Verhalten nicht abbilden; wird aber eine linear 
fallende Reibkennlinie vorausgesetzt, so läßt sich die Konstanz der Grenzzykelfrequenz bei Veränderung der 
Unterlagengeschwindigkeit zeigen. 
Es konnte jedoch noch nicht experimentell nachgewiesen werden, dass während des Quietschens ein Haften 
zwischen Belag und Scheibe auftritt. 

Geometrische Instabilität: Die aus diesem Modell folgende Reibwertbedingung für das Auftreten von selbsterreg- 
ten Schwingungen, wie sie in Tabelle 1 angegeben ist, erfordert für realistische Stabiliätsgrenzen des Reibwertes, 
dass die Dämpfung der Scheibe größer als die des Belages ist. Im realen System liegt die Belagdämpfung jedoch 
gewöhnlich über der Dämpfung der Bremsscheibe. 

Nichtkonservative Lagekräfte: Dieser Mechanismus kommt ohne die Annahme eines Haften zwischen Brems- 
scheibe und Belag aus und erfordert keine Annahmen über die Größe der Dämpfungen im System. Weiterhin 
lässt sich neben der Wirkung der Steifigkeiten auch der Einfluss von geometrischen Verhältnissen auf die Sta- 
bilität erkennen, siehe Tabelle 1. Somit hat der Effekt der nichtkonservativen Lagekräfte einen allgemeinere 
Bedeutung als die geometrische Instabilität. 

Als Konsequenz der hier dargelegten Untersuchung erscheint der Mechanismus der nichtkonservativen Lagekräfte 
am geeignetsten zur Beschreibung des Energieeintrages beim Bremsenquietschen zu sein. 
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Abbildung 2: Erweitertes Prinzipmodell 
G Gehäusefinger, K Kolben 

3. Erweitertes Prinzipmodell 

Um einen Beitrag zur Vermeidung des des Bremsenquietschens leisten zu können, ist es erforderlich, konstruktive 
Design-Parameter einer Bremse im Modell abzubilden. Umfangreiche Finite-Element-Modelle bieten diese Möglich- 
keit, besitzen jedoch auch Nachteile. Zum einen ist die Umsetzung von Design-Variationen im Modell aufwendig 
und zum anderen ergeben sich durch die hohe Anzahl von Freiheitsgraden lange Rechenzeiten. Ausserdem gestaltet 
sich die Einbindung von harten Nichtlinearitäten schwierig und die gewonnenen Erkenntnisse sind sehr produktspe- 
zifisch. Vor diesem Hintergrund wurde quasi als Bindeglied zwischen dem Erregungs-Mechanismus und den Finite- 
Element-Modellen ein Modell einer Schwimmsattelbremse entwickelt, dass mit wenigen Freiheitsgraden wesentliche 
Design-Parameter abbildet. 
Es handelt sich dabei um ein ebenes Mehrkörpersystem mit 14 Freiheitsgraden, siehe Abbildung 2. Die Parameter 
dieses Modells wurden zum Teil aus Messungen an den Bremsenbauteilen gewonnen und zum Teil aus einem beste- 
henden Finite-Element-Modell kondensiert. Elastische Schwingformen sind durch Strukturanpassung beim Bremsen- 
träger und bei der Bremsscheibe durch Parameteranpassung an quietschrelevante Bauteil-Eigenfrequenzen integriert 
worden. Die Starrkörper des Modells sind verbunden durch lineare Feder-Dämpfer-Koppelelemente, die aber durch 
nichtlineare Elemente ersetzen lassen. In den Koppelelementen zwischen Belag und Scheibe ist trockene Reibung 
integriert, was zu einer Unsymmetrie in der Steifigkeitsmatrix des Systems führt. Das erweiterte Prinzipmodell setzt 
also auf dem Mechanismus der nichtkonservativen Lagekräfte auf. 
Den Kern des Simulationsprogrammes bildet ein allgemeiner Mehrkörper-Algorithmus für Schwingungssyteme mit 
kleinen Amplituden basierend auf der synthetischen Methode nach Newton und Euler. Die Struktur des zu simu- 
lierenden Systems sowie dessen Parameter sind in externen Dateien abgelegt, so dass eine Strukturmodifikation der 
Bremse einfach in das Modell zu übernehmen ist. 

4. Technische Sensitivitätsanalyse 

Die Stabilität des Systems, und damit die Gräuschneigung der Bremse, wird im linearen Fall durch die Realteile der 
Eigenwerte beschrieben. Daher erscheint es sinnvoll, die Sensitivität der Realteile bezüglich einer Parametervariation 
zu untersuchen. FRANKE zeigt in [4], dass sich die Sensitivität eines Systemeigenwertes A bezüglich eines Parameters 
p mit Hilfe der Rechts- und Linkseigenvektoren der Systemmatrix ergibt. Für eine technische Parameter-Variation 
Ap verändern sich jedoch auch die Systemeigenvektoren um ein signifikantes Maß, so dass die resultierende Verände- 
rung der Eigenwerte nicht mit dem beschriebenen Verfahren zu bestimmen ist. Andererseits stellt es mit der heutigen 
Rechentechnik kein größeres Problem dar, die Systemeigenwerte vor und nach der Variation Ap zu bestimmen und 
die Differenz AA direkt zu berechnen. Für dieses Vorgehen wird der Begriff technische Sensitivitätsanalyse eingeführt. 
Da die Anzahl der Parameter recht groß ist und die Parametervariatonen, die untersucht wurden, eine gut zu inter- 
pretierende konstruktive Bedeutung haben sollen, wurde die Menge der Parameter in Variationsgruppen eingeteilt, 
innerhalb derer die Parameter gleichzeitig verändert werden. Die technische Sensitivitätsanalyse wurde zur Unter- 
suchung von zwei Eigenschaften, der Robustheit und der Parametereinflüsse, eingesetzt. 
Da der Reibwert zwischen Belag und Scheibe im Bremsbetrieb verhältnismäßig großen Schwankungen unterliegt 
und ein hoher Reibwert eher zu Geräuschen führt als ein niedriger, wurde die Robustheit des Modells gegenüber 
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Abbildung 3: Ergebnisse der Sensitivitätsanalyse 
a) Robustheitsuntersuchung für gleich- (—>—*) und gegensinnige (<—>) Koppelelementverschiebung 
b) Parametereinfluss 

Reibwerterhöhung für etwa einhundert Parametervariationen untersucht. Von den Reibwertsensitivitäten 

s?(0 = ARe(Ai)     Re(Ai(/i2)) - Re(Ai(/n)) 
Aß fJ-2 - ßi 

(1) 

aller Eigenwerte wurde jeweils das Maximum ausgewählt und mit dem Maximum des unmodifizierten Zustandes 
verglichen. Abbildung 3a) zeigt als Ergebnisbeispiel die Wirkung von Koppelelementverschiebungen. Es wird deut- 
lich, dass die Stetigkeiten im Reibkontakt und die Verhältnisse zwischen Belag-Rückenplatte und Kolben, bzw. 
Gehäusefinger, eine grosse Bedeutung haben. In der Praxis werden hier Dämpfungsbleche zur Geräuschminderung 
eingebaut. 
Bei der Untersuchung von Parametereinflüssen wurde der Reibwert konstant gehalten und die Parameter entspre- 
chend ihrer Gruppeneinteilung um zehn Prozent variiert. Die resultierende Veränderung der Eigenwert-Realteile ist 
für alle Eigenwerte einzeln betrachtet worden. Eine Normierung auf den Zahlenwert der Parametervariation wurde 
zugunsten einer besseren Vergleichbarkeit bei unterschiedlicher Parameter-Dimension nicht vorgenommen. In Ab- 
bildung 3b) lässt sich erkennen, dass sich Parametervariationen sehr unterschiedlich im Spektrum der Eigenwerte 
auswirken können. Die geometrische Variation 3 liefert beispielsweise eine globale Stabilisierung des Systems. 

5. Zusammenfassung und Ausblick 

Die Diskussion der Erregungs-Mechanismen zur Erklärung des Bremsenquietschens zeigt, dass der Mechanismus der 
nichtkonservativen Lagekräfte einen vielversprechenden Ansatz darstellt. Darauf aufbauend wurde ein Mehrkörper- 
Modell einer Schwimmsattelbremse entwickelt und einer Sensitivitätsanalyse des Stabilitätsverhaltens bezüglich Pa- 
rametervariation unterzogen. Die Ergebnisse dieser Sensitivitätsanalyse werden derzeit experimentell überprüft.Weitere 
Modellrechnungen beziehen nichtlineare Effekte ein, ausserdem wird das Modell auf elastische Körper erweitert. 
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Selbsterregte Reibschwingungen bei konstant verzögertem Vortrieb am Bei- 
spiel einer Scheibenbremse 

Das Paradigma selbsterregter Reibschwingungen ist ein starrer Körper auf einer rauhen Unterlage, der durch eine 
Feder mit konstanter Vortriebsgeschwindigkeit geschoben wird. Die Existenz der selbsterregten Schwingungen werden 
durch die Eigenschaften des Reibgesetzes bestimmt. Im Gegensatz dazu wird für ein erweitertes mechanisches System 
gezeigt, daß bei konstant verzögertem Vortrieb die Art des Reibgesetzes eine untergeordnete Rolle spielt und die 
Existenz von instationären selbsterregten Schwingungen im wesentlichen durch die mechanischen Eigenschaften des 

Systems bestimmt sind. 

1. Einleitung 

Selbsterregte Reibschwingungen, wie sie bei Scheibenbremsen auftreten, können u.a. durch ihre Frequenzbereiche 
klassifiziert werden. Höherfrequente Schwingungen (2 kHz<f<12 kHz) können der Kategorie Bremsenquietschen [1], 
niederfrequente (f<l kHz) der Kategorie Bremsenrubbeln zugeordnet werden. Ihre Modellierung und der Bereich 
der Reibkennlinie, welcher entscheidend ist für das Auftreten von selbsterregten Schwingungen, unterscheiden sich 
wesentlich. In dieser Arbeit wird ausschließlich der Fall niederfrequenter Reibschwingungen betrachtet. Diese sind 
durch Stick-Slip-Phänomene gekennzeichnet. 

2. Modellierung und theoretische Untersuchung einer Scheibenbremse 

In Bild la ist das reale Bremsystem zu sehen, bestehend aus Bremse, Bremsscheibe, Aufhängung und Antrieb. 
Die Bremse selbst besteht aus dem Bremssattel mit Bremszylinder und dem Träger. Beidseitig der Bremsscheibe 
liegen im Träger die Bremsbacken (Pads). Beim Bremsen werden diese durch den Bremszylinder gegen die Scheibe 
gedrückt, von dieser etwas mitgenommen und laufen auf den Träger auf. Die resultierende Reibkraft wird über den 
an der Aufhängung befestigten Träger in das Fahrzeug eingeleitet. 

In dem Versuchsstand Bild la wurde die Aufhängung des Fahrzeugs durch einen Biegestab nachgebildet. Der Antrieb 
erfolgt durch einen drehzahlgeregelten Hydraulikmotor. Im Gegensatz zum realen Fahrzeug ist die Drehzahl der 

Bremsscheibe unabhängig von der Reibkraft. 

Aufhängung Träger 

*-~e 

Bild 1 Reales System Mechanisches Modell 

In der Modellierung wurde das Bremssystem durch ein Starrkörpersystem mit diskreten Massen, Federn und Dämp- 
fern, der flächenhafte Reibkontakt Pad/Bremsscheibe durch einen punktförmigen Reibkontakt ersetzt. Allgemein gilt, 
daß Strukturen größerer Abmessungen beim Schwingen niedrigere, jene mit kleinen Abmessungen höhere Frequenzen 
abstrahlen. Da hier ausschließlich der niedrige Frequenzbereich betrachtet wird, muß in die Modellierung außer der 
Bremse auch die umgebende Struktur, also zumindest die Aufhängung, miteinbezogen werden. Bremsenhersteller 
bestätigen obige Aussage. Basis des mechanischen Modells in Bild lb ist daher ein 1-Freiheitsgradsystem, bestehend 
aus der Masse M der Bremse (im wesentlichen die des Sattels) und der Steifigkeit K der Aufhängung. Die reibin- 
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duzierte Anregung erfolgt über ein Pad der Masse m und die Steifigkeit k des Trägers. Die eingeführte Dämpfung 
D ist im wesentlichen die des Pad. Insgesamt ergibt sich damit als mechanisches Modell ein 2-Freiheitsgradsystem 
mit Reibung. Dabei wird die Bewegung des Pad durch die Kordinate £, die der Scheibe am Reibkontakt durch die 
Koordinate 77 beschrieben. 

Das reale Reibgesetz ist durch mechanische Kenngrößen, wie Relativgeschwindigkeit, Anpressdruck, Materialpaarung 
bestimmt, die wiederum Kurz- und/oder Langzeiteinflüssen, wie Temperatur, Menge und Verteilung des Abriebs, 
Feuchtigkeit, Belastungsgeschichte, etc. , unterliegen. Dies bedeutet, daß das Reibgesetz sich in kaum vorhersagbarer 
Weise während des Bremsens ändert. Zur theoretischen Berechnung wird das Reibgesetz nach Bild 2 verwendet, 
welches das reale Gesetz mit all seinen Parametern sicher nur unvollständig erfaßt. Entscheidend für die Untersuchung 
ist jedoch der Bereich des Reibgesetzes in der Nähe des Ursprungs, da Stick-Slip Phänomene untersucht werden, 
die wechselnde Haft-Gleitzustände voraussetzen. Experimentell wurden Verläufe dieser Art für die Kombination 
Padmaterial-Stahl gemessen. Die Reibkraft zeigt eine Haftüberhöhung. Für Gleiten gilt ein lineares Kraftgesetz. 
Es ist nur von der Relativgeschwindigkeit abhängig; die Normalkraft ist konstant. Für die Berechnung wurden die 
Werte ps = 1, po = 0.75, c = -0.02 angenommen  (siehe Bild 2). 

P 
PS 

PD 

7/(7-) 

£'-»?' 

Bild 2: Reibgesetz 

Gleiten Haften 

Bild 3: Geschwindigkeitsverlauf T/(T) der Scheibe 

Eine konstante Verzögerung, rj" der Bremsscheibe, bewirkt eine lineare Abnahme der Geschwindigkeit 77'(r) bis zur 
Ruhe (Bild 3). Grundzustand ist das permanente Gleiten des Pad auf der Scheibe. Das Pad ist statisch ausgelenkt, 
seine Geschwindigkeit £' ist zunächst Null. Wird nun bei einer Scheibengeschwindigkeit r]'0 eine Störung initiiert, 
so kann von der gestörten Bewegung des Pads auf die Stabilität dieser Bewegung geschlossen werden. Als Störung 
wurde ein Haftzustand £' = t]'Q initiiert. Anhand der Phasenkurve £'(£) oder der Kontaktkraft p(r) läßt sich leicht 
entscheiden, ob selbsterregte Reibschwingungen auftreten. 

Alle Rechnungen erfolgten in Anlehnung an [2] und, falls nichts anderes angegeben, mit den Werten 
r/' = -10-3,   K/k = 0.15,   D = 10'2,    M/m = 10. 

£'(£> 

^5^Tnr 

Bild 4-' Phasenkurve £'(£) und Kontaktkraftverlauf p(r) für T]'0 = 0.7 und n'0 grenz 0.3 

T]'0 =0.7 initiiert Bilder 4a,b zeigen den Fall TJ0 = 0.7. Ausgehend vom stabilen Zustand £' = 0 wird eine Störung £' 
(Vertikale in £'(£))• Diese Haftphase bleibt kurzzeitig erhalten (Horizontale in £'(£)), dann erfolgt der Auslöse vor gang. 
Schon der nächste, kleinere Zyklus zeigt kein Haften mehr. Die Schwingbewegung wird mehr und mehr abgebaut; 
sie ist stabil. Im Verlauf der Kontaktkraft p(r) ist die Störung als abklingende Kurve erkennbar. Danach folgt der 
Verlauf der Kontaktkraft dem Reibgesetz nach Bild 2 bis zum Stillstand der Scheibe. Der Ausschwingvorgang von 
p(r) resultiert aus der gedämpften Schwingung der Sattelmasse M bei haftendem Pad auf stillstehender Scheibe.Die 
Größe dieses Ausschwingvorganges ist von seinen (nichtvorhersagbaren) Anfangsbedingungen abhängig. Stört man 
das System bei kleineren 770-Werten, so erhält man zunächst qualitativ gleiches Verhalten. Erst bei der Grenzge- 
schwindigkeit rj'0grenz — 0.3 ändert sich dieses (Bilder 4c,d). Die Bewegung des Pads wird instabil, d.h. selbsterregte 
instationäre Reibschwingungen treten bis zum Stillstand der Scheibe auf. 
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Die Frage ist, welche Größen die Grenzgeschwindigkeit ri'0igrenz beeinflußen. Abgesehen von den Kenngrößen M, 
m, K, k und D des Systems, werden auch die Verzögerung 77" der Scheibe und das Kraftgesetz mehr oder weniger 
dafür'entscheidend sein, ob bei höheren oder niedrigen Geschwindigkeiten T)'0 Reibschwingungen auftreten. Im folgen- 
den wird die Verzögerung n", das Steifigkeitsverhältnis K/k und die Dämpfung variiert. Anhand der Kontaktkraft 
p(r) wird über die Stabilität der Padbewegung befunden (Bild 5). 

D = 10-1
>10-2,10-3 

IJ" = -IO-2,-IO-3,-IO- 

200    400    600    800    1000    1200 

K/k = 1.5, 0.15, 0.015 

200 400 600 1000 1200 

200 400 600 1000 1200 200    400    600    800   1000   1200 

200    400    600    800    1000    1200 

200    400    600 

Bild 5: Kontaktkräfte p(r) bei Variation der Verzögerung 77", der Steifigkeiten K/k und der Dämpfung D 

Bild 5a ist zu entnehmen, daß mit abnehmender Verzögerung zeitlich früher, d.h. bei höheren Geschwindigkeiten 
selbsterregte Reibschwingungen auftreten. Verändert man bei gleicher Bremse (k = const) die Steifigkeit K der 
Aufhängung, so wird bei weicherer Aufhängung das Pad mehr zum Schwingen neigen (Bild 5b). Wie zu erwarten, 
ist dies auch der Fall, wenn die Dämpfung D verkleinert wird (Bild 5c). 
Bisher wurde mit dem Reibgesetz nach Bild 2 gerechnet. In [2] wurde gezeigt, daß Systeme mit verzögertem Vortrieb 
auch für weitere Reibgesetze pD < ps, c > 0 (s. Bild 2) Stick-Slip-Phänomene aufweisen. Dort wurde festgestellt, 
daß die Existenz von Stick-Slip-Erscheinungen weniger von der Form der verschiedenen Reibcharakteristiken, als 
von der Eigenschaft des Antriebs abhängt. 

3. Experimentelle Untersuchungen 

Die theoretischen Ergebnisse nach Bild 5 wurden mittels Experimenten verifiziert. Stichprobenartig wurden dazu, 
bei linear abnehmender Drehzahl n der Bremsscheibe (0 < n < 1 U/sec), jeweils drei Beschleunigungs-Zeit-Signale 
a(t) des äußeren Pad erfaßt. Variiert wurde die Geschwindigkeitsabnahme, d.h. die Zeit T bis zum Stillstand, die 
Steifigkeit K der Aufhängung und die Dämpfung D. 
In Bild 6 sind die Ergebnisse spaltenweise in 2 Gruppen mit je 3 Bildern dargestellt. Der Gleitzustand (oberstes Bild 
jeder Gruppe) ist gekennzeichnet durch einen unregelmäßigen a(t)-Verlauf ohne erkennbares Muster. Dies bedeutet, 
daß in der Realität permanente Störungen vorhanden sind. 
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p=15bar 
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B«7d 6: Beschleunigungs-Zeit-Signale a(t) bei Variation der Bremszeit T, der Steifigkeit K und Dämpfung D 

In Bild 4a zeigt die obere Gruppe a(t)-Signale für eine lineare Drehzahlabnahme von 1 U/sec bis zum Stillstand 
in T«30sec, die untere in T«5sec. Der oberen Gruppe ist zu entnehmen, daß bei der Drehzahl 0.367 U/sec sich 
eine regelmäßige Schwingung anfängt auszubilden. Bei niedrigerer Drehzahl erhält man Reibschwingungen mit einer 
Frequenz von ca. 50Hz, deren Schwingungsamplitude ca. 0.4mm beträgt. Bei schnellem Abfall der Drehzahl bildet 
sich erst kurz vor dem Stillstand dieses Muster aus. In Übereinstimmung mit Bild 5a ist festzustellen, daß mit 
abnehmender Verzögerung bei höheren Drehzahlen Reibschwingungen auftreten. 
Verringert man den Bremsdruck von p=15bar in Bild 6a auf p=5bar in Bild 6b, so treten keine Reibschwingungen 
auf, wie der unteren Gruppe 6b zu entnehmen ist. Wird nun die Steifigkeit K der Aufhängung auf K/5 verringert 
(Gruppe 6b, oben), so zeigen sich erneut Reibschwingungen mit, auf Grund der verringerten Steifigkeit, kleinerer 
Frequenz von ca. 34Hz. Dieses Resultat bestätigt die theoretischen Ergebnisse von Bild 5b. 
Die systemimmanente Dämpfung D = D0 ist im wesentlichen durch das Pad bestimmt. Eine Dämpfungsvergrößerung 
erfolgte durch Bekleben der Rückseiten der Pads mit Dämpfungsmaterial. Die Meßergebnisse der oberen Gruppe 
6c erfolgten mit der Ausgangsdämpfung D0 und sind eine Wiederholung des Meßvorgangs von Bild 6b, oben. Die 
untere Bildgruppe 6c zeigt, daß bei größerer Dämpfung Reibschwingungen ganz unterdrückt werden können. Diese 
Ergebnisse bestätigen die theoretischen Resultate von Bild 5c. 

4. Zusammenfassung 

Insgesamt ergab sich eine gute Übereinstimmung von Theorie und Experiment in phänomenologischer Hinsicht, 
was die Hinzunahme der Aufhängung in das Modell bestätigt. Ein verzögerter Vortrieb verstärkt die Tendenz zur 
Selbsterregung im Vergleich zu jenem mit konstanter Drehzahl. Seine Eigenschaften bestimmen im wesentlichen die 
Existenz von Stick-Slip-Phänomenen und weniger die Form der Reibungscharakteristik. 
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GERSTEN. K. 

Asymptotic Theory for Turbulent Shear Flows at High Reynolds Numbers 

It is shown that a complete asymptotic theory of turbulent shear flows at high Reynolds numbers near walls exists for the 
following three standard classes of flows: attached boundary layers, Stratford flows (rw = 0) and natural convection flows. 
These flows are characterized by a finite thickness and a layer structure. The Reynolds-averaged Navier-Stokes equations 
together with an appropriate turbulence model can be solved by the method of matched asymptotic expansions. Hereby the 
matching conditions between the different layers yield boundary conditions for the solutions of the equations of motion and 
furthermore conditions, which asymptotically correct turbulence models have to satisfy. As typical results of the asymptotic 
theory general explicit formulae for the distributions of the shear stress and the heat flux at the wall exist (usually power 
laws, except the logarithmic laws for attached boundary layers). For more general classes of flow, e.g. boundary layers with 
separation, combined natural and forced convections, a complete asymptotic theory is not yet available, because their 
solutions depend on additional coupling parameters that contain the viscosity. 

1. Introduction 

There is general agreement that Prandtl's boundary-layer theory for laminar flows is an asymptotic theory for the 
solutions of the full Navier-Stokes equations at high Reynolds numbers. The question arises whether an 
asymptotic theory exists also for turbulent flows, that means for the solutions of the Reynolds-averaged Navier- 
Stokes equation. It should be mentioned that a survey on the asymptotic theory for^ee turbulent shear flows has 
been given in [1]. Hence, in the following only wall-bounded turbulent flows will be considered with the 
restriction of incompressible two-dimensional flows.lt was shown in [2] that L. PRANDTL considered the 
turbulent boundary layer theory as an asymptotic theory for high Reynolds numbers, although he did not use this 
terminology. All his contributions to attached turbulent boundary layers show the characteristics of an 
asymptotic theory. In particular, his new system of formulas for turbulent boundary layers published in 1945 [3] 
is free from the viscosity. It turns out that attached turbulent boundary layers are not the only class of flows 
where an asymptotic theory is available today. There are two more classes of flows, as will be shown in the 
following. 

2. Layer Structure 

In contrast to laminar boundary layers turbulent boundary layers have a finite thickness [4], [5], [6]. They also 
show a layer structure as sketched in Fig. 1, cf. [7], [8]. There are three layers: the fully turbulent layer (the 
viscosity can be neglected compared to the eddy viscosity), 
the viscous sublayer (its thickness is small compared to 8 0uter |nviscjd F|0W 

and the inertia terms can be neglected) and the viscous 
superlayer (equilibrium of convection and diffusion). It 
turns out that two viscous layers have universal local 
solutions when the local values of the wall shear stress and 
the wall heat flux for the viscous sublayer and the so-called 
entrainment velocity for the viscous superlayer are known. 
Since the equations of motion for the fully turbulent layer is 
free from the viscosity, only one boundary-layer calculation 
is necessary for all Reynolds numbers, which is typical for 
an asymptotic theory. The boundary conditions that the 
solutions have to satisfy follow from the matching with the    \    \3rT77r777/""ii   ?>~j\-, s^--^, 5sub- ^Re 
outer flow as well as with the viscous sublayer. The latter  ^rtm^ m Ke Re Re 
matching is  of central  importance for formulating the 
boundary conditions for x\ = y/8 -»■ 0. Fig. 1: Attached Turbulent Boundary Layer 
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3. Overlap Layer 

An overlap layer is characterized by the fact, that it has the properties of both the neighbouring layers. In the case 
of the overlap layer between the fully turbulent layer and the viscous sublayer its flow is independent of v (as 
part of the fully turbulent layer) and independent of 8 (as part of the viscous sublayer). These features lead via 
dimensional analysis to a priori statements about the gradients of velocity and temperature. They are given as 
follows: 

lim 
du     1 

lim 1-^Ji 8T      1 

^°Jr(//)   drj    K' i^°-qtf(P'Cp)   dt]    K 
(1) 

Hence, the turbulent Prandtl number is always a constant in the overlap layer between the fully turbulent layer 
and the viscous sublayer: 

Pr, = -lim       ' 
Tt      dTldt]     K 

ri^o qtlcp   duldt]     Ke 

The balance equations for the flow in this overlap layer reduce to: 

(2) 

momentum: 0 = g.ß.(T-Tw).sma---^- + ^- 
p   dx    dy 

( - \ 

P) 

thermal energy (no dissipation): 0 
dy 

(3) 

(4) 

From this last equation it follows that in the overlap layer the turbulent heat flux is constant and equal to the wall 
heat flux, qt = qw. 

For three classes of flows Eq.(3) reduces to simple relations for the turbulent shear stress as listed in Table l.The 
matching conditions (1) lead to the gradients of velocity and temperature in the overlap layer for these three 
classes of flows listed in Table 1. 

These conditions are valid independent of the turbulence model used. On the contrary the constants of the 
turbulence must be chosen such, that the conditions given in Table 1 are satisfied, cf. [6]. 

Flow Definition *t 

du 

dt] 

<\M/P 
1 

dT 

dt] 

Qt'ip-Cp) 
Constants Pr, 

i4Tt ip 
Attached 
Boundary 
Layers 

g = o 
Tw 

1 

K-T] 

i 

Ke = 0.46 
— = 0.89 
Ke K0-V 

Stratford 
Flows 

g = 0 dp 

dx 

1 1 *:„ = 0.59 

Kooö=0.72 
Kco  =0.82 

Natural 
Convection 

g*o 

^ = 0 
dx 

~rfi 
1 1 KN =0.32 

^,=0.18 
KN
 =1.8 

KNe KN-V/3 KN0   V 

Table 1: Gradients of Velocity and Temperature in Overlap Layer 
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4. Attached Boundary Layers 

The equations of motions combined with appropriate turbulence-model equations are free from the viscosity for 
the fully turbulent layer. The boundary conditions for r\ = 1 are given by matching with the outer flow and they 
follow for r|-> 0 from the conditions in Table 1. Only one calculation is necessary for all Reynolds numbers, cf. 

[4]. The main result of this calculation is given by the functions C (x) and C0(x) . Matching the velocities of 
the fully turbulent layer and the viscous sublayer leads to the analytical formula for the local skin-friction 
coefficient cf = 2 TW / (p-U^): 

\ 
I— = -~ln 

cf + C++C(x) (5) 

Where Rex = U(x)-[x - xj / v is the local Reynolds number and C+ a universal constant (C+ = 5.0 for smooth 
surfaces). The main contribution of the right hand side of Eq. (5) cßmes from the first two terms. They are results 
of the universal solution for the viscous sublayer. The function C(x) is the contribution of the fully turbulent 
layer and hence dependent on the turbulence model. Its effect on the skin friction, however, is only a few percent 
and decreases with growing Reynolds number. 

It is worth mentioning that the so-called equilibrium boundary-layers are characterized by a constant C, in 
which case the profiles of the velocity defect in the fully turbulent layer are self-similar and the partial 
differential equation reduces to an ordinary differential equation. 

A formula similar to Eq. (5) is valid for the local wall heat flux or Nusselt number, cf. [8]. 

5. Stratford Flows 

In Stratford flows the wall shear stress is everywhere equal to zero (TW = 0). STRATFORD [9] has investigated 
such a flow experimentally. Theoretical investigations of this particular equilibrium boundary layer can be found 
in [8], [10], [11]. As a result the following formula for the Stanton number, i.e. the dimensionless local wall heat 
flux qw(x), can be derived: 

st= ;;Uf   =—°-^-T (6) 
p-cp-(Tw- TJ ■ U(x)    c^(pr). Re/3 

Here Rex is again the local Reynolds number based on the outer flow velocity U(x) ~ (x-Xo)'°22 and the length 
x - xo The value Cg „ (Pr) results from the universal viscous sublayer solution. It depends on the Prandtl number 
Pr, it is C^CO.72) = 1.8, cf. [12], [13]. 

6. Natural Convection Flows 

The equations of motion for the fully turbulent layer can be found in [4], [8]. In these particular cases it is not 
necessary to solve these equations to get a formula for the wall heat flux. The matching between the fully 
turbulent layer and the viscous sublayer yields directly the following formula to the leading order : 

Tw~Tco=Cx
N0(Pt) (7) 

where 

T 
1 

Lq Uq 
P-Cp-Uq 

v-qw-ß-g-sina V* 

v P-Cr 
(8) 

The function Cj^(Pr) is given in [4]. It is CX
N0(OJ2) = 4.56 . Equation (7) is equivalent to a power law of the 

Nusselt number as function of the Rayleigh number. The exponent of the power law depends on the input (given 
Tw(x) or q„(x)). The agreement of Eq (7) with experiments is excellent, cf. [4]. 
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7. Incomplete Asymptotic Theory 

The momentum equation, Eq. (3), for the overlap layer in general can be written in dimensionless form as 
follows 

T y\ 
<=—^ = l + K-y+ + KN- \&+{y+)-dy+ (9) 

where 

K =     v      dP K   _v-<lw-p-ß-g 
"T-TW   dx N Cp.Tl (10) 

are so-called coupling parameters. They represent a distinguished limit for the double limiting process v-*0 
tw-»0. 

K is a parameter that changes along the wall for turbulent boundary layers with separation, cf. [4], [12]. Their 
fully turbulent layers depend also on K and hence on the viscosity. Therefore, a complete asymptotic theory with 
a solution that is independent of the Reynolds number is not available yet. Consequently, turbulence models that 
are used to predict turbulent boundary layers with separation must have model constants which are functions of 
the coupling parameter K. For |K| > 0.01 the effect of K on the solution has to be taken into account, cf. [4]. The 
coupling parameter KN serves in analogous form for the combined forced and natural convection flows along a 
flat plate. In the most general case (pressure gradient as well as buoyancy effects ) both coupling parameters may 
become important. 
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A. KLUWICK 

Laminar boundary layer separation, fast and slow 

It is well known that classical boundary layer theory fails if flow separation occurs. In the limit of large Reynolds 
number this failure can be avoided if the interaction between the viscous wall layer and the external inviscid region 
is accounted for. The form of the resulting interaction equations crucially depends on the route towards separation. 
If a firmly attached boundary layer is separated by the action of a rapid pressure increase separation is governed 
by the triple deck equations e.g. the classical boundary layer equations supplemented with appropriate matching and 
interaction conditions. However, if the approach towards separation is much slower the formation of a marginally 
separated flow region is described by a nonlinear integrodifferential equation. Representative solutions of both sets of 
interaction equations indicate that boundary layer separation often is accompanied with a loss of uniqueness. 

Without doubt boundary layer theory published 1904 in the seminal paper "Über die Flüssigkeitsbewegung bei 
sehr kleiner Reibung" by L. Prandtl represents one of the cornerstones of modern fluid mechanics. Nevertheless, 
one must concede that the classical hierarchical concept, in which the pressure distribution inside the boundary 
layer is imposed by the external inviscid flow and thus known in advance at each level of approximation, is able to 
yield complete solutions to given problems in rare cases only. The most well known example is provided by a semi 
infinite aligned flat plate in a uniform stream of an incompressible fluid. However, difficulties arise if one considers 
a plate of finite length L. This has been pointed out first by GOLDSTEIN 1930 who showed that both the transverse 
velocity component and the first order pressure disturbances resulting from the boundary layer displacement exhibit 
singularities at the trailing edge. Despite the occurrence of these singularities, however, the solution to the boundary 
layer equations can be extended into the wake region in a sensible manner. 

A more severe breakdown of classical boundary layer theory is usually encountered if flow separation occurs. In this 
connection it is found that two routes towards separation have to be distinguished. This is seen most easily if one 
considers the flow past a slender airfoil at a small angle of attack. First let us concentrate one the case of trailing 
edge stall. To bring out the essential features unencumbered by complicated geometry the airfoil - following BROWN 
AND STEWARTSON 1970 - is replaced by a flat plate. If the Kutta condition is enforced the pressure on the suction 
side rises to its ambient value as the trailing edge is approached where the adverse pressure gradient is infinite. For 
the case of laminar flow considered here this means that the boundary separates before the trailing edge is reached 
even if the angle of attack A; is arbitrarely small. For i; < 1 the transition from a fully attached to a separated 
boundary layer occurs very fast, e.g. in the immediate neighbourhood of the trailing edge. It is characterised by 
the formation of a Goldstein singularity in the wall shear stress-distribution and, most important, it is found that 
solution of the boundary layer equations cannot be extended beyond the point of vanishing wall shear. A different 
flow behaviour is observed if one considers the case of leading edge stall, RUBAN 1982, RUBAN 1981, STEWARTSON 

1982. As the fluid passing over the suction side of the airfoil accelerates starting at the stagnation point the pressure 
drops rapidly. This initial phase of flow development is followed by a sharp pressure rise which may cause the wall 
shear in the nose region to decrease significantly. However, if the angle of attack fc is sufficiently small the wall shear 
remains positive there and rises again if the distance x from the leading edge is larger than xs say. Further increase 
of k eventually leads to the wall shear distribution also shown in Fig. 1: the wall shear fw vanishes in a single point 
but immediately recovers. In contrast to the Goldstein singularity d?w/di remains finite at fw = 0. It changes 
discontinuously and the solution - in which the point of zero wall shear is approached much slower than before - 
can be continued further downstream. If the angle of attack is increased beyond the critical value kc leading to this 
socalled marginal separation singularity a Goldstein singularity forms upstream of xs and, as before, represents an 
impasse for the boundary layer calculations. This fact should, however, not be misinterpreted as a signal that the 
boundary layer equations cease to be valid at separation. In fact, they remain valid in both cases of fast trailing edge 
and slow leading edge separation. Rather it is the hierarchical structure of classical boundary layer theory which 
breaks down, namely the assumption that the pressure distribution inside the boundary layer and the solution to 
the boundary layer equations can be obtained in successive steps. This conclusion was drawn independently by 
a number of authors including NEILAND 1969, STEWARTSON 1969 and MESSITER 1970. It clearly indicates how 
boundary layer theory can be modified to allow for the description of separation processes both fast and slow: by 
accounting for the displacement of the boundary layer on the external inviscid flow in leading rather than higher 
order or, in other words, by letting the boundary layer and the outer inviscid region to interact. 
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In the first case one is led to the socalled triple deck theory. Its name derives from the finding that the local interaction 
region exhibits a three layer structure, Fig. 2. Asymptotic analysis for large Reynolds number Re = ü^Ljii » 1 
reveals that the length and width of the interaction zone are of the order Re_3/8L where u^ and if represent reference 
values of the external flow velocity and the kinematic viscosity while L is a characteristic length associated with the 
unperturbed boundary layer. Since the interaction length is so short the disturbances generated, for example, by a 
trailing edge are essentially inviscid not only in the region outside the boundary layer (upper deck) but also over 
most of the boundary layer (main deck). Viscous effects play a major role in a thin layer (lower deck) adjacent to 
the wall and the wake centerline. Here the flow is governed by the boundary layer equations. Furthermore, even if 
the flow under consideration is compressible, the velocities close to the wall are small and the field quantities in the 
lower deck region are thus governed by the incompressible version of the boundary layer equations. Using suitably 
scaled coordinates (X, Y) parallel and normal to the wall, corresponding velocity components (U, V) and pressure 
disturbances P they assume the form 

dU     dV_ 
dX + dY ~    ' 

The boundary conditions 

ax     dY dX + dY2 

X<0,y-0:     U = V = 0 ,     X > 0 ,  Y = 0 :     continuity of pressure , 

X-^-oo:     U = Y,    P = -a(-X)1/2 

(1) 

(2) 

include the no-slip condition at the plate, the requirement that the pressure is continuous across the wake centerline 
and exhibits the upstream behaviour predicted by the theory of inviscid flows. Here a — k Re1/6 denotes the scaled 
angle of attack. Additional conditions 

F->oo: U = Y + A(X),    P{X) = -  [ ^^dX   subsonic,    -A'(X)   supersonic flow 
71"   J     X. — s\ 

(3) 

follow from the requirement that the flow properties in the lower, main and upper deck blend smoothly, e.g. can be 
matched. Here —A(X) characterises the displacement effect excerted by the lower deck which is felt (through the 
passive main deck) by the upper deck where it causes an inviscid pressure response. 

The interaction equations 1 - 3 for the suction side of the plate have to supplemented with similar equations for the 
pressure side and then have to be solved numerically. Before turning to a discussion of numerical results it is useful 
to briefly describe the nature of the interaction process if the approach to separation is slow. As before the local 
interaction region exhibits a three layer structure, Fig. 3. Again, the flow in the main deck region which comprises 
most of the boundary layer is essentially passive and outside the boundary layer we have a weakly perturbed parallel 
flow. Viscous effects associated with the interaction process are confined to a thin lower deck region where the 
boundary layer equations hold. In contrast to the triple problem outlined earlier, however, the incoming flow is no 
longer fully attached but on the verge of separation. This in turn means that very small disturbances are sufficient 
to separate the boundary layer and asymptotic analysis indicates that these disturbances satisfy the boundary layer 
equations which are linearized with respect to the separation profile. The first oder solution is seen to include a 
function —A(X) which remains undetermined at this level of approximation and, as earlier, can be interpreted as 
a perturbation displacement thickness or equivalently as a scaled wall shear. In order to determine A(X) one has 
to investigate the second order lower deck problem which is found to have an acceptable solution only if A and the 
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scaled pressure disturbances P satisfy the relationship 

x   

A2{X)-X2 + Y = -  I    P' iX)_ dX 
J   Vx-x (4) 

where the parameter T measures the difference between k and kc: T <x(k- fcc)Re2/5. A second relationship between 
A and P is given by the Hilbert integral or the Ackeret formula in (3) if the external flow is subsonic or supersonic. 

Now let us return to the triple deck problem for the flat plate at incidence. Its solutions determine, among others, 
the dependence of the lift coefficient on the angle of incidence and the Reynolds number: CL/2TC = 1 - ai(a)Re~3/8. 
On physical grounds one expects that viscous effects will reduce the lift which requires oi to be positive and this is 
confirmed by the numerical results of CHOW AND MELNIK 1976, KOROLEV 1989, Fig. 4. As one expects the flow 
remains attached if the angle of incidence is sufficiently small. Most interesting, however, it is found that solutions 
of the interaction problem do not exist if a exceeds the critical value ac « 0.497 (indicating that larger values of a 
will lead to a substantial change of the flow structure) and that the relationship between oi and a is non unique 
in the neighbourhood of ac. Upper branch solutions exhibit much longer separated flow regions than lower branch 
solutions which results in a substantial reduction of lift. 

The phenomenon of non-uniquenes observed in Fig. 4 appears to occur quite frequently in connection with flow 
separation. In fact it has been detected first in the different context of supersonic flows past flared cylinders 
GITTLER AND KLUWICK 1987. The flow field in the neighbourhood of the corner develops the triple-deck structure 
discussed before with the difference that the interaction law is more complicated than (3). Owing to the axisymmetric 
geometry the streamtube area decreases downstream of the corner if the flare angle is negative and the initial pressure 
drop, therefore, is followed by a pressure rise which may separate the boundary layer. The positions Xs and XR of 
the separation and reattchement points are plotted in Fig. 5 which clearly displays ranges of the (scaled) flare angle 
a where the solutions of the interaction problem are non unique. 
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In the examples discussed so far the external flow was either purely subsonic or supersonic. The treatment of 
transonic interactions is severely hampered by the nonlinearity of the transonic small perturbation equation which 
has to be solved simultaneously with the nonlinear boundary layer equations and very limited progress has been 
achieved so far. Some insight into the properties of mixed subsonic supersonic flow can, however, be gained if one 
considers transonic effects in narrow channels, KLUWICK AND GITTLER 2001. Owing to the slenderness of the 
channel the flow in the inviscid core region is essentially one-dimensional and can be investigated analytically. This 
leads to a nonlinear interaction relationship between P and A which allows for the passage through the critical state. 

At this point let us stop this brief discussion of fast separation and to return to the case of slow separation. Again, 
non-uniqueness of flow patterns is found to represent a very common phenomenon. In fact, it occurs in all known 
examples of marginally separated flows. Results for the problem of leading edge stall, which was used to introduce 
the notion of marginal separation, are shown in Fig. 6 which displays the wall shear at X = 0 as a function of the 
parameter T. If T is negative, i.e. if k < kc the flow remains attached and the solutions of the interaction equations 
3, 4 are unique. However, for all values T > 0 for which solutions can be found there exist at least two different ones. 
Furthermore, it is interesting to note that the interaction equations do not admit solutions if T > 2.75 indicating 
that a substantial change of the flow behaviour - not fully understood at present - must take place as T exceeds this 
value. Also note, that there exists a T-range where one has four rather than two different solutions. There exist cases 
of marginally separated flows, however, where non-uniqueness of solutions is even more pronounced. An example is 
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provided by a viscous jet flowing past a curved wall which separates under the action of an adverse pressure gradient 
generated by centrifugal forces, ZAMETAEV 1986. If the wall shear at X = 0 is plotted as a function of the parameter 
T which characterizes the flow angle downstream of the interaction region (measured from the value where classical 
boundary layer theory predicts the onset of separation) one obtains the plot shown in Fig. 7. As before there exists 
an upper limit rc of T for which solutions of the interaction problem can be found. For F < Tc there exist ranges 
of T where we have two, four, six or even more different solutions. In this connection the question arises how these 
solutions react to small disturbances. Disturbances caused by localized surface mounted obstacles Y = H(X, Z) 
have recently investigated by BRAUN AND KLUWICK 2000, BRAUN, KLUWICK AND STEINRüCK 2001 for rc-T «: 1. 
Representative results are depicted in Fig. 8 where AZD and Z denote the wall shear distribution in the presence of 
the 3D obstacle and the (scaled) coordinate in the lateral direction. In the case of the upper branch solutions (u) 
the disturbances are seen to decrease with increasing distance from the obstacle. Disturbances of the lower branch 
solutions (1), however, generate a periodic flow pattern which extends up to Z = oo. Asymptotic analysis indicates 
that the flow behaviour for large Z is almost independent of the specific shape of the obstacle for both the upper 
and lower branch solutions where they approach the properties of weakly nonlinear eigensolutions. These closely 
resemble soliton and cnoidal wave solutions known from the Korteweg de Vries equation. The implications of these 
surprising results are currently under investigation. 
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DANIEL MARGERIT AND DWIGHT BARKLEY 

Singular perturbation equations for 3-d excitable media 

In this paper the idea of Prandtl's boundary layer is exported to a field other than fluid dynamics. Excitable media, 
such as nerve fibers and heart tissue, are typically modelled with reaction-diffusion equations containing two chemical 
species that evolve on very different time scales. In three dimensions solutions of these equations take the form of 
rotating scroll waves (interfaces) ending on filaments. The ratio of the two times scale defines a natural small 
parameter epsilon. Exploiting the inherent smallness of epsilon, singular perturbation methods are used to derive 
three-dimensional equations for each of two boundary layers : interface region (scroll) and filament region (core), 
and for the associated outer region. For scrolls with uniform twist about straight filaments, this matched asymptotic 
expansion method is also used to derive free-boundary equations not only at leading order but also at first order. 
Both orders are validated against full solutions of the reaction-diffusion equations. Using these two orders and with 
no adjustable parameters, the shape and frequency of waves are correctly predicted for most cases of physical interest. 

1. Introduction 

In three-dimensional excitable media, propagating waves of excitation typically take the form of scrolls which are 
organized about one-dimensional filaments[13]. These filaments have some similarities to the vortex filaments found 
in fluid dynamics. However, unlike vortex filaments in fluid dynamics, filaments in excitable media can have associ- 
ated twist. Figure 1 illustrates this by showing a scroll wave which is uniformly twisted along a straight filament. 
The purpose of this paper is to show how the idea of Prandtl's boundary layer can be applied to excitable media. 
In particular we derive equations predicting the shape and rotation frequency of scroll waves such as in Fig. 1 and 
through these equations we are able to understand and predict the role of twist in shape and frequency selection. 

We begin by considering the following partial-differential-equation (PDE) model of excitable media[l] written in the 
space-time scales proposed by Fife[6]: 

e2du/dt    =    e2\l2u + u{\-u)(u-V-—\. (1) 

dv/dt    =    e{u-v). (2) 

Such two-component reaction-diffusion models capture essential properties of excitable media and are widely used 
in theoretical and computational studies, e.g. [2, 3, 7, 8, 9, 14]. Model parameters a and b control the excitation 
threshold and duration and will have values a = 0.8 and b = 0.1 throughout. The parameter e is small, reflecting 
the disparate time scales of the fast activator variable u and slow inhibitor.variable v. 

Previous work on wave selection in excitable media through asymptotic expansions [3, 7, 8, 9, 12] has focused entirely 
on leading order in the small parameter e and primarily on two dimensions. Expanding the rotation frequency as 

u=JV + ewW + ..., (3) 

only the leading-order frequency w(°) has been obtained[3, 7]. While the small-e (Fife) limit has played an important 
role in 2D studies, the leading order does not accurately predict many properties of waves at finite e. However, we 
find (Fig. 3 below) that expansions to first order in e are predictive well into regimes of physical interest. 

2.  Geometry, asymptotic description and leading order solution 

For the leading-order asymptotics, we begin by considering the general three-dimensional (3D) case. The medium 
is divided into three regions: outer, interface, and core as shown in Fig. 2. The filament is the curve X(s,t) inside 
the core. The outer region comprises the bulk of the medium. It consists of both excited (+) and quiescent (-) 
portions for which u = u+ = 1 and u = u~ = 0, respectively, to all orders in e. Expansion of the u-field in the outer 
region gives: v = vs + ev^ + ..., where vs = -b + a/2 is the stall concentration (value such that a plane interface 
is stationary) and v^ is to be determined. 
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Figure 1: Twisted scroll wave from nu- 
merical solutions of Eqs. (1-2). Isosur- 
face is shown for u = 0.5. The filament is 
white. The structure rotates in time with 
frequency u> about the filament. The 
twist is T = 0.5, (defined later in the 
text); e = 0.1. 

Figure 2: Scroll geometry showing outer regions [excited 
(+) and quiescent (-)], interface regions [wavefront (+) 
and waveback (-)], and core region. The filament X(s,t) 
is parameterized by s and time t. Local coordinates to 
the filament are (r,(p,s), with (r,ip) in the plane normal 
to X(s, t) and <p measured from the normal vector n. 

Separating excited and quiescent states are the thin interfaces where u undergoes rapid change. These consist of 
a wave front (+) and a wave back (-), which on the outer scale are given by <p = $±(r,s,t). Solving leading- and 
first-order inner equations for u across the interface (v is constant at these orders across the interface) and matching 
to the outer resolution, one obtains equations for interface motion[10]. Thus Eqs. (1-2) reduce to equations for v^ 
in the outer region together with equations for the motion of the two interfaces (free boundaries): 

dvW/dt 

r$(o)±A± 
u V 

a 
(i)± 

(4) 

(5) 

where $(°)± is the leading order approximation to $±, and where h± = \dX/ds\ (1 - rKcos«^0)*), K is the 
filament curvature, m* is the determinant of the metric tensor and H± is the mean curvature of interface ^W*, 
and finally v^* is the value of i/1) at interface $(°)±. Eq. (5) equates normal velocity of the interface to twice the 
mean curvature plus the speed of a plane interface. Phenomenological approaches to excitable media yield similar 
equations [16]. As in 2D [9], the core plays no role at leading order other than to regularize the cusp that would 
otherwise exist as the two interfaces come together. However, leading-order core equations dictate that X(°) = 0, 
i.e. the filament velocity is zero at leading order in e and filament motion must come at higher order. 

We now consider the specific case of a straight filament and seek solutions with uniform twist r = <9$/<9s and 
constant frequency w(°) = $(°). The angle between the two interfaces can be shown to be constant: A4>(°) = 
$(o)- _ $(o)+ _ 2TT(1 - v

s) and IJW* can be eliminated from the free-boundary equations to obtain a single equation 
describing the shape of the interface[10]: 

c/$(°)      ip(°)(i + $(° 

dr r(g + xl/(o)2)_S(? + *(0)2)3/2. (6) 

where #(°> = rd^+fdr = rd$W-/dr, and q = 1 + f2f2, with f = VwWr, f = r/v^W. The eigenvalue B is 
related to uA°) and model parameters via B = (^/aA0))3/2 where JJ?I

2
 = y/2irvs(1 - vs)/a. With f - 0 (2D case), 

Eq. (6) is as given by Karma[7], while for f ^ 0 it can be shown to agree with the'work of Bernoff [3]. *(0) and the 
selected B as a function of f2 is found[ll] from Eq. (6) by shooting: integrating from r = 0 to large r and finding 
B such that ^^ matches the relevant large-r limit obtained from Eq. (6). 
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3. Order-e asymptotic for a straight filament with twist 

We now consider the order-e asymptotics. We treat only the case of straight filaments. For scrolls with twist r 
rotating at frequency w: d/dt = -cod/df and d/dz = rd/dip. For this case Eqs. (1-2) become 

e2udu/d<p    +    e2Vlw + u(l-w) U-^-J =0, (7) 

todv/df    +    e(u -v)=0, (8) 

where V]_ = d2/dr2 + (l/r)d/dr + (q/r2)d2/dp2. The major complication in deriving free-boundary equations from 
Eqs. (7-8) is matching outer and inner solutions (for u and v) across the interface because v^ is not constant across 
the interface and because the normal to the interface lies outside the (r, <p) plane when r ^ 0. For this we use local 
coordinates "normal" to V2

L near the interface[10]. 

The symbolic calculator Maple is used to obtain the cascade of asymptotic equations in both the outer and inner 
regions up to the order of interest. The outer asymptotic expansion is plugged into Eqs. (7-8). For the inner region, 
Maple is first used to express Eqs. (7-8) in local inner coordinates in the interface region and then used to plug the 
inner asymptotic expansions into these equations. Maple is then used to find the behavior at infinity of the inner 
solution and to perform the intricate asymptotic matching with the outer solution. Finally, Maple is used to find the 
asymptotic behavior at infinity of $(°) and tfW to many orders in r. The symbolic calculator allows us to quickly 
derive these results and to minimise the possibility of mistakes in such fastidious calculus. 

The result is that at this order A$W = $(1)~ - $(1)+ = 0 and it is again possible to obtain a single equation for 
tf (x> = aui^rd&^/drlll] with an eigenvalue D related to w^ by D = au{l\ The general solution of this equation 
is found[ll] and diverge exponentially at infinity unless D has a selected value. 

Finally, we use symbolic calculation to verify that the fields obtained asymptotically is truly the solution of Eqs. (7-8) 
up to the order of interest. This is an exact check which is independent of the calculus used to derived the asymptotic 
fields. We perform this verification with Maple by (i) plugging into Eqs. (7-8) the outer asymptotic solution and 
equations for ^(°) and tfW up to the relevant order, then expanding in e and verifying that 0 = 0 on the computer; 
(ii) doing the same for the inner asymptotic solution and with Eqs. (7-8) written in the local stretched coordinates 
(but not expanded in e); (iii) checking the matching between the outer and inner asymptotic solutions. Such a 
check is important in boundary layer problems. The symbolic calculator makes this check easy to perform and thus 
provides a strong and useful tool for singular perturbation calculus. 

4. Comparison with the numerical PDE solution and conclusion 

We now compare the asymptotic results with full PDE solutions. For this we solve (7-8) using Newton's method [2]. 
The operator V\ is discretized on a polar grid typically with 256 points in p and radial spacing Ar = 0.05. The 
»•-derivatives are computed by finite differences and ^-derivatives are computed spectrally. 

Figure 3 shows the dependence of w on e from the PDE solutions. This figure clearly shows the existence of the Fife 
limit: a finite-frequency limit as e -► 0. Over a substantial range of e, the frequency is very well captured by the 
first two orders in e: w ~ u/°) + cui^. Extrapolation of frequency data to e = 0 gives a/°) and thus B. The slope of 
w versus e gives a/1' and hence D. From the computed tt-fields we find the functions $± as curves on which u = 1/2 
and from these * is computed by differencing. Analogously to the frequency, from the dependence of $ on e we find 
$(0) and $(1)[11]. The core radius is found to be r ~ 8e and the data also confirm that A$W = 0. 

In Fig. 4 we compare full solution of the stationary PDE (7-8) with the interface curves. Shown is a cross-section 
of a twisted scroll wave normal to the straight filament X at station s and instant t in the domain, r < 20. Also 
shown is cross-section of the stationary interface at leading-order p = $(°)±(r, s,t) and at leading-plus-first-order 
tp - $(0)±(r, s,t) + £$(1)±(r, s,t). Figures 4(b) and (d) show the same case as Fig. 1 (apart from the domain radius). 
The agreement is excellent and contains no adjustable parameters. 

In conclusion, we have derived free-boundary equations at leading-order and first-order for twisted scroll waves in 
excitable media and we have validated these equations directly with numerical solutions of the underlying PDEs. 
The free-boundary equations we have derived apply to a large class of models [10]. For excitable media it would 
be of considerable interest to derive an equation of motion for this filament as has been successfully performed in 
hydrodynamics for vortex filaments[4]. 
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Figure 3: Scroll frequency u> versus 

e from numerical solutions of the PDE 

model for two values of twist. Lines are 

from fits to the data at small e and are in- 

distinguishable from asymptotic predic- 

tions at first order in e. 

Figure 4: Comparison between PDE solutions (greyscale) 

and asymptotic results (white curves), (a) f — 0, asymp- 

totics at leading order, (b) f = 0.5, asymptotics at leading 

order, (c) f = 0, asymptotics at leading-plus-first order, 

(d) f = 0.5 , asymptotics at leading-plus-first order. Black 

is the interface 0.1 < u < 0.9; light grey (dark grey) is 

u < 0.1 (u > 0.9). The radius is 20; a = 0.8, b - 0.1, 

e = 0.1. 
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Prandtl's Boundary Layer Theory, before and to Matched Asymptotics 

The idea of joining a local and a global perturbation expansion to form a uniformly valid approximation was exploited 
by various workers in mechanics throughout the 19th century for isolated problems. The idea was first explored 
systematically by Ludwig Prandtl with his students and colleagues, for fluid motion at high Reynolds number. Here 
we review the work of Prandtl's 19th-century predecessors and then describe the explanation of Prandtl's boundary 
layer theory by K. 0. Friedrichs, leading to the method of matched asymptotics. The method provides a systematic 
procedure for the formulation of a singular perturbation problem, and additional mathematical novelties, such as, 
the identification of the 'lost' boundary condition(s) from the full system of equations and the derivation of the next 
order equations and their compatibility condition(s), which in turn serve as the closure condition(s) for the leading 
order solution. Examples are presented to demonstrate the novelties of matched asymptotics and to emphasize the 
physical intuition needed to formulate the perturbation problem, i. e., the choice of the scalings and the expansion 

schemes. 

1    Introduction 

In 1904 [1], Prandtl presented his boundary layer theory for a body moving at high Reynolds number. See also 
[2]. His theory initiated a systematic procedure for joining local (inner) and global (outer) perturbation expansions 
to form a uniformly valid approximation, and was generalized by Friedrichs in 1945, [3], to a systematic procedure 
for deriving the leading and higher order equations and matching conditions for the inner and outer solutions and 
for removing singularities of the outer solutions. The procedure was referred to as the boundary layer technique 
[4], and became known since the 60's as the method of matched asymptotics (MMA). The method has been widely 
employed to resolve many singular perturbation problems in applied mechanics and have been explained in many 
monographs, see, e. g., [5] and [6]. 

The first part of our presentation in the Mini-symposium, dealing with the boundary layer type analyses prior to 
Prandtl, is described in Section 2. We mention problems in fluid dynamics and acoustics, for which the construction 
of a global or regular perturbation solution with local singularities was carried out, and the solution was later 
identified as the leading global solution by MMA, with its singularities resolved by the inner solutions. 

The second part of our presentation reviews the formulation of and the contributions to MMA by Prandtl and 
Friedrichs and their students and colleagues. The review emphasizes the physical intuition needed to formulate the 
perturbation problem, i. e., setting up the expansion scheme, the restrictions implied by the expansion scheme and 
the physical meaning of the inner solution and its matching with the outer solution. The highlights of the review 
article, [7], are presented in Section 3. 

The last part of our presentation is described in Section, 4. We use the studies of the diffraction of weak shock by 
a concave corner to show that there can be different admissible models, in the sense that the matched asymptotic 
analysis for each model can be carried out to higher orders without contradiction. But different models have different 
degree of difficulty, sometimes insurmountable, in the construction of the inner solution. We then identify the "best" 
model for the removal of a particular singularity. 

2    Boundary Layer Type Analyses Before Prandtl 

We note that the analysis of a linear oscillator with vanishing mass was the example introduced by Prandtl to 
explain his boundary layer theory [2] and was explained in detail in [6] to show the basis of MMA. We shall not 
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repeat this example. Instead, we mention one classical problem in fluid dynamics, and one in acoustics in §2.1 and 
2.2 respectively and interpret them by MM A. 

Point vortex in a two-dimensional potential flow. The classical solution for the velocity potential a point 
vortex in a background flow is $(x, y, t) = [T/2n] \n.r+(j)(x, y), where <j>(x, y) is the potential of the steady background 
flow without the vortex, and V denotes the strength of the vortex located at point P(X(t),Y(t)) and r denotes the 
distance from (x, y) to P. This solution has two defects: (1) the solution is singular when r —> 0 and (2) the velocity 
of the vortex point has to been assigned. It is zero for a fixed vortex and is the local background, P(t) = V</>(AT, Y) 
for a free vortex. The solution for a fixed vortex is often identified as the far field representation of a lifting body of 
size, b. The inner solution, or the near field solution in the length scale, b, yields or matches with the outer solution 
at large distance L to the body with L~^>b [8]. 

When there is a free vorticity distribution of total strength T, concentrated in the neighborhood of a point P, the 
classical solution is considered to be the outer solution in the length scale £ much larger than the effective core size 
5 of the vortex distribution. The singularity of the outer solution as r/l —> 0 is removed or matched with the inner 
solution, i. e., the core structure. With the core structure, the velocity of the vortex is defined and the classical 
theory for the velocity of the point vortex is identified by MMA as the average velocity in the normal time scale 
O(0.2/r). See [9] and references therein. 

2.2. Scattering of long acoustic waves The problems of acoustic radiation from the open end of a pipe, apertures 
in plane screens and scattering by small obstacles were treated by Helmholtz (1860) and Rayleigh (1897). See [8]. 
The solution, known as Rayleigh's long wave approximation, is applicable when the wave length A is much larger 
than the size a of the opening or the obstacle. The scattered field in the length scale a, obeys the Laplace equation 
with t as a parameter, instead of the wave equation. Rayleigh's approximation is explained systematically by MMA 
with a/A as the expansion parameter and applied to other problems in acoustics by Lesser and Lewis [10] and Ting 
and Keller [11], and to problems in aero-acoustics by Crow (1970) and many others (see [8] and the references 
therein). 

3    Boundary Layer Theory to Matched Asymptotics 

In the review paper [7], we describe the formulation of the boundary layer theory in four steps, common to those 
used later in MMA, [3] and [5], in which the boundary layer solution and the inviscid solution are identified as the 
leading order inner and outer solutions respectively. The method gives a systematic procedure to derive the higher 
order equations for the inner and outer solutions and their matching conditions. The matching conditions also 
resolve the local singularities of the outer solution, if any. The four steps are: I, the physical intuition or modeling 
of the flow field, 77, the choice of the scalings and the expansion scheme, III, derivation of the leading and higher 
order equations and the matching conditions, and IV, the construction of the inner and outer solutions and the 
study of their physical meaning. In terms of these four steps, the method enables us to check the consistency of 
the expansion scheme and provides additional mathematical novelties, such as the "lost" boundary conditions, the 
"compatibility" conditions and the "closure" conditions. 

We point out that the selection of an the expansion scheme in step //imposes certain restrictions on the solution. Two 
examples are quoted to show the modifications needed when some of the restrictions are violated. The consistency of 
an expansion scheme has to be tested in step III, not only by the leading and higher order equations of the inner and 
outer solutions but also by their matching conditions. For example, in Kaplun's analysis of a flow at low Reynolds 
number, Re <C 1, the necessity of a double series expansion in power of Re and \n(l/Re) comes from the matching 
conditions. See [5]. From step III, we can identify the "lost" boundary condition(s) from the full system of equations 
and the associated compatibility condition(s) for the solutions of the reduced systems. As examples, we identify the 
"lost" boundary conditions and the "compatibility" conditions for two-dimensional and three-dimensional boundary 
layers. We mention the second order shock conditions to demonstrate that there are cases for which we have to 
recover the missing or "closure" conditions for the leading order solutions from compatibility conditions of the higher 
order equations. 

We note that although Prandtl did not continue his boundary layer theory to the next order, he introduced the 
displacement and momentum thicknesses of the boundary layer and pointed out how to use them to render the 
outer solution valid to the next order, [12]. His suggestions have been in use by engineers, for example, the design 
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Figure 1: Shock incident on a concave corner - uniform regions, sonic circles and shock fronts. 

of convergent-divergent nozzles for supersonic tunnels and the design of supercritical wings for current commercial 

airplanes. 

We then describe the investigation leading to the correct model for the planing of a plate at high Froude number in 
order to show that it is essential to understand the physics of the problem prior to the formulation of the correct model 
and expansion scheme. In the last section of [7], we mention a few methods for singular perturbation problems, other 
than MMA and note that MMA can be readily implemented to remove the singularities of the solutions obtained 

by the other methods. 

4    Diffraction of Weak Shocks 

We use the studies of the diffraction of a weak shock by a concave corner to demonstrate that there can be different 
models for MMA and identify the "best" model for the removal of a particular singularity of the outer solution^ Let 
the negative x-axis be the horizontal side of a concave comer of angle n - a, with vertex at the origin O and the 
inclined side be parallel to f = icosa + jsina. The incident shock is moving parallel to the x-axis with ve ocity Vb» 
hitting the inclined side at t = 0. For * < 0, there is no reflected shock. For t> 0, 5« is reflected by the inclined side 
at the point V0tsecaf and ß denotes the angle of reflection of the shock Sr. There are three uniform regions 0,7 
and II, outside the non-uniform region in the domain of influence of the vertex. Ahead of 5«, there is the uniform 
region 0 at rest Behind S> but ahead of the reflected shock Sr, there is the uniform region /, moving at velocity 
u#i Behind 5P, there is the uniform region II, moving at velocity unr. Let Pk and Ck denote the pressure and 
speed of sound of the lfc-th uniform state, in which the domain of influence of the vertex is bounded by the sonic 
circle C, with radius Ckt and center Ok moving with the uniform stream. We have O0 located at the origin, O, at 
iu,t and On at Tu„t. We note that, (i), relative to a shock, the flow behind (ahead) or on the high (low) pressure 
side is subsonic (supersonic) and hence (ii) F cuts into C„ at point T, as a diffracted shock S approaching C, 
from outside and remains outside of Co- Since the unsteady flow field does not have a length scale, it is a conical 
flow field. Figure 1 shows the flow field in the conical variables x = x/C0t and y = y/C0t. The uniform regions, 
0 and II being outside of the domain of influence of the vertex, are defined. The uniform region / is behind 6 , 
above the x-axis and outside the reflected shock S' and then the diffracted shock, Sd, yet to be defined. 

For a weak incident shock, we have (P, - P0)/Po = t « 1, and ß = a + O(e). and the flow field differs from any one 
of the three uniform states by O(c). The classical theory for weak shocks or acoustic wave gives the P^rbation 
solution from the state at rest, say the perturbation pressure tp=P- Po, given by Keller and Blank (1951), cited 
in [131 In the conical variables, the non-uniform region is bounded by the unit circle, C0, and the sides of corner, 
6 = »and IT - a In the first approximation, the reflected shock ^ is tangent to S0 at T(l,2a), which is the triple 
point lying on the boundaries / and II and the non-uniform region. Across the point T along Co, the pressure 
jumps from P, to P„ as 0 decreases. We note that, (iü) in conical variables, the linearized equation is hyperbolic 

outside and elliptic inside the unit circle. 
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The perturbation solution is not uniformly valid to 0(e) near C0 because it differs from correct boundaries of its 
adjacent uniform regions, C/ and Cu, by O(e) and Vp is singular near C0. The solution was rendered uniformly valid 
excluding the neighborhood of the triple point by LighthilPs technique (1949) and by MMA, Zahalak and Myers 
(1974), for linearized supersonic flows and by the geometrical theory of diffraction for nonlinear waves, Hunter and 
Keller (1987). See [13]. To 0(e), they arrived at the same correction which amounts to replacing the arcs of C0, 
adjacent to I and II and the distance to the arcs by those of C/ and C^ respectively. 

If we construct the perturbation solution say epk - P - Pk from the uniform state, k = I or II, and use Ck as 
the origin for the conical variables (xk,yk), we find that epk = ep[xk,yk) + (P0 - Pk), provided that the vertex C0 

is moved to Ck, i. e., the horizontal (inclined) side is moved with the uniform stream in I (II) to the dotted line 
as shown in Fig. 1. Thus pk is related to p in the fc-th conical variables. We note that pi (pn) is uniformly valid 
near Cr (fin). In the region 11 common to the domains of the three perturbation solutions, which is outside the 
e-neighborhood of the sonic circles and the sides of the corners, we have Pk + epk, k — /, II and P0 + ep differ by 
0(e2), because their conical variables differ by 0(e). Excluding the neighborhood of the triple point, we have a 
perturbation solution uniformly valid to 0(e), which is p(xk,yk) near Ck for k = I or 77 and continue to p(x,y) in 
H and then to the corner. 

Near the triple point T or the singular ray, the correction, breaks down because of the 0(e) gap between C/ and 
Cu and pressure jump from Pi to Pn. The inner solution for the neighborhood of a singular ray, Af, was found to 
obey a transonic equation by the aforementioned three methods. Because of statements (it) and (Hi), the solution 
perturbed from state 0 is of the mixed type and is not available. This is also true for that perturbed from state I. 
For the solution perturbed from state II, the inner solution in M remains elliptic and its solution is amenable [14]. 
From the physics of shock waves and characteristics, we arrive at the following rule: At a singular ray separating 
two uniform states, the perturbation expansion based on the state with the higher pressure is the "best" one, because 
it leads to an elliptic problem in Af. 
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Geomechanics of tunneling in squeezing rock 

This paper deals with the numerical analysis of shotcrete tunnel shells in squeezing rock. For this purpose, a hybrid 
method combining in-situ measurements with chemomechanical material modeling of shotcrete is developed. 

1. Tunneling in Squeezing Rock 

When driving tunnels in squeezing rock, the ground squeezes (plastically) into the opening without visible fracturing 
or loss of continuity [1]. In the context of the New Austrian Tunneling Method (NATM), the newly excavated tunnel 
area is supported by means of a thin flexible shell of shotcrete. Under "normal" ground conditions, the compliance 
of the shotcrete shell resulting from elastic, plastic, and creep deformations is sufficient to cope with the moderate 
ground movements. For squeezing rock, however, the compliance of the shell is not sufficient to avoid damage or 
destruction of the shell. In order to increase the compliance of the shotcrete shell, longitudinal gaps are left out 
during shotcreting. In these gaps, so-called Lining Stress Controllers (LSC) may be placed. Figure 1(a) shows one of 
three rows of LSCs installed at the Semmering pilot tunnel. LSCs are used to control the load level of the shotcrete 
shell. At a pre-specified load level, buckling occurs which is followed by local plastic deformations (see Figure 1(b)). 
The experimentally obtained load-displacement curve for the LSCs used at the Semmering pilot tunnel is shown in 

Figure 1(c). 

500 jload [kN/m] 

400 

300 

200 

100 

behavior ace. to H5 

-■:£':• 0 

actual load- 
deformation curve 

shortening [mm] 

0 20        40 80       100 

(c) (a) (b) 

Figure 1: Semmering pilot tunnel: (a) shotcrete tunnel shell with Lining Stress Controllers (LSC) installed 
in longitudinal gaps [6], (b) prototype of LSC after buckling [6], and (c) experimentally obtained 
load-displacement curve for LSCs used at Semmering pilot tunnel [6] 

2. Hybrid Method for Tunneling in Squeezing Rock 

Hybrid methods have been developed in order to gain realistic informations concerning the state of loading of tunnel 
shells [5] [3]. These methods are characterized by prescribing displacements measured in situ on the exterior surface 
of the structural model of the investigated part of the tunnel shell. The investigation concerns a ring with a width 
of 1 m, fictitiously cut out of the structure and modelled, in the present case, by plane-strain Finite Elements. 
The transfer of the measured displacements to the structural model requires a couple of hypotheses concerning the 
structural behavior of a tunnel shell. As for a shotcrete shell with LSCs, the following hypotheses are made: 

HI: During the deformation, the thickness of the shell is assumed to be approximately constant. This hypothesis 
is consistent with the Kirchhoff-Love shell theory. Because of the small thickness and the mode of loading of 
the shell, this assumption is justified. 

H2: As for the parts of the shell made of shotcrete, smooth displacement fields are assumed. With regards to 
the gaps, after buckling of the LSCs (see localized deformation in Figure 1(b)), large displacement gradients 
occur in a very small region as compared to the dimensions of the whole structure. This situation can be 
approximated by discontinuous displacement fields, i.e., they exhibit a jump in the circumferential direction. 
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H3: The exterior surface of the tunnel shell and the surrounding rock are always in contact, i.e. 
occurring. 

no gaps are 

H4: There is no stress transfer between the ends of the top heading or the benches and the adjacent rock 

during respective construction states, e.g., installation of the top heading. This assumption is made because 
of lack of respective design provisions within the framework of the NATM. 

H5: The LSCs are assumed to have a ID linear elastic-ideal plastic load-deformation characteristic. In 

other words, they have a well-defined ultimate load for a large range of (non-elastic) deformations [6]. The 

experimental load-displacement curve for the LSCs used at the Semmering pilot tunnel is depicted in Figure 
1(c). 

Monitoring equipment at the Semmering pilot tunnel: Five devices for displacement measurements are 
installed at each measurement cross-section. The positions of the measurement points MPl to MP5 are defined 

by the angles <PMPI to (pMP5 (see Figure 2(a)). The displacement vectors obtained at these measurement points 
are referred to as üMPi with i = 1,...5. In addition to the displacements at MPl to MP5, the shortenings of the 

three LSCs were recorded in situ: They are referred to as AüViLSCk with k = 1,2,3. The positions of the LCSs are 
defined by the angles PLSCI to <PLSC3, see Figure 2(a). 
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Figure 2: Measured displacements in the Semmering pilot tunnel at km 4.274: (a) location of measure- 
ment points (MP) and Lining Stress Controllers (LSC), (b) vertical and horizontal displacements at 
measurement points, and (c) shortening of LSCs 

Interpolation in time: The displacements at the measurement points, ü, and the shortening of the LSCs, Aüv. 

are obtained at discrete time values tn. For the numerical simulation, the definition of a continuous displacement 

history, i.e., ü — ü(t) and Aüv = Aüv(t), is required. This history is determined by means of linear interpolation 
between the time instants tn at which the measurements are performed: 

u(t) = ü(i„) + 

for t G [tn;tn+i]. 

u(in+i) -u(in) 

tn-\ £n 

(t - tn)    and    Auv(t) = Auv(tn) + 
Auv(t <p\bn+l) Auv(tn) 

tn + 1 
(t ~ tn)  , (1) 

Interpolation in space: According to the structural hypothesis H2, smooth displacement fields are assumed in 
the parts of the shell made of shotcrete. At the LSCs, the distribution of the radial displacement component ur is 

assumed to be smooth as well. In the circumferential direction, however, buckling of the LSCs results in a jump in 
the distribution of the circumferential displacement üw, Aü 
functions Hk, 

v, L-LU,V. These jumps are considered by means of Heavyside 

Hk{<p) = 
for (p < ipLSCk 
for tp > <pLSCk (2) 

in the approximation of the circumferential displacement fields at the exterior boundary of the investigated part of 
the tunnel shell. Altogether, six quadratic functions are employed for this approximation, see Figure 3, namely 

ü£(¥>,«)=<(i)+&£(*)¥>+ c£(t)y, 
3 

Aü ip.LSCk Hk{ip)    with A=I,...VI (3) 
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Figure 3: Illustration of the quadratic interpolation of uv on the basis of displacements at measurement 
points MP\ to MP5, displacement jumps and prescribed values of v!  = du^/dip at LSCl to LSC3 

The coefficients a£, b^, and c^ are determined such 

• that the displacement values at the measurement points coincide with the respective values measured there 
i.e. ü^ip — ipMPi) = ÜMPi, 

• that continuity of u'^ = du^/dip at MP2 and MPZ is enforced, and 

• that the value of ü'v at the longitudinal gaps guarantees the agreement of the circumferential axial force 
nv in the shotcrete adjacent to the gap with the force in the respective LSC, calculated from the measured 
shortenings on the basis of structural hypothesis H5. 

The last condition requires an additional iterative procedure during the respective non-linear chemomechanical Finite 
Element analysis. 

In contrast to the circumferential direction, the radial displacement component ür is continuous.  Three quadratic 
functions are used for the interpolation between the values at the measurement points (see Figure 4): 

ü?(ip, t) = a?(t) + b*(t)tp + cf(t)ip2    with A=I,...III 

Continuity of ü'r = dür/dip is enforced at MP2 and MP3. 

(4) 
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Figure 4: Illustration of the quadratic interpolation of ur on the basis of displacements at measurement 
points MP\ to MPb 

In the context of the hybrid method, üv and ür are prescribed on the outer surface of the tunnel shell. The evaluation 
of üv and ür from interpolation of quantities measured in the interior side of the tunnel shell requires the validity 
of the structural hypothesis HI. 

Material model for shotcrete: Shotcrete is modelled in the framework of chemically reactive porous media, for 
a detailled description, see [2] and references therein. Dissipative phenomena at the microlevel of the material are 
accounted for by means of (internal) state variables and energetically conjugated thermodynamic forces, related to 
the state variables via state equations. The rates of the internal state variables are related to the corresponding 
thermodynamic forces by means of evolution equations. 

In shotcrete, four such dissipative phenomena govern the material behavior: 
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(I) The chemical reaction between water and cement, the hydration leads to chemical shrinkage strains, ageing elas- 
ticity, and strength growth (chemomechanical couplings), furthermore to latent heat production (thermochemical 
coupling). The state of the reaction is described by the mass per unit volume of the reaction products called hy- 

drates, m. 
(II) Microcracking of the hydrates results in permanent or plastic strains ep. The state of microstructural changes 
resulting from microcracking (i.e., hardening/softening) is described by hardening variables X, as in classical plas- 

ticity theory. 
(III) Stress-induced dislocation-like processes within the hydrates result in flow (or long-term) creep strains e'. The 
state of respective microstructural changes is described by the viscous flow 7. 
(IV) Stress-induced microdiffusion of water in the capillary pores between the hydrates result in viscous (or short- 

term) creep strains ev. 

3. Chemomechanical Analysis of the Semmering Pilot Tunnel 

Figure 5 shows first results of the chemomechanical Finite Element analysis of the tunnel cross section at km 4.274 
on the basis of the hybrid method adapted for tunnels in squeezing rock: The LSCs are exclusively loaded in 
the compressive regime. In the shotcrete part of the tunnel shell, also tensile forces occur. Figure 5(b) reflects 
the pronounced creep capabilities of shotcrete, whereas the distribution of the circumferential axial force depicted 
in Figure 5(c) seems to stem from highly non-homogeneous conditions in the adjacent rock. A more detailled 
interpretation of such results, including the remarkable bending of the investigated shell, is a topic of current research 

activities. 

[MN/m 

(a) (c) 

Figure 5: Semmering pilot tunnel: evolution of axial force nv in (a) Lining Stress Controllers and (b) four 
different shell sections; (c) distribution of axial force at t = 36 h 
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Verification of a Fully Coupled FE Model for Tunneling under Compressed 
Air 

This paper deals with the verification of a fully coupled finite element model for tunneling under compressed air. The 
formulation is based on mixture theory treating the soil as a three-phase medium with the constituents: deformable 
porous soil skeleton, water and air. Starting with a brief outline of the governing equations results of numerical 
simulations of different laboratory tests and of a large-scale in-situ test are presented and compared with experimental 

data. 

1. Introduction 

For tunneling below the groundwater table deformations of the ground and surface settlements are caused both by 
dewatering of the soil and by the advance of the tunnel face. The application of compressed air for the dewatering 
process in the vicinity of the tunnel face is motivated by the objective to get smaller ground settlements than by 
lowering the groundwater table by means of pumping wells and driving the tunnel under atmospheric conditions. 

The aim of the current research project is the development and the application of a three-dimensional numer- 
ical model for tunneling below the groundwater table taking into account compressed air as a means for dewatering 

the soil in the vicinity of the tunnel face. 
Basically, there exist two different solution strategies for the numerical simulation of tunneling under com- 

pressed air. In the first one, an uncoupled numerical approach, the flow of water and compressed air in the soil 
and the deformations of the soil skeleton are treated in two consecutive steps resulting in a neglect of interactions 
between the fluid flow and the deformations. The coupled solution procedure applied in the present model permits 
consideration of the intrinsic coupling of the process of dewatering with the deformations of the soil, thus allowing to 
properly take into account the interactions of the flow of water and compressed air in the soil with the deformations 
of the soil skeleton in a physically consistent manner. 

2. Short outline of the governing equations 

A basic constituent of a coupled numerical approach for tunneling under compressed air is a model for the soil, 
treating the soil as a three-phase medium consisting of the deformable porous soil skeleton and the fluid phases 
water and compressed air. The mathematical description of the problem is based on mixture theory together with 
so-called averaging procedures. A soil element can be thought of as a mixture of the three phases soil grains, water 
and air, which continuously fill the entire volume according to their percentile share. 

Following [1] the governing equations for such a three-phase model are described briefly in the subsequent part 

of this section. 
The equilibrium equations are formulated for quasi-static conditions in terms of averaged values for the density 

p and the stresses ä of the three-phase mixture as 

div<T + /5g = 0 , W 

where g denotes the vector of gravitational acceleration. The total stress tensor ä is decomposed into the effective 
stress tensor &' of the soil skeleton and the hydrostatic stresses pw and pa of the two fluid phases water and air 
(using the porosity n of the soil and the degrees of saturation Sw and Sa of the fluids). 

The mass balance equation for a fluid phase / can be derived as 

pfSfevoi + nSfpf + npfSf = -p'div v'r , (2) 

v^r being Darcy's artificial velocity of the fluid relative to the soil skeleton. Equation (2) reflects the fact that the 
inflow of fluid mass into a given control volume, represented by the term on the right hand side, can be stored in 
the volume element either by an increase of the volumetric strain of the soil skeleton, by an increase of the density 
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of the fluid phase or by an increase of the degree of saturation of the respective fluid phase. 

The well-known kinematic relations between the displacements of the soil skeleton and the strains in the soil 
skeleton are restricted to small displacements and small strains which seems to be a justified assumption for tunneling 
under compressed air. 

To define the material behavior of the various constituents of the model constitutive equations for the soil 
skeleton, the fluid phases water and air and the capillary stress, which is defined as the difference between the 
hydrostatic stresses in the air- and the water phase, are required. 

3. Implementation into a finite element program 

For the numerical solution of problems involving a three-phase medium, weak formulations of the equilibrium 
equations for the three-phase mixture (1) and of the mass balance equations for the fluid phases (2) are required, 
which can be derived multiplying the respective equations by virtual displacements or virtual hydrostatic stresses and 
subsequent integration over the domain under consideration. The application of standard finite element procedures 
together with the implicit and unconditionally stable Euler backward method for the numerical integration in the 
time domain yields the following coupled set of equations, which has to be solved for the incremental nodal values 
of the displacements of the soil skeleton and the hydrostatic stresses in the two fluid phases water and air. 

K 
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(3) 

The matrices involved in equation (3) are the stiffness matrix K of the soil skeleton, the coupling matrices 
Cw, Ca and Cwa between the different constituents, the compressibility matrices Sw and Sa and the permeability 
matrices Hw and Ha. AU, AP™ and APa denote the global vectors of the incremental nodal values for the 
displacements of the soil skeleton and for the hydrostatic stresses in the fluid phases. The vector on the right hand 
side contains the increment of the external forces Afex of the soil skeleton and the flow terms fw and fa. 

Since all the matrices in (3) depend on the nodal values in some form, this system of equations is non-linear 
(even in the case of linear elastic material behavior of the soil skeleton). Thus, it has to be solved iteratively for 
each time step, e. g., by means of a direct iteration procedure. 

4. Verification of the three-phase formulation 

The complex implementation procedure of the three-phase soil model into the FE program AFENA [2] was subdivided 
into several steps. Each of them was checked by the numerical simulation of appropriate experiments. 

The first step of the implementation contained the special case of a two-phase formulation taking into account 
a compressible fluid phase. This subset of the three-phase model was verified by the numerical simulation of a 
footing on a water saturated soil layer [3] and of a laboratory test (Fig. 1(a)) conducted at the Institute for Soil 
Mechanics and Foundation Engineering at the Technical University of Graz within the framework of the Austrian 
Joint Research Initiative on Numerical Simulation in Tunneling. In this experiment the loss of compressed air 
through cracks in the shotcrete lining and the flow of compressed air in the adjacent soil were determined. During 
the test the time-dependent development of the air pressure in the soil was measured at selected points [4]. 

Fig. 1(b) shows the computed distribution of the hydrostatic stress in the air phase after steady state conditions 
have been attained, whereas the dots refer to the respective measured values. The experimental set-up together 
with numerical results are documented in some more detail in [5]. 

For the verification of the complete three-phase formulation a laboratory test performed by Liakopoulos [6] 
was chosen as a first example. The problem deals with dewatering of a sand column of 1 m height under atmospheric 
conditions, i.e. the dewatering process is driven by gravitation only. Prior to the start of the experiment steady state 
conditions are prevailing in the sense that water is continuously added at the top and freely drains at the bottom of 
the column. At the onset of the experiment the water supply is stopped. 

Fig. 2(a) shows the transient stresses in the water phase versus height of the sand column for different points 
of time. Quite substantial differences between the numerical and the experimental data at the beginning of the test 
(see lines according to 10 minutes time) can be recognized. However, these discrepancies can also be noticed in the 
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Figure 1: Air flow experiment TU-Graz: (a) Test set-up; (b) Air pressure distribution 

computed results for this test, presented by other research groups [1]. Nevertheless, the computed solution agrees 
fairly well with the measured data after two hours time. Re-running the problem assuming a rigid soil skeleton yields 
even larger discrepancies in the early test phase indicating that the numerical results could probably be improved 
using a more refined constitutive law for the behavior of the soil skeleton. Unfortunately, Liakopoulos did not 
measure any mechanical properties of the soil. As can be seen from Fig. 2(b) there is a sharp decrease of the excess 
air pressure with a clear peak at about that level of the column where the degree of water saturation of the mixture 
starts decreasing below fully saturated conditions. Taking a look at the degree of water saturation (Fig. 2(c)) the 
different lines indicate the position of the de-wetting front moving down the sand column with increasing time. 
Together with this de-wetting front the peak in the excess hydrostatic air stress is also moving downwards. Since 
the degree of water saturation decreases, starting from the top of the column, air is allowed to enter the pores of the 
soil resulting in an increase of the air pressure up to the atmospheric one. Calculations dealing with a time period 
beyond that of the experiment show that the excess air stresses completely disappear after some time which means 
that at the final stage atmospheric pressure prevails in the whole soil column again. With respect to the degree 
of water saturation the numerical simulation up to steady state conditions reveals that the column remains fully 
saturated at the bottom whereas at the top the degree of water saturation is reduced to about 90 %. This means 
that for the particular soil considered here it is not possible to completely dewater the specimen under the influence 

of gravitation only. 

0.0 4 

(a) 

2500      5000      7500 
Stresses Water [Pa] 

10000 

(b) 

2500      5000      7500 
Stresses Air [Pa] 

10000 

(c) 

0.90    0.92    0.94    0.96    0.98     1.00 
Degree of Water Saturation [-] 

Figure 2: Liakopoulos experiment: Stresses in (a) the water phase and (b) the air phase; (c) Water saturation 

In connection with the application of compressed air at the subway construction site in Essen, Germany, a full 
scale in-situ air permeability test was carried out [7]. It is considered as a second example for the verification of the 
complete three-phase formulation. Fig. 3(a) shows a sketch of the experimental set-up. In order to investigate the 
air permeability of the Essen soil and to study the influence of the flow of compressed air on the deformations of 
the soil skeleton, three sets of tests were performed. In these tests compressed air was injected at different depths 
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Figure 3: Air permeability test Essen: (a) Test set-up; (b) Air pressure distribution 

below the ground surface. In the experiment considered here compressed air was pumped into the ground via a bore 

hole between a depth of 18 and 21 m below the ground surface with an excess air pressure up to 2.35 bar. This air 

pressure was applied in three steps keeping the pressure constant for about one day at each of the three level. 

Fig. 3(b) finally shows the computed air pressure distribution at the end of the first pressure level of 1.60 bar 

together with the isolines composed from the measured values of the air pressure in the experiment. The agreement 

between the measured and the computed air pressure is remarkably good. 

5. Conclusions 

Apart from a given short summary of the theoretical framework of a three-phase soil model for tunneling under 
compressed air and of the different steps of the implementation into a FE code, the paper focussed on the verification 
of the developed model. Comparisons of the numerical results of the two-phase- as well as of the complete three-phase 
formulation with both experimental data and solutions reported in the literature show fairly good agreement. 
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Multilaminate Models for Numerical Simulation of Tunnel Excavations According to NATM 

Excavation of tunnels with low overburden under unfavourable geological conditions can lead to extensive shear band 
formation in the ground which can even cause the collapse of the structure. In this paper a constitutive model 
embedded within the Mulilaminate framework is presented which is able to capture the mechanism of strain 
localisation and the formation of shear bands. The model includes deviatoric hardening in the pre-peak range and 
strain softening in the post-peak behaviour. Application to numerical simulations of a biaxial test and a shallow NATM 
tunnel excavation in staged construction sequence demonstrates the potential of the model to predict shear band 
formation and possible failure mechanisms with sufficient accuracy for practical problems. 

1. Introduction 

For excavation of tunnels with low overburden, a number of geotechnical problems have to be solved. An important 
role play strain localisation phenomena such as the formation of shear bands in the ground. During strain localisation, 
the nearly homogeneous deformation behaviour of a body is abruptly changed into highly concentrated deformation 
patterns and a single or multiple shear bands or cracks form. 

Extensive shear band formation under unfavourable geological conditions as well as an inappropriate construction 
sequence may lead to significant deformations of the tunnel structure and could even cause a collapse. A numerical 
model, which is able to simulate the deformation behaviour of a structure near failure and predict possible failure 
mechanisms could, therefore, contribute to a safer and more economic design of tunnels with low overburden. 

In this contribution, a constitutive model embedded within the Multilaminate framework is applied to finite element 
analyses of a shallow tunnel excavation. Deviatoric hardening plasticity in the pre-peak range and a simple strain 
softening formulation to describe the post-peak behaviour are incorporated. The tunnel excavation according to the 
principles of NATM (New Austrian Tunnelling Method) was simulated by modelling a staged construction sequence 
with excavation of top heading, bench and invert. 

2. Multilaminate Concept and Constitutive Relations 

The Multilaminate Model was developed for application in rock engineering by Zienkiewicz & Pande [12]. 
Subsequently, it has been extended for modelling clays [5] and sands [7], [4]. Recent developments include research on 
strain localisation in dense sands [3]. A similar approach to describe the behaviour of concrete and soils is the 
microplane model developed by Bazant et al. [1]. 

The basic idea of the Multilaminate concept is that a block of soil material is thought to be intersected by an infinite 
number of randomly distributed planes. It is assumed that the deformation behaviour of this soil can be obtained from 
sliding along some of the planes under effective normal and shear stresses. These assumptions are transferred into the 
finite element model where a certain number of integration planes is located within each integration point (Gauss 
point). Number and orientation of these integration planes either follow integration rules (3-D case) or they are evenly 
distributed about a common axes (2-D plane strain case). 

The stress state in the integration point is transformed into normal and shear stresses on each integration plane and, 
consequently, evaluated by a yield function and plastic potential function. The resulting plastic strains of all planes are 
integrated to obtain the behaviour in the respective integration point. 

The constitutive relations are formulated on each integration plane individually, thus, directional anisotropy can be 
achieved in a natural and physically meaningful manner depending on current stress state and load history. As a yield 
criterion, Mohr-Coulomb's failure criterion was enhanced by introduction of a mobilised friction angle (pm. 
Mobilisation of the friction angle is governed by accumulated plastic shear strains on each integration plane 
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individually (deviatoric hardening) until the peak friction angle is reached. With increasing load, shear strains 
concentrate on a few planes as demonstrated in [8] and [10]. When the peak friction angle is reached on some of the 
integration planes and shearing continues, the model switches into strain softening and friction angle and cohesion are 
reduced on the respective planes to residual values. 

A non-associated flow rule employing a mobilised dilation angle V|/ra governs plastic flow and dilatancy. The mobilised 
dilation angle depends on the mobilised friction angle (pm according to the stress-dilatancy theory proposed by Rowe 
[6]. 

The Multilaminate Model was implemented into the finite element code BEFE [2] which solves nonlinear equation 
systems utilising a viscoplastic algorithm. A detailed description of the implemented yield function and plastic 
potential function are included in [9]. 

3. Numerical Simulation of Biaxial Test 

A biaxial test (plane strain compression) was modelled to demonstrate the potential of the proposed method in 
capturing shear band formation. In addition, four different meshes consisting of 126, 224, 504 and 880 elements, 
respectively, were analysed to evaluate possible mesh dependences in the post-peak range. In all calculations, a plane 
strain formulation of the Multilaminate Model employing 64 integration planes in each integration point was used. 

The sample of the dimensions 1:3.4 is vertically constrained at the bottom. The top of the sample is bounded by a 
horizontally constrained stiff top platen. Full friction between top platen and the sample introduces a slightly 
inhomogeneous stress distribution which, at a certain load stage, initiates strain localisation. Starting from an initial 
stress of ai = a3 = -100 kN/m2, strain controlled loading was modelled by stepwise application of nodal displacements 
to the top platen. 

In Fig.l, curves of the mean vertical stresses a} versus vertical strains s, are presented. The curves for all meshes, 
consisting of 126, 224, 504 and 880 elements, respectively, are congruent up to the peak which is reached at a vertical 
strain 8i of approximately 3.0%. In the post peak softening range some deviation can be observed, namely the meshes 
consisting of a higher number of elements show slightly more pronounced softening. However, when the residual 
strength is reached at an approximate vertical strain of E:= 4.0% all curves are in a close range. 

Fig.2 presents contour lines of the mobilised friction angle cpm for all meshes at residual state (8,= 4.0%). Obviously, in 
all calculations the mobilised friction angle has been reduced to its residual value in a distinct zone indicated by the 
dark strip across the sample. This zone represents the shear band. There are some differences in the location and the 
width of the shear band which depends on the element size. 
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4. NATM Tunnel Excavation 

The deformation behaviour of tunnel excavations with low overburden usually can not be matched very well if linear 
elastic - perfectly plastic material models are employed. Utilising more advanced constitutive models prediction 
capabilities can be significantly improved. However, from a practical point of view the model should be as simple as 
possible to avoid excessive parameter studies and computational costs [11]. 

The proposed model was applied to numerical analyses of a practical boundary value problem, namely a tunnel 
excavation with low overburden. A tunnel excavation according to the principles of the "New Austrian Tunnelling 
Method" (NATM) was modelled considering staged construction sequence: First, the top heading (the upper part of the 
tunnel cross section) was excavated and a shotcrete layer was applied to the tunnel walls. Then, construction sequence 
consisted of excavation of the bench (middle part of the cross section), application of shotcrete to the bench walls, 
excavation of the invert (lowest part) and, finally, application of the shotcrete layer to the tunnel invert. 

The aim of the numerical simulations presented here was to show that a possible failure mechanism due to formation 
and progressive development of shear bands could be captured with the proposed model. Therefore, the previously 
described construction sequence was altered at the stage of bench excavation to enable development of extensive shear 
zones. The shotcrete layer usually stabilising the tunnel was not applied, at the same time the forces due to bench 
excavation were increased in increments of 5% until failure occurred. During this process, development of shear strains 
and mobilisation of the friction angle cpm was monitored. After application of 80% of the excavation load no converged 
solution could be obtained. 

In Fig.3 the failure mechanism at bench excavation is demonstrated by showing contour lines of the mobilised friction 
angle. The shotcrete lining consisting of one line of elements can be recognised at the top heading of the tunnel while it 
is not installed at the tunnel bench. Thus, with increasing load a failure mechanism forms initiating from the side of the 
tunnel next to the bench excavation. Light areas in the contour plot stand for zones where the shear resistance of the 
soil material is fully mobilised (cpm = (ppeak) or the material behaviour has switched into softening on some integration 
planes. Consequently, at these planes the friction angle is decreased with increasing shear strains until the residual 
value of the friction angle is reached. Beginning from the softening zone at the side of the tunnel, a shear band starts 
growing towards the ground surface. When 80% of the nodal forces due to excavation are applied, the shear band 
reaches the ground surface. No convergence can be reached and a failure mechanism forms leading to large 
deformations within the shear band and collapse of the tunnel. This mechanism corresponds well with experimental 
findings and failure mechanisms which have occurred at real tunnel construction sites. 

Fig.3: Failure mechanism due to formation of shear band for shallow tunnel excavation, contour lines of mobilised 
friction angle 
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5. Conclusions 

It was demonstrated that the deformation behaviour involving strain localisation and the progressive formation of shear 
bands can be captured in a realistic way with the proposed model. The constitutive model utilises a strain hardening / 
strain softening formulation within the Multilaminate framework. Numerical simulations of biaxial tests show that 
mesh dependences in the post-peak softening range can be mastered with sufficient accuracy from a practical point of 
view. Well predictions of a possible collapse mechanism are obtained for the numerical analysis of a shallow tunnel 
excavation with staged construction sequence (top heading / bench / invert). 
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STERPI, D. 

Strain Localisation Effects in the Stability Analysis of Shallow Openings 

The localisation of strains within shear bands represents an important aspect of the behaviour of rocks and dense soils which 
may govern the stability of relevant structures. The formation of shear bands is often associated to a loss of the material 
mechanical resistance and stiffness, eventually leading to progressive failure. A numerical approach accounting for strain 
localisation and for the consequent gradual loss of shear strength is adopted for the simulation of laboratory tests on 2- and 
3-dimensional models of shallow tunnels. These tests allow for the validation of the numerical procedure on the basis of a 
comparison between experimental and numerical results. 

1. Introduction 

The stability analysis of shallow underground openings presents non negligible problems when dealing with media charac- 
terised by strain softening behaviour, such as rock masses, dense sands or overconsolidated clays. 

In geotechnical engineering the term "strain softening" customarily denotes materials that, when subjected for instance 
to a compression test, show a loss of their overall load carrying capacity with increasing deformation, after a peak load level 
has been reached. Quite often this behaviour is associated with the formation of zones of limited thickness where irreversible 
strains localise, referred to as shear bands. When dealing with large scale engineering problems, the shear bands represent 
potential sliding surfaces that could affect the overall stability by originating a collapse mechanism. 

When a tunnel is driven into a formation of stiff soil or weak rock, characterised by a low value of the coefficient of 
earth pressure at rest, zones of localisation initiate at the tunnel springlines, if the opening is not properly supported. Their 
extension might rapidly increase with the progress of excavation, developing upwards into arched shear bands that eventually 
join at a point above the tunnel crown, or reach the ground surface in the case of shallow openings. In these cases a collapse 
mechanism may form with the consequent failure of the tunnel crown. A more complex geometry of the collapse mechanism 
can be observed in the cross section of parallel tunnels. In this case, in fact, the shear bands might develop on the sides of the 
tunnels as well as within the ground wall separating them. In addition, if the stability of the tunnel face is not ensured during 
excavation, the spread of shear bands ahead of the excavation face can lead to the inward sliding movement of an unstable 
mass of soil. 

The attention is focused here on the numerical modelling of strain localisation and softening effects as observed during 
laboratory tests on small scale models of shallow tunnels. These tests were carried out on both 2D (plane strain) and 3D mod- 
els, to investigate the stability, respectively in the cross section and at the excavation face, of tunnels driven in factional me- 
dia. The calibration of the numerical model accounting for softening effects is discussed on the basis of the experimental re- 
sults. These allow for the validation of the hypotheses introduced in the proposed model and for the refinement of the nu- 
merical procedure. 

2. Numerical Approach to Strain Localisation and Softening 

For geological media, the process of initiation and subsequent spread of the localisation zones seems to depend on two as- 
pects. From a "structural" point of view, the loss of load carrying capacity is originated from a sort of structural instability of 
the material, which is not specifically related to a loss of shear resistance introduced in the stress-strain relation, but occurs 
when, for a given increment of the external actions, a bifurcation point is reached, i.e. the uniqueness of the solution of the 
equations governing the stress analysis problem is lost [3]. On the other hand, from a "constitutive" view point, the strain 
softening phenomenon can be seen as a consequence of an intrinsic property of the material, shown at a constitutive level as a 
loss of shear strength with increasing deformation [1]. The associated shear band formation is caused by a progressive local 
damage of the material, in terms of its mechanical deformability and resistance, depending on the cumulated permanent 
strains or on the plastic strain energy. 

The procedure for the strain softening analysis here adopted accounts for both aspects in considering separately two 
"phases" of the phenomenon, namely: the onset of localisation, based on a structural approach, and the spread and coales- 
cence of the shear bands, based on a constitutive approach. The two phases correspond to two stages of a non-linear finite 
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element procedure, implemented in the code SoSIA, for Soil-Structure Interaction Analysis [2]. 
The first stage consists in checking a particular local condition, at each integration point and at the end of each loading 

step, the fulfilment of which indicates the local onset of strain localisation. This condition stems from the shear band analysis 
of bifurcation theory, which detects the occurrence of an alternative solution in the form of a planar discontinuity in the strain 
field. For a plane strain problem in a 2-dimensional system x, this discontinuity can be kinematically described by the differ- 
ence AM between the displacement rates at its two sides, which is assumed to vary linearly with the distance from the dis- 
continuity itself: 

T Au = gm-n     x   . ^) 

In the above equation, n is the unit vector normal to the discontinuity, m is the unit vector defining the direction of the differ- 
ence AM and g is its amplitude. 

The strain compatibility, in terms of the difference As between the strain rates at the two sides, and the equilibrium 

conditions for the stress rate a across the discontinuity, can be expressed in the following matrix forms: 

As=gN-m   ,       NT-&d=q   , (2a;b) 
where matrix N collects the direction cosines of unit vector n. 

Considering now an elastic perfectly plastic material and assuming that the material at the two sides exhibits the same 
mechanical behaviour after the onset of the discontinuity, the following constitutive relationship holds: 

Aq_ = DeP(e)-As    , (3) 

in which Dep represents the tangent elastic plastic constitutive matrix. By substituting eq.(3) into eq.(2b) and taking into 

account eq.(2a), a homogeneous system of governing equations is arrived at, which admits non trivial solutions g * 0 if and 
only if the following so called "condition of localisation" is fulfilled: 

<te]l±T.DeP&.N]=0   . (4) 

It has been proved that this condition can be met even for perfectly plastic, or positive hardening, materials, if the plastic flow 
rule is non-associated [5]. Further details and comments on the derivation of this equation can be found in [6]. 

The second stage of the analysis accounts for the actual coalescence of localisation zones into shear bands and, there- 
fore, it is activated only for the integration points where condition (4) has been fulfilled. Consider that the occurrence of a 
strain discontinuity causes a change in the local structure of the material: for instance an increase of void ratio or a decrease 
of relative density due to the dilatancy effects. Consequently, a local loss of shear resistance and stiffness might occur. 

This suggests to base the second stage of the analysis on a procedure in which the shear strength and stiffness pa- 
rameters are gradually reduced, with increasing permanent strains, from their peak to their fully softened values. In the cal- 
culations, this reduction is linearly related to the increment of the square root of the second invariant of deviatoric plastic 
strains, with respect to the corresponding value at the onset of localisation. The rate of this reduction depends on the material 
mechanical characteristics and on a "measure" of the problem discretisation. It has been shown, in fact, that the solution of a 
numerical strain softening analysis is dependent on the adopted discretisation, which affects thickness and direction of the 
computed shear bands. The mesh-dependence is induced by the very nature of the finite element method, since the loss of 
shear strength and stiffness is evenly distributed over a zone that depends on the size of the elements. As a consequence, the 
decrease of the material parameters adopted in the calculations should be related also to the finite element size [4]. This pro- 
vision has been adopted here, by keeping constant the product between the average element size and the rate of reduction of 
the mechanical parameters. 

3. Applications 

The described approach has been applied to the numerical simulation of laboratory tests on 2D and 3D small-scale models of 
shallow tunnels. 

The first series of 2D, plane strain tests was performed at the Rock Mechanics Laboratory of Kobe University (Japan) 
using an assemblage of aluminium bars as "analogical" soil [8], The mechanical characterisation of this material was based 
on tests performed, with non conventional devices, on bar assemblages having the same relative density adopted during the 
tunnel tests. The tunnel tests are set up by lying the bars within a rigid frame, where one or two steel cylinders are located 
that represent the cross section of one tunnel or two parallel tunnels. The cylinders have a diameter of 15cm and contain pres- 
surised airbags. The excavation process is simulated by removing the steel cylinders and by decreasing the air pressure in 
subsequent steps. The induced stresses and strains are obtained by embedded load cells and by digitised pictures of the alu- 
minium bar assembly. 
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In the tests featuring a single tunnel, the collapse was originated by the development of two shear bands from the tun- 
nel springlines towards the surface and a negligible deformation was observed in the mass limited by them (fig.l.a). Shape 
and thickness of the bands depend on the tunnel depth and on the relative density of the medium. The numerical simulation of 
these tests showed a progressive spread of a shear band whose position was rather similar to the one experimentally observed 
(fig.l.b,c). 

In the case of two parallel tunnels, the simultaneous reduction of pressure gives rise to a gradual increment of vertical 
stresses at the springline level, which leads to the failure of the separating wall. Consequently, the load is transferred to the 
external sides of the tunnels, which then behave as a single wide opening. This additional stress increment leads to the initia- 
tion of lateral shear bands and, eventually, to the collapse (fig.2.a). In fig.2.b the numerically evaluated contour lines of the 
deviatoric plastic strains show a high level of deformation within the soil wall and the presence of a lateral shear band. 

It can be also observed that the numerical analyses correctly estimated the internal pressures corresponding to the col- 
lapse for both cases of single (fig.3.a) and double tunnel (fig.3.b). 

A second series of tests was performed at the Laboratories of Mitsubishi Heavy Industries in Takasago (Japan), con- 
cerning a 3D steel model of a horse shoe shaped tunnel [7]. The tunnel model has a crown diameter of 1.2 m and the depth of 
the crown is 1.3 m. The model is contained within a tank filled with a medium uniform sand, from an alluvial deposit of cen- 
tral Japan. Following a procedure similar to the one used in the previous tests, the stability of the excavation face was investi- 
gated by measuring the displacements induced in the sand mass by the gradual reduction of the pressure of an airbag con- 
tained within the tunnel model. 

Some 2D, plane strain calculations were carried out with reference to the longitudinal section of the tunnel. Although 
they do not allow for a quantitative comparison between experimental and numerical results, they permit a qualitative esti- 
mation of the influence of softening on the overall behaviour of the tunnel. FigAa shows that two shear bands develop from 
the tunnel crown and from its invert arch and gradually reach the ground surface, in agreement with the experimental obser- 
vation. On the contrary, if the strain softening effects are neglected in the calculations, the shear strains concentrate only 
within a limited zone ahead of the tunnel face and the shape of the collapse mechanism is not properly predicted (fig.4.b). 

(a) (b) 

Fig.l. Single tunnel problem: comparison between the experimentally measured settlements (a) and the calculated displace- 
ments (b) and deviatoric plastic strains (c) (contour lines of the square root of the 2nd invariant of dev.pl.strains, min=.3%, 
increment=.6%) 

(a) (b) 

\ '  ( 
r 

Fig.2. Double tunnel problem: comparison between the experimentally observed collapse (a) and the calculated deviatoric 
plastic strains (b) (contour lines of the square root of the 2nd invariant of dev.pl.strains, min=.5%, increment=.5%) 
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Fig.3. Confinement pressure vs. crown convergence curves for the single (a) and double (b) runnel problems. 
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(b) 

Fig.4. Numerically evaluated deviatoric plastic strains at the excavation face at collapse for strain softening (a) and elastic 
perfectly plastic (b) analyses (contour lines of the square root of the 2nd invar, of dev.pl.strains, min=.5%, increment=.5%) 

4. Conclusions 

A finite element model accounting for strain localization and softening effects has been adopted for the numerical interpreta- 
tion of laboratory tests on 2D and 3D models of tunnels. The procedure, which can be seen as a relatively simple extension of 
a standard non linear finite element analysis, turned out to be effective in the prediction of the tunnel test results. In particular, 
collapse load and mechanism suggested by the numerical analyses appear in fairly good agreement with the experimental 
measurements. 
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Nonlinearity Tests 

A possible first step in a signal based system identification procedure is a nonlinearity test. The result can be used to 
decide whether or not simple linear models are sufficient to describe the observed dynamics. It determines if modal 
analysis or other methods that assume linear system behaviour yield valid results. After a brief overview two tests 
are discussed in detail and results of an application to test systems are given. 

1. Introduction 

In many engineering disciplines the identification of dynamical systems from measured signals is an important task 
in the modeling process. If information on the structure of the system is available, the task is reduced to the 
identification of parameters. Often, however, either such information is not available or the system structure is 
known but is very complex and the relevant part of the structure is not easily discerned. 

A possible first step in the identification process is to ask whether a simple linear model is sufficient to describe 
the dynamics or whether more complex nonlinear models have to be considered. The answer to this question does 
have a strong impact on the experimental procedures used in the identification procedure as well as on possible 
control schemes to be implemented. Ideally, a nonlinearity test should not only decide whether a system can be 
regarded as linear or not, but also give an indication about the strength and the type of nonlinearity contained in 
the system. 

2. Overview 

Table 1 gives an overview of a selection of signal based nonlinearity tests that can be found in the literature. The 
tests have been grouped according to the domain in which they operate—the time or the frequency domain—and the 
way the system input is dealt with—some tests make assumptions about the type of input while other tests require 
that the system input is measured. The overview is by no means complete and the reader is referred to [1, 2, 3, 4] 
for further references. 

The tests by Keenan [5] and Tsay [6] assume the input signal to be a strictly stationary zero mean random 
process, the null hypothesis of a linear system is accepted or rejected based on a statistic calculated from multiple 
regression steps. In Surrogate Data Tests [7] measured signals are modified (surrogate data) in a way that is 
consistent with the null hypothesis of a linear system. The second step is to compute a statistic that is capable of 
discriminating linear and nonlinear systems. The Method of Internal Harmonics Cross-Correlation by Dimentberg, 
Sokolov and Haenisch [8, 9] is applicable to systems that are excited by broadband random signals and contain 
a distinct main frequency component in the output signal. The test calculates the correlation between the time 
varying amplitudes of the main frequency component and the higher harmonics. The bispectrum tests [10, 11] 
combine testing for Gaussianity and linearity. Peyton Jones and Billings [12] suggest identifying ARMAX-models 
before and after applying the same linear filter to the input and output signal. In the case of a linear system the 
identified system models should be identical. 

Finally, the methods relying on the Hilbert Transform and the Nonlinear Prediction Error Test will be discussed 
in this paper. The remaining tests of Table 1 are common knowledge in engineering, so they do not need to be 
described here. 

3. Hilbert Transform 

The Hilbert Transform can be used to detect nonlinear system behaviour in measured frequency response functions 
(FRF) of technical systems. Examples are given in [14, 16], the initial suggestion was given by Vinh. 

The FRF of linear systems, the so called transfer function G(s), can be expressed by the ratio of two polynomials 



S106 ZAMM • Z. Angew. Math. Mcch. 81 (2001) SI 

Table 1: Overview of nonlinearity tests 
Time Domain Frequency Domain 

Assumptions 

• Test for linearity against second-order 
Volterra expansion [Keenan/Tsay] [5, 6] 

• Surrogate Data Tests [Theiler et al.] [7] 

• Method of Internal Harmonics 
Cross-Correlation 
[Dimentberg/Sokolov/Haenisch] [8, 9] 

• Bispectrum test [10, 11] 

• Total harmonic distortion 
on    Input    / rHD -   1   0!+03+" 
Output Mea- 
sured only 

ltlu    V ai+4+4+- 

Input     Mea- 
sured / Out- 
put Measured 

• Superposition of input signals: [1] 
"l -*Vl, U2 ->V2 

=» ui + u2 ~> 2/1 + 2/2 

• Identification of ARMAX-models before 
and after filtering [Peyton Jones/ 
Billings] [12] 

• Nonlinear Prediction Error Test 
[Bruns/Popp] [13] 

• Hilbert Transform [14] 
G = H{Q) 

• Linear spectral density [15] 

where i is the imaginary unit and ui the angular frequency of excitation. 

Assuming that all poles have negative real parts (stable system) it can be shown that an integral transform 
of G{s) exists in the right s-halfplane that maps G(s) onto itself. Because of the similarity of this transform to the 
Hilbert Transform the result is denoted H(s). Considering the symmetry properties of transfer functions with real 
coefficients, H(s) can be split into the real and imaginary part 

+oo 

Re{H(iWc)} =-2p.V.  /i^MU (2) 

0 
+oo 

Im{H(iu,c)} = **P.V.  /R4^Midc. 
TV J U1 -(jj* 

0 

Combining the left hand side of eqn. (2) results in a complex function that will be referred to as H(iu). Any 
difference between H(iuj) and the original G{iui) therefore indicates either a nonlinear or an unstable system. 

Figure 1 shows three examples of applications of the Hilbert Transform. Figure la) shows the frequency 
response function G and the Hilbert Transform H of a simple mechanical oscillator with a softening spring. The 
characteristic deviation indicates nonlinear system behaviour. Figures lb) and lc) show the frequency response 
function of a cylindrical workpiece fixed in a grinding machine. The workpiece is excited tangentially to the grinding 
contact by an external force while the acceleration in the same direction is measured. In lb) there is no contact 
between the workpiece and the grinding wheel. Subsequently, the measurement is repeated at a contact force of 
120N (lc)). Clearly, nonlinearity due to friction and other effects is reflected in the difference between G and H. 
Comparing with Figure lc),here also a softening spring characteristic can be assumed. 

4. Nonlinear Prediction Error Test 

The Nonlinear Prediction Error Test [13, 17] is based on comparing prediction errors that are obtained by applying 
a linear and a nonlinear prediction model to the discrete time output signal y{k) of a system that has been subjected 
to a special input signal u(k). 

The input signal is composed of different random sections uRi(k), that are required to excite the system, and 
repeated deterministic sections ur>(k), 

u(k) = {uRi(k),uD(k),uR2(k),uD(k),...}. (3) 

In the consecutive UD (fc)-sections the system is excited by the same input signal, therefore, differences in the system 
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Figure 1: Nyquist Plots of frequency response functions (G) and the corresponding Hilbert Transforms (H): a) 
mechanical oscillator with a softening spring, b) response of a workpiece in a grinding machine, c) response of the 
same workpiece when it is pressed against the grinding wheel. 

evolution with time are due to different initial conditions of the system states at the beginning of the U£>(fc)-sections. 
Assuming the system under study is observable, different initial conditions are equivalent to different so called 
reconstructed state vectors 

xr(A;) = [y(k), y(k-l),...,y(k-dE + 1)], (4) 

that are composed of time lagged versions of the output signal y{k). In the analysis of time series of nonlinear 
systems, the length of the reconstructed state vector is often called the embedding dimension dE, this concept is 
also used here. ^ 

The nonlinear prediction model referred to in this test generates a prediction y (k +1) based on xr(k) using a 
local linear model (LLM). The model is fitted to the nearest neighbours of xr(fc) found in the other U£,(A;)-sections. 
The linear model used in this test is fitted to the input/output data of all uß(A;)-sections and is therefore referred 
to as the global linear model (GLM). 

Figure 2 shows the results of applying the test to a simulated chain of three lightly damped nonlinear mechanical 
oscillators. The curves represent the mean of the absolute value of the prediction error e divided by the root mean 
square of the entire signal. The prediction error is plotted for both models, GLM and LLM versus the above 
mentioned embedding dimension used. The three plots are associated with different values of the scaling parameter 
ß of the cubic component of the nonlinear restoring force 

fR(x) = (l+ßx2)x. (5) 

In the case of the linear system (ß = 0) the two models yield equal prediction errors. The prediction error 
drops to a value near zero when the embedding dimension dE reaches the number of system states that is equal to 
6, corresponding to 3 mechanical degrees of freedom. When the system becomes nonlinear (ß ^ 0), the prediction 
performance of the nonlinear model (LLM) beats that of the linear model (GLM). The prediction error of the 
nonlinear model decreases still after the embedding dimension has reached the number of system states. This 
reflects the well known fact that with a nonlinear system of order N up to 2N + 1 output values may be required 
to characterize the system's state. 

5. Summary 

After a brief introduction and overview of nonlinearity tests that can be found in the literature, two tests were 
described and results given. 

The test based on the Hilbert Transform was applied to experimental data from a grinding machine. It was 
shown that nonlinear effects in the contact zone between grinding wheel and workpiece are reflected in the Hilbert 
Transform results. Comparing the characteristic deviation of the Hilbert Transform from the originally measured 
frequency response function to numerical examples can help identifying the type of nonlinearity in the system. 

The Nonlinear Prediction Error Test characterizes the strength of nonlinearity in the observed system dynamics 
by comparing the prediction performance of a linear and a nonlinear model. In addition, an estimate is obtained 
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Figure 2: Results of the Nonlinear Prediction Error Test applied to a simulated chain of three mechanical oscillators. 
The system contains hardening springs due to cubic restoring forces scaled by the parameter ß. 

of the number of output values to be considered in an input/output model.   A drawback of the method is that 
input-nonlinearities cannot be detected. 
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Identification of industrial robots' nonlinear dynamics 

Simple linear joint controllers are still used in typical industrial robotic systems. The use of these controllers leads to 
non-negligible path deviations for complex tasks, e. g. laser-cutting, since nonlinear influences are neglected. Model- 
based compensation of nonlinear dynamics is the most common way to reduce these path deviations. For this, a 
parameter-linear multi-body model is generated and adapted to the robots' real behaviour by parameter identification 
methods. Different identification approaches are presented. The approaches are applied to the typical six d.o.f. 
industrial robot manutec-rl5 and compared with respect to excitation problems and practical applicability. The 
application to path error prediction and compensation shows the quality of the identified model. 

1. Introduction 

In recent years, robotic applications, which require not only position accuracy but also high path accuracy, have 
become more and more important not only in the academic but also in the industrial world. But, simple linear joint 
controllers are still used in typical industrial robot controls. Since nonlinear influences can not be compensated, the 
use of linear controllers leads to not acceptable path deviations. 

Model-based compensation of nonlinearities is the most common way to reduce these errors. Since the dynamic 
parameters, like masses and moments of inertia, are usually not given by manufacturer and payload is not known 
in advance, the model's parameters typically have to be identified. Conventionally, linear parameter estimation 
techniques are used to solve this problem. For this, the equations of motion have to be derived in a form which is 
linear with respect to dynamic parameters. 

In this article, two different approaches for identification of serial robots' rigid body dynamics are presented. 
The conventionally used identification scheme is compared to a so-called two-step approach with respect to industrial 
applicability and excitation problems. Identification is applied to the standard industrial robot manutec-rl5. The 
identified model is used for simulation and reduction of tracking errors. The excellent results prove the quality of 
the model. 

Although the gears have large impact on robot dynamics, the modeling of gear is not discussed in this article 
due to space restrictions. Normally, only the losses are taken into account by velocity dependent friction torques. 
Other effects like elasticity and backlash are neglected. For a detailed discussion of modeling and dynamic influence 
of friction see [1,2,4,9]. 

2. Rigid body model 

The dynamic equation of the robot's rigid body model can be written as 

Q = M(q)q + c(q,q)+g(q)     <=>     Q = A{q,q,q)p. (1) 

The left equation represents the usual form of the dynamic equation with the mass matrix M(q) as well as the 
vectors of centrifugal and Coriolis forces c(q,q), gravitational g(q) and joint torques Q. The right equation is 
the parameter linear form of the equation of motion. The base parameter vector p consists of the inertial and 
gravitational parameters of the links, e.g. masses and moments of inertia, and linear combinations of them. It has 
minimal order to guarantee identifiability of all elements Pi and can be derived automatically for any serial robot [7]. 
For typical industrial robots dim(p) is relatively small because of the symmetric link structure. For the manutec-rl5 
the dimension is 14. 

The base parameters can be divided into two groups: The gravitational parameter vector pg comprises the 
parameters that occur in g(q), whereas the inertial parameters vector pm consists of the parameter which only 
influence M{q) but not g(q). This division leads to the following formulation of the equations of motion: 

Q = AM,m{q,q)Pm + AM,g(q,q)Pg + Ac(q,q)p + Ag(q)pg . (2) 

M(q)q C(q,q) g(q) 
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3. Identification: Conventional approach 

There exists a vast amount of literature on the identification of the rigid body model. However, most of the methods 
are variations of the same identification scheme. The robot is moved along a trajectory, where joint motion and 
torque are measured. Finally, the parameters are estimated by the use of the least-squares (LS) technique. 

The LS method is based on the representation of robot dynamics shown on the right-hand side of equation 
(1). For a certain point in time Ti, measurements of m < n different axes 71... 7m are combined as 

QTi = [QtuTi---Qim,Ti]T   and   *Ti = KiTr--a^m)Ti]
T, (3) 

where Qyj are the measured torques and a7J- are the corresponding rows of A. Further combination of measurements 
at r different time steps leads to the over-determined vector equation 

Q = *p + e,    Q = [QT
T1---QT

Tr]
T   and   * = [*& • • • *?r]T (4) 

with measurement vector Q, observation matrix *, parameter vector p and the unknown error e. Generally, equation 
(4) can be solved by using a pseudo-inverse of the observation matrix: 

p = (**)-x*Q. (5) 

If * is not a full rank matrix the pseudo-inverse does not exist. Therefore, p must have minimal dimension 
as mentioned in the previous section. Minimizing the error in the LS sense leads to * = *T and an estimated 
parameter vector 

p = arg.rmn(||e||) = (*T*)-1*TQ. (6) 

This basic form of LS estimation can be refined by another choice of * to e.g. total least-squares or instrumental 
variable method. 

The main concern in using (5) and (6) is a proper choice of 'measurements' in order to ensure the excitation of 
all parameters. An insufficient excitation of one or more parameters would lead to a deterioration of the estimation 
result. An upper bound of the relativ estimation error can be given by 

fcÄ<condWM   ^   »„«*)= ^fj, (7, 

where crmax(ty) and <rmin(^) are the largest and the smallest singular value of * [1,6]. The minimum of the 
condition of the observation matrix or the maximum of the smallest singular value are common criteria for optimizing 
trajectories in order to achieve excitation of all parameters. One problem is the computational burden if arbitrary 
trajectories are optimized. The computational costs can be reduced by using 7th-order polynomial trajectories [4]. 
Furthermore, such trajectories are shock- and jerkless such that unmodelled elasticities of joints are not excited by 
the driving torques. 

The main problem of the optimization, however, is the fact, that standard industrial controls can only generate 
very simple trajectories. Therefore, the optimized trajectories can only be used in the field of robotics research, but 
usually not in industrial robotics. 

4. Identification: Two-step approach 

In contrast to the conventional identification approach, the two-step method requires only very simple trajectories 
and is, therefore, simply implementable in industrial robotics. It is based on the grouping in equation (2). 

In the first step, gravitational torques and moments of inertia are 'measured' for a lot of different joint con- 
figurations, so-called operating points. Each measurement is carried out by moving one single axes 'back-and-forth' 
along some trapezoidal velocity profile in the neighborhood of the operating point. Such trapezoidal trajectories are 
very simple to generate by standard industrial controls. No specialized trajectories are needed as only one property 
has to be identified and the trajectories are chosen to excite just this property. 

For measurements of gravitational torque, long periods with constant velocity have to be included. The mean 
between an averaged torque at forward and backward motion gives the desired gravitational torque. For the mea- 
surement of the moments of inertia motions with higher share of acceleration are used. Gravitation is compensated 
and the moment of inertia is identified in connection with a simple friction model. For more details on the measure- 
ments see [5,8]. 
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The operating points are chosen by analyzing the structure of M[q) and g(q) to excite all dominant depen- 
dencies on the parameters p in order to include them in the estimation. Of course, also an optimization could be 
performed with respect to the common criteria (see section 3). A selection 'by hand', however, is sufficient as it leads 
to excellent results for the mentioned criteria. A further optimization would not yield recognizable improvements. 

In the second step, the measurements of the gravitational torques are combined in 

(8) 
rQiVi [   «P,7i(9(1))   1 " eW  ' 

= P.,+ ,     7i € {1 ■ .«} 

.      v. 
. afl,7m(9(m))   . . e(m) . y 

*» 

where Q7j are the measured gravitational torques, agnm(q^) are the corresponding rows of Ag for the given 
operating point gW and e^ is an error that has to be introduced since pg is not known. For the identification a 
weighted least squares criterion is introduced for eg and leads to the estimation pg 

\-I.T/T, 0, = arg.imn(ejWe,)     ->    pg = (*J W*,)"1^ WTg. (9) 

The diagonal weighting matrix takes into account the different ranges of the torque measurements by weighting 
them with respect to the maximum torque of the respective axis 

W = diag([w7i... w7m]), with w7; = (Q7i,max)  1- (10) 

The inertial parameter vector pm is identified by combining the measurements of the moments of inertia Mg] of k 
different operating points. They are combined and the influence of the already known pg is compensated: 

*£> 

M. (*) Sk 

aj\Mi(g(1\«*i) 

Pm + 

.(1) 

(11) 

** 

Vectors usi stand for a vector of size of q with a 1 in the component of the measured inertia and zeroes elsewhere 
(Si € {11. ..nn}). An estimation for pm is then found by 

pm = arg.min(e^WeM) Pm = {*T
MW*M)~^T

MWTM. (12) 

In the application to the manutec-rl5 both methods yield similar results. The disadvantage of the two-step 
approach is the higher measurement effort. In contrast to the conventional approach, which needs only one trajectory, 
a lot of experiments have to be performed. For the manutec-rl5 the procedure takes about 45 minutes. But on the 
other hand, no optimization is necessary as the choice of operating points could be performed 'by hand'. The single 
measurements are very simple. This makes the approach applicable to standard industrial robot systems which is 
the decisive advantage of the method. 

5. Applications 

One possible application of the identified robot model is the prediction of tracking errors [9]. Such a dynamic 
simulation could be integrated in off-line programming packages in order to notice path deviations in advance and 
so reduce teach-in costs. In figure 1 simulated and measured path deviations of the manutec-rl5 are shown as 
Euclidean distance (eed = Je\ +e*+el) for a vertical circle with 0.4m diameter. The identified model accurately 

predicts the dynamic behaviour of the robot. 
Based on these results a compensation of the path deviations can be performed. One possibility is a model- 

based compensation by the well-known computed-torque method [3]. The necessary torques for a given trajectory 
qd can be estimated using equation (1) and a previously identified friction model Qf(q) : 

Q = M(qd)qd + c(qd,qd)+g(qd) + Qf(qa) = A(qd,qd,qd)p + Qf(qd). (13) 
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Fig. 1: Simulation and measurement of path errors for 
vertical circle. 

Fig. 2: Results of computed-torque method for an edge 
in x-y-plain. 

Figure 2 shows that the computed-torque method yields impressive improvements of path accuracy. This is another 
proof for the quality of the identified model. 

6. Summary 

Two different approaches for rigid body identification of robots dynamics are presented and compared. The com- 
monly used one leads to very little measurement costs but needs optimized trajectories which can usually not 
generated by standard industrial controls. This makes the application in industrial robotics difficult or even impos- 
sible. The two-step approach is much easier to implement since no optimized but only very simple trajectories are 
used. Therefore, it is applicable not only in research labs but also in industry. 

Both method yield similar results. The model quality is shown by application to tracking error prediction and 
tracking error reduction by computed-torque method for the typical 6-d.o.f. industrial robot manutec-rl5. 
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MERKWIRTH, C; PARLITZ, U. 

Modeling chaotic and spatially extended systems 

Different aspects of local modeling of chaotic time series are discussed including cross validation methods and algo- 
rithms for fast nearest neighbor search. The resulting local models are used for predicting the temporal evolution of 
low-dimensional and spatio-temporal systems. 

1. Attractor reconstruction and local modeling 

Measurements of dynamical systems typically provide discretely sampled scalar time series {s*}, t E Z. Using the 
method of delay embedding, states 

X*      =      (8t,8t-L,...,8t-lD-»L) 

may be reconstructed from the data which are diffeomorphic images of the original states provided the embedding 
dimension D and the delay time L are chosen properly (Abarbanel, 1996; Kantz and Schreiber, 1997). This state 
space reconstruction may be used for deriving (black box) models describing the underlying process. In particular 
local descriptions of the dynamics in the reconstructed state space (typically around some reference point) in terms 
of local models (or: local predictors) turned out to be rather powerful. They are based on the assumption that 
neighboring states undergo similar evolutions and may thus be applied only when the flow tp in the reconstructed 
state space is given by a continuous nonlinear function. Exploiting the special structure of delay embedding the 
approximation of the flow ip can be reduced to the approximation of a scalar function /(x) : JRD -»1,XH>S: 

s-t+l = /(x<) = /((««y-*,..., «*-(°-i)i)). (i) 

The predicted time series value st+1 can then be used for constructing the future state x'+1 that enters the prediction 
of the next value st+2 and so on. Of course, prediction errors accumulate with this kind of iterative prediction, but 
nevertheless iterated prediction is in general superior to direct prediction using a single, large prediction step. 

For approximating the scalar function /(x) we shall use in the following local constant models that are based on 
preimage-image relations of the A; nearest neighbors xnn>, j — 1,..., k of a given state x*. Based on these relations 
two local constant prediction schemes have been proposed. Absolute averaging 

st+1 = /V) = =^ 5>,snn'+1 (2) 

where the result st+1 of the prediction is a convex sum of the images snn'+1 of the neighbors and thus lies inside the 
range spanned by the given data. This makes the prediction robust but also leads to poor results when extrapolation 
(or: generalization) is crucial for the prediction (for example, in sparsely occupied regions of the reconstruction 
space). In those cases integrated averaging 

st+1 = /V) =s* + —j± J2 wj (S^
+1 - 8™' ) (3) 

E,=l Wj i=l 

may lead to better results. To avoid discontinuities we use for both prediction schemes weights Wj = (1 — r")n that 
depend on the relative distance TJ := jJ— given by the distance dj := d(xt,xnn>) between the reference point x* 
and neighbor xnn> normalized by the distance to the (A; + l)-th neighbor. For n > 0 the resulting functions are 
(n — l)-fold continuously differentiable. 

2. Leave—One-Out-Cross-Validation for local models 

Cross validation (or: bootstrap) provides a simple but efficient way for choosing the free parameters of a given 
nonlinear model. Furthermore, this technique may be used to overcome the problem of overfitting where particular 
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features of the given data are incorporated into the model which are untypical for the dynamical process. For this 
purpose the available data are split into a training set which is used for deriving the model (parameters) and a test 
set that is used to check the quality of the model and to tune parameters. In order to improve statistical significance 
the division of the data into training and test set is repeated several times. An extreme version of cross validation 
is the so-called Leave-One-Out-Cross-Validation where a data set of length N is split into a training set of size 
N - 1 and a test set of size 1. For global models this way of cross validation is extremely time consuming, because 
for each case the full global model has to be determined again. In the case of local models, however, just the single 
point which is left out has to be omitted in the selection of nearest neigbors and Leave-One-Out-Cross-Validation 
may thus be implemented very efficiently. 

To evaluate the performance of the one-step-ahead-cross-validation we use the average mean square error 

MSEl    =    J- £  (s^-/^(x'))2. (4) 

When using small sampling times one should avoid using neigbors in state space that lie on the same trajectory 
segment, because they contain only little information about the underlying deterministic dynamics. This is done 
here by omitting all neighbors with time indices nnj G [t-c,t + c] close to the time t of the current reference state 
x* as indicated with the notation //+£• In general, however, not the error of the one-step-ahead-cross-validation is 
most interesting, but the features of the models when applied iteratively. The normalized multi-step-ahead-cross- 
validation error 

NMSEf,,    = lv/M_-,2  E  (V1 - n+-^))2 + £ (st+i+l - #l+
c

c(x^))2)       (5) 
PIJ"f| zJt=i is     s)  terref \ t=i / 

measures this performance over p iteration steps and is used in the following to quantify the quality of the derived 
models. 

3. Fast nearest neighbors search 

An important ingredient for local modeling are fast algorithms for searching the required nearest neighbors. The task 
of finding one or more nearest neighbors in a Ds-dimensional space can be used in many fields of data processing, e.g. 
information retrieval in database applications, data mining or, as in our case, for nonlinear time-series analysis where 
it may be used for modeling and prediction of time series, fast correlation sum computation (correlation dimension, 
generalized mutual information etc.), estimating the Renyi dimensions and Lyapunov exponents of experimental 
data or nonlinear noise reduction (Abarbanel, 1996; Kantz and Schreiber, 1997). 

Nearest Neighbor searching and related problems of computational geometry have been extensively studied in the 
fields of computer science and pattern recognition and turned out not to fall into the class of computationally hard 
problems. Searching the nearest neighbor of all points in a data set of size A'' using a naive algorithm (which 
calculates the distances to every other point and picks out the smallest) is of order 0(N2). However, for real 
world applications it would be useful to have an algorithm which is of order 0(Nlog(N)). A common approach to 
achieve this goal is to build up an auxiliary indexing data structure during a preprocessing phase which helps finding 
nearest neighbors during the search phase. Recently we proposed a new algorithm for searching nearest neighbors 
(Merkwirth et al., 2000) where during preprocessing, a hierarchical cluster tree is constructed which is then used in 
the search phase for efficiently locating neighboring points. The triangle inequality : d(x,z) < d(x,y) + d(y,z) is 
used in different ways to select for a given reference point (or: query point) the number of clusters that may contain 
possible candidates of nearest neighbors. Since the triangle inequality is valid in any metric, there is no limitation 
in what kind of metric is used to calculate distances. 

4. Numerical examples 

To illustrate the cross validation approach for local models time series of length N = 10000 have been generated by 
numerical integration of different dynamical systems given in Table 1. For computing distances in reconstruction 
space we used a weighted metric that emphazises the most recent samples of the time series (McNames, 1998) 

dA(x'\xt2) 
\ 

JD-1 

\     ^itgti—iL  s*2—iL\2 

i=0 
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Dynamical System Parameters T AT L>i 

Baier-Sahle 
x\    =    —X2 + ax\ 
±i    =   Xi-i-xi+i(   i = 2, ...,M-1) 

XM    =    e + bxM{xM-i - d) 

a = 0.28,    & = 4 
d = 2,    e = 0.1 
M = 5 

2000 0.2 4.26 

Chua 

±i    =   a(x2 - h(xi)) 
±2      =     Xi — X2 + X3 

±3      =      -,3X2 
h(y)    =   ym2 + 0.5{m2-m,1)(\y + co\-\y-co\) 

a = 9,    /? = 14.286 
mi = -£,    m2 = f 
Co = 1 

1000 0.1 2.30 

Lorenz 
±1    =    a(xi — X2) 

±2    =    rx\ — x2 — X1X3 
±3    =    xix2 — bx3 

CT=-10 

r = 28 
300 0.03 2.15 

Rössler 
Xi     —     —X2 — X3 

±2     —     xl + aa:2 
i3    =    ö + x3(xi - c) 

a = 0.45 
6=2 
c = 4 

2000 0.2 1.97 

Table 1: Dynamical systems used for generating chaotic time series. All time series are of length N = 10000 and 
have been sampled with sampling time AT after a transient time T. The last column contains the information 
dimensions Di of the data sets. 

System P D k A Wn 
Modus NMSE^p NMSEmax/NMSEmin 

Baier-Sahle 40 40 8 1.0 1 Integrated 0.050045 27.9 

Chua 50 30 5 1.0 3 Integrated 0.053058 14.6 

Lorenz 50 40 1 0.5 0 Integrated 0.084055 5.2 

Rössler 80 40 1 0.7 0 Absolute 0.005964 20.7 

Table 2: Results of cross validation of local models for chaotic time series generated with the dynamical systems 
given in Table 1. The last column shows the ratio of the errors of the best and the worst parameter combination. 

where x'1 and x*2 are reconstructed state vectors and 0 < A < 1 (including the ordinary euclidean metric for A = 1). 
The model selection consisted in a systematic computation of the normalized multi-step-ahead-cross-validation 
error (5) for all combinations of the following parameters and approximation methods 

• embedding dimension D £ {4,8,12,16,20,25,30,40} 

• exponent of the metric A 6 {0.5,0.6,0.7,0.8,0.91.0} 

• number of neighbors k € {1,..., 8} 

• type of weight function Wj — (1 - r")n specified by the power n 

• absolute (2) or integrated averaging (3) 

The parameter c equaled the mean return time, i.e., half of the value of the smallest time shift i for which the 
distance di - d(xr, xr + i), i = 0,1,... decreases again. For the delay time we used L = 1. This leads to rather high 
values of the optimal embedding dimension D but the used algorithm for finding nearest neighbors (Merkwirth et 
al., 2000) depends mainly on the (fixed) fractal dimension of the point set, while the embedding dimension has no 
strong influence on the computation time. Each time series was splitted 1000 times into training and test set. The 
resulting optimal parameter combinations are shown in Table 2. Figure 1 shows the results of iterative predictions 
using the optimal parameter values. The length of the time series shown equals 4p, i.e. four times the prediction 
horizon p given in Table 2. 

5. Spatially extended systems 

Local modeling can also be applied to data from spatio-temporal systems. In this case, however, the dynamics is 
usually high-dimensional and special reconstruction techniques are necessary that exploit the fact that the data 
originate from an extended system. For systems whose dynamics is governed by local interactions in (configuration) 
space, the reconstruction of local states has turned out to be a useful method for analyzing and predicting the 
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Figure 1: Iterated predictions computed with the optimal parameter combinations given in Table 2. The dashed 
curves show the true evolution and the solid lines give the prediction starting at the end of the training set as 
indicated by the vertical dashed line. 

corresponding spatio-temporal time series (Parlitz and Merkwirth, 2000). With this reconstruction method samples 
from local space-time regions are used to create local states. Based on these states all methods described above can 
be used for predicting the underlying dynamics. 

All numerical simulations presented in this paper were performed using Matlab programs from our nonlinear dy- 

namics software package TSTOOL (http://www.dpi.physik.uni-goettingen.de/tstool/). 

Acknowledgements 

The authors acknowledge support by the Bundesministerium für Bildung und Forschung, grant no. 13N7038/9 and thank the 
members of the Nonlinear Dynamics Group at the "Drittes Physikalischen Institut" for stimulating discussions and support. 

6. References 

1 ABARBANEL, H.D.I.: Analysis of Observed Chaotic Data; Springer Verlag, New-York/Berlin/Heidelberg, 1996. 
2 KANTZ, H. AND SCHREIBER, TH.: Nonlinear Time Series Analysis; Cambridge Univ. Press, Cambridge 1997. 
3 MCNAMES, J.: A Nearest Trajectory Strategy for Time Series Prediction; Proc. of the INTERNATIONAL WORKSHOP 

ON ADVANCED BLACK-BOX TECHNIQUES FOR NONLINEAR MODELING (1998) 112-128. 
4 MERKWIRTH, C, PARLITZ, U. AND LAUTERBORN, W.:   Fast Exact and Approximate Nearest Neighbor Searching for 

Nonlinear Signal Processing; Phys. Rev. E 62(2) (2000). 

5 PARLITZ, U. AND MERKWIRTH, C: Prediction of Spatiotemporal Time Series Based on Reconstrcuted Local StatesPhys 
Rev. Lett. 84(9) (2000) 1890-1893. 

Addresses: CHRISTIAN MERKWIRTH, PD DR.   ULRICH PARLITZ, Universität Göttingen, Drittes Physikalisches 
Institut, Bürgerstraße 42-44, D-37073 Göttingen, Germany. 



Minisymposium 13 S117 

P.C. MÜLLER 

Nonlinearity estimation by Pi-observers: Theory and applications 

1. Introduction 

Dynamical systems are often influenced by troublesome nonlinear effects such as Coulomb friction, hysteresis or 
backlash. In [4] an indirect measuring technique of the actual values of these nonlinearities has been presented by 
defining an extended linear state observer which includes an integral feedback of the measurement error additional 
to the usual proportional feedback. This PI - observer yields estimates of the time behaviour of the state and of 
the nonlinearities as well. In the following this method of nonlinearity estimation is presented, its theory is touched, 
and its potentiality of applications is shown. 

2. Method of nonlinearity estimation 

The problem under consideration is described in the state space by 

x(t) = Ax(t) + Nn(x(l), t) + Bu(t) ,    y(t) = Cx(t) + Du(i) (1) 

where x, u, y denote the n-dimensional state vector, the r-dimensional control vector of known inputs (e. g. control 
inputs or known excitations) and the m - dimensional measurement vector, respectively. The vector n(x, t) represents 
p more or less unknown functions which are generally nonlinear but which may be in special cases linear functions 
with unknown parameters or external disturbances depending only on time. The matrices A,N,B,C,D are of 
related dimensions. To avoid redundant formulations the conditions rk N = p, rk B = r, rk [C,D] = r are 
assumed to be satisfied. 

The problem of nonlinearity estimation consists in the construction of an estimate fi(t) of the nonlinearities n(x, t) 
on the basis of the measurements y,0 < t. For this, it is assumed that the quantities A, N, B,C,D and the input 
signals u,0 < t, are known. 

According to [4, 5, 7] an extended linear state observer 

iHt) 
A-LXC 

— LlyC 

N 
0 

■ x(i) ■ + B 
0 u(i) + (y(t) - Du(t)) (2) 

is designed yielding the estimation of the state, x, and of the nonlinearities, n(t) = v(i). Assuming the initial 
condition v(0) = 0 then the combined proportional and integral feedback properties of the observer (2) are explicitly 
shown by 

JVI L„ / (y - y)dt,    x = Ax + Bu + Lx(y - y) + NLV / (y - y)dt 
/' 

(3) 

where y — y is the measurement estimation error with y(i) = Cx(t) + Du(t) . The choice of the observer gain 
matrices Lx, Lv can be realized that the observer (2) is asymptotically stable if and only if the extended system is 
detectable [5, 7]. Hints for the observer design and bounds for the estimation errors were presented in [7]. 

3. Applications 

The proposed method of nonlinearity estimation may be applied to the identification of nonlinearity characteristics, 
to parameter identification, to fault detection or to nonlinearity compensation in closed-loop control systems. The PI- 
observer (2) yields an estimate (3) of the time behaviour of the nonlinearities. If one is interested in the characteristics 
of the nolinearities then additional informations are required about the structural dependencies of n(x(t),t) on x 
and t. If this ä priori information is available, e.g. that a friction characteristic depends on a certain velocity which 
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is represented by one state variable xt, then the reconstruction of the nonlinear characteristic is determined by 

n(x,£) = v(£)|t=argx(t) • (4) 

The problem of parameter estimation is easily illustrated in the special case of n(x, t) = Kx(£) where K is a matrix 

of unknown parameters. Then (3) results in v(i) = Kx(t). In general it is not reasonable to evaluate this equation 
pointwise. But applying correlation methods a result is obtained for a sufficiently large T: 

T T 

K = ±jv{t)yiT{t)dt ■ (±Ji(t)&T(t)dt)-1 (5) 
o o 

The problem of fault detection in dynamical systems is an application of the identification methods mentioned before. 

In this case a fault is defined as an unknown nonlinearity which is zero in the faultless state and non-zero if a fault 

appears. Then a non-vanishing estimate (3) indicates the fault. Also sometimes a fault may be modelled by a change 

of a parameter which can be indicated by a recursive realization of the parametes estimation (5). The compensation 

of nonlinear effects within a closed-loop control system is based on the method of disturbance rejection [8]. If u 

represents control inputs then a feedback control u(i) = -Kxx(i) -K„v(i) is used. The gain matrix Kx of the state 

feedback can be designed as usual but the gain matrix K„ of the nonlinearity compensation has to be calculated in 

a specific manner. In the special case if the matching condition is satisfied we have K = -M if N = BM. 

But in general K„ has to be determined by a more complicated system of linear equations, cf. [5,6]. 

The proposed method for estimation and compensation of nonlinearities by Pi-observers has been successfully applied 

to a number of technical applications. Hasenjäger [2] used the method to compensate nonlinearities in the position 

control of parabolic antenna. Ackermann [1] compensated Coulomb friction in a highly accurate position control 

of elastic robots. Without this compensation steady-state inaccuracies or even limit cycles had appeared due to 

slip-stick friction. The good results have been verified in simulations as well as in experiments. Another application 

was the design of improved independent joint control of industrial robots estimating and compensating the coupling 

effects among the axes of the robot [3, 6]. The application of the Pi-observer method to fault detection problems 

has been demonstrated is [9, 10]. Söffker et al. [10] detected cracks in turbo rotors. The observer based method 
allows an improved early detection of faults avoiding damages. More recently these results have been confirmed 

and generalized [9]. The method of estimation and compensation of nonlinearities has been successfully proved in 
the field of identification and reduction of the influence of parasitic effects. The main advantages are its simplicity 
because only standard algorithms of linear system theory are required and its robustness against modelling errors 
in the input channels of the nonlinearities. 
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TOMLINSON, G.R. 

Frequency Response Functions: Validity and Usefulness in Nonlinear System 
Identification 

This paper considers the role of Higher Order Frequency Response Functions (HFRFs) for characterising nonlinear structures 
which can be represented by polynomial equations. By considering only the leading diagonals of these multi-dimensional 
HFRFs, simplifications are possible which allows practical procedures for experimentally measuring these, albeit they are 
approximations to the exact HFRFs due to the truncation of the series. 

1.   Ideal and Measured HFRFs 

In order to describe the relationship between the ideal higher order FRFs and the measured higher order frequency response 
functions it is necessary to briefly describe the role of the Volterra series when the input is idealised (non-physical) harmonic 
function x(t) = X ej(Bt. For a non-linear system which can be represented by a Volterra model, the output and input relationship 

becomes, 

y(t) = Xejf0t r h^Je—dc, +X2 ej2fflt f f° h^x^-^dx^ +... 

+ x„eJn<B,r fC°hn(Tn,...,Tn)e-Jn<0T"dT. (1) 
J—00 J—00 

Noting that the terms inside the integral signs are multi-dimensional Fourier transforms, equation (1) becomes, 

yCO-H^cöJXe-*05' +H2Goo,jö>)X2 ej2<Bt +... + Hn0«,-Jffl)Xn ejn<Bt. (2) 

Equation (2) simply shows the relationship between the linear (one-dimensional) FRF function, Hj(jo>) and the leading 
diagonal terms of the higher order FRFs Hn (j<a) at the excitation frequency co, which are simply the higher harmonics at 2co, 
3© etc. The FRFs in equation (2) are defined in terms of the one-dimensional Fourier transforms of the input and output terms 
as. 

H>Ü°»>=#T (3) 
X(jG>) 

,. . ,    2n-1Y(jna>) 

For a sine wave input (which is the practical case) we obtain the following Higher Order Transfer Functions:- 

TF, =4H = H,0«>)+fH3(jcö,jcö,-jcD)x(jö)2 +^HnG»,-.,-J«>)xG»r1+...   n = 1,3,5,... (4) 
Xgcoj 2 

TFnGna>) = ^^ = ^HnGca,.Jcö)+^Hn+2Gö),..,-j»)xG«>)2
+...   n = 1,2,3..* (5) 
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The additional terms i.e. those above Hj (j©) are referred to as degenerative terms on the Hj (jo) function arising from the fact 
that the sine wave input excites the even and the odd higher order FRFs. If we take, as an example, what we normally measure 
in practice which is defined by equation (4) we see that to a first approximation, 

TF10o) = H,(jo)+O(x0o))2 (6) 

and to a second approximation, 

TF1Öö) = H1(ja>)+f H3Öo>, j«> -Jö>)X(J<D)
2
 +0(x(j©))4. (7) 

Equation (7) shows that the classical first order transfer function is equal to the classical first order FRF only when, 
H3(JCD, jo, jo) H5(jo ...jo), etc are zero, i.e. when the system is linear. Further, it clearly shows that as the level of input 

excitation spectrum X(jo) is increased the significance of the higher order terms increases in relation to X(jo)n_1. This can be 
physically interpreted as an increasing distortion of the measured transfer function (bending to the right or left) of systems with a 
hardening or softening stiffness non-linearity, as the amplitude of the input excitation increases. Indeed, the well known 
distortions apparent in the transfer function of a Duffing oscillator subject to sinusoidal excitation are readily explained by this 
analysis [3]. 

Equation (5) can be applied experimentally very simply to measure the approximate HFRFs, referred to as Higher Order 
Transfer Functions: 

rrc ,.    s    Y(jno) 

X(jü>)n 

i.e. TFi 0®) = „/.  \ is obtained by exciting the structure with a sine wave at a given frequency and measure the response 

and force input amplitude and phase at this frequency. 

The second order transfer function, 

TF2(j2©) = ——— is obtained by exciting with a sine wave at frequency © and measuring the response at the 2© 

component, dividing by the square of the excitation force level at the forcing frequency to form TF2 (j2o). This is repeated for 
higher order transfer functions as desired. Such transfer functions can offer considerable insight into the type of nonlinearities 
present in dynamic structural testing. Examples of the application of these ideas can be found in references 1, 2, 3,4. 

2.   References 

1. FRACHEBOURG, A: Identification of nonlinearities: application of the Volterra model to discrete MDOF systems, 
Proceedings of the Florence Modal Analysis Conference (1991) 93-100. 

2. STORER, D M, TOMLINSON, G R: Parametric models of non-linear systems using multi-dimensional frequency response 
functions, Proceedings of the European Forum on Aeroelasticity and Structural Dynamics, Aachen (1989) 263-272. 

3. STORER, D M: PhD thesis, University of Manchester, Dynamic analysis of nonlinear structures using higher order 
frequency response functions (1991). 

4. STORER, D M, TOMLINSON, G R: Recent developments in the measurement and interpretation of higher order transfer 
functions from non-linear structures, J of Mechanical Systems and Signal Processing 7(2), 173-189 (1993). 



Minisymposium 13 SI 21 

UNBEHAUEN, H. 

Identifikation nichtlinearer Systeme aus regelungstechnischer Sicht 

Die Identifikation einer Regelstrecke liefert ein mathematisches Modell, das heute meist als Grundlage für den Ent- 
wurf einer modernen Regelung dient. Da die meisten technischen Regelstrecken nichtlinear sind und häufig eine 
Linearisierung in einem Arbeitspunkt nicht ausreicht, spielen Verfahren zur Identifikation nichtlinearer Modelle von 
Regelstrecken sowohl für die Regelung als auch Überwachung und Fehlererkennung eine zunehmend wichtige Rolle. 
Der Beitrag gibt eine Übersicht über die wichtigsten in der Regelungstechnik verwendeten nichtlinearen Modellfor- 
men, wobei zwischen nichtparametrischen, parametrischen und semiparametrischen Modellen unterschieden wird. Es 
werden Methoden zur Identifikation der das jeweilige Modell beschreibenden Kenngrößen erwähnt, und abschließend 
wird eine vergleichende Einschätzung dieser Verfahren gegeben. 

1. Einleitung und Problemstellung 

Die Regelung hat die Aufgabe, die Regelgröße y(t) schnell auf den gewünschten festen oder variablen Sollwert w{t) zu 
bringen. Dabei ist eine generelle Voraussetzung für die Parametereinstellung oder die Synthese von Reglern, daß das 
dynamische Ein-/Ausgangsverhalten der Regelstrecke in Form eines dynamischen Modells bekannt ist. Ein solches 
Modell kann in vielfältiger Form aufgestellt werden, so z.B. als Differentialgleichung, Differenzengleichung, Übertra- 
gungsfunktion, Übertragungsmatrix, künstlich-neuronales Netzwerk oder linguistisches Fuzzy-Modell. Grundsätzlich 
bestehen zwei Möglichkeiten zur Herleitung eines solchen Modells. Die auf der Basis der die Regelstrecke beschreiben- 
den physikalischen Gesetze hergeleiteten mathematischen Modelle sind meist sehr kompliziert und beruhen häufig 
auch auf verschiedenen Voraussetzungen, die teilweise nur ungenau zu erfüllen sind. Eine andere Möglichkeit der 
Modellbildung beruht auf der Messung der Ein- und Ausgangssignale u(t) und y(i) der betreffenden Regelstrecke. 
Diese Vorgehensweise wird auch als experimentelle Systemidentifikation bezeichnet [1]. Sie bildet die Grundlage für 
die nachfolgenden Betrachtungen. 

Die meisten industriellen Regelstrecken weisen nichtlineares Verhalten auf. Dies ist entweder eine Folge der meist 
nichtlinearen Stellglieder und der häufig nichtlinearen Meßverfahren oder der nichtlinearen statischen Kennlinie, 
sofern die Regelstrecke über einen großen Arbeitsbereich betrieben wird und somit eine Linearisierung zu einem 
bestimmten Arbeitspunkt nicht mehr in Frage kommt. Daraus resultiert der Wunsch, das Verhalten der nichtlinearen 
Regelstrecke durch entsprechende nichtlineare Modelle zu beschreiben. Solche Modelle sind insbesondere erforderlich, 
wenn nichtlineare Regler eingesetzt werden. 

2. Nichtlineare Modellstrukturen 

Zahlreiche Verfahren wurden zur Modellierung nichtlinearer Regelstrecken vorgeschlagen [2 bis 6]. Gemäß [2] lassen 
sich diese Verfahren in 4 Gruppen unterteilen: (i) Nichtparametrische Modelle, (ii) Parametrische Modelle, (iii) 
Semiparametrische Modelle und (iv) Lineare Multimodelle. 

Auf einige typische Vertreter aus diesen Modellgruppen soll nachfolgend kurz eingegangen werden. 

2.1. Nichtparametrische Modelle 

Diese Modellklasse wird durch eine nichtparametrische Darstellung, z.B. in Tabellenform oder graphischen Formen 
(Zeitverläufe, Ortskurven, spektrale Darstellungen oder klassische Phasen-Ebene-Darstellung) charakterisiert. Ein 
typisches Beispiel ist die Volterra-Reihe [7]. Diese Modellbeschreibung für das Eingangs-/Ausgangsverhalten kann 
als eine Verallgemeinerung des für lineare Systeme bekannten Faltungsintegrals über das Produkt der Impulsantwort 
g{t) mit dem zeitverschobenen Eingangssignal u(t) angesehen werden. Die Systemidentifikation besteht hierbei darin, 
anhand der gemessenen Ein- und Ausgangsgrößen u(i) und y{t) die in den Integraltermen 

t ' i 

f ■■ I9i{Tl,...,Ti) Y[u(t-Tj)dTi...dn » = 1.2,... 

j-mal 
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der Volterra-Reihe auftretenden "Volterra-Kerne" gt durch numerische Entfaltung punktweise zu bestimmen. Es ist 
leicht nachzuweisen, daß der hierfür erforderliche Rechenaufwand bereits für kleine Werte von i außerordentlich groß 
wird. 

2.2. Parametrische Modelle 

Bei dieser Modellklasse erfolgt die Darstellung bevorzugt in Form nichtlinearer Differenzen- oder Differentialglei- 
chungen, deren Parameter speziell im kontinuierlichen Fall auch oft eine physikalische Bedeutung haben. 

2.2.1. Diskrete parametrische Modelle 

Als eine der allgemeinsten Modellformen dieser Gruppe ist das Kolmogorow-Gabor-Modell zu nennen [8,9], das auf 
der Basis eines Polynomansatzes beruht. Unter Einbeziehung eines Störmodells stellt dieses Modell eine nichtlinea- 
re ARMAX-Struktur dar und wird deshalb auch als NARMAX-Modell bezeichnet [10,11]. Dieses Modell ist linear 
in den Parametern, so daß diese relativ einfach mit einem LS-Verfahren geschätzt werden können. Zur Reduzie- 
rung der prinzipiell hohen Anzahl von Modelltermen stehen leistungsfähige, selbstätig ablaufende Algorithmen zur 
Strukturbestimmung zur Verfügung [11 - 13]. 

Bei den beiden Modellstrukturen der Wiener und Hammerstein-Modelle wird davon ausgegangen, daß sich das dy- 
namische Verhalten des Systems in einem linearen Teilmodell und das statische Verhalten in einem nichtlinearen 
Teilmodell darstellen läßt. Beide Teilmodelle werden in Reihe geschaltet, wobei das nichtlineare Teilmodell beim 
Hammerstein-Modell am Eingang und beim Wiener-Modell am Ausgang angeordnet wird. Beiden Modellen wird 
am Ausgang noch ein lieares Störmodell überlagert. Zahlreiche technische Regelstrecken können durch diese Mo- 
dellstrukturen recht gut beschrieben werden. Hervorzuheben ist, daß die Struktur des Hammerstein-Modells linear 
in den Parametern ist, so daß die Parameter wiederum durch ein LS-Verfahren geschätzt werden können. Dies ist 
allerdings beim Wiener-Modell nicht der Fall. Hier müssen die Parameter durch ein Gradientenverfahren bestimmt 
werden [14]. Das bilineare Modell ist als Sonderfall bereits im Kolmogorov-Gabor-Modell enthalten. Die Nichtlinea- 
rität tritt hierbei nur in Form von Produkten zwischen Meßwerten der Ein- und Ausgangsgröße auf. Quadratische 
Terme und solche höherer Ordnung werden nicht berücksichtigt. 

2.2.2. Kontinuierliche paraxnetrische Modelle 

Neben den kontinuierlichen Formen der bilinearen und der Hammerstein- und Wiener-Modelle lassen sich nichtlineare 
Systeme auch durch integrierbare Modelle der Form 

»1      W2 U 

,=o j=0 

oder durch das faltbare Modell 

m   «2   «3 

i=0 j=0 fc=0 
«w.»(*)^[/j[«(«). »(*)]] = 0 

darstellen. Hierbei sind /,- und gu bekannte Funktionen, während die Parameter ay bzw. ay* zu bestimmen sind. Zur 
Parameterschätzung werden diese Differentialgleichungen entweder durch Fourier- [15] oder zweckmäßiger Hartley- 
Modulationsfunktionen [16 - 18] in eine spektrale Darstellung gebracht. Da diese Darstellung lineax in den Parametern 
wird, läßt sich die Parameterschätzung wiederum mit einem LS-Verfahren durchführen. 

2.3. Semiparametrische Modelle 

Diese neue Bezeichnung wurde eingeführt [5], um die Klasse der Modelle zu charakterisieren, die auf künstlich 
neuronalen Netzen (KNN) oder auf linguistischen Fuzzy-Regeln beruhen. Diese Modelle sind nicht streng in eine 
der zuvor behandelten Modellklassen einzuordnen. In beiden Fällen wird als Ziel der Identifikation eine gewisse 
Zahlenmenge geschätzt, die im Falle des KNN-Modells den Neuronengewichten und im Falle der Fuzzy-Modelle den 
Werten der Zugehörigkeitsfunktionen entspricht. Beide Klassen von Modellen sind auch in der Kombination von 
Neuro-Fuzzy-Modellen besonders gut zur Beschreibung von nichtlinearen Regelsystemen geeignet [19-21]. 

3. Kritische Bewertung der unterschiedlichen Modellstrukturen 

Da die zuvor beschriebenen nichtlinearen Modellstrukturen sich teilweise ganz erheblich unterscheiden und für sehr 
unterschiedliche regelungstechnische Aufgabenstellungen entwickelt wurden, ist ein allgemeiner Vergleich hinsicht- 
lich ihrer Leistungsfähigkeit nicht möglich. Auch sind manche Detailprobleme bis heute noch ungenügend geklärt. 
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Dennoch sollen nachfolgend einige wichtige Eigenschaften der unterschiedlichen Modellstrukturen angesprochen und 
für vier Modelle, als typische Vertreter der wichtigsten Modellklassen, dem 

- Volterra-Modell (VM), 
- Kolmogorov-Gabor (NARMAX)-Modell (KGM), 
- kontinuierlichen faltbaren Differentialgleichungs-Modell (KFDM), 
- künstlich neuronalen Netz-Modell (KNNM) 

kritisch bewertet werden. 

Da für eine solche Bewertung allgemeinverbindliche Maße bisher kaum zur Verfügung stehen, sollte diese Vorge- 
hensweise nur als subjektive Betrachtung des Autors, allerdings auf der Grundlage umfangreicher Erfahrung mit 
diesen Modellstrukturen, gesehen werden. Eine wichtige Eigenschaft einer Identifikationsmethode ist ihre Approxi- 
mationsfähigkeit. Diese ist ein unmittelbares Maß dafür, wie gut ein identifiziertes Modell in der Validierungsphase 
gemessene Signalverläufe der Systemausgangsgröße unter Vorgabe der zugehörigen gemessenen Eingangsgrößen ap- 
proximiert. Ein wesentlicher Gesichtspunkt ist weiterhin der erforderliche Rechenaufwand für die Durchführung der 
Identifikation. Obwohl heute leistungsfähige Rechner zur Verfügung stehen, spielt der Rechenaufwand häufig die 
entscheidende Rolle, ob ein Verfahren im „on-line" Betrieb, also auch in Realzeit in rekursiver Form eingesetzt 
werden kann. Dies ist ein wichtiger Gesichtspunkt bei der Realisierung adaptiver Regelsysteme. Weiterhin sind die 
Identifikationsverfahren unterschiedlich empfindlich gegen stochastische Störsignale. Leider sind die theoretischen 
Grundlagen für den Einfluß stochastischer Störungen in nichtlinearen Systemen bisher noch zu unbefriedigend er- 
forscht, so daß weitgehend nur lineare Störmodelle dem Ausgangssignal überlagert werden. Daher können allgemeine 
Aussagen über die Unempfindlichkeit einer Identifikationsmethode gegenüber Rauschsignalen nicht gemacht werden. 
Hier ist man weitgehend auf Erfahrungswerte angewiesen. 

Tabelle 1: Eigenschaften nichtlinearer Modelle 

Eigenschaften Modell niedrig mittel groß 

Approximations- 
fähigkeit 

VM X 

KGM X 

KFDM X 

KNNM X 

Rechen- 
aufwand 

VM X 

KGM X 

KFDM X 

KNNM X 

„on-line" 
Fähigkeit 

VM nein 
KGM (ja) 

KFDM ja 
KNNM ja 

Unempfindlichkeit 
gegen Rauschen 

VM (x) 
KGM (*) 

KFDM (x) 
KNNM (x) 

Konvergenz 
VM X 

KGM X 

KFDM X 

KNNM X 

Datenvorver- 
arbeitung 

VM erforderlich 
KGM nicht erforderl. 

KFDM erforderlich 
KNNM nicht erforderl. 

Bei den zur Systemidentifikation eingesetzten Algorithmen ist die Konvergenz zum „wahren" Identifikationsergebnis, 
also den Schätzparametern und der Modellstruktur, von besonderer Wichtigkeit. Bei den Verfahren, deren Struktur 
linear in dem zu schätzenden Parameter ist, ist die Identifizierbarkeit mit einem LS-Verfahren gesichert, sofern das 
Ausgangssignal genügend erregt wird. Bei Gradientenverfahren ist dies nicht immer gewährleistet. 

Schließlich sei noch darauf hingewiesen, daß bei manchen Verfahren eine Vorverarbeitung der Meßdaten erforderlich 
ist. Während bei den Verfahren zur Ermittlung diskreter parametrischer Modelle dies nicht erforderlich ist, empfiehlt 
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sich eine solche Datenvorverarbeitung häufig bei der Ermittlung kontinuierlicher parametrischer Modelle. 

Tabelle 1 gibt eine Übersicht zur Bewertung der oben genannten vier Verfahren unter den hier genannten Gesichts- 
punkten. 

4. Zusammenfassung 

Es stehen heute bereits zahlreiche bewährte Verfahren zur Identifikation nichtlinearer Systeme zur Verfügung. Im 

speziellen Anwendungsfall muß das geeignetste Modell sorgfältig ausgewählt werden, wobei man aufgrund der vor- 

gegebenen Situation zuerst mit der einfachsten Modellstruktur beginnen sollte, und nur dann, falls diese nicht 

das gewünschte Ergebnis liefert, auf allgemeinere Modellklassen übergehen sollte. Häufig liefert auch eine genauere 

technisch-physikalische Analyse des zu modellierenden Systems Hinweise zur Wahl einer geeigneten nichtlinearen 
Modellstruktur. 

In diesem kurzen Überblick wurde versucht, den augenblicklichen Entwicklungsstand zur Identifikation nichtlinearer 

Systeme aus regelungstechnischer Sicht darzustellen. Er ist für den interessierten Leser gedacht, um ihm einen 
leichten Einstieg in dieses wichtige Gebiet der dynamischen Systeme zu ermöglichen. 
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T. BöHLKE, A. BERTRAM 

The 4th-Order Isotropie Tensor Function of a Symmetrie 2nd-Order Tensor 
with Applications to Anisotropie Elasto-Plasticity 

Dedicated to Prof. D. Gross on the event of his 60th birthday. 

The effective elastic properties of polycrystals can vary significantly with their crystallographic texture [7]. Since 
a correlation of elastic and plastic properties has been proven (see [8] and references therein), a phenomenological 
modeling of the crystallographic texture induced elastic anisotropy is of importance in the context of both elasticity 
and plasticity. In the present paper an evolution equation for the effective elasticity tensors of aggregates of cubic 
crystals is specified by means of the theory of isotropic tensor functions. It is shown that constraints forced by the 
elastic symmetry on the micro scale simplify the phenomenological equations significantly. 

1. Introduction 

Notation: Linear mappings of 2nd-order tensors are written as A = C[B]. The scalar product, the dyadic product, 
and the Euclidean norm are denoted by A • B, A <g> B, and ||A|| = (A • A)1/2, respectively. Lin denotes the set of 
all 2nd-oder tensors. Sym and Orth represent the sets of symmetric and proper orthogonal 2nd-order tensors. 

Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and 
elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although 
experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain 
materials. A source for such phenomena is a significant anisotropy of the corresponding physical property of the 
single crystals forming the aggregate. The main purpose of the present work is to derive the 4th-order isotropic 
tensor function of a symmetric 2nd-order tensor and to determine explicitly its irreducible part. This tensor function 
is necessary to formulate a phenomenological model for the evolution of the elastic properties polycrystals. 

Generally, it is possible to decompose 4th-order elasticity tensors of arbitrary symmetry into a direct sum of or- 
thogonal subspaces, on which the action of Orth is irreducible. The action of Orth on a vector space is said to be 
irreducible when there are no proper invariant subspaces. The harmonic decomposition has the form 

C = ftiPf + h2F{ + H'x ® I +1 <8> H'i + 4J[H'2] + H', (1) 

where 

W[ - §1<g> I,        W>i = l-P{,        4J[A] = (AimSjn + AinSjm + SimAjn + SinAjm)e, <8> BJ ® em ® e„ (2) 

[12, 13, 5, 3]- I denotes the 2nd-order identity tensor and I represents the identity on symmetric 2nd-order tensors. 
The tensors Hi, H'2, and H' are irreducible, i.e. completely symmetric and traceless. A review concerning this 
representation is given in [6]. h\ and h2 are called the first and second isotropic parts; Hi and H2 are the first and 
second deviatoric parts; H' is the harmonic part. Irreducible 2nd-order tensors have five, and irreducible 4th-order 
tensors have nine independent components. 

The symmetry group of C is the intersection of the symmetry groups of its harmonic and deviatoric parts [6]. As 
a result, a cubic crystal symmetry forces H'x = 711 and H2 = 72I. From tr(H'x) = 0 and tr(H'2) = 0 one concludes 
71 = 0 and 72 = 0, respectively. Therefore, the tensors H'x and H2 vanish and the harmonic decomposition of the 
single crystal stiffness reduces to 

C = h1-p[ + h2¥
I

2 + W. (3) 

Only in the case of a cubic crystal symmetry the deviatoric parts Hi and H2 vanish. 

The effective elastic properties can be determined by orientational or volume averages of the local elasticity tensors. 
Examples are the arithmetic, the geometric, or the harmonic average [2]. In what follows we consider aggregates of 



S126 ZAMM ■ Z. Angcw. Math. Mech. 81 (2001) SI 

cubic crystals. The singlecrystalline grains are assumed to differ only by their crystallographic orientation. For the 
volume average of C remains only 

C = h1¥[ + h2¥
I

2 + Bl. 
(4) 

Note that the volume average H' of W is irreducible. It is seen that a crystallographic texture evolution affects only 
the harmonic part of the stiffness. The same statement holds for the arithmetic mean [15] of local stiffnesses, the 
geometric mean [1, 9], and the harmonic mean [11] (see also [2]). 

A simple phenomenological model for the texture induced elastic anisotropy is given by the following evolution 
equation 

^fir = ||D;n(G'(N;)-rf(/F)Bf),     K = ^>    iP = ^(K)> (5) 

where D'p is the macroscopic plastic strain-rate which is deviatoric. All quantities are formulated with respect to 
the (Lagrangian) undistorted configuration, which is invariant under changes of the observer. D(-)/Dt denotes the 
material derivative. The plastic spin has not been taken into account in eqn (5). Furthermore, the driving term 
depends only on the direction N'p of DJ,. The main problem is to find the general representation of the function 
G', which has to be irreducible. In section 2 the general 4th-order isotropic tensor function of a symmetric 2nd- 
order tensor is derived by means of the theory of isotropic tensor functions of 2nd-order tensors ([17, 4], see also 
[10, 16, 14]). In section 3 the corresponding irreducible part is determined. It is shown that the condition of 
irreducibility simplifies the representation considerably. 

2. The 4th-Order Isotropic Tensor Function of a Symmetric 2nd-Order Tensor 

In what follows, we derive the representation of a general, not necessarily polynomial, 4th-order isotropic tensor 
function G of a symmetric 2nd-order tensor A G Sym. The tensor function G is required to exhibit the index 
symmetries of elasticity tensors, i.e. the major symmetry and the symmetry in the first and second pair of indices 

M ■ G[N] = N • G[M],        M • G[N] = M ■ G[NT] = MT ■ G[N]       VM.Nelk (6) 

The starting point is the irreducible representation of a (symmetric) 2nd-order isotropic tensor function of two 
symmetric 2nd-order tensors [17, 4] 

7 

G(A1B) = J29aGa. (7) 

The eight symmetric tensor generators Ga are given by 

I, A, A2, B, AB + BA, A2B + BA2, B2, AB2 + B2 A. (8) 

The ga are general functions of the 10 invariants of the functional basis of A and B 

tr(A), tr(A2), tr(A3), tr(B), tr(B2), tr(B3), 

tr(AB), tr(A2B), tr(AB2), tr(A2B2). (9) 

The representation (7) is called irreducible if the functional basis is irreducible and if none of the generators can be 
expressed as a linear combination of the other generators, formed with general functions ga. A functional basis is 
called irreducible if none of its elements can be expressed as a single-valued function of the other elements [4]. This 
definition of irreducibility differs from the one applied when discussion the index symmetries of the tensor M'. 

The function G can be obtained by a linearization of G in B 

G""(A,B) = G(A)[B]. (10) 

The linearized function G'*" reads 

G"»(A, B) = «#"1 + «,<«"A + <#"A2 + g'tB + <#" (AB + BA) + fi" (A2B + BA2) . (n) 
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(15) 

After the linearization, the scalar functions ga(A,B) can be expressed in terms of B and the new functions gtj(A) 
that are isotropic in A 

gtn    =   ^•o(A)tr(B)+5n(A)tr(AB)+5i2(A)tr(A2B))    (. = 0,1,2), 
(12) 

g'r    =   9io(A), (» = 3,4,5). 

A direct calculation yields the following representation 

G(A)    =    (35oo + 53o)H + 530P2 + 511 A® A + 522A2® A2 + 2540J[A] + 255oJ[A2] 

+    5ioA<g>I + 5oiI<S>A+52oA2<g>I + 5o2l<S>A2 (13) 

+    521A2 (g) A + 512A ® A2. 

From the requirement (6)1 one concludes 

5io = 5oi,        520 = 502,        512 = 521- (14) 

As a result, the 4th-order isotropic tensor function G reads 

G(A)     =     £a=l<?«(A)Ga(A) 

=    (3500 + 53o) H + 530IP2 + 5iiA ® A + 522A2 ® A2 + 254oJ[A] + 2550J[A2] 

+   510 (A® 1 +1® A) +520 (A2 ®I +I® A2) 

+   521 (A2® A +A® A2). 

3. The Irreducible Part of the 4th-Order Isotropic Tensor Function of a Symmetric 2nd- 
Order Tensor 

As mentioned before, an irreducible 4th-order tensor is symmetric and traceless with respect to every pair of indices. 
In this section we present the irreducible part G' of the function G (see (13)) by employing the procedure suggested 
by [5]. The irreducible part of a 4th-order tensor function G is given by 

G' = i(G>-^[{H®I} + I^tr(H)(I®I), (16) 

where 

H = Gnkiek ® e; + 2Gikiiek ® e;. (17) 

{efc} represents an orthonormal basis. The bracket formulae is defined by (A, B € Sym) 

(AijAki)    =   AijAkt + AikAji+AuAkj, 
(18) 

{AtjBki}   =   AijBki + AikBji + AuBkj + B{jAki + BikAjt + BnAkj. 

Note, that G has the major symmetric. Therefore, (Gijki) = Gijki + Gikji + Gukj. All components of G' are linear 
functions of the components of G. 

Inspection of eqn (15) shows that only the following three of the nine 4th-order tensor generators contain non- 
vanishing irreducible parts 

G3(A) = A®A,        G4(A) = A2®A2,        G9(A) = A2 ® A + A ® A2, (19) 

which are given by 

G&(A)    =    |(A®A)-i(tr(A){A®I} + 2{A2®I}) + Ti5(tr(A)2 + 2tr(A2))(I®I), 

G4(A)    =   G(,(A2), 
(20) 

G'9(A)    =    |{A2®A}-i(tr(A2){A®I}+tr(A){A2®I} + 4{A3®I}) 

+    I|5(tr(A)tr(A2) + 2tr(A3))(I®I>. 
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If the tensor A is replaced by the direction N' = A'/||A'|| of its deviatoric part A' = A - tr(A)I/3, then, the 
generators read 

Gi (N') = ^{N' ® N'> - A{N'2 ® 1} + ^ tr(N'2)<I ® I), (21) 

a(N') = i(N'2 ® N'2) - 1 (tr(N'2){N'2 ® 1} + 2{N'4 ® I}) + -L (tr(N'2)2 + 2tr(N'4)) (I ® I), 
21  V     V /i j V J,        105 (22) 

Ga(N') = i{N'2 ® N'} - 1 (tr(N'2){N' ® 1} + 4{N'3 ® I}) + ^(N'^I <g> I). (23) 

Since N' is traceless and normalized, the three functions G\, G2, and G3 depend on the only non-constant principal 
invariant det(N') of N'. As a result, G'(N') reads 

G,(N/) = G3(/)G^N,) + G4(/)G^l(N') + G9(/)G
,

9(N'),        J = det(N'). (24) 

Within the presented evolution equation (5), the four scalar functions G3(IP) G4(/p), G9(IP), and d(Ip) which depend 
on the scalar Ip — det(N') remain to be identified. 

4. Conclusions 

The theory of isotropy tensor functions of 2nd-order tensors is applied in order to formulate evolution equation 
of 4th-order elasticity tensors. The general representation theorem of a 4th-order isotropic tensor function of a 
symmetric tensor is derived. The irreducible part of this representation is determined explicitly. It is shown that 
the consideration of constraints given by the elastic symmetry on the micro scale simplifies the phenomenological 
equation significantly. 
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PAWELSKI, H. 

Theorie und Praxis des Dressierwalzens unter Berücksichtigung 
flächenveränderung 

der Ober- 

Beim Dressierwalzen insbesondere dünner Bänder kommen im Vergleich mit herkömmlichen Walzfallen verschiedene 
Besonderheiten erschwerend für die Modellierung hinzu: Elastische und plastische Deformationen des Bandes sind 
von gleicher Größenordnung (Verwendung des Prandtl-Reußschen Stoffgesetzes erforderlich), es tritt eine erhebli- 
che Walzenabplattung auf (Ausbildung einer Förderzone mit nur eingeschränktem plastischen Fluß in der Mitte des 
Walzspalts), außerdem ist häufig die erzielte Dickenabnahme nicht wesentlich größer als die Rauhtiefen der Ober- 
flächen von Walzen und Band (Oberflächenveränderung des Bandes muß in die Theorie mit einbezogen werden). Es 
wird ein Modell vorgestellt, das diese speziellen Gegebenheiten berücksichtigt, ohne jedoch zu große Rechenzeiten zu 
erfordern. Messungen an industriellen Dressiergerüsten bestätigen die Verwendbarkeit des Modells. 

1. Walzenabplattung 

Die Vertikalverschiebung u der Walzenoberfläche durch elastische Verformung, die durch eine Vertikaldruckverteilung 
p(x) hervorgerufen wird, ist, siehe [3], 

u(x) = |_°° p(0 U{x - 0 d£ ,   U(s) = ~^f  {l + (1 - vw) In   (~)2  } • (1) 

Die wesentlichen einen Walzfall kennzeichnenden Größen sind in der Tabelle auf der linken Seite von Abbildung 
3 zusammengefaßt. Falls wir den Druck abschnittsweise als Polynom schreiben können, läßt sich eine geschlossene 
analytische Lösung für u(x) angeben. Sie setzt sich aus den folgenden Monomanteilen der Ordnung n zusammen: 

un(x,Xl,x2) := £ C U(x - 0 de = {n\X"zwi; Ui+1 ~ *2+1 + (1 - Wf) 
n+l  xn-j+l   ,    . . 

+ X\ n+i,   (z-zi)2      «+1 1TI (S ~ sa) (x-xt)2 

(x - x2)
2 (2) 

2. Einebnung der Oberfläche 

Ein Bestandteil des Modells ist die Berücksichtigung der zunehmenden Kompression der Oberflächenschicht aufgrund 
des ansteigenden Drucks. Dazu benötigen wir einen Zusammenhang zwischen dem makroskopischen Druck p und dem 
Traganteil /, das ist der Quotient zwischen tragender Fläche der Rauheitsspitzen und der gesamten makroskopischen 
Kontaktfläche. Wir verwenden für trockene Reibung das Modell des Eindringens von Stempeln in einen Halbraum, 
vgl. auch [5]. Dabei ist k = kf/^/% die Schubfließspannung. Bei Schmierung, siehe [4], ist die Volumenkompression 
der Oberflächenschicht aufgrund der gefüllten Schmiertaschen kleiner als bei trockener Reibung. 

'   (l + |)/,   falls  /<i, 

2k 
= < 

I + TT/2 

2077^1 falls  / > - , 

^l •   falls   £ 
I + TT/2 ' 2k 

16[p/(2fc)]2 

16 [p/(2*)]a + (2 + TT)
2 

^ 1     TT 

^2 + 4 

falls 
2k ~ 2 + 4 
P 

(3) 

3. Druck- und Dickenverteilung 

Zur Aufstellung des Modells stellen wir geeignet zueinander passende, abschnittsweise aus Polynomen bestehende, 
Ansätze für den Vertikaldruck p(x) und die Gesamtdicke des Bandes h(x) auf, siehe Abbildung 1. Zur Ausbildung 
der Förderzone zwischen x2 und x3, wie sie grundsätzlich auch vom Folienwalzen bekannt ist, siehe [1] und [2]. 

Poi = 
-pixp +pi x 

Xi - x0 

Pl2 
_  (PlX2 -P2XI) + (P2 -Pl) 

X2 -Xi 
P23 = Pmax + CX X + C2 X2 + C3 X3 + C4 X4, 
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Sj<^ ~°Z^^ 
^ 

SS 
sS 

- — 
-y — Gx - 
S/^~- 

1         1 1 1 

- 

Rauheitsschicht 
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Abbildung 1: Links: Simulation des Druckanstiegs und der Kompression der Oberflächenschicht mittels Prandtl- 
Reuß-Streifentheorie, Vergleich mit linearisiertem Modell (gestrichelt). kf =300N/mm2, £=206000N/mm2, z/=0.3, 
^o=^5=60N/mm2, /i0=0.250mm, h2=0.247mm, d0=0.002mm, /x=0.15. Rechts: Modell des Dressierwalzens. 

(p3x4 -p4X3) + (p4 -p3) x                  P4X5(x5 - 2x4) + 2pAX4 x -p4 x
2 

pu =      p45 =    _ M) 
X4 - x3 (x5 - x4)

2 v ' 

Die Abkürzung pij bezieht sich auf p(x) im Bereich X{ <x <Xj. In p23 eliminieren wir c2 und C4 

C2 =  [(P3 - Pmax ~ C±X3 - C3x\)x\ + (pmax - p2 + CXX2 + C3xl)x3] / [x\ x\  (x\ - x\)\    , 

C4 = {Pmax(xl - x\) - p3x\ + X3 \p2X3 + X2(x2 - X3)(d ~ C3X2X3)]} / \x\ X%  {x\ - x\)\    , (5) 

wobei Pmax, cx und c3 freie Parameter bleiben. Wir wählen h(x) konsistent zu p(x) (die hij sind wie p^ definiert): 

ho2 = Coo + coi x + C02 x2, h23 = C20 + C22 o:2 (o; < 0), h23 = c20 (x > 0), /i35 = c30 + c31 x + c32 x
2, 

mit:   Coo = {hix0(x0-2x2)+xi[h0(2x2-xi)+ 2c22x0(x1 - x0)x2]}/qt , 

coi = 2 [/ii - ho + c22{x\ - x\j\ x2/qi ,   c02 = [ho - hi +2c22(xi - 0:0)0:2] /?i , 

C20 = [/iifco - x2)
2 - h0(x! - o2)

2 - c22(o:o - xi)x2(2x0xi - x0x2 - xix2)] jq\ , 

C30 = {(h5qix3(x3 - 0:4)0:4 + [h4qix3(x5 - x3) + q2x4(x4 - x5)]x5}/q3 , 

C31 = {qi[h5(xl - x\) + h4{x\ - x\)] + q2{x\ - x\)} /q3 , 

C32 = {qi[h5(x3 - x4) + h4(x5 - x3)] + q2(x4 - x5)} jq3 , 

Qx = (xo -xi) (3:0+0:1-2 x2) ,   q3=qi (x3 - x4) (x3 - x5) (x4 - x5) , 

q2 = hi{x0 - x2)
2 - h0(x1 - x2)

2 - C22(XQ -XI)X2{2X0XI - x0x2 - 0:10:2) . (6) 

Entscheidend ist die weitere Abnahme von h(x) aufgrund der Kompression der Oberflächenschicht bis zum Erreichen 
des Maximaldrucks pmax, obwohl die Dicke des Kerns h-2d in der Förderzone (x2 < x < x3) konstant bleibt. 
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Vertikaldruck auf die Walze p in N/mm2 Dicke des Walzguts (mit Rauheitsschichten) h in mm 

0.6 

-3-2-10 1 2 3 
Walzspaltkoordinate x in mm 

-3 -2-10        1 2 
Walzspaltkoordinate x in mm 

Abbildung  2:  Beispiel.   fc/=400N/mm2,  E=EW=206000N/mm2,  v=vw=0.S,  CT0=<75=60N/mm2,  E=300mm, 
/i0=0.6mm, /i5=0.597mm, d0=2/um- Rechts ist ft(a;) (durchgezogen) mit hw(x) (gestrichelt) verglichen. 

4. Prandtl-Reuß-Streifentheorie, linearisiertes Modell 

Die Streifentheorie des Bandwalzens, [3], läßt sich bei Verwendung der inkrementellen Prandtl-Reuß-Gleichungen 

(7) 

(8) 

(9) 

1 v v .dip 
dex   =   - dax - - day - - daz + (2ax-ay- az) ^^ , 

1 v v .dtp 
dey  =   - day - - daz - - dax + (2ay-az- ax) ^-^ , 

1 v v .dip 
0  =   Edaz~EdUx'Eday + {2az~ax~ay)2kM 

und der differentiellen Form der von Misesschen Fließbedingung (<p Vergleichsformänderung) 

(2ax -(Ty- az)(2dax - day - daz) + (2ay -az- ax)(2day - daz - dax)+ 

(2a z -ax- ay)(2daz - dax - day) = 6 kf(<p) k'f(ip) dip (10) 

auf den elastisch-plastischen Fall erweitern, [6]. Zusätzlich wird die Kompression der Oberflächenschicht mittels 
d = d0(l - f + f2/2) und Einsetzen von Gleichung (3) berücksichtigt. Ausgehend davon, siehe auch das Beispiel, 
Abbildung 1, links, wird folgendes linearisiertes Modell für das Materialverhalten im Ein- und Auslauf vorgeschlagen: 

E      (ho-2d0)-{h1-2d1) 2 xx - x0 
Pl = _—_ 1-ü üij—i '- ,   Pl = -j= kf - a0 + fi fn 

l-i/2 h0 

P2 = pi + fi [p! + (1 - 2 fj,) p2]   -*~l ",    P3 =P4 + Mb4 + (1-2M)P3] 
ha 

Pi 
E      h5 - hi 2 

V3 

--P4 

Api x5 - XA 

ho 

hn l-v2      h0 

Die Lösungen dieses Gleichungssystems lauten: 

_ hp (2\/3 kf -3 gp) _ h0 + fj,(x2 - xi) 
Pl~ 3^0-Mzi-zo)] '   P2~ ho-fi(l-2ii)(x2-x1) 

Pl  ,    P3 = 
ho + li [xi - xs) 

ho - fi (1 - 2 jj.) (x4 -x3) 

(11) 

Pi 

ho(2V3kf-3o5)       hi = ho_h{2_fi)do_l_^ho pij   hi = h5_l_^ho p4.    (12) 
3ho-4ß(x5-Xi)] E & 

Zur Berechnung des Traganteils /i bei x = xx nehmen wir an, daß der Druck bei Eintritt in die plastische Zone 
2k-(To ist, und setzen dies in die obere Zeile von Gleichung (3) ein: 

/: 
(2 k- a0)/(2k) _ 1 - (>/3 <TQ)/(2 kf) 

1+7T/2 I + TT/2 
(13) 
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Ew,fw 
R 

Elastizitätsmodul, Poissonzahl der Walze 
Radius der Arbeitswalze 

E,v 
kf 

Elastizitätsmodul, Poissonzahl des Bandes 
Fließspannung (inklusive Abhängigkeit von <p) 

00, 05 
ho,h5 

Bandzugspannung am Ein-, Austritt 
gesamte Banddicke am Ein-, Austritt 

do anfängliche Dicke einer Rauheitsschicht 
Coulombsche Reibungszahl 

Daten der Walzversuche: E = Ew = 206000 N/mm2, 
v = vw= 0.3, R = 280mm, kf=370...440N/mm2, 
00,0-5 = 50... 200 N/mm2, 
Ao = 0.2... 0.6 mm, do = 4... 5 /mi, 
Verlängerung [(/lo-2d0)-(/i5-2d3)] /h0 = 0.4.. .0.7%, 
breitenbezogene Walzkräfte 5 ... 8kN/mm. 
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Abbildung 3: Tabelle auf der linken Seite: Einen bestimmten Walzfall kennzeichnende Größen. Rechte Seite: Aus 
gemessenen Walzkräften zurückgerechnete Reibungszahlen fi. 

Der Koeffizient c22 in den Gleichungen (6) ist schließlich (praktisch immer ist pmax > (1 + n/2) k « 1.48 kf !): 

c22x\ = 2(di- da) = [/3(2-/3)-/i(2-/i)]db ,   f3 = 1 /   1 + U 

5. Algorithmus und Anwendungen 

3  \Pmax/kfJ 
(14) 

Ziel ist es nun, die noch unbekannten Größen x0,... ,xs, pmax, c2 und c3 so zu bestimmen, daß die Walzspaltkontur 
h(x) mit der aus der zugehörigen Druckverteilung p(x) über die Walzenabplattung berechneten Kontur hw(x) 
möglichst gut übereinstimmt: 

/     [h(x) - hw(x)]2 dx = Min ,   hw(x) = 2 \R - ^R2 - x2 + u(x)] + const . (15) 
J XQ L J 

Die Konstante wird dabei so gewählt, daß hw{x0) = hQ. Man beachte, daß alle Verteilungen, insbesondere auch die 
Abplattung bei Verwendung von (2), in analytischer Form vorliegen. Lediglich die Minimierung des Fehlerquadrat- 
integrals (15) muß numerisch erfolgen, wobei sämtliche Ableitungen der Zielfunktion nach den Optimierungspara- 
metern ebenfalls analytisch vorliegen. 

Ein Beispiel für die Anwendung des Modells zeigt Abbildung 2. Das Modell wurde außerdem anhand der Prozeß- 
daten von Trockendressierstichen an Stahlbändern überprüft. In Abbildung 3, rechts, sind die aus den gemessenen 
Walzkräften zurückgerechneten Reibungszahlen zusammengestellt. Der eingehaltene Streubereich zeigt die Verwend- 
barkeit des Modells, wohingegen mit Standardwalztheorien (Walzenabplattung nach Hitchcock) keine sinnvollen 
Resultate zu erzielen sind. 
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BROCKS, W.; BESSON, J.; CHABANET,0.; SCHEIDER,L; STEGLICH, D. 

Modeling of Crack Growth in Sheet Metal 

Recent results of an investigation programme for the assessment of lightweight structures are reported. Special 
emphasis is laid upon the modeling aspect, and examples for the simulation of ductile crack growth by damage and 
cohesive zone models are given. The numerical simulations are compared with experimental data. 

1. Introduction 

A realistic assessment of the residual strength of aircraft structures requires methods to characterize the crack 
growth resistance of the material and elastic-plastic analyses which are capable of simulating crack initiation and 
propagation. Conventional methods of fracture mechanics apply quantities like stress intensity factors, J-integral, 
energy release rate, or crack tip opening angle (CTOA), see e.g. [1, 2]. However, these integral measures can be 
applied to real components only under certain conditions, and the general lack of transferability of fracture data 
from specimens to structures impose important restrictions on the R-curve approach. 

The so-called "local approach" to fracture provides a solution of the transferability problem by introducing local 
quantities and criteria for the degradation of the material. Especially, the application of micromechanically based 
models of the strength and toughness of materials with particles or inclusions has brought a better understanding of 
the mechanisms of ductile crack growth, see e.g. [3, 4]. These models have been successfully used to predict grack 
growth resistance curves for thick walled components of structural steels [5, 6]. Their application to thin walled 
components and high strength aluminum alloys, however, suffers from a number of specific problems: 

• 

• 

• 

The stress state in sheet metal is totally different, namely the triaxiality is much lower and close to plane stress 
conditions whereas models of ductile damage have been established for large triaxialities. 

The fracture plane may shift from a normal to a 45° incline orientation to the applied load during crack growth, 
see figure 1. 

Rolled sheets generally show an anisotropic behaviour with respect to both, plastic hardening and void nucle- 
ating particles. 

• Little is known about the specific damage phenomena in high strength aluminum in relation to its microstruc- 
ture. 

This requires enhanced constitutive models for deformation and damage especially adapted to the specific microstruc- 
ture and properties of light weight materials and stress states in metal sheets, respectively. 

2. Models of Ductile Damage and Failure 

Ductile tearing of metals is dominated by the mechanisms of void nucleation at particles, void growth and coalescence. 
The "mesoscopic", i.e. averaged over the microstructure, inelastic deformation is described by a modified yield 
function and plastic potential, $, including the "porosity" in terms of the void volume fraction, /, as an additional 
internal variable which is responsible for the "softening" of the material. The most common constitutive model 
for describing this process on a meso-scale was proposed by GURSON [7] and later modified by TVERGAARD and 
NEEDLEMAN [8, 9], hence adressed as GTN model: 

2 /T" y \ 
Q2 

J** (A    ,   _    »*2 

2R(ePl) 
(l + g3r

2)=0 (1) 
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Figure 1: Ductile failure of a notched panel of Al 2024 showing slant fracture in the course of crack propagation 

The GTN model has proven its ability to model crack initiation and growth in thin panels, see figure 2 showing 
the tunneling of the crack in the center plane. A simulated crack growth resistance curve of a center cracked panel 
of Al 2524, based on crack tip opening displacement, is shown in figure 3 (left), below. However, 3D modeling of 
large crack propagation is numerically costly. The present version does not yet account for any anisotropy of the 
plastic deformation and damage evolution. Furthermore, it cannot predict shear band formation over the specimen 
thickness and corresponding fracture in a 45° plane. 

An alternative formulation of the plastic potential also introducing a scalar variable of porosity has been propsed 
by ROUSSELIER [10]: 

$ = 
Y 2 ^ij ^ij 

(1 - f)R(ePl)  ' R(ePi) 
+ ff* D f exp -*fcfc 

k*(i-/)J 
o (2) 

Commonly, this model is not supposed to yield major differences to the GTN model though despite the value of 
initial void volume fraction, f0) all their other characteristic parameters are not comparable. Comparative analyses 
of round tensile bars and HlLL-specimens however resulted in different predictions of the localisation of damage. 
The ROUSSELIER model turned out to have a better performance in predicting the formation of shear bands over 
the thickness of thin panels, see figure 2. 

A phenomenological description of ductile tearing bases on BARENBLATT'S idea of a "cohesive zone" at the crack 
tip where material separation is localized. The crucial problem in the application of a cohesive zone model (CZM) 
is, which decohesion law is appropriate for a given failure mechanism and, as in every model, how the material 
parameters can be identified. No possibilities of a direct measurement have been found yet. Several proposals have 
been made in the past, e.g. [11, 12, 13], which all base on a rather simple assumption, that the releation between 
traction, £„, or shear, S(, and the respective material separations, 6cn, Sct, is uniquely defined by two parameters 
per separation mode, namely the cohesive strengths, amax, Tmax, and the cohesive lengths, Scn, Sct, or alternatively, 
the decohesion (or separation) energies, r„c, Ttc. ROSE [11] proposed a potential from which the normal and shear 
components are derived as 

and 

*-"n — (Tmax 6   \ Z 

S* = T„ 

/M_i2w/M2lexp 
\ocnJ      I    amax \dctJ   I 

M£)} exp On 

On 

"-tc — \j nryTmaxdct 

*■ nc —  ~~Gmaxö. 
16 'maxien (3) 

(4) 

respectively, where e = exp 1 and z = 16e/9. 



Minisymposium 15 S135 

0     2     4     6 10    12    14   16    18        >20 

Figure 2: 3D finite element simulation of ligament necking and damage (dark zone) at the crack tip of a center 
notched panel of Al 2524 under tension showing tunneling of the crack front, FE code ABAQUS and GTN 
model (left); Formation of a shear band in a quarter model of a HlLL-specimen, plane strain analysis with FE 
code ZEBULON and ROUSSELIER model (right) 
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Figure 3: Simulation of CTOD based crack growth resistance of a center cracked panel of Al 2524 by GTN model 
(left) and CZM (right), FE code ABAQUS. 
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Figure 4: Simulation of deformation and crack growth in a laser welded micro SE(B) specimen by a CZM, influence 
of local separation energy, Tc , FE code ABAQUS. 
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This formulation has been used by NEEDLEMAN and other authors [12, 14]. The CZM relates microscopic to 
macroscopic parameters [15] and has also been successfully applied to simulate ductile crack growth in aluminum 
panels [16, 17], see figure 3 (right). It is numerically effective for large amounts of crack growth, it is applicable to 
characterize bimaterial interfaces and welds, see figure 4, and it even can be used to model combined normal and 
shear fracture. 
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PETER GUMBSCH 

Atomistische Aspekte des Bruchs 

Die atomistische Modellierung von Rissen zielt darauf, die der Sprödigkeit von Werkstoffen zugrunde liegenden 
Prozesse verstehen zu lernen. Meist werden dabei einfache atomare Wechselwirkungsmodelle verwendet, m jüngster 
Zeit kommen aber auch quantenmechanische Methoden zum Einsatz. Atomistische Simulationen können eingesetzt 
werden, um mögliche Spaltebenen von Kristallen, deren Bruchzähigkeit sowie die Abhängigkeit von Rissfortschritts- 
richtung oder Belastungsart zu ermitteln. Hierzu werden beispielhaft Ergebnisse zum Sprödbruch von Wolfram und 
Silizium vorgestellt und mit experimentellen Untersuchungen verglichen. 

1. Einleitung 

Der Bruch von Werkstoffen ist ein Phänomen, das über viele Längenskalen hinweg betrachtet werden muss. Die 
makroskopische Probengeometrie und die Belastungsart sind ebenso wichtig wie die Details der atomaren Bindungs- 
verhältnisse an der Rissspitze. Die Bedeutung der atomaren Skala ist im Falle des perfekt spröden Bruchs offen- 
sichtlich, da sich ein Riss in einem spröden Material nur durch das Brechen atomarer Bindungen an der Rissspitze 
ausbreiten kann und daher atomar scharf sein muss. Halbspröde Materialien, wie die zentralen Ubergangsmetalle 
und die Stähle, zeigen ein begrenztes Maß an Plastizität und eine ausgeprägte Lastratenabhängigkeit beim Bruch. 
Atomistische Prozesse sind hier entscheidend für den Wettbewerb zwischen dem Brechen der Bindungen und der 
Erzeugung von plastischer Verformung an der Rissspitze. 

Da experimentelle Information auf der atomaren Längenskala kaum verfügbar ist, ist die atomistische Modellierung 
das einzige Werkzeug mit dem solche atomistischen Prozesse auf der passenden Zeit- und Längenskala untersucht 
werden können. Nach der Darlegung einiger generisch atomistischer Effekte soll in dieser Arbeit die Bedeutung der 
atomistischen Betrachtung am Beispiel der Spaltanisotropie bezüglich der Rissfortschrittsrichtung aufgezeigt werden. 

Die Hauptschwierigkeit bei der atomistischen Modellierung von Bruchprozessen liegt im Aufbringen realistischer 
Randbedingungen. Dies kann beispielsweise durch die Kopplung von atomistischen und kontinuumsmechanischen 
Simulationsmethoden gelöst werden. Auf simulationstechnische Fragen kann hier nicht weiter eingegangen werden. 
Diesbezüglich wird auf die Literatur [1, 2] verwiesen. Anzumerken ist hier nur noch, dass die atomistische Modellie- 
rung im Vergleich zu den häufig eingesetzten Kontinuumsmethoden den Vorteil besitzt, dass sie Bruch als Folge einer 
äußeren Belastung selbstständig reproduziert, nachdem die Beschreibung der atomaren Wechselwirkung festgelegt 
wurde, während die Kontinuumsmethoden immer auf mehr oder minder detaillierte Versagenskriterien angewiesen 

sind. 

2. Bedeutung der diskreten, atomistischen Natur der Werkstoffe 

Die Behandlung spröder Bruchprozesse folgt traditionell der Betrachtung von Griffith [3], bei der für die Rissspitze 
ein thermodynamischer Gleichgewichtszustand gesucht wird. Das Griffith-Kriterium für die Stabilität eines Risses 
ergibt sich als Gleichgewicht zwischen der den Riss treibenden Kraft, der Energiefreisetzungsrate Q, sowie dem 
Risswiderstand des Materials ft, der Oberflächenenergie 75 der zwei Bruchflächen [4]: 

Die Energiefreisetzungsrate G kann im Rahmen der Elastizitätstheorie, die den spröden Riss als Spannungssingula- 
rität der Stärke K beschreibt, berechnet werden [4]. Der Spannungsintensitätsfaktor K ergibt sich aus der Geometrie 
der Probe und der äußeren Last und führt im linear-elastischen Fall direkt zur Energiefreisetzungsrate 

y      E'' 

wobei E' ein elastischer Modul ist. Das Stabilitätskriterium ist in einer solchen kontinuumsmechanischen Betrach- 
tung gemäß Gl. (1) und (2) nur für die Griffith-Last KG = yßW erfüllt. Während eine solche linear-elastische 
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a      x 

Abbildung 1: (Links) Schematische Darstellung einer Rissspitze im atomaren Gitter. (Rechts) Die Gesamtenergie 
der Oberfläche des Risses T steigt während des Rissfortschritts in der Kontinuumsbetrachtung mit der Steigung 275 
linear an, während die atomistischen Verhältnisse eher durch einen nicht-linearen Anstieg beim Brechen der Bindung 
charakterisiert werden. 

Beschreibung des Risses in einem spröden Material außerhalb der wenigen nicht-linearen Bindungen in unmittelba- 
rer Umgebung der Rissspitze fraglos angemessen ist, muss die Annahme, der Materialwiderstand gegen Rissfortschritt 
wäre allein durch die Gibbs'sche Oberflächenenergie charakterisiert, näher beleuchtet werden. Atomistisch sollte der 
Material widerstand gegen Rissfortschritt durch die Kräfte charakterisiert sein, die notwendig sind, die atomaren 
Bindungen an der Rissspitze zu brechen. Die ersten atomistischen Betrachtungen zum Rissfortschritt [5] zeigten 
die Bedeutung der diskreten Natur der atomaren Bindungen darin, dass der Riss bis zu Lasten K+ > KG stabil 
bleibt und sich auch erst bei Lasten K~ < KG wieder schließt, also in einem endlichen Lastbereich stabil ist. Das 
Vorhandensein eines solchen endlichen Stabilitätsbereichs bezeichnet man als lattice trapping. In einer simplen Konti- 
nuumsanalogie könnte man das lattice trapping als nicht-linearen Anstieg der Oberflächenenergie beim Rissfortschritt 
betrachten (siehe Abb. 1). 

Frühe atomistische Simulationsrechnungen zeigten [6], dass die Größe des trapping-Effekts stark von dem verwendeten 
Modell für die atomare Wechselwirkung abhängt. Werden die interatomaren Kräfte mit einem abrupt brechenden 
Federgesetz beschrieben, so kann K+ um einen Faktor zwei größer sein als KG, während ein realistisches weiches 
und langreichweitiges Wechselwirkungspotential nur einen sehr geringen trapping-Effekt zeigt [6]. Weitergehende 
Betrachtungen [7] zeigen, dass die Größe des trapping-Effekts vorwiegend von der relativen Steifigkeit der Bindung 
an der Rissspitze und der diese Bindung belastenden Umgebung abhängt. In einem so generalisierten Bild ist das 
trapping auch nicht mehr auf ein atomares Gitter beschränkt, sondern lässt sich ebenso auf amorphe Festkörper 
oder Grenzflächen übertragen [8]. Trapping-Effekte können zwanglos verschiedene Beobachtungen, wie thermisch 
aktiviertes unterkritisches Risswachstum [9] oder die Erzeugung metastabiler Bruchflächen [2, 8], erklären. Ein 
besonders illustratives Beispiel ist aber die experimentell verschiedentlich beobachtete Spaltanisotropie bezüglich 
der Rissfortschrittsrichtung. 

3. Richtungsanisotropie beim Spaltbruch 

Im kontinuumsmechanischen Bild sollte ein Riss in einem elastisch isotropen Material auf einer Spaltebene rich- 
tungsunabhängig laufen können, sobald KG erreicht ist, da die Oberflächenenergie in Gl. (1) keine Information über 
die Rissfortschrittsrichtung enthält und der Modul in Gl. (2) im isotropen Fall konstant ist. Elastische Anisotropie 
mag über Gl. (2) eine gewisse Richtungsanisotropie einbringen, diese ist aber üblicherweise schwach, da die Haupt- 
belastungsrichtung bei öffnender Belastung parallel zur Bruchflächennormale ist und diese natürlich nicht von der 
Fortschrittsrichtung abhängt. Im Gegensatz dazu wird im Experiment manchmal eine drastische Richtungsanisotro- 
pie beobachtet [10, 11, 12]. 

Der Spaltbruch von einkristallinem Wolfram, das elastisch nahezu isotrop ist, ist einer der am besten dokumentierten 
Fälle für eine solche Richtungsanisotropie. Atomistische Simulationsrechnungen [1] sowie Bruchexperimente bei 
T - 77K [12] zeigen beide, dass Rissfortschritt auf beiden Spaltebenen, den {100}- und {011}-Ebenen, leicht erreicht 
werden kann und defektarme Bruchflächen erzeugt, wenn die Rissfront parallel zu einer (Oll)-Richtung orientiert 
ist. Im Gegensatz dazu werden etwa 40% höhere Belastungen benötigt um Rissfortschritt mit (OOl)-Rissfronten zu 
erreichen. Die dabei erzeugten Bruchflächen sind außerdem rauher und zeigen Markierungen die andeuten, dass der 
Rissfortschritt lokal entlang der leichten Richtungen erfolgte [12]. Tabelle 1 fasst die experimentellen Ergebnisse und 
die berechneten Bruchzähigkeiten zusammen. Qualitativ ist die Übereinstimmung zwischen den 77 K-Experimenten 
und den Simulationsrechnungen ausgezeichnet, quantitativ sind die experimentell ermittelten Bruchzähigkeiten aber 
doch signifikant höher als die berechneten Werte. Dies könnte andeuten, dass die Rissspitzenplastizität selbst bei 
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Spaltsystem 
{Ebene}(Front) 

Bruchexperiment 
Raumtemperatur 

Bruchexperiment 
77K 

Atomistische 
Simulation 

KQ aus atomistischem 
Wechselwirkungsmodell 

{100}<010> 
{100}(011) 
{110}(001> 
{110}(110> 

8.7±2.5 
6.2±1.7 
20.2±5.5 
12.9±2.1 

3.4±0.6 
2.4±0.4 
3.8±0.4 
2.8±0.2 

2.05 
1.63 
2.17 
1.56 

1.61 
1.61 
1.51 
1.51 

Tabelle 1: Bruchzähigkeit von Wolfram Einkristallen für {100}- und {110}-Spaltebenen für verschiedene Rissausbrei- 
tungsrichtungen/Rissfronten. Die experimentellen Daten stellen Mittelwert und Standardabweichung von mindestens 
5 unabhängigen Messungen dar. Sie sind [2, 12] entnommen und in MPa-^/m angegeben. 

77 K einen nicht vernachlässigbaren Einfluss hat. Der Vergleich von Raumtemperatur- und 77 K-Experiment zeigt 
zwar ein deutliches Absinken der plastischen Anteile an der Bruchzähigkeit mit sinkender Temperatur, dennoch kann 
deren Einfluss nicht ausgeschlossen werden. 

Experimentell sind die Verhältnisse diesbezüglich im Silizium wesentlich klarer. Silizium kann als praktisch verset- 
zungsfreier Einkristall hergestellt werden. In-situ Beobachtungen im Elektronenmikroskop [13] sowie in der Rönt- 
gentopographie [10, 11] zeigen, dass Risse im Silizium bei Raumtemperatur ohne jegliche begleitende plastische 
Verformung fortschreiten. Silizium bricht sowohl auf {111}- als auch auf {110}-Ebenen [10]. Beim Spaltbruch auf 
den {110}-Ebenen zeigt sich dabei eine besonders drastisch ausgeprägte Richtungsanisotropie. Während Risse sich 
entlang der (llO)-Richtung bei den niedrigsten gemessenen Bruchzähigkeiten ausbreiten und dabei nahezu perfekte 
ebene Bruchflächen erzeugen [10, 11], gelingt der Rissfortschritt in (OOl)-Richtung nicht. Der Versuch, Risse in diese 
Richtung und damit senkrecht zur bevorzugten Ausbreitungsrichtung zu treiben, führt zu einem Abknicken des 
Risses und einer Ausbreitung auf {lll}-Ebenen [11, 14]. Dies ist schematisch in Abb. 2 (links) dargestellt. Abb. 
2 (rechts) zeigt die Seitenansicht eines makroskopisch entlang der (OOl)-Richtung gebrochenen Siliziumwafers. Da 
für die {110}-Risse bei Ausbreitung entlang der leichten Richtungen eine niedrigere Bruchzähigkeit gemessen wird 
als für die {lll}-Risse [10] und da die elastische Anisotropie im Silizium allenfalls für Unterschiede von 10% im 
effektiven Modul E' ausreicht [14], kann der beobachtete Unterschied konventionell nicht erklärt werden. 

Obwohl sich ein solch ausgeprägter Effekt prinzipiell gut atomistisch modellieren lassen sollte, sind entsprechende 
Rechnungen mit einfachen interatomaren Wechsel Wirkungsmodellen nicht gelungen. Dies liegt daran, dass alle em- 
pirischen Wechselwirkungsmodelle für Silizium zur Stabilisierung der Kristallstruktur kurzreichweitig sein müssen 
und daher beim Brechen der Bindungen, wo die Wechselwirkungsmodelle an der Grenze ihrer Reichweite getestet 
werden, unangemessen steife Bindungen vorspielen. Diese Problematik ist bislang noch nicht befriedigend gelöst und 
der einzige Ausweg besteht darin, auf quantenmechanische Methoden zur Beschreibung der atomaren Wechselwir- 
kung zurückzugreifen. Hierbei ist man jedoch bei der Anzahl zu behandelnder Atome sehr stark eingeschränkt, so 
dass der Riss immer signifikant mit den Randbedingungen Wechsel wirkt. 

Selbstkonsistente quantenmechanische Berechnungen zum Brechen der Rissspitzenbindungen im Silizium zeigen zwei 
qualitativ unterschiedliche Prozesse [14]: einerseits ein kontinuierliches Öffnen der Bindungen an {lll}-Rissen oder 

Abbildung 2: (Links) Schematische Darstellung der Richtungsanisotropie beim {110}-Spaltbruch von Silizium. 
Rissfortschritt entlang der (IlO)-Richtung gelingt leicht und erzeugt eine nahezu defektfreie Bruchfläche, während 
senkrecht dazu der Riss von der {110}-Ebene auf {lll}-Ebenen ausweicht. (Rechts) Die Seitenansicht einer makro- 
skopisch in (OOl)-Richtung gebrochenen Probe, die deutliche {lll}-Facetten erkennen lässt. (Diese Abbildung wurde 
dankenswerterweise von T. Cramer zur Verfügung gestellt [15].) 
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Abbildung 3: (Links) Mit selbstkonsistenten Pseudopotentialrechnungen relaxierte atomare Struktur des {110}(001) 

Risssystems, welches experimentell leicht zu spalten ist, bei einer Belastung von 1.2 KG. (Mitte) Relaxierte Struktur 

des {110}(110) Risssytems bei einer Belastung von 1.2KG. (Rechts) Länge der Rissspitzenbindung (#4) für beide 

Risssysteme in Abhängigkeit von der aufgebrachten Belastung. Deutlich ist das abrupte Brechen der Bindung im 

{110}(110) Risssytem bei einer Belastung von 1.35 KG zu erkennen. Die Bindungslänge ist in Ängström angegeben. 

dem in der leichten Orientierung ausgerichteten {110}-Riss, andererseits ein abruptes Brechen für den {110}-Riss mit 

(HO)-Rissfront. Die atomare Struktur der Rissspitze sowie die Abhängigkeit der Länge der Rissspitzenbindung von 

der anliegenden Last sind in Abb. 3 dargestellt. Das kontinuierlich Öffnen der Bindung in der leichten Orientierung 

ist auf die sehr kleine Systemgröße zurückzuführen, weist aber sicher auf geringe trapping-Efiekte hin. Im Gegensatz 

dazu ist das abrupte Brechen unabhängig von der Systemgröße. Es geht mit einem signifikanten trapping einher und 

hat seine Ursache in einer Aufteilung der Last zwischen den zwei unmittelbar an der Rissspitze liegenden Bindungen 

(siehe Abb. 3) [14]. Aufgrund des großen trapping-Eftekts in der schwierigen Fortschrittsrichtung ist es für den Riss 

möglich auf die mit geringem trapping zugänglichen {lll}-Ebenen auszuweichen. Die atomistischen Rechnungen 
können damit die experimentellen Beobachtungen zumindest qualitativ erklären. 

Zusammenfassend kann damit festgehalten werden, dass atomistische Betrachtungen zur Analyse spröder Bruchpro- 

zesse sehr hilfreich sind und mit ihnen insbesondere auch die Bevorzugung einzelner Rissfortschrittsrichtungen gut 
erklärt werden kann. 
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Agarwal, R. K. 

Acoustic Radiation Due to Gust-Airfoil and Blade-Vortex Interactions 

An accurate and efficient method for computing acoustic radiation due to gust-airfoil and blade-vortex 
interactions is developed. In these types of problems, sound is generated as a result of interaction 
between the unsteadiness in the flow and the body. The acoustic governing equations are derived by 
linearizing the compressible unsteady Euler equations about the steady mean flow. From these 
equations, the frequency domain acoustic equations are obtained assuming a single frequency 
disturbance. The equations are solved by employing a multi-stage Runge-Kutta finite-volume time- 
stepping scheme with a fourth-order compact spatial discretization. In the farfield, both the Giles' 
nonreflecting boundary condition and the Perfectly Matched Layer (PML) absorbing boundary conditions 
are employed. This report describes the technical approach and shows the results calculated for the 
interactions. 

1. Introduction 

An issue of importance to aircraft designers and manufacturers is the accurate prediction of 
aerodynamically generated noise. Until the last decade, most of the analytical and computational 
work in aeroacoustics has been based on the wave equation analogy type of approaches pioneered by 
Lighthill [1]. But with the maturation of Computational Fluid Dynamics (CFD) technology over the last 
two decades, it is now feasible to develop acoustic codes based on the solution of unsteady 
compressible Euler/Navier-Stokes equations. However, since the nature and characteristics of 
aeroacoustics problems are different from those encountered in aerodynamics, CFD based 
Computational Aeroacoustics (CAA) technology needs to resolve these characteristics in an accurate 
and efficient manner. The author and his colleagues have developed an accurate and efficient 
numerical method for solving a wide variety of problems in acoustic propagation, radiation and 
scattering [2]. This paper deals with the application of the acoustic code described in [2] to the 
problems of acoustic radiation due to gust-airfoil and blade-vortex interactions. 

2. Technical Approach 

The time-domain acoustic equations are derived from the unsteady compressible Euler equations by 
linearizing about a steady mean flow. From these equations, the frequency-domain acoustic equations 
are obtained by assuming a single frequency disturbance. A pseudo-time variable is introduced into 
the frequency-domain equations so that the same computational techniques that are used to integrate 
the time-domain equations in time can be employed to time-march the frequency-domain equations to 
harmonic state. This approach provides a unified framework for the solution of both time- and 
frequency-domain acoustic equations. The equations are solved by employing a multi-stage Runge- 
Kutta finite-volume time-stepping algorithm with a fourth-order compact spatial discretization and a 
six-order compact filter (dissipation). A rigid wall type of boundary condition is applied in all 
calculations such that the total normal velocity on the airfoil is zero. In the farfield, both the Perfectly 
Matched Layer (PML) absorbing boundary condition [3] and Giles non-reflecting boundary condition [4] 
are employed. 

3. Acoustic Radiation due to Gust-Airfoil Interaction 

We consider an airfoil in a steady compressible flow when it encounters an unsteady gust. For 
simplicity, the scope of investigation is limited to an incoming sinusoidal gust such that the transverse 

velocity perturbation can be modeled as  v' = eKkx~a"), where  k - CO lun and u* is the free stream 
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velocity. The gust/flat-plate interaction benchmark problem from the first ICASE/LaRC 
Computational Aeroacoustics Workshop [5] was chosen for computations. It is a relatively high- 
frequency non-compact case with reduced frequency k= 11.8 and compactness ratio K= 7.85. The 
sensitivity of the solution to the numerical parameters such as the order of the difference method, the 
grid size, the farfield boundary location and the level of artificial dissipation were examined. PML 
absorbing boundary condition and the sixth-order Pade scheme were used unless noted otherwise. 
The features of the acoustic pressure field for this non-compact gust/flatplate interaction are 
illustrated in Figures 1 and 2 at Mach numbers of 0.25 and 0.75 respectively. The Doppler shift in the 
propagating waves is apparent in the instantaneous pressure contours. Results for the farfield 
pressure obtained with the fourth-, sixth- and eighth-order Pade schemes at Mach number of 0.5 are 
shown in Figure 3. The differences in the solutions are insignificant indicating that the fourth-order 
method has sufficient resolution for this case. The results compare well with the solutions published 
in Reference 5. Computed plate surface pressure distributions are shown in Figure 4. As the 
compactness ratio is increased, there is an increase in the number of lobes in the sound pattern as a 
result of phase differences and variable loading along the plate surface. We have also computed the 
problem of gust-airfoil interaction for a compact case with K= 0.5, a NACA0001 airfoil with freestream 
Mach number of 0.5, CD = 0.8875 (40 Hz) and a gust of unit amplitude. Figure 5 compares the 
amplitude of the computed acoustic pressure with asymptotic expansion of Amiet [6] along the lower 
surface of the flat plate. The agreement is excellent. 

4. Acoustic Radiation due to Blade-Vortex Interaction 

A significant source of helicopter noise is the acoustic radiation due to blade-vortex-interaction (BVI). 
When a vortex is shed from the rotating blade tip and is convected downstream, it interacts with the 
next blade which results in the movement of the leading edge stagnation point on the blade resulting 
m change in the lift. The rate of change of lift induces pressure fluctuations in the proximity of the 
blade, and results in a series of expansion/compression waves propagating upstream. Research has 
shown that when the blade is parallel to the vortex axis, the noise due to BVI is very high and the 
interaction can be modeled as 2-D. In this investigation, a finite core Rankine vortex embedded in the 
flow field was used to simulate a shedding vortex. The vortex core is a rotational region and contains 
all the vorticity associated with the vortex. In order to study the unsteady inviscid interaction of a 
Rankine vortex with an airfoil, the steady-state flow past the airfoil was first computed using a CFD 
code. A Rankine vortex was then introduced into the flowfield at a point upstream of the airfoil. Time- 
accurate computations were started from this initial condition. The vortex was allowed to freely 
mteract with the airfoil so that subsequent convection required no explicit tracking. Using the 
magnitudes of the perturbation qualities (due to the interaction of vortex with airfoil) determined from 
CFD, the acoustic signature was computed with the frequency-domain acoustic solver with the 
frequency determined either from BVI experiments, or by performing the Fast Fourier Transorm (FFT) 
analysis of the unsteady pressure time history obtained from the CFD solver. Parametric studies of 
vortex location, vortex strength, and flow field conditions on unsteady pressure field about various 
airfoil sections were conducted. The case of a NACA0012 airfoil interacting with a vortex of strength 
0.2 at convective Mach number ranging from 0.3 to 0.8 was considered. Aerodynamic characteristics 
due to the BVI at Mach 0.8 are shown in Figure 6 which compare well with the solutions published in 
Reference 7. At a frequency of 200Hz, the variation of calculated acoustic intensity with distance 
along a 45-degree ray below the airfoil leading edge at various subsonic freestream Mach number is 
shown in Figure 7. In a similar fashion, the acoustic intensity for two different values of vortex 
strength at Mach 0.3 is plotted in Figure 8. These calculations are similar to those reported by Baeder 
[8] et al. The computations show that higher values of acoustic intensity are obtained for higher Mach 
number, stronger vortex strength, smaller vortex core size, or smaller distance between the vortex and 
the airfoil. 

5. Conclusions 

A fourth- order compact time-domain/frequency-domain computational acoustics code is applied to 
compute the acoustic radiation due to gust-airfoil and blade-vortex interactions. Excellent solutions 
are obtained which compare well with the analytical solutions or the computations of other 
investigators.    Extensive calculations show that a fourth-order Pade scheme with PML absorbing 
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boundary conditions in the farfield provides the most accurate and efficient method for acoustic 
computations using linearized Euler equations. 
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BLACKMORE, D; KNIO, O. 

Hamiltonian Structure for Vortex Filament Flows 

A new Hamiltonian formulation of the passive particle motion induced by a smooth vortex filament in an ideal fluid 
contained in a region of 3-space is derived. The point of departure in the derivation is a desingularized version of 
the Biot-Savart formula for the induced velocity field. Then a foliation of a neighborhood of the filament (that moves 
with the fluid flow) is constructed that is comprised of smooth two-dimensional leaves that are invariant with respect 
to the induced velocity field at each time. Natural symplectic coordinates are introduced on the moving leaves of 
the associated foliation such that the equations of motion on the leaves assume a simple (possibly time-dependent) 
Hamiltonian form. With this Hamiltonian structure one can, by simply following the evolution of the leaves of the 
foliation, easily determine the motion of the passive fluid particles near the filament. Any irregular or singular 
behavior in the motion can essentially be associated to geometrical features of the moving foliation in the large. The 
Hamiltonian structure is illustrated with three examples: a rectilinear filament; a circular vortex ring; and a helical 
filament. 

1. Introduction 

Let Ct be a smooth vortex filament having constant vortex strength T ^ 0, moving in an ideal fluid in a region of 
]R3 for time t (t > 0). We shall show how to introduce natural (moving) coordinates (q,p) transverse to Ct such 
that the fluid motion induced by the filament can be described in the Hamiltonian form 

q = {q,H} = ^(q,p,t),    p = {p,H} =- — (q,p,t), (1) 

in a neighborhood 9tt of Ct for all t > 0, where the • denotes d/dt and {•, •} is the usual canonical Poisson bracket. 

The idea is to first construct a smooth family of foliations T := {& : * > 0} such that fo is a foliation of 9It comprised 
of leaves that are smooth surfaces transverse to Ct and each leaf £ of fo is invariant with respect to the induced 
velocity field for each t > 0. We then introduce natural, canonical (moving) coordinates on the leaves of T that 
produce the desired Hamiltonian structure. Our approach is somewhat like, but more intuitive and geometric than, 
the Clebsch transformation (see [6, 7, 11]) - which actually is not strictly applicable to the flows under consideration. 

We develop the subject matter of this paper in the following manner: In Section 2 we delineate our basic assumptions 
concerning the nature of the vortex filament and the fluid flow. Next, in Section 3, we construct a moving foliation 
on whose leaves the relative fluid motion may be expressed in Hamiltonian form. Then in Section 4 we show how the 
relative Hamiltonian structure of Section 3 leads directly to the Hamiltonian equation (1). In Sections 5, 6 and 7, 
respectively, we apply our procedure for the construction of a Hamiltonian structure to a rectilinear vortex filament, 
a circular vortex ring and a helical vortex filament. Finally, we discuss our results in Section 8. 

2. Preliminaries 

We assume that the vortex filament has the form 

Ct := {R(<T, t) = (£(*, t), rj(<r, t), C(a, t)) : (a, t) e I x IR+} , (2) 

with all of the coordinate functions smooth. The motion of the filament as well as all other fluid particles is assumed 
to be governed by the following desingularized version of the Biot-Savart law: 

v = v(r,i) = £ |7 V (x(||r - R(a,i)||)) x |V (3) 

where V is the standard gradient operator (with respect to the space variables only), / is the interval on the real 
line on which the parameter a of the filament is defined, r = (x, y, z) and 

X (||r - R||) := V (||r - R||) ||r - RH"1 + (1 - V (||r - R||)) log ||r - RH"1. (4) 
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Here ip : Et -> Et is a smooth function such that ip(s) = 0 for s < 0, ip(s) = 1 for s > 6 > 0 and dV/ds > 0 for all 
s, where 0 < 6 -C 1 represents the core radius of the vortex filament. This desingularization has the same essential 
features as those derived from fundamental principles for matching Navier-Stokes flows (e.g., see [2, 8, 9]). Note that 
if the filament has infinite length, integrability considerations may require an adjustment of the integrand in (3). 

In order to evaluate the velocity field defined by (3), it is necessary to compute the parametrization R(a,t) of the 
moving filament which is determined by solving the partial differential equation 

ll(M) = ^/7V(x(l|RM)-R-M)ll)) x ^(°,t)dv, (5) 

where R(i/,0) is any convenient parametrization of the initial filament C0. We remark that (5) is an infinite- 
dimensional Hamiltonian dynamical system (in the same sense as the Euler equations) - one which we conjecture to 
be completely integrable (cf. [3, 4]). It is convenient to denote the "(semi-) flow" generated by v as ipt for t > 0. 
Then, for example, we can write Ct = ft (Co). 

We shall construct a (moving) coordinate system (q(r, t),p(r, t),w(r, t)) adapted to Ct and its corresponding foliation 
$t for t > 0 such that the leaves of the foliation are of the form ££ = {r G Et3 : u(r,t) = c}, where c is a real 
constant, q and p are coordinates on the leaves and the motion on each leaf for t fixed is governed by 

q=~dp~{q>p)>    P=~d^^p^ (6) 

where the prime denotes d/dr. Each leaf ££ is v(-,£)-invariant and T parametrizes the trajectories of the motion on 
the leaves that would be generated by the velocity field if it were fixed in time. Following the coordinate system as 
it evolves under the action of tpt, we shall find that the motion of passive fluid particles can be described in terms of 
the Hamiltonian system (1). For an observer at the origin of a leaf ££, which coincides with the point of intersection 
of the filament with the leaf, the motion appears two-dimensional (= one-degree-of-freedom) and Hamiltonian. 

3. Derivation of Relative Hamiltonian Structure 

For each t > 0 we define p(r,t) to be the distance from r to Ct and 9tt(e) := p'1 ([0,e],t) to be the tubular e- 
neighborhood of Ct, where e > 0. Now we fix t > 0. Observe that it follows from (3) that divv = 0 and that 
v =curlw for all (r, t) G Et3 x Et+, where 

w = w (r'i):=£//(l|r-R(CT'^f7^ (?) 
Consequently, by employing some standard results from vector analysis we infer that there exist smooth, real-valued 
functions a and u>, with w multi-valued if Co is closed, such that 

w = aVw => v = Va x Vw (8) 

on 9tt(e) x EI+ for e sufficiently small. Observe that w is tangent to Ct when r G Ct, the level surfaces of u for t > 0 
yield the leaves of the desired family of foliations T and a can serve as a coordinate in the leaves of T :— {&} . 

Rather than using a as a coordinate in the leaves, we shall construct smooth functions ß and A such that (ß, A, w) 
are orthogonal coordinates for 9tt(e) for all t > 0 if e is sufficiently small. We draw curves along a fixed leaf ££ that 
are parallel to the principal normal of Ct at the origin of the leaf. Then we flow these curves along w. Thus we 
obtain a foliation of <ttt(e) by surfaces that can be represented in the form ß(r, t) = const, if e is suitably small. Note 
that V/3 • Vw = 0 owing to definition of ß. Analogously, by drawing a family of curves on ££ that are orthogonal to 
the /3-curves and flowing them along Ct, we obtain another foliation of <Xtt(e) by surfaces of the form A(r, t) = const, 
such that {V/3, VA, Va;} constitute an orthogonal basis on 9tt(e) for all t > 0 when e is sufficiently small. In terms 
of these orthogonal coordinates, we readily compute that 

r' = f^ + llA/ + IT"' =»   "' = 0=*   divv = K-
1 

aß        oX        dco |MO+|(«AO' = 0, (9) 

where K := \\dr/dß\\ \\dr/d\\\ \\dr/dv\\, owing to the facts that r1 = v, v • Vw = 0 and divv = 0. We infer from (9) 
that for each t > 0 there exist a smooth (stream) function Hf, depending only on ß and A, such that nß' = dtf/dX 
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and K\' = —dEtldß. To obtain the desired Hamiltonian form on the (moving) leaves, we introduce the new variables 

ß 

q :— K (s, A) ds,    p := A; (10) 

o 

this leads directly to (6). 

4. Derivation of Absolute Hamiltonian Structure 

Now that we have derived the relative Hamiltonian structure (6) of the flows, it is a simple matter to obtain the 
absolute Hamiltonian equations (1). We continue to use the orthogonal coordinates (ß,X,u) constructed in the 
preceding section. Then the reasoning used above can be employed to obtain the following absolute analog of (9): 

dr ■     dr ■      dr . 
W = 0: divv =K -l j^+IA = 0. (11) 

Hence there exists a smooth function H(ß, A, t), where we may suppress the dependence on w since it is constant along 
the flow ipt owing to (11). As divv = 0 and K = (Vß ■ VA x Vu/)_1, K is independent of t along ipt. Consequently, 
we may proceed from this point just as in Section 3 to define the new variables (10) in terms of which the equations 
of motion take the form (1). Note that H in (1) and H* in (6) are related as follows: if*(g,p) = H(q,p,t). 

5. Rectilinear Vortex Filament 

For the case of a straight line vortex filament we may assume that Co = {(0,0, z) : z 6 1R}. It is easy to verify in 
this case that R(z, t) = R(z, 0) and fo = #0 = {the foliation of Et3 by planes parallel to the x, y-plane} for all t > 0. 
We find that ß = x, X = y, and u = z comprise a suitable global coordinate system for the Hamiltonian structure. 
As the structure is independent of t, the relative and absolute motion coincide and we compute that the desired 
equations on the leaves are 

^IpilJ^^^)*8)'   * = -|(£/*(v^^) ds (12) 

where q := x and p := y. Note that in this case x must be adjusted, for example by the factor exp I—y/q2 +P2 + s2j , 

in order to insure the existence and smoothness of the Hamiltonian function in (12). 

6. Circular Vortex Ring 

The initial circular vortex ring may be assumed to be in the form Co = {R(</>, 0) = (a cos <j>, a sin <j>, 0) : 0 < <\> < 2TT} , 
where a > 0 is the initial radius of the ring. It is easy to show that fo = fo = {the singular foliation (with singularity 
the z-axis) of M3 by half-planes <\> — const.} for all t > 0. In this case we readily compute that Ct = {R(</>, t) = 
(acos<f>,asin(fi,yt) : 0 < </> < 2TT}, where 7 is the nonzero constant defined by 

7:= 
47T 

2TT 

f V (x (a^2(l-cos4>))) x ^(4>,0)d4> (13) 

Note that the improper integral in (13) is convergent.  A coordinate system for the structure is ß ■= p := {x2 + 
2/2)1/2, A = z,u) = (p. Whence, the Hamiltonian equations in terms of q := p2 and p := z are readily found to be 

.     dH      . 
~;    H = -^ J x (yjWq -a)2 + (p- 7t)2 + 4aVgsin2 | j cos^>, (14) 

7. Helical Vortex Filament 

A circular helical filament can be parametrized as Co 
after a straightforward calculation that Ct = {R(c, t) 

{R(CT, 0) = (a cos a, a sin a, ba) : a,b> 0, a G IR}. We find 
(a cos a, a sin a, ba + fd)}, where \i is the nonzero constant 
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defined as 

oo 

H := jl   f [cosa^ L/2a?{l - cos a)2 +6V2) + siner|^ U/2o?{\ - cos a)2 + 62a2)| du. (15) 

—oo 

Note that as in Section 5, x requires an adjustment to insure smoothness of the integrals in this section. $t changes 
with time: its leaves take the form of the helicoids ££ = {u(r,t) := (z — fit) — atan-1(y/:r) = c}. It is not difficult 
to show that (/?, A,w) is a suitable orthogonal coordinate system, where ß := p and X := (z — fit) — 6tan_1(y/a;). 
Defining q := A2 and p := ß, we find after a complicated but routine calculation that the desired Hamiltonian 
equations of motion on the leaves are (cf. [8]): 

oo 

q=9-^,    P=~\    H:=-^- J X(\\r(q,p)--R(a,t)\\)oos^. (16) 

—oo 

8. Concluding Remarks 

The structure developed in this paper provides a simple Hamiltonian description of the dynamics of an ideal fluid in 
a neighborhood of a vortex filament in terms of the self-induced motion of the filament. Thus the filament dynamics, 
which is induced by an infinite-dimensional Hamiltonian vector field, is the key ingredient in characterizing the fluid 
motion near the filament, and we plan to investigate this problem. Our illustrative examples reveal an apparent 
direct correlation between the symmetry of the initial filament and simplicity of the Hamiltonian structure. Further 
research is needed to fully comprehend this relationship. 

To understand the global nature of the induced flow, one needs to study the evolving geometry and topology of the 
associated foliation in the large. This promises to be a formidable problem, but investigation of some interesting 
special cases would be instructive (cf. [1]). It is natural, and particularly relevant for applications, to ask if our 
Hamiltonian structure can be generalized to apply to two or more filaments. Some preliminary research of our own 
and related work such as in [2, 5, 10] suggest that the answer is affirmative for certain types of filament configurations. 
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SAITO, SHIGERU 

VORTEX   CAPTURING   AND   NOISE   PREDICTION   BY   MOVING 
OVERLAPPED GRID METHOD 

1. Introduction 

The external noise of a helicopter is the most important issue in current helicopter technology. Specifically the 
reduction of the blade/vortex interaction noise is urgent subject in order for a civil helicopter to be spread widely. 
The capturing of the tip vortices in the noise analysis is the most important item because of its affection to sound 
pressure level. The moving overlapped grid method is developed in order to calculate rotor unsteady aerodynamics 
in hover and forward flights. This code is combined with the sound prediction codes using Ffowcs Williams and 
Hawkings formulation without quadruple term. The present combined noise analysis code is validated by the 
experimental data, which was conducted by Advanced Technology Institute of Commuter Helicopter (ATIC) at 
DNW in Netherlands. Comparison shows that the noise prediction was fairly good agreement with the data. 
Besides the calculated vortex parameters such as trajectory, core size, and strength of circulation are investigated 
by using present codes. The comparison of predicted tip trajectories shed from a rotor blade in hovering flight with 
well-known Kucurek7s formula shows good agreement. 

2. Experiment of tip vortex properties 

Figure 1 shows the test set-up in the Low-speed Wind Tunnel facility at NAL[1]. Two different types of wing 
tip shape were used in order to investigate the effect on the tip vortex property. Three components of velocity 
vector were measured by 7-holes probe which is located just behind of the vortex generator. Using these velocity 
data, the core size and strength of circulation were estimated for two tip shapes. From this experiment, the core 
size and the strength of circulation for the tapered tip shape showed small values compared with that for the 
rectangular tip shape. In the noise prediction codes, mathematical models of tip vortex are often used to calculate 
the aerodynamic performance and trajectories of tip vortex for the blade/vortex interaction noise. In order to 
investigate the effectiveness of these models, several models were compared with test data. Figure 2 shows the 
comparison results for the case of rectangular tip shape. Among various vortex models, Scully vortex model is best 
fitted with present data. For the tapered tip shape case, Scully vortex model is still best fitted with the data. From 
these results, it is generally said that Scully vortex model is reasonable as tip vortex model. 

3. Moving overlapped grid method(MOGM) 

In the noise analysis, the free wake analysis based on the vortex theory is generally used in order to calculate the 
trajectory of the tip vortex. In this calculation, several empirical models, such as vortex core size and roll-up position 
of the tip vortex, are assumed. Therefore the accuracy of the calculation always depends on the decision of such 
parameters. To avoid these uncertain parameters, CFD technique is promising for the capturing the tip vortex. The 
moving overlapped grid method (MOGM) was developed to calculate the unsteady flow field around a rotor in the 
collaboration with Advanced Technology Institute of commuter Helicopter Ltd. (ATIC)[2][3]. This CFD code was 
combined with the noise prediction code based on the Ffowcs Williams and Hawkings formulation without quadruple 
term. This CFD code has three grid systems (blade, inner and outer grid). The number of grid points is 17 millions. 
In order to get the convergence condition in the calculation, it took about one week by means of NWT at NAL. 

4. Calculation results 

Figure 3 shows the comparison of the tip velocity distribution between calculation and experiment. Experimental 
data was measured at 11 times of chord length behind the vortex generator. Calculation results shows that the 
about 1.5 times larger core size than that of the experiment.   This is because the viscosity of the flow was not 



S150 ZAMM ■ Z. Angew. Math. Mech. 81 (2001) SI 

taken into consideration in the calculation. Figure 4 shows the comparison of the prediction of noise waveform with 
experimental data. The experiment was conducted by the ATIC at DNW in Netherlands. The calculated results by 
MOGM show over-estimation in the magnitude compared with experimental data. This discrepancy between them 
were caused by the omission of the blade elastic deformation and the effect of the body itself on the rotor. 

5. Conclusions 

The wind tunnel test to measure the velocity field of tip vortex was conducted in the NAL Low-speed Wind Tunnel. 
These data were compared with calculation. The CFD code-named Moving Overlapped Grid Method was developed 
and combined with noise prediction code. From the investigation, the following conclusions are drawn. 

1. The velocity field of a tip vortex is well modeled by the Scally vortex model. 

2. CFD calculation results show the over-estimated prediction of core size of a tip vortex. 

3. Noise predictions by the Moving Overlapped Grid Method show the over- estimation in the noise waveform. 
This is caused by the omission of the blade deformation and the effect of the body on the rotor. 

In this calculation, Euler equation is used to predict the vortex property. Basically the viscosity of the flow is not 
taken into consideration. Therefore more sophisticate calculation should be necessary in the future. 
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WAGNER, S. 

Calculation of Far Field Sound due to Blade-Vortex Interaction on a Heli- 
copter Rotor 

The objective of the paper is to present an efficient tool for the prediction of far field noise due to blade - vortex 
interactions (BVI) on a helicopter rotor. These interactions occur mostly in low subsonic flight, e.g. a helicopter 
in descend. In this case, the method of retarded potentials can be used. When transonic effects at the tips of the 
advancing blade are present a coupled Euler-Kirchhoff method is applied. These two schemes allow the calculation 
of the acoustic signatures at arbitrary observer positions for rotors with usual blade motions. The theoretical results 

are compared with experimental data. 

1. Introduction 

Noise generated by helicopters can give rise to problems concerning their public acceptance. Helicopters have many 
components that produce noise but it is usually dominated by the main rotor with the engine and the tail rotor 
being important additional sources. At this point only aerodynamic noise will be addressed. It is caused by several 
complex flow phenomena [12]. Inflow-turbulence noise is caused by the interaction of turbulence in the inflow with 
the leading edge of an airfoil. Trailing-edge noise and also tip noise is a by-product of any turbulent flow around 
blades. Typical noise spectra of helicopters (e. g. [9]) indicate that especially blade vortex interaction (BVI) noise 
plays a dominant role. High-speed impulsive (HSI) noise [1, 3] is another major noise source in high speed flight, 
when aerodynamic shocks are generated and radiate into space as sharp pressure peaks. These pressure gradients 
build up a wave front of spiral-like shape and are perceived as periodic noise. BVI noise will be described and how 
it can be simulated by theoretical/numerical methods. In case of low subsonic flight, e.g. a helicopter in descend, 
the method of retarded potentials is used. When transonic effects occur at the tips of the advancing blade a coupled 
Euler-Kirchhoff method is applied. 

2. Calculation of Far Field Sound due to Blade-Vortex Interaction (BVI) 

BVI noise is characteristic for helicopters and originates from the interaction of a rotor blade with the tip vortex 
of a preceding blade. This interaction leads to a sudden variation of the flow around the blade and therefore to a 
pressure fluctuation that is radiated away as sound. BVI is most important if the tip vortices pass very close to a 
blade and if the vortex axis is parallel to the blade. These conditions occur especially during descent flight. 

The starting point for the prediction of BVI noise is usually the homogeneous linear wave equation [10]. In its 
most simple form it describes the propagation of sound waves through an acoustic medium at rest. The generation 
of sound is due to (1) the volume displacement of a solid body moving through the air, (2) the forces that this 
body exerts on the air, and (3) the non-linear momentum flux terms that may be caused by turbulence or by strong 
non-linearities in the flow field such as shocks. The first part is often referred to as thickness noise and is of monopole 
type. The second part is termed loading noise and is a dipole term, the third is mathematically a quadrupole term. 
It was Lighthill [7, 8] who recognized that this term is associated with the turbulent Reynolds stress tensor, i. e. 
the mixing of turbulent eddies which take place for instance in a jet [8]. This approach is called acoustic analogy. 

In order to properly predict BVI noise the correct structure and position of the wake including the tip vortices must 
be known. There are several approaches possible [11]. In the present paper a linear theory, a non-linear theory and 
combination of both are used. The linear theory used is a vortex-lattice method for rotary wings (ROVLM). Zerle's 
computation [14, 15] included 240 time steps where the increment of the azimuth angle was gradually reduced from 
15 degrees to 1 degree (Fig. 1). This solution allows the extraction of intensive BVI. In the present example they 
occur between 50 and 60 degrees azimuth angle in a low speed descendent flight where incompressible flow can be 
assumed. Zerle et al. [16] used the calculated pressure distribution in a so-called "retarded potential postprocessor" 
and calculated the sound received by an observer. The method [14, 16] is based on the linearized wave equation (no 
transonic effects, constant speed of sound ao) 

l    a2* V2* - i • ?-$- = 0 
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and the sound pressure calculation in the far field 

ps = po • ff 

where rret is the retarded distance between the noise source and the observer, a is the sink/source distribution 
(single layer potential) and \i is the doublet distribution (double layer potential) of each panel, where the index 
W indicates the wake panels. eß marks the orientation of the local doublet. The blades have to be determined in 
a retarded position. The contribution of each blade to the sound received by an observer can thus be calculated 
(Fig. 1). 
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Figure 1: Sketch of vortex structure and sound pressure contribution of each blade at microphone 3, [16]. 

Since blade number 4 did not contribute that much noise in reality as calculated by theory because of the presence 
of a strong wake behind the rotor mast fairing which was not simulated this contribution was omitted and a good 
agreement with measurements was obtained (Fig. 2). 

If transonic effects are present non-linear methods must be applied, e. g. the Euler equations. To resolve the 
structure of the tip vortices a very fine mesh and higher order algorithms in space have to be applied. Since, in 
addition, the distance between the noise source and the observer might be large a very big computational effort 
both in computer storage and speed is necessary. Therefore, Wehr [13] in a first attempt coupled ROVLM with 
the Euler code INROT of the institute (IAG) and calculated the unsteady pressure field induced by the rotor. The 
advantage of this procedure is that the wake of the rotor is predicted without any dissipation or diffusion because 
of the numerical solution of the vortex lattice method. The actual BVI is then calculated by the Euler procedure. 
However, the computational effort is still large. Thus, Algermissen [2, 3] coupled INROT with the Kirchhoff method 
to simulate the sound propagation to an observer. 

Generally, when at transonic speeds so-called HSI noise is to be calculated the acoustic analogy strategy requires 
to evaluate the sound sources on the blade and in the flow field. The latter are necessary in order to model sound 
generation by aerodynamic shocks. Sound radiation from these sources is described by the Ffowcs Williams-Hawkings 
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Figure 2: Comparison of calculated and measured sound pressures, [16]. 

(FW-H) equation [6]. Similar to the equation derived by Lighthill the FW-H equation is an exact combination of 
the continuity equation and the Navier-Stokes equations that results in an inhomogeneous wave equation. However, 
the FW-H formulation is much more suited for the treatment of noise from moving solid bodies as it displays the 
effect of volume displacement, forces, and non-linear terms as separate source terms on the right-hand side of the 
wave equation. The FW-H equation is the most general form of Lighthill's acoustic analogy [7] and is appropriate 
for the prediction of noise that is generated by helicopters where especially HSI and BVI noise occur. 

The Kirchhoff formulation for moving surfaces is an alternative formulation that has widely been used in rotary 
wing aeroacoustics in the past [5]. However, there is a problem where to place the so-called Kirchhoff surface when 
it is moving [2, 3]. To compute the pressure at an arbitrary observer position both surface and volume integrations 
are necessary in the FW-H approach, whereas the Kirchhoff approach assumes validity of the homogeneous wave 
equation outside the Kirchhoff surface that is the boundary between the non-linear and linear calculation. For 
sound computation according to a Kirchhof! formulation integration over the two-dimensional Kirchhoff surface is 
sufficient. Since in transonic flow fields the local speed of sound is not constant and the velocity vector differs from 
free stream conditions sound propagates through such regions not2 in a perfectly uniform manner as assumed by the 
acoustic analogy. However, the Kirchhoff strategy makes the assumption of free flow sound convection only outside 

the Kirchhoff surface. 

Both methods are usually applied in retarded time formulation, i. e. that different points of the spatial integration 
domain refer to different emission times but to the same observer time. For high-speed flight part of the sound sources 
move with supersonic speed. If the Kirchhoff surface is placed around these sound sources and rotates with the rotor 
blade parts of the Kirchhoff surface would also move with supersonic speed. In this case difficulties arise with acoustic 
analogy and Kirchhoff method. Multiple emission times can correlate to one observer time and singularities occur in 
the integration formulae. Farassat and Myers [5] presented a Kirchhoff formula for supersonically moving surfaces 
that can cope with these singularities. However, the procedure is more complex than the one for subsonic speeds. 
These difficulties were often circumvented in the past using a non-rotating Kirchhoff surface, enclosing the complete 
rotor tip plane. In forward flight the Kirchhoff surface was then assumed to move uniformly with the helicopter and 
a subsonic Kirchhoff formulation was used. Zibi et al. [17] showed that the position of the Kirchhoff surface can 
considerably influence the accuracy of the noise prediction. Algermissen and Wagner [1] found that for a hovering 
rotor the position of the Kirchhoff surface does not influence the results remarkably. They got good agreement with 
measurements. However, in forward flight the results did depend on the position of the Kirchhoff surface and the 
agreement with measurement was only fair. The numerical resolution of the code seemed to be too low (it was only 
third order accurate in computational space) to resolve the pressure fluctuations necessary to predict the emitted 

noise. 

In a recent paper Brentner [4] re-examined the FW-H equation to demonstrate recent advances in rotor noise pre- 
diction and showed that the Kirchhoff formulation can lead to misleading results. In order to show the shortcomings 
of the Kirchhoff formulation he applied an embedding procedure similar to that used for the derivation of the FW-H 
equation to the wave equation by Farassat and Myers [5] and derived that way the Kirchhoff formulation for moving 
surfaces. Now he could compare the FW-H equation and Kirchhoff formulation and could that way show that for 
linear wave propagation several terms in the FW-H formulation would trend to zero and the FW-H equations and 
the Kirchhoff formulation would completely agree. 

Finally in Figure 3 the prediction of acoustical pressure signals computed by Algermissen [3] are compared with 
measurements. The As mark positions of tip vortices whereas the INs indicate positions of inboard vortices. The 
agreement is only fair. A higher resolution of the Euler code seem to be necessary to resolve the pressure peaks that 
are induced by the tip vortices and that are responsible for BVI noise. 
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3. Conclusions 

The paper presents two methods for the prediction of 

far field noise due to blade-vortex interaction (BVI). 

BVI noise usually occurs in low speed descendent flight. 

A method derived from the linearized wave equation in 

combination with a post processor based on retarded po- 

tentials gives good results compared to measurements. 

If transonic effects occur this procedure is not appli- 

cable any more. An Euler/Kirchhoff method was then 

applied. In hover this method showed good results. In 

forward flight the problem occurred where to place the 

Kirchhoff surface since the results did depend on its po- 

sition. Brentner showed with a new derivation of the 

Ffowcs Williams-Hawkings approach that this problem 

can be circumvented. In addition the resolution of the 

Euler method seemed to be too coarse. At least 4th or- 

der difference schemes in space seem to be necessary to 

resolve the influence of the vortex on the pressure peaks 

that are responsible for noise. 
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Wave Phenomena in Bubbly Liquid-Vapour Mixture (review) 

The mixture of a liquid and bubbles of its vapour is an excellent example of two-phase system where interesting 
wave phenomena take place. The occurrence of these phenomena in single-component two-phase mixtures can 
be attributed to the effect of strong thermodynamic non-equilibrium. During the flow of a two-phase mixture, 
mechanical non-equilibrium can also occur. Both types of non-equilibrium give rise to strong deformations of 
velocity and temperature fields in the liquid surrounding vapour bubbles. Specific features of the two-phase medium 
determine its wave properties, pronounced in its dispersive nature, meaning that the velocity of propagation of 
disturbances in the two-phase medium depends on their frequency. These above properties typical for the two-phase 
medium of low void fraction can be modelled using a concept of internal structure. In this concept, a model of 
continuum with the so-called operative parameters is assumed. The model is capable of predicting the phenomena 
such as: dispersive shock waves, pseudo-criticality, wave propagation and divergence between the hydrodynamic and 
thermodynamic pressure during flashing flow. 

1. Introduction 

Real two-phase one-component system of a liquid and its vapour is distinctive by virtue of very complex physics, 
including thermodynamic and mechanical non-equilibrium. The thermodynamic non-equilibrium follows from the 
facts that the temperature of the liquid Ti is different from the temperature of the vapour Tg, i.e. Ti^Tg, and the 
chemical potential of the liquid fig assumes different values than the chemical potential of the vapour /i9, /zj ^ fig. 
The thermal non-equilibrium, Ti ^ Tg gives rise to energy transfer between the phases, whereas the chemical non- 
equilibrium, m ^ fig, is a stimulus for the phase changes - evaporation and condensation, that can be considered 
the mass transfer between the phases. Mechanical non-equilibrium is pronounced in different local velocities of the 
liquid phase, wi, and vapour phase, wg,wi^wg. This type of non-equilibrium is substantiated in the momentum 
transfer between the two phases. The exchange of mass, momentum and energy give rise to dissipation of energy 
as each of these processes is irreversible. The above mentioned processes take place at a finite rate, therefore it can 
be assumed that the return to the state of equilibrium is characterised by a finite relaxation time tf. The two-phase 
liquid-vapour systems are peculiar for their relatively long relaxation times, especially during generation of the 
vapour phase, that is during flashing, where the relaxation time can be as high as 1 s, [1]. This compared to the 
relaxation times for gases or liquids, that are of the order of 10-10s, see Batchelor [2], brings realisation of the fact 
that the bubbly liquid-vapour system must be qualitatively different from the one-phase system. The differences 
are particularly pronounced in wave properties of bubbly flow. 

2. Modelling two-phase flows 

Real two-phase system is a discrete system. However, it is usually modelled as a continuum, [3]. In order to 
simplify the notation, let us limit ourselves to a one-dimensional model. The two-fluid model [4] will be assumed 
for consideration. Most models belonging to this class can be written in the form of the following set of equations 

.    .    . da-,      _   .    . daj .        . 
(1) 

where a is the state vector, t - time, z - coordinate along the channel. Imposing a small disturbance Sa on the 
state vector about undisturbed solution a? at a point /, so that a = a? + Sa, and making use of the analysis of 
small disturbances the following dispersive equation can be derived [5] 

det\Aij(a^)--Bij(af) + ^ 
dAh 

dan -(*? dt 
+ 

-da7{ai dz      da« (o?,z) ]} 0. (2) 

Let us introduce the so-called phase velocity aph - u/k, where u is the disturbance frequency and k is the wave 
number linked to the wave length I, k = 2n/l. The system defined by the set of Eqs. (1) can be described as wave- 
dispersive if the phase velocity depends on the disturbance frequency, that is aph = /(u>). This is possible if the 
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system is non-linear ^- ^ 0, ^f ^ 0 and when the source term c, in Eqs. (1) depends on u>, that is when §^ ^ 0. 
The two-phase liquid-vapour bubbly flow is highly wave-dispersive, which is confirmed by numerous experiments, 
for example [6]. The dispersion is due to the thermodynamic non-equilibrium and the largest contribution follows 
from the term J^ ^ 0. At the same time the two-phase flow is also characteristic for considerable damping of 
wave disturbances, a fact reflected in the model where the phase velocity aph is a complex number with a real and 
imaginary part. 

3. Relaxation model 

The most simple model that takes into account thermodynamic non-equilibrium is a relaxation model described 
by the following conservation equations of mass, momentum and energy [7]. 

dp      1 dpwA 

dw dw        dP     TC 

dpu      1 dpuwA _    P dwA     TWC 

~ÖT + Ä~dT~ ~ ~A~dT + ~Ä~ ' (5) 

where w is the barycentric velocity, P - thermodynamic pressure, u - specific internal energy, p - density, A - 
cross-sectional area of the channel, C - channel circumference, r - wall shear stress, r = ^fw2p, where / denotes 
the friction factor. The thermodynamic non-equilibrium is contained in the equation of state 

p = p(u, P, x) (6) 

where x is the actual dryness fraction different from the equilibrium dryness fraction, x = "~"'^„.,, where u' 

and u" are specific internal energies corresponding to the saturation lines x = 0 and x = 1. The above system of 
equations is augmented by a heuristic evolution equation, derived from the linear Taylor expansion of x about x 

Dx x — x 

~Di =       ÖT ' (?) 

where substantial derivative -^ is defined as 

D     d      d 
Di = di+Wö-2- <fl> 

Quantity 9 is the relaxation time - a parameter that incorporates the internal structure of the two-phase system 
[8]. A more developed form of the evolution equation (7) was presented by Banaszkiewicz [9] 

Dx x — x     (x - x)3        d2(x — x) 

where /3,7,/c are constants that can be evaluated based on experimental investigations. The relaxation model 
(3-7) describes well flashing flow and explains a very interesting phenomenon of pseudocriticality [10], that is 
flow choking observed for Mach numbers as low as 0.2. However, the relaxation model fails to provide enough 
dissipation of energy especially for the description of propagation of large disturbances and stationary shock waves. 
In order to successfully model these phenomena, a model with the so-called operative viscosity fj and operative 
heat conductivity A was introduced. 

4. Model with operative quantities 

The operative viscosity fj and operative heat conductivity A, similar to turbulent viscosity in the turbulence models, 
substantiate strong deformations of the velocity and temperature fields in the carrier fluid at the vicinity of the 
dispersed phase. The model additionally takes into account the difference between the thermodynamic pressure 
P that is always positive, and the hydrodynamic pressure Ph, Pv = Ph - P, where Ph = \{PXX + Pyy + Pzz), 
which can assume either a positive or a negative value, and in general Ph ^ P. This model, described in detail in 
[11], has been found to describe well the propagation of large disturbances [12], structure of the stationary shock 
wave [13, 14], as well as the evolution of the pressure impulse during the rapid depressurisation of a liquid, [15]. 
Therefore, the model can be treated as the most general model capable of describing well the wave properties of 
the one-component two-phase bubbly system and can be written in the form as below 
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- mass conservation equation 

- momentum conservation equation 

Dp       dw _    pw dA ,-„v 

~Di + P~dz~ = ~~ÄJz~ ' {   ' 

Dw__dF*      d_ 
P~Dt ~ ~ dz  + dz 

dw 

2P + f>)^ 
T— + pgcosa , (11) 

- energy conservation equation in the form of enthalpy, h, balance equation 

Dh     DP C     ,_     „h.dw ,  /4    ,  A fdw\\ Ö frdTs\ C 

supplemented with the state equation 

I = v = v(P,h,x) = vi(P,x,h)+x[v"{P)-vi] (13) 
P 

together with the equations describing the evolution of the actual dryness fraction x, and pressure difference 
pv _ ph _ p gaged on the philosophy offered by the Thermodynamics of Irreversible Processes [15] there are 
2 options for these equations. The first option comes from the Classical Irreversible Thermodynamics (CIT) and 
leads to the following couple of equations 

x = Ln(fj,i -Hg)+Li2-Q^; , (14) 

P^ = L21(pJl-p,g) + L22^. (15) 

where x = ^. The second option is derived from the so-called Extended Irreversible Thermodynamics (EIT). EIT 
provides much richer evolution equations for the actual dryness fraction x and pressure difference Pv than CIT, 
namely 

®±^j; + x = Lu(m - fig) + L12-Q^ , (16) 

QP^- + PV = L2M - Mfl) + L22-^. (17) 

where L^ are the fenomenological constants, /ij,/zs chemical potentials for liquid and vapour respectively. The 
following quantities appear in Eqs. (12), (13) are the dynamic molecular viscosity of the two-phase mixture T?, 

the so-called operative viscosity 77, molecular heat conductivity of the two-phase mixture A, and its operative heat 
conductivity Ä, wall shear stress r, heat flux to the channel from the outside qw, channel cross-sectional area A, 
channel circumference C, acceleration of gravity g, angle between the flow direction and gravitational force a, 
specific volume v, and v" - specific volume at the saturation line x = 1. 
Eqs. (16) and (17) introduced into the conservation equations (10) - (12) constitute a model described by hyperbolic 
equations. This model predicts a finite value of the frozen velocity, a/ = lim^-«» aph- At the same time, the model 

contributes to the diffusion effects by second derivatives §^f, ^§j, and an extra term fjf, which seems to be of 

importance for such a complex system as the two-phase mixture of a liquid and its vapour. 

5. Conclusions 

The two-phase liquid-vapour bubbly system is highly wave-dispersive and is characteristic for its long relaxation 
time, as a result of which first, wave disturbances are considerably damped, second, critical flow is connected with 
the equilibrium velocity, and then, there is a great impact of the bulk viscosity giving rise to a difference between the 
thermodynamic and hydrodynamic pressure. The properties of the considered two-phase system depend strongly 
on its internal structure. The effect of the structure can be expressed by the concept of operative viscosity and 
operative thermal conductivity. 
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Fluiddynamical critical two-phase (gas/liquid) flow state in non ideal flow 
geometries 

During the emergency venting of pressurized, in most cases partially liquid loaded reactors across safety devices or 
in the course of the intentionally controlled depressurisation, resp., degassing of such production equipment across a 
throttle valve a two-phase flow can establish due to the occurring level swell. In the context of the equipment sizing 
for safety and economical reasons a maximum mass discharge, resp., critical velocity in the transfer piping system or 
device is an issue. Indeed, analytical methods for the critical two-phase mass flow prediction are only available for 
ideal nozzle or pipe flow. In principle, they look like simple derivatives of the ideal model used in (compressible) gas 
dynamics. Hence, rating tests for determination of the actual capacity of the flow controlling devices are necessary 
for an adequate sizing of the commercial devices. They are, however, time consuming and, therefore, prohibitively 
costly due to the large number of test variables as device size and type, fluid or mixture properties, initial subcooling, 
pressure, temperature, mass flow quality, valve lift, resp., opening, etc. are primary sizing parameters. Additionally, 
during the experiments the problem arise to define, resp., to fix the critical flow state. In contrast to the explanations 
in text books referring to the case of an ideal nozzle flow such a characteristic flow state does not establish in the 
device. This is, amongst others, the consequence of wall detachment of the flow, establishment of an inhomogeneous 
velocity field across the flow controlling cross section, local random cavitation or flashing/condensation incipience, 
multiple choking in the transfer piping system and corresponding back pressure change. As a consequence, the 
experimental maximum mass flow will depend, e.g., on the experimenter's pragmatism as well as capability and the 
metering quality installed in the test rig as well as, strictly speaking, it can only be valid for the individual specimen 
due to non avoidable manufacturing tolerances. 

The engineering design practice is still characterized by particular solutions according to the respective limited ex- 
perimental evidence as not at all a sizing convention is available. On the other hand, in all individual procedures, 
as a rule, the experimental or attributed maximum flow rate is expressed as, i.e., in single-phase compressible flow 
in terms of a corresponding one-dimensional ideal two-phase nozzle mass flow by introducing an empirical discharge 
coefficient of the valve. It is in this context invariably coupled to the respective flow model as well as specimen and 
its value should, according to the general physical understanding, remain below unity. Otherwise, the choice of the 
reference nozzle model is inappropriate. This is a common situation, as in two-phase flow an immense variety of 
critical mass flow models have been proposed. A common feature is, herewith, that for identical initial conditions 
different predictions are obtained though each model has been fitted to some experimental data and incorporates to 
a large extend theoretical aspects. Indeed, an analytically based pre-assessment and selection of the most promising 
two-phase nozzle flow model by using theoretical boundary values for comparison purposes is not feasable as these 
are not available. 

The assigned discharge coefficient acts, in principle, as a global adjustment factor. In view of its definition it has no 
physical significance. Nevertheless, it is standing graphically for a variety of deficiencies of the reference flow model 
as dissipation, actual mixture state change, delayed phase change, non ideal fluid behaviour, incompleteness of the 
flow density definition, slip etc. In general, a lumped value of between 0.5 and 0.9 is obtained. 

An example for such a pragmatical approach is the recently proposed short-cut safety valve sizing method by T. 
Lenzing et al. [1]. The basis is formed by the isentropic homogeneous two-phase nozzle flow model, leading under all 
conditions to a discharge coefficient value in two-phase flow of less than unity. The essential features of the method 
are thermodynamic and fluiddynamic equilibrium between the phases. The other submodels included address the 
polytropic state change of the mixture, the boiling delay in subcooled or saturated flow, the degree of phase transfer 
and a liquid phase viscosity correction. As experimental pre-requisite for application at least one out of the two 
single-phase flow discharge coefficients must be available from the usual standardized (compulsory) device rating 
test. The weighed inclusion in the method is such that on approaching the limiting cases of the two-phase flow either 
the actual liquid or subcritical/critical gas/vapour flow capacity is predicted. The reproducibility of the underlying 
experimental results taken from the literature as well as produced in own tests is adequate, s. fig. 1 and 2. Indeed, 
the progress achieved in the reproductive accuracy against that of the formerly used methods is evident. 
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On concluding, it is fully recognised that the short-cut method also includes a combination of incomplete submodels 
and that the successful reproduction will be to some extend the consequence of mutual error compensation. Never- 
theless, a moderate method extrapolatability with respect to fluids, pressure ranges and valve sizes is expected as 
physically reasonable intermediate key values are effective. 
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