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SECTION 1 

Introduction 

Information security has become increasingly important with the advent of (inter-connected) com- 
puters to process sensitive information. However, experience with traditional information systems 
security practices (INFOSEC) for confidentiality, integrity, and availability has shown that it is 
very difficult to adequately anticipate the abuse and misuse to which an information system will be 
subjected in the field. In 1995 the Computer Emergency Response Team (CERT) reported 1,168 
security-related incidents [cer95]. That year the United States Federal Bureau of Investigation (FBI) 
disclosed the results of their computer security survey, which showed that 40 percent of the surveyed 
sites experienced at least one unauthorized access [fbi97]. In 1996 the United States Department of 
Defense (DoD) reported an estimate of 250,000 attacks per year on its computer system and stated 
that the rate of attacks is increasing by 100 percent annually [dod96]. That year CERT's figures 
showed a significant increase in hacker activity, with 2,573 security-related incidents [cer96j. 

In response to this experience, a complementary approach with an emphasis on survivabihty 
has emerged.* This 'information warfare' perspective is that not only should vigorous information 
security measures be taken to defend a system against attack, but that some attacks should be 
assumed to succeed, and that countermeasures to these successful attacks should be planned in 
advance.  The information warfare perspective emphasizes the ability to live through and recover 

from attacks. 
The focus of INFOSEC is prevention: security controls aim to prevent malicious activity that 

interferes with either confidentiality, integrity, or availability. However, outsiders (hackers) have 
proved many times that security controls can be breached in imaginative and unanticipated ways. 
Further, insiders have significant privileges by necessity, and so are in a position to inflict damage. 
The dramatic increase in internetworking has led to a corresponding increase in the opportunities 

*For a summary with an emphasis on the database context, see [AJMB97]. 



for outsiders to masquerade as insiders. Network-based attacks on many systems can be carried out 
from anywhere in the world. Although mechanisms such as firewalls reduce the threat of outside 
attack, in practice such mechanisms do not eliminate the threat without blocking legitimate use 
as well. In brief, strong prevention is clearly necessary, but less and less sufficient, to protect 
information resources. 

An information warfare approach augments traditional INFOSEC measures to harden a system 
against attack. An information warfare timeline is intelligence gathering by the adversary to detect 
weaknesses in the resulting system, attack by the adversary, and finally countermeasures to the 
attack. Typical countermeasure phases follow a fault tolerance model of attack detection, damage 
confinement and assessment, reconfiguration, damage repair, and fault treatment to prevent future 
similar attacks. 

Although the information warfare adversary may find many weaknesses in the diverse compo- 
nents of an information system, databases provide a particularly inviting target. There are several 
reasons for this. First, databases are very widely used, so the scope for attack is large. Second, 
information in databases can often be changed in subtle ways that are beyond the detection capa- 
bilities of the typical database mechanisms such as range and integrity constraints. For example, 
repricing merchandise is an important and desirable management function, but it can easily be 
exploited for fraudulent purposes. Finally, unlike most system components, many databases are 
explicitly optimized to accommodate frequent updates. The interface provides the outside attacker 
with built in functions to implement an attack; all that is necessary is to acquire sufficient privileges, 
a goal experience has shown is readily achievable. Advanced authorization services can reduce such 
a threat, but never eliminate it, since insider attacks are always possible. 

Integrity, availability, and (to a lesser degree) confidentiality have always been key database 
issues, and commercial databases include diverse set of mechanisms towards these ends. For ex- 
ample, access controls, integrity constraints, concurrency control, replication, active databases, and 
recovery mechanisms deal well with many kinds of mistakes and errors. However, the IW attacker 
can easily evade some of these mechanisms and exploit others to further the attack. For example, 
access controls can be subverted by the inside attacker or the outside attacker who has assumed an 
insider's identity. Integrity constraints are weak at prohibiting plausible but incorrect data; classic 
examples are changes to dollar amounts in billing records or salary figures. To a concurrency control 
mechanism, an attacker's transaction is indistinguishable from any other transaction. Automatic 
replication facilities and active database triggers can serve to spread the damage introduced by 
an attacker at one site to many sites. Recovery mechanisms ensure that committed transactions 
appear in stable storage and provide means of rolling back a database, but no attention is given to 
distinguishing legitimate activity from malicious activity. In brief, by themselves, existing database 
mechanisms for managing integrity, availability, and confidentiality are inadequate for detecting, 
confining, and recovering from IW attacks. 



Massive IW attacks have large scale, immediate impact and consequently generate an immediate 
response. More insidious IW attacks inflict damage incrementally and open up the threat that the 
transactions of legitimate users can spread the damage throughout the database over an extended 
period of time before anyone notices that something is amiss. The longer the time period between 
attack and detection, the less satisfactory it is to roll back the database to a 'clean' state; too many 
transactions that performed useful, uncorrupted work are lost. There is a need to undo corrupted 
work without losing good work. Distinguishing transactions that read corrupted values from one 
that didn't isn't possible with current systems because 'read-from' dependency information is not 
maintained. 

In some cases, the attacker's goal may be to reduce availability by attacking integrity. In the 
scenario outlined above, the attacker's goal not only introduces damage to certain data items and 
uncertainty about which good transactions can be trusted, but also achieves the goal of bringing 
the system down while repair efforts are being made. 'Coldstart' semantics for recovery mean that 
system activity is brought to a halt while damage is being repaired. To address the availability 
threat, recovery mechanisms with 'warmstart' or 'hotstart' semantics are needed. Warmstart se- 
mantics for recovery allow continuous, but degraded, use of the database while IW damage is being 
repaired. Hotstart semantics make recovery transparent to the users. 

In this report, we focus on one specific countermeasure phase to an information warfare attack, 
namely the damage repair phase. We confine ourselves to the database context, and focus on 
mechanisms suitable for inclusion in commercial database systems. 

1.1    Dissemination of Results from Contract 

Before describing the results of the contract in detail, we describe the extent to which results from 
the contract have been disseminated in the literature. These results are grouped into the following 
areas: 

1. Database Recovery Work: This area covers the main thrust of the contract, and focuses 
on specific mechanisms for restoring databases that have suffered damage from malicious 
information attacks. 

2. Fault Tolerance Perspective: This area covers a higher level view of the entire survivability 
problem, as opposed to focusing on the recovery phase, as is done in the main body of the 
work. 

3. Workshop Efforts: This area covers efforts by the authors to supply their work as input for a 
research agenda in the survivability area. 
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Database Recovery Work 

This work comprises the main body of this report. Two in depth journal articles describe this work. 
One has been published; the other is still in review: 

1. Peng Liu, Paul Ammann, and Sushil Jajodia. Rewriting histories: Recovering from malicious 
transactions.    The International Journal of Distributed and Parallel Databases.   8(1)7-40 
January 2000. 

Abstract: We consider recovery from malicious but committed transactions. Traditional 
recovery mechanisms do not address this problem, except for complete rollbacks, which undo 
the work of good transactions as well as malicious ones, and compensating transactions, whose 
utility depends on application semantics. We develop an algorithm that rewrites execution 
histories for the purpose of backing out malicious transactions. Good transactions that are 
affected, directly or indirectly, by malicious transactions complicate the process of backing 
out undesirable transactions. We show that the prefix of a rewritten history produced by 
the algorithm serializes exactly the set of unaffected good transactions. The suffix of the 
rewritten history includes special state information to describe affected good transactions 
as well as malicious transactions. We describe techniques that can extract additional good 
transactions from this latter part of a rewritten history. The latter processing saves more 
good transactions than is possible with a dependency-graph based approach to recovery. 

2. Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from Malicious Transactions Under 
review with IEEE Transactions on Knowledge and Data Engineering. 

Abstract: Preventive measures sometimes fail to deflect malicious attacks. In this paper, we 
adopt an information warfare perspective, which assumes success by the attacker in achieving 
partial, but not complete, damage. In particular, we work in the database context and consider 
recovery from malicious but committed transactions. Traditional recovery mechanisms do 
not address this problem, except for complete rollbacks, which undo the work of benign 
transactions as well as malicious ones, and compensating transactions, whose utility depends 
on application semantics. Recovery is complicated by the presence of benign transactions 
that depend, directly or indirectly, on the malicious transactions. We present algorithms 
to restore only the damaged part of the database. We identify the information that needs 
to be maintained for such algorithms. The initial algorithms repair damage to quiescent 
databases; subsequent algorithms increase availability by allowing new transactions to execute 
concurrently with the repair process. Also, via a study of benchmarks, we show practical 
examples of how offline analysis can efficiently provide the necessary data to repair the damage 
of malicious transactions. 
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Fault Tolerance Perspective 

1. Sushil Jajodia, Peng Liu, and Paul Ammann. A Fault Tolerance Approach to Survivability. 
In Proceedings of the Information Systems Technology Symposium: Protecting NATO Infor- 
mation Systems in the 21st Century, RTO/NATO, Hull, Canada (limited release), pages 20-1 
to 20-7, October, 1999. 

Abstract: Attacks on computer systems have received a great deal of press attention; how- 
ever, most of the focus has been on how an attacker can disrupt an organization's operations. 
Although attack prevention is clearly preferred, preventive measures do fail, and some at- 
tacks inevitably succeed in compromising some or all of particular systems. We adopt a fault 
tolerance approach that addresses all phases of survivability: attack detection, damage con- 
finement, damage assessment and repair, and attack avoidance, but we give special attention 
to recovery issues, and how recovery from malicious activity can be planned for and executed. 
For specific examples, we discuss recovery models for backing out malicious, committed trans- 
actions, either syntactically using read-from dependencies, or via rewriting histories, which 
can save the work of additional good transactions. 

2. Sushil Jajodia, Catherine D. McCollum, and Paul Ammann. Trusted recovery: An important 
phase of information warfare defense.  Communications of the ACM. 42(7):71-75, July 1999. 

Abstract: Information warfare defense involves not just protective mechanisms but also detec- 
tion and reaction to successful attacks and a process for managing the tracking, containment, 
and recovery from damage. Unlike many hackers, who may wish to provide evidence of their 
entry into a system, information warfare attackers may pursue a more subtle course directed 
towards serious harm to an organization's ability to meet its mission rather than an obvious, 
temporary disruption. Such an attack could target not just the system or network itself, 
but also the information upon which an organization relies. Information warfare attacks can 
spoof legitimate users or make use of malicious insiders, so information warfare defense must 
also incorporate techniques effective against insider attack. This paper describes the cycle of 
activity involved in information warfare defense. It then discusses a framework for detect- 
ing, managing, and recovering from damage inflicted by information warfare on the critical 
information maintained within the system. Allowing system operation to proceed while some 
information is damaged and under repair has implications for maintaining consistency, so a 
modified consistency model is presented. Finally, a variety of methods for recovery and con- 
tainment are discussed that can be used depending on the characteristics of the system and 
severity of the damage. 



3. Sushil Jajodia, Paul Ammann, and Catherine D. McCollum. Surviving information warfare 
attacks. IEEE Computer. 32(4):57-63, April 1999. 

Abstract: Information warfare has received a great deal of attention in the press lately; how- 
ever, most of the focus has been on how an attacker can disrupt an organization's operations. 
In this paper, we discuss issues and methods for survivability of systems under malicious 
attacks, with particular emphasis on the information elements of systems. Although attack 
prevention is clearly preferred, preventive measures do fail, and some attacks inevitably suc- 
ceed in compromising some or all of particular systems. We discuss a fault-tolerance approach 
that can address all phases of survivability: attack detection, damage confinement, damage 
assessment and repair, and attack avoidance. We also discuss some mechanisms that can give 
systems the ability to live through and recover from successful attacks. Defensive information 
warfare is far from being a solved problem from the research perspective, let alone the practi- 
cal perspective. Consequently, a major goal of this paper is to raise awareness among system 
developers of the need to include information warfare considerations in system analysis and 
design. 

4. Paul Ammann, Sushil Jajodia, Catherine D. McCollum, and Barbara T. Blaustein. Surviv- 
ing information warfare attacks on databases. In Proceedings 1997 IEEE Computer Society 
Symposium on Security and Privacy, pages 164-174, Oakland, CA, May 1997. 

Abstract: We consider the problem of surviving information warfare attacks on databases. We 
adopt a fault tolerance approach to the different phases of an information attack. To maintain 
precise information about the attack, we mark data to reflect the severity of detected damage 
as well as the degree to which the damaged data has been repaired. To increase availability 
we introduce a marking for partially repaired data. In this case, integrity constraints might be 
violated, but the data is nonetheless usable to support mission objectives. We define a notion 
of consistency suitable for databases in which some information is known to be damaged, and 
other information is known to be only partially repaired. We present a protocol for normal 
transactions with respect to the damage markings and show that correct normal transactions 
that follow the protocol maintain database consistency. We present an algorithm for taking 
consistent snapshots of databases under attack. The snapshot algorithm has the virtue of not 
interfering with countermeasure transactions. 

Workshop Efforts 

1. Paul Ammann, Bruce H. Barnes, Sushil Jajodia, and Edgar H. Sibley, editors. Proceedings of 
CSD A 98: Computer Security, Dependability, and Assurance: From Needs to Solutions, IEEE 
Press, Los Alamitos, CA, pages 204-212, 1999. 

9 



Summary: This ONR/NSF funded workshop brought together leading researchers to investi- 
gate the intersection of three related areas: Computer Security, Dependability, and Assurance. 
The Pis for this report edited the proceedings. 

2. Paul Ammann and Sushil Jajodia. Computer Security, Fault Tolerance, and Software Assur- 
ance. IEEE Concurrency, 7(l):4-6, January-March 1999. 

Summary: This is a widely disseminated description of the CSDA 98 Workshop listed in the 
prior item in this section. 

3. Paul Ammann, Sushil Jajodia, and Peng Liu. A Fault Tolerance Approach to Survivability. 
In Proceedings of CSDA 98: Computer Security, Dependability, and Assurance: From Needs 
to Solutions, IEEE Press, Los Alamitos, CA, pages 204-212, 1999. ISBN 0-7695-0337-3. 

Abstract: (Note: This is a contribution to the workshop listed in the first item of this sec- 
tion.) Attacks on computer systems have received a great deal of press attention; however, 
most of the focus has been on how an attacker can disrupt an organization's operations. Al- 
though attack prevention is clearly preferred, preventive measures do fail, and some attacks 
inevitably succeed in compromising some or all of particular systems. We propose research 
into a fault-tolerance approach that addresses all phases of survivability: attack detection, 
damage confinement, damage assessment and repair, and attack avoidance. We focus atten- 
tion on continued service and recovery issues. A promising area of research for continued 
service addresses relaxed notions of consistency. Expanding on the notion of self stabilization, 
the idea is to formalize the degree of damage under which useful services is still possible. 
A complementary research area for recovery is the engineering of suitable mechanisms into 
existing systems. We explain the underlying models for these research areas and illustrate 
them with examples from the database domain. We argue that these models form a natural 
part of a fault tolerance approach and propose research into adapting these models for larger 
systems. 

1.2    Research Results 

The report describes the following results. First, this report describes two novel recovery models 
to bridge the theoretical gap between classical database recovery theory where only uncommit- 
ted transactions can be undone, and trusted recovery practice where operations with the same 
(operational) semantics as traditional undos are needed to remove the effects of such committed 
transactions as malicious transactions and affected benign transactions ( For simplicity, we use 
the same word, namely 'undo', to denote such operations).   In particular, this report describes 

10 



(1) a flat-transaction recovery model where committed transactions are 'undone' by building and 
executing a specific type of transactions, namely, undo transactions, and (2) a nested-transaction 
model where a flat commercial history is virtually extended to a two-layer nested structure where 
originally committed transactions turn out to be subtransactions hence traditional undo operations 
can be directly applied to the model without violating the durability property. 

Second, this report provides a family of syntactic recovery algorithms that, given a specification 
of malicious, committed transactions, unwinds the effects of each malicious transaction, along with 
the effects of any benign transaction that depends, directly or indirectly on a malicious transac- 
tion. Significantly, the work of the remaining benign transactions is saved. The first algorithm 
yields coldstart semantics; the database is unavailable during repair. The second algorithm yields 
warmstart semantics; normal use may continue during repair, although some degradation of service 
may be experienced by some transactions. Moreover, this report outlines various possibilities for 
maintaining read-from dependency information. Although direct logging of transaction reads has 
the virtue of simplicity, the performance degradation of such an approach may be too severe in 
some cases. For this reason, this report shows that offline analysis can efficiently meet the need for 
establishing read-from dependency information. This report illustrates the practicality of such an 
approach via a study on standard benchmarks. 

Third, this report presents an algorithm that rewrites an execution history for the purpose of 
backing out malicious transactions. Good transactions that are affected, directly or indirectly, by 
malicious transactions complicate the process of backing out undesirable transactions. This report 
shows that the prefix of a rewritten history produced by the algorithm serializes exactly the set 
of unaffected good transactions, thus is equivalent to using a write-read dependency graph ap- 
proach. The suffix of the rewritten history includes special state information to describe affected 
good transactions as well as malicious transactions. This report describes techniques that can 
extract additional good transactions from the latter part of a rewritten history. The latter process- 
ing saves more good transactions than is possible with a dependency-graph based approach or a 
commutativity based approach to recovery. 

Although we develop the above algorithms to repair a database when some malicious activity 
happens, our methods can be easily extended to other applications where some committed trans- 
actions may also be identified undesirable, thus have to be backed out. For example 

• In [JLM98], the use of isolation is proposed to protect systems from the damage caused by 
authorized but malicious users, masqueraders, and misfeasors, where the capacity of intrusion 
detection techniques is limited. In the database context, the basic idea is when a user is 
found suspicious, his transactions are redirected to an isolated database version, and if the 
user turns out to be innocent later, the isolated database version will be merged into the main 
database version. Since these two versions may be inconsistent, some committed transactions 
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may have to be backed out to ensure the consistency of the database. 

During upgrades to existing systems, particularly upgrades to software. Despite efforts for 
planning and testing of upgrades, upgrade disasters occur with distressing regularity.* If a 
system communicates with the outside world, bringing the upgrade online with a hot standby 
running the old software isn't complete protection. Problems with an upgrade by one organi- 
zation can easily affect separate, but cooperating organizations. Thus an incorrect upgrade at 
a given organization may result in an erroneous set of transactions at one or more cooperating 
organizations. In many cases, it is not possible simply to defer activity, and so during the 
period between the introduction of an upgrade and the recognition of an upgrade problem, 
erroneous transactions at these cooperating organizations commit. As a result, backing out 
these committed erroneous transactions is necessary. 

In partitioned distributed database systems, Davidson's optimistic protocol [Dav84] allows 
transactions to be executed within each partitioned group independently with communication 
failures existing between partitioned groups. As a result, serial history Ht consisting of all 
transactions executing within group Pi is generated. When two partitioned groups Pi and 
P2 are reconnected, Hi and H2 may conflict with each other. Therefore, some committed 
transactions may have to be backed out to resolve the conflicts and ensure the consistency of 
the database. 

In [GHOS96], J. Gray et al. state that update anywhere-anytime-anyway transactional repli- 
cation has unstable behavior as the workload scales up. To reduce this problem, a two-tier 
replication algorithm is proposed that allows mobile applications to propose tentative update 
transactions that are later applied to a master copy. The drawback of the protocol is that 
every tentative transaction must be reexecuted on the base node, thus some sensitive trans- 
actions may have given users inaccurate information and the work of tentative transactions 
is lost. In this situation, the strategy that when a mobile node is connected to the base node 
merges the mobile copy into the master copy may be better, however, in order to ensure the 
consistency of the master copy after the mergence, some committed transactions may have to 
be backed out. 

+For some more spectacular examples, see Peter Neumann's RISKS digest in the newsgroup news: comp. risks or 
the archive ftp://ftp.sri.com/risks. 
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1.3    Organization of the Report 

The outline of the report is as follows. Chapter 2 describes related work. In Chapter 3, we present a 
model for a database system that can survive information warfare attacks, including its transaction 
processing features. Chapter 4 presents two recovery models to support 'undoing' undesirable 
committed transactions, such as malicious transactions and affected good transactions. In Chapter 
5, we present a syntactic repair model where both coldstart and warmstart recovery algorithms 
are developed. Moreover, we use benchmark applications to show how offline analysis can mitigate 
performance degradation during normal operation. In Chapter 6, we present a repair model based 
on history rewriting, where we first give a rewriting algorithm and show that it is equivalent to 
using a dependency-graph based approach; we second turn to methods to save additional good 
transactions; we third show how to prune a rewritten history so that a repaired history can be 
generated; moreover, we examine the relationships among the possible rewriting algorithms; finally, 
we show how to implement the rewriting model in a realistic transaction processing system which 
is based on the Saga model [GMS87]. In Chapter 7, we discuss some issues relevant to our repair 
model, enumerate the contributions of this dissertation and present an insight into future research 
directions. 
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SECTION 2 

Related Work 

Recovery methods have been studied extensively by researchers in fault tolerance and in database 
areas. After a comprehensive introduction of the limitations of traditional mechanisms in doing 
trusted recovery, this chapter first addresses the related work in the area of fault tolerance, then 
addresses the related work in the area of databases. Some related work in the areas of computer 
security and information warfare is also addressed. 

2.1    Why Traditional Mechanisms Fail in Trusted Database 
Recovery 

Although recovery methods have been studied extensively by researchers in fault tolerance (e.g., see 
[LA90, RLKL95]) and in database areas (e.g., see [Dat95, Dat83, GR93, RC97, MHL+92, HR98]), 
the existing methods work well in case of failures under normal conditions. Achieving recovery 
under an information attack is clearly more difficult since the attack is malicious in nature and the 
attacker can be assumed to be familiar with the intricacies of the system being attacked. Therefore, 
achieving recovery requires modifications and extensions of existing techniques together with novel 
techniques that are only suitable for surviving information attacks. 

In fault tolerance area [LA90, RLKL95], two types of errors are considered: errors that are 
anticipated and those that are unanticipated. In the case of anticipated errors, an accurate prediction 
or assessment of the damages can be made; if this is not possible, errors are said to be unanticipated. 

An example of an anticipated error is the loss or duplication of a message, perhaps due to an 
unreliable communication link, or perhaps due to a malicious attacker who has intercepted the 
link. Anticipating link failures can be accomplished by providing redundant links. Anticipating 
link intercepts can be accomplished by providing special information in the message being sent. 
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In the case of a link failure, if careful attention is paid to joint failure modes such as a common 
intermediate node in a network, it is possible to reliably recover from the lost message by resending 
the message over the redundant channel. 

A different example of an error that can be anticipated is a value out of range during a type 
conversion, for example, from floating point to integer. Recovery can be achieved through the 
prudent use of exception handlers. Failure to do so can be costly, as demonstrated by the ill-fated 
maiden flight of the Ariane 5, which was lost shortly after take-off due to events that were traced 
back to a type conversion that was not protected by an exception handler. 

To recover from anticipated errors, forward recovery methods are used. Since the errors have 
been foreseen, either contingency update instructions can be specified or a means of deriving an 
acceptably correct value can be formulated. Both examples mentioned above, link failures and type 
conversion errors, are well suited to forward recovery methods. 

Forward recovery methods have two limitations. First, these methods are usually very system 
specific. Second, success of these methods depends on how accurately damages from faults can 
be predicted and assessed. Therefore, current forward recovery mechanisms can not be directly 
applied to a specific database system where information attacks are usually difficult to be predicted 
or assessed. 

To recover from unanticipated errors, backward recovery is considered to be the only viable 
approach. This requires that the entire state be replaced by a prior state that is consistent. Clearly, 
this approach is less than optimal because it requires that the system be halted temporarily. As 
observed earlier, this in itself may be the attacker's objective, particularly if the attacker can cause 
it to occur at a critical time. 

Database management systems (DBMSs) provide a rich set of recovery facilities [Dat95, Dat83, 
GR93, HR83, RC97, MHL+92]. These facilities require a clear understanding of the following two 
factors: 

• What are the correct database states since they determine when recovery is necessary 

• What kinds of failures are expected and their characteristics 

Whether a database state is correct or not is determined as follows: A database has associated 
with it a collection of integrity constraints. A database state is said to be correct if it satisfies the 
associated integrity constraints. DBMSs provide some support for specifying integrity constraints. 
Examples are primary key constraints, referential integrity constraints, and range constraints. 

Kinds of failures that are considered fall into these broad categories: 

• Transaction Failures: A transaction may abort because it is requested by the user or because it 
is forced by the system. The later may be the case if the transaction violates some consistency 
constraint or is involved in a deadlock. 
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• 

System Failures: These are failures that are caused by a fault in the software. 

Storage Media Failures: These failures include volatile storage (main memory and paging 
space), non-volatile on-line storage (database and log disks), and non-volatile off-line storage 
(e.g., tapes). 

• Communication Failures: These are failures in communication between two nodes of a dis- 
tributed system. 

To combat errors in the database, any transaction that violates the integrity constraints is 
aborted, in which case the database state stays correct and there is no need for further recov- 
ery. All other failures are considered unanticipated, and database recovery facilities mostly rely 
on backward recovery methods to restore the database to a consistent state. Although forward 
recovery by executing compensating transactions [GMS87, AJR97] is possible, this is considered 
highly application dependent and, therefore, is not provided any support by the system. 

Backward recovery in databases is performed by implementing two basic operations - undo and 
redo - on the stable database (i.e., the state of the database on non-volatile storage). An undo 
operation undoes updates by an aborted transaction to the stable database, while a redo operation 
redoes the updates by a committed transaction to the stable database. 

Although all these features deal well with many kinds of errors and system failures, their effec- 
tiveness against an information warfare attacker is limited [AJMB97]. Information warfare defense 
must consider the possibility that authorization controls could be defeated; that an authorized user, 
through greed, disgruntlement, or ideology, might become an attacker; or that an attacker might 
gain the use of a legitimate user's identity, with the corresponding authorizations. Any of these 
scenarios might result in the intentional corruption of the database by the introduction of incorrect 
or misleading data. Then, not only are some of these controls ineffectual against the problem, but 
those intended to maintain consistency among related data may help to spread the contamination. 

For example, entity and range constraints can ensure that individual data values exist and are 
legal, but they cannot guarantee that these values are reasonable or accurate for the particular 
entity being described. An attacker could disrupt functions that depend on the database either by 
inserting a wrong value for particularly critical data or by distorting the overall picture to render 
aggregates or frequency distributions significantly inaccurate by small changes to many individual 
items. Referential constraints ensure that interrelationships among entities are maintained, but an 
attacker could easily make corresponding changes in related data entities. If cascade or delete rules 
have been specified for the referential integrity constraints, they may actually assist the attacker, 
spreading the problem by making the corresponding changes automatically. Concurrency controls 
ensure only that malicious transactions are properly scheduled along with others.    Automated 
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replication helps keep data available in a distributed system in the face of individual system failures, 
but also serves as an efficient means of spreading erroneous data. 

There are several limitations to the backward recovery methods used in DBMSs, especially in face 
of malicious attacks. First, if a transaction is aborted, the transaction isolation property supports 
recovery, in a sense, by ensuring that it can be backed out without affecting other transactions. 
This would not arise, however, in the case of a malicious transaction, because it would appear 
to the DBMS like any other transaction and would complete normally. Undo/redo logs support 
recovery when the system fails with a number of uncompleted transactions in progress, but this 
also does not arise when transactions complete successfully but create bad data. Now', suppose 
that at some time after a malicious transaction has completed and been committed, the bad data 
it created is discovered through some means. (Perhaps a human user has noticed it.) Meanwhile, 
other innocent transactions may have read the bad data, based their computations on it, and 
unwittingly then written bad data of their own to other items (Informally, we say these innocent 
transactions are affected). The only general mechanism available to remove the effects of one or 
more prior, successfully committed transactions is backward recovery, which rolls the database 
back to a previously established checkpoint. However, the use of this mechanism poses a dilemma 
because the penalty for doing so is that all other, valid work that has been accomplished since the 
checkpoint was taken is also lost. 

2.2    Related Work in Fault Tolerance 

Recovery in fault tolerance focuses on error recovery with the purpose of eliminating errors from 
the system state [LA90, RLKL95]. Error recovery techniques can be classified into two categories- 
backward error recovery techniques and forward error recovery techniques. Backward error recovery 
techniques restore a prior state of a system in the hope that the earlier state will be error free. In 
contrast, forward error recovery techniques manipulate some portion of the current state to produce 
a new state, again in the hope that the new state will be error free. As we mentioned in Chapter 1 
backward recovery methods can cause too much rework, that is, the work of many good transactions 
may be lost; and forward recovery methods are usually very system specific, and the success of these 
methods depends on how accurately damages from faults can be predicted and assessed. 

Although execution of malicious transactions may not generate errors (malicious transactions 
can easily transform consistent states to consistent states), error recovery techniques can be adapted 
to do attack recovery by viewing a malicious transaction as a component with a. fault, thus the state 
transition produced by the transaction can be viewed as the manifestation of the fault, and the 
updates of the transaction can be viewed as errors produced by the manifestation. Besides database 
recovery mechanisms which we will address in next section, specific error recovery methods have been 
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proposed in many scenarios such as electronic switching systems (ESS) [KQ72], critical computer 
systems [KQ72, ALS78], program executing [TB82, Ber88], and cooperating processes [Ran77]. 

Error correcting codes [PW72] are widely used in computer systems to provide recovery from 
anticipated faults affecting memory units. Error correcting codes use redundancy to enable the 
position of the erroneous bit(s) to be calculated, its value re-inverted and thereby avert a failure 
of the memory. However, error correcting codes are not useful to attack recovery because state 
transitions produced by malicious transactions are often valid. 

In [TB82], a theory for the use of structural redundancy in data structures as a means of recover- 
ing from structural damage is developed. The redundant information can be checked for consistency, 
and this structure is corrected if inconsistent. However, redundant storage structures can not be 
used to detect and recover from damages caused by malicious transactions because execution of 
malicious transactions does not make the database state inconsistent. 

In [Ber88], recovery points are automatically established by a processor to provide tolerance of 
CPU failures. A recovery point is a point in time during the activity of a system for which the then 
current state may subsequently need to be restored. A recovery point is established by arranging 
that appropriate information is preserved so that at any subsequent time it will be possible to 
restore the recovery point. The idea of restoring recovery points is similar to that of checkpointing. 
However, restoring the database state to its latest checkpoint may unnecessarily lose the work of 
many good transactions. 

In [Ran77], recovery for cooperating processes is studies and it is found that the attempts to 
achieve backward error recovery can result in the domino effect problem. The domino effect of cas- 
cading rollback can seriously damage the system performance. Although synchronous checkpointing 
can avoid the domino effect, it is undesirable in many situations. To ensure progress in asynchronous 
checkpointing, message logging is adopted in various recovery protocols [BBG83, SY85, JZ90]. In 
[LA94], message semantics is exploited to reduce rollback in optimistic message logging recovery 
schemes. In particular, semantic relationships between operations indicated by messages are used 
to identify insignificant messages which can be logically removed from the computation without 
changing its meaning or result. Viewing transactions as processes, this report is similar to [LA94] 
in the sense that they both aim to reduce rollback overhead by exploiting the dependencies between 
processes (transactions). However, they are significantly different: (1) they address problems in 
different contexts, thus their models are very different; (2) they exploit different kinds of syntactic 
dependencies; (3) although commutativity is also exploited in [LA94], this report extends commu- 
tativity to a new kind of dependencies, denoted can precede, which is not addressed in [LA94]; (4) 
the rewriting techniques proposed in this report are not addressed in [LA94]. 
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2.3    Related Work in Databases 

Database recovery is one of the best success stories of software fault tolerance. However, database 
recovery mechanisms are not designed to deal with malicious attacks. Traditional recovery mech- 
anisms [BHG87] based on physical or logical logs guarantee the ACID properties of transactions - 
Atomicity, Consistency, Isolation, and Durability - in the face of process, transaction, system and 
media failures. In particular, the last of these properties ensure that traditional recovery mecha- 
nisms never undo committed transactions. However, the fact that a transaction commits does not 
guarantee that its effects are desirable. Specifically, a committed transaction may reflect inappro- 
priate and/or malicious activity. 

Although our repair model is related to the notion of cascading abort [BHG87], cascading aborts 
only capture the read-from relation between active transactions. However, it may be necessary to 
capture the read-from relation between two committed transactions, even if the second transaction 
began long after the first one committed. In addition, in standard recovery approaches cascading 
aborts are avoided by requiring transactions to read only committed data [KLS90]. 

There are two common approaches to handling the problem of undoing committed transactions: 
rollback and compensation. The rollback approach is simply to roll back all activity - desirable 
as well as undesirable - to a point believed to be free of damage. Such an approach may be used 
to recover from inadvertent as well as malicious damage. For example, users typically restore files 
with backup copies in the event of either a disk crash or a virus attack. In the database context, 
checkpoints serve a similar function of providing stable, consistent snapshots of the database. The 
rollback approach is effective, but expensive, in that all of the desirable work between the time 
of the backup and the time of recovery is lost. Keeping this window of vulnerability acceptably 
low incurs a substantial cost in maintaining frequent backups or checkpoints, although there are 
algorithms for efficiently establishing snapshots on-the-fly [AJM95, MPL92, Pu86]. 

The compensation approach [GM83, GMS87] seeks to undo either committed transactions or 
committed steps in long-duration or nested transactions [KLS90] without necessarily restoring the 
data state to appear as if the malicious transactions or steps had never executed. There are 
two kinds of compensation: action-oriented and effect-oriented [KLS90, Lom92, WHBM90, WS92]. 
Action-oriented compensation for a transaction or step Tt compensates only the actions of T-. 
Effect-oriented compensation for a transaction or step T{ compensates not only the actions of Ti} 

but also the actions that are affected by Tt. For example, consider a database system that deals 
with transactions that represent purchasing of goods. The effects of a purchasing transaction Tx 

might have triggered a dependent transaction T2 that issued an order to the supplier in an attempt 
to replenish the inventory of the sold goods. In this situation, the action-oriented compensating 
transaction for 7\ will just cancel the purchasing; but the effect-oriented compensating transaction 
for 7\ will cancel the order from the supplier as well. Although a variety of types of compensation 
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are possible, all of them require semantic knowledge of the application. 
The notion of commutativity, either of operations [LMWF94, Wei88, Kor83] or of transactions 

[SKP088], has been well exploited to enhance concurrency in semantics-driven concurrency control. 
There are several types of commutativity. In operation level, for example, two operations 0\ and 
02 commute forward [Wei88] if for any state s in which Ox and 02 are both defined, 02{Oi(s)) = 
Oi(02(s)); 02 commutes backward through [LMWF94] Ox if for any state s in which Ox02 is 
defined, 02(Oi(s)) = Oi(02(s)); Ox and 02 commute backward [LMWF94, Wei88] if each commutes 
backward through the other. In transaction level, for example, two transactions commute [SKP088] 
if any interleaving of the actions of the two transactions for which both transaction commit yields 
the same final state; Two transactions failure commute[SKP088] if they commute, and if they can 
both succeed then a unilateral abort by either transaction cannot cause the other to abort. Our 
notation can precede is adapted from the commutes backward through notation for the purpose of 
taking advantage of transaction level commutativity. 

In [BK92], semantics of operations on abstract data types are used to define recoverability, which 
is a weaker notion than commutativity. recoverability is a more general notion than can follow in 
capturing the semantics between two operations or transactions, but can follow is more suitable for 
rewriting histories, recoverability is applied to operations on abstract data types but can follow is 
applied to transactions, recoverability is defined based on the return value of operations, and thus 
a purely semantic notion; but can follow is defined based on the intersections of read and write sets 
of two transactions. 

Korth, Levy, and Silberschatz [KLS90] address the recovery from undesirable but committed 
transaction. The authors build a formal specification model for compensating transactions which 
they show can be effectively used for recovery. In their model, a variety of types of correct com- 
pensation can be defined. A compensating transaction, whose type ranging from traditional undo, 
at one extreme, to application-dependent, special-purpose compensating transactions, at the other 
extreme, is specified by some constraints which every compensating transaction must adhere. Dif- 
ferent types of compensation are identified by the notion of compensation soundness. A history X 
consisting of T, the compensating-for transaction; CT, the compensating transaction; and deplT), 
a set of transactions dependent upon T, is sound if it is equivalent to some history of only the 
transactions in dep(T). 

Though a compensating transaction in our model can be specified by their model, our notion of 
a repaired history is more suitable for rewriting histories than the notion of sound history, since the 
constraint that compensating transactions can only be applied to the final state of a history greatly 
decreases the possibility of finding a sound history, even if commutativity is fully exploited. We 
can get a feasible history by rewriting the original history based on can follow, can precede, invert 
and cover. The resulting history augmented with the corresponding undo-repair actions or fixed 
compensating transactions yields the desired repair. 
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2.4    Related Work in Security 

Information in computer systems is vulnerable to several kinds of threats, namely actions or events 
that might prejudice security [Den83]. For example, threats to confidentiality include browsing, 
leakage, and inference; threats to integrity and availability include tampering and accidental de- 
struction. The vulnerability not only incurs information attacks (attacks for brevity) which are 
the acts of trying to exploit it to degrade the security of computer systems, but also results in 
the development of countermeasures which are actions, devices, procedures, techniques, or other 
measures that reduce the vulnerability. 

Discretionary access control (DAC), for example, is a widely used countermeasure, in which the 
owner of information determines at his or her discretion who else to share the information with. 
However, it is susceptible to to Trojan Horse attacks. A Trojan Horse is a malicious piece of code 
which is embedded within a host program. The Trojan Horse allows the host program to do its 
own job and has no visible effect on the latter's output. At the same time, however, the Trojan 
Horse does something malicious without directly violating the security rules of the system. The 
reason Trojan Horses work is because a program run by a user usually inherits the same unique ID, 
privileges and access rights as the user. 

To conquer the vulnerability of DACs to Trojan Horse attacks, mandatory access control (MAC) 
was proposed by Bell and LaPadula in [BL76]. The Bell-LaPadula model divides the entities in a 
computer system into abstract sets of subjects and objects. An object, i.e., a record, a page, a file, 
etc., is a passive entity that contains or receives information. Access to an object potentially implies 
access to the information it contains. A subject, on the other hand, is an active entity, generally 
in the forms of a process of device that causes information to flow among objects. In addition, 
each object (subject) is associated with a mandatory security class, which can not be modified by 
any user process. A security class consists of two components - a hierarchical component called 
the security level, and a non-hierarchical component called the category. A multilevel secure (MLS) 
system is one which partitions its objects and subjects into security classes. 

The Bell-LaPadula security policy can be summarized by the following two rules: 

1. Simple security property:  No subject may read information classified above its security 
level. 

2. * property: No subject may write information classified below its security level. 

Although the MAC rules can prevent direct Trojan Horse attacks, information can still be leaked 
through what are known as covert channels. A covert channel is a communication channel based on 
usage of system resources that allows two cooperating processes to transfer information in a manner 
violating the security policy of the system. Two types of covert channels have been identified just 
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far. They are covert storage channels and covert timing channels. Note that a covert channel is 
usually the result of a specific implementation of an algorithm (a protocol) rather than inherently 
present in the algorithm (protocol). However, sometimes such a communication channel is inherent 
to an algorithm (a protocol) and consequently appears in every implementation of the algorithm 
(protocol). This kind of communication channels are often denoted as signaling channels. 

It has been found that signaling channels exist in classical transaction processing protocols 
(described in Chapter 3), especially concurrency control protocols, when a database system using 
these protocols is extended to a multilevel secure database system [AJB97]. Eliminating such 
signaling channels is one of the main challenges in developing a multilevel secure database system. 
Readers can refer to Section 7.1.1 for more relevant issues in multilevel secure transaction processing. 

2.5    Related Work in Information Warfare 

Although the area of IW defense is new, there is some relevant work. Graubert, Schlipper, and 
McCollum identified database management aspects that determine the vulnerability to information 
warfare attacks [GSM96]. McDermott and Goldschlag [MG96a, MG96b] developed storage jam- 
ming, which can be used to seed a database with dummy values, access to which indicates the 
presence of an intruder. Although data jamming is primarily intended for detection, it could also 
help deceive the attacker and confuse the issue of which data values are critical. Ammann et al. 
[AJMB97] take a detailed look at the problem of surviving IW attacks on databases. They identify 
a number of phases of the IW process and describe activities which occur in each of them. They 
use a color scheme for marking damage and repair in databases and a notion of integrity suitable 
for databases that are partially damaged to develop a mechanism by which databases under attack 
could still be safely used. 

In [JLM98], isolation is proposed as an IW defense mechanism that has been applied to protect 
systems from damage while investigating further. A scheme is described that isolates the database 
transparently from further damage by users suspected to be malicious, while still maintaining 
continued availability for their transactions. The interactions between the isolation component 
and other IW components such as the intrusion detector and the trusted recovery manager are also 
discussed. 

As an earlier phase of trusted recovery (repair), intrusion detection, with the purpose of detect- 
ing a wide range of security violations ranging from attempted break-ins by outsiders to system 
penetrations and abuses by insiders, has attracted substantial research interests [Lun93, MHL94]. 
The methodology of intrusion detection can be divided into two categories: anomaly detection and 
misuse detection. Anomaly detection compares relevant data by statistical or other methods to 
representative profiles of normal, expected activity on the system or network. Deviations indicate 
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suspicious behavior [JV94]. Misuse detection examines sniffer logs, audit data, or other data sources 
for evidence of operations, sequences, or techniques known to be used in particular types of attacks 
[Ilg93, GL91, PK92, IKP95, SG91, SG97, LWJ98]. Misuse detection techniques can not be used to 
detect new, unanticipated patterns that could be detected by anomaly detection techniques, but 
they perform better in detecting known attacks. 

However, intrusion detection primarily focuses at the operating system level. Although work 
is ongoing to extend it to networks of distributed systems, it does not yet provide any help with 
intrusion detection at the level of DBMS. In a DBMS, the problem can be particularly difficult, since 
it involves detecting that data inserted into the database is unreasonable or incorrect. Although data 
jamming can be used to detect intruders, it usually can not be used to detect malicious transactions 
because the behavior of malicious transactions is just like the behavior of normal transactions which 
donot access dummy values. 

Compared with other works in information warfare, this report differs in that it focuses on 
repair, as opposed to management, detection, protection, or availability, as cited above. 
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SECTION 3 

Modelling the Underlying System 

This chapter presents the foundation upon which a trusted recovery framework is built in later 
chapters. We explain what we mean by a database system and go into some details about our 
assumptions concerning database states, transactions, histories, and recovery models. We also 
explain what we mean by a database system that can survive IW attacks and go into some details 
about our assumptions concerning attacks, attack detection, and attack recovery. 

3.1    Modelling Databases 

In our framework, a database is specified as a collection of of data items (objects), along with some 
invariants or integrity constraints on these data items. At any given time, the database state is 
determined by the values of the items in the database. A change in the value of a data item changes 
the state. The integrity constraints are predicates defined over the data items. For example, in a 
banking system where a database is composed of a set of customer accounts, an integrity constraint 
over the database can be: 'the balance of each account must be greater than or equal to zero'. A 
database state is said to be consistent if the values of the data items satisfy the given integrity 
constraints. Otherwise, the state is inconsistent. 

3.1.1    Transactions and Histories 

A transaction is an execution of a program that transforms one database state to another. As- 
sociated with each transaction is a set of preconditions which limit the database states to which 
a transaction can be applied. A transaction is said to be defined on a database state if the state 
satisfies every precondition of the transaction. 
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From a more syntactic perspective, we model a transaction Tt as an ordered pair (£\, <t), where 
E2 is the set of operations in Th and <x indicates the execution order of those operations. A read 
(write) operation executed by a transaction Tt on item x is denoted as rt[x] (wz[x]). Two operations 
conflict if one is write. We assume that there is at most one n[x] and at most one Wi[x] in £i5 and 
we further assume that if rt[x] and Wi[x] are both in £,-, then n[x] <,- Wi[x]. 

The primary purpose of a database management system (DBMS) is to carry out transactions. 
The traditional transaction model relies on the properties of atomicity, consistency, isolation, and 
durability. Atomicity ensures that the execution of a transaction is atomic, that is, a transaction 
either commits (denoted a), with all its changes being applied to the database, or aborts (denoted 
at), with all its changes being discarded. Consistency ensures that a transaction when executed 
by itself, without interference from other transactions, maps the database from one consistent 
state to another. Isolation ensures that no transaction ever views the partial effects of some other 
transaction even when transactions execute concurrently. Durability ensures that once a transaction 
successfully commits, all the state transformations of the transaction are made durable and public, 
even if there is a failure. 

Transactions are usually executed concurrently for high performance. The execution of a set of 
transactions, denoted T = {T1:T2, ...,T„}, is modeled by a structure called a history. A history H 
over T is a partial order (£, <H), where £ is the set of all operations executed by transactions in 
T, and <H indicates the execution order of those operations. Two histories are conflict equivalent 
if (1) they are defined over the same set of transactions and have the same operations, and (2) they 
order conflicting operations of nonaborted transactions in the same way. 

The correctness of concurrent execution of transactions is typically captured by the notion of 
serializability [BHG87]. A history H is serial if, for any two transactions Tt and Tj that appear in 
H, either all operations of Tz appear before those of 7} or vice versa. A history H is serializable 
if its committed projection is conflict equivalent to a serial history. Serializable histories can be 
produced by many kinds of concurrency control protocols and two-phase locking (2PL) [BHG87], 
for example, is the most widely used concurrency control protocol in current database applications. 

To ensure correctness in the presence of failures the DBMS must produce histories that are not 
only serializable but also recoverable. For an item x, we say that Tt reads x from Tj in history H 
if (1) Wj[x] <H ri[x}; (2) a5 does not precede n[x] in <H; and (3) if there is some wk[x] such that 
wj[x] <H wk[x] <H Ti[x], then ak <H n[x]. We say that T{ reads from Tj in H if Tj reads some item 
from Tj in H. A history H is recoverable if, whenever Tt reads from 7} (i ^ j) in H and c, e H, 
Cj <H a. A history H is strict if whenever Wj[x] <H Oi[x], either aj <H ot[x] or Cj <H Oi[x] where 
Oi[x] is ri[x] or Wi[x\. 
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3.1.2    A Database Recovery Model 

Database recovery is the activity of ensuring that software and hardware failures, such as transac- 
tion failures, systems failures, storage media failures and communication failures, do not corrupt 
persistent data. We model a DBMS with a focus on recovery using the TM-scheduler-DM model 
which is proposed in [BHG87] and shown in Figure 3.1. 

In the TM-scheduler-DM model, the data manager is in charge of recovery which consists of two 
components: a cache manager (CM), which provides operations to fetch data from stable storage 
into volatile storage, and to flush data from volatile to stable storage, and a recovery manager 
(RM) which processes Read, Write, Commit, Abort and Restart operations. In particular, the RM 
interface is defined by five procedures: 

1. RM - Read(Ti,x) : read the value of x for transaction T*; 

2. RM - Write(Ti, x, v) : write v into x on behalf of transaction T{; 

3. RM — Commit(Ti) : commit T^; 

4. RM - Abort(Tz) : abort Tt; and 

5. Restart : bring the stable database to the committed state following a system failure. 

We assume the classical write-ahead logging (WAL) [MHL+92] is enforced in the TM-scheduler- 
DM model to ensure correct restarts. WAL requires that for each page the page's log records be 
flushed prior to overwriting its persistent (stable) copy. This is done by the CM under partial 
controls from the RM. 

3.2    Modelling IW Attack and Defense 

In order to degrade the confidentiality, integrity and availability of a database system, IW attack on 
the system can take many forms such as physical attack by destroying the stable storage (disks), Tro- 
jan Horse attack by providing the database administrator with malicious softwares, and operating 
system level attack by modifying database files without the interference of the DBMS. However, in 
order to concentrate on the problem of interest, we make the following two assumptions. Note that 
all the other kinds of attacks except malicious transactions are already well studied [Den83, GS96]. 

1. We assume that the behavior of the DBMS meets its specification, that is, there are no Trojan 
Horses in the system. 

2. We assume that all IW attacks to the system are through malicious transactions, that is, there 
are no attacks bypassing the interference of the DBMS. 
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3.2.1    Model of a DBMS That Can Survive IW Attacks 

We model a database system that can survive IW attacks with the architecture which is proposed 
in [JLM98] and shown in Figure 3.2. 

As mentioned in Chapter 1, information warfare defense must consider the whole process of 
attack and recovery. This requires a recognition of the multiple phases of the IW process. The 
phases specified in Figure 3.2 and the activities that occur in each of them are as follows. Note that 
damage assessment and repair are the focus of this report. 

Prevention: The defender puts protective measures into place. In particular, the Policy Enforce- 
ment Manager (PEM) enforces the access controls in accordance with the system security pol- 
icy, such as MAC and DAC, on every access request. We assume no data access can bypass it. 
In addition, the system can be further protected by isolating the database transparently from 
further damage by users suspected to be malicious, while still maintaining continued avail- 
ability for their transactions. This is achieved primarily by the Isolation Manager. Detailed 
discussion on isolation is out of the scope of this report. 

Intelligence gathering: The attacker observes the system to determine its vulnerabilities and 
find the most critical functions or data to target. This phase is not directly specified in Figure 

Attack: The attacker carries out the resulting plan. In particular, the attacker first gets the 
required authorizations then issues some specific malicious transactions to the system (PEM). 

Detection: The defender observes symptoms of a problem and determines that an attack may 
have taken place or be in progress. In particular, the Intrusion Detection and Confinement 
Manager applies either anomaly detection techniques, or misuse detection techniques, or both 
to identify suspicious behaviors as well as intrusions by malicious transactions. The detec- 
tion is typically processed based on the information provided by the audit trail and/or the 
transaction logs. 

Damage assessment: The defender determines the extent of the problem, including failed func- 
tions and corrupted data. In particular, when a malicious transaction is detected, the Intrusion 
Detection Manager notifies the Damage Confinement and Assessment Manager to confine and 
assess the damages caused by the transaction. The confinement can be done by notifying the 
PEM to restrict the following accesses of the user who issues the transaction, i.e., rejecting 
his/her further accesses. The assessment can be done by identifying which good transactions 
are affected by the malicious transaction and which data items are updated by either the 
malicious transaction or the affected good transactions. 
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Reconfiguration: The defender may reconfigure to allow operation to continue in a degraded 
mode while recovery proceeds. In particular, after the damages are assessed, the Reconfig- 
uration Manager reconfigures the system to allow accesses to continue in a degraded mode 
while repair is being done by the Damage Recovery Manager. For example, the system can 
be continuously reconfigured to reject accesses to newly identified damaged data items and to 
allow accesses to newly recovered items. 

Repair: The defender recovers corrupted or lost data and repairs or reinstalls failed system func- 
tions to reestablish a normal level of operation. In particular, after the Damage Assessment 
Manager informs which data items are damaged, and/or which good transactions are affected, 
the Damage Recovery Manager performs concrete repair algorithms, which will be developed 
in following chapters, to restore each damaged item to its cleaned value, and/or to remove the 
direct or indirect effects of the detected malicious transaction from the database. It should 
be noticed that in many situations damage assessment and recovery are coupled with each 
other closely. For example, damages can be recovered during the process of identifying and 
assessing damages. It should also be noticed that new malicious transactions can be detected 
during the process of assessing and recovering from the damages caused by older transactions. 

Fault treatment: To the extent possible, the weaknesses exploited in the attack are identified 
and steps are taken to prevent a recurrence. This phase is not directly specified in Figure 3.2. 

3.2.2    Detecting Malicious Transactions 

As shown in Figure 3.2, taking place in an earlier phase of the information warfare countermeasures, 
detection (identification) of malicious transactions enables the processes of damage assessment and 
attack recovery. Although the effectiveness of damage assessment and recovery is heavily dependent 
on the effectiveness of malicious transaction detection, the techniques of damage assessment and 
recovery are almost independent of that of malicious transaction detection. This is also the reason 
why we can make the following assumption to enable us to concentrate on the techniques of damage 
assessment and recovery. 

• We assume that the Intrusion Detection Manager can detect malicious transactions effectively. 

In fact, there are many ways where such an identification (detection) could be specified. For 
example, all transactions associated with a specific user (i.e., an attacker), all transactions originat- 
ing in a particular time window, or all transactions originating in an untrusted part of a network 
might comprise such a specification. Moreover, since the identification of an attacker may lead 
to the detection of a set of malicious transactions submitted by the attacker, traditional intrusion 
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detection techniques for detecting malicious users [Lun93, MHL94, Den87] can be incorporated to 
do malicious transaction detection. Finally, more effective malicious transaction detection can be 
performed by exploiting transaction semantics. For example, in a banking system, from the same 
account a transaction withdrawing $10000 is usually more probable to be malicious than a transac- 
tion withdrawing $1000. Concrete malicious transaction identification mechanisms are outside the 
scope of this report. 

3.2.3    Three Attack Recovery Models 

The recovery methods that can be potentially enforced by the Damage Recovery Manager (see 
Figure 3.2) can be formalized around following three recovery models: HotStart, WarmStart, and 
ColdStart. HotStart is primarily a forward error recovery method, and ColdStart is primarily 
a backward error recovery method, but each of the three models incorporates both forward and 
backward error recovery to some degree. The three recovery models, HotStart, WarmStart, and 
ColdStart, are illustrated in Figure 3.3. 

The HotStart model is appropriate for attacks where the system can or must respond trans- 
parently to the user. Suppose an attacker introduces a corrupt binary executable at a particular 
site and uses that executable to launch an availability, trust, or integrity attack. The attack can 
be handled with a HotStart model if two conditions hold. First, the attack must be detected early 
enough that damage is confined to the executable. Second, a hot standby of the executable - an 
uncorrupted standby, preferably at a different location - must be available to take over. The hot 
standby effects a recovery transparent to the user, even though the system is in a degraded state. 
It is still necessary to identify the path by which adversary introduced the corrupt binary, disable 
that path, and restore the proper binary from a back-up store. 

Sometimes it is not possible to hide the effects of an attack from the users, and in these cases 
a WarmStart model is desirable. Damage can be confined such that key services are available, 
trustworthy, and reliable. Nonetheless, the user is aware of the attack because the system is visibly 
degraded. The exact level of service depends on the extent of the attack. Some functionality may 
be missing, untrustworthy, and/or based in incorrect information. Key mechanisms for managing 
WarmStarts are checkpoints for quick recovery and audit trails for intercepting the attacker. 

The ColdStart model is appropriate for the most severe attacks. The chief difference from 
the WarmStart model is that the attacker succeeds in halting the delivery of system services. 
The goal of the ColdStart recovery is to bring the system back up as quickly as possible to a 
usable, trustworthy, and consistent state. Policies and algorithms are required to support efficient 
ColdStarts. Compensation for unrecoverable components - for example, leaked information - is also 
crucial. 

29 



Tl T2     • 
T 

n 

Read, Write, Commit, Abort 

Transaction 
Manager (TM) 

Read, Write, Commit, Abort 

Scheduler 

Restart 
K.eaa, wrue, Lunmin, AUUU 

r 

J 

Recovery 
Manager (RM) Read, 

Fetch, 
Write 

<^Z          Z^\ Flush 

Cache 
Stable 
database 

.       Log 

Stable 
storage 

Cache 
Manager (CM) Read, 

Write 

\ 

Volatile 
storage 

Data Manager (DM) 

Figure 3.1: Model of a DBMS 

30 



1 
SSO 

Audit 
Trail 

fi 

Intrusion Detection 
and Confinement 
Manager 

Access 

Requests 

User 

T 
Policy Enforcement 
Manager 

1 
Damage Confinement 
and Assessment 
Manager 

vv 
Reconfiguration 
and Damage 
Recovery Manager 

Main Data Version 

A Merge A 
Suspicious 
Version 

Merge 

Suspicious 
Version B 

Isolation 
Manager 

Figure 3.2: Architecture of IW Defense 

HotStart:   Transparent Recovery 

WarmStart:    Reconfiguration Recovery 

ColdStart:   Restart Recovery 

Figure 3.3: Recovery Models 

31 



SECTION 4 

The Framework 

This chapter presents a high-level framework within which trusted recovery can be supported and 
enforced. In particular, this chapter presents two recovery models to support 'undoing' undesirable 
committed transactions, such as malicious transactions and affected good transactions. 

In previous presentation, we introduced the notation 'undo a committed transaction' because: 
(1) operations with the same operational semantics as traditional undos are needed to remove the 
effects of such committed transactions as malicious transactions and affected benign transactions, 
hence for simplicity we use the same word, namely 'undo', to denote such operations; and (2) it is 
very desirable to build our repair model on top of current DBMSes instead of building the model 
from scratch, because in this way current recovery mechanisms, such as undo and redo, can be 
directly exploited thus much more efficiency can be achieved, hence using notations consistent with 
traditional database recovery mechanisms is desired. 

However, in traditional database systems 'undo' is a recovery mechanism that can only be ap- 
plied to uncommitted transactions, and durability, a fundamental property of transaction processing, 
implies that there is no automatic function for revoking a committed transaction. Therefore, it is 
unclear, even confusing, to say 'undo a committed transaction'. Moreover, in traditional recovery 
'undo a transaction' means removing all the changes of the transaction such that its effects will 
not be made durable and public to other transactions, however, in trusted recovery before a (com- 
mitted) transaction is 'undone', its effects have already been made durable and disclosed to other 
transactions. Therefore, it is necessary to clarify the notation 'undo a committed transaction'. And 
it is desirable that we can extend classical recovery models (i.e., the model proposed in Figure 3.1) 
to do trusted recovery such that the durability property will not be violated. 

For this purpose, this chapter presents two novel trusted recovery models to bridge the theoretical 
gap between classical database recovery theory and trusted recovery practice: (1) a flat-transaction 
recovery model where committed transactions are 'undone' by building and executing a specific 
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Undo Transactions 

Commercial Database 

Figure 4.1: Flat Transaction Model 

type of transactions, namely, undo transactions. It is simple and can fit in legacy system, but 
traditional undo facilities can not be directly exploited. (2) a nested-transaction model where a flat 
commercial history is virtually extended to a two-layer nested structure where originally committed 
transactions turn out to be subtransactions hence traditional undo operations can be directly applied 
to the model without violating the durability property. It fits in with legacy system, and inherently 
supports traditional undo. 

4.1    Modelling Trusted Recovery by Flat Transactions 

The flat transaction model is shown in Figure 4.1. This model has the durability property because 
committed transactions, no matter bad or good, will not be undone. Instead, for each committed 
transaction Tt which we want to 'undo', we build and execute a specific undo transaction (denoted 
Ui) to restore the data items updated by T{ to their before states. In other words, the notion 'undo 
a committed transaction %\ in the flat transaction model, means the process of first building U{ 
then executing it. 

To undo a committed transaction Tt, Ui is built as follows: for each update (write) operation of 
Th a write operation is appended to the program of U which writes the before value of the item 
updated. Therefore, Ut is composed of only write operations. 

The execution off/, is just like a normal transaction, for example, it can be executed concurrently 
with other normal or undo transactions. However, the effects of undoing a committed transaction 
T{ and the effects of undoing an uncommitted transaction 7} can be quite different. Undoing T{ 

removes the direct effects of Tu that is, it restores every item updated by Tu however it can not 
remove the indirect effects of Tt (if there are any), that is, it can not restore the items updated 
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not by Ti but by some transactions affected by T{. In contrast, undoing Tj can remove all the 
effects of Tj because the isolation property ensures that Tj can be backed out without affecting 
other transactions. 

Figure 4.1 illustrates the idea. G3 is affected by Bx because G3 reads x which is updated by B1. 
It is clear that executing Uj can restore items x and y to clean states, but after Ui is executed item 
z can still stay in a dirty state because the value of z may have been affected by that of x read by 
G3. Therefore, executing t/3 is required to remove the indirect effects of Bx- In practice, whether 
or not a system can be recovered from a malicious transaction Bu that is, both of its direct and 
indirect effects can be removed, depends on whether or not we can identify these indirect effects 
accurately and execute the corresponding undo transactions in a proper order. These issues will be 
addressed in Chapter 5. 

The advantage of the flat transaction model is that (1) it is simple, and (2) it fits in legacy system, 
not design from scratch. The drawback is that traditional undo operations need be enforced by 
building and executing undo transactions, thus classical undo facilities can not be directly exploited. 

4.2    Modelling Trusted Recovery by Nested Transactions 

The flat transaction model undos a committed transaction by executing a specific undo-transaction. 
Although undo-transactions are easy to build, traditional undo mechanisms can not be directly 
applied. It is desirable that we can exploit classical undo facilities directly without sacrificing 
performance objectives. We achieve this goal by proposing a nested transaction recovery model 
which is shown in Figure 4.2. 

Consider a commercial database system where a history is composed of a set of (committed) 
flat transactions *, for a history to be repaired, we build the model by introducing a specific virtual 
transaction, called malicious activity recovery transaction (MART), on top of the history, and letting 
the MART be the parent of all the flat transactions in the history. As a result, the history is evolved 
into a nested structure where the MART is the top-level transaction and each flat transaction turns 
out to be a subtransaction whose execution is controlled by the MART. 

Since in nested transaction processing [Mos85, LMWF94, GR93], subtransactions can theoreti- 
cally be undone or compensated at anytime before the corresponding top-level transaction commits, 
so the model inherently supports undoing flat (commercial) transactions. This is also one of the 
reasons why we use the word 'undo' to denote one of our basic repair operations. 

One interesting question about the model is 'Can a MART commit or abort, and, if this is 
possible, how to achieve this ?' It is clear that aborting the MART is equivalent to rolling back the 

'Note that the recovery model can be easily extended to incorporate histories of multilevel or nested transactions. 
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Figure 4.2: Nested Transaction Model 

history to its initial state. However, how to commit MART is tricky. In fact, the MART should 
be able to be committed, because as the system keeps on executing new transactions the history 
can get tremendous long and the MART need to maintain too much information for the purpose 
of trusted recovery if the MART never commits. In practice, such information may no longer be 
available for a transaction Tt after Tx is committed for a long period of time. However, if we commit 
a MART at the end of the current history and start another new MART, then the work of some 
malicious transactions in the history supervised by the old MART can be committed before they 
are recovered. Hence we need to commit the work of good transactions while keeping the ability 
to recover from bad transactions. This goal is achieved by the following MART splitting protocol 
which is motivated by [PKH88]. 

• When the history is recovered to a specific point pu that is, it is believed that the effects of 
every bad transaction prior to pt are removed, we can commit the work of all the transactions 
prior to Pl by splitting the MART into two MARTs: one supervising all the transactions 
prior to pu the other supervising the latter part of the history. Interested readers can refer to 
[PKH88] for a concrete process of transaction splitting which is omitted here. 

• We commit the MART which supervises the part of the history prior to p{. From the perspec- 
tive of trusted recovery, the corresponding log records prior to p{ can be discarded to alleviate 
the system's resource consumption. 

We keep the other MART active so it can still be repaired. 
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It is clear that the nested recovery model fits in current commercial database systems very well 
thus trusted recovery need not be designed from scratch. First, each commercial flat transaction, 
as a subtransaction in the model, can be undone by directly applying traditional undo operations. 
In fact, we can see that in the model a savepoint is generated after each subtransaction commits 
so that the MART can rollback its execution to the beginning of any flat transaction. Second, as a 
conceptual framework, the model need never be really implemented to enable undoing committed 
(commercial) transactions.  Therefore, the performance penalty caused by applying this model is 

very small. 
The drawback of this model is that after a MART is committed there is no automatic ways 

to undo a flat transaction supervised by the MART even if the transaction is later identified as a 
malicious transaction. Therefore, from the perspective of trusted recovery, decisions to commit a 
MART should be made carefully . 
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SECTION 5 

Trusted Recovery by Syntactic 
Approaches 

After constructing in Chapter 3 the foundation of the proposed trusted recovery scheme and formal- 
izing in Chapter 4 'undoing committed transactions', the fundamental trusted recovery operation, 
this chapter turns to address concrete trusted recovery mechanisms. In particular, this chapter 
presents the syntactic aspect of the proposed scheme where both coldstart and warmstart recovery 
algorithms are developed, but only syntactic dependencies between transactions are exploited. 

In this chapter, if there is no specific clarification, the operation 'undo a committed transaction' 
can be understood as being modeled either by the flat transaction model or by the nested transaction 
model. 

5.1    The Model 

Assumptions 

We assume that the histories to be repaired are serializable histories generated by some mecha- 
nism that implements a classical transaction processing model [BHG87]. We denote committed 
undesirable or bad transactions in a history by the set B = {BUB2, ...,Bm}. We denote commit- 
ted desirable or good transactions in a history by the set G = {Gu G2, ■•-, Gn}. Since recovery 
of uncommitted transactions is addressed by standard mechanisms, we consider a history H over 
BUG. 
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Transaction Dependencies 

One simple repair is to roll back the history until at least the first bad transaction, and then try 
to reexecute all of the undone good transactions. The drawback of this approach is that many 
good transactions may be unnecessarily undone and reexecuted. Consider the following history 

over (Bi,Gi,G2y- 

Hi : rBl[x]wBl[a;]cßlrGl[i/]rG2[x]wGl[2/]cGl^G2WcG2 

It is clear that d need not be undone and reexecuted since it does not conflict with Bx. We 
formalize the notion that some - but not all - good transactions need to be undone and reexecuted 

in the usual way: 

Definition 1 Transaction Tj is dependent upon transaction T in a history if there exists a data 
item x such that: 

1. Tj reads x after % has updated x; 

2. Ti does not abort before Tj reads x; and 

3. every transaction (if any) that updates x between the time T{ updates x and Tj reads x is 
aborted before Tj reads x. 

Every good transaction that is dependent upon some bad transaction needs to be undone and 
reexecuted. There are also other good transactions that also need be undone and reexecuted. 
Consider the following history over (Bi,Gi,G2): 

H2 : rBl[x}wBl[x]cB1rGl[x}wGAx}rG1[y]wG1[y}cG1rG2[y}wG2[y}cG2 

G2 is not dependent upon Bu but it should be undone and reexecuted, because the value of x which 
Gi reads from Bx may affect the value of y which G2 reads from Gx. This relation between G2 and 
Bi is captured by the transitive closure of the dependent upon relation: 

Definition 2 In a history, transaction 7\ affects transaction T2 if the ordered pair (Tu T2) is in 
the transitive closure of the dependent upon relation. A good transaction Gx is suspect if some bad 
transaction Bi affects G\. 

It is convenient to define the dependency graph for a set of transactions S in a history as 
DG{S) = (V, E) in which V is the union of S and the set of transactions that are affected by S. 
There is an edge, T -> Tj, in E if T2 G V, Tj G {V - S), and 7) is dependent upon T{.  Notice 
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Figure 5.1: Dependency Graph for History H3 

that there are no edges that terminate at elements of 5; such edges are specifically excluded by 
the definition. As a result, every source node in DG(B) is a bad transaction, and every non-source 
node in DG(B) is a suspect transaction. 

As an example, consider the following history over (Bi,B2, Gx, G2, G3, G4): 

H3 : rBl[x}wBl[x)cBjGl{x}wGl[x)rG3[z]wGz[z\cG3rGl[y}wGl[y]cGl 

rG2 [y)wG.2 [y}rB.2 [z]wB.2 [z}cB2rG2 [v]wG2 [v]cG2rGi [z}wGi [z}rGi [y]wGi [y]cG< 

DG(B) is shown in Figure 5.1. 
If a good transaction is not affected by any bad transaction (for example, G3 in H3), then the 

good transaction need not be undone and reexecuted. In other words, only the transactions in 
DG(B) need be undone, and only the suspect transactions in DG(B) need to be reexecuted. From 
the recovery perspective, the goal is to first get DG(B), then undo all these transactions. 

Before we continue, we modify our model with respect to blind writes.* We developed the model 
as is because it captures exactly the set of suspect transactions that must be undone, assuming 
that further information about the transactions - such as data flow or semantic information - is 
unavailable. Specifically, the model includes an optimization for blind writes. Suppose a transaction 
in B writes x and subsequently a good transaction blindly overwrites x. Then the dependent upon 
chain is broken, and other good transactions that subsequently read x will not necessarily appear 
in DG{B). 

From the perspective of the recovery algorithms developed in this report, we view this opti- 
mization as counterproductive for two reasons. First, blind writes are relatively infrequent in many 
applications. Second, accommodating blind writes would complicate the recovery algorithms we 
present. We make the design decision that the optimizations of blind writes are not worth the 
additional storage and processing time that would be required in the algorithms. To accommodate 

*A transaction blindly writes a data item if it writes a value without first reading the item. 
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this decision, for the remainder of this report we assume that transactions do not issue blind writes. 
That is, if a transaction writes some data, the transaction is assumed to read the value first. 

We say a data item x is dirty if x is in the write set of any bad or suspect transaction. From 
the data perspective, the goal is to restore each dirty data item to the value it had before the 
first transaction in DG(B) wrote it. The resulting state will appear as if the bad and suspect 
transactions never executed. 

It is clear that the dependency graph of history H can not be built without the corresponding 
read information for transactions in H. Unfortunately, the read information we can get from the 
logs for traditional recovery purposes such as physical logs, physiological logs, and logical logs 
[GR93], is usually not enough for constructing the DG(B). Therefore, the efficient maintenance 
of read information is a critical issue. In particular, there is a tradeoff between the extra cost we 
need to pay besides that of traditional recovery facilities and the guaranteed availability of read 
information. 

There are several possible ways to maintain and capture read information. For example, 

• augment the write log to incorporate read information. 

• extract read sets from the profiles of transactions. 

• extract read information from physiological or logical logs. 

• build an online dependency graph. 

Based on the amount of available read information provided by these methods, we can achieve 
several types of repair: 

• A repair is complete, if the effects of every bad or suspect transaction are repaired. 

• A repair is exact, if the effects of all and only bad or suspect transactions are repaired. 

Since the specification and the properties of our repair algorithms are closely related to the 
approach which is selected to maintain the read information, we present the algorithms in a way 
which is based on the different read information capturing methods, although the basic ideas of 
these algorithms are very similar. The coldstart as well as the warmstart repair algorithms based 
on In-Log read information are introduced in Section 5.2 and Section 5.3 respectively. The repair 
algorithms based on the read information extracted from transaction profiles are specified in Section 

5.4. 
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5.2    Static Repair Based on In-Log Read Information 

Our basic repair algorithm is based on traditional recovery mechanisms [BHG87]. One advantage 
of this approach is that we need not develop the repair algorithm from scratch. In addition, the 
standard recovery mechanisms need not be modified greatly to accommodate the repair algorithm. 

We use the same physical log as used in traditional recovery mechanisms [BHG87] except that 
we define a new type of log record to document every read operation. These records are used to 
construct the dependent upon relation between transactions. The read log record [Ti,x] denotes 
that the data item x is read by transaction T*. An algorithm that does not modify the log, but 
instead maintains the read log separately, is discussed in section 5.2.3. As mentioned in Chapter 3, 
we use the same TM-Scheduler-DM model of centralized database systems as used in [BHG87]. We 
add one action, which appends [Tux] to the log, to the RM-Read(T2,x) procedure. We assume that 
the scheduler invokes RM operations in an order that produces a serializable and strict execution. 

The basic idea of static repair is that we halt the processing of transactions periodically after 
a set of bad transactions B is identified, and then we build the DG(B), based on the log and/or 
other available read information, to identify the bad as well as the suspect transactions. 

5.2.1    Three Pass Repair Algorithm 

The algorithm described below is composed of three passes. Pass one scans the log forward from 
the entry where the first bad transaction commits to produce a list of all the transactions which 
commit after the first bad transaction. Some good transactions in this list may be suspect. Pass 
two scans the log forward from the entry where the first bad transaction starts and extracts every 
bad and suspect transaction from the commit list of pass one. Pass three goes backward from the 
end of the log to undo all bad and suspect transactions. 

Algorithm 1 Three Pass Repair Algorithm 
Input:    the log, the set B of bad transactions. 
Output:    A consistent database state in which all bad and suspect transactions are undone. 
Initialization. 
Let commit list = {}, undoJist = {}, writeset = {}, tmpjwriteset — {}{A). 
Pass 1. 
1. Locate the log entry where the first bad transaction Bx commits. 
2. Scan forward until the end of the log. For each log entry, 
2.1 if the entry is a commit record [Ti, commit] 

commit Jist = commit list U {Ti}; 
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Pass 2. 
1. Locate the log entry where the first bad transaction B\ starts. 
2. Scan forward until the commit list turns empty or there are no more log entries to examine. For 
each log entry, 
2.1 if the entry is for a transaction T in B 

if Ti is not in the undolist 
undolist = undolist U {Ti}; 

if the entry is a write record [Ti,x, v] 
writeset = writeset U {x}; 

2.2 elseif the entry is for a transaction in the commit list 
case the entry is a write record [Ti,x,v] 

if Ti is in the undolist 
writeset = writeset U {x}; 

else tmpjwriteset = tmpjwriteset U {(Ti,x)YB^; 
case the entry is a read record [Ti, x] 

if Ti is in the undolist 
skip the entry; 

elseif x is in the writeset 
undolist = undolist U {Ti} ; 
move all the data items of T from the tmpjwriteset to the writeset; 

case the entry is a commit record [T, commit]1-0' 
if Ti is not in the undolist 

delete all the data items of T» from the tmpjwriteset; 
Pass 3. 
Scan backward from the end of the log to undo all the transactions in the undolist. 

Comments 

A. The commit list consists of the transactions which commit after the first bad transaction. The 
undolist consists of the bad and suspect transactions that should be undone. The writeset 
consists of the dirty data items. The use of tmpjwriteset is explained in comment B. 

B. When we encounter a write log entry for a good transaction which is still not in the undolist, 
we cannot be sure whether the transaction will become suspect - it may read some dirty data 
later on. At this time, we need to keep track of the data items written by this transaction in 
case we have to add them to the writeset later. There are basically two approaches to solve 
this problem. One, which is used in the algorithm, is to keep the write items in a temporary 
memory structure (namely, tmpjwriteset); the other is to scan the log backward to figure 
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out the write set later on (the backward scan can be efficient since all the write log entries of 
a transaction are chained together in the log). The first approach costs more memory space 
but is faster. The second approach costs less memory space but is slower since it may cause 
disk operations. 

Also, since we assume that the history to be repaired is strict, the following scenario, which 
happens in a history that is recoverable but not strict, will not occur: 

rGl [xi]wGl [xi]rG2 [x1}wa2 [xi]rGl [yi]cGl cGi 

Suppose yx is in the writeset, Xl and x2 are not. When we encounter the entry rG2[xx], 
though G2 is dependent upon d we skip it according to the algorithm since Xl is not in the 
writeset. Later when we encounter the entry rGl[yi], we will add Gl to the undoJist since 
it reads an item in the writeset. But at this point, G2 will not be added to the undoJist 
though it has been affected by G\. 

C.   This step improves the performance of the algorithm when the history is long and when many 
committed good transactions are not affected. 

Theorem 1 Given the state produced by history H over B U G, Algorithm 1 constructs the state 
that would have been produced by H', where H' is H with all transactions in DG(B) removed. 

Proof: Given the relationship between dirty data, the bad and suspect transactions, this theorem 
amounts to showing that each dirty data item is restored to the latest value before it turns dirty. 
The following three claims are sufficient to show this. 
Claim 1. Every bad and suspect transaction is added to the undoJist in Pass 2. It is clear that 
every bad transaction is added to undoJist in step 2.1 of Pass 2. Suppose there are some suspect 
transactions which have not been added to the undoJist and Tt is the first one. Then according to 
the algorithm, it happens that when T{ reads a dirty item x{ in step 2.2 of Pass 2 Xi is still not in 
the wmte„set. Since the execution is strict, when T{ reads xt every bad or suspect transaction that 
writes Xi before the read operation has already committed, and therefore x{ is already added to the 
wnte-set in step 2.1 or 2.2 of Pass 2, which contradicts with the assumption. 

Claim 2. Only bad and suspect transactions are added to the undoJist in Pass 2. Suppose some 
non suspect good transactions have been added to the undoJist and T{ is the first one. Then ac- 
cording to the algorithm, it happens that when T* reads an item x{ in step 2.2 x{ is in the writeset. 
Therefore T{ is formally suspect, which contradicts the assumption. 
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Suppose Xi is a dirty data item and Tj is the first transaction which makes X{ dirty, then Tj must 
be either bad or suspect. 

If Tj is the first bad transaction, then x{ will be restored to the value before Tj writes it in 
pass three. If T is not, then no bad or suspect transaction that commits before Tj has updated xt 

because otherwise T cannot be the first transaction that makes Xj dirty. By Claim 1 , we know 
that every bad or suspect transaction that commits before Tj is considered here, and we know % 
will be added to the undoJist in pass 2. By Claim 2 , there is no non suspect good transaction 
which updates Xj, commits before T and is in the undoJist. Thus X{ will be restored to the before 
image of TVs write which is the latest un-dirty value of Xj. T cannot be the first transaction that 
makes Xj dirty. D 

5.2.2    Two Pass Repair Algorithm 

One drawback of the three pass repair algorithm is that it needs three passes, which may take too 
much time if the log is large. At the cost of additional memory, the first two of these passes can be 
combined. In two pass algorithm, the forward pass gets the list of all bad and suspect transactions; 
the backward pass undoes these transactions. For brevity, and to highlight the differences between 
the two algorithms, we describe only the modifications to the three pass algorithm. 

Algorithm 2 Two Pass Repair Algorithm 
Omit pass 1 of Algorithm 1. 
In pass 2 of Algorithm 1 add another list tmpjundoJist to capture the set of in-repair good trans- 
actions which have read some dirty data.* For each entry which is not for a transaction in B: 

case the entry is a write record [Ti,x, v] 
tmpjwriteset = tmpjwriteset U {(Tj,x)}; 

case the entry is a read record [Tj, x] 
if x is in the writeset 

tmpjundoJist = tmpjundoJist U {Tj}; 
case the entry is an abort record [Tj, abort] 

delete all the data items of T from the tmpjwriteset; 
if Tj is in the tmpjundoJist 

delete Tj from the tmpjundoJist; 
case the entry is a commit record [Tj, commit] 

if Tj is in the tmpjundoJist 
move Tj from the tmpjundoJist to the the undoJist; 

*A transaction T is in-repair between the time we scan the record [T, begin] and the time we scan the record 
[T, commit] or the record [T, abort]. 
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move all the data items of T{ from the tmpjwriteset to the writeset; 
else delete all the data items of T, from the tmpjwriteset; 

Theorem 2 The two pass algorithm and the three pass algorithm are equivalent, in the sense that 
for any input they get the same output database state. 

Proof: It is clear that any aborted good transaction will not be added to the undoJist in both 
algorithms. For a committed suspect transaction Th it will be added to the undoJist in the three 
pass algorithm when it reads an item in the writeset, and some data items written by T{ may be 
added to the writeset before T{ commits. In the two pass algorithm, T{ will not be added to the 
undo list until it commits, so does the data items written by T{. Since the history is strict, any 
data item written by T{ will not be read by other transactions until T{ commits. Therefore, the 
different time in these two algorithms when T; is added to the undo list and when T;'s data items 
are added to the writeset will not influence the output. So these two algorithms are equivalent. D 

5.2.3    Repair Algorithm Based on Separate Read Log 

The three pass and the two pass algorithms are based on the log to which read records are added. 
Sometimes, it is desirable to use a separate log to document the read operations rather than change 
the traditional log. We call the separate log read log, and we call the traditional log update log. 
Using a read log to repair a history has the advantage that the traditional recovery mechanisms do 
not have to be modified to take a different data structure for the log into account. 

There is only one type of entry of the form [Tt,x] in the read log, identifying the data item x 
which is read by transaction T{. 

Conceptually, a two pass repair algorithm based on the read log as well as the update log can 
be designed using the same memory data structure and algorithm as used in Algorithm 2 if we can 
transform the serial scan operations in Algorithm 2 over one log to some equivalent interleaved scan 
operations over the read log and the update log. Thus, one important issue in using a read log to 
do repair is to synchronize the scan operations over the update log and the read log. 

The order by which we interleave the scan operations over the update log and the read log is 
critical to the correctness of the repair algorithm. If an entry [Th x\ in the read log is scanned earlier 
than an entry in the update log which denotes an operation happening before the read, then T{ 

may not be added to the undolist though it is a suspect transaction. Look at the following scan 
sequence: 

rGl [xi]rGl [yi]wGl [yi]rG2 [yx]wGl [xi]cGliuG2 [yi}cG2 
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Suppose x\ is in the writeset. When we scan the entry rG2[yi], we cannot find that G2 reads a 
dirty item since yi is not in the writeset yet. Later on, when we scan the entry cGl, we will add y\ 
to the writeset but G2 will be found not to be suspect since it will not read yx again. The point 
is that r<32[yi] happens after cGl (since the execution is strict) but it is scanned before cGl. 

If an entry \Ti: x] in the read log is scanned later than an entry in the update log which denotes an 
operation happening after the read, then we may not find the write items of T{ in the tmpjwriteset 
when we find T{ suspect since all the write items of Tj may have been deleted. Look at the following 
scan sequence: 

wGl [xi]wGl [y1]cGlrGl [xl]rGl [J/J] 

Suppose x\ is in the writeset. When we scan the entry cGl, we will delete all the write items 
of Gi(xi, y\) from the tmpjwriteset since G\ has not read any dirty data. Later on, when we 
encounter the entry rcj^i], we find G\ is suspect but we cannot find the items written by G\ from 
the tmp-writeset. 

So we must synchronize the scan operations in a way which can ensure the correctness of the 
algorithm. The requirement implied by this can be conveniently stated as two design rules that 
every two pass repair algorithm which uses read logs must observe. 

Rule 1:    Before a read entry [Ti,x] is scanned in the read log, any write record for x which denotes 
an operation happening before the read must have been scanned. 

Rule 2:    Before we scan a commit record [Tj, commit] in the update log, all the read records for 
Ti must have been scanned. 

Our synchronizing mechanism is specified as follows. 

Mechanism 1 When a read entry is added to the read log, the largest LSN [BHG87] of the update 
log will be recorded in the read entry. For an entry rj in the update log and an entry r2 in the read 
log, let ri.LSN denote the LSN of r1; let r2.read-LSN denote the LSN recorded in r2, r\ and r2 

are scanned in the following order: 

1. If r2.read-LSN > ri.LSN, then r\ is scanned before r2. 

2. lir2.read-LSN < ri.LSN, then r2 is scanned before r^ 

Lemma 1 Mechanism 1 ensures that the scan order of r\ and r2 is the order in which the operations 
denoted by rx and r2 happen. And the mechanism satisfies the two design rules. 
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Proof: Let ox be the operation denoted by n(0l may be a commit, abort, or update operation); let 
o2 be the read operation denoted by r2. When o2 happens, we create r2 and record the largest LSN 
of the update log in the read.LSN field of r2. Since at that time the operation op denoted by the 
entry of the update log with the LSN has already happened, op happens before o2. Since op denotes 
the last operation logged in the update log before o2 happens, every operation which is logged in the 
update log later than op happens after o2. Therefore, if r2.read.LSN > n.LSN, then op.LSN > 
Ti.LSN, so oi is op or happens before op, thus ox happens before o2. If r2.read.LSN < n.LSN, 
then op.LSN < n.LSN, so ox happens after op, thus 0l happens after o2. Therefore our scan order 
is the operation order. Since the operation order satisfies the two design rules, Mechanism 1 satisfies 
the two design rules. n 

The repair algorithm based on separate read log is described as follows: 

Algorithm 3 Repair Algorithm Based on Separate Read Log 
Use Mechanism 1 to schedule the order in scanning the update log as well as the read log. For every 
kind of log entry, do the same thing as Algorithm 2. For brevity, the details are omitted. 

Theorem 3 The algorithm based on separate read log and the two pass algorithm are equivalent, 
m the sense that for any input, they get the same output database state. 

Proof: Since Algorithm 3 uses Mechanism 1, it scans the entries in the update log as well as 
the read log in the same order as the two pass algorithm scans the traditional log associated with 
the records for read operations. In addition, for every entry, Algorithm 3 does the same thing as 
Algorithm 2. Therefore, these two algorithms are equivalent. □ 

5.3     On-the-Fly Repair Based on In-Log Read Information 

The three pass algorithm, the two pass algorithm, and the algorithm based on separate read log 
which we have presented in Section 5.2 are all static repair, or coldstart, methods. New transactions 
are blocked during the repair process. In some database applications, availability requirements 
dictate that new transactions be able to execute concurrently with the repair process, that is, the 
application requires warmstart semantics for recovery. The cost of on-the-fly repair is that some 
new transactions may inadvertently access and subsequently spread damaged data. 

The traditional transaction management architecture is adequate to accommodate on-the-fly 
repair (see Figure 5.2) *. 

tNote that Figure 5.2 is adapted from Figure 3.1.   For simplicity, here we omit the TM and incorporate the 
function of the CM in the RM. 
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Figure 5.2: Architecture of the on-the-fly repair system 

The Repair Manager is applied to the growing logs of on-the-fly histories to mark any bad as 
well as suspect transactions. For every bad or suspect transaction, the Repair Manager builds an 
undo transaction and submits it to the Scheduler1*. The undo transaction is only composed of write 
operations. 

The Scheduler schedules the operations submitted either by user transactions or by undo trans- 
actions to generate a correct on-the-fly history. Suspect transactions that are undone can be resub- 
mitted to the Scheduler either by users or by the Repair Manager. 

The Recovery Manager executes the operations submitted by the Scheduler and logs them. It 
keeps the read information of transactions either in a traditional log modified to store read operations 
or in a separate read log. 

For simplicity in the presentation, we assume that each new transaction is good. 

5.3.1     Termination Detection 

New transactions are continuously submitted to the Scheduler, and as a result, the log keeps growing. 
A key question is 'Does repair terminate, and if so, is termination detectable?' 

Suppose at some point the Repair Manager has repaired the history up to record a on the log 
(See Figure 5.3). That is, every bad or suspect transaction which commits before a is logged has 
been undone, its dirty data items have been marked and cleaned. Suppose record b is the present 

§Note that here the flat transaction model is used. 

48 



a b  

-^  new records 

Figure 5.3: A Snapshot of Repair on the Log 

bottom of the log. It is possible that a newly submitted read operation reads a dirty item which 
has not been marked, because the item can be made dirty by some write operation which happened 
between a and b. Since neither the Scheduler nor the Repair Manager can detect this, the read 
operation is not rejected. In this way, some newly submitted good transaction may become suspect. 
As an example, consider the following operation sequence: 

rGn^l}wG^2}cGnrGJx2}wGJx3}cGi2..TGJxk}wGik[xk+1}cGik... 

Even if xx is the only dirty data item when the sequence begins, repair may not terminate until the 
submission terminates because when x{ is cleaned, xi+l may already become dirty. 

Consider another operation sequence: 

GiiGi2...Gi(k-i)rGik [xi)wGik [x2}cGik... 

Assume that only xx is dirty when the sequence begins and none of the transactions between Gix 

and Gnk-i) read xx. Then it is possible that when Gik reads xu every bad or suspect transaction 
has already been repaired. Thus, xi is clean, and the repair terminates. 

Whether or not a repair terminates depends on the repair speed, the arrival rate of new trans- 
actions, and the nature of the new transactions. So, in general, termination of repair cannot be 
guaranteed without taking additional measures, which are discussed later. However, if the repair 
process is complete, this condition can be detected. We turn to termination detection next. 

Checking if every marked dirty data item has been cleaned to determine if repair is complete is 
not sufficient for two reasons. First, some transaction T which has been found suspect may write 
dirty data items later on (see Figure 5.4): at time t5 the read record [T, x] is scanned and T is found 
suspect since x was dirty when T read x (Notice that when [T,x] is scanned x may not be dirty 
since x may already be cleaned at *4); at time t6 every dirty item that is marked before t6 has been 
cleaned, but the repair does not terminate since at time t7, T writes an item y and y becomes dirty. 
Second, some transaction which has not yet been identified as suspect may generate dirty data (See 
Figure 5.5): [T, begin] record is scanned after time t4 when no data is dirty, we can not stop repair 
at time t4 since at time t6 we find T is suspect and at time t7 item y is marked dirty. 

49 



tl 

t2 

t3 
t4 
t5 

t6 
t7 

_ x turns dirty 

T reads x 

_ x is marked dirty 

(x is cleaned) 

[T,x] is scanned 

all marked dirty items are cleaned 

[T,y,v] is scanned 

Time 

Figure 5.4: Transactions which have been found suspect may generate new dirty items 

From another perspective, when data item x is read or written, x may be at one of the seven 
kinds of states denoted in Figure 5.6. 

Before x turns dirty, x is in the 'clean' state (state 1). x is in the 'pseudo clean' state (state 2) 
between the time x turns dirty and the time x is marked dirty, x is in the 'dirty' state (state 3) 
between the time x is marked dirty and the time x is cleaned, x is in the 'cleaned' state (state 4) 
between the time x is cleaned and the time x turns dirty again, x is in the 'pseudo cleaned' state 
(state 5) between the time x turns dirty again and the time x is marked dirty again, x is again in 
the 'dirty' state (state 6) between the time x is marked dirty again and the time x is cleaned again. 
x is again in the 'cleaned' state (state 7) between the time x is cleaned again and the time x turns 
dirty again. Of course, these states may be repeated indefinitely. 

Mechanism 2 described below can capture the two situations shown in Figure 5.4 and Figure 
5.5, thus can detect the termination of On-the-fly repair processes. 

Mechanism 2 In the process of repair: 

• Maintain a dirtyJtemset to keep every data item in state 3 or 6; maintain a 
cleanedJtemset to keep every data item in state 4 or 7. We show how to capture these items 
in Section 5.3.4. 

• Associate each item x in the cleaned.item.set with a number, x.LSN, which denotes the log 
serial number of the bottom record of the log at the time when x is cleaned. 

50 



tl 

t2 

t3 
t4 

t5 

t6 

t7 

_ x turns dirty 

T reads x 

x is cleaned 

all marked dirty items are cleaned 

[T, begin] is scanned 

[T,x] is scanned 

[T,y,v] is scanned 

Time 

Figure 5.5: Transactions which will later be found suspect may generate new dirty items 
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Figure 5.6: Possible Item States 

• Maintain a tmp.undoJist to keep every in-repair transaction that has read some data item 
in the dirtyJtemset, or has read an item x in the cleanedJtemset where r.LSN < x.LSN. 
Here r.LSN is the log serial number of the read record. 

• We report that the repair terminates if 

- every bad transaction in B has been undone, and 

- dirtyJtemset = 0, and 

- tmp.undoJist = 0, and 

- Vx € cleanedJtemset, x.LSN < l.LSN. Here, l.LSN denotes the log serial number of 
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the next log record for the Repair Manager to scan. 

Theorem 4 Mechanism 2 reports termination iff the repair process, in fact, terminates. 

Proof: Repair terminates iff all the marked dirty items have been cleaned and it is not possible for 
any item to turn dirty later on. When Mechanism 2 reports termination every marked dirty item 
has been cleaned since dirty Jtemset = 0. At this time, since every bad transaction in B has been 
undone, an item x may turn dirty later on only if x is written by a suspect transaction which has 
been detected or by a suspect transaction which will be detected later on. 

An transaction T can be found suspect only if there is an item x such that T read x when x was 
dirty. When [T,x] is scanned, x may still be dirty or may have been cleaned, but x can not be first 
cleaned and then marked dirty for the following reason. Suppose the transaction that makes x dirty 
again is T". Then the write record [T',x,v] can only be scanned after [T,x] since it is appended 
to the log after [T, x]. Therefore, when [T,x] is scanned x is still dirty, and so x must be in the 
dirty Jtemset. If x has been cleaned, then r.LSN < x.LSN. So every transaction that has been 
found suspect will be in the tmp.undoJist. Therefore, when tmp-undoJist = 0 no such transaction 
exist. 

When dirtyJtemset = 0 an item x will be written by a transaction T which will be found 
suspect later on only if T had read x before x is cleaned, but when T reads x, x is still dirty. (This 
situation is shown in Figure 5.5.) When Mechanism 2 reports termination, Vx € cleaned Jtemset, 
x.LSN < l.LSN, that is, every dirty item is cleaned before the operation denoted by the next log 
record for the Repair Manager to scan, Therefore, every read operation denoted by a record that 
the Repair Manager is going to scan will not read any dirty item, so the situation will not happen. 

D 

5.3.2    Building Undo Transactions 

On-the-fly repair requires the Repair Manager build and submit the undo transactions for every 
bad or suspect transaction, that is, the Repair Manager starts to built the undo transaction for 
a transaction T as soon as Ti is found bad or suspect. Since the log keeps on growing, the undo 
can only be done from the beginning to the end of the history, which is different from the methods 
presented in Section 5.2. 

The straight forward way to build undo transactions for bad or suspect Ti is to scan backward 
along the log from the point where T commits, and for every write record of Ti, add a corresponding 
write operation to the undo transaction U{. The write operation in Ui restores the item to its old 
value. This approach does not work if new transactions execute concurrently with repair. Consider 
the event sequence shown in Figure 5.7. If x is clean before T writes x, Tj's undo transaction Ui 
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tl Ti writes x 
t2 Tj writes x 

t3 - Ui undos the write operatiion of Ti 

t4 - Uj undos the write operation of Tj 
time 

Figure 5.7: The flaw of the straight forward method 

undos this write operation at time t3 and x is cleaned. However, the undo transaction Uj of another 
suspect transaction 7) undos the write operation of 7} on x at time t4 and x turns dirty again, 
which is not correct. 

Algorithm 4 described below fills the hole of the straight forward method. 

Algorithm 4 Building Undo Transactions 

1. Maintain a submitted.item.set to keep every item x whose undo operation has been submitted 
to the Scheduler, but x still has not been cleaned. 

2. When building an undo transaction, for every write record which is scanned, if the record is on 
an item x which is in the cleaned Stem set or in the submitted Atem.set then omit the record; 
if x is in the write.item.set but not in the submitted Mem.set, then add the corresponding 
undo operation to the undo transaction and add x to the submitted Atem.set. 

Theorem 5 In Algorithm 4, when Ui is built, every dirty data item x of T{ will either be repaired 
in a operation of Ut or in a operation of another undo transaction, and x will be restored to the 
value x had before it turned dirty. 

Proof: If x is clean or cleaned before T{ writes x, then the undo operation wv. [x] will restore x to 
the latest value before x turned dirty. If x is dirty before T writes x, suppose Tj is the transaction 
which makes x dirty, then when [Tu x, v] is scanned, x is either cleaned, so in the cleaned Stem.set, 
or is submitted by the undo transaction which is built for Tj, so in the submitted.item.set, therefore, 
Ui will not repair x. □ 
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5.3.3    On-the-fly Concurrency Control 

Before introducing the On-the-fly repair algorithm, we need to first analyze how the Scheduler 
should schedule the user operations as well as the undo operations to achieve repair. 

To define the acceptable histories generated by the Scheduler, we associate the read and undo op- 
erations in histories with appropriate states of the Repair Manager (i.e., the state of the dirty Mem set) 
when the operations are scheduled to execute, and use the states to indicate the correctness of repair 
histories. 

Definition 3 History H is a correct on-the-fly history if 

1. H is serializable and strict, 

2. There are no abort records for undo transactions, 

3. For any read operation TYJX], the predicate x 0 dirty Atem set holds, 

4. For any conflicting undo transaction pair £/j and Uj, if Tj <H TJ then U{ <H UJ, and 

5. For any undo operation IüI/[X], the predicate (x G dirtyAtemset) D (x € submittedAtemset) 
holds. 

Statement 3 says that when a read operation rrjx] is scheduled x must be clean or cleaned. 
Statement 4 says that conflicting undo transactions should be scheduled in the same order in which 
they are submitted by the Repair Manager (As shown in Section 5.3.2, the order is critical to the 
correctness of repair.). Statement 5 says that when an undo operation wu[x] is scheduled, x must 
be dirty. 

The scheduling algorithm is described as follows: 

Algorithm 5 Scheduling Algorithm 
The algorithm is based on strict 2PL. The modification lies in: 

• Never abort undo transactions; 

• When a read operation rr{[x] arrives, if x is in the dirty Atemset, then reject this read 
operation and rollback Tj. 

We show in next section that if the Scheduler executes Algorithm 5, then together with the 
Repair Manager, and the Recovery Manager, the Scheduler generates correct on-the-fly histories. 

An important task of the Scheduler is to control the submitting speed of user operations so that 
the repair can eventually finish.   Informally, the Repair Manager can slow down the submitting 
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speed of user operations when the repair process fails to terminate in a satisfactory time frame. An 
automatic way to control the speed is as follows. Periodically the Scheduler evaluates the trend in 
the size of the dirty Stemmet. The trend can be captured with time series analysis techniques. If 
the trend is up, then the submitting speed can be reduced. Otherwise, termination is on track. 

5.3.4    On-the-fly Repair Algorithm 

The integrated On-the-fly repair algorithm consists of three parts which are executed on the Repair 
Manager, the Scheduler, and the Recovery Manager, respectively. 

Algorithm 6 On-the-fly Repair Algorithm 
Input: the log, the set B of bad transactions. 
Output:  if the repair terminates at the middle of the history, then any prefix Hp of the history 
including the point where the repair terminates results in the state that would have been produced 
by H'p, where Hp is Hp with all transactions in DG(B) removed. If the repair terminates at the end 
of the history H, then H will result in the state that would have been produced by H', where H' 
is H with all transactions in DG(B) removed. 
Initialization: 
Let tmpjundoMst = {}, cleaned Atem set = {}, dirty Stem set = {}, tmpMemset = {}. 
At the Repair Manager: 
1. Locate the log entry where the first bad transaction Bx starts. 
2. while (the termination conditions do not hold ') 

Scan next log entry: 
if the entry is for a transaction T2 in B 

if the entry is a write record [Ti,x,v] and x is not in the cleaned Atem set 
add x to the dirty Mem set; 

if the entry is a commit record [Tu commit] 
build the undo transaction for T{ using Algorithm 4 and 
submit it to the Scheduler; 

else 
case the entry is a write record [Thx, v] 

if x is not in the cleanedJtemset 
add x to the tmpJtemset; 

elseif w.LSN > x.LSN^ 
add x to the tmpJtemset; 

1The termination conditions are stated in Mechanism 2. 

55 



case the entry is a read record [T,, x] 
if x is in the dirty -itemset or 
x is in the cleaned-itemset and r.LSN < x.LSN 

add T{ to the tmp-undoJist; 
case the entry is an abort record [Ti, abort] 

delete all the data items of T from the tmpJtemset; 
if Ti is in the tmp-undoJist, remove it; 

case the entry is a commit record [Ti, commit] 
if T is in the tmp-undoJist 

move all the items of T from the tmp-itemset to the dirty-itemset; 
build the undo transaction for T using Algorithm 4 and submit it 
to the Scheduler; 

else delete all the items of T, from the tmpJtemset; 
3. report termination; exit; 
At the Scheduler: 
Schedule the user operations as well as the undo operations using Algorithm 5. 
At the Recovery Manager: 
When an undo operation lur/jx] is done, delete item x from both the dirty-itemset and the 
submitted-item set, then add (x, x.LSN) to the cleaned-itemset. 

Comments 

A. w.LSN denotes the log serial number of the write record. Notice that when w.LSN > x.LSN 
x is cleaned before the write operation, therefore, the write operation may make x dirty again. 
Otherwise, x is cleaned after the write operation, so x will not be made dirty again by this 
operation, therefore x need not be cleaned anymore. 

Theorem 6 Algorithm 6 meets its specification. 

Proof: Given the relationship between dirty data, the bad and suspect transactions, this theorem 
amounts to showing that at the time when the repair terminates each dirty data item is restored 
to the latest value before the data item turns dirty. 

Claim 1. The Scheduler generates only correct on-the-fly histories. From the definition of 2PL and 
Algorithm 5, we know that the first three statements of Definition 3 hold. The Repair Manager 
builds and submits undo transactions in the scanning order, and before an undo operation u?t/,[:r] 
is executed and x is cleaned any conflicting undo operation Wf/Jz] will not be submitted to the 
Scheduler.  This is because between the time wt/Ja:] is submitted and the time it is executed any 
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newly submitted user transaction which reads x will be rejected, and the Repair Manager will not 
build any other undo operation to repair x. Therefore, statements 4 and 5 hold. 

Claim 2. Algorithm 6 realizes Mechanism 2, and thus reports termination correctly. 

Claim 3. In the Repair Manager, at any point of time every dirty data item x in the part of the 
history having been scanned by the Repair Manager has been marked and the corresponding undo 
operation, which can restore the value of x to the latest value before x turns dirty, has been built 
and submitted to the Scheduler. Since in the part of history, an item x can be first made dirty, 
then cleaned, and then made dirty again, we associate a dirty item x with the period of time when 
it remains dirty(denoted p). Thus (x,Pl) and (x,p2) denote two different dirty items. As shown in 
Algorithm 6, for every dirty data item (x,p) an undo operation and only one undo operation will 
be built to repair it at the very beginning of p. See Theorem 1 and Theorem 4 for the reason that 
every dirty data item is marked. □ 

5.4    Extracting Read Information From Transaction Pro- 
files 

Sections 5.2 and 5.3 detail recovery algorithms that, given a specification of malicious, committed 
transactions, unwind the effects of each malicious transaction, along with the effects of any benign 
transaction that depends, directly or indirectly on a malicious transaction. The significance is 
that the work of the remaining benign transactions is saved. However the assumption that read 
information are kept in the log may incur substantial performance penalties due to the significant 
storage and processing cost of maintaining read information. 

There are basically two ways to keep read information in the write log or in another read log. 
One way is what we assumed in Sections 5.2 and 5.3, that is, let the RM-Read(T,,:c) procedure 
append the read record [Tux] to the log every time when T* reads an item x. The other way is to 
let the RM-Read(Ti,x) procedure keep the set of items read by Tt in another place until the time 
when Tt is going to commit, at this point, the read set of T{ can be put into the log as one record. 
Compared with the first approach, the second approach saves some storage since the identifier of 
T% need not be put into the log repeatedly, however, it may require the database to store relatively 
large data objects because read sets can be very big. In addition, it may delay termination detection 
during a warmstart repair process H. 

"The corresponding coldstart and warmstart repair algorithms based on the second approach are the same as the 
algorithms presented in this section. 
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Although keeping read information in the log will not cause more forced I/O, it does consume 
more storage. Though the previous two approaches need to keep only the identifier instead of the 
value of each read item in the log, the size of a read set can still be very big. For example, in a bank 
a transaction which generates the monthly statement of a customer needs to read the information 
of every transaction submitted by the customer during the last month. 

Another problem with keeping read information in logs lies in the fact that almost all present 
database systems keep only update(write) information in the log. Adding read records to the log 
may cause the redesign of the current recovery mechanisms, including both the data structure and 
the algorithms. 

Any way of maintaining read information should keep the malicious transaction recovery mod- 
ule isolated from the traditional recovery module as much as possible. Such an approach avoids 
degrading the performance of the traditional recovery module and also makes it easier to build the 
malicious transaction recovery module on the top of the existing database systems. 

In this section, we adopt the approach of extracting read information from the profiles and input 
arguments of transactions. Compared with the read log approach, each transaction just needs to 
store its input parameters, which are often much smaller in size than the read set. More important, 
instead of putting the input parameters in the log, each transaction can store the parameters in 
a specific user database, thus the damage recovery module can be completely isolated from the 
traditional recovery module. In this way, our repair model can be easily implemented on the top of 
current database systems without any change to the DBMSs. The only thing we need to do is to let 
application programmers change the transaction code such that damage recovery can be supported. 
The approach is not exact, and as a result, it may back out some non-suspect good transactions 
and/or delay termination detection during a warmstart repair process. 

5.4.1    The Model 

We start with the transaction profile of TPC-A, a well known database benchmark [Gra93], as an 
example. TPC-A is stated in terms of a hypothetical bank. The bank has one or more branches. 
Each branch has multiple tellers. The bank has many customers , each with an account. The 
database represents the cash position of each entity(branch, teller, and account) and a history of 
recent transactions run by the bank. The transaction represents the work done when a customer 
makes a deposit or a withdrawal against his account. The transaction profile is specified as follows: 

Input: Aid, Tid, Bid, Delta 
BEGIN TRANSACTION 

Update Account_Balance where Account_ID = Aid: 

Read Account_Balance from Account 
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Set Account_Balance = Account.Balance + Delta 
Write Account_Balance to Account 

Write to History: 

Aid, Tid, Bid, Delta, Time.stamp 

Update Teller where Teller.ID = Tid: 

Set Teller.Balance = Teller.Balance + Delta 
Write Teller_Balance to Teller 

Update Branch where Branch.ID = Bid: 

Set Branch.Balance = Branch_Balance + Delta 
Write Branch_Balance to Branch 

COMMIT TRANSACTION 

Here, Aid(AccountJD), Tid (Teller JD), and Bid(BranchJD) are keys to the relevant records (rows). 
For this transaction, the read set in tuple(record) level is: 

Read_Set=   { Account.Aid, Teller.Tid, Branch.Bid} 

Each item in the set uniquely identifies a tuple of a relation. At the element level, the read set is: 

Read_Set=   { Account.Aid.Account_Balance, Teller.Tid.Teller_Balance, 
Branch.Bid.BranchJBalance } 

Each data item is an element of a relation. In this example, the item is composed of three 
parts, namely the relation identifier, Account, the record identifier, Account.Aid, and the at- 
tribute identifier, Account.Balance. To find the record identified by Account.Aid, the DBMS 
usually needs to search the corresponding index. However, we do not put searching keys such as 
Account. Aid. Account JD into the read set because we assume that the primary key of a relation is 
not updated unless the record is deleted. 

5.4.2    Read Set Templates 

As shown in the example above, given the source code and the input arguments, it is possible to 
extract exact or approximate read sets from transactions. However extracting read sets on the 
fly, that is, analyzing transaction source code during execution, may not meet the requirement of 
current online transaction processing systems. The reason is that extracting read set can cause an 
unacceptable processing delay. 

An efficient method of getting read sets is required. Since every transaction running in a OLTP 
system typically belongs to some category, we assume that a transaction type is associated with 
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every transaction, which identifies the nature of the transaction. Transactions of the same type are 
the same program, though they typically execute with different inputs. 

The read set template for a transaction type is a representation of the data items that will be 
read by transactions of the type. Since read set templates are generated based on only transaction 
profiles, there are no real input arguments available and each data item in a read set template can 
only be specified as a function of the input variables. 

An efficient way to extract read information from transaction profiles based on read set templates 
is as follows: 

1. Analyze the source code of each type of transaction offline and get the read set template of 
that type. 

2. When a transaction T is submitted to the Scheduler, the read set template for T's type 
is materialized with the input arguments of T. The process of materializing is done by 
substituting each variable in the read set template with its corresponding real value. 

3. The materialized read set template is the read set for T. 

For example, there is only one type of transaction in TPC-A, its read set template is: 

Template = { Account.Aid.Account-Balance; Teller.Tid.Teller_Balance; 
Branch.Bid.Branch_Balance } 

For a transaction instance with the input {Aid =' ,41591749', Tid =' T0002', Bid =' BGMUOOV, Delta = 
$1000), the read set for the transaction is: 

Read_Set=   { Account.'Al591746'.Account_Balance, Teller.'T0002'.Teller_Balance, 
Branch.'BGME/OOl'.Branch-Balance } 

As shown in the above example, for any TPC-A transaction instance and for any database state 
on which the transaction is executed, we can get the exact read set based on its read set template, 
that is, the materialized template will indicate all and only the data items which are read by the 
transaction, either in tuple level or in element level. However, in some circumstances based on a 
template we may only get an approximate read set. 

For example, in the Stock-Level transaction of TPC-C [Gra93], we retrieve the stock level of 
the last 20 orders of a district from the table Order and the table Stock. The numbers of these 
orders are traced from the D_NEXT_0 JD field of the district record in the table District which is 
identified by the input wJd+dJd ('+' denotes string concatenation). The read set template can be 
specified as follows: 
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Template=     { x = District.(wid+did).D_NEXT_OJD; 
Ri = {x-l,...,x-19,x-20}; 
R2 = Order-Line.(wJd+did+JR1+OL_NUMBER).OLJJD; 
Stock.(w_id+JR2).S_QUANTITY } 

Here, i?j is the set of the numbers of the last 20 orders. Order-Line.(wid+dJd+ Rx) identify the 
order lines for the 20 orders whose numbers are kept in Rx. In the record identifier part of each 
item, low case words denote variables which can be traced from the input; capital words denote 
attributes or sets of variables. The attributes, i.e., OL.NUMBER, can take any value. Based on 
the transaction profile, we can trace the D_NEXT_OJD field from the input, however we can not 
trace further from Äx to the last 20 orders because the value of x depends on the concrete database 
state when the transaction is executed. 

There are two approaches to materialize the template. One is generalizing, that is, to view R1 

as the set of all order numbers, thus the template can be materialized by only the input. The other 
is tracing, that is to materialize RY based on the database context, for example, when doing repair 
we can scan back from the point of the log where the transaction was executed to get the value of x. 
The second approach, though can achieve finer repair, may cause substantial extra costs, especially 
in dynamic repair scenarios. 

Besides exact read sets, potential read sets maintain approxiate read items for transactions. 
That is, for each item in the potential read set of transaction T, there exists a database state under 
which the item will be read by T when it is executed. It is clear that the potential read set for a 
transaction is the union of all the possible exact read sets of the transaction. Since we materialize 
read set templates before transactions are executed, and since we do not predict control flows within 
transaction, in some cases we only get potential read sets, and not exact read sets. 

Since only database objects can be put into read set templates, we focus on the DML statements 
which play as the interface between transactions and databases. Insert statements add new tuples 
to relations, thus will not bring new read items; Delete statements replace database items with 
null values, thus will not add new read items. Therefore, only Select and Update statements 
introduce new read items. 

For a Select or Update statement s of a transaction T, the input of s is the values(may denoted 
as variables) which are used in the Where or Set clauses of s. The input may come directly from 
the input of T, or indirectly from some previous query or program statement. It is clear that every 
template extraction must satisfy the following properties: 

• For each Select statement, the template can not be larger than the union of all the relations 
in its From clauses. For each Update statement, the template can not be larger than the 
union of all the relations in its Update and From clauses. 
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• For each transaction, the template can not be larger than the union of all the templates for 
every Select or Update statement. 

• The data items in the template for transaction T depend only on the transaction program, 
and not on any particular database state. 

The read set templates of transactions can be extracted in three steps: 

Step 1.    Extract the template for each Select or Update statement separately. 

Step 2.    Combine the template for each Select or Update statement to get the template for the 
transaction. 

Step 3.    Generalize the template as appropriate. 

For example, there are two Select statements in the Stock-Level transaction. In step 1, the 
template for the first statement is: 

TPl = { District. (wid+did).D_NEXT_OJD } 

The template for the second statement is: 

TP2 = { -Ri ={ oJd-1, ..., oJd-19, oJd-20 }; 
R2 = Order-Line.(wJd+did+Äi).OLJLID; 
Stock.(w_id+Ä2)-S-QUANTiTY } 

In step 2, based on the relation between TPX and TP2 that oJd = District.(wJd+dJd). D_NEXT_OJD, 
we get the combined template which is specified in the above example. 

In situations where tracing through the log for the value of some variable in the template does 
not justify the corresponding cost, a simpler template materialized from only the input is preferred. 
This is done in Step 3. For this example, the generalized template is: 

Template=     { District.(wid+did).D_NEXT_OJD; 
Order-Line, (w Jd+d Jd+OL_0 JD+OL_NUMBER) .OLJJD; 
Stock.(wJd+Äi.S_QUANTITY } 

Based on the different possible structures of a Select or Update statement, some rules can be 
followed in Step 1: 

affecting rule:    If data item d\ affects d2, then d\ should be put into the template so long as d2 

is in the template. 
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set rule : If the result of the statement is based on a funtion of a set of database objects, then 
the whole set should be put into the template. 

join rule: If the result of the statement is got from the join of several relations, then every join 
key, except primary keys, should be in the template. 

mapping rule: Map the aggregate functions in the statement to the corresponding set operations 
in the template. Map nested Select statements to nested templates. Map Exist clauses to the 
emptiness judgement of nested templates. Map Views to the corresponding SQL statements 
of the views. 

Based on the different possible control flows in a transaction program, some rules can be followed 
in Step 2: 

branching rule: For branching program units, such as if-else and case, with the standard form 
if c then 551 else 552, assume the read set templates for 551 and 552 are ÄSi and RS2 

respectively, then the read set template for the unit is: if c then RSi else RS2. 

loop rule: Viewing a loop structure as a limited set of program blocks, the read set template of 
the loop statement is the union of the templates of all its member blocks. 

Templates can be generalized based on the following rule: 

container rule: For any data item x which is read by transaction T, if x can be directly specified 
by the input of T, that is, no database state is needed in the specification, then add x into 
the template. Otherwise, add the least set of data items which includes x and can be directly 
specified by the input into the template. The least set of items is called the container of x. 

5.4.3    Examples 

In this section, we show as a feasibility exercise some realistic transaction examples from which 
the read set templates can be extracted. We adopt the transaction examples from benchmarks for 
transaction processing systems [Gra93]. 

TPC-B 

The transaction profile of TPC-B is almost the same as TPC-A, so they have the same read set 
Template. 
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TPC-C 

The benchmark portrays a wholesale supplier with a number of geographically distributed sales 
districts and associated warehouses. As the Company's business expands, new warehouse and 
associated sales districts are created. Each regional warehouse covers 10 districts. Each district 
serves 3000 customers. All warehouse maintain stocks for the 100,000 items sold by the Company. 
Customers call the Company to place a new order or request the status of an existing order. Orders 
are composed of an average of 10 order items. 

In TPC-C, the term database transaction as used in the specification refers to a unit of work 
on the database with full ACID properties. A business transaction is composed of one or more 
database transactions. In TPC-C a total of five types of business transactions are used to model 
the processing of an order (See [Gra93] for the source codes of these transactions.). 

• The New-Order transaction consists of entering a complete order through a single database 
transaction. The template for this type of transaction is: 

Input= warehouse number(w_id), district number(d_id), 
customer number(c_id); a set of items(olJJd), 
supplying warehouses(ol_supply_w_id), and quantities(oLquantity). 

Read_Set=    { Warehouse.w_id.W_TAX; 
District.(wid+did). (D_TAX, D_NEXT_0JD); 
Customer. (w_id+dJd+cJd). (C_DISCOUNT, C.LAST, 

C_CREDIT); 
Item.ol_Ud.(I_PRICE, LNAME, IJDATA); 
Stock. (ol^upply_w_id+olJid). (S_QUANTITY, S_DIST_xx, 

S_DATA, S_YTD, S_ORDER_CNT, S_REMOTE_CNT) } 

• The Payment transaction updates the customer's balance, and the payment is reflected in 
the district's and warehouse's sales statistics, all within a single database transaction. The 
template for this type of transaction is: 

Input= a warehouse number(w_id), district number(dJd), 
customer number(cJd) or customer last name(cJast), 
and payment amount(h_amount) 

Read_Set=   { Warehouse.w_id.(W_NAME, W_STREET_1, W_STREET_2, 
W_STATE, W_YTD); 

District, (wid+did). (D_NAME, DJ3TREET_1, D_STREET_2, 
D_CITY, D.STATE, D_ZIP, D_YTD); 
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[ Case 1,   the input is customer number: 
Customer. (wJd+d Jd+c Jd). (C_FIRST, C JLAST,C_STREET_1, 

C_STREET_2, C_CITY, CJSTATE, C.ZIP, C_PHONE, 
C_SINCE, C.CREDIT, C-CREDITJJM, C JDISCOUNT, 
CJ3ALANCE, C_YTD_PAYMENT, C_PAYMENT_CNT, 
C-DATA); 

Case 2,   the input is customer last name: 
Customer.(wid+dJd+cJast).(C_FIRST, CJLAST,C_STREET_1, 

C_STREET_2, C_CITY, C_STATE, C_ZIP, C.PHONE, 
C_SINCE, C_CREDIT, C_CREDIT_LIM, C_DISCOUNT, 
C_BALANCE, C_YTD_PAYMENT, C_PAYMENT_CNT, 
C_DATA)]   } 

The Order-Status transaction queries the status of a customer's most recent order within a 
single database transaction. The template for this type of transaction is: 

Input= a customer number(wJd+dJd+cJd) or 
customer last name(w_id+dJd+cJast) 

Read_Set=    { [ Case 1,   the input is customer number: 
Customer. (w Jd+did+cJd). (C_BALANCE,C_FIRST, CXAST, 

C-MIDDLE); 
Case 2,   the input is customer last name: 
Customer. (w_id+d Jd+c Jast). (C_BALANCE,C_FIRST, CXAST, 

C_MIDDLE) ] ; 
£=Order.(wJd+dJd+cJd).OJD; 
Order, (w Jd+d Jd+c Jd). (0_ENTRY_D, 0_C ARRIER JD); 
Order-line.(wJd+dJd+s).(OLJJD, OL_SUPPLY_WJD, 

OL_QUANTITY, OL_AMOUNT, OLJDELIVERYJ3) } 

The Delivery transaction processes ten new (not yet delivered) orders within one or more 
database transactions. The template for this type of transaction is: 

Input= a warehouse number(wJd), district number(dJd), 
and a carrier number(o_carrierJd) 

Read_Set=   { x = New-Order.(wJd+dJd).NO_OJD; 
y = Order, (w Jd+d Jd+x).0_CJD; 
Order, (w Jd+d Jd+x). (0_C ARRIER JD, 
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OL_DELIVERTY_D, OL_AMOUNT); 
Customer. (w_id+did+y).(C_BALANCE, C_DELIVERY_CNT) } 

• The Stock-Level transaction determines the number of recently sold items that have a stock 
level below a specified threshold. The template for this type of transaction is specified in the 
previous presentation. 

AS3AP 

In AS3AP, since the performance is tested by separated pieces of codes, such as selections, joins, 
projections, aggregations, and updates, every transaction is so simple that the read set templates 
can be easily built. 

Set Query Benchmark 

The types of transactions in the benchamrk are: Ql, Q2A, Q2B, Q3A, Q3B, Q4, Q5, Q6A, Q6B. 
Since these transactions are relatively simple, it is easy to build the read set templates for them. 

5.4.4    Static Repair 

Using the read information extracted from transaction profiles, the static repair algorithms, either 
the three pass algorithm, or the two pass algorithm, can be modified correspondingly to achieve the 
goal. 

For the three pass algorithm, the modified version is: 

Algorithm 7 Three Pass Repair Algorithm 
Input:    the log, the set B of bad transactions. 
Output:    a consistent database state in which all bad and suspect transactions are undone. 
Pass 1. scan the log from the beginning to the end to get the serial order of only the committed 
transactions. 
Pass 2. scan the log along the serial order got in pass 1; for each transaction in B add its write items 
to the set dirtyset; for each good transaction, if the intersection of its read set and the dirtyset is 
not empty, then add its write items to the set dirtyset and mark it 'suspect'. 
Pass 3. undo all the bad transactions as well as the marked suspect transactions. 

The modified version of two pass algorithm is: 
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Algorithm 8 Two Pass Repair Algorithm 
Input:    the log, the set B of bad transactions. 
Output:    a consistent database state in which all bad and suspect transactions are undone. 
Pass 1. scan the log from the beginning to the end; for each transaction in B add its write items 
to the set dirty.set; for each good transaction keep its write items until the commit or abort record 
is scanned; if it commits, and the intersection of its read set and the dirty.set is not empty, then 
add its write items to the set dirty.set and mark it 'suspect'. 
Pass 2. undo all the bad transactions as well as the marked suspect transactions. 

We note that these two algorithms are both based on the assumption that the scanning order 
of transactions is a serial order, because the write-read dependency is based on the serial order. 
Fortunately, strict two phase locking, used in most commercial systems, ensures that the commit 
order is the serial order if read locks are not released before a transaction commits or aborts. 

5.4.5    Dynamic Repair 

On-the-fly Concurrency Control 

The same as Algorithm 5. 

Correct On-the-fly history 

A history is read-strict if it is strict, and if whenever TJ[X] < Oi[x](i ^ j), either a,- < o^x] or 
Cj < Oi[x] where ot[x] is n[x] or Wi[x]. That is, no data item may be read or overwritten until the 
transaction that previously read or wrote into it terminates, either by aborting or by committing. 

Definition 4 History H is a correct on-the-fly history if 

1. H is serializable and read-strict, 

2. There is no abort records for undo transactions, 

3. For any read operation rTi[x], the predicate x g dirty Mem.set holds, 

4. For any conflicting undo transaction pair Ut and [/,-, if 7} <H Tj then U{ <H Uj, and 

5. For any undo operation %[i], the predicate (x G dirtyJtemset) D (x € submittedJtemset) 
holds. 
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Termination Detection 

This is the same as Mechanism 2 except that we maintain the tmp-undoJist in the following way: 

• For each in-repair transaction T, if T. Read Set f] dirty Jtem set / 0, then put T into the list. 

• For each in-repair transaction T, if 3x G T.ReadSetC\cleanedJtemset such that T.Begin.LSN < 
x.LSN, then put T into the list. 

It should be noticed that here the conditions which are used to detect termination are only 
adequate, but not necessary. That is, when the conditions are satisfied, the repair terminates; but 
when the repair terminates, these conditions may not be satisfied. 

Building Undo Transactions 

The same as Algorithm 4. 

On-the-fly Repair Algorithm 

Here, we specify only the modifications to Algorithm 6. 

Algorithm 9 On-the-fly Repair Algorithm 
At the Repair Manager 

The case in Algorithm 6 for a read record [Tj, x] is removed 
case a commit record [Tj, commit] is scanned 

if Tj.ReadSet n dirty Jtemset ^ 0 
build the undo transaction for T and submit it. 
put all items of Tj into the dirty Jtemset. 

if 3x € Ti.Read.Set n cleaned Jtemset such that Tj. Begin. LSN < x.LSN 
build the undo transaction for Ti and submit it. 
put all items of Tj into the dirty Jtemset. 

5.4.6    Getting Write Items from the Log 

Since each read set in a transaction profile is a set of logical identifiers for data items, we need to 
relate these items with the write set data items we get from the log. As described in [GR93], there 
are typically four ways to maintain tuple identifications in database systems, which are Relative 
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Byte Addresses(BRAs), Tuple Identifiers(TIDs), Database Keys and Primary Keys. The advan- 
tages of the primary key addressing technique outweigh its higher cost, especially since there are 
optimizations to reduce the overhead for many operations. Even if we can not get the logical iden- 
tifiers of write set data items from the log directly, we can map from their physical identifiers to 
logical identifiers based on the internal mapping and addressing mechanisms of database systems. 

5.5    Discussion 

5.5.1 Comparison of the Performance of Different Repair Approaches 

As shown in Section 5.2, Section 5.3 and Section 5.4, keeping read information in the log can achieve 
an exact repair, but it may incur substantial performance penalties due to the significant storage 
and processing cost of maintaining read information. 

Extracting read sets from transaction profiles cuts the extra cost significantly, but it usually can 
only achieve a complete repair, and not an exact repair. That is, some non-suspect good transactions 
may have to be undone. In dynamic repair there may be a delay in detecting termination. 

Maintaining a special purpose graph with transaction dependency information has many attrac- 
tions: the graph is immediately available for backing out undesirable transactions, the frequency 
with which read information is put into stable storage can be dynamically adjusted as appropriate, 
and the graph can be targeted to cover those transactions most likely to be marked undesirable. For 
example, in the case of the upgrade problem, it is easy to identify the source of potential undesirable 
transactions, and the protection gained by being able to back out such transactions warrants a short 
term sacrifice in performance. 

5.5.2 Incorporating Ongoing Attacks 

In static repair, due to the delay of intrusion detection, a bad transaction may be identified during 
the repair; Similarly in dynamic repair, new bad transaction can be identified at any time during the 
repair. For simplicity of presentation, we assume that the malicious transaction list will not change 
in the process of both static and dynamic repairs. However, ongoing attacks can be incorporated 
into our algorithms. 

In static repair, newly detected bad transactions can be repaired by re-scanning the whole log. In 
dynamic repair, when a new bad transaction is identified, we stop the repair, skip to the place where 
the first un-repaired bad or suspect transaction begins, and apply the dynamic repair algorithm 
again. In the new round, the new bad and suspect transactions are backed out. 
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SECTION 6 

Trusted Recovery by Rewriting Histories 

This chapter presents the semantic aspect of the proposed trusted recovery scheme where a set of 
rewriting algorithms is developed and substantial transaction semantics is incorporated to save the 
work of more good transactions. 

6.1    The Model 

We consider a history H over B U G. We assume that the concurrency control mechanism provides 
an explicit serial history Hs of history H. For example, the order of first lock release provides a 
serialization order for transactions scheduled by a strict two-phase locking mechanism. We denote 
the total order on the transactions in a serial history Hs by <^. 

We assume the availability of read information for transactions in H since as later discussion 
makes clear, read information is also necessary to rewrite histories. Read information can be 
captured in several ways, these approaches are discussed in section 6.6. 

We assume that transactions do not issue blind writes. Although the approach in this chapter 
can be adapted to blind writes, doing so complicates the presentation. Also, we compare the results 
in this chapter to those obtained by a dependency-graph based approach to recovery (proposed in 
Chapter 5) that also assumes no blind writes. 

Figure 6.1 illustrates the dependency-graph based approach to backing out bad and affected 
transactions (see Chapter 5). In particular, it illustrates the importance of distinguishing between 
read-write and write-read dependencies during recovery. A read-write edge can leave the 'zone 
of repair' without causing the zone to expand. On the other hand a write-read edge potentially 
expands the zone. Note that due to the assumption of no blind writes, there are no write-write 
edges in the graph. 
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Legend 
read-write edge 
write-read edge 

Zone of repair 

Figure 6.1: Zone of Repair 

In this example, a possible history H4 is 

H4 = Bx G2 AGZ GA B5 G6 AG7 AGS G9 Gw AGn G12 

the set AG = {AGS, AG7, AG8, AGn}, and the dependency-graph based recovery algorithms 
proposed in Chapter 5 restore the before values for all data items written by transactions in the set 
B U AG. The result is a serializable history over G - AG: 

H±r = Gr2  G4  GQ Gg Gio G\2 

The approach of rewriting histories developed in this chapter has the advantage that it preserves 
ordering information for transactions in B U AG, thereby providing a basis for saving additional 
transactions in AG. 

6.1.1    Rewriting Histories 

For a serial history Hs, we augment Hs with explicit database states so that the result is a sequence of 
interleaved transactions and database states. The sequence begins and ends with a state. The state 
that immediately precedes a transaction in Hs is called the before state; the state that immediately 
follows a transaction in Hs is called the after state. For an example, consider the augmented history 
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Hl = so Bi si G2 s2 

where 

Bi : if x > 0 then y := y + z + 3 
G2 : x := x - 1 

The states associated with Hi are: 

so = {* = 1; y = 7; z = 2} 
Si = {x = 1; y = 12; z = 2} 

s2 = {x = 0; y = 12; z = 2} 

In rewriting histories, the general goal is either to move bad transactions towards the end of 
a history or to move good transactions towards the beginning of a history. It turns out that the 
transformations do not necessarily result in a serializable history which is conflict-equivalent or view- 
equivalent to the original history[BHG87]. The lack of serializability is justified by the observation 
that bad transactions ultimately must be backed out anyway along with some or all of the affected 
transactions. Hence the serializability of such transactions is not a requirement. 

The example above helps to clarify this point. The serial history #| is clearly not conflict- 
equivalent to the serial history G2BX since there is a read-write dependency from Bx to G2. However, 
G2 is not affected by Bx, and simply restoring y with the appropriate value from the log not only 
repairs the damage caused by Bx, but preserves the effects of the good transaction G2. 

However, It turns out that rewriting histories for recovery purposes requires some care with 
respect to state-equivalence of histories. Two augmented histories H[ and JY| are final state equiv- 
alent if they are over the same set of transactions and the final states are identical. Note that two 
final state equivalent histories might not be conflict-equivalent, or view-equivalent [BHG87]. 

To clarify this point, consider the above example again. After we make the transformation of 
exchanging the order of G2 and Bx, H( is clearly not final state equivalent to the serial history G2BX 

since they result in different final states. At this situation, if H[ has more transactions following 
BXG2, i.e., G3G4...Gn, then this transformation changes the before state of G3. As a result, after the 
transformation the rewritten history may not be consistent any longer because the precondition of 
some d, 3 < i < n, may not be satisfied any more. Even if the rewritten history is still consistent, 
the behaviors and effects of G3, G4, -, and Gn may have changed a lot, thus the original execution 
log may turn out to be useless. Moreover, the rewritten history usually can not result in the same 
final state, and the new final state is usually very difficult to get, thus semantics-based compensation 
is disabled. Therefore, keeping the final state equivalence of rewritten histories during a rewrite is 
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essential to the success of the rewrite. 
We approach this problem by decorating each transaction T in an augmented history Hs with 

special values for read purposes by T. The decoration is facilitated by the notation fix which is 
specified below. 

Definition 5 A fix for transaction Tt in history Hs, denoted Fit is a set of variables read by T 
given values as in the original position of T in Hs. That is, Ft = {(xuVl),..., (xn,vn)}, and v{ is 
what Ti read for x{ in the original history. 

The notation 7\Fi indicates that the values read by T2 for variables in Ft should not come from 
the before state of Tt, but from Ft. 

To reduce notational clutter, we show just the variable names in Ft and omit the associated 
values. 

Consider the augmented history H§ = s0 Bx Sl G2 s2 above. As discussed, the history 

#| = s0 G2 s3 Bx s3 

with 

s3 = {x = 0;   y = 7;   z = 2} 

results in a different value of y in the final state, but the history 

Hs
7 = so G2 s3 ßf1 s2 

ends in final state s2 for Fr = {x}. States sx and s3 differ in the value of x; this discrepancy is 
captured by F:, where x is associated with the value 1, which is the value Bx read for x in the 
original history H§. 

In what follows, each transaction 7- is assumed to have an associated fix F*. For ordinary 
serializable execution histories, each such fix F{ = 0, the empty fix. In the example above, the two 
histories 

Hi = so B\ Sl Gl s2 

H° = so G\ s3 B\x} S2 

are final state equivalent. 

73 



6.1.2    Repaired Histories 

Definition 6 Given a history Hs over B U G, H* is a repaired history of Hs if 

1. H* is over some subset of G, and 

2. There exists some history Hs
e over B U G such that 

(a) H° is a prefix of Hs
e and 

(b) Hs
e and Hs are final state equivalent. 

Our notion of a repaired history is that only good transactions remain (condition 1) and further 
that there is some extension to the repair that captures exactly the same transformation to the 
database state as the original history (condition 2). 

We note that the dependency-graph based approach satisfies the first part of the definition of a 
repaired history where the subset of G is G — AG. As an example, in figure 6.1 history H|r is a 
repair of HS

A since Hs
ir is over {G2, G4, G6, G9, G10, G12} which is a subset of G and the necessary 

history H\e exists: 

HI = G2 G4 G6 G9 G10 G12 B? AG? B? AG? AG? AGF
X? 

for appropriate fixes F\, F3, F5, F7, F% and Fn. Details of how to construct fixes are discussed later 
in the chapter. 

Armed with a definition of repairs to histories, we are now ready to consider algorithms to 
construct them. 

6.2    Basic Algorithm to Rewrite a History 

6.2.1     Can-Follow Relation 

We denote the set of items read or written by a transaction T as T.readset or T.writeset, and the 
set of items read or written by a sequence of transactions R = TiT2...Tn as R.readset or R.writeset. 
Due to our assumption of no blind writes, R.writeset C R.readset. 

Definition 7 Transaction T can follow a sequence of transactions R if 

T.writeset n R.readset = 0 

There are some properties of can follow: 

74 



1. If Ti.writeset is not empty, then transaction T{ can not follow itself. 

2. The fact that T; can follow transaction 7} and Tj can follow transaction Tk does not imply 
that Ti can follow Tk. 

3. Read-only transactions can follow any transaction. 

The can follow relation captures the notion that a transaction T can be moved to the right past 
a sequence of transactions R if no transaction in R reads from T. The can follow relation ensures 
then the cumulative effects of the transactions in R on the database state are identical both before 
and after T is moved. The following lemma shows that the can follow relation can be repeatedly 
used to rewrite a history. 

Lemma 2 Transaction T can follow a sequence of transactions RiST can follow every transaction 
in R. 

Proof:  if:    For every transaction Tt in R, T.writeset n Ti.readset = 0 because T can follow T{. 
Therefore T.writeset C\ R.readset = 0, so T can follow R. 

only if: By contradiction, assume there is a transaction 7} in R such that T cannot follow Tu 

then T.writeset n Ti.readset ^ 0. Therefore, T.writeset n R.readset / 0, which contradicts the 
assumption that T can follow R. □ 

6.2.2     Can-Follow Rewriting 

The can follow relation can be used to rewrite a history to move transactions in G - AG to the 
beginning of the history, namely, move transactions in B U AG backwards. 

Algorithm 10 Can-Follow Rewriting 
Input:    the serial history Hs to be rewritten and the set B of bad transactions. 
Output:    a rewritten history with transactions in G - AG preceding transactions in B U AG. 
Method:     Scan forward from the first good transaction after Bx until the end of Hs, for each 
transaction T 

case T e B     skip it; 
case T e G 

if each transaction between Bx and T (including B{) can follow T, then 
move T to the position immediately preceding Bx. 
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Algorithm 10 does not describe how to compute the fix with any transaction which has some 
transaction being moved to the left of it. The reason is that repair can simply be accomplished by 
undo. However, if we want to save some of the transactions in AG then we need to maintain the 
fix information for these transactions. Fixes are computed as follows: 

Lemma 3 Suppose transaction T can follow sequence R in history H[ = s0 T
Fl s1 R s2. Then for 

fix 
F2 = Fi U (T.readset n R.writeset) 

history #| = s0 R s3 T
F'2 s2 is final state equivalent to H{. The values associated with each data 

item in the fixes are those originally read by T. 

Proof: Consider some database item x G s2. x is not an element of both R.writeset and T.writeset 
since otherwise the relation T can follow R would not hold. If x is an element of R.writeset, then 
the value computed by R for x is the same in both H{ and H| since R does not read from T. If 
x is an element of T.writeset, then the value computed by T for x is the same in both H( and H2 

since T reads identical values for elements in T.readset in both histories, courtesy of fixes Fi and 
F2, respectively. If x is not an element of either T.writeset or R.writeset, then the order of T and 
R is irrelevant to the value of x. n 

The correctness of Algorithm 10 is specified as follows. 

Theorem 7 Given a history Hs, Algorithm 10 produces a history Hs
e with a prefix Hs

r such that: 

1. All and only transactions in G — AG appear in H°. 

2. Hs
e and Hs order transactions in G - AG identically. And they order transactions in BU AG 

identically. 

3. The fix associated with each transaction in H? is empty. 

4. Hs and Hs
e are final state equivalent. And H? is a repaired history of Hs. 

Proof: (1) We first show that when a transaction Tx e G - AG is scanned every transaction 
between Bx and Ti is in B U AG. Assume this is not the situation and T2 is the first one between 
Bx and 7\ which belongs to G - AG. According to the algorithm when T2 was scanned it should 
be moved to the left of B\, which is a contradiction. We second show that no transactions in AG 
will be moved to the left of Bx at the end of the algorithm. Assume this is not the situation and 
T2 is the first one in AG. According to the definition of AG, when T2 is scanned there is at least 
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one transaction between Bi and T2 which can not follow T2, which is a contradiction. We last show 
that no transactions in B will be moved to the left of By because they will never be moved at all. 
Therefore, after the rewrite all and only transactions in G - AG are moved to the left of Bi. 
(2) Since Algorithm 10 moves transactions in G - AG to the left of B1 according to their orders in 
Hs, so they are ordered by H* and Hs identically. Since transactions in B U AG are never moved 
in Algorithm 10, so they are ordered by H° and Hs identically. 
(3) Since there are no transactions which are moved to the left of any transaction in G - AG in 
Algorithm 10, transactions in G - AG will have empty fixes. 
(4) Follows from Lemma 3 and Definition 6. D 

In realistic applications, although Lemma 3 gives users a sound approach to capture fixes in 
Algorithm 10, it is not efficient in many cases since whenever a transaction T, is moved to the left 
of another transaction Tj, Fj may need be augmented. A better way to compute fixes is as follows: 

Lemma 4 For any history Hs, assume rewriting Hs using Algorithm 10 generates a history Hs
e 

with a prefix H* {Hs
e typically looks like: 

Gjl...Gjn B%> AG%1...Bf™...AG%p. The subhistory before s£" is HS
T ), and assume all the fixes 

are computed according to Lemma 3 during the rewriting, then the history Hs
e', generated by 

replacing each non-empty fix Ft in Hs
e with F[ = Ti.readset - T-wrtteset, is final state equivalent 

to HI 

Proof: According to Theorem 7, the fix associated with each transaction in H? is empty. Given a 
transaction Tt in B U AG, for each item x in F[ - Ft, showing that the value of x in the before state 
of Ti in Hs

e is the same as that in Hs gives the proof. Assume Gj is the first transaction which was 
moved to the left of Tj, then before Gj was moved, the before state of T, in the rewritten history is 
the same as that in Hs because at this point, according to Lemma 3, the subhistory of the rewritten 
history which ends with the transaction immediately preceding Tt is final state equivalent to the 
corresponding subhistory of Hs. After Gj is moved to the left of Tu the value of x would not be 
changed since otherwise x must be in Ft. Although Gj might be further pushed through some other 
transactions in B U AG to the beginning of the history, the value of x in the before state of T{ will 
not be changed. The reason follows from Lemma 3. D 

Lemma 4 enables us to separate computing fixed from transforming histories. Fixes can be 
computed after all of the transformations. Based on Lemma 4, the fix of transaction Ti can be 
captured in two ways: one is to first get the read and write sets of Th then compute Ti.readset - 
Ti.writeset; the other is to let each transaction Tt write the set Ti.readset - T^writeset as a record 
to the database when it is executed, then when we rewrite Hs all of the fixes can be gotten directly 
from the database. 
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6.2.3    Significance of Algorithm 10 

The major result of this section is an equivalence theorem between the effect of a dependency- 
graph based algorithm and the history produced by Algorithm 10. The dependency-graph based 
algorithm computes the set B.writeset U AG.writeset and restores the values of all elements in 
this set. In particular, the theorem shows that the optimizations in the following section are strict 
improvements over the dependency-graph based algorithm. 

Theorem 8 Given Hs, let H° be the serial history produced by eliminating all transactions in 
B U AG as in the dependency-graph based algorithm. Given Hs, let Hs

e be the result of Algorithm 
10. Then HS

T is a prefix of Hs
e. 

Proof: Direct corollary of Theorem 7. n 

6.3    Saving Additional Good Transactions 

In this section, we show how to integrate the notion of commutativity with Algorithm 10 to save 
not only the transactions in G — AG, but potentially transactions in AG as well. 

6.3.1    Motivating Example 

Consider the following history: 

Hg : B\G2Gz 
Bi\   if u > 10 then x := x + 100, y := y - 20 
G2:   u := u - 20 
G3:   x := x + 10, z := z + 30 

According to Algorithm 10, which rewrites based on can follow, G3 needs to be undone since it reads 
from Bi and hence is an element of AG. The result of Algorithm 10 is the history Hs

e = G2B\\u}G3. 
Note that G3 commutes backward through B\

U
^ for any value of u*, and so an final state equivalent 

history is G2G3B[
U
K Compensation for B\

U}
 can be applied directly to this history, but an undo 

approach requires more care.  Suppose we decide to undo J5i by restoring the before values for x 

*We adapt the notation of commutativity from [LMWF94, Wei88]. Transaction T2 commutes backward through 
transaction Ti if for any state s on which TXT2 is defined, T2(Ti(s)) = Ti (T2(s)); Tx and T2 commute if each commutes 
backward through the other. Note that one-sided commutativity (i.e., commutes backward through) is enough for 
our purpose. 

78 



and y from the log entries for B. After B is undone the value of u is unchanged because only Gx 

updates u. The value of z is unchanged because only Gz updates z. The effect of G3 on x is wiped 
out because both Gz and B update x, and after B is undone x no longer reflects the effects of G3. 
However x can be repaired by re-executing the corresponding part of G3's code, that is, x = x + 10, 
and the cumulative effect is that of history G2G3. We call this last step an undo-repair action. Both 
the undo approach and the compensation approach to repair are discussed in detail in section 6.4. 

The presence of fixes for transactions limits the extent to which commutativity can be applied. 
We illustrate this point with an example, and then define a more restrictive notion of commutativity 
called can precede that takes fixes into account. 

H9 :  s0 Ti Si T2 s2 T3 s3 

Ti:    if y > 200 then x := x + 100 else x := x * 2 
T2:   y:=y+ 100 
T3:   if y > 200 then a: := x - 10 else x := x/2 

Ti can follow T2 with fix Fi = {y} for Tj. Although T3 commutes backward through Ti, T3 does 
not commute backward through if1, because the value of a; produced by T[l depends on the value 
of y in the fix Fv For example, if the initial value of x is 100 and fix value of y is 150, then the 
final value of x in history T2T[lTz is 190, but the final value of x in history T2TzT[l is 180. 

The example shows that sometimes a fix can interfere with the commutativity of transactions. 
This motivates our definition of can precede: 

Definition 8 A transaction T2 can precede a transaction Tx for fix F if for any assignment of values 
to the variables in F and for any state s0 e S on which T[T2 is defined, 

1. T2Tf is defined on s0, and 

2. The same final state is produced by T[T2 and T2Tf. 

6.3.2    Can-Follow and Can-Precede Rewriting 

We present a repair algorithm which integrates both can-follow and can-precede. 

Algorithm 11 Can-Follow and Can-Precede Rewriting 
Input:    the history Hs to be repaired. 
Output:    the repaired history H°. 
Method:    Scan Hs forward from the first good transaction after Bx until the end of Hs, for each 
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transaction T 
case TeB     skip it; 
case T € G 

if for each transaction V between Bx and T(including By), either T can follow T or T can 
precede T', then move T to the position immediately preceding B\. As T is pushed through each 
such V between B\ and T to the left of BY 

if V can follow T, then push T to the left of V and 
modulate the fix of V correspondingly according to Lemma 3; 

else push T to the left of T". 

The correctness of Algorithm 11 is specified as follows. 

Theorem 9 Given a history Hs, Algorithm 11 produces a history Hs
e with a prefix H* such that: 

1. Every transaction in G — AG appears in H£. 

2. HI and Hs order transactions in H° identically.   And they order transactions in Hs
e - H? 

identically. 

3. The fix associated with each transaction in H* is empty. 

4. Hs and Hs
e are final state equivalent. And H? is a repaired history of Hs. 

Proof: The proof of statements (1), (2), and (3) is similar to that of Theorem 7. 
(4) follows from Lemma 3, Definition 8 and Definition 6. O 

In Algorithm 10, Lemma 4 provides an efficient way to compute fixes. However, Lemma 4 may 
not hold for Algorithm 11 if the system does not have the following property. 

Property 1 Transaction 7} can precede transaction T for a fix F, only if (Ti.readset—Ti.writeset— 
Fi) n Tj.writeset = 0 and (Tj.readset — Tj.writeset) D Ti.writeset = 0. 

It should be noticed that Property 1 is not a strict requirement, and it usually holds for most of 
the transaction processing systems. The reason is: if Tj writes an item x in Ti.readset—Ti.writeset— 
Fi, then x can have different values in the before states of Ti in sequences T{ 

{Tj and TjT{ ' respec- 
tively. Since x is not in Fi, Ti can read different values of x in the two sequences. Since the value of 
x typically affects the values of some other items updated by T, the two sequences usually can not 
generate the same final state. For similar reasons, if (Tj.readset — Tj.writeset) n Ti.writeset / 0, 
then Tt

FiTj and TjTp usually can not generate the same final state. 

80 



Lemma 5 Lemma 4 holds for Algorithm 11 if the system has Property 1. 

Proof: The proof is similar to that of Lemma 4 except the situation when 7} is moved to the left 
of Ti based on the relation that Tj can precede T{. At this point, for each item x in F{ - F{, since 
the system has Property 1, Tj will not write x, so the value of x in F[ is still the same as that in 
the before state of T; after the rewrite. This completes the proof. D 

6.3.3    Invert and Cover 

In this section, we introduce two semantic relationships between transactions, namely, Invert and 
Cover, and show how they can be exploited to enhance repair. 

If transaction T2 inverts Tu then any history of the form: s0...Ti T2 ... is final state equivalent 
to the same history with TXT2 omitted; if T2 covers Tu then any history of the form: sQ...Ti T2 ... 
is final state equivalent to the same history with Tx omitted. If T2 covers Tj, then T2 covers Tf1 for 
any Fi, but this is not the case for invert. 

Definition 9 Let P and Q be two sequences of transactions. Q inverts P if for any state s0 such 
that history s0 P Q is feasible, Q(P(s0)) = s0. 

Definition 10 Let P and Q be two sequences of transactions. Q covers P if for any state s0 such 
that history s0 P Q is feasible, Q(P(s0)) = Q(s0). 

The rewriting algorithm which exploits these two relations is described below. 

Algorithm 12 Can-Follow, Can-Precede, Cover, and Invert Rewriting 
Input:    the history Hs to be repaired. 
Output:    the repaired history H*. 
Method: Scan Hs forward from the first good transaction after Bx until the end of Hs, for each 
transaction T 

case T eB     skip it; 
case T e G 

if for each transaction V between Bx and T (including B{), either T 
can follow T, or T can precede T', or T inverts V, or T covers V, 
then move T to the position immediately preceding Bx. As T is pushed 
through each V between Bx and T to the left of Bx 

if T covers T", then remove T" from the history; 
elseif V can follow T, then push T to the left of V and 
modulate the fix of V correspondingly according to Lemma 3; 
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elseif T can precede T", then push T to the left of T"; 
else remove both T and V from the history. 

For similar reasons, Lemma 4 can also be exploited to capture fixes in Algorithm 12 if the system 
has Property 1. The correctness of Algorithm 12 is specified as follows. The proof is similar to 
Theorem 7 and Theorem 9, thus omitted. 

Theorem 10 Given a history Hs, Algorithm 12 produces a history Hs
e with a prefix H* such that: 

1. Hs
e and Hs order transactions in H° identically.   And they order transactions in Hs

e - H* 
identically. 

2. The fix associated with each transaction in H* is empty. 

3. Every transaction in Hs
e is in Hs. 

4. The final states of Hs and Hs
e are identical. And H* is a repaired history of Hs. 

6.4    Pruning Rewritten Histories 

After a rewritten history Hs
e with a prefix H° , which is the repaired history, is generated from 

Hs, we need to prune HI such that the effects of all the transactions in Hs
e - H* are removed. 

Pruning HI generates H*. If Hs
e is produced by Algorithm 10, then the pruning can be easily done 

by undoing each transaction in Hs
e - H°. However, if Hs

e is produced by Algorithm 11 or Algorithm 
12, undo does not give the pruning in most cases. 

In this section, two pruning approaches are presented. The compensation approach removes 
the effect of each transaction Tp in Hs

e — H° by executing the fixed compensating transaction of 
Tj, however, compensating transactions may not be specified in some systems. The undo approach 
prunes Hs

e by building and executing a specific undo-repair action for each affected transaction in 
H*. It is a syntactic approach, but it imposes some restrictions on transaction programs. 

6.4.1    The Compensation Approach 

We denote the compensating transaction of transaction Tj as Tfl [GM83, GMS87, KLS90].  Tf 
semantically undoes the effect of 7^.  It is reasonable to assume that Tf1 .writeset C Ti.writeset, 
and for simplicity we further assume that every transaction Tj has a compensating transaction. 
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After Algorithm 11 or Algorithm 12, a typical rewritten history Hs
e with a prefix Hs

r looks like 

(note that BiX could be covered or inverted, and Hs
e can also end with a bad one): Gjl...AGhl...Gjq...AGhk B\ 

The subhistory before Bp1 is Hf Based on Hs
e, compensation is a simple way to get the repaired 

history H?. However, executing the compensating transaction sequence AG^1 ...Bf^...AG~}k+1) B~x
l 

on the final state of Hs can not generates H° in most cases because the transactions we need to 
compensate are usually associated with a non-empty fix. Fixes must be taken into account for the 
compensation to be correct. 

Definition 11 The fixed compensating transaction of Tp, denoted Tf
(-1,F,), is the regular compen- 

sating transaction of T; (denoted T"1) associated with the same fix Ft. 

The effects of Tp can be removed by executing T}~
1,FI

\ this is justified by the following lemma. 

Lemma 6 Transaction Tp can be fix compensated, that is, for every consistent state si on which 
Tp is defined, Tl

{-1'F)(Tp(s1)) = Sl, if F D T.writeset = 0. 

Proof: Since F^T.writeset = 0, Tf1.writeset C T.writeset, so F^Tf1 .writeset = 0. Therefore, 
neither T{ nor Tf1 will update any item in Ft. Let s2 = Tf{(si). For each item x in Fi we replace 
the values of x in states sx and s2 with the value of x in F, thus two new states are generated (de- 
noted s[ and s'2 respectively). It is clear that Tfl(s'2) = s[. Since the differences between T^is'?) 
and Ti ' ' (s2) are only with the values of the items in F{ which are neither updated by Tf1, nor 
updated by T$~1,Fi\ so Ti~1,Fi)(s2) = s2. This completes the proof. *        D 

A rewritten history Hs
e can be fix compensated if every transaction in Hs

e can be fix compensated. 
Lemma 6 shows that every Hs

e produced by Algorithm 11 or Algorithm 12 can be fix compensated 
because for each transaction T in Hs

e which is associated with a non-empty fix Fu FiDT.writeset = 
0 always holds. The pruning algorithm by compensation therefore is straightforward: based on the 
final state of Hs, executing the fixed compensating transaction for each transaction in Hs

e - Hs
r in 

the reverse order as they are in Hs. 

6.4.2    The Undo Approach 

As stated above, after Algorithm 11 or Algorithm 12, a typical rewritten history Hs
e looks like: 

Gji...AGhl...G3q...AGhk Bpl AGF
h^1)

)...B^...AGFh
p
p. As shown in H8, undoing transactions in 

El - ES
T can not generate Es

r in most cases. However, building and executing the undo-repair 
actions for the affected transactions in HS

T, namely AGhl, ...,AGhk, after these undo operations can 
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generate Hs
r. For example, in H&, executing the undo-repair action, x = x + 10, for G3 after B is 

undone can produce the effect of history G2Gz- 
To build the undo-repair actions for AGhu ..., AGhk, we need to do two things: 

1. Abstract the code for each undo-repair action from the source code of the corresponding 
affected transaction. 

2. Assign appropriate values for some specific data items accessed by these undo-repair actions. 

Our algorithm described below is based on the following assumptions about transactions: 

• a transaction is composed of a sequence of statements, each of which is either: 

— An operation; 

- A conditional statement of the form: if c then 551 else 552, where 551 and 552 are 
sequences of statements, and c is a predicate; 

• each statement can update at most one data item; 

• each data item is updated only once in a transaction; 

Algorithm 13 Build Undo-repair Actions 
Input:    an affected transaction AGk. 
Output:    the undo-repair action URAk for AGk. 
Method: 
1. Copy the codes of AGk to URAk. Assign URAk with the same input parameters and the same 
values associated with them as AGk. 
2. Parse URAk. For each statement to be scanned 

case it is a read statement, keep it; 
case it is an update statement of the form: x := f{x,yi,y2,---yn) where / 
specifies the function of the statement, yi,...,yn are the data items used 
in the statement. Some input parameters may also be used in the statement, 
but they are not explicitly stated here. 

if x has not been updated by any other transaction in B U AG 
Remove the statement from URAk; 

elseif x has not been updated by any transaction in B U AG 
which precedes AGk in Hs 

Replace the statement with: x := AGk-afterstate.x, 
that is, get the value of x from the after state of AGk in Hs; 
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else for each y{ (including x) 
if yi has not been updated by any preceding statement and has not been 
updated by any transaction in B U AG which precedes AGk in Hs 

Bind yi with AG k .be for estate, y; 
3. Reparse URAk. Remove every read statement which reads some item never used in an update 
statement of URAk, or reads some item y used in one or more update statements but y is bound 
with a value in these statements. 

It should be noticed that when we execute an undo-repair action URAk, for each update state- 
ment x = f(x, yx, y2, ...yn) of URAk, if yt is not bound then we get the value of yz from the current 
database state, otherwise, the bound value should be used. 

The correctness of the undo approach is specified as follows. 

Theorem 11 For any rewritten history Hs
e generated by Algorithm 11 or Algorithm 12, after all 

transactions in Hs
e - H

s
r are undone, executing the undo-repair actions which are generated by 

Algorithm 13 for the affected transactions in Hs
r, in the same order as their corresponding affected 

transactions are in H?, produces the same effect of H°. 

Proof: Showing that each item x updated by an transaction in Hs
e is restored to the value as 

generated by H* after the repair gives the proof. 
If x has never been updated by any transaction in B U AG, then the value of x will be correctly 

restored because an unaffected transaction Gt can only read items from other unaffected transactions 
thus GVs updates will not be affected by transactions in B U AG. 

Otherwise, assume x has been updated by k transactions in BU AG, that is, Tix, ...,Tik, Tip <S
H 

Tiq if p < q. Note that after x has been updated by Tix, x will not then be updated by any unaffected 
transaction. If A; = 1, that is, there is only one such transaction. At this point, if Tix is in Hs

e - H° 
then after the undoes the value of x will be correctly restored; otherwise, Tix is in H°. Since H* 
is final state equivalent to Hs, so the value of x in the final state of H° is the same as" that in the 
after state of Tix in Hs. Hence in Algorithm 13 the corresponding update statement is removed. 

When k > 1, if no such transaction is in Hs
r then after the undoes the value of a; will be correctly 

restored. Otherwise, assume Tjx is in Hs
r, then when URAjx is executed, x := Tjx.afterstate.x, 

according to Algorithm 13. This restores the value of x to that generated by the subhistory of H? 
which ends with Tjx, because in rewriting when TjX is moved into Hs

r, the subhistory Hx of H" 
which ends with Tjx is final state equivalent to the subhistory H2 of the rewritten history at that 
time which ends with the transaction immediately preceding Tjx before the move, and Tjx is the 
last transaction in H2 that updates x. 

Assume Tjt (I > 1) is in Hs
r, if there is another such transaction Tjm in Hs

r such that 1 < 
m < I and no other such transactions stay between Tjm and TjU then in the update statement 
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x := f(x,yl:y2, ...yn) of URAji, the value of x for read purpose should be got from the state after 
URAjm is executed; otherwise, there is no such Tjm, thus transactions Tn, ...,Tj(,_i) will all be 
undone, hence the value of x in the above statement should be got from the state after TjX is 
undone. 

As for yi in the above update statement, if y{ has been updated by a preceding statement 
in URAji, then the updated value should be used. Otherwise, if y{ has been updated by some 
transaction in B U AG which precedes Tjt in Hs, then according to the above discussion, the value 
of y{ should be got from the state before URAji is executed; Otherwise, the value of y{ should be 
got from the before state of Tj; in Hs. At this situation, getting the value of y{ from the state before 
URAji is executed can not ensure the correctness because it is possible that there is a transaction 
Ti such that T{ updates yu T{ follows Tjt in Hs, T{ is in B U AG and Tt is in Hs

r. At this point, the 
value of yi updated by Ti will not be undone. 

Since the values of x,yx,y2, ...yn in the above statement are correctly captured, so the above 
statement can correctly restore the value of x to that generated by the subhistory of H° which ends 
with Tji. By induction on /, 1 < / < k, the above claim holds. n 

6.5    Relationships between Rewriting Algorithms 

Rewriting can save more good transactions than is possible with a dependency-graph based approach 
to recovery. For a history Hs to be repaired, we will let DGR(iP) and CFR(fP) represent the sets 
of saved transactions after Hs is repaired using a dependency-graph based approach and can-follow 
rewriting (Algorithm 10), respectively. FPR{HS) and FPCI(JEP) will be used to represent the sets 
of saved transactions after Hs is repaired using can-follow and can-precede rewriting (Algorithm 
11) and can-follow, can-precede, cover and invert rewriting (Algorithm 12), respectively. 

Theorem 8 shows that for any history Hs, DGR(HS) = CFR(HS). 

Theorem 12 For any history Hs, CFR{HS) C FPR(HS) C FPCI(HS). The converse is not, gen- 
erally, true. 

Proof: Follows from Algorithm 10, Algorithm 11, and Algorithm 12. □ 

Commutativity can be directly used to rewrite histories without being integrated with can- 
follow rewriting. Let CR(HS) and CBTR(#S) represent the sets of saved transactions after Hs 

is repaired using the two rewriting algorithms which are based on the commute relation and the 
commutes backward through relation between transactions, respectively. These two algorithms can 
be easily adapted from Algorithm 10 by checking the commute and commutes-backward-through 
relation between transactions respectively, instead of can-follow. 
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Theorem 13 For any history Hs, CR(HS) C CBTR(HS). The converse is not, generally, true. 

Proof: Follows from the definitions of commute and commutes backward through. D 

Theorem 14 3 Hs, CFR(HS) n CBTR(tf') ^ 0 and each is not included in the other; 3 Hs, 
CFR(HS) n CR(HS) ^ 0 and each is not included in the other; 

Proof: Consider the history 

H10 :  s0 Bi sx G2 s2 Gs s3 

Bx\   if y > 200 then x := x + 10 
G2:   if y > 200 then x :- x + 30 
G3:   y:= y+ 100 

It is clear that CFR(#f0)= {G3}; CBTR(HS
10)=CR(H°0)= {G2}. This completes the proof. D 

Theorem 15 If the system has Property 1, then 

1. V Hs, CBTR(#S) C FPR(HS) 

2. 3 Hs, CBTR(fr') C FPR(HS) 

Proof: Given a history Hs, showing that Tt G FPR(ifs) holds for each transaction T{ e CBTR(/fs) 
gives the proof We prove this by induction on k where Tk is the kst transaction moved into 
CBTR(iP). 

Induction base: (k = 1) We wants to show that Tx € FFR(HS). If there are no transactions 
between Bx and 7\ which are in FPR{HS), then Tx will be moved into FFR(HS) according to 
Algorithm 11 because Ti can precede every transaction Tf between Bx and T2 owing to the fact 
that Tj commutes backward through Tj. Otherwise, there must be some transaction Tj with an 
non-empty fix Fj staying between Bx and Tx (including Bx) in the rewritten history when Tx is 
scanned in Algorithm 11. Here we assume that Fj is captured by Lemma 3. At this point, assume 
T: cannot precede Tp, then Fj D {Tx.readset - T^writeset) ^ 0 because otherwise T: can precede 

Tj 3 (The reason is: for every state s0 on which TpTx is defined, replacing s0 with another state sx 

where the value of each item x in s0r)Fj is replaced with ar's value in Fj. Then TfTi is defined on sx. 
According to Property 1, since 7\ can precede if (Note that Tx commutes backward through Tj), 
so (Tj.readset - Tj.writeset) D Tx.writeset = 0.  Since Fj C (Tj.readset - Tj.writeset) according 
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to Lemma 3, so Fj D Ti.writeset = 0. So Tx will not read or update any item in Fj. Therefore, 
TpTi(s0) = TfTiisx), and T{Tp(s0) = 7iT/(si). Since 7i commutes backward through T}, so 

TfT^sJ = TiTfisr). Therefore, TpTi(s0) = TiTp(s0), SO TX can precede Tp). Therefore, 3x, 
such that, x e Fjf) (Ti.readset - Ti.writeset). Since x G F^, so according to Algorithm 11 there 
must be a transaction Tp, such that Tp is now in FPR(i/s), and a; E Tp.writeset. Otherwise, x will 
not be put into Fj by Lemma 3. Hence Tp.writeset n (Ti.readset - Ti.writeset) ^ 0. This conflicts 
with Property 1 since Tx commutes backward through Tp thus Tx can precede Tp

0. So the assumption 

that 7\ cannot precede T/"' does not hold. Therefore, 7\ can precede Tj j. So Tx can precede every 
transaction between Bx and Ti which has an non-empty fix. Since Tx commutes backward through 
all the other transactions between Bx and Ti, so Tx will be moved into FPR(fP). 

Induction hypothesis: for each 1 < k < n, if Tk e CBTR(FS), then Tk € FPR(fP). 
Induction Step: Let k = n + 1, then when Tk is scanned in both algorithms, every transaction 

Tj, which is between Bx and Tk in the rewritten history generated by Algorithm 11 at that time, is 
between Bx and Tk in the rewritten history generated by the commutes-backward-through rewriting 
algorithm. Therefore, Tk commutes backward through every such Tj. For the same reason as in the 
induction base step, we know that Tk will be moved into FPR(iP). 

Therefore, statement 1 holds. Consider history 7T10, it is clear that FPR(7T1
S
0)= {G2,G3}: 

CBTR(H(0) = {G2}- So statement 2 holds. □ 

In summary, after a history Hs is repaired, the relationships among DGR(HS), CFR(HS), 
FPR(HS), FPCl(Hs), CR{HS) and CBTR(#S) are shown in Figure 6.2. Here we assume that 
the system has Property 1. 

6.6    Implementing the Repair Model on Top of Sagas 

In this section, we will evaluate the feasibility of our repair model by integrating it with the saga 
model [GMS87]. 

6.6.1     The Saga Model 

The Saga Model is a practical transaction processing model addressing long duration transactions 
which can be implemented on top of an existing DBMS without modifying the DBMS internals at 
all. A saga consists of a collection of saga transactions (or steps), each of which maintains database 
consistency. However any partial execution of the saga is undesirable; either all the transactions in 
a saga complete successfully or compensating transactions should be run to amend for the partial 
execution of the saga. Thus corresponding to every transaction in the saga, except the last one, a 
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DGR--set of transactions saved by a 

dependency-graph based approach 

CFR--set of transactions saved by 
can-follow rewriting 

CR-set of transactions saved by commute 
rewriting 

CBTR-set of transactions saved by 

commutes-backward-through rewriting 

FPR-set of transactions saved by 
can-follow and can-precede rewriting 

FPCI-set of transactions saved by can-follow, 
can-precede, cover and invert rewriting 

Figure 6.2: Relationships among Repair Approaches 

compensating transaction is specified. The compensating transaction semantically undoes the effect 
of the corresponding transaction. 

The Saga Model is suitable for our repair model to be implemented on top of it because it 
supports compensation inherently. For example, a compensating transaction is specified for each 
transaction, except the last one, in a saga; and when a saga transaction Ttj ends, the end-transaction 
call will include the identification of the compensating transaction of Ttj which includes the name and 
entry point of the compensating program, plus any parameters that the compensating transaction 
may need. 

By viewing each normal duration transaction and each long duration transaction which can not 
be specified as a multi-step saga, as a specific saga that consists of only one saga transaction, we 
can get an unified view of transactions in the systems where the saga model is implemented. By 
adding the compensating transaction for the last step in each saga, we can get all the necessary 
compensating transactions to do repair. 

In addition, the saga model has the following two features which allow for optimization in 
rewriting a history. 

Consistency Property : the execution of each saga transaction (step) maintains database con- 
sistency. 

89 



Compensation Property : during the lifetime of a saga *, no matter how the saga is interleaved 
with other sagas, any step in the saga which is successfully executed, if having not been 
compensated, can be compensated by executing the corresponding compensating transaction 
at the end of the growing history. 

6.6.2    Repair a History of Sagas 

The Compensation Property implies that in a history to be repaired whenever a saga is identified 
as a bad one, we can rewrite the history to move only the last step, instead of every step, of the 
saga to the end of the history. In this way, substantial rewriting and pruning work can be saved. 
The optimization based on can-follow rewriting (Algorithm 10) is specified in the the following 
algorithm. 

Algorithm 14 Rewrite a history of sagas by can-follow rewriting 
Input:    the serial history Hs to be rewritten and the set B of bad sagas. 
Output:    a rewritten history Hs

e with a prefix if* which consists of only good saga transactions. 
Method:     Scan forward from the first good saga transaction after Bn until the end of Hs, for 
each step T^ (of saga Si) 

case Si G B     skip it; 
case Si € G 

if there is a step of Si which stays between B\ and Ty 
Skip Tij] 

elseif the final step Tpn of every saga Sp which stays between 
Bi and T^ (including Bi) can follow Ty 

Move Tij to the position which immediately precedes B\. As T^ is pushed 
through each such Tpn, augment Fpn according to Lemma 3. 

The integrated repair algorithm using Algorithm 14 to rewrite a history and the compensation 
approach to prune the rewritten history is specified as follows. 

Algorithm 15 Repair a history of sagas by can-follow rewriting 
Input:    the serial history Hs to be repaired 
Output:    a repaired history H° which consists of only good saga transactions. 
Method: 
1. Rewrite Hs using Algorithm 14 *. 

trThe lifetime of a saga begins when the saga is initiated, and ends when the saga terminates (commits or aborts). 
*It is possible that in HI one part of a saga Si is in H° and the other part of Si is in H^ - H*. 
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2. Do compensation from the end to the beginning of Hs
e until Bl is compensated. When the final 

step Tpn of a saga Sp is to be compensated 

• First, execute Tj~1^ to compensate 7$™. The codes and input parameters of T£l>F^ 
are got from the identification of the compensating transaction of Tpn included in the end- 
transaction calloiTpn. Note that Fpn has already been computed after Hs was rewritten. 

• Second, execute the sequence T^"1^, .., Tj"1^ to compensate all the other steps of Sp which 
are not in Hs

r. The codes and input parameters of these compensating transactions are got in 
the same way as of T^~l,FPn\ 

The correctness of Algorithm 15 is specified as follows. 

Theorem 16 Algorithm 15 is correct in the sense that Hs
r is consistent after step 1, and the repair 

results in the same state as generated by re-executing H*. 

Proof: It is clear that in Algorithm 14 a step T?j will not be moved into H^ unless every step 
between Tix and T{j can be moved into Hs

r. For a step % if $ is a good saga, and each step 
between Tn and 7^ (including T{j) can be moved into Hs

r, then we say Ti:j is an unaffected step, 
otherwise, we say T^ is an affected step. 

We propose another approach to repair Hs which is clearly correct.  It works as follows: Scan 
Hs backward from the end to the beginning: 

• If a bad final step Bin is met, execute the sequence B^hFn), B^1'0} B^7m on the 
* in i       i(n—1)'   ■'"'       zl w"   «mV, 

final state of the current history. This can remove the effects of B{ from the current history 
because at this point all the steps to the right of Bin are unaffected steps. All the bad or 
affected steps to the right of Bin have already been compensated. So Bin can follow every step 
following it, thus Bin can be moved to the end of the current history without changing the 
final state of the current history if Fin is computed according to Lemma 3, therefore, according 
to the Compensation Property, after BFn is compensated executing B\7^X, ..., B\~m can 
compensate the other steps. 

• If an affected final step Tin is met, assume Tip is the last unaffected step in Su execute the 
sequence Tin ' in , T^J^, ..., Ti{p+iy For similar reasons to the above case, this can remove 
the effects of all the affected steps of Si. 

It is clear that the above approach results in Hs
r. So Hs

r is consistent. Since the above approach 
executes the same set of fixed compensating transactions on the final state of Hs as Algorithm 15, 
and it executes these fixed compensating transactions in the same order, so Algorithm 15 results in 
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H 

the same state as generated by re-executing H°. n 

Algorithm 11 and Algorithm 12 can also be adapted to rewrite a history of sagas. The adapted 
algorithms are specified as follows. For brevity, and to highlight the differences between these 
algorithms, we describe only the modifications to Algorithm 11 and to Algorithm 12, respectively. 

Algorithm 16 Rewrite a history of sagas by can-follow and can-precede rewriting 
Method:    Scan Hs forward from the first good step after Bu until the end of Hs, for each step 
T 

case Si G G 
if there is a step of Si which stays between Bx and T^ 

Skip Tij] 
elseif the final step Tpn of every saga Sp which stays between Bx and T^ 
(including B\) can follow T^, or T^ can precede T^n 

Move T^ to the position which immediately precedes B\. 

Algorithm 17 Rewrite a history of sagas by can-follow, can-precede, cover and invert rewriting 
Method:    Scan Hs forward from the first good step after Bu until the end of Hs, for each step 
T 

case Si € G 
if there is a step of Si which stays between B\ and T^ 

Skip Tif, 
elseif the final step Tpn of every saga Sp which stays between Bx and T^ 
(including B\) can follow T^, or T^ can precede Tpr

n, 
or Tij covers Tp*

n, or TV,- inverts Tfy71 

Move Tj to the position which immediately precedes Bx. 

The correctness of the repair based on Algorithm 16 or Algorithm 17 is specified in the following 
theorem. The proof is similar to that of Theorem 16, thus omitted. 

Theorem 17 The repair based on Algorithm 16 is correct in the sense that Theorem 16 still holds 
even if the rewriting step (step 1) of Algorithm 15 is done by Algorithm 16. The repair based on 
Algorithm 17 is correct in the sense that Theorem 16 still holds after Algorithm 15 is modified as 
follows: 

• The rewriting step (step 1) is done by Algorithm 17; 
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• In step 2, when an affected step T^^ of a saga S{ is scanned $, assume Tip is the last 
unaffected step in £,-, execute the sequence 7?(~i'?}, ..., T^f). 

6.6.3    Detecting Can-Follow, Can-Precede, Cover and Invert Relation- 
ships between Transactions 

In Section 6.6.2, the repair based on Algorithm 14, Algorithm 16 and Algorithm 17 cannot be 
enforced without first capturing the can-follow, can-precede, cover, and invert relationships between 
saga transactions. 

Given a history of sagas, the can-follow relationships between the saga transactions in the 
history depend on the readset-writeset relationships between these transactions. The write set 
of a transaction % can be got from the traditional log where every write operation is recorded. 
However, the read information of T{ we can get from the logs for traditional recovery purposes such 
as physical logs, physiological logs, and logical logs [GR93], is usually not enough to generate the 
read set. Therefore, the efficient maintenance of read information is a critical issue. In particular, 
there is a tradeoff between the extra cost we need to pay besides that of traditional recovery facilities 
and the guaranteed availability of read information. The read information can be captured in several 
ways, for example 

• Augment the write log to incorporate read information. There are basically two ways: one is 
appending the read record [Tux] to the log every time when T{ reads an item x. The other 
way is first keeping the set of items read by T{ in another place until the time when T{ is going 
to commit. At this point, the read set of T{ can be forced to the log as one record. 

Although keeping read information in the log will not cause more forced I/O, it does consume 
more storage. Another problem with the approach lies in the fact that almost all present 
database systems keep only update(write) information in the log. Thus adding read records 
to the log may cause the redesign of the current recovery mechanisms. 

• Extract read sets from the profiles and input arguments of transactions. Compared with the 
read log approach, when transaction profiles (or codes) are available, each transaction just 
needs to store its input parameters, which are often much smaller in size than the read set. 
More important, instead of putting the input parameters in the log, each transaction can store 
the parameters in a specific user database, thus the repair module can be completely isolated 
from the traditional recovery module. In this way, our repair model can be implemented on 

§This may happen because Tin may have already been covered or inverted. 
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top of the Saga model without modifying the internals of the DBMS on which the Saga model 
is implemented. 

This approach captures read information without the need to modify DBMS internals. How- 
ever, it usually can only achieve a complete repair, but not an exact repair. That is, the 
effects of all bad transactions will be removed, but the effects of some unaffected good trans- 
actions may sometimes be removed also since in many situations the approach can only get 
an approximate read set. 

• Although traditional logging only keeps write information, more and more read information 
can be extracted from the log, particularly when more operation semantics are kept in the 
logs. Traditional physical (value) logging keeps the before and after images of physical database 
objects(i.e., pages), so we only know that some page is read. In addition, a page is normally 
too large a unit to achieve a fine repair. Physiological logging keeps only the update to a 
record (tuple) within one and only one page, so we know that this record should be in the 
read set, which is much finer than physical logging. Logical logging keeps more operation 
semantics than the other two logging approaches. Conceptually logical logs can keep track of 
all the read information of a transaction, though this is not supported by current database 
systems. However, logical logging attracts substantial industrial and research interests. In 
system R, SQL statements are put into the log as logical records; In [LT98], logical logs can 
be a function, like x=sum(x,y), and swap(x,y) etc.. In both situations, we get more read 
information than other logging methods. 

In long duration transaction models([GMS87], [WR91]), or in multilevel transaction models 
([WHBM90], [Lom92]), it is possible to extract the read information of transaction (subtrans- 
action) T from its compensation log records, where the action of T"s compensating transaction 
is recorded. 

The can-precede, cover, and invert relationships between transactions are based on the semantics 
of transactions, and they can be captured in a similar way to commutativity[LMWF94, Wei88, 
Kor83, SKP088], and recoverability[BK92]. In order to capture these relationships, the profile 
(or code) and input arguments of each transaction must be available. In the Saga model, several 
possible solutions to the problem of saving code reliably are proposed[GMS87], therefore, these 
relationships can be reliably captured in the Saga model. 

For a canned system with limited number of transaction classes and fixed code for each trans- 
action class, the can-follow, can-precede, cover, and invert relationships between saga transactions 
can be detected according to the corresponding relationships between transaction classes. Although 
detecting these relationships between two transaction classes usually needs more effort than detect- 
ing these relationships between two transactions, after this is done with all the transaction classes, 
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detecting these relationships between transactions of these classes can be much easier in many 
situations. 

For example, in a bank a deposit transaction (denoted depfam)) which deposits m amount of 
money into account a{ can follow a withdraw transaction (denoted wit(aj,n)) which withdraws n 
amount of money from account a.j only if they access different accounts, that is, a{ ^ a,j. Therefore, 
given the can-follow relationship between the deposit transaction class and the withdraw transaction 
class, the can-follow relationship between a deposit transaction and a withdraw transaction can be 
detected without the need to check the readset-writeset relationship between the two transactions, 
checking their input parameters is enough. 

6.6.4    Fix Information Maintenance 

It is clear that Lemma 4 can be used in Algorithm 14, Algorithm 16 and Algorithm 17, to capture 
fixes. For a transaction Th there are two methods to get Ti.readset - Ti.writeset: one is to first get 
the readset and writeset of T2 after an execution history is generated using the approaches proposed 
in Section 6.6.3, then compute Ti.readset - Ti.writeset; the other is what we have proposed in 
Section 6.2, that is, let each transaction T{ write the set Ti.readset - Ti.writeset as a record to the 
database when it is executed, then when we rewrite Hs all the fixes can be directly got from the 
database. 

It should be noticed that in the situations where the read and write sets of T; have to be firstly 
captured in order to detect the can-follow relationships between Tt and some other transaction, the 
first method is more efficient; In contrast, when all the necessary can-follow relationships between T{ 

and other transactions can be detected without the need to check the readset-writeset relationships 
between T{ and these transactions, for example, when these relationships can be directly got from 
the can-follow relationships between the corresponding transaction classes, the second method is 
more efficient. 
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SECTION 7 

Discussions and Conclusions 

7.1    Discussion 

7.1.1    Relevant Security Contexts 

Our repair model can be applied to many kinds of secure database systems to enhance their sur- 
vivability. However, the main factors on which the applicability of our model to a secure database 
system is dependent, such as (1) the characteristics of the database, i.e., whether it is single-version 
or multiversion, (2) the concurrency control protocol and the characteristics of the histories pro- 
duced by it, and (3) the recovery protocol and the characteristics of the logs produced by it, are 
closely relevant to the security model and architecture of the system. 

For a single-level secure database system where every subject (transaction) and object (data 
item) are within the same security class, traditional concurrency control protocols such as two- 
phase locking (2PL), and recovery protocols such as write-ahead logging (WAL), can be directly 
used without causing any security policy violations, no matter which kind of security model (i.e., 
access-matrix model[Lam74], role-based access control model[SCFY96], type-based access control 
model[San92], or flexible access-control model[JSS97]) is enforced. Since serializable histories are 
generated by most of the current single-level systems, so our repair model can be directly applied 
to single-level systems in most cases. However, there are some systems where each data item 
has multiple versions, and one-copy serializable histories are generated instead. Since an one-copy 
serializable history is view equivalent to a serial single-version history[BHG87], our model can be 
used to repair the one-copy serializable history by rewriting the equivalent serial history. However, 
it should be noticed that pruning a rewritten history in multiversion databases is usually more 
complicated because during pruning we need to decide for a (dirty) data item which version should 
be read, which version should be updated, and which version should be discarded (i.e., the versions 
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created by bad transactions can just be discarded).   Detailed pruning algorithms are out of the 
scope of the paper. 

For a multilevel secure (MLS) database system, traditional concurrency control and recovery 
protocols, however, are usually not enough to satisfy security requirements[AJB97], especially, they 
can cause signaling channels from high level processes to low level processes. Therefore, secure 
transaction processing is required. Most of the recent research and development in secure con- 
currency control can be categorized into two different areas: one based on kernelized architecture 
and the other based on replicated architecture. These two are among the number of architectures 
proposed by the Woods Hole study group[oMDMSBC83] to build multilevel secure DBMSs with 
existing DBMS technology instead of building a trusted DBMS from scratch. 

For kernelized architecture, several kinds of secure concurrency control protocols are proposed: 
(1) In [MJ93, JMR97], several secure lock-based protocols are proposed. Although they do not 
always produce serializable schedules, our repair model can be directly applied to every serializable 
history generated by them. Extending our model to repair those non-serializable schedules is out of 
the scope of the paper. (2) In [AJ92], two secure timestamp-based protocols are proposed. Although 
they produce only serializable histories to which our model can be directly applied, they are prone to 
starvation. In [JA92], a single-level timestamp-based scheduler is proposed which is secure and free 
of starvation. Although it produces one-copy serializable histories, our model can still be directly 
used to rewrite these histories (the reason is mentioned above). (3) In [AJB96, JA92, AJB97], 
three weaker notions of correctness, namely, levelwise serializability, one-item read serializability, 
and pairwise serializability, are proposed to be used as alternative for one-copy serializability such 
that the nature of integrity constraints in MLS databases can be exploited to improve the amount 
of concurrency. Extending our model to repair levelwise, one-item read, and/or pairwise serializable 
histories is out of the scope of the paper. 

For replicated architecture, several secure concurrency control protocols are proposed in [JK90, 
MJS91, Cos92, CM92]. Since they all produce one-copy serializable histories, so our model can be 
directly applied to rewrite these histories. 

In [KT90], a scheduler is proposed which is secure and produces one-copy serializable histories 
to which our model can be applied. However, it uses a multilevel scheduler which, therefore, has to 
be trusted, thus it is only suitable for the trusted subject architecture. 

Since in our repair model serial orders among transactions are captured from the log, so the 
applicability of our model is affected by logging protocols. In [PKP97], a multilevel secure log 
manager is proposed to eliminate such covert channels as insert channels and flush channels which 
are caused by traditional logging protocols. Although Logical Log Sequence Numbers (LLSN) instead 
of physical Log Sequence Numbers (LSN) are provided in [PKP97] to eliminate insert channels, we 
can still extract serial orders from the log because records of transactions within different security 
classes are still kept in the same log, and LLSNs can be translated to physical LSNs internally by 
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the log manager. Moreover, since the mechanisms proposed to eliminate flush channels will not 
change the structure of the log, so our model can be directly applied to a system with such a log 
manager. 

7.1.2    Other Issues 

One criticism of the applicability of the method may be that if a bad transaction B{ is detected 
too late, that is, if the latency time of Bi is too long, then there can be too many affected good 
transactions to deal with, especially when they have caused further effects to the real world. For 
example, some real world decisions could be based on these affected transactions. At this situation, 
'manual' recovery actions may be necessary. 

We counter this augment by noting that the latency time of Bi is usually related to the amount 
of transactions affected by Bi. The more transactions affected by Bi, the more proofs of Bj's 
malicious actions can be collected by the intrusion detector, hence the shorter the latency time of 
Bi. Therefore, even if the latency time of Bi is very long, the amount of transactions affected by 
Bi may not be too large in many circumstances. At this situation, the algorithm may need more 
time since it needs to scan a long history, but the pruning may still be a short process if most of 
the transactions in the history are unaffected. Although the compensation approach may not be 
practical when the history is very long and the codes for compensating transactions have to be kept 
in the log, it can be used in almost all canned systems, which are very general in real world where 
the codes for transactions and compensating transactions are fixed for each transaction class. As 
the techniques of intrusion detection are advanced, the latency time of a bad transaction should 
become shorter, so our repair model will apply to more situations. 

As to the criticism that manual recovery actions can be necessary, note that when damage 
has been caused, the effects of these affected transactions to the real world are already there. No 
matter whether the history is repaired or not, some action to compensate these undesirable effects 
is required. In the real world, such manual recovery actions are basically unavoidable. Therefore, 
repairing the database such that a consistent database state where no effects of bad transactions are 
there could be generated can be viewed as a separate issue from manual recovery. In addition, our 
rewriting methods can help users to assess the degree of damages because B U AG can be identified. 
Therefore, the security administrator can know on which transactions (or on which customers) such 
manual recovery actions should be enforced. 
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7.2    Contributions 

There are three areas where this research made contributions. First, this report proposes two novel 
recovery models to bridge the theoretical gap between classical database recovery theory where 
only uncommitted transactions can be undone, and trusted recovery practice where operations 
with the same (operational) semantics as traditional undos are needed to remove the effects of such 
committed transactions as malicious transactions and affected benign transactions ( For simplicity, 
we use the same word, namely 'undo', to denote such operations). In particular, this report proposes 
(1) a flat-transaction recovery model where committed transactions are 'undone' by building and 
executing a specific type of transactions, namely, undo transactions, and (2) a nested-transaction 
model where a flat commercial history is virtually extended to a two-layer nested structure where 
originally committed transactions turn out to be subtransactions hence traditional undo operations 
can be directly applied to the model without violating the durability property. 

Second, this report provides a family of syntactic recovery algorithms that, given a specification 
of malicious, committed transactions, unwinds the effects of each malicious transaction, along with 
the effects of any benign transaction that depends, directly or indirectly on a malicious transac- 
tion. Significantly, the work of the remaining benign transactions is saved. The first algorithm 
yields coldstart semantics; the database is unavailable during repair. The second algorithm yields 
warmstart semantics; normal use may continue during repair, although some degradation of service 
may be experienced by some transactions. Moreover, this report outlines various possibilities for 
maintaining read-from dependency information. Although direct logging of transaction reads has 
the virtue of simplicity, the performance degradation of such an approach may be too severe in 
some cases. For this reason, this report shows that offline analysis can efficiently meet the need for 
establishing read-from dependency information. This report illustrates the practicality of such an 
approach via a study on standard benchmarks. 

Third, this report presents an algorithm that rewrites an execution history for the purpose of 
backing out malicious transactions. Good transactions that are affected, directly or indirectly, by 
malicious transactions complicate the process of backing out undesirable transactions. This report 
shows that the prefix of a rewritten history produced by the algorithm serializes exactly the set 
of unaffected good transactions, thus is equivalent to using a write-read dependency graph ap- 
proach. The suffix of the rewritten history includes special state information to describe affected 
good transactions as well as malicious transactions. This report describes techniques that can 
extract additional good transactions from the latter part of a rewritten history. The latter process- 
ing saves more good transactions than is possible with a dependency-graph based approach or a 
commutativity based approach to recovery. 

It is also shown that besides recovery from malicious transactions, our recovery approaches 
can also be extended to may other applications such as malicious user isolation, system upgrades, 
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optimistic replication protocols, and replicated mobile databases. 

7.3    Future Research 

Based on the research work in this report, we propose the following future research directions. 

7.3.1    Trusted Recovery with Bounded Inconsistency 

It is clear that every rewriting algorithm proposed in Chapter 6 has the following two properties: (1) 
it always works on a consistent history *; (2) every rewriting operation performed by the algorithm 
always transforms a consistent history to another consistent history. However, we found that by 
tolerating some degree of inconsistency in rewriting histories the work of more good transactions 
can be saved. The cost is that after a consistent history is repaired, it may not be consistent any 
more. 

To illustrate the idea, consider a banking system where a customer can deposit (withdraw) 
money into (from) his/her accounts, but with the integrity constraint that the balances of his/her 
accounts can not be negative. It is clear that a deposit transaction (denoted dep{ahm)) which 
deposits m amount of money into account a; can precede any other deposit transactions. However, 
according to Definition 8, a withdraw transaction (denoted wit(a,j,n)) can not precede dep(ai,m) 
if Oj = dj and the balance of a{ in the before state of dep{ah m) (denoted sb) is less than n, because 
at this point wit(aj,n)dep(ahm) is not defined on sb since the execution of wit(aj,n) on sb makes 
the database state inconsistent. Hence, when we rewrite such a history with dep{ai,m) followed by 
wit(aj,n) and with sb as the before state of dep(aum), if dep{ahm) is a bad transaction, then the 
work of wit(a,j, n) can not be saved. 

However, if we can tolerate a bounded degree of inconsistency, for example, allowing a balance 
greater than -5000, then in the above situation wit(aj,n) can precede dep(ai,m) if the difference 
between the value of a,- in sb and n is less than 5000. Therefore, the work of wit(aj, n) can be saved 
in the above example. 

In order to enable trusted recovery with bounded inconsistency, several critical issues have to 
be addressed: 

• To enable a transaction to be executed on an inconsistent database state, or to enable the 
transaction to transform a consistent state to an inconsistent one, the preconditions, or even 
the action, of the transaction may need to be modified. How to formalize the modification is 
a critical issue. 

*We say a history H is consistent, if the before and after states of each transaction in H are both consistent, no 
matter whether H has a transaction associated with a non-empty fix or not; otherwise, we say H is inconsistent. 
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• After a transaction is modified, the can-follow, can-precede, commute backward through, 
and commute relationships between the transaction and other transactions may have to be 
reidentified. Formalizing and automatizing the process of reidentification is a critical issue. 

• In order to enable an inconsistent rewriting operation which exchanges the order of two trans- 
actions, Ti and 7}, during rewriting a consistent history, the modified version(s) of T,, or 7}, or 
both, may have to be introduced in the rewritten history. Thus how to formalize and reason 
the relationship between the history before the rewriting operation is performed and the his- 
tory after the rewriting operation is a critical issue that we have to address. The correctness 
of rewriting with bounded inconsistency depends on it. 

7.3.2    Extension to Multilevel Secure Systems 

As mentioned in Section 7.1.1, the applicability of our repair model to a secure database system 
is closely relevant to the security model and architecture of the system. Although our model can 
be directly applied to most single-level secure systems, there are many multilevel secure database 
systems where our repair model has to be extended. 

• In static repair, since the repair manager can be the only user process running during the 
process of trusted recovery, so there is no information disclosure during the repair. However, 
in dynamic repair, the fact that the repair manager is usually running together with many 
other user processes implies that in a system where the kernelized architecture is used, there 
can be signaling channels from high-level processes to low-level ones. How to build a single- 
level repair manager without introducing signaling channels has to be addressed. 

• Although our model can be directly used to rewrite one-copy serializable histories generated by 
secure concurrency control protocols which exploit multiple versions of a data item, pruning 
a rewritten history in multiversion databases is usually more complicated because during 
pruning we need to decide for a (dirty) data item which version should be read, which version 
should be updated, and which version should be discarded. This issue has to be addressed. 

• In [AJB96, JA92, AJB97], three weaker notions of correctness, namely, /eve/mse serializability, 
one-item read serializability, and pairwise serializability, are proposed to be used as alternative 
for one-copy serializability such that the nature of integrity constraints in MLS databases can 
be exploited to improve the amount of concurrency. Extending our model to repair levelwise, 
one-item read, and/or pairwise serializable histories is another critical issue. 
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7.3.3    Extension to Distributed Database Systems 

A distributed database (DDB) consists of several logical objects that are physically located at differ- 
ent sites (or nodes). Each site consists of an independent processor connected via communication 
links to other sites. Transaction executing in these systems may require to access (either update or 
retrieve) data objects from more than one site. The site at which a transaction originates is usually 
referred to as the coordinator and other sites participating in the execution are called subordinate 

sites. 
In a distributed database system, data are partitioned and stored across several nodes which are 

connected by a network. Therefore, the dependency-graph of the global history generated from the 
system can not be mined from a local log in most situations. Instead, we may have to combine the 
information recorded in every local log to compute the global dependency-graph based on which 
syntactic repair can be achieved. Moreover, the can-follow relationship between two distributed 
transactions depends also on the read and write behavior of these transactions at multiple sites. 
Therefore, integrating multiple local logs is an issue that has to be addressed. 

As mentioned in Section 7.3.2, how to build a single-level dynamic repair manager without 
introducing signaling channels in a multilevel secure database system is a critical issue. Similarly, 
how to build a single-level dynamic repair manager without introducing signaling channels in a 
distributed multilevel secure database system is also a critical issue. The difference is that in 
distributed MLS systems integration of secure concurrency control protocols, i.e., S2PL [JM93], 
with atomic commit protocols, i.e., early prepare (EP), may not guarantee serializability [JMB94], 
thus corresponding secure commit protocols have to be developed. 
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