
AD

Award Number: DAMD17-00-C-0031

TITLE: Modeling for Military Operational Medicine Scientific and
Technical Objectives (Articulated Human Biomechanical Modeling
Toolbox)

PRINCIPAL INVESTIGATOR: James H. Stuhmiller, Ph.D.
Weixin Shen

CONTRACTING ORGANIZATION: Jaycor, Incorporated
San Diego, California 92121-1002

REPORT DATE: December 2 000

TYPE OF REPORT: Final, Phase I, Part II

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

20011005 293

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-018B), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
December 2 000

3. REPORT TYPE AND DATES COVERED
Final, Phase I, Part II ()

4. TITLE AND SUBTITLE
Modeling for Military Operational Medicine Scientific and
Technical Objectives (Articulated Human Biomechanical
Modeling Toolbox)

6. AUTHOR(S)
James H. Stuhmiller,
Weixin Shen

Ph.D.

5. FUNDING NUMBERS
DAMD17-00-1-0031

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Javcor, Incorporated
San Diego, California 92121-1002

E-Mail:

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Report contains color.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

14. SUBJECT TERMS 15. NUMBER OF PAGES
139

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1B
298-102

J00-3I50.3I-I36

Articulated Human
Biomechanical Modeling Toolbox

Phase I Report
Part II: Toolbox Routines

Prepared by:

Weixin Shen
Jaycor, Inc.
3394 Carmel Mountain Road
San Diego, California 92121 -1002

Prepared for:

Commander
U.S. Army Medical Research and Materiel Command
Ft. Detrick, Maryland 21702-5012

Contract No. DAMD17-00-C-0031

December 2000

vwycon

TABLE OF CONTENTS
Page

1. INTRODUCTION 1-1

2. FILE FORMAT AND DATA I/O ROUTINES 2-1
Data Types of Toolbox Routines 2"2

Data Import and Export 2_3

Tagged Matlab Text Files 2"4

Other File Format 2"9
Data Conversion and I/O Routines 2"1°

3. RIGID BODY ROUTINES 3-1
Kinematics Routines 3-2
Forward Dynamics Routines 3-10
Inverse Dynamics Routines 3-34

4. GRAPHICAL ROUTINES 4-1
Graphical Objects Routines 4-2
User Interface Routines 4-14
Animation, Viewers, and Other 4-23

5. UTILITIES ROUTINES 5-1
Math Routines 5-2
String Routines 5-11

A. TMTEDITOR A-l
Introduction A"2

GUI Components A-3
Use TmtEditor A'4

B. XY PLOT VIEWER.. B-l
Introduction B-2
GUI Components B-3
Use XY Plot Viewer B-6

C. STICK PLOT VIEWER C-l
Introduction C-2
GUI Components C-3
Use STICK Plot Viewer C-5

1. Introduction
This report documents the progresses on developing a human
hiomechanical modeling toolbox during the first phase of the research
project. It is separated into two parts. A separate first part consists of an
overview of the toolbox, rigid body formulations, and example models and
applications. This second part provides detailed description of individual
routines in the toolbox.

The second chapter describes the data format used in the toolbox. Data
I/O, conversion and file format routines are listed in the chapter. A
graphical editor for editing TMT files, TMTEDITOR, is also developed.
Details on TMTEDITOR is given in Appendix A. Chapter three lists
routines related to rigid body dynamics, including kinematic calculation,
inverse dynamic analysis and forward dynamic simulation. Chapter four.
provides details of graphical routines, including routines related to the
creation and manipulation of 3D graphical objects, user interface
handling, animation and other graphical operation. Details on two
graphical viewers, xyviewer and stickviewer, can be found in Appendix B
and Appendix C respectively. Chapter five describes other utility routines
related to mathematical calculation and string manipulation.

1-1

2. File Format and Data I/O Routines

DATA TYPES OF TOOLBOX ROUTINES 2-2

DATA IMPORT AND EXPORT 2-3

TAGGED MATLAB TEXT FILES 2-4
Data Types Supported 2-4
Syntax -2-4
An Example of Using Tmt Files 2-6
TMTEDITOR 2-8

OTHER FILE FORMAT 2-9
ASCII Data Files 2-9
GDIF File Format 2-9
StdMat Data File 2-9
INI File 2-9

DATA CONVERSION AND I/O ROUTINES 2-10
List of Data Conversion and I/O Routines 2-10

tmt2struct • 2-11
struct2tmt 2-12
ini2struct 2-13
struct2ini 2-14
mat2stdmat 2-15
stdmat2csv 2-16
stdmat2ji£ 2-17
jif2stdmat 2-18
load ascii 2-19

2-1

File Format and Data

Data Types of Toolbox Routines

Most data types of Matlab, including double, char, cell, and struct used to
develop the toolbox routines. Detailed description of these data types can
be found in matlab manual. The use of user defined data type (object) is
intentionally avoided. This is because the current version of Matlab
compiler does not support objects in generating standalone application,
while one of the guidelines of developing the toolbox routines is the full
support of generating standalone application.

Data types, double, char, cell, and struct, as supported in MATLAB, are
simplified and customized for the development of toolbox routines. The
simplification is made to facilitate the preparation of input and output
data of the routines while maintaining the capability of handling complex
data. Each data type supports single or multiple dimensional arrays.
The details of the supported data types are given in Table 2-1.

Table 2-1. Data Types Used in Toolbox Routines

Type Example Description

<

•3 o

Integer 10
Double precision numerical
array. Notice that
1. Complex numbers are not supported
2. Arrary dimension is limited to two
3. A space in a numeric array indicates the

following elements be put in row-wise
4. A semicolon (;) indicates the following

elements be put column-wise

Real
number

-10.1

Column
vector

[1;2;3;4;5]

Row
vector

[12 3 4 5]

Matrix [1 2 3; 4 5 6]

B
•H
H

+>
«0

A string 'this is a
string'

Character arrays are put between
two primes ('). Two consecutive
primes indicates a prime inside
a string

Curly brackets represent cell
arrays. Only single dimensional
cells of strings are supported

A string 'It"s good'

A string
cell

{'string 1'
'string2'
'string 3'}

V
H a

+>
0 s

+1
to

A simple
structure

S.name = 'name'
S.data = [1 2; 3
4]

Structure arrays have field
names. The fields contain other
arrays, including structures.
This is a very general data type
that can collect related data
and information together.

Only one dimensional structure
array is supported

A more
complex
structure

S(2) .name =
'name'
S(2).data.a = 1
S(2).data.b = [1
4]

2-2

Data Import and Export

Data Import and Export

An application program has to input and output data. The data may be
imported from and exported to files, graphics user interfaces (GUIs), and
other application programs. For example, a pre-processor usually inputs
data from GUI and/or some descriptive files and generates data files for a
solver. A solver may read from the files the solver parameters, time
history data, tables, etc. and performs the calculation. The calculation
results are usually saved as files or exported directory to post-processor
for the analysis of results.

The toolbox is designed to have the capability of developing the whole
application program from pre-processor to solver to post-processor, as well
as the flexibility of being only part of the application program. Therefore,
a common data interface supporting the data types used in the toolbox
routines is essential. An application program developed from toolbox
routines support the following three types of files

♦ MATLAB default binary file (MAT file) is the primary file format used
to share data. This format supports all data types of matlab and is
platform independent.

♦ Tagged matlab text file format (TMT file format) is developed as the
ASCII counterpart of MAT file. TMT files support most data types
used in toolbox routines with certain limitations. TMT files are used to
share application parameters and time history data. The details on
TMT files are given in section <Tagged Matlab Text Files>.

♦ Customized file formats. The toolbox also provides routines to
interface with some customized file formats. The details on these file
interface routines are described in section <Other File Format>

2-3

File Format and Data

Tagged Matlab Text Files

Data Types Supported

The data types as described in Table 2-1 are supported.

Syntax

Structure array, as described in Table 2-1, is a data type with named
"data containers" called fields. The fields of a structure can contain any
type of data including double, char, cell, or another structure array.
Therefore, structure allows storing dissimilar data according to their
physical meaning and thus facilitates the data storage and reference
among routines.

(a) TMT File (sample.tmt) (b) Structure S

This is a sample TMT file

<NUM integer> 10;
<NUM number> -10.1
<NUM col vector> 1

2
3
4
5

<NUM row vector> 12 3 4 5;
<NUM matrix> 1 2;

3 4;
<NUM thist> <TAB tdata col
1 4 5>
</NUM>
this is a comment line
<CHA char> ' a string'
<CHA cell> 'string 1'

'string 2'
</CHA>
this is a comment line
<STR struct>

<CHA name> 'name'
<STR data>

<NUM a> 1;
<NUM b> 2;

</STR>
</STR>

.integer-

.number—
■ 10
.-10.1

.col vector-

.row vector- 12 3 4 5

_, matrix

-, thist External
IxETt

mytbl.tdata
(:,[1 4 5])

-. char-

-cell-

-*a string'

^string 1'
^string 2'

, struct
. name-
.data l=: 'name'

t=:
Figure 2-1 Example of a TMT file and the Corresponding Data

A TMT file, in essence, is the representation of a structure in an ASCII
file. The fields of the structure are defined in the file by using a number of
tags and simple syntaxes. Figure 2-1 gives an example of a TMT file and
the structure it represents.

2-4

Tagged Matlab Text Files

A TMT file ignores all line breaks, which means it is equivalent to write
the whole file in one line or break it into hundreds of lines. As shown in
Figure 2- 1(a), a TMT files consists of three parts: tags, contents and
comments. Tags include Field Declaration Tags, Field Closure Tags, and
External Link Tags. The details of the use of tags are given in Table 2-2

Table 2-2. Syntax of Tag Components of a TMT file

Type Syntax Description

Field
Declarati

on Tags

<STR
name(dim)>
or
<STR name)>

Declare that the following data are fields of the
dimth component of structure name until </STR>
tag is met.
Default dimension of one is assumed when (dim) is
not present
Must always be paired by </STR>

<NUM name>
Declare the following numeric contents to be the
value of name until a new <STR>, <NUM>,
<CHA>, </STR>, </NUM>, and </CHA> is met

<CHA name>
Declare the following string cell contents to be the
value of name until a new <STR>, <NUM>,
<CHA>, </STR>, </NUM>, and </CHA> is met

Field
Closure

Tags

</STR>
Close a structure declaration. Must always be used
to pair <STR>.

</NUM>
Used optionally to pair with <NUM>. Usually only
required when comment after a <NUM> declaration

</CHA>
Used optionally to pair with < CHA >. Usually only
required when comment after a < CHA >
declaration

External
Link Tags

</TAB name
COL id >
or
</TAB name
ROW id >

Used as part of the contents after <NUM>
declaration to load numerical matrices (tables) from
an external data structure.
name is the field name of the external data
structure where the data is to be loaded
COL or ROW indicates load data column-wise or
row-wise
id is the indice of the rows or columns to be loaded

Notice the following rules apply to the tags.

♦ Only the first three characters of tag keywords STRucture,
NUMerics, CHAracter, TABle, COLumn, and ROW, are
discriminated. All the following characters are ignored.

♦ Tag keywords are case insensitive

♦ Field name declaration inside any tag is case sensitive

Two types of contents, i.e., numeric content and string cell content are
described in Table 2-3.

2-5

File Format and Data

Table 2-3. Syntax of Tag Components of a TMT file

Type Example Description

Numeric
Content

Number 10 A space inside a numeric content
indicates the following data be collocated
column-wisely

A semicolon (;) indicates the following
data be collocated column-wisely

The size of matrix must match when
input numerical content

Column
vector

1;2;3;4;5;

Row
vector

12 3 4 5;

Matrix 1 2; 3 4;

String
CeU

Content

String 'string1

Any string content must be put inside a
pair of primes Q

A prime inside a string must be indicated
by two consecutive primes (")

Strings and string cells are always saved
in data type cell of string when loaded

String
'If's a
string1

String cell
'string 1'
'string 2'
'string 3'

Any contents outside a Field Declaration Tag and its corresponding Field
Closure Tag is treated as comments and is ignored. Notice in order to add
comments after a <NUM> or a <CHA> tag, optional </NUM> or </CHA>
tag must be used.

An Example of Using Tmt Files

Two interpreting routines are developed. tmt2struct reads a TMT file
and converts it into a structure. struct2tmt saves a structure into a TMT
fde.

An example is given to shown the use of these routines and load data from
external structures. First, save the TMT file as 'sample.tmt'. In order to
load this file, an external structure, say mytbl with a field named tdata
must exist. The external structure can be generated from another TMT
file, say 'data.tmt' as follows

2-6

Tagged Matlab Text Files

1

DATA File (data.tmt)

This is a sample data file

<NUM tdata>
11 12
21
31
41
51
61
71
81
91

</NUM>

22
32
42
52
62
72
82
92

13
23
33
43
53
63
73
83
93

14
24
34
44
54
64
74
84
94

15
25
35
45
55
65
75
85
95

<NUM otherdata> 1
<CHA otherchar> 'char' ^string'

16
26
36
46
56
66
76
86
96

17
27
37
47
57
67
77
87
97

18
28
38
48
58
68
78
88
98

19;
29;
39;
49;
59;
69;
79;
89;
99;

Run mytbl = tmt2struct('data.tmt') to generate a structure mytbl with
field mytbl.tdata being a 9 by 9 matrix as listed above. Then run S =
tmt2struct('test.tmt',mytbl) to generate the structure S as given in
Figure 2-1.

The S.thist is loaded from the [1 4 5] columns of the external mytbl.tdata
field, i.e.,

S.thist = = [
11 14 15
21 24 25
31 34 35
41 44 45
51 54 55
61 64 65
71 74 75
81 84 85
91 94 95

];

Finally run struct2tmt(S,'test_out.tmt') to generate another TMT file
'testjout.tmt' that is equivalent to the original 'testtmt' file but with
external data mytbl.tdata built-in. The 'testjout.tmt'is given as follows.

2-7

File Format and Data

<NUM integer> 10;
<NUM number> -10.1
<NUM col vector> 1

2
3
4
5

<NUM row vector> 1 2 3 4 5;
<NUM matrix> 1

3
2;
4;

<NUM thist> 11 14 15;
21 24 25;
31 34 35;
41 44 45;
51 54 55;
61 64 65;
71 74 75;
81 84 85;
91 94 95;

<CHA char> ' a string'
<CHA cell> 'string 1'

1 string 2'
<STR struct>

<CHA name> 'name'
<STR data>

<NUM a> 1;
<NUM b> 2;

</STR>
</STR>

TMTEDITOR

TmtEditor is developed to brower and edit TMT files. Details on
TMTEDITOR is given in Appendix A.

2-8

Other File Format

Other File Format

ASCII Data Files
The AHBM toolbox supports common ASCII data file formats, such as
space or tab delimited files (*.txt, .dat); comma delimited files (.csv); etc.
Routines are developed to convert data among file formats.

GDIF File Format
General Data Interchange Format (GDIF) is a self-documented
ASCII format (.jif) with variable name, units, and description included
within the file to record time-traces. The GDIF ASCII format can be
converted into a binary form (.jib). The GDIF binary format can be
accessed by the specialized programs developed by Jaycor, Inc.

StdMat Data File
StdMat is a customized Matlab binary file (*.mat) format to record matrix
data. Each variable (array) in the file is a structure with data saved
column-wisely in a matrix. The variables should have the fields as given
in Table 2-4.

Table 2-4. Fields of a Variable in StdMat File

Field Name Description

name A string vector with each element being the name of one
column of matrix data

label A string vector with each element being the label
(additional comments) of one column of matrix data

units A string vector with each element being the units of one
column of matrix data

val Matrix data (saved column-wisely)

groupname The name of the group under which the data is grouped

StdMat file formats provides a common ground where complex matrix
data (including time traces) can be saved and shared. It can be accessed
by the I/O functions in Matlab and the I/O routines developed in AHBM
toolbox.

INI File
INI file is the window initialization file format (*.ini). INI files are mostly
used for developing GUI applications.

2-9

Data Conversion and I/O Routines

Data Conversion and I/O Routines

List of Data Conversion and I/O Routines

tmt2struct: load a structure from tmtfile (and possibly a table file)
struct2tmt: save structure to a tmtfile (and possibly a table file)
ini2struct: read a window ini file and save the data as a struct
struct2ini: save struct data into window ini file
mat2stdmat: matrix to std structured format conversion
stdmat2csv: save std structure format as a csv file
stdmat2jif: save std structure format as a jif file
jif2stdmat2: read a jif file in std structured format
load_ascii: the counterpart of 'load filename -ascii' in standalone

2-10

tmt2 struct

tmt2struct

SYNOPSIS
S = tmt2struct(tmtfile,TABLE)

INPUTS
Tmtfile: Tagged Matlab Text filename
TABLE: (optional) external structure referred from tmtfile

OUTPUT
S: the structure loaded from tmtfile

DESCRIPTION
TMT2STRUCT load a structure from tmtfile. If tmtfile also refers
to external data

EXAMPLES
First generate a tmtfile and a tablefile using struct2tmt

S.name = 'sample string'
S.data = rand(100,3);
struct2tmt(S,,test.tmt','test.table');

Read external data from tablefile 'test.table'
mydata = tmt2struct('test.table');

Read S from 'test.tmt' and mydata
S = tmt2struct('test.tmt',mydata);

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

struct2tmt

2-11

struct2tmt

struct2tmt

SYNTAX

struct2tmt(S,tmtfile,tablefile,option,desp);

INPUT:

S: the structure to be output
tmtfile: Tagged Matlab Text filename
tablefile: (optional) the filename of an additional table file
where very long data of txtfile is stored and cross-referred
option: (optional) 'replace' (default) or 'add'

OUTPUT

none

DESCRIPTION

STRUCT2TMT save a structure in a TMT file

EXAMPLES

S.riame = 'sample string'
S.data = rand(100,3);
struct2tmt(S, 'test.tmt'); will save structure S to test.tmt
struct2tmt(S,'test.tmt','test.table'); will save structure to 'test.tmt'

The S.data will be saved in 'test.table' with a <TAB ...> link
created in 'test.tmt'

NOTE

1. When tablefile is not input, all data will be saved in txtfile.
When tablefile is input, all numeric data with size greater
than 50 will be saved in the tablefile, and a cross-reference
<TAB ... > will be added in the txtfile

Set option = 'replace' will overwrite txtfile or tablefile if
they are already exist. Set option = 'add' will append to the
existing files

ROUTINES CALLED

A number of internal functions

SEE ALSO

tmt2struct

2-12

ini2 struct

ini2struct

SYNOPSIS

S = ini2struct(file);

INPUTS

File: file name, the file should follow the above format the
window ini file should follow the following convention

[section name]
varnamel = value 1
varname2 = value2

currently, section name line is ignored value should be number,
row vector, or a string

OUTPUT

S: the structure loaded from an INI file

DESCRIPTION

INI2STRUCT reads an INI file and saves the data as a structure

EXAMPLES

First generate an INI file
S.dirl = 'c:Y;
S.data=[l 12 3];
struct2ini('try.ini',S);

Then read from the INI file
T = ini2structCtry.ini');

NOTE

Only row vectors can be used as numerical value

ROUTINES CALLED

none

SEE ALSO

struct2ini

2-13

struct2ini

struct2ini

SYNOPSIS

struct2ini(file,S);

INPUTS

File: file name, the file should follow the above format. The
window INI file should follow the following convention

[section name]
varnamel = value 1
varname2 = value2

Currently, section name line is ignored. Value should be
number, row vector, or a string

S: structure to be output to the INI file

OUTPUT

none

DESCRIPTION

STRUCT2INI writes an INI file from a structure

EXAMPLES

S.dirl = 'c:Y
S.data =[112 3];
struct2ini('try .ini', S);

NOTE

Only row vectors can be used as numerical input

ROUTINES CALLED

none

SEE ALSO

ini2struct

2-14

mat2stdmat

mat2stdmat

SYNOPSIS
stdmat = mat2stdmat(mat,name,label, units, groupname);

INPUTS

mat: matrix data/ string data
names:{ncol} cell or a single string/cell corresponding to each

column data. If a single string is used, name_icol will be set
for each column data

label: {ncol} cell or a single string/cell to each column data. If a
single string is used, label_icol will be set for each column
data

units: {ncol} cell or a single string/cell corresponding to each
column data. If a single string is used, same units will be
added to each column data

groupname : (optional) a single string, indicates the groupname of
the matlab data

OUTPUT
stdmat: the standard structured mat data loaded from the file

DESCRIPTION

MAT2STDMAT converts a column-wise matrix into standard structured
matlab data (StdMat) fde.

EXAMPLES

V = rand(30,3);
stdV = mat2stclmat(V,{,V_^)

,V_2,,,V_3,},{'V_^,,V_2,,,V_3,},...
{'m'/m'/m'})

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2csv, stdmat2jif

2-15

stdmat2csv

stdmat2csv

SYNOPSIS

stdmat2csv(csvfile, stdmat, option);;

INPUT:

csvfile: name of the csv file,
stdmat: data follows the standard structured mat format
option: 'add' or 'replace' for adding to the file or rewrite the

file. The default value for option is 'add'

OUTPUT:

A CSV file where the data will be saved row-wisely

DESCRIPTION

STDMAT2CSV writes a CSV ASCII file from the standard
structured matlab data.

EXAMPLES

V = rand(30,3);
stdV = mat2stdmat(V){

,V_l,/V_2',,V_3'},{'V_l','V_2VV_3'})...
{'m'/m'/m'});
stdmat2csv('try.csv',stdV);

NOTE

ROUTINES CALLED

SEE ALSO

stdmat2jif

2-16

stdmat2jif

stdmat2jif

SYNOPSIS

stdmat2jif(gdif,stdmat);

INPUT:

gdif: name of the jif file, *.jif file extension will be added
automatically

stdmat: structured mat data to be output

OUTPUT:

A GDIF ASCII file

DESCRIPTION

STDMAT2JIF writes a GDIF ASCII file from the standard
structured matlab data.

EXAMPLES

V = rand(30,3);
stdV = mat2stdmat(V,{'V_r)

,V_2,/V_3,}){
,V_lVV_2VV_3'},...

{•mVmVm'});
stdmat2jif('try .jif,stdV);

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2csv

2-17

jif2stdmat

jif2stdmat

SYNOPSIS

function DATA = jif2stdmat(gdif);

INPUTS:

Gdif: name of the GDIF file,

OUTPUT:

DATA: a structure contains StdMat structures as fields
.stdmatl
.stdmat2 ... etc

DESCRIPTION

JIF2STDMAT reads a GDIF file and saves it in the structure
DATA. Each field in DATA is a StdMat structure

EXAMPLES

V = rand(30,3);
stdV = mat2stdmat(V){'V_l',,V_2VV_3,},{,V_l,,,V_2VV_3'})...
{•m'/m'/m1});
stdmat2jif(,try.jif,stdV);
stdVin = jif2stdmat('try.jif)

NOTE

ROUTINES CALLED

A number of internal functions

SEE ALSO

stdmat2jif

2-18

load

load ascii

SYNTAX

[data,errormsg] = load_ascii(filename);

INPUT:

filename: the ASCII data file name

data matrix loaded from the ascii file
errormsg saves the error message if error is
encountered in reading the file

OUTPUT

data:
errormsg:

DESCRIPTION

LOAD_ASCII is the counterpart of 'load filename -ascii' in
standalone applications. It reads the first line of the ASCII file to
get the number of columns of and then fast reads the ASCII file

EXAMPLES

ROUTINES CALLED

SEE ALSO

2-19

2-20

3. Rigid Body Routines

KINEMATICS ROUTINES 3-2
List of Kinematics Routines 3-2
 3-3 eul2r.

r2eul.
ep2r..
r2ep.

 3-5
 3-6
 3-7

r2_body_ang 3-8
r2Jnt_ang 3-9

FORWARD DYNAMICS ROUTINES 3-10
List of Forward Dynamics Routines 3-10

fwd_simu 3-11
fwd_integrator 3-12
fwd_equation 3-13
projection 3-14
cnstode45 3-15
cnstodelös 3-16
cnstode23s 3-17
jnt_cnst 3-18
jnt_cnst_euler 3-19
jnt_cnst_pin 3-20
jnt_cnstjpin2d 3-21
jnt_cnst_null2d 3-22
jnt_reaction 3-23
jnt_react_euler 3-24
jnt_react_pin 3-25
jnt_react_pin2d 3-26
jnt_react_null2d 3-27
spring_force 3-28
damper_force 3-29
stop_force 3-30
ddRxppl 3-31
dRxl 3-32
dTxpv 3-33

INVERSE DYNAMICS ROUTINES 3-34
List of Inverse Dynamics Routines 3-34

inv_analysis 3-35
invjdnematics 3-36
inv_dynamics 3-37

3-1

Kinematics Routines

Kinematics Routines

List of Kinematics Routines

eul2r: Euler angles to rotation matrix conversion
r2eul: Rotational matrix to Euler angles conversion
ep2r: Euler parameters to rotation matrix conversion
r2ep : Rotational matrix to Euler parameters conversion
r2_body_ang: Body orientation (Euler) angles calculation from its rotation

matrix
r2 Jnt_ang : Joint angle calculation from rotation matrices

3-2

eul2r

eul2r

SYNOPSIS

varargout = eul2r(eul,cnvt,opt)

INPUTS

eul: euler angles (3x1)
cnvt: Convention for euler angles ('zxz', 'zyx')
opt: (optional) vector (7x1) deciding which terms to be calculated

opt(l): calcaulte R, saved as 3x3 matrix or a nx9 matrix
opt(2): dR/deul(m), saved as 9x3 matrix in Rij,m
opt(3): dRA2/deul(m)/deul(n), saved as 9x6 matrix in Rij,mn
opt(4): SI (3x3 matrix), omegab = Sl*deul/dt
opt(5): T, (3x3 matrix), deul/de = T*omegab
opt(6): dT/deul(m), saved as 9x3 matrix in Tij,m
opt(7): S2 (3x3 matrix), as in the equation

Sl*deulA2/dtA2+S2*[del*de2;del*de3;de2*de3];

OUTPUT

varargout: matrices output dependent on opt

DESCRIPTION

EUL2R performs basic calculations regarding Euler angles to
rotation matrix conversion such as calculating the rotational
matrix R, its derivatives dR/de(m), dRA2/de(m)/de(n), the
derivative to angular velocity matrix S, its inverse matrix T, its
deriviative dT/de(m), and deriviative to angylar acceleration
matrix S2

EXAMPLES

example # 1: calculate only R matrix
eul = [3 1 2];
R = eul2r(euL'zxz');

example # 2: calculate; differential matrices; velocity matrix, etc
[R,dRdm,dRdmn,T,dTdm] =eul2r(eul,'zyx*,[l 111 1]');
[T,dTdm] = eul2r(eul,'zyx',[0 0 0 1 1]);

example # 3: acceleration conversion matrix
S2 = eul2r(eul,'zyx',[0 0 0 0 0 0 1]);

example # 4: time series of rotation matrix
eul = [3 1 2; 2 1 1; 1 0 3; 0 0 pi/2];
R = eul2r(eul,'zxz');

NOTE

1. Using reshape(dRdm(:,i),3,3) to restore dRdm as a 3x3
matrix

3-3

eul2r

2. when only R is calculated, vectorized programming is
supported; R can be saved as a 3x3 matrix or a nx9
representing different frames

3. trailing zeros in opt can be neglected

ROUTINES CALLED

none

SEE ALSO

r2eul

3-4

r2eul

r2eul

SYNOPSIS

eul = r2eul(R,cnvt,opt)

INPUTS

R: Rotational matrix R = [i,j,k]; (3x3 or nx9)
cnvt: Convention for euler angles ('zxz', 'zyx')
opt: options determining the default range of theta (default =1)

=1, theta = [0,pi] for ZXZ and [-pi/2 pi/2] for ZYX
=2, theta = [-pi,0] for ZXZ and [-pi,-pi/2] and [pi/2,pi] for
ZYX

OUTPUT

eul: calculated Euler angles

DESCRIPTION

R2EUL calculates Euler angles from a rotation matrix (3x3) or a
series of rotation matrices (nx9)

EXAMPLES

eul = [3 4 2];
R = eul2r(eul,'zxz');
eull = r2eul(R/zxz');
eul2=r2eul(R,'zxz');

NOTE

A small number is used to judge if gimble locking occurs, the
number del=le-5

ROUTINES CALLED

none

SEE ALSO

eul2r

3-5

ep2r

ep2r

SYNOPSIS

varargout = ep2r(ep,opt)

INPUTS

ep: uler parameters (4x1)
opt: etermine whether to calculate each term (5x1)

opt(l)=l: calculate R, saved as 3x3 matrix
opt(2)=l: calculate dR/de(m), saved as 9x4 matrix in Rij,m
opt(3)=l: calculate dRA2/de(m)/de(n), saved as 9x10 matrix

in Rij,mn
opt(4)=l: calculate T (4x3) as in de= T*w_b
opt(5)=l: calculate dT/de(m) (saved as Tij,m 12x4)

OUTPUT

varargout: matrices output dependent on opt

DESCRIPTION

EP2R: performs basic calculations regarding Euler parameters to
rotation matrix conversion such as calculating the rotational
matrix R, its derivatives dR/de(m), dRA2/de(m)/de(n), the
derivative to angular velocity matrix T, and its derivative dT/de(m)

EXAMPLES

example # 1: calculate only R matrix
ep = [3 1 2 10];
R = ep2r(ep);

example # 2: calculate R matrix; differential matrices, etc
[R,dRdm,dRdmn,T,dTdm] =ep2r(ep,[l 111 1]');
[T,dTdm] = ep2r(ep,[0 0 0 1 1]);

NOTE

1. Default of option calculates only R, opt = [10000];
2. Trailing zeros in opt can be neglected

ROUTINES CALLED

none

SEE ALSO

r2ep

3-6

r2ep

r2ep

SYNOPSIS

ep = r2ep(R)

INPUTS

R: rotational matrix (3x3)

OUTPUT

ep: euler parameters (4x1)

DESCRIPTION

R2EP calculates the Euler parameters from a rotational matrix

EXAMPLES

eul = [3 4 2];
Rl = eul2r(eul/zxz');
ep = r2ep(Rl);
R2 = ep2r(ep);

NOTE

ROUTINES CALLED

none

SEE ALSO

ep2r

3-7

r2_body_ang

r2_body_ang

SYNOPSIS

ang = r2_body_ang(R,type,angO);

INPUTS

R: rotational matrix (3x3)
type: convention ('zxzVzyx')
angO: Initial euler angles (usually the value of previous time step)

OUTPUT

ang: body orientation (Euler) angles (3x1),

DESCRIPTION

R2_BODY_ANG calculates the Euler angles of a given body
relative to the default coordinate system. If angO is also given, the
ang will start from angO. This enables the range of Euler angles be
extended beyond [-pi pi] for tumbling motion;

EXAMPLES

eul = [3 4 2];
R = eul2r(eul,'zxz');
angl = r2_body_ang(R,'zxz');
ang2 = r2_body_ang(R,'zxz',[2.5 3.5 1.9]);

notice in the example, ang2 is exactly same as eul; while angl is
not

NOTE

If angO is given, the program will automatically
• Eliminate the jump due to degeneracy
• Add or remove 2*n*pi to make solution continuous

ROUTINES CALLED

r2eul

SEE ALSO

r2jnt_ang

3-8

r2_jnt_ang

r2_jnt_ang

SYNOPSIS

jang = r2Jnt_ang(Rl,R2,type,jangO);

INPUTS

Rl: rotational matrix for 1st segment
R2: rotational matrix for 2nd segment
type: type of joints
jangO: initial joint angles (usually the value of previous time step)

OUTPUT

jang: calculated joint angles

DESCRIPTION

R2_JNT_ANG calculates the joint angles given two rotational
matrices for the two segments connecting the joint. If jangO is also
given, the jang will start from jangO. This extends the range of
joint angles beyond [-pi pi] and allows the tracking of tumbling
motion

EXAMPLES

eull = [3 4 2];
eul2 = [342];
Rl = eul2r(eull,'zxz');
R2 = eul2r(eul2,'zxz');
jangl =r2Jnt_ang(Rl,R2,'zxz');
jang2 = r2Jnt_ang(Rl,R2,'zxz,,[0 2*pi 0]);

NOTE

Currently, zxz, zyx, pin, null2d, pin3d joints are supported

ROUTINES CALLED

r2eul

SEE ALSO

r2_body_ang

3-9

Forward Dynamics Routines

Forward Dynamics Routines

List of Forward Dynamics Routines

fwd_simu
fwd_integrator
fwd_equation
projection
cnstode45
cnstodel5s
cnstode23s
jnt_cnst
jnt_cnst_euler
jnt_cnst_pin
jnt_cnst_pin2d
jnt_cnst_null2d--
jnt_react
jnt_react_euler
jnt_react_pin
jnt_re act_pin2 d
jnt_re act_null2 d
spring_force
damper_foce
stop_force
ddRxppl

dRxl
dTxpv

main setup routine for forward dynamics analysis
ode integrator setup routine
forward dynamics ode equation routine
constraint projection routine
ode 45 non-stiff solve for constrained system
ode 15 stiff solve for constrained system
ode 23 stiff solve for constrained system
G, glg2 and g due to joint constraints
G, glg2 and g due to Euler joint constraints
G, glg2 and g due to 3d pin joint constraints
G, glg2 and g due to 2d pin joint constraints
G, glg2 and g due to 2d null joint constraints
joint reaction force calculation
joint reaction force due to an Euler joint
joint reaction force due to a 3d pin joint
joint reaction force due to a 2d pin joint
joint reaction force due to a 2d null joint
calculate spring force
calculate damping force
calculate joint soft stop force
calculate vR2 = Rij,mn*dpm*dpn*lj
calculate Rll = Rij,m*lj
calculate the vector vR2 = Tlm,n*dpn*vm

3-10

fwd simu

fwd simu

SYNOPSIS

t_cpu = fwd_simu(job_file, choice);

INPUTS

job_£ile: file keep job information (include the system to use)
choice: select the task to perform

input': read in all job, model and force files
'initialization': check default, error etc, setup geometry
'run': run simulation, sorting data ...
'all': perform all the preceding tasks (default)

OUTPUT

t_cpu: cpu time for the task

GLOBAL:

SYSTEM system description structure
BODY body description structures
JOINT joint description structures
JOB job description structure
EXF external force structures

DESCRIPTION

FWD_SIMU set up a forward dynamics model by
• read job and ahm input files
• verify the input data are correct
• setup the initial configuration
• setup the geometry patch
• run integration

EXAMPLES

NOTE

ROUTINES CALLED

A number of internal routines
fwd_integrator

SEE ALSO

3-11

fwdjntegrator

fwd_integrator

SYNOPSIS

[time,Y,STAT] = fwd_integrator(options);

INPUTS

options: extra options for the integrator (refers to odeset)

OUTPUT

time: time vector when solution is outputed
Y: position and velocity solution
STAT: solver statistics

GLOBAL:

SYSTEM system description structure
BODY body description structures
JOINT joint description structures
JOB job description structure
EXF external force structures

DESCRIPTION

FWDJNTEGRATOR sets up the ode integrator for forward
dynamics problem, performs the integration, and saves the results
in result and restart files

EXAMPLES

NOTE

ROUTINES CALLED

fwd_equation

SEE ALSO

3-12

fwd_equation

fwd_equation

SYNOPSIS

varargout = fwd_equation(t,y,flag,varargin);

INPUTS

t: time
y: [p,v]' (variable of the 1st order ODE system)
flag: flag of task to be performed

": (default) evaluate y' = f(y)
'update': update solution after a successful step
'call_proj': call projection routine for position and

velocity constraints
'proj_l': called from projection routine to calculate M,

G and gi
'proj_2': called from projection routine to calculate g

varargin:other input arguments to be passed on, including
isproj: =1 do project;

=0 do not project
isupdate: =1 update solution after a successful step,

=0 do not

OUTPUT

varargout: variable outputs depend on the flag

DESCRIPTION

FWD_EQUATION setup the forward dynamics equations for ODE
solver

EXAMPLES

NOTE

ROUTINES CALLED

projection, cnstode45, cnstodelSs, cnstode23s

SEE ALSO

3-13

projection

projection

SYNOPSIS

yproj = projection(odefile,t,y,NP,NV,NL);

INPUT:

odefile:
t:
y:
NP:
NV:
NL:

OUTPUT:

yproj:

OUTPUT

time:
Y:
STAT:

DESCRIPTION

PROJECTION projects the approximation solution back to the
position and velocity constraint manifolds

EXAMPLES

NOTE

ROUTINES CALLED

cnstode45, cnstodelös, cnstode23s

SEE ALSO

filename of the ode and constraint formulation
current time
original converged solution
number of position degrees of freedom
number of velocity degrees of freedom
number of constraints equations

projected solutions

time vector when solution is outputed
position and velocity solution
solver statistics

3-14

cnstode45

cnstode45

SYNOPSIS

[tout,yout,varargout] = odel5s(odefile,tspan,y0,options,varargin)

INPUTS

refer to ode45

OUTPUT

refer to ode45

DESCRIPTION

CNSTODE45 is the extension of ODE45 non-stiff ode solver to
include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstodelös; cnstode23s

3-15

cnstodel5s

cnstode15s

SYNOPSIS

[tout,yout,varargout] = ode 15s(odefile,tspan,y0,options, varargin)

INPUTS

refer to ode 15s

OUTPUT

refer to ode 15s

DESCRIPTION

CNSTODE15S is the extension of ODE15S stiff ode solver to
include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstode45; cnstode23s

3-16

cnstode23s

cnstode23s

SYNOPSIS

[tout,yout,varargout] = ode23s(odefile,tspan,y0,options,varargin)

INPUTS

refer to ode23s

OUTPUT

refer to ode23s

DESCRIPTION

CNSTODE23S is the extension of ODE23S stiff ode solver to
include position and velocity constraints

EXAMPLES

NOTE

ROUTINES CALLED

none

SEE ALSO

cnstode45; cnstodelös

3-17

jnt_cnst

jnt_cnst

SYNOPSIS

varargout = jnt_cnst(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
jnt: structure data for the joint
opt: option of calculation

1. calculate the contribution to g
2. calculate the contribution to G
3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST calculates the contribution of the joint constraints to
G, glg2 and g

EXAMPLES

NOTE

ROUTINES CALLED

Joint constraint routines for various joints

SEE ALSO

3-18

jnt_cnst_euler

jnt_cnst_euler

SYNOPSIS

varargout = jnt_cnst_euler(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
jnt: structure data for the joint
opt: option of calculation

1. calculate the contribution to g
2. calculate the contribution to G
3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_EULER_CNST calculates the contribution of an Euler joint
to G, glg2 and g

EXAMPLES

NOTE

An Euler joint only involves position constraint. When the joint is
connected to the ground, the position should equal to the
designated position. Otherwise, the two neighboring bodies are
connected at the joint

R*l - Og = 0;
Rl*ll - R2*12 = 0;

ROUTINES CALLED

ddRxppl, dTxpv, drxl

SEE ALSO

3-19

jnt_cnst_piii

jnt_cnst_pin

SYNOPSIS

varargout = jnt_cnst_pin(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
jnt: structure data for the joint
opt: option of calculation

1. calculate the contribution to g
2. calculate the contribution to G
3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN calculates the contribution of a 3D pin joint to G,
glg2 and g

EXAMPLES

NOTE

A pin joint involves position constraint (as in an Euler joint) pluses
two rotational constraints

ROUTINES CALLED

ddRxppl, dTxpv, drxl; joint_cnst_euler

SEE ALSO

3-20

jnt_cnst_pin2d

jnt_cnst_pin2d

SYNOPSIS

varargout = jnt_cnst_pin(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
jnt: structure data for the joint
opt: option of calculation

1. calculate the contribution to g
2. calculate the contribution to G
3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN2D calculates the contribution of a 2D pin joint to
G, glg2 and g

EXAMPLES

NOTE

A pin2d joint only involves position constraint. When the joint is
connected to the ground, the position should equal to the
designated position, otherwise, the two neighboring bodies are
connected at the joint

R*l - Og = 0;
Rl*ll - R2*12 = 0;

ROUTINES CALLED

ddRxppl, dTxpv, drxl

SEE ALSO

3-21

jnt_cnst_rmll2d

jnt_cnst_null2d

SYNOPSIS

varargout = jnt_cnst_null2d(t)P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
jnt: structure data for the joint
opt: option of calculation

1. calculate the contribution to g
2. calculate the contribution to G
3. calculate the contribution to G and gagb

OUTPUT

varargout: output depends on opt

DESCRIPTION

JNT_CNST_PIN2D calculates the contribution of a 2D null joint to
G, glg2 and g

EXAMPLES

NOTE

No constraint is involved for a 2D null joint

ROUTINES CALLED

SEE ALSO

3-22

jnt_re action

jnt_reaction

SYNOPSIS

f = jnt_reaction(t,P,V,bodyl,body2,joint);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACTION calculates the joint reaction forces due to joint
spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

Joint reaction force routines for various joints

SEE ALSO

3-23

j nt_r e act_e uler

jnt_react_euler

SYNOPSIS

f = jnt_react_euler(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_CNST calculates the Euler joint reaction forces due
to joint spring, damper or joint soft stop

EXAMPLES

NOTE

An Euler joint has three rotational degree of freedom ground can
only be inboard

ROUTINES CALLED

r2_jnt_ang; spring_force; damperjbrce; stop_force

SEE ALSO

3-24

jnt_react_pin

jnt_react_pin

SYNOPSIS
f = jnt_react_pin(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION
JNT_REACT_PIN calculates the 3D pin joint reaction forces due to
joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED
r2_jnt_ang; spring_force; damper_force; stop_force

SEE ALSO

3-25

jnt_react_pin2d

jnt_react_pin2d

SYNOPSIS

f = jnt_react_pin2d(t,P,V,body l,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION

JNT_REACT_PIN2D calculates the 2D pin joint reaction forces
due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

r2Jnt_ang; spring_force; damperjbrce; stop_force

SEE ALSO

3-26

j nt_re act_null2d

jnt_react_null2d

SYNOPSIS
varargout = jnt_react_null2d(t,P,V,bodyl,body2,jnt,opt);

INPUTS

t: current time
P: position vector
V: velocity vector
bodyl: structure data for inboard body
body2: structure data for outboard body
joint: structure data for the joint

OUTPUT

f: calculated reaction force

DESCRIPTION
JNT_REACT_NULL2D calculates the 2D null joint reaction forces
due to joint spring, damper or joint soft stop

EXAMPLES

NOTE

ROUTINES CALLED

r2 jnt_ang; spring_force; damperjbrce; stop_force

SEE ALSO

3-27

spring_force

spring_force

SYNOPSIS

F = spring_force(type,prop,d);

INPUTS

type: type of spring (nspring x 1) cell
'linear': linear spring represented by k
'tabular': nonlinear spring represented by tabular form

prop : spring properties data cell
'linear': k
'tabular': [d(:) F(:)]

d: joint relative displacement (nspring x 1), d should be in
ascending order

OUTPUT

F: spring force (nspring x 1)

DESCRIPTION

SPRING_FORCE calculates the spring forces according to the type
and properties of the spring

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

damperjbrce

3-28

ddRxppl

ddRxppl

SYNOPSIS

vR2 = : ddRxppl(dRdmn,dp,l)

INPUTS
dRdmn:
1:
dp:

dRA2/dp(m)/dp(n)
postion vector
dp/dt

OUTPUT

vR2: resultant vector

DESCRIPTION

ddRxppl calculates the vector vR2 = Rij,mn*dpm*dpn*lj

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

3-31

dRxl

dRxl

SYNOPSIS

Rll = drxl(dRdm,l)

INPUTS

dRdm: dR/dp(m)
1: postion vector

OUTPUT

Rll: calculated matrix Rll; 3x3 for Euler angles; 3x4 for
Euler parameters

DESCRIPTION

dRxl calculates the matrix Rll = Rij,m*lj

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

3-32

dTxpv

dTxpv

SYNOPSIS

vT = dTxpv(dTdm,dp,v)

INPUTS
dTdm:
dp:
v:

as in pdot = dTdm *v, see zxz2t
dp/dt
segment angular velocity

OUTPUT

vT: calculated vector

DESCRIPTION

dTxpv calculates the vector vR2 = Tlm,n*dpn*vm

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

3-33

Inverse Dynamics Routines

Inverse Dynamics Routines

List of Inverse Dynamics Routines

inv_analysis main setup routine for inverse dynamics analysis
inv_kinematics kinematics calculation
inv_dynamics inverse dynamics calculation

3-34

inv_analysis

inv_analysis

SYNOPSIS

[SYSTEM, JOB,BODY,JOINT,EXF] = inv_analysis(jobfile);

INPUTS

job file: file keep job information (include the model system to use)

OUTPUT

SYSTEM system description structure
BODY body description structures
JOINT joint description structures
JOB job description structure
EXF external force structures

DESCRIPTION

INV_ANALYSIS performs the following tasks:
1. verify and read in the job, model and data
2. kinematics analysis

2.1 filter the kinematics data (body, joint)
2.2 calculate linear velocity and acceleration
2.3 calculate body and joint angles
2.4 calculate angular velocity and acceleration
2.5 calculate joint angle

3. dynamics analysis
3.1 Calculate the joint forces and torques in gloval
frame
3.2 Convert the force and torque into body local
frame
3.3 Convert the force and torque into anatomical
frame

4. Calculate additional energetic quantities
5. Output results to files

EXAMPLES

NOTE

ROUTINES CALLED

A number of internal routines
inv_kinematics,
inv_dynamics
math function; i/o functions, etc

SEE ALSO

3-35

inv kinematics

inv kinematics

SYNOPSIS

[BODY, JOINT] = inv_kinematics(SYSTEM,JOB,BODY, JOINT);

INPUTS

SYSTEM:
JOB:
BODY:
JOINT:

OUTPUT

BODY:

JOINT:

SYSTEM definition structure
JOB definition structure
BODY definition structure
JOINT definition Structure

BODY definition structure, with updated kinematics
information
JOINT definition structure, with updated
kinematics information

DESCRIPTION

INV_KINEMATICS performs the following tasks:
1. filter the kinematics data (body, joint)
2. calculate linear velocity and acceleration
3. calculate body and joint angles
4. calculate angular velocity and acceleration
5. calculate joint angle

EXAMPLES

NOTE

ROUTINES CALLED

matfiltfilt: Butterworth filtering of matrix data
dxdt: derivative sof uniformly spaced data
r2_body_ang: hody orientation (Euler) angle calculation
eul2r: euler angle to rotation matrix conversion

SEE ALSO

inv_dynamics

3-36

inv_dynamics

inv_dynamics

SYNOPSIS
JOINT = inv_dynamics(SYSTEM, JOB,BODY, JOINT.EXF);

INPUTS
SYSTEM: SYSTEM definition structure
JOB: JOB definition structure
BODY: BODY definition structure
JOINT: JOINT definition Structure
EXF: External force data structure

OUTPUT
JOINT: JOINT definition structure, with updated dynamics

information

DESCRIPTION
INVJDYNAMICS performs the following tasks:

1. calculate the joint forces and torques in the global frame
2. convert the force and torque into an anatomical frame

EXAMPLES

NOTE:
This routine works for an open-loop (tree) model, where a body can
have more than one proximal joints, but only one distal joints

ROUTINES CALLED

SEE ALSO

inv kinematics

3-37

3-38

4. Graphical Routines

GRAPHICAL OBJECTS ROUTINES 4-2

List for graphical objects 4"2

gen_patch_block 4"3
gen_patch_cylinder 4"4

gen_patch_sphere 4"°
gen_patch_arrow 4""
gen_patch_spring 4"'
gen_patch_ground 4"°
read_patch_asc 4"9

read_patch_xix 4_1"
affine_patch 4"H
scale_patch 4-1^
add_patch_prop 4_1^

USER INTERFACE ROUTINES 4~14

List of User Interface Routines 4"14

geticoncdata 4"15

seticoncdata 4"1"
show_btn_ctxMenu 4"17

enableiconcdata 4"*°
msgOutput 4"!9
filterUI 4"20

axis2fig 4"21

setpopupvalue 4"22

ANIMATION, VIEWERS, AND OTHER 4-23
List of Animation, Viewers and Other Routines 4-23

alias2rgb 4"24

anim_dyn_lst 4"2^
anim_dyn_ith 4"2^
read_asf 4"2'
anim_asf 4"2°
xyviewer "'*■
stickviewer ^-l

4-1

Graphical Objects Routines

Graphical Objects Routines

List for graphical objects Routines

Create graphical objects

gen_p atch_b lock:
gen_patch_cylinder:
gen_p atch_sphere:
gen_p atch_arro w:
gen_patch_spring:
gen_patch_ground:
read_patch_asc:
re ad_p atch_xix:

generate a 3d block patch
generate a 3d cylindrical patch
generate a 3d spherical patch
generate an arrow patch
generate a spring patch
generate a patch representing the ground
read a patch from an ASCII ASC fde
read a patch from an ASCII XIX file

Manipulate of graphical objects

affine_patch: perform affine transformation of a patch
scale_patch:
addjp atch_prop:

scale a patch
add additional graphical properties to a patch

4-2

genj>atch_block

gen_patch_block

SYNOPSIS

p = gen_patch_block(l,m,n,varargin)

INPUTS

1:
m:
n:
varargin:

OUTPUT

p:

number of x elements
number of y elements
number of z elements
parameter/value pairs to specify additional
properties of the patch

geometrical patch object

DESCRIPTION

GEN_PATCH_BLOCK generates a 3D block object with unit
length in all the x, y, and z directions. The center of the block is
located at the origin.

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-3

gen_patch_cylinder

gen_patch_cy linder

SYNOPSIS

p = gen_patch_cylinder(m,n,varargin)

an even number of elements along circumference
(default = 20)

an even number of elements in longitudinal
direction (default = 20)
parameter/value pairs to specify additional
properties of the spring

geometrical cylinder object

INPUTS

m:

n:

varargin:

OUTPUT

p:

DESCRIPTION

GEN_PATCH_CYLINDER generates a cylindrical patch object of
unit diameter and unit length and located at the origin and
aligned in the z direction

EXAMPLES

NOTE

ROUTINES CALLED

add_p atchjprop

SEE ALSO

4-4

gen_p atch_sphere

gen_patch_sphere

SYNOPSIS

p = gen_patch_sphere(n,varargin)

INPUTS

n: an even number of elements
(default = 20)

varargin: parameter/value pairs to specify additional
properties of the sphere

OUTPUT

p: geometrical spherical object

DESCRIPTION

GEN_PATCH_SPHERE generates a spherical patch object of unit
diameter with its center located at the origin of the reference
system

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop

SEE ALSO

4-5

gen_p atch_arrow

gen_patch_arrow

SYNOPSIS

p = gen_patch_arrow(Pl,P2,lHead,wHead,wTail,varargm)

INPUTS

P1: coordinates of the end of the arrow
P2: coordinates of the tip of the arrow
lHead: ratio of head length
wHead: ratio of head width
wTail: ratio of tail width
varargin: parameter/value pairs to specify additional

properties of the arrow

OUTPUT

p: geometrical arrow object

DESCRIPTION

GEN_PATCH_ARROW generates a 3D geometrical object
representing an arrow.

EXAMPLES

NOTE

ROUTINES CALLED

add_p atch_prop

SEE ALSO

4-6

gen_patch_spring

gen_patch_spring

SYNOPSIS

p = gen_patch_spring(Pl,P2,m,w, width, varargin)

coordinates of starting point
coordinates of ending point
number of rings in the spring
width of the spring
parameter/value pairs to specify additional
properties of the spring

geometrical spring object

INPUTS

PI:
P2:
m:
w:
varargin:

OUTPUT

p:

DESCRIPTION

GEN_PATCH_SPRING generate a 3D geometrical object
representing a spring.

EXAMPLES

NOTE

ROUTINES CALLED

add_p atch_prop

SEE ALSO

4-7

gen_patch_ground

gen_patch_g round

SYNOPSIS

p = gen_patch_ground(m,n,colorl,color2,varargin)

INPUTS

number of checked squares in x direction
number of checked squares in y direction
color one of checked squares, default=[0.2 0.2 0.2]
color two of checked squares, default=[0 0 0]
parameter/value pairs to specify additional
properties of the ground

geometrical ground object

m:
n:
color 1:
color2:
varargin:

OUTPUT

P:

DESCRIPTION

GEN_PATCH_GROUND generates a graphical patch object
representing the ground. The ground is represented by checked
interlacing squares. The patch is in XY plane with unit length in X
and Y direction. The center is at the origin of the reference frame

EXAMPLES

NOTE

ROUTINES CALLED

add_patch_prop; alias2rgb

SEE ALSO

4-8

read_patch_asc

read_patch_asc

SYNOPSIS

asc = read_patch_asc(ascfile);

INPUTS

ascfile:asc path data file name

OUTPUT

Asc: geometrical patch structure with the following fields
Vertices: coordinates of geometrical nodes
Faces: node connectivity matrix
VertexNormals: (optional) normal at the nodes (for

graphical rendering)

DESCRIPTION

READ_PATCH_ASC reads in a geometrical patch defined in an
ASCII ASC file

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

read_patch_xix

4-9

r e a d_p at ch_xix

read_patch_xix

SYNOPSIS

xix = read_patch_xix(xixfile);

INPUTS

xixfile: xix data file name

OUTPUT

xix: geometrical patch structure with the following fields
Vertices: coordinates of geometrical nodes
Faces: node connectivity matrix
VertexNormals: (optional) normal at the nodes (for

graphical rendering)

DESCRIPTION

READ_PATCH_XIX reads in a geometrical patch defined in an
ASCII XIX file

EXAMPLES

NOTE

FORMAT of an xix file:
line 1: comment
line 2: NDIM
line 3: is_std_ix, node_per_face
line 4: nVertices, nFaces
one comment line

vertices coordinates
one comment line

IX data
Normal (optional)

node normal data
CData (optional)

FaceVerticeCData
FaceColor (optional)

face color
EdgeColor (optional)

edge color

ROUTINES CALLED

SEE ALSO

read_patch_asc

4-10

affine_patch

affinepatch

SYNOPSIS

pa = affine_patch(p,trari,R)

INPUTS

p: geometrical patch object (usually aligned along the default
coordinate system)

tran: translation along the x, y, z axes
R: rotational matrix representing orientation of the patch in

the coordinate system

OUTPUT

pa: geometrical patch object after affine transformation

DESCRIPTION

AFFINE_PATCH performs an affine transformation of a
geometrical patch

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-11

scalejiatch

scale_patch

SYNOPSIS

ps = scale_patch(p,scale)

INPUTS

p: geometrical patch object (usually aligned along the default
coordinate system)

scale: scaling factor of the patch in x,y,z axes

OUTPUT

ps: scaled patch

DESCRIPTION

SCALE_PATCH scales a geometrical patch

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-12

add_p atch_prop

add_patch_prop

SYNOPSIS

newP = add_patch_prop(oldP,varargin)

INPUTS

oldP: old geometrical patch object
varargin: parameter/value pairs to specify additional

properties of the arrow

OUTPUT

newP: new geometrical patch object

DESCRIPTION

ADD_PATCH_PROP adds/modifies parameter/value pairs of a
geometrical patch object

EXAMPLES

NOTE

Currently the following parameters are supported
Edge Color
FaceColor
LineStyle
LineWidth

ROUTINES CALLED

SEE ALSO

4-13

User Interface Routines

User Interface Routines

List of User Interface Routines

geticoncdata: read from an icon file the cdata (color map)
seticoncdata: set cdata on a toolbar button
show_btn_ctxMenu: associate an context menu to a toolbar button
enableiconcdata: enable or disable a toolbar button
msgOutput: message output routine
filterUI: update filter type in a filter popup menu
axis2fig: copy and re-scale a axis onto a figure
setpopupvalue: set the value of a popup to match a given

string

4-14

geticoncdata

geticoncdata

SYNOPSIS

cdata = geticoncdata(iconfile,idx,bgcolor);;

INPUTS

iconfile: name of a icon file
idx: (default=l) the number of icon in the icon file
bgcolor: the bg color to set as transparent

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

GETICONCDATA reads from an icon file and save the icon as
cdata. If bgcolor is provided, it also attempts to save the bgcolor as
NaN. When used with seticoncdata, bgcolor will be displayed
transparent

EXAMPLES

NOTE

The program can be modified to include alpha data (transparency)

ROUTINES CALLED

SEE ALSO

4-15

seticoncdata

seticoncdata

SYNOPSIS

seticoncdata(h, Cdata);

INPUTS

h: handle of the obj (pushbutton, etc)
Cdata: n x m x 3 color data

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

SETICONCDATA sets the CData on a UI (pushbutton etc). All
NaN components will be displayed as the UI background color
(looks like transparent)

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-16

show btn ctxMenu

show btn ctxMenu

SYNOPSIS

show_btn_ctxMenu;

INPUTS

none

OUTPUT

none

DESCRIPTION

SHOW_BTN_CTXMENU displays context menu associated with a
tool button. The handle of the tool button should be saved as the
userdata of the button and the enable of the tool buttonn should be
set as 'inactive'the buttondownfcn of the button should be set as
'show_btn_ctxMenu'

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-17

enableiconcdata

enable iconcdata

SYNOPSIS

enableiconcdata(hbtn, option);

INPUTS

hbtn: handle of the obj (pushbutton, etc) (may be a vector)
option: 'enable' or 'disable'

OUTPUT

cdata: RGB color data matrix of the icon

DESCRIPTION

enableiconcdata: enable or disable a tool button

EXAMPLES

NOTE

The use of multiple handles (hbtn being a vector) is supported

ROUTINES CALLED

SEE ALSO

4-18

msgOutput

msgOutput

SYNOPSIS

msgOutput(msg)

INPUTS

msg: a string or a cell or strings (the message)

OUTPUT

none

DESCRIPTION

MSGOUTPUT outputs the message in the msg string to a
command window, a message GUI window and/or a message file

EXAMPLES

example one -- output message to command window
msgOutput('message to command window');

example two -- output message to msgwindow and save in a
message file (tmp.msg)
close all; set(gcf,'unit','pixels')
h = uicontrolCstyleVlistbox'/tagVMsgWindowVpos'JlO 10
200 100],'max', 100);
setappdata(h, 'msgFile', 'tmp.msg');
msgOutput({'example of msg output','also check the
tmp.msg file'});

NOTE

1. msgOutput first look for a msgwindow with a the tag of
'MsgWindow' (case senstive) if the msgwindow is not
present, the msg will be output to the command window;
otherwise the message will be added to the message
window.

2. the maximum number of lines of message can be specified
by setting the 'max' property of the UI control of the
message window

3. the msg will be save as the appdata 'MSG' in msg
4. if appdata 'msgFile' is present in the message window, the

msg will aslo be saved in the file

ROUTINES CALLED

SEE ALSO

4-19

filterUI

filterUI

SYNOPSIS

filterUI (h, type);

INPUTS

h: the filter UI handle (a popup menu);
type: string of the type of filter

OUTPUT

none

DESCRIPTION

filterUI updates the types of filter displayed in a popup menu and
automatically set the value according to the input type string

EXAMPLES

close all; set(gcf,'unit1,'pixels');
h = uicontrol('style','popupmenu*,'pos',[100 100 200
20],'string','filter example');
filterUI(h,'2nd order Butterworth');
filtertype = popupstr(h)

NOTE
To get the filter type from the UI, use popupstr

ROUTINES CALLED

SEE ALSO

4-20

axis2fig

axis2fig

SYNOPSIS

hnew = axis2fig(hold)

INPUTS

hold: original handle of the axis to be copies

OUTPUT

hnew: the handle of the new figure

DESCRIPTION

axis2fig copies all visible components on a axis to a new figure, so
all components can be re-scaled to normal size to be printed

EXAMPLES

h = axes('unit','pixel',pos',[0 0 100 100]);plot(l:10); legend('plot x');
h = axis2fig(h);

NOTE

The position of legend will be auto put in one of the four corners

ROUTINES CALLED

SEE ALSO

4-21

setpopupvalue

setpopupvalue

SYNOPSIS

setpopupvalue (h, s) ;

INPUTS

h: handle of popup or listbox
s: string to be matched

OUTPUT

none

DESCRIPTION

SETPOPUPVALUE sets the value of popup or listbox to match the
specified string. Exact match of lower case is required

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-22

Animation, Viewers, and Other

Animation, Viewers, and Other

List of Animation, Viewers and Other Routines

alias2rgb:
anim_dyn_lst:

anim_dyn_ith:

read_asf:
anim_asf:
xyviewer:
stickviewer:

convert an alias of a color to RGB color
generate the 1st animation frame for an inverse or a

forward dynamic model
generate the ith animation frame for an inverse or a
forward dynamic model
read an ASCII TekScan data file
animate pressure data measured by TekScan
see Appendix B
see Appendix C

4-23

alias2rgb

alias2rgb

SYNOPSIS

rgb = char2rgb(c)

INPUTS

c: character symbol of a color

OUTPUT

rgb: rgb representation of the color

DESCRIPTION

ALIAS2RGB converts a color alias to RGB color

EXAMPLES

NOTE

Alias of colors supported are listed as follows
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

ROUTINES CALLED

SEE ALSO

4-24

anim_dyn_lst

anim_dyn_1st

SYNOPSIS

h = anim_dyn_lst(SYSTEM,BODY);

INPUTS

SYSTEM: system description structure
BODY: body description structure

OUTPUT

h: handles of graphical objects representing the bodies

DESCRIPTION

ANIM_DYN_lst draws the first frame of an inverse or a forward
dynamical model given the model description and time trace of
model response. It also sets up the axis property.

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-25

anim_dyn_ith

anim_dyn_ith

SYNOPSIS

h = dyn_animJth(iframe,time,SYSTEM,BODY);

INPUTS

iframe: the number of the frame to be displayed
time: time vector
SYSTEM: system description structure
BODY: body description structure

OUTPUT

h: handles of graphical objects representing the bodies

DESCRIPTION

ANIM_DYN_ith draws the ith frame of an inverse or a forward
dynamic model

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

4-26

read_asf

read_asf

SYNOPSIS

[INFO,P] = read_asf(asffile,maxframe);

1

INPUTS

asffile: ascii tekscan data file
maxframe: (option) max. number of frames to read from the file

default is to read all the frames

OUTPUT

INFO: information structure of the tekscan data with the following
fields
'sensor_type'
'rows'
'cols'
'units'
'row_spacing'
'row_spacing_units'
'col_spacing'
'col_spacing_units'
'noise_threshold'
'scale_factor'
'exponent'
'seconds j>er_frame'
'movie_filename'
'start_frame'
'end_frame'

P: pressure data saved as a cell, each cell element is a matrix
of data (rows x cols)

DESCRIPTION

read_asffile reads an ASCII Tekscan data file

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

anim asf

4-27

anim asf

anim asf

SYNOPSIS

M = anim_asf(INFO,P);

INPUTS

INFO: information structure of the tekscan data with the following
fields
'sensor_type'
'rows'
'cols'
'units'
'row_spacing'
'row_spacing_units'
'col_spacing'
'col_sp acing_units'
'noise_threshold'
'scale_factor'
'exponent'
'seconds_per_frame'
'movie_filename'
'start_frame'
'end_frame'

P: pressure data saved as a cell, each cell element is a matrix
of data (rows x cols)

OUTPUT

M: matlab movie data from the animation

DESCRIPTION

anim_asf generates the animation of a set of Tekscan test data

EXAMPLES

NOTE

ROUTINES CALLED

SEE ALSO

read asf

4-28

5. Utilities Routines

MATH ROUTINES 5-2
List of Math Routines 5-2

cross2d 5-3
isirit 5-4
isrealnum 5-5
unit 5-6
dxdt 5-7
matfiltfilt 5-8
power_spec 5-9
r_times_v 5-10

STRING ROUTINES 5-11
List of String Manipulation Routines 5-11

parchar 5-12
sepchar 5-13
dirDirs 5-14
dirFiles 5-15
isdir 5-16
isfile 5-17
addFileExt 5-18
isvar_wdof. 5-19
str2realmat 5-20
fieldparts 5-21
fullfield 5-22

5-1

Math Routines

Math Routines

List of Math Routines

cross2d: 2D cross product
isint: check if input numerical variable is integer
isrealnum: check if input numerical variable is real
unit: normalize a matrix
dxdt: calculate time derivatives of a uniformly spaced signal
matfiltfilt: filter uniformly spaced signal with a double Butterworth

fdter
power_spec: calculate power spectrum of a time-domain signal
r_times_v: rotate 2D or 3D vectors

5-2

cross2d

cross2d

SYNOPSIS

c = cross2d(a,b);

INPUT:

a: a 2D vector
b: a 2D vector

OUTPUT:

c: the cross procuct (a number)

DESCRIPTION

CROSS2D calculates the cross product of two 2D vectors

EXAMPLES

cl = cross2d([12],[12]);
c2 = cross2d([10 0],[l 1]);

NOTE

Cross product is not commutative, which means the result depends
on the sequence of the two vectors

ROUTINES CALLED

SEE ALSO

5-3

isint

isint

SYNOPSIS

status = isint(a,asize)

INPUT:

a: number to be checked
asize: (optional) size of a to be expected

OUTPUT:

status: 1 true; 0 for false

DESCRIPTION

ININT check if a is a numerics integer. The size of a can also be
checked

EXAMPLES

isint(a) check if all elements of 'a' is integer
isint(a, [1 1]) check if 'a' is a integer scalar
isint(a,[0 1]) check if 'a' is a integer column vector
isint(a, [0 2]) check if 'a' is a integer max with 2 columns
isint(a,[l 0]) check if 'a' is a integer row vector
isint(a,[2 0]) check if 'a' is a integer max with 2 rows
isint(a,[4 6]) check if 'a' is a integer max of size 4x6

NOTE

Use zero to indicate the length of a row or a column can be variable

ROUTINES CALLED

SEE ALSO

isrealnum

5-4

isrealnum

isrealnum

SYNOPSIS

status = isrealiram(a,asize)

INPUT:

a: number to be checked
asize: (optional) size of a to be expected

OUTPUT:

status: 1 true; 0 for false

DESCRIPTION

isrealnum checks if a is a numerical real value. The size of a can
also be checked

EXAMPLES

isrealnum(a) check if all elements of 'a' is real
isrealnum(a,[l 1]) check if 'a' is a real number
isrealnum(a, [0 1]) check if 'a' is a real column vector
isrealnum(a,[0 2]) check if 'a' is a real max with 2 columns
isrealnum(a,[l 0]) check if 'a' is a real row vector
isrealnum(a,[2 0]) check if 'a' is a real max with 2 rows
isrealnum(a, [4 6]) check if 'a' is a real max of size 4x6

NOTE

use zero to indicate the length of a row or a column can be
variable

use the isrealnum to avoid conflict with builtin isreal function

ROUTINES CALLED

SEE ALSO

isint

5-5

unit

unit

SYNOPSIS

U = unit(A,dim)

INPUT:

A: matrix data
dim: option of perfroming the calculation

dim=0 make the matrix a unit matrix
dim=l make every column of the matrix a unit vector
dim=2 make every row of the matrix a unit vector

OUTPUT:

U: output matrix data

DESCRIPTION

UNIT normalizes the input matrix or its column or row vectors

EXAMPLES

A = rand(10,4)
Umatrix = unit(A,0);
Ucol = unit(A,l)
Urow = unit(A,2)

NOTE

ROUTINES CALLED

SEE ALSO

5-6

dxdt

dxdt

SYNOPSIS

xn = dxdt(X,dt, order);

INPUTS

X: sample, X can be a vector, matrix or a 3D matrix
dt: sampling spacing
order: the order of derivative (1 or 2)
xn: deriviate

OUTPUT

xn: nth order derivative of original data

DESCRIPTION

DXDT calculates the nth derivatives of X. X should be uniformly
sampled with a spacing dt. If X is a 2D or 3D matrix, it is
differentiated column-wisely, order is one or two with default being
one

EXAMPLES

X = rand(100,5);
dx = dxdt(X,0.1,l);
ddx = dxdt(X,0.1,2);

NOTE

1. forward difference is used for the 1st element; backward
difference is used for the last element; and central
difference is used for all the other

2. 1st and last element of the second order derivatives are the
linear exterpolation of the neighboring values

ROUTINES CALLED

SEE ALSO

5-7

matfiltfflt

matfiltfilt

SYNOPSIS

xf = matfiltfilt(dt, fcut, N, X);

INPUT:

dt: sampling rate
fcut: cutoff frequency (Hz) fcut must <= nyquist freq
N: order of the filter (usually 2 or 4)
X: sample, X can be a column vector, a matrix or a 3d matrix

OUTPUT:

xf: filtered data

DESCRIPTION

MATFILTFILT filters a uniform input signal in time domain by a
lower-pass double Butterworth filter of specified order

EXAMPLES

X = rand(100,l);
xf = matfiltfilt(0.01,10,2,X);
plot(l:100,X,'r:',l:100,xf);
legend('original signal','filtered signal');

NOTE

fcut must be smaller than nyquist freqency (l/dt/2)

ROUTINES CALLED

butter: in matlab/signal toolbox

SEE ALSO

5-8

power_spec

power_spec

SYNOPSIS

[fs,Freq, Power] = power_spec(T,X);

INPUT:

T: uniformly spaced time vector
X: input signal in time domain

OUTPUT:

fs: samping frequency
Freq: frequence vector
Power: Output power spectrum

DESCRIPTION

POWER_SPEC calculates power spectrum of input signal in time
domain by performing fast Fourier transformation

EXAMPLES

T = 1:100;
X = rand(l,100);
[fs, Freq, Power] = power_spec(T,X);

plot(Fre q, Power);

NOTE

Frequency is shift by half the Nyquist frequency to make it
symmetric

ROUTINES CALLED

SEE ALSO

5-9

r times v

r times v

SYNOPSIS

V = r_times_y(R,v);

INPUT:

R: 2x2, nx4 (2D time trace), 3x3, nx9 (3D time trace) matrix
v: a length of 2 or 3 vector, or nx2 (2D time trace), nx3 (time

trace)

OUTPUT:

V: rotated vector(s)

DESCRIPTION

R_TIMES_V rotates a 2D or 3D vector or its time traces by the
times the vector with a 2D or 3D rotational matrix or its time
traces

EXAMPLES

Example #1
R = [1 1 1; 2 2 2; 3 3 3];
v = [1 2 3]';
V = r_times_v(R,v);

Example #2 (for time trace, R is put columnwise)
R = [111222333

10 3 4 5 0 13 2];
v = [1 2 3

0 0 1];
V = r_times_v(R,v);

NOTE

ROUTINES CALLED

SEE ALSO

5-10

String Routines

String Routines

List of String Manipulation Routines

parchar: use partial of ASCII table to remove preceding and trailing
blanks, tabs, special characters, etc

sepchar: separate a string into a cell array (blank, tab delimited)
dirDirs: get the name of all directories in a designated directory
dirFiles: get the name of all files in a designated directory
isdir: determine if the specified directory exists
isfile: determine if the specified file exists
addFileExt: check and add a designated extension to a file
isvar_wdof: determines if a string is a valid variable name. Array DOF may

be included
str2realmat: convert a string matrix to a numeric real matrix
fieldparts: separate full field name (from top structure to field) into

structure path and field name
fullfield: construct the full field name (from top structure to field)

from the structure path and fieldname

5-11

parchar

SYNOPSIS

s = parchar (s)

INPUT:

s: input string

OUTPUT:

s: output string with only characters with ascii table 33-125

DESCRIPTION

PARCHAR uses only the partial ASCII character (32-125) table of
matlab, s can be a string or a string cell. Preceding and trailing
spaces and tabs are also eliminated; tabs inside the text is
converted into spaces

EXAMPLES

parchar(' a b');
parchar({'cha 1',' cc 2'});

NOTE

ROUTINES CALLED

SEE ALSO

sepchar

5-12

sepchar

sepchar

SYNOPSIS

c = sepchar(s)

INPUT:

s: input string

OUTPUT:

c: output cell of strings

DESCRIPTION

SEPCHAR separates a character 's' into a cell, with each element
corresponds to the part of character separated by space, tab, etc

EXAMPLES

sepcharC 1 3 4');

NOTE

ROUTINES CALLED

SEE ALSO

parchar

5-13

dirDirs

dirDirs

SYNOPSIS

d = dirDirs(p,option);

INPUT:

p: directory (default is the current directory)
option: option = 1: ignore '.' and'..'

option = 0,'.' and'..' will be included

OUTPUT:

d: directory names saved in a cell

DESCRIPTION

dirDirs get the subdirectories in a directory

EXAMPLES

dirDirs
dirDirs('c:Y)

NOTE

ROUTINES CALLED

SEE ALSO

dir Files

5-14

dirFiles

dirFiles

SYNOPSIS

f = dirFiles(p);

INPUT:

p: directory (default is the current directory)

OUTPUT:

f: all filenames in the directory saved in a cell

DESCRIPTION

dirFiles gets the files in a directory

EXAMPLES

dirFiles
dirFiles('c:Y)

NOTE

ROUTINES CALLED

SEE ALSO

dirDirs

5-15

isdir

isdir

SYNOPSIS

result = isfile(dirname)

INPUT:

dirname: the name of a directory

OUTPUT

result: =1 directory exists;
=0 directory does not exist

DESCRIPTION

ISDIR checks if dirname is a directory

EXAMPLES

ROUTINES CALLED

SEE ALSO

isfile

5-16

isfile

SYNOPSIS

result = isfile (filename)

INPUT:

filename: the name of a file

OUTPUT

result: =1 file exists;
=0 file does not exist

DESCRIPTION

ISFILE checks if filename is a file

EXAMPLES

ROUTINES CALLED

SEE ALSO

isdir

5-17

addFileExt

addFileExt

SYNOPSIS

fname = addFileExt(filename,ext);

INPUT:

filename: input filename
ext: file extension to be added(not dot)

OUTPUT:

fname: filename with extension added

DESCRIPTION

ADDFILEEXT checks if the designated extension is in the
filename and, if not, adds the designated extension to the file name

EXAMPLES

fname = addFileExtCfname.'.'.txt')

NOTE

1. the dot in extension does not matter
2. lower or upper case is neglected

ROUTINES CALLED

fileparts

SEE ALSO

5-18

/dof

isvar wdof

SYNOPSIS

[status, var,dofJ = isvar_wdof(c)

INPUT:

c: variable name to be checked

OUTPUT:

status: 1 if is a valid name, 0 not
var: the variable name
dof: dof of the variable

DESCRIPTION

ISVAR_WDOF determines if c is a valid variable name. A valid
variable name must start with a letter or _ and contains no special
or blank characters. DOF of the variable can be included with
(idof) after the variable name.

EXAMPLES

NOTE

ROUTINES CALLED

isvarname

SEE ALSO

5-19

str2realmat

str2realmat

SYNOPSIS

[mat, status] = str2realmat(s)

INPUT:

s: input string matrix or a cell with each element a string row

OUTPUT:

mat: output numerical array

status: 1: successful;

0: error in string matrix; (size doesn't match, NaN present)

DESCRIPTION

STR2REALMAT converts a string matrix to a numeric array,
which is the extension of str2double and str2num

EXAMPLES

NOTE

ROUTINES CALLED

sepchar;

SEE ALSO

5-20

fieldparts

fieldparts

SYNOPSIS

[fpath,f] = fieldparts(ff)

INPUT:

ff: full structure field name

OUTPUT:

fpath: structure field path
f: field name

DESCRIPTION

FIELDPARTS separates full field name (from top structure to
field) into the structure path and field name

EXAMPLES

[sp,fj = fullfieldCS.Sl.S(2).fieldr)

NOTE

ROUTINES CALLED

SEE ALSO

fullfield

5-21

fullfield

fullfield

SYNOPSIS

ff=fullfield(fpath,f)

INPUT:

fpath: structure field path
f: field name

OUTPUT:

ff: full structure field name

DESCRIPTION

FULLFIELD constructs the full field name (from top structure to
field) from the structure path and fieldname

EXAMPLES

ff = fullfieldCS.Sl.S(2)7fieldr)

NOTE

ROUTINES CALLED

SEE ALSO
fieldparts

5-22

A. TmtEditor

INTRODUCTION A-2
What is TmtEditor A-2
Features A-2
Start TmtEditor A-2

GUI COMPONENTS A-3
File Menu A-3
Help Menu A-3
Option Menu A-3
TmtEditor Toolbar A-3
TmtEditor Viewbar A-4
Editor Panel A-4
Source Panel A-4
Help Panel „. '. A-5

USE TMTEDITOR A-6
Change View Panel A-6
File Operation A-6
Browse in a TMT file A-7
Enable/disable template editing A-7
Edit Variables A-7

Add a numeric variable A-7
Add a character variable A-8
Add a structure variable A-8
Move up/down a variable A-8
Delete a variable A-8
Change the name of a variable A-8
Change the input method of a string variable A-8

Add heading to a TMT file A-9
Get Quick Help A-9

TmtEditor

Introduction

What is TmtEditor

TmtEditor is a GUI based tool to browser and edit TMT files. Refer to Data
I/O section for details on TMT files.

Features

♦ Easy browsing of complicated structured data

♦ Support generating new TMT files using existing template files

♦ Various ways of inputting data

♦ Flexible control over user's accessibility to data editing

Start TmtEditor

TmtEditor is delivered in one of the following three versions

♦ MEX version: MEX version of TmtEditor is to be used in Matlab
environment. To start it in Matlab, type 'tmteditof in Matlab command
window.

Note: To use TmtEditor in Matlab, the right path and default setting has to be
setup for the directory where TmtEditor MEX routines are installed. To setup
the default setting (for first time use or when the default setting is corrupt,
type 'tmtsetup' in Matlab command window

♦ Standalone version: Standalone version of TmtEditor is delivered in a
single installation file "install_TmtEditor.exe", which can be installed
and run as a standard DOS/Window executable program.

♦ Application version: TmtEditor can also be integrated as part of
application software as a data viewer. In this case, it can only be used
with the software.

A-2

GUI Components

GUI Components

This section describes several GUI components of TmtEditor and their
common use.

File Menu

File menu performs file operations

4 TMTEDIFÖR

ke-v f ife

r»1

Help Menu

Help menu provides access to help information

#IMi£8iT8R

Q|- H*% TMTEDITOR
inU-i & Corbel mmam

Option Menu

Option menu allows the user to select different accessibility to data editing

4- TMTEDITOR iD:^WSM«Öa!j^S^TjSßi(esPöf
fib HsSp j gjÄk»-5

j | ffiabi^t'hafog Terra's Edting j

TmtEditor Toolbar

TmtEditor Toolbar provides easy access to common file operations:

New Save
File File

Dtf 1

Open Close
File File

A-3

TmtEditor

TmtEditor Viewbar

TmtEditor Viewbar allows the change of different view panels

Uieu
Editor
Panel

Uieu
Source
Panel

Uieu
Help
Panel

aUUMMMIIMIMlMMVlM>>l|.|M>lllinMI>MIMni>IIIMtMn

\ Ed i tor ßp Source 1 :sy Be 1 pi

Editor Panel
VAfllABLE BROWSER

-ROOT
-IC

xlO
xpO
v201
wlO
vpO
x201

-TEST
KFile
wMeasured
kDetaScale

-JOB
tend
tsanple

_ Nout

std»ot£ilo | structures and Variable» in Ihe He]

tstart
-PARA(l)

KOI
HI
CO 2
Dl
LI
C01
Cll
K02

AddVanabfc*

EAVetiabtet
Ü_J

mm mama
IHratfngComrawVs ;

^

VARIABLE EDITflB

Type ir-;-;^

probl.outdef

na

mmm

Editor Panel includes a Data Browser, a Variable Editor, and outer UI
components and allows the browsing and editing of TMT files

Source Panel

Source panel lists the source code of the file being edited.

A-4

GUI Components

FILE ID WJMnllalAWS TmlFdiloiViainDle moutl

<STR IC>
<NÜM xlQ> 0;
<NUM xp0> -0.01;
<HUH v201> 0;
<NUH vlO> 0;
<NDM vp0> 40;
<HUH x201> 0.01;

<-'STR>

<STR TEBT>
<CHA KFile> 'probl.xyreat'; <^CHA>
<NIIM vHeasured> -0.01;
<HUM kDataScale> 0.01 4.44B 3;

«-STR>

<STR J0B>
<NUM tcnd> 1;
<NUH tsanpls> 0;
<NUM Hout> 1;
<CHA □utdef£ile>
<CHA stdnatfile>
<CHA ji££ile> 'D:
<HUM tstart> 0;

</STR>

<STR PAHA>
<HUH K01> </MM>
<MJM Hl> 1;
<NUM C02> </TfUM>
<NUM Dl> </'HUM>
<NUH Ll> </HTJM>
<NDH C01> o-HUK>
<NUM Cll> </KUM>
^unu vno** yviiw-.

'probl.outdef'; </CHA>
'probl.xymat"; <^CHA>
\BSnatlab\T)iitEditor\tJiitVie»CallhacJi.»'; <^CHA>

~m

ii

Help Panel

Help Panel provides the browsing of help information on TmtEditor

Ü32
helpl
+help2

jä
Si^SiiliS J

A-5

TmtEditor

Use TmtEditor

Change View Panel

To change the view panel, click on the buttons on the TmtEditor Viewbar.

File Operation

To open a TMT file, follow the following steps

♦ Select Open File from File Menu;

or push the Open File button on TmtEditor Toolbar;

♦ Browse for the file to open in the popup File Browse Window

To close a data file, follow the following steps

♦ Select Close File from File Ment-

or push the Close File button on TmtEditor Toolbar;

♦ If the file has be modified, a popup window will show up asking for
saving or discarding the changes.

To save modifications to a TMT file,

♦ Select Save File from File Menu;

or push the Save File button on TmtEditor Toolbar;

To save the file as another TMT file,

♦ Select Save as File from File Menu;

♦ Browse or enter the name for the new file in the popup File Browse
Window

To save the file as an TMT template file,

♦ Select Save as Template from File Menu;

♦ Enter the name for the template file in the popup File Browse Window

To create a new TMT file

♦ Select New File from File Ment-

or push the New File button on TmtEditor Toolbar;

♦ Enter the name for the new file in the popup File Browse Window

♦ Select the template file to use for the new file in the popup Template
Selection Window as shown bellow, and click on the OK button.

A-6

Use TmtEditor

••:* "*>CK 5.« t-J>» ♦.«»>.i*t» i:5.3.* $:»: « *»:*:. fcy *«** $:i.iss
■MX-pi«!

Browse in a TMT file

The data in a TMT file can be browsed in the Variable Browser.

♦ The first item in the browser is ROOT item, which is always there and
cannot be edited

♦ A'+' or a'-' sign ahead of a variable indicates that it is a structure.
Double click on a structure will expand or shrink it in the browser

♦ When a variable is selected, details on the variable will be listed in the
Variable Editor to the right of the browser

Enable/disable template editing

By enabling template editing, all properties of all variables in the TMT file
can be edited. If template editing is disabled, only the values of the variables
given in the file can be changed. This allows data to follow exactly the format
in the original TMT file (or a template file).

To enable or disable template editing, select Enable/Disable template
editing from Option Menu;

Edit Variables

Add a numeric variable

♦ Select a structure variable in the Variable Browser and click on the NUM
button to add a numeric variable under the structure selected.

♦ The new variable will be named 'new_num' and has a default value of
being an empty matrix. The name and value for the new variable can be
modified in the Variable Editor.

A-7

TmtEditor

Add a character variable

♦ Select a structure variable in the Variable Browser and click on the CHA
button to add a character variable under the structure selected.

♦ The new variable will be named 'new_char' and has a default value of
being an empty string. The name and value for the new variable can be
modified in the Variable Editor.

Add a structure variable

♦ Select a structure variable in the Variable Browser and click on the Struct
button to add a structure variable under the structure selected.

♦ The new variable will be named 'new_stru', which contains an empty
numeric variable 'new_num' and an empty string 'new_char', The new
structure and the variables under the structure can be modified in the
Variable Editor.

Move up/down a variable

♦ Select a variable in the Variable Browser and click on the Up or Down
button to move a variable up or down in the TMT file

Delete a variable

♦ Select a variable in the Variable Browser and click on Delete button to
remove the variable

Note: If a structure is to be deleted, all "children" items under the structure
will also be deleted; if the numeric variable or the string variable to be
deleted is the last child of a structure, the structure will be deleted along with
the variable. The only exception is for the ROOT item, which can never be
deleted.

Change the name of a variable

♦ Change the name in the Name input box on the Variable Editor

♦ Click on the Save button on the Variable Editor

Note: Array of structure is supported. The index of a structure is indicated by
following the name of the structure by the index in the brackets

Change the input method of a string variable

♦ Select the input method in the Input Method Selection Box on the
Variable Editor

♦ If the input method is "browse for a file", a Browse button will appear.
Click on the button to select or enter the name of the file. The file name
will be used as the value of the string variable.

A-8

Use TmtEditor

Click on the Option button to change the file extension to be used for
browsing files. The following is an example of how file extension is
specified

^M.A.ekt aft »Tieft <m. ass»; <c* :Misas& ffli-8fejs>&d '« &&m& «a»
•.«•n.-'.exö

C: Cav:«!

♦ If the input method is "Select from lisfbox", the value of the string
should be selected from the list box underneath the Input Method
Selection Box. Click on the Option button the items to be listed in the
listbox.

,rL^j jSelect. fro» li&UxJX dn-yri

; I list 4

piste

:S)?^^;lia^;j|iiy^a;:jM^^w;»CTg;::j

■3;

jtel

1*13

1st«

rif r^.-/j

Add heading to a TMT file

To add or modify the heading a TMT file, click on the Heading/Comments
button on the Editor View Panel. And enter the new heading in the popup
window.

Get Quick Help

To get quick help and information about TmtEditor,

♦ Push Show Help button on TmtEditor Viewbar;

Or sleet Help TmtEditor from Help Menu

♦ Select a topic to display the help message about the topic

A-9

B. XY Plot Viewer

INTRODUCTION B-2
What is XY plot viewer B-2
Features B-2
Start XY Plot Viewer B-2

GUI COMPONENTS B-4
XY Plot Axis B-4
XYViewer Menu B-4
XYViewer Toolbar B-4
Axis Property Context Menu B-5
Line Property Context Menu B-5
XY Plot Control B-6

USE XY PLOT VIEWER B-7
Open/Close XY Data File B-7
Print/Export a Plot B-7
Plot Data B-8
Edit Axis Properties B-9
Edit Line Properties B-9
Show/Hide Legend B-9
Enable/Disable Overlaying Plots B-9
Clear a Plot or Delete a Curve B-10
Get Quick Help B-10

B XY Plot Viewer

Introduction

What is XY plot viewer

XYViewer is graphical viewer to visualize the vectors or matrices stored in
JIF ASCII files or STDMAT binary files.

Features

♦ Support STDMAT and JIF ASCII file formats, where the value of each
"channel" of data is stored in a column vector and associated with a name,
label, units. In STDMAT files, the data channels can also be grouped under
different group names;

♦ Multiple data files can be opened in the same viewer. This allows the
comparison of data from different files;

♦ Support print the plot as PS, EPS, EMF, and BITMAP files;

♦ Support output plot data as space, tab or comma delimited ASCII files;

♦ A simple GUI layout allows the easy access and plotting of data;

♦ Support overlay of curves on a single plot;

♦ Easy access to data definition and peak values;

Many axis properties, such as color, grid, box, legend, axis label, title, can
be edited;

♦

♦ Many line properties ,such as style, width, color, marker and marker size,
can be edited;

♦ Automatically synchronized with additional data viewer, such as
stickViewer, to visualize data on fly.

Start XY Plot Viewer

XYViewer is delivered in one of the following three versions

♦ MEX version: MEX version of XYViewer is to be used in Matlab
environment. To start it in Matlab, type 'xyviewef in Matlab command
window.

Note: To use XYViewer in Matlab, the right path has to be setup for the
directory where XYViewer MEX routines are installed

♦ Standalone version: Standalone version of XYViewer is delivered in a
single installation file "install_xyviewer.exe", which can be installed and
run as a standard DOS/Window executable program.

B-2

♦ Application version: XYViewer can also be integrated as part of
application software as a data viewer. In this case, it can only be used
with the software.

B-3

B XY Plot Viewer

GUI Components

This section describes several GUI components of XYViewer and their
common use.

XY Plot Axis

XY Plot Axis is where the data is plotted.

XYViewer Menu

The XYViewer Menu performs file operations, such as opening and closing
of data files, as well as printing and exporting of a plot.

■4 XV VIEWER

£xt>»! Pit *

XYViewer Toolbar

XYViewer Toolbar provides easy access to common operations:

B-4

GUI Components

Sftö»
Open print piöt
oa*a plot control
file

clear
plot

axis
option

Close export
d*ta plot
file

legend Wim
* help

overlay
plot

Axis Property Context Menu

Axis Property Context Menu is launched by right clicking mouse inside the
XY Plot Axis but not over any curve plotted inside. It provides options to edit
the properties of the axis.

£h<w pfot contra!

v ßverbj» curve«

Axis range

v* Legend on
EdÄ lagend

: • Bos on
Background Cole» ;
Fünagmufid Cd«

use Detect

Line Property Context Menu

Line Property Context Menu is activated by right clicking mouse over a
curve inside the XY Plot Axis. It provides options to edit line properties of
the curve selected.

B-5

B XY Plot Viewer

; Ime style
Ime widh
line color
maiket

ift and scale

XY Plot Control

XY Plot Control is a popup window that displays the file(s) being opened
and data inside a selected file. It can be used to open or close data file(s) and
to plot data.

\M
:Ala»li*Sj

-'OATiWfUfj
i ;

ii ii, iJiiiflBMBMT"!

time % sfckfe
MARKER

BODV-FooS
IßöDY-Shank

BÜDY-Thsgh
|8ÖDV-fo?««rm

BOOY-Head

: &TA Off» «i

gODY-S'har*.
SODY-Tha*

BODY-UpperAjm
80D;f-H«äd

lA-Sn-Foot-x
Mrtftxfrz
F-arng-Foo^
V-aritg-Foc&y
A-ang-F»d-j>

Help Caned flol j

B-6

Use XY Plot Viewer

Use XY Plot Viewer

Open/Close XY Data File

To open a data file, follow the following steps

♦ Select Open Data File from XYViewer Menu;

or push the Open Data File button on XYViewer Toolbar;

or push the Add button inside XY Plot Control

♦ Browse for the file to open in the popup File Browse Window

To close a data file, follow the following steps

♦ Select Close Data File from XYViewer Menu;

or push the Close Data File button on XYViewer Toolbar;

or push the Delete button inside XY Plot Control

♦ Select the file(s) to close in the popup Close XY plot data files window
and click Remove button to close the data file(s).

«# Close XY plot d*ia Jifes

$*ed <M<i fes io cteze: \
111 > > i n »t > Miiiiiiiiit

MRggamWeraoni \£.mwfe\$$ d i If

jj

Ffcß>0»te v.*"Cte

WMMWIWMMIWII

Print/Export a Plot
To print a plot on the XY Plot Axis, follow the following steps

B-7

B XY Plot Viewer

♦ Select Print Plot from XYViewer Menu;

or push the Print button on XYViewer Toolbar;

♦ Select Default Printer to print to the default printer

♦ Select the type of file and enter the file name in the popup file browser
window to print the plot as a file. Current the following types of files are
supported

♦ Postscript files (*.ps)

♦ Encapsulated postscript files (*.eps)

♦ Window meta files (*.emf)

♦ Bitmap files (*.bitmap)

To export the curves plotted in the XY Plot Axis to an ASCII file, follow the
following steps

♦ Select Export Plot from XYViewer Ment-

or push the Export button on XYViewer Toolbar;

♦ Select the type of file and enter the file name in the popup file browser
window to export the data. Current the following types of files are
supported

♦ Space/tab delimited ASCII (*.dat)

♦ Comma delimited ASCII files (*.csv)

♦ JIF ASCII files (*.jif)

Plot Data

Following the following steps to plot data

♦ Activate the XY Plot Control. This can be done by doing one of the
following:

♦ Push Show XY button on XYViewer Toolbar;

♦ In Axis Property Context Menu (by right click mouse in the XY Plot
Axis), select Show Plot Control;

♦ Push Axis Properties button on XYViewer Toolbar and select Show
Plot Control;

♦ Select the right data file in the Data File popup window

♦ In X Data Group lisfbox, select the group name of X-axis variable

♦ In X Variable lisfbox, select the X-axis variable

♦ In Y Data Group lisfbox, select the group name of Y-axis variable(s)

♦ In Y Variable lisfbox, select the Y-axis variable(s)

B-8

♦ Click the Plot button to plot the selected Y-variable(s) vs. X-variable.

Edit Axis Properties

♦ Activate the Axis Property Context Menu by doing one of the following:

♦ Push Axis Properties button on XYViewer Toolbar;

♦ Right click mouse in the XY Plot Axis.

♦ Select one of the following properties to edit

♦ Axis range

♦ Title & Label

♦ Legend on

♦ Edit legend

♦ Grid on

♦ Box on

♦ Background color

♦ Foreground color

Edit Line Properties

♦ Activate the Line Property Context Menu by right clicking mouse over
the curve whose properties is to be edited

♦ Select one of the following properties to edit

♦ Line style

♦ Line width

♦ Line color

♦ Marker

♦ Marker size

Show/Hide Legend

The legend for the curves plotted can be displayed or removed from XY Plot
axis by one of the following

♦ Push Legend on/off button on XYViewer Toolbar;

♦ Or select Legend on/off in Axis Property Context Menu (by right click
mouse in the XY Plot Axis)

Enable/Disable Overlaying Plots

Overlaying plot can be enabled or disabled by one of the following

B-9

B XY Plot Viewer

♦ Push Overlay curve button on XYViewer Toolbar;

♦ Or select Overlay curves in Axis Property Context Menu (by right click
mouse in the XY Plot Axis)

Clear a Plot or Delete a Curve

One of the following will clear the plot

♦ Push Clear button on XYViewer Toolbar;

♦ Or select Clear curves in Axis Property Context Menu (by right click
mouse in the XY Plot Axis)

To delete only one curve from the plot, follow the following steps

♦ Activate the Line Property Context Menu by right clicking mouse over
the curve whose properties is to be deleted

♦ Select Delete

Get Quick Help

To get quick help and information about XYViewer,

♦ Push Help button on XYViewer Toolbar;

♦ Select a topic to display the help message about the topic

B-10

C. Stick Plot Viewer

INTRODUCTION C-2
What is Stick plot viewer C-2
Features C-2
Start STICK Plot Viewer C-2

GUI COMPONENTS C-3
Stick Plot Axis C-3
StickViewer Menu C-3
StickViewer Toolbar C-3
Stick Animation Toolbar C-4
Axis Property Context Menu C-4
Stick Property Context Menu C-4

USE STICK PLOT VIEWER C-5
Open/Close Stick Graphics File C-5
Print a Frame ■ C-5
Export an Animation C-5
Edit Axis Properties C-6
Edit Stick Properties C-6
Free rotation of Axis C-6
Get Quick Help C-7

Stick Plot Viewer

Introduction

What is Stick plot viewer

Stick Viewer is a three-dimensional viewer to visualize stick plots.

Features

♦ Simple GUI provides easy access to visualization and animation

♦ Support print the plot as PS, EPS, EMF, and BITMAP files;

♦ Support output stick animations as Matlab movies;

♦ Many axis properties, such as color, grid, box, legend, axis label, title, can
be edited;

♦ Many stick properties ,such as style, width, color, marker and marker
size, can be edited;

♦ Automatically synchronized with XYViewer to visualize data on fly.

Start STICK Plot Viewer

StickViewer is delivered in one of the following three versions

♦ MEX version: MEX version of StickViewer is to be used in Matlab
environment. To start it in Matlab, type 'stickviewef in Matlab command
window.

Note: To use StickViewer in Matlab, the right path has to be setup for the
directory where StickViewer MEX routines are installed

Standalone version: Standalone version of StickViewer is delivered in a
single installation file "install_stickviewer.exe", which can be installed
and run as a standard DOS/Window executable program.

Application version: StickViewer can also be integrated as part of
application software as a data viewer. In this case, it can only be used
with the software.

C-2

Use SUCK Plot Viewer

GUI Components

This section describes several GUI components of StickViewer and their
common use.

Stick Plot Axis

Stick Plot Axis is where the data is plotted.

£lc- * \ftvi

£l2kgls

JjJLÜiLd..
tun. J,4'^"fU

»Hrf-

StickViewer Menu

The StickViewer Menu performs file operations, such as opening and
closing of data files, as well as printing plot and exporting animation.

.# stick VIEWER:;

Sfcck Viewer

Pint f-ki ►
Import Msv» *

StickViewer Toolbar

StickViewer Toolbar provides easy access to common operations:

C-3

Stick Plot Viewer

Axis
Open Print 3D property
data plot rotat(r
file

Close Export
data nouie
file

m!*4 &

Quick
help

Uiew
angle

Stick Animation Toolbar

Stick Animation Toolbar provides options to control the animation of stick
plots.

Play Begin

Stop Back

Scrollbar

Axis Property Context Menu

Axis Property Context Menu is launched by right clicking mouse inside the
Stick Plot Axis but not over any stick. It provides options to edit the
properties of the axis.

v Axi$.gE|ual

Viewable

v Bex on
Background Color
Faegiound Coloi

Use Default

^Bi IhejsMe ►
Ime width *
linBCDitH

joarker ►
maiksfsize

Stick Property Context Menu

Stick Property Context Menu is activated by right clicking mouse over a
stick inside the Stick Plot Axis. It provides options to edit line properties of
the stick selected.

C-4

Use STICK Plot Viewer

Use STICK Plot Viewer

Open/Close Stick Graphics File

To open a data file, follow the following steps

♦ Select Open Stick Graphics File from StickViewer Menu;

or push the Open button on StickViewer Toolbar;

♦ Browse for the file to open in the popup File Browse Window

♦ The first frame of the stick plots will be displayed

To close a stick graphics file, follow the following steps

♦ Select Close Stick Graphics File from StickViewer Menu;

or push the Close button on StickViewer Toolbar;

Note: Stick graphic file is a Matlab binary data file containing the time history
of positions and orientations of each stick, as well as the definition of each
stick

Print a Frame

To print a snapshot of a stick plot frame the following steps

♦ Select Print Plot from StickViewer Menu;

or push the Print button on StickViewer Toolbar;

♦ Select Default Printer to print the snapshot to the default printer

♦ Select the type of file and enter the file name in the popup file browser
window to print the snapshot as a file. Currently the following types of
files are supported

♦ Postscript files(*.ps)

♦ Encapsulated postscript files (*.eps)

♦ Window meta files (*.emf)

♦ Bitmap files (*.bitmap)

Export an Animation

To export a stick animation, following the following steps

♦ Select Export Movie from StickViewer Menu;

or push the Export button on StickViewer Toolbar;

C-5

Stick Plot Viewer

♦ Select the type of file and enter the file name in the popup file browser
window to export the data. Currently only Matlab movie (*.mat) is
supported

Note: To convert a Matlab movie file into an AVI file, use "movielavi"
command in Matlab

Edit Axis Properties

♦ Activate the Axis Property Context Menu by doing one of the following:

♦ Push Axis Properties button on StickViewer Toolbar;

♦ Right click mouse in the Stick Plot Axis.

♦ Select one of the following properties to edit

♦ Axis equal: force all axes to use the same data aspect ratio for

♦ Axis on: turn on or turn off axis

♦ View angle: change the view angle of the 3D stick plots

♦ Show Title & lable: show label for the axes

♦ Box on: add or remove box from the axis

♦ Background colon change background of the axis

♦ Foreground color: change foreground of the axis

Edit Stick Properties

♦ Activate the Stick Property Context Menu by right clicking mouse over
the stick whose properties is to be edited

♦ Select one of the following properties to edit

♦ Line style

♦ Line width

♦ Line color

♦ Marker

♦ Marker size

Free rotation of Axis

The free rotation of the axis (to change view angle) can be performed by
pushing down the 3D rotate button on StickViewer Toolbar and use mouse
to rotate the Stick Plot Axis.

C-6

Use STICK Plot Viewer

Get Quick Help
To get quick help and information about STICKViewer,

♦ Push Help button on STICKViewer Toolbar;

♦ Select a topic to display the help message about the topic

C-7

