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Abstract 

Active How control using MEMS-based microactuators holds tremendous promise for 
achieving laminar flow control and drag reduction for a wide class of aircraft. In order 

to achieve effective control it is necessary to have a complete understanding of the 
fundamental instability processes that apply to a particular boundary layer and to develop 
a sensor and actuator system that is capable of providing an appropriate control input 
to that boundary layer. In the present work, crossflow-dominated swept-wing boundary 
layers are the primary interest. These boundary layers are known to undergo a highly 
nonlinear transition process that involves, in low-disturbance environments, stationary 
waves of longitudinal vorticity. These stationary waves have to potential to be controlled 
or suppressed by an appropriate surface roughness configurations that could be provided 
by MEMS-based actuators. The work performed here consists of a parallel experimental 
and hardware development efforts. The breakdown phase of the crossflow instability is 
investigated in the experiments in an effort to determine an appropriate control input. 
A MEMS-based roughness actuator system is developed to provide controlled roughness 
inputs. The results of the experimental phase conclusively demonstrate that the destabi- 
li/ation of a high-frequency secondary instability is responsible for breakdown. The MEMS 
development effort did not produce a useful control device because of certain shortcom- 
ings in the present state of MEMS fabrication quality control and overall system integration. 

This  work  was  supported  by  AFOSR  grant   F49620-97-1-0520  and  was  managed  by 
Dr. Thomas Beutner. 
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boundary layers where the experience has been that although a MEMS element can reduce 
drag, it does so only in an area of the same order as the MEMS element itself. This 
implies that to achieve significant drag reduction of an already turbulent boundary layer, 
essentially all of a vehicle's skin would need to consist of MEMS actuators. This approach 
would clearly have enormous manufacturing and maintenance cost and also enormous power 
requirements, perhaps more than the power that could be saved through such an approach. 

If practical control of an unstable laminar boundary layer is to be achieved using MEMS- 
based actuators, a significant question remains: What is the mechanism that triggers the 
final breakdown of the laminar flow? Until this stage of the process is understood, transition 
prediction based on a correct physical model will be impossible. 

It is the intent of this work to provide a detailed experimental description of the mecha- 
nism or mechanisms that are responsible for the breakdown of laminar flow at the last stage 
of swept-wing boundary layer transition and. simultaneously, to design, construct, and im- 
plement a MEMS-based microactuator system that is capable of controlling the transition 
process on swept-wings. In the experimental phase, what will be of principal interest is the 
possibility that breakdown is caused either by a secondary instability or by an absolute in- 
stability that is present in the distorted velocity field resulting from the nonlinear primary 
instability. Both a secondary instability and an absolute instability have been shown to 
h<> present in rotating disk flow, the model problem for swept wings, and hence both are 
candidates for swept-wing breakdown mechanisms. The MEMS actuators will play a signif- 
icant role in the experimental objectives because they will provide a critical experimental . 
capability as variable roughness elements that will be needed to make this assessment. 

1.2    Introduction to crossflow transition 

The basic features of swept-wing boundary layers are as follows. In the inviscid region 
outside a swept-wing boundary layer, the combined influences of wing sweep and favor- 
able pressure gradient produce curved streamlines at the boundary-layer edge. Inside the 
boundary layer the streamwise fluid velocity is reduced but the pressure gradient is un- 
(•haIlu;ec,. Thus, within the boundary layer, a balance between centripetal acceleration of 
tin- fluid elements and the external pressure gradient does not exist, and a secondary flow 
re.-u!ts. This secondary flow is directed perpendicular to the external streamline, toward 
rise streamline's center of curvature, and it is therefore referred to as crossflow. Upstream 
of rhe pressure minimum, the crossflow is directed inboard (for standard swept-back config- 
urations!. Downstream of the pressure minimum, the crossflow is outboard. A schematic 
of a crossflow-producing streamline is shown in Figure 1. The associated streamwise, cross- 
flow, and resolved boundary-layer velocity profiles are shown in Figure 2. Notice that the 
crossflow velocity is zero at the wall where the no-slip condition applies, and it approaches 
zero at the boundary-layer edge where pressure gradient and streamline curvature balance. 
Because of these boundary conditions, the crossflow velocity profile has an inflection point. 
It is well known that an inflection point in a boundary layer is a sufficient condition for an 
inviscid instability. This means that the transition behavior for swept wings is fundamen- 
tally different from that of unswept wings because the unswept configuration is subject to 
the viscous Tollmien-Schlichting (T-S) instability mechanism. 

The fact that swept-wing boundary layers are subject to a different type of instability 
was first discovered by Gray (1952) during a flow-visualization flight test experiment. Soon 
thereafter. Gregory. Stuart &: Walker (1955) produced their classic work that shows the 
same crossflow instability mechanism is also present for rotating disk boundary layers.  In 



The receptivity mechanism for the stationary vortices that are important for transition 
in low-disturbance environments is surface roughness. This was conclusively established 
by Müller k Bippes (1989). who translated a swept fiat-plate model relative to the test 
section and found that the recurring stationary transition pattern translated with the model. 
Therefore the instability features had to be related to model roughness rather than to fixed 
features of the freestream flow generated by nonuniformities of the screens or other effects. 
Juillen k Arnal (1990) find that for isolated roughness elements the von Doenhoff k Braslow 
(1961) correlation that describe:, the limit for bypass transition is correct. 

Roughness studies by Radeztsky. Reibert k Saric (1999) show that the characteristics of 
isolated 3-D roughness play a very important role in transition behavior. Roughness is most 
effective at generating crossfiow disturbances at or just upstream of the neutral point, x/c = 

0.02 in Radeztsky et al.'s experiment. The roughness diameter must be greater than 10% of 
the most amplified stationary wavelength to be effective, and the transition location is quite 
sensitive to roughness height even for roughness Reynolds numbers as low as Rek = 0.1. 
Natural surface-roughness amplitude can also play a significant role in transition location. 
Radeztsky et al. (1999) find that a decrease in surface-roughness amplitude from 9.0 urn 
rnis to 0.5 um rms delays transition from x/c - 0.40 to 0.61 for Rec = 2.7 x 106. Another 
decrease to 0.25 urn rms delays transition even further to x/c = 0.68. Radeztsky et al. 
(1999: also determine that transition behavior is insensitive to sound even at amplitudes as 

high as 95 dB. 
A number of theoretical and computational approaches to swept-wing boundary-layer . 

receptivity have been applied. Some of the more recent include an adjoint equation ap- 
proach by Fedorov (1989), a PSE approach by Herbert k Lin (1993), and a DNS approach 
by Spalart (1993). Crouch (1994) and Choudhari (1994) both consider the receptivity 
of Falkner-Skan-Cooke (FSC) boundary layers as perturbations of a parallel boundary 
laver. The framework of their approaches allowed both the surface roughness and acoustic 
freestream disturbances to be considered as receptivity sources. Choudhari (1994) extends 
his work to consider acoustic-wave-angle effects and a variety of different roughness configu- 
rations including isolated roughness, roughness arrays and lattices, and distributed random 
roughness. Crouch (1994) emphasizes a framework equally applicable to T-S and crossfiow 
disturbances. Both authors note that because traveling-wave receptivity scales with two 
small parameters, the freestream velocity-fluctuation amplitude and surface-roughness am- 
plitude, whereas the stationary-wave receptivity scales with only one. the surface roughness, 
it can be expected that stationary waves will dominate for low-disturbance environments 
and that traveling waves will only appear for large freestream acoustic variations. The 
experiments of Radeztsky et al. (1999) confirm this expectation. 

A more recent approach by Collis k Lele (1999) begins by solving the steady Navier- 
Stokes equations in the leading-edge region of a swept parabolic body and then using that 
solution as a basic state for a linearized steady disturbance system that includes surface 
roughness. Comparing the results of this approach to those obtained by Choudhari (1994) 
and Crouch (1994) shows that receptivity to surface roughness is enhanced by convex sur- 
face curvature and suppressed by nonparallelism. Neglecting nonparallelism causes the local 
approach to overpredict receptivity by as much as 77% for the most amplified stationary 
crossfiow wavenumber. The error introduced by neglecting nonparallelism is most severe for 
wavelengths in the range most amplified by the crossfiow instability and for roughness close 
to the first neutral point. The implication is that amplitude-based transition-prediction 
methods need to employ a receptivity model that includes nonparallelism because the cross- 
flow modes that dominate transition are most stronglv affected bv this influence. 
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What has proven to be the most effective means of modeling the crossflow instability is 
approach using nonlinear parabolized stability equations (NPSE). Nonlinear parabolized 

stability codes incorporate mean-flow modification produced by the stationary vortices and 

include surface curvature and nonparallel effects. Recently, both Malik, Li, Choudhari k 

Chang (1999) and Haynes k Reed (2000) have used the NPSE approach to produce excellent 
computational agreement with the experiments of Reibert et al. (1996) that demonstrate 
the nonlinear growth and saturation of stationary crossflow vortices. The computational 
results confirm that saturation amplitudes are independent of the initial crossflow amplitude 
if it is sufficiently high to cause saturation. The NPSE codes further demonstrate that the 

disturbance growth is sensitive to very weak surface curvature. 
An alternative DNS approach to the late transition stages was undertaken by Win- 

tergerste k Kleiser (1996). These computations are an FSC approximation of the DLR 
swept flat-plate experiment. The emphasis of these calculations was to examine the vortex 
structure with a more highly resolved grid than the earlier DNS crossflow calculations by 
Mever k Kleiser (1989). The approach by Wintergerste k Kleiser (1996) is local temporal 
stability with local parameters to match 80% chord: R = 826. sweep angle oe = 46.9°. and 
Hartree parameter 3H = 0.63. These calculations identified the weak vortex that rotates 
counter to the main stationary crossflow vortex predicted by Malik et al. (1994), and they 
demonstrated breakdown to turbulence soon after, but the results do not appear to produce 

the secondary instability described below. 

1.2.3    Implications for iV-factor transition prediction 

The strategy most often employed for transition prediction is known as the e:V method, 
proposed independently by van Ingen (1956) and Smith k Gamberoni (1956). This method 
consists of finding the envelope of the growth curves of all possible instability modes using 
linear stability theory. Transition is expected to occur at the first point for which the 
ratio of any single mode"s amplitude to its initial amplitude exceeds a threshold value. 
The threshold for transition is determined experimentally and is expressed in exponential 
form, hence eA'. Typically, .V » 9 leads to transition, although the iV-factor can vary 
widely depending on a number of factors. Using this approach, transition experiments are 
performed either in a wind tunnel or in flight to produce an .V-factor for transition. This 
.V-factor is then applied to similar configurations in the hope that the value will be accurate 
enough for design purposes. Typically, wind-tunnel tests at low Reynolds numbers are used 

to produce .V-factors that are then applied to flight conditions. 
Successful implementation of the e-v method relies on a number of assumptions. The 

first and most fundamental requirement is that the process by which transition occurs in 
the ba-seline experiment must be the same process as that occurring in practice. Second, 
the method assumes that there is a uniform distribution of initial disturbance amplitudes 
across all of the relevant instability modes and that the amplitudes in the experiment are 
equivalent to those in practice. The last assumption is that the growth of the instability 
modes is accurately described by linear stability theory throughout most of the transition 
region, although this is the weakest requirement because some degree of nonlinearity may 
be lumped into the particular iV-factor. However, each of these assumptions is strongly 

violated in swept-wing transition. 
Perhaps the most serious flaw is that the character of the transition process—whether 

it is dominated by stationary or traveling waves—depends on the magnitude of freestream 
disturbances. This means that while the transition mechanism in flight is always stationary 



Given these two possible breakdown mechanisms, the objectives of the current work are 
as follows. The first is to establish a swept-wing model that provides a crossfiow bound- 
ary laver with a very well controlled primary instability. The second is to determine if a 
secondary instability does exist, and if so. to determine under what conditions it becomes 
unstable, its growth characteristics, and ultimately where it triggers breakdown. The data 
presented will be suitable for comparison with numerical simulations. The third objective 
is to determine whether the swept-wing boundary layer shows any evidence of supporting 
an absolute instability. Although this has been observed in a rotating disk boundary layer, 
no evidence has been observed for swept wings. However, the absolute instability experi- 
ment poses special challenges for maintaining a good basic state, even beyond those of the 
secondarv instability, so it may simply be that the absolute instability experiment could 
not be performed before now. In parallel with these three experimental objectives, the 
fourth objective is to design, install and test MEMS-based roughness actuators for use as 

laminar-flow-control devices on a swept-wing model. 
The layout of this document is structured around these four objectives. This intro- 

ductory chapter has presented a review of the receptivity and primary instability aspects 
of crossfiow stability—features that are important both for the secondary instability and 
absolute instability experiments. In Chapter 2. a description of the experimental facility, 
hardware, and techniques that are common to both the secondary instability and absolute 
instability experiments is presented. That chapter includes a description of the design phi- 
losophy of the swept-wing experiment. The philosophy is not restricted to just the present, 
work but encompasses the experience of the last decade of swept-wing experiments. This 
section also includes a detailed description of the MEMS development efforts. Chapter 3 
consists of the investigation of the secondary instability as a crossfiow breakdown mecha- 
nism. The chapter begins with a review of the literature specific to the secondary instabil- 
ity, then progresses to specific experimental techniques, results, and discussion. Chapter 4 
presents the absolute instability in the same manner: a self-contained literature review, 
experiment description, and results and discussion. Overall conclusions that compare the 

two instabilities are presented in Chapter 5. 



tion. Without an indication that this could occur, and if so. for what parameter range, 
there is no reason to make the experiment more complicated than necessary. 

The next idea is to provide a model with boundary layers that are sufficiently thick 

to allow for relatively easy and well-resolved boundary-layer velocity measurements and 
to simultaneously provide sufficient crossflow to cause transition. These requirements con- 
flict because thick boundary layers can be achieved by restricting the experiment to low 
Reynolds numbers, but at too low a Reynolds number the instability would not be strong 
enough to produce transition. One of the first means of improving the prospect for strong 
crossflow and a thick boundary layer is to select a pressure gradient that locates the pres- 
sure minimum as far back as possible. This means that the boundary layer can develop 
over the longest possible distance without the boundary layer becoming unstable to T-S 
waves and without the crossflow direction changing. The pressure gradient can also be used . 
to enhance the crossflow by making the pressure gradient as strong as possible. Although 
this means that strong negative lift is preferable, experience at the Unsteady Wind Tunnel 
lias shown that the wall liners used to maintain spanwise-uniform flow are difficult to con- 
struct and maintain when there is strong lift. Therefore a pressure contour that provides 
a strong pressure gradient with a late pressure minimum at zero lift is the optimum con- 
figuration. Enhanced crossflow can also be produced by increasing the sweep angle of the 
wing. Huwever. exceeding A = 45° becomes impractical for the hotwire traverse system. 

Starting with Dagenhart (1992). all of the previous Unsteady WTind Tunnel crossflow 
stabilitv experiments employed a swept-wing model with an NLF(2)-0415 profile (Somers k . 

Horst mann. 19S5) and 45° sweep. The NLF profile places the suction-side pressure minimum 
at 71% chord. Transition on this model is always observed upstream of 71% chord, so the 
T-S instabilitv does not contribute-to transition, nor does the Görtier instability, because 
the concave region also occurs downstream of 71%. The nose radius and sweep are such that 
leading-edge contamination is not present. The wing used in the current work, designated 
the ASU(67)-0315. was designed by Reibert around the same principles with the additional 
feature of generating significant crossflow at zero lift. The unswept chord length of the 
new model is 1.829m. the sweep angle is 45°. and the angle of attack is set at -3°. the 
zero-lift angle. The theoretical inviscid pressure contour for this configuration, including 
the influence of the wind-tunnel walls, is computed using the MCARF code of Stevens et al. 
11971, and is shown with the wing contour in Figure 3. The code does not account for 
displacement thickness growth on either the model or the walls. 

2.2    Swept-wing model 

The ASU(67)-0315 wing was constructed to provide a flexible test platform on which a 
variety of boundary-layer transition-control experiments can be conducted. To this end. the 
leading edge of the wing is not continuous, but includes a leading-edge slot in the middle 
third of the span that extends to approximately 20% chord. This slot accepts modular 
leading-edge inserts that can provide any sort of boundary-layer treatment, in particular 
the MEMS roughness actuators. The leading 10% chord of the main body of the model is 
a solid aluminum piece, hand polished to a 0.2-p.m-rms surface finish. The remainder of 
the main body consists of an aluminum frame and foam core covered by fiberglass. The 
fiberglass construction means that the wing weighs approximately 350 kg. allowing it to 
be much more easily handled than the all-aluminum NLF wing. (The NLF wing weighs 
approximately 725 kg.) The model includes two lines of 29 suction-side pressure taps at 
various chord locations. The lines of taps are oriented in the X direction as indicated in 

Figure 4. 
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may be worse than if no control had been attempted, a much-more-robust actuator design 

must be developed for use in practice. 
The work performed by the ASU group implementing the few defect-free MEMS actu- 

ators raised other serious questions about the applicability of MEMS actuators to external 
flow control given the current level of MEMS technology. Some of the key difficulties 
encountered were (1) implementing a flat silicon surface into a curved wing surface. (2) 
bonding the silicon wafer slices permanently to the aluminum wing. (3) maintaining a flush, 
no-ronghness surface at-the wing/wafer surface, and (4) maintaining the elements and re- 
placing failed elements without damaging nearby operative elements. The first and third 
problems, implementing a flat silicon surface into a curved wing surface and maintaining a 
good-quality, no-roughness junction are particularly important for control of the crossflow 
instability because of its sensitivity to leading-edge roughness. The MEMS devices, as de- 
signed, essentially required hand installation, and because this could not be accomplished 
while maintaining sub-micron-level surface quality at the silicon/aluminum or silicon/silicon 
junctions, the application of the MEMS wafers actually led to larger levels of uncontrolled 
surface roughness than the actuators themselves were capable of providing. The fact that 
the actuator strips were much longer (on the order of 100 mm) than the most unstable 
crossflow waves (10-16 mm) does not prevent difficulties, because even isolated roughness 
sites can be detrimental, as demonstrated by the experiments of Radeztsky et al. (1999). 

Because the experiments require roughness with better quality control than the MEMS- 
based elements provide, a decision was made to manufacture at ASU a pneumatically acti-. 
vated roughness insert. This insert provides uniform activation of an entire array of elements 
on a slow time scale. This action is sufficient to perform the experiments of interest, but does 
nor extend into the unsteady or non-uniform roughness forcing the MEMS-based actuators 
might provide. The pneumatically driven insert has the capability to vary the roughness 
height, a necessarv component of the absolute-instability experiments. It has an interior 
chamber that is pressurized from a supply outside the wind tunnel and a 12-mm-spaced 
spanwise array of 3-mm-diameter holes is drilled from the contoured upper surface of the 
insert into the interior pressure chamber. The array of holes is covered with a 25-mm-wide, 
4U-um-thick strip of polyester tape, and when the interior of the insert is pressurized, the 
tape deforms into a periodic array of artificial roughness. The variable-amplitude roughness 
system provides a means of producing transient roughness forcing that is used to search 
for an absolute instability. A schematic of the small variable-roughness device is shown in 
Figure 6. In the future, such an insert could be manufactured with a MEMS-based valve 
controlling each element in the roughness array with the MEMS valves located inside the 

wing. 
The chief difficulty associated with the new model is the quality of the surface that results 

from the installation of the modular pieces. It is known from the earlier work of Radeztsky 
et al. (1999) that micron-scale isolated roughness features of a surface are sources of crossflow 
receptivity. This means that even the smallest imperfections at the junctions between the 
small and large inserts and the large insert and the wing can produce deformations of the 
mean flow that could overwhelm any boundary-layer features generated by the roughness 
arrays that are intended to provide a uniform disturbance field. Fortunately, while crossflow 
boundary layers are extremely sensitive to 3-D roughness, they are not sensitive to 2-D 
(spanwise-constant) roughness. Crossflow requires a source of streamwise vorticity that 3- 
D roughness provides, but 2-D roughness does not. So, while the corners of the junctions 
pose a problem, the long sides of the variable-roughness insert and the large leading-edge 
insert that run in the span direction do not adversely affect the flow. Because of the large 

12 



this tank at 0.15 atm to a computer-controlled valve that regulates the pressure inside 
the variable-roughness insert. The system includes a pressure transducer, the test-section 
static pressure sensor, and the pressure coefficient data that give the pressure difference 

across the tape membrane. With no air flow in the tunnel, the relationship between the 
pressure difference and the displacement is measured using a confocal laser displacement 
sensor that is described below. A family of pressure-versus-displacement curves is shown 
in Figure 9. While precise control of the roughness height could not be achieved using 
the system, the general trend is acceptable for the purposes of the absolute instability 
experiment where simply high and low roughness amplitudes are needed. The shapes of the 
activated roughness elements for two pressure levels are shown in Figures 10 and 11. 

2.4    Wind tunnel, test section, and traverse 

The experiments are conducted in the Arizona State University Unsteady Wind Tunnel. 
The Unsteady Wind Tunnel is a closed-loop, low-speed, atmospheric-pressure facility orig- 
inallv built and operated by Dr. Philip Klebanoff at the National Bureau of Standards. 
Following Dr. Klebanoff's retirement, the tunnel was moved to Arizona State University 
and reconstructed between 1984 and 1988 with numerous flow-quality improvements. The 
design and operation of the wind tunnel are intended to provide the best possible con- 
ditions for conducting transition-to-turbulence experiments. With this in mind, quite a 
significant investment has been made in high-quality screens, honeycomb, a settling cham- • 
ber. a contraction cone, turning vanes, and vibration-isolation strategies. The fan consists 
of a 1.8-m-diameter. 9-rotor, 11-stator axial stage, powered by a 150-hp DC motor. The 
motor is computer controlled and can maintain speed to within 0.01% of the set point. 
Further details of the facility's design and capabilities are given by Saric (1992), and details 
of the computer-control capabilities are described by Reibert (1996). An schematic layout 

of the Unsteady Wind Tunnel is shown in Figure 12. 
The key features of the tunnel that bear directly on the present experiment are the 

freest ream conditions in the test section. The maximum freestream speed that can be 
achieved in the test section is 35 m/s, and as noted above, any fan speed can be held to 
within 0.01';": (although this level of precision is beyond the accuracy to which the freestream 
speed can be reliably measured). The maximum speed corresponds to a chord Reynolds 
umnber of approximately 3.8 x 106 for the swept-wing model. The baseline operating point 
fur the current experiment is Rec - 2.4 x 106, and for the temperatures at which the tun- 
nel operates, this corresponds to freestream speeds between 22 and 23 m/s. The baseline 
Revnolds number provides the best combination of experimental parameters. Breakdown 
occurs near 50% chord, in the middle of the traverse's range, and the boundary layer is 
reasonably thick (3 mm) in the transition region, so well-resolved boundary-layer profiles 
are easv to obtain. Wind-tunnel heating is a concern at this speed but it is not so severe as 
to be unmanageable. The freestream turbulence level that is achieved in the test section is 
exceptionally low due to the very careful attention that is paid to turbulence-control devices 
upstream and vibration control. At 20 m/s. the turbulence level u'/Uiy0 is less than 0.02% 
(using a 2-Hz high-pass filter). Both the (.''and w' fluctuation levels are less than half that 
of u'. The sound level in the test section at the same conditions is below 85 dB. Recall that 
Deyhle &z Bippes (1996) found that stationary waves dominate crossflow boundary layers 
onlv below Tu = 0.15% (where Tu includes contributions of all three fluctuating-velocity 
components), so the low turbulence level of the Unsteady Wind Tunnel is essential for con- 
ducting a stationary-wave-dominated experiment.  Perhaps the most significant limitation 
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Direction I  X. axial     Y, wall normal    Z. vertical 

i Travel 
| Step Size 

1250 mm 100 mm 175 mm 
12 um 0.7 um 1.3 um 

Table 2.1: Traverse Capabilities. 

Reynolds number range. A schematic of a 45° swept wing and liners for the zero-lift 
condition is shown in Figure 16. The liner design and construction techniques are thoroughly 
documented by Dagenhart k Saric (1999) and Radeztsky (1994). but the basic idea is as 

follows. First the pressure distribution predicted by the MCARF code is used to determine 
the surface of all streamlines passing through an arbitrary horizontal (X, Z constant) line 
upstream of the model. The two sides of the surface are constructed in full scale using 
stvrofoam. and these two pieces are attached to the ceiling and floor of the test section to 
provide the root and tip boundary conditions, respectively. The suction-side and pressure- 
side walls of the test section are not treated with liners because these surfaces do not 
adverselv affect the difficulty of stability calculations. The pressure field about the wing is 
slishtlv different from what it would be in free flight, but computations can use the pressure 
field calculated with these walls in place. From an experimental standpoint, suction-side 
and pressure-side wall liners would be significantly more challenging to implement, so not 
including these is a significant advantage in terms of experimental simplicity. 

The extent to which the model and liners produce the conditions predicted by the - 
inviscid code can be assessed by comparing the pressure measured using the surface pressure 
taps to the pressure distribution that is shown in Figure 3. The pressure at each tap is 
measured relative to the freestream static pressure and the difference is normalized by 
the freestream dynamic pressure. pU^/2. This gives 3-D pressure coefficients Cp> (The 
data are acquired using a 10-torr differential pressure transducer described below.) The 
C?:\ measurements differ from Cpn predictions shown in the figure only in terms of the 
normalizing pressure. The Cpo values are normalized using the component of velocity 
perpendicular to the leading edge, whereas the Cp,3 data use the total freestream velocity. 
The relationship is Cp,3 = Cpa cos2A. Because A ~ 45° for this experiment, Cp.3 is simply 

one-half of Cp.o- 
Figures 17-19 give the 3-D pressure coefficient distribution at Rec = 2.0 x 106, 2.4 x 106. 

and 2.S >• 10ti. respectively. The measurements are for the actual -3.4° angle of attack, but 
the computed curve reflects the design angle. -3°. for which the liners were constructed. The 
results at the three Reynolds numbers are nearly indistinguishable. In each case the actual 
pressure is higher than the predicted value at all points upstream of 90% chord. However, 
the pressure gradient—the feature that affects boundary-layer stability—is approximately 
what is predicted by MCARF throughout the region of interest for the experiments, 0.30 < 
x.'c < 0.60. Furthermore, there is not an appreciable pressure difference across the span in 
this region. Such a difference would clearly render crossflow velocity predictions inaccurate. 
These results are quite similar to those obtained by Reibert et al. (1996) for the NLF wing. 
The exceptionally good agreement between those experimental results and the computations 
of Haynes i: Reed (2000) indicates that the experiment can proceed with these pressure 

contours. 
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effectively measured. With any other system (e.g.. LDV or PIV) no such filtering technique 
is available, so measurements of small velocity fluctuations are impossible. There is always 
some concern that introduction of a flow-intrusive device such as a hotwire can change 
the behavior of a system being studied. This is especially true for stability experiments 
where very small influences can become quite significant. For the present experiment this 
need not be a concern for several reasons. First, extensive naphthalene flow-visualization 
experiments of the previous investigators (in particular Dagenhart k Saric. 1999: Radeztsky 
et al. 1999: Reibert et al, 1996) show that hotwire measurements correspond exactly to 
behavior indicated by the flow visualization, for which no intrusive devices exist. Second, 
there is excellent correspondence between the experimental results of Reiben-ei al. (1996) 
and the computational results of Haynes k Reed (2000), so there is additional reason to 
believe that the boundary-layer behavior is unchanged by the presence of a boundary- 
layer hotwire. Finally, in the breakdown region the instability mechanism is driven by an 
inviscid Kelvin-Helmholtz-type instability that does not depend on the pressure gradient 
(the feature of the flow that would be modified by the presence of the hotwire and sting), 
but instead depends on the shear layer that is established by the stationary crossflow waves 

well upstream of the transition location. 
Although in large part the fluctuating components are the most interesting features of 

these experiments, the correlation of the fluctuating components to the underlying mean 
flow is also of interest. This means that a very careful mean-flow calibration procedure is 
required that must include an accurate temperature compensation. The calibration pro- . 
cedure is performed daily to minimize long-term variations in the hotwire response. The 
calibration approach is somewhat different from other recent projects at the Unsteady Wind 
Tunnel (Reibert. 1996: Carrillo, 1996), so it will be described here in detail. 

The basic idea is that the voltage output of the hotwires must be calibrated with re- 
spect to the upstream pitot tube and that this calibration must be valid for any tem- 
perature encountered during the experiment. To perform the calibration, the wind tunnel 
is run through a range of speeds at two temperature levels, and from this the output of 
the hotwires is related to the velocity/temperature state measured by the upstream pitot 
tube and thermometer. The pitot tube is an excellent velocity-calibration standard for 
steady flows because the instruments used to measure the static and dynamic pressures 
and the temperature all have good accuracy, precision, and long-term stability. Addition- 
allv. because the pressure transducers include independent heaters, they are immune to 

environmental temperature variations. 
The calibration approach consists of three elements: a one-time position calibration, 

velocirv calibration, and temperature compensation. The first, position calibration, is nec- 
essary because the entire region of the test section that is accessible by the traverse is 
within the zone affected by the pressure field of the wing, so the velocity measured by the 
pitot tube is not the velocity measured by the hotwires. To account for this, arbitrary 
alibration positions for the hotwires are chosen and the velocities at those points are mea- 

sured using a temporary pitot tube. Then these velocities are related to the freestream 
elocities measured by the fixed pitot probe. For the current work, the calibration position 

is defined as 60% chord, midspan. with full retraction of the sting. Full retraction places 
the boundary-layer probe approximately 55 mm from the wall and the freestream probe 
approximately 180 mm from the wall. This position is selected because it minimizes the 
V and W components of velocity and thus offers the best velocity measurement using the 
temporarv pitot probe. At the calibration position, the pitot probe measurements show 
that the velocity ratio between the boundary-layer calibration position and the upstream 

18 

c 

v 



The actual procedure used to find the constants in equations (2.3) and (2.5) is as follows. 
First, the tunnel speed is varied from 1 m/s to 27m/s (as measured by the pitot probe) 
in increments of 1-3 m/s while the pitot velocity, temperature, and hotwire voltages are 
recorded at each speed. Then the tunnel is run at high speed (typically 31 m/s) until the 
temperature has increased by some increment, typically 5°C. Once the higher temperature 
is reached, the tunnel velocity is decreased and again the pitot velocity, temperature, and 
voltages are recorded. During the ramp-down phase, the velocity targets are changed to 
the actual values observed during the ramp-up phase. This eliminates the need for a strict 
velocitv tolerance for the ramp-up phase (thus reducing calibration time) but increases 
the overall calibration quality by reducing the velocity differences of the hot/cold data 
pairs. Using the data obtained in these two series of measurements, the temperature- 
compensation coefficient is calculated for each of the velocities using equation (2.3). Using 
these compensation coefficients, the ramp-down voltages are adjusted to yield the velocity 
as a function'of temperature-compensated voltage, and these data are fit to equation (2.5). 

The velocity target adjustment mentioned above is one improvement to the hotwire 
techniques employed during this experiment. Two other significant improvements over pre- 
vious experiments are made as well. First, the voltages obtained during the ramp-down 
phase are modified via linear interpolation to the exact speed measured during the ramp-up 
phase. This greatly improves the temperature-compensation coefficient calculation because 
errors in E'1 due to small velocity errors (~ 0.1 m/s) can be on the order of those due 
to 5=C temperature variations, especially at low speeds. Second, instead of using second-, 
and fourth-order polynomial fits to model equations (2.3) and (2.5), respectively, the fully 
nonlinear models are used. To perform the nonlinear2 least-squares fit, the Levenberg- 
Marquardt method described by Press et al. (1992) is employed. The principal advantage 
is that the nonlinear equations provide a model that describes the heat transfer more accu- 
rately than the polynomial basis functions, resulting in reduced deviations of the data from 
the computed curve. Bevington (1969) shows that expected variance of data points relative 
to a fit is the reduced chi squared, x2/"- This term is the sum of the squared deviations, 
normalized by the number of degrees of freedom of the fit (i.e.. the number of data points 
minus the number of model parameters). The nonlinear models improve the reduced chi 
squared relative to the polynomial models not only by reducing the squared deviations but 
also by reducing the number of model parameters from eight (five for the calibration and 
tiiree for the temperature compensation) to six (three each for the calibration and compen- 
sation!. The effect of the various improvements on the temperature-compensation curve 
is shown in Figures 20 and 21. Figure 20 shows a polynomial and nonlinear fit without 
interpolation. Figure 21 shows the nonlinear fit using interpolated data. The reduced chi 
squared is 2.6 x 10_D for the polynomial fit without interpolation, 2.1 x 10~° for the nonlin- 
ear fit without interpolation, and 1.8 x 10~6 for the nonlinear fit with interpolation. Clearly 
the nonlinear model with interpolation produces the best result. Beyond simply reducing 
experimental uncertainty, the benefits of this approach are that the time and heating level 
required each day during calibration are reduced. Sufficiently good results can be obtained 
with a relatively small temperature rise. 

JIn this context, nonlinear refers to the form of the model parameters. For linear fits, the model param- 
eters must appear linearly, but the basis functions may be nonlinear. 
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sting and boundary-layer hotwire are manually adjusted for the upcoming experiment and 
every experiment is restricted to a particular chord location. Prior to any adjustments, the 
boundary-layer wire is vertical and the probe support extends in the negative A' direction. 

First, the boundary-layer probe support is pivoted (about the Z axis) so that it swings 
toward the wing in the {X,Y) plane. This rotation is required so that when the sting is 
moved in the -Y direction (toward the wing) during the experiment, the boundary-layer 
wire itself, and not the sensor's tines, the probe holder, or the sting, contacts the wing first. 
Thi? orientation allows the boundary-layer measurements to be taken as close as possible 
to the wing. Next, the probe support is rotated about its axis so that the hotwire sensor 
;.-, parallel to the surface of the wing. The rotation angle of the probe support depends 
on the chord location, but not on span. This is why measurements always proceed in the 
span direction. Because the hotwire's orientation changes depending on the measurement 
location, it is particularly important that comparisons between computations and the exper- 
iments described here be performed with special attention to the velocity-field projection. 
Because of the nature of the experiment (i.e., the hotwire senses only a projection of the 
local velocity), it is impossible for the full velocity vector to be reconstructed from single 
hotwire measurements. However, because all components of velocity are available from a 
computation, a projection of the computational data that mimics the physical transforma- 
tion introduced by the hotwire orientation can be performed to yield a valid comparison 
between the experiment and computational models. In the experimental results presented in 
this document, velocities are referred to as U, L'edge: and v!. These represent the projection. 
of the mean-flow, boundary-layer-edge, and fluctuating-velocity components, respectively, 

onto the hotwire's orientation. 

2.6.2     Boundary-layer velocity profiles 

Boundary-layer velocity-profile measurements serve to acquire the projection of the mean- 
flow velocity onto the hotwire as the wire is traversed in the Y direction from outside 
the boundary layer to very close to the wing. The purpose of the scans in the present 
experiment is typically not to find the profiles themselves, but to locate the surface of the 
wing verv accurately in the traverse's coordinate system. When performing an experiment, 
the position of the traverse can be controlled very precisely in the global frame of reference. 
However, in this frame the hotwire sensor's position relative to the surface is not known. 
This is because the hotwire is adjusted manually prior to measurements at each new chord 
location, so its position in the absolute traverse frame changes. Moreover, the surface of the 
swopr-wing model is not in perfect alignment with the traverse-oriented coordinate system, 
nor is the surface of the model flat along the chord lines over which the measurements are 
obtained. The misalignment of the model and traverse is quite small, less than 1mm over 
the 175-mm Z range of the traverse. Irregularities that are a result of the curing process 
of the fiberglass surface and subsequent hand finishing produce variations on the order of 
100-200 urn along constant chord lines. These irregularities cannot be accounted for in an 
overall way and must be taken into account locally. Because of these issues, the position of 
the wall is determined using boundary-layer profiles for every series of measurements in the 

boundary layer. 
Using boundary-layer profiles to locate the surface utilizes the fact that the velocity at 

the surface is zero because of the no-slip condition. Approaching the wing while taking a 
series of velocity measurements and fitting these velocity data to a velocity-profile model 
produce a surface-position estimate via extrapolation to zero velocity. The operation must 
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2.6.3 Spanwise-line and full-field scans 

Once the boundary-layer profiles have been used to find accurate surface-position estimates, 
the measurements of interest can begin. There are two principal types used: spanwise-line 
velocity scans for the absolute instability experiments and full-field velocity scans for the 
secondary instability experiments. The line scans proceed along the z direction at constant 
chord. x"/c, and distance from the surface. Y. The mean flows measured by these scans 
are useful for producing stationary-mode amplitudes. These are obtained by taking the 
Fourier transform of the velocity data along the span direction. This technique is similar 

to that used by Reibert et al. (1996) and Saric et al. (1998). To begin such a scan, the 
following parameters are supplied: the starting and ending span locations, the span step 
size, the offset in the Y direction at which the measurements are to be performed, the 
sampling duration, and the sampling rate. The first task performed is surface-position 
estimation using the boundary-layer-profile approach described above. The wall location 
is found at the starting, middle, and ending span positions, and the resulting data are fit 
to a polynomial that provides a surface estimate at all points along the span. With this 
estimate, the hotwire is moved to the position at the starting span location and the correct 
surface offset, and the first point is acquired. After this point, the traverse is moved one 
step in z and the Y position is adjusted to maintain the correct offset. After a number of 
acquisitions, the tunnel parameters are checked and the speed is adjusted if necessary to 
account for any heating that would increase the boundary-layer thickness. For the absolute 
instability measurements, multiple scans at the same x/c location are desired, so after each ' 
scan in z. the hotwire is returned to the starting position and the operator is given the 

option of changing parameters or ending the experiment. 
Whereas the line scans are designed to be performed very rapidly, the full-field scans used 

for the secondary instability measurements are designed to provide very detailed velocity 
data for all points in the boundary layer. These scans provide mean- and fluctuating- 
velocity data on a 2-D grid of points at a particular x/c location. Typically the spacing in 
Y is 200-300 urn and the spacing in z is 1.0 or 1.2 mm. This provides 15-20 points in the Y 
direction from the surface to outside the boundary layer and 12-15 points in the z direction, 
enough to span somewhat more than one crossflow wavelength. Full-field scans begin with 
a boundary-layer-profile measurement to locate the surface at the starting z position. Once 
the surface is located, the hotwire is moved to the starting Y position that is specified in the 
control program, and the mean and fluctuating data are acquired. Then the wire is moved 
out to the next Y location. After the desired points at the first c station are acquired, the 
hotwire is moved to the next span location and a new boundary-layer profile is obtained. 
The second and subsequent profiles are obtained more quickly than the first because a fairly 
good surface-location estimate exists from the previous profile, so these scans need not start 
outside the boundary layer. Instead they are begun well inside using the previous point's 
surface-location estimate and boundary-layer-edge velocity as parameters. The process is 

repeated until the entire domain is mapped. 

2.6.4 Fluctuating-velocity spectra 

When the line and full-field scans are performed, both mean-flow and fluctuating-velocity 
data are obtained. Because the interest here is in the process by which the instabilities grow 
and turbulence appears, the fluctuations are of particular interest. At each measurement 
position the mean output of the hotwire anemometer is obtained in the usual way, and 
the fluctuating output is obtained by high-pass filtering (typically at 20 Hz) to remove the 
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Chapter 3 

Secondary Instability 

The review of the crossflow instability on swept wings presented in Chapter 1 concentrated 
on two aspects: receptivity and the primary instability. Work of the past decade has shown 
the primary instability to be subject to nonlinear growth," stationary-wave interactions, and 
amplitude saturation. This aspect of the flow is now well understood both experimentally 
and computationally Excellent agreement between these approaches has been demonstrated 
bv the experiments of Reibert et al. (1996) and the computations of Haynes k Reed (2000) 
and Malik et al. (1999). Receptivity is not as well understood, but progress continues, and 
the recent computational results of Collis k Lele (1999) have provided a renewed impetus for 
experimental work. Despite achievements on these fronts, the actual mechanism responsible 

for the breakdown of laminar flow remains unclear. 
Most of the important data regarding breakdown have come from observations of transi- 

tion location. These observations give only general information and do not yield any specific 
clues about breakdown mechanisms. What transition location data have shown is that in 
some cases, the transition location is insensitive to roughness amplitude, while for other 
conditions, transition location is very sensitive to roughness. Specifically, recall that the 
earlv randomly distributed roughness studies by Radeztsky et al. (1999) showed that for 
Rt:c - 2.7 x 106. a decrease of the roughness amplitude from 0.5 |im rms to 0.25 (im rms 
delaved transition from x/c = 0.61 to x/c = 0.68. Contrast this with the results of Reibert 

t! al. i 1996) for Rec = 2.4 x 106 that show a change in transition location from x/c = 0.49 
to onlv x '<: = 0.52 when 12-mm-spaced. 6-u.m-high artificial roughness is replaced with 
12-mm-spaced. 4S-um-high roughness. Although the Radeztsky et al. (1999) experiment 
is for naturally occurring roughness and the Reibert et al. (1996) experiment uses artifi- 
cial arravs of periodic roughness, the wide variety of transition behavior observed indicates 
that transition of crossflow boundary layers can be quite complicated. In order to better 
understand—and eventually predict—this behavior, one must be capable of understanding 
breakdown. In particular it is important to understand what triggers breakdown at the 
specific location at which it is observed. 

There are at least two explanations for why the transition behavior is insensitive to 
roughness amplitude for a sufficiently large initial condition. The first of these is that 
a secondary instability grows in the saturated mean-flow region produced by sufficiently 
large amplitude leading-edge roughness, and it is this secondary instability that leads to 
transition. There have been a few experimental observations that suggest that this is 
the mechanism, and these will be discussed below. Another possibility is that at some 
point in the boundary layer, the flow becomes absolutely unstable. This would mean that 
disturbances could grow in time to large amplitudes at a fixed spatial location. If this is the 
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mode. The reason for the difference in the observed secondary instability modes is unclear. 
In a later computational work on the secondary instability of Görtier boundary layers. Li k 
Malik (1995) were able to determine different growth rates for both of the modes observed 
bv Swearingen k Blackwelder (1987). and it appears as if the appearance of a particu- 
lar mode depends strongly on the parameters of the Görtier boundary layer and on the 

receptivity of the individual modes. 
The maps of velocity-fluctuation intensity produced by Swearingen k Blackwelder (1987) 

are 2-D sections in the spanwise/wall-normal plane. These maps show that th° fluctuations 
are confined to a stationary multilobed structure. Two lobes exist high in the boundary 
laver at maxima of dU/dz and a single mode exists close to the wall near the center of the 
low-momentum upwelling region. The maximum amplitude of the fluctuations was found 
to STOW exponentially at a rate two to five times more rapidly than the primary instability. 
The conclusions are that it is the secondary instability that is responsible for transition, 
and that the secondary instability is the result of inflection points of the streamwise flow 
when the second derivative is taken in the spanwise, not the wall-normal, direction. 

With the investigations described above as a background, a high-frequency secondary 
instability was specifically investigated as a source of breakdown by Kohama. Saric k Hoos 
(1991). This experiment combined hotwire measurements and flow visualizations and was 
intended first to determine the location and behavior of the secondary instability mode 
relative to breakdown patterns that had been observed in naphthalene flow-visualization 
experiments conducted by Dagenhart k Saric (1999), and second to test the conjecture of 
Kohama (1987) that swept-wing breakdown is due to a secondary instability of the same 
type that affects rotating disk flow. The hotwire experiments consisted of two phases: single- 
point velocity-fluctuation spectrum measurements for various Reynolds numbers and single- 
line spanwise scans at constant chord and boundary-layer height. The flow-visualization 
tests were intended to correlate specific features of the hotwire measurements with surface 

shear-stress patterns. 
A velocity spectrum result is given for x/c = 0.4. y/5 - 0.5 (S is not explicitly defined), 

and l'x = 25 m/s or Rec = 2.66 x 106. The spectrum (figure 8 in Kohama et a/., 1991) shows 
traveling crossflow wave activity at 350 Hz and a very broad high-frequency peak centered 
near 3 kHz. The claim is that the high-frequency activity is a secondary instability caused 
bv a Rayleigh instability of the inflection points in the wall-normal profiles of the stream- 
wise mean flow. L'[y). The authors report that increasing the Reynolds number increases 
the amplitude of the high-frequency peak until the signal (as determined by the hotwire 
time trace) becomes turbulent, although no quantitative data are given characterizing this 

development. 
Using a characteristic secondary instability frequency of 3.5 kHz and a 350-Hz traveling 

primarv-wave frequency. Kohama et al. (1991) undertake a series of spanwise line scans 
meant to demonstrate the spatial correlation between secondary instability and mean-flow 
deformation features. The scans are obtained between x/c = 0.40 and 0.45 with the tran- 
sition location at x/c = 0.50. The data reveal that both the low- and high-frequency 
disturbance amplitudes vary significantly over each wavelength of the stationary structure 
and that each mode has an amplitude peak close to the low-momentum upwelling loca- 
tion. The authors claim that the instability is located on opposite sides of this region, but 
this is difficult to observe in the data that are presented. In any case, the claim is that 
the streamwise velocity inflection points near the low-momentum region drive the flow to 
turbulence. The mechanism is an energy-production term involving v'. and this activity is 
located near the boundary-layer edge at the location of the multiply inflected wall-normal 
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the FSC basic state and stability characteristics of this field were calculated. The mode 
shape of the stationary wave was taken from the earlier calculation and the amplitude was 
adjusted to match the experiment. Both the primary and secondary stability calculations 

were performed using local, temporal stability analysis. 
The primary instability calculations successfully identified the most amplified stationary 

wavenumber. ßo = 0.4788. where the nondimensionalizing length is the boundary-layer 
scale, ö = (t/x/L:cXt)1/2. The orientation of this mode was also in good qualitative agreement 
with experimental observations. 4.73° from the inviscid streamline. Amplitude saturation 
was not captured because these were linear calculations. 

The secondary instability calculations were performed at the same chord location using 

the saturated stationary-mode amplitude from the experimental measurements, eo = 7.899c. 
where eo is the maximum spanwise mean-flow velocity difference for all heights. The 
secondary-mode behavior was calculated using Floquet theory. In Fischer & Dallmann "s 
approach, the perturbations of the spanwise-periodic mean flow, q', are written as q' = ei<?i- 

where 

qi    =   real[qi(y,z)ei(aiI-*'lt)], (3.1) 

q^y.z)    =    e-^y    £    $U(y)e**s. (3.2) 
k=-Ki 

(Fischer k. Dallmann, 1991. use y to indicate the spanwise coordinate and z to indicate the 
wall-normal coordinate. For consistency with the rest of this document, y is the wall-normal 
coordinate and : is the spanwise coordinate in equations 3.1 and 3.2.) The variable a is a 
detuning parameter used to specify a harmonic, subharmonic, or mixed response. 

The secondary instability calculations show that maximum temporal amplification oc- 
curred at Q = 0.03 for a = 0 (harmonic resonance) and a — 0.08 for a = 0.35 (com- 
bination resonance). The dimensional frequencies of these modes are 73 and 145Hz. re- 
spectively. These frequencies are in the range of the most amplified traveling disturbances 
obtained by the primary stability analysis. Similarly, the growth rates of the secondary 
modes (a/, = 0.0063 and 0.0068. respectively) are commensurate with the primary instabil- 
ity traveling-wave growth rates (although the growth rates computed using the linear code 
are not valid at 80% chord due to amplitude saturation). The conclusion that can be drawn 
from these results is that the strong mean-flow distortion produces a spanwise modulation of 
the traveling-wave intensity. It seems that this effect should not be considered a secondary 
instabilitv. because the amplified modes exist without mean-flow deformation, and because 
progressively larger values of the stationary-mode amplitude simply modify the growth rate 
and frequency of the existing traveling-wave mode. No stable modes are rendered unstable 
to produce entirely new behavior. What is demonstrated, however, is that the stationary 

vortices produce strong spanwise modulation of the traveling waves. 
An interesting feature of the computations of Fischer & Dallmann (1991) was that 

they did not identify the high-frequency fluctuations observed by Kohama et al. (1991) 
in the ASU swept-wing experiment. To resolve this inconsistency, Fischer. Hein k. Dall- 
mann (1993) impose a stationary disturbance amplitude larger than that observed in the 
DLR experiment. They point out that such large amplitudes would clearly be subject to 
nonlinear interactions, but those interactions could not be considered. Instead, the focus 
was on determining if the high-frequency instability could be produced under the same 
linear framework as the previous Fischer k Dallmann (1991) calculations. The new anal- 
ysis by Fischer et al. (1993) also uses parameters that match the basic state of the Müller 
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direction and the mode-II instability is generated by inflection points in the wall-normal 
direction. Although one or the other production mechanism may dominate for a particular 
mode, it is too simplistic to assume that only the spanwise or wall-normal inflection points 
are responsible for the appearance of a particular mode: with such a highly distorted 3-D 

boundary layer, all possible instabilities must be evaluated. 
Malik et al. (1996) also compute the secondary instability behavior observed by Poll 

(1985). The computations for a stationary-wave-dominated boundary layer predict a 17.2- 
kHz mode: Poll's high-frequency signal occurred at 17.5 kHz. Based on the shape of this 
disturbance. Malik et al. (1996) claim that this is a type-II mode. Calculations were also per- 
formed for a traveling-wave-dominated boundary layer. These yielded three high-frequency 

secondary modes at 15.7, 14.8, and 12.8 kHz. 
As part of the ongoing crossflow stability experiment at DLR, Lerche & Bippes (1996) 

and Lerche (1996) obtain measurements of the high-frequency secondary instability while 

examining the effect of forcing traveling and stationary crossflow waves. Forcing the most 
amplified traveling wave is denoted a (1.1) case; forcing the most amplified stationary wave is 
denoted a (0.1) case. For (1,1) and (0,1) forcing, the distortion of the mean flow alone is not 
sufficient to render the boundary layer unstable to the secondary instability. The saturation 
levels of these cases are 2% and 10%, respectively. However, superposition of the stationary 
and traveling waves can produce sufficient distortion to destabilize the secondary instability. 
Using phase-locked hotwire measurements, Lerche (1996) observes that the high-frequency 
secondary instability appears to be linked to a particular phase range of the traveling . 
wave. Bippes (1999) states that in these cases, the secondary instability is located near 
the instantaneous wall-normal inflection point, d2U/dy2, with the larger velocity gradient 
dU'dy} where U now represents the basic state plus the primary instability (stationary and 
traveling) disturbances. Bippes claims that the region of secondary instability activity is not 
tied to a particular inflection point of the steady flow (either wall-normal or spanwise), but 
rather is moving in the span direction with the traveling waves induced by the upstream 
forcing. This is likely the case when traveling waves dominate, but in low-disturbance 
environments for which stationary waves dominate, the secondary instability does seem to 

be located at particular span locations. 
The fact that for some configurations the superposition of a certain phase range of the 

traveling crossflow mode with the stationary mode is required to trigger the secondary in- 
stability may reveal why some earlier observers (e.g., Poll, 1985) believed the high-frequency 
hotwire signals to be intermittent turbulence. The result obtained by Lerche (1996) shows 
this is not the case. The occurrence of the secondary instability is deterministic if one is 
careful to control both the traveling and stationary waves. It appears that to destabilize 
the secondary instability, there is a critical amplitude of the streamwise-flow deformation 
that is necessary, but this deformation need only occur instantaneously. This result should 
not be surprising if one considers that secondary instability frequencies are much higher 
than the primary traveling-wave frequencies. What could be considered "instantaneous" 
with respect to the slow primary-wave time scale is quite long on the secondary instability 

time scale. 
The velocity fluctuation data obtained by Lerche (1996) for the case of (0,1)+(1,1) 

forcing have the same type of spectral structure as seen by Kohama et al. (1991). The 
secondary instability appears as a broad high-frequency peak an order of magnitude higher 
(in frequency) than the most amplified mode of the primary instability. For Lerche's case, 

:The DLR group uses z as the wall-normal coordinate, y is used here for consistency with the definition 
used throughout this document. 
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becomes unstable and grows slightly less rapidly than the 600-Hz-2.5-kHz mode. Kawakami 
et al. (1999) also use a small speaker embedded in the plate to force the secondary instability. 

Using various forcing frequencies, the authors find that the maximum growth rate is about 
three times that of the most amplified primary instability and occurs at 1.5 kHz. 

3.2    Experimental approach 

What is lacking from the experiments described above is a careful, thorough approach to 
the secondary instability that can be used to validate the computational models. There are 
numerous spatial and spectral details that have not been explored that could significantly 
improve our understanding of the secondary instability, including the beginnings of a predic- 
tive understanding into where it will appear and how it causes breakdown. One detail that 
is particularly interesting is the issue of what secondary instability modes appear and under 
what conditions. Much of the past work has been hindered by rather broad generalizations 
of the secondary instability features, the best example of which is the fact that none of the 
experiments has distinctly demonstrated either the type-I or type-II modes ^predicted by- 
Malik et al. (1996). It is a goal of the present experiment to provide a detailed catalog of 
secondary instability features that is capable of validating computational models. 

The secondary instability experiment is quite simple. The approach is to first establish a 

spanwise-uniform primary disturbance field and then track the evolution of the fluctuating 
velocities associated with all of the instability modes that exist in a particular stationary ■ 
structure. Because Reibert et al. (1996) demonstrated that the spanwise uniformity of the 
primary instability is quite good when periodic leading-edge roughness is used, periodic 
roughness is applied here at x/c = 0.0025. near the crossfiow neutral point. Because of 
the uniformity, only a single stationary structure need be interrogated for each case and 
its behavior is taken to be representative of the behavior of the entire boundary layer. 
Following the notation used by Reibert et al. (1996) and Saric et al. (1998), the artificial 
roughness arrays will be designated with the notation [k\X], where k is the amplitude of the 
roughness in micrometers and A is the spanwise wavelength in millimeters. 

Measurements are taken by performing the full-field scans that were described previously 
to obtain the mean and fluctuating velocities at all points in a 2-D grid in the (Y, z) plane 
at various chord locations, x/c. The mean-flow data are used to determine the stationary- 
modi' amplitude growth. This is done by considering the spanwise rms of the stationary 
disturbance. rms'(L* - C'mean)/f-'edge]- The amplitude of the stationary-disturbance mode is 
represented by the integral of the mode-amplitude curve taken from the surface. Y = 0, to 
the edge of the boundary layer. This measure is convenient and robust for experimental 
data both because it includes the contribution of all the data and thus is resistant to 
errors at individual points and because there is no ambiguity that results from arbitrary 
definitions such as a point in the flow at which to evaluate the amplitude. The fluctuating 
data are processed using a fast Fourier transform to yield fluctuation spectra, and a narrow 
band-pass filter is applied to these spectra to yield rms velocity-fluctuation amplitudes for 
individual modes. To obtain the instability growth rates, an integration over the whole field 
is required rather than an amplitude maximum or the amplitude at a particular location. 
Without considering changes in the spatial extent of an instability mode, much of the growth 
in its energy content could be lost as more of the area participates. As will be apparent 
below, the spatial'distributions of the modes vary through the boundary layer, so to obtain 
an accurate picture of the instability growth rates, the velocity-fluctuation amplitudes are 
integrated over the entire field to give the total mode amplitudes.  Because the stationary 
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accompanies the advent of nonlinearities. Reibert et al. (1996) explain that the upper lobe 
is due to the rollover phenomenon that brings low-momentum fluid into the upper part 
of the boundary layer above the high-momentum fluid that is drawn close to the surface. 
Using the mean-flow velocity profiles from Figure 23, a velocity contour plot is constructed. 
This plot is shown in Figure 24. This layout reveals the structure of the stationary vor- 

tex better than the collection of profiles. In this figure the streamwise flow is into the 
page and the crossflow velocity is from right to left. The stationary vortex rotates in the 
clockwise direction. The dark shades are low-momentum regions and the light shades are 
high-momentum regions. The low-momentum upwelling region falls between z = 121 and 
123 mm. What is particularly important for understanding the breakdown of the boundary 
layer is the distribution of velocity fluctuations within this structure. Figures 25-27 show 
the velocity-fluctuation spectra at points on three vertical (constant z) lines. The first of 
these. Figure 25. is at z — 119 mm, to the left of the low-momentum upwelling. The spectra 
here show extremely low fluctuation levels. However, several features are detected. First, 
the most amplified disturbances are between 150 and 200 Hz. These fluctuations are the 
most amplified traveling crossflow waves. Second, there are fluctuations near 800 Hz. These 
may be T-S fluctuations that exist in spite of the favorable pressure gradient, since 800 Hz 
corresponds to about F = 140. All of the fluctuations die off quickly as the distance from 
the wall increases. For z = 122 mm (Figure 26), the center of the low-momentum upwelling 
region, the spectra are about the same as at z = 119 mm, except now the disturbances exist 
much farther from the wall where the boundary layer is thicker. The final span location, 
c = 125 mm. with spectra shown in Figure 27, is what is referred to as the overturning re- 
gion. This is where the low-momentum fluid that has been lifted away from the wall moves 
over the high-momentum fluid that is drawn in toward the wall. For this chord station, the 
spectra are very similar to those in the upwelling region of the previous figure. 

The best means of understanding the stability behavior in the distorted boundary layer 
is to plot the spatial distribution of the amplitudes of the various fluctuating modes and 
compare these to the underlying structure of the mean flow at the same location. To do 
this, all of the velocity-fluctuation spectra for a particular chord location are integrated over 
the frequency band of interest, and the result is plotted against Y and r in a manner similar 
to the mean-flow contours. In the velocity-fluctuation amplitude-distribution figures, the 
intensity is given as the rms velocity fluctuation in the frequency band, the square root 
of the integral of the spectrum. Figure 28 is the rms velocity-fluctuation distribution for 
the frequency band centered at 200 Hz. the frequency band corresponding to the traveling 
crossflow mode. Before the boundary layer undergoes mean-flow modification because of the 
stationary crossflow vortices, the traveling crossflow waves are uniform in span. Here, the 
mean-flow modification has produced some deformation of the traveling crossflow amplitude 
distribution. This is the effect termed a secondary instability by Fischer k. Dallmann (1991). 
who predicted that just such a modification should exist. As was argued above, this should 
not be considered an absolute instability because it is only a modification of existing unstable 
modes and not a destabilization of a new mode. 

It is not obvious that this experiment should be capable of detecting the traveling 
crossflow fluctuations as well as we see them here. The primary disturbance consists of 
streamwise vorticity and the velocity fluctuations associated with this are v', w'. The hotwire 
is situated to detect u'. v' fluctuations. Furthermore, because the streamwise U component is 
large relative to the fluctuations, the hotwire is more capable of detecting the u' fluctuations 
that are aligned with U than the v' fluctuations that simply change the velocity vector's 
direction, but don't significantly change its amplitude. The fluctuating velocity detected by 
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that lie in the (F, z) plane and convect in the stream direction. If this is the case, a 
visualization of the secondary instability would consist of rolls that wrap along the left 
side of and extend above the stationary structure. This is exactly what is observed in the 

rotating disk flow-visualization experiments of Kohama (1984). In the secondary instability 
phase of the Görtier experiment carried out by Swearingen k Blackwelder (1987). two 
tvpes of secondary instability modes were observed. One is termed a horseshoe mode 
and resembles the crossflow rolls observed by Kohama (1984). The other mode is termed 
a sinuous mode and consists of an oscillation of the structure in the span.direction. The 
difference between the crossflow and Görtier boundary layers is the fact that while crossflow 
boundary layers appear to have only a single secondary instability location, the Görtier 
structure has symmetric instability lobes that can operate either in or out of phase to 
produce one or the other type of secondary instability. Because there is no such symmetry 
in crossflow boundary layers, only the horseshoe-type mode can exist. This is exactly what 

is observed by Kohama (1984) and is what is.thought to exist here. 
The distribution of 200-Hz fluctuations continues to diverge from what is expected for 

traveling crossflow waves. Now there is almost no significant activity in this band in the 
high-velocitv regions that are being drawn into the surface by the stationary vortex, and the 
fluctuations that were once distributed along the surface as the traveling crossflow waves 
are being lifted by the vortex in the low-momentum upwelling region. It is very surprising 
that a mode whose origin is in spanwise-traveling waves could reach a stationary state that 
is so highlv modulated in span. The behavior of this mode is certainly worthy of much more . 
derailed attention. However, to do it justice would require a different technique than is used 
here. Because it is (or at least starts as) a v'.iv' disturbance, if one wishes to understand 
its evolution unambiguously, a multi-element hotwire probe should be used to obtain the 
projection of the velocity field onto the plane parallel to the wing instead of simply the 
projection onto the single-element wire used here. With the data that are available now. 
nothing more conclusive can be said about this mode. This does not prevent us from moving 
forward with the high-frequency mode that appears here at x/c = 0.40. Because this mode 
lies aloim a streamwise shear layer, the disturbances are u', w' (or u',v', depending on the 
particular location being considered), so the single hotwire is sufficient to obtain good data 

on this mode. 
Moving downstream, the next position considered is x/c = 0.41. The mean-flow con- 

tour.-, veloeitv-fluctuation spectra, and the rms velocity distributions are nearly identical to 
those at x; c = 0.40. except of course for growth of the fluctuation amplitudes. Figures 43- 
47 ar>j the mean-flow profiles: mean-flow contours: and fluctuation spectra at z = 87, 90, 

ami 93 mm. respectively. 
At x c - 0.42. the mean flow (profiles and contours are given in Figures 48 and 49) 

is amain about the same, but here a subtle difference in some of the fluctuation spectra 
(Figures 50-52) exists. Close examination of the Y = 0.80mm spectrum at : = 84mm 
i Figure 50) and the Y — 1.60 mm spectrum at : = 87 mm (Figure 51) reveals that a 
second peak in the fluctuation spectra exists at about 1.8 kHz. It is easy to miss the 
existence of this peak because of the proximity of the mode-I peak at 3.0 kHz. Plotting the 
mis velocitv from 1.7-1.9 kHz (Figure 53) reveals an amplitude distribution that is almost 
identical to that seen previously for the mode-I instability. It is easy to imagine that much 
of this similarity is due to spillover from the 3.0-kHz mode. Consider, for instance, the 
Y — 2.4 mm spectrum at z — 87 mm (the highest amplitude secondary instability peak in 
Figure 51). That feature of the spectrum is quite strong at 1.8kHz, and yet it appears to 
have only a single mode centered near 3 kHz. If there is 1.8-kHz activity here it is swamped 
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are not markedly different, but the contour map constructed from them (Figure 74) shows 
that much of the fine structure of the mean flow has been eliminated. The low-momentum 
upwelling no longer has a narrow apex: instead this region is wider and flatter. The region 

of low-momentum fluid high in the boundary layer still extends over nearly the whole 
stationary structure's length, but now the lowest velocities in this feature. L < 0.7Cedge. 
are gone. What is most important in Figure 74. however, is the velocity gradient near the 
wall to the left of the low-momentum upwelling. Notice that this region looks quite different 
from previous cases: in particular the contour lines are now very close together, indicating 

that the wall shear here is quite high. 
What are responsible for these changes in the mean flow are of course the much-increased 

velocitv fluctuations brought on by breakdown to turbulence. At z - 72 mm, the high wall- 
shear region to the left of the low-momentum upwelling. the fluctuation spectra in Figure 75 
show a fiat, very high amplitude, fully turbulent spectrum at Y = 0.8 mm. the position in 
the figure closest to the wall. The spectra higher in the boundary layer are nearly fully 
turbulent, but in these curves some evidence of the 3.0-kHz mode remains. The situation is 
much the same for z = 75 mm (Figure 76), the low-momentum upwelling position, except 
the spectrum of the point closest to the wall shows a somewhat lower fluctuation level, 
especiallv beyond 2 kHz. This position is below the zone affected by the secondary insta- 
bilities at the upstream stations and below the traveling crossflow fluctuations that persist 
throughout the preceding development, just as they appeared in Figure 41. The spectra for 
z = 78 mm that are shown in Figure 77 are not turbulent; they maintain distinct spectral 
features associated with traveling crossflow fluctuations near 200 Hz and the 3.0-kHz mode-I 

secondary instability despite their very high amplitude. 
In Figure 7S the distribution of the total velocity-fluctuation rms amplitude is plotted. 

Ir is evident from this figure that the overall energy distribution is exactly coincident with 
the 3.0-kHz and 6.1-kHz modes. Their rapid growth just prior to breakdown and the spatial 
location of the subsequent turbulent fluctuation maximum make it quite obvious that the 
secondarv instability is the route to breakdown for this flow. Notice that the total rms 
velocitv-fluctuation distribution shows somewhat more activity close to the wall between 
- = 71 and 73 mm than do the 3.0-kHz distributions upstream. This has an important 
consequence in that it helps to explain the high wall shear in this region; the turbulent 
fluctuations promote enhanced mixing of the high-momentum fluid with the low-momentum 
fluid near the wall, resulting in increased shear. As a result, the behavior of the turbulent 
wedges that indicate breakdown in naphthalene flow-visualization experiments is now clear. 
The upstream tips of the wedges appear at the points where the mode-I instability makes 
its closest approach to the wall on the left side of the low-momentum upwelling location. 
The reason the wedges appear as they do. with the breakdown tip on the left edge of the 
low-shear part of the naphthalene streaks, has been a subject of some interest since the 
first svstematic swept-wing flow-visualization experiments were undertaken by Dagenhart 
(1992). Understanding the location and amplitude of boundary-layer features relative to 
the associated wall shear in this manner is essential if one is to conduct an experiment using 
only wall measurements with hot films or some other technique as would be required in a 
flight experiment. In particular, consider the quantitative transition-detection technique 
developed by Chapman et al. (1998) using hot films. In this approach the hot films are 
aligned in an array along a particular stationary structure and must be positioned within 
the structure to detect the secondary instability fluctuations and the high shear of the 
turbulent wedge. With the data presented here it is now possible to correctly place the 

sensors to achieve optimum performance with this technique. 
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a weaker earlv mode and the strongly amplified mode that becomes unstable at x/c = 0.42. 
This may indeed be the case, but if so it would be difficult or impossible to detect experi- 
mentally because the 3.0-kHz fluctuations are always observed at exactly the same spatial 

location, regardless of the chord location. The 6.1-kHz mode is first detected at x/c = 0.43 
and it undergoes even more rapid growth than the 3.0-kHz mode. What is interesting about 
the growth rates of the two high-frequency modes is that the 6.1-kHz mode is not twice 
that°of the 3.0-kHz mode, meaning that the 6.1-kHz mode is not simply a harmonic of the 
3.0-kHz mode, despite the fact that they are spatially coincident. Rather, it appears that 

the 3.0-kHz and 6.1-kHz modes are distinct. 

3.3.2    Increased roughness amplitude case 

With a fairly complete description of the secondary instability for the baseline case of 
Rec = 2.4 x 106 with [18(12] roughness, we wish to understand the effect of the roughness- 
array amplitude on the appearance of the secondary instability. The results of Reibert et al. 
(1996) show that if the stationary crossflow waves saturate, then the transition location is 
nearlv independent of the roughness amplitude. Those authors observed that changing from 
-6j 12' to f48J12l roughness moved the transition location from x/c = 0.49 to only x/c = 0.52 

at ß'Er = 2.4 x'lO6. This result suggests that because the stationary crossflow disturbances 

were saturated by x/c = 0.40 in the previous section, an increase in the roughness amplitude 
will not change "the stationary-mode amplitude in the transition region. Essentially, one 
could expect that if the gross transition behavior is unchanged, the secondary instability is 

unchanged as well. 
One aspect of the higher amplitude roughness case that will be different from the baseline 

is the amplitude of the stationary-mode harmonics. Nonlinearities in the development of 
the mean-flow field are not just responsible for saturation, they also generate harmonics 
of the stationary mode. So if 12-mm input waves are applied, 12-mm waves are observed 
to dominate the flow field, but sufficiently far downstream, 6-mm. 4-mm, etc. waves are 
observed to grow as well, and these grow even after the principal wave has saturated. 

For this second case with [54|12] roughness, the boundary-layer velocity profiles will not 
bo shown: instead only the contour plots will give mean-flow information because the con- 
tours are better at describing the mean-flow modification. The stationary-mode amplitudes 
are calculated in the same manner as before using the integration of the rms stationary 
profile. The stationary boundary-layer structure that is followed for the [54|12] case sat- 
urates somewhat earlier than the structure that is followed for the [18(12] case, so the 
measurements begin at x/c = 0.25. Here the mean flow shown in Figure 88 is distorted 
but has not yet developed a distinct overturning feature. Spectra at z = 118.6, 122.2, and 
125.8mm (Figures 89-91) are very similar to what was seen in the upstream stations for 
the previous case. They indicate low disturbance amplitudes with activity confined to the 
traveling crossflow frequency band. The stationary structure has developed the overlap fea- 
ture at x/c = 0.30 (Figure 92). and the spectra show much higher amplitude fluctuations 
near 200 Hz (Figures 93-95). The spatial distribution of the 200-Hz fluctuations shown in 

Figure 96 is very similar to the type of distribution seen earlier. 
At x'c = 0.33. there is still no secondary instability activity in the spectra, so the mean 

flow and spectra are not shown. At x/c = 0.34, there is the first indication of secondary 
instability activity near 3.0 kHz. The mean-flow velocity contours for this location are shown 
in Figure 97 and representative spectra are given in Figures 98-100. The distributions of 
200-Hz and 3.0-kHz fluctuations are shown in Figures 101 and 102, respectively.  Despite 
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the mean-flow velocity has already lost much of its structure high in the boundary layer and 
the shear is increased to the left of the low-momentum upwelling as it was in the baseline 
case. The velocity-fluctuation spectra given in Figures 118-120 are not as dramatic as 
the spectra that indicated breakdown for the baseline [18|12] case, but the mode-I and the 
mode-II secondary instabilities have actually decreased, and lacking a more clear indication, 
we take this as the breakdown criteria in this case. What is new here is that following 
breakdown, the total rms velocity fluctuations that are shown in Figure 121 are coincident 
with the location of 200-Hz activity and not with either of the secondary instability modes. 
This suggests that although the secondary instability growth is obviously a major factor 
in triggering breakdown, lor the increased roughness amplitude case, we cannot ignore the 

contribution of the lower frequency fluctuations. 
The growth rates of the stationary crossflow vortex, the 200-Hz mode, and the 3.0-kHz 

mode are shown in Figure 122. The 6.1-kHz mode is not shown both because it never appears 
as a distinct mode and also because its amplitude is so low that the amplitude integration 
would include a significant contribution from the background. The 200-Hz mode grows 
throughout the entire boundary layer, with a growth rate that does not change nearly as 
much as one might expect given the dramatic variations that occur in the underlying mean 
flow. The 3.0-kHz mode-I instability has a lower growth rate here than was observed in the 
baseline case. It is not known whether this is a consequence of the growth being observed 
upstream of the baseline case or whether it is a purely local effect that only depends on 
the details of the stationary structure. The overall growth from where the mode can be 
detected until breakdown is much lower than for the baseline case, but here we believe that 
the lower frequency fluctuations are jointly responsible for breakdown, and this would mean 
that the secondary instability need not reach as high an amplitude before transition occurs. 

The stationary-mode growth curve displays a notched appearance, that is. growth and 
saturation followed by a slight decrease in amplitude, then slightly more growth before 
breakdown. Although it is more obvious here, the same phenomenon occurs for the baseline 
case (Figure 87). This behavior was observed by Reibert et al. (1996), who performed similar 
mean-flow measurements over many wavelengths on another model. It would appear that 
this is a real effect and cannot be dismissed as experimental error. In Reibert et al.'s 
experiments, this phenomenon was observed for [18|12] and [48|12] roughness but not for 
'6 12' roughness. Here we observe the same phenomenon; higher-amplitude leading-edge 
roughness leads to a more pronounced two-stage saturation. Although the mechanism is 
nut clear, the effect of roughness amplitude suggests that larger-amplitude harmonics of the 
dominant stationary wave, increased low-frequency fluctuation amplitudes, or a combination 
of both of these is responsible. One possible scenario is that downstream of saturation 
of the dominant wave, its harmonics continue to grow, but at too low an amplitude to 
be detected immediately. Saturation of the largest-amplitude harmonic gives the second 
saturation plateau observed in the overall mode amplitude curve. The effect would clearly 
be more pronounced for large roughness amplitudes that provide earlier saturation and 

higher-amplitude harmonics. 

3.3.3    Decreased Reynolds number case 

We now move to the case of [48|12] roughness with Rec = 2.0 x 106. This will demonstrate 
what effect slightly subcritical forcing has on the secondary instability and breakdown, 
because the lower Reynolds number means that the most amplified stationary wavelength 
is shorter than 12 mm.   The lower Reynolds number will produce transition at a larger 
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secondary instability is first detected. What is immediately apparent from the mean-flow 
contour plot (Figure 155) is that short wavelength harmonics of the 12-mm mode are quite 
important here. To the left of the low-momentum upwelling that is centered at z = 85 mm. 
there is a distinct plateau where there is not a strong dU/dz gradient. The mean-flow 
contours immediately suggest that the mode-I instability will not be as important in this 
case as in the previous cases because the region in which it is most strongly amplified has 

been reduced. Instead the type-II mode may play a more important role. 
Velocity-fluctuation spectra for x/c = 0.30 are given in Figures 156-159 for z = SO.2. 

S2.6. S5.0. and 87.4 mm. Four stations are used here instead of the three that are used above 
because of the more complex stationary structure. In all of these, a broad, high-amplitude 
band centered at 300 Hz is amplified. The very low amplitude secondary instability is 
just visible at z = 85.0 mm, directly above the low-momentum upwelling center. For this 
Rec = 2.8 x 106 case. 300 Hz is representative of the most amplified traveling crossflow wave 
and 3.6 kHz is representative of the mode-I instability. Distributions of these two modes are 
given in Figures 160 and 161. respectively. The 300-Hz mode is somewhat different from 
the shapes that occur for critical- and subcritical-wavelength forcing: here there are distinct 
maxima within the structure. The highest fluctuation amplitudes occur just to the right of 
the low-momentum upwelling region as in the previous cases, but the region near the wall 
to the left of the upwelling also contains significant low-frequency fluctuations, as does the 
upper part of the overturning region. Although the highest amplitude part of the structure 
occurs in roughlv the same span position as in previous cases, it is somewhat lower in the . 
boundarv layer and elongated in span. The 3.6-kHz mode is barely detectable over the 
background fluctuations, but it can be identified as a type-1 mode based on its location 

wirhin the stationary structure. 
Several stations downstream at x/c = 0.35, the mean flow (Figure 162) has a character 

similar to the mean flow at x/c - 0.30. The representative spectra at z = 66, 68, 70, and 
72mm (Figures 163-166) indicate that while the secondary instability has grown signifi- 
candv. it does not exist as close to the wing on the left side of the stationary structure as it 
does in other cases that do not feature supercritical roughness forcing. The minor lobes of 
the 300-Hz mode (Figure 167) have disappeared fr- this station, but the mode retains the 
elongated shape it demonstrated at x/c = 0.30. Figure 168 confirms that the 3.6-kHz mode 
is not close to the wall and is in fact creeping along the stationary structure into the region 
occupied by the type-II instability. Previously, the behavior was the opposite. A type-II 
mode might be observed early, but it would tend to shift down into the mode-I region. The 

type-II mode is apparent in Figure 169. 
Moving to x/c = 0.37, the mean-flow contours are given in Figure 170. The most in- 

teresting feature of this location is that the spectra (Figures 171-174) show that above the 
overturning region, the center of mode-II activity, the 6.5-kHz type-II mode is of nearly 
equal amplitude to the 3.6-kHz type-I mode, despite having started growing farther down- 
stream. Mode II is more highly amplified, so this case appears to conform to the expectation 
that supercritical forcing can suppress the mode-I instability in favor of the mode-II insta- 
bilitv. The 3.6-kHz and 6.5-kHz fluctuation distributions are given in Figures 175 and 176, 

respectively. 
Breakdown is observed at x/c - 0.385. The mean-flow contours shown in Figure 177 do 

not appear markedly different; only the spectra above the low-momentum upwelling appear 
to have undergone breakdown. Figures 178-181 show that there is mode-I activity to the 
far left of the center of the vortex at z — 58 mm. that breakdown has occurred in the overlap 
region between the type-I and low-frequency modes, and that mode-I and mode-II activity 
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imum amplitude available in the facility. 125 dB. At frequencies above 2.8 kHz. the sound 
amplitude decreased significantly due to the capability of the speakers (woofers designed 
for frequencies in the hundreds of Hertz). For the entire range of secondary instability 
frequencies, no change in the boundary-layer velocity-fluctuation spectrum was observed at 
anv position within the stationary-vortex structure at the 39% chord position. The sec- 
ond test is conducted at Rec = 2.0 x 106, x/c = 0.55, z = 88mm (see Figures 141 and 
146). These conditions are better than in the previous case because the mode-1 secondary 
instability is centered near 2.4 kHz. within the capability of the speakers, and because the 
maximum amplitude of the secondary instability is much greater than the surrounding fre- 
quency band, so the spectral signal is unambiguous. However, as with the higher Reynolds 
number case, maximum-amplitude acoustic input from 1.5-3.0 kHz had no discernible effect 

on the boundary layer. 
To assess the effect of freestream turbulence on the secondary instability, a small 

turbulence-generating grid is positioned in the contraction cone upstream of the test section. 
The grid produces u'rms/Ux as high as 0.002.9, high enough that traveling-wave-dominated 
flow might result. Spectra of the u' are fiat up to about 800Hz and roll off thereafter, 
reaching a minimum by 4 kHz. Tests at all three chord Reynolds numbers are performed 
with the turbulence grid in place. In all cases the traveling waves are enhanced, but in no 
case does the transition behavior change, and no changes are detected in the behavior of 
the secondary instability. The fundamental problem with this approach is the problem of 
applving high-frequency turbulence without also inducing the low-frequency content that 
will produce overwhelmingly large traveling primary crossflow waves. 

These tests underscore a fundamental difficulty associated with boundary-layer stabil- 
ity experiments. One must always consider the mode of receptivity when attempting a 
controlled means of forcing an instability. For secondary instabilities, the problem is even 
more pronounced. Here, the receptivity encompasses both the initial entrainment of the 
freestream disturbance of the desired frequency and the subsequent evolution of that mode 
until the secondary instability becomes amplified. 

48 



quires choosing contours in the complex u- and /:-planes that maintain causality (i.e.. no 
response for t < 0) and properly treat singularities introduced by the dispersion relation. 
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specifically to investigate absolute instability behavior. Lingwood (1996) traced the evo- 
lution of transiently forced disturbances and showed that the radial group velocity does 

indeed go to zero with positive temporal growth and cause transition. 
The rotating disk result is quite convincing, but the extension to swept wings is not as 

direct as might be imagined. Although each geometry is a 3-D crossflow boundary layer, 
the axial symmetry of the rotating disk means that one need only consider whether the 
radial group velocity goes to zero, because any disturbance that exists at a fixed radius will 
=pread in the circumferential direction and contaminate an entire radial band. On swept 
winsrs. there is no such symmetry, so if the disturbance velocity goes to zero in only one 
direction the disturbance will still convect in the other direction, leaving the initial position 
disturbance free. Thus what could be thought of as an absolute instability of one direction 
is not sufficient for a true absolute instability. An extension of Briggs' method to the swept- 
wing boundary layer requires simultaneous pinching of the contours in both the streamwise- 

and crossflow-wavenumber planes. 
The difficulty of achieving such simultaneous pinching is acknowledged by Lingwood 

(1997). She applies the generalized approach to an FSC boundary layer to determine 
whether swept-wing-type flows can support an absolute instability despite the more strin- 
gent criteria. The FSC geometry is a closer approximation to the swept wing than the 
rotating disk because it provides for pressure gradient and sweep and because it does not 
possess the symmetry inherent to the rotating disk. However, the FSC configuration retains 
an advantageous feature of the rotating disk: a similarity solution for the mean flow exists, 
making parametric studies relatively easy. Lingwood finds that a pinch point does exist for 
the chordwise wavenumber plane for very strong favorable pressure gradients (3H - 1-0, 
i.e.. near the attachment line) and high sweep angles (greater than 80°). but no simultane- 
ous spanwise pinching is observed. Thus a true linear absolute instability does not exist for 
FSC boundary layers, and furthermore, the parameter range for which a single direction 

becomes nonconvective is quite restricted. 
Lingwood's approach was extended by Taylor L Peake (1998). who consider both FSC 

and true swept-wing configurations. These authors determine that the parameter range 
that supports single-direction pinch points is larger than the region identified by Lingwood 
(. 1997;. but despite this, the flow still does not support an absolute instability. Taylor 
L Peake (1999) make yet another, extension to compressible FSC and swept-wing flows 
and still find no absolute instabilities. For these more realistic configurations, even the 
attachment-line region identified by Lingwood (1997) is not absolutely unstable. 

A critical feature that is not considered by any of these computations is that stationary 
crossflow waves on the swept wing render the disturbance evolution highly nonlinear. The 
modification of the mean-flow basic state means that the velocity profiles considered by 
Lingwood (1997) and Taylor k Peake (1998. 1999) do not represent what actually exists in 
the boundary layer near the transition location. In light of the saturation data of Reibert 
et al. (1996). it is conceivable that although the nondeformed linear basic state does not 
support an absolute instability, the highly modified nonlinear boundary layer does. It is 
with this possibility in mind that a transient forcing experiment is performed as part of the 

current swept-wing transition program. 

4.3    Experimental approach 

The most robust experimental means of determining whether an absolute instability exists 
is to apply a transient initial disturbance and observe the spatial and temporal evolution of 



be expected and for which the hotwire will be far enough from the surface that it can be 
moved without danger of hitting the surface. The hotwire is stationary at each point while 
the velocity data are obtained, and following each point the traverse is moved in the posi- 

tive span direction, z, and adjusted in Y to maintain the correct offset from the local wing 
surface. Following a complete run along the span, the hotwire is returned to the starting 
position, the pressure input to the variable-roughness insert is adjusted, and the next run 

is begun. 
Several aspects of the experimental data are most revealing. The basic output of the 

experiment is the mean flow, U/U^, as a function of the span. z. For each Reynolds 
number and chord station considered, these curves are presented for an initial inactive- 
roughness case, an active-roughness case, and a second inactive-roughness case. The three 
states are acquired sequentially during a single, continuous wind-tunnel run. If the second 
inactive case is the same as the first, the boundary layer does not support an absolute 
instability. If the second inactive case is somehow fundamentally different from the first, 
then there is reason to believe that an absolute instability may be present in the boundary 
layer.1 It is useful to observe the behavior of the stationary crossflow modes by calculating 
the spatial (spanwise) mean-flow power spectra. For each Reynolds number, at least two 
chord locations are considered and the behavior of the stationary modes (i.e., growing. 
saturated, or dissipating due to turbulent fluctuations) helps to demonstrate the laminar or 
turbulent state of the particular cases. Another means of understanding the flow is gained by 
examining the spanwise distribution of the fluctuating-velocity power at the most amplified . 
frequency of the secondary instability. In the previous chapter it was observed that this 
amplitude grows by many orders of magnitude through transition, so the high-frequency 
fluctuations provide a more sensitive indication of the state of transition than the mean 
How. Moreover, the results of the previous chapter provide a means of evaluating what is 
represented by the various high-frequency fluctuations. Finally, velocity-fluctuation spectra 
at particular locations are provided as another means of indicating the laminar, transitional, 

or turbulent state of the boundary layer. 

4.4    Results and discussion 

4.4.1     Baseline case 

For the baseline case of Rec = 2.4 x 106, the two most revealing measurement stations are at 
j. <c - o 43 and x/c = 0.45. However, to place the results at those locations in context, it is 

useful to first examine results from x/c = 0.40, a (nearly) purely laminar case for both active 
and inactive leading-edge roughness. Figure 184 shows the mean flow at x/c = 0.40 and 
Y = 1.5 mm. It is evident in this figure that although the active-roughness case has larger- 
amplitude mean-flow deformation, the inactive-roughness case shows significant deformation 
as well. The spatial power spectra of these spanwise mean-flow data (Figure 185) reveal 
that in the active-roughness case nearly all the stationary disturbance power is concentrated 
in the 12-mm mode, with some growth of the 6- and 4-mm harmonics. These spectra are 
generated from 128 span locations as shown in Figure 184. The original data are spaced 
at 1-mm increments of z. For the inactive roughness, there is a broader but much lower 
amplitude distribution of stationary-disturbance power centered about the most amplified 

:If an absolute instability is suspected based on the initial experiments, a more convincing set of exper- 
iments is required. These would consist of point-by-point phase-locked averaging over many forcing cycles 
to reconstruct the disturbance velocities throughout the boundary layer. 
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sec ondary instability activity just prior to the end of breakdown. The inactive-roughness 
case appears fully laminar without any signs of secondary instability growth. At z = 46 mm 
(Figure 191). the onset of breakdown in the active case is farther upstream than it is 
for the structure at z = 31mm. because at 2 = 46 mm, active roughness produces fully 
turbulent flow. At z = 66 mm, the center of the turbulent wedge (Figure 192). the active- 
roughness case is indeed turbulent, but the inactive case is still in the midst of secondary 
instabilitv growth as evident from the distinct bands of mode-I and mode-II activity in 
the velocity-fluctuation spectrum. It is somewhat surprising that the behavior produced 
by the two roughness configurations is different here. One might expect that whatever 
feature inherent to the roughness device that produces the wedge would be sufficient to 
cause earlier transition regardless of the amplitude of the periodic disturbances on which it 
is superposed. However, the breakdown of the feature generated by the isolated roughness 
does depend on the background periodic disturbance. The details of the primary instability 
interaction between a large amplitude isolated feature and a lower-amplitude periodic field 
have not been investigated, and this may represent an important topic for further study. 
It is easy to imagine that on an actual aircraft employing subcritically spaced roughness 
arravs to suppress crossflow transition, such isolated features would be plentiful, and it 
is unclear what the resulting behavior would be and whether isolated roughness elements 

could prevent such a system from working. 
Moving finally to z = 108 mm (Figure 193), the spectra associated with the inactive- 

roughness amplitude peak contain the early stages of the mode-I secondary instability 
growth and the active-roughness case is fully turbulent. Taken together, the spanwise mean 
flow (Figures 186 and 187), the 3-kHz fluctuation curves (Figure 188). and the individual 
point spectra (Figures 189-193) show that the instabilities present can be fully understood 
in terms of secondary instability growth, and that there is no indication of an absolute 

instability. 
At the third chord location for Rec = 2.4 x 106, x/c = 0.45, the now fully turbulent 

active-roughness case exhibits significantly lower spanwise mean-flow variations because 
of the continuing turbulent dissipation of the crossflow vortices. The amplitude of the 
variations in Figure 194 is visibly reduced relative to the upstream locations, and the spatial 
spectra in Figure 195 confirm this. Even the minimum in the mean-flow velocity associated 
with the turbulent wedge has disappeared. The data that are obtained prior to and following 
the turbulent active-roughness case are again nearly identical. There is no hysteresis and no 
absolute instability. The distributions of 3.0-kHz velocity-fluctuation power in Figure 196 
show that the active-roughness case consists of fully turbulent flow. The inactive cases 
remain almost entirely laminar, except for the turbulent wedge that has grown to cover 

approximately 24 mm of the span. 
For this chord station, the most interesting fluctuation spectra are obtained at 2 — 

60mm and _ = 102mm. At z = 60mm (Figure 197), the wedge is now turbulent for 
the inactive case, with some remnant of the mode-I secondary instability still visible. The 
active case is turbulent as it was at the upstream station. At z - 102mm (Figure 198), 
the active-roughness case remains turbulent but here the secondary instability is strongly 
amplified in the inactive case. So overall, the x/c = 0.45 data confirm that the instabilities 

driving transition are convective. 
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the spatial spectra of the mean-flow curves are given in Figure 209, and the distributions 
of 2.0-kHz mode-I fluctuations are given in Figure 210. No hysteresis is detected in any 
of these curves. The spatial spectra show that the dominant crossflow wavelength with 

zero-amplitude artificial roughness is about 13.5 mm. This station exhibits the widest band 
of amplified wavelengths of any examined thus far. The band of amplified fundamental 
wavelengths extends from 19.5 mm to 8.8 mm and both its first and second harmonics are 
visible. The active-roughness case is much more regular in span, and it has lower-amplitude 

mean-flow variations. 
One consequence of the irregularity of the disturbance field is that the individual point 

spectra in Figures 211-214 exhibit a variety of behaviors. Even though the active-roughness 
case has a much higher fluctuation level across the span, the inactive cases actually break 
down near z = 16 mm (Figure 211) where the active-roughness case does not. Furthermore, 

the active-roughness fluctuations at z = 16 mm are centered at 3.0 kHz. not 2.0 kHz. as 
are the highest-amplitude inactive-roughness fluctuations. This may represent behavior 
nearly along the lines of that observed by Saric et al. (1998), who used subcritically spaced 
roughness arrays to suppress transition. The active case is not sufficient to prevent transition 
in general, however. At z = 53 mm (Figure 212), the active-roughness case is fully turbulent 
while the inactive-roughness case has almost zero disturbance amplitude, as it does over 

must of the span. 
Because peaks at both 2.0 kHz and 3.0 kHz are observed for x/c = 0.58. the distribu- 

tions of 3.0-kHz fluctuations are given in Figure 215 to supplement the 2.0-kHz fluctuation 
distribution plots given in Figure 210. The 3.0-kHz mode is nearly identical to the 2.0-kHz 
mode. Both are active across the span for the active-roughness case, but they only appear 

at high amplitudes near z = 16mm for the inactive-roughness case. 
The final absolute instability test is performed at x/c = 0.60. The mean flow for this 

case is given in Figure 216. There is no change in behavior of the inactive-roughness cases, 
so there is no absolute instability. In Figure 217. the spanwise spectra of the inactive- 
roughness cases indicate that the flow there has undergone amplitude saturation: the peak 
of the most amplified mode is unchanged from x/c = 0.58. The active-case spectrum 
indicates that the forced stationary wave is dissipating due to the higher fluctuation levels. 
Figures 218 and 219 show that the fluctuations are still growing for the active case and the 
hitdi-amplitude peak in the inactive cases, but that across most of the span, the inactive 

case remains free of high-frequency disturbances. 
So for three cases on the ASU(67)-0315 wing. Rec = 2.4 x 106. Rec = 2.8 x 106, and 

/it,. - 2.0 x 10''. the data show that there is no evidence of an absolute instability prior to 
breakdown of the crossflow boundary layer. Moreover, in every case, the behavior of both 
rhe stationary mode and the high-frequency fluctuations may be understood in terms of 
secondary instability growth. Breakdown appears to be driven by that mechanism. 
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wall at the farthest point from the stationary vortex center to above the low-momentum 
upwelling center. The secondary instability can be imagined as wrapping around the outside 
of this portion of the stationary vortex. This is the behavior shown very clearly in the 
rotating disk flow visualizations of Kohama (1984, 1985). In nearly all circumstances, 
the lowest-frequency secondary instability is type I and is the largest amplitude secondary 
instability mode that is detected. In many instances, one or more higher-frequency type-I 
modes coexist in the same location. These are observed at close to integer multiples of the 

lowest-frequency type-I mode. 
Although instability modes at integer multiples at the same spatial location strongly 

suggest harmonics of the dominant mode, the growth rates do not always support this. In 
the°baseline case, the growth rates of the fundamental 3.0-kHz type-I mode and the 6.1- 
kHz type-I mode have nearly equal growth rates. The 6.1-kHz mode would be expected 
to have twice the growth rate of the fundamental were it a harmonic. However, growth 
rates are more easily obtained for the Rec = 2.0 x 106, [54|12] roughness case, and here the 
growth rate of the 4.9-kHz multiple of the 2.4-kHz fundamental type-I mode is about twice 
as large. For the same case, a 7.5-kHz type-I mode was observed as well, and the spectra 
show that even higher multiples exist. The other cases do not provide sufficiently good data 
to obtain reliable higher-frequency-mode growth-rate comparisons. In light of the limited 
and conflicting data, it is unclear whether these are harmonics that we cannot measure 
accurately, or whether they are distinct modes. In any case, these results show that to 
properlv understand the breakdown region in as much detail as possible, narrow frequency. 
bands should be investigated separately. As many as five or more instability modes exist in 
some cases, so tracking the behavior of bands as wide as a kilohertz or more can lump the 

behavior of many modes into a single result. 
In one instance. Rec = 2.4 x 106 with [18|12] roughness, a high-frequency mode of lower 

frequency than the most amplified type-I mode was identified. This mode existed closer 
to the wall than the typical type-I shape, and it may play a role in triggering breakdown 
where the type-I mode makes its closest approach to the wall. This mode was not identified 
in anv other case and was difficult to separate from the higher-amplitude 3.0-kHz mode. 

The second type of secondary instability mode, termed a type-II mode, was observed 
much less frequently than the type-I modes. This mode exists high in the boundary layer 
above and somewhat outboard of the low-momentum upwelling center. This instability 
is of the Kelvin-Helmholtz class, as is the type-I mode, but the type-II mode exists in 
the wall-normal shear layer of the streamwise flow. The type-II mode occurs at about 
twice the frequency of the highest-amplitude type-I mode. It is often overwhelmed by the 
growth of the (possible) harmonic of the type-I mode and is therefore extremely difficult 
to track experimentally. One exception is the supercritical forcing case. Rec = 2.8 x 10 
with .'54112] roughness. For this configuration, the spanwise shear region is reduced and 
the type-I modes do not reach the amplitude they do under more favorable conditions. In 
this environment, the type-II mode is detected more easily and plays an important part in 

triggering transition. 
Although the low-frequency fluctuations that correspond to the most amplified primary 

disturbance are not the focus here, their behavior is quite interesting and could represent 
a useful topic of further study. These fluctuations start as a spanwise-uniform mode at 
chord locations where mean flow is not deformed by the stationary vortices. However, these 
fluctuations appear to be acted upon by the stationary vortices in the same manner as the 
mean flow, and they become highly localized within the stationary structure even before 
the stationary mode saturates. Despite the modification of the mean flow and the spatial 
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Figure 1: Swept-wing streamline and coordinate systems. 

wall she:ir 

Figure 2: Crossflow boundary-layer profiles. 
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Variable Roughness 
Insert Slot 

Figure 5: Modular leading-edge insert for the ASU(67)-0315. 
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Figure 6: Schematic cross section of the variable leading-edge roughness device. 
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Figure 9: Center-displacement height versus pressure difference. Ap, across 3-mm-diameter 

roughness elements. Different line styles indicate different elements. 
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Figure 10: Activated 3-mm-diameter roughness shape of a 10-um-high element. 
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Figure 12: Schematic view of the Unsteady Wind Tunnel. All dimensions in meters. 
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Figure 15: Top view of the hotwire sting. All dimensions in millimeters. 
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Figure IS: Upper and lower span suction-side Cpß distributions at Rec = 2.4 x 10 
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Figure 19: Upper and lower span suction-side Cp,3 distributions at Rec — 2.8 x 106 
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Figure 22: Coordinate systems, X,Y plane. 

4 - 

3  - 

- Mean Profile 
- Individual Profiles 
- RMS Stationary Disturbance 

- 

\ \ 

/ 
i                        [ . . J 1 1  

0.2 0.4 0.6 0.8 
U/Uedge' rmS(U-Umean)/Uedge 

Figure 23:   Mean-flow velocity profiles. Rec 

z = 117-128 mm. 
.4 x 106

; [18|12] roughness, xlc = 0.30; 
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Figure 26:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.30, 

c = 122 mm. 
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Figure 27:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18| 12] roughness, x/c = 0.30, 

; = 125 mm. 
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Figure 30:   Mean-flow velocity profiles. Rec = 2.4 x 106, [18|12] roughness, x/c 

z = 103-114 mm. 
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Figure 31:  Mean-flow velocity contours, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.35. 

contour lines at U/Uedge = 0.10. 0.20, ..., 0.90. 

84 



5 o 
£L 

100 1000 
Freq. [Hz] 

10000 

Figure 34:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.35. 

z — 111 mm. 
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Figure 35: 200-Hz velocity-fluctuation rms distribution, Rec - 2.4 x 106, [18|12] roughness, 
x;c - 0.35. 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band. 

86 



g o 
0. 

10"' 

10" 

10"; 

10' 

10 -13 

10 

Y = 3.20 mm 
Y = 2.40 mm 
Y= 1.60 mm 
Y = 0.80 mm 

100 1000 

Freq. [Hz] 

10000 

Figure 35:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c — 0.40, 

r = 91 mm. 
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Figure 39:  Fluctuating-velocity spectra, Rec — 2.4 x 106, [18| 12] roughness, x/c — 0.40, 

z = 94 mm. 
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Figure 42: 3.0-kHz velocity-fluctuation rms distribution, Rec = 2.4 x 106, [18|12] roughness, 
x'c = 0.40. 2.9-3.1-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 43:   Mean-flow velocity profiles. Rec = 2.4 x 106, [18| 12] roughness, x/c 
z = 35-96 mm. 
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Figure 46:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c 
z = 90 mm. 
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Figure 47:   Fluctuating-velocity spectra. Rec = 2.4 x 106. [18|12] roughness, x/c 
z = 93 mm. 

0.41. 
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Figure 50:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.42: 

z = S4mm. 
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Figure 51:   Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.42. 
r = 87 mm. 
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Figure 54: 3.0-kHz velocity-fluctuation rms distribution, Rec = 2.4 x 106, [18|12] roughness, 
x c = 0.42. 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band. 

4 - 

E 

> 

Mean Profile 
Individual Profiles 
RMS Stationary disturbance 

0.2 0.4 0.6 0.8 

U/Uedge, rms(U-Umean)/Uedge 

Figure 55:   Mean-flow velocity profiles. Rec = 2.4 x 106. [18|12] roughness, x/c = 0.43. 
r9-90mm. 
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Figure 58:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c 

z = 84 mm. 
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Figure 59:   Fluctuating-velocity spectra, Rec = 2.4 x 106, [18J12] roughness, x/c = 0.43. 
c = 87 mm. 
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Figure 62:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.44, 

; = TSmm. 
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Figure 63:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.44, 

z — 81 mm. 
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Figure 66: 6.1-kHz velocity-fluctuation rms distribution, Rec = 2.4 x 106, [18|12] roughness. 
x '<: = 0.44. 6.0-6.2-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 67:   Mean-flow velocity profiles, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.45. 
z = 75-86 mm. 
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Figure 70:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.45, 
z = 79 mm. 
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Figure 71:   Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.45, 
z = 82 mm. 
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Figure 74:  Mean-flow velocity contours, Rec = 2.4 x 106. [18| 12] roughness, x/c = 0.46, 

contour lines at U/Uedge = 0.10, 0.20, ..., 0.90. 
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Figure 75:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.46 

z — tl rnin. 
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Figure 78: Total velocity-fluctuation rms distribution, Rec = 2.4 x 106
; [18|12] roughness. 

x/'c - 0.46. 20Hz-8.0-kHz bandpass. Lines are 10% contours of the maximum rms fluctu- 

ations. 

2 L- 

1  - 

    Individual Profiles 

i 

\ 
\ 
\ 

.:^\'' 

\ 

i 

_--'-" ''•;-'*..'' 

' 
0 0.2 0.4 0.6 0.8 1 

U/Uedge, rms(U-Umean)/Uedge 

Figure 79: Mean-flow velocity profiles, Rec = 2.4 x 106, [18J12] roughness, x/c = 0.47, 

68-79 mm. 
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Figure 82:  Mean-flow velocity contours, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.48, 

contour lines at U/Uedse = 0.10, 0.20, .... 0.90. 
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Figure 83:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [18|12] roughness, x/c = 0.48, 

z = 65 mm. 
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Figure 86:   Fluctuating-velocity spectra, Rec = 2.4 x 106, [18|12] roughness, x/c = 0.48, 

z = 74 mm. 
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Figure 87: Velocity-fluctuation rms growth. Rec = 2.4 x 106, [18|12] roughness. 
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Figure 90:   Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.25, 
; = 122.2 mm. 
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Figure 91:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.25, 
: = 125.S mm. 
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Figure 94:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c 
z = 110 mm. 
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Figure 95:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [54|12] roughness, x/c = 0.30, 
z = 113 mm. 
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Figure 98:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [54J12] roughness, x/c 
z = 101mm. 
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Figure 99:   Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.34, 
r = 104 mm. 
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Figure 102: 3.0-kHz velocity-fluctuation rms distribution, Rec = 2.4x 106, [54|12] roughness. 

x!c _ 0.34, 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band. 

Figure 103:  Mean-flow velocity contours. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.38. 

contour lines at U/Ued„e = 0.10, 0.20.  .... 0.90. 
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Figure 106:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.38. 

r = 94 mm. 
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Figure 107: 200-Hz velocity-fluctuation rms distribution, Rec = 2.4 x 106. [54J12] roughness, 
x c = 0.38. 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 110:  Mean-flow velocity contours. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.39, 

contour lines at U/Ued„e = 0.10, 0.20;  .... 0.90. 

o 
5 
o 
0. 

10"' 

10"  - 

10 

Y = 3.00 mm 
Y = 2.00 mm 
Y = 1.00 mm 

100 1000 

Freq. [Hz] 

10000 

Figure 111:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [54|12] roughness, x/c = 0.39, 

86 mm. 
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Fisure 114: 200-Hz velocity-fluctuation rms distribution, Rec = 2.4 x 106, [54J12] roughness, 
s.'c - 0.39. 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band. 

JE 

Figure 115: 3.0-kHz velocity-fluctuation rms distribution, Rec = 2.4x 106, [54(12] roughness, 
x,c = 0.39. 2.9-3.1-kHz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 118:  Fluctuating-velocity spectra. Rec = 2.4 x 106, [54|12] roughness, x/c = 0.40, 
z = 82 mm. 
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Figure 119:  Fluctuating-velocity spectra, Rec = 2.4 x 106, [54|12] roughness, x/c - 0.40, 
z = 85 mm. 
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Figure 122: Velocitv-fluctuation rms growth, Rec = 2.4 x 106, [54J12] roughness. 
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Figure 123:  Mean-flow velocity contours, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.40, 

contour lines at U/Uedge = 0.10. 0.20. ..., 0.90. 
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Figure 126:  Fluctuating-velocity spectra. Rec = 2.0 x 106, [54|12] roughness, x/c = 0.40. 

z = 141.2 mm. 
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Figure 127: 200-Hz velocity-fluctuation rms distribution. Rec — 2.0 x 106, [54|12] roughness. 
x.'c = 0.40. 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 130:  Fluctuating-velocity spectra, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.46. 
- = 118.8 mm. 
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Figure 131:  Fluctuating-velocity spectra, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.46, 
: = 121.2 mm. 
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Figure 134:  Mean-flow velocity contours, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.50, 

contour lines at U/Ued„e = 0.10, 0.20 0.90. 
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Figure 135:  Fluctuating-velocity spectra, Rec — 2.0 x 106, [54|12] roughness, x/c - 0.50, 

z = 103.8 mm. 
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Figure 13S: 200-Hz velocity-fluctuation rms distribution, Rec — 2.0 x 106, [54|12] roughness, 
x c = 0.50. 100-300-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 139: 2.4-kHz velocity-fluctuation rms distribution. Rec — 2.0xlO6, [54| 12] roughness, 
x, c = 0.50. 2.3-2.5-kHz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 142:  Fluctuating-velocity spectra. Rec = 2.0 x 106, [54|12] roughness, x/c = 0.55, 
z = 85.6 mm. 
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Figure 143:  Fluctuating-velocity spectra, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.55, 
z = 88.0 mm. 
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Figure 146: 2.4-kHz velocity-fluctuation rms distribution, Rec = 2.0 xlO6, [54|12] roughness, 
x/c = 0.55. 2.3-2.5-kHz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 147: 4.9-kHz velocity-fluctuation rms distribution, Rec = 2.0 x 106, [54|12] roughness, 
x c = 0.55. 4.8-5.0-kHz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 150:  Fluctuating-velocity spectra, Rec = 2.0 x 106, [54|12] roughness, x/c = 0.57, 
r = 77.S mm. 
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Figure 151:  Fluctuating-velocity spectra. Rec - 2.0 x 106, [54| 12] roughness, x/c = 0.51 
- = 80.2 mm. 
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Figure 154: Velocity-fluctuation rms growth, Rec — 2.0 x 106, [54|12] roughness. 

Figure 155:  Mean-flow velocity contours, Rec = 2.8 x 106, [54| 12] roughness, x/c = 0.30, 
contour lines at U/Uedge = 0.10, 0.20. ..., 0.90. 
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Figure 158:  Fluctuating-velocity spectra, Rec - 2.8 x 106, [54|12] roughness, x/c = 0.30, 
z = 85.0 mm. 
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Figure 159:  Fluctuating-velocity spectra, Rec = 2.8 x 106, [54|12] roughness, x/c = 0.30, 
z — 87.4 mm. 
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Figure 162:  Mean-flow velocity contours. Rec = 2.8 x 106, [54| 12] roughness, x/c = 0.35. 

contour lines at U/Ued„e = 0.10. 0.20, ..., 0.90. 
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Figure 163:  Fluctuating-velocity spectra. Rec = 2.8 x 106, [54|12] roughness, x/c — 0.35. 
c = 66 mm. 
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Figure 166:  Fluctuating-velocity spectra. Rec = 2.8 x 106, [54|12] roughness, x/c = 0.35. 

z = i A mm. 
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Figure 167: 300-Hz velocity-fluctuation rms distribution. Rec = 2.8 x 106, [54|12] roughness. 
x/c — 0.35. 200-400-Hz bandpass. Lines are 10% contours of the maximum in this band. 
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Figure 170:  Mean-flow velocity contours, Rec = 2.8 x 106, [54| 12] roughness, x/c = 0.37 

contour lines at U/Uedge = 0.10, 0.20, ..., 0.90. 
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Figure 171:  Fluctuating-velocity spectra. Rec — 2.8 x 106, [54| 12] roughness, x/c = 0.37, 

r = 61 mm. 
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Figure 174:  Fluctuating-velocity spectra, Rec = 2.8 x 106, [54|12] roughness, x/c = 0.31 
r = 67 mm. 

Figure 175: 3.6-kHz velocity-fluctuation rms distribution. Rec — 2.8xl06, [54| 12] roughness. 
x;c — 0..37. 3.5 kHz-3.7-kHz bandpass. Lines are 10% contours of the maximum in this 
band. 
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Figure 178: Fluctuating-velocity spectra, Rec = 2.8 x 106, [54|12] roughness, x/c = 0.38c 
z = 58 mm. 
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Figure 179: Fluctuating-velocity spectra, Rec = 2.8 x 106, [54| 12] roughness, x/c = 0.385, 
z = 60 mm. 
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Figure 1S2: Total velocity-fluctuation rms distribution, Rec = 2.8 x 106, [54|12] roughness, 
xc = 0.385. 20-Hz-12.0-kHz bandpass. Lines are 10% contours of the maximum rms 
fluctuations. 
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Figure 183: Velocity-fluctuation rms growth, Rec = 2.8 x 106, [54|12] roughness. 
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Figure 1S6:   Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.4 x 106. x/c = 0.43, Y = 2.0 mm. 
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Figure 187: Power spectral density of the spanwise mean-flow hotwire scan with and without 
activated 12-mm-spaced artificial roughness. Rec = 2.4 x 106, x/c = 0.43, Y = 2.0mm. 
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Figure 190: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.4 x 106, x/c = 0.43, Y = 2.0 mm, z = 31 mm. 
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Figure 191: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.4 x 106. x/c = 0.43. Y = 2.0 mm, z = 46 mm. 
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Figure 194:  Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.4 x 106, x/c = 0.45. Y = 2.0 mm. 
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Figure 195: Power spectral density of the spanwise mean-flow hotwire scan with and without 
activated 12-mm-spaced artificial roughness. Rec = 2.4 x 106, x/c — 0.45, Y = 2.0 mm. 
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Figure 198: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.4 x 106, x/c = 0.45, Y = 2.0 mm, z = 60 mm. 
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Figure 199:  Spanwise mean-flow hotwire scan with and without activated 12-mm-spaced 

artificial roughness. Rec = 2.8 x 106, x/c = 0.38, Y = 1.2 mm. 
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Figure 202: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 

artificial roughness. Rec = 2.8 x 106, x/c = 0.38, Y = 1.2 mm, z = 23 mm. 
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Figure 203: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 

artificial roughness. Rec = 2.8 x 106, x/c = 0.38, Y = 1.2 mm, z = 26 mm. 
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Figure 206: Power spectral density of the spanwise mean-flow hotwire scan with and without 
activated 12-mm-spaced artificial roughness. Rec = 2.8 x 106, x/c = 0.40; Y = 1.2 mm. 
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Figure 207: Spanwise distribution of velocity-fluctuation power spectral density at 4.0 kHz 
with and without activated 12-mm-spaced artificial roughness. Rec = 2.8 x 106, x/c = 0.40. 

}' — 1.2 mm. 
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Figure 210: Spanwise distribution of velocity-fluctuation power spectral density at 2.0 kHz 
with and without activated 12-mm-spaced artificial roughness, Rec = 2.0 x 106, x/c - 0.58. 

Y — 2.0 mm. 
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Figure 211: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.0 x 106, x/c = 0.58, Y = 2.0 mm, z = 16 mm. 
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Figure 214: Fluctuating-velocity spectral density with and without activated 12-mm-spaced 
artificial roughness. Rec = 2.0 x 106, x/c = 0.58: Y = 2.0 mm, z = 107 mm. 
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Figure 215: Spanwise distribution of velocity-fluctuation power spectral density at 3.0 kHz 
with and without activated 12-mm-spaced artificial roughness, Rec = 2.0 x 106. x/c = 0.58. 
Y = 2.0 mm. 
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Figure 21S: Spamvise distribution of velocity-fluctuation power spectral density at 2.0 kHz 
with and without activated 12-mm-spaced artificial roughness, Rec — 2.0 x 106. xjc = 0.60, 
Y = 2.0 mm. 
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Figure 219: Spanwise distribution of velocity-fluctuation power spectral density at 3.0 kHz 
with and without activated 12-mm-spaced artificial roughness, Rec — 2.0 x 106, xjc — 0.60. 
Y = 2.0 mm. 
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