AD_____

Award Number: DAMD17-00-C-0031

TITLE: Modeling for Military Operational Medicine Scientific and Technical Objectives (Articulated Human Biomechanical Modeling Toolbox)

PRINCIPAL INVESTIGATOR: James H. Stuhmiller, Ph.D. Weixin Shen

CONTRACTING ORGANIZATION: Jaycor, Incorporated San Diego, California 92121-1002

REPORT DATE: December 2000

TYPE OF REPORT: Final, Phase I, Part II

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

20011005 293

REPORT DOCUMENTATION PAGE			0	Form Approved OMB No. 074-0188	
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction			tructions, searching ex	disting data sources, gathering and maintaining	
the data needed, and completing and reviewing th reducing this burden to Washington Headquarters	is collection of information. Send comments regards Services, Directorate for Information Operations a	aing this burden estimate or any ot and Reports, 1215 Jefferson Davis	ner aspect of this colle Highway, Suite 1204, /	Arlington, VA 22202-4302, and to the Office of	
Management and Budget, Paperwork Reduction F 1. AGENCY USE ONLY (Leave	2. REPORT DATE	3. REPORT TYPE AND	DATES COVER	ED	
blank)	December 2000	Final, Phase I	, Part II		
4. TITLE AND SUBTITLE	Operational Medicine S	ientific and	5. FUNDING N DAMD17-00	UMBERS -1-0031	
Technical Objectives (Articulated Human Biome	echanical			
Modeling Toolbox)					
6. AUTHOR(S)					
James H. Stuhmiller, P	h.D.				
Weixin Shen					
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMIN		
Jaycor, Incorporated	12				
San Diego, Camorina 32121-10					
E-Mail:					
9. SPONSORING / MONITORING A	GENCY NAME(S) AND ADDRESS/F	S)	10. SPONSOR	ING / MONITORING	
			AGENCY F	EPORT NUMBER	
U.S. Army Medical Research and	l Materiel Command				
Fort Detrick, Maryland 21/02-5	012				
11. SUPPLEMENTARY NOTES Report contains color					
	VSTATEMENT				
Approved for Public Re	lease; Distribution Uni	limited.			
13 ABSTRACT (Maximum 200 Wor	(de)]	
14. SUBJECT TERMS				15. NUMBER OF PAGES	
			-	139	
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSI	ICATION	20. LIMITATION OF ABSTRACT	
Unclassified	Unclassified	Unclassif	ied	Unlimited	
NSN 7540-01-280-5500		L	Sta	ndard Form 298 (Rev. 2-89)	
			Pres 298-1	cribed by ANSI Std. Z39-18 102	

J00-3150.31-136

Articulated Human Biomechanical Modeling Toolbox

.

Phase I Report Part II: Toolbox Routines

Prepared by:

Weixin Shen Jaycor, Inc. 3394 Carmel Mountain Road San Diego, California 92121-1002

Prepared for:

Commander U.S. Army Medical Research and Materiel Command Ft. Detrick, Maryland 21702-5012

Contract No. DAMD17-00-C-0031

December 2000

TABLE OF CONTENTS

1. INTRODUCTION I-1
2. FILE FORMAT AND DATA I/O ROUTINES
Data Import and Export2-3 Tagged Matlab Text Files
Other File Format
3. RIGID BODY ROUTINES
Forward Dynamics Routines
Inverse Dynamics Routines 3-34
4. GRAPHICAL ROUTINES
User Interface Routines
5. UTILITIES ROUTINES
5. UTILITIES ROUTINES 5-1 Math Routines 5-2 String Routines 5-11
5. UTILITIES ROUTINES
5. UTILITIES ROUTINES 5-1 Math Routines 5-2 String Routines 5-11 A. TMTEDITOR A-1 Introduction A-2 GUI Components A-3
5. UTILITIES ROUTINES 5-1 Math Routines 5-2 String Routines 5-11 A. TMTEDITOR A-1 Introduction A-2 GUI Components A-3 Use TmtEditor A-4
5. UTILITIES ROUTINES 5-1 Math Routines 5-2 String Routines 5-11 A. TMTEDITOR A-1 Introduction A-2 GUI Components A-3 Use TmtEditor A-4 B. XY PLOT VIEWER B-1
5. UTILITIES ROUTINES
5. UTILITIES ROUTINES 5-1 Math Routines 5-2 String Routines 5-11 A. TMTEDITOR A-1 Introduction A-2 GUI Components A-3 Use TmtEditor A-4 B. XY PLOT VIEWER B-1 Introduction B-2 GUI Components B-3 Use XY Plot Viewer B-3
5. UTILITIES ROUTINES
5. UTILITIES ROUTINES

1. Introduction

This report documents the progresses on developing a human biomechanical modeling toolbox during the first phase of the research project. It is separated into two parts. A separate first part consists of an overview of the toolbox, rigid body formulations, and example models and applications. This second part provides detailed description of individual routines in the toolbox.

The second chapter describes the data format used in the toolbox. Data I/O, conversion and file format routines are listed in the chapter. A graphical editor for editing TMT files, TMTEDITOR, is also developed. Details on TMTEDITOR is given in Appendix A. Chapter three lists routines related to rigid body dynamics, including kinematic calculation, inverse dynamic analysis and forward dynamic simulation. Chapter four provides details of graphical routines, including routines related to the creation and manipulation of 3D graphical objects, user interface handling, animation and other graphical operation. Details on two graphical viewers, xyviewer and stickviewer, can be found in Appendix B and Appendix C respectively. Chapter five describes other utility routines related to mathematical calculation and string manipulation.

2. File Format and Data I/O Routines

DATA TYPES OF TOOLBOX ROUTINES	
DATA IMPORT AND EXPORT	
TAGGED MATLAB TEXT FILES	
Data Types Supported	
Syntax	
An Example of Using Tmt Files	
TMTEDITOR	
	9.0
OTHER FILE FORMAT	······ 2-9
ASCII Data Files	
GDIF File Format	
StdWat Data File	
1N1 F1le	
DATA CONVERSION AND I/O ROUTINES	
List of Data Conversion and I/O Routines	
tmt2struct	
struct2tmt	
ini2struct	
struct2ini	
mat2stdmat	
stdmat2csv	
stdmat2jif	
jif2stdmat	
load_ascii	

Data Types of Toolbox Routines

Most data types of Matlab, including *double, char, cell*, and *struct* used to develop the toolbox routines. Detailed description of these data types can be found in matlab manual. The use of user defined data type (object) is intentionally avoided. This is because the current version of Matlab compiler does not support objects in generating standalone application, while one of the guidelines of developing the toolbox routines is the full support of generating standalone application.

Data types, *double, char, cell,* and *struct,* as supported in MATLAB, are simplified and customized for the development of toolbox routines. The simplification is made to facilitate the preparation of input and output data of the routines while maintaining the capability of handling complex data. Each data type supports single or multiple dimensional arrays. The details of the supported data types are given in Table 2-1.

	Type Example		Example	Description		
		Integer	10	Double precision numerical array. Notice that 1. Complex numbers are not supported		
	ble	Real number	-10.1	 Arrary dimension is limited to two A space in a numeric array indicates the 		
	Dou	Column vector	[1;2;3;4;5]	following elements be put in row-wise 4. A semicolon (;) indicates the following		
		Row vector	[1 2 3 4 5]	elements be put column-wise		
		Matrix	[1 2 3; 4 5 6]			
		A string	`this is a string'	Character arrays are put between two primes (`). Two consecutive		
≻	p.	A string	`It''s good'	primes indicates a prime inside		
ARRA	Strin	A string cell	{`string 1' `string2' `string 3'}	a string Curly brackets represent cell arrays. Only single dimensional cells of strings are supported		
	ILE	A simple structure	S.name = 'name' S.data = [1 2; 3 4]	Structure arrays have field names. The fields contain other arrays, including structures. This is a very general data type		
	Structi	A more complex structure	S(2).name = 'name' S(2).data.a = 1 S(2).data.b = [1 4]	that can collect related data and information together. Only one dimensional structure array is supported		

Table 2-1. Data Types Used in Toolbox Routines

Data Import and Export

An application program has to input and output data. The data may be imported from and exported to files, graphics user interfaces (GUIs), and other application programs. For example, a pre-processor usually inputs data from GUI and/or some descriptive files and generates data files for a solver. A solver may read from the files the solver parameters, time history data, tables, etc. and performs the calculation. The calculation results are usually saved as files or exported directory to post-processor for the analysis of results.

The toolbox is designed to have the capability of developing the whole application program from pre-processor to solver to post-processor, as well as the flexibility of being only part of the application program. Therefore, a common data interface supporting the data types used in the toolbox routines is essential. An application program developed from toolbox routines support the following three types of files

- MATLAB default binary file (MAT file) is the primary file format used to share data. This format supports all data types of matlab and is platform independent.
- Tagged matlab text file format (TMT file format) is developed as the ASCII counterpart of MAT file. TMT files support most data types used in toolbox routines with certain limitations. TMT files are used to share application parameters and time history data. The details on TMT files are given in section <Tagged Matlab Text Files>.
- Customized file formats. The toolbox also provides routines to interface with some customized file formats. The details on these file interface routines are described in section <Other File Format>

Tagged Matlab Text Files

Data Types Supported

The data types as described in Table 2-1 are supported.

Syntax

Structure array, as described in Table 2-1, is a data type with named "*data containers*" called *fields*. The fields of a structure can contain any type of data including *double*, *char*, *cell*, or another *structure array*. Therefore, structure allows storing dissimilar data according to their physical meaning and thus facilitates the data storage and reference among routines.

```
(a) TMT File (sample.tmt)
```

(b) Structure S

Figure 2-1 Example of a TMT file and the Corresponding Data

A TMT file, in essence, is the representation of a structure in an ASCII file. The *fields* of the structure are defined in the file by using a number of *tags* and simple syntaxes. Figure 2-1 gives an example of a TMT file and the structure it represents.

A TMT file ignores all line breaks, which means it is equivalent to write the whole file in one line or break it into hundreds of lines. As shown in Figure 2-1(a), a TMT files consists of three parts: *tags*, *contents* and *comments*. Tags include *Field Declaration Tags*, *Field Closure Tags*, and *External Link Tags*. The details of the use of tags are given in Table 2-2

Туре	Syntax	Description
		Declare that the following data are fields of the
	<str< td=""><td>dimth component of structure name until </td></str<>	dim th component of structure name until
	name(dim)>	tag is met.
	or	Default dimension of one is assumed when (dim) is
Field	<str name)=""></str>	not present
Deeleveti		Must always be paired by
Declarati		Declare the following numeric contents to be the
Ull Lags	<num name=""></num>	value of <i>name</i> until a new <str>, <num>,</num></str>
		<cha>, , , and </cha> is met
		Declare the following string cell contents to be the
	<cha name=""></cha>	value of <i>name</i> until a new <str>, <num>,</num></str>
		<cha>, , , and </cha> is met
		Close a structure declaration. Must always be used
Tiald		to pair <str>.</str>
Closure		Used optionally to pair with <num>. Usually only</num>
Tom	10m2</td <td>required when comment after a <num> declaration</num></td>	required when comment after a <num> declaration</num>
Tags		Used optionally to pair with < CHA >. Usually only
		required when comment after $a < CHA >$
		declaration
		Used as part of the <i>contents</i> after <num></num>
External Link Tags	<td>declaration to load numerical matrices (tables) from</td>	declaration to load numerical matrices (tables) from
		an external data structure.
		name is the field name of the external data
	or ROW id >	structure where the data is to be loaded
		COL or ROW indicates load data column-wise or
		row-wise
		id is the indice of the rows or columns to be loaded

Table 2-2. Syntax of Tag Components of a TMT file

Notice the following rules apply to the tags.

- Only the first three characters of tag keywords STRucture, NUMerics, CHAracter, TABle, COLumn, and ROW, are discriminated. All the following characters are ignored.
- Tag keywords are case insensitive
- Field name declaration inside any tag is case sensitive

Two types of contents, i.e., *numeric content* and *string cell content* are described in Table 2-3.

Туре	Example		Description
	Number 10 A space inside a numeric content		A space inside a numeric content
Numeric Content	Column vector	1;2;3;4;5;	column-wisely
	Row vector	12345;	data be collocated column-wisely
	Matrix	1 2; 3 4;	input numerical content
	String	'string'	Any string content must be put inside a
String Cell Content	String	ʻIt"s a stringʻ	A prime inside a string must be indicated by two consecutive primes (°)
	String cell	'string 1' 'string 2' 'string 3'	Strings and string cells are always saved in data type <i>cell of string</i> when loaded

Table 2-3. Syntax of Tag Components of a TMT file

Any contents outside a *Field Declaration Tag* and its corresponding *Field Closure Tag* is treated as comments and is ignored. Notice in order to add comments after a <**NUM**> or a <**CHA**> tag, optional </**NUM**> or </**CHA**> tag must be used.

An Example of Using Tmt Files

Two interpreting routines are developed. *tmt2struct* reads a TMT file and converts it into a structure. *struct2tmt* saves a structure into a TMT file.

An example is given to shown the use of these routines and load data from external structures. First, save the TMT file as 'sample.tmt'. In order to load this file, an external structure, say mytbl with a field named tdata must exist. The external structure can be generated from another TMT file, say 'data.tmt' as follows

This	is a	sampl	e data	file					
<num< td=""><td>tdat</td><td>a></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></num<>	tdat	a>							
1	.1	12	13	14	15	16	17	18	19;
2	21	22	23	24	25	26	27	28	29;
	31	32	33	34	35	36	37	38	39;
4	1	42	43	44	45	46	47	48	49;
5	51	52	53	54	55	56	57	58	59 ;
6	51	62	63	64	65	66	67	68	69;
1 7	1	72	73	74	75	76	77	78	79;
8	81	82	83	84	85	86	87	88	89;
9	91	92	93	94	95	96	97	98	99;
<td><u>(</u>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u>(</u> >								
<num< td=""><td>othe</td><td>rdata></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></num<>	othe	rdata>	1						
<cha< td=""><td>othe</td><td>rchar></td><td>`char</td><td>′`str</td><td>ing'</td><td></td><td></td><td></td><td></td></cha<>	othe	rchar>	`char	′`str	ing'				

DATA File (data.tmt)

Run mytbl = tmt2struct('data.tmt') to generate a structure mytbl with field mytbl.tdata being a 9 by 9 matrix as listed above. Then run S = tmt2struct('test.tmt',mytbl) to generate the structure S as given in Figure 2-1.

The S.thist is loaded from the [1 4 5] columns of the external mytbl.tdata field, i.e.,

S.thist	= [
11	14	15
21	24	25
31	34	35
41	44	45
51	54	55
61	64	65
71	74	75
81	84	85
91	94	95
];		

Finally run struct2tmt(S,'test_out.tmt') to generate another TMT file 'test_out.tmt' that is equivalent to the original 'test.tmt' file but with external data mytbl.tdata built-in. The 'test_out.tmt' is given as follows.

```
<NUM integer> 10;
<NUM number> -10.1;
<NUM col vector> 1;
                  2;
                  3;
                  4;
                  5;
<NUM row vector> 1 2 3 4 5;
<NUM matrix> 1 2;
             3 4;
<NUM thist> 11 14 15;
            21 24 25;
            31 34 35;
            41 44 45;
            51 54 55;
            61 64 65;
            71 74 75;
            81 84 85;
            91 94 95;
<CHA char> ' a string'
<CHA cell> 'string 1'
            'string 2'
<STR struct>
     <CHA name> 'name'
     <STR data>
          <NUM a> 1;
          <NUM b> 2;
     </str>
</str>
```

TMTEDITOR

TmtEditor is developed to brower and edit TMT files. Details on TMTEDITOR is given in Appendix A.

Other File Format

ASCII Data Files

The AHBM toolbox supports common ASCII data file formats, such as space or tab delimited files (*.txt, .dat); comma delimited files (.csv); etc. Routines are developed to convert data among file formats.

GDIF File Format

General Data Interchange Format (GDIF) is a self-documented ASCII format (.jif) with variable name, units, and description included within the file to record time-traces. The GDIF ASCII format can be converted into a binary form (.jib). The GDIF binary format can be accessed by the specialized programs developed by Jaycor, Inc.

StdMat Data File

StdMat is a customized Matlab binary file (*.mat) format to record matrix data. Each variable (array) in the file is a structure with data saved column-wisely in a matrix. The variables should have the fields as given in Table 2-4.

Field Name	Description
name	A string vector with each element being the name of one column of matrix data
label	A string vector with each element being the label (additional comments) of one column of matrix data
units	A string vector with each element being the units of one column of matrix data
val	Matrix data (saved column-wisely)
groupname	The name of the group under which the data is grouped

Table 2-4. Fields of a Variable in StdMat File

StdMat file formats provides a common ground where complex matrix data (including time traces) can be saved and shared. It can be accessed by the I/O functions in Matlab and the I/O routines developed in AHBM toolbox.

INI File

INI file is the window initialization file format (*.ini). INI files are mostly used for developing GUI applications.

Data Conversion and I/O Routines

List of Data Conversion and I/O Routines

tmt2struct:	load a structure from tmtfile (and possibly a table file)
struct2tmt:	save structure to a tmtfile (and possibly a table file)
ini2struct:	read a window ini file and save the data as a struct
struct2ini:	save struct data into window ini file
mat2stdmat:	matrix to std structured format conversion
stdmat2csv:	save std structure format as a csv file
stdmat2jif:	save std structure format as a jif file
jif2stdmat2:	read a jif file in std structured format
load_ascii:	the counterpart of 'load filename -ascii' in standalone

tmt2struct

tmt2struct

SYNOPSIS

S = tmt2struct(tmtfile,TABLE)

INPUTS

Tmtfile:	Tagged Matlab Text filename
TABLE:	(optional) external structure referred from tmtfile

OUTPUT

the structure loaded from tmtfile

DESCRIPTION

TMT2STRUCT load a structure from tmtfile. If tmtfile also refers to external data

EXAMPLES

First generate a tmtfile and a tablefile using struct2tmt S.name = 'sample string' S.data = rand(100,3); struct2tmt(S,'test.tmt','test.table');

Read external data from tablefile 'test.table' mydata = tmt2struct('test.table');

Read S from 'test.tmt' and mydata S = tmt2struct('test.tmt',mydata);

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

struct2tmt

S:

struct2tmt

SYNTAX

struct2tmt(S,tmtfile,tablefile,option,desp);

INPUT:

S: the structure to be output tmtfile: Tagged Matlab Text filename tablefile: (optional) the filename of an additional table file where very long data of txtfile is stored and cross-referred option: (optional) 'replace' (default) or 'add'

OUTPUT

none

DESCRIPTION

STRUCT2TMT save a structure in a TMT file

EXAMPLES

S.name = 'sample string' S.data = rand(100,3); struct2tmt(S, 'test.tmt'); will save structure S to test.tmt struct2tmt(S, 'test.tmt', 'test.table'); will save structure to 'test.tmt'

The S.data will be saved in 'test.table' with a <TAB ...> link created in 'test.tmt'

NOTE

- 1. When tablefile is not input, all data will be saved in txtfile. When tablefile is input, all numeric data with size greater than 50 will be saved in the tablefile, and a cross-reference <TAB ...> will be added in the txtfile
- 2. Set option = 'replace' will overwrite txtfile or tablefile if they are already exist. Set option = 'add' will append to the existing files

ROUTINES CALLED

A number of internal functions

SEE ALSO

tmt2struct

ini2struct

SYNOPSIS

S = ini2struct(file);

INPUTS

File: file name, the file should follow the above format the window ini file should follow the following convention

[section name]

varname1 = value1

varname2 = value2

currently, section name line is ignored value should be number, row vector, or a string

OUTPUT

S: the structure loaded from an INI file

DESCRIPTION

INI2STRUCT reads an INI file and saves the data as a structure

EXAMPLES

First generate an INI file
 S.dir1 = 'c:\';
 S.data = [1 1 2 3];
 struct2ini('try.ini',S);

Then read from the INI file T = ini2struct('try.ini');

NOTE

Only row vectors can be used as numerical value

ROUTINES CALLED

none

SEE ALSO

struct2ini

struct2ini

SYNOPSIS

struct2ini(file,S);

INPUTS

File: file name, the file should follow the above format. The window INI file should follow the following convention [section name] varname1 = value1 varname2 = value2

Currently, section name line is ignored. Value should be number, row vector, or a string

S: structure to be output to the INI file

OUTPUT

none

DESCRIPTION

STRUCT2INI writes an INI file from a structure

EXAMPLES

S.dir1 = 'c:\' S.data = [1 1 2 3]; struct2ini('try.ini',S);

NOTE

Only row vectors can be used as numerical input

ROUTINES CALLED

none

SEE ALSO

ini2struct

mat2stdmat

SYNOPSIS

stdmat = mat2stdmat(mat,name,label,units,groupname);

INPUTS

mat: matrix data/ string data

- names:{ncol} cell or a single string/cell corresponding to each column data. If a single string is used, name_icol will be set for each column data
- label: {ncol} cell or a single string/cell to each column data. If a single string is used, label_icol will be set for each column data
- units: {ncol} cell or a single string/cell corresponding to each column data. If a single string is used, same units will be added to each column data
- groupname : (optional) a single string, indicates the groupname of the matlab data

OUTPUT

stdmat: the standard structured mat data loaded from the file

DESCRIPTION

MAT2STDMAT converts a column-wise matrix into standard structured matlab data (StdMat) file.

EXAMPLES

V = rand(30,3); stdV = mat2stdmat(V,{'V_1','V_2','V_3'},{'V_1','V_2','V_3'},... {'m','m','m'})

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2csv, stdmat2jif

stdmat2csv

SYNOPSIS

stdmat2csv(csvfile,stdmat,option);;

INPUT:

csvfile:	name of the csv file,
stdmat:	data follows the standard structured mat format
option:	'add' or 'replace' for adding to the file or rewrite the
	file. The default value for option is 'add'

OUTPUT:

A CSV file where the data will be saved row-wisely

DESCRIPTION

STDMAT2CSV writes a CSV ASCII file from the standard structured matlab data.

EXAMPLES

```
V = rand(30,3);
stdV = mat2stdmat(V,{'V_1','V_2','V_3'},{'V_1','V_2','V_3'},...
{'m','m','m'});
stdmat2csv('try.csv',stdV);
```

NOTE

ROUTINES CALLED

SEE ALSO

stdmat2jif

stdmat2jif

SYNOPSIS

stdmat2jif(gdif,stdmat);

INPUT:

gdif: name of the jif file, *.jif file extension will be added automatically

stdmat: structured mat data to be output

OUTPUT:

A GDIF ASCII file

DESCRIPTION

STDMAT2JIF writes a GDIF ASCII file from the standard structured matlab data.

EXAMPLES

```
V = rand(30,3);
stdV = mat2stdmat(V,{'V_1','V_2','V_3'},{'V_1','V_2','V_3'},...
{'m','m','m'});
stdmat2jif('try.jif',stdV);
```

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2csv

jif2stdmat

SYNOPSIS

function DATA = jif2stdmat(gdif);

INPUTS:

Gdif: name of the GDIF file,

OUTPUT:

DATA:

a structure contains StdMat structures as fields .stdmat1 .stdmat2 ... etc

DESCRIPTION

JIF2STDMAT reads a GDIF file and saves it in the structure DATA. Each field in DATA is a StdMat structure

EXAMPLES

```
V = rand(30,3);
stdV = mat2stdmat(V,{'V_1','V_2','V_3'},{'V_1','V_2','V_3'},...
{'m','m','m'});
stdmat2jif('try.jif',stdV);
stdVin = jif2stdmat('try.jif')
```

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2jif

load_ascii

SYNTAX

[data,errormsg] = load_ascii(filename);

INPUT:

filename: the ASCII data file name

OUTPUT

data:	data matrix loaded from the ascii file
errormsg:	errormsg saves the error message if error is
	encountered in reading the file

DESCRIPTION

LOAD_ASCII is the counterpart of 'load filename -ascii' in standalone applications. It reads the first line of the ASCII file to get the number of columns of and then fast reads the ASCII file

EXAMPLES

ROUTINES CALLED

SEE ALSO

3. Rigid Body Routines

KINEMATICS ROUTINES
List of Kinematics Routines
eul2r
r2eul
${ m ep}2$ r
r2ep
r2_body_ang3-8
r2_jnt_ang3-9
FORWARD DYNAMICS ROUTINES
List of Forward Dynamics Routines
fwd simu
fwd integrator
fwd equation
projection
cnstode45
cnstode 15s
cnstode23s
int cnst
int cnst euler
int cnst pin
int cnst pin2d
int cnst null2d
int reaction
int react euler
int react pin
int react pin2d
int react null2d
spring force
damper force
stop_force
ddRxppl
dBx]
аталанананананананананананананананананан
INVERSE DYNAMICS ROUTINES
List of Inverse Dynamics Routines
inv_analysis
inv_kinematics
inv_dynamics3-37

Kinematics Routines

List of Kinematics Routines

eul2r:	Euler angles to rotation matrix conversion
r2eul:	Rotational matrix to Euler angles conversion
ep2r:	Euler parameters to rotation matrix conversion
r2ep :	Rotational matrix to Euler parameters conversion
r2_body_ang:	Body orientation (Euler) angles calculation from its rotation
	matrix
r2_jnt_ang :	Joint angle calculation from rotation matrices

eul2r

SYNOPSIS

varargout = eul2r(eul,cnvt,opt)

INPUTS

eul: euler angles (3x1)

- cnvt: Convention for euler angles ('zxz', 'zyx')
- opt: (optional) vector (7x1) deciding which terms to be calculated opt(1): calcaulte R, saved as 3x3 matrix or a nx9 matrix opt(2): dR/deul(m), saved as 9x3 matrix in Rij,m opt(3): dR^2/deul(m)/deul(n), saved as 9x6 matrix in Rij,mn opt(4): S1 (3x3 matrix), omegab = S1*deul/dt opt(5): T, (3x3 matrix), deul/de = T*omegab opt(6): dT/deul(m), saved as 9x3 matrix in Tij,m opt(7): S2 (3x3 matrix), as in the equation

S1*deul^2/dt^2+S2*[de1*de2;de1*de3;de2*de3];

OUTPUT

varargout: matrices output dependent on opt

DESCRIPTION

EUL2R performs basic calculations regarding Euler angles to rotation matrix conversion such as calculating the rotational matrix R, its derivatives dR/de(m), $dR^2/de(m)/de(n)$, the derivative to angular velocity matrix S, its inverse matrix T, its deriviative dT/de(m), and deriviative to angular acceleration matrix S2

EXAMPLES

example # 1: calculate only R matrix eul = [3 1 2]; R = eul2r(eul,'zxz');

- example # 2: calculate; differential matrices; velocity matrix, etc
 [R,dRdm,dRdmn,T,dTdm] = eul2r(eul,'zyx',[1 1 1 1 1]');
 [T,dTdm] = eul2r(eul,'zyx',[0 0 0 1 1]);
- example # 3: acceleration conversion matrix S2 = eul2r(eul,'zyx',[0 0 0 0 0 0 1]);
- example # 4: time series of rotation matrix eul = [3 1 2; 2 1 1; 1 0 3; 0 0 pi/2]; R = eul2r(eul,'zxz');

NOTE

1. Using reshape(dRdm(:,i),3,3) to restore dRdm as a 3x3 matrix

- 2. when only R is calculated, vectorized programming is supported; R can be saved as a 3x3 matrix or a nx9 representing different frames
- 3. trailing zeros in opt can be neglected

ROUTINES CALLED

none

SEE ALSO

r2eul

r2eul

SYNOPSIS

eul = r2eul(R,cnvt,opt)

INPUTS

R:	Rotational matrix $R = [i, j, k]$; (3x3 or nx9)
cnvt:	Convention for euler angles ('zxz', 'zyx')
opt:	options determining the default range of theta (default =1)
	=1, theta = [0,pi] for ZXZ and [-pi/2 pi/2] for ZYX
	=2, theta = [-pi,0] for ZXZ and [-pi,-pi/2] and [pi/2,pi] for
	ZYX

OUTPUT

eul: calculated Euler angles

DESCRIPTION

R2EUL calculates Euler angles from a rotation matrix (3x3) or a series of rotation matrices (nx9)

EXAMPLES

eul = [3 4 2]; R = eul2r(eul,'zxz'); eul1 = r2eul(R,'zxz'); eul2 = r2eul(R,'zxz');

NOTE

A small number is used to judge if gimble locking occurs, the number del=1e-5 $\,$

ROUTINES CALLED

none

SEE ALSO

eul2r

ep2r

SYNOPSIS

varargout = ep2r(ep,opt)

INPUTS

ep: uler parameters (4x1) opt: etermine whether to calculate each term (5x1) opt(1)=1: calculate R, saved as 3x3 matrix opt(2)=1: calculate dR/de(m), saved as 9x4 matrix in Rij,m opt(3)=1: calculate dR^2/de(m)/de(n), saved as 9x10 matrix in Rij,mn opt(4)=1: calculate T (4x3) as in de= T*w_b opt(5)=1: calculate dT/de(m) (saved as Tij,m 12x4)

OUTPUT

varargout: matrices output dependent on opt

DESCRIPTION

EP2R: performs basic calculations regarding Euler parameters to rotation matrix conversion such as calculating the rotational matrix R, its derivatives dR/de(m), dR^2/de(m)/de(n), the derivative to angular velocity matrix T, and its derivative dT/de(m)

EXAMPLES

example # 1: calculate only R matrix ep = [3 1 2 10]; R = ep2r(ep);

example # 2: calculate R matrix; differential matrices, etc [R,dRdm,dRdmn,T,dTdm] = ep2r(ep,[1 1 1 1 1]'); [T,dTdm] = ep2r(ep,[0 0 0 1 1]);

NOTE

- 1. Default of option calculates only R, opt = [1 0 0 0 0];
- 2. Trailing zeros in opt can be neglected

ROUTINES CALLED

none

SEE ALSO

r2ep

r2ep

SYNOPSIS

ep = r2ep(R)

INPUTS

R: rotational matrix (3x3)

OUTPUT

ep: euler parameters (4x1)

DESCRIPTION

R2EP calculates the Euler parameters from a rotational matrix

EXAMPLES

eul = [3 4 2]; R1 = eul2r(eul,'zxz'); ep = r2ep(R1); R2 = ep2r(ep);

NOTE

ROUTINES CALLED

none

SEE ALSO

ep2r

r2_body_ang

SYNOPSIS

ang = r2_body_ang(R,type,ang0);

INPUTS

R: rotational matrix (3x3)

- type: convention ('zxz', 'zyx')
- ang0: Initial euler angles (usually the value of previous time step)

OUTPUT

ang: body orientation (Euler) angles (3x1),

DESCRIPTION

R2_BODY_ANG calculates the Euler angles of a given body relative to the default coordinate system. If ang0 is also given, the ang will start from ang0. This enables the range of Euler angles be extended beyond [-pi pi] for tumbling motion;

EXAMPLES

eul = [3 4 2]; R = eul2r(eul,'zxz'); ang1 = r2_body_ang(R,'zxz'); ang2 = r2_body_ang(R,'zxz',[2.5 3.5 1.9]);

notice in the example, ang2 is exactly same as eul; while ang1 is not

NOTE

If ang0 is given, the program will automatically

- Eliminate the jump due to degeneracy
- Add or remove 2*n*pi to make solution continuous

ROUTINES CALLED

r2eul

SEE ALSO

r2_jnt_ang

r2_jnt_ang

SYNOPSIS

jang = r2_jnt_ang(R1,R2,type,jang0);

INPUTS

R1: rotational matrix for 1st segment

R2: rotational matrix for 2nd segment

type: type of joints

jang0: initial joint angles (usually the value of previous time step)

OUTPUT

jang: calculated joint angles

DESCRIPTION

R2_JNT_ANG calculates the joint angles given two rotational matrices for the two segments connecting the joint. If jang0 is also given, the jang will start from jang0. This extends the range of joint angles beyond [-pi pi] and allows the tracking of tumbling motion

EXAMPLES

eul1 = [3 4 2]; eul2 = [3 4 2]; R1 = eul2r(eul1,'zxz'); R2 = eul2r(eul2,'zxz'); jang1 = r2_jnt_ang(R1,R2,'zxz'); jang2 = r2_jnt_ang(R1,R2,'zxz',[0 2*pi 0]);

NOTE

Currently, zxz, zyx, pin, null2d, pin3d joints are supported

ROUTINES CALLED

r2eul

SEE ALSO

r2_body_ang

Forward Dynamics Routines

List of Forward Dynamics Routines

fwd_simu	main setup routine for forward dynamics analysis
fwd_integrator	ode integrator setup routine
fwd_equation	forward dynamics ode equation routine
projection	constraint projection routine
cnstode45	ode 45 non-stiff solve for constrained system
cnstode15s	ode 15 stiff solve for constrained system
cnstode23s	ode 23 stiff solve for constrained system
jnt_cnst	G, g1g2 and g due to joint constraints
jnt_cnst_euler	G, g1g2 and g due to Euler joint constraints
jnt_cnst_pin	G, g1g2 and g due to 3d pin joint constraints
jnt_cnst_pin2d	G, g1g2 and g due to 2d pin joint constraints
jnt_cnst_null2d	G, g1g2 and g due to 2d null joint constraints
jnt_react	joint reaction force calculation
jnt_react_euler	joint reaction force due to an Euler joint
jnt_react_pin	joint reaction force due to a 3d pin joint
jnt_react_pin2d	joint reaction force due to a 2d pin joint
jnt_react_null2d	joint reaction force due to a 2d null joint
spring_force	calculate spring force
damper_foce	calculate damping force
stop_force	calculate joint soft stop force
ddRxppI	calculate vR2 = Rij,mn*dpm*dpn*lj
dKxI	calculate R1l = Rij,m*lj
d'I'xpv	calculate the vector $vR2 = Tlm, n*dpn*vm$

fwd_simu

SYNOPSIS

t_cpu = fwd_simu(job_file, choice);

INPUTS

job_file	e:	file keep job information (include the system to use)
choice:		select the task to perform
	input':	read in all job, model and force files
	'initial	ization': check default, error etc, setup geometry
	'run':	run simulation, sorting data
	'all':	perform all the preceding tasks (default)

OUTPUT

t cpu: cpu time for	the	tasi	S
---------------------	-----	------	---

GLOBAL:

SYSTEM	system description structure
BODY	body description structures
JOINT	joint description structures
JOB	job description structure
EXF	external force structures

DESCRIPTION

FWD_SIMU set up a forward dynamics model by

- read job and ahm input files
- verify the input data are correct
- setup the initial configuration
- setup the geometry patch
- run integration

EXAMPLES

NOTE

ROUTINES CALLED

A number of internal routines fwd_integrator

SEE ALSO
fwd_integrator

SYNOPSIS

[time,Y,STAT] = fwd_integrator(options);

INPUTS

options: extra options for the integrator (refers to odeset)

OUTPUT

time:	time vector when solution is outputed
Y:	position and velocity solution
STAT:	solver statistics

GLOBAL:

SYSTEM	system description structure
BODY	body description structures
JOINT	joint description structures
JOB	job description structure
EXF	external force structures

DESCRIPTION

FWD_INTEGRATOR sets up the ode integrator for forward dynamics problem, performs the integration, and saves the results in result and restart files

EXAMPLES

NOTE

ROUTINES CALLED

fwd_equation

fwd_equation

SYNOPSIS

varargout = fwd_equation(t,y,flag,varargin);

INPUTS

t:	time	
y:	[p,v]' (variabl	le of the 1st order ODE system)
flag:	flag of task to	be performed
Ū	":	(default) evaluate y' = f(y)
	'update':	update solution after a successful step
	'call_proj':	call projection routine for position and
		velocity constraints
	'proj_1':	called from projection routine to calculate M,
		G and gi
	'proj_2':	called from projection routine to calculate g
varar	gin:other input	t arguments to be passed on, including
-	isproj:	=1 do project;
		=0 do not project
	isupdate:	=1 update solution after a successful step,
		=0 do not

OUTPUT

varargout: variable outputs depend on the flag

DESCRIPTION

FWD_EQUATION setup the forward dynamics equations for ODE solver

EXAMPLES

NOTE

ROUTINES CALLED

projection, cnstode45, cnstode15s, cnstode23s

projection

SYNOPSIS

yproj = projection(odefile,t,y,NP,NV,NL);

INPUT:

odefile:	filename of the ode and constraint formulation
t:	current time
y:	original converged solution
NP:	number of position degrees of freedom
NV:	number of velocity degrees of freedom
NL:	number of constraints equations

OUTPUT:

yproj:	projected	solutions
--------	-----------	-----------

OUTPUT

time:	time vector when solution is outputed
Y:	position and velocity solution
STAT:	solver statistics

DESCRIPTION

PROJECTION projects the approximation solution back to the position and velocity constraint manifolds

EXAMPLES

NOTE

ROUTINES CALLED

cnstode45, cnstode15s, cnstode23s

cnstode45

SYNOPSIS

[tout,yout,varargout] = ode15s(odefile,tspan,y0,options,varargin)

INPUTS

refer to ode45

OUTPUT

refer to ode45

DESCRIPTION

CNSTODE45 is the extension of ODE45 non-stiff ode solver to include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstode15s; cnstode23s

cnstode15s

SYNOPSIS

[tout,yout,varargout] = ode15s(odefile,tspan,y0,options,varargin)

INPUTS

refer to ode15s

OUTPUT

refer to ode15s

DESCRIPTION

CNSTODE15S is the extension of ODE15S stiff ode solver to include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstode45; cnstode23s

cnstode 23s

cnstode23s

SYNOPSIS

[tout,yout,varargout] = ode23s(odefile,tspan,y0,options,varargin)

INPUTS

refer to ode23s

OUTPUT

refer to ode23s

DESCRIPTION

CNSTODE23S is the extension of ODE23S stiff ode solver to include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstode45; cnstode15s

jnt_cnst

SYNOPSIS

varargout = jnt_cnst(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body
- body2: structure data for outboard body
- jnt: structure data for the joint
- opt: option of calculation
 - 1. calculate the contribution to g
 - 2. calculate the contribution to G
 - 3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST calculates the contribution of the joint constraints to G, g1g2 and g $% \left[{\left[{{{\rm{CNST}}} \right]_{\rm{CNST}}} \right]_{\rm{CNST}} \right]$

EXAMPLES

NOTE

ROUTINES CALLED

Joint constraint routines for various joints

jnt_cnst_euler

jnt_cnst_euler

SYNOPSIS

varargout = jnt_cnst_euler(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body

body2: structure data for outboard body

- jnt: structure data for the joint
- opt: option of calculation
 - 1. calculate the contribution to g
 - 2. calculate the contribution to G
 - 3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_EULER_CNST calculates the contribution of an Euler joint to G, g1g2 and g

EXAMPLES

NOTE

An Euler joint only involves position constraint. When the joint is connected to the ground, the position should equal to the designated position. Otherwise, the two neighboring bodies are connected at the joint

 $R^{*}l \cdot Og = 0;$ R1*l1 - R2*l2 = 0;

ROUTINES CALLED

ddRxppl, dTxpv, drxl

jnt_cnst_pin

SYNOPSIS

varargout = jnt_cnst_pin(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body
- body2: structure data for outboard body
- jnt: structure data for the joint
- opt: option of calculation
 - 1. calculate the contribution to g
 - 2. calculate the contribution to G
 - 3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN calculates the contribution of a 3D pin joint to G, g1g2 and g $\,$

EXAMPLES

NOTE

A pin joint involves position constraint (as in an Euler joint) pluses two rotational constraints

ROUTINES CALLED

ddRxppl, dTxpv, drxl; joint_cnst_euler

jnt_cnst_pin2d

jnt_cnst_pin2d

SYNOPSIS

varargout = jnt_cnst_pin(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body

body2: structure data for outboard body

- jnt: structure data for the joint
- opt: option of calculation
 - 1. calculate the contribution to g
 - 2. calculate the contribution to G
 - 3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN2D calculates the contribution of a 2D pin joint to G, g1g2 and g

EXAMPLES

NOTE

A pin2d joint only involves position constraint. When the joint is connected to the ground, the position should equal to the designated position, otherwise, the two neighboring bodies are connected at the joint

 $R^{*}l - Og = 0;$ $R1^{*}l1 - R2^{*}l2 = 0;$

ROUTINES CALLED

ddRxppl, dTxpv, drxl

jnt_cnst_null2d

SYNOPSIS

varargout = jnt_cnst_null2d(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body
- body2: structure data for outboard body
- jnt: structure data for the joint
- opt: option of calculation
 - 1. calculate the contribution to g
 - 2. calculate the contribution to G
 - 3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN2D calculates the contribution of a 2D null joint to G, g1g2 and g $\,$

EXAMPLES

NOTE

No constraint is involved for a 2D null joint

ROUTINES CALLED

jnt_reaction

jnt_reaction

SYNOPSIS

f = jnt_reaction(t,P,V,body1,body2,joint);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body body2: structure data for outboard body

joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACTION calculates the joint reaction forces due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

Joint reaction force routines for various joints

jnt_react_euler

SYNOPSIS

f = jnt_react_euler(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body

body2: structure data for outboard body

joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_CNST calculates the Euler joint reaction forces due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

An Euler joint has three rotational degree of freedom ground can only be inboard

ROUTINES CALLED

r2_jnt_ang; spring_force; damper_force; stop_force

jnt_react_pin

SYNOPSIS

f = jnt_react_pin(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body
- body2: structure data for outboard body

joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_PIN calculates the 3D pin joint reaction forces due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

r2_jnt_ang; spring_force; damper_force; stop_force

jnt_react_pin2d

SYNOPSIS

f = jnt_react_pin2d(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body

body2: structure data for outboard body

joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_PIN2D calculates the 2D pin joint reaction forces due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

r2_jnt_ang; spring_force; damper_force; stop_force

jnt_react_null2d

SYNOPSIS

varargout = jnt_react_null2d(t,P,V,body1,body2,jnt,opt);

INPUTS

- t: current time
- P: position vector
- V: velocity vector
- body1: structure data for inboard body

body2: structure data for outboard body

joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_NULL2D calculates the 2D null joint reaction forces due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

r2_jnt_ang; spring_force; damper_force; stop_force

spring_force

SYNOPSIS

F = spring_force(type,prop,d);

INPUTS

type:	type of spring	g (nspring x 1) cell
	'linear':	linear spring represented by k
	'tabular':	nonlinear spring represented by tabular form
prop :	spring proper	ties data cell

- 'linear': k
 - 'tabular': [d(:) F(:)]
- d: joint relative displacement (nspring x 1), d should be in ascending order

OUTPUT

F: spring force (nspring x 1)

DESCRIPTION

SPRING_FORCE calculates the spring forces according to the type and properties of the spring

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

damper_force

ddRxppl

ddRxppl

SYNOPSIS

vR2 = ddRxppl(dRdmn,dp,l)

INPUTS

dRdmn:	$dR^2/dp(m)/dp(n)$
l:	postion vector
dp:	dp/dt

OUTPUT

vR2: resultant vector

DESCRIPTION

ddRxppl calculates the vector vR2 = Rij,mn*dpm*dpn*lj

EXAMPLES

NOTE

ROUTINES CALLED

dRxl

SYNOPSIS

R1l = drxl(dRdm, l)

INPUTS

dRdm:	dR/dp(m)
1:	postion vector

OUTPUT

Rl1:

calculated matrix R1l; 3x3 for Euler angles; 3x4 for Euler parameters

DESCRIPTION

dRxl calculates the matrix R1l = Rij,m*lj

EXAMPLES

NOTE

ROUTINES CALLED

dTxpv

SYNOPSIS

 $\mathbf{v} \mathbf{T} = \mathbf{d} \mathbf{T} \mathbf{x} \mathbf{p} \mathbf{v} (\mathbf{d} \mathbf{T} \mathbf{d} \mathbf{m}, \mathbf{d} \mathbf{p}, \mathbf{v})$

INPUTS

dTdm:	as in pdot = dTdm *v, see zxz2t
dp:	dp/dt
v:	segment angular velocity

OUTPUT

vT:	calculated vector
	ourourato a record.

DESCRIPTION

dTxpv calculates the vector vR2 = Tlm,n*dpn*vm

EXAMPLES

NOTE

ROUTINES CALLED

Inverse Dynamics Routines

List of Inverse Dynamics Routines

inv_analysismain setup routine for inverse dynamics analysisinv_kinematicskinematics calculationinv_dynamicsinverse dynamics calculation

inv_analysis

SYNOPSIS

[SYSTEM,JOB,BODY,JOINT,EXF] = inv_analysis(jobfile);

INPUTS

jobfile: file keep job information (include the model system to use)

OUTPUT

SYSTEM	system description structure
BODY	body description structures
JOINT	joint description structures
JOB	job description structure
$\mathbf{E}\mathbf{X}\mathbf{F}$	external force structures

DESCRIPTION

INV_ANALYSIS performs the following tasks:

- 1. verify and read in the job, model and data
 - 2. kinematics analysis
 - 2.1 filter the kinematics data (body, joint)
 - 2.2 calculate linear velocity and acceleration
 - 2.3 calculate body and joint angles
 - 2.4 calculate angular velocity and acceleration
 - 2.5 calculate joint angle
 - 3. dynamics analysis

3.1 Calculate the joint forces and torques in gloval frame

3.2 Convert the force and torque into body local frame

3.3 Convert the force and torque into anatomical frame

- 4. Calculate additional energetic quantities
- 5. Output results to files

EXAMPLES

NOTE

ROUTINES CALLED

A number of internal routines inv_kinematics, inv_dynamics math function; i/o functions, etc

inv_kinematics

SYNOPSIS

[BODY,JOINT] = inv_kinematics(SYSTEM,JOB,BODY,JOINT);

INPUTS

SYSTEM:	SYSTEM definition structure
JOB:	JOB definition structure
BODY:	BODY definition structure
JOINT:	JOINT definition Structure

.

OUTPUT

BODY:	BODY definition structure, with updated kinematics
	information
JOINT:	JOINT definition structure, with updated
	kinematics information

DESCRIPTION

INV_KINEMATICS performs the following tasks:

- 1. filter the kinematics data (body, joint)
- 2. calculate linear velocity and acceleration
- 3. calculate body and joint angles
- 4. calculate angular velocity and acceleration
- 5. calculate joint angle

EXAMPLES

NOTE

ROUTINES CALLED

matfiltfilt:Butterworth filtering of matrix datadxdt:derivative sof uniformly spaced datar2_body_ang:body orientation (Euler) angle calculationeul2r:euler angle to rotation matrix conversion

SEE ALSO

inv_dynamics

inv_dynamics

SYNOPSIS

JOINT = inv_dynamics(SYSTEM, JOB, BODY, JOINT, EXF);

INPUTS

SYSTEM:	SYSTEM definition structure
JOB:	JOB definition structure
BODY:	BODY definition structure
JOINT:	JOINT definition Structure
EXF:	External force data structure

OUTPUT

JOINT:

JOINT definition structure, with updated dynamics information

DESCRIPTION

INV_DYNAMICS performs the following tasks:

- 1. calculate the joint forces and torques in the global frame
- 2. convert the force and torque into an anatomical frame

EXAMPLES

NOTE:

This routine works for an open-loop (tree) model, where a body can have more than one proximal joints, but only one distal joints

ROUTINES CALLED

SEE ALSO

inv_kinematics

3-38

4. Graphical Routines

GRAPHICAL OBJECTS ROUTINES	4-2
List for graphical objects	
gen_patch_block	4-3
gen patch_cylinder	4-4
gen patch sphere	
gen patch_arrow	4-6
gen patch_spring	4-7
gen patch_ground	4-8
read patch asc	4-9
read patch_xix	4-10
affine patch	4-11
scale patch	4-12
add patch prop	4-13
USER INTERFACE ROUTINES	4-14
List of User Interface Routines	
geticoncdata	4-15
seticoncdata	
show_btn_ctxMenu	4-17
enableiconcdata	
msgOutput	4-19
filterUI	4-20
axis2fig	4-21
setpopupvalue	4-22
	4.00
ANIMATION, VIEWERS, AND OTHER	4-23
List of Animation, Viewers and Other Routines	
alias2rgb	
anim_dyn_1st	
anim_dyn_ith	
read_asf	
anim_asf	
xyviewer	B-1
stickviewer	C-1

Graphical Objects Routines

List for graphical objects Routines

Create graphical objects

gen_patch_block:	generate a 3d block patch
<pre>gen_patch_cylinder:</pre>	generate a 3d cylindrical patch
gen_patch_sphere:	generate a 3d spherical patch
gen_patch_arrow:	generate an arrow patch
gen_patch_spring:	generate a spring patch
gen_patch_ground:	generate a patch representing the ground
read_patch_asc:	read a patch from an ASCII ASC file
read_patch_xix:	read a patch from an ASCII XIX file

Manipulate of graphical objects

affine_patch:	perform affine transformation of a patch
scale_patch:	scale a patch
add_patch_prop:	add additional graphical properties to a patch

gen_patch_block

SYNOPSIS

p = gen_patch_block(l,m,n,varargin)

INPUTS

l:	number of x elements
m:	number of y elements
n:	number of z elements
varargin:	parameter/value pairs to specify additional
U	properties of the patch

OUTPUT

p: geometrical patch object

DESCRIPTION

GEN_PATCH_BLOCK generates a 3D block object with unit length in all the x, y, and z directions. The center of the block is located at the origin.

EXAMPLES

NOTE

ROUTINES CALLED

gen_patch_cylinder

SYNOPSIS

p = gen_patch_cylinder(m,n,varargin)

INPUTS

m:	an even number of elements along circumference (default = 20)
n:	an even number of elements in longitudinal direction (default = 20)
varargin:	parameter/value pairs to specify additional properties of the spring

OUTPUT

p: geometrical cylinder object

DESCRIPTION

GEN_PATCH_CYLINDER generates a cylindrical patch object of unit diameter and unit length and located at the origin and aligned in the z direction

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop

gen_patch_sphere

SYNOPSIS

p = gen_patch_sphere(n,varargin)

INPUTS

n:	an even number of elements
	(default = 20)
varargin:	parameter/value pairs to specify additional
	properties of the sphere

OUTPUT

		محمد محمد مرا	abiant
p:	geometrical	spherical	object

DESCRIPTION

GEN_PATCH_SPHERE generates a spherical patch object of unit diameter with its center located at the origin of the reference system

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop

gen_patch_arrow

SYNOPSIS

p = gen_patch_arrow(P1,P2,lHead,wHead,wTail,varargin)

INPUTS

P1:	coordinates of the end of the arrow
P2:	coordinates of the tip of the arrow
lHead:	ratio of head length
wHead:	ratio of head width
wTail:	ratio of tail width
varargin:	parameter/value pairs to specify additional
	properties of the arrow

OUTPUT

p: geometrical arrow object

DESCRIPTION

GEN_PATCH_ARROW generates a 3D geometrical object representing an arrow.

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop

gen_patch_spring

SYNOPSIS

p = gen_patch_spring(P1,P2,m,w,width,varargin)

INPUTS

P1:	coordinates of starting point
P2:	coordinates of ending point
m:	number of rings in the spring
w:	width of the spring
varargin:	parameter/value pairs to specify additional properties of the spring

OUTPUT

DESCRIPTION

GEN_PATCH_SPRING generate a 3D geometrical object representing a spring.

EXAMPLES

NOTE

ROUTINES CALLED add_patch_prop

gen_patch_ground

SYNOPSIS

p = gen_patch_ground(m,n,color1,color2,varargin)

INPUTS

number of checked squares in x direction
number of checked squares in y direction
color one of checked squares, default=[0.2 0.2 0.2]
color two of checked squares, default=[0 0 0]
parameter/value pairs to specify additional
properties of the ground

OUTPUT

p: geometrical ground object

DESCRIPTION

GEN_PATCH_GROUND generates a graphical patch object representing the ground. The ground is represented by checked interlacing squares. The patch is in XY plane with unit length in X and Y direction. The center is at the origin of the reference frame

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop; alias2rgb

$read_patch_asc$

read_patch_asc

SYNOPSIS

asc = read_patch_asc(ascfile);

INPUTS

ascfile: asc path data file name

OUTPUT

Asc: geometrical patch structure with the following fields Vertices: coordinates of geometrical nodes Faces: node connectivity matrix VertexNormals: (optional) normal at the nodes (for graphical rendering)

DESCRIPTION

READ_PATCH_ASC reads in a geometrical patch defined in an ASCII ASC file

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

read_patch_xix

read_patch_xix

SYNOPSIS

xix = read_patch_xix(xixfile);

INPUTS

xixfile: xix data file name

OUTPUT

xix:	geometrical patch structure with the following fields
	Vertices: coordinates of geometrical nodes
	Faces: node connectivity matrix
	VertexNormals: (optional) normal at the nodes (for
	graphical rendering)

DESCRIPTION

 $\ensuremath{\mathsf{READ}}\xspace_{\ensuremath{\mathsf{PATCH}}\xspace_{\ensuremath{\mathsf{XIX}}\xspace}$ reads in a geometrical patch defined in an ASCII XIX file

EXAMPLES

NOTE

FORMAT of an xix file:		
line 1:	comment	
line 2:	NDIM	
line 3:	is_std_ix, node per face	
line 4:	nVertices, nFaces	
one comment line		
	vertices coordinates	
one comment line		
	IX data	
Normal (optional)		
	node normal data	
CData (optional)		
	FaceVerticeCData	
FaceColor (optional)		
• •	face color	
EdgeColor (op	tional)	
	edge color	
	0	

ROUTINES CALLED

SEE ALSO

read_patch_asc

affine_patch

affine_patch

SYNOPSIS

 $pa = affine_patch(p,tran,R)$

INPUTS

- p: geometrical patch object (usually aligned along the default coordinate system)
- tran: translation along the x, y, z axes
- R: rotational matrix representing orientation of the patch in the coordinate system

OUTPUT

pa: geometrical patch object after affine transformation

DESCRIPTION

AFFINE_PATCH performs an affine transformation of a geometrical patch

EXAMPLES

NOTE

ROUTINES CALLED
scale_patch

SYNOPSIS

ps = scale_patch(p,scale)

INPUTS

p: geometrical patch object (usually aligned along the default coordinate system)

scale: scaling factor of the patch in x,y,z axes

OUTPUT

ps: scaled patch

DESCRIPTION

SCALE_PATCH scales a geometrical patch

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop

SYNOPSIS

newP = add_patch_prop(oldP,varargin)

INPUTS

oldP:	old geometrical patch object
varargin:	parameter/value pairs to specify additional
	properties of the arrow

OUTPUT

newP: new geometrical patch object

DESCRIPTION

ADD_PATCH_PROP adds/modifies parameter/value pairs of a geometrical patch object

EXAMPLES

NOTE

Currently the following parameters are supported EdgeColor FaceColor LineStyle LineWidth

ROUTINES CALLED

User Interface Routines

List of User Interface Routines

geticoncdata:	read from an icon file the cdata (color map)
seticoncoata:	set cdata on a toolbar button
show_btn_ctxMenu:	associate an context menu to a toolbar button
enableiconcdata:	enable or disable a toolbar button
msgOutput:	message output routine
filterUI:	update filter type in a filter popup menu
axis2fig:	copy and re-scale a axis onto a figure
setpopupvalue:	set the value of a popup to match a given string

geticoncdata

SYNOPSIS

cdata = geticoncdata(iconfile,idx,bgcolor);;

INPUTS

iconfile:	name of a icon file
idx:	(default=1) the number of icon in the icon file
bgcolor:	the bg color to set as transparent

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

GETICONCDATA reads from an icon file and save the icon as cdata. If bgcolor is provided, it also attempts to save the bgcolor as NaN. When used with seticoncdata, bgcolor will be displayed transparent

EXAMPLES

NOTE

The program can be modified to include alpha data (transparency)

ROUTINES CALLED

seticoncdata

SYNOPSIS

seticoncdata(h,Cdata);

INPUTS

h:	handle of the obj (pushbutton, etc)
Cdata:	n x m x 3 color data

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

SETICONCDATA sets the CData on a UI (pushbutton etc). All NaN components will be displayed as the UI background color (looks like transparent)

EXAMPLES

NOTE

ROUTINES CALLED

show_btn_ctxMenu

SYNOPSIS

show_btn_ctxMenu;

INPUTS

none

OUTPUT

none

DESCRIPTION

SHOW_BTN_CTXMENU displays context menu associated with a tool button. The handle of the tool button should be saved as the *userdata* of the button and the *enable* of the tool buttonn should be set as *'inactive'* the *buttondownfcn* of the button should be set as *'show_btn_ctxMenu'*

EXAMPLES

NOTE

ROUTINES CALLED

enableiconcdata

SYNOPSIS

enableiconcdata(hbtn,option);

INPUTS

hbtn: handle of the obj (pushbutton, etc) (may be a vector) option: 'enable' or 'disable'

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

enableiconcdata: enable or disable a tool button

EXAMPLES

NOTE

The use of multiple handles (hbtn being a vector) is supported

ROUTINES CALLED

msgOutput

SYNOPSIS

msgOutput(msg)

INPUTS

msg: a string or a cell or strings (the message)

OUTPUT

none

DESCRIPTION

MSGOUTPUT outputs the message in the *msg* string to a command window, a message GUI window and/or a message file

EXAMPLES

example one -- output message to command window msgOutput('message to command window');

example two -- output message to msgwindow and save in a
 message file (tmp.msg)
 close all; set(gcf,'unit','pixels')
 h = uicontrol('style','listbox','tag','MsgWindow','pos',[10 10
 200 100],'max',100);
 setappdata(h,'msgFile','tmp.msg');
 msgOutput({'example of msg output','also check the
 tmp.msg file'});

NOTE

- 1. msgOutput first look for a msgwindow with a the tag of 'MsgWindow' (case senstive) if the msgwindow is not present, the msg will be output to the command window; otherwise the message will be added to the message window.
- 2. the maximum number of lines of message can be specified by setting the 'max' property of the UI control of the message window
- 3. the msg will be save as the appdata 'MSG' in msg
- 4. if appdata 'msgFile' is present in the message window, the msg will aslo be saved in the file

ROUTINES CALLED

filterUI

SYNOPSIS

filterUI(h,type);

INPUTS

h: the filter UI handle (a popup menu); type: string of the type of filter

OUTPUT

none

DESCRIPTION

filterUI updates the types of filter displayed in a popup menu and automatically set the value according to the input type string

EXAMPLES

close all; set(gcf,'unit','pixels'); h = uicontrol('style','popupmenu','pos',[100 100 200 20],'string','filter example'); filterUI(h,'2nd order Butterworth'); filtertype = popupstr(h)

NOTE

To get the filter type from the UI, use *popupstr*

ROUTINES CALLED

axis2fig

axis2fig

SYNOPSIS

hnew = axis2fig(hold)

INPUTS

hold: original handle of the axis to be copies

OUTPUT

hnew: the handle of the new figure

DESCRIPTION

axis2fig copies all visible components on a axis to a new figure, so all components can be re-scaled to normal size to be printed

EXAMPLES

 $h = axes('unit', 'pixel', 'pos', [0 \ 0 \ 100 \ 100]); plot(1:10); legend('plot x'); \\ h = axis2fig(h);$

NOTE

The position of legend will be auto put in one of the four corners

ROUTINES CALLED

setpopupvalue

SYNOPSIS

setpopupvalue(h,s);

INPUTS

- h: handle of popup or listbox
- s: string to be matched

OUTPUT

none

DESCRIPTION

SETPOPUPVALUE sets the value of popup or listbox to match the specified string. Exact match of lower case is required

EXAMPLES

NOTE

ROUTINES CALLED

Animation, Viewers, and Other

List of Animation, Viewers and Other Routines

alias2rgb:	convert an alias of a color to RGB color
anim_dyn_1st:	generate the 1 st animation frame for an inverse or a
	forward dynamic model
anim_dyn_ith:	generate the i th animation frame for an inverse or a
	forward dynamic model
read_asf:	read an ASCII TekScan data file
anim_asf:	animate pressure data measured by TekScan
xyviewer:	see Appendix B
stickviewer:	see Appendix C

alias2rgb

SYNOPSIS

rgb = char2rgb(c)

INPUTS

c: character symbol of a color

OUTPUT

rgb: rgb representation of the color

DESCRIPTION

ALIAS2RGB converts a color alias to RGB color

EXAMPLES

NOTE

Alias of colors supported are listed as follows

- y yellow
- m magenta
- c cyan
- r red
- g green
- b blue
- w white
- k black

ROUTINES CALLED

anim_dyn_1st

SYNOPSIS

h = anim_dyn_1st(SYSTEM,BODY);

INPUTS

SYSTEM:	system description structure
BODY:	body description structure

OUTPUT

h: handles of graphical objects representing the bodies

DESCRIPTION

ANIM_DYN_1st draws the first frame of an inverse or a forward dynamical model given the model description and time trace of model response. It also sets up the axis property.

EXAMPLES

NOTE

ROUTINES CALLED

anim_dyn_ith

SYNOPSIS

h = dyn_anim_ith(iframe,time,SYSTEM,BODY);

INPUTS

iframe:	the number of the frame to be displayed
time:	time vector
SYSTEM:	system description structure
BODY:	body description structure

OUTPUT

handles of graphical objects representing the bodies

DESCRIPTION

h:

ANIM_DYN_ith draws the $i^{\rm th}\,$ frame of an inverse or a forward dynamic model

EXAMPLES

NOTE

ROUTINES CALLED

read_asf

SYNOPSIS

[INFO,P] = read_asf(asffile,maxframe);

INPUTS

asffile:	ascii tekscan data file
maxframe:	(option) max. number of frames to read from the file
	default is to read all the frames

OUTPUT

INFO: information structure of the tekscan data with the following fields 'sensor_type' 'rows' 'cols' 'units' 'row_spacing' 'row_spacing_units' 'col_spacing' 'col_spacing' 'col_spacing_units' 'noise_threshold' 'scale_factor'

'exponent' 'seconds_per_frame' 'movie_filename' 'start_frame'

'end_frame'

P: pressure data saved as a cell, each cell element is a matrix of data (rows x cols)

DESCRIPTION

read_asffile reads an ASCII Tekscan data file

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

anim_asf

anim_asf

SYNOPSIS

 $M = anim_asf(INFO,P);$

INPUTS

INFO: information structure of the tekscan data with the following fields

'sensor_type' 'rows' 'cols' 'units' 'row_spacing' 'row_spacing_units' 'col_spacing_units' 'col_spacing_units' 'noise_threshold' 'scale_factor' 'exponent' 'seconds_per_frame' 'movie_filename' 'start_frame'

P: pressure data saved as a cell, each cell element is a matrix of data (rows x cols)

OUTPUT

M: matlab movie data from the animation

DESCRIPTION

anim_asf generates the animation of a set of Tekscan test data

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

read_asf

5. Utilities Routines

MATH ROUTINES	5-2
List of Math Routines	
cross2d	
isint	
isrealnum	
unit	
dxdt	
matfiltfilt	
power spec	
r times v	
STRING ROUTINES	5-11
List of String Manipulation Routines	
parchar	5-12
sepchar	5-13
dir Dirs	5-14
dirFiles	
dirFiles isdir	
dirFiles isdir isfile	5-15 5-16 5-17
dirFiles isdir isfile addFileExt	5-15 5-16 5-17 5-18
dirFiles isdir isfile addFileExt isvar_wdof	5-15 5-16 5-17 5-18 5-19
dirFiles isdir isfile addFileExt isvar_wdof str2realmat	5-15 5-16 5-17 5-18 5-18 5-19 5-20
dirFiles isdir isfile addFileExt isvar_wdof str2realmat fieldparts	5-15 5-16 5-17 5-18 5-19 5-20 5-21
dirFiles isdir isfile addFileExt isvar_wdof str2realmat fieldparts fullfield	5-15 5-16 5-17 5-18 5-19 5-20 5-21 5-22

Math Routines

List of Math Routines

cross2d:	2D cross product
isint:	check if input numerical variable is integer
isrealnum:	check if input numerical variable is real
unit:	normalize a matrix
dxdt:	calculate time derivatives of a uniformly spaced signal
matfiltfilt:	filter uniformly spaced signal with a double Butterworth filter
power_spec: r_times_v:	calculate power spectrum of a time-domain signal rotate 2D or 3D vectors

cross2d

cross2d

SYNOPSIS

c = cross2d(a,b);

INPUT:

a:	a 2D vector
b:	a 2D vector

OUTPUT:

c: the cross procuct (a number)

DESCRIPTION

CROSS2D calculates the cross product of two 2D vectors

EXAMPLES

c1 = cross2d([1 2],[1 2]); c2 = cross2d([10 0],[1 1]);

NOTE

Cross product is not commutative, which means the result depends on the sequence of the two vectors

ROUTINES CALLED

isint

SYNOPSIS

status = isint(a,asize)

INPUT:

a: number to be checked asize: (optional) size of a to be expected

OUTPUT:

status: 1 true; 0 for false

DESCRIPTION

ININT check if a is a numerics integer. The size of a can also be checked

EXAMPLES

isint(a) check if all elements of 'a' is integer isint(a,[1 1]) check if 'a' is a integer scalar isint(a,[0 1]) check if 'a' is a integer column vector isint(a,[0 2]) check if 'a' is a integer max with 2 columns isint(a,[1 0]) check if 'a' is a integer row vector isint(a,[2 0]) check if 'a' is a integer max with 2 rows isint(a,[4 6]) check if 'a' is a integer max of size 4x6

NOTE

Use zero to indicate the length of a row or a column can be variable

ROUTINES CALLED

SEE ALSO

isrealnum

isrealnum

isrealnum

SYNOPSIS

status = isrealnum(a,asize)

INPUT:

a: number to be checked asize: (optional) size of a to be expected

OUTPUT:

status: 1 true; 0 for false

DESCRIPTION

is realnum checks if a is a numerical real value. The size of $a\ {\rm can}$ also be checked

EXAMPLES

isrealnum(a) check if all elements of 'a' is real isrealnum(a,[1 1]) check if 'a' is a real number isrealnum(a,[0 1]) check if 'a' is a real column vector isrealnum(a,[0 2]) check if 'a' is a real max with 2 columns isrealnum(a,[1 0]) check if 'a' is a real max with 2 rows isrealnum(a,[2 0]) check if 'a' is a real max with 2 rows isrealnum(a,[4 6]) check if 'a' is a real max of size 4x6

NOTE

use zero to indicate the length of a row or a column can be variable

use the isrealnum to avoid conflict with builtin isreal function

ROUTINES CALLED

SEE ALSO

isint

unit

SYNOPSIS

U = unit(A, dim)

INPUT:

A:	matrix data
dim:	option of perfroming the calculation
	dim=0 make the matrix a unit matrix
	dim=1 make every column of the matrix a unit vector
	dim=2 make every row of the matrix a unit vector

OUTPUT:

U: output matrix data

DESCRIPTION

UNIT normalizes the input matrix or its column or row vectors

EXAMPLES

A = rand(10,4) Umatrix = unit(A,0); Ucol = unit(A,1) Urow = unit(A,2)

NOTE

ROUTINES CALLED

 $\mathbf{d}\mathbf{x}\mathbf{d}\mathbf{t}$

dxdt

SYNOPSIS

xn = dxdt(X,dt,order);

INPUTS

- X: sample, X can be a vector, matrix or a 3D matrix
- dt: sampling spacing
- order: the order of derivative (1 or 2)
- xn: deriviate

OUTPUT

xn: nth order derivative of original data

DESCRIPTION

DXDT calculates the n^{th} derivatives of X. X should be uniformly sampled with a spacing dt. If X is a 2D or 3D matrix, it is differentiated column-wisely. *order* is one or two with default being one

EXAMPLES

X = rand(100,5); dx = dxdt(X,0.1,1);ddx = dxdt(X,0.1,2);

NOTE

- 1. forward difference is used for the 1st element; backward difference is used for the last element; and central difference is used for all the other
- 2. 1st and last element of the second order derivatives are the linear exterpolation of the neighboring values

ROUTINES CALLED

matfiltfilt

SYNOPSIS

xf = matfiltfilt(dt, fcut, N, X);

INPUT:

dt:	sampling rate	
-----	---------------	--

- fcut: cutoff frequency (Hz) fcut must <= nyquist freq
- N: order of the filter (usually 2 or 4)
- X: sample, X can be a column vector, a matrix or a 3d matrix

OUTPUT:

xf: filtered data

DESCRIPTION

MATFILTFILT filters a uniform input signal in time domain by a lower-pass double Butterworth filter of specified order

EXAMPLES

X = rand(100,1); xf = matfiltfilt(0.01,10,2,X); plot(1:100,X,'r:',1:100,xf); legend('original signal','filtered signal');

NOTE

fcut must be smaller than nyquist freqency (1/dt/2)

ROUTINES CALLED

butter: in matlab/signal toolbox

power_spec

SYNOPSIS

[fs,Freq,Power] = power_spec(T,X);

INPUT:

T: uniformly spaced time vector

X: input signal in time domain

OUTPUT:

fs: samping frequency

Freq: frequence vector

Power:Output power spectrum

DESCRIPTION

POWER_SPEC calculates power spectrum of input signal in time domain by performing fast Fourier transformation

EXAMPLES

T = 1:100; X = rand(1,100); [fs,Freq,Power] = power_spec(T,X); plot(Freq,Power);

NOTE

Frequency is shift by half the Nyquist frequency to make it symmetric

ROUTINES CALLED

r_times_v

SYNOPSIS

 $V = r_times_v(R,v);$

INPUT:

- R: 2x2, nx4 (2D time trace), 3x3, nx9 (3D time trace) matrix
- v: a length of 2 or 3 vector, or nx2 (2D time trace), nx3 (time trace)

OUTPUT:

V: rotated vector(s)

DESCRIPTION

 R_TIMES_V rotates a 2D or 3D vector or its time traces by the times the vector with a 2D or 3D rotational matrix or its time traces

EXAMPLES

Example #1 $R = [1 \ 1 \ 1; 2 \ 2 \ 2; 3 \ 3 \ 3];$ $v = [1 \ 2 \ 3]';$ $V = r_times_v(R,v);$

Example #2 (for time trace, R is put columnwise) R = [1 1 1 2 2 2 3 3 3

$$1 0 3 4 5 0 1 3 2];$$

v = [1 2 3
0 0 1];
V = r_times_v(R,v);

NOTE

ROUTINES CALLED

String Routines

List of String Manipulation Routines

use partial of ASCII table to remove preceding and trailing
blanks, tabs, special characters, etc
separate a string into a cell array (blank, tab delimited)
get the name of all directories in a designated directory
get the name of all files in a designated directory
determine if the specified directory exists
determine if the specified file exists
check and add a designated extension to a file
determines if a string is a valid variable name. Array DOF may
be included
convert a string matrix to a numeric real matrix
separate full field name (from top structure to field) into
structure path and field name
construct the full field name (from top structure to field)
from the structure path and fieldname

parchar

SYNOPSIS

s = parchar(s)

INPUT:

s: input string

OUTPUT:

s: output string with only characters with ascii table 33-125

DESCRIPTION

PARCHAR uses only the partial ASCII character (32-125) table of matlab, s can be a string or a string cell. Preceding and trailing spaces and tabs are also eliminated; tabs inside the text is converted into spaces

EXAMPLES

parchar(' a b'); parchar({'cha 1',' cc 2'});

NOTE

ROUTINES CALLED

SEE ALSO

sepchar

sepchar

sepchar

SYNOPSIS

c = sepchar(s)

INPUT:

s: input string

OUTPUT:

c: output cell of strings

DESCRIPTION

SEPCHAR separates a character 's' into a cell, with each element corresponds to the part of character separated by space, tab, etc

EXAMPLES

sepchar(' 1 3 4');

NOTE

ROUTINES CALLED

SEE ALSO

parchar

dirDirs

SYNOPSIS

d = dirDirs(p,option);

INPUT:

p: directory (default is the current directory)
option:option = 1: ignore '.' and '..'
option = 0, '.' and '..' will be included

OUTPUT:

d: directory names saved in a cell

DESCRIPTION

dirDirs get the subdirectories in a directory

EXAMPLES

dirDirs dirDirs('c:\')

NOTE

ROUTINES CALLED

SEE ALSO

dirFiles

dirFiles

dirFiles

SYNOPSIS

f = dirFiles(p);

INPUT:

p: directory (default is the current directory)

OUTPUT:

f: all filenames in the directory saved in a cell

DESCRIPTION

dirFiles gets the files in a directory

EXAMPLES

dirFiles dirFiles('c:\')

NOTE

ROUTINES CALLED

SEE ALSO

dirDirs

isdir

SYNOPSIS

result = isfile(dirname)

INPUT:

dirname: the name of a directory

OUTPUT

result:

=1 directory exists; =0 directory does not exist

DESCRIPTION

ISDIR checks if *dirname* is a directory

EXAMPLES

ROUTINES CALLED

SEE ALSO

isfile

isfile

isfile

SYNOPSIS

result = isfile(filename)

INPUT:

filename: the name of a file

OUTPUT

result:

=1 file exists; =0 file does not exist

DESCRIPTION

ISFILE checks if *filename* is a file

EXAMPLES

ROUTINES CALLED

SEE ALSO

isdir

addFileExt

SYNOPSIS

fname = addFileExt(filename,ext);

INPUT:

filename:	input filename
ext:	file extension to be added(not dot)

OUTPUT:

fname: filename with extension added

DESCRIPTION

ADDFILEEXT checks if the designated extension is in the *filename* and, if not, adds the designated extension to the file name

EXAMPLES

fname = addFileExt('fname.','.txt')

NOTE

- 1. the dot in extension does not matter
- 2. lower or upper case is neglected

ROUTINES CALLED

fileparts

isvar_wdof

SYNOPSIS

[status,var,dof] = isvar_wdof(c)

INPUT:

c: variable name to be checked

OUTPUT:

status:	1 if is a valid name, 0 not
var:	the variable name
dof:	dof of the variable

DESCRIPTION

ISVAR_WDOF determines if c is a valid variable name. A valid variable name must start with a letter or _ and contains no special or blank characters. DOF of the variable can be included with (idof) after the variable name.

EXAMPLES

NOTE

ROUTINES CALLED isvarname
str2realmat

SYNOPSIS

[mat,status] = str2realmat(s)

INPUT:

s: input string matrix or a cell with each element a string row

OUTPUT:

mat: output numerical array

status: 1: successful;

0: error in string matrix; (size doesn't match, NaN present)

DESCRIPTION

STR2REALMAT converts a string matrix to a numeric array, which is the extension of str2double and str2num

EXAMPLES

NOTE

ROUTINES CALLED sepchar;

SEE ALSO

fieldparts

fieldparts

SYNOPSIS

[fpath,f] = fieldparts(ff)

INPUT:

ff: full structure field name

OUTPUT:

fpath: structure field path f: field name

DESCRIPTION

FIELDPARTS separates full field name (from top structure to field) into the structure path and field name

EXAMPLES

[sp,f] = fullfield('S.S1.S(2).field1')

NOTE

ROUTINES CALLED

SEE ALSO

fullfield

fullfield

SYNOPSIS

ff = fullfield(fpath,f)

INPUT:

fpath: structure field path f: field name

OUTPUT:

ff: full structure field name

DESCRIPTION

FULLFIELD constructs the full field name (from top structure to field) from the structure path and fieldname

EXAMPLES

ff = fullfield('S.S1.S(2)', 'field1')

NOTE

ROUTINES CALLED

SEE ALSO

fieldparts

A. TmtEditor

INTRODUCTION	A-2
What is TmtEditor	A-2
Features	A-2
Start TmtEditor	A-2
GUI COMPONENTS	A-3
File Menu	A-3
Help Menu	A-3
Option Menu	A-3
TmtEditor Toolbar	A-3
TmtEditor Viewbar	A-4
Editor Panel	A-4
Source Panel	A-4
Help Panel	A-5
USE TMTEDITOR	A-6
Change View Panel	A-6
File Operation	A-6
Browse in a TMT file	A-7
Enable/disable template editing	A-7
Edit Variables	A-7
Add a numeric variable	A-7
Add a character variable	A-8
Add a structure variable	A-8
Move up/down a variable	A-8
Delete a variable	A-8
Change the name of a variable	A-8
Change the input method of a string variable	A-8
Add heading to a TMT file	A-9
Get Quick Help	A-9

Introduction

What is TmtEditor

TmtEditor is a GUI based tool to browser and edit TMT files. Refer to Data I/O section for details on TMT files.

Features

- Easy browsing of complicated structured data
- Support generating new TMT files using existing template files
- Various ways of inputting data
- Flexible control over user's accessibility to data editing

Start TmtEditor

TmtEditor is delivered in one of the following three versions

 MEX version: MEX version of TmtEditor is to be used in Matlab environment. To start it in Matlab, type 'tmteditor' in Matlab command window.

Note: To use TmtEditor in Matlab, the right path and default setting has to be setup for the directory where TmtEditor MEX routines are installed. To setup the default setting (for first time use or when the default setting is corrupt, type '*tmtsetup*' in Matlab command window

- Standalone version: Standalone version of TmtEditor is delivered in a single installation file "install_TmtEditor.exe", which can be installed and run as a standard DOS/Window executable program.
- Application version: TmtEditor can also be integrated as part of application software as a data viewer. In this case, it can only be used with the software.

GUI Components

This section describes several GUI components of **TmtEditor** and their common use.

File Menu

File menu performs file operations

af T	MTEDI	TOR	was.
Eila	Help	Option	1
1	jew fik		
ĩ)pen Fik	,	
E	, xil		

Help Menu

Help menu provides access to help information

1 (h	MIED	ITO	1			
File	Help	Ωpi	on			
mi-	— н	-n T	NTF	DIT	٦B	
	Ĩn					
VA.						

Option Menu

Option menu allows the user to select different accessibility to data editing

-) T	MT	DI	TOR	10	:\$\$	/SH	latia	ab\\	VS_	Îmt	Editor
File	He		n								
	÷.		~~~								
			£	nat	ie/1	11531	te i	emp	als.	Edilir	Q

TmtEditor Toolbar

TmtEditor Toolbar provides easy access to common file operations:

TmtEditor Viewbar

TmtEditor Viewbar allows the change of different view panels

View Editor Paņel		View Source Panel	View Help Panel		
× <u>1</u>					
Q.	ditor	🖸 Source	() Help		

Editor Panel

-ROOT ***********************************	Name Datiseffile Fulkere POOT.JOB outdetfile Type Character/csli Inou Enter in Textbox
vneasured kDataScale -JOB tend tsample Nout Stdmatfile jiffile tstart -PARA(1) N1 CO2 D1 L1 CO1 C11 KO2 Starter Structures and Variables in the file tstart -PARA(1) N1 CO2 Structures and Variables in the file Structures and Variables in the file Structures and Variables in the file tstart -PARA(1) N1 CO2 Structures and Variables in the file Structures and Variables in the file Structures and Variables in the file tstart -PARA(1) N1 CO2 Structures and Variables in the file Structures	probl.outdef
i K02 😤 Add Vanables	
Edi Vejebler Up Bown	

Editor Panel includes a Data Browser, a Variable Editor, and other UI components and allows the browsing and editing of TMT files

Source Panel

Source panel lists the source code of the file being edited.

GUI Components

FH_E: ID: \WSMatlab\WS_TaitEditor\sample input	
CTR IC	4
(NUM x10> 0;	
<num xp0=""> -0.01;</num>	
<num v201=""> 0;</num>	
<nuh vp0=""> 40;</nuh>	
<num x201=""> 0.01;</num>	ŝ
(STR TEST)	
<cha kfile=""> 'probl.xymat'; </cha>	
(NUN VDEASUTED) -0.01; (NUN kDataScale) 0.01 4.448 3:	
<td></td>	
<num tend=""> 1;</num>	
(NUH tsample) 0;	
<nuh noul=""> 1; <chà outdeffile=""> 'nrobl outdef': </chà></nuh>	
<cha stdmatfile=""> 'probl.mymat'; </cha>	
<pre>(CHA jiffile> 'D:\VSMatlab\TmtEditor\tmtViewCallback.m'; (NUM tetemt) 0;</pre>	
(/STR)	
(STR PARA)	
<num n1=""> 1;</num>	
<num co2=""> </num>	
<num l1=""> </num>	
(NUM CO1) (/NUM)	

Help Panel

Help Panel provides the browsing of help information on TmtEditor

Use TmtEditor

Change View Panel

To change the view panel, click on the buttons on the TmtEditor Viewbar.

File Operation

To open a TMT file, follow the following steps

- Select Open File from File Menu; or push the Open File button on TmtEditor Toolbar;
- Browse for the file to open in the popup File Browse Window

To close a data file, follow the following steps

Select Close File from File Menu;

or push the Close File button on TmtEditor Toolbar;

• If the file has be modified, a popup window will show up asking for saving or discarding the changes.

To save modifications to a TMT file,

Select Save File from File Menu;

or push the Save File button on TmtEditor Toolbar;

To save the file as another TMT file,

- Select Save as File from File Menu;
- Browse or enter the name for the new file in the popup File Browse Window

To save the file as an TMT template file,

- Select Save as Template from File Menu;
- Enter the name for the template file in the popup File Browse Window

To create a new TMT file

Select New File from File Menu;

or push the New File button on TmtEditor Toolbar;

- Enter the name for the new file in the popup **File Browse Window**
- Select the template file to use for the new file in the popup **Template Selection Window** as shown bellow, and click on the **OK button**.

a mapty fat film		8335773	38	(† 15)	ile								
ownig:		Bis	5.8	1.5.5	texpl	a.t.m	fole:	£::::	×	ecoptry	sec.	Eils	
	- 33333												
	- 2022												
	- 33333												
	- 2000												

Browse in a TMT file

The data in a TMT file can be browsed in the Variable Browser.

- The first item in the browser is ROOT item, which is always there and cannot be edited
- A '+' or a '-' sign ahead of a variable indicates that it is a structure. Double click on a structure will expand or shrink it in the browser
- When a variable is selected, details on the variable will be listed in the Variable Editor to the right of the browser

Enable/disable template editing

By enabling template editing, all properties of all variables in the TMT file can be edited. If template editing is disabled, only the values of the variables given in the file can be changed. This allows data to follow exactly the format in the original TMT file (or a template file).

To enable or disable template editing, select **Enable/Disable template** editing from **Option Menu**;

Edit Variables

Add a numeric variable

- Select a structure variable in the **Variable Browser** and click on the **NUM** button to add a numeric variable under the structure selected.
- The new variable will be named 'new_num' and has a default value of being an empty matrix. The name and value for the new variable can be modified in the Variable Editor.

Add a character variable

- Select a structure variable in the Variable Browser and click on the CHA button to add a character variable under the structure selected.
- The new variable will be named 'new_char' and has a default value of being an empty string. The name and value for the new variable can be modified in the Variable Editor.

Add a structure variable

- Select a structure variable in the Variable Browser and click on the Struct button to add a structure variable under the structure selected.
- The new variable will be named 'new_stru', which contains an empty numeric variable 'new_num' and an empty string 'new_char', The new structure and the variables under the structure can be modified in the Variable Editor.

Move up/down a variable

• Select a variable in the Variable Browser and click on the Up or Down button to move a variable up or down in the TMT file

Delete a variable

• Select a variable in the Variable Browser and click on Delete button to remove the variable

Note: If a structure is to be deleted, all "children" items under the structure will also be deleted; if the numeric variable or the string variable to be deleted is the last child of a structure, the structure will be deleted along with the variable. The only exception is for the ROOT item, which can never be deleted.

Change the name of a variable

- Change the name in the Name input box on the Variable Editor
- Click on the Save button on the Variable Editor

Note: Array of structure is supported. The index of a structure is indicated by following the name of the structure by the index in the brackets

Change the input method of a string variable

- Select the input method in the Input Method Selection Box on the Variable Editor
- If the input method is "browse for a file", a Browse button will appear. Click on the button to select or enter the name of the file. The file name will be used as the value of the string variable.

Click on the **Option** button to change the file extension to be used for browsing files. The following is an example of how file extension is specified

inter field in each row, use ; to indicate multiple ext in some row Next1 :/.ext2 *.ext3 *.*). Ple	ase en	ter lile ei	dension					
*ed3 ***	nter Next1	textania I∵".ext2	<u>sch row, u</u>	<u>%9;KORK</u>	icase inu	NDE ext	n same n	**	
	*.ext3 × »	3							
n: [•								
Br Card									
							nv		r

 If the input method is "Select from listbox", the value of the string should be selected from the list box underneath the Input Method Selection Box. Click on the Option button the items to be listed in the listbox.

¥3100				
list!			 	
listi				
1151.				÷
11354				
liste				
A Listhug it	em2			
🌾 Listboz it	C187			
🤣 Listboz it Roleiteresi	6.06.2 1.11.2 (10.20) (2.11.9	e rew		
🤣 Listbuz it Pater testers i Isti	900 C	e row		
 Listbuz it Enter leases i list1 kst2 	000 01.5 0 202210	99 TC 97		
∲ Listboz it Enter tetore i Ist1 Ist2 Ist3 Ist3	210 2	5. TCM2		
Listboz it Retz kitzer i ket1 ket2 let3 let4 ket5	2092 1973 II 202070	97 7C342		
S Listbor (Fater Kataor (Kata Kata Kata Kata Kata Kata	ења 1973 и 20 <u>10</u> и	97 77 WZ		
S Listboz it Enter ketzer ket ket2 ket3 ket4 ket5 ket6	982 1413 8 20 214	2.70.545		

Add heading to a TMT file

To add or modify the heading a TMT file, click on the **Heading/Comments** button on the **Editor View Panel**. And enter the new heading in the popup window.

Get Quick Help

To get quick help and information about TmtEditor,

- Push Show Help button on TmtEditor Viewbar;
 Or slect Help TmtEditor from Help Menu
- Select a topic to display the help message about the topic

B. XY Plot Viewer

INTRODUCTION	B-2
What is XY plot viewer	
Features	B-2
Start XY Plot Viewer	
GUI COMPONENTS	B-4
XY Plot Axis	
XYViewer Menu	
XYViewer Toolbar	
Axis Property Context Menu	
Line Property Context Menu	B-5
XY Plot Control	B-6
	2 0
USE XY PLOT VIEWER	
Open/Close XY Data File	
Print/Export a Plot	
Plot Data	B-8
Edit Axis Properties	
Edit Line Properties	B-9
Show/Hide Legend	B-9
Enable/Disable Overlaving Plots	B-9
Clear a Plot or Delete a Curve	B_10
Get Ouick Help	Β 1Λ

Introduction

What is XY plot viewer

XYViewer is graphical viewer to visualize the vectors or matrices stored in JIF ASCII files or STDMAT binary files.

Features

- Support STDMAT and JIF ASCII file formats, where the value of each "channel" of data is stored in a column vector and associated with a *name*, *label*, *units*. In STDMAT files, the data channels can also be grouped under different group names;
- Multiple data files can be opened in the same viewer. This allows the comparison of data from different files;
- Support print the plot as PS, EPS, EMF, and BITMAP files;
- Support output plot data as space, tab or comma delimited ASCII files;
- A simple GUI layout allows the easy access and plotting of data;
- Support overlay of curves on a single plot;
- Easy access to data definition and peak values;
- Many axis properties, such as color, grid, box, legend, axis label, title, can be edited;
- Many line properties ,such as style, width, color, marker and marker size, can be edited;
- Automatically synchronized with additional data viewer, such as stickViewer, to visualize data on fly.

Start XY Plot Viewer

XYViewer is delivered in one of the following three versions

• **MEX version**: MEX version of **XYViewer** is to be used in Matlab environment. To start it in Matlab, type '*xyviewer*' in Matlab command window.

Note: To use XYViewer in Matlab, the right path has to be setup for the directory where XYViewer MEX routines are installed

 Standalone version: Standalone version of XYViewer is delivered in a single installation file "install_xyviewer.exe", which can be installed and run as a standard DOS/Window executable program. • Application version: XYViewer can also be integrated as part of application software as a data viewer. In this case, it can only be used with the software.

GUI Components

This section describes several GUI components of **XYViewer** and their common use.

XY Plot Axis

XY Plot Axis is where the data is plotted.

XYViewer Menu

The **XYViewer Menu** performs file operations, such as opening and closing of data files, as well as printing and exporting of a plot.

a)	XY	VIE	WE	R	
	Nie	s 19:1			
	Qp	en(da.	File	
	ClQ	se C	lata	File	
	Pra	x Pl	CA.		•
	Ē×	hod	Plot		•

XYViewer Toolbar

XYViewer Toolbar provides easy access to common operations:

Axis Property Context Menu

Axis Property Context Menu is launched by right clicking mouse inside the **XY Plot Axis** but not over any curve plotted inside. It provides options to edit the properties of the axis.

<u>S</u> how pl	ot control
✓ <u>□</u> verlay	curves
Axis <u>r</u> ang	P
Litle & la	bel
✓ Legend :	on
<u>E</u> dit lege	nd
<u>G</u> iid on	
✓ Box on	
<u>B</u> ackgro	und Color
Folegipn	nd Lolor
<u>U</u> se Def	sult

Line Property Context Menu

Line Property Context Menu is activated by right clicking mouse over a curve inside the **XY Plot Axis**. It provides options to edit line properties of the curve selected.

XY Plot Control

XY Plot Control is a popup window that displays the file(s) being opened and data inside a selected file. It can be used to open or close data file(s) and to plot data.

XY Plot Control DATA FILES	×
1\Example\s1p1i2.pl	· Add Delete
× OATA GROUP	Y DATA GROUP
Time	Time
	I me X sinde
nar an	I MAANEN
BODY-Foot	RODY Ford
600Y-Shank	BODY-Shank
60DY-Thigh 🛛 🖉	BODY-Thigh
600Y Forearm	BODY-Forearm
BODY UpperArm	BODY UpperAm
EUUY-Head	BUDY Head
XXAFIIABLE	Y-VARIABLE
Time	F-lin-Foot-x
"	F-5n-Foot-2
	V-In-Fool-x
	Montroot-2
	A-kn-Foot-x
	III ang to ay
	A and Fool a
	·····
	1
Help Ca	ncel Plot

Use XY Plot Viewer

Open/Close XY Data File

To open a data file, follow the following steps

- Select Open Data File from XYViewer Menu; or push the Open Data File button on XYViewer Toolbar; or push the Add button inside XY Plot Control
- Browse for the file to open in the popup File Browse Window

To close a data file, follow the following steps

• Select Close Data File from XYViewer Menu;

or push the Close Data File button on XYViewer Toolbar;

or push the Delete button inside XY Plot Control

 Select the file(s) to close in the popup Close XY plot data files window and click Remove button to close the data file(s).

5.00	rt data tian	to close		
<u></u>				
0:\	GailProgram	NVersion N	Example\s1p	1
٥ù	GaiProgram GaiProgram	WeisionK	Example volgi	
				ī.,
		Select all		

Print/Export a Plot

To print a plot on the XY Plot Axis, follow the following steps

Select Print Plot from XYViewer Menu;

or push the Print button on XYViewer Toolbar;

- Select Default Printer to print to the default printer
- Select the type of file and enter the file name in the popup file browser window to print the plot as a file. Current the following types of files are supported
 - Postscript files(*.ps)
 - Encapsulated postscript files (*.eps)
 - Window meta files (*.emf)
 - Bitmap files (*.bitmap)

To export the curves plotted in the **XY Plot Axis** to an ASCII file, follow the following steps

Select Export Plot from XYViewer Menu;

or push the Export button on XYViewer Toolbar;

- Select the type of file and enter the file name in the popup file browser window to export the data. Current the following types of files are supported
 - Space/tab delimited ASCII (*.dat)
 - Comma delimited ASCII files (*.csv)
 - JIF ASCII files (*.jif)

Plot Data

Following the following steps to plot data

- Activate the XY Plot Control. This can be done by doing one of the following:
 - Push Show XY button on XYViewer Toolbar;
 - In Axis Property Context Menu (by right click mouse in the XY Plot Axis), select Show Plot Control;
 - Push Axis Properties button on XYViewer Toolbar and select Show Plot Control;
- Select the right data file in the Data File popup window
- In **X Data Group** listbox, select the group name of X-axis variable
- In **X Variable** listbox, select the X-axis variable
- In Y Data Group listbox, select the group name of Y-axis variable(s)
- In Y Variable listbox, select the Y-axis variable(s)

Click the Plot button to plot the selected Y-variable(s) vs. X-variable.

Edit Axis Properties

- Activate the Axis Property Context Menu by doing one of the following:
 - Push Axis Properties button on XYViewer Toolbar;
 - Right click mouse in the **XY Plot Axis**.
- Select one of the following properties to edit
 - Axis range
 - Title & Label
 - Legend on
 - Edit legend
 - Grid on
 - Box on
 - Background color
 - Foreground color

Edit Line Properties

- Activate the Line Property Context Menu by right clicking mouse over the curve whose properties is to be edited
- Select one of the following properties to edit
 - ♦ Line style
 - Line width
 - Line color
 - Marker
 - Marker size

Show/Hide Legend

The legend for the curves plotted can be displayed or removed from **XY Plot axis** by one of the following

- Push Legend on/off button on XYViewer Toolbar;
- Or select Legend on/off in Axis Property Context Menu (by right click mouse in the XY Plot Axis)

Enable/Disable Overlaying Plots

Overlaying plot can be enabled or disabled by one of the following

- Push Overlay curve button on XYViewer Toolbar;
- Or select Overlay curves in Axis Property Context Menu (by right click mouse in the XY Plot Axis)

Clear a Plot or Delete a Curve

One of the following will clear the plot

- Push Clear button on XYViewer Toolbar;
- Or select Clear curves in Axis Property Context Menu (by right click mouse in the XY Plot Axis)

To delete only one curve from the plot, follow the following steps

- Activate the Line Property Context Menu by right clicking mouse over the curve whose properties is to be deleted
- Select Delete

Get Quick Help

To get quick help and information about XYViewer,

- Push Help button on XYViewer Toolbar;
- Select a topic to display the help message about the topic

C. Stick Plot Viewer

INTRODUCTION	C-2
What is Stick plot viewer	C-2
Features	C-2
Start STICK Plot Viewer	C-2
GUI COMPONENTS	C-3
Stick Plot Axis	C-3
StickViewer Menu	C-3
StickViewer Toolbar	C-3
Stick Animation Toolbar	C-4
Axis Property Context Menu	C-4
Stick Property Context Menu	C-4
USE STICK PLOT VIEWER	C-5
Open/Close Stick Graphics File	C-5
Print a Frame	C-5
Export an Animation	C-5
Edit Axis Properties	C-6
Edit Stick Properties	C-6
Free rotation of Axis	C-6
Get Quick Help	C-7

Introduction

What is Stick plot viewer

StickViewer is a three-dimensional viewer to visualize stick plots.

Features

- Simple GUI provides easy access to visualization and animation
- Support print the plot as PS, EPS, EMF, and BITMAP files;
- Support output stick animations as Matlab movies;
- Many axis properties, such as color, grid, box, legend, axis label, title, can be edited;
- Many stick properties ,such as style, width, color, marker and marker size, can be edited;
- Automatically synchronized with XYViewer to visualize data on fly.

Start STICK Plot Viewer

StickViewer is delivered in one of the following three versions

 MEX version: MEX version of StickViewer is to be used in Matlab environment. To start it in Matlab, type 'stickviewer' in Matlab command window.

Note: To use StickViewer in Matlab, the right path has to be setup for the directory where StickViewer MEX routines are installed

- Standalone version: Standalone version of StickViewer is delivered in a single installation file "install_stickviewer.exe", which can be installed and run as a standard DOS/Window executable program.
- Application version: StickViewer can also be integrated as part of application software as a data viewer. In this case, it can only be used with the software.

GUI Components

This section describes several GUI components of **StickViewer** and their common use.

Stick Plot Axis

Stick Plot Axis is where the data is plotted.

StickViewer Menu

The **StickViewer Menu** performs file operations, such as opening and closing of data files, as well as printing plot and exporting animation.

I stic	k VIE¥	/ER		
Shok V	iewer			
		0.000		
<u>C</u> lo	se Slick	Graph	ics File	
Err	a Pica			•
E*p	ion Mov	ie:		•

StickViewer Toolbar

StickViewer Toolbar provides easy access to common operations:

Stick Animation Toolbar

Stick Animation Toolbar provides options to control the animation of stick plots.

Axis Property Context Menu

Axis Property Context Menu is launched by right clicking mouse inside the **Stick Plot Axis** but not over any stick. It provides options to edit the properties of the axis.

Stick Property Context Menu

Stick Property Context Menu is activated by right clicking mouse over a stick inside the Stick Plot Axis. It provides options to edit line properties of the stick selected.

Use STICK Plot Viewer

Open/Close Stick Graphics File

To open a data file, follow the following steps

- Select Open Stick Graphics File from StickViewer Menu; or push the Open button on StickViewer Toolbar;
- Browse for the file to open in the popup File Browse Window
- The first frame of the stick plots will be displayed

To close a stick graphics file, follow the following steps

Select Close Stick Graphics File from StickViewer Menu;

or push the Close button on StickViewer Toolbar;

Note: Stick graphic file is a Matlab binary data file containing the time history of positions and orientations of each stick, as well as the definition of each stick

Print a Frame

To print a snapshot of a stick plot frame the following steps

Select Print Plot from StickViewer Menu;

or push the Print button on StickViewer Toolbar;

- Select Default Printer to print the snapshot to the default printer
- Select the type of file and enter the file name in the popup file browser window to print the snapshot as a file. Currently the following types of files are supported
 - Postscript files(*.ps)
 - Encapsulated postscript files (*.eps)
 - Window meta files (*.emf)
 - Bitmap files (*.bitmap)

Export an Animation

To export a stick animation, following the following steps

Select Export Movie from StickViewer Menu;

or push the Export button on StickViewer Toolbar;

 Select the type of file and enter the file name in the popup file browser window to export the data. Currently only Matlab movie (*.mat) is supported

Note: To convert a Matlab movie file into an AVI file, use "movie2avi" command in Matlab

Edit Axis Properties

- Activate the Axis Property Context Menu by doing one of the following:
 - Push Axis Properties button on StickViewer Toolbar;
 - Right click mouse in the Stick Plot Axis.
- Select one of the following properties to edit
 - Axis equal: force all axes to use the same data aspect ratio for
 - Axis on: turn on or turn off axis
 - View angle: change the view angle of the 3D stick plots
 - Show Title & lable: show label for the axes
 - Box on: add or remove box from the axis
 - Background color: change background of the axis
 - Foreground color: change foreground of the axis

Edit Stick Properties

- Activate the **Stick Property Context Menu** by right clicking mouse over the stick whose properties is to be edited
- Select one of the following properties to edit
 - Line style
 - Line width
 - Line color
 - Marker
 - Marker size

Free rotation of Axis

The free rotation of the axis (to change view angle) can be performed by pushing down the **3D rotate** button on **StickViewer Toolbar** and use mouse to rotate the **Stick Plot Axis**.

Get Quick Help

To get quick help and information about STICKViewer,

- Push Help button on STICKViewer Toolbar;
- Select a topic to display the help message about the topic