Learning to Work in Collaborative Environments

Dr. David A. Dryer Department of Engineering Management Old Dominion University

ddryer@odu.edu

Report Documentation Page		
Report Date 15052001	Report Type N/A	Dates Covered (from to)
Title and Subtitle Learning to Work in Collaborative Environments		Contract Number
		Grant Number
		Program Element Number
Author(s) Dryer, David A.		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) Old Dominion University		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es)		Sponsor/Monitor's Acronym(s)
NDIA (National Defense Industrial Association 2111 Wilson Blvd., Ste. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Report Number(s)
Distribution/Availability Approved for public releas		
Supplementary Notes Proceedings from 3rd Simu The original document con		ference, 15-17 May 2001, sponsored by NDIA,
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages 35		

Increasingly, the teamwork and the tools of engineering are moving to the Internet ...

Larry Ellison sets the challenge of e-engineering the whole of Oracle's business by the end of 2000

Company official delivers briefing to Automotive Management titled " E-Engineering: Enabling Collaboration in the Next Century"

Industry Advisory Board features a keynote address titled " E-Engineering and the Networked Economy"

SPC's Eight Annual Executive Roundtable "E-Engineering: An Executive Perspective"

E-ENGINEERING – WHAT IS IT?

Distributed collaboration in cyberspace using leading edge technologies enabling physically-dispersed, diverse teams to <u>learn</u> and to create integrated, innovative and competitive products, systems, and services.

Old Dominion University e-engineering Task Force, Dec 2000

If e-engineering is the solution, what is the problem?

Global Product Development Environment Challenges

TRENDS/ISSUES OF MAJOR CONCERN IDENTIFIED IN A SURVEY OF 300 CEO's

- Globalization (94%)
- Improving knowledge management (88%)
- Cost and cycle time reduction (79%)
- Improving supply chains globally (78%)
- Manufacturing at multiple locations in many countries (76%)
- Managing the use of more part-time, temporary, and contract workers (71%)

REQUIRED (NEW) SKILLS FOR THE "E" IN E-ENGINEERING

- Computational Modeling and Software
- Human Centered Computing
- Hardware and Networks

NAE/NRC STUDY ON ADVANCED ENGINEERING ENVIRONMENTS

- Distributed Collaborative Teaming
- Virtual Collaborative Project Management

OLD DOMINION COLLEGE OF ENGINEERING AND TECHNOLOGY

"BARRIERS TO E-ENGINEERING REMAIN AT MANY UNIVERSITIES"

Design in the New Millennium, NAE/NRC Report on Advanced Engineering Environments

- Reward system
- Faculty appreciation for e-engineering
- Lack of time/resource for interdisciplinary program development
- Industry and government view of academia
- Lack of proven methods for preparing students

eengineering @ ody -some of our strengths-

NAVY COLLEGE

NUCLEAR NAVY MASTERS PROGRAMS

eengineering @ ody

• Transform the College of Engineering and Technology from an engineering to an "E-engineering" institution.

Create an effective industry collaborative model, or center, involving ODU faculty, students and staff with industry, government, and academia in order to address E-engineering workforce and technology development issues.

WE CAN'T DO IT ALONE.....

e-engineering () od!

WHO NEEDS E-ENGINEERING SKILLS?

• NEW GRADUATES

• CURRENT WORKFORCE

Pilot Study Focus Areas

– Basics Phase

- Virtual Teaming
- Project Management
- Application Phase
 - Product Scenario/Customer Meeting
 - User Interface Design
 - Solid Models, Rapid Prototyping/Fabrication
 - Product Testing/Competition
 - NASA Customer Presentation

MeTA Basics Phase Focus

- Team quickly reaching proficiency in basic e- engineering processes
- Individual and team e- engineering skill cycles addressed
- Individual
 - E-engineering skill deficiency areas identified
 - Individual training planned and executed to achieve proficiency
 - Individual qualification assessments to establish proficiency
 - Individual skills include include
 - Collaboration tool skills and virtual team process concepts
 - Project management and scheduling
 - Engineering-discipline skills required for specific project scenarios
- Team
 - Initial proficiency assessments of the team's e-engineering performance, by the team itself or by external evaluation
 - Team training and exercises planned and executed to achieve proficiency
 - Team qualification assessment to establish proficiency
 - Teaming skills include
 - Virtual team task and social dynamics
 - Working effectively using distributed synchronous and asynchronous collaboration tools

Distributed Collaborative Environment Direct Interactions

- Common understanding argumentation tools, meeting rooms, shared work surfaces
- Direct communication email, electronic conferences and video connections
- Control and feedback from shared artifacts shared PCs and windows, shared editors, co-authoring systems, shared diaries

Distributed Collaborative Environment Indirect Interactions

- Deixis pointing out artifact aspect to group
- Feedthrough manipulation of artifact (shared objects)

observed by others

E-engineering Interaction Model

DISTRIBUTED COLLABORATIVE

PROBLEM SOLVING - SHARED UNDERSTANDING - DECISION MAKING

PARTICIPANT TASK/ACTIVITY INTERACTIONS

Starting a Virtual Team

- Identifying team sponsors, stakeholders, and champions
- Develop a team charter purpose, mission, goals
- Select and assign team members
- Team-orientation session
 - Orientation to the task
 - Technological planning
 - Communication planning
 - Team building
- Develop team processes

A sample of best practice – Virtual Team Leader Sarah

- Prefers initial face-to-face meeting
- Prior to meeting
 - Tries to visit each team member, major stakeholder, sponsor, and champion
 - At very least, phone calls with team members to
 - Review project fundamentals
 - Introduce herself
 - Find out a little about individual team members and backgrounds
 - Ask about each team member's communication capabilities and computer hardware and software applications/experience
 - Sends relevant project information (draft charter, etc)

Team-orientation Session

- Ideal is face-to-face meeting attended by all team members
- Agenda
 - Orientation to team's task
 - Overview of team's charter
 - Opportunity for team members to react and offer feedback
 - Review of team member's expertise and accountabilities
- Development of team norms, technology plans, and communication plans
 - Team norms
 - Virtual conferencing etiquette and protocols to ensure participation from all members
 - Guidelines concerning when to use e-mail and expected reply time frame
 - How will work be reviewed and approved for submittal higher
 - Procedures for scheduling meetings
- Team building
- Continuous e-engineering improvement

e-engineering Team Process Council

CLOBAL INMOVATION PLAY WELL MILL CLOBAL INMOVATION CLOBAL INMOVATION COOBAL INMOVATION COOBAL INMOVATION

WORK SMARTER - FASTER

e-engineering Team Process Council Agenda

• Guidelines

- Focus on processes, not personal references/attacks
- Designate a note taker to record council meeting
- These meetings part of project continuous process improvement
- Identify process good, bad, and ugly each team member contributes good and bad aspects for the below areas – for bad, suggest a solution
 - Team communication
 - Team deliverable so far (meeting customer expectations? meeting team expectations? quality of product?)
 - Team participation and workload (members proactive? sharing the workload?)
 - Team organization and work structure (are members aware of what each other is doing? are milestones, internal reviews happening?)

Pilot Study Product Scenario

- Create atmosphere of engineering excitement
 - NASA collaborative
 - engineering theme
 - International Space Station environment
- Product-centered team development effort
 - → Enough complexity to be interdisciplinary
 - → Example:
 - **Virtual Engineering Input Device**
- Module themes
 - → Learn to think like innovative engineers
 - → *Remote collaboration*
 - → Global teams turning concepts into reality

RE-ENGINEER THE SPACE ORB VIRTUAL ENGINEERING INPUT DEVICE

Customer Meeting / Task Analysis

- Familiarization with NASA Intelligent Synthesis Environment (ISE) program and International Space Station (ISS) programs
- Enhance project Statement of Work (SOW)
- Discuss desired device functionality details and capture task use cases
 - Navigation
 - Selection/Manipulation
 - Mode changes
- Conduct task decomposition on critical task use cases

·Orb counter weight

Top and bottom exterior component virtual CAD prototypes

Re-engineered Space Orb physical prototype components

Virtual Team Interactions

Example: User interface design brainstorming and refinements considering customer needs in *distributed virtual environment*

PROJECT ACTIVITIES

<u>People-centric Tools</u>

DIRECT INTERACTION

Data-centric Tools

Geographically Distributed Participants

INDIRECT DATA INTERACTIONS

Contra ARTIFACTS Knowledge Repository

Geographically Distributed Participants

Collaborative infrastructure challenges

- ***** Asynchronous communication in the form of bulletin board.
- Synchronous communications that will include chat, whiteboard and application sharing capabilities, enhanced by the addition of audio and video channels.
- Applications for recording sessions, including audio and video channels
- Embedded applications to serve as an engineering notebook, where electronic notes, diagrams, and drafts can be displayed and stored for sharing within the virtual environment.
- Integrated engineering tools such as design & solid modeling tools (CAD/CAM).

e-engineering 🖉 od!

MULTI/RE-USABLE CONTENT LEARNING MODULES

• SELECTED ATTRIBUTES

- Incorporates best available experts
- Incorporates multimedia and simulations
- Presents material from a multi-disciplinary context
- Provides interactivity with professor, experts and fellow students
- Electronically storable and deliverable

E-Engineering Synergy -Advantages and Benefits-

