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NEW DIRECTIONS IN 

MASK TRANSMISSION ENGINEERING 

A FINAL REPORT TO AFOSR/DARPA 

CONTRACT No. F49620-00-C-0032 

CAMBRIDGE HYDRODYNAMICS, INC. 

PO Box 1403 
PRINCETON, NJ 08542 

ABSTRACT 

The scattering of electromagnetic waves from complex object coated with lossy materials with 
negative and positive permitivity embedded in a layered medium is analysed via a new formulation, 
and a new set of algorithms to implement these formulations is introduced. This new technology is 
applied here to phase shifted photomasks. The results for various wavelengths and mask 
thicknesses have been considered carefully and are reported here. 

1. INTRODUCTION 

The problem of accurately computing the electromagnetic scattering from lossy, dispersive objects 
of complex shapes embedded in a layered dispersive medium has been outstanding for quite some 
time, despite the large range of potential military applications. These applications include the 
detection and identification of targets located under a foliage covered earth or airborne targets over 
the horizon. The difficulties associated with such problems in part originate from the need to model 
the shapes and inhomogeneities of the objects accurately while simultaneously keeping 
computational complexity to a manageable level. 

The classic finite-difference time-domain (FDTD) method and finite-element method (FEM) are 
inadequate for addressing the above mentioned difficulties. This is because FDTD requires a 
regular computational grid and is therefore not suitable for modeling curved surfaces accurately. On 
the other hand, FEM can model curved surfaces accurately, but requires the inversion of a large 
matrix, which is computationally expensive for large problems. 

For mask and wafer analysis, in part due to the periodicity of some structures like contact holes and 
in part due to features complexity, we have elected to employ a new formulation of the basic 
problem to enhance the necessary hybrid method for such complex problems. The "single integral 
equation" method was originally based on the scalar Green's function. We have reformulated the 
"single integral equation" method based on the dyadic Green's functions for the layered wafer 
substrate. This approach allows each feature on the wafer to be treated as a localized object 
embedded in a layered medium, resulting in a smaller total number of unknowns along the profile 
(or surface) of the embedded scattering object only. Furthermore, the dyadic Green's functions for a 



given layered structure, wavelength and periodicity need to be computed only once. The results are 
stored in interpolation tables for use on different feature shapes. This leads to a particularly efficient 
methodology for investigating the effect of change of the feature shape on the diffraction efficiency 
for fixed layered structure, wavelength and periodicity, presenting a very powerful tool for 
generating libraries for the desired analysis. 

The embedded object representing the photoresist feature under study behaves like a cavity 
trapping an oscillatory wave, enabling the generation of a resonance. This resonance expresses 
itself in various ways, such as a vanishing eigenvalue or a discontinuous derivative, leading to a 
potentially non-unique solution for some specific frequencies. The "single integral equation" can be 
formulated in terms of either the electric field or the magnetic field expression, the two 
formulations being completely equivalent in determining the fields. However, a unique solution of 
all frequencies, including the resonant frequencies of the embedded object representing the wafer 
feature under study, is obtained by employing a linear combination of the magnetic-field and 
electric-field expressions. 

We have demonstrated the formulation stability for all frequencies, as well as the potential pitfalls 
associated with naive coding ignoring this most subtle point. We demonstrate these considerations 
on several test pattern of photoresist structure. 

This report is organized as follows: 

1. In the remainder of this Section, a program flowchart and vertical versus horizontal critical 
dimension results are presented (numerical date, intensity plots, and aerial images). 

2. In Section 2, a basic formulation of the problem is presented. 
3. In the Appendix, a preprint of the paper, "Application of the Hybrid Finite-Difference 

Time-Domain Method to Modeling Curved Surfaces in Three-Dimensional Lithography 
Simulation" is presented for background on the present approach. 



PROGRAM FLOW CHART 

Read input parameters 
from disk file 

Get next angle of incidence 
from queue 

^ 
Set up computational mesh 
and initialize fields to zero 

1 Initialize lluygens surface 
excitation waveform 
Set n = 0 

n + 1 

Update magnetic-field nodes 
Apply lluygens surface 
excitation to magnetic field 

Update electric-field nodes 

Apply lluygens surface 
excitation to electric field 

Apply absorbing boundary 
condition to boundary nodes 

Update Fourier sums on 
Kirchhoff surface 

Have fields at test n~ints decay- 
ed to less than error tolerance? -No 

Yes 

Write Fourier sums on 
Kirchhoff surface to disk file 

^ 

I 
Read Fourier sums on 
Kirchhoff surface 

Compute far-zone field 
on entrance pupil 

Propagate field from 
entrance to exit pupil 

Propagate field from exit 
pupil to wafer plane 

Compute aerial image 

Write aerial image 
to disk file 

Is there another angle 
of incidence? 

ra 

1 

Compute partially coherent 
aerial image 



Vertical versus Horizontal CD 
Nominal CD = 157/2 = 78.5 nm 

Dark Field 

(Circular light)-Mask-QWP- 
Analyzer-QWP 

(Y light)-Mask-Analyzer-QWP 

CD Threshold CD Threshold 

Vertical line 78.5 nm 0.2114 78.5 nm 0.2198 

Horizontal line 79.1 nm 0.2114 72.4 nm 0.2198 
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Bright Field 

(Circular light)-Mask-QWP- 
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(Y light)-Mask-Analyzer-QWP 

CD Threshold CD Threshold 

Vertical line 78.5 nm 0.4524 78.5 nm 0.4501 
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Vertical versus Horizontal CD 
110 nm by 660 nm isolated feature 

193 nm wavelength 

Chromium Thickness = 85 nm 
Defocus = 0 

Circular TE TM- 

CD Threshold CD Threshold CD Threshold 

Vertical line 70.0 nm 0.3330 70.0 nm 0.3370 70.0 nm 0.3316 

Horizontal line 69.0 nm 0.3330 71.6 nm 0.3370 66.7 nm 0.3316 
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Chromium Thickness = 97 nm 
Defocus = 0 

Circular TE TM 

CD Threshold CD Threshold CD Threshold 

Vertical line 70.0 nm 0.3276 70.0 nm 0.3322 70.0 nm 0.3264 

Horizontal line 68.9 nm 0.3276 71.8 nm 0.3322 66.4 nm 0.3264 



Vertical versus Horizontal CD 
110 nm by 660 nm isolated feature 

193 nm wavelength 

Chromium Thickness = 85 nm 
Nominal CD = 70 nm 

Defocus = 0 

Circular TE TM 

CD Threshold CD Threshold CD Threshold 

Vertical line 70.0 nm 0.3334 70.0 nm 0.3370 70.0 nm 0.3316 

Horizontal line 69.5 nm 0.3334 71.6 nm 0.3370 66.7 nm 0.3316 
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Defocus = 100 nm 

Circular TE TM 

CD Threshold CD Threshold CD Threshold 

Vertical line 65.1 nm 0.3334 68.7 nm 0.3370 61.8 nm 0.3316 

Horizontal line 64.4 nm 0.3334 63.2 nm 0.3370 63.8 nm 0.3316 

Defocus = 200 nm 
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Vertical versus Horizontal CD 
190 nm by 1140 nm isolated feature 

248 nm wavelength 

Chromium Thickness = 100 nm 
Nominal CD = 140 nm 

Defocus = 0 

Circular Linear 
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Circular Linear 
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Defocus = 200 nm 

Circular Linear 

CD Threshold CD Threshold 

Vertical line 146.6 nm 0.2513 143.1 nm 0.2423 

Horizontal line 146.3 nm 0.2513 137.2 nm 0.2423 

Defocus = 300 nm 

Circular Linear 

CD Threshold CD Threshold 

Vertical line 135.8 nm 0.2513 129.6 nm 0.2423 
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Defocus = 400 nm 

Circular Linear 

CD Threshold CD Threshold 
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2. BASIC FORMULATION 

2.1. SCOPE OF WORK 

The work involves the numerical simulation of the effects of polarization on aerial-image quality in 
157-nm lithography. The finite-difference time-domain (FDTD) algorithm is being used to compute 
the electromagnetic field distribution in the near zone of a chromium photomask illuminated by a 
plane wave with arbitrary polarization and angle of incidence. The corresponding aerial image in 
the far zone is then being computed. The effects of partial coherence is being taken into account by 
incoherent superposition of the aerial images corresponding to different angles of incidence. 

2.2. INNOVATIVE CLAM 

Three innovative features distinguish our approach from other approaches: 
1. Oßiique incidence is handled by the use of a Huygens surface excitation, in which the exact 

numerical dispersion relations and numerical reflection coefficients for the finite-difference 
mesh are employed to compute the steady-state field distribution within the multilayered 
photomask blank, for each Fourier component of the incident pulse. 

2. A second-order accurate finite-difference updating equation for the electric field is used for 
the chromium region of the photomask structure, which is modeled by a plasma permittivity 
function. 

3. A near-to-far field transformation based on multilayered media Green's functions is used to 
compute the aerial image in the far zone from the field distribution in the near zone, without 
assuming periodic boundary conditions. 

The mathematical formulation of these innovative features is discussed below. 

2.3. MATHEMATICAL FORMULATION 

In this section, we discuss the mathematical formulation of the above innovative features of the 
software that is currently being developed for the simulation work. 

2.3.1 HUYGENS SURFACE EXCITATION 

In most existing FDTD software packages for lithography simulation, the excitation is applied to 
the uppermost surface of the computational domain only. Such an approach is strictly applicable 
only to normal incidence, since, in the case of oblique incidence, the excitation enters the 
computational domain from the sides also. In the general case, it is necessary to apply the excitation 
to all six sides of the computational domain, or, equivalently, to a Huygens surface completely 
enclosing the mask feature. 
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The technique of Huygens surface excitation was developed by Holland and Williams [1] for 
objects embedded in empty space. For lithography simulation, however, it is necessary to take into 
account the presence of the substrate, which in our case is the multilayered photomask blank 
extending essentially to infinity horizontally. Here, it is necessary to generalize Holland's method to 
take into account the multiple reflections of the incident plane wave inside the multilayered 
substrate. 

Although the propagation of a plane wave in a multilayered medium is a well-known problem in 
classical optics, one cannot apply the well-known results of thin-film optics directly to FDTD 
computation. The reason is that, in the finite-difference method, one deals with a discrete lattice 
space, rather than a continuous space on which the thin-film optics solution is based. Indeed, a 
plane wave traveling in a lattice space obeys a different dispersion relation, that is, has a different 
phase velocity, than one traveling in continuous space. Furthermore, the Fresnel coefficients for a 
lattice space are different from those for a continuous space. In order to generalize Holland's 
method to lithography simulation, one must first determine the correct dispersion relations and 
Fresnel coefficients for a multilayered lattice space. Furthermore, one must consider a plasma 
lattice space, since the materials used in 157-nm lithography can have negative real permittivity, 
that is, a refractive index n = nr + JK for which K > nr, which requires the use of a plasma 
permittivity function. 

2.3.1.1 DISPERSION RELATION FOR A PLASMA LATTICE SPACE 

The dispersion relation for a plane wave traveling in an ordinary (non-plasma) lattice space is well 
known. It is included here for reference: 

sin 2 I krAa sm 
+ (!*t) + sin2 (^) p,e\ sin m 

(Ax)2 {Ay)2 (Azi)2 (At)2 

where e\ > 0 is the permittivity of the ordinary dielectric medium. 

(1) 

The dispersion relation for a plasma lattice space, however, is not so well known. We have derived 
the following new result for a plasma lattice space with plasma parameters LOP and uc: 

sin2 (*f*)      sin2 (*fa)      sin2 (*«fa) 

(Ax) (Ay)2 

where 

(Az2y 
-—j——-sm{uAt) 

(Aty 

a0 + 
ai 

e(juj+uc)At _ I ,    (2) 

a0 

ai 

urAt 
1- 

,-i/cAt' 

UrAt 

cosh(fcA£) — 1 

{vcAty 

(3) 

(4) 
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The dispersion relations Eqs. (1) and (2) are used to determine the Fresnel coefficients for the 
interface between two dissimilar lattice spaces, as discussed in the next section. 

2.3.1.2 FRESNEL COEFFICIENTS FOR A PLASMA LATTICE SPACE 

Consider the interface between two dissimilar lattice spaces as shown in Fig. 1, where the region 
z > 0 is an ordinary lattice space with permittivity ei and the region z < 0 is a plasma lattice 
space with parameters OJP and vc. Let a plane wave be incident obliquely from the upper region. 
For simplicity, we consider the two-dimensional case, where the wavevector of the incident wave is 
(ky, kz) with kx = 0. In order to determine the Fresnel coefficients R and T for the interface, we 
assume the following forms for the electric and magnetic fields in the upper and lower lattice 
spaces, respectively: 

En      . 

( E"    4-1 \ 

E"    ^ 

HU~K 

(   Ay   \ /   -AiePk'lAil   \ 
ß ^(unAt+pkyAy+qk^Azx) _)_ ^ ß 

VW Vi 
upper region 

x   j(wnAt+pkyAy-qkziAzi) /g\ 

=   T 
( M\ 

B2 

V   1   / 

aj(umAt+pkyAy+qkz2Az2) (6) 

lower region 

where the coefficients A: and Bi are determined by the finite-difference field equations for the 
upper (i = 1) and lower (i = 2) lattice spaces, respectively. Also, kzi and kZ2 are determined by 
the dispersion relations Eqs (1) and (2), respectively. From Fig. 1, it can be seen that there is an 
electric-field node right at the interface 2 = 0. The electric fie'd Ä?p+i 0  at this node is given by 

neither Eq. (5) nor Eq. (6). Instead, we assume it to have the following form 

r-in _      p  j(uinAt+pkyAy) 
y,p+?fl (7) 

where F is another unknown. 

Altogether, there are three unknowns in the above problem, namely, R, T and F. To solve for 
these unknowns, one needs three equations. Two of these equations are the finite-difference 
updating equations 
for the magnetic-field nodes marked N\ and N2 in Fig. 1, respectively, 
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At At 
a(l + R)(ejujAt-l)   =   ^=-\A1e

ik^(l-Re-^Azi)-F}-^-B1(l + R) v > Az\ L v '        J     Ay 

x (e,'fc"Av - l)   , (8) 

\iT (e^At - l)   =   ^-e>"fcrfA22 (F - A2Te-jk*2Az2) - ^~TB2 (e
jk»Ay - l)   . (9) 

The third equation is obtained by apply Ampere's Law to the circuit encircling the electric-field 
node at the interface 2 = 0 and bounded by the magnetic-field nodes N\ and A^: 

l^ili^a) p» _ 1} + !2^£Ä! ^ +1} (a„ + —^L—) F 

- ej"AtAt [(1 + Ä) - Te-^2A22]   .  (10) 

Eqs. (8) tp..(10) allow the Fresnel coefficients R and T, as well as the interfacial unknown F, to be 
solved. The numerical results are illustrated in Fig. 2, which shows the computed coefficients for a 
uniform lattice spacing of Ay = Az\ = Az2 = A/15, which is the typical mesh spacing used in 
an FDTD simulation. Also shown in Fig. 2 are the Fresnel coefficients given by thin-film optics for 
continuous space. It can be seen that, at a mesh spacing of A/15, there are significant differences 
between the coefficients for the lattice space and and those for continuous space. To verify the 
correctness of the above formulation, we repeated the calculation for a uniform mesh spacing of 
A/100. For such a small mesh spacing, we expect the results for the lattice space to converge to 
those for continuous space. This is indeed the case, as shown in Fig. 3. 

The Fresnel coefficients for the lattice space must be separately computed by the above procedure 
for each of the several dozen Fourier components needed to characterize a finite-duration, pulse 
excitation. The corresponding multiply reflected waves of different frequencies inside the lattice 
substrate must afterwards be re-assembled to produce the correct time-domain excitation waveform 
at each point on the Huygens surface. 

2.3.2 SECOND-ORDER ACCURATE DISCRETIZATION FOR THE PLASMA REGION 

The plasma model of a dispersive medium was introduced by Luebbers, et al. [2]. However, the 
updating equation for the electric field given by these authors is only first-order accurate in time, 
due in part to the use of the rectangular rule for the convolution integral. In our implementation, 
however, the electric field is assumed to vary linearly with time between successive time steps and 
the resulting convolution integral is integrated exactly. This way, the following second-order 
accurate updating equation for the electric field has been derived [3]: 

E"+1   - 1 

1 + ^At2a0 

1 - l-u2
pAt2 (a0 + aie-^

At E" - l-u;2pAt2$n + — curl H"+^ 
2 €Q 

(11) 
where QQ and Q.\ are given by Eqs. (3) and (4), respectively, and the vector 3?n is defined as 
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n-1 

$"   =    53 ai (l + e-*"At) e~^mAt En"m , (12) 
m=l 

which can be computed recursively by 

&n   =   e~UcAt [ai (l + e-"eAf) E""1 + $n~1]   . (13) 

Numerical experiments have indicated that Eq. (11) is more accurate than the first-order accurate 
updating equation given by Luebbers, et al. [2] which is used in most existing FDTD software 
packages. 

2.3.3 NEAR-TO-FAR FIELD TRANSFORMATION 

An FDTL)..computation only gives the fields in the near zone of the mask feature. To obtain the 
aerial image in the far zone, one must extrapolate the near-zone fields to the far zone using the 
Kirchhoff integral representation. In most existing FDTD software packages, this is accomplished 
by integrating the fields over a horizontal surface lying just outside the photomask blank on the 
projection-lens side. However, since the photomask blank extends essentially to infinity 
horizontally, it would in principle be necessary to integrate over an infinite horizontal surface to 
compute the far-zone fields, which is clearly impractical unless the geometry is artificially 
truncated by assuming periodic boundary conditions, as is usually done. 

We have recently developed a near-to-far field transformation which does not assume periodic 
boundary conditions but yet requires only integration over a finite surface S, which we shall call 
the Kirchhoff surface, enclosing the mask feature of interest [4]. In this method, the 
electromagnetic vector potentials are expressed in terms of multilayered media Green's functions 
for the photomask substrate, 

A?>(r)   =   vo[ GE{T\T')-Ur')dS' , (14) 
.Is 

Aff(r)   =   eo ls\gM(r\T')-3m(v') + VCM(r\v')Jmz(T'^dS' , (15) 

where QE and QM are multilayered media Green's functions, 

&(r|r')   =   (™ + yy)Gl{T\Tl) + zKGl{r\r') + zyGE
zy{T\r') + mGE

zz{r\r') ,   (16) 

gM(r\r')   =   (^ + yy)G^(v\v,) + zXGz
4

x(v\r') + zyG^(r\v') + ZZGzi(v\v') .   (17) 

Using the technique of asymptotic evaluation of integrals, we have derived closed-form expression 
for the multilayered media Green's functions for the far-zone fields: 
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G*(r|r') 

Gi(rlr') 

Gfs(r|r') 

Gf,(r|r') 

G£(r|r') 

G^(rlr') 

GS(r|r') 

G^(rp) 

where 

7TE 

g-j'fco sin 0(x' cos cf>+y' sin 0) cog ß yj/TM ^     A 
gj'fcor 

47rr 
eJk0r 

47rr 

47rr 

     -j'fco sin S(i'cos </>+?/'sin </>)     tQ     TT/TE/fl     /\ 

47rr e(z')     " 

(18) 

e-jko,Ane(x>cos4>+v'sm4>)csc0COs<l> [w?E(6,z') - cos29 W™(Ö, z')] (19) 

e-ifcorine(*'«**+W'sin*)csc0sin0   [^TE(Ö,Z') -COS2öl^™(ö,2')l   (20) 

£U GfJrlr'l 

I e-i*o »in *(*'«**+„'sin«) cotöcos0    VK™(0, z') - WjE(9, Z) 

£^le-Jfcosine(x'cos<A+?/'s1n^)cot0sin^   [Ww™(0,z') - W/JE(0,z')' 

G&(r|r') 

A* (l - i?£M) f e>'^' + i?™e.7i(2d1-z0 ^ 0< z' < d. 

(21) 

(22) 

(23) 

(24) 

(25) 

.(26) 

W?b(M')   = 

7l (l + Ä™fiTMg2j7lrfl j   I    ^ + ÄTMJ gi[72(,'-rfl)+7lrfl]   ? ^ > dl 

7le0 (l + <E) f e^' - JRTEeJ-7i(2<i1-z') > 0 < z, < di 

W^(6,z')   = 

k0el (l + Ü$*R™e2™dl) \ (l - i&E) ^^^'-di)+Tirfi] , 2' > dl 

1 + .ft™ f eJ712' + ÄTEej7i(2d,-*') j 0 < z' < dx 

(27) 

(28) 

W„1M(M')   = 
1 - RQ1 

TM 

1 + <Mi?™e2^dl   I    (l - flTM) ei[-»(z'-d1)+7idi]   , z' > dl 

and c/j is the thickness of the chromium layer. 

(29) 

2.4. ALGORITHMIC IMPLEMENTATION 

In this section, we discuss how the mathematical formulation discussed in Section 3 has been 
implemented in computer code. 

For a given angle of incidence and polarization, the program reads in the geometry description 
contained in an input file and then proceeds to set up a finite-difference computational mesh and 
calculate the various parameters used in the updating equations for the electric and magnetic fields 
at each node. Next, the incident pulse waveform is decomposed into Fourier components. For each 
Fourier component, the dispersion relations in the various material regions are evaluated using Eqs. 
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(1) and (2). The results are substituted into the system of equations Eqs. (8) to (10) for each 
material interface in the multilayered photomask substrate. These equations are solved for the 
Fresnel coefficients R and T associated with that material interface. Using these coefficients, the 
steady-state field distribution in the photomask substrate for the particular Fourier component is 
computed and stored at all the points on the Huygens surface. This process is repeated for all the 
Fourier components of the incident waveform. Afterwards, the stored frequency reponse at each 
point on the Huygens surface is converted into a time-domain waveform by inverse Fourier 
transformation. This completes the initialization of the incident excitation on the Huygens surface. 

The program then enters the main FDTD time-marching loop. The fields in the entire 
computational domain are initialized to zero. At the start of the nth time step, the magnetic field 
components at all the magnetic-field nodes in the domain are updated to their values at time step 
n + \. The incident excitation for time step n + \ is then applied to the magnetic-field nodes on 
the Huygens surface. Next, the electric field components at all the electric-field nodes in the 
domain are updated to their values at time step n + 1. For electric-field nodes lying in the 
chromium-region of the photomask structure, the second-order accurate equation Eq. (11) is used, 
while for the remaining electric-field nodes, the standard FDTD updating equation is used. The 
incident excitation for time step n + 1 is then applied to the electric-field nodes on the Huygens 
surface. The nodes on the outermost boundaries of the computational domain have yet to be 
updated. An absorbing boundary condition (ABC) is needed for this purpose. Various ABCs are 
available in the literature, from simple but less accurate ones, such as the Mur ABC, to 
sophisticated and highly accurate ones, such as Berenger's Perfectly Matched Layer. In our code, 
we have used the first-order Higdon ABC, which has been shown to give accurate results provided 
that the mask feature under investigation is separated from the outermost boundaries by a distance 
of at least one wavelength. After updating the fields on the outermost boundaries using the Higdon 
ABC, the FDTD loop for the nth time step is completed. Before proceeding with the next time step, 
however, the discrete Fourier transform of the field at each node on the Kirchhoff surface S is 
computed recursively and saved. This way, upon completion of the FDTD loop for all the time 
steps, we shall immediately have available the steady-state response of the system at each point on 
the Kirchhoff surface, which has been used in the subsequent near-to-far field transformation. 

Since a pulse of finite-duration is used for excitation, the fields in the computational domain 
eventually decays with time. When the fields have decayed to a sufficiently low level, the FDTD 
time-marching loop is exited. The computed steady-state fields on the Kirchhoff surface are then 
written to an output file and the FDTD program terminates. Another program is executed to 
perform the near-to-far field transformation on the output of the FDTD program. The program 
computes the far-zone fields at selected points on the entrance pupil of the projection lens using 
Eqs. (14) to (29). Then, the fields on the entrance pupil are propagated to the exit pupil, and from 
there to the wafer plane, by using the vector aerial image model [5]. 

The above calculations is being repeated for different angles of incidence in order to simulate the 
effects of partial coherence. This process has been automated by the use of shell scripts to control 
program execution. It should also be pointed out that our data structure has been designed in such a 
way as to facilitate future upgrading of the FDTD algorithm used for this work to the more 
powerful hybrid finite-element and finite-difference time-domain algorithm [6]. 
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•ig. 3. Same as Fig. 2, but for a uniform lattice spacing of A = XI100. 
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APPENDIX 

APPLICATION OF THE HYBRID FINITE-DIFFERENCE 

TIME-DOMAIN METHOD TO 

MODELING CURVED SURFACES IN 

THREE-DIMENSIONAL LITHOGRAPHY SIMULATION 

1. INTRODUCTION 

Electromagnetic scattering from nonplanar topography on the mask or wafer can have a significant 
impact on photomask performance, linewidth control or alignment precision. Computer simulation 
is a cost-effective way to assess the importance of such electromagnetic scattering effects in 
photolithography. With the scaling of devices to smaller dimensions, greater demands are placed 
on the accuracy of the mathematical models used in the electromagnetic simulators and the 
efficiency of their numerical implementation. 

Over the past many years, the finite-difference time-domain method (FDTD) has become the 
prevalent method for solving electromagnetic scattering problems. Not only is it generally 
applicable to arbitrary geometries, but also it is the most efficient algorithm available, by yielding 
useful field information at N space points and m time points in a total of only 0{mN) operations. 
Thus, for example, a single time-domain simulation of the response of an electromagnetic system 
to a finite-duration incident pulse can yield the steady-state results for a large number of different 
frequencies by Fourier transformation. 

The main disadvantage of FDTD is its inefficiency in modeling curved surfaces accurately, since 
the regular finite-difference mesh used in FDTD requires that curved surfaces be approximated by 
staircase models, ^o achieve accurate results using the staircase model, one usually has to use a 
very fine mesh and, therefore, also a very small time step due to the stability criterion. 

Recently, a hybrid-FDTD method appeared in the literature [1] which combines the flexibility of 
the finite-element method (FEM) in modeling curved surfaces accurately with the computational 
efficiency of FDTD. It appears that this hybrid-FDTD method, when used in conjunction with 
high-performance absorbing boundary conditions, is the ideal tool for solving three-dimensional 
electromagnetic scattering problems arising in lithography simulation accurately and efficiently. 

However, the hybrid-FDTD method in its original form is not suitable for DUV lithography 
simulation. This is because the original formulation cannot handle lossy materials, especially those 
with negative dielectric constants, such as chromium and silicon, which are commonplace in DUV 
lithography. The goal of this paper is to extend the orignal hybrid-FDTD formulation to handle 
lossy materials. 

After reviewing the original hybrid-FDTD formulation in Section 2.1, we discuss its extensions to 
lossy materials with positive and negative dielectric constants separately in Sections 2.2 and 2.3. 
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The issues of mesh generation are discussed briefly in Section 3.1. This is followed in Section 3.2 
by a presentation of numerical results comparing the hybrid-FDTD method and standard FDTD for 
various dielectric materials. 

2. THE HYBRID-FDTD METHOD 

2.1 THE ORIGINAL METHOD 

The hybrid-FDTD method was originally developed by Wu and Itoh [1] for lossless dielectric 
objects. Consider a dielectric object bounded by a curved surface S as shown in Fig. 1 The 
computational domain is divided into two overlapping regions: (i) A regular finite-difference 
region Q,i spanning the interior and exterior of the object at some distance from the surface S, and 
(ii) an irregular finite-element region 0,2 spanning the immediate vicinity of S on both of its sides. 
The two regions overlap in a single layer of finite-difference cells bounded by staircase surfaces T\ 
and I^omeach side of S. 

Suppose the electric field Enis known everywhere at time step n. Using the standard Yee 
algorithm [2], the magnetic field Hn+? at time step n + \ in the regular region Oi, including the 
overlap region, can be updated. This in turn allows the electric field En+1 in Q,\, including the 
boundary Ti, to be updated. The electric field En+1 in the irregular region O2 is then updated by 
solving the weighted-residual problem 

4T / eEa • E du   =   - / -V x Ea • V x E dÜ , (1) 
at1 .la .In // 

using the electric field En+1on Ti as boundary condition and the previous electric fields E"and 
E""1 in ^2 as initial condition. Once the electric field at time step n + 1 becomes available 
everywhere, the time-marching can be continued for the next time step. 

To solve the weighted-residual problem Eq. (1), the irregular region O2 is subdivided into many 
small tetrahedral elements and the electric field in the elements is expanded in Whitney vector basis 
functions W7 [3], with the electric field components Ej along the element edges jas the expansion 
coefficients. Next, the time derivative in Eq. (1) is approximated by the central difference operator 
and the Newmark-Beta method [1] is applied to obtain an unconditionally stable, second-order 
accurate, implicit time-marching scheme, 

{[C] + ^[£>]) £"+1   =   2 ([C\ - ^f[D}^j E" - (V] + ^[£>]) ET-1 . (2) 

Here the matrices [C] and \D] are given by 
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[C)r]   =    j e0erWz ■ W, dtt , (3) 

[£>]..   =    I Iv x W; • V x Wj: dft , (4) 

where er is the dielectric constant and En is the vector of expansion coefficients at time step n. 

The above formulation of Wu and Itoh is applicable only to lossless dielectric objects with positive 
dielectric constants er. The objects encountered in lithography simulation, however, are often lossy 
and, furthermore, may have negative dielectric constants, especially at DUV wavelengths. We next 
discuss the extensions of the formulation of Wu and Itoh to lossy media with positive and negative 
dielectric constants separately. 

2.2 EXTENSION TO LOSSY MEDIUM WITH POSITIVE DIELECTRIC CONSTANT 

A material-,, with positive dielectric constant is one for which the real part n of its complex 
refractive index is greater than the imaginary part K. Such is the case for weakly absorbing 
materials such as photoresist and silicon nitride. This kind of material can be modeled in the time 
domain by adding a conductivity term to the electric-field updating equation. The dielectric 
constant er and conductivity a are related to the complex refractive index n + JK by 

er   —   n? - K? , (5) 

a   =   2n.K,uj0e0er , (6) 

where UJQ is the frequency of interest. 

By using exponential time stepping [4], the updating equation for the electric field in the irregular 
region becomes 

([C+] + £f[D]\ £"+1   =   2 ([Co] - £f[D]\ ET - f [£_] + ^rlD}) E^ , (7) 

where the matrices [C±] and [Co] are given by 

\C±]ij   =    I e0erexp (±^-) W, • W,- dQ , (8) 
Ju \    2e0er/ 2e0e 

\Co\ij   =    fn e0er cosh {^-) W,; • W,- du . (9) 

The time-marching scheme Eq. (7) is unconditionally stable as long as er > 0. 

2.3 EXTENSION TO LOSSY MEDIUM WITH NEGATIVE DIELECTRIC CONSTANT 

A material for which n < K    has a negative dielectric constant according to Eq. (5). Silicon, 
chromium and tungsten are examples of such materials at DUV wavelengths. This type of material 
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can be modeled in the time domain by an unmagnetized plasma [5], with a complex dielectric 
function 

.(UJ) 
UJ„ 

U)[U! + JVC 

(10) 

The plasma frequency UJP and collision frequency vc appearing in Eq. (10) are related to the 
complex refractive index of the material at the frequency CüQ of interest by 

ul                   9       0          4n2K2 

-|   =   l + „2_n2 + —— - 

Vc_ 2n.K 

1 + K.2 — 7?.2 

The weighted-residual problem to be solved in the irregular plasma region is 

d2 

(ii) 

(12) 

dt2 ./n 
/ e0E

a • E du 
In -I1 V x Ea • V x E dtt -1-4 2e-"c*Ea . E d£2 

[    dt' I " '■<2°-uJwi + I     dt' I vcJie-v^ Ea • E(* - t!) cto , 
I—oo .10. 

(13) 

in which a convolution term appears due to the frequency dependence of the plasma dielectric 
function Eq. (lO)Expanding the electric field E in Whitney basis functions and applying the 
Newmark-Beta method, we obtain the following second-order accurate, implicit time-marching 
scheme: 

At2 

-{[C} + ^f{{D}+[x{1)]}"jE^4-^'.     (14) 

where [C] is given by Eq. (3) with er = 1 and the matrix x(1)j is given by 

X (i) 

»j 

f (\ -e_"cAt\ 

= /0(-^r-)w'-w"B1- (15) 

The vector <]>" appearing in Eq. (14) is defined as 

n-l 
\J)n Ex A2) 

TO = 1 

E" (16) 

where the matrix X$\ is given by 
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X (2) 
Jjj 

cosh(fcAi) — 1 
vTÄt 

t^AiV^* W, • W7- du 
V J (17) 

Using the technique of Luebbers et al. [5], the vector $" can be computed recursively by 

(18) 

The same plasma model Eq. (10) can be applied to the regular FDTD region in the interior of the 
object. However, the traditional FDTD implementation of this model [5] is only first-order accurate 
in time, due in part to the use of the rectangular rule for the convolution integral. Instead, by 
assuming the electric field to vary linearly with time between successive time steps and performing 
the resulting convolution integral exactly, the following second-order accurate updating equation 
for the electric field in the interior FDTD region is obtained: 

77+1 E 

where 

1 + ±uj2pAt2a0 
l-^p

2At2(a0 + aie--
At) E" Lü2At2$n + — curl H"+* |(19) 

2  p 
eo 

a0 vrAt 
1-e — 1/rAt ' 

VrAt 

ax   =   2 
cosh(i/cAi) — 1 

(i/cA*)2 

The vector 3>" appearing in Eq. (19) is defined as 

(20) 

(21) 

n.-l 

*n = E ai i1 + e~l/cM)e —ucrr).At -pin—m. (22) 
m=l 

and can be computed recursively by 

$"    =   e-"At [et! (l + e'"^) E"-1 + $n~1]   . (23) 

To our knowledge, the second-order accurate updating equation Eq. (19) has not appeared before in 
the literature. 

3. RESULTS 

We tested the formulations discussed in Sections 2.1 to 2.3 with the problem of electromagnetic 
scattering by a dielectric sphere, for which the exact solution is known. The diameter of the sphere 
was 0.06 /xm and the wavelength was 0.248 /im. 

3.1 MESH GENERATION 

67 



The first step in the computation was to generate a high-quality mesh for the three-dimensional 
irregular region Q2 shown in Fig. 1. After subdividing the surface of the sphere into a large number 
of small triangles, an unstructured tetrahedral mesh was generated in 0,2 conforming to the surface 
triangulation of the sphere and the staircase boundaries Ti and T2, using our automatic mesh- 
generation software. 

The quality Q of our mesh was measured by the minimum of the sines of all the dihedral angles in 
the mesh, where 0 < Q < 1.0. This quality measure was chosen to bias against elements with too 
large (flniin ~ 1.S0") or too small (0min « 0°) dihedral angles, which would lead to poor accuracy of 
the finite-element interpolation or poor conditioning of the finite-element matrix, respectively [6]. 
It was found that our as-generated mesh had a quality Q of only 0.073, indicating the presence of 
poorly shaped elements in the mesh. 

To remove the poorly shaped elements, we performed mesh improvement on the as-generated mesh 
in two steps. In the first step, the sub-mesh belonging to each edge in the mesh, consisting of all the 
tetrahedra adjacent to that edge, was examined. The edge was deleted and replaced by one or more 
new edges if, by doing so, the quality of the sub-mesh was improved. In the second step, the cluster 
belonging to each node, consisting of all the tetrahedra adjacent to that node and its nearest 
neighbors, was examined. If the quality of the cluster was below a certain threshold, the nodes in 
the cluster were moved to new positions which maximized the quality of the cluster. It was found 
that after a single pass through our mesh-improvement routine, the quality of the mesh increased to 
Q = 0.335, which was deemed satisfactory for our computation. The final mesh is shown in Fig. 2 
and consists of 1195 nodes, 7158 edges and 5485 tetrahedra. 

The above finite-element mesh was embedded in a regular finite-difference mesh with 20 x 20 X 
20 cells. For simplicity, the first-order Higdon absorbing boundary condition [8] was used on all 
six sides of the computational domain, which measured 0.2 fim x 0.2 /im X 0.2 jim. A Huygens 
surface [9] located two cells interior to the outermost boundaries was used to excite the domain 
with various Gaussian pulses. 

3.2 NUMERICAL RESULTS 

3.2.1 LOSSLESS DIELECTRIC 

We first compared our results with those of Wu and Itoh, who used a lossless dielectric sphere of 
refractive index n,\ - 3.0 and a Gaussian pulse with finite d.c. content, 

Ernc   =   xe43W  v]    , (24) 

where n0 = 33. The computed results are shown in Fig. 3. Fig. 3a shows the total time-domain 
waveform at the center of the sphere, while Fig. 3b shows the scattered waveform at a point 0.09 
jjm in front of the sphere. Also shown in the figures are the exact Mie solution [7] and the results 
obtained with standard FDTD using the same mesh spacing as hybrid-FDTD in the regular region 
fii, namely, 20 x 20 x 20 cells, or roughly 1/8 of the wavelength n\ inside the dielectric. The 
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results of Figs. 3a and 3b are in good agreement with those of Wu and Itoh [1]. This verifies the 
correctness of our computer program. 

Next, the frequency-domain scattering cross section was obtained by Fourier transformation of the 
corresponding time-domain result. The hybrid-FDTD result is shown in Fig. 3c, together with the 
exact Mie solution and the results obtained with standard FDTD using 20 x 20 X 20 and 40 x 40 x 
40 cells, respectively. It can be seen that, compared with the exact result, the hybrid-FDTD method 
with a coarse mesh spacing of A:/8 gave much better accuracy than FDTD with the same mesh 
spacing, and roughly the same accuracy as FDTD with the finer mesh spacing of Ax/16. The small 
discrepancy between the hybrid-FDTD result and the exact result is due in part to the approximate 
absorbing boundary conditions used. 

3.2.2 LOSSY DIELECTRIC WITH POSITIVE DIELECTRIC CONSTANT 

We tested the formulation of Section 2.2 by using a lossy dielectric sphere of refractive index n\ = 
2.0 + j'O.üwThe time derivative of a Gaussian pulse was used for excitation to avoid introducing a 
d.c. offset into the solution, 

E^   =   -x3vW— -lVK^"1)!    , (25) 
\"'0 / 

where no = 33. The computed time-domain waveforms are shown in Figs. 4a and 4b, together with 
the exact results and the results obtained with standard FDTD using the same mesh spacing as 
hybrid-FDTD, or roughly 1/12 of the wavelength inside the dielectric. It can be seen that the 
hybrid-FDTD and FDTD results are both in good agreement with the exact results, although the 
FDTD results have slightly more overshooting at the valleys of the waveforms. 

The result for the Fourier transformed scattering cross section is shown in Fig. 4c, together with the 
FDTD results obtained with a coarse and a fine mesh spacing. It can be seen that, as in the lossless 
dielectric case, the hybrid-FDTD method with a coarse mesh spacing of Ai/12 gave much better 
accuracy than FDTD with the same mesh spacing, and roughly the same accuracy as FDTD with 
the finer mesh spacing of Ax/24. 

3.2.3 LOSSY DIELECTRIC WITH NEGATIVE DIELECTRIC CONSTANT 

We tested the formulation of Section 2.3 by using a lossy dielectric sphere of refractive index ri\ = 
0.85 + jf'2.01, which is the refactive index of chromium at 0.248 /xm [10]. The time-derivative 
Gaussian pulse Eq. (25) with zero d.c. content was used for excitation to avoid the singularity of 
the plasma dielectric function Eq. (10) at to = 0. 

The computed time-domain waveforms are shown in Figs. 5a and 5b, together with the exact 
results and the results obtained with standard FDTD using the same mesh spacing as hybrid-FDTD, 
or roughly 1/29 of the wavelength inside the dielectric sphere. It can be seen that, whereas the 
hybrid-FDTD results are in good agreement with the exact results for all times, the FDTD results 
show marked departures from the exact results at late times. 
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The result for the Fourier transformed scattering cross section is shown in Fig. 6, together with the 
FDTD results obtained with a coarse, a fine and a very fine mesh spacing. It can be seen that, 
whereas the hybrid-FDTD result is in good agreement with the exact result, the FDTD results for 
all three mesh spacings, namely, A:/29, Ai/58 and Ax/116, show large departures from the exact 
result. Since the second-order accurate updating equation Eq. (19) was used for the FDTD 
computations, these departures cannot be due to inaccurate implementation of the plasma 
dispersion model of Section 2.3, but, rather, must be due to inaccuracy of the staircase model of the 
spherical surface used in standard FDTD. These results highlight the need to use the hybrid-FDTD 
method to model curved surfaces accurately in the case of l^ssy dielectric materials with negative 
dielectric constants. 

4. CONCLUSIONS 

Extension«-,-of the original hybrid-FDTD method to handle lossy materials with positive and 
negative dielectric constants have been discussed separately. The correctness of our computer 
program has been verified by comparing our computed results with those in the literature and with 
the exact results. Our results have shown that, for lossless dielectric and lossy material with 
positive dielectric constant, the hybrid-FDTD method is much more accurate than standard FDTD 
when the same mesh spacing is used in both methods, while the two methods have roughly the 
same accuracy when the mesh spacing used in standard FDTD is half that used in hybrid-FDTD. 
For lossy material with negative dielectric constant, the difference between the two methods is 
much more pronounced. In this case, the hybrid-FDTD method with a mesh spacing of A is much 
more accurate than standard FDTD even when a mesh spacing of \A is used in the latter method. 
These results indicate that the hybrid-FDTD method is far superior to standard FDTD for 
lithography simulation at DUV wavelengths, where lossy materials with negative dielectric 
constants are commonplace. 
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and FDTD regions 

Huygens surface 

Fig. I. The hybrid-FDTD computational domain consisting of overlapping FDTD (Qf) and 
FEM (Q2) regions. T| and T2 are the exterior and secondary boundaries, respectively, 
of the overlap region. An incident wave is applied to the Huygens surface. 

Interior FDTD region 

FEM region made of 
tetrahedral elements 

Exterior FDTD region 

Fig. 2. (a) The surface of a sphere of diameter 0.06 u.m modeled by 352 triangles, (b) Cutaway 
view of the FEM mesh consisting of 5485 tetrahedral elements. 
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Fig. 3. Results lor a lossless dielectric sphere of refractive index n, = 3.0. (a) and (b): Time 
domain waveforms at center of sphere and at a point 0.09 u,m in front of the sphere, 
(c): Radar cross section obtained bv Fourier transformation of the time-domain resul 
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Fig. 4. Radar cross section of a lossy sphere of refractive index 2.0 - 0.5;', obtained by Fourier 
transformation of the time-domain results. 
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Fig. 5. Time-domain waveforms for a lossy sphere of refractive index 0.85 - 2.01/, modeled by 
a plasma model, (a) Total wave at the center of the sphere, (b) Scattered wave at a point 0.09 ^im 
in front of the sphere. 
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Fig. 6. Radar cross section of a lossy sphere of refractive index 0.85 - 2.01/, obtained by 
Fourier transformation of the time-domain results. 
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