Integrated Product Design Simulation

David Wallace Esther and Harold E. Edgerton Associate Professor Associate Director, MIT CADIab

DOME (distributed object-based modeling environment)

Publications: http://cadlab.mit.edu

	Report Docume	ntation Page		
Report Date 15052001	Report Type N/A	Dates Covered (from to)		
Title and Subtitle		Contract Number		
Integrated Product Design	Simulation	Grant Number		
		Program Element Number		
Author(s) Wallace, David		Project Number		
		Task Number		
		Work Unit Number		
Performing Organization Unknown	Name(s) and Address(es)	Performing Organization Report Number		
Sponsoring/Monitoring A Address(es)	gency Name(s) and	Sponsor/Monitor's Acronym(s)		
NDIA (National Defense In Wilson Blvd., Ste. 400 Art		Sponsor/Monitor's Report Number(s)		
Distribution/Availability Approved for public releas				
Supplementary Notes Proceedings from 3rd Simu The original document con	-	ference, 15-17 May 2001, sponsored by NDIA,		
Abstract				
Subject Terms				
Report Classification unclassified		Classification of this page unclassified		
Classification of Abstract unclassified		Limitation of Abstract UU		
Number of Pages 31				

Integrated Product Design Simulation Outline

Design context Need Concept Scenario Barriers addressed Applications

barriers

application

Product Design Modeling context

Planning

Concept design

Detail design

Testing Ramp up

barriers

Design Modeling Techniques

From: Ulrich and Eppinger, Product design and development, 2000

Need Integrated system modeling and simulation

Mathematically predict and analyze the integrated behavior of products throughout the pre-prototype design cycle

barriers

Benefits Simulation-based integrated system analysis

Polaroid LCD projector

Seamless mathematical integration:

geometry, engineering, life-cycle analysis, customer and intent-to-purchase simulations

Result:

integrated trade-off cycle time reduced from 3 months to 15 seconds

"not generally feasible"

Hypothesis Limitation is simulation synthesis, not analysis

application

Mathematical system modeling techniques do not match design synthesis needs

Mismatch Traditional model integration methods

Explicit, fixed scope, command and control

Implicit, emergent

Existing methods do not accommodate flexible model growth, change, emergence, or rapid transitions between synthesis and analysis

Synthesis Mismatch Consequences

Infeasible because of design ...

complexity, scale, rate of change

heterogeneity

proprietary knowledge Cutkosky, 1996

DOME Research goal

A new infrastructure for building the integrated simulations needed in design analysis

Fundamentally resolve traditional integration barriers

Future Design Engineering emergent systems

DOME Inspiration Hypertext (WWW)

Revolution in infrastructure for building information networks—breaking control barriers

Any individual can add content

Any individual can access remote material and create local links to relevant materials

Result: an emergent network of information services

DOME Concept World-wide Simulation Web

Any individual can make interfaces to focused simulations operable over the Internet

Any individual can access remote interfaces and create local mathematical links or bridge models between simulation elements

Result: an emergent network of parametrically coordinated simulations

barriers

application

concept

need

design context

application

Integrated Simulation Synthesis Participants build models using tools appropriate for their discipline

application

Integrated Simulation Synthesis Participants define parametric interfaces to their focused simulations

		1000	terface				
		Varia	ables 1 to 15				
icrosof	ft Excel - Cable_Drum.xls		Name	Units	Address	Value	Input/Output
<u>File</u> <u>E</u> o	dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools	<u>D</u> ata <u>W</u> in 1	BPillarHeight	millimeter 💌	FBDDK1!\$I\$34	400	Input 💌
2	▋ ❹ ፟፟ 🖓 🐇 🖻 🛍 י	🝠 🔊 - 2	GlassRadius	millimeter 💌	FBDDK1!\$I\$40	1293	Input 💌
ate Inte M17		3	SealDragA	newtons per r 💌	FBDDK1!\$I\$29	0.05	Input 💌
L	4.97 Average	• Veloc 4	MotorTorque	joule 💌	FBDDK1!\$G\$70	5.5	Input 💌
	36.74 Average		MotorSpeed	revolutions pe	FBDDK1!\$G\$69	82	Input 💌
		6	AvgVel	centimeters p 💌	FBDDK1!\$M\$31	4.972167827406	Output 💌
	12.00		ADD	DELETE	Refresh		Close
2							
	10.00						
	8.00	the second		*******		lts 0.15	
			to the total	<u></u>			
(cmts)					- <u>+</u> 12.6 Vol		
Speed (6.00				14.5 Vol		
Spe							
-	4.90			·····	14.5 Vol		
2			and a				
						S 1000	

Integrated Simulation Synthesis Participants deploy interfaces on Internet-accessible DOME servers

concept

scenario

application

Integrated Simulation Synthesis Participants create DOME bridge models between interface elements

Engineer

)

barriers

New Integration Infrastructure World-wide Simulation Web

Any individual can make interfaces to focused simulations operable over the Internet

Any individual can access remote interfaces and create local mathematical links or bridge models between simulation elements

A domain independent simulation infrastructure

Integrated System Analysis Participants apply tools to elucidate tradeoffs, optimize designs, and understand system interactions

Examples:

Decision theory (Kim and Wallace, 1999)

Genetic optimization (Gruininger, Senin and Wallace, 1996)

System structure analysis (Abrahamson and Wallace, 1999)

Model customization (Ferara and Wallace, in progress)

barriers

Ford Application Results

Rapid system model development and evolution (Integration process was 12 person days)

Interoperability of services between heterogeneous applications without sharing proprietary data models

Design tradeoff speed

(Ford engineer to supplier analyst: 10s vs. ~2 weeks)

Rapid design comparison of local design and supplier changes with global tradeoff viewpoint

New Integration Infrastructure Fundamentally resolve traditional integration barriers

Complexity, scale, rate of change

Emergent vs. explicit system definition

New Integration Infrastructure

Localized definition of interfaces and relationships

New Integration Infrastructure Fundamentally resolve traditional integration barriers

Heterogeneity, proprietary information

Parametric consistency vs. data model sharing

application

barriers

New Integration Infrastructure

Local solvers share causal mapping for externally accessible interface parameters

application

Industry Pilot Applications Recently completed or ongoing

Organization	Project
Ford	Door glass system Integrated simulation across the design/supply chain
Ford	Fuel economy Integrated technology assessment
Ford	Vehicle platform design Parametric assemblies with multiple CAD systems
LG Electronics	Air conditioner design Platform management
Boeing	New materials adoption Integrated simulation across length scales
US Navy	Aircraft carrier ordinance delivery

barriers

Vehicle Platform Application Geometric assemblies

Traditional integration approach:

Each company has an official CAD system

All suppliers must use the official CAD system

Suppliers must provide native part geometry to automotive company

Vehicle Platform Application Parametrically editable assemblies

application

Vehicle Platform Application Parametrically editable assemblies

Vehicle Platform Application Parametrically editable assemblies

Application Manufacturing object module: MOM

Machine tool world