
AFRL-IF-RS-TR-2001-158
Final Technical Report
August 2001

TRUSTED RECOVERY FROM INFORMATION
ATTACKS

George Mason University

Sushil Jajodia, Paul Ammann, and Peng Liu

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20011005 145

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-158 has been reviewed and is approved for publication.

APPROVED: Sfefta^AV /
v^Vt^C^

JOSEPH V. GIORDANO
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB Ho. 0704-0188

r^^£S^&^«ES&&&SSS^&SSlg*3=sB=a
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

AUGUST 2001
4. TITLE AND SUBTITLE

TRUSTED RECOVERY FROM INFORMATION ATTACKS

3. REPORT TYPE AND DATES COVERED

 Final Mar 97 - Mar 99

6. AUTHOR(S)

Sushil Jajodia, Paul Ammann, and Peng Liu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

George Mason University
4400 University Drive
Fairfax VA 22030-4444

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome New York 13441-4505

5. FUNDING NUMBERS

C - F30602-97-1-0139
PE- 61102F
PR- 2301
TA- 01
WU-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-158

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Joseph V. Giordano/IFGB/(315) 330-4199

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) " " "

Preventive measures sometimes fail to deflect malicious attacks. In this work, we adopt an information warfare perspective
which assumes success by the attacker in achieving partial, but not complete damage. In particular, we work in the database
context and consider recovery form malicious but committed transactions. Traditional recovery mechanisms do not address
this problem, except for complete rollbacks, which undo the work of benign transactions as well as malicious ones, and
compensating transactions, whose utility depends on application semantics, recovery is complicated by the presence of
benign transactions that depend, directly or indirectly, on the malicious transactions. We present recovery models to restore
only the damaged part of the database. Two families of new repair algorithms are developed: one is a set of
dependency-graph based algorithms, the other is a set of algorithms that do repair via rewriting histories.

14. SUBJECT TERMS "~ ~

Defensive Information Warfare, Information Assurance

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

116
16. PRICE CODE

20. LIMITATION OF
AFJSTFJACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

1 Introduction 4

1.1 Dissemination of Results from Contract 6
1.2 Research Results in
1.3 Organization of the Report 23

2 Related Work 14

2.1 Why Traditional Mechanisms Fail in Trusted Database Recovery 14
2.2 Related Work in Fault Tolerance 17
2.3 Related Work in Databases jg
2.4 Related Work in Security 21
2.5 Related Work in Information Warfare 22

3 Modelling the Underlying System 24
3.1 Modelling Databases 24

3.1.1 Transactions and Histories 24
3.1.2 A Database Recovery Model 26

3.2 Modelling IW Attack and Defense 26
3.2.1 Model of a DBMS That Can Survive IW Attacks 27
3.2.2 Detecting Malicious Transactions 28
3.2.3 Three Attack Recovery Models 29

4 The Framework 32

4.1 Modelling Trusted Recovery by Flat Transactions 33
4.2 Modelling Trusted Recovery by Nested Transactions 34

5 Trusted Recovery by Syntactic Approaches 37
5.1 The Model 37

5.2 Static Repair Based on In-Log Read Information 41
5.2.1 Three Pass Repair Algorithm 41
5.2.2 Two Pass Repair Algorithm 44
5.2.3 Repair Algorithm Based on Separate Read Log 45

5.3 On-the-Fly Repair Based on In-Log Read Information 47
5.3.1 Termination Detection 48
5.3.2 Building Undo Transactions 52
5.3.3 On-the-fly Concurrency Control 54
5.3.4 On-the-fly Repair Algorithm 55

5.4 Extracting Read Information From Transaction Profiles 57
5.4.1 The Model 58
5.4.2 Read Set Templates 59
5.4.3 Examples 63
5.4.4 Static Repair 66
5.4.5 Dynamic Repair 67
5.4.6 Getting Write Items from the Log 68

5.5 Discussion 69
5.5.1 Comparison of the Performance of Different Repair Approaches 69
5.5.2 Incorporating Ongoing Attacks 69

Trusted Recovery by Rewriting Histories 70
6.1 The Model 70

6.1.1 Rewriting Histories 71
6.1.2 Repaired Histories 74

6.2 Basic Algorithm to Rewrite a History 74
6.2.1 Can-Follow Relation 74
6.2.2 Can-Follow Rewriting 75
6.2.3 Significance of Algorithm 10 78

6.3 Saving Additional Good Transactions 78
6.3.1 Motivating Example 78
6.3.2 Can-Follow and Can-Precede Rewriting 79
6.3.3 Invert and Cover 81

6.4 Pruning Rewritten Histories 82
6.4.1 The Compensation Approach 82
6.4.2 The Undo Approach 83

6.5 Relationships between Rewriting Algorithms 86
6.6 Implementing the Repair Model on Top of Sagas 88

6.6.1 The Saga Model 88

6.6.2 Repair a History of Sagas 90

6.6.3 Detecting Can-Follow, Can-Precede, Cover and Invert Relationships between
Transactions 93

6.6.4 Fix Information Maintenance 95

Discussions and Conclusions 96
7.1 Discussion gg

7.1.1 Relevant Security Contexts 95
7.1.2 Other Issues gg

7.2 Contributions gg
7.3 Future Research 200

7.3.1 Trusted Recovery with Bounded Inconsistency 100
7.3.2 Extension to Multilevel Secure Systems 101
7.3.3 Extension to Distributed Database Systems 102

Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5:

Figure
Figure
Figure
Figure

5.6
5.7
6.1
6.2

List of Figures

Model of a DBMS
Architecture of IW Defense
Recovery Models
Flat Transaction Model
Nested Transaction Model
Dependency Graph for History H5

Architecture of the on-the-fly repair system
A Snapshot of Repair on the Log
Transactions which have been found suspect may generate new dirty
Items

Transactions which will later be found suspect may generate new dirty
Items
Possible Item States
The flaw of the straight forward method
Zone of Repair
Relationship among Repair Approaches

30
31
31
33
35
39
48
49

50

51
51
53
71
89

SECTION 1

Introduction

Information security has become increasingly important with the advent of (inter-connected) com-
puters to process sensitive information. However, experience with traditional information systems
security practices (INFOSEC) for confidentiality, integrity, and availability has shown that it is
very difficult to adequately anticipate the abuse and misuse to which an information system will be
subjected in the field. In 1995 the Computer Emergency Response Team (CERT) reported 1,168
security-related incidents [cer95]. That year the United States Federal Bureau of Investigation (FBI)
disclosed the results of their computer security survey, which showed that 40 percent of the surveyed
sites experienced at least one unauthorized access [fbi97]. In 1996 the United States Department of
Defense (DoD) reported an estimate of 250,000 attacks per year on its computer system and stated
that the rate of attacks is increasing by 100 percent annually [dod96]. That year CERT's figures
showed a significant increase in hacker activity, with 2,573 security-related incidents [cer96j.

In response to this experience, a complementary approach with an emphasis on survivabihty
has emerged.* This 'information warfare' perspective is that not only should vigorous information
security measures be taken to defend a system against attack, but that some attacks should be
assumed to succeed, and that countermeasures to these successful attacks should be planned in
advance. The information warfare perspective emphasizes the ability to live through and recover

from attacks.
The focus of INFOSEC is prevention: security controls aim to prevent malicious activity that

interferes with either confidentiality, integrity, or availability. However, outsiders (hackers) have
proved many times that security controls can be breached in imaginative and unanticipated ways.
Further, insiders have significant privileges by necessity, and so are in a position to inflict damage.
The dramatic increase in internetworking has led to a corresponding increase in the opportunities

*For a summary with an emphasis on the database context, see [AJMB97].

for outsiders to masquerade as insiders. Network-based attacks on many systems can be carried out
from anywhere in the world. Although mechanisms such as firewalls reduce the threat of outside
attack, in practice such mechanisms do not eliminate the threat without blocking legitimate use
as well. In brief, strong prevention is clearly necessary, but less and less sufficient, to protect
information resources.

An information warfare approach augments traditional INFOSEC measures to harden a system
against attack. An information warfare timeline is intelligence gathering by the adversary to detect
weaknesses in the resulting system, attack by the adversary, and finally countermeasures to the
attack. Typical countermeasure phases follow a fault tolerance model of attack detection, damage
confinement and assessment, reconfiguration, damage repair, and fault treatment to prevent future
similar attacks.

Although the information warfare adversary may find many weaknesses in the diverse compo-
nents of an information system, databases provide a particularly inviting target. There are several
reasons for this. First, databases are very widely used, so the scope for attack is large. Second,
information in databases can often be changed in subtle ways that are beyond the detection capa-
bilities of the typical database mechanisms such as range and integrity constraints. For example,
repricing merchandise is an important and desirable management function, but it can easily be
exploited for fraudulent purposes. Finally, unlike most system components, many databases are
explicitly optimized to accommodate frequent updates. The interface provides the outside attacker
with built in functions to implement an attack; all that is necessary is to acquire sufficient privileges,
a goal experience has shown is readily achievable. Advanced authorization services can reduce such
a threat, but never eliminate it, since insider attacks are always possible.

Integrity, availability, and (to a lesser degree) confidentiality have always been key database
issues, and commercial databases include diverse set of mechanisms towards these ends. For ex-
ample, access controls, integrity constraints, concurrency control, replication, active databases, and
recovery mechanisms deal well with many kinds of mistakes and errors. However, the IW attacker
can easily evade some of these mechanisms and exploit others to further the attack. For example,
access controls can be subverted by the inside attacker or the outside attacker who has assumed an
insider's identity. Integrity constraints are weak at prohibiting plausible but incorrect data; classic
examples are changes to dollar amounts in billing records or salary figures. To a concurrency control
mechanism, an attacker's transaction is indistinguishable from any other transaction. Automatic
replication facilities and active database triggers can serve to spread the damage introduced by
an attacker at one site to many sites. Recovery mechanisms ensure that committed transactions
appear in stable storage and provide means of rolling back a database, but no attention is given to
distinguishing legitimate activity from malicious activity. In brief, by themselves, existing database
mechanisms for managing integrity, availability, and confidentiality are inadequate for detecting,
confining, and recovering from IW attacks.

Massive IW attacks have large scale, immediate impact and consequently generate an immediate
response. More insidious IW attacks inflict damage incrementally and open up the threat that the
transactions of legitimate users can spread the damage throughout the database over an extended
period of time before anyone notices that something is amiss. The longer the time period between
attack and detection, the less satisfactory it is to roll back the database to a 'clean' state; too many
transactions that performed useful, uncorrupted work are lost. There is a need to undo corrupted
work without losing good work. Distinguishing transactions that read corrupted values from one
that didn't isn't possible with current systems because 'read-from' dependency information is not
maintained.

In some cases, the attacker's goal may be to reduce availability by attacking integrity. In the
scenario outlined above, the attacker's goal not only introduces damage to certain data items and
uncertainty about which good transactions can be trusted, but also achieves the goal of bringing
the system down while repair efforts are being made. 'Coldstart' semantics for recovery mean that
system activity is brought to a halt while damage is being repaired. To address the availability
threat, recovery mechanisms with 'warmstart' or 'hotstart' semantics are needed. Warmstart se-
mantics for recovery allow continuous, but degraded, use of the database while IW damage is being
repaired. Hotstart semantics make recovery transparent to the users.

In this report, we focus on one specific countermeasure phase to an information warfare attack,
namely the damage repair phase. We confine ourselves to the database context, and focus on
mechanisms suitable for inclusion in commercial database systems.

1.1 Dissemination of Results from Contract

Before describing the results of the contract in detail, we describe the extent to which results from
the contract have been disseminated in the literature. These results are grouped into the following
areas:

1. Database Recovery Work: This area covers the main thrust of the contract, and focuses
on specific mechanisms for restoring databases that have suffered damage from malicious
information attacks.

2. Fault Tolerance Perspective: This area covers a higher level view of the entire survivability
problem, as opposed to focusing on the recovery phase, as is done in the main body of the
work.

3. Workshop Efforts: This area covers efforts by the authors to supply their work as input for a
research agenda in the survivability area.

6

Database Recovery Work

This work comprises the main body of this report. Two in depth journal articles describe this work.
One has been published; the other is still in review:

1. Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering from malicious
transactions. The International Journal of Distributed and Parallel Databases. 8(1)7-40
January 2000.

Abstract: We consider recovery from malicious but committed transactions. Traditional
recovery mechanisms do not address this problem, except for complete rollbacks, which undo
the work of good transactions as well as malicious ones, and compensating transactions, whose
utility depends on application semantics. We develop an algorithm that rewrites execution
histories for the purpose of backing out malicious transactions. Good transactions that are
affected, directly or indirectly, by malicious transactions complicate the process of backing
out undesirable transactions. We show that the prefix of a rewritten history produced by
the algorithm serializes exactly the set of unaffected good transactions. The suffix of the
rewritten history includes special state information to describe affected good transactions
as well as malicious transactions. We describe techniques that can extract additional good
transactions from this latter part of a rewritten history. The latter processing saves more
good transactions than is possible with a dependency-graph based approach to recovery.

2. Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from Malicious Transactions Under
review with IEEE Transactions on Knowledge and Data Engineering.

Abstract: Preventive measures sometimes fail to deflect malicious attacks. In this paper, we
adopt an information warfare perspective, which assumes success by the attacker in achieving
partial, but not complete, damage. In particular, we work in the database context and consider
recovery from malicious but committed transactions. Traditional recovery mechanisms do
not address this problem, except for complete rollbacks, which undo the work of benign
transactions as well as malicious ones, and compensating transactions, whose utility depends
on application semantics. Recovery is complicated by the presence of benign transactions
that depend, directly or indirectly, on the malicious transactions. We present algorithms
to restore only the damaged part of the database. We identify the information that needs
to be maintained for such algorithms. The initial algorithms repair damage to quiescent
databases; subsequent algorithms increase availability by allowing new transactions to execute
concurrently with the repair process. Also, via a study of benchmarks, we show practical
examples of how offline analysis can efficiently provide the necessary data to repair the damage
of malicious transactions.

7

Fault Tolerance Perspective

1. Sushil Jajodia, Peng Liu, and Paul Ammann. A Fault Tolerance Approach to Survivability.
In Proceedings of the Information Systems Technology Symposium: Protecting NATO Infor-
mation Systems in the 21st Century, RTO/NATO, Hull, Canada (limited release), pages 20-1
to 20-7, October, 1999.

Abstract: Attacks on computer systems have received a great deal of press attention; how-
ever, most of the focus has been on how an attacker can disrupt an organization's operations.
Although attack prevention is clearly preferred, preventive measures do fail, and some at-
tacks inevitably succeed in compromising some or all of particular systems. We adopt a fault
tolerance approach that addresses all phases of survivability: attack detection, damage con-
finement, damage assessment and repair, and attack avoidance, but we give special attention
to recovery issues, and how recovery from malicious activity can be planned for and executed.
For specific examples, we discuss recovery models for backing out malicious, committed trans-
actions, either syntactically using read-from dependencies, or via rewriting histories, which
can save the work of additional good transactions.

2. Sushil Jajodia, Catherine D. McCollum, and Paul Ammann. Trusted recovery: An important
phase of information warfare defense. Communications of the ACM. 42(7):71-75, July 1999.

Abstract: Information warfare defense involves not just protective mechanisms but also detec-
tion and reaction to successful attacks and a process for managing the tracking, containment,
and recovery from damage. Unlike many hackers, who may wish to provide evidence of their
entry into a system, information warfare attackers may pursue a more subtle course directed
towards serious harm to an organization's ability to meet its mission rather than an obvious,
temporary disruption. Such an attack could target not just the system or network itself,
but also the information upon which an organization relies. Information warfare attacks can
spoof legitimate users or make use of malicious insiders, so information warfare defense must
also incorporate techniques effective against insider attack. This paper describes the cycle of
activity involved in information warfare defense. It then discusses a framework for detect-
ing, managing, and recovering from damage inflicted by information warfare on the critical
information maintained within the system. Allowing system operation to proceed while some
information is damaged and under repair has implications for maintaining consistency, so a
modified consistency model is presented. Finally, a variety of methods for recovery and con-
tainment are discussed that can be used depending on the characteristics of the system and
severity of the damage.

3. Sushil Jajodia, Paul Ammann, and Catherine D. McCollum. Surviving information warfare
attacks. IEEE Computer. 32(4):57-63, April 1999.

Abstract: Information warfare has received a great deal of attention in the press lately; how-
ever, most of the focus has been on how an attacker can disrupt an organization's operations.
In this paper, we discuss issues and methods for survivability of systems under malicious
attacks, with particular emphasis on the information elements of systems. Although attack
prevention is clearly preferred, preventive measures do fail, and some attacks inevitably suc-
ceed in compromising some or all of particular systems. We discuss a fault-tolerance approach
that can address all phases of survivability: attack detection, damage confinement, damage
assessment and repair, and attack avoidance. We also discuss some mechanisms that can give
systems the ability to live through and recover from successful attacks. Defensive information
warfare is far from being a solved problem from the research perspective, let alone the practi-
cal perspective. Consequently, a major goal of this paper is to raise awareness among system
developers of the need to include information warfare considerations in system analysis and
design.

4. Paul Ammann, Sushil Jajodia, Catherine D. McCollum, and Barbara T. Blaustein. Surviv-
ing information warfare attacks on databases. In Proceedings 1997 IEEE Computer Society
Symposium on Security and Privacy, pages 164-174, Oakland, CA, May 1997.

Abstract: We consider the problem of surviving information warfare attacks on databases. We
adopt a fault tolerance approach to the different phases of an information attack. To maintain
precise information about the attack, we mark data to reflect the severity of detected damage
as well as the degree to which the damaged data has been repaired. To increase availability
we introduce a marking for partially repaired data. In this case, integrity constraints might be
violated, but the data is nonetheless usable to support mission objectives. We define a notion
of consistency suitable for databases in which some information is known to be damaged, and
other information is known to be only partially repaired. We present a protocol for normal
transactions with respect to the damage markings and show that correct normal transactions
that follow the protocol maintain database consistency. We present an algorithm for taking
consistent snapshots of databases under attack. The snapshot algorithm has the virtue of not
interfering with countermeasure transactions.

Workshop Efforts

1. Paul Ammann, Bruce H. Barnes, Sushil Jajodia, and Edgar H. Sibley, editors. Proceedings of
CSD A 98: Computer Security, Dependability, and Assurance: From Needs to Solutions, IEEE
Press, Los Alamitos, CA, pages 204-212, 1999.

9

Summary: This ONR/NSF funded workshop brought together leading researchers to investi-
gate the intersection of three related areas: Computer Security, Dependability, and Assurance.
The Pis for this report edited the proceedings.

2. Paul Ammann and Sushil Jajodia. Computer Security, Fault Tolerance, and Software Assur-
ance. IEEE Concurrency, 7(l):4-6, January-March 1999.

Summary: This is a widely disseminated description of the CSDA 98 Workshop listed in the
prior item in this section.

3. Paul Ammann, Sushil Jajodia, and Peng Liu. A Fault Tolerance Approach to Survivability.
In Proceedings of CSDA 98: Computer Security, Dependability, and Assurance: From Needs
to Solutions, IEEE Press, Los Alamitos, CA, pages 204-212, 1999. ISBN 0-7695-0337-3.

Abstract: (Note: This is a contribution to the workshop listed in the first item of this sec-
tion.) Attacks on computer systems have received a great deal of press attention; however,
most of the focus has been on how an attacker can disrupt an organization's operations. Al-
though attack prevention is clearly preferred, preventive measures do fail, and some attacks
inevitably succeed in compromising some or all of particular systems. We propose research
into a fault-tolerance approach that addresses all phases of survivability: attack detection,
damage confinement, damage assessment and repair, and attack avoidance. We focus atten-
tion on continued service and recovery issues. A promising area of research for continued
service addresses relaxed notions of consistency. Expanding on the notion of self stabilization,
the idea is to formalize the degree of damage under which useful services is still possible.
A complementary research area for recovery is the engineering of suitable mechanisms into
existing systems. We explain the underlying models for these research areas and illustrate
them with examples from the database domain. We argue that these models form a natural
part of a fault tolerance approach and propose research into adapting these models for larger
systems.

1.2 Research Results

The report describes the following results. First, this report describes two novel recovery models
to bridge the theoretical gap between classical database recovery theory where only uncommit-
ted transactions can be undone, and trusted recovery practice where operations with the same
(operational) semantics as traditional undos are needed to remove the effects of such committed
transactions as malicious transactions and affected benign transactions (For simplicity, we use
the same word, namely 'undo', to denote such operations). In particular, this report describes

10

(1) a flat-transaction recovery model where committed transactions are 'undone' by building and
executing a specific type of transactions, namely, undo transactions, and (2) a nested-transaction
model where a flat commercial history is virtually extended to a two-layer nested structure where
originally committed transactions turn out to be subtransactions hence traditional undo operations
can be directly applied to the model without violating the durability property.

Second, this report provides a family of syntactic recovery algorithms that, given a specification
of malicious, committed transactions, unwinds the effects of each malicious transaction, along with
the effects of any benign transaction that depends, directly or indirectly on a malicious transac-
tion. Significantly, the work of the remaining benign transactions is saved. The first algorithm
yields coldstart semantics; the database is unavailable during repair. The second algorithm yields
warmstart semantics; normal use may continue during repair, although some degradation of service
may be experienced by some transactions. Moreover, this report outlines various possibilities for
maintaining read-from dependency information. Although direct logging of transaction reads has
the virtue of simplicity, the performance degradation of such an approach may be too severe in
some cases. For this reason, this report shows that offline analysis can efficiently meet the need for
establishing read-from dependency information. This report illustrates the practicality of such an
approach via a study on standard benchmarks.

Third, this report presents an algorithm that rewrites an execution history for the purpose of
backing out malicious transactions. Good transactions that are affected, directly or indirectly, by
malicious transactions complicate the process of backing out undesirable transactions. This report
shows that the prefix of a rewritten history produced by the algorithm serializes exactly the set
of unaffected good transactions, thus is equivalent to using a write-read dependency graph ap-
proach. The suffix of the rewritten history includes special state information to describe affected
good transactions as well as malicious transactions. This report describes techniques that can
extract additional good transactions from the latter part of a rewritten history. The latter process-
ing saves more good transactions than is possible with a dependency-graph based approach or a
commutativity based approach to recovery.

Although we develop the above algorithms to repair a database when some malicious activity
happens, our methods can be easily extended to other applications where some committed trans-
actions may also be identified undesirable, thus have to be backed out. For example

• In [JLM98], the use of isolation is proposed to protect systems from the damage caused by
authorized but malicious users, masqueraders, and misfeasors, where the capacity of intrusion
detection techniques is limited. In the database context, the basic idea is when a user is
found suspicious, his transactions are redirected to an isolated database version, and if the
user turns out to be innocent later, the isolated database version will be merged into the main
database version. Since these two versions may be inconsistent, some committed transactions

11

may have to be backed out to ensure the consistency of the database.

During upgrades to existing systems, particularly upgrades to software. Despite efforts for
planning and testing of upgrades, upgrade disasters occur with distressing regularity.* If a
system communicates with the outside world, bringing the upgrade online with a hot standby
running the old software isn't complete protection. Problems with an upgrade by one organi-
zation can easily affect separate, but cooperating organizations. Thus an incorrect upgrade at
a given organization may result in an erroneous set of transactions at one or more cooperating
organizations. In many cases, it is not possible simply to defer activity, and so during the
period between the introduction of an upgrade and the recognition of an upgrade problem,
erroneous transactions at these cooperating organizations commit. As a result, backing out
these committed erroneous transactions is necessary.

In partitioned distributed database systems, Davidson's optimistic protocol [Dav84] allows
transactions to be executed within each partitioned group independently with communication
failures existing between partitioned groups. As a result, serial history Ht consisting of all
transactions executing within group Pi is generated. When two partitioned groups Pi and
P2 are reconnected, Hi and H2 may conflict with each other. Therefore, some committed
transactions may have to be backed out to resolve the conflicts and ensure the consistency of
the database.

In [GHOS96], J. Gray et al. state that update anywhere-anytime-anyway transactional repli-
cation has unstable behavior as the workload scales up. To reduce this problem, a two-tier
replication algorithm is proposed that allows mobile applications to propose tentative update
transactions that are later applied to a master copy. The drawback of the protocol is that
every tentative transaction must be reexecuted on the base node, thus some sensitive trans-
actions may have given users inaccurate information and the work of tentative transactions
is lost. In this situation, the strategy that when a mobile node is connected to the base node
merges the mobile copy into the master copy may be better, however, in order to ensure the
consistency of the master copy after the mergence, some committed transactions may have to
be backed out.

+For some more spectacular examples, see Peter Neumann's RISKS digest in the newsgroup news: comp. risks or
the archive ftp://ftp.sri.com/risks.

12

1.3 Organization of the Report

The outline of the report is as follows. Chapter 2 describes related work. In Chapter 3, we present a
model for a database system that can survive information warfare attacks, including its transaction
processing features. Chapter 4 presents two recovery models to support 'undoing' undesirable
committed transactions, such as malicious transactions and affected good transactions. In Chapter
5, we present a syntactic repair model where both coldstart and warmstart recovery algorithms
are developed. Moreover, we use benchmark applications to show how offline analysis can mitigate
performance degradation during normal operation. In Chapter 6, we present a repair model based
on history rewriting, where we first give a rewriting algorithm and show that it is equivalent to
using a dependency-graph based approach; we second turn to methods to save additional good
transactions; we third show how to prune a rewritten history so that a repaired history can be
generated; moreover, we examine the relationships among the possible rewriting algorithms; finally,
we show how to implement the rewriting model in a realistic transaction processing system which
is based on the Saga model [GMS87]. In Chapter 7, we discuss some issues relevant to our repair
model, enumerate the contributions of this dissertation and present an insight into future research
directions.

13

SECTION 2

Related Work

Recovery methods have been studied extensively by researchers in fault tolerance and in database
areas. After a comprehensive introduction of the limitations of traditional mechanisms in doing
trusted recovery, this chapter first addresses the related work in the area of fault tolerance, then
addresses the related work in the area of databases. Some related work in the areas of computer
security and information warfare is also addressed.

2.1 Why Traditional Mechanisms Fail in Trusted Database
Recovery

Although recovery methods have been studied extensively by researchers in fault tolerance (e.g., see
[LA90, RLKL95]) and in database areas (e.g., see [Dat95, Dat83, GR93, RC97, MHL+92, HR98]),
the existing methods work well in case of failures under normal conditions. Achieving recovery
under an information attack is clearly more difficult since the attack is malicious in nature and the
attacker can be assumed to be familiar with the intricacies of the system being attacked. Therefore,
achieving recovery requires modifications and extensions of existing techniques together with novel
techniques that are only suitable for surviving information attacks.

In fault tolerance area [LA90, RLKL95], two types of errors are considered: errors that are
anticipated and those that are unanticipated. In the case of anticipated errors, an accurate prediction
or assessment of the damages can be made; if this is not possible, errors are said to be unanticipated.

An example of an anticipated error is the loss or duplication of a message, perhaps due to an
unreliable communication link, or perhaps due to a malicious attacker who has intercepted the
link. Anticipating link failures can be accomplished by providing redundant links. Anticipating
link intercepts can be accomplished by providing special information in the message being sent.

14

In the case of a link failure, if careful attention is paid to joint failure modes such as a common
intermediate node in a network, it is possible to reliably recover from the lost message by resending
the message over the redundant channel.

A different example of an error that can be anticipated is a value out of range during a type
conversion, for example, from floating point to integer. Recovery can be achieved through the
prudent use of exception handlers. Failure to do so can be costly, as demonstrated by the ill-fated
maiden flight of the Ariane 5, which was lost shortly after take-off due to events that were traced
back to a type conversion that was not protected by an exception handler.

To recover from anticipated errors, forward recovery methods are used. Since the errors have
been foreseen, either contingency update instructions can be specified or a means of deriving an
acceptably correct value can be formulated. Both examples mentioned above, link failures and type
conversion errors, are well suited to forward recovery methods.

Forward recovery methods have two limitations. First, these methods are usually very system
specific. Second, success of these methods depends on how accurately damages from faults can
be predicted and assessed. Therefore, current forward recovery mechanisms can not be directly
applied to a specific database system where information attacks are usually difficult to be predicted
or assessed.

To recover from unanticipated errors, backward recovery is considered to be the only viable
approach. This requires that the entire state be replaced by a prior state that is consistent. Clearly,
this approach is less than optimal because it requires that the system be halted temporarily. As
observed earlier, this in itself may be the attacker's objective, particularly if the attacker can cause
it to occur at a critical time.

Database management systems (DBMSs) provide a rich set of recovery facilities [Dat95, Dat83,
GR93, HR83, RC97, MHL+92]. These facilities require a clear understanding of the following two
factors:

• What are the correct database states since they determine when recovery is necessary

• What kinds of failures are expected and their characteristics

Whether a database state is correct or not is determined as follows: A database has associated
with it a collection of integrity constraints. A database state is said to be correct if it satisfies the
associated integrity constraints. DBMSs provide some support for specifying integrity constraints.
Examples are primary key constraints, referential integrity constraints, and range constraints.

Kinds of failures that are considered fall into these broad categories:

• Transaction Failures: A transaction may abort because it is requested by the user or because it
is forced by the system. The later may be the case if the transaction violates some consistency
constraint or is involved in a deadlock.

15

•

System Failures: These are failures that are caused by a fault in the software.

Storage Media Failures: These failures include volatile storage (main memory and paging
space), non-volatile on-line storage (database and log disks), and non-volatile off-line storage
(e.g., tapes).

• Communication Failures: These are failures in communication between two nodes of a dis-
tributed system.

To combat errors in the database, any transaction that violates the integrity constraints is
aborted, in which case the database state stays correct and there is no need for further recov-
ery. All other failures are considered unanticipated, and database recovery facilities mostly rely
on backward recovery methods to restore the database to a consistent state. Although forward
recovery by executing compensating transactions [GMS87, AJR97] is possible, this is considered
highly application dependent and, therefore, is not provided any support by the system.

Backward recovery in databases is performed by implementing two basic operations - undo and
redo - on the stable database (i.e., the state of the database on non-volatile storage). An undo
operation undoes updates by an aborted transaction to the stable database, while a redo operation
redoes the updates by a committed transaction to the stable database.

Although all these features deal well with many kinds of errors and system failures, their effec-
tiveness against an information warfare attacker is limited [AJMB97]. Information warfare defense
must consider the possibility that authorization controls could be defeated; that an authorized user,
through greed, disgruntlement, or ideology, might become an attacker; or that an attacker might
gain the use of a legitimate user's identity, with the corresponding authorizations. Any of these
scenarios might result in the intentional corruption of the database by the introduction of incorrect
or misleading data. Then, not only are some of these controls ineffectual against the problem, but
those intended to maintain consistency among related data may help to spread the contamination.

For example, entity and range constraints can ensure that individual data values exist and are
legal, but they cannot guarantee that these values are reasonable or accurate for the particular
entity being described. An attacker could disrupt functions that depend on the database either by
inserting a wrong value for particularly critical data or by distorting the overall picture to render
aggregates or frequency distributions significantly inaccurate by small changes to many individual
items. Referential constraints ensure that interrelationships among entities are maintained, but an
attacker could easily make corresponding changes in related data entities. If cascade or delete rules
have been specified for the referential integrity constraints, they may actually assist the attacker,
spreading the problem by making the corresponding changes automatically. Concurrency controls
ensure only that malicious transactions are properly scheduled along with others. Automated

16

replication helps keep data available in a distributed system in the face of individual system failures,
but also serves as an efficient means of spreading erroneous data.

There are several limitations to the backward recovery methods used in DBMSs, especially in face
of malicious attacks. First, if a transaction is aborted, the transaction isolation property supports
recovery, in a sense, by ensuring that it can be backed out without affecting other transactions.
This would not arise, however, in the case of a malicious transaction, because it would appear
to the DBMS like any other transaction and would complete normally. Undo/redo logs support
recovery when the system fails with a number of uncompleted transactions in progress, but this
also does not arise when transactions complete successfully but create bad data. Now', suppose
that at some time after a malicious transaction has completed and been committed, the bad data
it created is discovered through some means. (Perhaps a human user has noticed it.) Meanwhile,
other innocent transactions may have read the bad data, based their computations on it, and
unwittingly then written bad data of their own to other items (Informally, we say these innocent
transactions are affected). The only general mechanism available to remove the effects of one or
more prior, successfully committed transactions is backward recovery, which rolls the database
back to a previously established checkpoint. However, the use of this mechanism poses a dilemma
because the penalty for doing so is that all other, valid work that has been accomplished since the
checkpoint was taken is also lost.

2.2 Related Work in Fault Tolerance

Recovery in fault tolerance focuses on error recovery with the purpose of eliminating errors from
the system state [LA90, RLKL95]. Error recovery techniques can be classified into two categories-
backward error recovery techniques and forward error recovery techniques. Backward error recovery
techniques restore a prior state of a system in the hope that the earlier state will be error free. In
contrast, forward error recovery techniques manipulate some portion of the current state to produce
a new state, again in the hope that the new state will be error free. As we mentioned in Chapter 1
backward recovery methods can cause too much rework, that is, the work of many good transactions
may be lost; and forward recovery methods are usually very system specific, and the success of these
methods depends on how accurately damages from faults can be predicted and assessed.

Although execution of malicious transactions may not generate errors (malicious transactions
can easily transform consistent states to consistent states), error recovery techniques can be adapted
to do attack recovery by viewing a malicious transaction as a component with a. fault, thus the state
transition produced by the transaction can be viewed as the manifestation of the fault, and the
updates of the transaction can be viewed as errors produced by the manifestation. Besides database
recovery mechanisms which we will address in next section, specific error recovery methods have been

17

proposed in many scenarios such as electronic switching systems (ESS) [KQ72], critical computer
systems [KQ72, ALS78], program executing [TB82, Ber88], and cooperating processes [Ran77].

Error correcting codes [PW72] are widely used in computer systems to provide recovery from
anticipated faults affecting memory units. Error correcting codes use redundancy to enable the
position of the erroneous bit(s) to be calculated, its value re-inverted and thereby avert a failure
of the memory. However, error correcting codes are not useful to attack recovery because state
transitions produced by malicious transactions are often valid.

In [TB82], a theory for the use of structural redundancy in data structures as a means of recover-
ing from structural damage is developed. The redundant information can be checked for consistency,
and this structure is corrected if inconsistent. However, redundant storage structures can not be
used to detect and recover from damages caused by malicious transactions because execution of
malicious transactions does not make the database state inconsistent.

In [Ber88], recovery points are automatically established by a processor to provide tolerance of
CPU failures. A recovery point is a point in time during the activity of a system for which the then
current state may subsequently need to be restored. A recovery point is established by arranging
that appropriate information is preserved so that at any subsequent time it will be possible to
restore the recovery point. The idea of restoring recovery points is similar to that of checkpointing.
However, restoring the database state to its latest checkpoint may unnecessarily lose the work of
many good transactions.

In [Ran77], recovery for cooperating processes is studies and it is found that the attempts to
achieve backward error recovery can result in the domino effect problem. The domino effect of cas-
cading rollback can seriously damage the system performance. Although synchronous checkpointing
can avoid the domino effect, it is undesirable in many situations. To ensure progress in asynchronous
checkpointing, message logging is adopted in various recovery protocols [BBG83, SY85, JZ90]. In
[LA94], message semantics is exploited to reduce rollback in optimistic message logging recovery
schemes. In particular, semantic relationships between operations indicated by messages are used
to identify insignificant messages which can be logically removed from the computation without
changing its meaning or result. Viewing transactions as processes, this report is similar to [LA94]
in the sense that they both aim to reduce rollback overhead by exploiting the dependencies between
processes (transactions). However, they are significantly different: (1) they address problems in
different contexts, thus their models are very different; (2) they exploit different kinds of syntactic
dependencies; (3) although commutativity is also exploited in [LA94], this report extends commu-
tativity to a new kind of dependencies, denoted can precede, which is not addressed in [LA94]; (4)
the rewriting techniques proposed in this report are not addressed in [LA94].

18

2.3 Related Work in Databases

Database recovery is one of the best success stories of software fault tolerance. However, database
recovery mechanisms are not designed to deal with malicious attacks. Traditional recovery mech-
anisms [BHG87] based on physical or logical logs guarantee the ACID properties of transactions -
Atomicity, Consistency, Isolation, and Durability - in the face of process, transaction, system and
media failures. In particular, the last of these properties ensure that traditional recovery mecha-
nisms never undo committed transactions. However, the fact that a transaction commits does not
guarantee that its effects are desirable. Specifically, a committed transaction may reflect inappro-
priate and/or malicious activity.

Although our repair model is related to the notion of cascading abort [BHG87], cascading aborts
only capture the read-from relation between active transactions. However, it may be necessary to
capture the read-from relation between two committed transactions, even if the second transaction
began long after the first one committed. In addition, in standard recovery approaches cascading
aborts are avoided by requiring transactions to read only committed data [KLS90].

There are two common approaches to handling the problem of undoing committed transactions:
rollback and compensation. The rollback approach is simply to roll back all activity - desirable
as well as undesirable - to a point believed to be free of damage. Such an approach may be used
to recover from inadvertent as well as malicious damage. For example, users typically restore files
with backup copies in the event of either a disk crash or a virus attack. In the database context,
checkpoints serve a similar function of providing stable, consistent snapshots of the database. The
rollback approach is effective, but expensive, in that all of the desirable work between the time
of the backup and the time of recovery is lost. Keeping this window of vulnerability acceptably
low incurs a substantial cost in maintaining frequent backups or checkpoints, although there are
algorithms for efficiently establishing snapshots on-the-fly [AJM95, MPL92, Pu86].

The compensation approach [GM83, GMS87] seeks to undo either committed transactions or
committed steps in long-duration or nested transactions [KLS90] without necessarily restoring the
data state to appear as if the malicious transactions or steps had never executed. There are
two kinds of compensation: action-oriented and effect-oriented [KLS90, Lom92, WHBM90, WS92].
Action-oriented compensation for a transaction or step Tt compensates only the actions of T-.
Effect-oriented compensation for a transaction or step T{ compensates not only the actions of Ti}

but also the actions that are affected by Tt. For example, consider a database system that deals
with transactions that represent purchasing of goods. The effects of a purchasing transaction Tx

might have triggered a dependent transaction T2 that issued an order to the supplier in an attempt
to replenish the inventory of the sold goods. In this situation, the action-oriented compensating
transaction for 7\ will just cancel the purchasing; but the effect-oriented compensating transaction
for 7\ will cancel the order from the supplier as well. Although a variety of types of compensation

19

are possible, all of them require semantic knowledge of the application.
The notion of commutativity, either of operations [LMWF94, Wei88, Kor83] or of transactions

[SKP088], has been well exploited to enhance concurrency in semantics-driven concurrency control.
There are several types of commutativity. In operation level, for example, two operations 0\ and
02 commute forward [Wei88] if for any state s in which Ox and 02 are both defined, 02{Oi(s)) =
Oi(02(s)); 02 commutes backward through [LMWF94] Ox if for any state s in which Ox02 is
defined, 02(Oi(s)) = Oi(02(s)); Ox and 02 commute backward [LMWF94, Wei88] if each commutes
backward through the other. In transaction level, for example, two transactions commute [SKP088]
if any interleaving of the actions of the two transactions for which both transaction commit yields
the same final state; Two transactions failure commute[SKP088] if they commute, and if they can
both succeed then a unilateral abort by either transaction cannot cause the other to abort. Our
notation can precede is adapted from the commutes backward through notation for the purpose of
taking advantage of transaction level commutativity.

In [BK92], semantics of operations on abstract data types are used to define recoverability, which
is a weaker notion than commutativity. recoverability is a more general notion than can follow in
capturing the semantics between two operations or transactions, but can follow is more suitable for
rewriting histories, recoverability is applied to operations on abstract data types but can follow is
applied to transactions, recoverability is defined based on the return value of operations, and thus
a purely semantic notion; but can follow is defined based on the intersections of read and write sets
of two transactions.

Korth, Levy, and Silberschatz [KLS90] address the recovery from undesirable but committed
transaction. The authors build a formal specification model for compensating transactions which
they show can be effectively used for recovery. In their model, a variety of types of correct com-
pensation can be defined. A compensating transaction, whose type ranging from traditional undo,
at one extreme, to application-dependent, special-purpose compensating transactions, at the other
extreme, is specified by some constraints which every compensating transaction must adhere. Dif-
ferent types of compensation are identified by the notion of compensation soundness. A history X
consisting of T, the compensating-for transaction; CT, the compensating transaction; and deplT),
a set of transactions dependent upon T, is sound if it is equivalent to some history of only the
transactions in dep(T).

Though a compensating transaction in our model can be specified by their model, our notion of
a repaired history is more suitable for rewriting histories than the notion of sound history, since the
constraint that compensating transactions can only be applied to the final state of a history greatly
decreases the possibility of finding a sound history, even if commutativity is fully exploited. We
can get a feasible history by rewriting the original history based on can follow, can precede, invert
and cover. The resulting history augmented with the corresponding undo-repair actions or fixed
compensating transactions yields the desired repair.

20

2.4 Related Work in Security

Information in computer systems is vulnerable to several kinds of threats, namely actions or events
that might prejudice security [Den83]. For example, threats to confidentiality include browsing,
leakage, and inference; threats to integrity and availability include tampering and accidental de-
struction. The vulnerability not only incurs information attacks (attacks for brevity) which are
the acts of trying to exploit it to degrade the security of computer systems, but also results in
the development of countermeasures which are actions, devices, procedures, techniques, or other
measures that reduce the vulnerability.

Discretionary access control (DAC), for example, is a widely used countermeasure, in which the
owner of information determines at his or her discretion who else to share the information with.
However, it is susceptible to to Trojan Horse attacks. A Trojan Horse is a malicious piece of code
which is embedded within a host program. The Trojan Horse allows the host program to do its
own job and has no visible effect on the latter's output. At the same time, however, the Trojan
Horse does something malicious without directly violating the security rules of the system. The
reason Trojan Horses work is because a program run by a user usually inherits the same unique ID,
privileges and access rights as the user.

To conquer the vulnerability of DACs to Trojan Horse attacks, mandatory access control (MAC)
was proposed by Bell and LaPadula in [BL76]. The Bell-LaPadula model divides the entities in a
computer system into abstract sets of subjects and objects. An object, i.e., a record, a page, a file,
etc., is a passive entity that contains or receives information. Access to an object potentially implies
access to the information it contains. A subject, on the other hand, is an active entity, generally
in the forms of a process of device that causes information to flow among objects. In addition,
each object (subject) is associated with a mandatory security class, which can not be modified by
any user process. A security class consists of two components - a hierarchical component called
the security level, and a non-hierarchical component called the category. A multilevel secure (MLS)
system is one which partitions its objects and subjects into security classes.

The Bell-LaPadula security policy can be summarized by the following two rules:

1. Simple security property: No subject may read information classified above its security
level.

2. * property: No subject may write information classified below its security level.

Although the MAC rules can prevent direct Trojan Horse attacks, information can still be leaked
through what are known as covert channels. A covert channel is a communication channel based on
usage of system resources that allows two cooperating processes to transfer information in a manner
violating the security policy of the system. Two types of covert channels have been identified just

21

far. They are covert storage channels and covert timing channels. Note that a covert channel is
usually the result of a specific implementation of an algorithm (a protocol) rather than inherently
present in the algorithm (protocol). However, sometimes such a communication channel is inherent
to an algorithm (a protocol) and consequently appears in every implementation of the algorithm
(protocol). This kind of communication channels are often denoted as signaling channels.

It has been found that signaling channels exist in classical transaction processing protocols
(described in Chapter 3), especially concurrency control protocols, when a database system using
these protocols is extended to a multilevel secure database system [AJB97]. Eliminating such
signaling channels is one of the main challenges in developing a multilevel secure database system.
Readers can refer to Section 7.1.1 for more relevant issues in multilevel secure transaction processing.

2.5 Related Work in Information Warfare

Although the area of IW defense is new, there is some relevant work. Graubert, Schlipper, and
McCollum identified database management aspects that determine the vulnerability to information
warfare attacks [GSM96]. McDermott and Goldschlag [MG96a, MG96b] developed storage jam-
ming, which can be used to seed a database with dummy values, access to which indicates the
presence of an intruder. Although data jamming is primarily intended for detection, it could also
help deceive the attacker and confuse the issue of which data values are critical. Ammann et al.
[AJMB97] take a detailed look at the problem of surviving IW attacks on databases. They identify
a number of phases of the IW process and describe activities which occur in each of them. They
use a color scheme for marking damage and repair in databases and a notion of integrity suitable
for databases that are partially damaged to develop a mechanism by which databases under attack
could still be safely used.

In [JLM98], isolation is proposed as an IW defense mechanism that has been applied to protect
systems from damage while investigating further. A scheme is described that isolates the database
transparently from further damage by users suspected to be malicious, while still maintaining
continued availability for their transactions. The interactions between the isolation component
and other IW components such as the intrusion detector and the trusted recovery manager are also
discussed.

As an earlier phase of trusted recovery (repair), intrusion detection, with the purpose of detect-
ing a wide range of security violations ranging from attempted break-ins by outsiders to system
penetrations and abuses by insiders, has attracted substantial research interests [Lun93, MHL94].
The methodology of intrusion detection can be divided into two categories: anomaly detection and
misuse detection. Anomaly detection compares relevant data by statistical or other methods to
representative profiles of normal, expected activity on the system or network. Deviations indicate

22

suspicious behavior [JV94]. Misuse detection examines sniffer logs, audit data, or other data sources
for evidence of operations, sequences, or techniques known to be used in particular types of attacks
[Ilg93, GL91, PK92, IKP95, SG91, SG97, LWJ98]. Misuse detection techniques can not be used to
detect new, unanticipated patterns that could be detected by anomaly detection techniques, but
they perform better in detecting known attacks.

However, intrusion detection primarily focuses at the operating system level. Although work
is ongoing to extend it to networks of distributed systems, it does not yet provide any help with
intrusion detection at the level of DBMS. In a DBMS, the problem can be particularly difficult, since
it involves detecting that data inserted into the database is unreasonable or incorrect. Although data
jamming can be used to detect intruders, it usually can not be used to detect malicious transactions
because the behavior of malicious transactions is just like the behavior of normal transactions which
donot access dummy values.

Compared with other works in information warfare, this report differs in that it focuses on
repair, as opposed to management, detection, protection, or availability, as cited above.

23

SECTION 3

Modelling the Underlying System

This chapter presents the foundation upon which a trusted recovery framework is built in later
chapters. We explain what we mean by a database system and go into some details about our
assumptions concerning database states, transactions, histories, and recovery models. We also
explain what we mean by a database system that can survive IW attacks and go into some details
about our assumptions concerning attacks, attack detection, and attack recovery.

3.1 Modelling Databases

In our framework, a database is specified as a collection of of data items (objects), along with some
invariants or integrity constraints on these data items. At any given time, the database state is
determined by the values of the items in the database. A change in the value of a data item changes
the state. The integrity constraints are predicates defined over the data items. For example, in a
banking system where a database is composed of a set of customer accounts, an integrity constraint
over the database can be: 'the balance of each account must be greater than or equal to zero'. A
database state is said to be consistent if the values of the data items satisfy the given integrity
constraints. Otherwise, the state is inconsistent.

3.1.1 Transactions and Histories

A transaction is an execution of a program that transforms one database state to another. As-
sociated with each transaction is a set of preconditions which limit the database states to which
a transaction can be applied. A transaction is said to be defined on a database state if the state
satisfies every precondition of the transaction.

24

From a more syntactic perspective, we model a transaction Tt as an ordered pair (£\, <t), where
E2 is the set of operations in Th and <x indicates the execution order of those operations. A read
(write) operation executed by a transaction Tt on item x is denoted as rt[x] (wz[x]). Two operations
conflict if one is write. We assume that there is at most one n[x] and at most one Wi[x] in £i5 and
we further assume that if rt[x] and Wi[x] are both in £,-, then n[x] <,- Wi[x].

The primary purpose of a database management system (DBMS) is to carry out transactions.
The traditional transaction model relies on the properties of atomicity, consistency, isolation, and
durability. Atomicity ensures that the execution of a transaction is atomic, that is, a transaction
either commits (denoted a), with all its changes being applied to the database, or aborts (denoted
at), with all its changes being discarded. Consistency ensures that a transaction when executed
by itself, without interference from other transactions, maps the database from one consistent
state to another. Isolation ensures that no transaction ever views the partial effects of some other
transaction even when transactions execute concurrently. Durability ensures that once a transaction
successfully commits, all the state transformations of the transaction are made durable and public,
even if there is a failure.

Transactions are usually executed concurrently for high performance. The execution of a set of
transactions, denoted T = {T1:T2, ...,T„}, is modeled by a structure called a history. A history H
over T is a partial order (£, <H), where £ is the set of all operations executed by transactions in
T, and <H indicates the execution order of those operations. Two histories are conflict equivalent
if (1) they are defined over the same set of transactions and have the same operations, and (2) they
order conflicting operations of nonaborted transactions in the same way.

The correctness of concurrent execution of transactions is typically captured by the notion of
serializability [BHG87]. A history H is serial if, for any two transactions Tt and Tj that appear in
H, either all operations of Tz appear before those of 7} or vice versa. A history H is serializable
if its committed projection is conflict equivalent to a serial history. Serializable histories can be
produced by many kinds of concurrency control protocols and two-phase locking (2PL) [BHG87],
for example, is the most widely used concurrency control protocol in current database applications.

To ensure correctness in the presence of failures the DBMS must produce histories that are not
only serializable but also recoverable. For an item x, we say that Tt reads x from Tj in history H
if (1) Wj[x] <H ri[x}; (2) a5 does not precede n[x] in <H; and (3) if there is some wk[x] such that
wj[x] <H wk[x] <H Ti[x], then ak <H n[x]. We say that T{ reads from Tj in H if Tj reads some item
from Tj in H. A history H is recoverable if, whenever Tt reads from 7} (i ^ j) in H and c, e H,
Cj <H a. A history H is strict if whenever Wj[x] <H Oi[x], either aj <H ot[x] or Cj <H Oi[x] where
Oi[x] is ri[x] or Wi[x\.

25

3.1.2 A Database Recovery Model

Database recovery is the activity of ensuring that software and hardware failures, such as transac-
tion failures, systems failures, storage media failures and communication failures, do not corrupt
persistent data. We model a DBMS with a focus on recovery using the TM-scheduler-DM model
which is proposed in [BHG87] and shown in Figure 3.1.

In the TM-scheduler-DM model, the data manager is in charge of recovery which consists of two
components: a cache manager (CM), which provides operations to fetch data from stable storage
into volatile storage, and to flush data from volatile to stable storage, and a recovery manager
(RM) which processes Read, Write, Commit, Abort and Restart operations. In particular, the RM
interface is defined by five procedures:

1. RM - Read(Ti,x) : read the value of x for transaction T*;

2. RM - Write(Ti, x, v) : write v into x on behalf of transaction T{;

3. RM — Commit(Ti) : commit T^;

4. RM - Abort(Tz) : abort Tt; and

5. Restart : bring the stable database to the committed state following a system failure.

We assume the classical write-ahead logging (WAL) [MHL+92] is enforced in the TM-scheduler-
DM model to ensure correct restarts. WAL requires that for each page the page's log records be
flushed prior to overwriting its persistent (stable) copy. This is done by the CM under partial
controls from the RM.

3.2 Modelling IW Attack and Defense

In order to degrade the confidentiality, integrity and availability of a database system, IW attack on
the system can take many forms such as physical attack by destroying the stable storage (disks), Tro-
jan Horse attack by providing the database administrator with malicious softwares, and operating
system level attack by modifying database files without the interference of the DBMS. However, in
order to concentrate on the problem of interest, we make the following two assumptions. Note that
all the other kinds of attacks except malicious transactions are already well studied [Den83, GS96].

1. We assume that the behavior of the DBMS meets its specification, that is, there are no Trojan
Horses in the system.

2. We assume that all IW attacks to the system are through malicious transactions, that is, there
are no attacks bypassing the interference of the DBMS.

26

3.2.1 Model of a DBMS That Can Survive IW Attacks

We model a database system that can survive IW attacks with the architecture which is proposed
in [JLM98] and shown in Figure 3.2.

As mentioned in Chapter 1, information warfare defense must consider the whole process of
attack and recovery. This requires a recognition of the multiple phases of the IW process. The
phases specified in Figure 3.2 and the activities that occur in each of them are as follows. Note that
damage assessment and repair are the focus of this report.

Prevention: The defender puts protective measures into place. In particular, the Policy Enforce-
ment Manager (PEM) enforces the access controls in accordance with the system security pol-
icy, such as MAC and DAC, on every access request. We assume no data access can bypass it.
In addition, the system can be further protected by isolating the database transparently from
further damage by users suspected to be malicious, while still maintaining continued avail-
ability for their transactions. This is achieved primarily by the Isolation Manager. Detailed
discussion on isolation is out of the scope of this report.

Intelligence gathering: The attacker observes the system to determine its vulnerabilities and
find the most critical functions or data to target. This phase is not directly specified in Figure

Attack: The attacker carries out the resulting plan. In particular, the attacker first gets the
required authorizations then issues some specific malicious transactions to the system (PEM).

Detection: The defender observes symptoms of a problem and determines that an attack may
have taken place or be in progress. In particular, the Intrusion Detection and Confinement
Manager applies either anomaly detection techniques, or misuse detection techniques, or both
to identify suspicious behaviors as well as intrusions by malicious transactions. The detec-
tion is typically processed based on the information provided by the audit trail and/or the
transaction logs.

Damage assessment: The defender determines the extent of the problem, including failed func-
tions and corrupted data. In particular, when a malicious transaction is detected, the Intrusion
Detection Manager notifies the Damage Confinement and Assessment Manager to confine and
assess the damages caused by the transaction. The confinement can be done by notifying the
PEM to restrict the following accesses of the user who issues the transaction, i.e., rejecting
his/her further accesses. The assessment can be done by identifying which good transactions
are affected by the malicious transaction and which data items are updated by either the
malicious transaction or the affected good transactions.

27

Reconfiguration: The defender may reconfigure to allow operation to continue in a degraded
mode while recovery proceeds. In particular, after the damages are assessed, the Reconfig-
uration Manager reconfigures the system to allow accesses to continue in a degraded mode
while repair is being done by the Damage Recovery Manager. For example, the system can
be continuously reconfigured to reject accesses to newly identified damaged data items and to
allow accesses to newly recovered items.

Repair: The defender recovers corrupted or lost data and repairs or reinstalls failed system func-
tions to reestablish a normal level of operation. In particular, after the Damage Assessment
Manager informs which data items are damaged, and/or which good transactions are affected,
the Damage Recovery Manager performs concrete repair algorithms, which will be developed
in following chapters, to restore each damaged item to its cleaned value, and/or to remove the
direct or indirect effects of the detected malicious transaction from the database. It should
be noticed that in many situations damage assessment and recovery are coupled with each
other closely. For example, damages can be recovered during the process of identifying and
assessing damages. It should also be noticed that new malicious transactions can be detected
during the process of assessing and recovering from the damages caused by older transactions.

Fault treatment: To the extent possible, the weaknesses exploited in the attack are identified
and steps are taken to prevent a recurrence. This phase is not directly specified in Figure 3.2.

3.2.2 Detecting Malicious Transactions

As shown in Figure 3.2, taking place in an earlier phase of the information warfare countermeasures,
detection (identification) of malicious transactions enables the processes of damage assessment and
attack recovery. Although the effectiveness of damage assessment and recovery is heavily dependent
on the effectiveness of malicious transaction detection, the techniques of damage assessment and
recovery are almost independent of that of malicious transaction detection. This is also the reason
why we can make the following assumption to enable us to concentrate on the techniques of damage
assessment and recovery.

• We assume that the Intrusion Detection Manager can detect malicious transactions effectively.

In fact, there are many ways where such an identification (detection) could be specified. For
example, all transactions associated with a specific user (i.e., an attacker), all transactions originat-
ing in a particular time window, or all transactions originating in an untrusted part of a network
might comprise such a specification. Moreover, since the identification of an attacker may lead
to the detection of a set of malicious transactions submitted by the attacker, traditional intrusion

28

detection techniques for detecting malicious users [Lun93, MHL94, Den87] can be incorporated to
do malicious transaction detection. Finally, more effective malicious transaction detection can be
performed by exploiting transaction semantics. For example, in a banking system, from the same
account a transaction withdrawing $10000 is usually more probable to be malicious than a transac-
tion withdrawing $1000. Concrete malicious transaction identification mechanisms are outside the
scope of this report.

3.2.3 Three Attack Recovery Models

The recovery methods that can be potentially enforced by the Damage Recovery Manager (see
Figure 3.2) can be formalized around following three recovery models: HotStart, WarmStart, and
ColdStart. HotStart is primarily a forward error recovery method, and ColdStart is primarily
a backward error recovery method, but each of the three models incorporates both forward and
backward error recovery to some degree. The three recovery models, HotStart, WarmStart, and
ColdStart, are illustrated in Figure 3.3.

The HotStart model is appropriate for attacks where the system can or must respond trans-
parently to the user. Suppose an attacker introduces a corrupt binary executable at a particular
site and uses that executable to launch an availability, trust, or integrity attack. The attack can
be handled with a HotStart model if two conditions hold. First, the attack must be detected early
enough that damage is confined to the executable. Second, a hot standby of the executable - an
uncorrupted standby, preferably at a different location - must be available to take over. The hot
standby effects a recovery transparent to the user, even though the system is in a degraded state.
It is still necessary to identify the path by which adversary introduced the corrupt binary, disable
that path, and restore the proper binary from a back-up store.

Sometimes it is not possible to hide the effects of an attack from the users, and in these cases
a WarmStart model is desirable. Damage can be confined such that key services are available,
trustworthy, and reliable. Nonetheless, the user is aware of the attack because the system is visibly
degraded. The exact level of service depends on the extent of the attack. Some functionality may
be missing, untrustworthy, and/or based in incorrect information. Key mechanisms for managing
WarmStarts are checkpoints for quick recovery and audit trails for intercepting the attacker.

The ColdStart model is appropriate for the most severe attacks. The chief difference from
the WarmStart model is that the attacker succeeds in halting the delivery of system services.
The goal of the ColdStart recovery is to bring the system back up as quickly as possible to a
usable, trustworthy, and consistent state. Policies and algorithms are required to support efficient
ColdStarts. Compensation for unrecoverable components - for example, leaked information - is also
crucial.

29

Tl T2 •
T

n

Read, Write, Commit, Abort

Transaction
Manager (TM)

Read, Write, Commit, Abort

Scheduler

Restart
K.eaa, wrue, Lunmin, AUUU

r

J

Recovery
Manager (RM) Read,

Fetch,
Write

<^Z Z^\ Flush

Cache
Stable
database

. Log

Stable
storage

Cache
Manager (CM) Read,

Write

\

Volatile
storage

Data Manager (DM)

Figure 3.1: Model of a DBMS

30

1
SSO

Audit
Trail

fi

Intrusion Detection
and Confinement
Manager

Access

Requests

User

T
Policy Enforcement
Manager

1
Damage Confinement
and Assessment
Manager

vv
Reconfiguration
and Damage
Recovery Manager

Main Data Version

A Merge A
Suspicious
Version

Merge

Suspicious
Version B

Isolation
Manager

Figure 3.2: Architecture of IW Defense

HotStart: Transparent Recovery

WarmStart: Reconfiguration Recovery

ColdStart: Restart Recovery

Figure 3.3: Recovery Models

31

SECTION 4

The Framework

This chapter presents a high-level framework within which trusted recovery can be supported and
enforced. In particular, this chapter presents two recovery models to support 'undoing' undesirable
committed transactions, such as malicious transactions and affected good transactions.

In previous presentation, we introduced the notation 'undo a committed transaction' because:
(1) operations with the same operational semantics as traditional undos are needed to remove the
effects of such committed transactions as malicious transactions and affected benign transactions,
hence for simplicity we use the same word, namely 'undo', to denote such operations; and (2) it is
very desirable to build our repair model on top of current DBMSes instead of building the model
from scratch, because in this way current recovery mechanisms, such as undo and redo, can be
directly exploited thus much more efficiency can be achieved, hence using notations consistent with
traditional database recovery mechanisms is desired.

However, in traditional database systems 'undo' is a recovery mechanism that can only be ap-
plied to uncommitted transactions, and durability, a fundamental property of transaction processing,
implies that there is no automatic function for revoking a committed transaction. Therefore, it is
unclear, even confusing, to say 'undo a committed transaction'. Moreover, in traditional recovery
'undo a transaction' means removing all the changes of the transaction such that its effects will
not be made durable and public to other transactions, however, in trusted recovery before a (com-
mitted) transaction is 'undone', its effects have already been made durable and disclosed to other
transactions. Therefore, it is necessary to clarify the notation 'undo a committed transaction'. And
it is desirable that we can extend classical recovery models (i.e., the model proposed in Figure 3.1)
to do trusted recovery such that the durability property will not be violated.

For this purpose, this chapter presents two novel trusted recovery models to bridge the theoretical
gap between classical database recovery theory and trusted recovery practice: (1) a flat-transaction
recovery model where committed transactions are 'undone' by building and executing a specific

32

Undo Transactions

Commercial Database

Figure 4.1: Flat Transaction Model

type of transactions, namely, undo transactions. It is simple and can fit in legacy system, but
traditional undo facilities can not be directly exploited. (2) a nested-transaction model where a flat
commercial history is virtually extended to a two-layer nested structure where originally committed
transactions turn out to be subtransactions hence traditional undo operations can be directly applied
to the model without violating the durability property. It fits in with legacy system, and inherently
supports traditional undo.

4.1 Modelling Trusted Recovery by Flat Transactions

The flat transaction model is shown in Figure 4.1. This model has the durability property because
committed transactions, no matter bad or good, will not be undone. Instead, for each committed
transaction Tt which we want to 'undo', we build and execute a specific undo transaction (denoted
Ui) to restore the data items updated by T{ to their before states. In other words, the notion 'undo
a committed transaction %\ in the flat transaction model, means the process of first building U{
then executing it.

To undo a committed transaction Tt, Ui is built as follows: for each update (write) operation of
Th a write operation is appended to the program of U which writes the before value of the item
updated. Therefore, Ut is composed of only write operations.

The execution off/, is just like a normal transaction, for example, it can be executed concurrently
with other normal or undo transactions. However, the effects of undoing a committed transaction
T{ and the effects of undoing an uncommitted transaction 7} can be quite different. Undoing T{

removes the direct effects of Tu that is, it restores every item updated by Tu however it can not
remove the indirect effects of Tt (if there are any), that is, it can not restore the items updated

33

not by Ti but by some transactions affected by T{. In contrast, undoing Tj can remove all the
effects of Tj because the isolation property ensures that Tj can be backed out without affecting
other transactions.

Figure 4.1 illustrates the idea. G3 is affected by Bx because G3 reads x which is updated by B1.
It is clear that executing Uj can restore items x and y to clean states, but after Ui is executed item
z can still stay in a dirty state because the value of z may have been affected by that of x read by
G3. Therefore, executing t/3 is required to remove the indirect effects of Bx- In practice, whether
or not a system can be recovered from a malicious transaction Bu that is, both of its direct and
indirect effects can be removed, depends on whether or not we can identify these indirect effects
accurately and execute the corresponding undo transactions in a proper order. These issues will be
addressed in Chapter 5.

The advantage of the flat transaction model is that (1) it is simple, and (2) it fits in legacy system,
not design from scratch. The drawback is that traditional undo operations need be enforced by
building and executing undo transactions, thus classical undo facilities can not be directly exploited.

4.2 Modelling Trusted Recovery by Nested Transactions

The flat transaction model undos a committed transaction by executing a specific undo-transaction.
Although undo-transactions are easy to build, traditional undo mechanisms can not be directly
applied. It is desirable that we can exploit classical undo facilities directly without sacrificing
performance objectives. We achieve this goal by proposing a nested transaction recovery model
which is shown in Figure 4.2.

Consider a commercial database system where a history is composed of a set of (committed)
flat transactions *, for a history to be repaired, we build the model by introducing a specific virtual
transaction, called malicious activity recovery transaction (MART), on top of the history, and letting
the MART be the parent of all the flat transactions in the history. As a result, the history is evolved
into a nested structure where the MART is the top-level transaction and each flat transaction turns
out to be a subtransaction whose execution is controlled by the MART.

Since in nested transaction processing [Mos85, LMWF94, GR93], subtransactions can theoreti-
cally be undone or compensated at anytime before the corresponding top-level transaction commits,
so the model inherently supports undoing flat (commercial) transactions. This is also one of the
reasons why we use the word 'undo' to denote one of our basic repair operations.

One interesting question about the model is 'Can a MART commit or abort, and, if this is
possible, how to achieve this ?' It is clear that aborting the MART is equivalent to rolling back the

'Note that the recovery model can be easily extended to incorporate histories of multilevel or nested transactions.

34

Malicious Activity
Recovery Transaction

Decision to
accept history
up to given point

Commit

commit work in database
up to certain point

(discard logs prior to this point)

Figure 4.2: Nested Transaction Model

history to its initial state. However, how to commit MART is tricky. In fact, the MART should
be able to be committed, because as the system keeps on executing new transactions the history
can get tremendous long and the MART need to maintain too much information for the purpose
of trusted recovery if the MART never commits. In practice, such information may no longer be
available for a transaction Tt after Tx is committed for a long period of time. However, if we commit
a MART at the end of the current history and start another new MART, then the work of some
malicious transactions in the history supervised by the old MART can be committed before they
are recovered. Hence we need to commit the work of good transactions while keeping the ability
to recover from bad transactions. This goal is achieved by the following MART splitting protocol
which is motivated by [PKH88].

• When the history is recovered to a specific point pu that is, it is believed that the effects of
every bad transaction prior to pt are removed, we can commit the work of all the transactions
prior to Pl by splitting the MART into two MARTs: one supervising all the transactions
prior to pu the other supervising the latter part of the history. Interested readers can refer to
[PKH88] for a concrete process of transaction splitting which is omitted here.

• We commit the MART which supervises the part of the history prior to p{. From the perspec-
tive of trusted recovery, the corresponding log records prior to p{ can be discarded to alleviate
the system's resource consumption.

We keep the other MART active so it can still be repaired.

35

It is clear that the nested recovery model fits in current commercial database systems very well
thus trusted recovery need not be designed from scratch. First, each commercial flat transaction,
as a subtransaction in the model, can be undone by directly applying traditional undo operations.
In fact, we can see that in the model a savepoint is generated after each subtransaction commits
so that the MART can rollback its execution to the beginning of any flat transaction. Second, as a
conceptual framework, the model need never be really implemented to enable undoing committed
(commercial) transactions. Therefore, the performance penalty caused by applying this model is

very small.
The drawback of this model is that after a MART is committed there is no automatic ways

to undo a flat transaction supervised by the MART even if the transaction is later identified as a
malicious transaction. Therefore, from the perspective of trusted recovery, decisions to commit a
MART should be made carefully .

36

SECTION 5

Trusted Recovery by Syntactic
Approaches

After constructing in Chapter 3 the foundation of the proposed trusted recovery scheme and formal-
izing in Chapter 4 'undoing committed transactions', the fundamental trusted recovery operation,
this chapter turns to address concrete trusted recovery mechanisms. In particular, this chapter
presents the syntactic aspect of the proposed scheme where both coldstart and warmstart recovery
algorithms are developed, but only syntactic dependencies between transactions are exploited.

In this chapter, if there is no specific clarification, the operation 'undo a committed transaction'
can be understood as being modeled either by the flat transaction model or by the nested transaction
model.

5.1 The Model

Assumptions

We assume that the histories to be repaired are serializable histories generated by some mecha-
nism that implements a classical transaction processing model [BHG87]. We denote committed
undesirable or bad transactions in a history by the set B = {BUB2, ...,Bm}. We denote commit-
ted desirable or good transactions in a history by the set G = {Gu G2, ■•-, Gn}. Since recovery
of uncommitted transactions is addressed by standard mechanisms, we consider a history H over
BUG.

37

Transaction Dependencies

One simple repair is to roll back the history until at least the first bad transaction, and then try
to reexecute all of the undone good transactions. The drawback of this approach is that many
good transactions may be unnecessarily undone and reexecuted. Consider the following history

over (Bi,Gi,G2y-

Hi : rBl[x]wBl[a;]cßlrGl[i/]rG2[x]wGl[2/]cGl^G2WcG2

It is clear that d need not be undone and reexecuted since it does not conflict with Bx. We
formalize the notion that some - but not all - good transactions need to be undone and reexecuted

in the usual way:

Definition 1 Transaction Tj is dependent upon transaction T in a history if there exists a data
item x such that:

1. Tj reads x after % has updated x;

2. Ti does not abort before Tj reads x; and

3. every transaction (if any) that updates x between the time T{ updates x and Tj reads x is
aborted before Tj reads x.

Every good transaction that is dependent upon some bad transaction needs to be undone and
reexecuted. There are also other good transactions that also need be undone and reexecuted.
Consider the following history over (Bi,Gi,G2):

H2 : rBl[x}wBl[x]cB1rGl[x}wGAx}rG1[y]wG1[y}cG1rG2[y}wG2[y}cG2

G2 is not dependent upon Bu but it should be undone and reexecuted, because the value of x which
Gi reads from Bx may affect the value of y which G2 reads from Gx. This relation between G2 and
Bi is captured by the transitive closure of the dependent upon relation:

Definition 2 In a history, transaction 7\ affects transaction T2 if the ordered pair (Tu T2) is in
the transitive closure of the dependent upon relation. A good transaction Gx is suspect if some bad
transaction Bi affects G\.

It is convenient to define the dependency graph for a set of transactions S in a history as
DG{S) = (V, E) in which V is the union of S and the set of transactions that are affected by S.
There is an edge, T -> Tj, in E if T2 G V, Tj G {V - S), and 7) is dependent upon T{. Notice

38

Bl

B2 Gl

G4 G2

Figure 5.1: Dependency Graph for History H3

that there are no edges that terminate at elements of 5; such edges are specifically excluded by
the definition. As a result, every source node in DG(B) is a bad transaction, and every non-source
node in DG(B) is a suspect transaction.

As an example, consider the following history over (Bi,B2, Gx, G2, G3, G4):

H3 : rBl[x}wBl[x)cBjGl{x}wGl[x)rG3[z]wGz[z\cG3rGl[y}wGl[y]cGl

rG2 [y)wG.2 [y}rB.2 [z]wB.2 [z}cB2rG2 [v]wG2 [v]cG2rGi [z}wGi [z}rGi [y]wGi [y]cG<

DG(B) is shown in Figure 5.1.
If a good transaction is not affected by any bad transaction (for example, G3 in H3), then the

good transaction need not be undone and reexecuted. In other words, only the transactions in
DG(B) need be undone, and only the suspect transactions in DG(B) need to be reexecuted. From
the recovery perspective, the goal is to first get DG(B), then undo all these transactions.

Before we continue, we modify our model with respect to blind writes.* We developed the model
as is because it captures exactly the set of suspect transactions that must be undone, assuming
that further information about the transactions - such as data flow or semantic information - is
unavailable. Specifically, the model includes an optimization for blind writes. Suppose a transaction
in B writes x and subsequently a good transaction blindly overwrites x. Then the dependent upon
chain is broken, and other good transactions that subsequently read x will not necessarily appear
in DG{B).

From the perspective of the recovery algorithms developed in this report, we view this opti-
mization as counterproductive for two reasons. First, blind writes are relatively infrequent in many
applications. Second, accommodating blind writes would complicate the recovery algorithms we
present. We make the design decision that the optimizations of blind writes are not worth the
additional storage and processing time that would be required in the algorithms. To accommodate

*A transaction blindly writes a data item if it writes a value without first reading the item.

39

this decision, for the remainder of this report we assume that transactions do not issue blind writes.
That is, if a transaction writes some data, the transaction is assumed to read the value first.

We say a data item x is dirty if x is in the write set of any bad or suspect transaction. From
the data perspective, the goal is to restore each dirty data item to the value it had before the
first transaction in DG(B) wrote it. The resulting state will appear as if the bad and suspect
transactions never executed.

It is clear that the dependency graph of history H can not be built without the corresponding
read information for transactions in H. Unfortunately, the read information we can get from the
logs for traditional recovery purposes such as physical logs, physiological logs, and logical logs
[GR93], is usually not enough for constructing the DG(B). Therefore, the efficient maintenance
of read information is a critical issue. In particular, there is a tradeoff between the extra cost we
need to pay besides that of traditional recovery facilities and the guaranteed availability of read
information.

There are several possible ways to maintain and capture read information. For example,

• augment the write log to incorporate read information.

• extract read sets from the profiles of transactions.

• extract read information from physiological or logical logs.

• build an online dependency graph.

Based on the amount of available read information provided by these methods, we can achieve
several types of repair:

• A repair is complete, if the effects of every bad or suspect transaction are repaired.

• A repair is exact, if the effects of all and only bad or suspect transactions are repaired.

Since the specification and the properties of our repair algorithms are closely related to the
approach which is selected to maintain the read information, we present the algorithms in a way
which is based on the different read information capturing methods, although the basic ideas of
these algorithms are very similar. The coldstart as well as the warmstart repair algorithms based
on In-Log read information are introduced in Section 5.2 and Section 5.3 respectively. The repair
algorithms based on the read information extracted from transaction profiles are specified in Section

5.4.

40

5.2 Static Repair Based on In-Log Read Information

Our basic repair algorithm is based on traditional recovery mechanisms [BHG87]. One advantage
of this approach is that we need not develop the repair algorithm from scratch. In addition, the
standard recovery mechanisms need not be modified greatly to accommodate the repair algorithm.

We use the same physical log as used in traditional recovery mechanisms [BHG87] except that
we define a new type of log record to document every read operation. These records are used to
construct the dependent upon relation between transactions. The read log record [Ti,x] denotes
that the data item x is read by transaction T*. An algorithm that does not modify the log, but
instead maintains the read log separately, is discussed in section 5.2.3. As mentioned in Chapter 3,
we use the same TM-Scheduler-DM model of centralized database systems as used in [BHG87]. We
add one action, which appends [Tux] to the log, to the RM-Read(T2,x) procedure. We assume that
the scheduler invokes RM operations in an order that produces a serializable and strict execution.

The basic idea of static repair is that we halt the processing of transactions periodically after
a set of bad transactions B is identified, and then we build the DG(B), based on the log and/or
other available read information, to identify the bad as well as the suspect transactions.

5.2.1 Three Pass Repair Algorithm

The algorithm described below is composed of three passes. Pass one scans the log forward from
the entry where the first bad transaction commits to produce a list of all the transactions which
commit after the first bad transaction. Some good transactions in this list may be suspect. Pass
two scans the log forward from the entry where the first bad transaction starts and extracts every
bad and suspect transaction from the commit list of pass one. Pass three goes backward from the
end of the log to undo all bad and suspect transactions.

Algorithm 1 Three Pass Repair Algorithm
Input: the log, the set B of bad transactions.
Output: A consistent database state in which all bad and suspect transactions are undone.
Initialization.
Let commit list = {}, undoJist = {}, writeset = {}, tmpjwriteset — {}{A).
Pass 1.
1. Locate the log entry where the first bad transaction Bx commits.
2. Scan forward until the end of the log. For each log entry,
2.1 if the entry is a commit record [Ti, commit]

commit Jist = commit list U {Ti};

41

Pass 2.
1. Locate the log entry where the first bad transaction B\ starts.
2. Scan forward until the commit list turns empty or there are no more log entries to examine. For
each log entry,
2.1 if the entry is for a transaction T in B

if Ti is not in the undolist
undolist = undolist U {Ti};

if the entry is a write record [Ti,x, v]
writeset = writeset U {x};

2.2 elseif the entry is for a transaction in the commit list
case the entry is a write record [Ti,x,v]

if Ti is in the undolist
writeset = writeset U {x};

else tmpjwriteset = tmpjwriteset U {(Ti,x)YB^;
case the entry is a read record [Ti, x]

if Ti is in the undolist
skip the entry;

elseif x is in the writeset
undolist = undolist U {Ti} ;
move all the data items of T from the tmpjwriteset to the writeset;

case the entry is a commit record [T, commit]1-0'
if Ti is not in the undolist

delete all the data items of T» from the tmpjwriteset;
Pass 3.
Scan backward from the end of the log to undo all the transactions in the undolist.

Comments

A. The commit list consists of the transactions which commit after the first bad transaction. The
undolist consists of the bad and suspect transactions that should be undone. The writeset
consists of the dirty data items. The use of tmpjwriteset is explained in comment B.

B. When we encounter a write log entry for a good transaction which is still not in the undolist,
we cannot be sure whether the transaction will become suspect - it may read some dirty data
later on. At this time, we need to keep track of the data items written by this transaction in
case we have to add them to the writeset later. There are basically two approaches to solve
this problem. One, which is used in the algorithm, is to keep the write items in a temporary
memory structure (namely, tmpjwriteset); the other is to scan the log backward to figure

42

out the write set later on (the backward scan can be efficient since all the write log entries of
a transaction are chained together in the log). The first approach costs more memory space
but is faster. The second approach costs less memory space but is slower since it may cause
disk operations.

Also, since we assume that the history to be repaired is strict, the following scenario, which
happens in a history that is recoverable but not strict, will not occur:

rGl [xi]wGl [xi]rG2 [x1}wa2 [xi]rGl [yi]cGl cGi

Suppose yx is in the writeset, Xl and x2 are not. When we encounter the entry rG2[xx],
though G2 is dependent upon d we skip it according to the algorithm since Xl is not in the
writeset. Later when we encounter the entry rGl[yi], we will add Gl to the undoJist since
it reads an item in the writeset. But at this point, G2 will not be added to the undoJist
though it has been affected by G\.

C. This step improves the performance of the algorithm when the history is long and when many
committed good transactions are not affected.

Theorem 1 Given the state produced by history H over B U G, Algorithm 1 constructs the state
that would have been produced by H', where H' is H with all transactions in DG(B) removed.

Proof: Given the relationship between dirty data, the bad and suspect transactions, this theorem
amounts to showing that each dirty data item is restored to the latest value before it turns dirty.
The following three claims are sufficient to show this.
Claim 1. Every bad and suspect transaction is added to the undoJist in Pass 2. It is clear that
every bad transaction is added to undoJist in step 2.1 of Pass 2. Suppose there are some suspect
transactions which have not been added to the undoJist and Tt is the first one. Then according to
the algorithm, it happens that when T{ reads a dirty item x{ in step 2.2 of Pass 2 Xi is still not in
the wmte„set. Since the execution is strict, when T{ reads xt every bad or suspect transaction that
writes Xi before the read operation has already committed, and therefore x{ is already added to the
wnte-set in step 2.1 or 2.2 of Pass 2, which contradicts with the assumption.

Claim 2. Only bad and suspect transactions are added to the undoJist in Pass 2. Suppose some
non suspect good transactions have been added to the undoJist and T{ is the first one. Then ac-
cording to the algorithm, it happens that when T* reads an item x{ in step 2.2 x{ is in the writeset.
Therefore T{ is formally suspect, which contradicts the assumption.

43

Suppose Xi is a dirty data item and Tj is the first transaction which makes X{ dirty, then Tj must
be either bad or suspect.

If Tj is the first bad transaction, then x{ will be restored to the value before Tj writes it in
pass three. If T is not, then no bad or suspect transaction that commits before Tj has updated xt

because otherwise T cannot be the first transaction that makes Xj dirty. By Claim 1 , we know
that every bad or suspect transaction that commits before Tj is considered here, and we know %
will be added to the undoJist in pass 2. By Claim 2 , there is no non suspect good transaction
which updates Xj, commits before T and is in the undoJist. Thus X{ will be restored to the before
image of TVs write which is the latest un-dirty value of Xj. T cannot be the first transaction that
makes Xj dirty. D

5.2.2 Two Pass Repair Algorithm

One drawback of the three pass repair algorithm is that it needs three passes, which may take too
much time if the log is large. At the cost of additional memory, the first two of these passes can be
combined. In two pass algorithm, the forward pass gets the list of all bad and suspect transactions;
the backward pass undoes these transactions. For brevity, and to highlight the differences between
the two algorithms, we describe only the modifications to the three pass algorithm.

Algorithm 2 Two Pass Repair Algorithm
Omit pass 1 of Algorithm 1.
In pass 2 of Algorithm 1 add another list tmpjundoJist to capture the set of in-repair good trans-
actions which have read some dirty data.* For each entry which is not for a transaction in B:

case the entry is a write record [Ti,x, v]
tmpjwriteset = tmpjwriteset U {(Tj,x)};

case the entry is a read record [Tj, x]
if x is in the writeset

tmpjundoJist = tmpjundoJist U {Tj};
case the entry is an abort record [Tj, abort]

delete all the data items of T from the tmpjwriteset;
if Tj is in the tmpjundoJist

delete Tj from the tmpjundoJist;
case the entry is a commit record [Tj, commit]

if Tj is in the tmpjundoJist
move Tj from the tmpjundoJist to the the undoJist;

*A transaction T is in-repair between the time we scan the record [T, begin] and the time we scan the record
[T, commit] or the record [T, abort].

44

move all the data items of T{ from the tmpjwriteset to the writeset;
else delete all the data items of T, from the tmpjwriteset;

Theorem 2 The two pass algorithm and the three pass algorithm are equivalent, in the sense that
for any input they get the same output database state.

Proof: It is clear that any aborted good transaction will not be added to the undoJist in both
algorithms. For a committed suspect transaction Th it will be added to the undoJist in the three
pass algorithm when it reads an item in the writeset, and some data items written by T{ may be
added to the writeset before T{ commits. In the two pass algorithm, T{ will not be added to the
undo list until it commits, so does the data items written by T{. Since the history is strict, any
data item written by T{ will not be read by other transactions until T{ commits. Therefore, the
different time in these two algorithms when T; is added to the undo list and when T;'s data items
are added to the writeset will not influence the output. So these two algorithms are equivalent. D

5.2.3 Repair Algorithm Based on Separate Read Log

The three pass and the two pass algorithms are based on the log to which read records are added.
Sometimes, it is desirable to use a separate log to document the read operations rather than change
the traditional log. We call the separate log read log, and we call the traditional log update log.
Using a read log to repair a history has the advantage that the traditional recovery mechanisms do
not have to be modified to take a different data structure for the log into account.

There is only one type of entry of the form [Tt,x] in the read log, identifying the data item x
which is read by transaction T{.

Conceptually, a two pass repair algorithm based on the read log as well as the update log can
be designed using the same memory data structure and algorithm as used in Algorithm 2 if we can
transform the serial scan operations in Algorithm 2 over one log to some equivalent interleaved scan
operations over the read log and the update log. Thus, one important issue in using a read log to
do repair is to synchronize the scan operations over the update log and the read log.

The order by which we interleave the scan operations over the update log and the read log is
critical to the correctness of the repair algorithm. If an entry [Th x\ in the read log is scanned earlier
than an entry in the update log which denotes an operation happening before the read, then T{

may not be added to the undolist though it is a suspect transaction. Look at the following scan
sequence:

rGl [xi]rGl [yi]wGl [yi]rG2 [yx]wGl [xi]cGliuG2 [yi}cG2

45

Suppose x\ is in the writeset. When we scan the entry rG2[yi], we cannot find that G2 reads a
dirty item since yi is not in the writeset yet. Later on, when we scan the entry cGl, we will add y\
to the writeset but G2 will be found not to be suspect since it will not read yx again. The point
is that r<32[yi] happens after cGl (since the execution is strict) but it is scanned before cGl.

If an entry \Ti: x] in the read log is scanned later than an entry in the update log which denotes an
operation happening after the read, then we may not find the write items of T{ in the tmpjwriteset
when we find T{ suspect since all the write items of Tj may have been deleted. Look at the following
scan sequence:

wGl [xi]wGl [y1]cGlrGl [xl]rGl [J/J]

Suppose x\ is in the writeset. When we scan the entry cGl, we will delete all the write items
of Gi(xi, y\) from the tmpjwriteset since G\ has not read any dirty data. Later on, when we
encounter the entry rcj^i], we find G\ is suspect but we cannot find the items written by G\ from
the tmp-writeset.

So we must synchronize the scan operations in a way which can ensure the correctness of the
algorithm. The requirement implied by this can be conveniently stated as two design rules that
every two pass repair algorithm which uses read logs must observe.

Rule 1: Before a read entry [Ti,x] is scanned in the read log, any write record for x which denotes
an operation happening before the read must have been scanned.

Rule 2: Before we scan a commit record [Tj, commit] in the update log, all the read records for
Ti must have been scanned.

Our synchronizing mechanism is specified as follows.

Mechanism 1 When a read entry is added to the read log, the largest LSN [BHG87] of the update
log will be recorded in the read entry. For an entry rj in the update log and an entry r2 in the read
log, let ri.LSN denote the LSN of r1; let r2.read-LSN denote the LSN recorded in r2, r\ and r2

are scanned in the following order:

1. If r2.read-LSN > ri.LSN, then r\ is scanned before r2.

2. lir2.read-LSN < ri.LSN, then r2 is scanned before r^

Lemma 1 Mechanism 1 ensures that the scan order of r\ and r2 is the order in which the operations
denoted by rx and r2 happen. And the mechanism satisfies the two design rules.

46

Proof: Let ox be the operation denoted by n(0l may be a commit, abort, or update operation); let
o2 be the read operation denoted by r2. When o2 happens, we create r2 and record the largest LSN
of the update log in the read.LSN field of r2. Since at that time the operation op denoted by the
entry of the update log with the LSN has already happened, op happens before o2. Since op denotes
the last operation logged in the update log before o2 happens, every operation which is logged in the
update log later than op happens after o2. Therefore, if r2.read.LSN > n.LSN, then op.LSN >
Ti.LSN, so oi is op or happens before op, thus ox happens before o2. If r2.read.LSN < n.LSN,
then op.LSN < n.LSN, so ox happens after op, thus 0l happens after o2. Therefore our scan order
is the operation order. Since the operation order satisfies the two design rules, Mechanism 1 satisfies
the two design rules. n

The repair algorithm based on separate read log is described as follows:

Algorithm 3 Repair Algorithm Based on Separate Read Log
Use Mechanism 1 to schedule the order in scanning the update log as well as the read log. For every
kind of log entry, do the same thing as Algorithm 2. For brevity, the details are omitted.

Theorem 3 The algorithm based on separate read log and the two pass algorithm are equivalent,
m the sense that for any input, they get the same output database state.

Proof: Since Algorithm 3 uses Mechanism 1, it scans the entries in the update log as well as
the read log in the same order as the two pass algorithm scans the traditional log associated with
the records for read operations. In addition, for every entry, Algorithm 3 does the same thing as
Algorithm 2. Therefore, these two algorithms are equivalent. □

5.3 On-the-Fly Repair Based on In-Log Read Information

The three pass algorithm, the two pass algorithm, and the algorithm based on separate read log
which we have presented in Section 5.2 are all static repair, or coldstart, methods. New transactions
are blocked during the repair process. In some database applications, availability requirements
dictate that new transactions be able to execute concurrently with the repair process, that is, the
application requires warmstart semantics for recovery. The cost of on-the-fly repair is that some
new transactions may inadvertently access and subsequently spread damaged data.

The traditional transaction management architecture is adequate to accommodate on-the-fly
repair (see Figure 5.2) *.

tNote that Figure 5.2 is adapted from Figure 3.1. For simplicity, here we omit the TM and incorporate the
function of the CM in the RM.

47

Repair
Manager

Read

Log

Tl T2 ... Tn

Scheduler

Read
i 1
Write

Recovery
Manager

Read

Write 1

Cache

Figure 5.2: Architecture of the on-the-fly repair system

The Repair Manager is applied to the growing logs of on-the-fly histories to mark any bad as
well as suspect transactions. For every bad or suspect transaction, the Repair Manager builds an
undo transaction and submits it to the Scheduler1*. The undo transaction is only composed of write
operations.

The Scheduler schedules the operations submitted either by user transactions or by undo trans-
actions to generate a correct on-the-fly history. Suspect transactions that are undone can be resub-
mitted to the Scheduler either by users or by the Repair Manager.

The Recovery Manager executes the operations submitted by the Scheduler and logs them. It
keeps the read information of transactions either in a traditional log modified to store read operations
or in a separate read log.

For simplicity in the presentation, we assume that each new transaction is good.

5.3.1 Termination Detection

New transactions are continuously submitted to the Scheduler, and as a result, the log keeps growing.
A key question is 'Does repair terminate, and if so, is termination detectable?'

Suppose at some point the Repair Manager has repaired the history up to record a on the log
(See Figure 5.3). That is, every bad or suspect transaction which commits before a is logged has
been undone, its dirty data items have been marked and cleaned. Suppose record b is the present

§Note that here the flat transaction model is used.

48

a b

-^ new records

Figure 5.3: A Snapshot of Repair on the Log

bottom of the log. It is possible that a newly submitted read operation reads a dirty item which
has not been marked, because the item can be made dirty by some write operation which happened
between a and b. Since neither the Scheduler nor the Repair Manager can detect this, the read
operation is not rejected. In this way, some newly submitted good transaction may become suspect.
As an example, consider the following operation sequence:

rGn^l}wG^2}cGnrGJx2}wGJx3}cGi2..TGJxk}wGik[xk+1}cGik...

Even if xx is the only dirty data item when the sequence begins, repair may not terminate until the
submission terminates because when x{ is cleaned, xi+l may already become dirty.

Consider another operation sequence:

GiiGi2...Gi(k-i)rGik [xi)wGik [x2}cGik...

Assume that only xx is dirty when the sequence begins and none of the transactions between Gix

and Gnk-i) read xx. Then it is possible that when Gik reads xu every bad or suspect transaction
has already been repaired. Thus, xi is clean, and the repair terminates.

Whether or not a repair terminates depends on the repair speed, the arrival rate of new trans-
actions, and the nature of the new transactions. So, in general, termination of repair cannot be
guaranteed without taking additional measures, which are discussed later. However, if the repair
process is complete, this condition can be detected. We turn to termination detection next.

Checking if every marked dirty data item has been cleaned to determine if repair is complete is
not sufficient for two reasons. First, some transaction T which has been found suspect may write
dirty data items later on (see Figure 5.4): at time t5 the read record [T, x] is scanned and T is found
suspect since x was dirty when T read x (Notice that when [T,x] is scanned x may not be dirty
since x may already be cleaned at *4); at time t6 every dirty item that is marked before t6 has been
cleaned, but the repair does not terminate since at time t7, T writes an item y and y becomes dirty.
Second, some transaction which has not yet been identified as suspect may generate dirty data (See
Figure 5.5): [T, begin] record is scanned after time t4 when no data is dirty, we can not stop repair
at time t4 since at time t6 we find T is suspect and at time t7 item y is marked dirty.

49

tl

t2

t3
t4
t5

t6
t7

_ x turns dirty

T reads x

_ x is marked dirty

(x is cleaned)

[T,x] is scanned

all marked dirty items are cleaned

[T,y,v] is scanned

Time

Figure 5.4: Transactions which have been found suspect may generate new dirty items

From another perspective, when data item x is read or written, x may be at one of the seven
kinds of states denoted in Figure 5.6.

Before x turns dirty, x is in the 'clean' state (state 1). x is in the 'pseudo clean' state (state 2)
between the time x turns dirty and the time x is marked dirty, x is in the 'dirty' state (state 3)
between the time x is marked dirty and the time x is cleaned, x is in the 'cleaned' state (state 4)
between the time x is cleaned and the time x turns dirty again, x is in the 'pseudo cleaned' state
(state 5) between the time x turns dirty again and the time x is marked dirty again, x is again in
the 'dirty' state (state 6) between the time x is marked dirty again and the time x is cleaned again.
x is again in the 'cleaned' state (state 7) between the time x is cleaned again and the time x turns
dirty again. Of course, these states may be repeated indefinitely.

Mechanism 2 described below can capture the two situations shown in Figure 5.4 and Figure
5.5, thus can detect the termination of On-the-fly repair processes.

Mechanism 2 In the process of repair:

• Maintain a dirtyJtemset to keep every data item in state 3 or 6; maintain a
cleanedJtemset to keep every data item in state 4 or 7. We show how to capture these items
in Section 5.3.4.

• Associate each item x in the cleaned.item.set with a number, x.LSN, which denotes the log
serial number of the bottom record of the log at the time when x is cleaned.

50

tl

t2

t3
t4

t5

t6

t7

_ x turns dirty

T reads x

x is cleaned

all marked dirty items are cleaned

[T, begin] is scanned

[T,x] is scanned

[T,y,v] is scanned

Time

Figure 5.5: Transactions which will later be found suspect may generate new dirty items

clean
pseudo
clean dirty cleaned

pseudo
cleaned dirty cleaned

1 2 3 4 5 6 ►
7 t

x turns x marked x is
dirty dirty cleaned

x turns x marked x is
dirty dirty cleaned
again again again

Figure 5.6: Possible Item States

• Maintain a tmp.undoJist to keep every in-repair transaction that has read some data item
in the dirtyJtemset, or has read an item x in the cleanedJtemset where r.LSN < x.LSN.
Here r.LSN is the log serial number of the read record.

• We report that the repair terminates if

- every bad transaction in B has been undone, and

- dirtyJtemset = 0, and

- tmp.undoJist = 0, and

- Vx € cleanedJtemset, x.LSN < l.LSN. Here, l.LSN denotes the log serial number of

51

the next log record for the Repair Manager to scan.

Theorem 4 Mechanism 2 reports termination iff the repair process, in fact, terminates.

Proof: Repair terminates iff all the marked dirty items have been cleaned and it is not possible for
any item to turn dirty later on. When Mechanism 2 reports termination every marked dirty item
has been cleaned since dirty Jtemset = 0. At this time, since every bad transaction in B has been
undone, an item x may turn dirty later on only if x is written by a suspect transaction which has
been detected or by a suspect transaction which will be detected later on.

An transaction T can be found suspect only if there is an item x such that T read x when x was
dirty. When [T,x] is scanned, x may still be dirty or may have been cleaned, but x can not be first
cleaned and then marked dirty for the following reason. Suppose the transaction that makes x dirty
again is T". Then the write record [T',x,v] can only be scanned after [T,x] since it is appended
to the log after [T, x]. Therefore, when [T,x] is scanned x is still dirty, and so x must be in the
dirty Jtemset. If x has been cleaned, then r.LSN < x.LSN. So every transaction that has been
found suspect will be in the tmp.undoJist. Therefore, when tmp-undoJist = 0 no such transaction
exist.

When dirtyJtemset = 0 an item x will be written by a transaction T which will be found
suspect later on only if T had read x before x is cleaned, but when T reads x, x is still dirty. (This
situation is shown in Figure 5.5.) When Mechanism 2 reports termination, Vx € cleaned Jtemset,
x.LSN < l.LSN, that is, every dirty item is cleaned before the operation denoted by the next log
record for the Repair Manager to scan, Therefore, every read operation denoted by a record that
the Repair Manager is going to scan will not read any dirty item, so the situation will not happen.

D

5.3.2 Building Undo Transactions

On-the-fly repair requires the Repair Manager build and submit the undo transactions for every
bad or suspect transaction, that is, the Repair Manager starts to built the undo transaction for
a transaction T as soon as Ti is found bad or suspect. Since the log keeps on growing, the undo
can only be done from the beginning to the end of the history, which is different from the methods
presented in Section 5.2.

The straight forward way to build undo transactions for bad or suspect Ti is to scan backward
along the log from the point where T commits, and for every write record of Ti, add a corresponding
write operation to the undo transaction U{. The write operation in Ui restores the item to its old
value. This approach does not work if new transactions execute concurrently with repair. Consider
the event sequence shown in Figure 5.7. If x is clean before T writes x, Tj's undo transaction Ui

52

tl Ti writes x
t2 Tj writes x

t3 - Ui undos the write operatiion of Ti

t4 - Uj undos the write operation of Tj
time

Figure 5.7: The flaw of the straight forward method

undos this write operation at time t3 and x is cleaned. However, the undo transaction Uj of another
suspect transaction 7) undos the write operation of 7} on x at time t4 and x turns dirty again,
which is not correct.

Algorithm 4 described below fills the hole of the straight forward method.

Algorithm 4 Building Undo Transactions

1. Maintain a submitted.item.set to keep every item x whose undo operation has been submitted
to the Scheduler, but x still has not been cleaned.

2. When building an undo transaction, for every write record which is scanned, if the record is on
an item x which is in the cleaned Stem set or in the submitted Atem.set then omit the record;
if x is in the write.item.set but not in the submitted Mem.set, then add the corresponding
undo operation to the undo transaction and add x to the submitted Atem.set.

Theorem 5 In Algorithm 4, when Ui is built, every dirty data item x of T{ will either be repaired
in a operation of Ut or in a operation of another undo transaction, and x will be restored to the
value x had before it turned dirty.

Proof: If x is clean or cleaned before T{ writes x, then the undo operation wv. [x] will restore x to
the latest value before x turned dirty. If x is dirty before T writes x, suppose Tj is the transaction
which makes x dirty, then when [Tu x, v] is scanned, x is either cleaned, so in the cleaned Stem.set,
or is submitted by the undo transaction which is built for Tj, so in the submitted.item.set, therefore,
Ui will not repair x. □

53

5.3.3 On-the-fly Concurrency Control

Before introducing the On-the-fly repair algorithm, we need to first analyze how the Scheduler
should schedule the user operations as well as the undo operations to achieve repair.

To define the acceptable histories generated by the Scheduler, we associate the read and undo op-
erations in histories with appropriate states of the Repair Manager (i.e., the state of the dirty Mem set)
when the operations are scheduled to execute, and use the states to indicate the correctness of repair
histories.

Definition 3 History H is a correct on-the-fly history if

1. H is serializable and strict,

2. There are no abort records for undo transactions,

3. For any read operation TYJX], the predicate x 0 dirty Atem set holds,

4. For any conflicting undo transaction pair £/j and Uj, if Tj <H TJ then U{ <H UJ, and

5. For any undo operation IüI/[X], the predicate (x G dirtyAtemset) D (x € submittedAtemset)
holds.

Statement 3 says that when a read operation rrjx] is scheduled x must be clean or cleaned.
Statement 4 says that conflicting undo transactions should be scheduled in the same order in which
they are submitted by the Repair Manager (As shown in Section 5.3.2, the order is critical to the
correctness of repair.). Statement 5 says that when an undo operation wu[x] is scheduled, x must
be dirty.

The scheduling algorithm is described as follows:

Algorithm 5 Scheduling Algorithm
The algorithm is based on strict 2PL. The modification lies in:

• Never abort undo transactions;

• When a read operation rr{[x] arrives, if x is in the dirty Atemset, then reject this read
operation and rollback Tj.

We show in next section that if the Scheduler executes Algorithm 5, then together with the
Repair Manager, and the Recovery Manager, the Scheduler generates correct on-the-fly histories.

An important task of the Scheduler is to control the submitting speed of user operations so that
the repair can eventually finish. Informally, the Repair Manager can slow down the submitting

54

speed of user operations when the repair process fails to terminate in a satisfactory time frame. An
automatic way to control the speed is as follows. Periodically the Scheduler evaluates the trend in
the size of the dirty Stemmet. The trend can be captured with time series analysis techniques. If
the trend is up, then the submitting speed can be reduced. Otherwise, termination is on track.

5.3.4 On-the-fly Repair Algorithm

The integrated On-the-fly repair algorithm consists of three parts which are executed on the Repair
Manager, the Scheduler, and the Recovery Manager, respectively.

Algorithm 6 On-the-fly Repair Algorithm
Input: the log, the set B of bad transactions.
Output: if the repair terminates at the middle of the history, then any prefix Hp of the history
including the point where the repair terminates results in the state that would have been produced
by H'p, where Hp is Hp with all transactions in DG(B) removed. If the repair terminates at the end
of the history H, then H will result in the state that would have been produced by H', where H'
is H with all transactions in DG(B) removed.
Initialization:
Let tmpjundoMst = {}, cleaned Atem set = {}, dirty Stem set = {}, tmpMemset = {}.
At the Repair Manager:
1. Locate the log entry where the first bad transaction Bx starts.
2. while (the termination conditions do not hold ')

Scan next log entry:
if the entry is for a transaction T2 in B

if the entry is a write record [Ti,x,v] and x is not in the cleaned Atem set
add x to the dirty Mem set;

if the entry is a commit record [Tu commit]
build the undo transaction for T{ using Algorithm 4 and
submit it to the Scheduler;

else
case the entry is a write record [Thx, v]

if x is not in the cleanedJtemset
add x to the tmpJtemset;

elseif w.LSN > x.LSN^
add x to the tmpJtemset;

1The termination conditions are stated in Mechanism 2.

55

case the entry is a read record [T,, x]
if x is in the dirty -itemset or
x is in the cleaned-itemset and r.LSN < x.LSN

add T{ to the tmp-undoJist;
case the entry is an abort record [Ti, abort]

delete all the data items of T from the tmpJtemset;
if Ti is in the tmp-undoJist, remove it;

case the entry is a commit record [Ti, commit]
if T is in the tmp-undoJist

move all the items of T from the tmp-itemset to the dirty-itemset;
build the undo transaction for T using Algorithm 4 and submit it
to the Scheduler;

else delete all the items of T, from the tmpJtemset;
3. report termination; exit;
At the Scheduler:
Schedule the user operations as well as the undo operations using Algorithm 5.
At the Recovery Manager:
When an undo operation lur/jx] is done, delete item x from both the dirty-itemset and the
submitted-item set, then add (x, x.LSN) to the cleaned-itemset.

Comments

A. w.LSN denotes the log serial number of the write record. Notice that when w.LSN > x.LSN
x is cleaned before the write operation, therefore, the write operation may make x dirty again.
Otherwise, x is cleaned after the write operation, so x will not be made dirty again by this
operation, therefore x need not be cleaned anymore.

Theorem 6 Algorithm 6 meets its specification.

Proof: Given the relationship between dirty data, the bad and suspect transactions, this theorem
amounts to showing that at the time when the repair terminates each dirty data item is restored
to the latest value before the data item turns dirty.

Claim 1. The Scheduler generates only correct on-the-fly histories. From the definition of 2PL and
Algorithm 5, we know that the first three statements of Definition 3 hold. The Repair Manager
builds and submits undo transactions in the scanning order, and before an undo operation u?t/,[:r]
is executed and x is cleaned any conflicting undo operation Wf/Jz] will not be submitted to the
Scheduler. This is because between the time wt/Ja:] is submitted and the time it is executed any

56

newly submitted user transaction which reads x will be rejected, and the Repair Manager will not
build any other undo operation to repair x. Therefore, statements 4 and 5 hold.

Claim 2. Algorithm 6 realizes Mechanism 2, and thus reports termination correctly.

Claim 3. In the Repair Manager, at any point of time every dirty data item x in the part of the
history having been scanned by the Repair Manager has been marked and the corresponding undo
operation, which can restore the value of x to the latest value before x turns dirty, has been built
and submitted to the Scheduler. Since in the part of history, an item x can be first made dirty,
then cleaned, and then made dirty again, we associate a dirty item x with the period of time when
it remains dirty(denoted p). Thus (x,Pl) and (x,p2) denote two different dirty items. As shown in
Algorithm 6, for every dirty data item (x,p) an undo operation and only one undo operation will
be built to repair it at the very beginning of p. See Theorem 1 and Theorem 4 for the reason that
every dirty data item is marked. □

5.4 Extracting Read Information From Transaction Pro-
files

Sections 5.2 and 5.3 detail recovery algorithms that, given a specification of malicious, committed
transactions, unwind the effects of each malicious transaction, along with the effects of any benign
transaction that depends, directly or indirectly on a malicious transaction. The significance is
that the work of the remaining benign transactions is saved. However the assumption that read
information are kept in the log may incur substantial performance penalties due to the significant
storage and processing cost of maintaining read information.

There are basically two ways to keep read information in the write log or in another read log.
One way is what we assumed in Sections 5.2 and 5.3, that is, let the RM-Read(T,,:c) procedure
append the read record [Tux] to the log every time when T* reads an item x. The other way is to
let the RM-Read(Ti,x) procedure keep the set of items read by Tt in another place until the time
when Tt is going to commit, at this point, the read set of T{ can be put into the log as one record.
Compared with the first approach, the second approach saves some storage since the identifier of
T% need not be put into the log repeatedly, however, it may require the database to store relatively
large data objects because read sets can be very big. In addition, it may delay termination detection
during a warmstart repair process H.

"The corresponding coldstart and warmstart repair algorithms based on the second approach are the same as the
algorithms presented in this section.

57

Although keeping read information in the log will not cause more forced I/O, it does consume
more storage. Though the previous two approaches need to keep only the identifier instead of the
value of each read item in the log, the size of a read set can still be very big. For example, in a bank
a transaction which generates the monthly statement of a customer needs to read the information
of every transaction submitted by the customer during the last month.

Another problem with keeping read information in logs lies in the fact that almost all present
database systems keep only update(write) information in the log. Adding read records to the log
may cause the redesign of the current recovery mechanisms, including both the data structure and
the algorithms.

Any way of maintaining read information should keep the malicious transaction recovery mod-
ule isolated from the traditional recovery module as much as possible. Such an approach avoids
degrading the performance of the traditional recovery module and also makes it easier to build the
malicious transaction recovery module on the top of the existing database systems.

In this section, we adopt the approach of extracting read information from the profiles and input
arguments of transactions. Compared with the read log approach, each transaction just needs to
store its input parameters, which are often much smaller in size than the read set. More important,
instead of putting the input parameters in the log, each transaction can store the parameters in
a specific user database, thus the damage recovery module can be completely isolated from the
traditional recovery module. In this way, our repair model can be easily implemented on the top of
current database systems without any change to the DBMSs. The only thing we need to do is to let
application programmers change the transaction code such that damage recovery can be supported.
The approach is not exact, and as a result, it may back out some non-suspect good transactions
and/or delay termination detection during a warmstart repair process.

5.4.1 The Model

We start with the transaction profile of TPC-A, a well known database benchmark [Gra93], as an
example. TPC-A is stated in terms of a hypothetical bank. The bank has one or more branches.
Each branch has multiple tellers. The bank has many customers , each with an account. The
database represents the cash position of each entity(branch, teller, and account) and a history of
recent transactions run by the bank. The transaction represents the work done when a customer
makes a deposit or a withdrawal against his account. The transaction profile is specified as follows:

Input: Aid, Tid, Bid, Delta
BEGIN TRANSACTION

Update Account_Balance where Account_ID = Aid:

Read Account_Balance from Account

58

Set Account_Balance = Account.Balance + Delta
Write Account_Balance to Account

Write to History:

Aid, Tid, Bid, Delta, Time.stamp

Update Teller where Teller.ID = Tid:

Set Teller.Balance = Teller.Balance + Delta
Write Teller_Balance to Teller

Update Branch where Branch.ID = Bid:

Set Branch.Balance = Branch_Balance + Delta
Write Branch_Balance to Branch

COMMIT TRANSACTION

Here, Aid(AccountJD), Tid (Teller JD), and Bid(BranchJD) are keys to the relevant records (rows).
For this transaction, the read set in tuple(record) level is:

Read_Set= { Account.Aid, Teller.Tid, Branch.Bid}

Each item in the set uniquely identifies a tuple of a relation. At the element level, the read set is:

Read_Set= { Account.Aid.Account_Balance, Teller.Tid.Teller_Balance,
Branch.Bid.BranchJBalance }

Each data item is an element of a relation. In this example, the item is composed of three
parts, namely the relation identifier, Account, the record identifier, Account.Aid, and the at-
tribute identifier, Account.Balance. To find the record identified by Account.Aid, the DBMS
usually needs to search the corresponding index. However, we do not put searching keys such as
Account. Aid. Account JD into the read set because we assume that the primary key of a relation is
not updated unless the record is deleted.

5.4.2 Read Set Templates

As shown in the example above, given the source code and the input arguments, it is possible to
extract exact or approximate read sets from transactions. However extracting read sets on the
fly, that is, analyzing transaction source code during execution, may not meet the requirement of
current online transaction processing systems. The reason is that extracting read set can cause an
unacceptable processing delay.

An efficient method of getting read sets is required. Since every transaction running in a OLTP
system typically belongs to some category, we assume that a transaction type is associated with

59

every transaction, which identifies the nature of the transaction. Transactions of the same type are
the same program, though they typically execute with different inputs.

The read set template for a transaction type is a representation of the data items that will be
read by transactions of the type. Since read set templates are generated based on only transaction
profiles, there are no real input arguments available and each data item in a read set template can
only be specified as a function of the input variables.

An efficient way to extract read information from transaction profiles based on read set templates
is as follows:

1. Analyze the source code of each type of transaction offline and get the read set template of
that type.

2. When a transaction T is submitted to the Scheduler, the read set template for T's type
is materialized with the input arguments of T. The process of materializing is done by
substituting each variable in the read set template with its corresponding real value.

3. The materialized read set template is the read set for T.

For example, there is only one type of transaction in TPC-A, its read set template is:

Template = { Account.Aid.Account-Balance; Teller.Tid.Teller_Balance;
Branch.Bid.Branch_Balance }

For a transaction instance with the input {Aid =' ,41591749', Tid =' T0002', Bid =' BGMUOOV, Delta =
$1000), the read set for the transaction is:

Read_Set= { Account.'Al591746'.Account_Balance, Teller.'T0002'.Teller_Balance,
Branch.'BGME/OOl'.Branch-Balance }

As shown in the above example, for any TPC-A transaction instance and for any database state
on which the transaction is executed, we can get the exact read set based on its read set template,
that is, the materialized template will indicate all and only the data items which are read by the
transaction, either in tuple level or in element level. However, in some circumstances based on a
template we may only get an approximate read set.

For example, in the Stock-Level transaction of TPC-C [Gra93], we retrieve the stock level of
the last 20 orders of a district from the table Order and the table Stock. The numbers of these
orders are traced from the D_NEXT_0 JD field of the district record in the table District which is
identified by the input wJd+dJd ('+' denotes string concatenation). The read set template can be
specified as follows:

60

Template= { x = District.(wid+did).D_NEXT_OJD;
Ri = {x-l,...,x-19,x-20};
R2 = Order-Line.(wJd+did+JR1+OL_NUMBER).OLJJD;
Stock.(w_id+JR2).S_QUANTITY }

Here, i?j is the set of the numbers of the last 20 orders. Order-Line.(wid+dJd+ Rx) identify the
order lines for the 20 orders whose numbers are kept in Rx. In the record identifier part of each
item, low case words denote variables which can be traced from the input; capital words denote
attributes or sets of variables. The attributes, i.e., OL.NUMBER, can take any value. Based on
the transaction profile, we can trace the D_NEXT_OJD field from the input, however we can not
trace further from Äx to the last 20 orders because the value of x depends on the concrete database
state when the transaction is executed.

There are two approaches to materialize the template. One is generalizing, that is, to view R1

as the set of all order numbers, thus the template can be materialized by only the input. The other
is tracing, that is to materialize RY based on the database context, for example, when doing repair
we can scan back from the point of the log where the transaction was executed to get the value of x.
The second approach, though can achieve finer repair, may cause substantial extra costs, especially
in dynamic repair scenarios.

Besides exact read sets, potential read sets maintain approxiate read items for transactions.
That is, for each item in the potential read set of transaction T, there exists a database state under
which the item will be read by T when it is executed. It is clear that the potential read set for a
transaction is the union of all the possible exact read sets of the transaction. Since we materialize
read set templates before transactions are executed, and since we do not predict control flows within
transaction, in some cases we only get potential read sets, and not exact read sets.

Since only database objects can be put into read set templates, we focus on the DML statements
which play as the interface between transactions and databases. Insert statements add new tuples
to relations, thus will not bring new read items; Delete statements replace database items with
null values, thus will not add new read items. Therefore, only Select and Update statements
introduce new read items.

For a Select or Update statement s of a transaction T, the input of s is the values(may denoted
as variables) which are used in the Where or Set clauses of s. The input may come directly from
the input of T, or indirectly from some previous query or program statement. It is clear that every
template extraction must satisfy the following properties:

• For each Select statement, the template can not be larger than the union of all the relations
in its From clauses. For each Update statement, the template can not be larger than the
union of all the relations in its Update and From clauses.

61

• For each transaction, the template can not be larger than the union of all the templates for
every Select or Update statement.

• The data items in the template for transaction T depend only on the transaction program,
and not on any particular database state.

The read set templates of transactions can be extracted in three steps:

Step 1. Extract the template for each Select or Update statement separately.

Step 2. Combine the template for each Select or Update statement to get the template for the
transaction.

Step 3. Generalize the template as appropriate.

For example, there are two Select statements in the Stock-Level transaction. In step 1, the
template for the first statement is:

TPl = { District. (wid+did).D_NEXT_OJD }

The template for the second statement is:

TP2 = { -Ri ={ oJd-1, ..., oJd-19, oJd-20 };
R2 = Order-Line.(wJd+did+Äi).OLJLID;
Stock.(w_id+Ä2)-S-QUANTiTY }

In step 2, based on the relation between TPX and TP2 that oJd = District.(wJd+dJd). D_NEXT_OJD,
we get the combined template which is specified in the above example.

In situations where tracing through the log for the value of some variable in the template does
not justify the corresponding cost, a simpler template materialized from only the input is preferred.
This is done in Step 3. For this example, the generalized template is:

Template= { District.(wid+did).D_NEXT_OJD;
Order-Line, (w Jd+d Jd+OL_0 JD+OL_NUMBER) .OLJJD;
Stock.(wJd+Äi.S_QUANTITY }

Based on the different possible structures of a Select or Update statement, some rules can be
followed in Step 1:

affecting rule: If data item d\ affects d2, then d\ should be put into the template so long as d2

is in the template.

62

set rule : If the result of the statement is based on a funtion of a set of database objects, then
the whole set should be put into the template.

join rule: If the result of the statement is got from the join of several relations, then every join
key, except primary keys, should be in the template.

mapping rule: Map the aggregate functions in the statement to the corresponding set operations
in the template. Map nested Select statements to nested templates. Map Exist clauses to the
emptiness judgement of nested templates. Map Views to the corresponding SQL statements
of the views.

Based on the different possible control flows in a transaction program, some rules can be followed
in Step 2:

branching rule: For branching program units, such as if-else and case, with the standard form
if c then 551 else 552, assume the read set templates for 551 and 552 are ÄSi and RS2

respectively, then the read set template for the unit is: if c then RSi else RS2.

loop rule: Viewing a loop structure as a limited set of program blocks, the read set template of
the loop statement is the union of the templates of all its member blocks.

Templates can be generalized based on the following rule:

container rule: For any data item x which is read by transaction T, if x can be directly specified
by the input of T, that is, no database state is needed in the specification, then add x into
the template. Otherwise, add the least set of data items which includes x and can be directly
specified by the input into the template. The least set of items is called the container of x.

5.4.3 Examples

In this section, we show as a feasibility exercise some realistic transaction examples from which
the read set templates can be extracted. We adopt the transaction examples from benchmarks for
transaction processing systems [Gra93].

TPC-B

The transaction profile of TPC-B is almost the same as TPC-A, so they have the same read set
Template.

63

TPC-C

The benchmark portrays a wholesale supplier with a number of geographically distributed sales
districts and associated warehouses. As the Company's business expands, new warehouse and
associated sales districts are created. Each regional warehouse covers 10 districts. Each district
serves 3000 customers. All warehouse maintain stocks for the 100,000 items sold by the Company.
Customers call the Company to place a new order or request the status of an existing order. Orders
are composed of an average of 10 order items.

In TPC-C, the term database transaction as used in the specification refers to a unit of work
on the database with full ACID properties. A business transaction is composed of one or more
database transactions. In TPC-C a total of five types of business transactions are used to model
the processing of an order (See [Gra93] for the source codes of these transactions.).

• The New-Order transaction consists of entering a complete order through a single database
transaction. The template for this type of transaction is:

Input= warehouse number(w_id), district number(d_id),
customer number(c_id); a set of items(olJJd),
supplying warehouses(ol_supply_w_id), and quantities(oLquantity).

Read_Set= { Warehouse.w_id.W_TAX;
District.(wid+did). (D_TAX, D_NEXT_0JD);
Customer. (w_id+dJd+cJd). (C_DISCOUNT, C.LAST,

C_CREDIT);
Item.ol_Ud.(I_PRICE, LNAME, IJDATA);
Stock. (ol^upply_w_id+olJid). (S_QUANTITY, S_DIST_xx,

S_DATA, S_YTD, S_ORDER_CNT, S_REMOTE_CNT) }

• The Payment transaction updates the customer's balance, and the payment is reflected in
the district's and warehouse's sales statistics, all within a single database transaction. The
template for this type of transaction is:

Input= a warehouse number(w_id), district number(dJd),
customer number(cJd) or customer last name(cJast),
and payment amount(h_amount)

Read_Set= { Warehouse.w_id.(W_NAME, W_STREET_1, W_STREET_2,
W_STATE, W_YTD);

District, (wid+did). (D_NAME, DJ3TREET_1, D_STREET_2,
D_CITY, D.STATE, D_ZIP, D_YTD);

64

[Case 1, the input is customer number:
Customer. (wJd+d Jd+c Jd). (C_FIRST, C JLAST,C_STREET_1,

C_STREET_2, C_CITY, CJSTATE, C.ZIP, C_PHONE,
C_SINCE, C.CREDIT, C-CREDITJJM, C JDISCOUNT,
CJ3ALANCE, C_YTD_PAYMENT, C_PAYMENT_CNT,
C-DATA);

Case 2, the input is customer last name:
Customer.(wid+dJd+cJast).(C_FIRST, CJLAST,C_STREET_1,

C_STREET_2, C_CITY, C_STATE, C_ZIP, C.PHONE,
C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT,
C_BALANCE, C_YTD_PAYMENT, C_PAYMENT_CNT,
C_DATA)] }

The Order-Status transaction queries the status of a customer's most recent order within a
single database transaction. The template for this type of transaction is:

Input= a customer number(wJd+dJd+cJd) or
customer last name(w_id+dJd+cJast)

Read_Set= { [Case 1, the input is customer number:
Customer. (w Jd+did+cJd). (C_BALANCE,C_FIRST, CXAST,

C-MIDDLE);
Case 2, the input is customer last name:
Customer. (w_id+d Jd+c Jast). (C_BALANCE,C_FIRST, CXAST,

C_MIDDLE)] ;
£=Order.(wJd+dJd+cJd).OJD;
Order, (w Jd+d Jd+c Jd). (0_ENTRY_D, 0_C ARRIER JD);
Order-line.(wJd+dJd+s).(OLJJD, OL_SUPPLY_WJD,

OL_QUANTITY, OL_AMOUNT, OLJDELIVERYJ3) }

The Delivery transaction processes ten new (not yet delivered) orders within one or more
database transactions. The template for this type of transaction is:

Input= a warehouse number(wJd), district number(dJd),
and a carrier number(o_carrierJd)

Read_Set= { x = New-Order.(wJd+dJd).NO_OJD;
y = Order, (w Jd+d Jd+x).0_CJD;
Order, (w Jd+d Jd+x). (0_C ARRIER JD,

65

OL_DELIVERTY_D, OL_AMOUNT);
Customer. (w_id+did+y).(C_BALANCE, C_DELIVERY_CNT) }

• The Stock-Level transaction determines the number of recently sold items that have a stock
level below a specified threshold. The template for this type of transaction is specified in the
previous presentation.

AS3AP

In AS3AP, since the performance is tested by separated pieces of codes, such as selections, joins,
projections, aggregations, and updates, every transaction is so simple that the read set templates
can be easily built.

Set Query Benchmark

The types of transactions in the benchamrk are: Ql, Q2A, Q2B, Q3A, Q3B, Q4, Q5, Q6A, Q6B.
Since these transactions are relatively simple, it is easy to build the read set templates for them.

5.4.4 Static Repair

Using the read information extracted from transaction profiles, the static repair algorithms, either
the three pass algorithm, or the two pass algorithm, can be modified correspondingly to achieve the
goal.

For the three pass algorithm, the modified version is:

Algorithm 7 Three Pass Repair Algorithm
Input: the log, the set B of bad transactions.
Output: a consistent database state in which all bad and suspect transactions are undone.
Pass 1. scan the log from the beginning to the end to get the serial order of only the committed
transactions.
Pass 2. scan the log along the serial order got in pass 1; for each transaction in B add its write items
to the set dirtyset; for each good transaction, if the intersection of its read set and the dirtyset is
not empty, then add its write items to the set dirtyset and mark it 'suspect'.
Pass 3. undo all the bad transactions as well as the marked suspect transactions.

The modified version of two pass algorithm is:

66

Algorithm 8 Two Pass Repair Algorithm
Input: the log, the set B of bad transactions.
Output: a consistent database state in which all bad and suspect transactions are undone.
Pass 1. scan the log from the beginning to the end; for each transaction in B add its write items
to the set dirty.set; for each good transaction keep its write items until the commit or abort record
is scanned; if it commits, and the intersection of its read set and the dirty.set is not empty, then
add its write items to the set dirty.set and mark it 'suspect'.
Pass 2. undo all the bad transactions as well as the marked suspect transactions.

We note that these two algorithms are both based on the assumption that the scanning order
of transactions is a serial order, because the write-read dependency is based on the serial order.
Fortunately, strict two phase locking, used in most commercial systems, ensures that the commit
order is the serial order if read locks are not released before a transaction commits or aborts.

5.4.5 Dynamic Repair

On-the-fly Concurrency Control

The same as Algorithm 5.

Correct On-the-fly history

A history is read-strict if it is strict, and if whenever TJ[X] < Oi[x](i ^ j), either a,- < o^x] or
Cj < Oi[x] where ot[x] is n[x] or Wi[x]. That is, no data item may be read or overwritten until the
transaction that previously read or wrote into it terminates, either by aborting or by committing.

Definition 4 History H is a correct on-the-fly history if

1. H is serializable and read-strict,

2. There is no abort records for undo transactions,

3. For any read operation rTi[x], the predicate x g dirty Mem.set holds,

4. For any conflicting undo transaction pair Ut and [/,-, if 7} <H Tj then U{ <H Uj, and

5. For any undo operation %[i], the predicate (x G dirtyJtemset) D (x € submittedJtemset)
holds.

67

Termination Detection

This is the same as Mechanism 2 except that we maintain the tmp-undoJist in the following way:

• For each in-repair transaction T, if T. Read Set f] dirty Jtem set / 0, then put T into the list.

• For each in-repair transaction T, if 3x G T.ReadSetC\cleanedJtemset such that T.Begin.LSN <
x.LSN, then put T into the list.

It should be noticed that here the conditions which are used to detect termination are only
adequate, but not necessary. That is, when the conditions are satisfied, the repair terminates; but
when the repair terminates, these conditions may not be satisfied.

Building Undo Transactions

The same as Algorithm 4.

On-the-fly Repair Algorithm

Here, we specify only the modifications to Algorithm 6.

Algorithm 9 On-the-fly Repair Algorithm
At the Repair Manager

The case in Algorithm 6 for a read record [Tj, x] is removed
case a commit record [Tj, commit] is scanned

if Tj.ReadSet n dirty Jtemset ^ 0
build the undo transaction for T and submit it.
put all items of Tj into the dirty Jtemset.

if 3x € Ti.Read.Set n cleaned Jtemset such that Tj. Begin. LSN < x.LSN
build the undo transaction for Ti and submit it.
put all items of Tj into the dirty Jtemset.

5.4.6 Getting Write Items from the Log

Since each read set in a transaction profile is a set of logical identifiers for data items, we need to
relate these items with the write set data items we get from the log. As described in [GR93], there
are typically four ways to maintain tuple identifications in database systems, which are Relative

68

Byte Addresses(BRAs), Tuple Identifiers(TIDs), Database Keys and Primary Keys. The advan-
tages of the primary key addressing technique outweigh its higher cost, especially since there are
optimizations to reduce the overhead for many operations. Even if we can not get the logical iden-
tifiers of write set data items from the log directly, we can map from their physical identifiers to
logical identifiers based on the internal mapping and addressing mechanisms of database systems.

5.5 Discussion

5.5.1 Comparison of the Performance of Different Repair Approaches

As shown in Section 5.2, Section 5.3 and Section 5.4, keeping read information in the log can achieve
an exact repair, but it may incur substantial performance penalties due to the significant storage
and processing cost of maintaining read information.

Extracting read sets from transaction profiles cuts the extra cost significantly, but it usually can
only achieve a complete repair, and not an exact repair. That is, some non-suspect good transactions
may have to be undone. In dynamic repair there may be a delay in detecting termination.

Maintaining a special purpose graph with transaction dependency information has many attrac-
tions: the graph is immediately available for backing out undesirable transactions, the frequency
with which read information is put into stable storage can be dynamically adjusted as appropriate,
and the graph can be targeted to cover those transactions most likely to be marked undesirable. For
example, in the case of the upgrade problem, it is easy to identify the source of potential undesirable
transactions, and the protection gained by being able to back out such transactions warrants a short
term sacrifice in performance.

5.5.2 Incorporating Ongoing Attacks

In static repair, due to the delay of intrusion detection, a bad transaction may be identified during
the repair; Similarly in dynamic repair, new bad transaction can be identified at any time during the
repair. For simplicity of presentation, we assume that the malicious transaction list will not change
in the process of both static and dynamic repairs. However, ongoing attacks can be incorporated
into our algorithms.

In static repair, newly detected bad transactions can be repaired by re-scanning the whole log. In
dynamic repair, when a new bad transaction is identified, we stop the repair, skip to the place where
the first un-repaired bad or suspect transaction begins, and apply the dynamic repair algorithm
again. In the new round, the new bad and suspect transactions are backed out.

69

SECTION 6

Trusted Recovery by Rewriting Histories

This chapter presents the semantic aspect of the proposed trusted recovery scheme where a set of
rewriting algorithms is developed and substantial transaction semantics is incorporated to save the
work of more good transactions.

6.1 The Model

We consider a history H over B U G. We assume that the concurrency control mechanism provides
an explicit serial history Hs of history H. For example, the order of first lock release provides a
serialization order for transactions scheduled by a strict two-phase locking mechanism. We denote
the total order on the transactions in a serial history Hs by <^.

We assume the availability of read information for transactions in H since as later discussion
makes clear, read information is also necessary to rewrite histories. Read information can be
captured in several ways, these approaches are discussed in section 6.6.

We assume that transactions do not issue blind writes. Although the approach in this chapter
can be adapted to blind writes, doing so complicates the presentation. Also, we compare the results
in this chapter to those obtained by a dependency-graph based approach to recovery (proposed in
Chapter 5) that also assumes no blind writes.

Figure 6.1 illustrates the dependency-graph based approach to backing out bad and affected
transactions (see Chapter 5). In particular, it illustrates the importance of distinguishing between
read-write and write-read dependencies during recovery. A read-write edge can leave the 'zone
of repair' without causing the zone to expand. On the other hand a write-read edge potentially
expands the zone. Note that due to the assumption of no blind writes, there are no write-write
edges in the graph.

70

Legend
read-write edge
write-read edge

Zone of repair

Figure 6.1: Zone of Repair

In this example, a possible history H4 is

H4 = Bx G2 AGZ GA B5 G6 AG7 AGS G9 Gw AGn G12

the set AG = {AGS, AG7, AG8, AGn}, and the dependency-graph based recovery algorithms
proposed in Chapter 5 restore the before values for all data items written by transactions in the set
B U AG. The result is a serializable history over G - AG:

H±r = Gr2 G4 GQ Gg Gio G\2

The approach of rewriting histories developed in this chapter has the advantage that it preserves
ordering information for transactions in B U AG, thereby providing a basis for saving additional
transactions in AG.

6.1.1 Rewriting Histories

For a serial history Hs, we augment Hs with explicit database states so that the result is a sequence of
interleaved transactions and database states. The sequence begins and ends with a state. The state
that immediately precedes a transaction in Hs is called the before state; the state that immediately
follows a transaction in Hs is called the after state. For an example, consider the augmented history

71

Hl = so Bi si G2 s2

where

Bi : if x > 0 then y := y + z + 3
G2 : x := x - 1

The states associated with Hi are:

so = {* = 1; y = 7; z = 2}
Si = {x = 1; y = 12; z = 2}

s2 = {x = 0; y = 12; z = 2}

In rewriting histories, the general goal is either to move bad transactions towards the end of
a history or to move good transactions towards the beginning of a history. It turns out that the
transformations do not necessarily result in a serializable history which is conflict-equivalent or view-
equivalent to the original history[BHG87]. The lack of serializability is justified by the observation
that bad transactions ultimately must be backed out anyway along with some or all of the affected
transactions. Hence the serializability of such transactions is not a requirement.

The example above helps to clarify this point. The serial history #| is clearly not conflict-
equivalent to the serial history G2BX since there is a read-write dependency from Bx to G2. However,
G2 is not affected by Bx, and simply restoring y with the appropriate value from the log not only
repairs the damage caused by Bx, but preserves the effects of the good transaction G2.

However, It turns out that rewriting histories for recovery purposes requires some care with
respect to state-equivalence of histories. Two augmented histories H[and JY| are final state equiv-
alent if they are over the same set of transactions and the final states are identical. Note that two
final state equivalent histories might not be conflict-equivalent, or view-equivalent [BHG87].

To clarify this point, consider the above example again. After we make the transformation of
exchanging the order of G2 and Bx, H(is clearly not final state equivalent to the serial history G2BX

since they result in different final states. At this situation, if H[has more transactions following
BXG2, i.e., G3G4...Gn, then this transformation changes the before state of G3. As a result, after the
transformation the rewritten history may not be consistent any longer because the precondition of
some d, 3 < i < n, may not be satisfied any more. Even if the rewritten history is still consistent,
the behaviors and effects of G3, G4, -, and Gn may have changed a lot, thus the original execution
log may turn out to be useless. Moreover, the rewritten history usually can not result in the same
final state, and the new final state is usually very difficult to get, thus semantics-based compensation
is disabled. Therefore, keeping the final state equivalence of rewritten histories during a rewrite is

72

essential to the success of the rewrite.
We approach this problem by decorating each transaction T in an augmented history Hs with

special values for read purposes by T. The decoration is facilitated by the notation fix which is
specified below.

Definition 5 A fix for transaction Tt in history Hs, denoted Fit is a set of variables read by T
given values as in the original position of T in Hs. That is, Ft = {(xuVl),..., (xn,vn)}, and v{ is
what Ti read for x{ in the original history.

The notation 7\Fi indicates that the values read by T2 for variables in Ft should not come from
the before state of Tt, but from Ft.

To reduce notational clutter, we show just the variable names in Ft and omit the associated
values.

Consider the augmented history H§ = s0 Bx Sl G2 s2 above. As discussed, the history

#| = s0 G2 s3 Bx s3

with

s3 = {x = 0; y = 7; z = 2}

results in a different value of y in the final state, but the history

Hs
7 = so G2 s3 ßf1 s2

ends in final state s2 for Fr = {x}. States sx and s3 differ in the value of x; this discrepancy is
captured by F:, where x is associated with the value 1, which is the value Bx read for x in the
original history H§.

In what follows, each transaction 7- is assumed to have an associated fix F*. For ordinary
serializable execution histories, each such fix F{ = 0, the empty fix. In the example above, the two
histories

Hi = so B\ Sl Gl s2

H° = so G\ s3 B\x} S2

are final state equivalent.

73

6.1.2 Repaired Histories

Definition 6 Given a history Hs over B U G, H* is a repaired history of Hs if

1. H* is over some subset of G, and

2. There exists some history Hs
e over B U G such that

(a) H° is a prefix of Hs
e and

(b) Hs
e and Hs are final state equivalent.

Our notion of a repaired history is that only good transactions remain (condition 1) and further
that there is some extension to the repair that captures exactly the same transformation to the
database state as the original history (condition 2).

We note that the dependency-graph based approach satisfies the first part of the definition of a
repaired history where the subset of G is G — AG. As an example, in figure 6.1 history H|r is a
repair of HS

A since Hs
ir is over {G2, G4, G6, G9, G10, G12} which is a subset of G and the necessary

history H\e exists:

HI = G2 G4 G6 G9 G10 G12 B? AG? B? AG? AG? AGF
X?

for appropriate fixes F\, F3, F5, F7, F% and Fn. Details of how to construct fixes are discussed later
in the chapter.

Armed with a definition of repairs to histories, we are now ready to consider algorithms to
construct them.

6.2 Basic Algorithm to Rewrite a History

6.2.1 Can-Follow Relation

We denote the set of items read or written by a transaction T as T.readset or T.writeset, and the
set of items read or written by a sequence of transactions R = TiT2...Tn as R.readset or R.writeset.
Due to our assumption of no blind writes, R.writeset C R.readset.

Definition 7 Transaction T can follow a sequence of transactions R if

T.writeset n R.readset = 0

There are some properties of can follow:

74

1. If Ti.writeset is not empty, then transaction T{ can not follow itself.

2. The fact that T; can follow transaction 7} and Tj can follow transaction Tk does not imply
that Ti can follow Tk.

3. Read-only transactions can follow any transaction.

The can follow relation captures the notion that a transaction T can be moved to the right past
a sequence of transactions R if no transaction in R reads from T. The can follow relation ensures
then the cumulative effects of the transactions in R on the database state are identical both before
and after T is moved. The following lemma shows that the can follow relation can be repeatedly
used to rewrite a history.

Lemma 2 Transaction T can follow a sequence of transactions RiST can follow every transaction
in R.

Proof: if: For every transaction Tt in R, T.writeset n Ti.readset = 0 because T can follow T{.
Therefore T.writeset C\ R.readset = 0, so T can follow R.

only if: By contradiction, assume there is a transaction 7} in R such that T cannot follow Tu

then T.writeset n Ti.readset ^ 0. Therefore, T.writeset n R.readset / 0, which contradicts the
assumption that T can follow R. □

6.2.2 Can-Follow Rewriting

The can follow relation can be used to rewrite a history to move transactions in G - AG to the
beginning of the history, namely, move transactions in B U AG backwards.

Algorithm 10 Can-Follow Rewriting
Input: the serial history Hs to be rewritten and the set B of bad transactions.
Output: a rewritten history with transactions in G - AG preceding transactions in B U AG.
Method: Scan forward from the first good transaction after Bx until the end of Hs, for each
transaction T

case T e B skip it;
case T e G

if each transaction between Bx and T (including B{) can follow T, then
move T to the position immediately preceding Bx.

75

Algorithm 10 does not describe how to compute the fix with any transaction which has some
transaction being moved to the left of it. The reason is that repair can simply be accomplished by
undo. However, if we want to save some of the transactions in AG then we need to maintain the
fix information for these transactions. Fixes are computed as follows:

Lemma 3 Suppose transaction T can follow sequence R in history H[= s0 T
Fl s1 R s2. Then for

fix
F2 = Fi U (T.readset n R.writeset)

history #| = s0 R s3 T
F'2 s2 is final state equivalent to H{. The values associated with each data

item in the fixes are those originally read by T.

Proof: Consider some database item x G s2. x is not an element of both R.writeset and T.writeset
since otherwise the relation T can follow R would not hold. If x is an element of R.writeset, then
the value computed by R for x is the same in both H{ and H| since R does not read from T. If
x is an element of T.writeset, then the value computed by T for x is the same in both H(and H2

since T reads identical values for elements in T.readset in both histories, courtesy of fixes Fi and
F2, respectively. If x is not an element of either T.writeset or R.writeset, then the order of T and
R is irrelevant to the value of x. n

The correctness of Algorithm 10 is specified as follows.

Theorem 7 Given a history Hs, Algorithm 10 produces a history Hs
e with a prefix Hs

r such that:

1. All and only transactions in G — AG appear in H°.

2. Hs
e and Hs order transactions in G - AG identically. And they order transactions in BU AG

identically.

3. The fix associated with each transaction in H? is empty.

4. Hs and Hs
e are final state equivalent. And H? is a repaired history of Hs.

Proof: (1) We first show that when a transaction Tx e G - AG is scanned every transaction
between Bx and Ti is in B U AG. Assume this is not the situation and T2 is the first one between
Bx and 7\ which belongs to G - AG. According to the algorithm when T2 was scanned it should
be moved to the left of B\, which is a contradiction. We second show that no transactions in AG
will be moved to the left of Bx at the end of the algorithm. Assume this is not the situation and
T2 is the first one in AG. According to the definition of AG, when T2 is scanned there is at least

76

one transaction between Bi and T2 which can not follow T2, which is a contradiction. We last show
that no transactions in B will be moved to the left of By because they will never be moved at all.
Therefore, after the rewrite all and only transactions in G - AG are moved to the left of Bi.
(2) Since Algorithm 10 moves transactions in G - AG to the left of B1 according to their orders in
Hs, so they are ordered by H* and Hs identically. Since transactions in B U AG are never moved
in Algorithm 10, so they are ordered by H° and Hs identically.
(3) Since there are no transactions which are moved to the left of any transaction in G - AG in
Algorithm 10, transactions in G - AG will have empty fixes.
(4) Follows from Lemma 3 and Definition 6. D

In realistic applications, although Lemma 3 gives users a sound approach to capture fixes in
Algorithm 10, it is not efficient in many cases since whenever a transaction T, is moved to the left
of another transaction Tj, Fj may need be augmented. A better way to compute fixes is as follows:

Lemma 4 For any history Hs, assume rewriting Hs using Algorithm 10 generates a history Hs
e

with a prefix H* {Hs
e typically looks like:

Gjl...Gjn B%> AG%1...Bf™...AG%p. The subhistory before s£" is HS
T), and assume all the fixes

are computed according to Lemma 3 during the rewriting, then the history Hs
e', generated by

replacing each non-empty fix Ft in Hs
e with F[= Ti.readset - T-wrtteset, is final state equivalent

to HI

Proof: According to Theorem 7, the fix associated with each transaction in H? is empty. Given a
transaction Tt in B U AG, for each item x in F[- Ft, showing that the value of x in the before state
of Ti in Hs

e is the same as that in Hs gives the proof. Assume Gj is the first transaction which was
moved to the left of Tj, then before Gj was moved, the before state of T, in the rewritten history is
the same as that in Hs because at this point, according to Lemma 3, the subhistory of the rewritten
history which ends with the transaction immediately preceding Tt is final state equivalent to the
corresponding subhistory of Hs. After Gj is moved to the left of Tu the value of x would not be
changed since otherwise x must be in Ft. Although Gj might be further pushed through some other
transactions in B U AG to the beginning of the history, the value of x in the before state of T{ will
not be changed. The reason follows from Lemma 3. D

Lemma 4 enables us to separate computing fixed from transforming histories. Fixes can be
computed after all of the transformations. Based on Lemma 4, the fix of transaction Ti can be
captured in two ways: one is to first get the read and write sets of Th then compute Ti.readset -
Ti.writeset; the other is to let each transaction Tt write the set Ti.readset - T^writeset as a record
to the database when it is executed, then when we rewrite Hs all of the fixes can be gotten directly
from the database.

77

6.2.3 Significance of Algorithm 10

The major result of this section is an equivalence theorem between the effect of a dependency-
graph based algorithm and the history produced by Algorithm 10. The dependency-graph based
algorithm computes the set B.writeset U AG.writeset and restores the values of all elements in
this set. In particular, the theorem shows that the optimizations in the following section are strict
improvements over the dependency-graph based algorithm.

Theorem 8 Given Hs, let H° be the serial history produced by eliminating all transactions in
B U AG as in the dependency-graph based algorithm. Given Hs, let Hs

e be the result of Algorithm
10. Then HS

T is a prefix of Hs
e.

Proof: Direct corollary of Theorem 7. n

6.3 Saving Additional Good Transactions

In this section, we show how to integrate the notion of commutativity with Algorithm 10 to save
not only the transactions in G — AG, but potentially transactions in AG as well.

6.3.1 Motivating Example

Consider the following history:

Hg : B\G2Gz
Bi\ if u > 10 then x := x + 100, y := y - 20
G2: u := u - 20
G3: x := x + 10, z := z + 30

According to Algorithm 10, which rewrites based on can follow, G3 needs to be undone since it reads
from Bi and hence is an element of AG. The result of Algorithm 10 is the history Hs

e = G2B\\u}G3.
Note that G3 commutes backward through B\

U
^ for any value of u*, and so an final state equivalent

history is G2G3B[
U
K Compensation for B\

U}
 can be applied directly to this history, but an undo

approach requires more care. Suppose we decide to undo J5i by restoring the before values for x

*We adapt the notation of commutativity from [LMWF94, Wei88]. Transaction T2 commutes backward through
transaction Ti if for any state s on which TXT2 is defined, T2(Ti(s)) = Ti (T2(s)); Tx and T2 commute if each commutes
backward through the other. Note that one-sided commutativity (i.e., commutes backward through) is enough for
our purpose.

78

and y from the log entries for B. After B is undone the value of u is unchanged because only Gx

updates u. The value of z is unchanged because only Gz updates z. The effect of G3 on x is wiped
out because both Gz and B update x, and after B is undone x no longer reflects the effects of G3.
However x can be repaired by re-executing the corresponding part of G3's code, that is, x = x + 10,
and the cumulative effect is that of history G2G3. We call this last step an undo-repair action. Both
the undo approach and the compensation approach to repair are discussed in detail in section 6.4.

The presence of fixes for transactions limits the extent to which commutativity can be applied.
We illustrate this point with an example, and then define a more restrictive notion of commutativity
called can precede that takes fixes into account.

H9 : s0 Ti Si T2 s2 T3 s3

Ti: if y > 200 then x := x + 100 else x := x * 2
T2: y:=y+ 100
T3: if y > 200 then a: := x - 10 else x := x/2

Ti can follow T2 with fix Fi = {y} for Tj. Although T3 commutes backward through Ti, T3 does
not commute backward through if1, because the value of a; produced by T[l depends on the value
of y in the fix Fv For example, if the initial value of x is 100 and fix value of y is 150, then the
final value of x in history T2T[lTz is 190, but the final value of x in history T2TzT[l is 180.

The example shows that sometimes a fix can interfere with the commutativity of transactions.
This motivates our definition of can precede:

Definition 8 A transaction T2 can precede a transaction Tx for fix F if for any assignment of values
to the variables in F and for any state s0 e S on which T[T2 is defined,

1. T2Tf is defined on s0, and

2. The same final state is produced by T[T2 and T2Tf.

6.3.2 Can-Follow and Can-Precede Rewriting

We present a repair algorithm which integrates both can-follow and can-precede.

Algorithm 11 Can-Follow and Can-Precede Rewriting
Input: the history Hs to be repaired.
Output: the repaired history H°.
Method: Scan Hs forward from the first good transaction after Bx until the end of Hs, for each

79

transaction T
case TeB skip it;
case T € G

if for each transaction V between Bx and T(including By), either T can follow T or T can
precede T', then move T to the position immediately preceding B\. As T is pushed through each
such V between B\ and T to the left of BY

if V can follow T, then push T to the left of V and
modulate the fix of V correspondingly according to Lemma 3;

else push T to the left of T".

The correctness of Algorithm 11 is specified as follows.

Theorem 9 Given a history Hs, Algorithm 11 produces a history Hs
e with a prefix H* such that:

1. Every transaction in G — AG appears in H£.

2. HI and Hs order transactions in H° identically. And they order transactions in Hs
e - H?

identically.

3. The fix associated with each transaction in H* is empty.

4. Hs and Hs
e are final state equivalent. And H? is a repaired history of Hs.

Proof: The proof of statements (1), (2), and (3) is similar to that of Theorem 7.
(4) follows from Lemma 3, Definition 8 and Definition 6. O

In Algorithm 10, Lemma 4 provides an efficient way to compute fixes. However, Lemma 4 may
not hold for Algorithm 11 if the system does not have the following property.

Property 1 Transaction 7} can precede transaction T for a fix F, only if (Ti.readset—Ti.writeset—
Fi) n Tj.writeset = 0 and (Tj.readset — Tj.writeset) D Ti.writeset = 0.

It should be noticed that Property 1 is not a strict requirement, and it usually holds for most of
the transaction processing systems. The reason is: if Tj writes an item x in Ti.readset—Ti.writeset—
Fi, then x can have different values in the before states of Ti in sequences T{

{Tj and TjT{ ' respec-
tively. Since x is not in Fi, Ti can read different values of x in the two sequences. Since the value of
x typically affects the values of some other items updated by T, the two sequences usually can not
generate the same final state. For similar reasons, if (Tj.readset — Tj.writeset) n Ti.writeset / 0,
then Tt

FiTj and TjTp usually can not generate the same final state.

80

Lemma 5 Lemma 4 holds for Algorithm 11 if the system has Property 1.

Proof: The proof is similar to that of Lemma 4 except the situation when 7} is moved to the left
of Ti based on the relation that Tj can precede T{. At this point, for each item x in F{ - F{, since
the system has Property 1, Tj will not write x, so the value of x in F[is still the same as that in
the before state of T; after the rewrite. This completes the proof. D

6.3.3 Invert and Cover

In this section, we introduce two semantic relationships between transactions, namely, Invert and
Cover, and show how they can be exploited to enhance repair.

If transaction T2 inverts Tu then any history of the form: s0...Ti T2 ... is final state equivalent
to the same history with TXT2 omitted; if T2 covers Tu then any history of the form: sQ...Ti T2 ...
is final state equivalent to the same history with Tx omitted. If T2 covers Tj, then T2 covers Tf1 for
any Fi, but this is not the case for invert.

Definition 9 Let P and Q be two sequences of transactions. Q inverts P if for any state s0 such
that history s0 P Q is feasible, Q(P(s0)) = s0.

Definition 10 Let P and Q be two sequences of transactions. Q covers P if for any state s0 such
that history s0 P Q is feasible, Q(P(s0)) = Q(s0).

The rewriting algorithm which exploits these two relations is described below.

Algorithm 12 Can-Follow, Can-Precede, Cover, and Invert Rewriting
Input: the history Hs to be repaired.
Output: the repaired history H*.
Method: Scan Hs forward from the first good transaction after Bx until the end of Hs, for each
transaction T

case T eB skip it;
case T e G

if for each transaction V between Bx and T (including B{), either T
can follow T, or T can precede T', or T inverts V, or T covers V,
then move T to the position immediately preceding Bx. As T is pushed
through each V between Bx and T to the left of Bx

if T covers T", then remove T" from the history;
elseif V can follow T, then push T to the left of V and
modulate the fix of V correspondingly according to Lemma 3;

81

elseif T can precede T", then push T to the left of T";
else remove both T and V from the history.

For similar reasons, Lemma 4 can also be exploited to capture fixes in Algorithm 12 if the system
has Property 1. The correctness of Algorithm 12 is specified as follows. The proof is similar to
Theorem 7 and Theorem 9, thus omitted.

Theorem 10 Given a history Hs, Algorithm 12 produces a history Hs
e with a prefix H* such that:

1. Hs
e and Hs order transactions in H° identically. And they order transactions in Hs

e - H*
identically.

2. The fix associated with each transaction in H* is empty.

3. Every transaction in Hs
e is in Hs.

4. The final states of Hs and Hs
e are identical. And H* is a repaired history of Hs.

6.4 Pruning Rewritten Histories

After a rewritten history Hs
e with a prefix H° , which is the repaired history, is generated from

Hs, we need to prune HI such that the effects of all the transactions in Hs
e - H* are removed.

Pruning HI generates H*. If Hs
e is produced by Algorithm 10, then the pruning can be easily done

by undoing each transaction in Hs
e - H°. However, if Hs

e is produced by Algorithm 11 or Algorithm
12, undo does not give the pruning in most cases.

In this section, two pruning approaches are presented. The compensation approach removes
the effect of each transaction Tp in Hs

e — H° by executing the fixed compensating transaction of
Tj, however, compensating transactions may not be specified in some systems. The undo approach
prunes Hs

e by building and executing a specific undo-repair action for each affected transaction in
H*. It is a syntactic approach, but it imposes some restrictions on transaction programs.

6.4.1 The Compensation Approach

We denote the compensating transaction of transaction Tj as Tfl [GM83, GMS87, KLS90]. Tf
semantically undoes the effect of 7^. It is reasonable to assume that Tf1 .writeset C Ti.writeset,
and for simplicity we further assume that every transaction Tj has a compensating transaction.

82

After Algorithm 11 or Algorithm 12, a typical rewritten history Hs
e with a prefix Hs

r looks like

(note that BiX could be covered or inverted, and Hs
e can also end with a bad one): Gjl...AGhl...Gjq...AGhk B\

The subhistory before Bp1 is Hf Based on Hs
e, compensation is a simple way to get the repaired

history H?. However, executing the compensating transaction sequence AG^1 ...Bf^...AG~}k+1) B~x
l

on the final state of Hs can not generates H° in most cases because the transactions we need to
compensate are usually associated with a non-empty fix. Fixes must be taken into account for the
compensation to be correct.

Definition 11 The fixed compensating transaction of Tp, denoted Tf
(-1,F,), is the regular compen-

sating transaction of T; (denoted T"1) associated with the same fix Ft.

The effects of Tp can be removed by executing T}~
1,FI

\ this is justified by the following lemma.

Lemma 6 Transaction Tp can be fix compensated, that is, for every consistent state si on which
Tp is defined, Tl

{-1'F)(Tp(s1)) = Sl, if F D T.writeset = 0.

Proof: Since F^T.writeset = 0, Tf1.writeset C T.writeset, so F^Tf1 .writeset = 0. Therefore,
neither T{ nor Tf1 will update any item in Ft. Let s2 = Tf{(si). For each item x in Fi we replace
the values of x in states sx and s2 with the value of x in F, thus two new states are generated (de-
noted s[and s'2 respectively). It is clear that Tfl(s'2) = s[. Since the differences between T^is'?)
and Ti ' ' (s2) are only with the values of the items in F{ which are neither updated by Tf1, nor
updated by T$~1,Fi\ so Ti~1,Fi)(s2) = s2. This completes the proof. * D

A rewritten history Hs
e can be fix compensated if every transaction in Hs

e can be fix compensated.
Lemma 6 shows that every Hs

e produced by Algorithm 11 or Algorithm 12 can be fix compensated
because for each transaction T in Hs

e which is associated with a non-empty fix Fu FiDT.writeset =
0 always holds. The pruning algorithm by compensation therefore is straightforward: based on the
final state of Hs, executing the fixed compensating transaction for each transaction in Hs

e - Hs
r in

the reverse order as they are in Hs.

6.4.2 The Undo Approach

As stated above, after Algorithm 11 or Algorithm 12, a typical rewritten history Hs
e looks like:

Gji...AGhl...G3q...AGhk Bpl AGF
h^1)

)...B^...AGFh
p
p. As shown in H8, undoing transactions in

El - ES
T can not generate Es

r in most cases. However, building and executing the undo-repair
actions for the affected transactions in HS

T, namely AGhl, ...,AGhk, after these undo operations can

83

generate Hs
r. For example, in H&, executing the undo-repair action, x = x + 10, for G3 after B is

undone can produce the effect of history G2Gz-
To build the undo-repair actions for AGhu ..., AGhk, we need to do two things:

1. Abstract the code for each undo-repair action from the source code of the corresponding
affected transaction.

2. Assign appropriate values for some specific data items accessed by these undo-repair actions.

Our algorithm described below is based on the following assumptions about transactions:

• a transaction is composed of a sequence of statements, each of which is either:

— An operation;

- A conditional statement of the form: if c then 551 else 552, where 551 and 552 are
sequences of statements, and c is a predicate;

• each statement can update at most one data item;

• each data item is updated only once in a transaction;

Algorithm 13 Build Undo-repair Actions
Input: an affected transaction AGk.
Output: the undo-repair action URAk for AGk.
Method:
1. Copy the codes of AGk to URAk. Assign URAk with the same input parameters and the same
values associated with them as AGk.
2. Parse URAk. For each statement to be scanned

case it is a read statement, keep it;
case it is an update statement of the form: x := f{x,yi,y2,---yn) where /
specifies the function of the statement, yi,...,yn are the data items used
in the statement. Some input parameters may also be used in the statement,
but they are not explicitly stated here.

if x has not been updated by any other transaction in B U AG
Remove the statement from URAk;

elseif x has not been updated by any transaction in B U AG
which precedes AGk in Hs

Replace the statement with: x := AGk-afterstate.x,
that is, get the value of x from the after state of AGk in Hs;

84

else for each y{ (including x)
if yi has not been updated by any preceding statement and has not been
updated by any transaction in B U AG which precedes AGk in Hs

Bind yi with AG k .be for estate, y;
3. Reparse URAk. Remove every read statement which reads some item never used in an update
statement of URAk, or reads some item y used in one or more update statements but y is bound
with a value in these statements.

It should be noticed that when we execute an undo-repair action URAk, for each update state-
ment x = f(x, yx, y2, ...yn) of URAk, if yt is not bound then we get the value of yz from the current
database state, otherwise, the bound value should be used.

The correctness of the undo approach is specified as follows.

Theorem 11 For any rewritten history Hs
e generated by Algorithm 11 or Algorithm 12, after all

transactions in Hs
e - H

s
r are undone, executing the undo-repair actions which are generated by

Algorithm 13 for the affected transactions in Hs
r, in the same order as their corresponding affected

transactions are in H?, produces the same effect of H°.

Proof: Showing that each item x updated by an transaction in Hs
e is restored to the value as

generated by H* after the repair gives the proof.
If x has never been updated by any transaction in B U AG, then the value of x will be correctly

restored because an unaffected transaction Gt can only read items from other unaffected transactions
thus GVs updates will not be affected by transactions in B U AG.

Otherwise, assume x has been updated by k transactions in BU AG, that is, Tix, ...,Tik, Tip <S
H

Tiq if p < q. Note that after x has been updated by Tix, x will not then be updated by any unaffected
transaction. If A; = 1, that is, there is only one such transaction. At this point, if Tix is in Hs

e - H°
then after the undoes the value of x will be correctly restored; otherwise, Tix is in H°. Since H*
is final state equivalent to Hs, so the value of x in the final state of H° is the same as" that in the
after state of Tix in Hs. Hence in Algorithm 13 the corresponding update statement is removed.

When k > 1, if no such transaction is in Hs
r then after the undoes the value of a; will be correctly

restored. Otherwise, assume Tjx is in Hs
r, then when URAjx is executed, x := Tjx.afterstate.x,

according to Algorithm 13. This restores the value of x to that generated by the subhistory of H?
which ends with Tjx, because in rewriting when TjX is moved into Hs

r, the subhistory Hx of H"
which ends with Tjx is final state equivalent to the subhistory H2 of the rewritten history at that
time which ends with the transaction immediately preceding Tjx before the move, and Tjx is the
last transaction in H2 that updates x.

Assume Tjt (I > 1) is in Hs
r, if there is another such transaction Tjm in Hs

r such that 1 <
m < I and no other such transactions stay between Tjm and TjU then in the update statement

85

x := f(x,yl:y2, ...yn) of URAji, the value of x for read purpose should be got from the state after
URAjm is executed; otherwise, there is no such Tjm, thus transactions Tn, ...,Tj(,_i) will all be
undone, hence the value of x in the above statement should be got from the state after TjX is
undone.

As for yi in the above update statement, if y{ has been updated by a preceding statement
in URAji, then the updated value should be used. Otherwise, if y{ has been updated by some
transaction in B U AG which precedes Tjt in Hs, then according to the above discussion, the value
of y{ should be got from the state before URAji is executed; Otherwise, the value of y{ should be
got from the before state of Tj; in Hs. At this situation, getting the value of y{ from the state before
URAji is executed can not ensure the correctness because it is possible that there is a transaction
Ti such that T{ updates yu T{ follows Tjt in Hs, T{ is in B U AG and Tt is in Hs

r. At this point, the
value of yi updated by Ti will not be undone.

Since the values of x,yx,y2, ...yn in the above statement are correctly captured, so the above
statement can correctly restore the value of x to that generated by the subhistory of H° which ends
with Tji. By induction on /, 1 < / < k, the above claim holds. n

6.5 Relationships between Rewriting Algorithms

Rewriting can save more good transactions than is possible with a dependency-graph based approach
to recovery. For a history Hs to be repaired, we will let DGR(iP) and CFR(fP) represent the sets
of saved transactions after Hs is repaired using a dependency-graph based approach and can-follow
rewriting (Algorithm 10), respectively. FPR{HS) and FPCI(JEP) will be used to represent the sets
of saved transactions after Hs is repaired using can-follow and can-precede rewriting (Algorithm
11) and can-follow, can-precede, cover and invert rewriting (Algorithm 12), respectively.

Theorem 8 shows that for any history Hs, DGR(HS) = CFR(HS).

Theorem 12 For any history Hs, CFR{HS) C FPR(HS) C FPCI(HS). The converse is not, gen-
erally, true.

Proof: Follows from Algorithm 10, Algorithm 11, and Algorithm 12. □

Commutativity can be directly used to rewrite histories without being integrated with can-
follow rewriting. Let CR(HS) and CBTR(#S) represent the sets of saved transactions after Hs

is repaired using the two rewriting algorithms which are based on the commute relation and the
commutes backward through relation between transactions, respectively. These two algorithms can
be easily adapted from Algorithm 10 by checking the commute and commutes-backward-through
relation between transactions respectively, instead of can-follow.

86

Theorem 13 For any history Hs, CR(HS) C CBTR(HS). The converse is not, generally, true.

Proof: Follows from the definitions of commute and commutes backward through. D

Theorem 14 3 Hs, CFR(HS) n CBTR(tf') ^ 0 and each is not included in the other; 3 Hs,
CFR(HS) n CR(HS) ^ 0 and each is not included in the other;

Proof: Consider the history

H10 : s0 Bi sx G2 s2 Gs s3

Bx\ if y > 200 then x := x + 10
G2: if y > 200 then x :- x + 30
G3: y:= y+ 100

It is clear that CFR(#f0)= {G3}; CBTR(HS
10)=CR(H°0)= {G2}. This completes the proof. D

Theorem 15 If the system has Property 1, then

1. V Hs, CBTR(#S) C FPR(HS)

2. 3 Hs, CBTR(fr') C FPR(HS)

Proof: Given a history Hs, showing that Tt G FPR(ifs) holds for each transaction T{ e CBTR(/fs)
gives the proof We prove this by induction on k where Tk is the kst transaction moved into
CBTR(iP).

Induction base: (k = 1) We wants to show that Tx € FFR(HS). If there are no transactions
between Bx and 7\ which are in FPR{HS), then Tx will be moved into FFR(HS) according to
Algorithm 11 because Ti can precede every transaction Tf between Bx and T2 owing to the fact
that Tj commutes backward through Tj. Otherwise, there must be some transaction Tj with an
non-empty fix Fj staying between Bx and Tx (including Bx) in the rewritten history when Tx is
scanned in Algorithm 11. Here we assume that Fj is captured by Lemma 3. At this point, assume
T: cannot precede Tp, then Fj D {Tx.readset - T^writeset) ^ 0 because otherwise T: can precede

Tj 3 (The reason is: for every state s0 on which TpTx is defined, replacing s0 with another state sx

where the value of each item x in s0r)Fj is replaced with ar's value in Fj. Then TfTi is defined on sx.
According to Property 1, since 7\ can precede if (Note that Tx commutes backward through Tj),
so (Tj.readset - Tj.writeset) D Tx.writeset = 0. Since Fj C (Tj.readset - Tj.writeset) according

87

to Lemma 3, so Fj D Ti.writeset = 0. So Tx will not read or update any item in Fj. Therefore,
TpTi(s0) = TfTiisx), and T{Tp(s0) = 7iT/(si). Since 7i commutes backward through T}, so

TfT^sJ = TiTfisr). Therefore, TpTi(s0) = TiTp(s0), SO TX can precede Tp). Therefore, 3x,
such that, x e Fjf) (Ti.readset - Ti.writeset). Since x G F^, so according to Algorithm 11 there
must be a transaction Tp, such that Tp is now in FPR(i/s), and a; E Tp.writeset. Otherwise, x will
not be put into Fj by Lemma 3. Hence Tp.writeset n (Ti.readset - Ti.writeset) ^ 0. This conflicts
with Property 1 since Tx commutes backward through Tp thus Tx can precede Tp

0. So the assumption

that 7\ cannot precede T/"' does not hold. Therefore, 7\ can precede Tj j. So Tx can precede every
transaction between Bx and Ti which has an non-empty fix. Since Tx commutes backward through
all the other transactions between Bx and Ti, so Tx will be moved into FPR(fP).

Induction hypothesis: for each 1 < k < n, if Tk e CBTR(FS), then Tk € FPR(fP).
Induction Step: Let k = n + 1, then when Tk is scanned in both algorithms, every transaction

Tj, which is between Bx and Tk in the rewritten history generated by Algorithm 11 at that time, is
between Bx and Tk in the rewritten history generated by the commutes-backward-through rewriting
algorithm. Therefore, Tk commutes backward through every such Tj. For the same reason as in the
induction base step, we know that Tk will be moved into FPR(iP).

Therefore, statement 1 holds. Consider history 7T10, it is clear that FPR(7T1
S
0)= {G2,G3}:

CBTR(H(0) = {G2}- So statement 2 holds. □

In summary, after a history Hs is repaired, the relationships among DGR(HS), CFR(HS),
FPR(HS), FPCl(Hs), CR{HS) and CBTR(#S) are shown in Figure 6.2. Here we assume that
the system has Property 1.

6.6 Implementing the Repair Model on Top of Sagas

In this section, we will evaluate the feasibility of our repair model by integrating it with the saga
model [GMS87].

6.6.1 The Saga Model

The Saga Model is a practical transaction processing model addressing long duration transactions
which can be implemented on top of an existing DBMS without modifying the DBMS internals at
all. A saga consists of a collection of saga transactions (or steps), each of which maintains database
consistency. However any partial execution of the saga is undesirable; either all the transactions in
a saga complete successfully or compensating transactions should be run to amend for the partial
execution of the saga. Thus corresponding to every transaction in the saga, except the last one, a

88

DGR--set of transactions saved by a

dependency-graph based approach

CFR--set of transactions saved by
can-follow rewriting

CR-set of transactions saved by commute
rewriting

CBTR-set of transactions saved by

commutes-backward-through rewriting

FPR-set of transactions saved by
can-follow and can-precede rewriting

FPCI-set of transactions saved by can-follow,
can-precede, cover and invert rewriting

Figure 6.2: Relationships among Repair Approaches

compensating transaction is specified. The compensating transaction semantically undoes the effect
of the corresponding transaction.

The Saga Model is suitable for our repair model to be implemented on top of it because it
supports compensation inherently. For example, a compensating transaction is specified for each
transaction, except the last one, in a saga; and when a saga transaction Ttj ends, the end-transaction
call will include the identification of the compensating transaction of Ttj which includes the name and
entry point of the compensating program, plus any parameters that the compensating transaction
may need.

By viewing each normal duration transaction and each long duration transaction which can not
be specified as a multi-step saga, as a specific saga that consists of only one saga transaction, we
can get an unified view of transactions in the systems where the saga model is implemented. By
adding the compensating transaction for the last step in each saga, we can get all the necessary
compensating transactions to do repair.

In addition, the saga model has the following two features which allow for optimization in
rewriting a history.

Consistency Property : the execution of each saga transaction (step) maintains database con-
sistency.

89

Compensation Property : during the lifetime of a saga *, no matter how the saga is interleaved
with other sagas, any step in the saga which is successfully executed, if having not been
compensated, can be compensated by executing the corresponding compensating transaction
at the end of the growing history.

6.6.2 Repair a History of Sagas

The Compensation Property implies that in a history to be repaired whenever a saga is identified
as a bad one, we can rewrite the history to move only the last step, instead of every step, of the
saga to the end of the history. In this way, substantial rewriting and pruning work can be saved.
The optimization based on can-follow rewriting (Algorithm 10) is specified in the the following
algorithm.

Algorithm 14 Rewrite a history of sagas by can-follow rewriting
Input: the serial history Hs to be rewritten and the set B of bad sagas.
Output: a rewritten history Hs

e with a prefix if* which consists of only good saga transactions.
Method: Scan forward from the first good saga transaction after Bn until the end of Hs, for
each step T^ (of saga Si)

case Si G B skip it;
case Si € G

if there is a step of Si which stays between B\ and Ty
Skip Tij]

elseif the final step Tpn of every saga Sp which stays between
Bi and T^ (including Bi) can follow Ty

Move Tij to the position which immediately precedes B\. As T^ is pushed
through each such Tpn, augment Fpn according to Lemma 3.

The integrated repair algorithm using Algorithm 14 to rewrite a history and the compensation
approach to prune the rewritten history is specified as follows.

Algorithm 15 Repair a history of sagas by can-follow rewriting
Input: the serial history Hs to be repaired
Output: a repaired history H° which consists of only good saga transactions.
Method:
1. Rewrite Hs using Algorithm 14 *.

trThe lifetime of a saga begins when the saga is initiated, and ends when the saga terminates (commits or aborts).
It is possible that in HI one part of a saga Si is in H° and the other part of Si is in H^ - H.

90

2. Do compensation from the end to the beginning of Hs
e until Bl is compensated. When the final

step Tpn of a saga Sp is to be compensated

• First, execute Tj~1^ to compensate 7$™. The codes and input parameters of T£l>F^
are got from the identification of the compensating transaction of Tpn included in the end-
transaction calloiTpn. Note that Fpn has already been computed after Hs was rewritten.

• Second, execute the sequence T^"1^, .., Tj"1^ to compensate all the other steps of Sp which
are not in Hs

r. The codes and input parameters of these compensating transactions are got in
the same way as of T^~l,FPn\

The correctness of Algorithm 15 is specified as follows.

Theorem 16 Algorithm 15 is correct in the sense that Hs
r is consistent after step 1, and the repair

results in the same state as generated by re-executing H*.

Proof: It is clear that in Algorithm 14 a step T?j will not be moved into H^ unless every step
between Tix and T{j can be moved into Hs

r. For a step % if $ is a good saga, and each step
between Tn and 7^ (including T{j) can be moved into Hs

r, then we say Ti:j is an unaffected step,
otherwise, we say T^ is an affected step.

We propose another approach to repair Hs which is clearly correct. It works as follows: Scan
Hs backward from the end to the beginning:

• If a bad final step Bin is met, execute the sequence B^hFn), B^1'0} B^7m on the
* in i i(n—1)' ■'"' zl w" «mV,

final state of the current history. This can remove the effects of B{ from the current history
because at this point all the steps to the right of Bin are unaffected steps. All the bad or
affected steps to the right of Bin have already been compensated. So Bin can follow every step
following it, thus Bin can be moved to the end of the current history without changing the
final state of the current history if Fin is computed according to Lemma 3, therefore, according
to the Compensation Property, after BFn is compensated executing B\7^X, ..., B\~m can
compensate the other steps.

• If an affected final step Tin is met, assume Tip is the last unaffected step in Su execute the
sequence Tin ' in , T^J^, ..., Ti{p+iy For similar reasons to the above case, this can remove
the effects of all the affected steps of Si.

It is clear that the above approach results in Hs
r. So Hs

r is consistent. Since the above approach
executes the same set of fixed compensating transactions on the final state of Hs as Algorithm 15,
and it executes these fixed compensating transactions in the same order, so Algorithm 15 results in

91

H

the same state as generated by re-executing H°. n

Algorithm 11 and Algorithm 12 can also be adapted to rewrite a history of sagas. The adapted
algorithms are specified as follows. For brevity, and to highlight the differences between these
algorithms, we describe only the modifications to Algorithm 11 and to Algorithm 12, respectively.

Algorithm 16 Rewrite a history of sagas by can-follow and can-precede rewriting
Method: Scan Hs forward from the first good step after Bu until the end of Hs, for each step
T

case Si G G
if there is a step of Si which stays between Bx and T^

Skip Tij]
elseif the final step Tpn of every saga Sp which stays between Bx and T^
(including B\) can follow T^, or T^ can precede T^n

Move T^ to the position which immediately precedes B\.

Algorithm 17 Rewrite a history of sagas by can-follow, can-precede, cover and invert rewriting
Method: Scan Hs forward from the first good step after Bu until the end of Hs, for each step
T

case Si € G
if there is a step of Si which stays between B\ and T^

Skip Tif,
elseif the final step Tpn of every saga Sp which stays between Bx and T^
(including B\) can follow T^, or T^ can precede Tpr

n,
or Tij covers Tp*

n, or TV,- inverts Tfy71

Move Tj to the position which immediately precedes Bx.

The correctness of the repair based on Algorithm 16 or Algorithm 17 is specified in the following
theorem. The proof is similar to that of Theorem 16, thus omitted.

Theorem 17 The repair based on Algorithm 16 is correct in the sense that Theorem 16 still holds
even if the rewriting step (step 1) of Algorithm 15 is done by Algorithm 16. The repair based on
Algorithm 17 is correct in the sense that Theorem 16 still holds after Algorithm 15 is modified as
follows:

• The rewriting step (step 1) is done by Algorithm 17;

92

• In step 2, when an affected step T^^ of a saga S{ is scanned $, assume Tip is the last
unaffected step in £,-, execute the sequence 7?(~i'?}, ..., T^f).

6.6.3 Detecting Can-Follow, Can-Precede, Cover and Invert Relation-
ships between Transactions

In Section 6.6.2, the repair based on Algorithm 14, Algorithm 16 and Algorithm 17 cannot be
enforced without first capturing the can-follow, can-precede, cover, and invert relationships between
saga transactions.

Given a history of sagas, the can-follow relationships between the saga transactions in the
history depend on the readset-writeset relationships between these transactions. The write set
of a transaction % can be got from the traditional log where every write operation is recorded.
However, the read information of T{ we can get from the logs for traditional recovery purposes such
as physical logs, physiological logs, and logical logs [GR93], is usually not enough to generate the
read set. Therefore, the efficient maintenance of read information is a critical issue. In particular,
there is a tradeoff between the extra cost we need to pay besides that of traditional recovery facilities
and the guaranteed availability of read information. The read information can be captured in several
ways, for example

• Augment the write log to incorporate read information. There are basically two ways: one is
appending the read record [Tux] to the log every time when T{ reads an item x. The other
way is first keeping the set of items read by T{ in another place until the time when T{ is going
to commit. At this point, the read set of T{ can be forced to the log as one record.

Although keeping read information in the log will not cause more forced I/O, it does consume
more storage. Another problem with the approach lies in the fact that almost all present
database systems keep only update(write) information in the log. Thus adding read records
to the log may cause the redesign of the current recovery mechanisms.

• Extract read sets from the profiles and input arguments of transactions. Compared with the
read log approach, when transaction profiles (or codes) are available, each transaction just
needs to store its input parameters, which are often much smaller in size than the read set.
More important, instead of putting the input parameters in the log, each transaction can store
the parameters in a specific user database, thus the repair module can be completely isolated
from the traditional recovery module. In this way, our repair model can be implemented on

§This may happen because Tin may have already been covered or inverted.

93

top of the Saga model without modifying the internals of the DBMS on which the Saga model
is implemented.

This approach captures read information without the need to modify DBMS internals. How-
ever, it usually can only achieve a complete repair, but not an exact repair. That is, the
effects of all bad transactions will be removed, but the effects of some unaffected good trans-
actions may sometimes be removed also since in many situations the approach can only get
an approximate read set.

• Although traditional logging only keeps write information, more and more read information
can be extracted from the log, particularly when more operation semantics are kept in the
logs. Traditional physical (value) logging keeps the before and after images of physical database
objects(i.e., pages), so we only know that some page is read. In addition, a page is normally
too large a unit to achieve a fine repair. Physiological logging keeps only the update to a
record (tuple) within one and only one page, so we know that this record should be in the
read set, which is much finer than physical logging. Logical logging keeps more operation
semantics than the other two logging approaches. Conceptually logical logs can keep track of
all the read information of a transaction, though this is not supported by current database
systems. However, logical logging attracts substantial industrial and research interests. In
system R, SQL statements are put into the log as logical records; In [LT98], logical logs can
be a function, like x=sum(x,y), and swap(x,y) etc.. In both situations, we get more read
information than other logging methods.

In long duration transaction models([GMS87], [WR91]), or in multilevel transaction models
([WHBM90], [Lom92]), it is possible to extract the read information of transaction (subtrans-
action) T from its compensation log records, where the action of T"s compensating transaction
is recorded.

The can-precede, cover, and invert relationships between transactions are based on the semantics
of transactions, and they can be captured in a similar way to commutativity[LMWF94, Wei88,
Kor83, SKP088], and recoverability[BK92]. In order to capture these relationships, the profile
(or code) and input arguments of each transaction must be available. In the Saga model, several
possible solutions to the problem of saving code reliably are proposed[GMS87], therefore, these
relationships can be reliably captured in the Saga model.

For a canned system with limited number of transaction classes and fixed code for each trans-
action class, the can-follow, can-precede, cover, and invert relationships between saga transactions
can be detected according to the corresponding relationships between transaction classes. Although
detecting these relationships between two transaction classes usually needs more effort than detect-
ing these relationships between two transactions, after this is done with all the transaction classes,

94

detecting these relationships between transactions of these classes can be much easier in many
situations.

For example, in a bank a deposit transaction (denoted depfam)) which deposits m amount of
money into account a{ can follow a withdraw transaction (denoted wit(aj,n)) which withdraws n
amount of money from account a.j only if they access different accounts, that is, a{ ^ a,j. Therefore,
given the can-follow relationship between the deposit transaction class and the withdraw transaction
class, the can-follow relationship between a deposit transaction and a withdraw transaction can be
detected without the need to check the readset-writeset relationship between the two transactions,
checking their input parameters is enough.

6.6.4 Fix Information Maintenance

It is clear that Lemma 4 can be used in Algorithm 14, Algorithm 16 and Algorithm 17, to capture
fixes. For a transaction Th there are two methods to get Ti.readset - Ti.writeset: one is to first get
the readset and writeset of T2 after an execution history is generated using the approaches proposed
in Section 6.6.3, then compute Ti.readset - Ti.writeset; the other is what we have proposed in
Section 6.2, that is, let each transaction T{ write the set Ti.readset - Ti.writeset as a record to the
database when it is executed, then when we rewrite Hs all the fixes can be directly got from the
database.

It should be noticed that in the situations where the read and write sets of T; have to be firstly
captured in order to detect the can-follow relationships between Tt and some other transaction, the
first method is more efficient; In contrast, when all the necessary can-follow relationships between T{

and other transactions can be detected without the need to check the readset-writeset relationships
between T{ and these transactions, for example, when these relationships can be directly got from
the can-follow relationships between the corresponding transaction classes, the second method is
more efficient.

95

SECTION 7

Discussions and Conclusions

7.1 Discussion

7.1.1 Relevant Security Contexts

Our repair model can be applied to many kinds of secure database systems to enhance their sur-
vivability. However, the main factors on which the applicability of our model to a secure database
system is dependent, such as (1) the characteristics of the database, i.e., whether it is single-version
or multiversion, (2) the concurrency control protocol and the characteristics of the histories pro-
duced by it, and (3) the recovery protocol and the characteristics of the logs produced by it, are
closely relevant to the security model and architecture of the system.

For a single-level secure database system where every subject (transaction) and object (data
item) are within the same security class, traditional concurrency control protocols such as two-
phase locking (2PL), and recovery protocols such as write-ahead logging (WAL), can be directly
used without causing any security policy violations, no matter which kind of security model (i.e.,
access-matrix model[Lam74], role-based access control model[SCFY96], type-based access control
model[San92], or flexible access-control model[JSS97]) is enforced. Since serializable histories are
generated by most of the current single-level systems, so our repair model can be directly applied
to single-level systems in most cases. However, there are some systems where each data item
has multiple versions, and one-copy serializable histories are generated instead. Since an one-copy
serializable history is view equivalent to a serial single-version history[BHG87], our model can be
used to repair the one-copy serializable history by rewriting the equivalent serial history. However,
it should be noticed that pruning a rewritten history in multiversion databases is usually more
complicated because during pruning we need to decide for a (dirty) data item which version should
be read, which version should be updated, and which version should be discarded (i.e., the versions

96

created by bad transactions can just be discarded). Detailed pruning algorithms are out of the
scope of the paper.

For a multilevel secure (MLS) database system, traditional concurrency control and recovery
protocols, however, are usually not enough to satisfy security requirements[AJB97], especially, they
can cause signaling channels from high level processes to low level processes. Therefore, secure
transaction processing is required. Most of the recent research and development in secure con-
currency control can be categorized into two different areas: one based on kernelized architecture
and the other based on replicated architecture. These two are among the number of architectures
proposed by the Woods Hole study group[oMDMSBC83] to build multilevel secure DBMSs with
existing DBMS technology instead of building a trusted DBMS from scratch.

For kernelized architecture, several kinds of secure concurrency control protocols are proposed:
(1) In [MJ93, JMR97], several secure lock-based protocols are proposed. Although they do not
always produce serializable schedules, our repair model can be directly applied to every serializable
history generated by them. Extending our model to repair those non-serializable schedules is out of
the scope of the paper. (2) In [AJ92], two secure timestamp-based protocols are proposed. Although
they produce only serializable histories to which our model can be directly applied, they are prone to
starvation. In [JA92], a single-level timestamp-based scheduler is proposed which is secure and free
of starvation. Although it produces one-copy serializable histories, our model can still be directly
used to rewrite these histories (the reason is mentioned above). (3) In [AJB96, JA92, AJB97],
three weaker notions of correctness, namely, levelwise serializability, one-item read serializability,
and pairwise serializability, are proposed to be used as alternative for one-copy serializability such
that the nature of integrity constraints in MLS databases can be exploited to improve the amount
of concurrency. Extending our model to repair levelwise, one-item read, and/or pairwise serializable
histories is out of the scope of the paper.

For replicated architecture, several secure concurrency control protocols are proposed in [JK90,
MJS91, Cos92, CM92]. Since they all produce one-copy serializable histories, so our model can be
directly applied to rewrite these histories.

In [KT90], a scheduler is proposed which is secure and produces one-copy serializable histories
to which our model can be applied. However, it uses a multilevel scheduler which, therefore, has to
be trusted, thus it is only suitable for the trusted subject architecture.

Since in our repair model serial orders among transactions are captured from the log, so the
applicability of our model is affected by logging protocols. In [PKP97], a multilevel secure log
manager is proposed to eliminate such covert channels as insert channels and flush channels which
are caused by traditional logging protocols. Although Logical Log Sequence Numbers (LLSN) instead
of physical Log Sequence Numbers (LSN) are provided in [PKP97] to eliminate insert channels, we
can still extract serial orders from the log because records of transactions within different security
classes are still kept in the same log, and LLSNs can be translated to physical LSNs internally by

97

the log manager. Moreover, since the mechanisms proposed to eliminate flush channels will not
change the structure of the log, so our model can be directly applied to a system with such a log
manager.

7.1.2 Other Issues

One criticism of the applicability of the method may be that if a bad transaction B{ is detected
too late, that is, if the latency time of Bi is too long, then there can be too many affected good
transactions to deal with, especially when they have caused further effects to the real world. For
example, some real world decisions could be based on these affected transactions. At this situation,
'manual' recovery actions may be necessary.

We counter this augment by noting that the latency time of Bi is usually related to the amount
of transactions affected by Bi. The more transactions affected by Bi, the more proofs of Bj's
malicious actions can be collected by the intrusion detector, hence the shorter the latency time of
Bi. Therefore, even if the latency time of Bi is very long, the amount of transactions affected by
Bi may not be too large in many circumstances. At this situation, the algorithm may need more
time since it needs to scan a long history, but the pruning may still be a short process if most of
the transactions in the history are unaffected. Although the compensation approach may not be
practical when the history is very long and the codes for compensating transactions have to be kept
in the log, it can be used in almost all canned systems, which are very general in real world where
the codes for transactions and compensating transactions are fixed for each transaction class. As
the techniques of intrusion detection are advanced, the latency time of a bad transaction should
become shorter, so our repair model will apply to more situations.

As to the criticism that manual recovery actions can be necessary, note that when damage
has been caused, the effects of these affected transactions to the real world are already there. No
matter whether the history is repaired or not, some action to compensate these undesirable effects
is required. In the real world, such manual recovery actions are basically unavoidable. Therefore,
repairing the database such that a consistent database state where no effects of bad transactions are
there could be generated can be viewed as a separate issue from manual recovery. In addition, our
rewriting methods can help users to assess the degree of damages because B U AG can be identified.
Therefore, the security administrator can know on which transactions (or on which customers) such
manual recovery actions should be enforced.

98

7.2 Contributions

There are three areas where this research made contributions. First, this report proposes two novel
recovery models to bridge the theoretical gap between classical database recovery theory where
only uncommitted transactions can be undone, and trusted recovery practice where operations
with the same (operational) semantics as traditional undos are needed to remove the effects of such
committed transactions as malicious transactions and affected benign transactions (For simplicity,
we use the same word, namely 'undo', to denote such operations). In particular, this report proposes
(1) a flat-transaction recovery model where committed transactions are 'undone' by building and
executing a specific type of transactions, namely, undo transactions, and (2) a nested-transaction
model where a flat commercial history is virtually extended to a two-layer nested structure where
originally committed transactions turn out to be subtransactions hence traditional undo operations
can be directly applied to the model without violating the durability property.

Second, this report provides a family of syntactic recovery algorithms that, given a specification
of malicious, committed transactions, unwinds the effects of each malicious transaction, along with
the effects of any benign transaction that depends, directly or indirectly on a malicious transac-
tion. Significantly, the work of the remaining benign transactions is saved. The first algorithm
yields coldstart semantics; the database is unavailable during repair. The second algorithm yields
warmstart semantics; normal use may continue during repair, although some degradation of service
may be experienced by some transactions. Moreover, this report outlines various possibilities for
maintaining read-from dependency information. Although direct logging of transaction reads has
the virtue of simplicity, the performance degradation of such an approach may be too severe in
some cases. For this reason, this report shows that offline analysis can efficiently meet the need for
establishing read-from dependency information. This report illustrates the practicality of such an
approach via a study on standard benchmarks.

Third, this report presents an algorithm that rewrites an execution history for the purpose of
backing out malicious transactions. Good transactions that are affected, directly or indirectly, by
malicious transactions complicate the process of backing out undesirable transactions. This report
shows that the prefix of a rewritten history produced by the algorithm serializes exactly the set
of unaffected good transactions, thus is equivalent to using a write-read dependency graph ap-
proach. The suffix of the rewritten history includes special state information to describe affected
good transactions as well as malicious transactions. This report describes techniques that can
extract additional good transactions from the latter part of a rewritten history. The latter process-
ing saves more good transactions than is possible with a dependency-graph based approach or a
commutativity based approach to recovery.

It is also shown that besides recovery from malicious transactions, our recovery approaches
can also be extended to may other applications such as malicious user isolation, system upgrades,

99

optimistic replication protocols, and replicated mobile databases.

7.3 Future Research

Based on the research work in this report, we propose the following future research directions.

7.3.1 Trusted Recovery with Bounded Inconsistency

It is clear that every rewriting algorithm proposed in Chapter 6 has the following two properties: (1)
it always works on a consistent history *; (2) every rewriting operation performed by the algorithm
always transforms a consistent history to another consistent history. However, we found that by
tolerating some degree of inconsistency in rewriting histories the work of more good transactions
can be saved. The cost is that after a consistent history is repaired, it may not be consistent any
more.

To illustrate the idea, consider a banking system where a customer can deposit (withdraw)
money into (from) his/her accounts, but with the integrity constraint that the balances of his/her
accounts can not be negative. It is clear that a deposit transaction (denoted dep{ahm)) which
deposits m amount of money into account a; can precede any other deposit transactions. However,
according to Definition 8, a withdraw transaction (denoted wit(a,j,n)) can not precede dep(ai,m)
if Oj = dj and the balance of a{ in the before state of dep{ah m) (denoted sb) is less than n, because
at this point wit(aj,n)dep(ahm) is not defined on sb since the execution of wit(aj,n) on sb makes
the database state inconsistent. Hence, when we rewrite such a history with dep{ai,m) followed by
wit(aj,n) and with sb as the before state of dep(aum), if dep{ahm) is a bad transaction, then the
work of wit(a,j, n) can not be saved.

However, if we can tolerate a bounded degree of inconsistency, for example, allowing a balance
greater than -5000, then in the above situation wit(aj,n) can precede dep(ai,m) if the difference
between the value of a,- in sb and n is less than 5000. Therefore, the work of wit(aj, n) can be saved
in the above example.

In order to enable trusted recovery with bounded inconsistency, several critical issues have to
be addressed:

• To enable a transaction to be executed on an inconsistent database state, or to enable the
transaction to transform a consistent state to an inconsistent one, the preconditions, or even
the action, of the transaction may need to be modified. How to formalize the modification is
a critical issue.

*We say a history H is consistent, if the before and after states of each transaction in H are both consistent, no
matter whether H has a transaction associated with a non-empty fix or not; otherwise, we say H is inconsistent.

100

• After a transaction is modified, the can-follow, can-precede, commute backward through,
and commute relationships between the transaction and other transactions may have to be
reidentified. Formalizing and automatizing the process of reidentification is a critical issue.

• In order to enable an inconsistent rewriting operation which exchanges the order of two trans-
actions, Ti and 7}, during rewriting a consistent history, the modified version(s) of T,, or 7}, or
both, may have to be introduced in the rewritten history. Thus how to formalize and reason
the relationship between the history before the rewriting operation is performed and the his-
tory after the rewriting operation is a critical issue that we have to address. The correctness
of rewriting with bounded inconsistency depends on it.

7.3.2 Extension to Multilevel Secure Systems

As mentioned in Section 7.1.1, the applicability of our repair model to a secure database system
is closely relevant to the security model and architecture of the system. Although our model can
be directly applied to most single-level secure systems, there are many multilevel secure database
systems where our repair model has to be extended.

• In static repair, since the repair manager can be the only user process running during the
process of trusted recovery, so there is no information disclosure during the repair. However,
in dynamic repair, the fact that the repair manager is usually running together with many
other user processes implies that in a system where the kernelized architecture is used, there
can be signaling channels from high-level processes to low-level ones. How to build a single-
level repair manager without introducing signaling channels has to be addressed.

• Although our model can be directly used to rewrite one-copy serializable histories generated by
secure concurrency control protocols which exploit multiple versions of a data item, pruning
a rewritten history in multiversion databases is usually more complicated because during
pruning we need to decide for a (dirty) data item which version should be read, which version
should be updated, and which version should be discarded. This issue has to be addressed.

• In [AJB96, JA92, AJB97], three weaker notions of correctness, namely, /eve/mse serializability,
one-item read serializability, and pairwise serializability, are proposed to be used as alternative
for one-copy serializability such that the nature of integrity constraints in MLS databases can
be exploited to improve the amount of concurrency. Extending our model to repair levelwise,
one-item read, and/or pairwise serializable histories is another critical issue.

101

7.3.3 Extension to Distributed Database Systems

A distributed database (DDB) consists of several logical objects that are physically located at differ-
ent sites (or nodes). Each site consists of an independent processor connected via communication
links to other sites. Transaction executing in these systems may require to access (either update or
retrieve) data objects from more than one site. The site at which a transaction originates is usually
referred to as the coordinator and other sites participating in the execution are called subordinate

sites.
In a distributed database system, data are partitioned and stored across several nodes which are

connected by a network. Therefore, the dependency-graph of the global history generated from the
system can not be mined from a local log in most situations. Instead, we may have to combine the
information recorded in every local log to compute the global dependency-graph based on which
syntactic repair can be achieved. Moreover, the can-follow relationship between two distributed
transactions depends also on the read and write behavior of these transactions at multiple sites.
Therefore, integrating multiple local logs is an issue that has to be addressed.

As mentioned in Section 7.3.2, how to build a single-level dynamic repair manager without
introducing signaling channels in a multilevel secure database system is a critical issue. Similarly,
how to build a single-level dynamic repair manager without introducing signaling channels in a
distributed multilevel secure database system is also a critical issue. The difference is that in
distributed MLS systems integration of secure concurrency control protocols, i.e., S2PL [JM93],
with atomic commit protocols, i.e., early prepare (EP), may not guarantee serializability [JMB94],
thus corresponding secure commit protocols have to be developed.

102

BIBLIOGRAPHY

[AJ92] P. Ammann and S. Jajodia. A timestamp ordering algorithm for secure, single-
version, multi-level databases. In C. Landwehr and S. Jajodia, editors, Database
Security, V: Status and Prospects, pages 23-25. Amsterdam: North Holland, 1992.

[AJB96] V. Atluri, S. Jajodia, and E. Bertino. Alternative Correctness Criteria for Concur-
rent Execution of Transactions in Multilevel Secure Databases. IEEE Transactions
on Knowledge and Data Engineering, 8(5):839-854, October 1996.

[AJB97] V. Atluri, S. Jajodia, and E. Bertino. Transaction Processing in Multilevel Secure
Databases with Kernelized Architecture: Challenges and Solutions. IEEE Trans-
actions on Knowledge and Data Engineering, 9(5):697-708, 1997.

[AJM95] P. Ammann, S. Jajodia, and P. Mavuluri. On the fly reading of entire databases.
IEEE Transactions on Knowledge and Data Engineering, 7(5):834-838, October
1995.

[AJMB97] P. Ammann, S. Jajodia, CD. McCollum, and B.T. Blaustein. Surviving infor-
mation warfare attacks on databases. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 164-174, Oakland, CA, May 1997.

[AJR97] P. Ammann, S. Jajodia, and I. Ray. Applying formal methods to semantic-based
decomposition of transactions. ACM Transactions on Database Systems, 1997. To
appear.

[ALS78] T. Anderson, P. A. Lee, and S. K. Shrivastava. A Model of Recoverability in
Multilevel Systems. IEEE Transactions on Software Engineering, 4(6):486-494,
November 1978.

103

[BBG83] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault tolerance.
In Proceedings of the Ninth ACM Symposium on Operating System Principles, pages
90-99, oct 1983.

[Ber88] P. A. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled Multiprocessor for
Transaction Processing. IEEE Computer, 21(2):37-45, February 1988.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, MA, 1987.

[BK92] B.R. Badrinath and Ramamritham Krithi. Semantics-based concurrency control:
Beyond commutativity. ACM Transactions on Database Systems, 17(1):163-199,
March 1992.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report MTR-2997, The Mitre Corporation, Bed-
ford, MA, March 1976.

[cer95] Cert coordination center 1995 annual report. Technical report, the CERT Coordi-
nation Center, 1995. http://www.cert.org/pub/annual-reports/cert_rpt_95.html.

[cer96] Cert coordination center 1996 annual report. Technical report, the CERT Coordi-
nation Center, 1996. available at http://www.cert.org.

[CM92] O. Costich and J. McDermott. A multilevel transaction problem for multilevel
secure database systems and its solution for the replicated architecture. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 192-203, Oakland,
CA, 1992.

[Cos92] O. Costich. Transaction processing using an untrusted scheduler in a multilevel se-
cure database with replicated architecture. In C. Landwehr and S. Jajodia, editors,
Database Security, V: Status and Prospects, pages 173-189. Amsterdam: North
Holland, 1992.

[Dat83] C. J. Date. An Introduction to Database Systems, Volume II. Addison-Wesley,
Reading, MA, 1983.

[Dat95] C. J. Date. An Introduction to Database Systems, Sixth Edition. Addison-Wesley,
Reading, MA, 1995.

104

[Dav84] S. B. Davidson. Optimism and consistency in partitioned distributed database
systems. ACM Transactions on Database Systems, 9(3):456-581, September 1984.

[Den83] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Reading,
MA, 1983.

[Den87] D. E. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering, 13(2):222-232, February 1987.

[dod96] Information security: Computer attacks at department of defense pose increas-
ing risks. Technical Report AIMD-96-84, General Accounting Office, DoD, 1996.
available at http://www.nsi.org/Library/Compsec/infosec.txt.

[fbi97] Computer crime and security survey. Technical report, Computer Security Institute,
1997. available at http://www.gocsi.com/scu.preleas2/htm.

[GHOS96] J. Gray, P. Heiland, P. O'Neil, and D. Shasha. The dangers of replication and a so-
lution. In Proceedings of ACM-SIGMOD International Conference on Management
of Data, pages 173-182, Montreal, Canada, 1996.

[GL91] T.D. Garvey and T.F. Lunt. Model-based intrusion detection. In Proceedings of
the 14th National Computer Security Conference, Baltimore, MD, October 1991.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a dis-
tributed database. ACM Transactions on Database Systems, 8(2):186-213, June
1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data, pages 249-259, San Francisco, CA
1987.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc., 1993.

[Gra93] J. Gray, editor. The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann Publishers, Inc., 2 edition, 1993.

[GS96] S. Garfmkel and E. H. Spafford. Practical UNIX Security. O'Reilly & Associates,
Inc., CA, 1996.

105

[GSM96] R. Graubart, L. Schlipper, and C. McCollum. Defending database management
systems against information warfare attacks. Technical report, The MITRE Cor-
poration, 1996.

[HR83] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.
Computing Surveys, 15(4):287-318, 1983.

[HR98] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. In
V. Kumar and M. Hsu, editors, Recovery Mechanisms in Database Systems, pages
16-55. Prentice Hall PTR, 1998.

[IKP95] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: A rule-
based intrusion detection approach. IEEE Transactions on Software Engineering,
21(3):181-199, 1995.

[Ilg93] K. Ilgun. Ustat: A real-time intrusion detection system for unix. In Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA, May 1993.

[JA92] S. Jajodia and V. Atluri. Alternative correctness criteria for concurrent execution of
transactions in multilevel secure databases. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 216-224, Oakland, CA, 1992.

[JK90] S. Jajodia and B. Kogan. Transaction processing in multilevel secure databases
using replicated architecture. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 360-368, Oakland, CA, 1990.

[JLM98] S. Jajodia, P. Liu, and CD. McCollum. Application-level isolation to cope with
malicious database users. In Proceedings of the 14th Annual Computer Security
Application Conference, pages 73-82, Phoenix, AZ, December 1998.

[JM93] S. Jajodia and C. McCollum. Using two-phase commit for crash recovery in feder-
ated multilevel secure database management systems. In C. E. Landwehr et al., ed-
itor, Dependable Computing and Fault Tolerant Systems, pages 365-381. Springer-
Verlag, 1993.

[JMB94] S. Jajodia, C. D. McCollum, and B. T. Blaustein. Integrating concurrency control
and commit algorithms in distributed multilevel secure databases. In T. F. Keefe
and C. E. Landwehr, editors, Database Security, VII: Status and Prospects, pages
109-121. Amsterdam: North Holland, 1994.

106

[JMR97] S. Jajodia, L. Mancini, and I. Ray. Secure locking protocols for multilevel database
management systems. In P. Samarati and R. Sandhu, editors, Database Security
X: Status and Prospects. London: Chapman k Hall, 1997.

[JSS97] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 31-42, Oakland, CA, 1997.

[JV94] H. S. Javitz and A. Valdes. The nides statistical component description and justi-
fication. Technical Report A010, SRI International, March 1994.

[JZ90] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems. Journal of
Algorithms, 11(3):462-491, September 1990.

[KLS90] H.F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by com-
pensating transactions. In Proceedings of the International Conference on Very
Large Databases, pages 95-106, Brisbane, Australia, 1990.

[Kor83] Henry F. Korth. Locking primitives in a database system. Journal of the ACM,
30(l):55-79, January 1983.

[KQ72] P. J. Kennedy and T. M. Quinn. Recovery strategies in the no. 2 electronic switching
system. In Digest of Papers: 1972 International Symposium on Fault-Tolerant
Computing, pages 165-169, Newton, MA, 1972.

[KT90] T. F. Keefe and W. T. Tsai. Multiversion concurrency control for multilevel secure
database systems. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 369-383, Oakland, CA, 1990.

[LA90] P.A. Lee and T. Anderson. Fault Tolerance: Principles and Practice, Second edi-
tion. Springer-Verlag, Wien, Austria, 1990.

[LA94] H. V. Leong and D. Agrawal. Using message semantics to reduce rollback in opti-
mistic message logging recovery schemes. In Proceedings of the 14th International
Conference on Distributed Computing Systems, pages 227-234, 1994.

[Lam74] B. W. Lampson. Protection. ACM Operating Systems Review, 8(l):18-24, January
1974.

[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan
Kaufmann, 1994.

107

[Lom92] D.B. Lomet. MLR: A recovery method for multi-level systems. In Proceedings of
ACM-SIGMOD International Conference on Management of Data, pages 185-194,
San Diego, CA, June 1992.

[LT98] D. Lomet and M. R. Tuttle. Redo recovery after system crashes. In V. Kumar and
M. Hsu, editors, Recovery Mechanisms in Database Systems, chapter 6. Prentice
Hall PTR, 1998.

[Lun93] T.F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security,
12(4):405-418, June 1993.

[LWJ98] J. Lin, X. S. Wang, and S. Jajodia. Abstraction-based misuse detection: High-level
specifications and adaptable strategies. In Proceedings of the 11th IEEE Computer
Security Foundations Workshop, Rockport, Massachusetts, June 1998.

[MG96a] J. McDermott and D. Goldschlag. Storage jamming. In D.L. Spooner, S.A. Demur-
jian, and J.E. Dobson, editors, Database Security IX: Status and Prospects, pages
365-381. Chapman & Hall, London, 1996.

[MG96b] J. McDermott and D. Goldschlag. Towards a model of storage jamming. In Pro-
ceedings of the IEEE Computer Security Foundations Workshop, pages 176-185,
Kenmare, Ireland, June 1996.

[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A trans-
action recovery method supporting fine-granularity locking. A CM Transactions on
Database Systems, 17(1):94-162, March 1992.

[MHL94] B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE
Network, pages 26-41, June 1994.

[MJ93] J. McDermott and S. Jajodia. Orange locking: Channel-free database concurrency
control. In B. M. Thuraisingham and C. E. Landwehr, editors, Database Security,
VI: Status and Prospects, pages 267-284. Amsterdam: North Holland, 1993.

[MJS91] J. McDermott, S. Jajodia, and R. Sandhu. A single-level scheduler for replicated
architecture for multilevel secure databases. In Proceedings of the 7th Annual Com-
puter Security Applications Conference, pages 2-11, San Antonio, TX, 1991.

[Mos85] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. Information Systems Series. The MIT Press, Cambridge, Massachussetts,
1985.

108

[MPL92] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible methods for transient
versioning of records to avoid locking by read-only transactions. In Proceedings of
ACM SIGMOD International Conference on Management of Data, pages 124-133,
San Diego, CA, June 1992.

[oMDMSBC83] Committee on Multilevel Data Management Security, Air Force Studies Board,
and National Research Council. Multilevel Data Management Security. National
Academy Press, Washington, D.C., March 1983.

[PK92] P.A. Porras and R.A. Kemmerer. Penetration state transition analysis: A rule-
based intrusion detection approach. In Proceedings of the 8th Annual Computer
Security Applications Conference, San Antonio, Texas, December 1992.

[PKH88] C. Pu, G. Kaiser, and N. Hutchinson. Split transactions for open-ended activities.
In Proceedings of the International Conference on Very Large Databases, pages
26-37, Auguest 1988.

[PKP97] V. R. Pesati, T. F. Keefe, and S. Pal. The design and implementation of a multi-
level secure log manager. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 55-64, Oakland, CA, 1997.

[Pu86] C. Pu. On-the-fty, incremental, consistent reading of entire databases. Algorithmica
l(3):271-287, October 1986.

[PW72] W. W. Peterson and E. J. Weldon. Error-Correcting Codes. MIT Press, MA, 1972.

[Ran77] B. Randell. System structure for software fault tolerance. In R. T. Yeh, editor,
Current Trends in Programming Methodology, pages 195-219. Prentice-Hall, 1977.'

[RC97] Krithi Ramamritham and Panos K. Chrysanthis. Advances in Concurrency Control
and Transaction Processing. IEEE Computer Society Press, Los Alamitos CA
1997.

[RLKL95] B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, eds. Predictably dependable
computing systems. Springer-Verlag, Berlin, 1995.

[San92] R. S. Sandhu. The typed access matrix model. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 122-136, Los Alamitos, CA, 1992.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access
Control Models. IEEE Computer, (2):38-47, February 1996.

109

[SG91] S.-P. Shieh and V.D. Gligor. A pattern oriented intrusion detection model and
its applications. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1991.

[SG97] S.-P. Shieh and V.D. Gligor. On a pattern-oriented model for intrusion detection.
IEEE Transactions on Knowledge and Data Engineering, 9(4):661-667, 1997.

[SKP088] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The design of XPRS.
In Proceedings of the International Conference on Very Large Databases, pages
318-330, Los Angeles, CA, 1988.

[SY85] R. Strom and S. Yemini. Optimistic Recovery in Distributed Systems. ACM Trans-
actions on Computer Systems, 3(3):205-226, August 1985.

[TB82] D. J. Tayor and J. P. Black. Principles of Data Structure Error Correction. IEEE
Transactions on Computers, 31(7):602-608, July 1982.

[Wei88] W. E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers, 37(12):1488-1505, December 1988.

[WHBM90] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery. In Proceed-
ings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium of Principles of
Database Systems, pages 109-123, Nashville, Tenn, April 1990.

[WR91] H. Wächter and A. Reuter. The contract model. In A. Elmagarmid, editor, Database
Transaction Models for Advanced Applications, pages 219-263. Morgan Kaufmann
Publishers, 1991.

[WS92] G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions
and open nested transactions. In Ahmed K. Elmagarmid, editor, Database Transac-
tion Models for Advanced Applications, chapter 13. Morgan Kaufmann Publishers,
Inc., 1992.

110

«U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10145

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

