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ABSTRACT 

In the first phase of the project to develop an articulated human biomechanical modeling 
toolbox (AHBM), efforts were made to review the current status of modeling techniques and to 
develop rigid body formulations suitable for human biomechanical modeling. The developed 
version-one of the toolbox, AHBM VI, consists of kinematics, inverse and forward dynamics 
algorithms, data conversion routines, graphical algorithms, and many utility routines for 
mathematical calculation and file operation. Both inverse and forward sample models, such as a 3D 
lower extremity model, a 3D whole body human model, and a human head-neck model, were 
developed. AHBM VI was also used for two application projects: upgrading gait analysis software 
for USARIEM; and developing a new method to understand the airbag external load behavior and 
bag-occupant interaction for Department of Transportation. 

The following specific tasks were completed in the first phase 

♦ Review of current techniques for human biomechanical modeling 

♦ Developing three-dimensional kinematics algorithms 

♦ Developing forward dynamics formulations for multibody constrained systems 

♦ Developing commonly used algorithms related to inverse dynamics analysis 

♦ Developing data structure and data conversion routines 

♦ Developing some graphical algorithms for visualizing data and model 

♦ Developing utility routines for mathematical calculation and file operation 

♦ Developing example problems for both inverse and forward dynamics analysis 

In the phase two of the project, efforts will be focused on reviewing and developing muscle 
models. The muscle models will be included in AHBM V2. This will expand the toolbox's 
capabilities to handle human biomechanical modeling where muscle activities have to be accounted 
for. Specific applications may include solving muscle load sharing in inverse dynamics analysis and 
understanding overuse injuries related to muscle activities. 

This report is separated into two parts. The first part consists of an overview of the toolbox, 
rigid body formulations, and example models and applications. The second part provides detailed 
description of individual routines in the toolbox. 
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CHAPTER 1 

OVERVIEW 

1.1 INTRODUCTION 

This report documents the progresses on developing a human biomechanical modeling 
toolbox during the first phase of the research project. It is separated into two parts. This first part 
consists of an overview of the toolbox, rigid body formulations, and example models and 
applications. A separate second part provides detailed description of individual routines in the 
toolbox. 

This first part is divided into five chapters. The first chapter gives an overview of the current 
state of the analysis, modeling and simulation of human biomechanical system. The strategy and 
plan for developing a toolbox is also given. Chapter two gives the formulations for kinematics 
calculation with an emphasis on three-dimensional rotational kinematics. Chapter three develops 
forward dynamics formulations for multibody systems that are suitable for forward dynamic simula- 
tion of human systems. Chapter four describes the topics commonly associated to the inverse 
dynamic analysis of human biomechanical systems. Chapter five provides some example models 
and applications of the current version of the toolbox. 

1.2 BIOMECHANICAL ANALYSIS, MODELING AND SIMULATION 

1.2.1    Need for Biomechanical Modeling 

The analysis, modeling and simulation of human system have become a more and more 
important research area. This is driven by our intrinsic curiosity of understanding the fundamental 
mechanisms as well as by the needs from both the civil and the military. For the military, it always 
faces the challenge of evaluating and improving soldiers' performance under various environmental 
and operational conditions, as well as reducing associated injuries. Biomechanical researchers in the 
military have to deal with issues such as developing better equipment to enhance soldiers' 
performance, design better training schedule to increase soldiers' strength without incurring injury, 
designing better ways of monitoring, assessing and improving the medical status of warfighters 
during training and combats. A very important part of these research issues is the analysis of 
mechanical loads and energetic requirements of the human body during various movements. 

Traditionally, most biomechanical research involves only experimentation where the 
statistics of laboratory measurements and/or field observations is the primary research result. The 
experimental approach, however, suffers several limitations. First, human body is a complex, highly 



nonlinear system. Significant variations of the measurements of human responses are expected, 
especially among different individuals. And in many cases the data cannot be repeatable with good 
accuracy. Therefore, the applicability of many experiment results has to be examined with caution. 
Second, even when statistically significant relationships can be established from experiments, the 
underlying mechanisms are usually too complex to be revealed. Therefore, most experiment results 
can only be used to answer specific questions. They usually do not provide insight into the problems 
themselves. Third, experimentally work are often expensive and difficult to control, taking into 
account that a large number of people over a long period of time are usually required to get 
statistically significant results. Finally in many cases it is ethically impossible to perform experiments 
on human beings, especially when injuries may be involved in the tests. 

While experimental work still remains and will always be an important part of 
biomechanical research, more and more efforts are being put into the use of modeling and 
simulation in solving biomechanical problems associated with human systems. In modeling, the 
human system is represented by sets of mathematical relationships including some modeling 
parameters. By varying model parameters, numerical simulation can be performed. Compared with 
experimental work, numerical simulations are usually faster, cheaper and easier to control. The 
models can be used for various situations and the results are more insightful. 

Whether a model can be successfully used for a practical biomechanical problem depends on 
how accurate the model imitates the real problem, whether there are enough mathematical tools and 
computational power to implement the model, and whether there are enough experimental data to 
verify the model results. A combination of experimentation, biomechanical analysis and 
biomechanical modeling and simulation is usually the best approach to tackle complex real world 
problems. The following sections will brief summarize the current status of biomechanical analysis, 
modeling and simulation of human movement. 

1.2.2    Model Sub-systems 

Human as a living biomechanical system is a complex and integrated neural-muscular- 
skeletal system combing motion generation components, adaptive control, reflexes, self-analysis and 
learning (Barnes, Oggero et al. 1997). Any voluntary human movements are complex motions 
characterized by the presence of the so-called controlling and compensating parts as the result of the 
coordination of neural control, muscle activation, and skeletal motion generation. The central neural 
system sets the goal to be achieved. The neuromuscular system correspondingly control the pattern 
of the muscle activation generate tension. The muscle forces drive the skeletal system to generate or 

adjust the motion. 

In modeling, the different levels of the human biomechanical system are represented by 

different levels of mathematical systems. 



Mechanical Subsystem 

Rigid body representation of the human skeletal system is commonly used where rigid 
bodies with masses are connected at articulations. The governing equation of motions can be 
obtained from the Newton-Euler formations, Lagrange formulations or Kane's method. The resulted 
sets of equations include kinematic data (velocities and accelerations), kinetic data (forces and 
moments) and inertial properties of body segments (mass and moment of inertia). 

Deformable bodies are have also been used in some models. For example, long bones can be 
represented as deformable beams. Finite element models and other models based on continuum 
mechanics are also used to model the mechanical subsystem. Simulation of specific structures, such 
as the foot, benefits from the use of deformable body representation, but due to the limitations of 
modeling complexity, rigid body formulation are mostly used in bio mechanical analysis. 

Actuator Sub-system 

Muscles, which are the only actuators that can generate forces, are modeled by actuator 
subsystem governed by muscle dynamics and muscle metabolics. The formulations for the actuator 
subsystem include models of various complexities. Some involves only the passive elements and no 
active actuators are present. More sophisticated muscle models involve both the passive and the 
active elements. They also include the muscle insertion points in order to determine the lines of 
action of the muscle forces. These components obviously become highly integrated with the 
geometry selected for the physical representation of the body segments. The difficulties in 
implementing these models include the modeling of multiarticular muscles that span over more than 
one joint and the redundancies presented by the multiple muscles on single joints. Even more 
complicated models of individual muscles have also been postulated to understand muscle function. 
Individual muscle spindles and even individual motor units and their recruitment and 
neuromuscular phenomena have been modeled. However, currently, these models only serve to 
provide insight into how exactly muscles function. 

Control Sub-system 

The control subsystem with a variety of control schemes simulates the function of the neural 
system. Control strategies of various level of complexity have been developed. The simplest strategy 
is to have no actuators to control. Among controlled models, open-looped control and closed-loop 
control has been studied extensively. More adaptive approaches using neural network and feed 
forward control are also under intensive research. 

1.2.3    Types of Biomechanical Analysis and Modeling 

Depends on the goal of a specific biomechanical problem, various types of analysis and 
modeling techniques can be adopted. 



Inverse Dynamics Approach 

Inverse dynamics approach involves the mechanical subsystem and possibly the actuator 
subsystem. At the mechanical level, it calculates the joint forces and moments from segmental 
inertial properties, measured kinematics data and external forces. 

The necessary kinematic data can be measured from accelerometers mounted on body 
segments. The acceleration data is then integrated to get the required velocities and displacements. 
More frequently, displacement data are obtained from a motion capture system (video-based or 
optoelectronic). The displacement data are then differentiated to obtain the velocities and 

accelerations. 

Inertia properties of body segments can be obtained through direct measurement on the 

subject. There are also regression equations based on a number of anthropometric measurements 

such as body weight, stature and specific geometric dimensions of individual segments. 

The external forces in the biomechanical analysis of human systems are usually ground 

reaction forces. Force plates can measure the ground reaction forces. The measured ground reaction 
forces usually have to be processed (filtered, synchronized with kinematics data) before can be used 
for inverse dynamics analysis. 

At the mechanical level, the inverse dynamics analysis provides the joint forces and 
moments. Some energetics quantities such as internal work, external work, joint power flow may 
also be obtained. These kinetics and energetics quantities are used in many researches to serve the 
purposes such as analyzing both the healthy and pathological gait, assisting in the diagnosis of the 
underlying pathologies of abnormal gait pattern, helping the evaluation and design of soldier 
equipment, etc. In many of these researches, statistics analysis of test results; characterization and 

pattern analysis of the time history of the results have to be used. 

After the joint forces and moments are obtained, they can be used to estimate muscle forces 
and joint reaction forces from passive structures (ligaments, tendon). Since a large number of 
muscles spanning each joint in the human body, the estimation of muscle forces is an indeterminate 
problem (Collins 1995). Techniques to solve this problem are based on either grouping muscles with 
similar function thus eliminating redundancy or applying optimization criteria to solve the muscle 
force distribution (Crowninshield 1978; Hardt 1978; Patriarco, Mann et al. 1981; Vaughan, Hay et 
al. 1982; Cholewicki and McGill 1994). The first approach leads to oversimplification and 
unsatisfactory results. The second approach is usually called inverse optimization or static 
optimization. The inverse optimization are numerical efficient and has been successfully applied but 
it also suffers from certain drawbacks. First the optimization criteria has not been completely 
understood. Second, the inverse optimization cannot guarantee the continuity of the solution. Third, 
muscle dynamics is not reflected in inverse optimization. Recently, some work (Happee 1994) has 
been done to include muscle dynamics as constraints in inverse optimization, which has been shown 
to work well to solve complex shoulder mechanism (Happee and Van der Helm 1995). Finally the 



lack of reliable validation procedures also limits the application of inverse optimization. Currently, 
electromyogram signals, which describe the input into the muscular system is usually recorded to see 
if it matches with the muscle force pattern calculated from inverse dynamics optimization. 

Forward Dynamics Approach 

While inverse dynamics approach tries to calculate joint forces and moments and thus 
muscle forces from measured kinematics data, forward dynamics approach attempts to predict the 
motion from neural or mechanical inputs. A forward simulation may involve all the mechanical, 
actuator and the control systems. 

When no actuator is present, only the initial conditions are required and the simulation 
predicts the motion trajectories. This involves only the mechanical subsystem. The approach has 
been widely used in simulating some traumatic events, such as car crash where the event happen in a 

very short period time and the effects of neural control and muscle activities can be neglected. 

As a control model, the easiest one to implement is an open-loop controller with a torque 
that is only a function of time. This removes all the complexities associated with computing 
kinematics of muscle insertion points. How the joint torque changes with respect to time depends 
mainly on the goal of the simulation. One way is to solve the inverse dynamic problem using data 
collected during an experiment in which a subject performs the same actions that the simulation is 
trying to reproduce. Another way to obtain the torque is to impose an optimization criterion. The 
use of such a simplified actuator and control model cannot compensate for external perturbations 
and provides no means for actively maintaining balance when equilibrium conditions are desired. 

When force and torque application is also a function of position, velocity or other 
generalized variables in the model, the control become closed loop. Muscle and spinal level reflex is 
an example of closed-loop control. Simulation of higher level controls, such as cerebellum and brain, 
becomes more challenging. More adaptive approaches, such as neural networks and artificial 
intelligence techniques, can be applied to model these interactions and relate other biomechanically 
relevant parameters to control. 

Feedforward concepts are also adopted in the control theory. A feedforward controller 
(brain) predicts the future motion of the controlled system (the body) and compares it to the current 
body position. When discrepancy is noted, appropriate corrective signals are issued. A key point of 
feedforward control is that it is a dynamic process and this can be adapted to explain some processes 
of motor learning and performance enhancement. As increasing possible perturbations have been 
experienced during the repetitions or training, patterned responses are learned. The feedforward 
control requires a very accurate and rapid motion analysis. Currently, most simulations of human 
system do not incorporate movement analysis capability. However, further development of 
feedforward concept will lead to more useful simulations. 



Energetics 

The energetic aspect human biomechanical system deals with the mechanical power as well 
as the metabolic cost associated with human movements. The metabolic cost can be separated into 
different terms according to their sources. The activation heat accounts for the energy used to 
activate muscles. The maintenance heat is used to maintenance the muscle forces. The shorting heat 
is related to the extra heat produced as a consequence of the shortening of muscle. The mechanical 
work is the product of muscle force doing work. And the dissipation of energy in passive structures 
also contributes to the total metabolic costs. Although research work has led to some empirical 
relations, the actual metabolic cost is usually determined from the measured oxygen consumption, 

which is related to the metabolic cost. 

Different methods are available to estimate the mechanical power during human movement. 

Some methods calculate the power based on external work necessary to move the center of mass of a 
human body. However, the actual dynamics of each segment is lost in these methods. Some other 
methods provide the mechanical power due to the movement of each segment. These models cannot 
account for the synergy of muscles over a single joint. Although it is recognized that the actual 
mechanical work and thus the metabolic cost has to come from the muscles, currently it has not 
been very successful in calculating muscle power due to the difficulties in determining muscle forces. 

1.3       DEVELOPING A BIOMECHANICAL MODELING TOOLBOX 

Human biomechanical systems are highly non-linear systems with a high number of 
interconnected and interacting elements. There are multilevel and multi-loop controllers involved 
and the systems are characterized by highly functional adaptations. Summary of the available 
theoretical and experimental investigations on the human biomechanical systems convinces one that 
a complex system approach has to be adopted. System theory implies integral analysis of the 
working system instead of studying of separate phenomenon. This requires the biomechanical 
models be simple to use, goal oriented, reliable, complete and adaptive. The basis of this is a 
complex of mathematical tools that can be assembled to describe the processes in real human 
biomechanical systems under investigation. 

On the other hand, although biomechanical problems are versatile in nature. Some basic 
mathematical techniques are shared. Providing a set of these mathematical tools will facilitate and 
standardize the solution of these complex problems without reworking on the mathematical details 
which is usually very time consuming and error prone. 

Although a large amount of commercial and research software have been developed or used 
in biomechanical analysis of human systems. Most of them are targeted at solving specific classes of 
problems. And none of them provides such a basic set of mathematical tools. It is the object of this 
research project to review, collect, organize and develop these fundamental mathematical tools 



serving human biomechanical analysis, modeling and simulation. A human modeling toolbox will 
be developed with the following features 

1. Flexible and powerful: users will be provided with the fundamental and powerful tools that 
can be used to solve very general problems. The toolbox will be organized in such a way that 
models can easily be assembled for problems under investigation. The results of simulation 
can be visualized. Attention will also be paid on the development of standard, convenient 
information input and editing facilities 

2. Reliable: the mathematical and numerical algorithms will be rigorously tested and well 
studied, thus avoiding unnecessary errors in mathematical modeling which is the major 
source of error in biomechanical modeling 

3. Efficient: complicated models can be assembled from standardized functions. Therefore, 
users are spared from basic programming and can concentrate on the modeling itself. In 
addition, higher-level routines specifically developed for common problems will also be 
provided 

4. Consistent: developing model in a systematic way will make the comparison of results easier. 
Also, benchmark data and problems will also be included in the toolbox for easy calibration 
of model results 

5. Open: the toolbox will allow the addition of new algorithms and models. This is crucial for 
the fast-growing biomechanical modeling research area. The open structure of the toolbox 
ensures that it will become more and more powerful in real applications. 

6. Easy sharing of data: data will be stored in a systematic and easily retrievable way. 

In order to satisfy these requirements, the following components will be included in the toolbox 

1. Rigid dynamics routines: including kinematics, inverse dynamics, and forward dynamics 
formulations of multibody systems with closed loop and constraints. 

2. Muscle modeling routines: including various models for the passive and active elements of 
muscle as well as a collection of muscle parameters. 

3. Control schemes and optimization routines: including inverse (static) optimization, 
dynamics optimization, open-looped and close-looped control using both joint torque and 
muscle activation as control parameters. 

4. Data analysis routines: including the smoothing, fitting and filtering of time history data; 
statistical analysis; pattern recognition of data. 

5. Graphics routines: including plotting routines for data viewing, animation routines as well as 
routines for developing graphic user interfaces 

6. Other utility routines: including but not limited to routines for basic matrix manipulation, 
file input and output, data format conversion etc. 



7.   Database: including collected model parameters and simulation results as well as routines of 

managing the data 

Matlab (Mathworks 2000) is an integrated technical environment that combines numeric 
computation, advanced graphics and visualization, and a high-level language. This makes it suitable 
for the analysis, modeling and simulation of human systems. The human modeling toolbox will be 
developed in Matlab. However, the use of the toolbox will not be limited in Matlab environment. 
Programs developed in Matlab can be compiled into standalone applications as well as web based 

application. 

The following figure shows the schematics of the toolbox. Key to the toolbox is the lower 
level kernel routines that perform the above mentioned functions. Higher lever modeling routines 

are assembled from kernel functions for commonly encountered modeling problems. Benchmark 

problems will be developed based on the modeling routines. The shaded boxes in Figure 1-1, 

including user models and applications, are not the parts of the toolbox. 

The toolbox will be developed in three phases. The first phase will focus on the rigid body 
formulation. The second and the third phases deal with muscle modeling and control schemes of 
different levels of complexity. The development of graphics and additional utility routines will 

spread over all the three phases. 



c 
a> £::::■::£:£:::$: 

E ^;!^;:;:;:;i;:i 

Q. •:-:-:-:-:-:-:-l§:v 

O 1111 
o 
> o lli-llt 
Q 
E lllll 
JZ 
*-» ■SSl-fti'&S 

L. *•:$:■:•:•:•:•:•!■ 

o isl-lll? 
Ö) BUI 

< 

lllll 

c 
o 

Ü 

Q. 
Q. 
< 

KERNEL ROUTINES 

Rigid Dynamics Solver 
♦ Kinematics routines 
♦ Inverse dynamics routines 
♦ Forward dynamics routines 

Muscle dynamics 
♦ Passive elements 
♦ Active elements 
♦ Muscle library 

Control and Optimization 
♦ Static optimization 
♦ Dynamics optimization 
♦ Open/close-looped control 

using joint torques 
♦ Open/close-looped control 

with muscle activation 
♦ Adaptive control, feed- 

forward control, etc. 

Data Analysis 
♦ Smoothing, fitting filtering 
♦ Statistics analysis 
♦ Pattern recognition 

Graphics 
♦ 2D, 3D graphics 
♦ Animation 
♦ User interface tools 

DataBase 
♦ Model parameters 
♦ Benchmark results 

Other utilities 
♦ Basic math calculation 
♦ File input/output routines 
♦ Data format conversion 
♦ Interface routines 

I 
MODELING ROUTINES 

♦ Inverse simulation routines 
♦ Forward simulation routines 

BENCH MODELS 

♦ Dynamics bench models 
♦ Muscle modeling benches 
♦ Control benches 
♦ Etc. 

♦ Data Analysis/interpretation 
♦ High level graphics 

USER MODELS 

APPLICATION 

Figure 1-1. Configuration of Human Biomechanical Toolbox 
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CHAPTER 2 

MULTIBODY KINEMATICS 

Kinematics is the science of motion without considering its relationship with the force 
applied. In human movement, it is the study of the positions, angles, velocities, and accelerations of 
body segments and joints during motion. Despite of the fact that many textbooks have been 
published on human movement (Vaughan, Davis et al. 1990; Winter 1990; Ozkaya and Nordin 
1991), there is no complete and rigorous formulations for the kinematics of human movement. In 
addition, controversy still exists among biomechanical community on the use of different reference 
frames, segment orientation conventions and the definition of joint angles. 

This chapter provides the background information and detailed kinematics formulations. 
The formulations suffice the needs for most human movement analysis. The concept of tree- 
structured systems and various types of coordinate frames are described. Formulations for rotational 
kinematics are given. Knowledge of linear algebra is required to understand the formulations. More 
information on kinematics are can be found in (Meirovitch 1970; Paul 1981; Kane and Levinson 
1985). 

2.1       TREE STRUCTURED MULTIBODY SYSTEM 

A multibody system may or may not contain closed loops. When there is no closed loop in 
the system, it is called a tree-structured system. Systems with closed loop usually have to be 
converted into tree structured system by substitute parts of closed loops with kinematic constraints. 
A tree structured multibody system has a single rigid body called the root. The root is attached to the 
inertial frame through a joint. Each rigid body in the multibody structure has a unique, non- 
overlapping path from the root to itself. 

A graph can be created from a tree-structured multibody system with the following 
conventions. Each rigid body is assigned as a node and each joint connecting the bodies is assigned 
as an edge. The inertia frame is assigned node 0. The root node is labeled with the number 1, and the 
remaining rigid bodies are labeled in a depth-first manner. The joints are labeled so that the joint 
index is the same as the unique rigid body outboard to the joint. One example of a tree-structured 
representation of a human of 13 bodies and 13 joints is illustrated in the following diagram. 

11 
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Figure 2-1. Tree-Structured Representation of a 13-segment, 13-Joint Human 

Several coordinate systems, as shown in Figure 2-2, are commonly used in the analysis of a 
multibody system. Inertia reference system as shown in Figure 2-2(a) is usually the global coordinate 
system, which means the coordinates of its origin are zero and all other coordinate systems are 
specified with respect to this system. Each body segment has a local coordinate system (marked with 
subscript "L" in Figure 2-2(b), which usually has its origin at the segment mass center. The 
orientation of the local reference system can be arbitrary. The principal moment of inertia axes, 
subscripted with "P" in Figure 2-2(b), are specified with respect to the local reference system. In 
order to calculate joint angles, it is necessary to define two joint coordinate systems for a joint; one 
rigidly attached to each of the two segments that are connected by the joint, as shown in Figure 
2-2(d). The orientations of the joint coordinate systems are specified by the rotation from the local 
reference systems of both segments. Once the two joint coordinate systems are defined, they are 
fixed in the corresponding segments and unable to move relative to the segments. 

12 



Figure 2-2. Reference coordinate systems 
(a) Global coordinate system; (b) Local coordinate system and principal moment of inertia axes of 

segment 1 at the segment's center of mass; (c) Geometry coordinate system of segment 2 at the segment's 
geometric center; (d) Joint coordinate systems 

The geometry of the outer surface is sometimes defined for a rigid body segment to represent 
the physical appearance of the segment. This is necessary for the visual representation of the body as 
well as used to detect contact between different rigid bodies and the environment. There is no direct 
association of the segment inertial properties and the shape of the contact geometry. The geometry 
coordinate system as shown in Figure 2-2(c) is also specified with respect to the local reference 
system. 

2.2       REPRESENTATION OF RIGID BODY ORIENTATION 

Let bi, b2, b3 form the right-handed local frame of a rigid body B moving in the inertia frame 
A represented by ai, a2) a3; r* is a vector fixed in B; and r4 is the same vector expressed in A. The 
orientation of B with respected to A can be represented in a few ways. 

2.2.1    Rotational (Orientation) Matrix 

Rotational matrix is defined as the rotated frame B expressed in base frame A, i.e., 

R = ^R2?=[b1b2b3] (2.1) 

Therefore, the invariance of vector requires the vectors expressed in A and B frames be 
related by the following equation 

v4 = Rv* 

The orientation matrix is orthonormal, i.e., R^ = I, where I is a unit diagonal matrix of 
dimension 3. This introduces six constraints and allows three independent coordinates representing 
the nine elements of the rotational matrix. 
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Also, since matrix multiplication is not commutative, special attention should be paid to the 

sequence of the multiplication of the rotational matrix, which indicates the frame inside which the 

rotation is performed. 

♦ Post-multiplying rotational matrices (RARBIRB2 ...) indicates subsequently rotate with 

respect to rotated frame Blt B2, etc. 

♦ Pre-multiplying rotational matrices (.. .R^RBJRA) indicates always rotate with respect to 
inertia frame A. 

2.2.2    Euler Angles 

Definition 

Rotation may also be described by three euler (cardan) angles. However, to uniquely 

determine the three angles, the sequence of the rotation must also be specified. ZXZ and ZYX 

conventions are commonly used. In ZXZ-convention, as shown in Figure 2-3(a), rotations are 

sequentially performed around the Z (0), X (0), and Z (y/) axes respectively. While in ZYX- 

convention, as shown in Figure 2-3(b), rotations are sequentially performed around the Z (<z>), Y (0), 

and X (y/) axes respectively. 

....  ?    * 

(a) ZXZ Convention (b) ZYX Convention 

Figure 2-3. Euler Angles 

Conversion between Rotational Matrix and Euler Angles 

Let ci=cos(0), 5i=sin(<z>), c2=cos(65, S2=sm(0), c3=cos(y/), and 53=sin(^. Also designate R^ Ra 

and R^ to indicate the rotational matrices around the individual axis respectively. For ZXZ 

convention, rotational matrix can be obtained by post-multiplying R^ Rft and R^as 

Rrf — 

0 0 " 

C\ -*i ', Re — 

Sx ci . 0      0 

0 1    0 0 

0 ; Rr- 0   c3 -s3 

1 0   s, C3   . 

(2.2) 
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C\C3      ^1^2 ^3 "C1S3 5jC2C3 sxs2 

R — R^RflR^ — 5,C3 + CjC253 -5,53 + C,C2C3        Cj52 

5253 52C3                  C2 

n, the rotational matrix is 

"1 0      0 " "C2 0     52" _C2 ~S2 0 

R(j — 0     C,     -5[ ', R#- 0 1    0 R^— 52 C2 0 

0     5,       Cj _-52 0   c2 0 0 1 

CjC2         SjC3-FCjSjSj 5,53 +0^0^ 

R — R^R^R^ — 5,C2       CjC3 + 5j5253 —Cj53 + s^Cj 

-52 C253 c2c3 

(2.3) 

(2.4) 

(2.5) 

On the other hand, euler angles can be estimated from orientation matrix. For ZXZ 
convention, the algorithm is as follows 

when R31 > e or R32 > s 

<j> = arctan 2(R13,-R23) (j)&[-7r,n] 
< ö = arctan2(s!R13 -CjR^R^) 6&[0,7v] 

^ = arctan 2(-C!RI2 -SJR^CJRH + s,R21) ¥ e \-n,n\ 

<f> = arctan 2(R13,-R23) (j>^\-n,K\ 

< 6 = arctan 2(s,R13 -^R-^R-j.,) 0e[-;r,O] 
y = arctan 2(-c,R12 -s,R22,c,Rn + s,R21) V^\-n,7t\ 

when R31 < s and R32 < s 

> = 0 

6- arctan 2(-R23,R33) e&[-7i,7t\ 

y/ = arctan 2(-R]2,Rn) y/e[-7r,x] 

(2.6) 

where arctan2 is the extension of regular arctan function allowing the calculation of an angle from -TC 

to 7i. The first argument of the function should be the sin-component of the angle, while the second 

component be the cos-component of the angle. 

For ZYX convention, euler angles can be calculated from rotational matrix as 
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when R31 > s or R32 > e 

<j> = arctan 2(R32, -R33) <f>G.\-K,7t\ 

• 0 - arctan 2(-R31, s3R32 + c3R33) 0G[-TC/2,7T/2] 

y/ = arctan 2(s3R22 +c3R23,s3R]2 +c3R23) y/z[-7c,x] 

<j> = arctan 2(-R32, R33) tp&[-7t,n] 
- 9 = arctan 2(-R3,, s3R32 + c3R33) d&\-n-nl2\ and 0e[x/2, A 

yr = arctan 2(s3R22 + c3R23, s3R12 + c3R23) y/G[-n,n] 

when R31 < s and R32 < e 

'0 = 0 
< 6 = arctan 2(-R31,R33) 0e[-x,7r] 

y = arctan 2(R23 ,R13) y/&[-7t,7t] 

(2.7) 

It should be noted that using euler angles doesn't limit the range of the orientation angles, 
thus can handle tumbling motions. However, using rotational matrix cannot by itself account for the 
tumbling motion. On the other hand, Euler angles suffers from the so-called "gimbal locking", when 
two of the three rotational axes coincide and the derivatives of the euler angels are indeterminate. 

2.2.3    Euler Parameters 

Deßnition 

In order to avoid the locking of euler angles, rotation can be represented by quaternion 
which uses four coordinates rather than three. The basic idea of the quaternion representation of 

rotation is that any rotation can be uniquely defined as a rotation (ß) around a unit vector (X). The 

euler parameters, defined as follows, is one of the many quaternions 

ei = ^i sin(-) 

e2 = X2 sin© 
2 (2-8) 

e3 = X3 sin(^) 

e4 = cos(^) 

Notice since X is a unit vector, the norm of euler parameters [eu e2, e3, ej1^ is one. As can be seen 

from the definition, the tumbling motion cannot be accounted for by using euler parameters 

Conversion between Rotational Matrix and Euler Parameters 

Rotational matrix can be calculated from euler parameters as 
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R = 

1 - 2(e2
2 + e3

2) 2(e,e2 - e3e4) 2(e,e3 + e2e4 ) 

2(e,e2+e3e4) 1 - 2(e,2 + e3
2) 2(e2e3 -e,e4) 

2(e,e3 - e2e4)     2(e2e3 + e,e4)    1 - 2(e,2 + e2
2) 

(2.9) 

Euler parameters can be determined from a given rotational matrix by the following scheme 

iftrace(R)+l>0 

e=nomK 

R32 "" ^23 

R13 -iJj, 

R21 - Rn 

1.0 + trace(R) 

else 

i = l; y = 2;* = 3 (default) 

i = 2J = 3;k = l (R22>Rn) 

i = 3;j = l;k = 2(R33>Rii) 

e, = 1.0 - trace(R)+2.0Ri; 

ek=Rik+R,d 

e = norm(e) 

end (2.10) 

2.3       ANGULAR VELOCITY AND ACCELERATION 

The angular velocity of a rigid body B (bi, b2, b3) moving in the inertia frame A (ai, a2, a3) is 
defined as follows 

(aB = bi—b2 b3 +b2—b3 -bi +b3—bi b2 
dt dt dt 

Angular acceleration is defined as the time derivative of the angular acceleration 

*a*= —A(0B 

dt 

(2.11) 

(2.12) 

Relationship between angular velocity of a rigid body, A(oB, and the time derivatives of euler 

angles, <j) = [(j> 9 \j/l , can be determined from the invariance of the angular velocity vector with 

respect to the reference frame. For ZXZ convention, it is 
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Ar.B _ <ö*=S<t> = 

s2s3 

Wz 

For ZYX convention the relationship is 

Aa>* = S(|) = 

0 

0 

c2s3 

c2c2 

(2.13) 

(2.14) 

The inverse relationship is 

-lAaB Ö>=TAasB=S- 
(2.15) 

It must be noticed that the T matrix (the inverse of S matrix) may be singular in certain cases. 
Physically, the singular case corresponds to the "locking" of euler angles, when angular velocity can 
not be determined from euler angles. 

Similarly, the time derivatives of euler parameters can be calculated from segment angular 
velocity from the following equation 

&4j 

= TV=- 
w3 

~ei       ~e2 

-e, 
A(0B (2.16) 

2.4       TRACKING TUMBLING MOTION 

The formulations given above are capable of handling translation between the different 
representations of rotation, i.e., rotational matrix, euler angles or euler parameters. However, they 
are not exactly the same. Euler angles allow for the tumbling motion (where rotation is not limited 
to one cycle), but they suffer from the problem of "locking". Euler parameters have no problem with 
locking, but cannot handle tumbling motion naturally. 

In calculation angular velocity, the time derivatives of either euler angles or Euler parameters 
must be obtained. Therefore their continuity in time must be considered. To simplify the problem, 
rotation is represented by a rotational matrix. Euler angles are estimated from rotational matrix, 
which further will be differentiated and used to calculate angular velocity. As can be seen from 

equations (2.6) and (2.7), The range <j> and 9 are limited to 2n (one circle), while the range of 0is 

limited to K (half a circle). To guarantee the continuity of Euler angles, two extensions to the 

formulations must be made. First, the range of 0has to be extended to the full circle. Equations (2.6) 

and (2.7) give two set of formulations to calculate Euler angles corresponding to cases when 0is 

inside different half circles.  Using formulations for one half cycle, sudden jumps of it or -it in the 
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values of <j> and ^indicates that 0has moved to the other half circle. Second, jumps of 2/rin Euler 

angles have to be removed.   This requires the time history of the rotation be recorded. 

2.5      LINEAR POSITION, VELOCITY AND ACCELERATION 

Six independent parameters are required to describe a local frame B(bi, b2, b3) with respect to 
the inertial frame A^, a2, a3), i.e., three independent parameters describing the orientation of B, as 
described in the previous sections, and three coordinates of the origin of B expressed in A. Let O* 
the origin of local frame B; p* the position vector of a fixed point on B; and pA the same position 
vector expressed in A. The following relationship holds 

pA = ARBpB+0* (2.17) 

The velocity, vA, and the acceleration, a.A, of the point expressed in the inertia frame are 
defined as 

v^ — v* 
dt 

a^— v4 

dt 

(2.18) 

(2.19) 

The following equations relate the velocities and the accelerations expressed in A and B 
frames 

v^ = v^ + 'Wxr* 

a-4 = a* + A(oB x (
A
(ü

B
 xr9) + AaB xr* 

(2.20) 

(2.21) 

where or and   aB are the angular velocities and accelerations of the local B frame. 

2.6       CONSTRAINTS 

The motion of a multibody system may involve two types of constraints. Configuration 
constraints restrict the positions of each rigid body. The equations expressing the restriction are 
called holonomic constraint equations. Motion constraints impose restrictions on the velocities of 
the rigid bodies. When there is no motion constraint involved in a multibody system, it is called a 
holonomic system; otherwise, it is a nonholomonic system. The first and second order partial 
derivatives of rotational matrix, R, with respect to euler angles or euler parameters must be provided 
for the formulations of a holomonic system. The first order partial derivatives of T matrix are also 
needed for the nonholonomic systems. There relationships are given in the following tables. 

Table 2-1 1st order derivative of R with respect to ZXZ euler angles 

d/d</> d/de d/dyr 

Jin -S\S$ -C1C2C3 S\SiSi -C\&i-S\QiCi 

R?.i C\Ci -S1C2 S3 -C1S2S3 -SiSi+CiC2C3 

Rn 0 C2S1 S2C3 
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Rl2 S S3 -C1C2C3 S1S2C3 -C1C3+S1C2S3 

Rzi -C\Si -S1C2C3 -C1S2C3 -S1C3-C1C2S3 

Rzi 0 C2C3 -S2S3 

R31 C1S2 SiC2 0 

R32 S1S2 -C1C2 0 

Ra 0 -Si 0 
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Table 2-2 2n< 1 order derivative of R with respect to ZXZ euler angles 

?/df ?/dff J/dy? J/d<pde cf/dQdl// J/dedyr 
Rn -C\Cz +S\CtSi S\ C2S3 -C\C3+S\C2S3 C1S2S3 S1S3-C1C2C3 S1S2C3 

i?21 -S1C3-CIC2S3 -C1C2S3 -S\ C3 -C\ C2S3 S1S2S3 -C1S3-S1C2P3 -C1S2C3 

^31 0 -S2S3 -S2S3 0 0 C2C3 

-#12 C\Si+SiCiCi S1C2C3 CIS3+S1C2C3 CIS2C3 SiC3+C\C2S3 -S1S2S3 

-#22 S1S3-C1C2C3 -C1C2C3 S1S3-CIC2C3 SIS2C3 -C\C3-t~S\C2S3 C1S2S3 

-#23 0 -S2S3 ■S2S3 0 0 -C2S3 

*31 SA -S1S2 0 CiC2 0 0 

R32 C1S2 C1S2 0 SiC2 0 0 

R33 0 -Cl 0 0 0 0 

Table 2-3 1st order derivative of R with respect to ZYZ euler angles 

d/d<t> 3/90 d/dy/ 

*11 -S1C2 -C1S2 0 

R21 CiC2 -S1S2 0 

R3i 0 -c2 0 

R12 -C1C3-S1S2S3 C1C2S3 S1S3+C1S2C3 

R22 -S1C3+C1S2S3 S1C2S3 -C1S3-/-S1S2C3 

R23 0 S2S3 C2C3 

R3l CIS3-S1S2C3 C1C2C3 S1C3-C1S2S3 

R32 SIS3+CIS2C3 S1C2C3 -C1C3-S1S2S3 

R33 0 -S2C3 C2S3 
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Table 2-4 2nd order derivative of R with respect to ZYZ euler angles 

?/dp J/d& J/dyf J/d<pdO (?/d<pd\lf J/dOdy/ 

Rn -C1C2 CiC2 0 S1S2 0 0 

Ri\ -S1C2 -S1C2 0 <\Si 0 0 

R3i 0 S2 0 0 0 0 

Rl2 S1C3-C1S2S3 -C&Sz Si C3 -C1S2S3 -S1C2S3 C1S3-S1S2C3 C1C2C3 

Ra -C1C3-S1S2S1 -SIS2S3 -C1C3-S1S2S3 C1C2S3 S1S3 +C1S2C3 S1C2C3 

Rn 0 -C2S3 -C2S3 0 0 -S2C3 

R31 -S\Si-C\SzC3 -C1S2Q -S1S2-C1S2C3 -SIC2C3 CXC3+SIS2S3 -C1C2S3 

R32 C1S3-SIS2C3 -SIS2C3 C&-S1S2C3 C1C2C3 SIC3-CIS2S3 -S1C2S3 

R33 0 C2C3 -C2C3 0 0 S2S3 

Table 2-5 Derivatives of T with respect to ZXZ Euler Angles 

s2>s s2<e 

d/d<l> a/do d/dy 

Locking 

Tn 0 -C2S3/S22 C3/S2 

T21 0 0 -S3 

T3l 0 S^S2 -C2C3/S22 

T12 0 -c2Cs/s2
2 -53/^2 

T22 0 0 -C3 

T23 0 -c->/s2 C2Si/s2 

T3l 0 0 0 

T32 0 0 0 

T33 0 0 0 
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Table 2-6 Derivatives of T with respect to ZYX Euler Angles 

s2>e s2<e 

a/j<p d/dO dfd\jf 

Locking 

Tu 0 0 0 

T2l 0 0 0 

T31 0 0 0 

Tn 0 S2S3/C22 C3/C2 

T22 0 0 -S3 

T23 0 S3/C2 S2C3/C2 

T31 0 S2C3/C22 
S3/C2 

T32 0 0 -c3 -c3 

T33 0 Cy/C2
2 -S2S3/C2 

Table 2-7 1st order derivative of R with respect to euler parameters 

d/dd d/de2 d/de3 d/dd 

Ru 0 -4e2 -4e3 0 

R2i 2e2 2d 2d 2e3 

R3\ 2e3 -2d 2ex -2e2 

R\2 2e2 2ex -2d -2e3 

R22 -4d 0 -4e3 0 

R23 2d 2e3 2e2 2d 

R3i 2e3 2d 2e^ 2e2 

R32 -2^ 2e3 2e2 -2d 

R33 -4d -4e2 0 0 

23 



Table 2-8 2nd order derivative of R with respect to euler parameters 

J/de? 9/det Z/d<Z d/d<Z S/do.dei d^/de^a, d/de^ei 9/de^Cj, <?/0<&?Q d/deade^ 

Ru 0 -4 -4 0 0 0 0 0 0 0 

Rzi 0 0 0 0 2 0 0 0 0 2 

&i 0 0 0 0 0 2 0 0 -2 0 

Ru 0 0 0 0 2 0 0 0 0 -2 

R22 -4 0 -4 0 0 0 0 0 0 0 

Ru 0 0 0 0 0 0 2 2 0 0 

R31 0 0 0 0 0 2 0 0 2 0 

R32 0 0 0 0 0 0 -2 2 0 0 

Ru -4 -4 0 0 0 0 0 0 0 0 

Table 2-9 Derivative of T with respect to euler parameters 

d/dex d/de2 d/de3 d/de^ 

Tu 0 0 0 0.5 

T21 0 0 0.5 0 

T31 0 -0.5 0 0 

T41 -0.5 0 0 0 

T12 0 0 -0.5 0 

T22 0 0 0 0.5 

T32 0.5 0 0 0 

r42 0 -0.5 0 0 

T13 0 0.5 0 0 

T2i -0.5 0 0 0 

T33 0 0 0 0.5 

Tu 0 0 -0.5 0 
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CHAPTER 3 

FORWARD DYNAMICS FORMULATION 

In human motion simulation, human body is assumed to be a multibody constrained system 
of rigid segments connected at certain joints. There are a few ways of formulating the system. The 
traditional approach has been to select a set of minimal coordinates and formulate the equations of 
motion as a second-order system of ordinary differential equations (ODE), The ODEs are then 
integrated by standard ODE solvers (Meirovitch 1970; Kane and Levinson 1985). However, recently 
effort has been made to formulate the system in descriptor form, which use non-minimal sets of 
coordinates (Lubich, Engstier et al. 1995). Descriptor formulation leads to a set of differential 
algebraic equations (DAE) including equations of motion (second order ODEs) and constraint 
equations (differential or algebraic equations). 

This chapter develops a numerical method to solve the resultant DAEs from descriptor 
formulation by converting the algebraic equations into differential equations. The relaxation of 
position and velocity constraints is compensated in the method by projecting the integration results 
back to the original constraint manifolds. This method can solve both open-looped and close-looped 

systems. 

3.1       GOVERNING EQUATION 

The equations of motion of a constrained articulate system can be expressed in terms of 

position vector p(t), velocity vector \(t) and Lagrange multipliers X(t) as 

(a) p = T(f,p)v 

(b) Mv = f(t,p,v,\)-T(p)TG(t,p)TX (4.1) 

(c) g(*,p) = 0 

with prescribed initial conditions 

P(0 = Po>v(0 = v0 (4-2) 

In equation (4.1), (a) relates the time derivative of position to the velocity; (b) indicates the 

conservation of momentum; and (c) represents the position constraints. Gis the derivative of the 

constraints with respect to position variables, i.e., 

dp 
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Let np, nv and nx denote the number of position variables, the number of velocity variables 

and the number of Lagrange multipliers respectively. The interpretation and dimension of the 
variables in equation (4.1) is summarized in Table 3-1. 

Table 3-1. Definition and dimension of variables 

Variable Definition Dimension 
P Position R"' 
V Velocity R"* 
X Lagrange multipliers R"1 

g Constraint R"* 
f External force R* 
M Mass matrix R"-x"" 
T Velocity description matrix M"pXnv 

G 3g/dp R"^ 

The algebraic constraint equation in (4.1) has to be converted into ordinary differential 

equations. Differentiation of the (c) of equation (4.1) with respect to time leads to the following 

equation 

4ft 
At = gi,<+gijPj=0 (4.3) 

where index notion is used and subscript ,t = d/dt indicates partial differentiation of time and 

subscript ,j = d/dpj indicates partial differentiation of the j'h component of the position vector. 

Equation (4.3) replaces the position constraints by the equivalent velocity constraints. 

Differentiating (4.3) again with respect to time leads to 

-jpr = gi.u + gi.vPj + (gu )t Pi + gj {pj )t = o 

Notice pj = TyVj and Tijt = 0, equation (4.3) can be rewritten as 

guVk = - {&,« + 2gi.vPj + gijkPjPk + gijTjkjPiVk } (4-4) 

Equation (4.4) replaces the position constraints by acceleration constraints. Therefore, the 
ODE formulation of the constrained articulated system takes the following form 

(4.5) 

(a)    p = T(/,p)v 

(b)    Mv = f(f,p,v,A,)-T(p)rG(f,p)rA, 

(c)    G(/,p)T(p)v = -(g'+ga+gfc) 

with g\ = gitt +2gijpJ; g° = giiJkpjpk; andg? = giJjk,iPivk 

and   p(0 = Po,v(U = v0 
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3.2       NUMERICAL FORMULATION 

M is a nv by nv square matrix. When formulated in natural coordinate system, M is also 

block diagonal and positive definite. Therefore, (b) of equation (4.5) can be rewritten as 

v = M-1{f-TrGrA,} 

By substituting it into (c), the explicit form of X is obtained as 

X = (GTM 'TrGr )_1 {GTM^f + g' + g" + g*} 

Notice that GTM_1TrGr  is always a positive definite square matrix. Therefore, the 
following standard system of first-order equations is obtained 

(4.6) 

Equation (4.6) can be solved using the ODE solvers in Matlab. 

3.3       PROJECTION OF POSITION AND VELOCITY CONSTRAINTS 

Equation (4.5) and its numerical counterpart equation (4.6), the position constraints (the (c) 
of equation (4.1)) are replaced by the acceleration constraints. During numerical integration, 
numerical drifting may occur and the position constraints and velocity constraints (4.3) may not be 
accurately satisfied. The projection method (Lubich, Engstier et al. 1995) is used to project the 
solution to the position and velocity constraint manifolds. The projection equations are given as 
follows. 

3.3.1    Proj ection of position constraint 

After a successful integration step, an approximate position solution p° is obtained. It is 

projected to the position constraint g(t, p) = 0 by performing the following Newton-Ralphson 

iterations 

[    M(p°)       T(p°fG(P
0)rl Kl {M(p0)Ytl 

LG(P°)T(P
0
)              0          j w 1 g(f,P*) J 

Y*+1=Y*+Ay* 

P*
+1
=P*+T(PW 

(4.7) 
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until T(p°)A/ < tolerance. 

3.3.2    Projection of velocity constraint 

Velocity constraint (4.3) can also be written in matrix form as  g' + Gv = 0. After a 

successful integration step, an approximate velocity solution v° is obtained. The velocity constraint 

is implemented by the following projection 

M(p°)       T(p°)rG(p°)r 

G(p°)T(p°) 0 
(4.8) 
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CHAPTER 4 

INVERSE DYNAMICS ANALYSIS 

When human body is assumed to be a system of rigid segments connected at certain joints, 
human motion is governed by a set of equations of motion which include body segment parameters, 
driving forces and moments, and kinematic data. In the previous chapter, the equations are solved 
for the kinematics given the body segment parameters and the driving forces. The equations can also 

be solved for driving forces given the body segment parameters and the kinematics. This is called 

inverse dynamics approach. 

Inverse dynamics approach is commonly used in biomechanical analysis of human motion 
to estimate the mechanical loads on joint and segments. Besides rigid body assumption, it is also 
assumed that no translational movement can occur at joint. The joint forces and moments calculated 
from inverse dynamics analysis are the resultant forces or moments from active skeletal muscles and 
passive joint structures such as ligaments and joint capsules. The calculated forces and moments can 
be further processed to yield muscle forces as well as some energetics quantities such as internal 
work, external work, and joint power flow. These kinetics, energetics and muscle quantities can be 
used to analyze both the healthy and pathological gait, assist in the diagnosis of the underlying 
pathologies of abnormal gait pattern, and help the evaluation and design of soldier equipment. This 
chapter describes some common issues of inverse dynamics analysis. 

4.1 MEASURING KINEMATIC DATA AND GROUND REACTION FORCE 

The kinematic data required for inverse dynamic analysis include the positions, velocities 
and accelerations of segment centers of gravity (CG) and rotational angles, angular velocities and 
angular accelerations of all segments. The displacements of body segments can be measured from a 
motion capture system. The displacements are then differentiated to derive the velocities and 
accelerations of the segments. Goniometers and accelerometers can be used to complement the 
estimation from the motion capture system (Ladin and Wu 1991; van den Bogert, Read et al. 1996). 

Ground reaction forces can be measured by force plates, foot contact pressure measurement 
devices (Han, Paik et al. 1999) or alternately estimated from the kinematic data (Bobbert, 
Schamhardt et al. 1991). The kinematic data and the ground reaction data must be synchronized. 

4.2 KINEMATICS RECONSTRUCTION 

A video based motion capture system records the positions of clusters of markers attached on 
the surfaces of body segments in the global (laboratory) reference system. The recorded coordinates 
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are used to reconstruct the positions of anatomical landmarks (joint positions) and the orientation of 
the segments and thus the positions of segment centers of gravity. 

At least three markers are needed for each segment. Given the position of three non-collinear 
markers on a segment and assume that there is no relative movement between the markers, the joint 
position can easily be reconstructed. The orientation of the segment can be calculated by geometric 
rules. Both the distance between the markers associated with each marker and the offset of each 
marker form the line connecting any other two should be sufficiently large to prevent excessive error 
propagation during reconstruction. However since the markers are placed on the surfaces of 

segments, relative movement of markers (skin marker artifacts) may exist. It has been shown that the 
errors in kinematic reconstruction due the skin marker artifacts can be overwhelming (Cappozzo, 
Cappello et al. 1997). 

In order to remove the effects of the skin movement artifacts, a few techniques have been 
developed by putting more markers one each segment. The redundancy of the marker data allows 
for an optimal identification by using either a singular value decomposition algorithm or a weighted 
least square algorithm (Spoor and Veldpaus 1980; Veldpaus, Woltring et al. 1988; Soderkvist and 
Wedin 1993). 

4.3       BODY SEGMENT PARAMETERS 

The body segment parameters refer to the inertial parameters of a body segment, such as the 
mass of the segment, its length, the location of its center of gravity with respect to the segment local 
coordinate frame and moments of inertia (the values and orientation of the principal moments of 
inertia). The accuracy of the body segment parameters affects the accuracy in the kinetic analysis 
(Krabbe, Farkas et al. 1997). 

A number of ways have been used to estimate the body segment parameters. The inertia 
properties can be measured directly from cadavers (Dempster 1955; Chandler, Clauser et al. 1975). 
However, these data include only limited sample size, age and morphological discrepancy. Mass and 
density of individual segments can also be determined from direct measurements on living subjects. 
A number of techniques such as magnetic resonance imaging (Martin, Mungiole et al. 1989; 
Mungiole and Martin 1990) and computerized tomography (Brooks and Jacobs 1975; Huang and 
Wu 1976; Zatsiorsky and Seluyanov 1985) have been used. These techniques can provide very 
accurate in vivo estimates of the segmental inertial properties. However, these techniques are 
difficult to perform due to exposure to radiation, high cost and lengthy procedure. Also, the direct 
measurement of inertial properties can not satisfy the need in assessing all the body segment 
parameters on individual subjects. Therefore, many linear and nonlinear statistical regression 
equations are developed based on the measured data (Hinrichs 1985; Yeadon and Morlock 1989; 
Vaughan, Davis et al. 1990; Zatsiorsky, Seluyanov et al. 1990). In addition, body segment 
parameters can be calculated mathematically using the assumption that the segment can be 
represented by simple geometry with uniform density (Jensen 1978; Hatze 1980; Jensen 1989). High 
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accuracy has been reported and an automated version is developed based on video image capturing 
and computer image processing (Sarfaty and Ladin 1993). 

4.4       JOINT DYNAMICS FORMULATION 

Figure 4-1 Free diagram of a segment 

Figure 4-1 shows the free diagram of a segment with global frame, segment local frame, 
external forces and joint reaction forces displayed. Coordinate system 0(X,Y,Z) is the global 
reference frame. Local coordinate system is defined at the segment center of gravity os as os(x,y,z). 
Therefore, orientation of the segment can be represented by the rotational matrix Rs = °R° = [x y z]. 
Points Pand Z?/are the proximal and distal joints of the segment. Subscript /'indicates more than one 
distal joints may be present on one segment (say, two hip joints as distal joints of trunk segment). 
However, only one proximal joint is allowed. 

At the proximal joint, reaction force vector Fp and reaction torque vector Tp have positive 
poles, which means the positive direction of the force or torque components is the same as the 
positive direction of the corresponding local coordinate. While at the distal joint(s), reaction force 
vector Frf/and reaction torque vector T*, have negative poles. Vectors rp and rdi represent the relative 
positions of the proximal and distal joints respectively. Force vector Fe is the additional external 
force acting on the segment. Several or none Fe may be involved depending on the situation. 
Similarly, vector Te stands for the external torque exerted on the segment by the environment. One 
example of the external force is the ground reaction forces acting on ankles. Vector re shows the 
relative position of the application point of external force to os. 

Let ms indicate the mass of the segment; Is the inertia matrix of the segment as described in 

the previous section; and g the gravity vector. Let as, oos and as be the linear acceleration vector, 
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angular velocity vector and angular acceleration vector of the segment, represented in the global 
frame, respectively. The equation of motion can be obtained by conservation of momentum as 
follows 

F,+ Fp-Z¥di=ms^ (4.1) 

T, + T,, + rp xT, -I rdix T^ = Isas +©SX(IS-G>S) (4.2) 

Since kinematic data as, tos and as are obtained from kinematic reconstruction and the 
differentiation of the position data, equations (4.1) and (4.2) for each segment can be solved by 
starting with the most distal segment and proceeding to the most proximal one. 

The resultant joint reaction forces and torques calculated from equations (4.1) and (4.2) are 

defined in global reference coordinate system, which are usually not suitable for interpreting relative 

to the subject's joints. Therefore, the joint forces and torques are usually transformed to a body fixed 

anatomical reference frame. The anatomical coordinate system first proposed by [Grood, 1983 #1] is 

widely used [Apkarian, 1989 #5; Chen, 1988 #4; Siegler, 1988 #3; Vaughan, 1990 #6]. Also, it 
should be noticed that the calculated joint loads are the resultant loads from active muscles as well 
as the passive structures. 
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CHAPTER 5 

EXAMPLES AND APPLICATIONS 

This chapter gives sample applications and example models developed from AHBM 

V 1. Among inverse dynamic applications, Gait3D VI, a three-dimensional gait analysis 

program is developed for USARIEM; a new method is developed for a DOT project to 

understand the airbag external load behavior and bag-occupant interaction; and a three- 

dimensional lower extremity benchmark model is developed. Among forward dynamic 

examples, a simple spring mass model and a double pendulum model are developed to test 

the kinematics and integration algorithms of the toolbox. A three-dimensional whole body 

human model and a two-dimensional human head-neck model are developed for impact 

simulations. 

5.1      INVERSE DYNAMICS EXAMPLES AND APPLICATIONS 

5.1.1   Gait3D VI Developed for USAREIM 

The kinematics, inverse dynamics and graphical algorithms of the AHBM toolbox 

are used to develop a three-dimensional gait analysis program for the U.S. Army Research 

Institute of Environmental Medicine (USARIEM). The version-1 of the program, Gait3D VI 

(Shen 2000), supports the current test setup of USARIEM motion analysis system. Input 

and output file formats currently used by USARIEM are fully supported. 

Gait3D VI allows running, visualizing and analyzing multiple gait tests in a simple 

graphical layout. It supports running multiple tests in one project and provides easy control 

of analysis parameters. Gait3D VI also comes with the StickViewer and XYviewer 

developed in the AHBM toolbox. These viewers allow the visualization and animation of 

test results. 

If requested by USARIEM, the program will be upgraded to include the further 

development of AHBM toolbox in the following phases. 
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Figure 5-1. Gait3D VI Developed for USARIEM 
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5.1.2   Inverse Dynamics Model for Predicting Airbag Forces 

An inverse model as shown in Figure 5-2, is developed for calculating external air 

bag loads on the head and neck of a small female test dummy using recorded dummy 

response data (Chan, Shen et al. 2001). This work is sponsored by Department of 

Transportation to understand and minimize the possible hazard of air bags based on 

physical principles. 

X« ® 

Figure 5-2. Schematics of the Inverse Model to Predict Airbag Force 

Calculations are performed for static out-of-position tests as well as vehicle crash 

tests. Some sample calculations are given in Figure 5-3. The calculated external loads 

provide a phenomenological explanation of the differences in dummy responses between 

different dummy positions. It is also shown that the impact angle on the head affects the 

head/neck joint load significantly. 

(a). Head Rotation Angle (deg) (b). Airbag Load on Head (KN) 

Figure 5-3. Calculated Head Rotation and Airbag Load 
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5.1.3   A three-dimensional lower extremity model 

A three-dimensional lower extremity model (Vaughan, Davis et al. 1990) is 

developed. This model consists of seven segments, i.e., feet, shanks, thighs and a pelvis. Six 

joints, ankles, knees and hips, connect the seven segments. In the bench problem described 

in (Vaughan, Davis et al. 1990), the three-dimensional motion (positions and orientations) 

of the lower extremity is reconstructed from eighteen markers attached to the segments. 

Two force plates record the ground reaction forces on both feet. The mass and inertia 

properties of each segment are calculated from regression equations. 

Figure 5-4. A three-dimensional lower extremity model 

The kinematics and ground reaction forces given in (Vaughan, Davis et al. 1990) are 

used to test the kinematic and inverse dynamic routines in the toolbox. Results are 

consistent to those given in the book. Some of the comparison of result is given in Figure 

5-5. 

This model can be used to perform three-dimensional gait analysis. Lower extremity 

muscles will be added to the model in the next phase of AHBM development. This will allow 

the comparison and testing of different muscle models and muscle functions during human 

locomotion. 
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calculated using toolbox routines; blue line is from (Vaughan, Davis et al. 1990) 

Figure 5-5. Comparison of Forces and Torques at the Right ankle 
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5.2      FORWARD DYNAMICS ANALYSIS EXAMPLES 

5.2.1    Simple Spring Mass Model 

Figure 5-6 shows a simple model where two masses, m1 and m2, are connect by a 

linear spring with a spring coefficient of k. A time dependent force F(t) is applied on mass 

mr This problem is used to test the numerical algorithm in the toolbox to solve equations of 

motion. Figure 5-7(b)-(d) give the solution under a cyclic load F(t) = 10sin(2*7t *t) (Figure 

5-7(a)) and m, = 10 (kg); m2 = 10 (kg); k = 10 (N/m). 

F(t) 

Figure 5-6. A mass-spring-mass system 
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Figure 5-7. External force and solutions 
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5.2.2   Three-dimensional Double Pendulums 

A three-dimensional double pendulum is shown in Figure 5-8. The lower pendulum 

is connected to the ground by a pin joint, where rotation is allowed around only one axis of 

the joint. An Euler joint connects the upper and the lower pendulum and allows for 

subsequent rotation around all three axes of the joint. This 

problem is used to test the algorithms in the toolbox to 

calculate three-dimensional kinematics. 

In this example, both pendulums are of unit 

lengths, unit masses and unit moments of inertia. A 

constant unit force is applied at the top of the upper 

pendulum and moves with the pendulum (expressed in the 

upper pendulum local frame). The calculated kinematics is 

given in Figure 5-9(a)-(d). 

Figure 5-8. 3D Double Pendulum 
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Figure 5-9. Calculated Kinematics of the Double Pendulum 
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5.2.3   Three-dimensional Whole Body Human Model 

Figure 5-10 shows a three-dimensional whole body model developed using AHBM VI 

routines. The model has 15 body segments, i.e., head, neck, upper torso (thorax), center 

torso (abdomen), lower torso (pelvis), upper arms, lower arms, upper legs, lower legs and 

feet. The lower arms are combinations of the forearms and hands. The are connected 

together by 14 joints representing the physical joints of the human body such as pelvis, 

waist, neck, hips, knees, ankles, shoulders and elbows. 

Various types of joints, such as pin joint, ball and socket joint and euler joint, are 

used. The joints are constrained by nonlinear rotational springs and dampers. Joint range 

of motion is implemented by including "soft joint stop", i.e., when angles beyond the joint 

range of motion, a restoring torque of significant magnitude is added to move the joint back 

to the range of motion. 

Figure 5-10. Three-dimensional 15-segment human model 

The body segment inertia and geometrical properties and joint mechanical 

properties refer to (Cheng, Obergefell et al. 1994). These values are easily adjustable due to 
the flexibility of toolbox routines. The example used here has a weight of about 75 
kilograms and a height of about 1.8 meters. Based on these two parameters, it is classified 

in the 95th percentile of the adult U.S. males 

An impact force as shown in Figure 5-11(a) is applied at the chest. The model is used 

to calculate the response of the whole body to the impact. The chest acceleration, head 

acceleration and head angular accelerations are given in Figure 5-ll(b)-(d). 
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Figure 5-11. Impact Force and Calculated Accelerations 

This model shows the capability of toolbox routines in dealing with impact forward 

simulation problems of large degrees of freedom and complex joint constraints. 
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5.2.4   Two-dimensional Human Head-Neck Model 

A human head-neck model in is developed using AHBM toolbox routines. This model 

is a simplified version of the global human head-neck model described by (De Jager 1996). 

As shown in Figure 5-12, nine rigid bodies represent the head (CO), the seven cervical 

vertebrae (C1-C7) and the first thoracic vertebra (Tl). The inertia and geometrical 

properties of each segment were measured from test and given in (De Jager 1996). The 

bodies are connected by complex nonlinear viscoelastic elements. 

ce 

ct 
C2 
C3 
C4 

C7 

Tl 

Figure 5-12. Two-dimensional Human Head Neck Model 

The model is used to simulate the head-neck response during a front impact test. 

The sled acceleration history is given in Figure 5-13(a). The simulation results are 

consistent with those given in (De Jager 1996). Part of the simulation results, such as total 

head rotation angle and joint angles between some neighboring cervical vertebra are given 

in Figure 5-13(b)-(f). 

Since the neck joints are connected by nonlinear springs which may become very 

stiff at certain alignment and orientation. This model demonstrates the toolbox's ability of 

solving stiff problems. 

The simulation results also show that the effects of active neck muscles must be 

included for accurate prediction of head-neck response, even under very violent situations 

when the muscle effects are usually neglected. 
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Figure 5-13. Sled Acceleration, Head and Joint Angles 
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