

HYDROBALLISTICS

Development, Theory &

Some Test Results

Thomas K. Harkins

April 12, 2001

1

Sponsor: PMS-210 Through NSWCDD CSS

Report Documentation Page		
Report Date 12Apr2001	Report Type N/A	Dates Covered (from to)
Title and Subtitle Development, Theory & Some Test Results		Contract Number
		Grant Number
		Program Element Number
Author(s) Harkins, Thomas		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) NSWCDD CSS		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es)		Sponsor/Monitor's Acronym(s)
NDIA (National Defense Industrial Association) 211 Wilson Blvd, STE. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Report Number(s)
Distribution/Availability Statement Approved for public release, distribution unlimited		
Supplementary Notes Proceedings from the 36th Annual Gun & Ammunition Symposium & Exhibition 9-12 April 2001 Sponsored by NDIA		
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages 27		

MH-60S With RAMICS Installed

Target Reacquisition Using LIDAR MK 44 Bushmaster II Chain Gun MK 258 Hydroballistic Ammo

2

What Is Hydroballistics?

- The Study Or Design Of Objects That Have Momentum Underwater
 - -Fully Wetted, Cavitating, & Supercavitating
- Key Parameters Are Drag, Stability & Control, & Structural Integrity
- Water Entry Of Projectile Considerations:
 - Air Entrainment (Not A Great Factor In Supercavitating Bodies)
 - Water Impact Loads

Hydroballistics Of Supercavitating Water Entry Projectiles

- Spin-Stabilized (In-Air) Projectiles Are Not Good Performers
 - Conventional Bullets Tumble Quickly After Water Entry
- Mass Stabilized Projectiles Are Successful
- High L/D Projectiles Have Consistently Proven Superior Hydroballistic Performance
 - Stabilizing Empennage Shared For Both Air And Water

History Of Water-Entry & Supercavitation Work

- 1870: Franco-Prussian War Kopfring Developed
- 1908: "Study Of Splashes" First Water-Entry Photos (Worthington)
- WW I: Edison Proposed Pagoda Head For Water-Entry Device
- WW II: Torpedoes, Mines, and Water-Entry Bombs
- Post WW II: Numerous Water-Entry/Cavitation Studies Of Rockets & Gun-Launched Projectiles
- 1970's To Present: Exploit Supercavitation (Drag Reduction)

Kopfring Device

25mm WHITE OAK DEVELOPMENT (1995-1996) ONR Sponsor

Series I: Adapt Finned Long-Rods (U. S. Army 25mm M919 APFSDS-T); 9 Shots – Blunt Nose Proved Successful With Fins

- Series II: Optimize Design (Reduce Nose Flat, Lengthen Nose & Increase Material Strength); 15 Shots
- Series III: Introduced Carbide Nose Insert; Last Shot Established Record For Water Vehicles At 4300 ft/sec; 21 Shots

Hydroballistic Nose Shapes Tested At White Oak – Series I

Blunt Nose

Conical Nose

Power Law Nose

Refinement Of The Blunt Nose At White Oak – Series II & III

Generation I

Generation III (Carbide Insert)

Generation IV: MK 258 Mod ?

Velocity: 1430m/sec Pen. Mass: 150 g Pen. Length: 188mm Pen. Dia: 9mm Nose Dia: 2.3mm

Cavity Equation: $y = \frac{d}{2}\sqrt{kx/d} + 1$ 11

Water Impact Loads

• Theoretical Formula:

 $C_d^* = 0.79 + 0.93 Tan(\alpha)$

- Stress At *Preferred* Impact Angle (60°) Can Climb To Over 300,000 psi
- Carbide Tips Successfully Tested (420,000 psi Strength)
- Successful Tests At 45° Exceeded Material Strength
 - Bow Shock May Mitigate Impact Load

Shot #8494: 3800 ft/sec; Mat. Limit – 3700 ft/sec 90x Magnification

Theoretical Water Entry Loads

(HYDRO) DRAG COEFFICIENT

Same Principle As Aerodynamic Drag
Instrumentation provides:

- Water Impact Velocity, V₀
- Trajectory Time, T

$$\boldsymbol{b} = \frac{W}{C_d A}$$
$$T = \frac{2 \boldsymbol{b}}{\boldsymbol{r} V_0} e^{\frac{\boldsymbol{r} S}{2 \boldsymbol{b}}} - 1$$
$$V = V_0 e^{-\frac{\boldsymbol{r} S}{2 \boldsymbol{b}}}$$

HYDROBALLISTIC TEST SERIES I & II ABERDEEN TEST CENTER BRIAR POINT TEST POND APRIL & AUGUST to OCTOBER 2000

OBJECTIVES

VERIFY PERFORMANCE OF 25MM

EVALUATE PERFORMANCE OF 30MM

DEMONSTRATE UNDERWATER LETHALITY

Hydroballistic Test Peculiarities

- Target "Sighting"
 - -Land Based Surveying + Diligent Positioning
- Test Limitations
 - -Limited Air Flight; Limited Water Depth
 - -Underwater Cameras & Clarity Changes
 - -Difficult To Measure Velocity
- Compounded Safety Considerations
 - -Gun On Tower & Target In Water

Briar Point Test Site

30mm MK 258 Hydro Performance

30mm MK 258 Hydro Performance

Entrance hole

30mm 1330 m/sec Water Entry TARGET: Surrogate Mine NEW: 45 lbs. TNT Mooring Depth: 25 feet

Other Aberdeen Test Results & Observations

- Seventy 30mm Rounds Fired
 - -Very Consistent Drag
- Underwater Dispersion
 -0.70 To 1.4 Milliradians (1σ Radius)
- Demonstrated 5-Round Bursts Into Water
- Long-Rods Are Robust Hydroballistic Designs

 Nose Material
 - Spin/Yaw
- Established Lethal Depth Capability

Destruction of Surrogate Target

Accurate Target Hits from 75' Slant Range

