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On steady laminar basic 
ows and their global
eigenmodes:

An elliptic cone in compressible 
ow

By Vassilios Theofilis y

Rohnsterrassen 14, D-37085 G�ottingen, GERMANY
tel./fax: +49 551 48 76 25

(31 October 2000)

In the framework of our e�orts towards a global nonparallel linear instability analysis of
compressible 
ow over an elliptic cone we discuss here two interconnected aspects, the steady
basic 
ow�eld and the associated global eigenmodes. First, we validate and apply the AUSMDV
shock-capturing scheme to recover three-dimensional steady basic states around an aspect ratio
3 elliptic cone in the range of Mach numbers 0:5 � M � 4 at angles of attack � = 10o and
20o and a low Reynolds number value Re = 103, at which laminar 
ow is ensured. In doing
so we implicitly rely on the global instability analysis which will follow the present e�ort to
identify potential departures from the calculated steady basic states through ampli�ed global
eigenmodes. Second, potential extensions of the present work are outlined. One of them is an
inviscid global instability analysis on the basis of the generalised Rayleigh equation, presented
herein for the �rst time, which governs small-amplitude three-dimensional global perturbations
of essentially two-dimensional compressible basic states. Third, we elaborate on the issue of
residuals in time-accurate simulations for the recovery of steady state solutions of the equations
of motion. We identify the former as the least stable global eigenmodes of the 
ow. Based on
the present �ndings, we present an algorithm which permits recovery of the steady state from
transient data at a negligible fraction of the otherwise necessary computing e�ort. Application
of the algorithm to extract the three-dimensional 
ow�eld on the elliptic cone is underway.

y This material is based upon work supported by the European O�ce of Aerospace Research and Development, Air Force
O�ce of Scienti�c Research, Air Force Research Laboratory, under Contract No. F61775-99-WE049. Research is monitored
by Dr. R. Kimmel.
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1. Introduction

Revived interest in a�ordable hypersonic 
ow technology (Walker 1999) has resulted in re-
newed e�orts to understand and control the related physical mechanisms of laminar-turbulent

ow transition (Kimmel and Walker 1999). One of the con�gurations in discussion is that of
the elliptic cone which is known to have distinct aerodynamic advantages over bodies of revolu-
tion in compressible 
ow at least as early as the pioneering work of Jorgensen (1958). Renewed
theoretical and experimental e�orts on elliptic cones have been undertaken by Kimmel et al.
(1997,1999) and Huntley et al. (1999) with special emphasis placed on laminar-turbulent 
ow
transition, thus expanding upon knowledge on compressible boundary-layer 
ow transition on a
circular-base cone (Stetson and Kimmel 1992). Kimmel et al. (1999) have discovered character-
istics of 
ow transition on the elliptic cone which appear to be intrinsically three-dimensional
and distinct from known instability mechanisms on bodies of revolution. Despite substantial
progress on the issue, three-dimensional boundary layer transition in high-speed 
ow presently
appears to be far from understood in a satisfactory manner.
The issue of laminar-turbulent transition has a long and successful track record, following the

pioneering works of the �rst half of last century on linear instability in boundary layers on 
at-
plates and bodies of revolution (Lin 1955). The main limitation of most of the existing analyses is
their con�nement within the framework of 
ow�elds in which two of the three spatial directions
are taken to be homogeneous and are resolved by a periodicity Ansatz. Under these so-called
local assumptions the classic Rayleigh and Orr-Sommerfeld equations result, respectively, in
inviscid and viscous incompressible 
ow (Drazin and Reid 1981). The compressible counterparts
of either equation have been extensively investigated and discussed by Mack (1969, 1984). With
the maturing of numerical algorithms and the current progress in hardware technology the
assumption of homogeneity in two spatial directions can be relaxed within the framework of
a direct numerical simulation (DNS) in which all three spatial directions may, in principle, be
taken as inhomogeneous and be resolved; marching the equations of motion forward in time
delivers the desired instability information. While DNS is an undisputed approach in terms of
its capacity to deliver solutions of the equations of motion, there are two points that deserve
discussion with respect to using DNS for instability analyses.
The �rst point is related with computing e�ort and the associated cost of a DNS. The latter,

though decreasing in recent years in proportion to the continuous increase in hardware capabili-
ties, is still formidable; the storage requirements for resolution of all scales of three-dimensional
turbulent 
ow scale with the 9=4 � th power of an appropriately de�ned 
ow Reynolds num-
ber. As a matter of fact, the resolution requirements for a simulation through laminar-turbulent
transition into turbulent 
ow are still higher (e.g. Gilbert and Kleiser 1988) owing to the steep
gradients developing during the multi-spike stages of transition. Furthermore, compressibility
generally lowers the growth rates of the most ampli�ed linear disturbances in comparison with
those in incompressible 
ow. Consequently, instability analyses of three-dimensional compress-
ible 
ows using DNS are still rare and when performed are restricted to a small subspace of pa-
rameters. Notable examples of compressible 
ow instability analyses based on DNS have started
to appear in the literature (e.g. Pruett and Zang 1992, Zhong 1998). Their obvious strength
is that both linear and nonlinear stages of 
ow instability can be tackled in a self-consistent
manner.
The second point is rather more subtle and is related with the potential of confusion of the

di�erent types of local or global linear instabilities, which potentially coexist in the problem
and are all resolved by the DNS. The self-contained work to be found as section 6 of this
report elucidates this point in detail. Here it su�ces to stress the di�erence between an ordinary
di�erential equation based linear theory, such as an Orr-Sommerfeld type of analysis, and one in
which the partial di�erential equation eigenvalue problem is solved. Another point that deserves
mention here is that for 
ows with a mild variation in one spatial direction Herbert (1997 and

Contract No. F61775-99-WE049



4 V. Theo�lis

references therein) has proposed the concept of parabolised stability equations (PSE) as an
alternative tool to both an Orr-Sommerfeld type of analysis and DNS. Using the PSE linear
and nonlinear instability analysis results inaccessible to the classic linear theory (and obtainable
by DNS) can be successfully recovered at a negligible fraction of the e�ort required by DNS.
However, when the basic 
ow to be analysed is essentially two- or three-dimensional PSE is
inapplicable to its instability analysis. There is clearly room for instability analysis tools beyond
a local linear theory based on an Orr-Sommerfeld type of equation and alternative to both DNS
and PSE.
Such an analysis tool may be developed within the framework of a global linear instability

theory the principles of which are discussed in section 4 and detailed in section 6 b (iii). This
theory is analogous in spirit, if not in detail, to the local linear analysis in considering the 
ow�eld
as composed of a steady (or time-periodic) so-called 'basic-
ow' part upon which small-amplitude
three-dimensional disturbances are superimposed. The key di�erence between global and local
theory is that in the former both the basic 
ow and the amplitude functions of the linear
perturbations are essentially two- or three-dimensional nonperiodic functions of the respective
resolved spatial coordinates. The resulting freedom with the boundary conditions to be imposed
on the elliptic global problem permits the recovery of much wider classes of linear instabilities
when compared with those delivered by the local analysis. The development of the global linear
disturbances in time is studied through the solution of a large non-symmetric complex generalised
eigenvalue problem in which the governing equations may be recast upon substitution of the
decomposition and linearisation about the basic state. Owing to the orders-of-magnitude higher
computing e�ort compared with the classic linear analysis, global linear analysis results are
slowly emerging in the literature, mainly con�ned to 
ows possessing special symmetries which
reduce the computational e�ort related with the solution of the eigenvalue problem (e.g. Tatsumi
and Yoshimura 1990, Hall and Horseman 1991, Lin and Malik 1996). An incompressible global
linear analysis algorithm was developed, in primitive variables and without the restriction to

ows with special symmetries, by Theo�lis (1998c); the algorithm has been employed, amongst
other 
ows, to the discovery of global instability in separated 
at-plate boundary layer 
ow
(Theo�lis et al. 2000) while its predictions in the classic lid-driven cavity (Theo�lis 2000) are in
excellent agreement with the experiments of Aidun et al. (1991) and Benson and Aidun (1992).
A recent review of the global linear analysis results is presented by Theo�lis (2001).
The present report is the �rst step towards global linear instability analysis of three-dimensional


ow�elds over elliptic cones at hypersonic speeds. To this end, we discuss here the basic 
ows
which form the variable coe�cients of the partial di�erential equation eigenvalue problem at a
small representative class of the parameter values at which the analyses will ultimately be per-
formed. The essentials of the numerical issues surrounding the generation of the basic 
ows are
discussed �rst and laminar steady-state solutions of the equations of motion are subsequently
presented. We use this report to illustrate characteristic compressible 
ow�elds recovered at con-
stant Reynolds number and increasing angle of attack and Mach number, keeping for the most
part of this work the same resolution of three-dimensional space. Grid adaptation was found to
be necessary as the Mach number increases, on account of increasingly stronger discontinuities
and steeper gradients in the 
ow. The necessary but computationally intensive grid re�nement
studies, which will assess the adequacy of the recovered solutions for an instability analysisy, are
left to be addressed when the analysis will be performed at speci�c sets of parameters.
The analytical description of the elliptic cone surface in a body-�tted cartesian coordinate

system Ox0y0z0 is provided by one of the roots x0 of the equation

y f.e. in terms of convergence of second wall-normal and azimuthal derivatives

Contract No. F61775-99-WE049
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�
x02

a2
+
y02

b2
+
z02

c2
= 0; (1.1)

where a; b; c are the semiaxes of the elliptic cone. The geometry of interest is schematically
depicted in �gure 1. In this �gure the angles of attack � and bank � are also shown. Interestingly,
an e�ect of a nonzero angle � on the global instability analysis results is only to be expected
when � 6= 0. In that case, at each value of the angle of attack values of angle of bank 0 � � � �=2
must be examined in order for the global instability on the elliptic cone to be fully understood. If
� = 0, on the other hand, the basic 
ow�elds are invariant against a change in � and the number
of parameters in the problem is reduced by one. Another simpli�cation of the global eigenvalue
problem in the limiting case � = 0, to be discussed in detail in what follows, is the ability to
perform an inviscid global analysis in order to extract the essential 
ow physics while reducing
the computing e�ort. This is achieved by use of the generalised (within the framework of global
linear theory) compressible Rayleigh equation, derived and presented for the �rst time as part of
the present work. Further, following the recent discovery of the connection of numerical residuals
in steady 
ow calculations to global linear 
ow eigenmodes it has become clear that the basic

ow issue cannot be treated independently from that of the global linear instability analysis, if
the latter is to be performed in a self-consistent manner.
In the following section 2 we discuss essential elements of the approach taken for the generation

of basic 
ow data. In section 3 results on model problems, obtained by employing the AUSMDV
scheme chosen for the generation of the basic states, are presented before our attention is focussed
on the three-dimensional laminar 
ow�elds on an elliptic cone at several Mach number and angle
of attack parameter values. The relation of the basic 
ows and the linear disturbances generated
upon them is exposed in section 4. The outlook with respect to an inviscid analysis of the basic

ows obtained is discussed in section 5, where the generalised Rayleigh equation is presented
and discussed. In the light of the interplay between basic states and global linear disturbances
alluded herein we present in section 6 a self-contained discussion elaborating on the connection
between residuals in a direct numerical simulation aiming at recovery of a steady-state solution
of the equations of motion and global linear eigenmodes. An e�cient algorithm for the recovery
of the sought steady-state using transient data is presented. Closing remarks are furnished in
section 7.

Contract No. F61775-99-WE049



6 V. Theo�lis

2. The Basic Flow Computation

(a ) Governing equations

Flow is taken to be described by the system of the compressible continuity, Navier-Stokes and
energy equations written in conservative form as

@q

@t
=
@fFc + Fvg

@x
+
@fGc +Gvg

@y
+
@fHc +Hvg

@z
; (2.1)

with the distinction between convective (Fc;Gc;Hc)
T and viscous (Fv;Gv ;Hv)

T 
uxes being
made on grounds related with the numerical discretisation. The Cartesian spatial coordinates
are denoted by x; y and z respectively and t denotes time. The vector of unknowns is q =
(�; �u; �v; �w;E)T , � is the 
uid density, (u; v; w)T are the velocity components in the directions
of x; y and z and E is the internal energy of the 
uid. The form of the 
uxes is to be found in
any textbook on compressible 
ow and numerical solutions thereof (Hirsch 1988); the convective

uxes, of interest here from the point of view of an inviscid global linear analysis, are given by

Fc =

0
BBBB@
�u
�u2 + p
�uv
�uw
u(E + p)

1
CCCCA ; Gc =

0
BBBB@
�v
�uv
�v2 + p
�vw
v(E + p)

1
CCCCA ; Hc =

0
BBBB@
�w
�uw
�vw
�w2 + p
w(E + p)

1
CCCCA : (2.2)

For the purposes of the instability analysis it is convenient to recast the inviscid part of the
energy equation in one of the possible non-conservative forms

pt + 
p(
@u

@x
+
@v

@y
+
@w

@z
) + (u

@p

@x
+ v

@p

@y
+ w

@p

@z
) = 0: (2.3)

One point which deserves consideration is whether a perfect gas assumption may be made to
close the system of equations; the decision depends on the Mach number values at which global
linear instability analysis of the 
ow is to be performed and a�ects the calculation of both the
basic 
ow and the instability results. If a perfect gas assumption is made, density, pressure p,
temperature T and total energy of the gas are related by


M2p = �T; and p = (
 � 1)

�
E �

1

2
�v2

�
(2.4)

where 
 is the ratio of speci�c heat coe�cients under constant pressure and constant volume,

 = cp=cv , and v

2 =
�
u2 + v2 + w2

�
is the kinetic energy of the 
uid per unit mass. Dimensionless

numbers characterising the 
ow are the Mach number M , Reynolds number Re and Prandtl
number Pr, evaluated at appropriate conditions and respectively de�ned as

M = u=as; Re = �uL=�; and Pr = �cp=k; (2.5)

with u the magnitude of a typical velocity, as the speed of sound, L a typical length scale in
the 
ow, � the dynamic viscosity of the medium and k the thermal conductivity coe�cient. A
further issue arising in hypersonic 
ow is whether the viscosity may be taken to be a function
of temperature alone and, if so, what the most appropriate law describing its dependence on
temperature is. In classic linear analyses of compressible 
ow instability (Mack 1969, 1984) a
power-law or Sutherland's formula are used, depending on whether the basic 
ow model adopted
is based on a reduced or the full system of the equations of motion.

Contract No. F61775-99-WE049
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(b ) Flux-splitting and the AUSMDV scheme

A plethora of numerical schemes exist for the discretisation of (2.1) most of which use central
di�erencing for the calculation of the viscous 
uxes (Fv;Gv;Hv)

T and di�erent prescriptions
for the calculation of the convective 
uxes (Fc;Gc;Hc)

T. A basic distinction exists between
shock-capturing and shock-�tting approaches for the discretisation of the convective 
uxes. We
discuss here brie
y the scheme utilised, namely the AUSMDV. It should be noted that a wealth
of modern accurate compact �nite-di�erence alternative numerical methods exist, f.e. the shock-
capturing approach of Visbal and Gaitonde (1998) or the shock-�tting algorithm of Zhong (1998,
1999).
The work of Liu and co-workers (e.g. Wada and Liu 1994) presents the essentials of an AUS-

MDV discretisation. For the sake of exposition of the algorithm used here we adhere with
presentation in one spatial dimension. As a �rst step, it is recognised that the 
ux vector is
composed of momentum 
ux and pressure force terms, which are treated independently as

Fc = u

0
@ �
�u
�e

1
A+

0
@ 0
p
pu

1
A ; (2.6)

where E = �e. A consistent pressure splitting follows, according to which Fc = F++F� with

F+ = max(u; 0)

0
@ �
�u
�e

1
A+

0
@ 0
p+

(pu)+

1
A ; F� = min(u; 0)

0
@ �
�u
�e

1
A+

0
@ 0
p�

(pu)�

1
A ; (2.7)

and

p+ = p

8<
:

0; M � �1
(1 +M)=2; jM j < 1
1; M � 1

; p� = p

8<
:

1; M � �1
(1�M)=2; jM j < 1
0; M � 1;

;

(pu)+ = p

8<
:

0; M � �1
(u+ as)=2; jM j < 1
u; M � 1

; (pu)� = p

8<
:
u; M � �1
(u� as)=2; jM j < 1
0; M � 1:

:

(2.8)

The extension of this idea to multiple spatial dimensions is straightforward. As it stands this
scheme is only �rst-order accurate in space, while for realistic applications at least second order
accuracy is necessary away from discontinuities.

(c ) Numerical discretisation

Temporal discretisation of (2.1) is performed using a multi-stage Runge-Kutta scheme. For
the three-dimensional problem at hand the key additional issue arising, besides the choice of
a spatial discretisation scheme, is that of adequate spatial discretisation. This is addressed by
performing a surface discretisation of (1.1) �rst, followed by a consistent discretisation of three-
dimensional space in which the elliptic cone is embedded. As a matter-of-fact it has been observed
that for the second-order scheme used best results can be achieved when the three-dimensional
spatial discretisation is subdivided in two parts, �rst wrapping a structured grid around the
elliptic cone, which is generated conforming with the surface discretisation and then discretising
space between the structured glove wrapped around the cone and the far-�eld boundaries by an
unstructured grid generated by an advancing front Delauney algorithm.
The grid used for the � 6= 0 calculations to be presented shortly, discretising space between

[�x1 � x � x1] � [0 � y � y1] � [�z1 � z � z1] with x1 = y1 = z1 = 20, is shown in
�gures 2-4. The dimensions of the elliptic cylinder are determined by taking the aspect ratio
to be constant A = 3 and the length of the cone a = 1. The relevant parameters of Jorgensen

Contract No. F61775-99-WE049



8 V. Theo�lis

(1958) determine the other two semiaxes of the cone, b = 0:87=3:67 and c = b=3. In �gure 2
a global view of the discretisation of a half elliptic cone model surface and that of the far-
�eld and symmetry boundaries is shown, in which the di�erent degrees of re�nement of the
neighbourhood of the object and the far-�eld can also be seen. A detailed view of the same is
presented in �gures 3 and 4 viewing the half model from upstream and downstream, respectively.
In all three �gures the discretisation of the interior of the 
ow�eld is not shown for clarity; in
the latter two �gures the structured grid, its �ne distribution around the model as well as its
merging into the unstructured far-�eld grid can be seen.
Thanks to the hybrid-grid technique used the number of total grid elements contained in this

grid is con�ned to � 5:3� 106 resulting in � 100 Mbytes of memory required for the storage of
the surface- and � 300 Mbytes for that of the �eld-discretisation, respectively; a much higher
number of gridpoints would have been necessary had the structured grid in the neighbourhood
of the surface been extended to the far�eld. The resolution and storage requirements increase
proportionately to the number of multigrid cycles or grid adaptation levels in case a multigrid
or adaptive-grid solution algorithm is employed in order to accelerate convergence to or re�ne
resolution of the steady-state solution desired. We will return to these points when we discuss
basic 
ow results on the elliptic cone.

Contract No. F61775-99-WE049
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3. Basic Flow Results

(a ) Validation of the AUSMDV scheme

The substantial progress of numerical algorithms for external aerodynamics over the last
decades may be appreciated by referring to classic review articles which periodically summarise
the state-of-the-art of the time. Such a work, discussing a wealth of nontrivial validation cases,
is that of Woodward and Colella (1984). Besides establishing the characteristics of the scheme
utilised for the recovery of the laminar steady-state basic 
ows on the elliptic cone, we engage
in some validations in order to identify the limits of the chosen numerical approach on simple
con�gurations; the conclusions drawn are then expected to carry weight in the three-dimensional
geometry in question on which it is neither straightforward nor practical to perform a large
number of numerical validation experiments.
The solutions of two one-dimensional Riemann problems are presented in �gure 5. The initial

conditions for the �rst problem were proposed by Sod (1978) and are (�L;ML; pL) = (1; 0; 1)
and (�R;MR; pR) = (0:125; 0; 0:1) while those for the second problem, due to Lax (1954), are
(�L;ML; pL) = (0:445; 0:698; 3:528) and (�R;MR; pR) = (0:5; 0; 0:571). The adequate represen-
tation of shocks and contact discontinuities at the resolution utilised can be seen in both cases.
A third interesting one-dimensional problem, that of a blast wave, has been discussed by Wood-
ward and Colella (1984). The periodic boundary conditions of the �rst two Riemann problems
are replaced here by re
ecting walls and the calculation is initialised with the values presented in
table 1. Two strong shocks are generated and travel in opposite directions, are re
ected by the
walls and meet in the centre-part of the domain. The solution at t = 0:38 is shown in �gure 6.
While by visual comparison with the results obtained by the piecewise-parabolic method of
Woodward and Colella (1984) the solution obtained appears acceptable, grid re�nement reveals
interesting (but not unexpected) properties of the AUSMDV method. Using current hardware
technology extremely �ne grids could be used, the solution at the aforementioned time being
obtained within a few minutes of CPU time on a EV6 Alpha processor. In �gure 7 the solution
at the same time t = 0:38 is presented, obtained using �x = 5; 2; 1 and 0:5� 10�4. In the upper
part of this �gure the convergence of the solution at the two highest resolutions can be seen.
While the location of the shocks is adequately represented at all resolutions, the results at the
coarsest resolution (which already uses double the number of points compared with those pre-
sented in �gure 6) is seen to deliver inaccurate results on at least two counts. First, the details of
the 
ow are smeared out in a manner typical of numerical discretisation schemes of low formal
order of accuracy. Second, the peak value of density on the rightmost (expansion) structure is
underpredicted, only acquiring its converged value at the highest resolutions. The enlargement
of the region of the 
ow behind the leftmost shock reveals further details. Again, the coarsest res-
olution of 2000 uniformly distributed points smears the shock over a rather wide distance while
as the resolution increases the slope increases but pointwise oscillations appear immediately ad-
jacent to the shock; their amplitude diminishes with further increase of resolution. In table 2 the
predicted wall values of the primitive variables are presented. It may be seen that even at the
highest resolution no satisfactory convergence has been achieved, at least from the point of view
of instability analysis which requires accurate prediction of wall-values including their second
derivatives. Of course, such resolutions are unattainable in the context of the three-dimensional
solutions sought in the framework of the current investigations and a direct consequence of the
�rst-order accurate scheme chosen. The conclusions drawn from the present one-dimensional
validation runs is that the AUSMDV method is capable of predicting accurately the features of
unsteady one-dimensional 
ows encompassing strong shocks, and is much simpler in comparison
with elaborate traditional 
ux-vector splitting schemes, e.g. that due to van Leer. However, for
the subsequent instability analysis one should employ either extremely high resolutions (only
a�ordable in one or maximally two spatial dimensions), or solution techniques based on grids
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10 V. Theo�lis

other than uniform (f.e. adaptive grids). We will return to this subject shortly, when we present
the elliptic cone results.
Before doing so, however, we discuss the performance of the AUSMDV scheme in two spatial

dimensions. A plethora of nontrivial two-dimensional validations have been proposed in the
literature, of which we have focussed our attention on the two-dimensional analogon of Sod's
problem (in which the initial conditions of the one-dimensional problem are imposed in both
spatial directions) and the two cases presented by Woodward and Colella (1984). The result of
the two-dimensional Sod problem may be seen at time t = 2 in �gure 8. The interesting oblique
pattern generated by the interaction of shocks and expansion waves and its adequate resolution
may be seen in this result. However, this success did not carry over to the two-dimensional
problems discussed by Woodward and Colella, at least when the �rst-order accurate AUSMDV
scheme was used. In both the cases of 
ow over a step and double Mach re
ection di�culties
with both the accurate implementation of boundary conditions and the di�usive nature of the
�rst-order accurate algorithm have been experienced. While further experimentation has been
postponed until the elliptic cone 
ows have been generated, the implication for the solutions
sought is clear, namely that a higher-order accurate version of the discretisation scheme has to
be utilised for the generation of the elliptic cone laminar solutions; this conclusion is in line with
that drawn earlier on the number of discretisation points necessary for convergence in the one-
dimensional validation cases presented. With this experience generated, we turn our attention
to the elliptic cone next.

(b ) Compressible three-dimensional laminar 
ows over an aspect ratio 3 elliptic cone

In comparison with the validation cases presented the calculation of 
ow over the elliptic
cone presents several additional challenges, the most obvious of which is that related with 
ow
separation. A decision has to be made at the stage of designing the computationally intensive
solutions whether to embed the cone into a calculation domain in which the far�eld boundaries
are placed far away from the three-dimensional conical object or whether the downstream far�eld
boundary and the surface of the elliptic cone meet. We have chosen the �rst approach, in
anticipation of inconsistencies in the formulation of the boundary conditions at the junction of
far�eld boundary and cone surface. While no such problem is expected if the downstream far�eld
boundary is placed several cone lengths downstream of the elliptic cone, one must decide on the
form of the base surface; owing to its simplicity a 
at (elliptic) base was chosen. This in itself
generates a new issue, namely unsteady 
ow separation at the base, which is distinct from that
expected on account of increasing angle of attack but will in
uence the latter in the context of a
three-dimensional calculation, at least in the subsonic regime. Since a steady laminar basic 
ow
is required for the global instability analysis the 
ow Reynolds number must be kept low enough
for such as state to exist. To our knowledge the choice of a Reynolds number which results
in steady separation on the con�guration in question is an open question but experience with
the classic K�arm�an vortex street suggests that the Reynolds number required to achieve steady
separation at base may need to be taken rather small. On the other hand, given su�cient length
of the cone at a moderately high Reynolds number the 
ow will become turbulent (Kimmel et
al. 1997, 1999) and a global instability analysis would be obsolete. With both considerations in
mind we have taken a cone length a = 1 and Re = 103 throughout the following calculations.
Additionally, adiabatic wall conditions were imposed and results were obtained in SI units.
In order to avoid convergence problems associated with 
ow separation in the framework

of an unsteady calculation, which would be associated with ampli�cation of the global 
ow
eigenmodesy we chose to perform steady basic 
ow calculations. It should be stressed at this
point that the subsequent global instability analysis has the potential to con�rm or refute this

y see detailed discussion in x 6
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choice in terms of the damping or ampli�cation of the global eigenmodes recovered. The true
physical solution, at least in its linear limit, can be predicted using a two-step approach; �rst
the steady-state equations of motion are iterated until a steady-state solution is recovered and
subsequently a global instability analysis of the obtained steady solution is performed. If all
eigenmodes recovered by the global analysis are damped the steady-state solution satis�es the
unsteady equations of motion as well; if unstable eigenmodes exist the computed steady-state
solution will be linearly modi�ed in the manner predicted by the global instability analysis.
Parameters which have to be considered other than the Reynolds number are the angles of

attack � and bank �, de�ned in the schematic representation of the elliptic cone geometry
in �gure 1; these determine, respectively, 
ow separation from the elliptic cone surface and
symmetry-breaking of the 
ow�eld around the cone. All calculations to be presented have been
performed using � = 0 which led to the decision to impose symmetry about y = 0. Whether this
decision is justi�ed is left to be assessed by comparisons with three-dimensional solutions around
the entire elliptic cone. Solutions around the entire cone are at least twice as expensive as those
presented in what follows and have thus been left for future extensions/re�nements of the present
work. Taking � = 0 as well results in the ability to perform calculations on one quarter of the
elliptic cone, imposing symmetry about z = 0 also. The 
ow�elds resulting in this limit are those
closest to ful�lling the fundamental assumption of the global linear instability theory, according
to which the 
ow dependence on two spatial directions, those de�ning the plane normal to the
elliptic cone surface, dominate over that along the cone generator. However, this limiting case
may not be as representative of realistic situations in which 
ow separation from the elliptic
cone surface on account of � 6= 0 and the consequent ful�llment of inviscid instability analysis
criteria is the predominant 
ow feature. In the following calculations we have thus refrained
from imposing symmetry about z = 0 and have considered two angles of attack, � = 10o and
20o. Finally, the target Mach number M of interest corresponds to hypersonic 
ow, M = 8. We
devised a straightforward but conservative strategy to achieve the latter target, commencing
calculations at low Mach number and angle of attack and gradually increasing the values of
both parameters as a steady state at a given pair of (M;�) is approached. In this process single
(non-optimal) grid calculations are performed; close to the steady state a multigrid convergence
acceleration technique can be employed and the gridpoint distribution may be optimised by
following the particular 
ow features (e.g. high gradients). In this respect a database of steady
states at intermediate parameter values has been generated for future reference. It should also
be stressed here that at this stage of the present e�ort we are interested in trends as parameters
change and not in the machine-accurate convergence of the solution at a single set of parameters.
Hence we perform a large but reasonable number of iterations towards the steady state. On the
hardware utilised (EV6 Alpha processor) 104 iterations were performed at each set of parameters
at a cost of � 180 CPU hrs each. While no statement can be made regarding the convergence of
these results prior to performance of simulations at the same parameters and higher resolutions,
the reduction of the residuals in the iterative solution by approximately three orders of magnitude
compared with the respective initial conditions warrants a qualitative description of the �ndings.
In �gures 9-25 we present three-dimensional 
ow�elds around the aspect ratio 3 elliptic cone

in the range 0:5 � M � 4. The actual calculation results have been mirrored about y = 0 in
order to generate a three-dimensional impression. In these �gures the primitive variables in the
neighbourhood of the cone are shown as colour-coded contour lines drawn on two planes, the
symmetry plane y = 0 when available and the plane meeting the cone at x = 0:7. We start at
the subsonic Mach numberM = 0:5 at which the results of �gures 9-11 and 12-14, respectively
pertaining to the angles of attack � = 10o and 20o, are compared. Separation at the base of the
cone is clearly visible in �gures 9 and 11 while the contours of v in �gure 10 indicate vortical
motion near the surface of the elliptic cone. Note also that in both these and the results that
follow v(y = 0) � 0 on account of the imposed symmetry. However, it can be seen in the results
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12 V. Theo�lis

of u(z < 0) and even clearer on those of w(z > 0) that the condition of symmetry is only satis�ed
in the immediate vicinity of the cone and further iterations are necessary before the solution has
converged in the far-�eld as well.
Turning to comparisons with the solution obtained at the larger angle of attack � = 20o one

notes that again, further iterations are necessary for the condition of symmetry across y = 0 to
be satis�ed. On the other hand, comparison of the results of �gures 10 and 13 gives a visual
impression of the strengthening of separation from the cone surface. A better visualisation of
this result might have been possible by implementing the �2 vortex identi�cation criterion of
Jeong and Hussain (1995); this is currently in progress alongside detailed data analysis. What
is clearly visible in the contours presented is that the separation zone at the base of the cone is
substantially enlarged when the angle of attack increases. In an incompressible environment this
would a�ect the 
ow on the cone surface itself; it is expected that as the Mach number increases
the e�ect of this 
ow feature, or potential modi�cations to it, will not a�ect 
ow near the tip of
the cone where the global analysis is envisaged to be performed. Nevertheless, a fairing of the
cone base, for instance by smoothly blending the cone itself with a prolate spheroid/ellipsoid
body, might moderate the strength of the separated area behind the cone; this direction is also
currently being pursued. From the point of view of the global instability analysis, it is interesting
to note that the condition necessary for the analysis, namely that 
ow gradients along the cone
generators are much smaller than those along the wall-normal direction, appears to be ful�lled
in the results at both angles of attack.
We next keep the angle of attack constant at � = 20o and increase the free-stream 
ow Mach

number to M = 2; the results for the primitive variables, obtained after a preset number of
104 iterations, which started using the solution presented in �gures 12-14 as initial condition,
are to be found in �gures 15-19. From a physical point of view, the expected characteristic of
supersonic 
ow Mach cone is to be seen in these results. The shock emanates from the cone tip
while expansions are to be seen at the cone base as a result of the strong curvature jump. An
interesting point may be made with respect to the global analysis of this 
ow�eld in terms of its
potential self-similarity with respect to translation along the x�spatial direction. In �gure 20,
in which the solution for w is replotted, one notices that a transformation might exist within
a speci�c x�interval which reduces the dependence of the basic 
ow from three to two spatial
dimensions. This issue is currently being examined; should such a transformation be established
the original objective of the present e�ort to provide a two-dimensional basic state for the global
instability analysis would be materialised in a manner consistent with the 
ow physics rather
by an ad-hoc imposition of the global instability analysis condition on the basic 
ow. From a
numerical point of view, the fact that there is room for improvement of resolution is also evident;
additionally to the boundary layer which must be well resolved at all Mach numbers the shock
wave poses new challenges to the grid presented in �gure 2 in terms of resolution of both the
neighbourhood of the cone tip as well as the Mach cone. One way to improve resolution is by local
redistribution of the available gridpoints following some means of grid adaptation commensurate
with the gradients in the 
ow.
The need for such a re�nement of the solution approach became stronger at the higher Mach

number of M = 4. While the qualitative features of the 
ow at this Mach number are analogous
with those at M = 2, the shock is now stronger and thinner. We hence performed a large
number of iterations using the solution at M = 2; � = 20o as initial condition; however the
rate of decay of residuals was unacceptably slow and we had to resort to grid adaptation,
increasing the number of gridpoints by 30% compared with that shown in �gure 2. Subsequently
104 more iterations were performed, producing the results shown in �gures 21-25. Qualitatively,
the obtained solutions appear to be su�ciently smooth, though not yet converged to machine
accuracy. From these results it appears that 
ow separation at the base of the cone does not
a�ect 
ow on the cone surface itself, the determining factors for the latter being the cone aspect
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ratio and the angle of attack considered. However, as already stated, this conclusion is drawn
on the basis of three-dimensional solutions of the steady equations of motion and its weight can
only be veri�ed after the global analysis has been performed. Our current e�orts aim at recovery
of solutions at the target Mach number M = 8 using the results at M = 4 as initial conditions.
Though straightforward, the achievement of this target appears to be more challenging in terms
of the computing e�ort required in comparison with the solutions at lower Mach numbers.
Both systematic grid adaptation and multigrid algorithm have been found to be necessary in
preliminary calculations. In parallel, we intend to pursue multigrid solutions in order to re�ne
the results at all Mach numbers shown herein in order to achieve satisfactory convergence before
embarking upon data probing and global instability analysis.
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14 V. Theo�lis

4. Global Linear Instability Theory

(a ) Small-amplitude disturbances superimposed upon a steady laminar 
ow

Linear instability theory considers the ampli�cation of small-amplitude perturbations super-
imposed upon a steady laminar so-called basic 
ow. In its most general form any 
ow quantity
is decomposed into an O(1) component denoted by Qb and an O(") perturbation term denoted
by Qp according to

Q(x; y; z; t) = Qb(x; y; z) + "Qp(x; y; z) exp 
t+ c:c: (4.1)

The vectors Qb = (��; �u; �v; �w; �p)T and Qp = (�̂; û; v̂; ŵ; p̂)T respectively denote the basic and
disturbance �elds, both of which are nonperiodic three-dimensional functions of space. Taking
"� 1 and substituting (4.1) into the governing system of equations the O(1) basic-
ow related
terms are subtracted out, themselves taken to satisfy the governing equations (2.1) at this order.
Linear terms of O(") are retained while higher-order terms in " are neglected. An eigenmode
Ansatz in time is permissible on account of the independence of the coe�cients of the linearised
system of equations on time and complex conjugation is considered in (4.1) since both 
 and
the disturbance eigenfunctions Qp may in general be complex, while both Q and Qb are real. On
the other hand, the O(1) basic 
ow terms, including second spatial derivatives thereof, form the
variable coe�cients of the linear instability problem; the quality of the results of the instability
problem critically depends on the quality by which the O(1) terms are prescribed. We term
the analysis based on (4.1) a three-dimensional linear instability analysis. The study of three-
dimensional linear disturbances satisfying (4.1) can currently only be accomplished by a DNS for
Q, in which spatial derivatives are calculated in a decoupled (usually parallel) manner and either
the linearised or the full nonlinear system of governing equations is marched in time until a regime
of exponential ampli�cation or decay of perturbations is identi�ed and results for the temporal
ampli�cation rate of disturbances 
 are obtained through @Q=@t in the DNS signal. A point
that should be stressed here regards the interplay of steady basic 
ow and three-dimensional
global eigenmodes, namely that the very existence of a steady laminar three-dimensional basic
state Qb suggests that all three-dimensional global linear disturbances of the 
ow are stable.
Consequently, the performance of a global linear analysis by numerical solution of the eigenvalue
problem, besides being intractable by current hardware technology, may be of modest interest
from a physical point of view; the strength of a DNS-based instability analyses then is its ability
to address nonlinear 
ow instability. Instability analyses of one-dimensional basic compressible

ows that utilise DNS have a somewhat longer history (Erlebacher and Hussaini 1990, Pruett
and Zang 1992) than linear analyses of two- and three-dimensional basic states which are slowly
emerging (Pruett and Chang 1998; Zhong 1998, 1999).
Certain classes of basic 
ows may be taken to be homogeneous in one spatial direction while

the other two directions are resolved. Speci�cally, if

@=@z � @=@x and @=@z � @=@y; (4.2)

holds in the basic 
ow problem, then the Ansatz

Q(x; y; z; t) = Qb(x; y) + "Qp(x; y) exp if�z � 
tg+ c:c: (4.3)

can be considered for linear disturbances superimposed upon Qb. In this case the linear in-
stability analysis may proceed either by means of DNS in a manner conceptually analogous
with that used for the instability study based on (4.1) or by recasting the linearised system
of equations as a partial-di�erential-equation based eigenvalue problem. In a temporal frame-
work the objective becomes the determination of 
 and the associated amplitude eigenfunctions
Qp = (�̂; û; v̂; ŵ; p̂)T given a periodicity length Lz in the homogeneous z spatial direction which is
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associated with the real wavenumber parameter � through � = 2�=Lz . Here Qp = (�̂; û; v̂; ŵ; p̂)T

are again three-dimensional functions of space but in contrast to those in (4.1) they are periodic
in z. Prerequisite for the analysis in either a DNS or an eigenvalue problem framework is the
existence of a steady (or time-periodic) laminar two-dimensional state Qb(x; y). The results of
the two approaches are identical as far as the leading instability eigenmode is concerned, while
the eigenvalue problem has the additional merit over DNS of being able to provide details of the

ow eigenspectrum which are di�cult either to obtain or to identify in the DNS. We term the
analysis based on Ansatz (4.3) a two-dimensional linear instability approach, while on account
of the inhomogeneity of more than one spatial directions in both the basic 
ow problem and
that of the corresponding linear theory, the instability theories based on either (4.1) or (4.3) are
termed global linear analyses.
By contrast to the global analyses, consideration of two spatial directions as homogeneous and

their consequent resolution by Fourier series leads to the classic local linear instability theory, in
which the so-called parallel-
ow approximation is made for the basic 
ow, such that

@Qb=@x� @=@y; @Qb=@z � @=@y: (4.4)

The corresponding decomposition becomes

Q(x; y; z; t) = Qb(y) + "Qp(y) exp if�x+ �z � 
tg+ c:c: (4.5)

We term the local linear analysis based on (4.5) an one-dimensional analysis. The analogon
of Ansatz (4.5) in a circular cone geometry is

Q(r; �; z; t) = Qb(r) + "Qp(r) exp ifn� + �z � 
tg+ c:c: (4.6)

where r denotes the radial, � the azimuthal and z the downstream direction and n is taken
to be an integer. While a DNS is also possible and indeed common practice as far as nonlinear
instability analysis of compressible 
ows is concerned (e.g. Pruett and Zang 1992) an one-
dimensional linear instability analysis is e�ciently performed by means of numerical solution of
the ordinary-di�erential-equation based generalised eigenvalue problem which results when (4.5)
is substituted into the governing equations, the resulting system is linearised and terms of O(")
only are retained and solved for.
A local linear instability analysis is the �rst to be considered from a physical point of view

and the most straightforward to perform as far as numerical solutions of the eigenvalue problem
are concerned. Mack (1969, 1984) presented excellent summaries of the early work which led
to the discovery of instability modes particular to compressible 
ow while Malik (1991) has
discussed alternative numerical methods for the accurate and e�cient solution of the ODE-
based linear eigenvalue problem. Owing to the numerical challenges presented by the global
linear analyses, the vast majority of linear instability work performed to-date is con�ned within
the framework of the local approach based on (4.5). The one-dimensional basic 
ow Qb(y) is
obtained using approaches of di�erent degrees of sophistication, based on numerical solutions of
the boundary-layer, the Thin-Layer- or the Parabolised-Navier-Stokes equations (e.g. Kimmel et
al. 1999). Within the framework of an inviscid one-dimensional linear instability analysis either a
consistent approach is taken, typically in open systems, in which an inviscid steady laminar basic

ow forms the variable coe�cients of the linear eigenvalue problem or a non-rational approach
is followed, typically in wall-bounded 
ows, in which viscosity is retained in the basic but not
in the disturbance equations. On the other hand, within the framework of the two-dimensional
linear instability analysis which forms the target of the present investigations, a steady laminar
two-dimensional 
ow, i.e. a basic 
ow consisting of all three velocity components, density and
pressure, all of which are functions of two spatial coordinates, must be provided.
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16 V. Theo�lis

(b ) Comments on the quality of the steady laminar basic 
ows

As far as the basic 
ows Qb necessary for the analyses are concerned, short of resorting to
DNS, these are obtained by means of approaches consistent with the subsequent linear instability
analysis performed. Boundary layer (Mack 1969, Duck 1990, Karabis et al. 1999) and Parabolised
Navier-Stokes (PNS) solutions (Kimmel et al. 1997, 1999) have been obtained, as well as solutions
delivered by Navier-Stokes solvers appropriate for aerodynamic calculations (Dietz and Hein
1999). In all cases crucial for the success of the subsequent instability analysis is the accuracy by
which the 
ow�eld is described. Speci�cally, second derivatives of 
ow quantities in the radial
direction must be accurately provided in the basic 
ow, a result straightforward to achieve in the
context of boundary-layer but nontrivial in the context of PNS or Navier-Stokes computations.
Indeed, in the elliptic cone problem of interest here, the basic 
ow issue is far from having been
resolved in a satisfactory manner, with not only di�erent approaches (e.g. boundary-layer vs.
Navier-Stokes) but also di�erent calculations within the same approach delivering results for the
same con�guration which are in substantial disagreement with each other (Kimmel et al. 1997).
The implications for any type of subsequent linear instability analysis of discrepancies in the
basic 
ow are evident.
Furthermore, regarding a global instability analysis an additional constraint is posed by the

number of discrete points on which basic 
ow information can be provided so that the instabil-
ity analysis may be performed within computationally a�ordable limits. In other words, what
is necessary is a basic �eld Qb of highest quality on as low a number of points as possible. This
requirement is typically ful�lled by employing numerical methods of high formal accuracy, typ-
ically spectral (Canuto et al. 1987) or compact �nite-di�erence schemes (Visbal and Gaitonde
1998; Gaitonde and Visbal 1999). Experience with both instability analyses and DNS comparing
spectral and high-order compact �nite-di�erence methods has shown that either discretisation
delivers satisfactory results, although the compact �nite-di�erence methods methods typically
require three-times the number of discretisation points per spatial direction in order to match
the accuracy of the spectral methods (Theo�lis 1998b). In the context of the coupled spatial
discretisation of two spatial directions a spectral method may thus be preferable.
However, in compressible 
ow the issue of existence and location of shocks must be considered

in conjunction with linear instability analysis. Instability analyses based on the decomposition
(4.5) have to-date typically been performed on the assumption of exclusion of shocks from
the computation domain. This assumption must be viewed critically in the context of one-
dimensional compressible linear analyses, where two types of instabilities are known to exist, the
compressible analoga of the Tollmien-Schlichting instabilities of incompressible 
ow (Tollmien
1929) and so-called Mack-modes particular to compressible 
ow (Mack 1969). Both types of
eigenmodes decay rapidly outside the boundary layer but at a di�erent rate, with the Mack
modes penetrating deeper into the free-stream than the TS-like instabilities. In the case of conical
geometries inviscid analysis has revealed the existence of instabilities the eigenfunctions of which
are of oscillatory nature with their rate of decay being a nonlinear function of the respective
eigenvalue (Duck 1990, Shaw and Duck 1992). The consistency of the results of such analyses
has to be veri�ed a posteriori by comparison with the shock location at speci�c 
ow conditions.
For both local and global linear analyses the condition must be ful�lled that the shock position
is well beyond the boundary-layer edge, such that either homogeneity of the perturbations or
asymptotic boundary conditions based on the existence of realisable free-stream conditions may
be imposed. These considerations have led to the identi�cation of the two alternatives for the
calculation of laminar steady-state basic 
ows in the present work, a shock-capturing scheme
based on one variant of the AUSMDV method (Wada and Liu 1994) and a shock-�tting approach
based on DNS (Zhong 1998). On account of satisfactory experience gathered with the former
scheme on a related problem (Hein et al. 1999) the AUSMDV scheme was chosen.
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5. The Generalised Rayleigh Equation

(a ) Two-dimensional inviscid global linear analysis

Returning to the global instability problem, substitution of (4.1) into (2.1) leads to the lin-
earised three-dimensional compressible continuity, Navier-Stokes and energy equations. In super-
sonic 
ow Mack (1969) has shown that the essential physical one-dimensional linear instability
mechanisms may be well-understood from an inviscid analysis point of view, viscosity moder-
ately modifying the quantitative results but not their qualitative trends. Here we discuss the
inviscid linearised system �rst, as well as possible simpli�cations which make the global linear
instability problem tractable from a numerical point of view. The assumption of a steady basic

ow

@��

@t
=
@�u

@t
=
@�v

@t
=
@ �w

@t
� 0 (5.1)

leads to the three-dimensional inviscid linearised disturbance equations, in symbolic form
written as

A3dQp = B3d
@Qp

@t
: (5.2)

As has been mentioned, the discretisation of the linear operators A3d and B3d, in which
the three-dimensional basic 
ow is used as the variable coe�cients, by means of an eigenvalue
problem in which all three spatial directions are treated in a coupled manner is impractical with
current hardware technology and uninteresting from a physical point of view, since the existence
of a converged three-dimensional steady-state solution is synonymous with stability of all three-
dimensional global 
ow eigenmodes. In order to proceed with the analysis the simpli�cation is
made that the basic 
ow is independent of one spatial direction, say z, y i.e.

@��

@z
=
@�u

@z
=
@�v

@z
=
@ �w

@z
=
@�p

@z
� 0: (5.3)

This permits the introduction in (5.2) of eigenmodes for the disturbance quantities in z and
t, such that

Qp(x; y; z; t) = Q̂(x; y) exp i(�z � 
t) (5.4)

and results in a linearised system of the form

A2dQ̂ = 
B2dQ̂: (5.5)

where Q̂ = (�̂; û; v̂; ŵ; p̂)T are the two-dimensional amplitude functions of the three-dimensional
perturbations Qp(x; y; z; t). The entries of A2d and B2d may be found in Appendix A. As it
stands, the linearised system (5.5) o�ers no numerical simpli�cation over the incompressible
primitive-variables formulation discussed by Theo�lis (1998c); indeed, the existence of an ad-
ditional equation further aggravates the already large memory and runtime requirements for
numerical solution of the partial-di�erential-equation based eigenvalue problem. If a complex
shift-and-invert is performed in order for one, instead of two matrices appearing in (5.5) to be
stored, in excess of O(1:5Gbytes) of storage for the resulting matrix are necessary; an interesting
window of its eigenvalues may be calculated by Krylov subspace iteration methods at a cost of
approximately one CPU hour of supercomputing time at a single 
ow condition. As a matter of
fact, the solution of the compressible viscous global linear instability eigenvalue problem requires
the same amount of computing e�ort as the inviscid problem (5.5) so that solution of the viscous
problem may be preferable from the point of view of consistency of the basic 
ow and the global
instability analysis approaches.

y Attention is drawn to the fact that the homogeneous direction is denoted by z in this section, and does not refer / is
not to be confused with the coordinate system used on the elliptic cone
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(b ) Further simpli�cations

Several simpli�cations of the system of inviscid linear disturbance equations are o�ered by a
basic 
ow which possesses a single velocity component, that in the direction of the wavenumber
vector. Physically, this situation is realisable by considering zero-angle-of-attack 
ow over the
elliptic cone. The system (5.5) then becomes

i� �w�̂+ (��Dx + ��xI)û+ (��Dy + ��yI)v̂ + i���ŵ = i
�̂ (5.6)

i��� �wû+ p̂x = i
��û (5.7)

i��� �wv̂ + p̂y = i
��v̂ (5.8)

�� �wxû+ �� �wyv̂ + i��� �wŵ + i�p̂ = i
��ŵ (5.9)

(
�pDx + �pxI)û+ (
�pDy + �pyI)v̂ + i�
�pŵ + i� �wp̂ = i
p̂: (5.10)

A �rst simpli�cation o�ered by (6.9-5.10) in comparison with (5.5) is that the former may be
written as a real eigenvalue problem, requiring half the storage and computing time to solve in
comparison with the latter problem. This fact may be seen clearly by eliminating �̂; û; v̂ and ŵ
from (6.9-5.10), which results in

Lp̂+

��
�px

�p

�
��x
��

�
�

2� �wx

[� �w � 
]

�
p̂x+

��
�py

�p

�
��y
��

�
�

2� �wy

[� �w �
]

�
p̂y+

 
��[� �w � 
]2


�p

!
p̂ = 0 (5.11)

where L � Dxx +Dyy � �
2;Dx = @=@x and Dy = @=@y. This is the compressible counterpart

of the Rayleigh equation within the framework of two-dimensional linear instability, in which
the (Mach-number related) terms arising from compressibility are grouped in brackets. The
incompressible analogon of (5.11) has been discussed by Hall and Horseman (1991) in the context
of inviscid secondary instability of G�ortler vortices.
From a numerical point of view it may be seen that the major di�erence between the incom-

pressible and the compressible two-dimensional Rayleigh equations is that the former constitutes
a linear while the latter is a cubic eigenvalue problem in 
 (in temporal) or in � (in spatial)
global linear theory. The nonlinearity in the eigenvalue might lead to using an iterative method
for the solution of (5.11). In classic one-dimensional inviscid linear instability analyses (Mack
1969) one deforms the path of integration into the complex plane with a uniquely determined
contour indentation; however, this uniqueness is lost in the context of inviscid global linear
calculations and the issue of the correct integration path in analyses in which two complex spa-
tial coordinates have to be taken simultaneously into account is far from having been resolved
(Duck, personal communication). A direct solution algorithm, on the other hand, requires use of
a companion matrix approach (Bridges and Morris 1984; Theo�lis 1995) which results in a dis-
crete problem whose size equals that of numerical solution of three equations. This is the second
simpli�cation o�ered by the two-dimensional Rayleigh equation in comparison with (6.9-5.10),
namely the savings of two out of �ve equations, which results in a compressible two-dimensional
global eigenvalue problem which is actually less expensive than viscous incompressible global
linear instability in primitive variables (Theo�lis 1998c).
The third simpli�cation that the existence of a single basic velocity component permits is

the possibility to impose symmetries in the seeked disturbance solutions. Symmetries have been
imposed in order to tackle the incompressible two-dimensional linear instability problems in
a rectangular duct (Tatsumi and Yoshimura 1990) and in the in�nite swept attachment-line
boundary layer (Lin and Malik 1996). In the case of hypersonic 
ow over an elliptic cone the
instability problem could be addressed in the context of numerical solutions in one quadrant
alone, resulting in a matrix of size sixteen times smaller than that quoted earlier as necessary
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for solution of the incompressible global linear instability problem in primitive variables. Such
savings o�ers much more 
exibility regarding good resolution of the global eigenfunctions in
comparison with the full problem based on (5.5) and greatly facilitates parametric studies,
albeit only in one of the physically interesting cases, that of zero-angle of attack 
ow. In order
to address 
ow oncoming obliquely to the axis of symmetry of the elliptic cone the full problem
(5.5) must be addressed and this is done best in the context of a consistent viscous calculation.
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6. On numerical residuals and physical instabilities in steady-state 
uid 
ow
calculations

The preceding discussion repeatedly refers to the interplay between the existence of a steady-
state solution of the equations of motion and ampli�cation of global eigenmodes of this solution.
Our concern here is with the identi�cation of the origin and classi�cation of the di�erent qualita-
tive forms which the numerically obtained transient solution assumes, when a DNS is performed
in order to recover a steady-state solution of the system of equations governing 
uid 
ow motion.
For reasons of feasibility of the related partial-derivative eigenvalue problem we restrict the dis-
cussion to the recovery of two-dimensional steady basic states. Within the unifying framework of
the extension of the linear instability theory of Tollmien (1929) to nonparallel two-dimensional
steady basic states, residuals encountered in the simulation as the latter approaches convergence
are either identi�ed as or associated with the least damped of the two-dimensional global linear
eigenmodes of the steady-state 
ow. The inability to converge to a steady-state is shown to be
linked with the global linear 
ow eigenmodes approaching a neutrally stable state and interact-
ing nonlinearly. With the origin of the residuals established, an algorithm is presented which
permits recovery of the converged steady-state solution from transient data at substantially less
computing e�ort compared with that necessary for the integration of the system of equations
until convergence. Nonparallel linear instability theory of the three-dimensional eigenmodes of
the converged two-dimensional steady-state may also be used to quantify the di�erences between
the results of two- and three-dimensional DNS. Rather than remaining within the framework of
the elliptic cone we use the well-documented two-dimensional incompressible lid-driven cavity

ow as a demonstrator of these ideas.

(a ) The problemacy with residuals

A steady-state solutionQb of the two-dimensional incompressible continuity and Navier-Stokes
equations which describe 
ow in a prescribed two-dimensional domain � bounded by @� is sought
numerically. A plethora of numerical approaches for the accurate and e�cient integration of
either the steady or the unsteady equations of motion exists (e.g. Kim and Moin 1985) so that
this problem may be considered solved in principle. However, in performing a time-accurate
integration of the equations of motion one observes that, depending on the values of parameters
such as the 
ow Reynolds number, in the limit of large time either a steady-state solution is
obtained (e.g. Briley 1971) or unsteady, sometimes periodic, motion sets in (e.g. Pauley et al.
1990; Goodrich et al. al. 1990). The �rst question arising is what type of physical information is
not considered by solving the steady as opposed to the unsteady equations of motion and what
is the physical interpretation of the critical conditions beyond which the steady and unsteady
formulations deliver di�erent results. Both physical and numerical experience suggest that at low
Reynolds numbers the two formulations may be used interchangeably. For example, essentially
identical results with those of Ghia et al. (1982) and Schreiber and Keller (1983) have been
obtained by a multitude of subsequent investigators who used the time-dependent equations of
motion to describe 
ow in the square lid-driven cavity at Reynolds numbers up to Re = 104. On
the other hand, the question of existence of a steady-state solution delivered by the unsteady
version of the equations of motion at Re = 104 has been recently re-opened (E and Liu 1996)
while it is well known that Hopf bifurcations exist in both the aspect-ratio two singular lid-
driven cavity at Re < 5000 (Goodrich et al. 1990) and its regularised square counterpart at
Re � 104 (Shen 1991). Consensus exists that at high Reynolds numbers the unsteady formulation
is capable of delivering physics inaccessible to the steady version of the equations of motion;
however, the origin of the di�erences between the results of the two formulations is presently
not understood in a satisfactory manner. This is an alternative way of posing the �rst question,
namely what are the unsteady e�ects that manifest themselves at high Reynolds numbers?
The next question arises from the very concept of two-dimensionality. The results of numerical

Contract No. F61775-99-WE049



Basic 
ows on an elliptic cone and their global linear instability 21

solutions of the three-dimensional analoga of the incompressible continuity and Navier-Stokes
equations are in most cases in substantial qualitative and quantitative disagreement with their
two-dimensional counterparts (Burggraf 1966) relegating two-dimensional DNS to the realm
of academic interest. Within the scope of two-dimensional solutions being of interest three-
dimensionality of physical space could be addressed by considering the 
ow to be independent
of the third spatial direction. Homogeneity in this third direction could, in turn, be discussed in
the context of a three-dimensional simulation, nonperiodic in the same two spatial directions as
the two-dimensional one and periodic in the third. Advances in both algorithms and hardware
and, not least, a considerable amount of knowledge on the di�erences between two- and three-
dimensional numerical simulation results lead one to employ a DNS algorithm for 
ow with two
nonperiodic and one periodic spatial direction (e.g. Spalart 1988) in the founded expectation that
a three-dimensional so-called 'spatial' DNS is the only means capable of capturing all physical
phenomena at a certain Reynolds number. The second question which may be posed at this point
regards the origin of the di�erences between the results of such two- and three-dimensional direct
numerical simulations. Associated, one may ask whether there exists an alternative means to
spatial DNS for the description of the origins of the three-dimensional phenomena encountered.
The objective of the present e�ort is to put both questions within the uni�ed framework of

nonparallel linear instability of the steady state Qb. With the aid of the well-studied lid-driven
cavity 
ow example we demonstrate the intimate link between numerical residuals in steady-
state 
uid 
ow calculations and linear two-dimensional eigenmodes of the converged steady state
Qb. In the next section 6 (b ) we present theoretical arguments, �rst analysing the behaviour of
numerical residuals near convergence towards the steady-state solution from a numerical point
of view. Subsequently we discuss solutions of the partial derivative eigenvalue problem governing
linear instability of nonparallel two-dimensional steady-state 
ows, which shed light on residuals
from a physical viewpoint. With the origin of residuals established from a physical point of view
we construct and present an algorithm which permits recovery of the converged steady-state
solution from transient results of the time-marching procedure, the latter taken well before
convergence. In section 6 (c ) we present results of application of the algorithm. First, the link
between the results of nonparallel linear instability theory and di�erent types of behaviour of
numerical residuals in the DNS is demonstrated in this section and the aforementioned questions
are answered. Subsequently, examples of recovery of the converged steady-state from transient
data and assessment of the substantial savings in the computing e�ort materialised by use
of the proposed algorithm are presented in this section. Closing remarks on the far-reaching
implications of the present �ndings are made in section 6 (d ) where suggestions for the extension
of the analysis presented to compressible 
ow and 
ow with three nonperiodic spatial directions,
such as that on the elliptic cone, are made.

(b ) Theory

(i) On residuals and the phenomenology of their behaviour

While in an computation based on the steady system of equations governing 
uid 
ow motion,
such as that used for the basic 
ows on the elliptic cone presented in the previous section,
residuals are viewed as departure from the steady state which have to be eliminated in an
e�cient manner by a speci�c solution algorithm (e.g. multigrid), in a time-accurate integration
one may view transients as solutions of the equations of motion at every time-step and attempt
to attach physical signi�cance to characteristic patterns of their behaviour. By contrast to the
previous sections here we concentrate on a time-accurate integration of the unsteady equations
of motion and monitor the behaviour of residuals, de�ned as the di�erence between the transient
solution and the converged steady state, in 
ow regimes where the latter exists. Physical space
is three-dimensional; without loss of generality we may take the Cartesian coordinates x and y
to be de�ned on � while z denotes the third spatial coordinate in the direction of �. Along the
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�rst two coordinates the velocity vector has components u and v, while pressure is denoted by
p. The equations of motion are marched in time t until q = (u; v; p)T, the transient solution,
converges to Qb. Assuming that the latter exists and keeping the domain � unchanged, the
following qualitative observations are made.
First, at any Reynolds number Re at which Qb exists, close to convergence the residuals

decay exponentially in amplitude. Second, re�nement of the discretisation of the domain � at
constant Re results in convergence of the rate at which the residuals decay. Third, the (converged)
rate of decay of residuals is a function of the 
ow Reynolds number; as Re increases residuals
decay slower and the associated time of integration of the equations of motion until convergence
increases. Fourth, on occasion, the residuals decay at a speci�c constant rate for a number of
decades before this rate of decay changes to a di�erent constant value at which residuals further
decay until convergence. Fifth, systematically increasing Re, instead of monotonic convergence
of residuals an oscillatory behaviour of q in the neighbourhood of Qb is observed. Ultimately, a
value of Reynolds number is reached past which no Qb exists. At �rst sight the existence of a
physical mechanism which uni�es such diverse patterns of behaviour of the numerical solution
seems unlikely.

(ii) A numerical point of view on the behaviour of residuals near convergence

However, it is straightforward to provide an explanation of the �rst observation on the be-
haviour of residuals, which also provides a handle to the link between numerical residuals and
physical 
ow instabilities. We assume that the solution q is close to converging to the sought
two-dimensional �eld Qb = (�u; �v; �p)T such that it may be decomposed into the latter and small
two-dimensional residuals ~q2D = (~u2D; ~v2D; ~p2D)

T superimposed upon it, according to

q(x; y; t) = Qb(x; y) + " ~q2D(x; y; t); (6.1)

with "� 1. We next substitute the decomposition (6.1) into the continuity and Navier-Stokes
equations and assume that the steady-state solution satis�es the equations of motion at O(1),
such that it may be subtracted out of the resulting system at this order. Subsequently, based
on the smallness of the amplitude of the residuals, we linearise about Qb and rearrange the
system at O(") such that the vector of residuals represents the unknowns; terms of O("2) are
neglected. Since the coe�cients of the resulting linear system of equations for the determination
of ~q2D at O(") are independent of time t we may introduce an eigenmode decomposition in this
coordinate, according to

~q2D(x; y; t) = q̂2D(x; y) e
�t (6.2)

with q̂2D = (û2D; v̂2D; p̂2D)
T. The physical signi�cance of the parameter � will be discussed

shortly; from a numerical point of view it represents the rate at which the residuals ~q2D decay in
the neighbourhood of Qb. For simplicity we present only the real part of the admissible solutions
of (6.2) although it is clear that both q̂2D and � may, in general, be complex while ~q2D is always
real. Convergence of the solution q towards Qb may be monitored by reference to either the local
behaviour of the solution q at a position (x0; y0) on � or by monitoring a suitably de�ned global
criterion such as the energy contained in the residuals ~q2D; alternatives have been discussed by
Theo�lis (1998a). Here we follow the �rst approach and recover the parameter � by monitoring
the solution at two time-levels, t � �t and t, where �t may but need not be the time-step in
the numerical solution algorithm. Combining (6.1) and (6.2) it follows that the time-behaviour
of the solution may be monitored by

� = ln[qt=qt��t]=�t � d ln[qt]=dt; (6.3)

where

qt = jq(x0; y0; t)�Qb(x0; y0)j: (6.4)

Contract No. F61775-99-WE049



Basic 
ows on an elliptic cone and their global linear instability 23

The approximation in (6.3) holds as equality in the case of linear dependence of ln[qt] on time
t. Decay of residuals is indicated by � < 0. A �rst statement is thus in place without reference
to a particular 
ow, through the analytical result that an exponential decay of residuals near
convergence should be observed as a consequence of the separability of the linearised system of
equations for the determination of residuals in time.

(iii) A physical point of view based on nonparallel linear instability theory

Explanation of the further observations made in section 6 b (i) requires calling upon an
extension of the classic linear instability theory proposed by Tollmien (1929), which describes
the behaviour of small-amplitude disturbances superimposed upon an one-dimensional steady-
state basic pro�le, into a new theory which is concerned with small-amplitude perturbations
superimposed upon a steady two-dimensional �eld. In so doing, the many and often questionable
assumptions related with the so-called parallel-
ow approximation are relaxed and the linear
instability of nonparallel basic states may be analysed. The penalty to be paid in resolving two
spatial dimensions simultaneously is the need for numerical solution of a partial-derivative-based
eigenvalue problem instead of the straightforward ordinary-di�erential-equation-based system of
the Orr-Sommerfeld and Squire equations (Drazin and Reid 1981). One of the early successes
of the nonparallel two-dimensional linear instability analysis was the discovery of inviscid short-
wave instability of two-dimensional eddies by Pierrehumbert (1986) while the �rst viscous linear
analysis in two non-periodic spatial dimensions known to us is the work of Lee et al. (1989) on
the instability of 
ow in a rectangular enclosure under the in
uence of gravity and temperature
gradient. More recent viscous analyses, in step with modern developments in algorithms and
hardware, have been presented by Theo�lis (1998c).
We re-interpret the transient solution q in three-dimensional physical space as one composed

of small-amplitude three-dimensional perturbations ~q = (~u; ~v; ~w; ~p)T superimposed upon Qb =
(�u; �v; �w; �p)T, the latter again taken to be two-dimensional. Linearisation about Qb is permissible
on account of the smallness of perturbations compared with the steady-state Qb and the resulting
system for the determination of ~q is separable in both t and z on account of the steadiness and
the two-dimensionality of the basic 
ow Qb. Eigenmodes are introduced in these directions such
that

~q(x; y; z; t) = q̂(x; y) ei[�z�
t] + c:c: (6.5)

with q̂ = (û; v̂; ŵ; p̂)T and ŵ being the disturbance velocity component in the z-direction.
Complex conjugation is introduced in (6.5) since ~q is real while all three of q̂; � and 
 may be
complex. In the framework of a temporal linear nonparallel instability analysis used presently
we write the linearised system in the form of an eigenvalue problem for the complex quantity 
,
while � is taken to be a real wavenumber parameter describing an eigenmode in the z-direction.
The real part of 
 is related with the frequency of the instability mode while its imaginary part
is the growth/damping rate; a positive value of 
i � Imf
g indicates exponential growth of the
instability mode ~q in time t while 
i < 0 denotes decay of ~q in time. In the present framework
the three-dimensional space comprises � extended periodically in z and characterised by a
wavelength Lz in this direction which is associated with the wavenumber of each eigenmode, �,
through Lz = 2�=�.
The system for the determination of 
 and q̂ takes the form of a complex nonsymmetric

generalised eigenvalue problem
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[L� (Dx�u)] û� (Dy�u)v̂ �Dxp̂ = �i
 û; (6.6)

�(Dx�v)û+ [L� (Dy�v)] v̂ �Dyp̂ = �i
 v̂; (6.7)

�(Dx �w)û� (Dy �w)v̂ + Lŵ � i�p̂ = �i
 ŵ; (6.8)

Dxû+Dy v̂ + i�ŵ = 0 (6.9)

subject to appropriate boundary conditions on @�. The linear operator

L = (1=Re)
�
D2

x +D
2
y � �2

�
� �uDx � �vDy � i� �w

with Dx = @=@x, D2
x = @2=@x2, Dy = @=@y and D2

y = @2=@y2. Comparison of (6.1-6.2) and
(6.5) reveals that the two formalisms are related in the limit �! 0. However, ŵ is not taken a
priori to vanish within the framework of nonparallel linear instability; three-dimensionality of
physical space is preserved and the existence of a two-dimensional steady-state solution Qb is
the result of ~q! 0 as t!1. The comparison of (6.1-6.2) and (6.5) highlights two further key
ideas. On the one hand,

residuals acquire the physical interpretation of one of the linear eigenmodes which pertain
to the steady-state Qb and have � = 0;

on the other hand,

the rate of decay of the residuals � is nothing but the damping rate 
i of this linear pertur-
bation,

as delivered by numerical solution of the partial-derivative eigenvalue problem (6.6-6.9). An-
other question naturally arising concerns the physical behaviour of the system when the least
stable member of the linear eigenspectrum which pertains toQb and has � = 0 becomes unstable.
The answer is clearly that

the existence of an unstable (� = 0)�eigenmode is mutually exclusive with the ability to
obtain a converged Qb.

From the point of view of the global linear instability theory based on the partial derivative
eigenvalue problem (6.6-6.9) the unsteady behaviour of two-dimensional 
ow may be related to
(� = 0)�eigenmodes approaching conditions of neutral stability and interacting nonlinearly.
The answer to the second question posed in section 6 (a ) may now also be obtained without

reference to a speci�c 
ow example. The existence of a steady-state Qb in a 2D numerical
simulation is synonymous with the fact that all (� = 0)�eigenmodes of the 
ow have 
i < 0.
Modes having � 6= 0, on the other hand, may be either growing or decaying linearly. In case

i < 0 8 �, a three-dimensional numerical simulation performed at some parameters in a three-
dimensional domain de�ned by � and an arbitrary periodic extent Lz in the z-direction will
deliver identical results for a converged Qb compared with that of a two-dimensional simulation
performed at the same parameters in the domain �. The situation changes in case a bracket of
wavenumbers � 2 [�1; �2] exists which corresponds to unstable modes. The largest wavenumber
�2 de�nes a length Lz2 = 2�=�2; if the three-dimensional simulation is performed with Lz < Lz2

again no di�erence is to be expected between its result for Qb and that of a two-dimensional
simulation. Both will converge to the same steady-state solution Qb since all wavenumbers of
modes de�ned by an Lz constrained as above correspond to 
i < 0. However, if Lz > Lz2 at
least one mode in the three-dimensional simulation will be unstable, which will result in the
two- and three-dimensional simulations producing di�erent solutions.
We return to the observation of oscillatory behaviour of the residuals near convergence and
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di�erentiate between exponentially decaying residuals of either sinusoidal or apparently non-
linear nature. A linear decay of ln[qt] is a consequence of (� = 0)�linear eigenmodes being
stationary, i.e. having 
r � Ref
g = 0. However, other stable two-dimensional member of the
eigenspectrum of Qb need not correspond to stationary modes; damped travelling modes hav-
ing 
r 6= 0 will manifest themselves in the time-accurate simulation as residuals of sinusoidal
character the magnitude of which decays exponentially. On the other hand, the unambiguously
linear dependence of ln[qt] on t in the neighbourhood of Qb is the consequence of the existence of
a spectrum comprising modes which are clearly separated in parameter space from one another.
The co-existence of several two-dimensional eigenmodes of approximately the same damping rate
can lead to their nonlinear interaction and di�culty to observe a behaviour governed by non-
parallel linear instability theory. Comparison of power spectral analysis of the time-dependent
DNS signal and the results of the partial-derivative eigenvalue problem (6.6-6.9) may shed light
upon the two-dimensional eigenmodes involved in such a nonlinear interaction.

(iv) On the time of integration until convergence

Straightforward rearrangement of (6.1-6.2) delivers an estimate of the time necessary (under
linear conditions) for the least stable global mode present in the numerical solution to be reduced
from an amplitude A0 to a lower level A1, which may be calculated from

TA1=A0
= ln(A1=A0)=(�
i); (6.10)

where 
i is the damping rate of the mode in question. The worst case scenario in a time-
accurate integration is that the solution will be attracted by the least-stable global eigenmode
developing upon Qb and having � = 0 throughout the course of the simulation. An upper bound
for the time necessary for the steady-state to be obtained may then be o�ered by (6.10) in which

i is the damping rate of this mode. De�ning, for example, convergence as the reduction of an
O(1) residual by 10 orders of magnitude results in an integration time of T10�10 � 23=j
ij. This is
a conservative estimate since it is occasionally observed that other stronger damped eigenmodes
will come into play early in the simulation and the least-damped eigenmode will only determine
the late stages of the convergence process.
An associated point concerns the misconception which often exists that initialising the numer-

ical solution for Qb at some Reynolds number from a state which is 'close' to the one desired,
for instance using the converged solution at a somewhat di�erent Reynolds number, may reduce
the integration time in the context of a time-accurate solution. The present analysis shows this
to be a misplaced expectation. If there exists an O(1) deviation between the target solution and
its initial estimate, the deviation has to be reduced in magnitude during an integration of the
equations of motion for the length of time determined by the least damped two-dimensional
(� = 0)�eigenmode at the speci�c Reynolds number. It is this eigenmode of the 
ow and not
the initial state which determines the length of the integration time for Qb. The ideas dis-
cussed in the previous subsection on the other hand, lead to an algorithm application of which
may save substantial amounts of the integration time necessary for reduction of residuals to
machine-roundo� level.

(v) Recovery of the converged solution Qb from transient data

Having identi�ed small-amplitude residuals in the calculation as the least damped global two-
dimensional eigenmodes of the 
ow, it is now possible to utilise this information in order to
recover the converged steady-state solution from transient data, without having to pursue the
time integration of the equations of motion until convergence in time is obtained. Combining
(6.1), (6.2) and (6.5) one obtains

q(x; y; t) = Qb(x; y) + "
h
q̂r cos 
rt� q̂i sin
rt

i
e�t; (6.11)
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where q̂r � Refq̂g; q̂i � Imfq̂g and q̂ is one of the (� = 0)�linear eigenmodes in (6.5). It
should be stressed here that the following discussion is applicable to transient data for which
(6.11) holds, namely, solutions for which the entire time-dependence of the solution is exhibited
in the residuals; in other words, the present analysis is based on the self-consistent premises
that @Qb=@t = 0. Further, it is noted that q̂ may but need not be the least-damped member
of the eigenspectrum of Qb; the only prerequisite for the validity of the following discussion is
that the transient solution has reached a regime of exponential decay of residuals. A �nal point
is that the signal near convergence need not be composed of a single damped eigenmode as
(6.11) implies. However, the elements of the theory for the recovery of Qb from a signal being
composed of several stationary (
r = 0) and travelling (
r 6= 0) linearly damped eigenmodes
may be exposed by reference to (6.11) on which we focus our attention.
The calculation of Qb from transient data for q follows in two stages. First, elementary signal

analysis techniques deliver the results for 
r and �. Second, once 
r and � have converged in
time (6.11) may be used to calculate Qb. The circular frequency 
r is calculated from the the
period of oscillations in the time-signal of q which, in turn, is identi�ed by the maxima in the
signal. Independently, in order to calculate � we re-write (6.11) as

@3q

@t3
+ (�2 +
2

r )
@q

@t
� 2�

@2q

@t2
= 0: (6.12)

This expression may be evaluated at those times that @q=@t = 0 in the course of the time-
integration, i.e. at the same times that 
r is calculated. At these times the magnitude of � is
given by

� =
1

2

(@3q=@t3)

(@2q=@t2)

���
(@q=@t)=0

: (6.13)

In case 
r = 0, a monotonic dependence of @q=@t on t is usually observed from the beginning
of the calculation until convergence, with @q=@t = 0 only at convergence. In this case, the
magnitude of � may be calculated using

� =
(@2q=@t2)

(@q=@t)
: (6.14)

With � and 
r converged in time (6.11) may be written as a linear system of three equations
at three times t1 = t; t2 = t + �t and t3 = t + 2�t for three unknowns, Qb; q̂r and q̂i with
the transient solution qn � q(x; y; tn) known at these times. Simple algebra delivers the desired
converged steady-state solution Qb as

Qb =
q1 e

2��t � 2 q2 e
��t cos 
r�t+ q3

e2��t � 2 e��t cos 
r�t+ 1
: (6.15)

As an aside, the spatial structure (q̂r; q̂i) of the linear eigenmode q̂ may also be recovered to
within an arbitrary constant from the same linear system. Equivalently, if only the converged
steady-state solution is of interest, the expression

Qb =
1


2
r + �2

(
(
2

r + �2)q� 2�
@q

@t
+
@2q

@t2

)
(6.16)

may be used for the recovery of Qb from transient data for q and its �rst two time-derivatives.
Either of (6.15) or (6.16) may be used for the cases of residuals corresponding to stationary
(
r = 0) or travelling (
r 6= 0) single linear eigenmodes.
This idea may be extended to extract Qb from a DNS signal comprising several linearly
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decaying eigenmodes superimposed upon the steady-state solution,

q = Qb +
X
n

"n(qn;r cos 
n;rt� qn;i sin
n;rt)e
�nt: (6.17)

As an example, in the case of one stationary

"1q1;re
�1t (6.18)

and one travelling

"2(q2;r cos
rt� q2;i sin
rt)e
�2t (6.19)

linear disturbance being present in the signal, one may �rst extract information for the damp-
ing rate of the stationary mode from the signal itself and for the damping rate and frequency of
the travelling disturbance from the �rst time-derivative of the DNS signal for q. Subsequently,
one may solve the (2NxNy)� (2NxNy) system de�ned by writing

(�22 +
2
r )Qb + (�21 + �22 +
2

r � 2�1�2)"1q1;re
�1t =

@2q

@t2
� 2�2

@q

@t
+ (�22 +
2

r )q (6.20)

at two consecutive times t1 and t2 for Qb and "1q1;r, where Nx and Ny are the number of
points discretising the x� and y�spatial directions, respectively.
The accuracy by which 
r and � are determined depends on that by which the �rst three

time-derivatives of q are calculated; this, in turn, depends on the time-step in the calculation
and the number of �elds stored in order for backward di�erentiation formulae to be applied.
Since the time-step is controlled by CFL considerations, it is advisable to store a reasonably
high number of �elds in order for high accuracy of 
r and � and, in turn, of Qb to be obtained.
The calculations to be presented in what follows have been performed using �ve-point backward
di�erencing formulae on an equidistant grid (Abramowitz and Stegun 1956).
At conditions at which a steady-state solution exists most two-dimensional global eigenmodes

of the converged steady-state are heavily damped (�n = O(1) in equation (6.17)). Consequently,
if the time-integration of the equations of motion is pursued long enough, only a handful of
(� = 0)�global eigenmodes will survive and persist in the DNS signal. Clearly, it is the least
damped of the global instabilities that will determine the ultimate behaviour of the solution. In
determining whether one integrates the equations of motion until all but the least-damped of
the eigenmodes have subsided in order to apply (6.15) or (6.16) or one recovers Qb at an earlier
time from a signal in which a number of damped eigenmodes still persist one should take into
account the following factors.
First, the e�ciency of the speci�c DNS algorithm determines whether the cost of integrating

the equations of motion until convergence is acceptable at given 
ow parameters. The cost of
computing 
r; �; intermediate values of Qb and monitoring convergence of all these quantities,
possibly for several eigenmodes, must also be weighed against the straightforward approach of
pursuing the time-integration in the DNS until convergence. However, at all Reynolds numbers
studied in the prototype 
ow monitored both � and 
r of individual modes have converged within
the �rst quarter to half of the total integration time, making further time-integration super
uous.
While the integration time until convergence is short at low Reynolds numbers, on account
of large damping rates of the least-damped linear eigenmodes, at increasingly large Reynolds
numbers the magnitude of the damping rates becomes increasingly smaller and application of
the ideas exposed in this section becomes increasingly attractive in order for substantial savings
in computing e�ort to be materialised.
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(c ) Results for the square lid-driven cavity

An example 
ow in which these ideas may be illustrated is the classic lid-driven cavity
(Burggraf 1966). In its function as a testbed for numerous algorithms this 
ow has generated a
substantial amount of information which is relevant to the preceding discussion. Calculations for
Qb were performed using a two-dimensional spectrally-accurate algorithm for direct numerical
simulation of 
ow in nonperiodic geometries. The code is based on a real-space eigenvalue-
decomposition of the spectral collocation di�erentiation matrices extending ideas discussed by
Ku et al. (1988) and uses one member of the low-storage second-order accurate time-integration
schemes put forward by Spalart et al. (1991). A spectral algorithm was chosen in order for opti-
mal accuracy to be obtained on a low number of collocation points, the latter being dictated by
the maximum number of points on which numerical solution of the partial-derivative eigenvalue
problem is feasible using current computer technology. Solutions were obtained using Jacobi
polynomials for the spatial discretisation at resolutions depending on the Reynolds number and
ranging from 322 to 1282 spectral collocation points. The time-steps at the di�erent Reynolds
numbers were kept well below those dictated by the CFL condition in order for reasonable ac-
curacy of the results of � to be ensured. In view of our arguments being based on nonparallel
linear instability analysis and the well-known sensitivity of linear instability analysis results on
the accuracy of the basic 
ow, we �rst present a validation of both the basic 
ow and the partial
derivative eigenvalue problem.

(i) Validation studies

The accuracy of the converged steady-state solutions is �rst assessed by comparison with
the established works of Ghia et al. (1982) and Schreiber and Keller (1983). Converged basic
states have been calculated at several Reynolds numbers of which we present calculations at
Re = 400; 1000; 3200 and 4000, the �rst three obtained on 322 and the last on 482 Legendre
collocation points. At Re = 400 and 1000 both aforementioned works present results while
at the higher Reynolds numbers we compare our calculations individually with either work.
Interestingly, aside from the locations and maximum values of streamfunction and vorticity in
the primary vortex core, Schreiber and Keller (1983) analysed and presented their results in the
form of a converging series calculated by Richardson extrapolation. Comparisons are presented
in a twofold manner. The comparison of our calculations for the location and maxima in the
stream-function � and the vorticity �� with those of the reference works is shown in Table 3;
note that Schreiber and Keller (1983) de�ne � to have an opposite sign to that of Ghia et al.
(1982) and the present work. Although the overall agreement of all results is quite reasonable
marginal di�erences exist. These may be attributed to the di�erent grids used in all three works,
making an interpolation procedure necessary for detailed comparisons. To this end, we employed
a piecewise cubic procedure to transfer our results onto the (di�erent) maxima of the benchmark
calculations. Our interpolated values as well as the results of Ghia et al. (1982) and Schreiber
and Keller (1983) are presented in Table 4b, where the individual comparisons demonstrate a
substantially more satisfactory agreement of our calculations with both benchmark works at
low Re�values and especially with the Richardson extrapolated results of Schreiber and Keller
(1983) at the highest Reynolds number monitored.
It is well-known from comparisons of three-dimensional DNS results and one-dimensional

Orr-Sommerfeld-based linear instability analysis that details of the steady basic state strongly
in
uence the accuracy of the growth/damping rates of linear eigenmodes (Kleiser and Schumann
1980). The remaining di�erences between our results for the two-dimensional steady-states in
the lid-driven cavity and those of the benchmark works are next assessed in this light, from the
point of view of their in
uence on the global linear instability analysis results. Two solutions
of the partial derivative eigenvalue problem (6.6-6.9) for the lid-driven cavity exist, those of
Ramanan and Homsy (1994) (RH) and Ding and Kawahara (1998) (DK). These authors have
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presented linear instability analyses of the square lid-driven cavity 
ow which deliver consistent
results at low Re but predict di�erent critical Reynolds number values for linear ampli�cation
of three-dimensional perturbations. While individual comparisons are certainly possible, at high
Reynolds numbers neither work presents results for the two-dimensional global linear instabilities
which are central to the theme of the present paper. We therefore refrain here from discussion
of three-dimensional linear instability and the issue of a linear critical Reynolds number and
monitor a low value of the Reynolds number, Re = 200, at which both RH and DK present
results at � = 0.
Table 5 shows the tabulated values of RH, the graphically reproduced results of DK and our

solutions of the partial-derivative eigenvalue problem (6.6-6.9). The overall agreement of the
previous and the present instability analyses is quite good and all results indicate the experi-
mentally established fact of stability of the two-dimensional 
ow in the lid-driven cavity at this
Reynolds number (Burggraf 1966). Regarding the quality of the basic 
ow, it may be inferred
from the results of Table 5 that the basic states of both RH and DK and the present work are
practically identical for the purposes of the linear instability analysis that follows, at least at
the Reynolds numbers discussed.

(ii) Numerical residuals and (� = 0) linear eigenmodes in the square lid-driven

cavity

Figs. 26-30 show the convergence histories of the two-dimensional DNS at several Reynolds
numbers, with the qualitative behaviour of residuals discussed earlier observed. The convergence
of the rate of decay of residuals �, calculated using (6.3-6.4), is shown in Table 6 at Re = 100; 200
and 300. Also shown is the damping rate 
i of the least-damped eigenmode having � = 0 as
obtained by linear analysis, based on the partial-derivative eigenvalue problem (6.6-6.9), of the
converged steady-state Qb corresponding to each Reynolds number. The excellent agreement
between the two quantities leaves little room for doubt that numerical residuals may be identi�ed
as being the least-damped (� = 0)�eigenmode of the corresponding converged steady-state. It
is interesting to note here that such an agreement could not be obtained when we followed the
commonly-used procedure to terminate the steady-state calculation after a decay of residuals by
an arbitrarily de�ned seemingly adequate small number of orders of magnitude, say 5-6. Such
poorly converged in time basic states may be viewed as comprising a small unsteady component
the linear instability analysis of which is bound to deliver erroneous results. Further, it is worth
mentioning that the prediction (6.10) of the time necessary to integrate the equations of motion
until convergence in time is in line with the results of Table 6 and Fig. 26.
A clearly de�ned single value of � which determines the behaviour of residuals in the entire

course of the time-integration is a result of a two-dimensional eigenspectrum of Qb in which
the least damped two-dimensional (� = 0)�eigenmodes are stationary and well separated in
parameter space from their more stable counterparts. The situation becomes more intricate,
but still amenable to analysis, as the Reynolds number increases. Qualitative di�erences may
be found between the results of Figs. 26 and 27, although all simulations were started from
the same initial condition  = � = 0. While in both sets of results a short initial transient is
followed by exponential decay of residuals, in the �rst set this decay pursues at the same rate
for almost two decades while in the second two di�erent rates of exponential decay of residuals
are demonstrated. Inspection of the full spectra delivered by numerical solution of (6.6-6.9)
at each Reynolds number reveals that as the Reynolds number increases an increasingly larger
number of eigenmodes, both stationary and travelling appear in the eigenspectrum of Qb, having
damping rates approximately equal with that of the least damped eigenmode. As a consequence,
the numerical solution may initially be attracted to a di�erent than the least damped (� =
0)�eigenmode but its long-time behaviour will be determined by the latter disturbance. In both
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the Re = 500 and the Re = 1000 results of Fig. 27 the damping rates 
i of the least and the next
more stable mode are presented as symbols superimposed upon the curves used to determine �.
Yet another qualitatively di�erent behaviour is observed in the time-signal of q as a con-

sequence of a further increase of the Reynolds number. Alongside the least damped stationary
mode travelling disturbances appear, as seen in the results of Figs. 28-30. In all three �gures �(t)
assumes the form of exponentially decaying disturbances. However, while at the lowest Reynolds
number a clearly identi�able sinusoidal perturbation may be seen, having 
r � 0:97 � 0:01, a
barely perceptible deviation from a single oscillatory disturbance (
r � 0:954 � 0:012) may be
seen at Re = 5000; at Re = 7500 the solution demonstrates a behaviour which might be inter-
preted either as nonlinearity or as superposition of two exponentially decaying linear sinusoidal
disturbances having frequencies of 
r = 0:933 and 0:945. In order to analyse these observations
we pursue two independent paths. First, we perform a nonparallel linear instability analysis of
the converged steady state at each Reynolds number and monitor the least-stable member of
the eigenspectrum, which turns out to be a stationary linear eigenmode. Second, we perform
a discrete Fourier transform (DFT) of the DNS signal for q at Re = 2500; 5000 and 7500 and
compare the results with the eigenvalues of the travelling disturbances delivered by the linear
instability analysis.
Table 7 shows that a progressive deviation of the rate of decay of the residuals from the

damping rate of the least-damped eigenmode occurs as Re increases. This result suggests that
as the Reynolds number increases nonlinear interaction of the least stable eigenmodes may cause
a departure of the numerical solution from a behaviour predicted by nonparallel linear theory.
The role that the least stable members of the full eigenvalue spectrum play in the dynamics of
the 
ow may be inferred from the results of Figs. 31- 33. In Fig. 31 we present the DFT of the
DNS signal for  (0:5; 0:5) scaled by the maximum value of the spectral density. A single peak at
2�f � 1, albeit of somewhat wide support, dominates over two much smaller peaks at 2�f = 0
and 2�f � 2. Shown are also the results of (6.6-6.9) for 
r, arbitrarily placed on the vertical
axis for readability. An one-to-one correspondence between the peaks in the spectrum and the
values of 
r for stationary and travelling linear eigenmodes is clearly identi�able. Interestingly,
the width of the support of the peaks is found to be associated with the existence of more
than one eigenvalues in the partial-derivative eigenvalue problem spectrum, at both 
r � 1 and

r � 2. The origin of the existence of only harmonics of the �rst travelling eigenmode in the
full eigenvalue spectrum deserves further investigation. It should be noted here that a Krylov
subspace iteration method has been used for the solution of the partial-derivative eigenvalue
problem, which results in only a window of the eigenvalue spectrum being captured at any
single calculation. The number of converged eigenvalues recovered increases as the subspace
dimension increases. However, the neighbourhood of (
r;
i) = 0 has been well resolved in all
results presented here. A higher Krylov subspace dimension has been found to deliver additional
eigenvalues at higher frequencies.
While the agreement between the frequencies in the DNS signal and those of the nonparallel

linear analysis of the converged steady state is evident, the results of Fig. 31 do not provide
any information on the damping rates 
i of the disturbances whose frequency lies at 
r � 1 in
relation to those at di�erent frequencies. For our argument that the residuals in the calculation
may be identi�ed as the least stable of the two-dimensional (� = 0)�eigenmodes to be valid, the
damping rate of the linear disturbances at 
r � 1 must be lower than that of modes with higher
frequencies; this is a point to which we will return shortly. Qualitatively analogous results are
obtained at Re = 5000, seen in Fig. 32. Besides the slight shift towards lower frequencies, the
quantitative di�erence with the results at Re = 2500 is that the strength of the eigenmodes at

r � 2 is substantially larger than that of their counterparts at Re = 2500 in relation to the
strength of the respective modes at 
r � 1; this is the origin of the slight deviation from a purely
sinusoidal behaviour of the signal at this Reynolds number, seen in Fig. 29. Further, additional
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eigenmodes appear alongside the counterparts of those seen at Re = 2500 at 
r = 0 and 
r � 1
and new modes appear at 
r � 3 and 
r � 4. Finally, at Re = 7500, the pattern discovered at
the lower Reynolds number values qualitatively repeats itself, with the appearance of additional
modes at the same and new at high-frequencies; furthermore a new mode which does not �t in
the period-doubling scenario discussed also is present in the linear instability analysis results,
which the DFT reveals to be too weak to play an important role in the dynamics of the 
ow at
this Reynolds number value.
We return to the question of damping rates of the linear instability modes and present in

Fig. 34 the full spectrum of eigenvalues in the neighbourhood of 
 = 0 at Re = 2500; 5000; and 7500.
Results of signi�cance in this �gure are the following. First, as the Reynolds number increases
the 
ow becomes less stable to two-dimensional linear (� = 0)�eigenmodes. Second, in all three
Reynolds numbers the least stable modes are stationary disturbances. Third, perfect symmetry
about 
r = 0 may be observed in the results, as should be expected from the ability to refor-
mulate (6.6-6.9) as a real eigenvalue problem. Consistent with the DFT results of the signal
discussed earlier, the eigenmodes at 
r � 1 are less stable than their counterparts at higher fre-
quencies. Comparing, for example, the Re = 5000 eigenmodes (
r;
i) = (0:967;�0:0158) and
(
r;
i) = (1:921;�0:0319) one �nds that, if introduced at the same initial amplitude in the 
ow,
the second mode would be reduced by a given number of orders of magnitude in amplitude in
approximately half as long an integration time as that required for the �rst mode to experience
the same reduction of amplitude.

(iii) The critical Reynolds number of (� = 0)�linear disturbances

The preceding discussion leads to re-examination of the question of a critical Reynolds number
for linear growth of two-dimensional global instabilities in the square lid-driven cavity. Consistent
with well-established numerical solutions for the steady-state in this 
ow the nonparallel linear
instability analysis results of x 6 (c ) ii deliver a least damped stationary (� = 0)�eigenmode
which has a damping rate whose magnitude decreases with increasing Reynolds number. The
dependence of 
i on Re for this mode has been obtained at several Reynolds numbers and is
presented by symbols in Fig. 35. Analysis of the results for the damping rate of the least-damped
eigenmode as function of the Reynolds number delivers a curve-�t of the data by using


i = �109:071 Re�1:068: (6.21)

The curve de�ned by (6.21) is also shown in Fig. 35 by a solid line and has been found to
deliver reasonably accurate predictions of 
i at Re > 1000, where the calculated data may be
collapsed onto a single curve. The upper bound of the Reynolds-number range in which (6.21)
may be used with con�dence to predict the rate of decay of residuals and the associated time of
integration of the equations of motion until a steady-state solution is reached must be Re � 104,
a value below which a multitude of two-dimensional numerical solutions have demonstrated the
existence of converged two-dimensional states. In the framework of the current nonparallel linear
instability analysis this should manifest itself by Qb losing its stability in a linear framework
to ampli�ed two-dimensional perturbations having � = 0. However, as has been mentioned, the
existence of a converged steady-state solution is synonymous with all global eigenmodes of the

ow being stable. Another possibility is that the nonlinear interaction of two-dimensional global
neutrally-stable disturbances as the Reynolds number increases may be held responsible for the
observed inability to obtain a converged steady state solution. However, from (6.21) it follows
that 
i < 0; 8Re and the 
ow remains stable to all two-dimensional (� = 0)�eigenmodes. Two
aspects of this prediction should be stressed here. First, (6.21) is a curve-�t, at best valid up
to the highest Reynolds number used to produce it, Re = 7500. Second, the �lling-up of the
eigenspectrum and the associated nonlinear interaction of some of the least stable eigenmodes
as the Reynolds number increases, causes a systematic departure of the numerical solution for q
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from one determined by a single eigenmode of the nonparallel linear instability theory, as already
shown in the results of Table 7. On the other hand, the trend predicted by (6.21) is correct,
namely that the damping rates of two-dimensional global linear instabilities as Re increases
are exponentially small in magnitude. As such, an increasingly large number of global modes
may be considered neutrally stable at large Reynolds numbers; it is therefore likely that the
second scenario, namely nonlinear interaction of near neutrally stable two-dimensional global

ow eigenmodes is responsible for the observed loss of ability to obtain a steady-state solution
of the equations of motion at Re > 104 (f.e. E and Liu 1996).

(iv) Obtaining the converged steady-state solution from non-converged

transient data

The preceding discussion has demonstrated the association of residuals in two-dimensional
incompressible DNS calculations with the two-dimensional global linear instability modes of the
converged steady state. In this section we present examples of recovery of steady-state solutions
from transient DNS data using this information and the algorithm of x 6 (b ) v. We stress that
the applicability of the algorithm is intimately linked with the quality of the DNS and the initial
conditions used for the simulation, since both determine when, for what length of time and to
which linear eigenmode the time-accurate solution will be attracted in the course of the time-
integration. Here we present a discussion of some parameters which a�ect the results returned
by the algorithm in a few Reynolds number cases of those on which the algorithm was validated.
Results at Re = 100 and 1000 are shown in Table 8; at each Reynolds number we have

performed three sets of calculations, two direct numerical simulations and one solution of the
partial-derivative eigenvalue problem. Both DNS start from the initial condition  = � = 0
for the 
ow streamfunction and vorticity, respectively. On the one hand, the converged 'exact'
steady state Qb has been calculated by marching the equations of motion until such a time �t
that the residuals were reduced to machine-roundo� level, using 64-bit arithmetic and monitoring
convergence along the lines discussed in x 6 (c ) i. On the other hand, we have run another DNS
but marched the equations of motion until such a time ~t was reached at which a linear regime
was identi�ed by the convergence in time of 
r (when applicable) and �. The time-marching
was then interrupted and either (6.15) or (6.16) was solved for the respective 'estimated' steady-
state solution ~q. Finally, the partial-derivative eigenvalue problem (6.6-6.9) was solved for two-
dimensional disturbances (� = 0) developing uponQb and the eigenvalue spectrum pertaining to
the 
ow at each Reynolds number was recovered. The results were compared both in terms of the
magnitude of the relative discrepancy of the two DNS-obtained solutions �q � j(~q �Qb)=Qbj
and by monitoring the di�erence between � in the second set of DNS and 
i. Table 8 shows the
resolutions and time-steps used in several simulations, the time �t at which a converged steady-
state solution ( � ; ��) was obtained by DNS and the time ~t at which the damping rate of residuals
converged to within a prede�ned tolerance of relative discrepancy 10�6 between successive values
of � and the results for ~ were calculated. The value of � as well as the relative discrepancy
� ~ � j( ~ (~t)� � )= � j between the estimated and the exact steady-states is also shown; the level
at which the eigenmode being damped is present in the transient solution at time ~t may be
inferred from � .
The most signi�cant result of this table is the ratio ~t=�t. The case Re = 100 is typical of one

in which the least-stable eigenmode determines the transient behaviour of the DNS throughout
most of the time-integration process. With the results for � converging quite quickly, the desired
converged steady-state may be obtained at a time between a quarter at the coarsest and a �fth
at the �nest resolution of the time required by the time-marching algorithm for the residuals
to be eliminated. The result for � is only marginally a�ected by resolution and time-step; the
precise times at which � converges are a�ected by a small amount when re�ning the grid, with
the �nest resolution results converging earlier. In all cases use of the algorithm of x 6 (b ) v
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results in substantial savings compared with the otherwise necessary computing e�ort. The
spatial distribution of the di�erence � ~ , obtained using 48 collocation points to discretise each
spatial direction, is shown in Fig. 36; aside from the level of � ~ it is interesting to notice that
the discrepancy between the two solutions attains its maximum values in the centre of the cavity
and neither the singularity of the boundary conditions nor the corner vortices are manifested
in this quantity. The same qualitative behaviour was shown by all distributions of � ~ at lower
resolutions. An estimate of the converged solution ~ obtained by application of (6.15) at ~t = 15
may be found in Fig. 37, drawn as contours at the levels presented by Ghia et al. (1982). No
cosmetic post-processing of the results has been applied, with values presented at the collocation
points used. As it is to be expected by the results of Table 8 the agreement between ~ and the
result of Ghia et al. (1982) is remarkable.
At Re = 1000, � converges at approximately the same fraction of total integration time as in

the Re = 100 results. However, compared with the Re = 100 case where the discrepancy between
estimated and converged steady-states is three to four orders of magnitude smaller compared
with that shown by � , here only one order of magnitude di�erence between the maxima of � ~ 
and � is shown. Though small, the discrepancy between ~ and � is much larger than roundo�
level, implying that elimination of the least stable eigenmode from the time-dependent signal for
 at Re = 1000 does not su�ce to deliver the desired � . Another observation that may be made
by comparing the results of the Re = 100 and Re = 1000 cases is that at approximately the same
value of ~t=�t � 0:23, � ~ is higher by about an order of magnitude at Re = 1000 compared with
that at Re = 100. In searching for an explanation of this behaviour, three factors may be recalled.
First, convergence of � between successive values is a necessary but not su�cient condition for
the algorithm of x 6 (b ) v to deliver accurate results; the converged � should be compared
with the corresponding damping rates 
i in the least-stable part of the eigenspectrum of the
converged steady-state Qb. Second, as the Reynolds number increases the damping rates of all
global eigenmodes decrease, suggesting that increasingly longer integration times are necessary
in the case of a higher Reynolds number in order for the residuals to subside to the same level as
in a lower Reynolds number case. Third, the separation of the eigenvalues in the global spectrum
plays a signi�cant role in attracting the transient solution. A distinction must be made between
the early and the late stages of the transient behaviour of the DNS solution. In the latter it is
the least-damped eigenmode which must eventually be damped in order for a steady-state to
be obtained. During the early stages of the simulation, on the other hand, an arbitrary initial
condition may need a large number of damped global eigenmodes in order to be reconstructed. It
is, therefore, conceivable that at the early stages of the simulation a number of eigenmodes other
than the least-damped one are present in the transient solution. However, as time progresses,
increasingly more of these additional eigenmodes subside on account of their large damping
rates, to the e�ect that only the least-damped mode remains to determine the behaviour of the
residual. In other words, as time progresses, equation (6.17) reduces to (6.11) and the theory of
x 6 (b ) v focussing on a single damped eigenmode is applicable.
This conjecture may easily be put to test by simply permitting the time integration in the

second DNS to proceed beyond ~t while monitoring on the one hand � against 
i and on the
other hand � ~ in the process; the results may be found in Table 9. At both the lower and
the higher Reynolds number further integration of the equations of motion in time results in
all but the least-stable eigenmode being eliminated from the signal, as clearly demonstrated by
the progressive agreement between the damping rate of residuals � and the damping rate 
i of
the least stable (� = 0)�global 
ow eigenmode. Consistent with this result is the increasingly
improved accuracy by which the algorithm of x 6 (b ) v returns the estimate of the converged
steady state, as shown by the minimum and maximum values of � also cited. Interestingly, � 
may be recovered at the same low level of discrepancy in the two Reynolds number cases, f.e.
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O(10�8) at Re = 100; ~t=�t = :25 and Re = 1000; ~t=�t = :35, although the agreement of � with 
i

in the Re = 100 is about an order of magnitude better than that in the Re = 1000 case.

(v) Three-dimensionality as a consequence of amplified (� 6= 0) two-dimensional
linear eigenmodes

Finally, we turn our attention to the di�erences between two- and three-dimensional sim-
ulations on account of growing global linear instability modes. While the physics behind the
instability mechanisms is universal, the lid-driven cavity 
ow example serves again as a demon-
strator, with the di�erences between two- and three-dimensional numerical simulation results in
this 
ow being well established (Ku et al. 1987). Here we call upon the global linear instability
theory to discuss their straightforward explanation.
It is possible that while the (� = 0)�eigenmodes at a certain Reynolds number are damped

there exist unstable � 6= 0 global 
ow eigenmodes. Indeed, Ding and Kawahara (1998) have
shown that at Re = 950 the 
ow is unstable to modes having � 2 [�l; �h] with �l = 2�=Lh � 6:6
and �h = 2�=Ll � 8:3, while the domain of unstable wavenumbers systematically broadens in
both directions on the ��axis as the Reynolds number increases. There exist two possibilities of
introduction of three-dimensionality by means of DNS, either by considering spanwise periodicity
(pDNS) or by taking an aperiodic spanwise domain bounded by solid walls (aDNS). In the case
of pDNS the integration domain in the spanwise direction is de�ned through discrete integer
multiples of a fundamental wavenumber �0 such that Lz = 2�=(n�0); n = 1; 2; � � �, while in aDNS
Lz is a continuous free parameter. We discuss the two possibilities separately; in both cases we
restrict the discussion to simulations performed under initial and boundary conditions such that
linear instability mechanisms alone can drive nonlinearity.
If a three-dimensional pDNS is performed at Re = 950 and a spanwise length of the integration

domain Lz is chosen such that �0 > 8:3, that is Lz < 0:76, neither �0 nor any of the harmonics
of this global linear eigenmode can be ampli�ed. As a consequence one may predict, without
performing the three-dimensional simulation, that the latter will converge in time to the same
steady-state solution to which a two-dimensional (@=@z � 0) simulation converges. At the same
Reynolds number value, a choice of spanwise wavelength Lz 2 [Ll; Lh] = [0:76; 0:95] will result in
exponential ampli�cation and, eventually, turbulent 
ow on account of the unstable fundamental
wavenumber which is implicitly de�ned by a spanwise wavelength within this range. Finally, if
Lz > 0:95 two distinct situations may be obtained; with the fundamental wavenumber being
stable (�0 < 6:6), Lz may be taken such that none of its harmonics �t within the domain
of unstable wavenumbers at this Reynolds number, or an Lz may be chosen such that some
harmonic may be ampli�ed. While in the �rst case the two-dimensional steady-state solution
will be obtained, the result of a three-dimensional simulation in the second case will be transition
to a turbulent 
ow state. The case of an aDNS may be perceived as a special case of a pDNS,
since the homogeneous Dirichlet conditions imposed on the disturbance quantities are a subset
of those admissible in a periodic simulation. Here there exist two possibilities, depending on
whether Lz is smaller or larger than Ll. In the �rst case two- and three-dimensional simulations
will deliver identical converged steady-state solutions while in the second, which includes the
well-studied case of a cubic cavity, transition to turbulence should be expected on account of at
least one three-dimensional (� 6= 0) eigenmode having a wavenumber which �ts into � 2 [6:6; 8:3]
at this Reynolds number value. At higher Reynolds number values the situation is qualitatively
analogous for aDNS, with the dichotomy in wavenumbers being determined by the highest
neutrally stable wavenumber value. For pDNS, on the other hand, the analogous discussion to
that at Re = 950 applies at Lz < Ll and Lz 2 [Ll; Lh]. There exists a Reynolds number value,
though, at which �h � 2�l; in such a situation, if Lz > Lh there will always be some harmonic
of �0 which will correspond to an unstable mode having � = n�0 2 [�l; �h] which will be liable
to linear ampli�cation in the three-dimensional simulation and eventual departure of the three-
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from the two-dimensional numerical simulation results. The lid-driven cavity with its large body
of numerical results is but one example of demonstration of this behaviour; we are currently
applying these ideas in the compressible elliptic cone 
ow�eld.

(d ) Summary and Epilogue

The questions raised in x 6 (a ) may be answered within the unifying framework of global linear
instability analysis of a two-dimensional steady solution of the equations of motion. Aided by the
results of a numerically well-studied incompressible 
ow problem we were able to attach physical
signi�cance to the transient behaviour of two-dimensional time-dependent incompressible direct
numerical simulation results. What is commonly known as residual in the simulation is either
the least damped two-dimensional (� = 0)�linear eigenmode of the converged steady state
itself, or can be related to a small number of the least damped modes of the full eigenvalue
spectrum. As the Reynolds number increases, all global two-dimensional eigenmodes become
increasingly less damped, until a parameter value is reached beyond which no steady-state
solution exists. The physical information which is suppressed in two-dimensional simulations
based on the steady formulation of the equations of motion concerns the dynamical behaviour
of these two-dimensional linear eigenmodes. While unsteadiness should not be interpreted as
ampli�cation of the global linear (� = 0)�eigenmodes, on the simple grounds of the absence of a
converged steady-state upon which the latter would develop, the process leading to unsteadiness
is directly linked with the diminishing magnitude of damping rates of the global linear modes
as the 
ow Reynolds number increases, and the associated prevalence of nonlinearity.
When a steady-state solution exists, the insight gained from the association of the transient

behaviour in two-dimensional DNS with the results of the nonparallel linear instability anal-
ysis of the converged steady-state may be utilised in a threefold manner. First, an algorithm
may be constructed, to recover the steady-state solution from transient data taken well before
convergence, thus making further time-integration of the equations of motion redundant. The
algorithm, whose building elements were presented in x 6 (b ) v, is based on identi�cation of
the parameters pertaining to the linear eigenmodes which determine the transient behaviour of
the solution, namely the damping rate � and the frequency 
r of the least stable eigenmodes.
Results shown in x 6 (c ) iv on the example problem studied have demonstrated that up to
three-quarters of the otherwise necessary computing e�ort may be saved by application of the
theory of x 6 (b ) v, Second, the results of a nonparallel linear instability analysis of the con-
verged steady-state can be used as a quality test of the obtained solution, if the latter has been
obtained using a time-accurate solution approach. The rate of decay of the residual which ulti-
mately has to be damped in order for a converged steady-state to be obtained should equal the
damping rate of the least-stable eigenmode, if both numbers are substantially larger than zero
in magnitude. Disagreement of these two quantities indicates that the obtained steady-state still
contains an unsteady component which must be eliminated by further time-integration, or by
application of the ideas of x 6 (b ) v, Third, the time necessary for the reduction of residuals to
machine-roundo� level may also be estimated using nonparallel linear instability theory and is
inversely proportional to the damping rate of the least damped linear eigenmode. Using the value
of the damping rate obtained by extrapolation of data at lower Reynolds numbers one predicts
that in the square lid-driven cavity at Re = 104 a steady-state solution, if one exists, may be
obtained after integrating the unsteady equations of motion for time in excess of t = 4000 as
calculated from (6.10) and non-dimensionalised with the lid-velocity and the cavity length.
Well before the 
ow tends to lose its stability to two-dimensional linear eigenmodes, three-

dimensional (� 6= 0)�disturbances may be ampli�ed. Depending on the size of the observa-
tion window in the third spatial dimension, this ampli�cation of three-dimensional global dis-
turbances can explain the di�erences between the results of the two- and three-dimensional
DNS. Again, caution is warranted at this point not to confuse ampli�cation of the global, two-
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dimensional instabilities discussed here with solutions of the classic ordinary-di�erential-equation
based eigenvalue problem, which are incorporated in those of (6.6-6.9); both mechanisms may
provide ampli�cation, as the laminar separation bubble 
ow example has clearly demonstrated
(Theo�lis et al. 2000). Conversely, nonparallel linear instability theory provides a handle to
probe into the physics of the 
ow in (three-dimensional) physical space using two-dimensional
DNS results, before resorting to computationally intensive three-dimensional spatial DNS, at
least as far as the response of the 
ow to small-amplitude excitations is concerned. Solution of
the partial-derivative eigenvalue problem not only answers the question whether new physics is to
be learnt by performing the three-dimensional DNS at a given set of parameters but also provides
information on the physical mechanism which leads 
ow to deviate from two-dimensionality.
Based on the �ndings presented we may extend the discussion, in the form of proposed future

work, to both one and three nonperiodic spatial directions. Both an one-dimensional and a
three-dimensional steady-state solutionQb may be recovered by application of the ideas discussed
herein for the case of two nonperiodic spatial directions. In the case of an one-dimensional pro�le
Qb being sought by time-marching the equations of motion, taking two spatial directions as
periodic and resolving the third, the associated linear instability problem to be solved is based on
the classic system of the one-dimensional Orr-Sommerfeld and Squire linear instability equations
to which (6.6-6.9) reduce if the dependence of the basic 
ow on one of the two resolved spatial
directions, say x, is neglected such that this spatial direction may be taken as homogeneous as
far as the disturbance �eld is concerned. The linear mode associated with the residuals is the
least stable member of the spectrum obtained at � = � = 0, � and � being the wavenumbers
along the periodic spatial directions, x and z. It is well appreciated in this case that agreement of
the time-accurate simulation results and those of the one-dimensional linear instability problem
is a minimum simulation quality criterion (Kleiser and Schumann 1980; Canuto et al. 1987).
However, given current hardware capabilities, it is likely that an one-dimensional Qb will be
sought by a direct algorithm, rather than by time-marching the unsteady equations of motion.
An extension of the algorithm presented for the recovery of a two-dimensional Qb is also possi-

ble in the case of 
ow developing in three nonperiodic spatial directions. In this case the existence
of a steady-state Qb is synonymous with stability of all eigenmodes of the 
ow but current hard-
ware technology makes the solution of the corresponding three-dimensional partial derivative
eigenvalue problem impractical. On the other hand the ideas presented in section 6 (b ) v may
be used in order to recover a three-dimensional steady state once a regime of linear damping
of residuals has been identi�ed. This is of immediate interest in the case of the elliptic cone
geometry, where recovery of the converged steady laminar three-dimensional steady state by
application of the ideas presented in this section is currently being actively pursued.
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7. Discussion

This report commences presentation of our e�orts towards global linear instability analysis of
high-speed 
ow around elliptic cones. We have presented the framework within which the analysis
is envisaged to be performed and it has been argued that a global linear analysis in which all
three spatial directions are resolved is most e�ciently performed by DNS. Our ultimate concern
is with a global linear analysis in which two spatial directions are resolved while the third is
taken to be homogeneous. Strictly, no such homogeneous spatial direction exists in the 
ow over
an elliptic cone; however the dependence of the basic 
ow quantities on the directions normal to
the cone surface dominates over that along the cone generators and the global analysis may be
performed by resolving the former two and neglecting the third spatial direction when addressing
the eigenvalue problem. Instead of making this simplifying assumption when computing the basic

ow also, we have expanded the scope of our original intention to perform a two-dimensional
solution for the basic 
ow and have opted for a numerical solution of the full three-dimensional
problem. We chose the AUSMDV shock-capturing scheme for the discretisation of the convective

uxes in the equations of motion. The scheme was validated and its satisfactory performance in
resolving 
ow discontinuities was established before it was to the elliptic cone geometry.
Solutions of the steady three-dimensional equations of motion were obtained next. A half-

cone model was considered and symmetry was imposed on the solution, implying that all the
results obtained herein pertain to angle of bank � = 0. The elliptic cone was terminated by a
planar surface and the object was embedded into three-dimensional space which extended well
away from the surface of the elliptic cone object. Terminating the cone with a planar surface
resulted, as expected, in large 
ow separation at the base both in subsonic and supersonic 
ow.
In forthcoming basic 
ow calculations we intend to investigate a compound object composed of
the same elliptic cone and a half prolate spheroid/ellipsoid joined together so as to minimise the
curvature jump at base and thus reduce the intensity of separationy behind the cone.
Instead of devoting our e�orts entirely to the re�nement of the solution at a single set of

parameters, the approach taken in generating solutions of the equations of motion was the
creation of a database of initial conditions at di�erent parameters. This approach is expected to
assist subsequent global linear instability studies by providing appropriate attractors for �ne-
resolution basic 
ow calculations, as required. In order to ensure laminar 
ow we have kept a
constant low Reynolds number value Re = 103 and permitted variation of the angle of attack
and the 
ow Mach number. Subsonic 
ow solutions were obtained at M = 0:5; � = 10o and
M = 0:5; � = 20o while the same hybrid grid permitted recovery of supersonic solutions at
M = 2; � = 20o. At M = 4; � = 20o the sharpness of the gradients developing called for an
adaptation of the calculation grid, �rstly using the solution gradients to redistribute the available
gridpoints in three-dimensional space and subsequently increasing the number of points by some
30% compared with those at the lower Mach number values. The same trend has been observed
at preliminary studies atM > 4, where even higher resolutions to those used herein are expected
to be necessary.
We then turned our attention to the instability analysis of the recovered 
ow�elds. It has been

argued that a global three-dimensional linear instability analysis, in which a converged steady
three-dimensional basic 
ow forms the variable coe�cients of the partial-di�erential-equation
three-dimensional eigenvalue problem, is uninteresting from a physical point of view in its own
right. Instead, we have focussed our attention on the two-dimensional eigenvalue problem and
presented the equations governing alternative forms of inviscid global two-dimensional linear
analysis. In the limit of � = 0 we have derived the extension of the Rayleigh equation governing
global inviscid instability of compressible 
ows. In case the analysis of a 
ow�eld in which � 6= 0

y itself a source of global instability (Theo�lis et al. 2000)
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is of interest, it has been argued that no numerical advantage exists in considering an inviscid
analysis; the global instability studies is then best performed in a viscous framework.
Finally, in view of the intimate connection between global instability analysis and steady-

state solutions of the equations of motion, we have devoted substantial e�orts in identifying
residuals in time-accurate simulations as the least stable global eigenmodes of the converged
in time steady-state solution. This knowledge, independently veri�ed on the classic lid-driven
cavity, permits utilising global linear theory to construct a theoretically-founded convergence
acceleration technique towards a steady-state solution of the equations of 
uid 
ow motion. An
algorithm has been presented using which the desired steady state may be recovered by simple
algebraic operations on transient data taken well before the time-integration procedure has
converged. In the worked example substantial savings in computing e�ort have been materialised
compared with the otherwise necessary time-integration until 'residuals' are reduced to machine
roundo� level. Extension of this idea on a three-dimensional basic 
ow is currently underway
using the elliptic cone geometry. Results will be reported in due course.

Contract No. F61775-99-WE049



Basic 
ows on an elliptic cone and their global linear instability 39

Appendix A. The two-dimensional inviscid linear operators A2d and B2d

A2d =

0
BBBB@
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

1
CCCCA ; (A 1)

a11 = �uDx + �vDy + (�ux + �vy + i� �w)I
a12 = ��Dx + ��xI
a13 = ��Dy + ��yI
a14 = i���I
a15 = 0

a21 = �u2Dx + �u�vDy + (2�u�ux + �uy�v + �u�vy + i��u �w)I
a22 = 2���uDx + ���vDy + (2��x�u+ 2���ux + ��y�v + ���vy + i��� �w)I
a23 = ���uDy + (��y�u+ ���uy)I
a24 = i����uI
a25 = Dx

a31 = �u�vDx + �v2Dy + (�ux�v + �u�vx + 2�v�vy + i��v �w)I
a32 = ���vDx + (��x�v + ���vx)I
a33 = ���uDx + 2���vDy + (��x�u+ ���ux + 2��y�v + 2���vy + i��� �w)I
a34 = i����vI
a35 = Dy

a41 = �u �wDx + �v �wDy + (�ux �w + �u �wx + �vy �w + �v �wy + i� �w2)I
a42 = �� �wDx + (��x �w + �� �wx)I
a43 = �� �wDy + (��y �w + �� �wy)I
a44 = ���uDx + ���vDy + (��x�u+ ���ux + ��y�v + ���vy + 2i��� �w)I
a45 = i�

a51 = 0
a52 = (
�pDx + �px)I
a53 = (
�pDy + �py)I
a54 = i�
�pI
a55 = �uDx + �vDy + (
�ux + 
�vy + i� �w)I

and
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B2d = i

0
BBBB@
b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45
b51 b52 b53 b54 b55

1
CCCCA ; (A 2)

b11 = I
b12 = 0
b13 = 0
b14 = 0
b15 = 0

b21 = �uI
b22 = ��I
b23 = 0
b24 = 0
b25 = 0

b31 = �vI
b32 = 0
b33 = ��I
b34 = 0
b35 = 0

b41 = �wI
b42 = 0
b43 = 0
b44 = ��I
b45 = 0

b51 = 0
b52 = 0
b53 = 0
b54 = 0
b55 = I
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Left state (subscript L) Middle state (subscript M) Right state (subscript R)
Variable 0:0 < x < 0:1 0:1 � x � 0:9 0:9 � x � 1:0

� 1 1 1
u 0 0 0
p 103 10�2 102

Table 1. Initial conditions for the blast-wave problem

Contract No. F61775-99-WE049



Basic 
ows on an elliptic cone and their global linear instability 49

�x� 104 � u p T

x = 0
10 0.1624 0.0116 73.9501 0.0001
5 0.1580 0.0057 72.4378 0.0000
2 0.1531 0.0023 70.3934 0.0000
1 0.1507 0.0012 69.3482 0.0000
0.5 0.1493 0.0006 68.8574 0.0000

x = 1
10 0.3201 -0.0003 19.2320 0.0000
5 0.3170 -0.0002 19.2811 0.0000
2 0.3140 -0.0001 19.2941 0.0000
1 0.3124 -0.0000 19.2941 0.0000
0.5 0.3113 -0.0000 19.2939 0.0000

Table 2. Convergence of the wall values of the primitive variables in the blast wave problem
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Re = 400

Ghia et al. (1982) Schreiber and Keller (1983) present results

Primary  �0:1139 �0:1140 �0:1139
� 2:29469 2:281 2:29584

(x; y) (0:5547; 0:6055) (0:5571; 0:6071) (0:5535; 0:6054)

LL  1:42� 10�5 1:45 � 10�5 1:40 � 10�5

� �0:0570 �0:0471 �0:05685
(x; y) (0:0508; 0:0469) (0:0500; 0:0429) (0:0510; 0:0466)

LR  6:42� 10�4 6:44 � 10�4 6:41 � 10�4

� �0:4335 �0:394 �0:44802
(x; y) (0:8906; 0:1250) (0:8857; 0:1143) (0:8852; 0:1217)

Re = 1000

Ghia et al. (1982) Schreiber and Keller (1983) present results

Primary  �0:117929 �0:11603 �0:118902
� 2:04968 2:02600 2:068251

(x; y) (0:5313; 0:5625) (0:52857; 0:56429) (0:529654; 0:565018)

LL  2:31� 10�4 2:17 � 10�3 2:354097 � 10�4

� �0:36175 �0:302 �0:337187
(x; y) (0:0859; 0:0781) (0:08571; 0:07143) (0:081549; 0:077839)

LR  1:75� 10�3 1:70 � 10�3 1:744028 � 10�3

� �1:15465 �0:999 �1:097921
(x; y) (0:8594; 0:1094) (0:86429; 0:10714) (0:867381; 0:114469)

Re = 3200

Primary UL LL LR

GGS  �0:12038 7:27682 � 10�4 9:7823 � 10�4 3:14� 10�3

� 1:98860 �1:71161 �1:06301 �2:27365
(x; y) (0:5165; 0:5469) (0:0547; 0:8984) (0:0859; 0:1094) (0:81255; 0:0859)

present  �0:12181 7:11201 � 10�4 1:12331 � 10�3 2:82648 � 10�3

� 1:961154 �1:65335 �1:16397 �2:24381
(x; y) (0:51722; 0:54089) (0:0524; 0:8981) (0:08106; 0:12052) (0:82281; 0:084648)

Re = 4000

Primary UL LL LR

SK  �0:11237 1:12 � 10�3 2:80� 10�3

� 1:805 �1:067 �2:145
(x; y) (0:51875; 0:53750) (0:08125; 0:11875) (0:81875; 0:07500)

present  �0:12203 1:073 � 10�3 1:24736 � 10�3 2:95426 � 10�3

� 1:94949 �1:91234 �1:27899 �2:42032
(x; y) (0:51597; 0:53846) (0:06098; 0:90387) (0:08055; 0:12482) (0:81640; 0:07983)

Table 3. Location and value of the maxima of the primary and the lower-left (LL), lower-right (LR) and upper-left
(UL) secondary vortices in the steady state solution for � and �� at Re = 400; 1000; 3200 and 4000; comparisons
with Ghia et al. (1982) (GGS) and Schreiber and Keller (1983) (SK).
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Re = 400

Primary UL LL LR
 �  � 105 � 104 �

GGS �0:113909 2:29469 1:41951 �0:05697 6:42352 �0:4335
present �0:113989 2:29463 1:47210 �0:05711 6:42406 �0:4329

SK �0:11399� 2:2898� 1:45 �0:04710 6:440 �0:3940
present �0:113982 2:29184 1:40 �0:04766 6:373 �0:4030

Re = 1000

Primary UL LL LR
 �  � 104 � 103 �

GGS �0:117929 2:04968 2:31129 �0:36175 1:75102 �1:1547
present �0:118902 2:06839 2:37806 �0:36575 1:77911 �1:1486

SK �0:11894� 2:0677� 2:1700 �0:302000 1:700 �0:9990
present �0:118905 2:068234 2:3151 �0:312162 1:763 �1:0481

Re = 3200

Primary UL LL LR
 � 104 � 103 � 103 �

GGS �0:120377 1:9886 7:27 �1:71161 0:98 �1:06301 3:14 �2:27365
present �0:121777 1:9612 7:08 �1:73137 1:09 �1:00607 2:77 �2:25511

Re = 4000

Primary UL LL LR
 �  � 103 � 103 �

SK �0:12202� 1:9498� 1:1200 �1:0670 2:8000 �2:14500
present �0:122026 1:94960 1:2411 �1:1427 2:9228 �2:31944

Table 4. Comparison of the interpolated values of our solutions on the maxima presented by Ghia et al. (1982)
and Schreiber and Keller (1983). An asterisk denotes Richardson-extrapolated data in the latter work.
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RH DK present results
� 
r 
i 
i 
r 
i

1 �0:00 �0:34 �0:3183 �0:0000 �0:3297
2 �0:00 �0:23 �0:2248 �0:0000 �0:2267
3 �0:11 �0:29 �0:2924 �0:1073 �0:2954
4 �0:28 �0:30 �0:2969 �0:2810 �0:2956
5 �0:43 �0:34 �0:3431 �0:4260 �0:3404
6 �0:58 �0:39 �0:3893 �0:5821 �0:3844
7 �0:67 �0:41 �0:4073 �0:6733 �0:4013
8 �0:72 �0:45 �0:4637 �0:7232 �0:4587
9 �0:76 �0:54 �0:5504 �0:7622 �0:5473

Table 5. Comparison of the least stable eigenmode at Re = 200 against the results of Ramanan and Homsy
(1994) (RH) and the graphically (digitally) reproduced growth rate result of Ding and Kawahara (1998) (DK).
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Re

100 200 300

Resolution � � �

16� 16 -0.5404 -0.3248 -0.2865
24� 24 -0.5407 -0.3319 -0.2843
32� 32 -0.5409 -0.3318 -0.2842
40� 40 -0.5409 -0.3318 -0.2842


i -0.5410 -0.3319 -0.2845

Table 6. Numerical results for the rate of decay of residuals � as a function of resolution at di�erent low Reynolds
numbers. Also shown the result of numerical solution of (6.6-6.9) for the imaginary part of the eigenvalue 
i,
using the respective converged steady-state as basic 
ow.
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Re 
i
j
i��j

j�j
� 100

2500 -0.0253 1.2

5000 -0.0112 8.9

7500 -0.0093 17.8

Table 7. Numerical results for the damping rate 
i of the least stable (� = 0)�eigenmode at Re = 2500; 5000 and
7500 and its discrepancy in percentage terms from the rate of decay of residuals �.
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Re = 100

Resolution 16� 16 24� 24 32� 32
�t 0:01 0:01 0:005
�t 50:43 50:42 49:005
~t 12:71 12:79 11:07
�� 0:540246 0:540214 0:540876

max(� ~ ) 5:3(�8) 8:8(�7) 4:6(�6)

min(� ~ ) 3:6(�9) 7:9(�8) 5:1(�7)
max(� ) 3:4(�4) 3:5(�4) 1:0(�3)
min(� ) 1:5(�5) 1:2(�3) 1:6(�2)

Re = 1000

Resolution 24� 24 32� 32 40� 40
�t 0:01 0:01 0:01
�t 325:93 323:61 324:33
~t 77:82 77:53 77:81
�� 0:065808 0:065657 0:065336

max(� ~ ) 2:9(�6) 9:5(�5) 3:1(�5)

min(� ~ ) 4:9(�7) 3:2(�6) 3:3(�6)
max(� ) 3:7(�4) 3:6(�4) 2:5(�4)
min(� ) 3:7(�4) 5:1(�4) 3:3(�4)

Table 8. Recovery of � from transient data at Re = 400 and 1000 as function of resolution and time-step used in
the DNS. x(y) � x� 10y.
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~t
�t
� 100 max(� ) min(� ) j��
ij

j
ij
� 100

Re = 100

22:59 4:6(�6) 5:1(�7) 0.023
25:02 4:0(�8) 1:9(�8) 0.018
30:90 2:5(�9) 1:2(�9) 0.011
35:12 1:8(�10) 1:0(�10) 0.009

Re = 1000

23:99 3:1(�5) 3:3(�6) 3.97
25:02 1:3(�5) 1:5(�6) 3.35
30:23 2:1(�6) 1:2(�7) 0.65
35:02 1:5(�8) 5:8(�9) 0.24

Table 9. Recovery of Qb at several Reynolds numbers from transient data at times beyond that at which ! converges.
The discrepancy between � and 
i of the least stable eigenmode is also presented. Re = 100 run on a 322 grid;
Re = 1000 run on a 402 grid. x(y) � x� 10y.
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Figure 1. Sketch of the elliptic cone geometry.
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Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000

Figure 2. Global view of the grid utilised. Only the surface and far�eld discretisation are shown.

Contract No. F61775-99-WE049



Basic 
ows on an elliptic cone and their global linear instability 59

X
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Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000

Figure 3. Detail of the near-�eld discretisation of the elliptic cone surface and the symmetry plane, viewing
downstream the cone. The hybrid grid can be seen clearly on the symmetry plane.
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X Y

Z

Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000Frame 001  23 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.20000

Figure 4. Detail of the near-�eld discretisation of the elliptic cone surface and the symmetry plane, viewing
upstream the cone. The discretisation of the cone base is also seen in this plot.
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Figure 5. Two shock-tube problems solved by an AUSMDV 
ux-vector splitting. The primitive variables �; u; p
and T are presented for Sod's problem in the upper �gure and for Lax's problem in the lower �gure at times t = 2
and 1.3, respectively. In both cases a uniform grid with �x = 1=100 has been used.
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Figure 6. The solution to the blast wave problem at t = 0:38 obtained on a uniform grid with �x = 1=1000.
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Figure 7. Convergence history of the blast wave problem solution (upper) and detail of this result (lower).
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Figure 8. Isosurface of pressure at t = 2 in the two-dimensional Sod problem.
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Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000

Figure 9. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 10o; shown are contour lines
equidistributed between the minimum and maximum values of the x�wise velocity component u on the planes
x = 0:7 and y = 0.
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Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000

Figure 10. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 10o; shown are contour lines
equidistributed between the minimum and maximum values of the y�wise velocity component v on the plane
x = 0:7. The condition v � 0 is satis�ed on the symmetry plane on account of the symmetry imposed.
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Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.10000

Figure 11. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 10o; shown are contour lines
equidistributed between the minimum and maximum values of the z�wise velocity component w on the planes
x = 0:7 and y = 0.

Contract No. F61775-99-WE049



68 V. Theo�lis

u

170.289
143.066
115.843
88.6194
61.3963
34.1731
6.94999

-20.2731

u

170.289
143.066
115.843
88.6194
61.3963
34.1731
6.94999

-20.2731

Figure 12. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the x�wise velocity component u on the planes
x = 0:7 and y = 0.
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Figure 13. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the y�wise velocity component v on the plane
x = 0:7. The condition v � 0 is satis�ed on the symmetry plane on account of the symmetry imposed.

Contract No. F61775-99-WE049



70 V. Theo�lis

w

75.0256
64.041
53.0564
42.0718
31.0872
20.1026
9.11797

-1.86663

w

75.0256
64.041
53.0564
42.0718
31.0872
20.1026
9.11797

-1.86663

Figure 14. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 0:5; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the z�wise velocity component w on the planes
x = 0:7 and y = 0.
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0.800139
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Figure 15. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 2; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of � on the planes x = 0:7 and y = 0.
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206.477
169.362
132.248
95.1331
58.0184
20.9037

Figure 16. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 2; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the x�wise velocity component u on the planes
x = 0:7 and y = 0.
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v

158.098
135.222
112.345
89.4687
66.5923
43.7158
20.8393

-2.03717
-24.9137
-47.7901

Figure 17. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 2; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the y�wise velocity component v on the plane
x = 0:7. The condition v � 0 is satis�ed on the symmetry plane on account of the symmetry imposed.
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w

264.376
198.778
133.18
67.5825
1.98449

w

264.376
198.778
133.18
67.5825
1.98449

Frame 001  25 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.30000

Figure 18. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 2; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the z�wise velocity component w on the planes
x = 0:7 and y = 0.
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pressure
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270447
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201092
177974
154856
131738
108620
85502.1
62384
39266

Figure 19. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 2; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of p on the planes x = 0:7 and y = 0.
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Figure 20. A qualitatively self-similar 
ow�eld pattern of the z�wise velocity component w obtained on the
elliptic cone at M = 2; � = 20o.
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density

3.34737
2.92638
2.50539
2.08439
1.6634
1.24241
0.821419
0.400427

Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000

Figure 21. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 4; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of � on the planes x = 0:7 and y = 0.
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u

1141.51
982.964
824.421
665.879
507.336
348.794
190.251
31.7085

Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000

Figure 22. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 4; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the x�wise velocity component u on the planes
x = 0:7 and y = 0.
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v

272.482
216.581
160.681
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48.8809

-7.0192
-62.9193
-118.819

Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000

Figure 23. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 4; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the y�wise velocity component v on the plane
x = 0:7. The condition v � 0 is satis�ed on the symmetry plane on account of the symmetry imposed.
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w

465.439
392.779
320.119
247.458
174.798
102.137
29.4767

-43.1838

Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000

Figure 24. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 4; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of the z�wise velocity component w on the planes
x = 0:7 and y = 0.
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pressure
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708958
576838
444718
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180479
48358.6

Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000Frame 001  27 Oct 2000  Grid: elliptic_cone.grid, Pointdata: cone.pval.40000

Figure 25. An aspect-ratio A = 3 elliptic cone model at Re = 103;M = 4; � = 20o; shown are contour lines
equidistributed between the minimum and maximum values of p on the planes x = 0:7 and y = 0.
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Figure 26. Convergence history of stream function  (0:5; 0:5) against time (left) and slope of this curve (right).
Lower to upper curves, Re = 100; 200 and 300, respectively.
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Figure 27. Convergence history of  (0:5; 0:5) against time at Re = 500 (upper left) and its slope (upper right);
lower left and right, respectively, the corresponding results at Re = 1000. In both cases superimposed and denoted
by symbols are the eigenvalues of the two least stable stationary modes.
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Figure 28. The dependence of the function d(ln t)=dt on time t, showing the exponential decay of a single travelling
mode (
r � 0:97 � 0:01) superimposed upon the least damped exponentially decaying stationary disturbance at
Re = 2500.
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Figure 29. Re = 5000
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Figure 30. Re = 7500
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Figure 31. The correspondence of the frequencies of the damped linear (� = 0) two-dimensional eigenmodes of
the converged steady-states at di�erent Reynolds numbers and those obtained from discrete Fourier transforms
of the DNS signals. Re = 2500.
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Figure 32. Re = 5000
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Figure 33. Re = 7500
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Figure 34. The �lling up of the eigenvalue spectrum as Reynolds number increases; Re = 2500 (diamond), 5000
(square), and 7500 (triangle).
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Figure 35. The dependence of the damping rate 
i of the least damped two-dimensional eigenmode of the converged
steady-state at a Reynolds number on Re as predicted by the model (6.21) denoted by the solid line, and as
calculated by numerical solution of the eigenvalue problem (6.6-6.9) denoted by the symbols.
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Figure 36. The spatial distribution of the di�erence � ~ (x; y) � ~ � � at Re = 100 using Nx = Ny = 48 Jacobi
collocation points.
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Figure 37. An estimate of the converged solution ~ at Re = 100 obtained by evaluating (6.15) at t = 15 and
using Nx = Ny = 48 Jacobi collocation points. Iso-contours are drawn at the levels shown by Ghia et al. (1982)
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