

- Cockpit Programming to Reduce Logistics
- Distributed Arming Systems for Missiles
- Tolerant Burst Point Control

	Report Documer	ntation Page
Report Date 16Apr2001	Report Type N/A	Dates Covered (from to) -
Title and Subtitle Fuzing for Global Interoperability		Contract Number
		Grant Number
		Program Element Number
Author(s)		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) Unknown		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Assocation) 211 Wilson BLvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Approved for public releas		
Supplementary Notes Proceedings from The 45th document contains color in		-18 April 2001 Sponsored by NDIA, The original
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages		

Future Cockpit Programming

Present programming

- Mission planning tools program a PCMCIA card
- PCMCIA card sent to fuze programming site or Mission data sent to fuze programming site and program a PCMCIA card
- Setter unit programs fuze on ground
- Fuze's program checksums hand written on weapon
- Weapon loaded onto specific location
 of aircraft
- In-flight, fuze mission data can be reprogrammed
- Pilot selects proper weapon from aircraft stores
- Launch weapon

Future programming

- Mission planning develops mission data
- Mission data sent to aircraft
- Aircraft programs fuze, including weapon type
- Launch weapon

- Reduce Tactical Response Time by eliminating Ground
 Programming Processes
- Increase Reliability of Launching Proper Weapon from Aircraft.
 Prevent Launching Weapon with Wrong Mission Data at a Target, when can't Interrogate Weapon on Aircraft
- Eliminate Hardware, I.e. Ground Setter Unit
- Eliminate Training, I.e. Ground Setter Unit Training
- Eliminate Maintenance I.e. Ground Setter Unit Maintenance
- Increase Fuze Connector Life and Reliability
 - Reduce Number of Connections to Fuze

Cockpit Programming Plan

- Develop System Safety Approach to program Mission and Weapon Type
 Parameters
- Obtain Safety Board Approval of Approach
- Implement Approach
- Obtain Safety Board Approval of Design

- Reason for a Distributed Arming System
 - Fuze does not have access to Arming Environments, like when Fuze is buried in a Missile
- Core Requirements for Distributed Arming System
 - MIL-STD-1316 requires Two Independent Arming Environments that Independently Control Arming
 - Hardware only (No Software) in at Least One Arming Environment Path
 - Unique Code for Arming

Examples of Distributed Arming Systems

- Free-Flight and Guided Bomb Systems
 - FMU-139 and FZU-48
 - FMU-152 and FZU-55
 - HTSF and FZU-60
- BAT: Umbilical Separation, Air Stream Sensing, and ESAD
- TTPV with a HTSF
- CALCM with a HTSF
- Others

- FZU detects Two Independent Arming Environments
 - Lanyard Pull
 - Minimum Lanyard Pull Force
 - FZU Time Windows the Turbine Release Arming Environment
 - FZU Powers Fuze with Post Launch Air Stream
- Unique Power & Turbine Release Signals from FZU-48 & FZU-55
 - •Positive for Power
 - •Negative for Turbine Release
- FZU-60 Power and Turbine Release Frequencies verified with HTSF & MEHTF

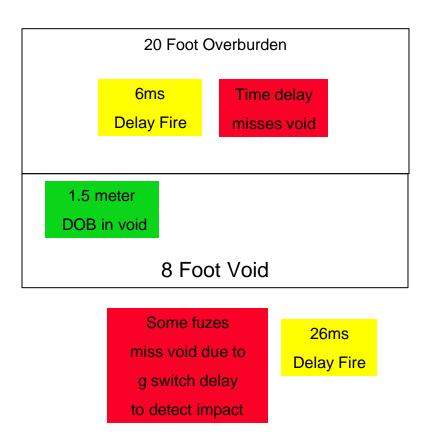
Missile Distributed Arming Systems

- Missile programs Fuze
- Missile detects Arming Environments
- Missile builds Unique Arm Code with Arming Environment Data
- Missile provides Arming Power to Fuze
- Missile provides Unique Arm Code to Fuze
- Fuze arms after
 - Timing out Arm Time
 - Detecting Unique Arm Code

- Probability of Occurrence << One in a Million to meet MIL-STD-1316's Less than One in a Million arm before launch for System
- Ignores Common signals
 - •Common power: DC, 110Vac. 60hz; 110Vac, 400hz
 - •Low Frequency Guidance Signals
- Provides Immunity to Electromagnetic Environments

(HERO, EMV, Other)

- Built using arming environments like
 - Launch
 - Deployment of Air Surfaces
 - Post Launch Air Stream or Engine Power
 - Other


- Void Detection of HTSF and MEHTF provide Accurate Depth of Burial for
 - Varying Overburden
 - Multiple Voids
 - Unknown Void Lengths

HTSF & MEHTF Void Burst Point Control

- Void depth of burial makes target defeat economical with Tolerant burst point control
- DOB from void entry fires warhead in void without accurate target intelligence
 - Prevents fires before and after voids
 - Reduces DOB errors from variations in overburden, impact angles, angle of attack, impact velocity, and warhead turning during penetration

